
NTRU Prime

20171130

Principal submitter

This submission is from the following team, listed in alphabetical order:

• Daniel J. Bernstein, University of Illinois at Chicago
• Chitchanok Chuengsatiansup, INRIA and ENS de Lyon
• Tanja Lange, Technische Universiteit Eindhoven
• Christine van Vredendaal, Technische Universiteit Eindhoven

E-mail address (preferred): authorcontact-ntruprime@box.cr.yp.to

Telephone (if absolutely necessary): +1-312-996-3422

Postal address (if absolutely necessary): Daniel J. Bernstein, Department of Computer Sci-
ence, University of Illinois at Chicago, 851 S. Morgan (M/C 152), Room 1120 SEO, Chicago,
IL 60607–7053.

Auxiliary submitters: There are no auxiliary submitters. The principal submitter is the
team listed above.

Inventors/developers: The inventors/developers of this submission are the same as the
principal submitter. Relevant prior work is credited below where appropriate.

Owner: Same as submitter.

Signature: ×. See also printed version of “Statement by Each Submitter”.

Document generated with the help of pqskeleton version 20171123.

1

mailto:authorcontact-ntruprime@box.cr.yp.to

Contents

1 Introduction 4

2 General algorithm specification (part of 2.B.1) 5

2.1 Streamlined NTRU Prime parameter space 5

2.2 Streamlined NTRU Prime key generation . 5

2.3 Streamlined NTRU Prime encapsulation . 5

2.4 Streamlined NTRU Prime decapsulation . 6

2.5 NTRU LPRime parameter space . 7

2.6 NTRU LPRime key generation . 7

2.7 NTRU LPRime encapsulation . 8

2.8 NTRU LPRime decapsulation . 8

3 List of parameter sets (part of 2.B.1) 9

3.1 Parameter set kem/sntrup4591761 . 9

3.2 Parameter set kem/ntrulpr4591761 . 10

4 Design rationale (part of 2.B.1) 12

4.1 The ring . 12

4.2 The public key . 14

4.3 Inputs and ciphertexts . 14

4.4 Key generation and decryption . 15

4.5 Padding, KEMs, and the choice of q . 17

4.6 The shape of small polynomials . 19

5 Detailed performance analysis (2.B.2) 20

5.1 Description of platform . 20

5.2 Time . 20

5.3 Space . 21

5.4 How parameters affect performance . 21

2

6 Analysis of known attacks (2.B.5) 21

6.1 Warning: underestimates are dangerous . 21

6.2 Meet-in-the-middle attack . 22

6.3 Streamlined NTRU Prime lattice . 23

6.4 Hybrid security . 23

6.5 Algebraic attacks . 25

6.6 Quantum attacks . 25

6.7 Memory, parallelization, and sieving algorithms 25

6.8 Attacks against NTRU LPRime . 26

7 Expected strength (2.B.4) in general 27

7.1 Security definitions . 27

7.2 Rationale . 27

8 Expected strength (2.B.4) for each parameter set 28

8.1 Parameter set kem/sntrup4591761 . 28

8.2 Parameter set kem/ntrulpr4591761 . 28

9 Advantages and limitations (2.B.6) 29

References 29

A Statements 36

A.1 Statement by Each Submitter . 37

A.2 Statement by Patent (and Patent Application) Owner(s) 39

A.3 Statement by Reference/Optimized Implementations’ Owner(s) 40

3

1 Introduction

A 2015 algorithm breaks dimension-N SVP (under plausible assumptions) in time 2(c+o(1))N

as N →∞ with c ≈ 0.292. See [9]. For comparison, the best algorithm known just five years
earlier had a much worse c ≈ 0.415, and the best algorithm known just ten years before that
took time 2Θ(N log N).

Gentry’s original FHE system at STOC 2009, with standard “cyclotomic” choices of rings,
is now known (again under plausible assumptions) to be broken in polynomial time by a
quantum algorithm. See [12]. Peikert claimed in 2015 that the weakness in Gentry’s system
was specific to Gentry’s short generators and inapplicable to Ideal-SVP:

Although cyclotomics have a lot of structure, nobody has yet found a way to
exploit it in attacking Ideal-SVP/BDD . . . For commonly used rings, principal
ideals are an extremely small fraction of all ideals. . . . The weakness here is not
so much due to the structure of cyclotomics, but rather to the extra structure of
principal ideals that have short generators.

However, the attack was then combined with further features of cyclotomics to break Ideal-
SVP (again under plausible assumptions) with approximation factor 2N

1/2+o(1)
, a terrifying

advance compared to the previous 2N
1+o(1)

. See [24].

As these attack examples illustrate, the security of lattice-based cryptography is not well
understood. There are serious risks of further advances in

• SVP algorithms,

• algorithms that exploit the “approximation factors” used in cryptography,

• algorithms that exploit the structure of cryptographic problems such as LWE,

• algorithms that exploit the multiplicative structure of efficient cryptographic problems
such as Ring-LWE,

• algorithms that exploit the structure of these problems for the specific rings chosen by
users, and

• algorithms to break cryptosystems without breaking these problems.

The point of this submission is that the attack surface in lattice-based cryptography can be
significantly reduced with only a minor loss of efficiency. In fact, despite the extra security
criteria imposed below, the two cryptosystems in this submission are two of the smallest and
fastest lattice-based cryptosystems.

4

2 General algorithm specification (part of 2.B.1)

This submission provides two key-encapsulation mechanisms: “Streamlined NTRU Prime”
and “NTRU LPRime”.

2.1 Streamlined NTRU Prime parameter space

Streamlined NTRU Prime has parameters (p, q, w) subject to the following restrictions: p
is a prime number; q is a prime number; w is a positive integer; 2p ≥ 3w; q ≥ 16w + 1;
xp − x − 1 is irreducible in the polynomial ring (Z/q)[x].

We abbreviate the ring Z[x]/(xp − x − 1), the ring (Z/3)[x]/(xp − x − 1), and the field
(Z/q)[x]/(xp − x − 1) as R, R/3, and R/q respectively. We refer to an element of R as
small if all of its coefficients are in {−1, 0, 1}, and weight w if exactly w of its coefficients
are nonzero.

Streamlined NTRU Prime also has the following parameters: an encoding of public keys as
strings; an encoding of rounded ring elements (see below) as strings; and a hash function
mapping each small polynomial to two fixed-length output strings, a “confirmation” and a
“session key”.

2.2 Streamlined NTRU Prime key generation

The receiver generates a public key as follows:

• Generate a uniform random small element g ∈ R. Repeat this step until g is invertible
in R/3. (There are various standard ways to test invertibility: for example, one can
check divisibility of g by the irreducible factors of xp − x − 1 modulo 3, or one can
deduce invertibility as a side effect of various algorithms to compute 1/g in R/3.)

• Generate a uniform random small weight-w element f ∈ R. (Note that f is nonzero
and hence invertible in R/q, since w ≥ 1.)

• Compute h = g/(3f) in R/q. (By assumption q is a prime larger than 3, so 3 is
invertible in R/q, so 3f is invertible in R/q.)

• Encode h as a string h, using the aforementioned encoding of public keys as strings.
The public key is h.

• Save the following secrets: f in R; and 1/g in R/3.

2.3 Streamlined NTRU Prime encapsulation

The sender generates a ciphertext as follows:

5

• Decode the public key h, obtaining h ∈ R/q.

• Generate a uniform random small weight-w element r ∈ R.

• Compute hr ∈ R/q.

• Round each coefficient of hr, viewed as an integer between −(q − 1)/2 and (q − 1)/2,
to the nearest multiple of 3, producing c ∈ R. (If q ∈ 1 + 3Z then each coefficient of c
is in {−(q − 1)/2, . . . , −6, −3, 0, 3, 6, . . . , (q − 1)/2}. If q ∈ 2+3Z then each coefficient
of c is in {−(q + 1)/2, . . . , −6, −3, 0, 3, 6, . . . , (q + 1)/2}. Rounding adds an element
from {−1, 0, 1} to each coefficient.)

• Encode c as a string c, using the aforementioned encoding of rounded ring elements as
strings.

• Hash r, obtaining a confirmation C and a session key K. The ciphertext is the con-
catenation C c.

2.4 Streamlined NTRU Prime decapsulation

The receiver decapsulates a ciphertext C c as follows:

• Decode c, obtaining c ∈ R.

• Multiply by 3f in R/q.

• View each coefficient of 3fc in R/q as an integer between −(q − 1)/2 and (q − 1)/2,
and then reduce modulo 3, obtaining a polynomial e in R/3.

• Multiply by 1/g in R/3.

• Lift e/g in R/3 to a small polynomial r0 ∈ R.

• Compute c0, C 0, K 0 from r0 as in encapsulation.

0 0 0• If r is small, r has weight w, c = c, and C 0 = C, then output K 0 . Otherwise output
False.

If C c is a legitimate ciphertext then c is obtained by rounding the coefficients of hr to
the nearest multiples of 3; i.e., c = m + hr in R/q, where m is small. All coefficients of
the polynomial 3fm + gr in R are in [−8w, 8w] by Theorem 2 below, and thus in [−(q −
1)/2, (q −1)/2] since q ≥ 16w+1. Viewing each coefficient of 3fc = 3fm+gr as an integer in
[−(q −1)/2, (q −1)/2] thus produces exactly 3fm+gr ∈ R, and reducing modulo 3 produces
gr ∈ R/3; i.e., e = gr in R/3, so e/g = r in R/3. Lifting now produces exactly r since r is

0 0 0small; i.e., r = r. Hence (c0, C 0, K 0) = (c, C, K). Finally, r = r is small, r has weight w,
c0 = c, and C 0 = C, so decapsulation outputs K 0 = K, the same session key produced by
encapsulation.

6

Theorem 1 Fix integers p ≥ 3 and w ≥ 1. Let r, g ∈ Z[x] be polynomials of degree at most
p − 1 with all coefficients in {−1, 0, 1}. Assume that r has at most w nonzero coefficients.
Then gr mod xp − x − 1 has each coefficient in the interval [−2w, 2w].

Theorem 2 Fix integers p ≥ 3 and w ≥ 1. Let m, r, f, g ∈ Z[x] be polynomials of degree
at most p − 1 with all coefficients in {−1, 0, 1}. Assume that f and r each have at most
w nonzero coefficients. Then 3fm + gr mod xp − x − 1 has each coefficient in the interval
[−8w, 8w].

2.5 NTRU LPRime parameter space

NTRU LPRime has parameters (p, q, w, δ, I) subject to the following restrictions: p is a
prime number; q is a prime number; w, δ, I are positive integers; 2p ≥ 3w; I is a multiple of
8; p ≥ I; q ≥ 16w + 2δ + 3; xp − x − 1 is irreducible in the polynomial ring R/q.

As before, we abbreviate the ring Z[x]/(xp − x − 1), the ring (Z/3)[x]/(xp − x − 1), and the
field (Z/q)[x]/(xp − x − 1) as R, R/3, and R/q respectively. We refer to an element of R as
small if all of its coefficients are in {−1, 0, 1}, and weight w if exactly w of its coefficients
are nonzero.

NTRU LPRime also has the following parameters: an encoding of rounded ring elements
(see below) as strings; a hash function mapping each I-bit string to three fixed-length output
strings, a “cipher key” and a “confirmation” and a “session key”; a function Small from the
set of cipher keys to the set of small weight-w elements in R; a function Generator from
a set of “seed” strings to R/q; a function Top from (Z/q)I to a fixed-length set of strings;
and a function Right from the same set of strings to (Z/q)I such that each coordinate of the
difference Right(Top(C)) − C is in {0, 1, . . . , δ} for each C ∈ (Z/q)I .

2.6 NTRU LPRime key generation

The receiver generates a public key as follows:

• Generate a uniform random seed S.

• Compute G = Generator(S) ∈ R/q.

• Generate a uniform random small weight-w element a ∈ R.

• Compute aG ∈ R/q.

• Round each coefficient of aG, viewed as an integer between −(q − 1)/2 and (q − 1)/2,
to the nearest multiple of 3, producing A ∈ R.

• Encode A as a string A. The public key is the concatenation SA.

• Save the secret a.

7

2.7 NTRU LPRime encapsulation

The sender generates a ciphertext as follows:

• Decode the public key SA, obtaining a seed S and a polynomial A ∈ R.

• Compute G = Generator(S) ∈ R/q.

• Generate a uniform random I-bit string r = (r0, r1, . . . , rI−1).

• Hash r, obtaining a cipher key k, a confirmation H, and a session key K.

• Compute b = Small(k) ∈ R.

• Compute bG in R/q.

• Compute bA in R/q. (Only the bottom I coefficients of bA, the coefficients
(bA)0, (bA)1, . . . , (bA)I−1 of x0, x1, . . . , xI−1 respectively, will be used; other coefficients
do not need to be computed.)

• Round each coefficient of bG, viewed as an integer between −(q − 1)/2 and (q − 1)/2,
to the nearest multiple of 3, producing B ∈ R.

• Encode B as a string B.

• Compute C = (C0, C1, . . . , CI−1) ∈ (Z/q)I as follows: Cj = (bA)j + rj (q − 1)/2.

˜• Compute C = Top(C).

• The ciphertext is the concatenation HBC̃. The session key is K.

2.8 NTRU LPRime decapsulation

The receiver decapsulates a ciphertext HBC̃ as follows:

• Decode B, obtaining B ∈ R.

• Compute T = Right(C̃) ∈ (Z/q)I .

• Compute aB in R/q. (Only the bottom I coefficients of aB will be used.)

0 0 0• Compute r0, r1, . . . , r ∈ {0, 1} as follows. View Tj − (aB)j + 4w + 1 ∈ Z/q as an I−1

integer between −(q − 1)/2 and (q − 1)/2. Then rj
0 is the sign bit of this integer: 1 if

the integer is negative, otherwise 0.

0 0 0• Compute a ciphertext c0 and session key K 0 from r0 = (r0, r1, . . . , rI−1) as in encapsu-
lation.

• If the ciphertext c0 is HBC̃, then output K 0 . Otherwise output False.

8

The public key A is obtained by rounding the coefficients of aG to the nearest multiples of
3; i.e., A = aG + d in R/q, where d is small.

If HBC̃ is a legitimate ciphertext then B is an encoding of B which is obtained by rounding
the coefficients of bG to the nearest multiples of 3; i.e., B = bG + e in R/q, where e is small,
and C̃ = Top(C) with Cj = (bA)j + rj (q − 1)/2.

By construction the functions Top and Right are such that each coordinate of
Right(Top(C)) − C is in {0, 1, . . . , δ} for each C ∈ (Z/q)I , i.e,. Right(Top(C))j − Cj ∈
{0, 1, . . . , δ}.

Then

Tj − (aB)j + 4w + 1 = Right(Top(C))j − (a(bG + e))j + 4w + 1

= Right(Top(C))j − Cj + Cj − ((abG)j + (ae)j) + 4w + 1

= Right(Top(C))j − Cj + (bA)j + rj(q − 1)/2 − ((abG)j + (ae)j) + 4w + 1

= Right(Top(C))j − Cj + (baG)j + (bd)j + rj (q − 1)/2 − ((abG)j + (ae)j) + 4w + 1

= Right(Top(C))j − Cj + (bd)j − (ae)j + 4w + 1 + rj (q − 1)/2 ∈ Z/q.

All coefficients of the polynomials bd and ae are in [−2w, 2w] by Theorem 1, thus

1 ≤ Right(Top(C))j − Cj + (bd)j − (ae)j + 4w + 1 ≤ 8w + δ + 1.

Viewing each coefficient of Tj − (aB)j + 4w + 1 as an integer in [−(q − 1)/2, (q − 1)/2] thus
produces an integer in [1, 8w +δ +1] if and only if rj = 0 and an integer in [−(q −1)/2, −(q −
1)/2 + 8w + δ] if and only if rj = 1 because 8w + δ + 1 ≤ (q − 1)/2 by construction.

0 0 0This means that rj = rj , thus r = r and c = c, so decapsulation outputs K 0 = K, the same
session key produced by encapsulation.

3 List of parameter sets (part of 2.B.1)

3.1 Parameter set kem/sntrup4591761

Streamlined NTRU Prime with p = 761, q = 4591, w = 286, and the following functions.

Encoding of public keys as strings: View the input polynomial in little-endian form as
761 764a sequence of coefficients of x0, x1, . . . , x764 . The coefficients of x , . . . , x are always 0.

View each coefficient in Z/4591 as an element of {−2295, . . . , 2295}. Add 2295 to obtain an
element of {0, . . . , 4590}.

3 · 211Write each batch of 5 elements c0, c1, c2, c3, c4 in radix 6144 = as the integer c0 +
< 2636144c1 + 61442c2 + 61443c3 + 61444c4. This integer is below 61445 . Write this integer

as 8 bytes in little-endian form.

9

This produces 8(765/5) = 1224 bytes. The last 6 bytes are always 0 and are suppressed, so
a public key is encoded as 1218 bytes.

Encoding of rounded ring elements as strings: View the input polynomial in little-
0 1 761 761endian form as a sequence of coefficients of x , x , . . . , x . The coefficient of x is always

0.

View each coefficient in Z/4591 as an element of {−2295, −2292, . . . , 2292, 2295}; recall
that ciphertext coefficients are always multiples of 3. Add 2295 to obtain an element of
{0, 3, . . . , 4587, 4590}. Divide by 3 to obtain an element of {0, 1, . . . , 1530}.

Write each batch of 3 elements c0, c1, c2 in radix 1536 = 3 · 29 as the integer c0 + 1536c1 +
< 23215362c2. This integer is below 15363 . Write this integer as 4 bytes in little-endian

form.

This produces 4(762/3) = 1016 bytes. The last byte is always 0 and is suppressed, so a
rounded ring element is encoded as 1015 bytes.

Hash function: View the input polynomial r in little-endian form as a sequence of coeffi-
0 1 763 761 762 763cients of x , x , . . . , x . The coefficients of x , x , x are always 0.

Add 1 to each coefficient, obtaining an element of {0, 1, 2}. Write each batch of 4 elements
in radix 4, obtaining a byte. Overall this produces 764/4 = 191 bytes.

Hash the resulting byte string with SHA-512, obtaining a 256-bit confirmation followed by
a 256-bit session key.

3.2 Parameter set kem/ntrulpr4591761

NTRU LPRime with p = 761, q = 4591, w = 250, δ = 292, I = 256, and the following
functions.

Encoding of rounded ring elements as strings: Same as in sntrup4591761.

Hash function: View the 256-bit string r in little-endian form as a 32-byte string, i.e. the
first byte of r is r0 + 2r1 + · · · + 128r7, the next byte is r8 + 2r9 + · · · + 128r15, etc.

Hash r with SHA-512, obtaining a 32-byte cipher key k followed by a 32-byte intermediate
key k0 . Hash k0 with SHA-512, obtaining a 32-byte confirmation followed by a 32-byte session
key.

Mapping to R: For each 32-byte string k, Small(K) ∈ R is defined as follows:

• Use AES-256-CTR with key k, starting from counter 0, to generate 4p bytes of output.

• View each 4 bytes of output in little-endian form, obtaining p elements of
{0, 1, . . . , 232 − 1}.

• Clear the bottom bit of each of the first w integers; now each of those integers is 0
modulo 2.

10

• Set the bottom bit, and clear the next bit, of each of the remaining p − w integers;
now each of those integers is 1 modulo 4.

• Sort the integers.

• Reduce each integer modulo 4, and subtract 1, obtaining p elements of {−1, 0, 1}, of
which exactly w are nonzero.

• View these elements as a polynomial in little-endian form, namely Small(K).

Mapping to R/q: The set of seeds is the set of 32-byte strings. For each 32-byte string K,
Generator(K) ∈ R/q is defined as follows:

• Use AES-256-CTR with key K, starting from counter 0, to generate 4p bytes of output.

• View each 4 bytes of output in little-endian form, obtaining p elements of
{0, 1, . . . , 232 − 1}.

• Reduce each of these elements modulo q, obtaining p elements of {0, 1, . . . , q − 1}.

• Obtain p elements of {−(q − 1)/2, . . . , (q − 1)/2} by subtractng (q − 1)/2 from each
integer.

• View these elements as a polynomial in little-endian form, namely Generator(K).

Top bits: For each C ∈ (Z/q)256, Top(C) is a 128-byte string defined as follows:

• View each Cj as an integer between −2295 and 2295.

• Compute Tj = b(114(Cj + 2156) + 16384)/32768c ∈ {0, 1, . . . , 15} for each j.

• Define Top(C) = (T0 + 16T1, T2 + 16T3, . . . , T254 + 16T255).

For each 128-byte string T , Right(T) ∈ (Z/q)256 is defined as follows:

• Extract T0, T1, . . . , T255 ∈ {0, 1, . . . , 15} from T in little-endian form.

• Compute Rj = 287Tj − 2007 for each j.

• Define Right(T) = (R0, R1, . . . , R255).

One can check each integer c ∈ {−2295, . . . , 2295} to see that (287t − 2007) − c ∈
{0, 1, . . . , 292} where t = b(114(c + 2156) + 16384)/32768c.

11

4 Design rationale (part of 2.B.1)

There are many different ideal-lattice-based public-key encryption schemes in the literature,
including many versions of NTRU; many Ring-LWE-based cryptosystems; and now Stream-
lined NTRU Prime and NTRU LPRime. These are actually many different points in a
high-dimensional space of possible cryptosystems. We give a unified description of the ad-
vantages and disadvantages of what we see as the most important options in each dimension,
in particular explaining the choices that we made in Streamlined NTRU Prime and NTRU
LPRime. Beware that there are many interactions between options. For example, using
Gaussian errors is incompatible with eliminating decryption failures, because there is always
a small probability of large samples combining with large values. Using truncated Gaussian
errors is compatible with eliminating decryption failures, but requires a much larger modulus
q. Neither of these options is compatible with the simple tight KEM that we use.

4.1 The ring

The choice of cryptosystem includes a choice of a monic degree-p polynomial P ∈ Z[x] and
a choice of a positive integer q. As in Section 2, we abbreviate the ring Z[x]/P as R, and
the ring (Z/q)[x]/P as R/q.

Common choices of R/q are as follows:

• “NTRU Classic”: Rings of the form (Z/q)[x]/(xp − 1), where p is a prime and q is a
power of 2, are used in the original NTRU cryptosystem [33].

• “NTRU NTT”: Rings of the form (Z/q)[x]/(xp + 1), where p is a power of 2 and
q ∈ 1 + 2pZ is a prime, are used in typical “Ring-LWE-based” cryptosystems such as
[3].

• “NTRU Prime”: Fields of the form (Z/q)[x]/(xp − x − 1), where p is prime, are used
in this submission.

NTRU Prime uses a prime-degree number field with a large Galois group and an inert
modulus, minimizing the number of ring homomorphisms available to the attacker. As an
analogy, conservative prime-field discrete-logarithm systems also minimize the number of
ring homomorphisms available to the attacker.

We expect the future situation, like the current situation, to be a mix of the following three
scenarios:

• Some lattice-based systems are broken whether or not they have unnecessary homo-
morphisms. As an analogy, some discrete-logarithm systems are broken whether or not
they have unnecessary homomorphisms.

12

send m + hr for small m, r and public h in ring R (“NTRU”)

�� �� ��
cyclotomic,

power-of-2 index,
split modulus

(“NTRU NTT”)

��

cyclotomic,
prime index,

power-of-2 modulus
(“NTRU Classic”)

��

large Galois group,
prime degree,
inert modulus

(“NTRU Prime”)

��

��

random m

��

random m

��

random m
round hr to m + hr

(“Rounded
NTRU Prime”)

��
��

key h = d + aG
for small a, d,

public G
(“Noisy Product
NTRU NTT”)

��

key h = g/f
for small f, g

(“Noisy Quotient
NTRU Classic”)

��

key h = d + aG
for small a, d,

public G
(“Rounded
Product

NTRU Prime”)

��

key h = g/f
for small f, g
(“Rounded
Quotient

NTRU Prime”)

��Lyubashevsky–
Peikert–Regev

cryptosystem [44]

original NTRU
cryptosystem [33] “NTRU LPRime” “Streamlined

NTRU Prime”

• Some lattice-based systems are unbroken whether or not they have unnecessary homo-
morphisms. As an analogy, some discrete-logarithm systems are unbroken whether or
not they have unnecessary homomorphisms.

• Some lattice-based systems are broken only if they have unnecessary homomorphisms.
As an analogy, some discrete-logarithm systems are broken only if they have unneces-
sary homomorphisms. Eliminating unnecessary homomorphisms rescues these systems,
and removes the need to worry about what attackers can do with these homomor-
phisms.

The current situation is that homomorphisms eliminated by NTRU Prime are used in the
following attack papers: [18], [28], [23], [20], [24], and [8]. See our “NTRU Prime” paper for
further details.

13

4.2 The public key

The receiver’s public key, which we call h, is an element of R/q.

4.3 Inputs and ciphertexts

In the original NTRU system, ciphertexts are elements of the form m + hr ∈ R/q. Here
h ∈ R/q is the public key as above, and m, r are small elements of R chosen by the sender.

Subsequent systems labeled as “NTRU” have generally extended ciphertexts to include ad-
ditional information, for various reasons explained below; but these cryptosystems all share
the same core design element, sending m + hr ∈ R/q where m, r are small secrets and h is
public. We suggest systematically using the name “NTRU” to refer to this design element,
and more specific names (e.g., “NTRU Classic” vs. “NTRU Prime”) to refer to other design
elements.

We refer to (m, r) as “input” rather than “plaintext” because in any modern public-key cryp-
tosystem the input is randomized and is separated from the sender’s plaintext by symmetric
primitives such as hash functions. See Section 4.5.

In the original NTRU specification [33], m was allowed to be any element of R having all
coefficients in a standard range. The range was {−1, 0, 1} for all of the suggested parameters,
with q not a multiple of 3, and we focus on this case for simplicity (although we note that
some other lattice-based cryptosystems have taken the smaller range {0, 1}, or sometimes
larger ranges).

Current NTRU Classic specifications such as [32] prohibit m that have an unusually small
number of 0’s or 1’s or −1’s. For random m, this prohibition applies with probability
<2−10, and in case of failure the sender can try encoding the plaintext as a new m, but
this is problematic for applications with hard real-time requirements. The reason for this
prohibition is that NTRU Classic gives the attacker an “evaluate at 1” homomorphism
from R/q to Z/q, leaking m(1). The attacker scans many ciphertexts to find an occasional
ciphertext where the value m(1) is particularly far from 0; this value constrains the search
space for the corresponding m by enough bits to raise security concerns. In NTRU Prime,
R/q is a field, so this type of leak cannot occur.

Streamlined NTRU Prime actually uses a different type of ciphertext, which we call a
“rounded ciphertext”. The sender chooses a small r as input and computes hr ∈ R/q.
The sender obtains the ciphertext by rounding each coefficient of hr, viewed as an integer
between −(q −1)/2 and (q −1)/2, to the nearest multiple of 3. This ciphertext can be viewed
as an example of the original ciphertext m + hr, but with m chosen so that each coefficient
of m + hr is in a restricted subset of Z/q.

With the original ciphertexts, each coefficient of m + hr leaves 3 possibilities for the cor-
responding coefficients of hr and m. With rounded ciphertexts, each coefficient of m + hr
also leaves 3 possibilities for the corresponding coefficients of hr and m, except that the

14

boundary cases −(q − 1)/2 and (q − 1)/2 (assuming q ∈ 1+3Z) leave only 2 possibilities. In
a pool of 264 rounded ciphertexts, the attacker might find one ciphertext that has 15 of these
boundary cases out of 761 coefficients; these occasional exceptions have very little impact
on known attacks. It would be possible to randomize the choice of multiples of 3 near the
boundaries, but we prefer the simplicity of having the ciphertext determined entirely by r.
It would also be possible to prohibit ciphertexts at the boundaries, but as above we prefer
to avoid restarting the encryption process.

More generally, we say “Rounded NTRU” for any NTRU system in which m is chosen
deterministically by rounding hr to a standard subset of Z/q, and “Noisy NTRU” for the
original version in which m is chosen randomly. Rounded NTRU has two advantages over
Noisy NTRU. First, it reduces the space required to transmit m + hr. Second, the fact that
m is determined by r simplifies protection against chosen-ciphertext attacks; see Section 4.5.

[49, Section 4] used an intermediate non-deterministic possibility to provide some space
reduction for a public-key cryptosystem: first choose m randomly, and then round m + hr,
obtaining m0 + hr. The idea of rounded hr as a deterministic substitute for noisy m + hr
was introduced in [7] in the context of a symmetric-key construction, was used in [5] to
construct another public-key encryption system, and was further studied in [13] and [4]. All
of the public-key cryptosystems in these papers have ciphertexts longer than Noisy NTRU,
but applying the same idea to Noisy NTRU produces Rounded NTRU, which has shorter
ciphertexts.

4.4 Key generation and decryption

In the original NTRU cryptosystem, the public key h has the form 3g/f in R/q, where f
and g are secret. Decryption computes fc = fm +3gr, reduces modulo 3 to obtain fm, and
multiplies by 1/f to obtain m.

Streamlined NTRU Prime changes the position of the 3, taking h as g/(3f) rather than 3g/f .
Decryption computes 3fc = 3fm + gr, reduces modulo 3 to obtain gr, and multiplies by 1/g
to obtain r. This change lets us compute (m, r) by first computing r and then multiplying
by h, whereas otherwise we would first compute m and then multiply by 1/h. One advantage
is that we skip computing 1/h; another advantage is that we need less space for storing a
key pair. This 1/h issue does not arise for NTRU variants that compute r as a hash of m,
but those variants are incompatible with rounded ciphertexts, as discussed in Section 4.5.

More generally, we say “Quotient NTRU” for NTRU with h computed as a ratio of two
secret small polynomials. An alternative is what we call “Product NTRU”, namely NTRU
with h of the form d + aG, where a and d are secret small polynomials. Here G ∈ R/q is
public, like h, but unlike h it does not need a hidden multiplicative structure: it can be,
for example, a standard chosen randomly by a trusted authority, or output of a long hash
function applied to a standard randomly chosen seed, or (as proposed in [3]) output of a long
hash function applied to a per-receiver seed supplied along with h as part of the public key.

Product NTRU does not allow the same decryption procedure as Quotient NTRU. The first

15

Product NTRU system, introduced by Lyubashevsky, Peikert, and Regev in [44] (originally
in talk slides in 2010), sends e + rG as additional ciphertext along with m + hr + M ,
where, as before, m and r are small polynomials, e is another small polynomial, and M
is a polynomial consisting of solely 0 or bq/2c in each position. The receiver computes
(m + hr + M) − a(e + rG) = M + m + dr − ae, and rounds to 0 or bq/2c in each position,
obtaining M . Note that m + dr − ae is small, since all of m, d, r, a, e are small.

The ciphertext size here, two elements of R/q, can be improved in various ways. One can
replace hr with fewer coefficients, for example by summing batches of two or three coefficients
[53], before adding M and m. Rounded Product NTRU rounds hr+M to obtain m+hr+M ,
rounds rG to obtain e + rG, and (to similarly reduce key size) rounds aG to obtain d + aG.
Decryption continues to work even if m + hr + M is compressed to two bits per coefficient.

A disadvantage of Product NTRU is that r is used twice, exposing approximations to both rG
and hr. This complicates security analysis compared to simply exposing an approximation
to hr. State-of-the-art attacks against Ring-LWE, which reveals approximations to any
number of random public multiples of r, are significantly faster for many multiples than for
one multiple. Perhaps this indicates a broader weakness, in which each extra multiple hurts
security.

Quotient NTRU has an analogous disadvantage: if one moves far enough in the parameter
space [39] then state-of-the-art attacks distinguish g/f from random more efficiently than
they distinguish m + hr from random. Perhaps this indicates a broader weakness. On the
other hand, if one moves far enough in another direction in the parameter space [61], then
g/f has a security proof.

We find both of these issues worrisome: it is not at all clear which of Product NTRU and
Quotient NTRU is a safer option.1 We see no way to simultaneously avoid both types of
complications. We have opted to present details of Streamlined NTRU Prime, an example
of Quotient NTRU Prime; and of NTRU LPRime, an example of Product NTRU Prime.

If exposing approximations to two multiples of r damages the security of Product NTRU,
perhaps exposing fewer bits does less damage. The compression techniques mentioned above,
such as replacing m + hr + M with fewer coefficients and releasing only a few top bits of
each coefficient, naturally expose fewer bits than uncompressed ciphertexts. NTRU LPRime
releases a few top bits of each of the bottom coefficients of m + hr + M , enough coefficients
to communicate a hard-to-guess input M .

The Quotient NTRU literature, except for the earliest papers, takes f of the form 1 + 3F ,
where F is small. This eliminates the multiplication by the inverse of f modulo 3. In
Streamlined NTRU Prime we have chosen to skip this speedup for two reasons. First, in
the long run we expect cryptography to be implemented in hardware, where a multiplication

1Peikert claimed in [50], modulo terminology, that Product NTRU is “at least as hard” to break as
Quotient NTRU (and “likely strictly harder”). This claim ignores the possibility of attacks against the reuse
of r in Product NTRU. There are no theorems justifying Peikert’s claim, and we are not aware of an argument
that eliminating this reuse is less important than eliminating the g/f structure. For comparison, switching
from NTRU NTT and NTRU Classic to NTRU Prime eliminates structure used in some state-of-the-art
attacks without providing new structure used in other attacks.

16

in R/3 is far less expensive than a multiplication in R/q. Second, this speedup requires
noticeably larger keys and ciphertexts for the same security level, and this is important for
many applications, while very few applications will notice the CPU time for Streamlined
NTRU Prime.

4.5 Padding, KEMs, and the choice of q

In Streamlined NTRU Prime and NTRU LPRime we use the modern “KEM+DEM” ap-
proach introduced by Shoup; see [58]. This approach is much nicer for implementors than
previous approaches to public-key encryption. For readers unfamiliar with this approach, we
briefly review the analogous options for RSA encryption.

RSA maps an input m to a ciphertext me mod n, where (n, e) is the receiver’s public key.
When RSA was first introduced, its input m was described as the sender’s plaintext. This
was broken in reasonable attack models, leading to the development of various schemes to
build m as some combination of fixed padding, random padding, and a short plaintext;
typically this short plaintext is used as a shared secret key. This turned out to be quite
difficult to get right, both in theory (see, e.g., [59]) and in practice (see, e.g., [46]), although
it does seem possible to protect against arbitrary chosen-ciphertext attacks by building m
in a sufficiently convoluted way.

The “KEM+DEM” approach, specifically Shoup’s “RSA-KEM” in [58] (also called “Simple
RSA”), is much easier:

• Choose a uniform random integer m modulo n. This step does not even look at the
plaintext.

• To obtain a shared secret key, simply apply a cryptographic hash function to m.

• Encrypt and authenticate the sender’s plaintext using this shared key.

Any attempt to modify m, or the plaintext, will be caught by the authenticator.

“KEM” means “key encapsulation mechanism”: me mod n is an “encapsulation” of the
shared secret key H(m). “DEM” means “data encapsulation mechanism”, referring to the
encryption and authentication using this shared secret key. Authenticated ciphers are nor-
mally designed to be secure for many messages, so H(m) can be reused to protect further
messages from the sender to the receiver, or from the receiver back to the sender. It is also
easy to combine KEMs, for example combining a pre-quantum KEM with a post-quantum
KEM, by simply hashing the shared secrets together.

When NTRU was introduced, its input (m, r) was described as a sender plaintext m combined
with a random r. This is obviously not secure against chosen-ciphertext attacks. Subsequent
NTRU papers introduced various mechanisms to build (m, r) as increasingly convoluted
combinations of fixed padding, random padding, and a short plaintext.

17

It is easy to guess that KEMs simplify NTRU, the same way that KEMs simplify RSA; we
are certainly not the first to suggest this. However, all the NTRU-based KEMs we have
found in the literature (e.g., [60] and [55]) construct the NTRU input (m, r) by hashing a
shorter input and verifying this hash during decapsulation; typically r is produced as a hash
of m. These KEMs implicitly assume that m and r can be chosen independently, whereas
rounded ciphertexts (see Section 4.3) have r as the sole input. It is also not clear that
generic-hash chosen-ciphertext attacks against these KEMs are as difficult as inverting the
NTRU map from input to ciphertext: the security theorems are quite loose.

We instead follow a simple generic KEM construction introduced in the earlier paper [25,
Section 6] by Dent, backed by a tight security reduction [25, Theorem 8] saying that generic-
hash chosen-ciphertext attacks are as difficult as inverting the underlying function:

• Like RSA-KEM, this construction hashes the input, in our case r, to obtain the session
key.

• Decapsulation verifies that the ciphertext is the correct ciphertext for this input, pre-
venting per-input ciphertext malleability.

• The KEM uses additional hash output for key confirmation, making clear that a ci-
phertext cannot be generated except by someone who knows the corresponding input.

Key confirmation might be overkill from a security perspective, since a random session
key will also produce an authentication failure; but key confirmation allows the KEM to be
audited without regard to the authentication mechanism, and adds only 3% to our ciphertext
size.

Dent’s security analysis assumes that decryption works for all inputs. We achieve this in
Streamlined NTRU Prime by requiring q ≥ 16w + 1. Recall that decryption sees 3fm + gr
in R/q and tries to deduce 3fm + gr in R; the condition q ≥ 16w + 1 guarantees that
this works, since each coefficient of 3fm + gr in R is between −(q − 1)/2 and (q − 1)/2 by
Theorem 2. Taking different shapes of m, r, f, g, or changing the polynomial P = xp − x − 1,
would change the bound 16w + 1; for example, replacing g by 1 + 3G would change 16w + 1
into 24w + 3.

Similarly, NTRU LPRime takes q ≥ 16w +2δ +3 to avoid decryption failures. Sending along
merely top bits of m + hr + M means that there is an additional error, producing a slightly
worse bound than in the Streamlined NTRU Prime case. Another difference in details is
that decryption reconstructs only M , not m; NTRU LPRime chooses r deterministically2 as
a hash of M .

In lattice-based cryptography it is standard to take somewhat smaller values of q. The idea
is that coefficients in 3fm + gr are produced as sums of many +1 and −1 terms, and these

2This requires another layer of security analysis beyond Dent’s security analysis. The core question is
whether it is hard to recover a random M from ciphertext and public key, when r is chosen randomly. The
next question, the extra layer, is whether it is hard to recover a random M from ciphertext and public key,
when r is chosen as a hash of M . The third question, addressed by Dent’s security analysis, is whether the
KEM is hard to break.

18

terms usually cancel, rather than conspiring to produce the maximum conceivable coefficient.
However, this idea led to attacks that exploited occasional decryption failures; see [35] and,
for an analogous attack on code-based cryptography using QC-MDPC codes, [30]. It is
common today to choose q so that decryption failures will occur with, e.g., probability 2−80;
but this does not meet Dent’s assumption that decryption always works. This nonzero
failure rate appears to account for most of the complications in the literature on NTRU-
based KEMs. We prefer to guarantee that decryption works, making the security analysis
simpler and more robust.

4.6 The shape of small polynomials

As noted in Section 4.3, the coefficients of m are chosen from the limited range {−1, 0, 1}.
The NTRU literature [33, 37, 31, 32] generally puts the same limit on the coefficients of r, g,
and f , except that if f is chosen with the shape 1 + 3F (see Section 4.4) then the literature
puts this limit on the coefficients of F . Sometimes these “ternary polynomials” are further
restricted to “binary polynomials”, excluding coefficient −1.

The NTRU literature further restricts the Hamming weight of r, g, and f . Specifically, a
cryptosystem parameter is introduced to specify the number of 1’s and −1’s. For example,
there is a parameter t (typically called “d” in NTRU papers) so that r has exactly t coef-
ficients equal to 1, exactly t coefficients equal to −1, and the remaining p − 2t coefficients
equal to 0. These restrictions allow decryption for smaller values of q (see Section 4.5),
saving space and time. Beware, however, that if t is too small then there are attacks; see
our security analysis in Section 6.

In Streamlined NTRU Prime we keep the requirement that r have Hamming weight w = 2t,
and keep the requirement that these w nonzero coefficients are all in {−1, 1}, but we drop
the requirement of an equal split between −1 and 1. This allows somewhat more choices of r.
The same comments apply to f . Similarly, we require g to have all coefficients in {−1, 0, 1}
but the distribution is otherwise unconstrained. We also require that f and g be invertible
in R/q, which simply means nonzero given that P (x) is irreducible for NTRU Prime, and
that g be invertible in R/3.

These changes would affect the conventional NTRU decryption procedure: they expand
the typical size of coefficients of fm and gr, forcing larger choices of q to avoid noticeable
decryption failures. But we instead choose q to avoid all decryption failures (see Section 4.5),
and these changes do not expand our bound on the size of the coefficients of fm and gr.

In NTRU LPRime we similarly choose small weight-w polynomials with coefficients in
{−1, 0, 1} without restricting the distribution of −1 and 1 beyond the weight.

Elsewhere in the literature on lattice-based cryptography one can find larger coefficients:
consider, e.g., the quinary polynomials in [27], and the even wider range in [3]. In [61],
the coefficients of f and g are sampled from a very wide discrete Gaussian distribution,
allowing a proof regarding the distribution of g/f . However, this appears to produce worse
security for any given key size. Specifically, there are no known attack strategies blocked

19

by a Gaussian distribution, while the very wide distribution forces q to be very large to
enable decryption (see Section 4.5), producing a much larger key size (and ciphertext size)
for the same security level. Furthermore, wide Gaussian distributions are practically always
implemented with variable-time algorithms, creating security problems, as illustrated by the
successful cache-timing attacks in [17] and [51].

5 Detailed performance analysis (2.B.2)

5.1 Description of platform

The following measurements were collected using supercop-20170904 running on a com-
puter named titan0. The CPU on titan0 is an Intel Xeon E3-1275 v3 (Haswell) running
at 3.5 GHz. Turbo Boost is disabled. titan0 has 32GB of RAM and runs Ubuntu 14.04.
Benchmarks used ./do-part, which ran on one core of the CPU. The compiler list was re-
duced to just gcc -march=native -mtune=native -O3 -fomit-frame-pointer -fwrapv.

NIST says that the “NIST PQC Reference Platform” is “an Intel x64 running Windows
or Linux and supporting the GCC compiler.” titan0 is an Intel x64 running Linux and
supporting the GCC compiler. Beware, however, that different Intel CPUs have different
cycle counts.

5.2 Time

In the first measurement run (many timings), the median encapsulation time for
sntrup4591761 was 59456 cycles, and the median decapsulation time was 97684 cycles.
Timings were practically identical in the second measurement run (59476, 97624) and the
third measurement run (59508, 97692).

Key-generation time was slower, over 6 million cycles. With more effort one can eliminate
most of these cycles,3 but our current key-generation cost is already negligible. Specifically:

• The standard design goal of IND-CCA2 security means that it is safe to generate a key
once and use the key any number of times. The situation in several recent lattice-based
KEMs (for example, BCNS [15], New Hope [3], and Frodo [14]) is completely different:
they are not designed to resist, and do not resist, chosen-ciphertext attacks, so they
generate a new key for every ciphertext, so their key-generation time is important.

• Forward secrecy does not require constant generation of new keys. A typical quad-core
3GHz server generating a new short-term key every minute is using under 1/100000 of
its CPU time on key generation with our current software.

3For example, “fast gcd” techniques incorporate subquadratic-time multiplication methods such as Karat-
suba’s method, and are compatible with constant-time computations.

20

• A user who (for some reason) wants to generate many keys more quickly than this can
use Montgomery’s trick to batch the inversions. Montgomery’s trick replaces (e.g.) 1000
inversions with 2997 multiplications and just 1 inversion. This reduces the cost of
generating each key below 300000 cycles.

Our software is analogous to the original Curve25519 software [10], which emphasized en-
cryption/decryption speed and did not bother speeding up occasional key-generation com-
putations.

ntrulpr4591761 is estimated to be somewhat slower than sntrup4591761, although it is
faster than sntrup4591761 for key generation.

5.3 Space

Public keys for sntrup4591761 occupy 1218 bytes. Ciphertexts occupy only 1047 bytes.
Secret keys occupy 1600 bytes.

Public keys for ntrulpr4591761 occupy 1047 bytes. Ciphertexts occupy 1175 bytes. Secret
keys occupy 1238 bytes.

5.4 How parameters affect performance

Encapsulation and decapsulation involve a few multiplications in the ring R/q. The asymp-
totic cost of multiplication, as p and q grow, is essentially linear in p log2 q, the number of
bits in a ring element. Other operations scale at least as well as this.

6 Analysis of known attacks (2.B.5)

We start with existing pre-quantum NTRU attack strategies, adapt those strategies to the
context of Streamlined NTRU Prime, and quantify their effectiveness. In particular, we
account for the impact of changing xp − 1 to xp − x − 1, and using small f rather than
f = 1+3F with small F . For comparability we assume here that the weight w in Streamlined
NTRU Prime is taken as 2t, where t is the number of 1’s and the number of −1’s in the
original NTRU cryptosystem.

We consider NTRU LPRime in Section 6.8. We consider post-quantum security in Sec-
tion 6.6.

6.1 Warning: underestimates are dangerous

Underestimating attack cost can damage security, for reasons explained in [11, full version,
Appendix B.1.2], so we prefer to use accurate cost estimates. However, accurately evaluating

21

the cost of lattice attacks is generally quite difficult. The literature very often explicitly
resorts to underestimates. Comprehensively fixing this problem is beyond the scope of this
submission, but we have started work in this direction, as illustrated by Section 6.7. At
the same time it is clear that the best attack algorithms known today are much better than
the best attack algorithms known a few years ago, so it is unreasonable to expect that the
algorithms have stabilized. We plan to periodically issue updated security estimates to reflect
ongoing work.

6.2 Meet-in-the-middle attack

Odlyzko’s meet-in-the-middle attack [36, 34] on NTRU works by splitting the space of possi-
ble keys F into two parts such that F = F1 ⊕F2. Then in each loop of the algorithm partial
keys are drawn from F1 and F2 until a collision function (defined in terms of the public key
h) indicates that f1 ∈ F1 and f2 ∈ F2 have been found such that f = f1 + f2 is the private
key. � �� � � �

p p−t p 22tThe number of choices for f is in original NTRU and in Streamlined NTRU
t t 2t

Prime. A first estimate is that the number of loops in the algorithm is the square root of
the number of choices of f . However, this estimate does not account for equivalent keys.
In NTRU Classic, a key (f, g) is equivalent to all of the rotated keys (xif, xig) and to the
negations (−xif, −xig), and the algorithm succeeds if it finds any of these rotated keys. The
2p rotations and negations are almost always distinct, producing a speedup factor very close √
to 2p.

The structure of the NTRU Prime ring is less friendly to this attack. Say f has degree p − c;
typically c is around p/2t, since there are 2t terms in f . Multiplying f by x, x2, . . . , xc−1

produces elements of F , but multiplying f by xc replaces xp−c with xp mod xp −x−1 = x+1,
changing its weight and thus leaving F . It is possible but rare for subsequent multiplications
by x to reenter F . Similarly, one expects only about p/2t divisions by x to stay within F ,
for a total of only about p/t equivalent keys, or 2p/t when negations are taken into account.
We have confirmed these estimates with experiments.

One could modify the attack to use a larger set F , but this seems to lose more than it
gains. Furthermore, similar wraparounds for g compromise the effectiveness of the collision
function. To summarize, the extra term in xp − x − 1 seems to increase the attack cost by √
a factor around t, compared to NTRU Classic; i.e., the rotation speedup is only around p √

2p/t rather than 2p.

On the other hand, some keys f allow considerably more rotations. We have decided to p
assume a speedup factor of 2(p − t), since we designed some pathological polynomials f
with that many (not consecutive) rotations in the set. For random r the speedup is much
smaller. This means that the number of loops before this attack is expected to find f is
bounded by s� ,p�

p
L = 22t 2(p − t). (1)

2t

22

In each loop, t vectors of size p are added and their coefficients are reduced modulo q. We
thus estimate the attack cost as Lpt. The storage requirement of the attack is approximately
L log2 L. We can reduce this storage by applying collision search to the meet-in-the-middle
attack (see [48, 62]). In this case we can reduce the storage capacity by a factor s at the √
expense of increasing the running time by a factor s.

6.3 Streamlined NTRU Prime lattice

As with NTRU Classic, we can embed the problem of recovering the private keys f, g into a
lattice problem. Saying 3h = g/f in R/q is the same as saying 3hf + qk = g in R for some
polynomial k; in other words, there is a vector (k, f) of length 2p such that � � � � qI 0 � � � �

k f = k f B = g f ,
H I

where H is a matrix with the i’th vector corresponding to xi · 3h mod xp − x − 1 and I is
the p × p identity matrix. We will call B the Streamlined NTRU Prime public lattice basis.√
This lattice has determinant qp. The vector (g, f) has norm at most 2p. The Gaussian
heuristic states that the length of the shortest vector in a random lattice is approximately √ √ √
det(B)1/(2p) πep = πepq, which is much larger than 2p, so we expect (g, f) to be the
shortest nonzero vector in the lattice.

Finding the secret keys is thus equivalent to solving the Shortest Vector Problem (SVP) for
the Streamlined NTRU Prime public lattice basis. The fastest currently known method to
solve SVP in the NTRU public lattice is the hybrid attack, which we discuss below.

A similar lattice can be constructed to instead try to find the input pair (m, r). However,
there is no reason to expect the attack against (m, r) to be easier than the attack against
(g, f): r has the same range as f , and m has essentially the same range as g. Recall
that Streamlined NTRU Prime does not have the NTRU Classic problem of leaking m(1).
There are occasional boundary constraints on m (see Section 4.3), and there is also an R/3
invertibility constraint on g, but these effects are minor.

6.4 Hybrid security

The best known attack against the NTRU lattice is the hybrid lattice-basis-reduction-and-
meet-in-the-middle attack described in [34]. The attack works in two phases: the reduction
phase and the meet-in-the-middle phase.

Applying lattice-basis-reduction techniques will mostly reduce the middle vectors of the
basis [56]. Therefore the strategy of the reduction phase is to apply lattice-basis reduction,
for example BKZ 2.0 [21], to a submatrix B0 of the public basis B. We then get a reduced
basis T = UBY :

23

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎝ ⎠ · ⎝ ⎠ · ⎝ ⎠ = ⎝ ⎠
Iu 0 0
0 U 0 0
0 0 Iu0

qIu 0 0
∗ B0 0
∗ ∗ Iu0

Iu 0 0
0 Y 0 0
0 0 Iu0

qIu 0 0
∗ T 0 0
∗ ∗ Iu0

Here Y is orthonormal and T 0 is again in lower triangular form.

In the meet-in-the-middle phase we can use a meet-in-the-middle algorithm to guess options
for the last u0 coordinates of the key by guessing halves of the key and looking for collisions.
If the lattice basis was reduced sufficiently in the first phase, a collision resulting in the
private key will be found by applying a rounding algorithm to the half-key guesses. More
details on how to do this can be found in [34].

To estimate the security against this attack we adapt the analysis of [32] to the set of keys
that we use in Streamlined NTRU Prime. Let u be the dimension of Iu and u0 be the
dimension of Iu For a sufficiently reduced basis the meet-in-the-middle phase will require 0 .
on average

� � � �X 01 u− log2(2(p − t)) + 2a v(a) log2(v(a)) (2)
2 a

0≤a≤min{2t,u0}

work, where the log2(2(p − t)) term accounts for equivalent keys and �
p−u0� � 0�

22t−a 2−a p−u
2t−a 2t−a v(a) = � � = � � . (3)

22t p p
2t 2t

The quality of a basis after lattice reduction can be measured by the Hermite factor δ =
||b1||/det(B)1/p. Here ||b1|| is the length of the shortest vector among the rows of B. To
be able to recover the key in the meet-in-the-middle phase, the (2p − u − u0) × (2p − u − u0)
matrix T 0 has to be sufficiently reduced. For given u and u0 this is the case if the lattice
reduction reaches the required value of δ. This Hermite factor has to satisfy

(p − u) log2(q) 1
log2(δ) ≤ − . (4)

(2p − (u + u0))2 2p − (u0 + u)

We use the BKZ 2.0 simulator of [21] to determine the best BKZ 2.0 parameters, specifically
the “block size” β and the number of “rounds” n, needed to reach a root Hermite factor δ.
To get a concrete security estimate of the work required to perform BKZ-2.0 with parameters
β and n we use the conservative formula determined by [32] from the experiments of [22]:

Estimate(β, p, n) = 0.000784314β2 + 0.366078β − 6.125 + log2(p · n) + 7. (5)

This estimate and the underlying experiments rely on “enumeration”; see Section 6.7 for a
comparison to “sieving”. This analysis also assumes that the probabily of two halves of the
key colliding is 1. We will also conservatively assume this, but a more realistic estimate can
be found in [63]. Using these estimates we can determine the optimal u and u0 to attack a
parameter set and thereby estimate its security.

24

Lastly we note that this analysis is easily adaptable to generalizing the coefficients to be in
the set {−d, −(d−1), . . . , d−1, d} by replacing base 2 in the exponentiations in Equations 1, 2
and 3 with 2d. In this case however the range of t, by a generalization of Theorem 2, decreases
to q > 16(d3 + d2)t.

6.5 Algebraic attacks

The attack strategy of Ding [26], Arora–Ge [6], and Albrecht–Cid–Faugère–Fitzpatrick– √
Perret [2] takes subexponential time to break dimension-n LWE with noise width o(n),
and polynomial time to break LWE with constant noise width. However, these attacks
require many LWE samples, whereas typical cryptosystems in the NTRU family provide far
less data to the attacker. When these attacks are adapted to cryptosystems that provide
only (say) 2n samples, they end up taking more than 20.5n time, even when the noise is
limited to {0, 1}. See generally [2, Theorem 7] and [43, Case Study 1].

6.6 Quantum attacks

Grover’s algorithm, amplitude amplification, and quantum walks produce better exponents
for some of the subroutines used above. Preliminary estimates indicate that the overall
impact on Streamlined NTRU Prime security levels is much less than the impact upon
AES-256 security levels. Further analysis is required.

6.7 Memory, parallelization, and sieving algorithms

The security estimates above rely on enumeration algorithms [52, 29, 38, 32]. For very
large dimensions, the performance of enumeration algorithms is slightly super-exponential
and is known to be suboptimal. The provable sieving algorithms of Pujol and Stehlé [54]
solve dimension-β SVP in time 22.465...β+o(β) and space 21.233...β+o(β), and more recent SVP
algorithms [1] take time 2β+o(β). More importantly, under heuristic assumptions, sieving is
much faster. The most recent work on lattice sieving (see [9, 42]) has pushed the heuristic
complexity down to 20.292...β+o(β).

Simply comparing 0.292β to enumeration exponents suggests that sieving could be faster
than enumeration for sizes of β of relevance to cryptography. However, this comparison
ignores two critical caveats regarding the performance of sieving. First, a closer look at
polynomial factors indicates that the o(β) here is positive. Consider, e.g., [9, Figure 3],
which reports a best fit of 20.387β−15 for its fastest sieving experiments. The comparison in
[47] takes this caveat into account and concludes that the sieving cutoff is “far out of reach”.

Second, sieving uses much more storage as β grows: at least 20.208...β+o(β) bits of storage,
again with positive o(β). It is not known how to reduce the storage without large increases
in the number of operations. Furthermore, sieving is bottlenecked by random access to

25

storage, and this random access also becomes slower as the amount of storage increases. The
slowdown is approximately the square root of the storage in realistic cost models; see, e.g.,
[16].

Enumeration fits into very little memory even for large β. Kuo, Schneider, Dagdelen, Re-
ichelt, Buchmann, Cheng, and Yang [41] showed that enumeration parallelizes effectively
within and across GPUs. An attacker who can afford enough hardware for sieving for large
β can instead use the same amount of hardware for enumeration, obtaining an almost linear
parallelization speedup.

We do not mean to suggest that the operation-count ratio should be multiplied by the
sieving storage (accounting for this enumeration speedup) and further by the square root of
the storage (accounting for the cost of random access inside sieving): this would ignore the
possibility of a speedup from parallelizing sieving. “Mesh” sorting algorithms such as the √
Schnorr–Shamir algorithm [57] sort n small items in time just O(n), which is optimal in
realistic models of parallel computation; these algorithms can be used as subroutines inside
sieving, reducing the asymptotic cost penalty to just 20.104...β+o(β). However, this is still much
less effective parallelization than [41].

This cost penalty for sieving is ignored in measurements such as [45] and [9, Figure 3], and
in the resulting comparisons such as [47]. These measurements are limited to sieving sizes
that fit into DRAM on a single computer, and do not account for the important increase in
memory cost as β increases. Another way to see the same issue would be to scale sieving
down to a small enough size to fit into GPU multiprocessors; this would demonstrate a
sieving speedup for smaller β, for fundamentally the same reason that there will be a sieving
slowdown for larger β.

In the absence of any realistic analyses of sieving cost for large β, we have decided to omit
sieving from our security estimates. There is very little reason to believe that sieving can
beat enumeration inside any attack that fits within our security target.

6.8 Attacks against NTRU LPRime

NTRU LPRime is similar to Streamlined NTRU Prime from an attack perspective. In
particular, a lattice attack that finds small (m, r), given a random h and given c = m + hr,
breaks both Streamlined NTRU Prime and NTRU LPRime.

Above we focused on the similar problem of finding small (g, f) given h and given 0 = g−3hf .
Having to consider this second problem is a complication avoided by NTRU LPRime, and if
this problem is easier then NTRU LPRime could be more secure than Streamlined NTRU
Prime.

On the other hand, NTRU LPRime has its own complication, namely that it also releases
an approximation to a second multiple of r. If this makes the r-recovery problem easier then
NTRU LPRime could be less secure than Streamlined NTRU Prime. As noted above, we
find both of these complications worrisome; further security analysis is required.

26

A simpler issue is that, for the same sizes p and q, NTRU LPRime places slightly smaller
limits on the weight w than Streamlined NTRU Prime does. A smaller weight reduces the
quantitative security level against various attack strategies discussed above.

7 Expected strength (2.B.4) in general

7.1 Security definitions

Our security goal is IND-CCA2. See Section 8 for quantitative estimates of the security of
specific parameter sets.

Our general strategy for handling multi-target attacks is to aim for a very high single-target
security level, and then rely on the fact that T -target attacks gain at most a factor T . We
have not introduced complications aimed at making multi-target attacks even more difficult.

Our current software allows multiple encodings of ciphertexts and keys, for example allowing
4591 as a synonym for 0. NIST has stated a preference for implementations that enforce
unique encodings, and we plan to adjust our software accordingly.

Lattice-based encryption also has various symmetries, analogous to well-known ECC sym-
metries. For example, if c (plus confirmation) is a Streamlined NTRU Prime ciphertext
under public key h, then −c (plus the same confirmation) is a Streamlined NTRU Prime
ciphertext for the same session key under public key −h.

7.2 Rationale

See Section 6 for an analysis of known attacks.

Algorithm 1 searches for (p, q, t, λ), where λ is Section 6’s estimate of the pre-quantum
security level for parameters (p, q, t) with w = 2t. The subroutine nextprime(i) returns the
first prime number >i. The subroutine viableqs(p, qb) returns all primes q larger than p and
smaller than qb for which it holds that xp − x − 1 is irreducible in (Z/q)[x]. The subroutine
mitmcosts uses the estimates from Equation (1) to determine the bitsecurity level of the
parameters against a straightforward meet-in-the-middle attack. To find u, u0, β, n we set
u to the hybridbkzcost of the previous iteration (initially 0) and do a binary search for u0

such that the two phases of the hybrid attack are of equal cost. For each u0 we determine
the Hermite factor required with Equation (4), use the BKZ-2.0 simulator to determine the
optimal β and n to reach the required Hermite factor and use Equations (5) and (2) to
determine the hybridbkzcost and hybridmitmcost.

Note that this algorithm outputs the largest value of t such that there are no decryption
failures according to Theorem 2 and that no more than 2/3 of the coefficients of f are set. Ex-
periments show that decreasing t to t1 linearly decreases the security level by approximately
t − t1.

27

Algorithm 1: Determine parameter sets for security level above `.
Input: Upper bound qb for q, range [p1, p2] for p, lower bound ` for security level
Result: Viable parameters p, q and t with security level λ.
p ← p1 − 1 (the prime we are currently investigating)
while p ≤ p2 do

p ← nextprime(p)
Q ← viableqs(p, qb)
for q ∈ Q do

t ← min{b(q − 1)/32c , bp/3c}
λ1 ← mitmcosts(p, t)
if λ1 ≥ ` then

Find u, u0 , β, n such that BKZ-2.0 costs are approximately equal to
meet-in-the-middle costs in the hybrid attack.
λ2 ← max{hybridbkzcost, hybridmitmcost}
return p, q, t, min{λ1, λ2}

See the NTRU Prime paper for a table of Streamlined NTRU Prime parameter sets with
465 < p < 970 and q < 20000. Our recommended parameters (p, q, w) = (761, 4591, 286)
with estimated pre-quantum security 2248 provide an excellent tradeoff between size and
security level.

The analysis of NTRU LPRime parameter sets works the same way and gives 2225 for our
recommended parameters (p, q, w) = (761, 4591, 250).

8 Expected strength (2.B.4) for each parameter set

8.1 Parameter set kem/sntrup4591761

Category 5. 2248 is marginally smaller than 2256, but we expect that further analysis along
the lines of [63], together with analysis of memory and communication costs, will show that
this parameter set is much more expensive to break than AES-256.

8.2 Parameter set kem/ntrulpr4591761

2225Category 5. is noticeably smaller than 2256 , due to the smaller polynomial weight
compared to sntrup4591761. However, note that the analysis by Wunderer [63] showed an
underestimate of security by a factor of at least 230 for a previous set of parameters analyzed
by the methodology above; memory and communication costs are likely to be on an even
larger scale. Hence, we expect that further analysis will show that this parameter set is
harder to break than AES-256. See also Section 6.8.

28

9 Advantages and limitations (2.B.6)

There are several proposals of lattice-based cryptosystems that appear to provide high se-
curity with keys and ciphertexts fitting into just a few kilobytes. This proposal is designed
to have the smallest attack surface, minimizing the number of avenues available to crypt-
analysts. Some recent attacks against lattice-based cryptosystems rely on homomorphisms
eliminated by this proposal.

At the same time this proposal provides unusually small sizes and excellent speed. One of
the reasons for this performance is that this proposal provides the flexibility to target any
desired lattice dimension rather precisely, without the “jumps” that appear in most propos-
als. Future advances in understanding the exact security level of lattice-based cryptography
will allow this proposal to be tuned accordingly.

Beware, however, that there are other recent attacks against lattice-based cryptography,
including impressive advances against SVP. As noted before, the security of lattice-based
cryptography is not well understood. This is a general limitation of lattice-based cryptogra-
phy. The same limitation is shared by many—but not all—post-quantum proposals.

References

[1] Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz. Solving
the shortest vector problem in 2n time using discrete Gaussian sampling: Extended
abstract. In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland,
OR, USA, June 14-17, 2015, pages 733–742. ACM, 2015. http://arxiv.org/abs/
1412.7994.

[2] Martin R. Albrecht, Carlos Cid, Jean-Charles Faugère, Robert Fitzpatrick, and Ludovic
Perret. Algebraic algorithms for LWE problems. ACM Comm. Computer Algebra,
49(2):62, 2015. https://eprint.iacr.org/2014/1018.

[3] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum key
exchange - A new hope. In Thorsten Holz and Stefan Savage, editors, 25th USENIX
Security Symposium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016,
pages 327–343. USENIX Association, 2016. https://eprint.iacr.org/2015/1092.

[4] Jacob Alperin-Sheriff and Daniel Apon. Dimension-preserving reductions from LWE to
LWR. IACR Cryptology ePrint Archive, 2016:589, 2016. https://eprint.iacr.org/
2016/589.

[5] Joël Alwen, Stephan Krenn, Krzysztof Pietrzak, and Daniel Wichs. Learning with
rounding, revisited – new reduction, properties and applications. In Canetti and Garay
[19], pages 57–74. https://eprint.iacr.org/2013/098.

29

http://arxiv.org/abs/1412.7994
http://arxiv.org/abs/1412.7994
https://eprint.iacr.org/2014/1018
https://eprint.iacr.org/2015/1092
https://eprint.iacr.org/2016/589
https://eprint.iacr.org/2016/589
https://eprint.iacr.org/2013/098

[6] Sanjeev Arora and Rong Ge. New algorithms for learning in presence of errors. In
Luca Aceto, Monika Henzinger, and Jiŕı Sgall, editors, Automata, Languages and Pro-
gramming - 38th International Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8,
2011, Proceedings, Part I, volume 6755 of Lecture Notes in Computer Science, pages
403–415. Springer, 2011. https://users.cs.duke.edu/~rongge/LPSN.pdf.

[7] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lat-
tices. In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology -
EUROCRYPT 2012 - 31st Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings,
volume 7237 of Lecture Notes in Computer Science, pages 719–737. Springer, 2012.
https://eprint.iacr.org/2011/401.

[8] Jens Bauch, Daniel J. Bernstein, Henry de Valence, Tanja Lange, and Christine van
Vredendaal. Short generators without quantum computers: The case of multiquadrat-
ics. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology
- EUROCRYPT 2017 - 36th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017, Proceed-
ings, Part I, volume 10210 of Lecture Notes in Computer Science, pages 27–59, 2017.
https://multiquad.cr.yp.to.

[9] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in nearest
neighbor searching with applications to lattice sieving. In Krauthgamer [40], pages 10–
24. https://eprint.iacr.org/2015/1128.

[10] Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed records. In Moti Yung,
Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, Public Key Cryptogra-
phy - PKC 2006, 9th International Conference on Theory and Practice of Public-
Key Cryptography, New York, NY, USA, April 24-26, 2006, Proceedings, volume
3958 of Lecture Notes in Computer Science, pages 207–228. Springer, 2006. https:
//cr.yp.to/papers.html#curve25519.

[11] Daniel J. Bernstein and Tanja Lange. Non-uniform cracks in the concrete: The power
of free precomputation. In Kazue Sako and Palash Sarkar, editors, Advances in Cryptol-
ogy - ASIACRYPT 2013 - 19th International Conference on the Theory and Application
of Cryptology and Information Security, Bengaluru, India, December 1-5, 2013, Pro-
ceedings, Part II, volume 8270 of Lecture Notes in Computer Science, pages 321–340.
Springer, 2013. https://cr.yp.to/papers.html#nonuniform.

[12] Jean-François Biasse and Fang Song. Efficient quantum algorithms for computing class
groups and solving the principal ideal problem in arbitrary degree number fields. In
Krauthgamer [40], pages 893–902. http://fangsong.info/files/pubs/BS_SODA16.
pdf.

[13] Andrej Bogdanov, Siyao Guo, Daniel Masny, Silas Richelson, and Alon Rosen. On the
hardness of learning with rounding over small modulus. In Eyal Kushilevitz and Tal

30

https://users.cs.duke.edu/~rongge/LPSN.pdf
https://eprint.iacr.org/2011/401
https://multiquad.cr.yp.to
https://eprint.iacr.org/2015/1128
https://cr.yp.to/papers.html#curve25519
https://cr.yp.to/papers.html#curve25519
https://cr.yp.to/papers.html#nonuniform
http://fangsong.info/files/pubs/BS_SODA16.pdf
http://fangsong.info/files/pubs/BS_SODA16.pdf

Malkin, editors, Theory of Cryptography - 13th International Conference, TCC 2016-
A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part I, volume 9562 of Lecture
Notes in Computer Science, pages 209–224. Springer, 2016. https://eprint.iacr.
org/2015/769.

[14] Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria Niko-
laenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take off the ring! Practical,
quantum-secure key exchange from LWE. In ACM Conference on Computer and Com-
munications Security, pages 1006–1018. ACM, 2016. https://eprint.iacr.org/2016/
659.

[15] Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. Post-quantum
key exchange for the TLS protocol from the ring learning with errors problem. In IEEE
Symposium on Security and Privacy, pages 553–570. IEEE Computer Society, 2015.
https://eprint.iacr.org/2014/599.

[16] Richard P. Brent and H. T. Kung. The area-time complexity of binary multiplication. J.
ACM, 28(3):521–534, 1981. http://maths-people.anu.edu.au/~brent/pd/rpb055.
pdf.

[17] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom. Flush,
Gauss, and reload - A cache attack on the BLISS lattice-based signature scheme. In
Benedikt Gierlichs and Axel Y. Poschmann, editors, Cryptographic Hardware and Em-
bedded Systems - CHES 2016 - 18th International Conference, Santa Barbara, CA, USA,
August 17-19, 2016, Proceedings, volume 9813 of Lecture Notes in Computer Science,
pages 323–345. Springer, 2016. https://eprint.iacr.org/2016/300.

[18] Peter Campbell, Michael Groves, and Dan Shepherd. Soliloquy: a cautionary tale,
2014. http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_
Attacks/S07_Groves_Annex.pdf.

[19] Ran Canetti and Juan A. Garay, editors. Advances in Cryptology - CRYPTO 2013
- 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013.
Proceedings, Part I, volume 8042 of Lecture Notes in Computer Science. Springer, 2013.

[20] Hao Chen, Kristin Lauter, and Katherine E. Stange. Vulnerable Galois RLWE families
and improved attacks. IACR Cryptology ePrint Archive, 2016. https://eprint.iacr.
org/2016/193.

[21] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates. In
Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology - ASIACRYPT
2011 - 17th International Conference on the Theory and Application of Cryptology and
Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings, volume
7073 of Lecture Notes in Computer Science, pages 1–20. Springer, 2011.

[22] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates (full
version), 2011. http://www.di.ens.fr/~ychen/research/Full_BKZ.pdf.

31

https://eprint.iacr.org/2015/769
https://eprint.iacr.org/2015/769
https://eprint.iacr.org/2016/659
https://eprint.iacr.org/2016/659
https://eprint.iacr.org/2014/599
http://maths-people.anu.edu.au/~brent/pd/rpb055.pdf
http://maths-people.anu.edu.au/~brent/pd/rpb055.pdf
https://eprint.iacr.org/2016/300
http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf
http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf
https://eprint.iacr.org/2016/193
https://eprint.iacr.org/2016/193
http://www.di.ens.fr/~ychen/research/Full_BKZ.pdf

[23] Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev. Recovering short genera-
tors of principal ideals in cyclotomic rings. In Marc Fischlin and Jean-Sébastien Coron,
editors, Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria,
May 8-12, 2016, Proceedings, Part II, volume 9666 of Lecture Notes in Computer Sci-
ence, pages 559–585. Springer, 2016. https://eprint.iacr.org/2015/313.

[24] Ronald Cramer, Léo Ducas, and Benjamin Wesolowski. Short Stickelberger class rela-
tions and application to Ideal-SVP. In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Paris, France,
April 30 - May 4, 2017, Proceedings, Part I, volume 10210 of Lecture Notes in Com-
puter Science, pages 324–348, 2017. https://eprint.iacr.org/2016/885.

[25] Alexander W. Dent. A designer’s guide to KEMs. In Kenneth G. Paterson, editor,
Cryptography and Coding, 9th IMA International Conference, Cirencester, UK, Decem-
ber 16-18, 2003, Proceedings, volume 2898 of Lecture Notes in Computer Science, pages
133–151. Springer, 2003. https://eprint.iacr.org/2002/174.

[26] Jintai Ding. Solving LWE problem with bounded errors in polynomial time. IACR
Cryptology ePrint Archive, 2010:558, 2010. https://eprint.iacr.org/2010/558.

[27] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice sig-
natures and bimodal Gaussians. In Canetti and Garay [19], pages 40–56. https:
//eprint.iacr.org/2013/383.

[28] Kirsten Eisenträger, Sean Hallgren, and Kristin E. Lauter. Weak instances of PLWE. In
Antoine Joux and Amr M. Youssef, editors, Selected Areas in Cryptography - SAC 2014
- 21st International Conference, Montreal, QC, Canada, August 14-15, 2014, Revised
Selected Papers, volume 8781 of Lecture Notes in Computer Science, pages 183–194.
Springer, 2014. https://eprint.iacr.org/2014/784.

[29] Ulrich Fincke and Michael Pohst. Improved methods for calculating vectors of
short length in a lattice, including a complexity analysis. Mathematics of Compu-
tation, 44(170):463–471, 1985. http://www.ams.org/journals/mcom/1985-44-170/
S0025-5718-1985-0777278-8/S0025-5718-1985-0777278-8.pdf.

[30] Qian Guo, Thomas Johansson, and Paul Stankovski. A key recovery attack on mdpc
with cca security using decoding errors. Cryptology ePrint Archive, Report 2016/858,
2016. https://eprint.iacr.org/2016/858.

[31] Philip S. Hirschhorn, Jeffrey Hoffstein, Nick Howgrave-Graham, and William Whyte.
Choosing NTRUEncrypt parameters in light of combined lattice reduction and MITM
approaches. In Michel Abdalla, David Pointcheval, Pierre-Alain Fouque, and Damien
Vergnaud, editors, Applied Cryptography and Network Security, 7th International Con-
ference, ACNS 2009, Paris-Rocquencourt, France, June 2-5, 2009. Proceedings, volume
5536 of Lecture Notes in Computer Science, pages 437–455, 2009.

32

https://eprint.iacr.org/2015/313
https://eprint.iacr.org/2016/885
https://eprint.iacr.org/2002/174
https://eprint.iacr.org/2010/558
https://eprint.iacr.org/2013/383
https://eprint.iacr.org/2013/383
https://eprint.iacr.org/2014/784
http://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777278-8/S0025-5718-1985-0777278-8.pdf
http://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777278-8/S0025-5718-1985-0777278-8.pdf
https://eprint.iacr.org/2016/858

[32] Jeffrey Hoffstein, Jill Pipher, John M. Schanck, Joseph H. Silverman, William Whyte,
and Zhenfei Zhang. Choosing parameters for NTRUEncrypt. IACR Cryptology ePrint
Archive, 2015. https://eprint.iacr.org/2015/708.

[33] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public key
cryptosystem. In Joe Buhler, editor, Algorithmic Number Theory, Third International
Symposium, ANTS-III, Portland, Oregon, USA, June 21-25, 1998, Proceedings, volume
1423 of Lecture Notes in Computer Science, pages 267–288. Springer, 1998.

[34] Nick Howgrave-Graham. A hybrid lattice-reduction and meet-in-the-middle attack
against NTRU. In Alfred Menezes, editor, Advances in Cryptology - CRYPTO 2007,
27th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
19-23, 2007, Proceedings, volume 4622 of Lecture Notes in Computer Science, pages
150–169. Springer, 2007. https://www.iacr.org/archive/crypto2007/46220150/
46220150.pdf.

[35] Nick Howgrave-Graham, Phong Q. Nguyen, David Pointcheval, John Proos, Joseph H.
Silverman, Ari Singer, and William Whyte. The impact of decryption failures on the se-
curity of NTRU encryption. In Dan Boneh, editor, Advances in Cryptology - CRYPTO
2003, 23rd Annual International Cryptology Conference, Santa Barbara, California,
USA, August 17-21, 2003, Proceedings, volume 2729 of Lecture Notes in Computer Sci-
ence, pages 226–246. Springer, 2003. http://www.di.ens.fr/~pointche/Documents/
Papers/2003_crypto.pdf.

[36] Nick Howgrave-Graham, Joseph H Silverman, and William Whyte. A meet-in-the-
middle attack on an NTRU private key. Technical report, NTRU Cryptosystems,
June 2003. Report, 2003. https://www.securityinnovation.com/uploads/Crypto/
NTRUTech004v2.pdf.

[37] Nick Howgrave-Graham, Joseph H. Silverman, and William Whyte. Choosing parameter
sets for NTRUEncrypt with NAEP and SVES-3, 2005. https://eprint.iacr.org/
2005/045.

[38] Ravi Kannan. Improved algorithms for integer programming and related lattice prob-
lems. In Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing,
STOC ’83, pages 193–206, New York, NY, USA, 1983. ACM.

[39] Paul Kirchner and Pierre-Alain Fouque. Comparison between subfield and straightfor-
ward attacks on NTRU. Cryptology ePrint Archive, Report 2016/717, 2016. https:
//eprint.iacr.org/2016/717.

[40] Robert Krauthgamer, editor. Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12,
2016. SIAM, 2016.

¨ [41] Po-Chun Kuo, Michael Schneider, Ozgür Dagdelen, Jan Reichelt, Johannes A. Buch-
mann, Chen-Mou Cheng, and Bo-Yin Yang. Extreme enumeration on GPU and in
clouds: How many dollars you need to break SVP challenges. In Bart Preneel and

33

https://eprint.iacr.org/2015/708
https://www.iacr.org/archive/crypto2007/46220150/46220150.pdf
https://www.iacr.org/archive/crypto2007/46220150/46220150.pdf
http://www.di.ens.fr/~pointche/Documents/Papers/2003_crypto.pdf
http://www.di.ens.fr/~pointche/Documents/Papers/2003_crypto.pdf
https://www.securityinnovation.com/uploads/Crypto/NTRUTech004v2.pdf
https://www.securityinnovation.com/uploads/Crypto/NTRUTech004v2.pdf
https://eprint.iacr.org/2005/045
https://eprint.iacr.org/2005/045
https://eprint.iacr.org/2016/717
https://eprint.iacr.org/2016/717

Tsuyoshi Takagi, editors, Cryptographic Hardware and Embedded Systems - CHES 2011
- 13th International Workshop, Nara, Japan, September 28 - October 1, 2011. Proceed-
ings, volume 6917 of Lecture Notes in Computer Science, pages 176–191. Springer, 2011.
http://www.iis.sinica.edu.tw/papers/byyang/12158-F.pdf.

[42] Thijs Laarhoven. Sieving for shortest vectors in lattices using angular locality-sensitive
hashing. In Rosario Gennaro and Matthew Robshaw, editors, Advances in Cryptology -
CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August
16-20, 2015, Proceedings, Part I, volume 9215 of Lecture Notes in Computer Science,
pages 3–22. Springer, 2015. https://eprint.iacr.org/2014/744.pdf.

[43] Vadim Lyubashevsky. Future directions in lattice cryptography (talk slides), 2016.
http://troll.iis.sinica.edu.tw/pkc16/slides/Invited_Talk_II--Directions_
in_Practical_Lattice_Cryptography.pptx.

[44] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning
with errors over rings. J. ACM, 60(6):43, 2013. https://eprint.iacr.org/2012/230.

[45] Artur Mariano, Christian H. Bischof, and Thijs Laarhoven. Parallel (probable) lock-free
hash sieve: A practical sieving algorithm for the SVP. In 44th International Conference
on Parallel Processing, ICPP 2015, Beijing, China, September 1-4, 2015, pages 590–599.
IEEE Computer Society, 2015. https://eprint.iacr.org/2015/041.

[46] Christopher Meyer, Juraj Somorovsky, Eugen Weiss, Jörg Schwenk, Sebastian Schinzel,
and Erik Tews. Revisiting SSL/TLS implementations: New Bleichenbacher side
channels and attacks. In Kevin Fu and Jaeyeon Jung, editors, Proceedings of the
23rd USENIX Security Symposium, San Diego, CA, USA, August 20-22, 2014.,
pages 733–748. USENIX Association, 2014. https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/meyer.

[47] Daniele Micciancio and Michael Walter. Fast lattice point enumeration with minimal
overhead. In Piotr Indyk, editor, Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6,
2015, pages 276–294. SIAM, 2015. https://eprint.iacr.org/2014/569.

[48] Paul C. van Oorschot and Michael J. Wiener. Parallel collision search with cryptana-
lytic applications. J. Cryptology, 12(1):1–28, 1999. http://people.scs.carleton.ca/

~paulv/papers/JoC97.pdf.

[49] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In Michael Mitzenmacher, editor, Proceedings of the 41st Annual
ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31
- June 2, 2009, pages 333–342. ACM, 2009. https://eprint.iacr.org/2008/481.

[50] Chris Peikert. “A useful fact about Ring-LWE that should be known better: it is
at least as hard to break as NTRU, and likely strictly harder. 1/” (tweet), 2017.
http://archive.is/B9KEW.

34

http://www.iis.sinica.edu.tw/papers/byyang/12158-F.pdf
https://eprint.iacr.org/2014/744.pdf
http://troll.iis.sinica.edu.tw/pkc16/slides/Invited_Talk_II--Directions_in_Practical_Lattice_Cryptography.pptx
http://troll.iis.sinica.edu.tw/pkc16/slides/Invited_Talk_II--Directions_in_Practical_Lattice_Cryptography.pptx
https://eprint.iacr.org/2012/230
https://eprint.iacr.org/2015/041
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/meyer
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/meyer
https://eprint.iacr.org/2014/569
http://people.scs.carleton.ca/~paulv/papers/JoC97.pdf
http://people.scs.carleton.ca/~paulv/papers/JoC97.pdf
https://eprint.iacr.org/2008/481
http://archive.is/B9KEW

[51] Peter Pessl, Leon Groot Bruinderink, and Yuval Yarom. To BLISS-B or not to be:
Attacking strongSwan’s implementation of post-quantum signatures. In CCS, pages
1843–1855. ACM, 2017. https://eprint.iacr.org/2017/490.

[52] Michael Pohst. On the computation of lattice vectors of minimal length, successive
minima and reduced bases with applications. SIGSAM Bull., 15(1):37–44, February
1981.

[53] Thomas Pöppelmann and Tim Güneysu. Towards practical lattice-based public-key
encryption on reconfigurable hardware. In Tanja Lange, Kristin E. Lauter, and Petr
Lisonek, editors, Selected Areas in Cryptography - SAC 2013 - 20th International Con-
ference, Burnaby, BC, Canada, August 14-16, 2013, Revised Selected Papers, volume
8282 of Lecture Notes in Computer Science, pages 68–85. Springer, 2013. https:
//www.ei.rub.de/media/sh/veroeffentlichungen/2013/08/14/lwe_encrypt.pdf.

[54] Xavier Pujol and Damien Stehlé. Solving the shortest lattice vector problem in time
22.465n . IACR Cryptology ePrint Archive, 2009. https://eprint.iacr.org/2009/605.

[55] Halvor Sakshaug. Security analysis of the NTRUEncrypt public key encryption
scheme, 2007. brage.bibsys.no/xmlui/bitstream/handle/11250/258846/426901_
FULLTEXT01.pdf.

[56] Claus-Peter Schnorr. Lattice reduction by random sampling and birthday methods.
In Helmut Alt and Michel Habib, editors, STACS, volume 2607 of Lecture Notes in
Computer Science, pages 145–156. Springer, 2003. http://www.math.uni-frankfurt.
de/~dmst/research/papers/schnorr.random_sampling.2003.ps.

[57] Claus-Peter Schnorr and Adi Shamir. An optimal sorting algorithm for mesh connected
computers. In Juris Hartmanis, editor, Proceedings of the 18th Annual ACM Symposium
on Theory of Computing, May 28-30, 1986, Berkeley, California, USA, pages 255–263.
ACM, 1986.

[58] Victor Shoup. A proposal for an ISO standard for public key encryption. IACR Cryp-
tology ePrint Archive, 2001. https://eprint.iacr.org/2001/112.

[59] Victor Shoup. OAEP reconsidered. J. Cryptology, 15(4):223–249, 2002. https://
eprint.iacr.org/2000/060.

[60] Martijn Stam. A key encapsulation mechanism for NTRU. In Nigel P. Smart, editor,
Cryptography and Coding, 10th IMA International Conference, Cirencester, UK, De-
cember 19-21, 2005, Proceedings, volume 3796 of Lecture Notes in Computer Science,
pages 410–427. Springer, 2005.

[61] Damien Stehlé and Ron Steinfeld. Making NTRU as secure as worst-case problems
over ideal lattices. In Kenneth G. Paterson, editor, Advances in Cryptology - EU-
ROCRYPT 2011 - 30th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings,
volume 6632 of Lecture Notes in Computer Science, pages 27–47. Springer, 2011.
https://www.iacr.org/archive/eurocrypt2011/66320027/66320027.pdf.

35

https://eprint.iacr.org/2017/490
https://www.ei.rub.de/media/sh/veroeffentlichungen/2013/08/14/lwe_encrypt.pdf
https://www.ei.rub.de/media/sh/veroeffentlichungen/2013/08/14/lwe_encrypt.pdf
https://eprint.iacr.org/2009/605
brage.bibsys.no/xmlui/bitstream/handle/11250/258846/426901_FULLTEXT01.pdf
brage.bibsys.no/xmlui/bitstream/handle/11250/258846/426901_FULLTEXT01.pdf
http://www.math.uni-frankfurt.de/~dmst/research/papers/schnorr.random_sampling.2003.ps
http://www.math.uni-frankfurt.de/~dmst/research/papers/schnorr.random_sampling.2003.ps
https://eprint.iacr.org/2001/112
https://eprint.iacr.org/2000/060
https://eprint.iacr.org/2000/060
https://www.iacr.org/archive/eurocrypt2011/66320027/66320027.pdf

[62] Christine van Vredendaal. Reduced memory meet-in-the-middle attack against the
NTRU private key. LMS Journal of Computation and Mathematics, 19(A):43–57, 001
2016. https://eprint.iacr.org/2016/177.

[63] Thomas Wunderer. Revisiting the hybrid attack: Improved analysis and refined security
estimates, 2016. https://eprint.iacr.org/2016/733.

A Statements

These statements “must be mailed to Dustin Moody, Information Technology Laboratory,
Attention: Post-Quantum Cryptographic Algorithm Submissions, 100 Bureau Drive – Stop
8930, National Institute of Standards and Technology, Gaithersburg, MD 20899-8930, or can
be given to NIST at the first PQC Standardization Conference (see Section 5.C).”

First blank in submitter statement: full name. Second blank: full postal address. Third,
fourth, and fifth blanks: name of cryptosystem. Sixth and seventh blanks: describe and
enumerate or state “none” if applicable.

First blank in patent statement: full name. Second blank: full postal address. Third blank:
enumerate. Fourth blank: name of cryptosystem.

First blank in implementor statement: full name. Second blank: full postal address. Third
blank: full name of the owner.

36

https://eprint.iacr.org/2016/177
https://eprint.iacr.org/2016/733

A.1 Statement by Each Submitter

I, , of , do
hereby declare that the cryptosystem, reference implementation, or optimized implementa-
tions that I have submitted, known as , is my own original
work, or if submitted jointly with others, is the original work of the joint submitters. I
further declare that (check one):

• I do not hold and do not intend to hold any patent or patent application with a claim
which may cover the cryptosystem, reference implementation, or optimized implemen-
tations that I have submitted, known as OR (check one
or both of the following):

– to the best of my knowledge, the practice of the cryptosystem, reference im-
plementation, or optimized implementations that I have submitted, known as

may be covered by the following U.S. and/or foreign patents:

– I do hereby declare that, to the best of my knowledge, the following pend-
ing U.S. and/or foreign patent applications may cover the practice of my sub-
mitted cryptosystem, reference implementation or optimized implementations:

I do hereby acknowledge and agree that my submitted cryptosystem will be provided to the
public for review and will be evaluated by NIST, and that it might not be selected for standard-
ization by NIST. I further acknowledge that I will not receive financial or other compensation
from the U.S. Government for my submission. I certify that, to the best of my knowledge,
I have fully disclosed all patents and patent applications which may cover my cryptosystem,
reference implementation or optimized implementations. I also acknowledge and agree that
the U.S. Government may, during the public review and the evaluation process, and, if my
submitted cryptosystem is selected for standardization, during the lifetime of the standard,
modify my submitted cryptosystem’s specifications (e.g., to protect against a newly discovered
vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish
the draft standards for public comment.

I do hereby agree to provide the statements required by Sections 2.D.2 and 2.D.3, below, for
any patent or patent application identified to cover the practice of my cryptosystem, reference
implementation or optimized implementations and the right to use such implementations for
the purposes of the public review and evaluation process.

I acknowledge that, during the post-quantum algorithm evaluation process, NIST may remove
my cryptosystem from consideration for standardization. If my cryptosystem (or the derived
cryptosystem) is removed from consideration for standardization or withdrawn from consider-
ation by all submitter(s) and owner(s), I understand that rights granted and assurances made
under Sections 2.D.1, 2.D.2 and 2.D.3, including use rights of the reference and optimized
implementations, may be withdrawn by the submitter(s) and owner(s), as appropriate.

37

Signed:

Title:

Date:

Place:

38

A.2 Statement by Patent (and Patent Application) Owner(s)

If there are any patents (or patent applications) identified by the submitter, including those
held by the submitter, the following statement must be signed by each and every owner, or
each owner’s authorized representative, of each patent and patent application identified.

I, , of ,
am the owner or authorized representative of the owner (print
full name, if different than the signer) of the following patent(s)
and/or patent application(s):

and do hereby commit and agree to grant to any interested party on a worldwide basis, if
the cryptosystem known as is selected for standardization, in consid-
eration of its evaluation and selection by NIST, a non-exclusive license for the purpose of
implementing the standard (check one):

• without compensation and under reasonable terms and conditions that are demonstrably
free of any unfair discrimination, OR

• under reasonable terms and conditions that are demonstrably free of any unfair dis-
crimination.

I further do hereby commit and agree to license such party on the same basis with respect
to any other patent application or patent hereafter granted to me, or owned or controlled by
me, that is or may be necessary for the purpose of implementing the standard.

I further do hereby commit and agree that I will include, in any documents transferring
ownership of each patent and patent application, provisions to ensure that the commitments
and assurances made by me are binding on the transferee and any future transferee.

I further do hereby commit and agree that these commitments and assurances are intended by
me to be binding on successors-in-interest of each patent and patent application, regardless
of whether such provisions are included in the relevant transfer documents.

I further do hereby grant to the U.S. Government, during the public review and the evaluation
process, and during the lifetime of the standard, a nonexclusive, nontransferrable, irrevocable,
paid-up worldwide license solely for the purpose of modifying my submitted cryptosystem’s
specifications (e.g., to protect against a newly discovered vulnerability) for incorporation into
the standard.

Signed:

Title:

Date:

Place:

39

A.3 Statement by Reference/Optimized Implementations’
Owner(s)

The following must also be included:

I, , , am the
owner or authorized representative of the owner of the sub-
mitted reference implementation and optimized implementations and hereby grant the U.S.
Government and any interested party the right to reproduce, prepare derivative works based
upon, distribute copies of, and display such implementations for the purposes of the post-
quantum algorithm public review and evaluation process, and implementation if the corre-
sponding cryptosystem is selected for standardization and as a standard, notwithstanding that
the implementations may be copyrighted or copyrightable.

Signed:

Title:

Date:

Place:

40

	Introduction
	General algorithm specification (part of 2.B.1)
	Streamlined NTRU Prime parameter space
	Streamlined NTRU Prime key generation
	Streamlined NTRU Prime encapsulation
	Streamlined NTRU Prime decapsulation
	NTRU LPRime parameter space
	NTRU LPRime key generation
	NTRU LPRime encapsulation
	NTRU LPRime decapsulation

	List of parameter sets (part of 2.B.1)
	Parameter set kem/sntrup4591761
	Parameter set kem/ntrulpr4591761

	Design rationale (part of 2.B.1)
	The ring
	The public key
	Inputs and ciphertexts
	Key generation and decryption
	Padding, KEMs, and the choice of q
	The shape of small polynomials

	Detailed performance analysis (2.B.2)
	Description of platform
	Time
	Space
	How parameters affect performance

	Analysis of known attacks (2.B.5)
	Warning: underestimates are dangerous
	Meet-in-the-middle attack
	Streamlined NTRU Prime lattice
	Hybrid security
	Algebraic attacks
	Quantum attacks
	Memory, parallelization, and sieving algorithms
	Attacks against NTRU LPRime

	Expected strength (2.B.4) in general
	Security definitions
	Rationale

	Expected strength (2.B.4) for each parameter set
	Parameter set kem/sntrup4591761
	Parameter set kem/ntrulpr4591761

	Advantages and limitations (2.B.6)
	References
	Statements
	Statement by Each Submitter
	Statement by Patent (and Patent Application) Owner(s)
	Statement by Reference/Optimized Implementations' Owner(s)

