
NTRU Prime 

20171130 

Principal submitter 

This submission is from the following team, listed in alphabetical order: 

• Daniel J. Bernstein, University of Illinois at Chicago 
• Chitchanok Chuengsatiansup, INRIA and ENS de Lyon 
• Tanja Lange, Technische Universiteit Eindhoven 
• Christine van Vredendaal, Technische Universiteit Eindhoven 

E-mail address (preferred): authorcontact-ntruprime@box.cr.yp.to 

Telephone (if absolutely necessary): +1-312-996-3422 

Postal address (if absolutely necessary): Daniel J. Bernstein, Department of Computer Sci-
ence, University of Illinois at Chicago, 851 S. Morgan (M/C 152), Room 1120 SEO, Chicago, 
IL 60607–7053. 

Auxiliary submitters: There are no auxiliary submitters. The principal submitter is the 
team listed above. 

Inventors/developers: The inventors/developers of this submission are the same as the 
principal submitter. Relevant prior work is credited below where appropriate. 

Owner: Same as submitter. 

Signature: ×. See also printed version of “Statement by Each Submitter”. 

Document generated with the help of pqskeleton version 20171123. 

1 

mailto:authorcontact-ntruprime@box.cr.yp.to


Contents 

1 Introduction 4 

2 General algorithm specification (part of 2.B.1) 5 

2.1 Streamlined NTRU Prime parameter space . . . . . . . . . . . . . . . . . . . 5 

2.2 Streamlined NTRU Prime key generation . . . . . . . . . . . . . . . . . . . . 5 

2.3 Streamlined NTRU Prime encapsulation . . . . . . . . . . . . . . . . . . . . 5 

2.4 Streamlined NTRU Prime decapsulation . . . . . . . . . . . . . . . . . . . . 6 

2.5 NTRU LPRime parameter space . . . . . . . . . . . . . . . . . . . . . . . . . 7 

2.6 NTRU LPRime key generation . . . . . . . . . . . . . . . . . . . . . . . . . 7 

2.7 NTRU LPRime encapsulation . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

2.8 NTRU LPRime decapsulation . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

3 List of parameter sets (part of 2.B.1) 9 

3.1 Parameter set kem/sntrup4591761 . . . . . . . . . . . . . . . . . . . . . . . 9 

3.2 Parameter set kem/ntrulpr4591761 . . . . . . . . . . . . . . . . . . . . . . . 10 

4 Design rationale (part of 2.B.1) 12 

4.1 The ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 

4.2 The public key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 

4.3 Inputs and ciphertexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 

4.4 Key generation and decryption . . . . . . . . . . . . . . . . . . . . . . . . . 15 

4.5 Padding, KEMs, and the choice of q . . . . . . . . . . . . . . . . . . . . . . . 17 

4.6 The shape of small polynomials . . . . . . . . . . . . . . . . . . . . . . . . . 19 

5 Detailed performance analysis (2.B.2) 20 

5.1 Description of platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 

5.2 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 

5.3 Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 

5.4 How parameters affect performance . . . . . . . . . . . . . . . . . . . . . . . 21 

2 



6 Analysis of known attacks (2.B.5) 21 

6.1 Warning: underestimates are dangerous . . . . . . . . . . . . . . . . . . . . . 21 

6.2 Meet-in-the-middle attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 

6.3 Streamlined NTRU Prime lattice . . . . . . . . . . . . . . . . . . . . . . . . 23 

6.4 Hybrid security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 

6.5 Algebraic attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 

6.6 Quantum attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 

6.7 Memory, parallelization, and sieving algorithms . . . . . . . . . . . . . . . . 25 

6.8 Attacks against NTRU LPRime . . . . . . . . . . . . . . . . . . . . . . . . . 26 

7 Expected strength (2.B.4) in general 27 

7.1 Security definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 

7.2 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 

8 Expected strength (2.B.4) for each parameter set 28 

8.1 Parameter set kem/sntrup4591761 . . . . . . . . . . . . . . . . . . . . . . . 28 

8.2 Parameter set kem/ntrulpr4591761 . . . . . . . . . . . . . . . . . . . . . . . 28 

9 Advantages and limitations (2.B.6) 29 

References 29 

A Statements 36 

A.1 Statement by Each Submitter . . . . . . . . . . . . . . . . . . . . . . . . . . 37 

A.2 Statement by Patent (and Patent Application) Owner(s) . . . . . . . . . . . 39 

A.3 Statement by Reference/Optimized Implementations’ Owner(s) . . . . . . . 40 

3 



1 Introduction 

A 2015 algorithm breaks dimension-N SVP (under plausible assumptions) in time 2(c+o(1))N 

as N →∞ with c ≈ 0.292. See [9]. For comparison, the best algorithm known just five years 
earlier had a much worse c ≈ 0.415, and the best algorithm known just ten years before that 
took time 2Θ(N log N). 

Gentry’s original FHE system at STOC 2009, with standard “cyclotomic” choices of rings, 
is now known (again under plausible assumptions) to be broken in polynomial time by a 
quantum algorithm. See [12]. Peikert claimed in 2015 that the weakness in Gentry’s system 
was specific to Gentry’s short generators and inapplicable to Ideal-SVP: 

Although cyclotomics have a lot of structure, nobody has yet found a way to 
exploit it in attacking Ideal-SVP/BDD . . . For commonly used rings, principal 
ideals are an extremely small fraction of all ideals. . . . The weakness here is not 
so much due to the structure of cyclotomics, but rather to the extra structure of 
principal ideals that have short generators. 

However, the attack was then combined with further features of cyclotomics to break Ideal-
SVP (again under plausible assumptions) with approximation factor 2N

1/2+o(1) 
, a terrifying 

advance compared to the previous 2N
1+o(1) 

. See [24]. 

As these attack examples illustrate, the security of lattice-based cryptography is not well 
understood. There are serious risks of further advances in 

• SVP algorithms, 

• algorithms that exploit the “approximation factors” used in cryptography, 

• algorithms that exploit the structure of cryptographic problems such as LWE, 

• algorithms that exploit the multiplicative structure of efficient cryptographic problems 
such as Ring-LWE, 

• algorithms that exploit the structure of these problems for the specific rings chosen by 
users, and 

• algorithms to break cryptosystems without breaking these problems. 

The point of this submission is that the attack surface in lattice-based cryptography can be 
significantly reduced with only a minor loss of efficiency. In fact, despite the extra security 
criteria imposed below, the two cryptosystems in this submission are two of the smallest and 
fastest lattice-based cryptosystems. 
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2 General algorithm specification (part of 2.B.1) 

This submission provides two key-encapsulation mechanisms: “Streamlined NTRU Prime” 
and “NTRU LPRime”. 

2.1 Streamlined NTRU Prime parameter space 

Streamlined NTRU Prime has parameters (p, q, w) subject to the following restrictions: p 
is a prime number; q is a prime number; w is a positive integer; 2p ≥ 3w; q ≥ 16w + 1; 
xp − x − 1 is irreducible in the polynomial ring (Z/q)[x]. 

We abbreviate the ring Z[x]/(xp − x − 1), the ring (Z/3)[x]/(xp − x − 1), and the field 
(Z/q)[x]/(xp − x − 1) as R, R/3, and R/q respectively. We refer to an element of R as 
small if all of its coefficients are in {−1, 0, 1}, and weight w if exactly w of its coefficients 
are nonzero. 

Streamlined NTRU Prime also has the following parameters: an encoding of public keys as 
strings; an encoding of rounded ring elements (see below) as strings; and a hash function 
mapping each small polynomial to two fixed-length output strings, a “confirmation” and a 
“session key”. 

2.2 Streamlined NTRU Prime key generation 

The receiver generates a public key as follows: 

• Generate a uniform random small element g ∈ R. Repeat this step until g is invertible 
in R/3. (There are various standard ways to test invertibility: for example, one can 
check divisibility of g by the irreducible factors of xp − x − 1 modulo 3, or one can 
deduce invertibility as a side effect of various algorithms to compute 1/g in R/3.) 

• Generate a uniform random small weight-w element f ∈ R. (Note that f is nonzero 
and hence invertible in R/q, since w ≥ 1.) 

• Compute h = g/(3f) in R/q. (By assumption q is a prime larger than 3, so 3 is 
invertible in R/q, so 3f is invertible in R/q.) 

• Encode h as a string h, using the aforementioned encoding of public keys as strings. 
The public key is h. 

• Save the following secrets: f in R; and 1/g in R/3. 

2.3 Streamlined NTRU Prime encapsulation 

The sender generates a ciphertext as follows: 
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• Decode the public key h, obtaining h ∈ R/q. 

• Generate a uniform random small weight-w element r ∈ R. 

• Compute hr ∈ R/q. 

• Round each coefficient of hr, viewed as an integer between −(q − 1)/2 and (q − 1)/2, 
to the nearest multiple of 3, producing c ∈ R. (If q ∈ 1 + 3Z then each coefficient of c 
is in {−(q − 1)/2, . . . , −6, −3, 0, 3, 6, . . . , (q − 1)/2}. If q ∈ 2+3Z then each coefficient 
of c is in {−(q + 1)/2, . . . , −6, −3, 0, 3, 6, . . . , (q + 1)/2}. Rounding adds an element 
from {−1, 0, 1} to each coefficient.) 

• Encode c as a string c, using the aforementioned encoding of rounded ring elements as 
strings. 

• Hash r, obtaining a confirmation C and a session key K. The ciphertext is the con-
catenation C c. 

2.4 Streamlined NTRU Prime decapsulation 

The receiver decapsulates a ciphertext C c as follows: 

• Decode c, obtaining c ∈ R. 

• Multiply by 3f in R/q. 

• View each coefficient of 3fc in R/q as an integer between −(q − 1)/2 and (q − 1)/2, 
and then reduce modulo 3, obtaining a polynomial e in R/3. 

• Multiply by 1/g in R/3. 

• Lift e/g in R/3 to a small polynomial r0 ∈ R. 

• Compute c0, C 0, K 0 from r0 as in encapsulation. 

0 0 0• If r is small, r has weight w, c = c, and C 0 = C, then output K 0 . Otherwise output 
False. 

If C c is a legitimate ciphertext then c is obtained by rounding the coefficients of hr to 
the nearest multiples of 3; i.e., c = m + hr in R/q, where m is small. All coefficients of 
the polynomial 3fm + gr in R are in [−8w, 8w] by Theorem 2 below, and thus in [−(q − 
1)/2, (q −1)/2] since q ≥ 16w+1. Viewing each coefficient of 3fc = 3fm+gr as an integer in 
[−(q −1)/2, (q −1)/2] thus produces exactly 3fm+gr ∈ R, and reducing modulo 3 produces 
gr ∈ R/3; i.e., e = gr in R/3, so e/g = r in R/3. Lifting now produces exactly r since r is 

0 0 0small; i.e., r = r. Hence (c0, C 0, K 0) = (c, C, K). Finally, r = r is small, r has weight w, 
c0 = c, and C 0 = C, so decapsulation outputs K 0 = K, the same session key produced by 
encapsulation. 
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Theorem 1 Fix integers p ≥ 3 and w ≥ 1. Let r, g ∈ Z[x] be polynomials of degree at most 
p − 1 with all coefficients in {−1, 0, 1}. Assume that r has at most w nonzero coefficients. 
Then gr mod xp − x − 1 has each coefficient in the interval [−2w, 2w]. 

Theorem 2 Fix integers p ≥ 3 and w ≥ 1. Let m, r, f, g ∈ Z[x] be polynomials of degree 
at most p − 1 with all coefficients in {−1, 0, 1}. Assume that f and r each have at most 
w nonzero coefficients. Then 3fm + gr mod xp − x − 1 has each coefficient in the interval 
[−8w, 8w]. 

2.5 NTRU LPRime parameter space 

NTRU LPRime has parameters (p, q, w, δ, I) subject to the following restrictions: p is a 
prime number; q is a prime number; w, δ, I are positive integers; 2p ≥ 3w; I is a multiple of 
8; p ≥ I; q ≥ 16w + 2δ + 3; xp − x − 1 is irreducible in the polynomial ring R/q. 

As before, we abbreviate the ring Z[x]/(xp − x − 1), the ring (Z/3)[x]/(xp − x − 1), and the 
field (Z/q)[x]/(xp − x − 1) as R, R/3, and R/q respectively. We refer to an element of R as 
small if all of its coefficients are in {−1, 0, 1}, and weight w if exactly w of its coefficients 
are nonzero. 

NTRU LPRime also has the following parameters: an encoding of rounded ring elements 
(see below) as strings; a hash function mapping each I-bit string to three fixed-length output 
strings, a “cipher key” and a “confirmation” and a “session key”; a function Small from the 
set of cipher keys to the set of small weight-w elements in R; a function Generator from 
a set of “seed” strings to R/q; a function Top from (Z/q)I to a fixed-length set of strings; 
and a function Right from the same set of strings to (Z/q)I such that each coordinate of the 
difference Right(Top(C)) − C is in {0, 1, . . . , δ} for each C ∈ (Z/q)I . 

2.6 NTRU LPRime key generation 

The receiver generates a public key as follows: 

• Generate a uniform random seed S. 

• Compute G = Generator(S) ∈ R/q. 

• Generate a uniform random small weight-w element a ∈ R. 

• Compute aG ∈ R/q. 

• Round each coefficient of aG, viewed as an integer between −(q − 1)/2 and (q − 1)/2, 
to the nearest multiple of 3, producing A ∈ R. 

• Encode A as a string A. The public key is the concatenation SA. 

• Save the secret a. 
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2.7 NTRU LPRime encapsulation 

The sender generates a ciphertext as follows: 

• Decode the public key SA, obtaining a seed S and a polynomial A ∈ R. 

• Compute G = Generator(S) ∈ R/q. 

• Generate a uniform random I-bit string r = (r0, r1, . . . , rI−1). 

• Hash r, obtaining a cipher key k, a confirmation H, and a session key K. 

• Compute b = Small(k) ∈ R. 

• Compute bG in R/q. 

• Compute bA in R/q. (Only the bottom I coefficients of bA, the coefficients 
(bA)0, (bA)1, . . . , (bA)I−1 of x0, x1, . . . , xI−1 respectively, will be used; other coefficients 
do not need to be computed.) 

• Round each coefficient of bG, viewed as an integer between −(q − 1)/2 and (q − 1)/2, 
to the nearest multiple of 3, producing B ∈ R. 

• Encode B as a string B. 

• Compute C = (C0, C1, . . . , CI−1) ∈ (Z/q)I as follows: Cj = (bA)j + rj (q − 1)/2. 

˜• Compute C = Top(C). 

• The ciphertext is the concatenation HBC̃. The session key is K. 

2.8 NTRU LPRime decapsulation 

The receiver decapsulates a ciphertext HBC̃ as follows: 

• Decode B, obtaining B ∈ R. 

• Compute T = Right( C̃) ∈ (Z/q)I . 

• Compute aB in R/q. (Only the bottom I coefficients of aB will be used.) 

0 0 0• Compute r0, r1, . . . , r ∈ {0, 1} as follows. View Tj − (aB)j + 4w + 1 ∈ Z/q as an I−1 

integer between −(q − 1)/2 and (q − 1)/2. Then rj 
0 is the sign bit of this integer: 1 if 

the integer is negative, otherwise 0. 

0 0 0• Compute a ciphertext c0 and session key K 0 from r0 = (r0, r1, . . . , rI−1) as in encapsu-
lation. 

• If the ciphertext c0 is HBC̃, then output K 0 . Otherwise output False. 
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The public key A is obtained by rounding the coefficients of aG to the nearest multiples of 
3; i.e., A = aG + d in R/q, where d is small. 

If HBC̃ is a legitimate ciphertext then B is an encoding of B which is obtained by rounding 
the coefficients of bG to the nearest multiples of 3; i.e., B = bG + e in R/q, where e is small, 
and C̃ = Top(C) with Cj = (bA)j + rj (q − 1)/2. 

By construction the functions Top and Right are such that each coordinate of 
Right(Top(C)) − C is in {0, 1, . . . , δ} for each C ∈ (Z/q)I , i.e,. Right(Top(C))j − Cj ∈ 
{0, 1, . . . , δ}. 

Then 

Tj − (aB)j + 4w + 1 = Right(Top(C))j − (a(bG + e))j + 4w + 1 

= Right(Top(C))j − Cj + Cj − ((abG)j + (ae)j ) + 4w + 1 

= Right(Top(C))j − Cj + (bA)j + rj(q − 1)/2 − ((abG)j + (ae)j ) + 4w + 1 

= Right(Top(C))j − Cj + (baG)j + (bd)j + rj (q − 1)/2 − ((abG)j + (ae)j ) + 4w + 1 

= Right(Top(C))j − Cj + (bd)j − (ae)j + 4w + 1 + rj (q − 1)/2 ∈ Z/q. 

All coefficients of the polynomials bd and ae are in [−2w, 2w] by Theorem 1, thus 

1 ≤ Right(Top(C))j − Cj + (bd)j − (ae)j + 4w + 1 ≤ 8w + δ + 1. 

Viewing each coefficient of Tj − (aB)j + 4w + 1 as an integer in [−(q − 1)/2, (q − 1)/2] thus 
produces an integer in [1, 8w +δ +1] if and only if rj = 0 and an integer in [−(q −1)/2, −(q − 
1)/2 + 8w + δ] if and only if rj = 1 because 8w + δ + 1 ≤ (q − 1)/2 by construction. 

0 0 0This means that rj = rj , thus r = r and c = c, so decapsulation outputs K 0 = K, the same 
session key produced by encapsulation. 

3 List of parameter sets (part of 2.B.1) 

3.1 Parameter set kem/sntrup4591761 

Streamlined NTRU Prime with p = 761, q = 4591, w = 286, and the following functions. 

Encoding of public keys as strings: View the input polynomial in little-endian form as 
761 764a sequence of coefficients of x0, x1, . . . , x764 . The coefficients of x , . . . , x are always 0. 

View each coefficient in Z/4591 as an element of {−2295, . . . , 2295}. Add 2295 to obtain an 
element of {0, . . . , 4590}. 

3 · 211Write each batch of 5 elements c0, c1, c2, c3, c4 in radix 6144 = as the integer c0 + 
< 2636144c1 + 61442c2 + 61443c3 + 61444c4. This integer is below 61445 . Write this integer 

as 8 bytes in little-endian form. 
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This produces 8(765/5) = 1224 bytes. The last 6 bytes are always 0 and are suppressed, so 
a public key is encoded as 1218 bytes. 

Encoding of rounded ring elements as strings: View the input polynomial in little-
0 1 761 761endian form as a sequence of coefficients of x , x , . . . , x . The coefficient of x is always 

0. 

View each coefficient in Z/4591 as an element of {−2295, −2292, . . . , 2292, 2295}; recall 
that ciphertext coefficients are always multiples of 3. Add 2295 to obtain an element of 
{0, 3, . . . , 4587, 4590}. Divide by 3 to obtain an element of {0, 1, . . . , 1530}. 

Write each batch of 3 elements c0, c1, c2 in radix 1536 = 3 · 29 as the integer c0 + 1536c1 + 
< 23215362c2. This integer is below 15363 . Write this integer as 4 bytes in little-endian 

form. 

This produces 4(762/3) = 1016 bytes. The last byte is always 0 and is suppressed, so a 
rounded ring element is encoded as 1015 bytes. 

Hash function: View the input polynomial r in little-endian form as a sequence of coeffi-
0 1 763 761 762 763cients of x , x , . . . , x . The coefficients of x , x , x are always 0. 

Add 1 to each coefficient, obtaining an element of {0, 1, 2}. Write each batch of 4 elements 
in radix 4, obtaining a byte. Overall this produces 764/4 = 191 bytes. 

Hash the resulting byte string with SHA-512, obtaining a 256-bit confirmation followed by 
a 256-bit session key. 

3.2 Parameter set kem/ntrulpr4591761 

NTRU LPRime with p = 761, q = 4591, w = 250, δ = 292, I = 256, and the following 
functions. 

Encoding of rounded ring elements as strings: Same as in sntrup4591761. 

Hash function: View the 256-bit string r in little-endian form as a 32-byte string, i.e. the 
first byte of r is r0 + 2r1 + · · · + 128r7, the next byte is r8 + 2r9 + · · · + 128r15, etc. 

Hash r with SHA-512, obtaining a 32-byte cipher key k followed by a 32-byte intermediate 
key k0 . Hash k0 with SHA-512, obtaining a 32-byte confirmation followed by a 32-byte session 
key. 

Mapping to R: For each 32-byte string k, Small(K) ∈ R is defined as follows: 

• Use AES-256-CTR with key k, starting from counter 0, to generate 4p bytes of output. 

• View each 4 bytes of output in little-endian form, obtaining p elements of 
{0, 1, . . . , 232 − 1}. 

• Clear the bottom bit of each of the first w integers; now each of those integers is 0 
modulo 2. 
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• Set the bottom bit, and clear the next bit, of each of the remaining p − w integers; 
now each of those integers is 1 modulo 4. 

• Sort the integers. 

• Reduce each integer modulo 4, and subtract 1, obtaining p elements of {−1, 0, 1}, of 
which exactly w are nonzero. 

• View these elements as a polynomial in little-endian form, namely Small(K). 

Mapping to R/q: The set of seeds is the set of 32-byte strings. For each 32-byte string K, 
Generator(K) ∈ R/q is defined as follows: 

• Use AES-256-CTR with key K, starting from counter 0, to generate 4p bytes of output. 

• View each 4 bytes of output in little-endian form, obtaining p elements of 
{0, 1, . . . , 232 − 1}. 

• Reduce each of these elements modulo q, obtaining p elements of {0, 1, . . . , q − 1}. 

• Obtain p elements of {−(q − 1)/2, . . . , (q − 1)/2} by subtractng (q − 1)/2 from each 
integer. 

• View these elements as a polynomial in little-endian form, namely Generator(K). 

Top bits: For each C ∈ (Z/q)256, Top(C) is a 128-byte string defined as follows: 

• View each Cj as an integer between −2295 and 2295. 

• Compute Tj = b(114(Cj + 2156) + 16384)/32768c ∈ {0, 1, . . . , 15} for each j. 

• Define Top(C) = (T0 + 16T1, T2 + 16T3, . . . , T254 + 16T255). 

For each 128-byte string T , Right(T ) ∈ (Z/q)256 is defined as follows: 

• Extract T0, T1, . . . , T255 ∈ {0, 1, . . . , 15} from T in little-endian form. 

• Compute Rj = 287Tj − 2007 for each j. 

• Define Right(T ) = (R0, R1, . . . , R255). 

One can check each integer c ∈ {−2295, . . . , 2295} to see that (287t − 2007) − c ∈ 
{0, 1, . . . , 292} where t = b(114(c + 2156) + 16384)/32768c. 
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4 Design rationale (part of 2.B.1) 

There are many different ideal-lattice-based public-key encryption schemes in the literature, 
including many versions of NTRU; many Ring-LWE-based cryptosystems; and now Stream-
lined NTRU Prime and NTRU LPRime. These are actually many different points in a 
high-dimensional space of possible cryptosystems. We give a unified description of the ad-
vantages and disadvantages of what we see as the most important options in each dimension, 
in particular explaining the choices that we made in Streamlined NTRU Prime and NTRU 
LPRime. Beware that there are many interactions between options. For example, using 
Gaussian errors is incompatible with eliminating decryption failures, because there is always 
a small probability of large samples combining with large values. Using truncated Gaussian 
errors is compatible with eliminating decryption failures, but requires a much larger modulus 
q. Neither of these options is compatible with the simple tight KEM that we use. 

4.1 The ring 

The choice of cryptosystem includes a choice of a monic degree-p polynomial P ∈ Z[x] and 
a choice of a positive integer q. As in Section 2, we abbreviate the ring Z[x]/P as R, and 
the ring (Z/q)[x]/P as R/q. 

Common choices of R/q are as follows: 

• “NTRU Classic”: Rings of the form (Z/q)[x]/(xp − 1), where p is a prime and q is a 
power of 2, are used in the original NTRU cryptosystem [33]. 

• “NTRU NTT”: Rings of the form (Z/q)[x]/(xp + 1), where p is a power of 2 and 
q ∈ 1 + 2pZ is a prime, are used in typical “Ring-LWE-based” cryptosystems such as 
[3]. 

• “NTRU Prime”: Fields of the form (Z/q)[x]/(xp − x − 1), where p is prime, are used 
in this submission. 

NTRU Prime uses a prime-degree number field with a large Galois group and an inert 
modulus, minimizing the number of ring homomorphisms available to the attacker. As an 
analogy, conservative prime-field discrete-logarithm systems also minimize the number of 
ring homomorphisms available to the attacker. 

We expect the future situation, like the current situation, to be a mix of the following three 
scenarios: 

• Some lattice-based systems are broken whether or not they have unnecessary homo-
morphisms. As an analogy, some discrete-logarithm systems are broken whether or not 
they have unnecessary homomorphisms. 
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send m + hr for small m, r and public h in ring R (“NTRU”) 

�� �� �� 
cyclotomic, 

power-of-2 index, 
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cryptosystem [33] “NTRU LPRime” “Streamlined 

NTRU Prime” 

• Some lattice-based systems are unbroken whether or not they have unnecessary homo-
morphisms. As an analogy, some discrete-logarithm systems are unbroken whether or 
not they have unnecessary homomorphisms. 

• Some lattice-based systems are broken only if they have unnecessary homomorphisms. 
As an analogy, some discrete-logarithm systems are broken only if they have unneces-
sary homomorphisms. Eliminating unnecessary homomorphisms rescues these systems, 
and removes the need to worry about what attackers can do with these homomor-
phisms. 

The current situation is that homomorphisms eliminated by NTRU Prime are used in the 
following attack papers: [18], [28], [23], [20], [24], and [8]. See our “NTRU Prime” paper for 
further details. 
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4.2 The public key 

The receiver’s public key, which we call h, is an element of R/q. 

4.3 Inputs and ciphertexts 

In the original NTRU system, ciphertexts are elements of the form m + hr ∈ R/q. Here 
h ∈ R/q is the public key as above, and m, r are small elements of R chosen by the sender. 

Subsequent systems labeled as “NTRU” have generally extended ciphertexts to include ad-
ditional information, for various reasons explained below; but these cryptosystems all share 
the same core design element, sending m + hr ∈ R/q where m, r are small secrets and h is 
public. We suggest systematically using the name “NTRU” to refer to this design element, 
and more specific names (e.g., “NTRU Classic” vs. “NTRU Prime”) to refer to other design 
elements. 

We refer to (m, r) as “input” rather than “plaintext” because in any modern public-key cryp-
tosystem the input is randomized and is separated from the sender’s plaintext by symmetric 
primitives such as hash functions. See Section 4.5. 

In the original NTRU specification [33], m was allowed to be any element of R having all 
coefficients in a standard range. The range was {−1, 0, 1} for all of the suggested parameters, 
with q not a multiple of 3, and we focus on this case for simplicity (although we note that 
some other lattice-based cryptosystems have taken the smaller range {0, 1}, or sometimes 
larger ranges). 

Current NTRU Classic specifications such as [32] prohibit m that have an unusually small 
number of 0’s or 1’s or −1’s. For random m, this prohibition applies with probability 
<2−10, and in case of failure the sender can try encoding the plaintext as a new m, but 
this is problematic for applications with hard real-time requirements. The reason for this 
prohibition is that NTRU Classic gives the attacker an “evaluate at 1” homomorphism 
from R/q to Z/q, leaking m(1). The attacker scans many ciphertexts to find an occasional 
ciphertext where the value m(1) is particularly far from 0; this value constrains the search 
space for the corresponding m by enough bits to raise security concerns. In NTRU Prime, 
R/q is a field, so this type of leak cannot occur. 

Streamlined NTRU Prime actually uses a different type of ciphertext, which we call a 
“rounded ciphertext”. The sender chooses a small r as input and computes hr ∈ R/q. 
The sender obtains the ciphertext by rounding each coefficient of hr, viewed as an integer 
between −(q −1)/2 and (q −1)/2, to the nearest multiple of 3. This ciphertext can be viewed 
as an example of the original ciphertext m + hr, but with m chosen so that each coefficient 
of m + hr is in a restricted subset of Z/q. 

With the original ciphertexts, each coefficient of m + hr leaves 3 possibilities for the cor-
responding coefficients of hr and m. With rounded ciphertexts, each coefficient of m + hr 
also leaves 3 possibilities for the corresponding coefficients of hr and m, except that the 
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boundary cases −(q − 1)/2 and (q − 1)/2 (assuming q ∈ 1+3Z) leave only 2 possibilities. In 
a pool of 264 rounded ciphertexts, the attacker might find one ciphertext that has 15 of these 
boundary cases out of 761 coefficients; these occasional exceptions have very little impact 
on known attacks. It would be possible to randomize the choice of multiples of 3 near the 
boundaries, but we prefer the simplicity of having the ciphertext determined entirely by r. 
It would also be possible to prohibit ciphertexts at the boundaries, but as above we prefer 
to avoid restarting the encryption process. 

More generally, we say “Rounded NTRU” for any NTRU system in which m is chosen 
deterministically by rounding hr to a standard subset of Z/q, and “Noisy NTRU” for the 
original version in which m is chosen randomly. Rounded NTRU has two advantages over 
Noisy NTRU. First, it reduces the space required to transmit m + hr. Second, the fact that 
m is determined by r simplifies protection against chosen-ciphertext attacks; see Section 4.5. 

[49, Section 4] used an intermediate non-deterministic possibility to provide some space 
reduction for a public-key cryptosystem: first choose m randomly, and then round m + hr, 
obtaining m0 + hr. The idea of rounded hr as a deterministic substitute for noisy m + hr 
was introduced in [7] in the context of a symmetric-key construction, was used in [5] to 
construct another public-key encryption system, and was further studied in [13] and [4]. All 
of the public-key cryptosystems in these papers have ciphertexts longer than Noisy NTRU, 
but applying the same idea to Noisy NTRU produces Rounded NTRU, which has shorter 
ciphertexts. 

4.4 Key generation and decryption 

In the original NTRU cryptosystem, the public key h has the form 3g/f in R/q, where f 
and g are secret. Decryption computes fc = fm +3gr, reduces modulo 3 to obtain fm, and 
multiplies by 1/f to obtain m. 

Streamlined NTRU Prime changes the position of the 3, taking h as g/(3f) rather than 3g/f . 
Decryption computes 3fc = 3fm + gr, reduces modulo 3 to obtain gr, and multiplies by 1/g 
to obtain r. This change lets us compute (m, r) by first computing r and then multiplying 
by h, whereas otherwise we would first compute m and then multiply by 1/h. One advantage 
is that we skip computing 1/h; another advantage is that we need less space for storing a 
key pair. This 1/h issue does not arise for NTRU variants that compute r as a hash of m, 
but those variants are incompatible with rounded ciphertexts, as discussed in Section 4.5. 

More generally, we say “Quotient NTRU” for NTRU with h computed as a ratio of two 
secret small polynomials. An alternative is what we call “Product NTRU”, namely NTRU 
with h of the form d + aG, where a and d are secret small polynomials. Here G ∈ R/q is 
public, like h, but unlike h it does not need a hidden multiplicative structure: it can be, 
for example, a standard chosen randomly by a trusted authority, or output of a long hash 
function applied to a standard randomly chosen seed, or (as proposed in [3]) output of a long 
hash function applied to a per-receiver seed supplied along with h as part of the public key. 

Product NTRU does not allow the same decryption procedure as Quotient NTRU. The first 
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Product NTRU system, introduced by Lyubashevsky, Peikert, and Regev in [44] (originally 
in talk slides in 2010), sends e + rG as additional ciphertext along with m + hr + M , 
where, as before, m and r are small polynomials, e is another small polynomial, and M 
is a polynomial consisting of solely 0 or bq/2c in each position. The receiver computes 
(m + hr + M) − a(e + rG) = M + m + dr − ae, and rounds to 0 or bq/2c in each position, 
obtaining M . Note that m + dr − ae is small, since all of m, d, r, a, e are small. 

The ciphertext size here, two elements of R/q, can be improved in various ways. One can 
replace hr with fewer coefficients, for example by summing batches of two or three coefficients 
[53], before adding M and m. Rounded Product NTRU rounds hr+M to obtain m+hr+M , 
rounds rG to obtain e + rG, and (to similarly reduce key size) rounds aG to obtain d + aG. 
Decryption continues to work even if m + hr + M is compressed to two bits per coefficient. 

A disadvantage of Product NTRU is that r is used twice, exposing approximations to both rG 
and hr. This complicates security analysis compared to simply exposing an approximation 
to hr. State-of-the-art attacks against Ring-LWE, which reveals approximations to any 
number of random public multiples of r, are significantly faster for many multiples than for 
one multiple. Perhaps this indicates a broader weakness, in which each extra multiple hurts 
security. 

Quotient NTRU has an analogous disadvantage: if one moves far enough in the parameter 
space [39] then state-of-the-art attacks distinguish g/f from random more efficiently than 
they distinguish m + hr from random. Perhaps this indicates a broader weakness. On the 
other hand, if one moves far enough in another direction in the parameter space [61], then 
g/f has a security proof. 

We find both of these issues worrisome: it is not at all clear which of Product NTRU and 
Quotient NTRU is a safer option.1 We see no way to simultaneously avoid both types of 
complications. We have opted to present details of Streamlined NTRU Prime, an example 
of Quotient NTRU Prime; and of NTRU LPRime, an example of Product NTRU Prime. 

If exposing approximations to two multiples of r damages the security of Product NTRU, 
perhaps exposing fewer bits does less damage. The compression techniques mentioned above, 
such as replacing m + hr + M with fewer coefficients and releasing only a few top bits of 
each coefficient, naturally expose fewer bits than uncompressed ciphertexts. NTRU LPRime 
releases a few top bits of each of the bottom coefficients of m + hr + M , enough coefficients 
to communicate a hard-to-guess input M . 

The Quotient NTRU literature, except for the earliest papers, takes f of the form 1 + 3F , 
where F is small. This eliminates the multiplication by the inverse of f modulo 3. In 
Streamlined NTRU Prime we have chosen to skip this speedup for two reasons. First, in 
the long run we expect cryptography to be implemented in hardware, where a multiplication 

1Peikert claimed in [50], modulo terminology, that Product NTRU is “at least as hard” to break as 
Quotient NTRU (and “likely strictly harder”). This claim ignores the possibility of attacks against the reuse 
of r in Product NTRU. There are no theorems justifying Peikert’s claim, and we are not aware of an argument 
that eliminating this reuse is less important than eliminating the g/f structure. For comparison, switching 
from NTRU NTT and NTRU Classic to NTRU Prime eliminates structure used in some state-of-the-art 
attacks without providing new structure used in other attacks. 
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in R/3 is far less expensive than a multiplication in R/q. Second, this speedup requires 
noticeably larger keys and ciphertexts for the same security level, and this is important for 
many applications, while very few applications will notice the CPU time for Streamlined 
NTRU Prime. 

4.5 Padding, KEMs, and the choice of q 

In Streamlined NTRU Prime and NTRU LPRime we use the modern “KEM+DEM” ap-
proach introduced by Shoup; see [58]. This approach is much nicer for implementors than 
previous approaches to public-key encryption. For readers unfamiliar with this approach, we 
briefly review the analogous options for RSA encryption. 

RSA maps an input m to a ciphertext me mod n, where (n, e) is the receiver’s public key. 
When RSA was first introduced, its input m was described as the sender’s plaintext. This 
was broken in reasonable attack models, leading to the development of various schemes to 
build m as some combination of fixed padding, random padding, and a short plaintext; 
typically this short plaintext is used as a shared secret key. This turned out to be quite 
difficult to get right, both in theory (see, e.g., [59]) and in practice (see, e.g., [46]), although 
it does seem possible to protect against arbitrary chosen-ciphertext attacks by building m 
in a sufficiently convoluted way. 

The “KEM+DEM” approach, specifically Shoup’s “RSA-KEM” in [58] (also called “Simple 
RSA”), is much easier: 

• Choose a uniform random integer m modulo n. This step does not even look at the 
plaintext. 

• To obtain a shared secret key, simply apply a cryptographic hash function to m. 

• Encrypt and authenticate the sender’s plaintext using this shared key. 

Any attempt to modify m, or the plaintext, will be caught by the authenticator. 

“KEM” means “key encapsulation mechanism”: me mod n is an “encapsulation” of the 
shared secret key H(m). “DEM” means “data encapsulation mechanism”, referring to the 
encryption and authentication using this shared secret key. Authenticated ciphers are nor-
mally designed to be secure for many messages, so H(m) can be reused to protect further 
messages from the sender to the receiver, or from the receiver back to the sender. It is also 
easy to combine KEMs, for example combining a pre-quantum KEM with a post-quantum 
KEM, by simply hashing the shared secrets together. 

When NTRU was introduced, its input (m, r) was described as a sender plaintext m combined 
with a random r. This is obviously not secure against chosen-ciphertext attacks. Subsequent 
NTRU papers introduced various mechanisms to build (m, r) as increasingly convoluted 
combinations of fixed padding, random padding, and a short plaintext. 
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It is easy to guess that KEMs simplify NTRU, the same way that KEMs simplify RSA; we 
are certainly not the first to suggest this. However, all the NTRU-based KEMs we have 
found in the literature (e.g., [60] and [55]) construct the NTRU input (m, r) by hashing a 
shorter input and verifying this hash during decapsulation; typically r is produced as a hash 
of m. These KEMs implicitly assume that m and r can be chosen independently, whereas 
rounded ciphertexts (see Section 4.3) have r as the sole input. It is also not clear that 
generic-hash chosen-ciphertext attacks against these KEMs are as difficult as inverting the 
NTRU map from input to ciphertext: the security theorems are quite loose. 

We instead follow a simple generic KEM construction introduced in the earlier paper [25, 
Section 6] by Dent, backed by a tight security reduction [25, Theorem 8] saying that generic-
hash chosen-ciphertext attacks are as difficult as inverting the underlying function: 

• Like RSA-KEM, this construction hashes the input, in our case r, to obtain the session 
key. 

• Decapsulation verifies that the ciphertext is the correct ciphertext for this input, pre-
venting per-input ciphertext malleability. 

• The KEM uses additional hash output for key confirmation, making clear that a ci-
phertext cannot be generated except by someone who knows the corresponding input. 

Key confirmation might be overkill from a security perspective, since a random session 
key will also produce an authentication failure; but key confirmation allows the KEM to be 
audited without regard to the authentication mechanism, and adds only 3% to our ciphertext 
size. 

Dent’s security analysis assumes that decryption works for all inputs. We achieve this in 
Streamlined NTRU Prime by requiring q ≥ 16w + 1. Recall that decryption sees 3fm + gr 
in R/q and tries to deduce 3fm + gr in R; the condition q ≥ 16w + 1 guarantees that 
this works, since each coefficient of 3fm + gr in R is between −(q − 1)/2 and (q − 1)/2 by 
Theorem 2. Taking different shapes of m, r, f, g, or changing the polynomial P = xp − x − 1, 
would change the bound 16w + 1; for example, replacing g by 1 + 3G would change 16w + 1 
into 24w + 3. 

Similarly, NTRU LPRime takes q ≥ 16w +2δ +3 to avoid decryption failures. Sending along 
merely top bits of m + hr + M means that there is an additional error, producing a slightly 
worse bound than in the Streamlined NTRU Prime case. Another difference in details is 
that decryption reconstructs only M , not m; NTRU LPRime chooses r deterministically2 as 
a hash of M . 

In lattice-based cryptography it is standard to take somewhat smaller values of q. The idea 
is that coefficients in 3fm + gr are produced as sums of many +1 and −1 terms, and these 

2This requires another layer of security analysis beyond Dent’s security analysis. The core question is 
whether it is hard to recover a random M from ciphertext and public key, when r is chosen randomly. The 
next question, the extra layer, is whether it is hard to recover a random M from ciphertext and public key, 
when r is chosen as a hash of M . The third question, addressed by Dent’s security analysis, is whether the 
KEM is hard to break. 
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terms usually cancel, rather than conspiring to produce the maximum conceivable coefficient. 
However, this idea led to attacks that exploited occasional decryption failures; see [35] and, 
for an analogous attack on code-based cryptography using QC-MDPC codes, [30]. It is 
common today to choose q so that decryption failures will occur with, e.g., probability 2−80; 
but this does not meet Dent’s assumption that decryption always works. This nonzero 
failure rate appears to account for most of the complications in the literature on NTRU-
based KEMs. We prefer to guarantee that decryption works, making the security analysis 
simpler and more robust. 

4.6 The shape of small polynomials 

As noted in Section 4.3, the coefficients of m are chosen from the limited range {−1, 0, 1}. 
The NTRU literature [33, 37, 31, 32] generally puts the same limit on the coefficients of r, g, 
and f , except that if f is chosen with the shape 1 + 3F (see Section 4.4) then the literature 
puts this limit on the coefficients of F . Sometimes these “ternary polynomials” are further 
restricted to “binary polynomials”, excluding coefficient −1. 

The NTRU literature further restricts the Hamming weight of r, g, and f . Specifically, a 
cryptosystem parameter is introduced to specify the number of 1’s and −1’s. For example, 
there is a parameter t (typically called “d” in NTRU papers) so that r has exactly t coef-
ficients equal to 1, exactly t coefficients equal to −1, and the remaining p − 2t coefficients 
equal to 0. These restrictions allow decryption for smaller values of q (see Section 4.5), 
saving space and time. Beware, however, that if t is too small then there are attacks; see 
our security analysis in Section 6. 

In Streamlined NTRU Prime we keep the requirement that r have Hamming weight w = 2t, 
and keep the requirement that these w nonzero coefficients are all in {−1, 1}, but we drop 
the requirement of an equal split between −1 and 1. This allows somewhat more choices of r. 
The same comments apply to f . Similarly, we require g to have all coefficients in {−1, 0, 1}
but the distribution is otherwise unconstrained. We also require that f and g be invertible 
in R/q, which simply means nonzero given that P (x) is irreducible for NTRU Prime, and 
that g be invertible in R/3. 

These changes would affect the conventional NTRU decryption procedure: they expand 
the typical size of coefficients of fm and gr, forcing larger choices of q to avoid noticeable 
decryption failures. But we instead choose q to avoid all decryption failures (see Section 4.5), 
and these changes do not expand our bound on the size of the coefficients of fm and gr. 

In NTRU LPRime we similarly choose small weight-w polynomials with coefficients in 
{−1, 0, 1} without restricting the distribution of −1 and 1 beyond the weight. 

Elsewhere in the literature on lattice-based cryptography one can find larger coefficients: 
consider, e.g., the quinary polynomials in [27], and the even wider range in [3]. In [61], 
the coefficients of f and g are sampled from a very wide discrete Gaussian distribution, 
allowing a proof regarding the distribution of g/f . However, this appears to produce worse 
security for any given key size. Specifically, there are no known attack strategies blocked 
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by a Gaussian distribution, while the very wide distribution forces q to be very large to 
enable decryption (see Section 4.5), producing a much larger key size (and ciphertext size) 
for the same security level. Furthermore, wide Gaussian distributions are practically always 
implemented with variable-time algorithms, creating security problems, as illustrated by the 
successful cache-timing attacks in [17] and [51]. 

5 Detailed performance analysis (2.B.2) 

5.1 Description of platform 

The following measurements were collected using supercop-20170904 running on a com-
puter named titan0. The CPU on titan0 is an Intel Xeon E3-1275 v3 (Haswell) running 
at 3.5 GHz. Turbo Boost is disabled. titan0 has 32GB of RAM and runs Ubuntu 14.04. 
Benchmarks used ./do-part, which ran on one core of the CPU. The compiler list was re-
duced to just gcc -march=native -mtune=native -O3 -fomit-frame-pointer -fwrapv. 

NIST says that the “NIST PQC Reference Platform” is “an Intel x64 running Windows 
or Linux and supporting the GCC compiler.” titan0 is an Intel x64 running Linux and 
supporting the GCC compiler. Beware, however, that different Intel CPUs have different 
cycle counts. 

5.2 Time 

In the first measurement run (many timings), the median encapsulation time for 
sntrup4591761 was 59456 cycles, and the median decapsulation time was 97684 cycles. 
Timings were practically identical in the second measurement run (59476, 97624) and the 
third measurement run (59508, 97692). 

Key-generation time was slower, over 6 million cycles. With more effort one can eliminate 
most of these cycles,3 but our current key-generation cost is already negligible. Specifically: 

• The standard design goal of IND-CCA2 security means that it is safe to generate a key 
once and use the key any number of times. The situation in several recent lattice-based 
KEMs (for example, BCNS [15], New Hope [3], and Frodo [14]) is completely different: 
they are not designed to resist, and do not resist, chosen-ciphertext attacks, so they 
generate a new key for every ciphertext, so their key-generation time is important. 

• Forward secrecy does not require constant generation of new keys. A typical quad-core 
3GHz server generating a new short-term key every minute is using under 1/100000 of 
its CPU time on key generation with our current software. 

3For example, “fast gcd” techniques incorporate subquadratic-time multiplication methods such as Karat-
suba’s method, and are compatible with constant-time computations. 
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• A user who (for some reason) wants to generate many keys more quickly than this can 
use Montgomery’s trick to batch the inversions. Montgomery’s trick replaces (e.g.) 1000 
inversions with 2997 multiplications and just 1 inversion. This reduces the cost of 
generating each key below 300000 cycles. 

Our software is analogous to the original Curve25519 software [10], which emphasized en-
cryption/decryption speed and did not bother speeding up occasional key-generation com-
putations. 

ntrulpr4591761 is estimated to be somewhat slower than sntrup4591761, although it is 
faster than sntrup4591761 for key generation. 

5.3 Space 

Public keys for sntrup4591761 occupy 1218 bytes. Ciphertexts occupy only 1047 bytes. 
Secret keys occupy 1600 bytes. 

Public keys for ntrulpr4591761 occupy 1047 bytes. Ciphertexts occupy 1175 bytes. Secret 
keys occupy 1238 bytes. 

5.4 How parameters affect performance 

Encapsulation and decapsulation involve a few multiplications in the ring R/q. The asymp-
totic cost of multiplication, as p and q grow, is essentially linear in p log2 q, the number of 
bits in a ring element. Other operations scale at least as well as this. 

6 Analysis of known attacks (2.B.5) 

We start with existing pre-quantum NTRU attack strategies, adapt those strategies to the 
context of Streamlined NTRU Prime, and quantify their effectiveness. In particular, we 
account for the impact of changing xp − 1 to xp − x − 1, and using small f rather than 
f = 1+3F with small F . For comparability we assume here that the weight w in Streamlined 
NTRU Prime is taken as 2t, where t is the number of 1’s and the number of −1’s in the 
original NTRU cryptosystem. 

We consider NTRU LPRime in Section 6.8. We consider post-quantum security in Sec-
tion 6.6. 

6.1 Warning: underestimates are dangerous 

Underestimating attack cost can damage security, for reasons explained in [11, full version, 
Appendix B.1.2], so we prefer to use accurate cost estimates. However, accurately evaluating 
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the cost of lattice attacks is generally quite difficult. The literature very often explicitly 
resorts to underestimates. Comprehensively fixing this problem is beyond the scope of this 
submission, but we have started work in this direction, as illustrated by Section 6.7. At 
the same time it is clear that the best attack algorithms known today are much better than 
the best attack algorithms known a few years ago, so it is unreasonable to expect that the 
algorithms have stabilized. We plan to periodically issue updated security estimates to reflect 
ongoing work. 

6.2 Meet-in-the-middle attack 

Odlyzko’s meet-in-the-middle attack [36, 34] on NTRU works by splitting the space of possi-
ble keys F into two parts such that F = F1 ⊕F2. Then in each loop of the algorithm partial 
keys are drawn from F1 and F2 until a collision function (defined in terms of the public key 
h) indicates that f1 ∈ F1 and f2 ∈ F2 have been found such that f = f1 + f2 is the private 
key. � �� � � � 

p p−t p 22tThe number of choices for f is in original NTRU and in Streamlined NTRU 
t t 2t 

Prime. A first estimate is that the number of loops in the algorithm is the square root of 
the number of choices of f . However, this estimate does not account for equivalent keys. 
In NTRU Classic, a key (f, g) is equivalent to all of the rotated keys (xif, xig) and to the 
negations (−xif, −xig), and the algorithm succeeds if it finds any of these rotated keys. The 
2p rotations and negations are almost always distinct, producing a speedup factor very close √ 
to 2p. 

The structure of the NTRU Prime ring is less friendly to this attack. Say f has degree p − c; 
typically c is around p/2t, since there are 2t terms in f . Multiplying f by x, x2, . . . , xc−1 

produces elements of F , but multiplying f by xc replaces xp−c with xp mod xp −x−1 = x+1, 
changing its weight and thus leaving F . It is possible but rare for subsequent multiplications 
by x to reenter F . Similarly, one expects only about p/2t divisions by x to stay within F , 
for a total of only about p/t equivalent keys, or 2p/t when negations are taken into account. 
We have confirmed these estimates with experiments. 

One could modify the attack to use a larger set F , but this seems to lose more than it 
gains. Furthermore, similar wraparounds for g compromise the effectiveness of the collision 
function. To summarize, the extra term in xp − x − 1 seems to increase the attack cost by √ 
a factor around t, compared to NTRU Classic; i.e., the rotation speedup is only around p √ 

2p/t rather than 2p. 

On the other hand, some keys f allow considerably more rotations. We have decided to p
assume a speedup factor of 2(p − t), since we designed some pathological polynomials f 
with that many (not consecutive) rotations in the set. For random r the speedup is much 
smaller. This means that the number of loops before this attack is expected to find f is 
bounded by s� ,p� 

p
L = 22t 2(p − t). (1)

2t 
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In each loop, t vectors of size p are added and their coefficients are reduced modulo q. We 
thus estimate the attack cost as Lpt. The storage requirement of the attack is approximately 
L log2 L. We can reduce this storage by applying collision search to the meet-in-the-middle 
attack (see [48, 62]). In this case we can reduce the storage capacity by a factor s at the √ 
expense of increasing the running time by a factor s. 

6.3 Streamlined NTRU Prime lattice 

As with NTRU Classic, we can embed the problem of recovering the private keys f, g into a 
lattice problem. Saying 3h = g/f in R/q is the same as saying 3hf + qk = g in R for some 
polynomial k; in other words, there is a vector (k, f) of length 2p such that � � � � qI 0 � � � � 

k f = k f B = g f ,
H I 

where H is a matrix with the i’th vector corresponding to xi · 3h mod xp − x − 1 and I is 
the p × p identity matrix. We will call B the Streamlined NTRU Prime public lattice basis.√ 
This lattice has determinant qp. The vector (g, f) has norm at most 2p. The Gaussian 
heuristic states that the length of the shortest vector in a random lattice is approximately √ √ √ 
det(B)1/(2p) πep = πepq, which is much larger than 2p, so we expect (g, f) to be the 
shortest nonzero vector in the lattice. 

Finding the secret keys is thus equivalent to solving the Shortest Vector Problem (SVP) for 
the Streamlined NTRU Prime public lattice basis. The fastest currently known method to 
solve SVP in the NTRU public lattice is the hybrid attack, which we discuss below. 

A similar lattice can be constructed to instead try to find the input pair (m, r). However, 
there is no reason to expect the attack against (m, r) to be easier than the attack against 
(g, f): r has the same range as f , and m has essentially the same range as g. Recall 
that Streamlined NTRU Prime does not have the NTRU Classic problem of leaking m(1). 
There are occasional boundary constraints on m (see Section 4.3), and there is also an R/3 
invertibility constraint on g, but these effects are minor. 

6.4 Hybrid security 

The best known attack against the NTRU lattice is the hybrid lattice-basis-reduction-and-
meet-in-the-middle attack described in [34]. The attack works in two phases: the reduction 
phase and the meet-in-the-middle phase. 

Applying lattice-basis-reduction techniques will mostly reduce the middle vectors of the 
basis [56]. Therefore the strategy of the reduction phase is to apply lattice-basis reduction, 
for example BKZ 2.0 [21], to a submatrix B0 of the public basis B. We then get a reduced 
basis T = UBY : 
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⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎝ ⎠ · ⎝ ⎠ · ⎝ ⎠ = ⎝ ⎠ 
Iu 0 0 
0 U 0 0 
0 0 Iu0 

qIu 0 0 
∗ B0 0 
∗ ∗ Iu0 

Iu 0 0 
0 Y 0 0 
0 0 Iu0 

qIu 0 0 
∗ T 0 0 
∗ ∗ Iu0 

Here Y is orthonormal and T 0 is again in lower triangular form. 

In the meet-in-the-middle phase we can use a meet-in-the-middle algorithm to guess options 
for the last u0 coordinates of the key by guessing halves of the key and looking for collisions. 
If the lattice basis was reduced sufficiently in the first phase, a collision resulting in the 
private key will be found by applying a rounding algorithm to the half-key guesses. More 
details on how to do this can be found in [34]. 

To estimate the security against this attack we adapt the analysis of [32] to the set of keys 
that we use in Streamlined NTRU Prime. Let u be the dimension of Iu and u0 be the 
dimension of Iu For a sufficiently reduced basis the meet-in-the-middle phase will require 0 . 
on average 

� � � �X 01 u− log2(2(p − t)) + 2a v(a) log2(v(a)) (2)
2 a 

0≤a≤min{2t,u0} 

work, where the log2(2(p − t)) term accounts for equivalent keys and � 
p−u0� � 0� 

22t−a 2−a p−u
2t−a 2t−a v(a) = � � = � � . (3)

22t p p 
2t 2t 

The quality of a basis after lattice reduction can be measured by the Hermite factor δ = 
||b1||/det(B)1/p. Here ||b1|| is the length of the shortest vector among the rows of B. To 
be able to recover the key in the meet-in-the-middle phase, the (2p − u − u0) × (2p − u − u0) 
matrix T 0 has to be sufficiently reduced. For given u and u0 this is the case if the lattice 
reduction reaches the required value of δ. This Hermite factor has to satisfy 

(p − u) log2(q) 1 
log2(δ) ≤ − . (4)

(2p − (u + u0))2 2p − (u0 + u) 

We use the BKZ 2.0 simulator of [21] to determine the best BKZ 2.0 parameters, specifically 
the “block size” β and the number of “rounds” n, needed to reach a root Hermite factor δ. 
To get a concrete security estimate of the work required to perform BKZ-2.0 with parameters 
β and n we use the conservative formula determined by [32] from the experiments of [22]: 

Estimate(β, p, n) = 0.000784314β2 + 0.366078β − 6.125 + log2(p · n) + 7. (5) 

This estimate and the underlying experiments rely on “enumeration”; see Section 6.7 for a 
comparison to “sieving”. This analysis also assumes that the probabily of two halves of the 
key colliding is 1. We will also conservatively assume this, but a more realistic estimate can 
be found in [63]. Using these estimates we can determine the optimal u and u0 to attack a 
parameter set and thereby estimate its security. 
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Lastly we note that this analysis is easily adaptable to generalizing the coefficients to be in 
the set {−d, −(d−1), . . . , d−1, d} by replacing base 2 in the exponentiations in Equations 1, 2 
and 3 with 2d. In this case however the range of t, by a generalization of Theorem 2, decreases 
to q > 16(d3 + d2)t. 

6.5 Algebraic attacks 

The attack strategy of Ding [26], Arora–Ge [6], and Albrecht–Cid–Faugère–Fitzpatrick– √ 
Perret [2] takes subexponential time to break dimension-n LWE with noise width o( n), 
and polynomial time to break LWE with constant noise width. However, these attacks 
require many LWE samples, whereas typical cryptosystems in the NTRU family provide far 
less data to the attacker. When these attacks are adapted to cryptosystems that provide 
only (say) 2n samples, they end up taking more than 20.5n time, even when the noise is 
limited to {0, 1}. See generally [2, Theorem 7] and [43, Case Study 1]. 

6.6 Quantum attacks 

Grover’s algorithm, amplitude amplification, and quantum walks produce better exponents 
for some of the subroutines used above. Preliminary estimates indicate that the overall 
impact on Streamlined NTRU Prime security levels is much less than the impact upon 
AES-256 security levels. Further analysis is required. 

6.7 Memory, parallelization, and sieving algorithms 

The security estimates above rely on enumeration algorithms [52, 29, 38, 32]. For very 
large dimensions, the performance of enumeration algorithms is slightly super-exponential 
and is known to be suboptimal. The provable sieving algorithms of Pujol and Stehlé [54] 
solve dimension-β SVP in time 22.465...β+o(β) and space 21.233...β+o(β), and more recent SVP 
algorithms [1] take time 2β+o(β). More importantly, under heuristic assumptions, sieving is 
much faster. The most recent work on lattice sieving (see [9, 42]) has pushed the heuristic 
complexity down to 20.292...β+o(β). 

Simply comparing 0.292β to enumeration exponents suggests that sieving could be faster 
than enumeration for sizes of β of relevance to cryptography. However, this comparison 
ignores two critical caveats regarding the performance of sieving. First, a closer look at 
polynomial factors indicates that the o(β) here is positive. Consider, e.g., [9, Figure 3], 
which reports a best fit of 20.387β−15 for its fastest sieving experiments. The comparison in 
[47] takes this caveat into account and concludes that the sieving cutoff is “far out of reach”. 

Second, sieving uses much more storage as β grows: at least 20.208...β+o(β) bits of storage, 
again with positive o(β). It is not known how to reduce the storage without large increases 
in the number of operations. Furthermore, sieving is bottlenecked by random access to 
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storage, and this random access also becomes slower as the amount of storage increases. The 
slowdown is approximately the square root of the storage in realistic cost models; see, e.g., 
[16]. 

Enumeration fits into very little memory even for large β. Kuo, Schneider, Dagdelen, Re-
ichelt, Buchmann, Cheng, and Yang [41] showed that enumeration parallelizes effectively 
within and across GPUs. An attacker who can afford enough hardware for sieving for large 
β can instead use the same amount of hardware for enumeration, obtaining an almost linear 
parallelization speedup. 

We do not mean to suggest that the operation-count ratio should be multiplied by the 
sieving storage (accounting for this enumeration speedup) and further by the square root of 
the storage (accounting for the cost of random access inside sieving): this would ignore the 
possibility of a speedup from parallelizing sieving. “Mesh” sorting algorithms such as the √ 
Schnorr–Shamir algorithm [57] sort n small items in time just O( n), which is optimal in 
realistic models of parallel computation; these algorithms can be used as subroutines inside 
sieving, reducing the asymptotic cost penalty to just 20.104...β+o(β). However, this is still much 
less effective parallelization than [41]. 

This cost penalty for sieving is ignored in measurements such as [45] and [9, Figure 3], and 
in the resulting comparisons such as [47]. These measurements are limited to sieving sizes 
that fit into DRAM on a single computer, and do not account for the important increase in 
memory cost as β increases. Another way to see the same issue would be to scale sieving 
down to a small enough size to fit into GPU multiprocessors; this would demonstrate a 
sieving speedup for smaller β, for fundamentally the same reason that there will be a sieving 
slowdown for larger β. 

In the absence of any realistic analyses of sieving cost for large β, we have decided to omit 
sieving from our security estimates. There is very little reason to believe that sieving can 
beat enumeration inside any attack that fits within our security target. 

6.8 Attacks against NTRU LPRime 

NTRU LPRime is similar to Streamlined NTRU Prime from an attack perspective. In 
particular, a lattice attack that finds small (m, r), given a random h and given c = m + hr, 
breaks both Streamlined NTRU Prime and NTRU LPRime. 

Above we focused on the similar problem of finding small (g, f) given h and given 0 = g−3hf . 
Having to consider this second problem is a complication avoided by NTRU LPRime, and if 
this problem is easier then NTRU LPRime could be more secure than Streamlined NTRU 
Prime. 

On the other hand, NTRU LPRime has its own complication, namely that it also releases 
an approximation to a second multiple of r. If this makes the r-recovery problem easier then 
NTRU LPRime could be less secure than Streamlined NTRU Prime. As noted above, we 
find both of these complications worrisome; further security analysis is required. 
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A simpler issue is that, for the same sizes p and q, NTRU LPRime places slightly smaller 
limits on the weight w than Streamlined NTRU Prime does. A smaller weight reduces the 
quantitative security level against various attack strategies discussed above. 

7 Expected strength (2.B.4) in general 

7.1 Security definitions 

Our security goal is IND-CCA2. See Section 8 for quantitative estimates of the security of 
specific parameter sets. 

Our general strategy for handling multi-target attacks is to aim for a very high single-target 
security level, and then rely on the fact that T -target attacks gain at most a factor T . We 
have not introduced complications aimed at making multi-target attacks even more difficult. 

Our current software allows multiple encodings of ciphertexts and keys, for example allowing 
4591 as a synonym for 0. NIST has stated a preference for implementations that enforce 
unique encodings, and we plan to adjust our software accordingly. 

Lattice-based encryption also has various symmetries, analogous to well-known ECC sym-
metries. For example, if c (plus confirmation) is a Streamlined NTRU Prime ciphertext 
under public key h, then −c (plus the same confirmation) is a Streamlined NTRU Prime 
ciphertext for the same session key under public key −h. 

7.2 Rationale 

See Section 6 for an analysis of known attacks. 

Algorithm 1 searches for (p, q, t, λ), where λ is Section 6’s estimate of the pre-quantum 
security level for parameters (p, q, t) with w = 2t. The subroutine nextprime(i) returns the 
first prime number >i. The subroutine viableqs(p, qb) returns all primes q larger than p and 
smaller than qb for which it holds that xp − x − 1 is irreducible in (Z/q)[x]. The subroutine 
mitmcosts uses the estimates from Equation (1) to determine the bitsecurity level of the 
parameters against a straightforward meet-in-the-middle attack. To find u, u0, β, n we set 
u to the hybridbkzcost of the previous iteration (initially 0) and do a binary search for u0 

such that the two phases of the hybrid attack are of equal cost. For each u0 we determine 
the Hermite factor required with Equation (4), use the BKZ-2.0 simulator to determine the 
optimal β and n to reach the required Hermite factor and use Equations (5) and (2) to 
determine the hybridbkzcost and hybridmitmcost. 

Note that this algorithm outputs the largest value of t such that there are no decryption 
failures according to Theorem 2 and that no more than 2/3 of the coefficients of f are set. Ex-
periments show that decreasing t to t1 linearly decreases the security level by approximately 
t − t1. 
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Algorithm 1: Determine parameter sets for security level above `. 
Input: Upper bound qb for q, range [p1, p2] for p, lower bound ` for security level 
Result: Viable parameters p, q and t with security level λ. 
p ← p1 − 1 (the prime we are currently investigating) 
while p ≤ p2 do 

p ← nextprime(p) 
Q ← viableqs(p, qb) 
for q ∈ Q do 

t ← min{b(q − 1)/32c , bp/3c}
λ1 ← mitmcosts(p, t) 
if λ1 ≥ ` then 

Find u, u0 , β, n such that BKZ-2.0 costs are approximately equal to 
meet-in-the-middle costs in the hybrid attack. 
λ2 ← max{hybridbkzcost, hybridmitmcost}
return p, q, t, min{λ1, λ2} 

See the NTRU Prime paper for a table of Streamlined NTRU Prime parameter sets with 
465 < p < 970 and q < 20000. Our recommended parameters (p, q, w) = (761, 4591, 286) 
with estimated pre-quantum security 2248 provide an excellent tradeoff between size and 
security level. 

The analysis of NTRU LPRime parameter sets works the same way and gives 2225 for our 
recommended parameters (p, q, w) = (761, 4591, 250). 

8 Expected strength (2.B.4) for each parameter set 

8.1 Parameter set kem/sntrup4591761 

Category 5. 2248 is marginally smaller than 2256, but we expect that further analysis along 
the lines of [63], together with analysis of memory and communication costs, will show that 
this parameter set is much more expensive to break than AES-256. 

8.2 Parameter set kem/ntrulpr4591761 

2225Category 5. is noticeably smaller than 2256 , due to the smaller polynomial weight 
compared to sntrup4591761. However, note that the analysis by Wunderer [63] showed an 
underestimate of security by a factor of at least 230 for a previous set of parameters analyzed 
by the methodology above; memory and communication costs are likely to be on an even 
larger scale. Hence, we expect that further analysis will show that this parameter set is 
harder to break than AES-256. See also Section 6.8. 
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9 Advantages and limitations (2.B.6) 

There are several proposals of lattice-based cryptosystems that appear to provide high se-
curity with keys and ciphertexts fitting into just a few kilobytes. This proposal is designed 
to have the smallest attack surface, minimizing the number of avenues available to crypt-
analysts. Some recent attacks against lattice-based cryptosystems rely on homomorphisms 
eliminated by this proposal. 

At the same time this proposal provides unusually small sizes and excellent speed. One of 
the reasons for this performance is that this proposal provides the flexibility to target any 
desired lattice dimension rather precisely, without the “jumps” that appear in most propos-
als. Future advances in understanding the exact security level of lattice-based cryptography 
will allow this proposal to be tuned accordingly. 

Beware, however, that there are other recent attacks against lattice-based cryptography, 
including impressive advances against SVP. As noted before, the security of lattice-based 
cryptography is not well understood. This is a general limitation of lattice-based cryptogra-
phy. The same limitation is shared by many—but not all—post-quantum proposals. 
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ics. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology 
- EUROCRYPT 2017 - 36th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017, Proceed-
ings, Part I, volume 10210 of Lecture Notes in Computer Science, pages 27–59, 2017. 
https://multiquad.cr.yp.to. 

[9] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in nearest 
neighbor searching with applications to lattice sieving. In Krauthgamer [40], pages 10– 
24. https://eprint.iacr.org/2015/1128. 

[10] Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed records. In Moti Yung, 
Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, Public Key Cryptogra-
phy - PKC 2006, 9th International Conference on Theory and Practice of Public-
Key Cryptography, New York, NY, USA, April 24-26, 2006, Proceedings, volume 
3958 of Lecture Notes in Computer Science, pages 207–228. Springer, 2006. https: 
//cr.yp.to/papers.html#curve25519. 

[11] Daniel J. Bernstein and Tanja Lange. Non-uniform cracks in the concrete: The power 
of free precomputation. In Kazue Sako and Palash Sarkar, editors, Advances in Cryptol-
ogy - ASIACRYPT 2013 - 19th International Conference on the Theory and Application 
of Cryptology and Information Security, Bengaluru, India, December 1-5, 2013, Pro-
ceedings, Part II, volume 8270 of Lecture Notes in Computer Science, pages 321–340. 
Springer, 2013. https://cr.yp.to/papers.html#nonuniform. 

[12] Jean-François Biasse and Fang Song. Efficient quantum algorithms for computing class 
groups and solving the principal ideal problem in arbitrary degree number fields. In 
Krauthgamer [40], pages 893–902. http://fangsong.info/files/pubs/BS_SODA16. 
pdf. 

[13] Andrej Bogdanov, Siyao Guo, Daniel Masny, Silas Richelson, and Alon Rosen. On the 
hardness of learning with rounding over small modulus. In Eyal Kushilevitz and Tal 

30 

https://users.cs.duke.edu/~rongge/LPSN.pdf
https://eprint.iacr.org/2011/401
https://multiquad.cr.yp.to
https://eprint.iacr.org/2015/1128
https://cr.yp.to/papers.html#curve25519
https://cr.yp.to/papers.html#curve25519
https://cr.yp.to/papers.html#nonuniform
http://fangsong.info/files/pubs/BS_SODA16.pdf
http://fangsong.info/files/pubs/BS_SODA16.pdf


Malkin, editors, Theory of Cryptography - 13th International Conference, TCC 2016-
A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part I, volume 9562 of Lecture 
Notes in Computer Science, pages 209–224. Springer, 2016. https://eprint.iacr. 
org/2015/769. 
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[28] Kirsten Eisenträger, Sean Hallgren, and Kristin E. Lauter. Weak instances of PLWE. In 
Antoine Joux and Amr M. Youssef, editors, Selected Areas in Cryptography - SAC 2014 
- 21st International Conference, Montreal, QC, Canada, August 14-15, 2014, Revised 
Selected Papers, volume 8781 of Lecture Notes in Computer Science, pages 183–194. 
Springer, 2014. https://eprint.iacr.org/2014/784. 

[29] Ulrich Fincke and Michael Pohst. Improved methods for calculating vectors of 
short length in a lattice, including a complexity analysis. Mathematics of Compu-
tation, 44(170):463–471, 1985. http://www.ams.org/journals/mcom/1985-44-170/ 
S0025-5718-1985-0777278-8/S0025-5718-1985-0777278-8.pdf. 

[30] Qian Guo, Thomas Johansson, and Paul Stankovski. A key recovery attack on mdpc 
with cca security using decoding errors. Cryptology ePrint Archive, Report 2016/858, 
2016. https://eprint.iacr.org/2016/858. 

[31] Philip S. Hirschhorn, Jeffrey Hoffstein, Nick Howgrave-Graham, and William Whyte. 
Choosing NTRUEncrypt parameters in light of combined lattice reduction and MITM 
approaches. In Michel Abdalla, David Pointcheval, Pierre-Alain Fouque, and Damien 
Vergnaud, editors, Applied Cryptography and Network Security, 7th International Con-
ference, ACNS 2009, Paris-Rocquencourt, France, June 2-5, 2009. Proceedings, volume 
5536 of Lecture Notes in Computer Science, pages 437–455, 2009. 

32 

https://eprint.iacr.org/2015/313
https://eprint.iacr.org/2016/885
https://eprint.iacr.org/2002/174
https://eprint.iacr.org/2010/558
https://eprint.iacr.org/2013/383
https://eprint.iacr.org/2013/383
https://eprint.iacr.org/2014/784
http://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777278-8/S0025-5718-1985-0777278-8.pdf
http://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777278-8/S0025-5718-1985-0777278-8.pdf
https://eprint.iacr.org/2016/858


[32] Jeffrey Hoffstein, Jill Pipher, John M. Schanck, Joseph H. Silverman, William Whyte, 
and Zhenfei Zhang. Choosing parameters for NTRUEncrypt. IACR Cryptology ePrint 
Archive, 2015. https://eprint.iacr.org/2015/708. 

[33] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public key 
cryptosystem. In Joe Buhler, editor, Algorithmic Number Theory, Third International 
Symposium, ANTS-III, Portland, Oregon, USA, June 21-25, 1998, Proceedings, volume 
1423 of Lecture Notes in Computer Science, pages 267–288. Springer, 1998. 

[34] Nick Howgrave-Graham. A hybrid lattice-reduction and meet-in-the-middle attack 
against NTRU. In Alfred Menezes, editor, Advances in Cryptology - CRYPTO 2007, 
27th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 
19-23, 2007, Proceedings, volume 4622 of Lecture Notes in Computer Science, pages 
150–169. Springer, 2007. https://www.iacr.org/archive/crypto2007/46220150/ 
46220150.pdf. 

[35] Nick Howgrave-Graham, Phong Q. Nguyen, David Pointcheval, John Proos, Joseph H. 
Silverman, Ari Singer, and William Whyte. The impact of decryption failures on the se-
curity of NTRU encryption. In Dan Boneh, editor, Advances in Cryptology - CRYPTO 
2003, 23rd Annual International Cryptology Conference, Santa Barbara, California, 
USA, August 17-21, 2003, Proceedings, volume 2729 of Lecture Notes in Computer Sci-
ence, pages 226–246. Springer, 2003. http://www.di.ens.fr/~pointche/Documents/ 
Papers/2003_crypto.pdf. 

[36] Nick Howgrave-Graham, Joseph H Silverman, and William Whyte. A meet-in-the-
middle attack on an NTRU private key. Technical report, NTRU Cryptosystems, 
June 2003. Report, 2003. https://www.securityinnovation.com/uploads/Crypto/ 
NTRUTech004v2.pdf. 

[37] Nick Howgrave-Graham, Joseph H. Silverman, and William Whyte. Choosing parameter 
sets for NTRUEncrypt with NAEP and SVES-3, 2005. https://eprint.iacr.org/ 
2005/045. 

[38] Ravi Kannan. Improved algorithms for integer programming and related lattice prob-
lems. In Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, 
STOC ’83, pages 193–206, New York, NY, USA, 1983. ACM. 

[39] Paul Kirchner and Pierre-Alain Fouque. Comparison between subfield and straightfor-
ward attacks on NTRU. Cryptology ePrint Archive, Report 2016/717, 2016. https: 
//eprint.iacr.org/2016/717. 

[40] Robert Krauthgamer, editor. Proceedings of the Twenty-Seventh Annual ACM-SIAM 
Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 
2016. SIAM, 2016. 

¨ [41] Po-Chun Kuo, Michael Schneider, Ozgür Dagdelen, Jan Reichelt, Johannes A. Buch-
mann, Chen-Mou Cheng, and Bo-Yin Yang. Extreme enumeration on GPU and in 
clouds: How many dollars you need to break SVP challenges. In Bart Preneel and 

33 

https://eprint.iacr.org/2015/708
https://www.iacr.org/archive/crypto2007/46220150/46220150.pdf
https://www.iacr.org/archive/crypto2007/46220150/46220150.pdf
http://www.di.ens.fr/~pointche/Documents/Papers/2003_crypto.pdf
http://www.di.ens.fr/~pointche/Documents/Papers/2003_crypto.pdf
https://www.securityinnovation.com/uploads/Crypto/NTRUTech004v2.pdf
https://www.securityinnovation.com/uploads/Crypto/NTRUTech004v2.pdf
https://eprint.iacr.org/2005/045
https://eprint.iacr.org/2005/045
https://eprint.iacr.org/2016/717
https://eprint.iacr.org/2016/717


Tsuyoshi Takagi, editors, Cryptographic Hardware and Embedded Systems - CHES 2011 
- 13th International Workshop, Nara, Japan, September 28 - October 1, 2011. Proceed-
ings, volume 6917 of Lecture Notes in Computer Science, pages 176–191. Springer, 2011. 
http://www.iis.sinica.edu.tw/papers/byyang/12158-F.pdf. 

[42] Thijs Laarhoven. Sieving for shortest vectors in lattices using angular locality-sensitive 
hashing. In Rosario Gennaro and Matthew Robshaw, editors, Advances in Cryptology -
CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 
16-20, 2015, Proceedings, Part I, volume 9215 of Lecture Notes in Computer Science, 
pages 3–22. Springer, 2015. https://eprint.iacr.org/2014/744.pdf. 

[43] Vadim Lyubashevsky. Future directions in lattice cryptography (talk slides), 2016. 
http://troll.iis.sinica.edu.tw/pkc16/slides/Invited_Talk_II--Directions_ 
in_Practical_Lattice_Cryptography.pptx. 

[44] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning 
with errors over rings. J. ACM, 60(6):43, 2013. https://eprint.iacr.org/2012/230. 

[45] Artur Mariano, Christian H. Bischof, and Thijs Laarhoven. Parallel (probable) lock-free 
hash sieve: A practical sieving algorithm for the SVP. In 44th International Conference 
on Parallel Processing, ICPP 2015, Beijing, China, September 1-4, 2015, pages 590–599. 
IEEE Computer Society, 2015. https://eprint.iacr.org/2015/041. 

[46] Christopher Meyer, Juraj Somorovsky, Eugen Weiss, Jörg Schwenk, Sebastian Schinzel, 
and Erik Tews. Revisiting SSL/TLS implementations: New Bleichenbacher side 
channels and attacks. In Kevin Fu and Jaeyeon Jung, editors, Proceedings of the 
23rd USENIX Security Symposium, San Diego, CA, USA, August 20-22, 2014., 
pages 733–748. USENIX Association, 2014. https://www.usenix.org/conference/ 
usenixsecurity14/technical-sessions/presentation/meyer. 

[47] Daniele Micciancio and Michael Walter. Fast lattice point enumeration with minimal 
overhead. In Piotr Indyk, editor, Proceedings of the Twenty-Sixth Annual ACM-SIAM 
Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 
2015, pages 276–294. SIAM, 2015. https://eprint.iacr.org/2014/569. 

[48] Paul C. van Oorschot and Michael J. Wiener. Parallel collision search with cryptana-
lytic applications. J. Cryptology, 12(1):1–28, 1999. http://people.scs.carleton.ca/ 

~paulv/papers/JoC97.pdf. 

[49] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: 
extended abstract. In Michael Mitzenmacher, editor, Proceedings of the 41st Annual 
ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 
- June 2, 2009, pages 333–342. ACM, 2009. https://eprint.iacr.org/2008/481. 

[50] Chris Peikert. “A useful fact about Ring-LWE that should be known better: it is 
*at least as hard* to break as NTRU, and likely strictly harder. 1/” (tweet), 2017. 
http://archive.is/B9KEW. 

34 

http://www.iis.sinica.edu.tw/papers/byyang/12158-F.pdf
https://eprint.iacr.org/2014/744.pdf
http://troll.iis.sinica.edu.tw/pkc16/slides/Invited_Talk_II--Directions_in_Practical_Lattice_Cryptography.pptx
http://troll.iis.sinica.edu.tw/pkc16/slides/Invited_Talk_II--Directions_in_Practical_Lattice_Cryptography.pptx
https://eprint.iacr.org/2012/230
https://eprint.iacr.org/2015/041
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/meyer
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/meyer
https://eprint.iacr.org/2014/569
http://people.scs.carleton.ca/~paulv/papers/JoC97.pdf
http://people.scs.carleton.ca/~paulv/papers/JoC97.pdf
https://eprint.iacr.org/2008/481
http://archive.is/B9KEW


[51] Peter Pessl, Leon Groot Bruinderink, and Yuval Yarom. To BLISS-B or not to be: 
Attacking strongSwan’s implementation of post-quantum signatures. In CCS, pages 
1843–1855. ACM, 2017. https://eprint.iacr.org/2017/490. 

[52] Michael Pohst. On the computation of lattice vectors of minimal length, successive 
minima and reduced bases with applications. SIGSAM Bull., 15(1):37–44, February 
1981. 
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These statements “must be mailed to Dustin Moody, Information Technology Laboratory, 
Attention: Post-Quantum Cryptographic Algorithm Submissions, 100 Bureau Drive – Stop 
8930, National Institute of Standards and Technology, Gaithersburg, MD 20899-8930, or can 
be given to NIST at the first PQC Standardization Conference (see Section 5.C).” 

First blank in submitter statement: full name. Second blank: full postal address. Third, 
fourth, and fifth blanks: name of cryptosystem. Sixth and seventh blanks: describe and 
enumerate or state “none” if applicable. 

First blank in patent statement: full name. Second blank: full postal address. Third blank: 
enumerate. Fourth blank: name of cryptosystem. 

First blank in implementor statement: full name. Second blank: full postal address. Third 
blank: full name of the owner. 
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A.1 Statement by Each Submitter 

I, , of , do 
hereby declare that the cryptosystem, reference implementation, or optimized implementa-
tions that I have submitted, known as , is my own original 
work, or if submitted jointly with others, is the original work of the joint submitters. I 
further declare that (check one): 

• I do not hold and do not intend to hold any patent or patent application with a claim 
which may cover the cryptosystem, reference implementation, or optimized implemen-
tations that I have submitted, known as OR (check one 
or both of the following): 

– to the best of my knowledge, the practice of the cryptosystem, reference im-
plementation, or optimized implementations that I have submitted, known as 

may be covered by the following U.S. and/or foreign patents: 

– I do hereby declare that, to the best of my knowledge, the following pend-
ing U.S. and/or foreign patent applications may cover the practice of my sub-
mitted cryptosystem, reference implementation or optimized implementations: 

I do hereby acknowledge and agree that my submitted cryptosystem will be provided to the 
public for review and will be evaluated by NIST, and that it might not be selected for standard-
ization by NIST. I further acknowledge that I will not receive financial or other compensation 
from the U.S. Government for my submission. I certify that, to the best of my knowledge, 
I have fully disclosed all patents and patent applications which may cover my cryptosystem, 
reference implementation or optimized implementations. I also acknowledge and agree that 
the U.S. Government may, during the public review and the evaluation process, and, if my 
submitted cryptosystem is selected for standardization, during the lifetime of the standard, 
modify my submitted cryptosystem’s specifications (e.g., to protect against a newly discovered 
vulnerability). 

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish 
the draft standards for public comment. 

I do hereby agree to provide the statements required by Sections 2.D.2 and 2.D.3, below, for 
any patent or patent application identified to cover the practice of my cryptosystem, reference 
implementation or optimized implementations and the right to use such implementations for 
the purposes of the public review and evaluation process. 

I acknowledge that, during the post-quantum algorithm evaluation process, NIST may remove 
my cryptosystem from consideration for standardization. If my cryptosystem (or the derived 
cryptosystem) is removed from consideration for standardization or withdrawn from consider-
ation by all submitter(s) and owner(s), I understand that rights granted and assurances made 
under Sections 2.D.1, 2.D.2 and 2.D.3, including use rights of the reference and optimized 
implementations, may be withdrawn by the submitter(s) and owner(s), as appropriate. 
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Signed: 

Title: 

Date: 

Place: 
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A.2 Statement by Patent (and Patent Application) Owner(s) 

If there are any patents (or patent applications) identified by the submitter, including those 
held by the submitter, the following statement must be signed by each and every owner, or 
each owner’s authorized representative, of each patent and patent application identified. 

I, , of , 
am the owner or authorized representative of the owner (print 
full name, if different than the signer) of the following patent(s) 
and/or patent application(s): 

and do hereby commit and agree to grant to any interested party on a worldwide basis, if 
the cryptosystem known as is selected for standardization, in consid-
eration of its evaluation and selection by NIST, a non-exclusive license for the purpose of 
implementing the standard (check one): 

• without compensation and under reasonable terms and conditions that are demonstrably 
free of any unfair discrimination, OR 

• under reasonable terms and conditions that are demonstrably free of any unfair dis-
crimination. 

I further do hereby commit and agree to license such party on the same basis with respect 
to any other patent application or patent hereafter granted to me, or owned or controlled by 
me, that is or may be necessary for the purpose of implementing the standard. 

I further do hereby commit and agree that I will include, in any documents transferring 
ownership of each patent and patent application, provisions to ensure that the commitments 
and assurances made by me are binding on the transferee and any future transferee. 

I further do hereby commit and agree that these commitments and assurances are intended by 
me to be binding on successors-in-interest of each patent and patent application, regardless 
of whether such provisions are included in the relevant transfer documents. 

I further do hereby grant to the U.S. Government, during the public review and the evaluation 
process, and during the lifetime of the standard, a nonexclusive, nontransferrable, irrevocable, 
paid-up worldwide license solely for the purpose of modifying my submitted cryptosystem’s 
specifications (e.g., to protect against a newly discovered vulnerability) for incorporation into 
the standard. 

Signed: 

Title: 

Date: 

Place: 
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A.3 Statement by Reference/Optimized Implementations’ 
Owner(s) 

The following must also be included: 

I, , , am the 
owner or authorized representative of the owner of the sub-
mitted reference implementation and optimized implementations and hereby grant the U.S. 
Government and any interested party the right to reproduce, prepare derivative works based 
upon, distribute copies of, and display such implementations for the purposes of the post-
quantum algorithm public review and evaluation process, and implementation if the corre-
sponding cryptosystem is selected for standardization and as a standard, notwithstanding that 
the implementations may be copyrighted or copyrightable. 

Signed: 

Title: 

Date: 

Place: 
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