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This document is the complete documentation of the proposal RANKSIGN, a quan-
tum resistant signature based on rank metric. It is organized as suggested in NIST’s
call for proposal from December 2016: Backgrounds on Coding Theory and rank metric
are provided in Sec. 1 together with the description of our scheme, then a performance
analysis is conducted in Sec. 2. Known Answers Tests values (aka. KATs) are provided
Sec. 3, then Security and Known Attacks are discussed in Sec. 4 and 5 respectively.
Finally, the advantages and limitations of the proposed protocol are discussed in Sec. 6.
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Prologue

The RankSign cryptosystem [9] was introduced in 2014. This signature scheme is based
on code in rank metric. The general idea is to use an LRPC code (which is an equivalent
to the MDPC in Hamming metric or to NTRU in the euclidean metric) as a trapdoor to
compute an error associated to a message. The main issue with this cryptosystem was that
the probability to distinguish between a signature and a random vector was in 2/q (for ¢
the cardinal of the basefield F,) which obliged to consider very large g.

In this proposal, we introduce a new variation on RankSign which consists in adding a
small random error in the signature, so it permits to decrease the capacity for an attacker
to distinguish between the distribution of the signatures and the uniform distribution, in
5 or L.

Although the signature scheme may seem complex due to the inherent complexity of
rank metric, the underneath ideas behind the protocol are very simple and quite similar to

ideas developed in lattice based signature scheme GPV [11].

1 Specifications

In the following document, g denotes a power of a prime p. The finite field with ¢ elements
is denoted by I, and more generally for any positive integer m the finite field with ¢™
elements is denoted by Fyn. We will frequently view F,» as an m-dimensional vector space
over F,.

We use bold lowercase and capital letters to denote vectors and matrices respectively.
We will view vectors here either as column or row vectors. It will be clear from the context
whether it is a column or a row vector. For two matrices A, B of compatible dimensions,

A
we let (A|B) and () respectively denote the horizontal and vertical concatenations of

B
A and B.
If S is a finite set, x & S denotes that x is chosen uniformly at random among S.

1.1 Presentation of rank metric codes
1.1.1 General definitions

Definition 1.1 (Rank metric over Fy..). Let @ = (v1,...,2,) € Fpu and (B4, ..., Bm) € Fin
a basis of Fgm viewed as an m-dimensional vector space over Fy. FEach coordinate x; is
associated to a vector of IFZ"‘ in this basis: x; = Z:L m;Bi. The m X n matriz associated
to x is given by M (x) = (mij)1<i<m.

1<j<n

The rank weight ||x|| of  is defined as

|z| % Rank M (z).



The associated distance d(x,y) between elements & and y in Fi. is defined by d(x,y) =
lz —yl.

Definition 1.2 (F,m-linear code). An Fm-linear code C of dimension k and length n is a
subspace of dimension k of Fy.. embedded with the rank metric. It is denoted [n, kgm.
C can be represented by two equivalent ways:

e by a generator matric G € IF’;TE”. Each rows of G is an element of a basis of C,
C ={zG,x €F,.}

(n—k)xn
qm

e by a parity-check matric H € F . Fach rows of H determines a parity-check

equation verified by the elements of C:

C={xcF, :Hz' =0}

m
q

We say that G (respectively H ) is under systematic form iff it is of the form (I;|A)
(respectively (I,,—x|B)).

Definition 1.3 (Support of a word). Let * = (71,...,2,) € Fpn. The support E of =,
denoted Supp(x), is the F -subspace of Fm generated by the coordinates of x:

E=(x1,...,1,)F,

and we have dim E = ||z||.

The number of supports of dimension w of Fym is denoted by the Gaussian coefficient

w—1 m i
m| qg —dq
BRI

q =0

1.2 Difficult problems in rank metric

In this section, we introduce the difficult problems on which our cryptosystem is based. to

Problem 1.4 (Rank Syndrome Decoding). Given a full-rank matric H € IF((J?’{IC)X”, a
syndrome o and a weight w, it is hard to sample a vector © € Fy. of weight lower than w
such that Hx" = o

The RSD problem has recently been proven hard in [10] on probabilistic reduction.
The complexity of the known attacks against these problems are described in Section 5.



1.3 Bounds in rank metric

We recall here the definition of the rank Gilbert-Varshamov bound and the rank Singleton
bound we need to define our algorithm.

Definition 1.5 (Rank Gilbert-Varshamov (RGV) bound). Let C be an [n,k|ym. The rank
Gilbert-Varshamov bound RGV (n, k,m,q) for C is the smallest integer r such that the vol-
ume V(n,m,q,r) of a ball of radius v is larger than the number ¢ ™ of syndromes of
C.

By definition, V(n,m,q,r) = Y_;_,S(n,m,q,i) where S(n,m,q,i) is the cardinal of a
sphere of radius i of Fyn, which is equal to the number of matrices m x n of rank i with

coefficients in IFy.
i—1 ;
S(nm,q.1) = H —¢)(q"—¢)
qa - q o qj

Jj=0

RGV (n.k :
In the case m = n, we have w ~ 1— \/g and in the general case, we have

m+n—+/(m—n)2+4km
5 .

RGV (n,k,m,q) ~

Definition 1.6 (Rank Singleton bound). The rank Singleton dging(n, k, m,q) bound is the
smallest integer r such that the RSD problem 1./ admits a solution for all support E of x
of dimension r with strong probability.

The parity-check equations Hx' = oT gives us (n — k)m equations over F,. We can

express each coordinates of x in a basis of E to obtain nr unknowns over IF,. This system
(n—k)m

admits a solution with strong probability if nr > (n — k)m so dging(n, k,m,q) = -

In the case m > n, we can consider the subspace generated by the rows of the matrixz as-
sociated to x (cf definition 1.1) to obtain a system of mr unknowns and (n—k)m equations,
hence dging(n, k,m,q) =n —k

In the general case, we always have:

dsing(n, k,m, q) = [(”_—k)mw

max(m,n)
1.4 The Low Rank Parity Check codes
1.4.1 Definition

The LRPC codes have been introduced in |7]. They are good candidates for the cryptosys-
tem of McEliece because the have a weak algebraic structure.

Definition 1.7 (LRPC codes). Let H = (hij)i<i<n—k € IF Mg full-rank matriz such

1<g<n

that its coefficients generate an Fy-subspace F' of small dimension d:

F = (h)r,



Let C be the code with parity-check matriz H. By definition, C is an [n, k|;» LRPC code of
weight d.
Such a matrix H is called homogeneous matrix of weight d and support F.

Now, we define a larger family of code, called the augmented LRPC codes [9]. We will
use these codes to hide the structure of an LRPC code in our signature scheme.

(n

Definition 1.8 (Augmented LRPC codes). Let H be an ]qu*k)m homogeneous matriz of

full-rank and of weight d and R € IF,(;{M” be a random matriz. Let P € GL,_(Fm)
and Q € GL,+(F,) be two invertible matrices (remark that the coefficients of Q belong
to the base field). Let H = P(R|H)Q be the parity-check matriz of a code C of type
[n+t,k+t];m. By definition, such a code is an augmented LRPC code. If t =0, C is an
LRPC code.

Problem 1.9 (Augmented LRPC codes indistinguishability). Given an augmented LRPC
code of type [n +t,k + t]gm, it is hard to distinguish it from a random code with the same
parameters.

The hardness of this problem is studied in [9]. We will deal with the attacks in section
5.2.

1.4.2 Generalized Erasure Decoding algorithm

In this section, we describe the generalized erasure decoding algorithm we use in our signa-
ture scheme. This algorithm is an adaptation of the decoding algorithm for LRPC codes
[7]. A more detailed desciption is given in the article [9].

Let us start with some definitions.

Definition 1.10 (Generalized erasure). Let e € Fy.. be an error of weight v and E =
Supp(e). We call generalized erasure of dimension t of e a subspace T C E of dimension
t.

Definition 1.11. Let C an [n,k|;m» LRPC code of weight d and let H be a homogeneous
parity-check matriz of C of support F. Let Fy and F» two elements of a basis of F'. We say
that a syndrome s € ]FZTTL’€ is T'-decodable if there exists a subspace E of Fym of dimension
r such that:

1. dim(EF) = dim Edim F.
2. dim(F, Y (EF)N F, Y {(EF) = dim E.

3. Supp(s) C (EF) and Supp(s) + (FT) = (EF).



Algorithm 1: Generalized erasure decoding algorithm for LRPC codes
Input:

e a homogeneous matrix H € ]F((ﬁfk)xn of weight d and support F' = (F},... Fy) which
defines an [n, k] LRPC code C.

e asubspace T' = (1, ...,T;) of Fym of dimension d.
e a T-decodable syndrome s € Fym.

Output: e € F}, of weight r and support E such that He” = s" and T C E.
1 Compute a basis B = (ETD%E;% of (FT).
2 Compute the subspace S = (13\3 U {8150y Snk})-
3 Compute the support of the error £ = F; 'S N F; 'S then a basis (Ey,... E,) of E.
4 Express each coordinates e; of e in this basis : ¢; = 2521 Nij B
5 Express each coordinates of s in the basis (F;E}) Isisd of (E'F) and solve the system

He™ = s* of nr unknowns (\;;) with (n — k)rd equations.

Since we assume that s is T-decodable, this algorithm is correct. If ever the syndrome
were not T-decodable, one of the step fails and the algorithm would return an error value.
In practice, we will choose the parameters of our scheme such that the proportion of non
T-decodable syndromes is negligible. The theorem 8 of the article [9] shows that if (r —
t)(m —r)+ (n—k)(rd —m) = 0 then the proportion of T-decodable syndromes is superior
to (1 — %)2, so it is easy to have this proportion as close to 1 as we want to.

1.5 RankSign: a signature algorithm based on rank metric

The principle of our signature scheme is to associate a syndrome to a message thank to an
hash function modeled as a ROM, then to output an error of weight below the Singleton
bound corresponding to this syndrome with respect to a public code C. Only the signer
knows the hidden structure of C which allows him to compute the error. The verifier can
check the signature with the public representation of the code. We use the augmented
LRPC codes to sign a message.

Formally, RankSign is composed of three algorithms:

o KeyGen: let H € Féyn_k)xn be a random homogeneous matrix of size (n — k) X n of

support F' of weight d, R & Fflﬁ_k)” and Q & GL,1(F,). Let C be the augmented
LRPC code of type [n +t, k + t];m of parity-check matrix (R|H)Q).

Let H,,, = (I n_k|R')be the parity-check matrix under systematic form of C' and
P c GL,_;(Fym) such that H,, = P(R|H)Q).

lthe probability that C do not possess a parity-check matrix under systematic form is around qi which
is completely negligible.



Let GG be an hash function of range the space of the syndromes [Fy. Fof C.
Define pk = (R',G) and sk = (P, (R|H), Q).

e Sign: the signature of a message M is described below.

Algorithm 2: Signature of a message M

[SLEN VR

[

Input: a message M, sk = (P, (R|H),Q), three integers r, ¢’ and .
Data: an hash function G, H .
Output: a seed and a vector e € IFZT# of weight r such that e H'" = G(M, seed).

Tnitialize the seed: seed < {0, 1}.

Compute s = G(M, seed).
Choose €' € IFZ# of weight ¢ uniformly at random.
T
Compute s’ =s —e'H ;.
Choose t independent elements (e, ..., e;) € Fflm at random and define
T ={(er,...,e).

Compute s” = s'(P")™" — (ey,...,e,)R".

7 Compute the error (e;11,...en4s) of weight ' = r — ¢’ with the generalized erasure

decoding algorithm 1 with as inputs the matrix H, the subspace T" and the
syndrome s”. If s” is not T-decodable, go to step 1.

s Compute e = €' + (e1,...,e,4)(Q7) 7.
9 return (e, seed).

e Check: the verifier checks that

— e"H,,, = G(M, seed).

= el <.

1.6 Parameters

In this section, we give some sets of parameters for a security parameters of 128, 192 and
256 bits. The different parameters are:

e ¢ is the cardinal of the base field F,.

n is the length the LRPC code used in the generalized erasure decoding algorithm 1.

n — k is the codimension of the LRPC. It corresponds to the number of rows of the
public key H .

m is the degree of the extension Fom.
d is the weight of the LRPC code.

t is the number of random colums added to the LRPC code to obtain the public
augmented LRPC.



e t' is the weight of the vector €'.

e 7 is the weight of the signature of a message.

e Singleton is the value of the Singleton bound for the public augmented LRPC code.
e Public key is the cost in bits to represent the public augmented LRPC code.

e Signature is the size in bits of the signature e. Since ||e|| = 7, we can represent
its support by an r x m matrix with coefficients in [F, such that each rows is an
element of a basis of Supp(e). Each coordinate of e is a linear combination of this
basis and can be represented by a vector of Fj". Thus the signature size is equal to
(rm+r(n+1t)) [logyq| = r(m +n+t) [log, q| bits.

The parameters of RankSign have to verify three conditions [9]:
em=(r—t)(d+1)

en—k=dr—t—t)

e n=(n—k)d

In practice, we first choose d then a multiple (n — k) of d. Finally, we fix two parameters
among r, t and t’. ¢ can be chosen independently from the other parameters. The other
parameters are deduced from the three conditions.

The following table shows the parameters we propose:

Name qg |n|n—Fk|m/|d|t|t]| r | Singleton | Security | Public Key | Signature
size (bits) | size (bits)
RankSign I | 2% 20| 10 [21[2|2[1]| 8 10 128 80,640 11,008
RankSign IT | 2% [ 24| 12 |24 ]2 |2[2 |10 12 128 96,768 12,000
RankSign III | 2% | 24 12 2712131110 12 192 155,520 17,280
RankSign IV | 232 | 28 14 3012 13]2]12 14 256 228,480 23,424

Remark 1: In term of classical security hypothesis, we consider an opponent may have
access up to 2% signatures samples. According to theorem 4.1, we need ¢'+* > 2% for the
signatures do not leak information on the key, which implies we have to choose very high
q for our parameters.

Remark 2: Tt is possible to reduce the size of the signature by representing the matrix
of its support under row echelon form: we give the index of the columns used for the pivot
(which costs 7 bytes as long as m < 256) and the "free" coefficients of the echelon matrix.
In practice, since we have a very high ¢, the probability that a square matrix is invertible
is around 1 — % so we gain around r? [log, ¢] — 8r bits in the signature size. We do not
have implemented this improvement in the program we provide, but this feature will be
implemented in a future version. For our parameters we obtain a signature size of:
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RankSign I | 9,024
RankSign IT | 9,680
RankSign IIT | 14,160
RankSign IV | 18,912

Remark 3: The security parameters have been chosen according to the complexity of
the best attack against our scheme. These attacks are described in section 5.

Computational complexity:

e KeyGen: the most costly operation is the inversion of the matrix P €
GL, (Fym) which is O((n—k)*) multiplication in Fym.  Each multiplica-
tion costs O (mlog(m)log(log(m))log(q)log(log(q))), hence a total complexity of
O ((n — k)*mlog(m)log(log(m))log(q) log(log(q))).

e Sign and Check: the most costly operation is the product matrix vector in F,m which is
O ((n+t)?). The total cost is in O ((n + t)*mlog(m)log(log(m))log(q)log(log(q))).

2 Performance Analysis

In this section, we provide concrete timings of our implementations. The benchmarks were
performed on an Intel® Core™i7-4700HQ CPU running @ up to 3.40GHz and the software
was compiled using GCC (version 6.3.0) with the following command : gec -O3 -std=c99
-pedantic -Wall -Wextra.

Notice our implementation is not optimized. There is probably room for improvements
for all operations in the field Fym, especially since ¢ is very large.

2.1 Reference Implementation

Tab. 1 gives timings (in ms) of the reference implementation on our benchmark platform,
and Tab. 2 gives the number of CPU cycles.

Instance Keygen | Encap | Decap
RankSign-I 79.3 7.71 3.03
RankSign-I1 177 13.6 5.56
RankSign-I11 228 18.2 7.40
RankSign-1V 431 28.3 11.8

Table 1: Timings (in ms) of the reference implementation for different instances of

RankSign.
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Instance Keygen | Encap | Decap
RankSign-I 190 18.6 7.30
RankSign-11 432 33.1 13.6
RankSign-III 537 43.1 17.5
RankSign-IV | 1030 67.8 28.2

Table 2: Millions of cycles reference implementation for different instances of RankSign.

2.2 Optimized Implementation

No optimized implementation has been realized. Therefore, the folder ../Opti-
mized Implementation/ is a copy of ../Reference Implementation/.

3 Known Answer Test Values

KATs are provided in the folder ../KATS/Reference Implementation/. As
mentioned in Sec. 2.2, since the reference and optimized implementa-
tions are identical, ../KATS/Optimized Implementation/ is just a copy of
../KATS /Reference Implementation/.

KATs have been generated using the script provided by NIST. They are available under
the folder labeled KATs. Additionally, we provide a complete example with intermediate
values in the KATs folder. This complete example corresponds to a successful run of
Ranksign. By successful, we mean that no decryption error occurred in the Decapsulation
step.

Notice that one can also generate other such detailed instances using the ver-
bose mode of each implementation. For instance, use make ranksignl-verbose in
../Reference Implementation/RankSign-I/, then run ./bin/ranksignl-verbose to get a com-
plete detailed instance with intermediate values.

4 Security

The security analysis is done in two steps. First we recall the process of the security proof
in the original RankSign paper [9]. In the second subsection, we show how to extend the
proof to our modified version.

4.1 Analysis of the original RankSign

We use notation from the RankSign paper [9]. Our purpose is to study the resistance to
leakage of information from signatures. In the original RanSign paper, it was argued that as
long as the number of signatures does not significantly exceed ¢, whatever can be computed
with these signatures can be computed with the same complexity without them, because
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one can produce ¢ simulated signatures that with a reasonable probability (e.g. 1/2) will
be indistinguishable from the genuine signatures.

Let us summarize the main points of the proof. The actual signer produces a couple
(x,vy) where y is the syndrome of a vector  of rank r. This means that y, a random hash,
is randomly chosen among the set of T-decodable vectors of the syndrome space 1.11: this
is achieved by randomly choosing y and discarding it whenever it is not 7-decodable. There
then corresponds to y a unique vector x of Fy,.. The couple (x,y) was called a T-decodable
couple, and in the same way the vector  can by extension also be called T-decodable since
it uniquely determines (x,vy). Now what the simulator does is produce a couple (x,y) by
uniformly choosing & among rank-r vectors, hoping he produces a T-decodable couple. For
x to be T-decodable, three conditions must be satisfied. The first two conditions (i) and
(ii) relate only to the support F of the vector . The third condition requires the syndrome
coordinates to be independent modulo the subspace F'T. Conditional on those conditions
being met, the vector x produced by the simulator is naturally uniformly distributed among
the set of vectors satisfying those conditions, and so is the genuine signature x, so that as
long as the simulator does not choose a non-T-decodable x, the simulated couple (z,y) is
indistinguishable from a genuine couple produced by the signer.

Let € be the set of F,-subspaces or dimension r of Fym and let X be the set of spaces
E of € that do not satisfy the required conditions (i) and (ii). It was shown in appendix C
of the RankSign paper [9] that the proportion of spaces of € that belong to X is bounded
from above by a quantity approximately equal to 2/q.

4.2 Indistinguishability proof of our scheme

We now turn to the modified RankSign scheme. In this scheme the signer simply produces
a vector x of rank r 4+’ rather than of rank r, so that it will be more difficult to distinguish
a genuine signature from a simulated one. In concrete terms, given the hashed value y
belonging to the syndrome space of the message, the signer chooses a random vector v € Fy..,
of weight ¢', then applies the original RankSign decoding algorithm to the vector of the
syndrome space equal to y — o(v) where o denotes the syndrome function. This produces
a vector x € Fy., and the signature associated to y is now declared to be

r=x+v

which clearly has syndrome o(x’) = y and has rank r + ¢’ with overwhelming probability.

The simulator, as before, chooses &’ uniformly at random among vectors of weight r+¢'.
Our purpose is now to evaluate how this differs from the way the genuine signer produces
x'.

We focus on the two ways the support E’ of the vector &’ is chosen. When E’ is chosen
by the signer, £’ belongs to the set & of subspaces of Fym of rank r + t' containing T,
obtained by first selecting a subspace F belonging to the space € of subspaces of rank
r containing T', and that does not contain the forbidden set X. Then E’ is obtained by

choosing a subspace of & containing E. From now on to lighten the analysis on we drop
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the condition “containing 7” in the definition of € and &’ since this merely amounts to
replacing the ambient space F,m by the quotient Fym /T It follows readily from the analysis
of the original RankSign scheme that the subspace FE is chosen with uniform distribution
in €\ X. Then £’ is obtained through a uniform choice of spaces that contain E. This
defines a probability distribution P over &’. In contrast, the simulator simply chooses E’
by applying the uniform probability distribution P, on &’. The situation is best described
through a graph: define the bipartite graph G to have as vertex set the subspaces of € and
&' and by declaring a subspace E of € and a subspace E’ of £ to have their corresponding
vertices in G joined by an edge whenever the inclusion of subspaces £ C E’ holds. The
graph is illustrated on Figure 1.

8/

Figure 1: the inclusion incidence graph G between the set € of subspaces of rank r and the
set & of subspaces of rank r + 1. It defines the probability distribution P of the support E
of the signature vector & by avoiding the forbidden set X.

To recap, P is the probability measure on vertices of &’ obtained by uniformly choosing
a vertex from the complement X of X in € and by uniformly choosing an outgoing edge
from it.

Theorem 4.1. The number of samples necessary to significantly distinguish the distribution
P from the uniform distribution P, is at least ¢*** .

The demonstration of this theorem is given in section 7.

A corollary of this theorem is that an opponent cannot use the knowledge of genuine
signatures to attack the cryptosystem. Indeed, any algorithm which takes as inputs the
public key and N valid signatures can be simulated by an algorithm which takes as inputs
the public key and N random vectors of weight r instead of the N signatures.

14



Corollary 4.2 (Unforgeability of signatures). As long as the number of given signatures
is below ¢**"', under the Augmented LRPC indistinguishability Problem 1.9, forging a
signature is as hard as solving an instance of the RSD Problem 1./ for a random code in
the Random Oracle Model.

The corollary implies we need to choose a large ¢ for our parameters. In practice, we
have ¢ = 2%* or ¢ = 232. Thus, we only consider attacks on our signature scheme which
only use the public key as input.

5 Known Attacks

There are two ways to attack our system, either the opponent can try to forge a signature

by computing a vector of weight r of a given syndrome or he can try to recover the structure

of the augmented LRPC code. To achieve this, he can search for a codeword of weight d+¢

in the dual of the public code C or he can try to directly attack the masking matrix Q.
There exist two types of generic attacks on these problems:

e the combinatorial attacks where the goal is to find the support of the error or of the
codeword.

e the algebraic attacks where the opponent tries to solve an algebraic system by Groeb-
ner basis.

First, we deal with the combinatorial attacks, both in the forgery attacks case and structural
attacks case and in a third subsection we discuss about the algebraic attacks.

5.1 Forgery attacks

The forgery attack consists to find a vector e of weight r such that H,,e’ = s’. Under
the assumption that the indistinguishability of the augmented LRPC code problem is hard,
we can only use the best generic attack against the RSD problem. This attack can be found
in [3].

The general idea is to found a subspace F' which contains the support of e and to express
cach coordinates of e in a basis of F' to obtained some unknowns over [F,. Then we solve a
linear system obtained from the parity-check equations and verified by these unknowns.

Let F be a subspace of F;m of dimension § and (Fy,..., Fs) a basis of F. We will
determine the value of ¢ later. Let E = Supp(e). We assume that F C F.

0
j=1
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This gives us (n + t)d unknowns over F, and we have:

He' =5 (1)
( Hijer +-+ Hippenn = 5
L Hy_pie1 +-+ Hy pntt€nit = Sn—k
( 2521 AM;Hi.F;  +- 4+ M jHinnlE;) = s
- f | : 2)
\ Z§:1 AHo k1 Fj +o 4 Mt jHo kst Fy) = Sk

Let ¢; the i'" canonical projection from Fm on F:

SO’L' . ]Fan % ]Fq
m
i=1
We apply these functions to the n equations of (2) to obtain

He! =s
< Vi e [1..m],
S0 (Ayei(HnE) 44 Mg HinwF))) = oiler)
: : z (3)
S0 Mei(HakaFy) 4+ Msrg @i HominseFy)) = ilca)

Since we assume E C F, this system has at least one solution. We want (n — k)m >

(n + )0 to have more equations than unknowns = ¢ < L%J =m — {%-‘ To
check this assumption, we have to try and solve the system, that’s why the complexity of
this attack is O (M> where p is the probability that £ C F.

p is equal to the number of subspaces of dimension r in a subspace of dimension § divided
by the total number of subspaces of dimension 7 in Fym.

§
— 4 q ~ q—w(m—5)
m
]
q

—‘ we obtain a complexity of O <(n - k)3m3qr((kﬁ)ﬂ>

(k+t)m
n+t
Since r is larger than the RGV bound for this code, there are several solutions to

the RSD problem. We need to divide this complexity by the mean number of solutions,

By taking delta = m — [
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which is equal to the number of words of weight r divided by the number of syndromes, so

S(gmnttr)  (mAntt—r)r—m(n—k)
qm(nfk) ~ q .

Eventually the complexity of the attack is

R P—

5.2 Structural attacks against augmented LRPC codes

Let C be an [n+t, k+t],m augmented LRPC code of parity-check matrix under its systematic
form H,, = P(R|H)Q, where H is an homogeneous matrix of support F' of weight d..
The problem is to find the structure of C with only the knowledge of H ;. There are two
way to attack this problem.

The first one is to search for a word e of weight d+¢ in the dual code C* of generator ma-

trix H ;. This attack is very similar to the attack of the previous section, we suppose that a

fixed subspace F' of dimension r = m — [%—‘ contains the support £ = Supp(e) then we

try and solve the system 3. The complexity of this attack is O <(k + t)3m3q(d+t) [ )

We can improve the complexity of this attack by using an amelioration found in [3].
This amelioration uses the fact that C* is F m-linear, so if e is of weight d + ¢, any multiple
ae,a € Fy. is also of weight d +¢. So we need to compute the probability p’ such that
F C aF, for any a € F}n. By counting the number of different subspace of the form aF,
we obtain

r
r 9" -1 {d t t} 4 q—(d+t)(m—r)+m—1

- qg—1 m
d+t .

Finally the complexity of this attack is

O ((k + 1)Pm3qaro S —m)

Another way is to try and guess the action of the matrix @ on the code generated by
(R|H). This approach has been studied in the original RankSign article [9]. We do not
need to guess the whole matrix @ but only (n — k + [) columns nut only the action of Q
on n — k + [ columns of H coming from the ¢ columns of R. Then we can search for a
codeword of weight d in the code of type [n — k + [,n — k], which will very likely reveal the
support F'if its RGV bound is larger than d. In practice, since we have d very small, we
only need [ = d + 1. The complexity of this attack is at least O (¢'=F+d+1).

All these combinatorial attack can be easily countered by increasing the size of ¢. Since
we already need to take ¢ of the order of 22* or 232 to achieve the unforgeability of the
signature 4.1, all these attacks are irrelevant to define the security parameter of our scheme.
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5.3 Algebraic attacks

The second way to solve the equations of the system (3) is to use the Groebner basis [12].
The advantage of these attacks is that they are independent of the size of ¢. They mainly
depend on the number of unknowns with respect to the number of equations.

Let e be a codeword of C* of weight d + t and of support E. Let Gv be a parity-check
matrix of Ct. Let (B}, ..., Eqy be a basis of E. Then

d+t

Vi € 1n+t,el = Z)\UE]

By projecting the equations of parity over IF, we obtain the following quadratic system

Sy Azywl(GliEj) =0

Zn+t Zd+t ”SO[( o klE) _ 0

for all [ € {1..m}. The unknowns are the \;; and the ¢;(G1;E;), so there are (d+t)(n+t+m)
unknowns for (n;)m equations. It is possible to reduce the number of unknowns by (d + t)?
by considering a basis of E under its systematic form. This system is also bihomogeneous,
which decreases the computation cost of a Groebner basis. To estimate the complexity of
this attack, we have used the results of [1] and we have chosen our parameters according to
these estimations.

6 Advantages and Limitations

Our signature scheme has small parameters and is relatively fast. Since we need to take
a large ¢, all the known combinatorial attacks are inefficient to break our cryptosystem.
Thus the best attacks against it are based on the computation of a Groebner basis. In our
security estimation, we do not take into account the spatial complexity of these algorithms,
moreover, up to our best knowledge, there is currently no quantum speed-up for these
algorithms, that is why we expect our parameters to be rather conservative.

However, our signature algorithm may seem quite complex at first sight, but the under-
neath ideas are simple and relatively similar to the approach in lattice-based signature, like
GPV signature [11]. The parameters have to be chosen carefully in order to respect the
algorithm’s constraints. Furthermore, the study of the use of rank metric in cryptography
are quite new [6] but the difficult problem in rank metric have been deeply studied, so we
are confident that our parameters are resilient.

7 Proof of the theorem 4.1

Proof Method. We will consider every event A C &' and compare P(A) with P,(A): we
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use the fact that to distinguish the Bernoulli variables with parameters p and p—e one needs
at least p/e? samples. To evaluate P(A) we will need an estimate of the number of edges
that go from A to X in the graph G. To obtain this estimate we invoke an auxiliary graph
G, on the vertex set &, for which two vertices are incident if and only if they have a common
neighbour in the graph §. In other words, two subspaces of rank r are connected in G, if
they are included in a common subspace of rank r 4+ 1. The graph G, is sometimes called
a Grassmann graph and is an extensively studied distance-regular graph [5]. In particular
we will call upon the following result:

Lemma 7.1. The ratio A\/A, where A is the degree of the Grassmann graph G, and X is
the second largest eigenvalue of it adjacency matriz is a quantity close to 1/q.

We also recall:

Lemma 7.2 (Alon-Chung [!]). Let G be a graph of reqular degree A and with n vertices.
Let X be the second largest eigenvalue of its adjacency matriz. Let S be a subset of vertices
of G. Then the number of edges of the subgraph induced by S is at most

2
1 (Aﬂﬂw, (1 _ @)) .
2 n n

Sketch of proof of Theorem /.1: Let A be a subset of vertices of &. Disregarding small
multiplicative constants we have

1
[ X] = —[€]
q

and let us write o
Al = —|&].
q

We denote by Ay and Apg the left and right degrees respectively of the (&, &’) bipartite
graph.

The expected average degree from A to X, which corresponds to P(A) being equal to
the uniform probability P,(A) of A, is:

Case 1. Suppose P(A) > P,(A), meaning A receives more than the expected number of
edges from X. Now the total number of edges incident to A is |A|Ag, so the total number
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of edges from X to A can only go from (1 — 1/q)Ag|A| to Ag|A], i.e. is multiplied by at
most (1 —1/¢)" ' =¢q/(¢—1)=1+1/(qg—1). Therefore

P(A) < (1 + q_%) Pu(A) < Pu(A) + ——P,(A).

Hence, to distinguish P from P, with the event A we need

Pu(4) _ (g—1) samples
CLP(A)? ~ Pu(4) P

q—1

Case 2. We now suppose P(A) < P,(A), meaning A receives fewer than the expected
number of edges from X, in other words more than expected from X. This case needs a
more refined analysis.

In the expected case, a fraction a/q of Grassmann edges in X come from A. If the
average degree from A to X is multiplied by /3, then the number of Grassman edges inside
A is multiplied by at least 2. By the Alon-Chung Lemma (Lemma 7.2), since A\/A = 1/q
in the Grassmann graph (Lemma 7.1), we must have

2L <9
q

otherwise the number of edges in the Grassmann subgraph induced by X more than doubles

the expected value, hence
B< X
o

Therefore the average degree from A to X goes from

(1—3) Ar to at least Ap (1—§) = Ap (1— i)
q q aq

which implies that
2 1\ !
PA)>PA) [1— /=) (1-=] .
) = (>( aQ>< Q)

Going over all possible values of o, this is enough to ensure that for all A, at least ¢? samples
are needed to distinguish P from P,. O]

We conclude the analysis with a remark concerning condition (iii). In the original
RankSign scheme, the simulated signature vector @ could, with probability of order 1/q,
produce a syndrome vector y whose coordinates are not necessarily linearly independent
modulo F'T'; while this never happens with the genuine syndrome vector y. This is because
the simulated syndrome coordinates all fall in the prescribed space F'E. In the modified
RankSign variant, the simulated syndrome coordinates fall into a space F'E’ of larger di-
mension, and the probability of the appearance of an undesired linear equation is at most
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1/q3, which is a quantity which does not interfere when we are dealing with ¢ signature
samples.

The second remark concerns what happens to the analysis when we allow the signature
vector & to have rank r+ 2 rather than r+ 1. The key observation is that we will be dealing
with the bipartite graph (&, ") where £” denotes the set of spaces of rank r 4+ 2, and the
Grassmann graph G, will need to be replaced by its second power G2, meaning we put an
edge between two vertices of G2 when they are at distance 2 in G,. Since they eigenvalues
of G2 are essentially the squares of those of G,, we get that the quantity A/A crucial to the
study of P(A) changes from 1/q to 1/¢>. When a similar analysis to that of the proof of
Theorem 4.1 is carried out we obtain that the number of samples needed to distinguish P
from uniform goes from ¢* to ¢3. We omit the details. They will be available in [2].
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reproduce, prepare derivative works based upon, distribute copies of, and display such
implementations for the purposes of the post-quantum algorithm public review and evaluation
process, and implementation if the corresponding cryptosystem is selected for standardization
and as a standard, notwithstanding that the implementations may be copyrighted or
copyrightable.

Signed: Nicolas A&gon
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Title: PhD Student

Date: November 28, 2017
Place: Limoges



I, Philippe Gaborit, of University of Limoges, 123 avenue Albert Thomas, 87060 Limoges Cedex,
FRANCE, am the owner of the submitted reference implementation and optimized
implementations and hereby grant the U.S. Government and any interested party the right to
reproduce, prepare derivative works based upon, distribute copies of, and display such
implementations for the purposes of the post-quantum algorithm public review and evaluation
process, and implementation if the corresponding cryptosystem is selected for standardization
and as a standard, notwithstanding that the implementations may be copyrighted or
copyrightable.

Signed: . Gabori.
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Title: Profess’éJrJ
Date: November 28, 2017
Place: Limoges



I, Adrien Hauteville, University of Limoges, 123 avenue Albert Thomas, 87060 Limoges Cedex,
FRANCE, am the owner of the submitted reference implementation and optimized
implementations and hereby grant the U.S. Government and any interested party the right to
reproduce, prepare derivative works based upon, distribute copies of, and display such
implementations for the purposes of the post-quantum algorithm public review and evaluation
process, and implementation if the corresponding cryptosystem is selected for standardization
and as a standard, notwithstanding that the implementations may be copyrighted or
copyrightable.

Signed: Adrien Hauteville
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Title: Ph.D. Student
Date: November 28, 2017
Place: Limoges



I, Olivier Ruatta, of University of Limoges, 123 avenue Albert Thomas, 87060 Limoges Cedex,
FRANCE, am the owner of the submitted reference implementation and optimized
implementations and hereby grant the U.S. Government and any interested party the right to
reproduce, prepare derivative works based upon, distribute copies of, and display such
implementations for the purposes of the post-quantum algorithm public review and evaluation
process, and implementation if the corresponding cryptosystem is selected for standardization
and as a standard, notwithstanding that the implementations may be copyrighted or
copyrightable.

Signed: Olivier Ruatta
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Title: Associate Professor
Date: November 28, 2017
Place: Limoges



I, Gilles Zémor, of IMB, University of Bordeaux, 351 cours de la Libération, F-33405 Talence
Cedex, FRANCE, am the owner of the submitted reference implementation and optimized
implementations and hereby grant the U.S. Government and any interested party the right to
reproduce, prepare derivative works based upon, distribute copies of, and display such
implementations for the purposes of the post-quantum algorithm public review and evaluation
process, and implementation if the corresponding cryptosystem is selected for standardization
and as a standard, notwithstanding that the implementations may be copyrighted or

copyrightable.

Signed: Gilles Zémor

Al

Title: Professor
Date: November 28, 2017
Place: Bordeaux
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