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This document is the complete documentation of the proposal RankSign, a quan-
tum resistant signature based on rank metric. It is organized as suggested in NIST’s 
call for proposal from December 2016: Backgrounds on Coding Theory and rank metric 
are provided in Sec. 1 together with the description of our scheme, then a performance 
analysis is conducted in Sec. 2. Known Answers Tests values (aka. KATs) are provided 
Sec. 3, then Security and Known Attacks are discussed in Sec. 4 and 5 respectively. 
Finally, the advantages and limitations of the proposed protocol are discussed in Sec. 6. 
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Prologue 

The RankSign cryptosystem [9] was introduced in 2014. This signature scheme is based 
on code in rank metric. The general idea is to use an LRPC code (which is an equivalent 
to the MDPC in Hamming metric or to NTRU in the euclidean metric) as a trapdoor to 
compute an error associated to a message. The main issue with this cryptosystem was that 
the probability to distinguish between a signature and a random vector was in 2/q (for q 
the cardinal of the basefeld Fq) which obliged to consider very large q. 

In this proposal, we introduce a new variation on RankSign which consists in adding a 
small random error in the signature, so it permits to decrease the capacity for an attacker 
to distinguish between the distribution of the signatures and the uniform distribution, in 
1 1or2 3 . q q

Although the signature scheme may seem complex due to the inherent complexity of 
rank metric, the underneath ideas behind the protocol are very simple and quite similar to 
ideas developed in lattice based signature scheme GPV [11]. 

1 Specifcations 
In the following document, q denotes a power of a prime p. The fnite feld with q elements 

mis denoted by Fq and more generally for any positive integer m the fnite feld with q
elements is denoted by Fqm . We will frequently view Fqm as an m-dimensional vector space 
over Fq. 

We use bold lowercase and capital letters to denote vectors and matrices respectively. 
We will view vectors here either as column or row vectors. It will be clear from the context 
whether it is a column or a row vector. For two matrices A, B of compatible dimensions, � � 

Awe let (A|B) and respectively denote the horizontal and vertical concatenations of 
B 

A and B. 
$If S is a fnite set, x ← S denotes that x is chosen uniformly at random among S. 

1.1 Presentation of rank metric codes 

1.1.1 General defnitions 

Defnition 1.1 (Rank metric over Fn
qm ). Let x = (x1, . . . , xn) ∈ Fq

n 
m and (β1, . . . , βm) ∈ Fm

qm 

a basis of Fqm viewed as an m-dimensional vector space over Fq. Each coordinate xj isP 
associated to a vector of Fm in this basis: xj = m mij βi. The m × n matrix associated q i=1 
to x is given by M(x) = (mij)16i6m. 

16j6n 

The rank weight kxk of x is defned as 

def kxk = Rank M (x). 
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The associated distance d(x, y) between elements x and y in Fn
qm is defned by d(x, y) = 

kx − yk. 

Defnition 1.2 (Fqm -linear code). An Fqm -linear code C of dimension k and length n is a 
subspace of dimension k of Fn

qm embedded with the rank metric. It is denoted [n, k]qm . 
C can be represented by two equivalent ways: 

• by a generator matrix G ∈ Fk×n. Each rows of G is an element of a basis of C,qm 

C = {xG, x ∈ Fk
qm } 

• by a parity-check matrix H ∈ F(
q
n
m 
−k)×n . Each rows of H determines a parity-check 

equation verifed by the elements of C: 

C = {x ∈ Fn
qm : HxT = 0} 

We say that G (respectively H) is under systematic form i˙ it is of the form (Ik|A) 
(respectively (In−k|B)). 

Defnition 1.3 (Support of a word). Let x = (x1, . . . , xn) ∈ Fq
n 
m . The support E of x, 

denoted Supp(x), is the Fq-subspace of Fqm generated by the coordinates of x: 

E = hx1, . . . , xniFq 

and we have dim E = kxk. 

The number of supports of dimension w of Fqm is denoted by the Gaussian coeÿcient � 
m 
� w−1

qm − qY i 

= 
w qw − qi q i=0 

1.2 Diÿcult problems in rank metric 

In this section, we introduce the diÿcult problems on which our cryptosystem is based. to 

∈ F(n−k)×nProblem 1.4 (Rank Syndrome Decoding). Given a full-rank matrix H qm , a 
syndrome σ and a weight ω, it is hard to sample a vector x ∈ Fn

qm of weight lower than ω 
such that HxT = σT . 

The RSD problem has recently been proven hard in [10] on probabilistic reduction. 
The complexity of the known attacks against these problems are described in Section 5. 
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1.3 Bounds in rank metric 

We recall here the defnition of the rank Gilbert-Varshamov bound and the rank Singleton 
bound we need to defne our algorithm. 

Defnition 1.5 (Rank Gilbert-Varshamov (RGV) bound). Let C be an [n, k]qm . The rank 
Gilbert-Varshamov bound RGV (n, k, m, q) for C is the smallest integer r such that the vol-

(n−k)mume V(n, m, q, r) of a ball of radius r is larger than the number q of syndromes of 
C. P rBy defnition, V(n, m, q, r) = i=0 S(n, m, q, i) where S(n, m, q, i) is the cardinal of a 
sphere of radius i of Fn

qm , which is equal to the number of matrices m × n of rank i with 
coeÿcients in Fq. 

i−1Y (qm − qj )(qn − qj )
S(n, m, q, i) = 

i − qjq
j=0 q

In the case m = n, we have RGV (n,k,m,q) ∼ 1 − k and in the general case, we have 
√ n n 

m+n− (m−n)2+4km 
RGV (n, k, m, q) ∼ 

2 . 

Defnition 1.6 (Rank Singleton bound). The rank Singleton dSing(n, k, m, q) bound is the 
smallest integer r such that the RSD problem 1.4 admits a solution for all support E of x 
of dimension r with strong probability. 

The parity-check equations HxT = σT gives us (n − k)m equations over Fq. We can 
express each coordinates of x in a basis of E to obtain nr unknowns over Fq. This system l m 

(n−k)madmits a solution with strong probability if nr > (n − k)m so dSing(n, k, m, q) = 
n . 

In the case m > n, we can consider the subspace generated by the rows of the matrix as-
sociated to x (cf defnition 1.1) to obtain a system of mr unknowns and (n−k)m equations, 
hence dSing(n, k, m, q) = n − k 

In the general case, we always have: � � 
(n − k)m 

dSing(n, k, m, q) = 
max(m, n) 

1.4 The Low Rank Parity Check codes 

1.4.1 Defnition 

The LRPC codes have been introduced in [7]. They are good candidates for the cryptosys-
tem of McEliece because the have a weak algebraic structure. 

∈ F(n−k)×nDefnition 1.7 (LRPC codes). Let H = (hij )16i6n−k qm a full-rank matrix such 
16j6n 

that its coeÿcients generate an Fq-subspace F of small dimension d: 

F = hhij iFq 
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Let C be the code with parity-check matrix H. By defnition, C is an [n, k]qm LRPC code of 
weight d. 

Such a matrix H is called homogeneous matrix of weight d and support F . 

Now, we defne a larger family of code, called the augmented LRPC codes [9]. We will 
use these codes to hide the structure of an LRPC code in our signature scheme. 

F(n−k)×nDefnition 1.8 (Augmented LRPC codes). Let H be an qm homogeneous matrix of 
full-rank and of weight d and R ∈ F(

q
n
m 
−k)×t be a random matrix. Let P ∈ GLn−k(Fqm ) 

and Q ∈ GLn+t(Fq) be two invertible matrices (remark that the coeÿcients of Q belong 
to the base feld). Let H 0 = P (R|H)Q be the parity-check matrix of a code C of type 
[n + t, k + t]qm . By defnition, such a code is an augmented LRPC code. If t = 0, C is an 
LRPC code. 

Problem 1.9 (Augmented LRPC codes indistinguishability). Given an augmented LRPC 
code of type [n + t, k + t]qm , it is hard to distinguish it from a random code with the same 
parameters. 

The hardness of this problem is studied in [9]. We will deal with the attacks in section 
5.2. 

1.4.2 Generalized Erasure Decoding algorithm 

In this section, we describe the generalized erasure decoding algorithm we use in our signa-
ture scheme. This algorithm is an adaptation of the decoding algorithm for LRPC codes 
[7]. A more detailed desciption is given in the article [9]. 

Let us start with some defnitions. 

Defnition 1.10 (Generalized erasure). Let e ∈ Fn
qm be an error of weight r and E = 

Supp(e). We call generalized erasure of dimension t of e a subspace T ⊂ E of dimension 
t. 

Defnition 1.11. Let C an [n, k]qm LRPC code of weight d and let H be a homogeneous 
parity-check matrix of C of support F . Let F1 and F2 two elements of a basis of F . We say 
that a syndrome s ∈ Fn

qm 
−k is T -decodable if there exists a subspace E of Fqm of dimension 

r such that: 

1. dimhEF i = dim E dim F . 

2. dim(F1 
−1hEF i ∩ F2 

−1hEF i = dim E. 

3. Supp(s) ⊂ hEF i and Supp(s) + hFT i = hEF i. 
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Algorithm 1: Generalized erasure decoding algorithm for LRPC codes 
Input: 

• a homogeneous matrix H ∈ F(
q
n
m 
−k)×n of weight d and support F = hF1, . . . Fdi which 

defnes an [n, k] LRPC code C. 

• a subspace T = hT1, . . . , Tti of Fqm of dimension d. 

• a T -decodable syndrome s ∈ Fqm . 

Output: e ∈ Fq
n 
m of weight r and support E such that HeT = sT and T ⊂ E. 

1 Compute a basis B = (FiTj )16i6d of hFT i. 
16j6t 

2 Compute the subspace S = hB ∪ {s1, . . . , sn−k}i. 
3 Compute the support of the error E = F1 

−1S ∩ F2 
−1SPthen a basis (E1, . . . Er) of E. 

4 Express each coordinates ei of e in this basis : ei = j
r 
=1 λij Ej 

5 Express each coordinates of s in the basis (FiEj )16i6d of hEF i and solve the system 
16j6r 

HeT = sT of nr unknowns (λij ) with (n − k)rd equations. 
Since we assume that s is T -decodable, this algorithm is correct. If ever the syndrome 

were not T -decodable, one of the step fails and the algorithm would return an error value. 
In practice, we will choose the parameters of our scheme such that the proportion of non 
T -decodable syndromes is negligible. The theorem 8 of the article [9] shows that if (r − 
t)(m − r) + (n − k)(rd − m) = 0 then the proportion of T -decodable syndromes is superior 
to (1 − 1 

q )
2, so it is easy to have this proportion as close to 1 as we want to. 

1.5 RankSign: a signature algorithm based on rank metric 

The principle of our signature scheme is to associate a syndrome to a message thank to an 
hash function modeled as a ROM, then to output an error of weight below the Singleton 
bound corresponding to this syndrome with respect to a public code C. Only the signer 
knows the hidden structure of C which allows him to compute the error. The verifer can 
check the signature with the public representation of the code. We use the augmented 
LRPC codes to sign a message. 

Formally, RankSign is composed of three algorithms: 

• KeyGen: let H ∈ F(
q
n
m 
−k)×n be a random homogeneous matrix of size (n − k) × n of 

$ $← F(n−k)×tsupport F of weight d, R qm and Q ← GLn+t(Fq). Let C be the augmented 
LRPC code of type [n + t, k + t]qm of parity-check matrix (R|H)Q). 

C1Let Hpub = (In−k|R0)be the parity-check matrix under systematic form of and 
P ∈ GLn−k(Fqm ) such that Hpub = P (R|H)Q). 

11the probability that C do not possess a parity-check matrix under systematic form is around which qm 

is completely negligible. 
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Let G be an hash function of range the space of the syndromes Fn−k of C.qm 

Defne pk = (R0, G) and sk = (P , (R|H), Q). 

• Sign: the signature of a message M is described below. 
Algorithm 2: Signature of a message M 
Input: a message M , sk = (P , (R|H), Q), three integers r, t0 and l. 
Data: an hash function G, Hpub. 
Output: a seed and a vector e ∈ Fn+t of weight r such that eH 0T = G(M, seed).qm 

$
1 Initialize the seed: seed ← {0, 1}l . 
2 Compute s = G(M, seed). 

0 ∈ Fn+t3 Choose e qm of weight t0 uniformly at random. 
0 0HT4 Compute s = s − e pub. 

5 Choose t independent elements (e1, . . . , et) ∈ Ft
qm at random and defne 

T = he1, . . . , eti. 
6 Compute s00 = s0(P T )−1 − (e1, . . . , et)R

T . 
7 Compute the error (et+1, . . . en+t) of weight r0 = r − t0 with the generalized erasure 

decoding algorithm 1 with as inputs the matrix H , the subspace T and the 
syndrome s00. If s00 is not T -decodable, go to step 1. 

8 Compute e = e0 + (e1, . . . , en+t)(Q
T )−1 . 

9 return (e, seed). 

• Check: the verifer checks that 

– eT Hpub = G(M, seed). 

– kek 6 r. 

1.6 Parameters 

In this section, we give some sets of parameters for a security parameters of 128, 192 and 
256 bits. The di˙erent parameters are: 

• q is the cardinal of the base feld Fq. 

• n is the length the LRPC code used in the generalized erasure decoding algorithm 1. 

• n − k is the codimension of the LRPC. It corresponds to the number of rows of the 
public key Hpub. 

• m is the degree of the extension F2m . 

• d is the weight of the LRPC code. 

• t is the number of random colums added to the LRPC code to obtain the public 
augmented LRPC. 
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• t0 is the weight of the vector e0 . 

• r is the weight of the signature of a message. 

• Singleton is the value of the Singleton bound for the public augmented LRPC code. 

• Public key is the cost in bits to represent the public augmented LRPC code. 

• Signature is the size in bits of the signature e. Since kek = r, we can represent 
its support by an r × m matrix with coeÿcients in Fq such that each rows is an 
element of a basis of Supp(e). Each coordinate of e is a linear combination of this 
basis and can be represented by a vector of Fm

q . Thus the signature size is equal to 
(rm + r(n + t)) dlog2 qe = r(m + n + t) dlog2 qe bits. 

The parameters of RankSign have to verify three conditions [9]: 

• m = (r − t0)(d + 1) 

• n − k = d(r − t − t0) 

• n = (n − k)d 

In practice, we frst choose d then a multiple (n − k) of d. Finally, we fx two parameters 
among r, t and t0 . q can be chosen independently from the other parameters. The other 
parameters are deduced from the three conditions. 

The following table shows the parameters we propose: 

Name q n n − k m d t t0 r Singleton Security Public Key 
size (bits) 

Signature 
size (bits) 

RankSign I 232 20 10 21 2 2 1 8 10 128 80,640 11,008 
RankSign II 224 24 12 24 2 2 2 10 12 128 96,768 12,000 
RankSign III 232 24 12 27 2 3 1 10 12 192 155,520 17,280 
RankSign IV 232 28 14 30 2 3 2 12 14 256 228,480 23,424 

Remark 1: In term of classical security hypothesis, we consider an opponent may have 
1+t0 > 264access up to 264 signatures samples. According to theorem 4.1, we need q for the 

signatures do not leak information on the key, which implies we have to choose very high 
q for our parameters. 

Remark 2: It is possible to reduce the size of the signature by representing the matrix 
of its support under row echelon form: we give the index of the columns used for the pivot 
(which costs r bytes as long as m 6 256) and the "free" coeÿcients of the echelon matrix. 
In practice, since we have a very high q, the probability that a square matrix is invertible 
is around 1 − 1 

q so we gain around r2 dlog2 qe − 8r bits in the signature size. We do not 
have implemented this improvement in the program we provide, but this feature will be 
implemented in a future version. For our parameters we obtain a signature size of: 
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RankSign I 9,024 
RankSign II 9,680 
RankSign III 14,160 
RankSign IV 18,912 

Remark 3: The security parameters have been chosen according to the complexity of 
the best attack against our scheme. These attacks are described in section 5. 

Computational complexity: 

• KeyGen: the most costly operation is the inversion of the matrix P ∈ 
GLn−k(Fqm ) which is O ((n − k)3) multiplication in Fqm . Each multiplica-
tion costs O (m log(m)log(log(m)) log(q) log(log(q))), hence a total complexity of 
O ((n − k)3m log(m)log(log(m)) log(q) log(log(q))). 

• Sign and Check: the most costly operation is the product matrix vector in Fqm which is 
O ((n + t)2). The total cost is in O ((n + t)2m log(m)log(log(m)) log(q) log(log(q))). 

2 Performance Analysis 
In this section, we provide concrete timings of our implementations. The benchmarks were 
performed on an Intel R
CoreTMi7-4700HQ CPU running @ up to 3.40GHz and the software 
was compiled using GCC (version 6.3.0) with the following command : gcc -O3 -std=c99 
-pedantic -Wall -Wextra. 

Notice our implementation is not optimized. There is probably room for improvements 
for all operations in the feld Fqm , especially since q is very large. 

2.1 Reference Implementation 

Tab. 1 gives timings (in ms) of the reference implementation on our benchmark platform, 
and Tab. 2 gives the number of CPU cycles. 

Instance Keygen Encap Decap 
RankSign-I 79.3 7.71 3.03 
RankSign-II 177 13.6 5.56 
RankSign-III 228 18.2 7.40 
RankSign-IV 431 28.3 11.8 

Table 1: Timings (in ms) of the reference implementation for di˙erent instances of 
RankSign. 
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Instance Keygen Encap Decap 
RankSign-I 190 18.6 7.30 
RankSign-II 432 33.1 13.6 
RankSign-III 537 43.1 17.5 
RankSign-IV 1030 67.8 28.2 

Table 2: Millions of cycles reference implementation for di˙erent instances of RankSign. 

2.2 Optimized Implementation 

No optimized implementation has been realized. Therefore, the folder ../Opti-
mized_Implementation/ is a copy of ../Reference_Implementation/. 

3 Known Answer Test Values 
KATs are provided in the folder ../KATS/Reference_Implementation/. As 
mentioned in Sec. 2.2, since the reference and optimized implementa-
tions are identical, ../KATS/Optimized_Implementation/ is just a copy of 
../KATS/Reference_Implementation/. 

KATs have been generated using the script provided by NIST. They are available under 
the folder labeled KATs. Additionally, we provide a complete example with intermediate 
values in the KATs folder. This complete example corresponds to a successful run of 
Ranksign. By successful, we mean that no decryption error occurred in the Decapsulation 
step. 

Notice that one can also generate other such detailed instances using the ver-
bose mode of each implementation. For instance, use make ranksignI-verbose in 
../Reference_Implementation/RankSign-I/, then run ./bin/ranksignI-verbose to get a com-
plete detailed instance with intermediate values. 

4 Security 
The security analysis is done in two steps. First we recall the process of the security proof 
in the original RankSign paper [9]. In the second subsection, we show how to extend the 
proof to our modifed version. 

4.1 Analysis of the original RankSign 

We use notation from the RankSign paper [9]. Our purpose is to study the resistance to 
leakage of information from signatures. In the original RanSign paper, it was argued that as 
long as the number of signatures does not signifcantly exceed q, whatever can be computed 
with these signatures can be computed with the same complexity without them, because 
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one can produce q simulated signatures that with a reasonable probability (e.g. 1/2) will 
be indistinguishable from the genuine signatures. 

Let us summarize the main points of the proof. The actual signer produces a couple 
(x, y) where y is the syndrome of a vector x of rank r. This means that y, a random hash, 
is randomly chosen among the set of T -decodable vectors of the syndrome space 1.11: this 
is achieved by randomly choosing y and discarding it whenever it is not T -decodable. There 
then corresponds to y a unique vector x of Fn

qm . The couple (x, y) was called a T -decodable 
couple, and in the same way the vector x can by extension also be called T -decodable since 
it uniquely determines (x, y). Now what the simulator does is produce a couple (x, y) by 
uniformly choosing x among rank-r vectors, hoping he produces a T -decodable couple. For 
x to be T -decodable, three conditions must be satisfed. The frst two conditions (i) and 
(ii) relate only to the support E of the vector x. The third condition requires the syndrome 
coordinates to be independent modulo the subspace FT . Conditional on those conditions 
being met, the vector x produced by the simulator is naturally uniformly distributed among 
the set of vectors satisfying those conditions, and so is the genuine signature x, so that as 
long as the simulator does not choose a non-T -decodable x, the simulated couple (x, y) is 
indistinguishable from a genuine couple produced by the signer. 

Let E be the set of Fq-subspaces or dimension r of Fqm and let X be the set of spaces 
E of E that do not satisfy the required conditions (i) and (ii). It was shown in appendix C 
of the RankSign paper [9] that the proportion of spaces of E that belong to X is bounded 
from above by a quantity approximately equal to 2/q. 

4.2 Indistinguishability proof of our scheme 

We now turn to the modifed RankSign scheme. In this scheme the signer simply produces 
a vector x of rank r + t0 rather than of rank r, so that it will be more diÿcult to distinguish 
a genuine signature from a simulated one. In concrete terms, given the hashed value y 
belonging to the syndrome space of the message, the signer chooses a random vector v ∈ Fq

n 
m 

of weight t0, then applies the original RankSign decoding algorithm to the vector of the 
syndrome space equal to y − σ(v) where σ denotes the syndrome function. This produces 
a vector x ∈ Fn

qm , and the signature associated to y is now declared to be 

0 x = x + v 

which clearly has syndrome σ(x0) = y and has rank r + t0 with overwhelming probability. 
The simulator, as before, chooses x0 uniformly at random among vectors of weight r +t0 . 

Our purpose is now to evaluate how this di˙ers from the way the genuine signer produces 
0x . 

We focus on the two ways the support E 0 of the vector x0 is chosen. When E 0 is chosen 
by the signer, E 0 belongs to the set E0 of subspaces of Fqm of rank r + t0 containing T , 
obtained by frst selecting a subspace E belonging to the space E of subspaces of rank 
r containing T , and that does not contain the forbidden set X. Then E0 is obtained by 
choosing a subspace of E0 containing E. From now on to lighten the analysis on we drop 
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the condition “containing T ” in the defnition of E and E0 since this merely amounts to 
replacing the ambient space Fqm by the quotient Fqm /T . It follows readily from the analysis 
of the original RankSign scheme that the subspace E is chosen with uniform distribution 
in E \ X. Then E 0 is obtained through a uniform choice of spaces that contain E. This 
defnes a probability distribution P over E0 . In contrast, the simulator simply chooses E 0 
by applying the uniform probability distribution Pu on E0. The situation is best described 
through a graph: defne the bipartite graph G to have as vertex set the subspaces of E and 
E0 and by declaring a subspace E of E and a subspace E 0 of E0 to have their corresponding 
vertices in G joined by an edge whenever the inclusion of subspaces E ⊂ E 0 holds. The 
graph is illustrated on Figure 1. 

E0 

E 

X 
A 

Figure 1: the inclusion incidence graph G between the set E of subspaces of rank r and the 
set E0 of subspaces of rank r +1. It defnes the probability distribution P of the support E 
of the signature vector x by avoiding the forbidden set X. 

To recap, P is the probability measure on vertices of E0 obtained by uniformly choosing 
a vertex from the complement X of X in E and by uniformly choosing an outgoing edge 
from it. 

Theorem 4.1. The number of samples necessary to signifcantly distinguish the distribution 
P from the uniform distribution Pu is at least q1+t0 . 

The demonstration of this theorem is given in section 7. 
A corollary of this theorem is that an opponent cannot use the knowledge of genuine 

signatures to attack the cryptosystem. Indeed, any algorithm which takes as inputs the 
public key and N valid signatures can be simulated by an algorithm which takes as inputs 
the public key and N random vectors of weight r instead of the N signatures. 

14 



Corollary 4.2 (Unforgeability of signatures). As long as the number of given signatures 
is below q1+t0 , under the Augmented LRPC indistinguishability Problem 1.9, forging a 
signature is as hard as solving an instance of the RSD Problem 1.4 for a random code in 
the Random Oracle Model. 

The corollary implies we need to choose a large q for our parameters. In practice, we 
224 232have q = or q = . Thus, we only consider attacks on our signature scheme which 

only use the public key as input. 

5 Known Attacks 
There are two ways to attack our system, either the opponent can try to forge a signature 
by computing a vector of weight r of a given syndrome or he can try to recover the structure 
of the augmented LRPC code. To achieve this, he can search for a codeword of weight d + t 
in the dual of the public code C or he can try to directly attack the masking matrix Q. 

There exist two types of generic attacks on these problems: 

• the combinatorial attacks where the goal is to fnd the support of the error or of the 
codeword. 

• the algebraic attacks where the opponent tries to solve an algebraic system by Groeb-
ner basis. 

First, we deal with the combinatorial attacks, both in the forgery attacks case and structural 
attacks case and in a third subsection we discuss about the algebraic attacks. 

5.1 Forgery attacks 

The forgery attack consists to fnd a vector e of weight r such that Hpube
T = sT . Under 

the assumption that the indistinguishability of the augmented LRPC code problem is hard, 
we can only use the best generic attack against the RSD problem. This attack can be found 
in [8]. 

The general idea is to found a subspace F which contains the support of e and to express 
each coordinates of e in a basis of F to obtained some unknowns over Fq. Then we solve a 
linear system obtained from the parity-check equations and verifed by these unknowns. 

Let F be a subspace of Fqm of dimension δ and (F1, . . . , Fδ) a basis of F . We will 
determine the value of δ later. Let E = Supp(e). We assume that E ⊂ F . 

δX 
⇒ ∀i ∈ [1..n + t], ei = λij Fj 

j=1 
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This gives us (n + t)δ unknowns over Fq and we have: 

HeT = s (1) 
H1,1e1 + · · · + H1,n+ten+t = s1 

. . . 

⎧ ⎪⎨ 
⇔ . . . . . . 

Hn−k,1e1 + · · · + Hn−k,n+ten+t = sn−k Pδ 
j=1 (λ1j H1,1Fj + · · · + λn+t,j H1,n+tFj ) = s1 

⎪⎩ ⎧⎪⎨ ⎪⎩ 

. . . . . . (2). . .⇔ Pδ (λ1j Hn−k,1Fj + · · · + λn+t,j Hn−k,n+tFj ) = sn−kj=1 

Let ϕi the ith canonical projection from Fqm on Fq: 

ϕi : Fqm → Fq 
m

xiβi 7→ xi 

X 

i=1 

We apply these functions to the n equations of (2) to obtain 

HeT = s 

⇔ ∀i ∈ [1..m],Pδ
⎧ ⎪⎨ 

� 

� 
λ ϕ (H F )−1j i k,1 jn 

λ1j ϕi(H11Fj ) + · · · + λn+t,j ϕi(H1,n+tFj ) = ϕi(c1) 

. 
j=1 

. . . (3). . . . .⎪⎩ Pδ � 
+ · · · + λn+t,j ϕi(Hn−k,n+tFj ) = ϕi(cn)j=1 

mlkj
�� 

Since we assume E ⊂ F , this system has at least one solution. We want (n − k)m > 
(n−k)m (k+t)m = 

check this assumption, we have to try and solve the system, that’s why the complexity of 
(n + t)δ to have more equations than unknowns =⇒ δ 6 To m − . 

n+t n+t 

(n−k)3mthis attack is O 
p 

3 

where p is the probability that E ⊂ F . 
p is equal to the number of subspaces of dimension r in a subspace of dimension δ divided 
by the total number of subspaces of dimension r in Fqm . �� 

δ 
r 

p = � q� 
m 
r 

q 

≈ q −w(m−δ) 

��ml 
rd (k+t)m(k+t)m 3 en+tBy taking delta = m − 

n+t we obtain a complexity of O (n − k)3m q 

Since r is larger than the RGV bound for this code, there are several solutions to 
the RSD problem. We need to divide this complexity by the mean number of solutions, 
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which is equal to the number of words of weight r divided by the number of syndromes, so 
S(q,m,n+t,r) (m+n+t−r)r−m(n−k)≈ q . 

qm(n−k) 

Eventually the complexity of the attack is � � 
rd (k+t)m

3 e−r(m+n+t−r)+m(n−k)O (n − k)3 m q n+t . 

5.2 Structural attacks against augmented LRPC codes 

Let C be an [n+t, k+t]qm augmented LRPC code of parity-check matrix under its systematic 
form Hpub = P (R|H)Q, where H is an homogeneous matrix of support F of weight d.. 
The problem is to fnd the structure of C with only the knowledge of Hpub. There are two 
way to attack this problem. 

The frst one is to search for a word e of weight d+t in the dual code C⊥ of generator ma-
trix Hpub. This attack is very similar to the attack of the previous section, we suppose that a l m 

(n−k)mfxed subspace F of dimension r = m− 
n+t contains the support E = Supp(e) then we � � 

(d+t)d (n−k)m 

try and solve the system 3. The complexity of this attack is O (k + t)3m3q n+t e . 
We can improve the complexity of this attack by using an amelioration found in [3]. 

This amelioration uses the fact that C⊥ is Fqm -linear, so if e is of weight d + t, any multiple 
αe, α ∈ F∗ 

qm is also of weight d + t. So we need to compute the probability p0 such that 
F ⊂ αE, for any α ∈ F∗ 

qm . By counting the number of di˙erent subspace of the form αE, 
we obtain � � 

r 
d + tqm − 1 q −(d+t)(m−r)+m−1 p 0 ≈ � � ≈ q 

q − 1 m 
d + t 

q 

Finally the complexity of this attack is � � 
3 (d+t)d (n−k)m e−m 

n+tO (k + t)3 m q

Another way is to try and guess the action of the matrix Q on the code generated by 
(R|H). This approach has been studied in the original RankSign article [9]. We do not 
need to guess the whole matrix Q but only (n − k + l) columns nut only the action of Q 
on n − k + l columns of H coming from the t columns of R. Then we can search for a 
codeword of weight d in the code of type [n − k + l, n − k], which will very likely reveal the 
support F if its RGV bound is larger than d. In practice, since we have d very small, we � � 

t(n−k+d+1)only need l = d + 1. The complexity of this attack is at least O q . 
All these combinatorial attack can be easily countered by increasing the size of q. Since 

we already need to take q of the order of 224 or 232 to achieve the unforgeability of the 
signature 4.1, all these attacks are irrelevant to defne the security parameter of our scheme. 
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5.3 Algebraic attacks 

The second way to solve the equations of the system (3) is to use the Groebner basis [12]. 
The advantage of these attacks is that they are independent of the size of q. They mainly 
depend on the number of unknowns with respect to the number of equations. 

Let e be a codeword of C⊥ of weight d + t and of support E. Let Gv be a parity-check 
matrix of C⊥. Let (E1, . . . , Ed+t be a basis of E. Then 

d+t

∀i ∈ 1..n + t, ei = λij Ej 

j=1 

By projecting the equations of parity over Fq we obtain the following quadratic system 

X 

P⎧ ⎪⎨ 
n+t Pd+t λij ϕl(G1iEj ) = 0i=1 j=1 

P⎪⎩ 

. . . . . . 
n+t Pd+t 
i=1 j=1 λij ϕl(Gn−k,iEj ) = 0 

for all l ∈ {1..m}. The unknowns are the λij and the ϕl(G1iEj ), so there are (d+t)(n+t+m) 
unknowns for (nk)m equations. It is possible to reduce the number of unknowns by (d + t)2 

by considering a basis of E under its systematic form. This system is also bihomogeneous, 
which decreases the computation cost of a Groebner basis. To estimate the complexity of 
this attack, we have used the results of [4] and we have chosen our parameters according to 
these estimations. 

6 Advantages and Limitations 
Our signature scheme has small parameters and is relatively fast. Since we need to take 
a large q, all the known combinatorial attacks are ineÿcient to break our cryptosystem. 
Thus the best attacks against it are based on the computation of a Groebner basis. In our 
security estimation, we do not take into account the spatial complexity of these algorithms, 
moreover, up to our best knowledge, there is currently no quantum speed-up for these 
algorithms, that is why we expect our parameters to be rather conservative. 

However, our signature algorithm may seem quite complex at frst sight, but the under-
neath ideas are simple and relatively similar to the approach in lattice-based signature, like 
GPV signature [11]. The parameters have to be chosen carefully in order to respect the 
algorithm’s constraints. Furthermore, the study of the use of rank metric in cryptography 
are quite new [6] but the diÿcult problem in rank metric have been deeply studied, so we 
are confdent that our parameters are resilient. 

7 Proof of the theorem 4.1 
Proof Method. We will consider every event A ⊂ E0 and compare P (A) with Pu(A): we 
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use the fact that to distinguish the Bernoulli variables with parameters p and p−ε one needs 
at least p/ε2 samples. To evaluate P (A) we will need an estimate of the number of edges 
that go from A to X in the graph G. To obtain this estimate we invoke an auxiliary graph 
Gr on the vertex set E, for which two vertices are incident if and only if they have a common 
neighbour in the graph G. In other words, two subspaces of rank r are connected in Gr if 
they are included in a common subspace of rank r + 1. The graph Gr is sometimes called 
a Grassmann graph and is an extensively studied distance-regular graph [5]. In particular 
we will call upon the following result: 

Lemma 7.1. The ratio λ/Δ, where Δ is the degree of the Grassmann graph Gr and λ is 
the second largest eigenvalue of it adjacency matrix is a quantity close to 1/q. 

We also recall: 

Lemma 7.2 (Alon-Chung [1]). Let G be a graph of regular degree Δ and with n vertices. 
Let λ be the second largest eigenvalue of its adjacency matrix. Let S be a subset of vertices 
of G. Then the number of edges of the subgraph induced by S is at most � � �� 

1 |S|2 |S|
Δ + λ|S| 1 − . 

2 n n 

Sketch of proof of Theorem 4.1: Let A be a subset of vertices of E0. Disregarding small 
multiplicative constants we have 

1 |X| = |E|
q 

and let us write 
α |A| = |E0|. 
q 

We denote by ΔL and ΔR the left and right degrees respectively of the (E, E0) bipartite 
graph. 

The expected average degree from A to X, which corresponds to P (A) being equal to 
the uniform probability Pu(A) of A, is: 

|X| 1 
ΔR = ΔR. |E| q 

Accordingly, the corresponding average degree from A to X is: � � 
|X| 1 

ΔR = 1 − ΔR. |E| q 

Case 1. Suppose P (A) > Pu(A), meaning A receives more than the expected number of 
edges from X. Now the total number of edges incident to A is |A|ΔR, so the total number 
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of edges from X to A can only go from (1 − 1/q)ΔR|A| to ΔR|A|, i.e. is multiplied by at 
most (1 − 1/q)−1 = q/(q − 1) = 1 + 1/(q − 1). Therefore � � 

1 1 
P (A) ≤ 1 + Pu(A) ≤ Pu(A) + Pu(A). 

q − 1 q − 1 

Hence, to distinguish P from Pu with the event A we need 

Pu(A) (q − 1)2 

= samples.
(
q−
1
1 Pu(A))2 Pu(A) 

Case 2. We now suppose P (A) < Pu(A), meaning A receives fewer than the expected 
number of edges from X, in other words more than expected from X. This case needs a 
more refned analysis. 

In the expected case, a fraction α/q of Grassmann edges in X come from A. If the 
average degree from A to X is multiplied by β, then the number of Grassman edges inside 
A is multiplied by at least β2. By the Alon-Chung Lemma (Lemma 7.2), since λ/Δ = 1/q 
in the Grassmann graph (Lemma 7.1), we must have 

α 
β2 ≤ 2 

q 

otherwise the number of edges in the Grassmann subgraph induced by X more than doubles 
the expected value, hence r 

2q
β ≤ . 

α 

Therefore the average degree from A to X goes from � � � � � r � 
1 β 2 

1 − ΔR to at least ΔR 1 − = ΔR 1 − 
q q αq 

which implies that � r �� �−1
2 1 

P (A) ≥ Pu(A) 1 − 1 − . 
αq q 

Going over all possible values of α, this is enough to ensure that for all A, at least q2 samples 
are needed to distinguish P from Pu. 

We conclude the analysis with a remark concerning condition (iii). In the original 
RankSign scheme, the simulated signature vector x could, with probability of order 1/q, 
produce a syndrome vector y whose coordinates are not necessarily linearly independent 
modulo FT , while this never happens with the genuine syndrome vector y. This is because 
the simulated syndrome coordinates all fall in the prescribed space FE. In the modifed 
RankSign variant, the simulated syndrome coordinates fall into a space FE 0 of larger di-
mension, and the probability of the appearance of an undesired linear equation is at most 
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1/q3, which is a quantity which does not interfere when we are dealing with q2 signature 
samples. 

The second remark concerns what happens to the analysis when we allow the signature 
vector x to have rank r +2 rather than r +1. The key observation is that we will be dealing 
with the bipartite graph (E, E00) where E00 denotes the set of spaces of rank r + 2, and the 
Grassmann graph Gr will need to be replaced by its second power G2 

r, meaning we put an 
edge between two vertices of G2 

r when they are at distance 2 in Gr. Since they eigenvalues 
of G2 

r are essentially the squares of those of Gr, we get that the quantity λ/Δ crucial to the 
study of P (A) changes from 1/q to 1/q2 . When a similar analysis to that of the proof of 
Theorem 4.1 is carried out we obtain that the number of samples needed to distinguish P 
from uniform goes from q2 to q3. We omit the details. They will be available in [2]. 
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opt m zed  mplementat ons that I have subm tted, known as RankS gn,  s my own or g nal work, 
or  f subm tted jo ntly w th others,  s the or g nal work of the jo nt subm tters. 

I further declare that (check one): 

☑ I do not hold and do not  ntend to hold any patent or patent appl cat on w th a 
cla m wh ch may cover the cryptosystem, reference  mplementat on, or opt m zed 
 mplementat ons that I have subm tted, known as RankS gn; OR (check one or both of the 
follow ng): 

☐ to the best of my knowledge, the pract ce of the cryptosystem, reference 
 mplementat on, or opt m zed  mplementat ons that I have subm tted, known as RankS gn, may 
be covered by the follow ng U.S. and/or fore gn patents: “Cryptograph c method for 
commun cat ng conf dent al  nformat on” US9094189 B2, and “Procédé cryptograph que de 
commun cat on d'une  nformat on conf dent elle” FR 10/51190; 

☐ I do hereby declare that, to the best of my knowledge, the follow ng 
pend ng U.S. and/or fore gn patent appl cat ons may cover the pract ce of my subm tted 
cryptosystem, reference  mplementat on or opt m zed  mplementat ons: “Cryptograph c method 
for commun cat ng conf dent al  nformat on” US9094189 B2, and “Procédé cryptograph que de 
commun cat on d'une  nformat on conf dent elle” FR 10/51190. 

I do hereby acknowledge and agree that my subm tted cryptosystem w ll be prov ded to the 
publ c for rev ew and w ll be evaluated by NIST, and that  t m ght not be selected for 
standard zat on by NIST. I further acknowledge that I w ll not rece ve f nanc al or other 
compensat on from the U.S. Government for my subm ss on. I cert fy that, to the best of my 
knowledge, I have fully d sclosed all patents and patent appl cat ons wh ch may cover my 
cryptosystem, reference  mplementat on or opt m zed  mplementat ons. I also acknowledge and 
agree that the U.S. Government may, dur ng the publ c rev ew and the evaluat on process, and,  f 
my subm tted cryptosystem  s selected for standard zat on, dur ng the l fet me of the standard, 
mod fy my subm tted cryptosystem’s spec f cat ons (e.g., to protect aga nst a newly d scovered 
vulnerab l ty). 

I acknowledge that NIST w ll announce any selected cryptosystem(s) and proceed to publ sh the 
draft standards for publ c comment 

I do hereby agree to prov de the statements requ red by Sect ons 2.D.2 and 2.D.3, below, for any 
patent or patent appl cat on  dent f ed to cover the pract ce of my cryptosystem, reference 
 mplementat on or opt m zed  mplementat ons and the r ght to use such  mplementat ons for the 
purposes of the publ c rev ew and evaluat on process. 

I acknowledge that, dur ng the post-quantum algor thm evaluat on process, NIST may remove 
my cryptosystem from cons derat on for standard zat on. If my cryptosystem (or the der ved 
cryptosystem)  s removed from cons derat on for standard zat on or w thdrawn from 
cons derat on by all subm tter(s) and owner(s), I understand that r ghts granted and assurances 
made under Sect ons 2.D.1, 2.D.2 and 2.D.3,  nclud ng use r ghts of the reference and opt m zed 



 

 

 mplementat ons, may be w thdrawn by the subm tter(s) and owner(s), as appropr ate. 

S gned: Adr en Hautev lle 

T tle: PhD Student 
Date: November 28, 2017 
Place: L moges 



             
          

              

                
         

               

           
           

           
        

            
            

       
         

              
                

             
               

             
         

    
            

           

             

                
            

            

           
           

         
            

              

I, Oli ier Ruatta, of Uni ersity of Limoges, 123 a enue Albert Thomas, 87060 Limoges Cedex, 
FRANCE, do hereby declare that the cryptosystem, reference implementation, or optimized 
implementations that I ha e submitted, known as RankSign, is my own original work, or if 
submitted jointly with others, is the original work of the joint submitters. 

I further declare that (check one): 

☑ I do not hold and do not intend to hold any patent or patent application with a 
claim which may co er the cryptosystem, reference implementation, or optimized 
implementations that I ha e submitted, known as RankSign; OR (check one or both of the 
following): 

☐ to the best of my knowledge, the practice of the cryptosystem, reference 
implementation, or optimized implementations that I ha e submitted, known as RankSign, may 
be co ered by the following U.S. and/or foreign patents: “Cryptographic method for 
communicating confidential information” US9094189 B2, and “Procédé cryptographique de 
communication d'une information confidentielle” FR 10/51190; 

☐ I do hereby declare that, to the best of my knowledge, the following 
pending U.S. and/or foreign patent applications may co er the practice of my submitted 
cryptosystem, reference implementation or optimized implementations: “Cryptographic method 
for communicating confidential information” US9094189 B2, and “Procédé cryptographique de 
communication d'une information confidentielle” FR 10/51190. 

I do hereby acknowledge and agree that my submitted cryptosystem will be pro ided to the 
public for re iew and will be e aluated by NIST, and that it might not be selected for 
standardization by NIST. I further acknowledge that I will not recei e financial or other 
compensation from the U.S. Go ernment for my submission. I certify that, to the best of my 
knowledge, I ha e fully disclosed all patents and patent applications which may co er my 
cryptosystem, reference implementation or optimized implementations. I also acknowledge and 
agree that the U.S. Go ernment may, during the public re iew and the e aluation process, and, if 
my submitted cryptosystem is selected for standardization, during the lifetime of the standard, 
modify my submitted cryptosystem’s specifications (e.g., to protect against a newly disco ered 
 ulnerability). 

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish the 
draft standards for public comment 

I do hereby agree to pro ide the statements required by Sections 2.D.2 and 2.D.3, below, for any 
patent or patent application identified to co er the practice of my cryptosystem, reference 
implementation or optimized implementations and the right to use such implementations for the 
purposes of the public re iew and e aluation process. 

I acknowledge that, during the post-quantum algorithm e aluation process, NIST may remo e 
my cryptosystem from consideration for standardization. If my cryptosystem (or the deri ed 
cryptosystem) is remo ed from consideration for standardization or withdrawn from 
consideration by all submitter(s) and owner(s), I understand that rights granted and assurances 
made under Sections 2.D.1, 2.D.2 and 2.D.3, including use rights of the reference and optimized 



 

 

implementations, may be withdrawn by the submitter(s) and owner(s), as appropriate. 

Signed: Oli ier Ruatta 

Title: Associate Professor 
Date: No ember 28, 2017 
Place: Limoges 



              
          

             

                
         

               

           
           

           
        

  

            
            

       
         

              
                

             
               

             
         

   
            

           

             

                
            

            

           
           

         
            

I, Gill s Zémor, of IMB, Univ rsity of Bord aux, 351 cours d  la Libération, F-33405 Tal nc  
C d x, FRANCE, do h r by d clar  that th  cryptosyst m, r f r nc  impl m ntation, or 
optimiz d impl m ntations that I hav  submitt d, known as RankSign, is my own original work, 
or if submitt d jointly with oth rs, is th  original work of th  joint submitt rs. 

I furth r d clar  that (ch ck on ): 

☑ I do not  old and do not intend to  old any patent or patent applicaton wit  a 
claim w ic  may cover t e cryptosystem, reference implementaton, or optmized 
implementatons t at I  ave submited, known as RankSign; OR (c eck one or bot  of t e 
following): 

☐ to t e best of my knowledge, t e practce of t e cryptosystem, reference 
implementaton, or optmized implementatons t at I  ave submited, known as RankSign, may 
be covered by t e following U.S. and/or foreign patents: “Cryptograp ic met od for 
communicatng confdental informaton” US9094189 B2, and “Procédé cryptograp ique de 
communicaton d'une informaton confdentelle” FR 10/51190; 

☐ I do h r by d clar  that, to th  b st of my knowl dg , th  following 
p nding U.S. and/or for ign pat nt applications may cov r th  practic  of my submitt d 
cryptosyst m, r f r nc  impl m ntation or optimiz d impl m ntations: “Cryptographic m thod 
for communicating confid ntial information” US9094189 B2, and “Procédé cryptographiqu d  
communication d'un  information confid nti ll ” FR 10/51190. 

I do h r by acknowl dg  and agr   that my submitt d cryptosyst m will b  provid d to th  
public for r vi w and will b   valuat d by NIST, and that it might not b  s l ct d for 
standardization by NIST. I furth r acknowl dg  that I will not r c iv  financial or oth r 
comp nsation from th  U.S. Gov rnm nt for my submission. I c rtify that, to th  b st of my 
knowl dg , I hav  fully disclos d all pat nts and pat nt applications which may cov r my 
cryptosyst m, r f r nc  impl m ntation or optimiz d impl m ntations. I also acknowl dg  and 
agr  that th  U.S. Gov rnm nt may, during th  public r vi w and th   valuation proc ss, and, if 
my submitt d cryptosyst m is s l ct d for standardization, during th  lif tim  of th  standard, 
modify my submitt d cryptosyst m’s sp cifications ( .g., to prot ct against a n wly discov r d 
vuln rability). 

I acknowl dg  that NIST will announc  any s l ct d cryptosyst m(s) and proc  d to publish th  
draft standards for public comm nt 

I do h r by agr  to provid th stat m nts r quir d by S ctions 2.D.2 and 2.D.3, b low, for any 
pat nt or pat nt application id ntifi d to cov r th  practic  of my cryptosyst m, r f r nc  
impl m ntation or optimiz d impl m ntations and th  right to us  such impl m ntations for th  
purpos s of th  public r vi w and  valuation proc ss. 

I acknowl dg  that, during th  post-quantum algorithm  valuation proc ss, NIST may r mov  
my cryptosyst m from consid ration for standardization. If my cryptosyst m (or th  d riv d 
cryptosyst m) is r mov d from consid ration for standardization or withdrawn from 
consid ration by all submitt r(s) and own r(s), I und rstand that rights grant d and assuranc s 



              mad und r S ctions 2.D.1, 2.D.2 and 2.D.3, including us  rights of th  r f r nc and optimiz d 
impl m ntations, may b  withdrawn by th  submitt r(s) and own r(s), as appropriat . 

Sign d: Gill s Zémor 

Titl : Prof ssor 
Dat : Nov mb r 28, 2017 
Plac : Bord aux 



            
          

             
           

           
          

           

 Signed: Nic las Arag n 

Date: N vember 28, 2017 

I, Nic las Arag n,  f University  f Lim ges, 123 avenue Albert Th mas, 87060 Lim ges Cedex, 
FRANCE, am the  wner  f the submitted reference implementati n and  ptimized 
implementati ns and hereby grant the U.S. G vernment and any interested party the right t  
repr duce, prepare derivative w rks based up n, distribute c pies  f, and display such 
implementati ns f r the purp ses  f the p st-quantum alg rithm public review and evaluati n 
pr cess, and implementati n if the c rresp nding crypt system is selected f r standardizati n 
and as a standard, n twithstanding that the implementati ns may be c pyrighted  r 
c pyrightable. 

Title: PhD Student 

Place: Lim ges 



 
          

             
           

           
          

           

 

I, Phi ippe Gaborit, of University of Limoges, 123 avenue A bert Thomas, 87060 Limoges Cedex, 
FRANCE, am the owner of the submitted reference imp ementation and optimized 
imp ementations and hereby grant the U.S. Government and any interested party the right to 
reproduce, prepare derivative works based upon, distribute copies of, and disp ay such 
imp ementations for the purposes of the post-quantum a gorithm pub ic review and eva uation 
process, and imp ementation if the corresponding cryptosystem is se ected for standardization 
and as a standard, notwithstanding that the imp ementations may be copyrighted or 
copyrightab e. 

Signed: 

Tit e: Professor 
Date: November 28, 2017 
P ace: Limoges 



            
          

             
           

           
          

           

 

I, Adr en Hautev lle, Un vers ty of L moges, 123 avenue Albert Thomas, 87060 L moges Cedex, 
FRANCE, am the owner of the subm tted reference  mplementat on and opt m zed 
 mplementat ons and hereby grant the U.S. Government and any  nterested party the r ght to 
reproduce, prepare der vat ve works based upon, d str bute cop es of, and d splay such 
 mplementat ons for the purposes of the post-quantum algor thm publ c rev ew and evaluat on 
process, and  mplementat on  f the correspond ng cryptosystem  s selected for standard zat on 
and as a standard, notw thstand ng that the  mplementat ons may be copyr ghted or 
copyr ghtable. 

Date: November 28, 2017 
Place: L moges 

S gned: Adr en Hautev lle 

T tle: Ph.D. Student 



             
          

             
           

           
          

           

 

I, Oli ier Ruatta, of Uni ersity of Limoges, 123 a enue Albert Thomas, 87060 Limoges Cedex, 
FRANCE, am the owner of the submitted reference implementation and optimized 
implementations and hereby grant the U.S. Go ernment and any interested party the right to 
reproduce, prepare deri ati e works based upon, distribute copies of, and display such 
implementations for the purposes of the post-quantum algorithm public re iew and e aluation 
process, and implementation if the corresponding cryptosystem is selected for standardization 
and as a standard, notwithstanding that the implementations may be copyrighted or 
copyrightable. 

Signed: Oli ier Ruatta 

Title: Associate Professor 
Date: No ember 28, 2017 
Place: Limoges 



              
           

             
           

           
          

           

I, Gill s Zémor, of IMB, Univ rsity of Bord aux, 351 cours d  la Libération, F-33405 Tal nc  
C d x, FRANCE, am th  own r of th  submitt d r f r nc  impl m ntation and optimiz d 
impl m ntations and h r by grant th  U.S. Gov rnm nt and any int r st d party th  right to 
r produc , pr par  d rivativ  works bas d upon, distribut  copi s of, and display such 
impl m ntations for th  purpos s of th  post-quantum algorithm public r vi w and  valuation 
proc ss, and impl m ntation if th  corr sponding cryptosyst m is s l ct d for standardization 
and as a standard, notwithstanding that th  impl m ntations may b  copyright d or 
copyrightabl . 

Sign d: Gill s Zémor 

Titl : Prof ssor 
Dat : Nov mb r 28, 2017 
Plac : Bord aux 
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