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2 Algorithm Specifications

2.1 Design Rationale

This submission proposes Round2 that consists of algorithms for the key en-
capsulation mechanism Round2.KEM and the public-key encryption scheme
Round2.PKE. The proposed algorithms fall under the category of lattice-based
cryptography, in particular, they rely on the General Learning with Rounding
(GLWR) problem. This problem has been chosen for the design of Round2 for
the reasons explained in the following subsections.

2.1.1 A Unified Design

A key feature of Round2 is that it has been designed to instantiate the LWR
problem and the Ring LWR (RLWR) problem in a seamless and unified way.
This is done by defining the General LWR problem, on which Round2 is based,
that can instantiate LWR or RLWR depending on the input parameters. The
reasons behind this choice are as follows:

Round2 is adaptive and can be applied to multiple environments. On the
one hand, LWR-based algorithms are required by environments in which perfor-
mance is less of an issue, but security is the priority. In those cases, it is often
preferred to not have an additional ring structure (as in ideal lattices [31, 27]).
On the other hand, RLWR-based algorithms achieve the best performance in
terms of bandwidth and computation so they are better suited for constrained
environments with stricter bandwidth requirements, e.g., due to the complexity
of message fragmentation.

Round2 reduces code analysis and maintenance since the unified scheme
definitions of Round2.KEM and Round2.PKE instantiate different underlying
problems, LWR and RLWR, with the same code.

The unified design enables a migration strategy from ring-based schemes
to non-ring schemes from day one of deployment. This makes sure that if
vulnerabilities in ring-based problems were found in future, then an alternative
secure solution would already be available and could be deployed directly.

2.1.2 Parameter choices for optimized performance

Parameters in GLWR and Round2 are chosen to allow for optimized perfor-
mance.

• The usage of GLWR, i.e., LWR and RLWR, rather than their LWE coun-
terparts, leads to lower bandwidth requirements in Round2 since fewer
bits need to be transmitted per coefficient.

• GLWR avoids sampling of non-uniform noise, and thus requires the gen-
eration of less random data.

5



• Round 2 relies on a definition of GLWR with sparse trinary secrets. This
simplifies implementation and reduces the probability of decryption/de-
capsulation errors.

• The ring configuration of Round2 relies on the RLWR problem over a
cyclotomic ring Zq[x]/Φn+1(x) with n + 1 prime. This problem is well
studied: there exist reductions [8, 13] from the RLWE problem [31] to
RLWR, and the former is well-studied for the ring in question. Operations
over this ring can be mapped to an NTRU [27] ring Zq[x]/(xn+1 − 1) to
improve performance.

• Round2 can be instantiated with a unified set of parameters, uRound2.
This set of parameters allows for a single implementation for a wide range
of security levels, relying on either LWR or RLWR. The moduli q and p
are powers of two for uRound2, since this simplifies the implementation
of the rounding function. Similarly, the modular computations can be
realized by ignoring the most significant bits.

• Round2 can be instantiated with an NTT-friendly set of parameters,
nRound2. This set of parameters is intended for cases where computa-
tional performance is the priority.

• Preventing pre-computation attacks requires refreshing the master public
parameter A. However, this can be computationally costly, in particular
in the case of LWR. Round2 provides several alternatives for efficiently
refreshing A that are applicable to different use cases.

2.1.3 The Choice of the Ring

In the literature, a common choice of the ring to instantiate an RLWE or RLWR
problem is Zq[x]/Φ2n(x) where n is a power of 2, so that the 2n-th cyclotomic
polynomial Φ2n(x) = xn+1. Examples of RLWE/RLWR key exchange schemes
based on the above ring are [17] and [2]. However, requiring that n be a power of
2 narrows the choice of n: it has to be at least 512 for the proper security level so
that the underlying lattice problem is hard to solve in practice. While having
n = 512 sometimes does not deliver the target security level, the n = 1024
choice would be considered an overkill. A sweet spot is n ≈ 700, which was a
common choice made by many proposals, including Kyber [16], NTRUEncrypt
[27], NTRU-KEM [29] and more.

The following observations can be made:

• Kyber [16] uses three RLWE instances, each of dimension 256, to achieve
n = 768 in total. This still limits the choice of n as it has to be a multiple
of 256.

• NTRUEncrypt uses the reduction polynomial xn − 1 which is slightly
different from a cyclotomic ring, and as suggested by [38], although the
NTRU problem remains hard for this ring, the decisional RLWE problem
over this ring seems to be easy.
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This leads us to use as reduction polynomial the n + 1-th cyclotomic poly-
nomial Φn+1(x) = xn + · · ·+ x+ 1 with n+ 1 a prime as in NTRU-KEM [29].
With the resulting ring, there is a wide range of n to choose from, for various
security levels. In addition, as shown in [36], decisional RLWE over this ring
remains hard for any modulus; this gives us confidence in the underlying de-
sign and security of Round2. Note that although operating over the same ring
as the NTRU-KEM scheme, Round2 achieves better performance because its
key generation algorithm is significantly faster than the NTRU key generation
algorithm.

In addition, since decisional RLWE is hard over a prime cyclotomic ring with
any modulus [36], we can use any modulus that optimizes our performances.
Common choices of the modulus are

• A number theoretical transform (NTT) friendly prime number, such as
12289 in [2];

• A composite number that fits in a data type for modern computers, such
as 232 − 1 in [17];

• A power of 2 that makes modulo operations and integer multiplications
efficient, such as 211 in NTRUEncrypt [27].

In our proposal, we consider two sets of parameters as will be explained in
Section 2.10. The first set of parameters considers a prime cyclotomic poly-
nomial ring with a modulus q that is a power of two such that the Φn+1

is irreducible modulo two. As Φn+1 then is irreducible modulo q, the ring
Zq[x]/Φn+1(x) does not have any proper subrings.

This choice allows for a smooth implementation of the ring and non-ring
cases in the unified scheme. All coefficients of our polynomials and matrices
are integers modulo q of less than 16 bits. That is, each coefficient fits in a
uint16 t type. For intermediate values during computations, overflows can be
ignored,as overflown bits “mod-ed out” once the element is lifted back to Zq. In
particular, when multiplying two uint16 t elements, only the lower 16 bits of
the product need to be computed; the higher 16 bits have no effect on the final
result.

The second set of parameters considers the prime cyclotomic polynomial
ring with a prime modulus q such that these parameters are NTT-friendly.
This allows the use of NTT to speed up specific configurations.

We remark that the use of a composite modulus in [17], as well as the result
from [36] suggest that the particular modulus does not have much effect on the
hardness of the problem; the length of the modulus is more important from this
point of view. Consequently, any modulus of similar size should deliver a similar
security, and therefore we choose one that is most efficient depending on the use
case.
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2.2 Preliminaries

For each positive integer a, we denote the set {0, 1, . . . , a− 1} by Za.

For a set A, we denote by a
$←− A that a is drawn uniformly from A. If χ is a

probability distribution, then a← χ means that a is drawn at random according
to the probability distribution χ.
Logarithms are in base 2, unless specified otherwise.

Modular reductions. For a positive integer α and x ∈ Q, we define {x}α
as the unique element x′ in the interval (−α/2, α/2] satisfying x′ ≡ x (mod α).
Moreover, we define 〈x〉α as the unique element x′ in the interval [0, α) for which
x ≡ x′ (mod α).

Rounding. For x ∈ Q, we denote by bxe rounding of x to the closest integer,
with rounding up in case of a tie.

Compression and decompression. Let a, b be integers such that a > b.
The functions Compressa→b : Z × Z → Zb and Decompressb→a : Z → Za are
defined as

Compressa→b(x, e) =

〈⌊
b

a
· x+

ge

a

⌉〉
b

, where g = gcd(a, b) (1)

Decompressb→a(x) =
〈⌊a

b
· x
⌉〉

a
(2)

If (x, e) is uniformly distributed on Za×(− b
2g ,

b
2g ]∩Z, then Compressa→b(x, e)

is uniformly distributed on Zb.
We also use the randomized compression function RCompressa,b : Z → Zb

defined as

RCompressa→b(x)
$←− {Compressa→b(x, e) | e ∈ (− b

2g
,
b

2g
] ∩ Z},

where g = gcd(a, b). (3)

Note that if b divides a, then b
2g = 1

2 , so that RCompressa→b(x) = 〈
⌊
b
ax
⌉
〉b for

all x ∈ Z and thus RCompressa→b is a deterministic function in this case.

Ring choice. Let n + 1 be prime. The (n + 1)-th cyclotomic polynomial
Φn+1(x) then equals xn + xn−1 + · · · + x + 1. We denote the polynomial ring
Z[x]/Φn+1(x) by Rn. When n equals 1, then Rn = Z. For each positive
integer a, we write Rn,a for the set of polynomials of degree less than n with all
coefficients in Za. We call a polynomial in Rn trinary if all its coefficients are 0,
1 or −1. Throughout this document, regular font letters denote elements from
Rn, and bold lower case letters represent vectors with coefficients in Rn. All
vectors are column vectors. Bold upper case letters are matrices. The transpose
of a vector v or a matrix A is denoted by vT or AT .
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Distributions. For each v ∈ Rn, the Hamming weight of v is defined as its
number of non-zero coefficients. The Hamming weight of a vector in Rkn equals
the sum of the Hamming weighs of its components. We denote with Hn,k(h)
the set of all vectors v ∈ Rkn of trinary polynomials of Hamming weight h,
where h ≤ nk. By considering the coefficients of a polynomial in Rn as a vector
of length n, a polynomial in Hn,k(h) corresponds to a trinary vector of length

nk with non-zeros in h positions, so that Hn,k(h) has
(
nk
h

)
2h elements. When

k = 1, we omit it from the notation, and Hn(h) denotes the set of all trinary
polynomials in Rn of Hamming weight h, corresponding to the set of all vectors
v ∈ {−1, 0, 1}n with Hamming weight h.

Secret keys in Round2 consist of matrices that contain (column) vectors that
are distributed according to the distribution χS defined over the set Hn,d/n(h).
For generating a secret matrix R in CPA-PKE.Encryptwithro from an input
variable ρ, a function fR is employed.

2.3 Underlying Problem

The problem underlying the security of Round2 is the General LWR Problem
formally defined as follows:

Definition 2.3.0.1 (General LWR (GLWR)). Let d, n, p, q be positive integers
such that q ≥ p ≥ 2, and n ∈ {1, d}. Let Rn,q be a polynomial ring, and let Ds

be a probability distribution on Rd/nn .
The search version of the GLWR problem sGLWRd,n,m,q,p(Ds) is as follows:

given m samples of the form (ai, bi = RCompressq→p(〈aT
i s〉q)) with ai ∈ Rd/nn,q

and a fixed s← Ds, recover s.
The decision version of the GLWR problem dGLWRd,n,m,q,p(Ds) is to dis-

tinguish between the uniform distribution on Rd/nn,q × Rn,p and the distribution

(ai, bi = RCompressq→p(〈aTi s〉q)) with ai
$←− Rd/nn,q and a fixed s← Ds.

When n = 1, the GLWR problem is equivalent to the LWR problem [8] with
dimension d, large modulus q and rounding modulus p. Setting the distribution
Ds = U (H1,d(h)) further specializes the GLWR problem to the LWR problem
with sparse-trinary secrets LWRspt. In [22] it is claimed that the hardness of
LWRspt can be obtained from that of LWE with similar secret distributions since
the reduction from LWE to LWR is independent of the secret’s distribution [13].
We extend this claim and make it explicit by proving that for appropriate pa-
rameters there exists a polynomial-time reduction from the (decision) Learning
with Errors (LWE) problem with secrets chosen uniformly from Zdq and errors
chosen from a Gaussian distribution Dα, to the decision version of LWRspt. See
Section 2.6.6 and Theorem 2.6.6.1 for more details.

When n = d ≥ 1 is such that n + 1 is prime, and Rn,q = Zq[x]/ (Φn+1(x))
for the n+ 1-th cyclotomic polynomial Φn+1(x) = 1 + x+ . . .+ xn, the GLWR
problem is equivalent to the Ring LWR (RLWR) problem defined on Φd+1(x), di-
mension d, large modulus q and rounding modulus p. Setting Ds = U (Hd,1(h))
further specializes it to the RLWR problem with sparse-trinary secrets RLWRspt.
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For brevity, when Ds = U
(
Hn,d/n(h)

)
, we denote GLWRd,n,m,q,p

(
U
(
Hn,d/n(h)

))
as GLWRspt. When the secret distribution Ds is the uniform one over Rd/nn,q , it
shall be omitted in the above problem notation.

2.4 Round2

Our proposal is called Round2. It includes a CPA-KEM called Round2.KEM
and a CCA-PKE called Round2.PKE. Round2.KEM is constructed using a
public-key encryption scheme, CPA-PKE, as a building block. Round2.PKE
is constructed using a key-encapsulation mechanism, CCA-PKE, as a building
block. All algorithms in these schemes use random choices, and scheme-specific
mappings that are described in the following sections with each scheme.

Section 2.4.1 contains the description of a building block for generating pub-
lic scheme parameters. Round2.KEM is described in Section 2.4.3, preceded by
the description of its building block CPA-PKE in Section 2.4.2. Round2.PKE
is descirbed in Section 2.4.5, preceded by its building block CCA-KEM in Sec-
tion 2.4.4. Figure 1 provides an overview of our proposal. It also shows the
different configurations of the proposed schemes based on the underlying GLWR
problem.

Figure 1: Submission overview

2.4.1 Internal building block: Definitions of fτn(σ)

Round2.KEM and Round2.PKE require the generation of the GLWR public

parameter A ∈ Rd/n×d/nn,q . In order to make the choice for A explicit, a seed σ
is used, as well a description of how to construct A from σ. Round2 gives four
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options for fτn(σ), the function used to compute A in CPA-PKE.Keygen and
CPA-PKE.Encryptwithrho.

Given positive integers d, n, q, µ,B and τ ∈ {0, 1, 2, 3}, fτn is a mapping from

{0, 1}µB to Rd/n×d/nn,q . The functions f0
n, f

1
n, f

2
n are to be applied when n = 1;

the function f3
n is only to be applied if n = d. To emphasize this fact, the

notation fτn=1 is used for τ = 0, 1, 2, and f3
n=d instead of f3

n will be used. In the
definitions of fτn given below, s′ = H(0x0000|s) indicates the derivation of seed
s′ from seed s by using padding 0x0000 and applying a hash function H. The
expression ai,j = DRBG(s)[id + j] means that value ai,j in A is obtained as
the id+ j element derived from the deterministic random bit generator DRBG
applied to seed s:

0. f0
n=1(σ) computes the elements in A by applying a DRBG on seed σ0:

σ0 = H(0x0000|σ),

ai,j = DRBG(σ0)[id+ j].

1. f1
n=1(σ) computes the elements in A by applying a permutation to the

elements of a fixed d× d matrix Afixed. The permutation is computed by
applying a DRBG to seed σ1 as follows:

σ1 = H(0x0001|σ),

oi = DRBG(σ1)[i] for 0 ≤ i ≤ d− 1

ai,j = afixed
i,(j+oi)(mod d).

The fixed matrix is computed from a fixed seed seedfixed by means of a
DRBG. This process is done once, and seedfixed and the DRBG are public
parameters:

afixed
i,j = DRBG(seedfixed)[id+ j]

2. f2
n=1(σ) computes the elements in A by applying a permutation to a set

of L = q elements. The permutation is computed as follows:

σ1 = H(0x0001|σ),

oi = DRBG(σ1)[i] for 0 ≤ i ≤ d− 1

The set of elements on which the permutation is applied is computed as:

σ0 = H(0x0000|σ).

The entries of the matrix A are obtained as

ai,j = DRBG(σ0)[(j + oi)(mod L)].

3. f3
n=d(σ) computes the elements in A by applying a DRBG on a seed:

σ0 = H(0x0000|σ),

ai = DRBG(σ0)[i] for 0 ≤ i ≤ d− 1

In this case, A consists of a single polynomial with coefficients a0, . . . , ad−1.
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Pros and cons between security and performance for each of these functions
will be presented in Sections 2.9.3 and 2.7.7. In particular, Tables 15 and 22
compare performance of the different variants of computing A for NIST level 5
of Round2.KEM and Round2.PKE.

2.4.2 Internal building block: CPA-PKE

This section describes CPA-PKE, the CPA-secure public key encryption that is a
building block in both Round2.KEM and Round2.PKE. Apart from algorithms
for keygeneration, encryption and decryption, CPA-PKE also has the algorithm
CPA-PKE.Encryptwithrho that describes encryption with an explicit input vari-
able that governs the randomness that is implicit in CPA-PKE.Encrypt. Algo-
rithm CPA-PKE.Encryptwithrho will be used in Round2.PKE.

CPA-PKE has various system parameters, viz positive integers n, d, h, p,
q, t, B, n, m, µ. In the proposed configurations, n ∈ {1, d}, and t|p, that is, t
divides p, and 2B |t. It is required that

µ ≤ n ·m · n.

The function Sampleµ : C ∈ Rn×mn,p → Zµp outputs the values of µ of the n ·m ·n
polynomial coefficients present in C.

CPA-PKE.Keygen generates a secret matrix S with trinary columns drawn

independently according to a distribution χS with support on
(
Hn,d/n(h)

)1×n
.

Algorithm CPA-PKE.Encryptwithrho employs a deterministic function fR for
generating a secret matrix R from an input ρ. If ρ is uniformly distributed, each
column of fR(ρ) is distributed to χS . Its also uses a mapping fEU : {0, 1}µB such
that for each ρ, all coefficients in fEU (ρ) are elements from from (− p

2g ,
p
2g ] ∩ Z,

where g = gcd(p, q).

Algorithm 1: CPA-PKE.Keygen()

parameters: Integers p, q, n, h, d, n
input : -

output : pk ∈ {0, 1, 2, 3} × {0, 1}µB ×Rd/n×nn,p , sk ∈ (Hn,d/n(h))1×n

1 Choose τ ∈ {0, 1, 2, 3}
2 σ

$←− {0, 1}µB
3 A = fτn(σ)
4 S ← χnS
5 B = RCompressq→p(〈AS〉q)
6 pk = (τ, σ,B)
7 sk = S
8 return (pk, sk)
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Algorithm 2: CPA-PKE.Encryptwithrho(pk,m, ρ)

parameters: Integers p, t, q, n, d,m, n, µ,B

input : pk = (τ, σ,B) ∈ {0, 1, 2, 3} × {0, 1}µB ×Rd/n×nn,p ,m ∈
Zµ

2B
, ρ ∈ {0, 1}µB

output : c = (U ,v) ∈ Rd/n×mn,p × Zµt
1 A = fτn(σ)
2 R = fR(ρ)
3 EU = fEU (ρ)

4 U = Compressq→p(〈A
TR〉q,EU )

5 X = 〈BTR〉p
6 v = 〈RCompressp→t(Sampleµ(X)) + t

2B
·m〉t

7 c = (U ,v)
8 return c

Algorithm 3: CPA-PKE.Encrypt(pk,m)

parameters: Integers p, t, q, n, d,m, n, µ,B

input : pk ∈ {0, 1, 2, 3} × {0, 1}µB ×Rd/n×nn,p ,m ∈ Zµ
2B

output : c ∈ Rd/n×mn,p × Zµt
1 ρ

$←− {0, 1}µB
2 c =CPA-PKE.Encryptwithrho(pk,m, ρ)
3 return c

Algorithm 4: CPA-PKE.Decrypt(sk, c)

parameters: Integers p, t, q, n, d,m, n, µ,B

input : sk = S ∈ (Hn,d/n(h))1×n, c = (U ,v) ∈ Rd/n×mn,p × Zµt
output : m̂ ∈ Zµ

2B

1 vp = Decompresst→p(v)

2 m̂ = RCompressp→2B (〈vp − Sampleµ(〈STU〉p)〉p)
3 return m̂

2.4.3 Submission proposal: Round2.KEM

This section describes Round2.KEM, an IND-CPA-secure key encapsulation
method. It builds on CPA-PKE (Section 2.4.2). In addition to the parameters
and functions from CPA-PKE, it uses a system parameter λ1 and an injection

bin1 : Rd/n×mn,p × Zµt → {0, 1}λ1 , and a hash function H : {0, 1}∗ → {0, 1}µB .
The system parameter λ1 satisfies

λ1 = d ·m log2(p) + µ log2(t).

The mapping bin1 concatenates a vector consisting of the binary representation
of the coefficients of the polynomial entries d/n × m matrix, and the binary
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representations of the entries of a vector in Zµt . Round2.KEM also uses the
bijection φ : Zµ

2B
→ {0, 1}µB , that replaces each of the µ entries of its input by

the B-bits binary representation of that entry.

Algorithm 5: Round2.KEM.Keygen()

parameters: Integers p, q, n, h, d, n
input : -

output : pk ∈ {0, 1, 2, 3} × {0, 1}µB ×Rd/n×nn,p , sk ∈ (Hn,d/n(h))1×n

1 (pk, sk) = CPA-PKE.Keygen()
2 return (pk, sk)

Algorithm 6: Round2.KEM.Encapsulate(pk)

parameters: Integers p, t, q, n, d,m, n, µ,B

input : pk ∈ {0, 1, 2, 3} × {0, 1}µB ×Rd/n×nn,p

output : (c,K) ∈ (Rd/n×mn,p × Zµt )× {0, 1}µB

1 m
$←− Zµ

2B

2 c = CPA-PKE.Encrypt(pk,m))
3 K = H(φ(m), bin1(c))
4 return (c,K)

Algorithm 7: Round2.KEM.Decapsulate(sk, c)

parameters: Integers p, t, q, n, d,m, n, µ,B

input : sk ∈ (Hn,d/n(h))1×n, c ∈ Rd/n×mn,p × Zµt
output : K ∈ {0, 1}µB

1 m = CPA-PKE.Decrypt(sk, c)
2 K = H(φ(m), bin1(c))
3 return K

2.4.4 Internal building block: CCA-KEM

This section describes CCA-KEM that is a building block for Round2.PKE. As
CCA-KEM is obtained by applying a KEM variant of the Fujisaki-Okamoto
transform [26] to CPA-PKE, it is IND-CCA secure.

CCA-KEM has several system parameters and functions in addition to those
from CPA-PKE and Round2.KEM. It has two hash functions, G : {0, 1}∗ →
{0, 1}µB×{0, 1}µB×{0, 1}µB , and H : {0, 1}∗ → {0, 1}µB . Moreover, it has the

system parameter λ2, and an injection bin2 : {0, 1, 2, 3}×{0, 1}µB×Rd/n×nn,p →
{0, 1}λ2 . The parameter λ2 satisfies

λ2 = 8 + µB + d · n log2(p)
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The mapping bin2 concatenates an 8-bit representation of an element in {0, 1, 2, 3},
a binary representation of an element in {0, 1}µB , and a vector consisting of the
binary representations of the coefficients of the polynomial entries of a d/n× n
matrix.

Algorithm 8: CCA-KEM.Keygen()

parameters: Integers p, q, n, h, d, n, µ,B
input : -

output : pk ∈ {0, 1, 2, 3} × {0, 1}µB ×Rd/n×nn,p , sk ∈
(Hn,d/n(h))1×n×{0, 1}µB×({0, 1, 2, 3}×{0, 1}µB×Rd/n×nn,p )

1 (pk, skCPA−PKE) =CPA-PKE.Keygen()

2 z
$←− {0, 1}µB

3 sk = (skCPA−PKE , z, pk)
4 return (pk, sk)

Algorithm 9: CCA-KEM.Encapsulate(pk)

parameters: Integers p, t, q, n, d,m, n, µ,B

input : pk ∈ {0, 1, 2, 3} × {0, 1}µB ×Rd/n×nn,p

output : c = (U ,v, g) ∈ Rd/n×mn,p × Zµt × {0, 1}µB ,K ∈ {0, 1}µB

1 m
$←− Zµ

2B

2 (L, ρ, g) = G(φ(m), bin2(pk))
3 (U ,v) = CPA-PKE.Encryptwithrho(pk,m, ρ)
4 c = (U ,v, g)
5 K = H(L, bin1(U ,v), g)
6 return (c,K)

Algorithm 10: CCA-KEM.Decapsulate(sk, c)

parameters: Integers p, t, q, n, d,m, n, µ,B
input : sk = (skCPA−PKE , z, pk) ∈ (Rn,d/n(h))1×n × {0, 1}µB ×

({0, 1, 2, 3} × {0, 1}µB ×Rd/n×nn,p ), c = (U ,v, g) ∈
Rd/n×mn,p × Zµt × {0, 1}µB

output : K ∈ {0, 1}µB
1 m′ = CPA-PKE.Decrypt(skCPA−PKE , (U ,v))
2 (L′, ρ′, g′) = G(φ(m′), bin2(pk))
3 (U ′,v′)= CPA-PKE.Encryptwithrho(pk,m′, ρ′)
4 if (U ′,v′, g′) = (U ,v, g) then
5 return K = H(L′, bin1(U ,v), g)
6 else
7 return K = H(z, bin1(U ,v), g)
8 end if
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2.4.5 Submission proposal: Round2.PKE

Round2.PKE is an IND-CCA public-key encryption scheme constructed by com-
bining CCA-KEM (Section 2.4.4) and a data encapsulation mechanism (DEM).
The DEM encapsulates a message M of length mlen bytes with the key K en-
capsulated in the KEM, resulting in an encapsulated message c2 of length clen
bytes. In the inverse operation, c2 is decapsulated to the original message M
using K.

Algorithm 11: Round2.PKE.Keygen()

parameters: Integers p, q, n, h, d, n, µ,B
input : -

output : pk ∈ {0, 1, 2, 3} × {0, 1}µB ×Rd/n×nn,p , sk ∈
(Hn,d/n(h))1×n×{0, 1}µB×({0, 1, 2, 3}×{0, 1}µB×Rd/n×nn,p )

1 (pk, sk) =CCA-KEM.Keygen()
2 return (pk, sk)

Algorithm 12: Round2.PKE.Encrypt(pk,M)

parameters: Integers p, t, q, n, d,m, n, µ,B

input : pk ∈ {0, 1, 2, 3} × {0, 1}µB ×Rd/n×nn,p ,mlen ∈ Z,M ∈ Zmlen256

output : c = (c1, clen, c2) ∈ (Rd/n×mn,p × Zµt × {0, 1}µB)× Z× Zclen256

1 (c1,K) = CCA-KEM.Encapsulate(pk)
2 (clen, c2) = DEM(K,M)
3 c = (c1, clen, c2)
4 return c

Algorithm 13: Round2.PKE.Decrypt(sk, c)

parameters: Integers p, t, q, n, d,m, n, µ,B

input : sk ∈ (Hn,d/n(h))1×n × {0, 1}µB × ({0, 1}µB ×Rd/n×nn,p ), c =

(c1, clen, c2) ∈ (Rd/n×mn,p × Zµt × {0, 1}µB)× Z× Zclen256

output : M ∈ Zmlen256

1 K =CCA-KEM.Decapsulate(sk, c1)
2 (mlen,M) =DEM−1(K, c2)
3 return (mlen,M)
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2.5 Known Answer Test Values

The Known Answer Test Values for all algorithm variants and NIST levels can
be found on the digital media at the location described in section 3.3.

Note that for generating intermediate output, the code needs to be compiled
with -DROUND2 INTERMEDIATE (this option is enabled by default when making
use of the provided Makefiles).

2.6 Expected Security Strength

This section is organized as follows: Section 2.6.1 introduces notions of security
based on indistinguishablity of ciphertexts or encapsulated keys. Section 2.6.2
gives results (existing and new) on the hardness of our underlying problem, or
rather its two specific instances we use – the Learning with Rounding problem
with sparse trinary secrets (LWRspt) and the Ring Learning with Rounding prob-
lem with sparse trinary secrets (RLWRspt). Sections 2.6.4 and 2.6.5 contain the
first main result of this section – a proof of IND-CPA security for Round2.KEM
(Theorem 2.6.4.1), and a proof of IND-CCA security for Round2.PKE (Theo-
rems 2.6.5.1 and 2.6.5.2), assuming the hardness of the above problems. Finally,
Section 2.6.6 and Theorem 2.6.6.1 contain the second main result of this reduc-
tion: a proof of the hardness for LWRspt, the underlying problem of our schemes
for the non-ring case (i.e., for n = 1) in the form of a polynomial-time reduc-
tion to it from the Learning with Errors (LWE) problem with secrets uniformly
chosen from Zdq and errors drawn according to a Gaussian distribution.

Figure 2: Summary of reductions involved in the security proofs for
Round2.KEM and Round2.PKE. “SPT” refers to a variant of the problem in
question where the secret is sparse-trinary, instead of uniform in Zdq .
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Figure 2 gives an overview of the major reductions that are contributions of
this section.

2.6.1 Security Definitions

Security requirements for public-key encryption and key-encapsulation schemes
are based on whether static or ephemeral keys are used. (Static) public-key
encryption (PKE) schemes, and nominally ephemeral key-encapsulation mech-
anisms that allow key caching that provide security against adaptive chosen
ciphertext attack (corresponding to IND-CCA2 security) are considered to be
sufficiently secure [34, Section 4.A.2]. On the other hand, a purely ephemeral
key encapsulation mechanism (KEM) that provides semantic security against
chosen plaintext attack, i.e., IND-CPA security, is considered to be sufficiently
secure [34, Section 4.A.3].

Table 1: IND-CPA game for PKE

1. (pk, sk) = KeyGen(λ).

2. b
$←− {0, 1}

3. (m0,m1, st) = A(pk) such that |m0| = |m1|.
4. c = Enc(pk,mb)

5. b′ = A(pk, c, st)

6. return [b′ = b]

Definition 2.6.1.1 (IND-CPA Secure PKE). Let PKE=(Keygen, Enc, Dec) be
a public key encryption scheme with message space M. Let λ be a security pa-
rameter. The IND-CPA game is defined in Table 1, and the IND-CPA advantage
of an adversary A against PKE is defined as

AdvIND-CPAPKE (A) = | Pr[IND-CPAA ⇒ 1]− 1

2
| .

Definition 2.6.1.2 (IND-CCA Secure PKE). Let PKE=(Keygen, Enc, Dec)
be a public key encryption scheme with message space M. Let λ be a security
parameter. Let A be an adversary against PKE. The IND-CCA game is defined
as Table 1, with the addition that A has access to a decryption oracle Dec(·) =
Dec(sk, ·) that returns m′ = Dec (sk, Enc(pk,m′)), and the restriction that A
cannot query Dec(·) with the challenge c. The IND-CCA advantage of A against
PKE is defined as

AdvIND-CCAPKE (ADec(·)) = | Pr[IND-CCAA ⇒ 1]− 1

2
| .
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Table 2: IND-CPA game for KEM

1. (pk, sk) = KeyGen(λ).

2. b
$←− {0, 1}

3. (c,K0) = Encaps(pk)

4. K1
$←− K

5. b′ = A(pk, c,Kb)

6. return [b′ = b]

Definition 2.6.1.3 (IND-CPA Secure KEM). Let KEM=(Keygen, Encaps,
Decaps) be a key encapsulation mechanism with key space K. Let λ be a se-
curity parameter. The IND-CPA game is defined in Table 2, and the IND-CPA
advantage of an adversary A against KEM is defined as

AdvIND-CPAKEM (A) = | Pr[IND-CPAA ⇒ 1]− 1

2
| .

Definition 2.6.1.4 (IND-CCA Secure KEM). Let KEM=(Keygen, Encaps,
Decaps) be a key encapsulation mechanism with key space K. Let λ be a se-
curity parameter. Let A be an adversary against KEM. The IND-CCA game is
defined in Table 2, with the addition that A has access to a decapsulation oracle
Decaps(·) = Decaps(sk, ·) that returns K ′ = Decaps(sk, c′) where (c′,K ′) =
Encaps(pk), and the restriction that A cannot query Decaps(·) with the chal-
lenge c. The IND-CCA advantage of A against KEM is defined as

AdvIND-CCAKEM (ADecaps(·)) = | Pr[IND-CCAA ⇒ 1]− 1

2
| .

In the random oracle model [9] (both for IND-CPA and IND-CCA games),
the adversary is given access to a random oracle H that it can query up to a
polynomial number qH of times. In a post-quantum setting, it can be assumed
that the adversary has access to a quantum accessible random oracle HQ [14]
that can be queried up to qHQ times on arbitrary superpositions of input strings.

2.6.2 Hardness Assumption (Underlying Problem)

In this section, we detail the underlying problem on whose hardness the security
of our schemes are established. Depending on whether the system parameter n
is chosen to be 1 or d (see Section 2.4.2), the proposed public-key encryption and
key-encapsulation mechanism are instantiated either as non-ring (LWR) based
or ring (RLWR) based schemes. The security of the proposals are therefore
based on the hardness of the Decision-General Learning with Rounding prob-
lem with sparse-trinary secrets, i.e., dGLWRspt (see Section 2.3). We first recall
hardness results for LWR before introducing our own results on the hardness of
dLWRspt. We then recall hardness results of RLWR.
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Provable Security in the non-ring case: The hardness of the LWR prob-
lem has been studied in [8, 3, 13, 7] and established based on the hardness of
the Learning with Errors (LWE) problem [37]. The most recent work are two
independent reductions to LWR from LWE: the first, due to Bai et al. [7, The-
orem 6.4] preserves the dimension n between the two problems but decreases
the number of LWR samples that may be queried by an attacker by a factor
(p/q); the second due to Bogdanov et al. [13, Theorem 3] preserves the number
of samples between the two problems but increases the LWR dimension by a
factor log q. We follow the approach of Bai since it results in a smaller LWR
dimension, leading to smaller bandwidth requirements and better performance.

Bai et al.’s reduction [7, Theorem 6.4] is an essential component that we use
in Section 2.6.6 to prove a reduction from dLWEn,m′,q,Dα (U (Zq)) to
dLWRn,m,q,p (U(Hn (h))), i.e., to dLWRspt.

Provable Security in the ring case: Next, we recall hardness results for the
ring case, i.e., for Decision-RLWR [8]. To the best of our knowledge, the only
existing result on the hardness of Decision-RLWR is due to [8, Theorem 3.2], who
show that Decision-RLWR is at least as hard as Decision-RLWE as long as the
underlying ring and secret distribution remain the same for the two problems,
the RLWE noise is sampled from any (balanced) distribution in {−B, . . . , B},
and q is super-polynomial in n, i.e., q ≥ pBnω(1). The last condition may be too
restrictive for practical schemes. Hence, although [8, Theorem 3.2] is relevant
for the provable (IND) security of our schemes’ ring-based instantiations, it
remains to be seen whether the above reduction can be improved to be made
practical.

2.6.3 IND-CPA security of CPA-PKE

In this section it is shown that the public-key encryption scheme CPA-PKE
from Section 2.4.2 is IND-CPA secure, based on the hardness of the decision
GLWR problem with sparse-trinary secrets. In Section 2.6.5 this result will be
used to show that Round2.PKE is IND-CCA Secure.

In the following, let Si denote the event that in game Gi, the adversary
A has output 1 (i.e., that bit b in game Gi was correctly guessed). In the
proof, the following version of CPA-PKE.Keygen() is used. It takes as input

the GLWR public parameter A ∈ Rd/n×d/nn,q instead of generating it as part of
the algorithm:
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Algorithm 14: CPA-PKE.Keygen(A)

parameters: Integers p, q, n, h, d, n

input : A ∈ Rd/n×d/nn,q .

output : pk ∈ Rd/n×d/nn,q ×Rd/n×nn,p , sk ∈ (Hn,d/n(h))1×n

1 S
$←− χnS

2 B = RCompressq→p(〈AS〉q)
3 pk = (A,B)
4 sk = S
5 return (pk, sk)

Let n,m, p, q, d, h be positive integers with n ∈ {1, d} . The hard problem
underlying the security of our schemes is decision-GLWR with sparse-trinary
secrets (see Section 2.3). For the above parameters, we define the GLWR oracle
Om,χS ,s for a secret distribution χS that returns m GLWR samples as follows:

Om,χS ,s : A
$←− Rm×d/nn,q , s← χS ; return

(
A,RCompressq→p(As)

)
(4)

The decision-GLWR problem with sparse-trinary secrets is to distinguish be-

tween the distributions U(Rd/nn,q )×U(Rn,p) and Om,χS ,s, with s common to all
samples and χS := U(Hn,d/n(h)). For an adversary A, we define

Adv
dGLWRspt
d,n,m,q,p(A) =

|Pr
[
A(A, b) = 1 | (A, b)

$←− Om,χS ,s
]
−Pr

[
A(A, b) | A $←− Rm×d/nn,q , b

$←− Rmn,p
]
|

For an extended form of the decision-GLWR problem with the secret in form
of a matrix consisting of n independent secret vectors, we define a similar oracle
Om,χS ,n,S as follows:

Om,χS ,n,S : A
$←− U

(
Rm×d/nn,q

)
, S ← (χS)n; return

(
A,RCompressq→p(AS)

)
(5)

The advantage of an adversary for this extended form of the decision-GLWR
problem is defined in a similar manner as above.

The following theorem shows that CPA-PKE is IND-CPA secure assuming
the hardness of decision-GLWR with sparse-trinary secrets.

Theorem 2.6.3.1. If fn : {0, 1}µB → Rd/n×d/nn,q is a secure mapping, and
fR is indistinguishable from (χS)m, then CPA-PKE is IND-CPA secure under
the hardness assumption of the Decision-GLWR problem with sparse-trinary
secrets. More precisely, for every IND-CPA adversary A, if AdvIND-CPA

CPA-PKE(A) is
the advantage in winning the IND-CPA game, then there exist adversaries B,D
and reduction algorithms C′, E ′,F ′ such that

AdvIND-CPA
CPA-PKE(A) ≤ Advfn(B) + n · AdvdGLWRsptd,n,d/n,q,p(A ◦ C

′) + AdvfR(D)

+m ·Adv
dGLWRspt
d,n,d/n,q,p(A ◦ E

′) +m ·Adv
dGLWRspt
d,n,n,p,t(A ◦ F

′)
(6)
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Table 3: IND-CPA games for CPA-PKE: Games G0 and G1

Game G0 Game G1

1. ((τ, σ,B),S) = CPA-PKE.Keygen(). 1. A
$←− Rd/n×d/nn,q , ((A,B),S) = CPA-PKE.Keygen(A).

2. Choose b
$←− {0, 1}. 2. Choose b

$←− {0, 1}.
3. (m0,m1, st) = A(fn(σ),B). 3. (m0,m1, st) = A(A,B).

4. (U ,v) = CPA-PKE.Encrypt ((σ,B) ,mb). 4. (U ,v) = CPA-PKE.Encrypt ((A,B) ,mb).

5. b′ = A ((fn(σ),B), (U ,v), st). 5. b′ = A ((A,B), (U ,v), st).

6. return[(b′ = b)]. 6. return[(b′ = b)].

In this equation, Advfn(B) is the advantage of B in distinguishing the output of

the mapping fn from uniform, and Adv
dGLWRspt
d,n,m,q1,q2

(Z) is the advantage of adver-
sary Z in distinguishing m GLWR samples (with sparse-trinary secrets) from
uniform, with the GLWR problem defined for the parameters d, n, q1, q2. Finally,
the adversary D distinguishes between

U({fR(ρ) | ρ ∈ {0, 1}µB}) and (χS)m.

The runtimes of B,D,A ◦ C′,A ◦ E ′,A ◦ F ′ are essentially the same as that of
A.

Proof. We prove the above theorem via a sequence of IND-CPA games shown in
Tables 3, 4 and 5, following the methodology of Peikert et al. in [35, Lemma 4.1]
and that of [16, Theorem 3.3]:

Game G0 is the original IND-CPA game for CPA-PKE. By definition, the
advantage of the adversary for game G0 is:

AdvIND-CPA
PKE (A) = |Pr(S0)− 1/2| (7)

Game G1 is different from game G0 only in the fact that A is generated
fully randomly in step 1, instead of via the mapping fn. An adversary that can
distinguish between game G0 and game G1 immediately leads to a distinguisher
B between fn and the uniform distribution:

|Pr(S0)− Pr(S1)| ≤ Advfn(B) (8)

Note that out of the possible choices of fn for creating A as described in the
specification of algorithms, f0

n=1 and f1
n=1 ensure that the resulting A is defined

according to the non-ring, i.e., it yields a LWR instantiation of the decision-
GLWR problem. The fourth choice for fn, i.e., f3

n=d ensures that the resulting
A is defined according to the ring, i.e., it yields a RLWR instantiation of the
decision-GLWR problem.
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Table 4: IND-CPA games for CPA-PKE: Games G2 and G3

Game G2 Game G3

1. A
$←− Rd/n×d/nn,q , B

$←− Rd/n×nn,p . 1. A
$←− Rd/n×d/nn,q , B

$←− Rd/n×nn,p .

2. Choose b
$←− {0, 1}. 2. Choose b

$←− {0, 1}.
3. (m0,m1, st) = A(A,B). 3. (m0,m1, st) = A(A,B).

4. (U ,v) = CPA-PKE.Encrypt ((A,B) ,mb). 4. R
$←− (Hn,d/n(h))1×m.

5. b′ = A ((A,B), (U ,v), st). 5. U = RCompressq→p(A
TR).

6. Output[(b′ = b)]. 6. X = 〈BTR〉p.
7. v = 〈RCompressp→t(Sampleµ (X)) + t

2B
·mb〉t.

8. b′ = A ((A,B), (U ,v), st).

9. Output[(b′ = b)].

Table 5: IND-CPA games for CPA-PKE: Games G4 and G5

Game G4 Game G5

1. A
$←− Rd/n×d/nn,q , B

$←− Rd/n×nn,p . 1. A
$←− Rd/n×d/nn,q , B

$←− Rd/n×nn,p .

2. Choose b
$←− {0, 1}. 2. Choose b

$←− {0, 1}.
3. (m0,m1, st) = A(A,B). 3. (m0,m1, st) = A(A,B).

4. R
$←− (Hn,d(h))1×m. 4. R

$←− (Hn,d(h))1×m.

5. U
$←− Rd/n×mn,p . 5. U

$←− Rd/n×mn,p .

6.X = 〈BTR〉p. 6. X
$←− Rn×mn,p .

7. v = 〈RCompressp→t(Sampleµ (X)) + t
2B
·mb〉t. 7. v = 〈RCompressp→t(Sampleµ (X)) + t

2B
·mb〉t.

8. b′ = A ((A,B), (U ,v), st). 8. b′ = A ((A,B), (U ,v), st).

9. Output[(b′ = b)]. 9. Output[(b′ = b)].

Game G2 is different from game G1 only in the fact that (A,B) is a sample

from the uniform distribution onRd/n×d/nn,q ×Rd/n×nn,p instead of fromOd/n,χS ,n,S .
Under the decision GLWR(χS) assumption, these two distributions are indis-
tinguishable with a factor n. Indeed, assume A can distinguish between G1

and G2. We describe an algorithm C that distinguishes between samples from

Od/n,χS ,n,S and those from U(Rd/n×d/nn,q )× U(Rd/n×nn,p ) using A.

Algorithm C
Input (A,B) ∈ Rd/n×d/nn,q ×Rd/n×nn,p .

1. Choose b
$←− U ({0, 1}).

2. (m0,m1, st) = A(A,B)
3. (U ,v) = CPA-PKE.Encrypt ((A,B) ,mb)
4. b′ = A ((A,B), (U ,v), st)
5. Output[(b′ = b)]
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If (A,B)
$←− Rd/n×d/nn,q × Rd/n×nn,p , then the outputs of C and Game G2 have

equal distribution. If (A,B) is drawn from Od/n,χS ,n,S , then the outputs of C
and G1 have equal distribution. The advantage Adv(A ◦ C) in distinguishing
between Od/n,χS ,n,S and the uniform distribution thus satisfies

Adv(A ◦ C) =| Pr(S1)− Pr(S2) | . (9)

By a standard hybrid argument, there exists an algorithm C′ for distinguishing

between the distributions Od/n,χS ,s and U(Rd/n×d/nn,q ×Rd/nn,p ) such that

Adv(A ◦ C) ≤ n ·Adv
dGLWRspt
d,n,d/n,q,p(A ◦ C

′) (10)

for χS := U(Hn,d/n(h)).

Game G3 is different from game G2 only in the generation of R. Therefore
a distinguisher D between the two distributions for R can be created for which

AdvfR(D) =| Pr(S2)− Pr(S3) | . (11)

The two distributions are U({fR(ρ) | ρ ∈ {0, 1}µB}) and χmS = (U(Hn,d/n(h))1×m.

Game G4 is different from game G3 only in the generation U . Therefore a
distinguisher E between these two distributions for U can be created for which

Adv(A ◦ E) =| Pr(S3)− Pr(S4) | . (12)

Similar to the reasoning with the distinguisher C, it can be shown that there

exists an algorithm E ′ for distinguishing between Od/n,χS ,s and U(Rd/nn,q ×Rn,p).
such that

Adv(A ◦ E) ≤ m ·Adv
dGLWRspt
d,n,d/n,q,p(A ◦ E

′) (13)

for χS := U
(
Hn,d/n(h)

)
.

Game G5 is different from game G4 only in the generation of X. Consider
the following algorithm F .

Algorithm F
Input (B,Y ) ∈ Rd/n×nn,p ×Rn×mn,t

1. Choose A
$←− Rd/n×d/nn,q

2. Choose b
$←− {0, 1}.

3. (m0,m1, st) = A(A,B)

4. U
$←− Rd/n×mn,p

5. v = 〈Sampleµ(Y ) + t
2B
mb〉t

6. b′ = A((A,B), (U ,v), st)
7. Output [ (b′ = b) ]
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If B
$←− Rd/n×nn,p and Y = RCompressp→t(〈B

TR〉p) with R
$←− (Hn,d/n(h))1×m,

then the outputs of Algorithm F and game G4 have equal distribution. If

(B,Y )
$←− U(Rd/n×nn,p )×U(Rn×mn,t ), then the outputs of Algorithm F and Game

G5 have equal distribution. This is so as RCompressp→t() maps uniform vari-
ables to uniform variables. Algorithm F distinguishes between these two distri-
butions with advantage satisfying

Adv(A ◦ F) = |Pr(S4)− Pr(S5)|.

By a standard hybrid argument, there exists a distinguisher F ′ between the uni-

form distribution onRd/n×nn,p ×R1×n
n,t and the distribution (B,RCompressp→t(〈B

Tr〉p)
with B

$←− Rd/n×nn,p and r
$←− Hn,d(h) such that

Adv(A ◦ F) ≤ m ·Adv
dGLWRspt
d,n,n,p,t(A ◦ F

′) (14)

for χS := U(Hn,d/n(h)).
In game G5, as X is uniformly distributed, Sampleµ(X) is uniformly dis-

tributed. As RCompressp→t() maps uniform variables to uniform variables, the
variable RCompressp→t((Sampleµ(X)) is uniformly distributed. As a conse-
quence, for each message mb, the variable v = 〈RCompressp→t((Sampleµ(X))+
t

2B
m〉t in game G5 is uniformly distributed. As A,B and U are distributed uni-

formly as well,
Pr(S5) = 1/2. (15)

Combination of equations 7 to 15 yields the proof of Theorem 2.6.3.1.

2.6.4 IND-CPA Security of Round2.KEM

This section presents a proof that Round2.KEM is IND-CPA secure, based on
the hardness of the decision GLWR problem with sparse-trinary secrets. Similar
to the proof of Theorem 2.6.3.1, a sequence of games will be presented. Again,
versions of Round2.KEM algorithms are used that have A as input.

Theorem 2.6.4.1. If fn : {0, 1}µB → Rd/n×d/nn,q is a secure mapping, fR
is in distinguishible from (χS)m and H is a secure pseudorandom function,
Round2.KEM is IND-CPA secure under the hardness assumption of the Decision-
GLWR problem with sparse-trinary secrets. More precisely, if AdvIND-CPA

Round2.KEM(A)
is the advantage of adversary A in the IND-CPA game, then there exist adver-
saries B,D,G and reduction algorithms C′, E ′ and F ′ such that

AdvIND-CPA
Round2.KEM(A) ≤ Advfn(B) + n · AdvdGLWRsptd,n,d/n,q,p(A ◦ C

′) + AdvfR(D)

+ m ·Adv
dGLWRspt
d,n,d/n,q,p(A ◦ E

′) +m ·Adv
dGLWRspt
d,n,n,p,t(A ◦ F

′) + AdvH(G)
(16)

In this equation, Advfn(B) is the advantage of B in distinguishing the output

of the mapping fn from uniform, and Adv
dGLWRspt
d,n,m,q1,q2

(Z) is the advantage of an
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adversary Z in distinguishing m GLWR samples (with sparse-trinary secrets)
from uniform, with the GLWR problem defined for the parameters d, n, q1, q2.
The adversary D distinguishes between

U({fR(ρ) | ρ ∈ {0, 1}µB}) and (χS)m.

Finally, AdvH(G) is the advantage of an adversary G in distinguishing the output
of the pseudorandom function H (given uniform input) from uniform. The
runtimes of B,D,G,A ◦ C′,A ◦ E ′,A ◦ F ′ are essentially the same as A.

Proof. The proof for Theorem 2.6.4.1, proceeds via a similar sequence of games
as in the proof for Theorem 2.6.3.1 (shown in Tables 6, 7 and 8). The event that
algorithm A ouputs a 1 in game Gi is denoted by Si. Game G0 is the original
IND-CPA game for Round2.KEM, and so

AdvIND-CPA
Round2.KEM(A) = | Pr(S0)− 1/2 | (17)

Table 6: IND-CPA games for Round2.KEM: Games G0 and G1

Game G0 Game G1

1. (pk = (τ, σ,B), sk = S) = Round2.KEM.Keygen(). 1. A
$←− Rd/n×d/nn,q , (pk = (A,B), sk = S) =

Round2.KEM.Keygen(A).

2. Choose b
$←− {0, 1}. 2. Choose b

$←− {0, 1}.
3. (c = (U ,v),K0) = Round2.KEM.Encapsulate (pk). 3. (c = (U ,v),K0) = Round2.KEM.Encapsulate (A,B).

4. K1
$←− {0, 1}µB . 4. K1

$←− {0, 1}µB .

5. b′ = A (pk, c,Kb). 5. b′ = A (pk, c,Kb).

6. Output [(b′ = b)]. 6. Output [(b′ = b)].

Similarly to the case for CPA-PKE, there is a distinguisher B between fn
and the uniform distribution

| Pr(S0)− Pr(S1) | ≤ Advfn(B) (18)

Games G1 and G2 only differ in the way that the matrix B is generated. Con-
sider the following algorithm.

Algorithm C
Input (A,B) ∈ Rd/n×d/nn,q ×Rd/n×nn,p .

1. Choose b
$←− {0, 1}.

2. (c = (U ,v),K0) = Round2.KEM.Encapsulate (pk = (A,B)).

3. K1
$←− {0, 1}µB

4. b′ = A (pk = (A,B) , c,Kb).
5. Output[(b′ = b)].

The input (A,B) to algorithm C is distributed as Od/n,χS ,n,S if the input is
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Table 7: IND-CPA games for Round2.KEM: Games G2 and G3

Game G2 Game G3

1. A
$←− Rd/n×d/nn,q , B

$←− Rd/n×nn,p . 1. A
$←− Rd/n×d/nn,q , B

$←− Rd/n×nn,p .

2. Choose b
$←− {0, 1}. 2. Choose b

$←− {0, 1}.
3. (c = (U ,v) ,K0) = Round2.KEM.Encapsulate (A,B). 3. m

$←− Zµ
2B

.

4. R
$←−
(
Hn,d/n (h)

)1×m
.

5. U = RCompressq→p(A
TR).

6. X = 〈BTR〉p.
7. v = 〈RCompressp→t(Sampleµ(X)) + t

2B
·m〉t.

8. K0 = H (φ(m), bin1 (c = (U ,v))).

4. K1
$←− {0, 1}µB . 9. K1

$←− {0, 1}µB .

5. b′ = A (pk, c,Kb). 10. b′ = A (pk, c = (U ,v),Kb).

6. Output [(b′ = b)]. 11. Output [(b′ = b)].

from game G1; it is distributed uniformly if the input is from game G2. Algo-
rithm C is thus a distinguisher between Od/n,χS ,n,S and the uniform distribution
with advantage equal to |Pr(S2) − Pr(S1)|. Similar to the proof for IND-CPA
security for CPA-PKE, it follows that there is an algorithm C′ such that

| Pr(S1)− Pr(S2)| ≤ n ·Adv
dGLWRspt
d,n,d/n,q,p(A ◦ C

′) (19)

Games G2 and G3 only differ in the generation of R. It is therefore possible
to create a distinguisher D between the two distributions for R such that

AdvfR(D) =| Pr(S2)− Pr(S3) | . (20)

The two distributions are U({fR(ρ) | ρ ∈ {0, 1}µB}) and (χS)m = (U(Hn,d/n(h))1×m.
Games G3 and G4 only differ in the generation of U . Similarly as with the

corresponding IND-CPA games for CPA-PKE, it can be shown that there exists
an algorithm E ′ such that

| Pr(S3)− Pr(S4) | ≤ m ·Adv
dGLWRspt
d,n,d/n,q,p(A ◦ E

′) (21)
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Table 8: IND-CPA games for Round2.KEM: Games G4, G5 and G6

Game G4 Game G5 Game G6

1. A
$←− Rd/n×d/nn,q , B

$←− Rd/n×nn,p . 1. A
$←− Rd/n×d/nn,q , B

$←− Rd/n×nn,p . 1. A
$←− Rd/n×d/nn,q , B

$←− Rd/n×nn,p .

2. Choose b
$←− {0, 1}. 2. Choose b

$←− {0, 1}. 2. Choose b
$←− {0, 1}.

3. m
$←− Zµ

2B
. 3. m

$←− Zµ
2B

. 3. m
$←− Zµ

2B
.

4. R
$←−
(
Hn,d/n (h)

)1×m
. 4. R

$←−
(
Hn,d/n (h)

)1×m
. 4. R

$←−
(
Hn,d/n (h)

)1×m
.

5. U
$←− Rd/n×mn,p . 5. U

$←− Rd/n×mn,p . 5. U
$←− Rd/n×mn,p .

6. X = 〈BTR〉p. 6. X
$←− Rn×mn,p . 6. X

$←− Rn×mn,p .

7. v = 〈RCompressp→t(Sampleµ(X)) +
t

2B
·m〉t.

7. v = 〈RCompressp→t(Sampleµ(X)) +
t

2B
·m〉t.

7. v = 〈RCompressp→t(Sampleµ(X)) +
t

2B
·m〉t.

8. K0 = H (φ(m), bin1 (c = (U ,v))). 8. K0 = H (φ(m), bin1 (c = (U ,v))). 8. K0
$←− {0, 1}µB .

9. K1
$←− {0, 1}µB . 9. K1

$←− {0, 1}µB . 9. K1
$←− {0, 1}µB .

10. b′ = A (pk, c = (U ,v),Kb). 10. b′ = A (pk, c = (U ,v),Kb). 10. b′ = A (pk, c = (U ,v),Kb).

11. Output [(b′ = b)]. 11. Output [(b′ = b)]. 11. Output [(b′ = b)].

Games G4 and G5 only differ in the generation of X. Consider the following
algorithm F .

Algorithm F
Input (B,Y ) ∈ Rd/n×nn,p ×Rn×mn,t

1. Choose A
$←− Rd/n×d/nn,q

2. Choose b
$←− {0, 1}.

3. m
$←− Zµ

2B
.

4. U
$←− Rd/n×mn,p

5. v = 〈Sampleµ(Y ) + t
2B
m

6. K0 = H (φ(m), bin1 (c = (U ,v))).

7. K1
$←− {0, 1}µB .

8. b′ = A (pk = (A,B) , c = (U ,v) ,Kb).
9. Output [ (b′ = b) ].

If (B,Y ) =
(
B,RCompressp→t(〈B

TR〉p)
)

with B
$←− Rd/n×nn,p and R

$←−(
Hn,d/n(h)

)1×m
, then the outputs of F and game G4 have the same distri-

bution. If (B,Y )
$←− Rd/n×nn,p ×Rn×mn,t , then the outputs of F and game G5 have

the same distribution. This is so as RCompressp→t maps uniform variables to
uniform variables. Similar to the proof for the IND-CPA security for CPA-PKE,
it follows that there is a reduction algorithm F ′ such that

| Pr(S4)− Pr(S5) | = Adv(A ◦ F) ≤ m ·Adv
dGLWRspt
d,n,n,p,t(A ◦ F

′) (22)

Games G5 and G6 only differ in the generation of K0. An adversary that
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can distinguish between these two games immediately leads to a distinguisher
G between the output of H and the uniform distribution.

|Pr(S5)− Pr(S6)| ≤ AdvH(G) (23)

In Game G6, the input to the adversary A is independent of the original bit b
chosen, and so

Pr(S6) = 1/2. (24)

Combining Eqs. 17 to 24 yields the proof of Theorem 2.6.4.1.

2.6.5 IND-CCA security of Round2.PKE

In this section, it is shown that Round2.PKE is IND-CCA secure. As Round2.PKE
is constructed from CCA.KEM and a secure data-encapsulation mechanism as
proposed by Cramer and Shoup [23], it is sufficient to show the IND-CCA
security of CCA-KEM. Indeed, as stated in Theorem 2.6.5.1, when the hash
functions G and H in Algorithms 9 and 10 are modeled as random oracles,
the key-encapsulation mechanism CCA-KEM defined in Section 2.4.4 is IND-
CCA secure, assuming the hardness of the decision GLWR problem with sparse-
trinary secrets.

Theorem 2.6.5.1. For any adversary A that makes at most qH queries to the
random oracle H, at most qG queries to the random oracle G, and at most qD
queries to the decryption oracle, there exists an adversary B such that

AdvIND-CCA
CCA-KEM (A) ≤ 3 · AdvIND-CPA

CPA-PKE (B) + qG · δ +
2qG + qH + 1

2µB
(25)

when CPA-PKE and CCA-KEM both have a probability of decryption/decapsu-
lation failure that is at most δ.

Proof. The proof of Theorem 2.6.5.1 proceeds via two transformation reductions
due to [26]. First, Lemma 2.6.5.1 establishes that the OW-PCA 1 security of the
deterministic public-key encryption scheme PKE1 obtained from the public-key
encryption scheme PKE via transformation T [26], tightly reduces to IND-CPA
security of PKE1. This lemma is a special case of [26, Theorem 3.2] with qv = 0,
since by definition OW-PCA security is OW-PCVA2 security where the attacker
is not allowed to query the ciphertext validity checking oracle.

Lemma 2.6.5.1 (Adapted from [26, Theorem 3.2]). Assume PKE to be δ cor-
rect. Then, for any OW-PCA adversary B that issues at most qG queries to the
random oracle G, qP queries to a plaintext checking oracle PCO, there exists an
IND-CPA adversary C such that

AdvOW-PCA
PKE1

(B) ≤ qG · δ +
2qG + 1

|M|
+ 3 · AdvIND-CPA

PKE (C) (26)

where M is the message/plaintext space of the public-key encryption schemes
PKE and PKE1.

1The security notion of One-Way against Plaintext Checking Attacks.
2The security notion of OW-PCA, with access to a ciphertext Validity checking oracle.
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Next, combinination of Lemma 2.6.5.1 and the reduction in [26, Theorem 3.4]
shows that the IND-CCA security of a KEM with implicit rejection that is
constructed using a non-deterministic PKE (like CCA-KEM), tightly reduces
to the IND-CPA security of said PKE.

Direct application of [26, Theorem 4.6], similarly as in [16, Theorem 4.2],
shows that CCA-KEM is IND-CCA secure in the quantum random oracle model.
The resulting security bound however is not tight.

Theorem 2.6.5.2. For any quantum adversary A that makes at most qH
queries to the quantum random oracle H, at most qG queries to the quantum
random oracle G, and at most qD (classical) queries to the decapsulation oracle,
there exists a quantum adversary B such that

AdvIND-CCA
CCA-KEM (A) ≤ 4qH

√
qD · qH · δ + qG ·

√
AdvIND-CPA

CPA-PKE (B) (27)

2.6.6 Hardness of Sparse-Trinary LWR

In this section, we prove the hardness of the Decision-LWR problem with sparse-
trinary secrets assuming that the small modulus p divides the large modulus q.
Figure 3 provides an overview of the reductions involved in the proof of the
main result, Theorem 2.6.6.1.

Theorem 2.6.6.1. Let k, p, q ≥ 1 and m ≥ n ≥ h ≥ 1 be integers such that p
divides q, and k ≥ m′ = q

p ·m. Let ε ∈ (0, 1
2 ), and α, δ > 0 such that

α ≥ q−1
√

(2/π) ln(2n(1 + ε−1)),

(
n

h

)
2h ≥ qk+1 · δ−2, and m = O(

logn

α
√

10h
)

There exist three (transformation) reductions from dLWEk,m′,q,Dα to
dLWEn,m′,q,Dα√10h

(U(Hn (h))) such that for any algorithm for the latter problem
with advantage ζ, at least one of the reductions produces an algorithm for the
former with advantage at least

(ζ − δ)/(3m′)− 41ε/2−
∑

s|q,s prime

s−k−1.

Moreover, there is a reduction from dLWEn,m′,q,Dα√10h
(U(Hn (h))) to

dLWRn,m,q,p (U(Hn (h))).

Proof. Combination of Lemma 2.6.6.1 and Lemma 2.6.6.4 with α′ = α
√

10h.

Theorem 2.6.6.1 implies the hardness of the sparse-trinary LWR problem
LWRspt based on the hardness of the LWE problem with uniformly random secrets
in Zq and Gaussian errors.
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Figure 3: Summary of reductions used in Theorem 2.6.6.1. “SPT” refers to a
variant of the problem in question where the secret is sparse-trinary, instead of
uniform in Zdq .

Step 1: Reduction from LWE with secrets in Zq and Gaussian errors to
Sparse-trinary LWE: In [22, Theorem 1], specializing [21, Theorem 4], it is
shown that if

(
n
h

)
2h > qk+1 and ω > α

√
10h, then the dLWEn,m,q,Dω (U(Hn (h)))

problem is at least as hard as the dLWEk,m,q,Dα problem. More formally, gener-
alizing [18, Theorem 4.1], the following holds.

Lemma 2.6.6.1. Let k, q ≥ 1 and m ≥ n ≥ h ≥ 1 be integers, and let ε ∈ (0, 1
2 ),

and α, δ > 0 such that

α ≥ q−1
√

(2/π) ln(2n(1 + ε−1)), and

(
n

h

)
2h ≥ qk+1 · δ−2

There exist three (transformation) reductions from dLWEk,m,q,Dα to
dLWEn,m,q,Dα√10h

(U(Hn (h))) such that for any algorithm for the latter problem
with advantage ζ, at least one of the reductions produces an algorithm for the
former with advantage at least

(ζ − δ)/(3m)− 41ε/2−
∑

s|q,s prime

s−k−1.
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Step 2: Reduction from Sparse-trinary LWE to Sparse-trinary LWR:
Bai et al. provide in [7, Theorem 6.4] a reduction from LWE with Gaussian noise
to LWR, that is based on two independent reductions It can readily be seen
that one of these reductions [7, Theorem 6.3] holds for any secret distribution
with support on Zn∗q = {(x1, . . . , xn) ∈ Znq | gcd(x1, x2, . . . , xn, q) = 1}, and
therefore can be applied to the case when the secret is chosen from {−1, 0, 1}n.
The other reduction [7, Theorem 5.1] however, implicitly assumes the secret to
be chosen uniformly at random from Znq . Below, we describe an extension of
[7, Theorem 5.1] that describes a reduction from LWE with Gaussian noise and
sparse trinary secrets reduces to LWR with sparse-trinary secrets. Below, we
will describe such an extension. UB denotes the continuous uniform distribution
in [−B, . . . , B].

Lemma 2.6.6.2 (Adapted from [7, Theorem 5.1]). Let n,m, q be positive in-
tegers. Let α,B > 0 be real numbers with B = Ω (mα/log n) and Bq ∈ Z. Let

m > log
((
n
h

)
2h
)
/log (α+B)

−1 ≥ 1. Then there is a polynomial time reduction
from LWEn,m,q,Dα(U(Hn(h))) to LWEn,m,q,φ(U(Hn(h))) with φ = 1

q bqUBe.

Proof. The reduction proceeds similar to that of [7, Theorem 5.1], relying on
five steps. Steps 1, 3, 4 below proceed exactly as in [7, Theorem 5.1]. For steps
2 and 5, we mention our adaptations in order to prove the reduction for the
case of sparse-trinary secrets, and the resulting conditions. We omit details for
brevity.

1. A reduction from dLWEn,m,q,Dα to dLWEn,m,q,ψ, with ψ = Dα + UB .

2. A reduction from dLWEn,m,q,ψ to sLWEn,m,q,ψ. We adapt the corresponding
step in [7, Theorem 5.1] to work for the uniform distribution on Hn(h)
instead of the uniform distribution on Znq . This results in the bound on
m as stated in the lemma.

3. A reduction from sLWEn,m,q,ψ to sLWEn,m,q,UB .

4. A reduction from sLWEn,m,q,UB to sLWEn,m,q,φ, with φ = 1
q bqUBe.

5. A reduction from sLWEn,m,q,φ to dLWEn,m,q,φ. Since the modulus q is not
a prime, the argument from [7, Theorem 5.1] cannot be applied. Instead,
we extend an argument due to Regev (see, e.g, [37]) to prove the search-
to-decision reduction, which requires that Bq is an integer. We first state
an easy lemma.

Lemma 2.6.6.3. Let a > 1, and let φ be the discrete probability distribu-
tion obtained by rounding the continuous uniform probability on [−a, a] to
the closest integer. If a is an integer, then

∑
keven φ(k) =

∑
kodd φ(k) =

1
2 .

Proof. For |k| ≤ bac − 1, the interval [k − 1
2 , k + 1

2 ] is a subset of −[a, a],

so that
∑
k≡1−bac (mod 2) φ(k) =

∑bac−1
j=0 φ(2j − bac+ 1) = bac

2a .
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We are now in a position to extend Regev’s reduction. Let φ be a prob-
ability distribution on Zq such that

∑
k φ(2k) =

∑
k φ(2k + 1) = 1

2 . For
each s ∈ Znq , the probability distribution As,φ on Znq × Zq is obtained by
choosing a ∈ Znq uniformly, choosing e according to φ, and outputting
(a, (a, s) + e) where the additions are modulo q. If qB is integer, then
a distinguisher for dLWEn,m,q,φ(Ds) can be used to construct a solver for
sLWEn,m,q,φ(Ds) for any secret distribution Ds supported on {−1, 0, 1}n,
where φ is the discrete noise 1

q bqUBc. Note that if Bq is integer, the noise

φ is distributed as φ(k) = 1
2B for |k| ≤ B − 1, and φ(B) = φ(−B) = 1

4B .

We now show that if Bq is integer, then a distinguisher for deciding be-
tween uniform samples (a, u) ∈ U(Znq ) × U(Zq) and samples (a, b) from
As,φ for some unknown s ∈ S ⊂ {−1, 0, 1}n can be used for solving. We
show how to find s1, the first coordinate of a secret. For each k ∈ Zq,
we consider the following transformation. For each pair (a, b), we choose
a random r ∈ Zq and output (a′, b′) = (a + (r, 0, . . . , 0), b + rk). Clearly,
this transformation takes the uniform distribution to itself. So let us
now assume that b = (a, s) + e for some s ∈ S and some error e. Then
b′ = (a′, s)+r(k−s1)+e. If k = s1, then (a′, b′) is from As,φ. If |k−s1| = 1
, then r(k−s1) is uniform over Zq, and so (a′,b) follows the uniform distri-
bution. Finally, we can have that |k−s1| = 2. We consider k−s1 = 2, the
other case being similar. We then have that b′ = (a, s) + 2r + e (mod q).
If q is odd, then 2r is uniformly distributed on Zq, so that (a′,b) is uni-
formly distributed. If q is even, then 2r is distributed uniformly on the
even elements of Zq. With our specific error distribution, e is even with
probability 1

2 , so that 2r + e is distributed uniformly on Zq. So also in
this case, (a′, b) is distributed uniformly.

Finally, we state the reduction from dLWEn,m,q,Dα to dLWRn,m,q,p, for the
sparse-trinary secret distribution.

Lemma 2.6.6.4. Let p, q be positive integers such that p divides q. Let α′ > 0.
Let m′ = m · (q/p) with m = O(log n/α′) for m′ ≥ m ≥ n ≥ 1. There is a
polynomial time reduction from dLWEn,m′,q,Dα′ to dLWRn,m,q,p, both defined for
the sparse-trinary secret distribution.

Proof. Let B = q/2p. The reduction has two steps:

1. A reduction from dLWEn,m′,q,Dα′ to dLWEn,m′,q,φ, whereB = Ω(m′α′/ log n).
due to Lemma 2.6.6.2.

2. A reduction from dLWEn,m′,q,φ to dLWRn,m,q,p, due to [7, Theorem 6.3].

As m′ = m · (q/p) = (q/p)O( logn
α′ ), it follows that B = q/2p = Ω(m′α′/ log n),

so that Lemma 2.6.6.2 indeed is applicable.

Note that the conditions imposed by Lemma ]2.6.6.2 imply that 1/α must
at least grow linearly in n. This is a common bottleneck in all known LWE to
LWR reductions [7, 13, 8].
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2.7 Analysis with respect to known attacks

In this section, we analyze the concrete security of Round2. We begin by consid-
ering attacks using lattice basis reduction in Sections 2.7.1, 2.7.2 and 2.7.3, fol-
lowed by specialized attacks that exploit sparse-trinary secrets used in Round2
in Sections 2.7.4 and 2.7.5. Next, we consider the issue of biases in public-keys
of Round2 in Section 2.7.6. Finally, we consider precomputation and back-door
attacks against the Round2 GLWR public parameter A.

2.7.1 Lattice-based attacks

We consider lattice-reduction based attacks, namely, the primal or decoding
attack [6] and the dual or distinguishing attack [1], and how they can be adapted
to exploit the shortness of secrets in our schemes. We begin by detailing how
an attack on Round2 can be formulated as a lattice-reduction based attack on
the LWR problem. We then analyze the concrete security of Round2 against
the primal attack in order to estimate secure parameters, in Section 2.7.2. We
do the same for the dual attack in Section 2.7.3.

The attacker can use the public keys B = RCompressq→p(〈AS〉q) of the
public-key encryption scheme or the key-encapsulation scheme to obtain infor-
mation on the secret key S. We work out how this is done. For the non-ring
case, B ∈ Zd×np . Note also that since q|p in this case, B = 〈bpq 〈AS〉qe〉

p
. Let

1 ≤ i ≤ d and 1 ≤ j ≤ n. If we denote the i-th row of A by aTi and the j-th
column of S by sj , then

Bi,j = RCompressq→p(〈aTi sj〉q) = 〈bp
q
〈aTi sj〉qe〉p.

By the definition of the rounding function b·e, we have that

Bi,j ≡
p

q
〈aTi sj〉q + ei,j (mod p) with ei,j ∈ (−1/2, 1/2].

As 〈aTi sj〉q = aTi sj + λq for some integer λ, we infer that

q

p
Bi,j ≡ aTi sj +

q

p
ei,j (mod q). (28)

So we have d equations involving sj . Unlike conventional LWE, the errors q
pei,j

reside in a bounded interval, namely (− q
2p ,

q
2p ]. In what follows, we will only

consider the case that p divides q.

2.7.2 Primal Attack

In (28), we write s for sj , denote by b the vector of length m with j-th com-
ponent q

pBi,j , and with Am the matrix consisting of the m top rows of A. We

then have, for e ∈ (− q
2p ,

q
2p ]

m

b ≡ Ams + e (mod q) (29)
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so that v = (sT , eT , 1)T is in the lattice Λ defined as

Λ = {x ∈ Zd+m+1 : (Am|Im|−b)x = 0 (mod q)} (30)

of dimension d′ = d+m+ 1 and volume qm [15, 2]. The attacker then searches
for a short vector in Λ which hopefully equals v, thus enabling him to recover
the secret s.

Lattice Rescaling: The lattice vector v = (s, e, 1) is unbalanced in that
‖s‖ � ‖e‖. For exploiting this fact, a rescaling technique originally due to [6],
and analyzed further in [22] and [1] is applied. Multiplying the first d columns
of Λ’s basis (see Eq. 30) with an appropriate scaling factor ω yields the following
weighted or rescaled lattice,

Λω = {x ∈ Zd+m+1 :
(
(ω ·AT

m)|Im|−b
)
x = 0 (mod q)} (31)

in which the attacker then searches for the shortest vector, that he hopes to
be equal to vω = (ω · sT , eT , 1)T . This search is typically done by using a
lattice reduction algorithm to obtain a reduced basis of the lattice, the first
vector of which will be the shortest of that basis due to a common heuristic.
We explain later in this section how to choose an appropriate value for ω in
order to maximize the chances of the attack’s success.

If the quality of the lattice reduction is good enough, the reduced basis will
contain vω. The attack success condition is as in [2] assuming that BKZ [20, 39]
with block-size b is used as the lattice reduction algorithm. The vector vω will
be detected if its projection ṽb onto the vector space of the last b Gram-Schmidt
vectors of Λ is shorter than the expected norm of the (d′ − b)th Gram-Schmidt

vector b̃d′−b, where d′ is the dimension of Λ [2, Sec. 6.3],[15]. The condition
that must be satisfied for the primal attack to succeed is therefore:

‖ṽb‖ < ‖b̃d′−b‖

i.e., ‖ṽb‖ < δ2b−d′−1 · (Vol(Λ))
1
d′

where, δ = ((πb)
1
b · b

2πe
)

1
2(b−1)

(32)

The attack success condition (32) yields the following security condition that
must be satisfied by the parameters of our public-key encryption and key-
encapsulation schemes to remain secure against the primal attack:√

(ω2 ·h+ σ′2m) · b

d+m
≥ δ2b−d′−1 · (qmωd) 1

d′

where, δ = ((πb)
1
b · b

2πe
)

1
2(b−1) ,

σ′ = (q/2
√

3p),

and d′ = d+m+ 1.

(33)
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For finding an appropriate value for ω, we rewrite (33) as

δ2b−d′−1b−1/2 ≤
√
ω2h+mσ′2 · 1

m+ d
ω−d/d

′
q−(d−d′−1)/d. (34)

Given d,m, h and σ′, the attacker obtains the least stringent condition on the
block size b by maximizing the right hand side 34 over ω, or equivalently, by
maximizing

1

2
log(ω2h+mσ′2)− d

d′
logω.

By differentiating with respect to ω, we find that the optimizing value for ω
satisfies

ω2 =
dmσ′2

h(d′ − d)
=

dmσ′2

h(m+ 1)
≈ d

h
σ′2.

2.7.3 Dual Attack

The dual attack against LWE attempts to find a short vector (v,w) ∈ Zm × Zd
in the dual lattice

Λ∗ = {(x,y) ∈ Zm × Zd : AT
mx = y (mod q)}. (35)

This vector is used to construct a distinguisher using z = {vT b}q. If b =
Ams+e (mod q), then z = {vT b)}q ≡ {wTs+vTe}q, and z is therefore small.

For an LWR distribution with uniform rounding error e′ and corresponding
variance σ′

2
= q2/12p2, the distinguisher checks whether z = {vT b}q is small.

For a non-LWR distribution, z is distributed uniformly modulo q. For an LWR
distribution, z’s distribution approaches a Gaussian distribution of zero mean
and variance ‖v‖2 · σ′2 as the lengths of the vectors v and e′ increase, due
to the Central limit theorem. The maximal statistical distance between this
Gaussian distribution and the uniform distribution modulo q is bounded by
ε ≈ (1/

√
2) exp(−2π2(‖v‖ · σ′/q)2), a more detailed derivation of this result can

be found in [12, Appendix B]. The attacker uses the BKZ algorithm with block-

size b that outputs a short vector of length δd
′−1 ·Vol(Λ∗)

1/d′
, where d′ = m+d

is the dimension of the dual lattice Λ∗, and its volume is Vol(Λ∗) = qd.
As the key is hashed, a small advantage ε is not sufficient. As explained

in [2], assuming BKZ with block size b, the attack must be repeated at least R =
max(1, 1/20.2075b · ε2) times. Consider an LWR distribution that is generated
from an LWR problem instance of dimension d, large modulus q, rounding
modulus p. The cost of using the dual attack to distinguish such an LWR
distribution from uniform, employing BKZ with block size b and root-Hermite
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factor δ, using m samples is:

CostDual attack = (b · 2cb) ·max(1, 1/(ε2 · 20.2075·b)),

where, ε =
1√
2
· e−2π2

(
‖v‖·σ′
q

)2
,

‖v‖ = δm+d−1 ·
(

q

σ′ ·
√
d/h

)1/(m+d)

,

δ = ((πb)
1
b · b

2πe
)

1
2(b−1)

and σ′ = (q/2
√

3p).

(36)

The first term in the cost above, i.e., (b · 2cb) is the cost of running BKZ lattice
reduction with block-size b, where c is the BKZ sieving exponent. Finally,
note that the cost in Eq. 36 also accounts for the fact that the dual attack
can be adapted against the sparse-ternary LWR problem by rescaling the dual
lattice using an appropriate scaling factor ω = σ

√
m/h [1] (so as to equalize

the contributions of both parts wTs and vTe in z), resulting in the following
rescaled dual lattice:

Λ∗ω = {(x,y/ω) ∈ Zm ×
( 1

ω
· Zd

)
: AT

mx = y (mod q)} (37)

This scales the volume of the dual lattice from qd to (q/ω)
d
, which correspond-

ingly scales the norm ‖v‖ of the short vector v and hence the distinguishing
advantage.

2.7.4 Hybrid Attack

In this section, we consider a hybrid lattice reduction and meet-in-the-middle
attack (henceforth called hybrid attack) originally due to [28] that targeted the
NTRU [27] cryptosystem. We first describe the hybrid attack, using notation
similar to that of [41], in a general form. Subsequently, we specialize the attack
to our scheme. Finally, we describe a scaling approach to make the hybrid
attack exploit the fact that the secret is small and sparse.

The hybrid attack will be applied to the lattice

Λ′ = {x ∈ Zm+d+1 | (Im|Am| − b)x ≡ 0 mod q}

for some m ∈ {1, . . . , d}. We first find a basis B′ for Λ′ of the form

B′ =

(
B C

0 Ir

)
(38)

where 0 < r < d is the meet-in-the-middle dimension and Ir is the r-dimensional
identity matrix. We aim to find the short vector v = (eT , sT , 1)T in Λ′. We
write v = (vTl v

T
g )T where vg has length r. We recover the vector vg of length
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r < d consisting of the (r− 1) bottom entries of s followed by a ’1’ by guessing.
As the columns of B′ generate Λ′, there exists a x ∈ Zd+m+1−r such that

v =

(
vl

vg

)
= B′

(
x

vg

)
=

(
B C

0 Ir

)(
x

vg

)
=

(
Bx + Cvg

vg

)
(39)

As vl is short, Cvg is close to −Bx, a vector from the lattice Λ(B). As
explained in [41], the idea is that if we correctly guess vg, we can hope to find
vl by using Babai’s Nearest Plane (NP) algorithm [5]. This algorithm, given a
basis B̃, finds for every target vector t ∈ Rd+m+1−r a vector e = NPB̃(t) such

that t− e ∈ Λ(B̃).
The cost for the hybrid attack thus is the sum of two terms: the cost of

finding a good basis B̃ for Λ(B), and the cost of generating NPB̃(Cy) for all y
from a set of vectors of length r that (with high probability) contains vg. The
latter cost may be reduced by using a Meet-in-the-middle approach [28] which
reduces the number of calls to the Nearest Plane algorithm to the square root
of the number of calls with a brute-force approach.

As r < d, the vector vg is a trinary. The attacker can benefit from the fact
that s has h non-zero entries in the generation of candidates for vg: candidates
with high Hamming weight are not very likely. Also, as the (d − r) bottom
entries of vl, being the (d − r) top elements of s, are trinary and sparse. In
order to benefit from this fact, the d − r rightmost columns of the matrix B
are multiplied with an appropriate scaling factor ω. Calculated similarly to
§ 2.7.1 by equalizing the per-component expected norms of the secret s and

LWR rounding error e, we arrive at the same scaling factor ω = q2

12p2 ·
√

d
h . This

then scales up the volume of the (d−r+m+1 dimensional) lattice Λ generated
by B by a factor ωd−r.

We analyze the hybrid attack similarly as in [27]. For each pair (r,m) with
1 ≤ r,m < d, we stipulate that the quality of the reduced basis B̃ is so high that
NPB̃(vg) = vl with high probability. The condition, derived from [28, Lemma

1] is that the norm of the last Gram-Schmidt vector of B̃ is at least twice
||vl||∞, see also [27] We use the Geometric Series Assumption to approximate
the norms of these vectors in terms of the Hermite constant δ. The cost for
obtaining a reduced basis with Hermite constant δ is estimated as b2cb, where

b is such that δ
(

(πb)
1
b · b

2πe

) 1
2b−1

, and for the sieving constant c we take the

value log2

√
13/9 ≈ 0.265, [30, Sec. 14.2.10] corresponding to the quantum

case. Moreover, we estimate the cost for the lattice decoding part to be equal
to the number of invocations of the Nearest Plane Algorithm, which, following
[27], we set to 2

1
2 r·H , where H is the entropy of the distribution of each of

the coordinates of the guessed vector vg. The number 2r·H approximates the
number of typical vectors of length r; the factor 1

2 is due to either the usage
of the MITM technique, or the use of Grover’s algorithm in the quantum case.
Finally, we minimize the cost over all feasible pairs (r,m).

Our analysis of the hybrid attack allows us to obtain a rough estimate of its
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cost. With the goal of providing a more accurate estimate, Wunderer [41] gives
an extensive runtime analysis of the hybrid attack. One of the aspects he takes
into account is that the attacker chooses a larger value of δ. This leads to a
smaller cost (running time) for lattice reduction to obtain B̃, but decreases the
probability that NPB̃(vg) = vl, thereby increasing the expected cost (running
time) of the part of the attack dealing with solving BDD problems. Also, he
takes into account that the guesses for vg are generated such that the most
likely candidates for vg occur early, thus reducing the expected number of calls
to the nearest plane algorithm.

2.7.5 Attacks against Sparse Secrets

In Sections 2.7.2 and 2.7.3, we considered attacks [6, 1, 22] against LWE and/or
LWR variants with unnaturally small secrets. In this section, we consider at-
tacks against sparse secrets with the goal of choosing an appropriate Hamming
weight providing both optimal performance and security. The best-known at-
tacks against such sparse secrets are (to the best of our knowledge) the Hybrid
attack described in Section 2.7.4, and another one due to Albrecht et al [1].
The Hybrid attack performs better than Albrecht’s attack against our schemes,
it is therefore the primary attack considered in our analysis. Recall that the
hybrid attack’s overall cost is the sum of two components: that of finding a
good basis and that of solving Babai’s Nearest Planes for a large set of vectors
using a Meet-in-the-middle approach. Recall also that this second cost com-
ponent depends on the entropy H of the distribution of each secret coordinate
(in our case), which in turn depends on the Hamming weight of the secret. We
therefore optimize over the Hamming weight to choose the smallest value for
which the overall hybrid attack cost is at least a targeted minimum (depending
on the security level).

For completeness, we also describe Albrecht’s attack [1] against LWE/LWR
variants with sparse secrets. Since most rows of the public matrix A become
irrelevant in the calculation of the product As for such secrets, Albrecht’s attack
ignores a random set of k ≤ d components of s and brings down the lattice
dimension (and hence attack cost) during lattice reduction. As s has d − h
zeroes, there are

(
d−h
k

)
choices (out of

(
d
k

)
) for the k ignored components such

that these ignored components only contain zeroes. We therefore repeat the
attack

(
d
k

)
/
(
d−h
k

)
times. We estimate the cost (in bits) for a given Hamming

weight h ≤ d, as the number of repetitions each low cost attack is performed
times the cost of the low-cost attack on a lattice of dimension d− k:(

d
k

)(
d−h
k

) × CostLattice Reduction(d, k, h)

Here CostLattice Reduction(d, k, h) is defined as

min{b · 2cb | b ∈ N, there exists m ∈ N such that m ≤ d and (40) is satisfied.}

39



√
(ω2 ·h+ σ′2m) · b

d+m
< δ2b−d′−1 · (qd

′−(d−k)−1ωd−k)
1
d′

where, δ = ((πb)
1
b · b

2πe
)

1
2(b−1) ,

ω = σ′ ·
√

(d− k)/h,

σ′ = (q/2
√

3p),

and d′ = m+ d− k + 1.

(40)

The term b ·2cb represents the cost of running BKZ lattice reduction with block-
size b. The attack runs on a LWE problem of dimension d − k with m ≤ d
samples. Condition 40, which is essentially Condition 32, ensures that such
an attack has chances of succeeding. Note that although the above applies to
the primal attack, a similar analysis is possible for the dual attack, in which
case CostLattice Reduction(d, k, h) is calculated as in Eq. 36, with the parameter
d replaced by d− k.

This specialized attack only gives an advantage if an attacker is able to choose
a k for which the total attack cost is less than a standard lattice-reduction
attack on a lattice of dimension d. Similar to the case of the hybrid attack
(Section 2.7.4), we optimize over the Hamming weight to choose the smallest
value such that Albrecht et al.’s attack results in at least a minimum targeted
security level (both for the standard attack embodiment mentioned above and
an adaptive embodiment described in [1]).

Furthermore, to ensure that an exhaustive, brute-force search of each secret-
key vector in the secret-key using Grover’s quantum search algorithm [25] has
a cost of at least λ (in bits), the chosen Hamming weight should satisfy:√(

d

h

)
· 2h > 2λ (41)

Note that for a typical security level of λ = 128, a dimension of at least d = 512
would be secure against Grover’s quantum search, for any Hamming weight h
that is at least 0.1d.

2.7.6 Biases in Computed Keys

Round2 public keys are unbiased, since by definition (see Eq. 1 in Section 2.2)
the rounding function RCompressq→p() does not have a bias.

2.7.7 Pre-computation and Back-door Attacks

A pre-computation attack can happen if the GLWR public parameter A is fixed
and an attacker performs lattice reduction on it over a long period of time. A
back-door attack can happen if there is any public value, e.g., A is deliberately
chosen so as to result in a lattice with weak security.

All the definitions of fµn (σ) in Round2 (see Section 2.4.1) prevent both types
of attacks: In the first definition of fµn (σ), f0

n=1(σ), a new A is derived by means
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of a DBRG from a randomly generated seed in each protocol instantiation. This
is similar to [15] and prevents both pre-computation attacks and back-doors.
In the second definition of fn(σ), f1

n=1(σ), A is derived from a fixed long-term
matrix Amaster of dimension d2. This is done by applying a random, fresh
permutation that is chosen by the initiator of the protocol at the start of each
protocol exchange. This prevents any pre-computation attacks since the possible
number of permuted A obtained in this way equals nn. This is as done in [12].
Back-doors are avoided since Amaster is derived by means of a pseudo-random
function from a randomly generated seed. We note that in both f0

n=1(σ) and
f1
n=1(σ), entries of both Amaster and the resulting A cannot be differentiated

from uniform, hence the results in Section 2.6.6 hold.
In the third definition of fn(σ), f2

n=1(σ) obtains A from a set containing q ele-
ments. This set, represented as a vector amaster, is randomly generated by means
of a DBRG from a seed determined by the initiator in each protocol interaction.
Furthermore, each row in A is obtained from this vector by means of a random
permutation that is also determined by the initiator and is specific to each proto-
col interaction. Since only a few elements need to be generated and kept in mem-
ory, f2

n=1(σ) is efficient. Pre-computation and back-door attacks are avoided
since the seed that determines A is new in each protocol interaction. Further-
more, this approach destroys any structure in the resulting A (as can be found
in circulant or anti-circulant matrices for ideal lattices, for example) since it con-
tains many more elements. This results clear from the following analysis. Sup-
pose a = 〈a0, a1, a2, . . . , an−1〉 and b = 〈b0, b1, . . . , bk−1, a0, a1, a2, . . . , an−k−1〉
are two rows of A. They share n − 1 − k elements due to our rotation strat-
egy. Then, define a(x) ..= a0 + a1x + a2x

2 + · · · + an−1x
n−1 and b(x) ..=

b0 + b1x + · · · + bk−1x
k−1 + a0x

k + a1x
k+1 + · · · + an−k−1x

n−1. We have
b(x) = a(x)xk+(an−k+b0)+(an−k+1+b1)x+· · ·+(an−1+bk−1)xk−1 mod xn+1.
Effectively, that is, each row can be seen as using the xn+1 ring with a random
shifting (due to k) and additional random noises, those (an−k + b0) + (an−k+1 +
b1)x + · · · + (an−1 + bk−1)xk−1. From this point of view, they are at least as
secure as the pure ring version of Round2. Since the length of amaster is smaller
than d2, the entries of the resulting A can be differentiated from uniform. The
security of Round2 can therefore not be based on the results in Section 2.6.6 for
this definition of fn(σ).

In the fourth definition of fn(σ), f3
n=d(σ), we consider that A is derived

from a vector amaster of length d that is specific to each protocol interaction.
This approach is as in [2]. As in previous cases, pre-computation and back-door
attacks are avoided since the resulting A is new in each protocol interaction.

In Round2, the default definitions of fτn(σ) are f2
n=1(σ) and f3

n=d(σ) for the
non-ring and ring cases due to their efficiency. Both of them are implemented
in terms of a master vector amaster and a permutation Π to enable a unified
implementation.
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2.8 Probability of Incorrect Decryption

The schemes in Round 2 need not always result in correct retrieval of the en-
crypted message or the encapsulated key. In this section, the decryption failure
behavior of CPA-PKE is analyzed.

By definition of the function RCompressq→p()

B =

〈⌊
(p/g)〈AS〉q + EB

q/g

⌉〉
p

=

〈
(p/g)AS + EB

q/g
− IB
q/g

〉
p

,

where g = gcd(p, q), the components of EB are drawn independently and uni-
formly from [− p

2g ,
p
2g ) ∩ Z and IB/(q/g) is the effect of rounding, with each

component of IB in the set [− q
2g ,

q
2g ) ∩ Z.

By the same reasoning, it holds that

U =

〈
(p/g)ATR + EU

q/g
− IU
q/g

〉
p

.

Since t and p are powers of 2, t divides p,

v =

〈
Sampleµ(X) + (p/2B)m− Iv

p/t

〉
t

and

Decompresst→p(v) = 〈(p/t)v〉p = 〈Sampleµ(X) +
p

2B
m− Iv〉p,

with the components of Iv in the set [− p
2t ,

p
2t ) ∩ Z. The decrypted message

m̂ = RCompressp→2B (M) with, as X = 〈BTR〉p

M =
〈

Decompresst→p(v)− Sampleµ(STU)
〉
p

=

〈
p

2B
m− Iv + Sampleµ

(
(EB − IB)TR− ST (EU − IU )

q/g

)〉
p

.

Decryption succeeds, i.e., m̂ = m, if and only if all components of {M − p
2B
m}p

are in the set [− p
2B+1 ,

p
2B+1 ) ∩ Z.

Now consider the probability distribution of a component of {M − p
2B
m}p.

From experiments, we find that is close to the distribution of a component of{
−iv + Sampleµ

(⌊
(eB − iB)Tr − sT (eU − iU )

q/g

⌉)}
p

, (42)

where all variables are independently and uniformly drawn from their respective
sets. Therefore we shall use the latter distribution for obtaining an upper bound
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(the Chernoff bound) for, and an approximation to the probability of incorrect
decryption.

We shall distinguish four cases, depending on whether q is a power of two
or a prime, and depending on whether a polynomial ring is used or not.

In the non-ring case, the matrices s and r have columns with components
from {−1, 0, 1} with Hamming weight h, so each component of −iTBr + sT iU is
the sum of 2h independent terms from the set [− q

2g ,
q
2g )∩Z, each multiplied by

a sign. In the ring case, we have n+ 1 prime and calculate modulo Φn+1(x) =
xn+xn−1 + · · ·+x+ 1. It can easily be shown [40] that for all polynomials a(x)
of b(x) of degree at most n−1, each coefficient of 〈a(x)b(x)〉Φn+1(x) is the sum of
at most 2n−1 products of the form aibj , and that each ai occurs in at most two

such products. As a consequence, each component of iTBr is the sum of up to
2h independent terms from the set [− q

2g ,
q
2g )∩Z, each multiplied by a sign. The

same holds for each component of sT iU , so in the ring case −iTBr + sT iU is the
sum of up to 4h independent terms from the set [− q

2g ,
q
2g ) ∩ Z, each multiplied

by a sign.
A similar reasoning for a component of eTBr − sTeU shows that in the non-

ring case it is equal to 2h independent terms from the set [− p
2g ,

p
2g ) ∩ Z, each

multiplied by a sign, and in the ring case it is equal to up to 4h such independent
terms. Note that when q is a power of two, g = p the above set equals {0} and
these terms are absent.

The distribution of a component of {M − p
2B
m}p thus is well approximated

by that of {bwe}p, where

w =
p

t
U +

2crh∑
i=1

ui + cp
p

q

2crh∑
j=1

vj , (43)

and where U , the ui and the vj are i.i.d. uniform random numbers from (− 1
2 ,

1
2 ),

cr = 1 in the non-ring case and 2 otherwise, and cp = 1 if q is prime and 0 if q is
a power of two. It follows that the probability that a component of {M− p

2B
m}p

is not in the set [− p
2B+1 ,

p
2B+1 ) ∩ Z is close to Pr[|w| > p/2B+1]. If

p

2t
+ crh+ cp

p

q
crh <

p

2B+1

this probability is zero. Otherwise, since w is the sum of independent random
variables, this probability can be bounded by the Chernoff method, yielding the
upper bound

2 min
α>0

(
F
(pα

2t

) [
F
(α

2

)]2crh [
F

(
pα

2q

)]2cpcrh

e−αp/2
B+1

)
, (44)

where F (x) = sinh(x)/x. This bound can be evaluated numerically.
Note that w is the sum of one zero-mean random variable with relatively large

variance p2/12t2 and many zero-mean random variables with smaller variances
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1/12 or p2/12q2. For large h, the small ones add up to a zero-mean Gaussian
with variance v =

(
2crh+ 2(p/q)2cpcr

)
/12.

For the parameter sets in which q and p are powers of two, the distribution of
the random variable represented by Eq. 42 was computed explicitly by repeated
convolution of probability distributions of the individual variables. The per-
component decryption error probability is at most the probability that the norm
of the random variable exceeds p/2B+1. For prime q, explicit computation was
too resource-intensive because the probability distributions have a large support.
In this case, Eq. 44 was used as upper bound to the per-component decryption
error probability. In both cases, by a union-bound argument, the probability
that the message is not decrypted correctly is at most µ times the per-component
decryption error probability.

2.9 Implementation considerations

The design of Round2 makes it possible to have a unique implementation for
both RLWR and LWR. The optimized implementation supports all NIST secu-
rity levels of uRound2 for both n = 1 and n = d .

The parameters of nRound2 allow the use of NTT for performing polynomial
multiplications. Because n and q are different for different NIST security levels
with the nRound2 parameters, different optimizations would be required for
different NIST security levels. Such optimizations have not been carried out.

2.9.1 Polynomial multiplication

Polynomial multiplication modulo xn − 1 is equivalent to a convolution. How-
ever, the reduction polynomial used in Round2 is not xn − 1. We define the
following algorithm to enable polynomial multiplication modulo Φn+1(x) by
polynomial multiplication modulo xn+1 − 1 preceded and followed by simple
transformations:

• Compute a′(x) = (x− 1)a(x)

• Compute c′(x) = a′(x)b(x) mod xn+1 − 1

• Compute c(x) = c′(x)/(x− 1)

We have that c(x) ≡ a(x)b(x) (mod Φn+1(x)). The coefficients of c′(x) =
a′(x)b(x) mod xn+1 − 1 can be computed as

c′i =

n∑
j=0

bj · a′〈i−j〉n+1
for 0 ≤ i ≤ n, where bn = 0. (45)

2.9.2 A common multiplication

The polynomial multiplication expressed in (45) can be implemented as the
matrix multiplication c′ = A′b where A′i,j = a′〈i−j〉n+1

and b = (b0, . . . , bn)T .
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With the addition of the simple transformations in the case n = d, all multipli-
cations in the algorithm, for both n = 1 and n = d, can be considered as matrix
multiplications, and therefore can use the same implementation.

2.9.3 Generation of A

Using the definition of fτn from Section 2.4.1, A can be represented as a vector
amaster of length L and offsets o0, o1 . . . , od−1 in {0, 1, . . . , d− 1}.

• For f0
n=1, all offsets are equal to zero and L = d2.

• For f1
n=1, we have that L = d2. Entry i, j of the matrix A satisfies

ai,j = afixed
i,(j+oi) (mod d) for 0 ≤ i, j ≤ d − 1. In order to avoid addition

modulo d, we use the d × 2d matrix a∗ defined as a∗i,j = a∗i,j+d = afixed
i,j

for 0 ≤ i, j ≤ d− 1. Then ai,j = a∗i,j+oi .

• For f2
n=1, we take L = q. We write amaster[i] = DRGB(σ0)[i] for 0 ≤ i ≤

L− 1. We then have ai,j = amaster[(j + oi) (mod L)] for 0 ≤ i, j ≤ d− 1.
In order to avoid additions modulo L, we use the vector a∗ of length L+d
defined as a∗[i] = amaster[i] for 0 ≤ i ≤ d − 1, and a∗[i + L] = amaster[i]
for 0 ≤ i ≤ d− 1. Then ai,j = a∗[i+ j].

• For f3
n=d, we have that L = d and there are no offsets.

2.9.4 Secret key

The columns of the secret keys S and R are trinay vectors of Hamming weight
h. The vectors are generated as described in Section 3.6 of [11]. Radix sort is
used as constant-time sorting algorithm.

The optimized implementation relies on an index representation of the secret
keys. That is, a trinary vector of Hamming weight h is described as a vector
of length h. The first h/2 entries of the vector contain the positions of the +1
elements; the next h/2 elements contain the positions of the −1 elements. This
allows us to only loop over the non-zero elements, adding the ones in the first
half and subtracting the second half.

While this is implementation is constant-time (given h), it is not protected
against cache attacks, as the only elements accessed are the ones for which the
secret key is different from 0. It would be easy to reconstruct the positions of
the non-zero entries of the secret key by observing which elements of A were
accessed. Other implementations choices, e.g. straightforward vector-matrix
multiplication, can be adopted to provide protection against this type of attacks.

2.9.5 Choice of auxiliary functions

The proposed algorithms make use of several auxiliary functions, specifically
a hash and a deterministic random bit generator (DRBG). SHA3-512 is used
as hash function. When several outputs are required from a hash (see line 2,
Algorithm 9), the hash is iterated.
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The DRBG used is based on the one provided by NIST for KAT generation
and follows the recommendations in [33].

2.9.6 DEM in Round2.PKE

Round2.PKE can use any DEM. The implementation of Round2.PKE uses a
DEM based on AES256 in GCM mode as recommended in [32]. The OpenSSL
implementation of AES256 is used. Using this DEM, the ciphertext of Round2.PKE
needs an additional overhead of 28 bytes: 12 bytes for the initialization vector,
and 16 for the authentication tag.

For NIST security levels 1, 2, and 3, the key is padded with zeros before being
used in the DEM. For NIST security level 4, the exchanged key is truncated. In
all cases, the key is hashed before being used in AES256-GCM.

2.9.7 Use in network protocols

Different applications have different security and bandwidth requirements. The
implementation of Round 2 supports all those different requirements without
the need of recompiling.

In a network protocol, two parties can initiate the communication using a
standard security level. After agreeing on a different security level, they simply
can use the library with the new set of parameters. The choice of n = 1 or n = d
is included in this; that is, the same library can be used for a set of parameters
based on LWR and a set of parameters based on RLWR.

2.9.8 Definition of Sampleµ

The function Sampleµ picks up µ entries from a matrix. In our parameter sets,
if n = d, then n = m = 1, and Sampleµ picks up the µ coefficients of highest
order. If n = 1, Sampleµ picks up the last µ entries of the vector obtained by
serializing the matrix row by row.

2.10 Round2: Configurations, Parameters and Performance

Round2.KEM and Round2.PKE can be configured to instantiate different un-
derlying problems depending on the input configuration parameter n. As de-
scribed in detail later, the security level depends on the input value d and also
the choice of q and p. Similarly, some optimizations will also only be feasible
for some choices of q and p.

2.10.1 Configurations of Round2

In our submission, we consider two overall parameter sets for Round2:
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Parameter set uRound2 : Unified Round2 The goal of this parameter set
is to allow for a unified and efficient implementation of Round2, independently
of the fact that it instantiates LWR or RLWR.

Thus, this parameter set allows n = 1 with d being arbitrary, or n = d
where n+ 1 is prime. We designate the first case of uRound2 as the parameter
set uRound2n=1, and the second uRound2n=d. A further restriction is that
Φn+1(x) must irreducible modulo two. Finally, p and q are chosen powers of
two for performance reasons.

The configurations of this parameter set are meant to be used in a unified
implementation of Round2 so that the same implementation can be seamlessly
used in a ring or in a non-ring setting.

Parameter set nRound2 : NTT-friendly Round2 The goal of this pa-
rameter set is to give the possibility of even higher computational performance
by obtaining parameters that are NTT-friendly.

For this parameter set, n = d where n+ 1 is a prime larger than two, and is
designated as nRound2n=d. The modulus q is a prime number such that q ≡ 1
(mod n+ 1), and the modulus p is a power of two.

Note however that in order to achieve optimal computational/CPU perfor-
mance, additional constraints may be placed on the parameter q. For example,
to optimize reductions modulo q, one may wish to use a q that is close to a
power of 2. Such constraints may lead to less choices for (q, n) which may come
at the price of slightly higher bandwidth requirements.

Our reference implementation can be configured with parameters in both pa-
rameter sets, uRound2 and nRound2. Our optimized implementation optimizes
for uRound2 so that the schemes can be easily and seamlessly instantiated for
both the LWR and RLWR problems, since both implementations rely on q
and p values that are powers of two. We do not include code optimizing for
parameters in nRound2, e.g., using NTT. However, performance estimates for
NTT-optimized implementations are known in the literature [2, 16].

We note that the description of our schemes could be further generalized
to support even other parameter sets with other features. For instance, input
parameter sets such as (d = k ∗ n, n) where k > 1 is a positive integer and
n > 1 lead to an instantiation of our scheme based on module lattices. We do
not include this configuration in our submission, since by restricting ourselves
to instantiations with either (d, n = 1) or (d, n = d), we can fine-tune param-
eter selection and hence the performance of Round2. Furthermore, a major
motivation of module lattice-based constructions is to avoid additional (ideal
lattice) structure, yet achieve efficient performance compared to the non-ring
case. Round2 achieves this partially through the uRound2 parameter set, since
switching to the non-ring instantiation is simple and seamless even during ac-
tual deployment, by selecting the parameter set uRound2n=1. However, the
performance of uRound2n=d remains superior.
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2.10.2 NIST Security Levels

NIST requires security levels such that an attacker against Round2 – targeting
either the LWR or RLWR problem depending on the input parameters – must
require computational resources that are comparable or greater than those re-
quired to search for a key on a block cipher with a b-bit key or to find a collision
on a b-bit hash-function.

An example for the block cipher is AES with keys of 128, 192, and 256 bits.
The examples for the hash functions are SHA2 and SHA3 with an output of 256
and 384 bits.

The quantum resource estimates for AES and SHA are analyzed in [10]
[24] and [4]. Without going into details, these papers analyze the actual cost of
finding a b-bits key in AES-b and finding a collision in SHA-b. Their conclusion
is that the cost is actually higher than the bound of b/2 bits (due to Grover’s
algorithm [25]) for b-bit block cipher and b/3 bits (due to BrassardHyerTapp
algorithm [19]) for b-bits hash function.

However, since NIST’s definition of the security level is generic and refers to
a block cipher and a hash function, we will not use specific estimates as in [10],
[24], [4], but we will use best bounds.

In particular, we will consider the following:

• Level 1 (128-bit block cipher): Round2 encapsulates a 128 bit key and
have a strength of 64 quantum bits.

• Level 2 (256-bit hash function): Round2 encapsulates a 256 bit key and
have a strength of 86 quantum bits.

• Level 3 (192-bit block cipher): Round2 encapsulates a 192 bit key and
have a strength of 96 quantum bits

• Level 4 (384-bit hash function): Round2 encapsulates a 384 bit key and
have a strength of 128 quantum bits

• Level 5 (256-bit block cipher): Round2 encapsulates a 256 bit key and
have a strength of 128 quantum bits

2.10.3 Development Environment

The performance numbers or Round2 have been gathered on a MacBookPro10.1
with an Intel Core i7 2.6GHz and 16GB, running macOS 10.12.6. The code
has been compiled with gcc -O3 -fomit-frame-pointer, using Apple LLVM
version 9.0.0 (clang-900.0.38).

All tests were run 1000 times. For uRound2 parameters (i.e., q a power of 2),
the measurements shown are the average values of all test runs combined and
are for the optimized implementation of the algorithm. For nRound2 (i.e., q a
prime number), performance figures are based on the reference implementation.

For the memory requirements, we have provided an indication based on
the same implementations as for the performance figures. Note that the actual
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memory usage depends, of course, on the specifics of a particular implementation
(e.g., an implementation might require matrices to exist (also) in transposed
form, need room for storing intermediate results, etc.).

2.10.4 Round2.KEM: Parameters and Performance

This section contains specific parameter values for Round2.KEM fitting the
uRound2 and nRound2 configurations described at the beginning of this section.

Tables 9 and 10 present ten configurations for the unified Round2 parameter
set, five configurations, one per NIST security level, for the (non-ring) param-
eter set uRound2n=1, and five configurations, one per NIST security level, for
the (ring) parameter set uRound2n=d. Table 11 includes the five configura-
tions, one per NIST security level, for the nRound2 parameter set. In all of
the above tables, the values under Security Levels represent the cost of known
attacks (discussed in Section 2.7) against the underlying LWR or RLWR prob-
lem (depending on whether n = 1 or n = d, respectively). The values under
Root-hermite Factors (RHF) give an estimate of the quality of lattice reduc-
tion algorithm that an attacker must possess to attack Round2 through its
underlying problems. For estimating these bounds on the RHF, we consider
the strongest attack (typically the Hybrid attack [28], see Section 2.7.4) since
this leads to the most conservative security requirements on Round2 from the
defender’s point of view.

Table 13 show the performance and memory usage figures for the uRound2.
KEMn=d algorithm. Table 12 show the performance and memory usage figures
for the uRound2.KEMn=1,τ=2 algorithm.3 Table 14 show the performance and
memory usage figures for the nRound2.KEMn=d algorithm.4 Table 15, finally,
compares the performance of the different variants of computing A for NIST
level 5 of the uRound2.KEM algorithm.

2.10.5 Round2.PKE: Parameters and Performance

This section contains specific parameter values for Round2.PKE fitting the
uRound2 and nRound2 configurations described at the start of this section.

Tables 16 and 17 present ten configurations for the uRound2 parameter set,
five configurations, one per NIST security level, for the uRound2n=1 parameter
set and five configurations, one per NIST security level, for the nRound2n=d

parameter set. Tables 18 includes the five configurations, one per NIST security
level, for the nRound2 parameter set. The values under the Security Levels and
Root-hermite Factors in these tables fields have the same meaning as in the case
of Round2.KEM, see Section 2.10.4.

Note that the “Encryption overhead” of the schemes includes an additional
overhead of 28 bytes that results from the DEM algorithm in use (specifically,

3The additional parameter τ and its corresponding value in the subscript of the Round2
parameter set notation represents the exact type of the mapping fτn used for generating the
Round2 public parameter A.

4Please note that performance figures were obtained using the generic, reference, imple-
mentation, not with an NTT optimized version and are only included for completeness.
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AES in GCM mode) – 12 bytes due to the transport of the initialization vector,
and 16 bytes due to the authentication tag.

Table 20 show the performance and memory usage figures for the uRound2.
PKEn=d algorithm. Table 19 show the performance and memory usage figures
for the uRound2.PKEn=1,τ=2 algorithm.5 Table 21 show the performance and
memory usage figures for the nRound2.PKEn=d algorithm.6 Table 22, finally,
compares the performance of the different variants of computing A for NIST
level 5 of the uRound2.PKE algorithm.

5The additional parameter τ and its corresponding value in the subscript of the Round2
parameter set notation represents the exact type of the mapping fτn used for generating the
Round2 public parameter A.

6Please note that performance figures were obtained using the generic, reference, imple-
mentation, not with an NTT optimized version and are only included for completeness.
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Table 9: uRound2.KEMn=1 parameters

Security Level

NIST1 NIST2 NIST3 NIST4 NIST5

Parameters

d 500 580 630 786 786

n 1 1 1 1 1

h 74 116 126 156 156

q 214 215 215 215 215

p 211 211 211 211 211

t 26 26 27 28 28

B 4 4 4 4 4

n 5 8 6 10 8

m 7 8 8 10 8

µ 32 64 48 96 64

Performance

Total bandwidth (bytes) 8292 12841 12195 21761 17389

Public-key (bytes) 3455 6413 5223 10857 8679

Ciphertext (bytes) 4837 6428 6972 10904 8710

Failure rate 2−101 2−69 2−88 2−74 2−74

Security Levels for LWR problem in (q, p) (bits)

Primal attack 84 103 113 146 146

Dual attack 84 102 113 146 146

Hybrid attack 74 96 106 139 138

Sparse-secrets attack 83 102 112 146 146

Root-hermite Factors (for strongest attack)

δ (Hybrid attack) 1.0055 1.0045 1.0042 1.0034 1.0035
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Table 10: uRound2.KEMn=d parameters

Security Level

NIST1 NIST2 NIST3 NIST4 NIST5

Parameters

d 418 522 540 700 676

n 418 522 540 700 676

h 66 78 96 112 120

q 212 215 214 215 215

p 28 28 28 28 28

t 24 23 24 25 26

B 1 1 1 1 1

n 1 1 1 1 1

m 1 1 1 1 1

µ 128 256 192 384 256

Performance

Total bandwidth (bytes) 917 1173 1201 1689 1577

Public-key (bytes) 435 555 565 749 709

Ciphertext (bytes) 482 618 636 940 868

Failure rate 2−81 2−65 2−66 2−66 2−65

Security Levels for LWR problem in (q, p) (bits)

Primal attack 81 106 112 151 147

Dual attack 83 108 114 154 149

Hybrid attack 75 97 106 140 139

Sparse-secrets attack 81 106 112 151 146

Root-hermite Factors (for strongest attack)

δ (Hybrid attack) 1.005 1.0042 1.004 1.0033 1.0033
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Table 11: nRound2.KEMn=d parameters

Security Level

NIST1 NIST2 NIST3 NIST4 NIST5

Parameters

d 400 486 556 658 658

n 400 486 556 658 658

h 72 96 88 130 130

q 3209 1949 3343 1319 1319

p 28 28 28 28 28

t 24 24 24 25 25

B 1 1 1 1 1

n 1 1 1 1 1

m 1 1 1 1 1

µ 128 256 192 384 256

Performance

Total bandwidth (bytes) 881 1133 1233 1605 1509

Public-key (bytes) 417 519 581 707 691

Ciphertext (bytes) 464 614 652 898 818

Failure rate 2−69 2−48 2−54 2−45 2−45

Security Levels for LWR problem in (q, p) (bits)

Primal attack 78 100 115 143 143

Dual attack 79 102 117 146 146

Hybrid attack 74 97 106 139 139

Sparse-secrets attack 78 100 115 143 143

Root-hermite Factors (for strongest attack)

δ (Hybrid attack) 1.0051 1.0042 1.004 1.0033 1.0033
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Table 12: uRound2.KEMn=1,τ=2 performance and memory usage

Security Level

NIST1 NIST2 NIST3 NIST4 NIST5

API Parameters

CRYPTO SECRETKEYBYTES 625 1,160 945 1,965 1,572

CRYPTO PUBLICKEYBYTES 3,455 6,413 5,223 10,857 8,679

CRYPTO BYTES 16 32 24 48 32

CRYPTO CIPHERTEXTBYTES 4,837 6,428 6,972 10,904 8,710

Performance: Elapsed time (ms)

KEM Generate Key Pair 1.3 2.7 2.6 4.2 3.6

KEM Encapsulate 1.7 2.9 3.1 4.6 3.9

KEM Decapsulate 0.1 0.1 0.1 0.2 0.1

Total 3.0 5.7 5.8 8.9 7.6

Performance: CPU Clock Cycles

KEM Generate Key Pair 3.43M 7.08M 6.65M 10.82M 9.36M

KEM Encapsulate 4.30M 7.59M 8.14M 11.83M 10.11M

KEM Decapsulate 0.18M 0.25M 0.26M 0.43M 0.34M

Total 7.91M 14.92M 15.05M 23.08M 19.81M

Memory usage indication

KEM Generate Key Pair 47KiB 91KiB 86KiB 109KiB 100KiB

KEM Encapsulate 60KiB 105KiB 104KiB 133KiB 120KiB

KEM Decapsulate 17KiB 26KiB 25KiB 44KiB 35KiB
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Table 13: uRound2.KEMn=d performance and memory usage

Security Level

NIST1 NIST2 NIST3 NIST4 NIST5

API Parameters

CRYPTO SECRETKEYBYTES 105 131 135 175 169

CRYPTO PUBLICKEYBYTES 435 555 565 749 709

CRYPTO BYTES 16 32 24 48 32

CRYPTO CIPHERTEXTBYTES 482 618 636 940 868

Performance: Elapsed time (ms)

KEM Generate Key Pair 0.1 0.2 0.2 0.2 0.2

KEM Encapsulate 0.1 0.2 0.2 0.3 0.3

KEM Decapsulate 0.0 0.0 0.0 0.1 0.0

Total 0.3 0.4 0.4 0.6 0.6

Performance: CPU Clock Cycles

KEM Generate Key Pair 0.33M 0.44M 0.46M 0.64M 0.63M

KEM Encapsulate 0.36M 0.50M 0.53M 0.76M 0.72M

KEM Decapsulate 0.05M 0.08M 0.07M 0.13M 0.10M

Total 0.73M 1.02M 1.07M 1.53M 1.46M

Memory usage indication

KEM Generate Key Pair 4KiB 5KiB 5KiB 6KiB 6KiB

KEM Encapsulate 6KiB 8KiB 8KiB 11KiB 10KiB

KEM Decapsulate 2KiB 3KiB 3KiB 5KiB 4KiB
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Table 14: nRound2.KEMn=d performance and memory usage (note: obtained
using the generic, reference, implementation, not with an NTT optimized ver-
sion)

Security Level

NIST1 NIST2 NIST3 NIST4 NIST5

API Parameters

CRYPTO SECRETKEYBYTES 100 122 139 165 165

CRYPTO PUBLICKEYBYTES 417 519 581 707 691

CRYPTO BYTES 16 32 24 48 32

CRYPTO CIPHERTEXTBYTES 464 614 652 898 818

Performance: Elapsed time (ms)

KEM Generate Key Pair 2.1 3.1 4.0 5.5 5.5

KEM Encapsulate 4.1 6.0 7.8 10.9 10.9

KEM Decapsulate 2.0 3.0 3.9 5.4 5.4

Total 8.2 12.1 15.7 21.8 21.8

Performance: CPU Clock Cycles

KEM Generate Key Pair 5.49M 7.99M 10.35M 14.35M 14.37M

KEM Encapsulate 10.68M 15.64M 20.30M 28.25M 28.26M

KEM Decapsulate 5.22M 7.66M 9.99M 13.96M 13.93M

Total 21.39M 31.29M 40.64M 56.56M 56.57M

Memory usage indication

KEM Generate Key Pair 4KiB 4KiB 5KiB 6KiB 6KiB

KEM Encapsulate 6KiB 7KiB 8KiB 10KiB 10KiB

KEM Decapsulate 2KiB 3KiB 3KiB 4KiB 4KiB
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Table 15: uRound2.KEMn=1, NIST level 5 – A generation variants

Variants

f0
n=1 f1

n=1 f2
n=1

Performance: Elapsed time (ms)

KEM Generate Key Pair 27.9 2.4 3.6

KEM Encapsulate 28.2 3.2 3.9

KEM Decapsulate 0.1 0.1 0.1

Total 56.2 5.8 7.6

Performance: CPU Clock Cycles

KEM Generate Key Pair 72.40M 6.37M 9.36M

KEM Encapsulate 73.20M 8.36M 10.11M

KEM Decapsulate 0.34M 0.34M 0.34M

Total 145.93M 15.07M 19.81M

Memory usage indication

KEM Generate Key Pair 1,241KiB 3,655KiB 100KiB

KEM Encapsulate 1,261KiB 3,674KiB 120KiB

KEM Decapsulate 35KiB 35KiB 35KiB
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Table 16: uRound2.PKEn=1 parameters

Security Level

NIST1 NIST2 NIST3 NIST4 NIST5

Parameters

d 500 585 643 835 835

n 1 1 1 1 1

h 74 110 114 166 166

q 215 215 215 215 215

p 211 211 211 212 212

t 26 29 210 26 26

B 4 4 4 4 4

n 5 8 6 10 8

m 7 8 8 10 8

µ 32 64 48 96 64

Performance

Total bandwidth (bytes) 8336 13035 12515 25247 20181

Public-key (bytes) 3455 6468 5330 12574 10053

Encryption overhead (bytes) 4881 6567 7185 12673 10128

Failure rate 2−128 2−131 2−129 2−164 2−165

Security Levels for LWR problem in (q, p) (bits)

Primal attack 84 103 115 146 146

Dual attack 84 103 115 146 146

Hybrid attack 74 96 106 138 138

Sparse-secrets attack 83 102 114 145 145

Root-hermite Factors (for strongest attack)

δ (Hybrid attack) 1.0055 1.0045 1.0042 1.0035 1.0035
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Table 17: uRound2.PKEn=d parameters

Security Level

NIST1 NIST2 NIST3 NIST4 NIST5

Parameters

d 420 540 586 708 708

n 420 540 586 708 708

h 62 96 104 140 140

q 210 213 213 215 215

p 28 29 29 29 29

t 26 23 23 23 23

B 1 1 1 1 1

n 1 1 1 1 1

m 1 1 1 1 1

µ 128 256 192 384 256

Performance

Total bandwidth (bytes) 997 1405 1469 1863 1783

Public-key (bytes) 437 641 685 846 830

Encryption overhead (bytes) 560 764 784 1017 953

Failure rate 2−300 2−172 2−154 2−136 2−137

Security Levels for LWR problem in (q, p) (bits)

Primal attack 81 102 113 143 143

Dual attack 83 104 115 145 145

Hybrid attack 74 97 107 138 138

Sparse-secrets attack 81 102 112 143 143

Root-hermite Factors (for strongest attack)

δ (Hybrid attack) 1.0051 1.0042 1.004 1.0033 1.0033
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Table 18: nRound2.PKEn=d parameters

Security Level

NIST1 NIST2 NIST3 NIST4 NIST5

Parameters

d 442 556 576 708 708

n 442 556 576 708 708

h 74 88 108 140 140

q 2659 3343 2309 2837 2837

p 29 29 29 29 29

t 25 25 25 25 25

B 1 1 1 1 1

n 1 1 1 1 1

m 1 1 1 1 1

µ 128 256 192 384 256

Performance

Total bandwidth (bytes) 1137 1505 1493 1959 1847

Public-key (bytes) 515 659 673 846 830

Encryption overhead (bytes) 622 846 820 1113 1017

Failure rate 2−245 2−225 2−194 2−164 2−164

Security Levels for LWR problem in (q, p) (bits)

Primal attack 79 105 111 143 143

Dual attack 80 107 113 145 145

Hybrid attack 74 97 106 138 138

Sparse-secrets attack 79 104 111 142 142

Root-hermite Factors (for strongest attack)

δ (Hybrid attack) 1.0051 1.0042 1.004 1.0033 1.0033
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Table 19: uRound2.PKEn=1,τ=2 performance and memory usage

Security Level

NIST1 NIST2 NIST3 NIST4 NIST5

API Parameters

CRYPTO SECRETKEYBYTES 4,096 7,670 6,319 14,710 11,755

CRYPTO PUBLICKEYBYTES 3,455 6,468 5,330 12,574 10,053

CRYPTO BYTES 4,881 6,567 7,185 12,673 10,128

Performance: Elapsed time (ms)

PKE Generate Key Pair 2.0 2.7 2.6 4.4 3.9

PKE Encrypt 2.3 2.9 3.2 5.0 4.3

PKE Decrypt 2.3 3.0 3.2 5.1 4.4

Total 6.6 8.7 9.0 14.6 12.6

Performance: CPU Clock Cycles

PKE Generate Key Pair 5.20M 7.02M 6.66M 11.54M 10.13M

PKE Encrypt 5.99M 7.63M 8.27M 13.03M 11.24M

PKE Decrypt 6.05M 7.81M 8.39M 13.20M 11.42M

Total 17.24M 22.46M 23.32M 37.77M 32.79M

Memory usage indication

PKE Generate Key Pair 82KiB 97KiB 92KiB 125KiB 113KiB

PKE Encrypt 92KiB 106KiB 105KiB 140KiB 125KiB

PKE Decrypt 21KiB 32KiB 31KiB 60KiB 48KiB
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Table 20: uRound2.PKEn=d performance and memory usage

Security Level

NIST1 NIST2 NIST3 NIST4 NIST5

API Parameters

CRYPTO SECRETKEYBYTES 558 808 856 1,071 1,039

CRYPTO PUBLICKEYBYTES 437 641 685 846 830

CRYPTO BYTES 560 764 784 1,017 953

Performance: Elapsed time (ms)

PKE Generate Key Pair 0.1 0.2 0.2 0.3 0.3

PKE Encrypt 0.1 0.2 0.2 0.3 0.3

PKE Decrypt 0.2 0.3 0.3 0.4 0.4

Total 0.4 0.7 0.7 1.0 1.0

Performance: CPU Clock Cycles

PKE Generate Key Pair 0.33M 0.52M 0.53M 0.73M 0.72M

PKE Encrypt 0.38M 0.62M 0.61M 0.89M 0.84M

PKE Decrypt 0.41M 0.69M 0.68M 1.03M 0.94M

Total 1.12M 1.83M 1.82M 2.65M 2.49M

Memory usage indication

PKE Generate Key Pair 4KiB 6KiB 6KiB 7KiB 7KiB

PKE Encrypt 6KiB 8KiB 9KiB 11KiB 11KiB

PKE Decrypt 3KiB 4KiB 4KiB 6KiB 5KiB
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Table 21: nRound2.PKEn=d performance and memory usage (note: obtained
using the generic, reference, implementation, not with an NTT optimized ver-
sion)

Security Level

NIST1 NIST2 NIST3 NIST4 NIST5

API Parameters

CRYPTO SECRETKEYBYTES 642 830 841 1,071 1,039

CRYPTO PUBLICKEYBYTES 515 659 673 846 830

CRYPTO BYTES 622 846 820 1,113 1,017

Performance: Elapsed time (ms)

PKE Generate Key Pair 2.6 4.0 4.3 6.1 6.1

PKE Encrypt 5.0 7.8 8.4 12.0 11.9

PKE Decrypt 7.4 11.6 12.5 17.9 17.8

Total 15.0 23.4 25.1 36.0 35.8

Performance: CPU Clock Cycles

PKE Generate Key Pair 6.65M 10.32M 11.06M 15.85M 15.76M

PKE Encrypt 13.00M 20.28M 21.75M 31.08M 30.92M

PKE Decrypt 19.30M 30.20M 32.33M 46.40M 46.29M

Total 38.94M 60.80M 65.14M 93.33M 92.97M

Memory usage indication

PKE Generate Key Pair 5KiB 6KiB 6KiB 7KiB 7KiB

PKE Encrypt 7KiB 9KiB 9KiB 11KiB 11KiB

PKE Decrypt 3KiB 4KiB 4KiB 6KiB 5KiB
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Table 22: uRound2.PKEn=1, NIST level 5 – A generation variants

Variants

f0
n=1 f1

n=1 f2
n=1

Performance: Elapsed time (ms)

PKE Generate Key Pair 31.6 2.7 3.9

PKE Encrypt 32.4 3.9 4.3

PKE Decrypt 32.4 4.0 4.4

Total 96.3 10.6 12.6

Performance: CPU Clock Cycles

PKE Generate Key Pair 81.86M 6.99M 10.13M

PKE Encrypt 83.99M 10.16M 11.24M

PKE Decrypt 84.00M 10.36M 11.42M

Total 249.84M 27.51M 32.79M

Memory usage indication

PKE Generate Key Pair 1,409KiB 4,133KiB 113KiB

PKE Encrypt 1,421KiB 4,144KiB 125KiB

PKE Decrypt 48KiB 48KiB 48KiB
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2.11 Advantages and limitations

Flexibility in the underlying problem’s choice Round2 can be configured
to rely on the Learning with Rounding (LWR) or Ring-Learning with
Rounding (RLWR) problems, by controlling the input parameters n and
d. This allows the user to flexibly choose the configuration (and underlying
problem instantiation) that fits best his application and security require-
ments, even while Round2 is already in deployment. For instance, a user
dealing with strictly confidential information might only trust a public-
key encryption (PKE) algorithm with a construction having no additional
(e.g., ring) structure, while another user operating a wireless network for
a less critical application would prioritize low bandwidth and/or energy
requirements and thus might prefer a (more efficient) ring-based construc-
tion. The unified approach provides from day one a contingency and
smooth transition path, should vulnerabilities in ring-based constructions
be discovered, since the non-ring based construction is already deployed.
Finally, as the Round2 implementation and code remains unified indepen-
dent of the underlying problem instantiated, the amount of code in devices
and effort required for code-review is reduced.

Small public-keys and ciphertexts Round2 relies on rounding (specifically,
the GLWR problem, see Section 2.3), leading to public-keys and cipher-
texts with coefficients that have only dlog pe and dlog te bits. Furthermore,
Round2 relies on prime cyclotomic polynomials that provide a large pool
of (q, n) values to choose from, allowing the selection of parameters that
satisfy security requirements while minimizing bandwidth requirements.
Round2 thus is suited for bandwidth-constrained applications, and Inter-
net protocols that allow limited packet sizes.

Common building blocks for KEM and PKE By design, Round2.KEM
and Round2.PKE are constructed using common building blocks. This
allows for a common security and correctness analysis for both schemes.
Furthermore, it reduces the amount of code in devices, and the effort
required for code-review of Round2.KEM and Round2.PKE.

Flexibility in achieving security levels The design choices in Round 2, es-
pecially the choice for prime cyclotomic polynomials, allowed the fine-
tuning of parameters to each NIST level. Round2 thus enables the user
to choose parameters that tightly fit the required security level.

Flexibility for bandwidth Different applications can have different security
needs and operational constraints. Round2 allows the flexible choice of
parameters so that it is possible to adjust bandwidth requirements and
security level according to the application needs. Round2 achieves this by
using prime cyclotomic polynomials and rounding. For instance, configu-
ration uRound.KEMn=d for NIST security level 1 requires the exchange
of 917 Bytes so that it can be used by an application with communication
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constraints; configuration uRound.KEMn=1 for NIST security level 5 of-
fers a much higher security level and does not rely on any ring structure
so that it might be a preferred option for the exchange of highly confi-
dential information. The amount of data to be exchanged for the latter
configuration (17389 Bytes) is larger than for the former, but is smaller
than in another existing non-ring proposal for an equivalent security level
[15].

Flexibility for CPU Different applications can have different security needs
and operational constraints. Round2 allows for flexibility in the choice of
parameters so that it is possible to adjust CPU needs and security require-
ments according to the application needs. Furthermore, the parameters in
Round2 are chosen such that a unified implementation performs well for
any input value (n, d). If necessary, optimized implementations for spe-
cific parameters can be realized, leading to even faster operation than with
the unified implementation. For instance, configuration uRound.KEMn=1

for NIST security level 5, intended for a high security level and not re-
lying on a ring structure, requires around 7.5 milliseconds in our testing
platform. Another application, requiring faster operation and with less
security needs, can use configuration uRound.KEMn=d for NIST security
level 1 that performs a factor 30 faster.

Flexibility for cryptographic primitives Round2 and its building blocks
can be used to create cryptographic primitives such as authenticated key-
exchange schemes in a modular way, e.g., as in [16].

Flexibility for integration into real-world security protocols The In-
ternet relies on security protocols such as TLS, IKE, SSH, IPsec, DNSSEC
etc. Round2 can be easily integrated into them because it has relatively
small messages and is computationally efficient. For instance, the public-
key and ciphertext in uRound2.KEMn=d for NIST security level 5 require
a total of 1577 Bytes. This is smaller than other lattice-based proposals
such as [16] or [2]. At the same time, all unified Round2 configurations
can be realized by means of a single library minimizing the amount of
work to extend and maintain them.

Prevention of pre-computation and back-door attacks Round2 offers
different alternatives to refresh A in a way that is efficient but also se-
cure against pre-computation and back-door attacks. In the ring setting,
this is simply achieved by computing a new A. In the non-ring setting,
three options are provided: (f0

n=1) randomly generating A in each proto-
col exchange, (f1

n=1) permuting a fixed A in each protocol exchange, or
(f2
n=1) deriving A from a large pool of values by means of a permutation.

Permutation-based approaches show a performance advantage compared
with generating A randomly—for instance, in settings in which a server
has to process many connections. This is because the server can keep a
fixed A in memory and just permute it according to the client request.
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If keeping a fixed A in memory in the client is an issue, then f2
n=1 has a

clear advantage compared with f1
n=1 due to its lower memory needs.

Post-deployment flexibility A single implementation is used for all uRound2
configuration parameters, without the need to change or recompile the
code. This approach reduces the amount of code in the devices and makes
code review easier. Furthermore, it enables a unified Round2 deployment
that can be customized to fit non-ring or ring-based use cases, and a
smooth transition to non ring usage, should vulnerabilities in ring-based
constructions be discovered.

Efficiency in constrained platforms The implementation of Round2 uses
integers of 16 bits to represent the data, which enables good performance
even in architectures with constrained processors.

Parallelization Operations in Round2, for instance matrix multiplications,
can be parallelized.

Resistance against side channel attacks The design of Round2 allows for
efficient constant-time implementations, since by design all secrets are
trinary and have a fixed number of ones and minus ones.

Failure probability The failure probability for Round2.KEM is at most 2−65

for all proposals in the unified parameter set. The failure probability
for Round2.PKE is at most 2−128 for all proposed parameter sets. These
failure probabilities can be achieved because of the usage of sparse, trinary
secrets, and the large pool of parameter sets.

Known underlying mathematical problems Round2 builds on the well-
known Learning with Rounding and Ring Learning with Rounding prob-
lems.

Provable security We provide security reductions from the sparse trinary
LWR and RLWR problems to Round2.KEM and Round2.PKE, and from
the standard Learning with Errors (LWE) problem to the sparse trinary
LWR problem. Even though the latter reduction is not tight, this gives
confidence in the soundness of the Round2 design.

Easy adoption A device that supports uRound2 can handle a wide range of
configuration parameters, for both the ring and the non-ring versions,
without re-compilation. This flexibility will ease a smooth adoption.

Perfect forward secrecy Round2’s key generation algorithm is fast, which
makes it suitable for scenarios in which it is necessary to refresh a pub-
lic/private key pair in order to maintain forward secrecy.
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3 Description of contents in digital media

The contents of the digital media is structured as follows. In the root directory
the following files and directories can be found:

README A file listing the content of the media.

Supporting Documentation Directory with the documentation of our submis-
sion.

Reference Implementation Directory with the source code for the reference
implementation of our submission.

Optimized Implementation Directory with the source code for the optimized
implementation of our submission.

KAT Directory with the KAT files.

The contents of each directory is detailed below.

3.1 Supporting documentation

The Supporting Documentation directory contains the documentation of our
submission in PDF form.

Round2 Submission.pdf The main submission document.

Speedtest Directory with the source files for the application with which we
performed our performance measurements (see speedTest/README for in-
formation).

Parameters Directory with scripts for generating/testing algorithm parameter
sets (see Parameters/README for information).

3.2 Reference and Optimized Implementations

For the reference (found inside directory Reference Implementation) and op-
timized (found inside directory Optimized Implementation) implementations,
the subdirectories kem and encrypt contain the implementations of our Round2.
KEM and Round2.PKE algorithms, respectively.

Inside those subdirectories a further directory level can be found for each
of the algortihm variants and NIST levels. The naming convention for these
subdirectories is as follows:

u or n To indicate whether this is the Unified (u) or NTT-friendly (n) Round2.

round2 Fixed text.

kem or pke The type of the algorithm.

n1 or nd The value of algorithm parameter n (i.e., 1 or d).
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fn[0..2] In case of n = 1 the digit suffix indicates the value of τ in the variant
fτn=1 used for generating matrix A. The fn[0..2] part is absent for the
n = d versions of the algorithm since there matrix A is generated using
f3
n=d, always.

l[1..5] Depicts the NIST security level (NIST1 to NIST5).

The parts are each separated by underscores.
Inside the directories with the variant, you can find the complete source code

of that variant:

Makefile A makefile with which the KAT generation executable can be created.

PQCgetKAT *.c The NIST source code for the generation of KATs for the vari-
ant.

api.h The API settings in use for the variant.

rng.h and rng.c The header and source code files of the NIST random number
generator (note: used inside our algorithm too).

*.h and *.c The header and source code files of our submission (note that
this code is exactly the same between all algorithms and variants of an
implementation!).

In tables 23 and 24 we have listed all submitted Round2.KEM and Round2.
PKE variants respectively. Note that the optimized implementation of the
NTT-friendly ring variants (i.e., the qp variants) is a copy of the reference
implementation since we do not (yet) have an optimized implementation for the
NTT-friendly variants (this will be indicated by the presence of a file with the
name THIS IS A COPY OF REF).

3.3 KAT files

The files with the Known Answer Test values can be found in the KAT directory.
Underneath that directory, the KAT files can be found in subdirectories using
the same structure as the implementations.

For instance the KAT files for the “uRound2.PKE (f2
n=1), NIST level 3”

variant can be found in directory KAT/encrypt/uround2 pke n1 fn2 l3.
Inside the KAT file directory, the KAT files can be found named according

to the NIST specification, including the number of bytes of the secret key as
part of the name and the use of the suffixes .req, .int, and .rsp to denote the
request, intermediate output, and response files respectively.

We have provided KAT files for all submitted algorithm variants.
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Table 23: Submitted Round2.KEM algorithm variants

uround2 kem n1 fn0 l1 uRound2.KEMn=1,τ=0, NIST level 1

uround2 kem n1 fn0 l2 uRound2.KEMn=1,τ=0, NIST level 2

uround2 kem n1 fn0 l3 uRound2.KEMn=1,τ=0, NIST level 3

uround2 kem n1 fn0 l4 uRound2.KEMn=1,τ=0, NIST level 4

uround2 kem n1 fn0 l5 uRound2.KEMn=1,τ=0, NIST level 5

uround2 kem n1 fn1 l1 uRound2.KEMn=1,τ=1, NIST level 1

uround2 kem n1 fn1 l2 uRound2.KEMn=1,τ=1, NIST level 2

uround2 kem n1 fn1 l3 uRound2.KEMn=1,τ=1, NIST level 3

uround2 kem n1 fn1 l4 uRound2.KEMn=1,τ=1, NIST level 4

uround2 kem n1 fn1 l5 uRound2.KEMn=1,τ=1, NIST level 5

uround2 kem n1 fn2 l1 uRound2.KEMn=1,τ=2, NIST level 1

uround2 kem n1 fn2 l2 uRound2.KEMn=1,τ=2, NIST level 2

uround2 kem n1 fn2 l3 uRound2.KEMn=1,τ=2, NIST level 3

uround2 kem n1 fn2 l4 uRound2.KEMn=1,τ=2, NIST level 4

uround2 kem n1 fn2 l5 uRound2.KEMn=1,τ=2, NIST level 5

uround2 kem nd l1 uRound2.KEMn=d, NIST level 1

uround2 kem nd l2 uRound2.KEMn=d, NIST level 2

uround2 kem nd l3 uRound2.KEMn=d, NIST level 3

uround2 kem nd l4 uRound2.KEMn=d, NIST level 4

uround2 kem nd l5 uRound2.KEMn=d, NIST level 5

nround2 kem nd l1 nRound2.KEMn=d, NIST level 1

nround2 kem nd l2 nRound2.KEMn=d, NIST level 2

nround2 kem nd l3 nRound2.KEMn=d, NIST level 3

nround2 kem nd l4 nRound2.KEMn=d, NIST level 4

nround2 kem nd l5 nRound2.KEMn=d, NIST level 5
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Table 24: Submitted Round2.PKE algorithm variants

uround2 pke n1 fn0 l1 uRound2.PKEn=1,τ=0, NIST level 1

uround2 pke n1 fn0 l2 uRound2.PKEn=1,τ=0, NIST level 2

uround2 pke n1 fn0 l3 uRound2.PKEn=1,τ=0, NIST level 3

uround2 pke n1 fn0 l4 uRound2.PKEn=1,τ=0, NIST level 4

uround2 pke n1 fn0 l5 uRound2.PKEn=1,τ=0, NIST level 5

uround2 pke n1 fn1 l1 uRound2.PKEn=1,τ=1, NIST level 1

uround2 pke n1 fn1 l2 uRound2.PKEn=1,τ=1, NIST level 2

uround2 pke n1 fn1 l3 uRound2.PKEn=1,τ=1, NIST level 3

uround2 pke n1 fn1 l4 uRound2.PKEn=1,τ=1, NIST level 4

uround2 pke n1 fn1 l5 uRound2.PKEn=1,τ=1, NIST level 5

uround2 pke n1 fn2 l1 uRound2.PKEn=1,τ=2, NIST level 1

uround2 pke n1 fn2 l2 uRound2.PKEn=1,τ=2, NIST level 2

uround2 pke n1 fn2 l3 uRound2.PKEn=1,τ=2, NIST level 3

uround2 pke n1 fn2 l4 uRound2.PKEn=1,τ=2, NIST level 4

uround2 pke n1 fn2 l5 uRound2.PKEn=1,τ=2, NIST level 5

uround2 pke nd l1 uRound2.PKEn=d, NIST level 1

uround2 pke nd l2 uRound2.PKEn=d, NIST level 2

uround2 pke nd l3 uRound2.PKEn=d, NIST level 3

uround2 pke nd l4 uRound2.PKEn=d, NIST level 4

uround2 pke nd l5 uRound2.PKEn=d, NIST level 5

nround2 pke nd l1 nRound2.PKEn=d, NIST level 1

nround2 pke nd l2 nRound2.PKEn=d, NIST level 2

nround2 pke nd l3 nRound2.PKEn=d, NIST level 3

nround2 pke nd l4 nRound2.PKEn=d, NIST level 4

nround2 pke nd l5 nRound2.PKEn=d, NIST level 5
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2.D.1 Statement by Each Submitter

I, Oscar Garcia-Morchon, ofHigh Tech Campus 5, 5656 AE Eindh oven, The Netherlands, do
hereby declare that the clyptosystem, reference implementation, or optimized implementations
that I have submitted, known as Round2, is my own original work, or ifsubni ittedjointly with
others, is the original work of the joint submitters.

Ifurther declare that (check one,):

I do not hold and do not intend to hold any patent or patent application with a claim
which may cover the ciyptosystem, reference implementation, or optimized
implementations that I have subnzitted, known as

____

(print name of
clyptosystem) , OR (check one or both of the following)

to the best ofmy knowledge, the practice oft/ic cryptosystem, reference
implementation, or optimized implementations that I have submitted, known as

____

(print name ofclyptosystem,) , may be covered by thefollowing US.
and/orforeign patents:

______

(describe and enumerate or state “none” f
applicable)_____

I do hereby declare that, to the best ofmy knowledge, the following pending US.
and/orforeign patent applications may cover the practice ofmy submitted
cryptosystem, reference implementation or optimized implementations:
EPJ 7156214, EPJ 7170508, EP] 7159296, EP] 7196812, EP] 7196926.

I do hereby acknowledge and agree that my submitted ctyptosystem will be provided to the
pitblic for review and will be evaluated by NIST, and that it might not be selectedfor
standardization by NIST Ifurther acknowledge that I will not receive financial or other
compensation from the US. Governmentfor my submission. Icertfy that, to the best of my
knowledge, Ihavefully disclosed all patents andpatent applications which may cover my
clyptosystem, reference implementation or optimized implementations. I also acknowledge and
agree that the US. Government may, during the public review and tile evaluation process, and, if
my submitted ciyptosystem is selectedfor standardization, during the hfetinze of the standard,
modijj7 my submitted clyptosysteni ‘s speclcations (e.g., to protect against a newly discovered
vulnerability).

I acknowledge that NIST will announce any selected clyptosystem(s) and proceed to pitblish the
draft standards forpublic comment

Ido hereby agree to provide the statements required by Sections 2.D.2 and 2.D.3 in the Call For
Proposals for any patent or patent application identjfied to cover the practice ofmy
cryptosystem, reference implementation or optimized implementations and the right to use such
implementationsfor the purposes of the public review and evaluation process.

I acknowledge that, during the post-quantum algorithm evaluation process, NIST may remove
my ciyptosystemfroni consideration for standardization. Ifmy clyptosystem (or the derived
ciyptosystem,) is reniovedfrom considerationfor standardization or withdrawnfrom

4 IPR Statement
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consideration by all submitter(s) and own I understand that rights granted and assurances
made under Sections 2.D. 1, 2.D. 2 and 2.D. 3 of the Call For Proposals, including use rights of
the reference and optimized implementations, may be withdrawn by the submitter(s,) and
owner(s1,as appropriate.

Signed Oscai Gai cia o; c/ion
Title: Senior Cryptography Architect
Date: 16/11/2017
P/ace: Eindhoven, The Netherlands
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2.D.2 Statement by Patent (and Patent Application) Owner(s)

If there are any patents (or patent applications) identified by the submitter, including those held
by the submitter, the following statement must be signed by each and every owner, or each
owner’s authorized representative, of each patent and patent application identified.

I, Jako Eleveld , ofHigh Tech Campus 5, 5656 AE Eindh oven, The Netherlands, am the owner or
authorized representative ofthe owner Koninkli,fke Philips N V. ofthefollowingpatent(s,) and/or
patent application(s): EP] 7156214, EP] 7170508, EP] 7159296, EP] 7196812, EP] 7196926,
and do hereby commit and agree to grant to any interestedparty on a worldwide basis, f the
ciyptosystem known as Round2 is selectedfor standardization, in consideration of its evaluation
and selection by NIST, a non-exclusive licensefor the purpose of implementing the standard
(check one,).

ae
demwi’trublyreecmyzmfairdtcñmiiiaEon, OR

I under reasonable terms and conditions that are demonstrablyfree ofany unfair
discrimination.

Ifurther do hereby commit and agree to license such party on the same basis with respect to any
other patent application or patent hereafter granted to me, or owned or controlled by me, that is
or may be necessamyfar the purpose of implementing the standard.

Ifurther do hereby commit and agree that I will include, in any documents transferring
ownership ofeach patent andpatent application, provisions to ensure that the commitments and
assurances made by me are binding on the transferee and anyfuture transferee.

Ifurther do hereby commit and agree that these commitments and assurances are intended by
me to be binding on successors-in-interest ofeach patent andpatent application, regardless of
whether such provisions are included in the relevant transfer documents.

Ifurther do hereby grant to the US. Government, during the public review and the evaluation
process, and during the lifetime of the standard, a nonexclusive, nontransferrable, irrevocable,
paid-tip worldwide license solelyfor the purpose ofmodifying my submitted cm’yptosystem
specUications (e.g., to protect against a newly discovered vulnerability) for incorporation into
the standard.

/77(;

Signed: Jako Eleveld
Title: Head ofIP Licensing
Date: Z/ /1/’v 22/

Place: Eindhoven, The Netherlands
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2.D.3 Statement by Reference/Optimized Implementations’ Owner(s)

The following must also be included:

I, Jako Eleveld , High Tech Campus 5, 5656 AE Eindh oven, The Netherlands, am the owner or
authorized representative of the owner Koninklijke Philips N. V. of the submitted reference
implementation and optimized implementations and hereby grant the US. Government and any
interestedparty the right to reproduce, prepare derivative works based upon, distribute copies
of and display such implementations for the purposes of the post-quantum algorithm public
review and evaluation process, and implementation fthe corresponding clyptosystem is selected
for standardization and as a standard, notwithstanding that the implementations may be
copyrighted or copyrightable.

Signed: Jako Eleveld
Title: Head ofIP Licensing
Date: 2/ iLJ’ 2/-
Place: Eindhoven, The Netherlands
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[7] Shi Bai, Adeline Langlois, Tancrède Lepoint, Amin Sakzad, Damien Stehle,
and Ron Steinfeld. Improved security proofs in lattice-based cryptography:
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