
Post-quantum RSA

20171123

Principal submitter

This submission is from the following team, listed in alphabetical order:

• Daniel J. Bernstein, University of Illinois at Chicago
• Josh Fried, Massachusetts Institute of Technology
• Nadia Heninger, University of Pennsylvania
• Paul Lou, University of Pennsylvania
• Luke Valenta, University of Pennsylvania

E-mail address (preferred): authorcontact-pqrsa@box.cr.yp.to

Telephone (if absolutely necessary): +1-312-996-3422

Postal address (if absolutely necessary): Daniel J. Bernstein, Department of Computer Sci-
ence, University of Illinois at Chicago, 851 S. Morgan (M/C 152), Room 1120 SEO, Chicago,
IL 60607–7053.

Auxiliary submitters: There are no auxiliary submitters. The principal submitter is the
team listed above.

Inventors/developers: The inventors/developers of this submission are the same as the
principal submitter. Relevant prior work is credited below where appropriate.

Owner: Same as submitter.

Signature: ×. See also printed version of “Statement by Each Submitter”.

Document generated with the help of pqskeleton version 20171123.

1

mailto:authorcontact-pqrsa@box.cr.yp.to

Contents

1 Introduction 5

2 General algorithm specification (part of 2.B.1) 5

2.1 Parameter space . 5

2.2 Secret key and public key . 6

2.3 Signatures . 7

2.4 KEM . 7

2.5 Public-key encryption . 8

3 List of parameter sets (part of 2.B.1) 9

3.1 Parameter set encrypt/pqrsa15 . 9

3.2 Parameter set encrypt/pqrsa20 . 9

3.3 Parameter set encrypt/pqrsa25 . 9

3.4 Parameter set encrypt/pqrsa30 . 10

3.5 Parameter set kem/pqrsa15 . 10

3.6 Parameter set kem/pqrsa20 . 10

3.7 Parameter set kem/pqrsa25 . 10

3.8 Parameter set kem/pqrsa30 . 10

3.9 Parameter set sign/pqrsa15 . 10

3.10 Parameter set sign/pqrsa20 . 10

3.11 Parameter set sign/pqrsa25 . 10

3.12 Parameter set sign/pqrsa30 . 10

4 Design rationale (part of 2.B.1) 11

5 Detailed performance analysis (2.B.2) 11

5.1 Description of platform . 11

5.2 Time . 12

5.3 Space . 13

2

5.4 How parameters affect performance . 13

5.5 Optimizations . 13

6 Expected strength (2.B.4) in general 14

6.1 Security definitions . 14

6.2 Rationale . 14

7 Expected strength (2.B.4) for each parameter set 14

7.1 Parameter set encrypt/pqrsa15 . 14

7.2 Parameter set encrypt/pqrsa20 . 14

7.3 Parameter set encrypt/pqrsa25 . 14

7.4 Parameter set encrypt/pqrsa30 . 14

7.5 Parameter set kem/pqrsa15 . 14

7.6 Parameter set kem/pqrsa20 . 15

7.7 Parameter set kem/pqrsa25 . 15

7.8 Parameter set kem/pqrsa30 . 15

7.9 Parameter set sign/pqrsa15 . 15

7.10 Parameter set sign/pqrsa20 . 15

7.11 Parameter set sign/pqrsa25 . 15

7.12 Parameter set sign/pqrsa30 . 15

8 Analysis of known attacks (2.B.5) 15

8.1 Factorization . 15

8.2 Factorization when factors are small . 18

8.3 Attacks without factorization . 19

9 Advantages and limitations (2.B.6) 20

References 20

A Statements 21

A.1 Statement by Each Submitter . 23

3

A.2 Statement by Patent (and Patent Application) Owner(s) 25

A.3 Statement by Reference/Optimized Implementations’ Owner(s) 26

4

1 Introduction

Join us as we dance madly on the lip of the volcano!
—John Oliver hypothesizing Apple’s view
of the difficulty of securing the iPhone

https://www.youtube.com/watch?v=zsjZ2r9Ygzw

Integer factorization is a security disaster. There is a long list of proposed RSA key sizes that
have been shown vulnerable to attack. And yet RSA remains standardized and remarkably
popular. Users switch to larger RSA key sizes and believe that they will be safe.

Is it clear that quantum attacks should be handled in a different way? More importantly, is
it clear that quantum attacks will be handled in a different way?

Post-quantum RSA (pqRSA) uses extremely large RSA keys to stop Shor’s algorithm. It
uses many relatively small secret primes, and small encryption/verification exponents, so
that computations with such large keys are affordable for the legitimate users. It still uses
secret primes large enough to resist ECM and quantum versions of ECM.

Perhaps there are better quantum algorithms for factorization, especially when the factors
are relatively small. This has not been adequately studied—but how many post-quantum
proposals have been adequately studied? Many other post-quantum proposals are more
efficient than pqRSA—but is efficiency a sign of strength, or a sign of weakness?

It is not difficult to envision many RSA users gradually slouching their way into becoming
pqRSA users. The cryptographic community should not ignore this possibility: it should
figure out whether the possibility is secure.

2 General algorithm specification (part of 2.B.1)

2.1 Parameter space

This pqRSA submission provides signatures, key encapsulation, and public-key encryption.
Each operation has two parameters: K, a power of 2; and B, a positive multiple of 8.

There are actually two different options for public-key encryption:

• Use a generic conversion from the key-encapsulation mechanism into a public-key en-
cryption mechanism. For example, use the KEM to send a 32-byte session key, and
then use the session key with AES-256-GCM to encrypt and authenticate the message.
NIST has indicated that it will apply this conversion automatically.

• Use the public-key encryption mechanism specified below. This is more complicated
but saves space.

5

https://www.youtube.com/watch?v=zsjZ2r9Ygzw

2.2 Secret key and public key

Alice’s secret key consists of K distinct primes. Each prime is between 2B−1 and 2B , and is
congruent to 5 modulo 6. Specifically, Alice accumulates a list of K primes by repeating the
following steps:

• Generate a B-bit integer as a (B/8)-byte random string interpreted in little-endian
form.

• Set bits 0 and B − 1, obtaining an odd integer p between 2B−1 and 2B .

• If p mod 3 = 2, p is prime, and p is not in the list, then add p to the list.

If K is a significant fraction of the number of primes congruent to 5 modulo 6 between 2B−1

and 2B, then the “not in the list” condition significantly slows down this procedure. If K is
larger than the number of primes then the procedure does not terminate. For the parameter
sets in this submission, the “in the list” condition has negligible chance of occurring, and
the test can safely be skipped.

There is an extensive literature on primality testing, with various tradeoffs between simplic-
ity, speed, conjectured error probability, and provability. Users are expected to follow NIST
standards on this topic.

Our reference implementation simply uses GMP’s mpz_probab_prime_p function. It is easy
to artificially construct non-primes p that have a noticeable chance of passing this test, but
a random non-prime p becomes increasingly unlikely to pass this test as B grows. All of the
parameter sets below have B ≥ 512, and we conjecture that the chance of Alice’s key being
invalid is below 2−128 .

Alice multiplies these K primes to obtain her public key N , an integer between 2K(B−1) and
2KB . The number of bytes needed for Alice’s N is called A; i.e., A is the unique integer such
that 256A−1 ≤ N < 256A . Note that K(B − 1)/8 < A ≤ KB/8.

The secret key is then encoded as a 3K(B/8)-byte string, namely the concatenation of the
following strings:

• For each p: B/8 bytes representing p in little-endian form.

• For each p: B/8 bytes representing (N/p)−1 mod p in little-endian form. (This is used
inside various standard methods to compute cube roots.)

• K(B/8) bytes representing N in little-endian form.

The public key is also encoded as K(B/8) bytes representing N in little-endian form.

6

2.3 Signatures

Alice signs a message M as follows:

• Generate a random 32-byte string R.

• Compute Y = HA−1(R, M). Here the hash function HA−1 is A − 1 bytes of output of
SHAKE256. Recall that A is the number of bytes in N .

• Compute the integer Y represented by Y in little-endian form.

• Compute the cube root X of Y modulo N .

• Encode X in little-endian form as a K(B/8)-byte string X.

• The signature is X followed by R. The signed message is the signature followed by M .

Bob verifies an alleged signature of a message M 0 as follows:

• Parse the alleged signature as a K(B/8)-byte string X 0 followed by a 32-byte string
R0 .

• Compute Y 0 = HA−1(R
0,M 0).

• Compute the integer X 0 represented by X 0 in little-endian form. Fail if X 0 ≥ N .

• Compute the integer Y 0 represented by Y 0 in little-endian form.

• Check whether Y 0 = (X 0)3 mod N .

2.4 KEM

Bob exchanges a secret session key with Alice as follows, given Alice’s public key N :

• Generate a string of K(B/8) uniform random bytes.

• Clear the last K(B/8) − (A − 1) bytes, obtaining a string r. Recall that A is the
number of bytes in N .

• Compute the session key H32(r), where H32 means 32 bytes of output of SHAKE256.

• Compute the integer r represented by r in little-endian form.

• Compute C = r3 mod N .

• Encode C in little-endian form as a K(B/8)-byte string C.

• Send C as a ciphertext.

7

Alice decapsulates C 0 as follows:

• Fail if C 0 does not have length K(B/8).

• Compute the integer C 0 represented by C 0 in little-endian form. Fail if C 0 ≥ N .

• Compute the cube root r0 of C 0 modulo N .

• Encode r0 in little-endian form as a K(B/8)-byte string r0 .

• Compute the session key H32(r0).

2.5 Public-key encryption

The following encryption mechanism assumes that K(B − 1) ≥ 776. This implies N ≥ 2776 ,
so A ≥ 98; recall that A is the number of bytes in N . Define α = A − 65; then α ≥ 33.

Bob sends a secret `-byte message m to Alice as follows, given Alice’s public key N :

• If ` < α: Define x0 as the α-byte string (m, 1, 0, . . . , 0). There are α − 1 − ` copies of
byte 0.

• If ` ≥ α: Define m0 as the first α − 33 bytes of m, and define m1 as the remaining
` − (α − 33) bytes of m. Generate a uniform random 32-byte string k, and define x0

as the α-byte string (m0, k, 2).

• Generate a uniform random 32-byte string r.

• Compute the α-byte string x1 = x0 ⊕Hα(r, 0). Here ⊕ means xor; r, 0 means r followed
by byte 0; and Hα means α bytes of output of SHAKE256.

• Compute the 32-byte string x2 = H32(x0, r, 1). Here H32 means 32 bytes of output of
SHAKE256.

• Compute the 32-byte string x3 = r ⊕ H32(x1, x2, 2).

• Compute the (A − 1)-byte string x = (x1, x2, x3).

• Compute the integer x represented by x in little-endian form.

• Compute C = x3 mod N .

• Encode C in little-endian form as a K(B/8)-byte string C.

• If ` < α: The ciphertext is C.

• If ` ≥ α: The ciphertext is C followed by the AES-256-GCM ciphertext for m1 under
key k with nonce 0.

8

Alice decrypts by reversing the above steps:

• Define C 0 as the first K(B/8) bytes of ciphertext. Fail if the ciphertext has fewer than
K(B/8) bytes.

• Define C 0 as the corresponding integer. Fail if C 0 ≥ N .

• Compute the cube root x0 of C 0 modulo N . Fail if x0 ≥ 256A−1 .

• Encode x0 in little-endian form as an (A − 1)-byte string x.

• Parse x as (x1, x2, x
00 0

3) where x1, x2, x
00 0

3 have α, 32, 32 bytes respectively.

• Define r0 as the 32-byte string x0 3 ⊕ H32(x1, x2, 2).
00

• Define x0 0 as the α-byte string x
0
1 ⊕ Hα(r

0 , 0).

• Compute the 32-byte string H32(x0, r
0 0 , 1). Fail if this string is not x0 2.

• If the ciphertext has exactly K(B/8) bytes: Parse x0 0 as a plaintext m
0 followed by

byte 1 and some number of copies of byte 0. Fail if this parsing fails.

• If the ciphertext has more than K(B/8) bytes: Parse x0 0 as (m
0
0, k

0 , 2) where k0 has 32
bytes and m0

0 has α − 33 bytes. Fail if this parsing fails. Use AES-256-GCM to verify
and decrypt the remaining bytes of ciphertext, obtaining m0

1; fail if this fails. Define a
plaintext m0 as (m0,m

0 0).1

Note that, beyond the usual importance of constant-time computations for security, it is
particularly important to hide the differences between an x0 ≥ 2A−2 failure and an x0 2 6=
H32(1, r

0
0) failure.
0, x

3 List of parameter sets (part of 2.B.1)

3.1 Parameter set encrypt/pqrsa15

PKE with K = 512 and B = 512.

3.2 Parameter set encrypt/pqrsa20

PKE with K = 16384 and B = 512.

3.3 Parameter set encrypt/pqrsa25

PKE with K = 262144 and B = 1024.

9

3.4 Parameter set encrypt/pqrsa30

PKE with K = 8388608 and B = 1024.

3.5 Parameter set kem/pqrsa15

KEM with K = 512 and B = 512.

3.6 Parameter set kem/pqrsa20

KEM with K = 16384 and B = 512.

3.7 Parameter set kem/pqrsa25

KEM with K = 262144 and B = 1024.

3.8 Parameter set kem/pqrsa30

KEM with K = 8388608 and B = 1024.

3.9 Parameter set sign/pqrsa15

Signatures with K = 512 and B = 512.

3.10 Parameter set sign/pqrsa20

Signatures with K = 16384 and B = 512.

3.11 Parameter set sign/pqrsa25

Signatures with K = 262144 and B = 1024.

3.12 Parameter set sign/pqrsa30

Signatures with K = 8388608 and B = 1024.

10

4 Design rationale (part of 2.B.1)

Shoup’s “Simple RSA”, also known as “RSA-KEM”, takes r as a uniform random integer
modulo N . We instead take uniform random r from a power-of-2 range, simplifying the
generation process, and more specifically a power-of-256 range, further simplifying the gen-
eration process. The size of the range is at least N/256, so an algorithm to compute our r
given rE mod N has probability at least 1/256 of computing Shoup’s r given rE mod N .

We reuse the same range for x in public-key encryption, and for Y in signatures.

In the original RSA paper [9], the encryption/verification exponent E was a random number
with as many bits as N . Rabin in [8] suggested instead using a small constant E, and said
that E = 2 is “several hundred times faster.” A complication of E = 2 is that each square
has 2K different square roots mod N ; E = 3 is about twice as slow for encryption but avoids
this complication. The subsequent literature has focused mainly on E = 3 and E = 65537.

There are attacks that compute various types of structured Eth roots more quickly than
factoring. Some of these attacks are specific to very small E, and historically this has led
to some preference for E = 65537 over E = 3. We instead treat the attacks as a reason to
never take Eth powers of structured inputs. There is then no known problem taking E = 3.

Shoup has also pointed out that the connection between “RSA-OAEP+” and computing
Eth roots is very tight for E = 3, but becomes looser as E grows. See [11]. This leads to
the following conclusions:

• If computing 3rd roots is harder than computing 65537th roots, then breaking RSA-
OAEP+ for E = 3 is harder than breaking RSA-OAEP+ for E = 65537.

• If computing 3rd roots is the same hardness as computing 65537th roots, then breaking
RSA-OAEP+ for E = 3 is at least as hard as breaking RSA-OAEP+ for E = 65537.

• If computing 3rd roots is easier than computing 65537th roots, then breaking RSA-
OAEP+ for E = 3 could still be harder than breaking RSA-OAEP+ for E = 65537.

The public-key encryption system described above is intended to be an example of RSA-
OAEP+, although the details need to be checked carefully.

5 Detailed performance analysis (2.B.2)

5.1 Description of platform

The following measurements were collected on one (otherwise idle) core of a computer named
samba. The CPU on samba is an Intel Xeon E3-1220 v5 (Skylake) running at 3 GHz. Turbo
Boost is disabled. samba has 64GB of RAM and runs Ubuntu 16.04, with gcc 5.4.0.

11

NIST says that the “NIST PQC Reference Platform” is “an Intel x64 running Windows
or Linux and supporting the GCC compiler.” samba is an Intel x64 running Linux and
supporting the GCC compiler. Beware, however, that different Intel CPUs have different
cycle counts.

5.2 Time

The following measurements are for kem. encrypt and sign have essentially the same perfor-
mance as kem. There is a slight slowdown for the extra hashing in encrypt, and a measurable
slowdown for long messages.

Measurements were collected by the program shown in Figure 1, compiled with
gcc -march=native -mtune=native -O3 -fomit-frame-pointer -fwrapv. Various mea-
surements were also checked (with no obvious discrepancies) against results of
./do-part from supercop-20170904, with the compiler list reduced to just
gcc -march=native -mtune=native -O3 -fomit-frame-pointer -fwrapv, with reduced
values of LOOPS and TIMINGS, and with timeouts (killafter) extended.

pqrsa15: About 3.5 billion cycles (3483292516) for key generation; 17 million cycles
(17492210 17410534 17382984 17361047 17358893) for encapsulation; and 122 million cy-
cles (122127482 122462936 122079316 122135561 122018320) for decapsulation.

Compared to the 32768-byte key size, these are around 110000 cycles per byte, 530 cycles
per byte, and 3700 cycles per byte respectively. These figures are useful in understanding
how well pqRSA scales to larger key sizes.

pqrsa20: About 120 billion cycles (119047642299) for key generation; 1.1 billion cycles
(1071561548 1077606577 1076427117 1076293353 1076391885) for encapsulation; and 6.1
billion cycles (6123286512 6116529230 6119549109 6118574953 6118670863) for decapsula-
tion.

Compared to the 1048576-byte key size, these are around 110000 cycles per byte, 1000 cycles
per byte, and 5800 cycles per byte respectively.

pqrsa25: About 18 trillion cycles (18177137014865) for key generation; 46 billion cycles
(46248174238 46222427697 46191747583 46242537978 46191225425) for encapsulation; and
520 billion cycles (519581069107 519569878218 519608774814 519612644254 519558611912)
for decapsulation.

Compared to the 33554432-byte key size, these are around 540000 cycles per byte, 1400
cycles per byte, and 15000 cycles per byte respectively. Note that primes are bigger here,
1024 bits instead of 512 bits.

pqrsa30: About 590 quadrillion cycles (586593568853135) for key generation; 1.8 quadrillion
cycles (1821539719905 1822281625179 1822120731196 1819092856762 1821360421361) for
encapsulation; and 22 quadrillion cycles (22294539298463 22296758019988 22296538833629
22300640944170 22296717126117) for decapsulation.

12

Compared to the 1073741824-byte key size, these are around 550000 cycles per byte, 1700
cycles per byte, and 21000 cycles per byte respectively.

5.3 Space

Sizes are straightforwardly calculated from parameters (and confirmed in various experi-
ments). Specifically, keys are 215 bytes for pqrsa15, 220 bytes for pqrsa20, 225 bytes for
pqrsa25, and 230 bytes for pqrsa30. KEM ciphertexts have the same size as keys. PKE ci-
phertexts have the same size as keys if the transmitted messages are short enough. Signatures
are 32 bytes longer.

5.4 How parameters affect performance

Encryption and signature verification involve a small number of modular multiplications.
Decryption and signature generation are slower, and key generation is even slower, but if B
is chosen sensibly then these slowdowns are by factors logarithmic in the number of bits in
the modulus.

For comparison, Shor’s algorithm involves a quantum modular exponentiation, which is a
large number of modular multiplications. See Section 8. The gap in costs grows with the
number of bits in the modulus. The growth is essentially linear, giving the legitimate user a
rapidly increasing advantage over the attacker as the user’s computer power increases.

5.5 Optimizations

Compared to the KEM, the PKE is more complicated but allows compression of encrypted
messages. If messages are close to the key size, or longer, then almost the entire traffic is
used for message contents.

Similarly, a slightly more complicated scheme for public-key signatures allows pqRSA signed
messages to be compressed. This submission skips this option for simplicity.

Checking primality of many independent uniform random integers is faster than checking
primality of each integer separately. This speedup is not in the reference software that we
are submitting, but it is already implemented in our experimental software.

See [3] for further discussion of various speedup techniques.

13

6 Expected strength (2.B.4) in general

6.1 Security definitions

The KEM and PKE are designed for IND-CCA2 security. The signature system is designed
for EUF-CMA security. See Section 7 for quantitative estimates of the security of specific
parameter sets.

6.2 Rationale

See Section 8 for an analysis of known attacks. This analysis also presents the rationale for
these security estimates.

7 Expected strength (2.B.4) for each parameter set

7.1 Parameter set encrypt/pqrsa15

Scaled-down version provided as a target for cryptanalysis.

7.2 Parameter set encrypt/pqrsa20

Scaled-down version provided as a target for cryptanalysis.

7.3 Parameter set encrypt/pqrsa25

Scaled-down version provided as a target for cryptanalysis.

7.4 Parameter set encrypt/pqrsa30

Category 2, assuming depth limit 264 .

7.5 Parameter set kem/pqrsa15

Scaled-down version provided as a target for cryptanalysis.

14

7.6 Parameter set kem/pqrsa20

Scaled-down version provided as a target for cryptanalysis.

7.7 Parameter set kem/pqrsa25

Scaled-down version provided as a target for cryptanalysis.

7.8 Parameter set kem/pqrsa30

Category 2, assuming depth limit 264 .

7.9 Parameter set sign/pqrsa15

Scaled-down version provided as a target for cryptanalysis.

7.10 Parameter set sign/pqrsa20

Scaled-down version provided as a target for cryptanalysis.

7.11 Parameter set sign/pqrsa25

Scaled-down version provided as a target for cryptanalysis.

7.12 Parameter set sign/pqrsa30

Category 2, assuming depth limit 264 .

8 Analysis of known attacks (2.B.5)

8.1 Factorization

2048-bit RSA keys are widely standardized and deployed. This key size is typically estimated
to provide more than 2100 security against the number-field sieve, and even higher security
against other known non-quantum methods for integer factorization. However, (1) precise

15

estimates vary; (2) it is not clear whether the security level is maintained against multi-
user attacks; and, most importantly, (3) post-quantum cryptography also considers quantum
algorithms. In particular, Shor’s quantum algorithm is believed to pose a serious threat to
2048-bit RSA keys.

pqRSA uses much larger RSA keys, slowing down Shor’s algorithm so as to reach any desired
security level. The number-field sieve scales much more poorly than Shor’s algorithm, so we
focus on the performance of Shor’s algorithm.

Naive analysis. The main bottleneck in Shor’s algorithm is computing an n-bit quantity
ae mod N . Here N is the public key; n is the number of bits in N ; a is an integer, which
can safely be taken to be small; and e is a superposition of 2n-bit integers.

eShor computes a mod N as follows: compute a, a2 mod N , a4 mod N , a8 mod N , etc.;
multiply these consecutively into a superposition of products, conditioned upon the bits
of e. For reversibility, each multiplication is followed by a corresponding multiplication
by 1/a mod N , 1/a2 mod N , 1/a4 mod N , 1/a8 mod N , etc. Overall there are about 8n
multiplications here, half of which are in superposition.

Each step, multiplying two n-bit integers modulo N , becomes increasingly expensive as n
grows. Häner–Roetteler–Svore [7] report approximately 32n2 lg n Toffoli gates (not counting
CNOT gates) for a reversible n-bit modular multiplication, and thus 64n3 lg n Toffoli gates
overall for Shor’s algorithm, using a total of 2n + 2 qubits. For n = 233 this is approximately
2110 Toffoli gates using approximately 234 qubits.

If each Toffoli gate has comparable cost to 236 non-quantum gates then the total cost is
comparable to 2146 non-quantum gates, i.e., the cost of finding a SHA3-256 collision, the
definition of NIST’s “Category 2”.

Higher security: communication costs. The naive analysis above counts only the cost
of computation and not the cost of communication. This is important because the algorithm
is constantly communicating data across large distances.

Communication of a qubit—or merely a bit—costs energy proportional to the distance com-
municated. Concretely, Intel states that at 22nm the energy cost of simply moving 8 bytes
of data is 11.20 pJ “per 5 mm” moved, and that this is “more difficult to scale down” than
computation cost; see [6, page 9]. Replacing wires with a different technology might save a
constant factor but does not eliminate the scaling difficulties: e.g., lasers spread out linearly
over distance. Even with quantum teleportation, there is a cost of the initial setup, namely
pushing EPR pairs from one place to another; the cost per bit transmitted again increases
linearly with the distance.

1/2+o(1)Storing 2n qubits, or merely 2n bits, involves distances at least n on any realistic
two-dimensional architecture. Architectures are two-dimensional because this allows energy
to arrive (and depart) through the third dimension:

16

• Billions of transistors are spread across a two-dimensional chip, with only a few layers
in the third dimension, because otherwise nobody knows how to get the energy in and
out.

• At a larger scale, nodes in a computer cluster are spread across two dimensions, with
only a few layers in the third dimension, because otherwise nobody knows how to get
the energy in and out.

There is a massive literature on real two-dimensional computations, and the costs of ac-
1/2cessing n bits of memory are consistently at least n (times the feature sizes etc., which

are independent of n). The occasional papers on three-dimensional computations (e.g.,
[10]) do not seriously address the energy issues, and we have not found literature report-

1/2ing experiments that can be plausibly interpreted as beating n . Similarly, every serious
quantum-computing proposal is limited to two dimensions.

Higher security: limits on latency. The naive analysis also makes the absurd assump-
tion that attackers can wait for roughly 2100 serial qubit operations.

NIST sensibly suggests that submissions consider attacks “restricted to a fixed running time,
or circuit depth.” NIST observes that 240 sequential qubit operations is “the approximate
number of gates that presently envisioned quantum computing architectures are expected
to serially perform in a year”, and that 264 sequential bit operations is “the approximate
number of gates that current classical computing architectures can perform serially in a
decade”.

Integer multiplication might seem trivial to parallelize with enough hardware: all n bits of
one input can be multiplied by all n bits of the other input in parallel; adding the resulting
n2 bits also allows massive parallelism; final carries can also be done in parallel, or skipped
with redundant representations of integers. However, this parallelism severely increases
communication costs. Specifically, handling n2 bits in parallel means that distances increase

1/2 1/2to n, losing another factor n in communication costs beyond the factor n discussed
above.

Furthermore, the higher-level loop in Shor’s algorithm is quite difficult to parallelize. One
can use many more qubits to parallelize the multiplications by a, a2 mod N , a4 mod N ,
a8 mod N , etc., but this does nothing to parallelize the initial computation of a, a2 mod N ,
a4 mod N , a8 mod N , etc.

Knowing the factors of N allows parallel exponentiation, as pointed out by von zur Gathen
[13] and much later Zeugmann [14], but the problem facing the attacker is to figure out
those factors in the first place. Adleman and Kompella [1] suggested a parallel modular-
exponentiation algorithm that is essentially a sieving-type discrete-logarithm algorithm run
in parallel, but this involves an intolerable amount of computation once n is moderately large.
Bernstein and Sorenson [4] slightly reduced the latency of modular exponentiation using a
polynomial number of processors in a simplified model of computation, but this incurs huge
costs in memory consumption (and in the total number of operations), presumably increasing

17

communication latency in realistic models of computation.

For comparison, NIST appears to estimate that checking a guess for an AES-128 key takes
about 215 bit operations. These operations allow considerable parallelization, so a key-
search core carrying out a sequence of 248 key guesses will fit comfortably within the 264

latency limit. A cluster of 280 such cores will find the AES-128 key within the same latency
limit. Distributing the target to 280 cores in the first place is a nontrivial communication
problem but will still fit within the same latency limit. Similar comments apply to NIST’s
“Category 2”, finding a SHA-256 collision: parallel collision search [12] involves negligible
communication costs even with massive parallelization.

The same reasonable latency limit does not appear to allow a search for an AES-256 key
with noticeable success probability: for high success probability one needs more than 2200

cores, but there is not enough time to communicate the target to so many cores. Does
NIST’s “Category 5” implicitly assume a higher latency limit? Or does it implicitly rely
upon unrealistic assumptions about communication costs? The lack of clear definitions
of NIST’s model of computation makes it difficult to evaluate whether pqRSA fits
Categories 3–5 with gigabyte keys. The security estimates above have thus been limited to
Category 2.

Lower security: improved algorithms. Attackers will take every possible opportunity
to save logarithmic factors and constant factors: for example, there are various techniques to
use somewhat shorter exponents in Shor’s algorithm. More importantly, the fastest known
n-bit multiplication methods take only n(log n)1+o(1) bit operations.

On the other hand, all integer-multiplication methods on realistic architectures are con-
strained by the Brent–Kung area-time theorem [5], which states that a chip containing A√
parallel cores cannot compute n-bit integer multiplication in time below Θ(n/ A). Asymp-
totically, all known factorization algorithms cost energy at least n2.5+o(1) and have latency

1.5+o(1)at least n .

Concretely, can an attacker break a gigabyte key within a reasonable latency limit (say a
year), while at the same time having the energy costs of non-quantum computation, non-
quantum communication, quantum computation, and quantum communication all below the
energy cost of finding collisions in SHA3-256? The literature does not demonstrate this; even
if it is possible, it is not a risk for the foreseeable future; and users can use larger keys to

243eliminate the risk. We have successfully generated a 1-terabyte pqRSA key (n = with
K = and B = 212), demonstrating feasibility of pqRSA for parameters that leave a
substantial security margin.

8.2 Factorization when factors are small

There are various factorization algorithms, such as trial division and the elliptic-curve method
(ECM), that are faster than the number-field sieve at finding small factors. These methods
are even faster than Shor’s method when factors are sufficiently small.

18

231

√
2+o(1)ECM finds a prime divisor p of N using L multiplications modulo N , where L = √ √

exp(log p log log p). Optimizations summarized in [2, Table 10.1] indicate that the 2+o(1)√ √
is as low as 0.9 2 for p around 50 bits, but not noticeably lower; as p increases, the 2+o(1)√ √ √

2 ≈ 2125is forced to converge to 2. If p ≈ 2512 then L0.9 2 ≈ 284; if p ≈ 21024 then L0.9 .

These multiplications are divided into L1/
√
2+o(1) scalar multiplications. Each scalar multi-

plication is a series of L1/
√
2+o(1) multiplications modulo N , similar to the modular exponen-

tiation inside Shor’s algorithm. One can adjust ECM parameters to reduce latency, but this
increases the total number of operations: if each scalar multiplication is limited to Lc+o(1)

multiplications modulo N then the attacker needs L1/2c+o(1) scalar multiplications. See [2,
Figure 10.1] for a visualization of this effect.

A series of 234 multiplications modulo a 233-bit public key N is challenging to fit within
acceptable latency limits; see the analysis of Shor’s algorithm in Section 8.1. If each scalar
multiplication in ECM is limited to 234 multiplications then the number of parallel scalar
multiplications must be more, presumably much more, than

• 250, involving more than 283 bits, for p ≈ 2512; and

• 291, involving more than 2124 bits, for p ≈ 21024 .

Communicating the target to all of these parallel machines involves further latency problems,
as in Section 8.1.

It seems likely that the total number of operations would already reach Category 2 for
p ≈ 2512 . We leave a security margin here, without much cost in performance, by instead
taking p ≈ 21024 . The total number of operations is then beyond Category 2, and it is not
clear that it is physically possible to achieve the required parallelism within the latency limit.

If latency were not an issue then Grover’s method would be applicable for sufficiently large
inputs: “GEECM” in [3] carries out a series of just L1/4c+o(1) scalar multiplications, each
being a series of Lc+o(1) multiplications modulo N . However, as NIST has commented, it is
“quite likely” that Grover’s method “will provide no advantage to an adversary wishing to
perform a cryptanalytic attack that can be completed in a matter of years, or even decades.”
Furthermore, since the underlying function inside ECM is already at the limit of latency,
the only way to apply Grover’s method is to further reduce c, further increasing the total
number of scalar multiplications.

It is important to study whether there are better quantum algorithms to find small factors,
but the current situation is that p ≈ 21024 has a comfortable security margin beyond all
known algorithms.

8.3 Attacks without factorization

The fastest algorithm known to compute the cube root of a “random-looking” integer modulo
N , given the integer and N , is to factor N into primes.

19

There are much faster algorithms when the root is created with some structure, but we avoid
such structure. We clear the top byte of the root, but, as noted above, this cannot improve
the success probability of any root-finding algorithm by a factor larger than 256.

An attack against the KEM that works for all functions H can be converted into a root-
finding algorithm with similar speed and similar success probability. Of course, this does
not eliminate the possibility of an attack that works better for a particular choice of H.

Similar comments apply to the signature system. Similar comments should apply to the
PKE system, which is based on Shoup’s “OAEP+”, although it is difficult to find a full
proof in the literature. All of these conversions should be checked carefully.

9 Advantages and limitations (2.B.6)

pqRSA is, as one of our PQCrypto 2017 referees put it, “not cheap”. The cost of pqRSA
is particularly noticeable in scenarios requiring forward secrecy. However, pqRSA has many
compensating advantages in simplicity, flexibility, and familiarity.

Unlike most post-quantum proposals, pqRSA provides encryption and signatures in a single
cryptographic primitive. pqRSA also provides more advanced cryptographic functions such
as blind signatures.

pqRSA provides much higher pre-quantum security levels than most post-quantum pro-
posals. pqRSA also provides much higher pre-quantum confidence than most post-quantum
proposals. Any fast algorithm to completely factor a pqRSA key can be converted into a fast
algorithm to factor traditional RSA keys: for example, the attacker takes a 2048-bit product
of two 1024-bit primes, multiplies by many more 1024-bit primes to obtain a pqrsa30 key,
and factors the result.

Finally, pqRSA benefits from the community’s extensive experience with RSA, allowing
uncommon levels of reuse of existing software and standards.

References

[1] Leonard M. Adleman and Kireeti Kompella. Using smoothness to achieve parallelism
(abstract). In Janos Simon, editor, Proceedings of the 20th Annual ACM Symposium
on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 528–538. ACM,
1988.

[2] Daniel J. Bernstein, Peter Birkner, Tanja Lange, and Christiane Peters. ECM using
Edwards curves. Mathematics of Computation, 82:1139–1179, 2013.

[3] Daniel J. Bernstein, Nadia Heninger, Paul Lou, and Luke Valenta. Post-quantum RSA.
In Tanja Lange and Tsuyoshi Takagi, editors, Post-quantum cryptography—8th inter-

20

national workshop, PQCrypto 2017, Utrecht, the Netherlands, June 26–28, 2017, pro-
ceedings, volume 10346 of Lecture Notes in Computer Science, pages 311–329, 2017.

[4] Daniel J. Bernstein and Jonathan P. Sorenson. Modular exponentiation via the explicit
Chinese remainder theorem. Math. Comput., 76(257):443–454, 2007.

[5] Richard P. Brent and H. T. Kung. The area-time complexity of binary multiplication.
J. ACM, 28(3):521–534, 1981.

[6] Dave Dunning. Fabrics—why we love them and why we hate them (talk
slides), 2015. http://www.openfabrics.org/images/eventpresos/workshops2015/
DevWorkshop/Tuesday/tuesday_10.pdf.

[7] Thomas Häner, Martin Roetteler, and Krysta M. Svore. Factoring using 2n + 2 qubits
with Toffoli based modular multiplication. Quantum Information and Computation, 17,
2017. https://arxiv.org/abs/1611.07995.

[8] Michael O. Rabin. Digitalized signatures and public-key functions as intractable as fac-
torization. Technical Report MIT/LCS/TR-212, Massachusetts Institute of Technology,
January 1979.

[9] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[10] Arnold L. Rosenberg. Three-dimensional VLSI: A case study. J. ACM, 30(3):397–416,
1983.

[11] Victor Shoup. OAEP reconsidered. J. Cryptology, 15(4):223–249, 2002. https://
eprint.iacr.org/2000/060.

[12] Paul C. van Oorschot and Michael J. Wiener. Parallel collision search with cryptanalytic
applications. J. Cryptology, 12(1):1–28, 1999.

[13] Joachim von zur Gathen. Computing powers in parallel. SIAM J. Comput., 16(5):930–
945, 1987.

[14] Thomas Zeugmann. Highly parallel computations modulo a number having only small
prime factors. Inf. Comput., 96(1):95–114, 1992.

A Statements

These statements “must be mailed to Dustin Moody, Information Technology Laboratory,
Attention: Post-Quantum Cryptographic Algorithm Submissions, 100 Bureau Drive – Stop
8930, National Institute of Standards and Technology, Gaithersburg, MD 20899-8930, or can
be given to NIST at the first PQC Standardization Conference (see Section 5.C).”

21

http://www.openfabrics.org/images/eventpresos/workshops2015/DevWorkshop/Tuesday/tuesday_10.pdf
http://www.openfabrics.org/images/eventpresos/workshops2015/DevWorkshop/Tuesday/tuesday_10.pdf
https://arxiv.org/abs/1611.07995
https://eprint.iacr.org/2000/060
https://eprint.iacr.org/2000/060

First blank in submitter statement: full name. Second blank: full postal address. Third,
fourth, and fifth blanks: name of cryptosystem. Sixth and seventh blanks: describe and
enumerate or state “none” if applicable.

First blank in patent statement: full name. Second blank: full postal address. Third blank:
enumerate. Fourth blank: name of cryptosystem.

First blank in implementor statement: full name. Second blank: full postal address. Third
blank: full name of the owner.

22

A.1 Statement by Each Submitter

I, , of , do
hereby declare that the cryptosystem, reference implementation, or optimized implementa-
tions that I have submitted, known as , is my own original
work, or if submitted jointly with others, is the original work of the joint submitters. I
further declare that (check one):

• I do not hold and do not intend to hold any patent or patent application with a claim
which may cover the cryptosystem, reference implementation, or optimized implemen-
tations that I have submitted, known as OR (check one
or both of the following):

– to the best of my knowledge, the practice of the cryptosystem, reference im-
plementation, or optimized implementations that I have submitted, known as

may be covered by the following U.S. and/or foreign patents:

– I do hereby declare that, to the best of my knowledge, the following pend-
ing U.S. and/or foreign patent applications may cover the practice of my sub-
mitted cryptosystem, reference implementation or optimized implementations:

I do hereby acknowledge and agree that my submitted cryptosystem will be provided to the
public for review and will be evaluated by NIST, and that it might not be selected for standard-
ization by NIST. I further acknowledge that I will not receive financial or other compensation
from the U.S. Government for my submission. I certify that, to the best of my knowledge,
I have fully disclosed all patents and patent applications which may cover my cryptosystem,
reference implementation or optimized implementations. I also acknowledge and agree that
the U.S. Government may, during the public review and the evaluation process, and, if my
submitted cryptosystem is selected for standardization, during the lifetime of the standard,
modify my submitted cryptosystem’s specifications (e.g., to protect against a newly discovered
vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish
the draft standards for public comment.

I do hereby agree to provide the statements required by Sections 2.D.2 and 2.D.3, below, for
any patent or patent application identified to cover the practice of my cryptosystem, reference
implementation or optimized implementations and the right to use such implementations for
the purposes of the public review and evaluation process.

I acknowledge that, during the post-quantum algorithm evaluation process, NIST may remove
my cryptosystem from consideration for standardization. If my cryptosystem (or the derived
cryptosystem) is removed from consideration for standardization or withdrawn from consider-
ation by all submitter(s) and owner(s), I understand that rights granted and assurances made
under Sections 2.D.1, 2.D.2 and 2.D.3, including use rights of the reference and optimized
implementations, may be withdrawn by the submitter(s) and owner(s), as appropriate.

23

Signed:

Title:

Date:

Place:

24

A.2 Statement by Patent (and Patent Application) Owner(s)

If there are any patents (or patent applications) identified by the submitter, including those
held by the submitter, the following statement must be signed by each and every owner, or
each owner’s authorized representative, of each patent and patent application identified.

I, , of ,
am the owner or authorized representative of the owner (print
full name, if different than the signer) of the following patent(s)
and/or patent application(s):

and do hereby commit and agree to grant to any interested party on a worldwide basis, if
the cryptosystem known as is selected for standardization, in consid-
eration of its evaluation and selection by NIST, a non-exclusive license for the purpose of
implementing the standard (check one):

• without compensation and under reasonable terms and conditions that are demonstrably
free of any unfair discrimination, OR

• under reasonable terms and conditions that are demonstrably free of any unfair dis-
crimination.

I further do hereby commit and agree to license such party on the same basis with respect
to any other patent application or patent hereafter granted to me, or owned or controlled by
me, that is or may be necessary for the purpose of implementing the standard.

I further do hereby commit and agree that I will include, in any documents transferring
ownership of each patent and patent application, provisions to ensure that the commitments
and assurances made by me are binding on the transferee and any future transferee.

I further do hereby commit and agree that these commitments and assurances are intended by
me to be binding on successors-in-interest of each patent and patent application, regardless
of whether such provisions are included in the relevant transfer documents.

I further do hereby grant to the U.S. Government, during the public review and the evaluation
process, and during the lifetime of the standard, a nonexclusive, nontransferrable, irrevocable,
paid-up worldwide license solely for the purpose of modifying my submitted cryptosystem’s
specifications (e.g., to protect against a newly discovered vulnerability) for incorporation into
the standard.

Signed:

Title:

Date:

Place:

25

A.3 Statement by Reference/Optimized Implementations’
Owner(s)

The following must also be included:

I, , , am the
owner or authorized representative of the owner of the sub-
mitted reference implementation and optimized implementations and hereby grant the U.S.
Government and any interested party the right to reproduce, prepare derivative works based
upon, distribute copies of, and display such implementations for the purposes of the post-
quantum algorithm public review and evaluation process, and implementation if the corre-
sponding cryptosystem is selected for standardization and as a standard, notwithstanding that
the implementations may be copyrighted or copyrightable.

Signed:

Title:

Date:

Place:

26

#include <stdio.h>
#include <stdlib.h>
#include "cpucycles.h"
#include "crypto_kem.h"

#define TIMINGS 5

long long t[TIMINGS + 1];

void printtimings(const char *s)
{

long long i;
long long j;
long long above;
long long below;

printf("%lld %s",(long long) crypto_kem_PUBLICKEYBYTES,s);
for (i = 0;i < TIMINGS;++i) t[i] = t[i + 1] - t[i];
for (j = 0;j < TIMINGS;++j) {

above = below = 0;
for (i = 0;i < TIMINGS;++i) if (t[i] < t[j]) ++below;
for (i = 0;i < TIMINGS;++i) if (t[i] > t[j]) ++above;
if (below <= TIMINGS/2 && above <= TIMINGS/2) {

printf(" %lld (%lf)",t[j],t[j] / (1.0 * crypto_kem_PUBLICKEYBYTES));
break;

}
}

for (i = 0;i < TIMINGS;++i) printf(" %lld",t[i]);
printf("\n");

}

Figure 1: A benchmarking program with limited double-checking. See Figure 2 for second
half.

27

int main()
{

unsigned char *sk = malloc(crypto_kem_SECRETKEYBYTES);
unsigned char *pk = malloc(crypto_kem_PUBLICKEYBYTES);
unsigned char *c = malloc(crypto_kem_CIPHERTEXTBYTES);
unsigned char *k = malloc(crypto_kem_BYTES);
long long i;

if (!sk) abort();
if (!pk) abort();
if (!c) abort();
if (!k) abort();

t[0] = cpucycles();
crypto_kem_keypair(pk,sk);
t[1] = cpucycles();
t[1] -= t[0];
printf("%lld keypair %lld (%lf)\n",(long long) crypto_kem_PUBLICKEYBYTES

,t[1],t[1] / (1.0 * crypto_kem_PUBLICKEYBYTES));

for (i = 0;i < TIMINGS + 1;++i) {
t[i] = cpucycles();
crypto_kem_enc(c,k,pk);

}
printtimings("enc");

for (i = 0;i < TIMINGS + 1;++i) {
t[i] = cpucycles();
crypto_kem_dec(k,c,sk);

}
printtimings("dec");

return 0;
}

Figure 2: A benchmarking program with limited double-checking. See Figure 1 for first half.

28

	Introduction
	General algorithm specification (part of 2.B.1)
	Parameter space
	Secret key and public key
	Signatures
	KEM
	Public-key encryption

	List of parameter sets (part of 2.B.1)
	Parameter set encrypt/pqrsa15
	Parameter set encrypt/pqrsa20
	Parameter set encrypt/pqrsa25
	Parameter set encrypt/pqrsa30
	Parameter set kem/pqrsa15
	Parameter set kem/pqrsa20
	Parameter set kem/pqrsa25
	Parameter set kem/pqrsa30
	Parameter set sign/pqrsa15
	Parameter set sign/pqrsa20
	Parameter set sign/pqrsa25
	Parameter set sign/pqrsa30

	Design rationale (part of 2.B.1)
	Detailed performance analysis (2.B.2)
	Description of platform
	Time
	Space
	How parameters affect performance
	Optimizations

	Expected strength (2.B.4) in general
	Security definitions
	Rationale

	Expected strength (2.B.4) for each parameter set
	Parameter set encrypt/pqrsa15
	Parameter set encrypt/pqrsa20
	Parameter set encrypt/pqrsa25
	Parameter set encrypt/pqrsa30
	Parameter set kem/pqrsa15
	Parameter set kem/pqrsa20
	Parameter set kem/pqrsa25
	Parameter set kem/pqrsa30
	Parameter set sign/pqrsa15
	Parameter set sign/pqrsa20
	Parameter set sign/pqrsa25
	Parameter set sign/pqrsa30

	Analysis of known attacks (2.B.5)
	Factorization
	Factorization when factors are small
	Attacks without factorization

	Advantages and limitations (2.B.6)
	References
	Statements
	Statement by Each Submitter
	Statement by Patent (and Patent Application) Owner(s)
	Statement by Reference/Optimized Implementations' Owner(s)

