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Chapter 1 

The SIKE protocol specifcation 

This document presents a detailed description of the Supersingular Isogeny Key Encapsulation (SIKE) 
protocol. This protocol is based on a key-exchange construction, commonly referred to as Supersingular 
Isogeny Diffie-Hellman (SIDH), which was introduced by Jao and De Feo in 2011 [19], and subsequently 
improved in various ways by numerous authors [6, 7, 9, 25]. This specifcation gives an overview of the 
mathematical foundations necessary for SIKE, as well as a complete description of all the algorithms and 
data type conversions used in implementing SIKE, and a brief discussion of the security of the protocol. 

For a summary of the notation used in this document, see Appendix D. 

1.1 Mathematical Foundations 

Use of the supersingular isogeny key encapsulation (SIKE) protocol described in this document involves 
arithmetic operations of elliptic curves over fnite felds. This section provides the mathematical concepts 
and data type conversions used in the description of the SIKE protocol. 

1.1.1 Finite Fields 

A fnite feld consists of a fnite set of elements closed under the operations of addition and multiplication 
defned over the set. There is an additive identity element (0) and a multiplicative identity element (1). 
Every element has a unique additive inverse, and every non-zero element has a unique multiplicative 
inverse. 

For a positive integer q, there exists a fnite feld of q elements if and only if q is a power of a prime p. 
Further, there is a unique representative, up to isomorphism, of every fnite feld of q elements. We denote 
the fnite feld of q elements by Fq. If Fq is a fnite feld with q = pt for prime p, we defne the characteristic 
char(Fq) of Fq to be p. 

The fnite felds used in supersingular isogeny cryptography are quadratic extension felds of a prime feld 
Fp, with p = 2e23e3 − 1, where e2 and e3 are fxed public parameters, and where the extension feld is 
formed as Fp2 = Fp(i) with i2 + 1 = 0. 

When abstraction is useful we will refer to `, m ∈ {2, 3}, such that ` , m. 
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1.1.2 The Finite Field Fp 

The elements of Fp are represented by the integers: 

{0, 1, . . . , p − 1} 

with the feld operations defned as follows: 

• Addition: If a, b ∈ Fp, then a + b = r in Fp, where r ∈ [0, p − 1] is the remainder of a + b divided by 
p, also known as addition modulo p. 

• Multiplication: If a, b ∈ Fp, then ab = s in Fp, where s ∈ [0, p − 1] is the remainder of ab divided 
by p, also known as multiplication modulo p. 

• Additive Inverse: If a ∈ Fp, the unique solution in [0, p − 1] to the equation a + x ≡ 0 (mod p) is 
the additive inverse (−a). 

• Multiplicative Inversion: If a ∈ Fp, a , 0, the unique solution in [0, p − 1] to the equation ax ≡ 1 
(mod p) is the multiplicative inverse a−1. 

We make the convention that a − b = a + (−b), and a/b = a · b−1 in the feld Fp. 

1.1.3 The Finite Field Fp2 

The elements of Fp2 are represented by s = s0 + s1 · i, where s0, s1 ∈ Fp, with the feld operations defned 
as follows: 

• Addition: If a, b ∈ Fp2 , then (a0 + a1 · i) + (b0 + b1 · i) = (a0 + b0) + (a1 + b1) · i in Fp2 , where the 
additions (ai + bi) take place in Fp. 

• Multiplication: If a, b ∈ Fp2 , then (a0 + a1 · i)(b0 + b1 · i) = (a0b0 − a1b1) + (a0b1 + a1b0) · i in Fp2 , 
where the addition, additive inverse and multiplication operations take place in Fp. 

• Additive Inverse: If a ∈ Fp2 , then (−a0)+ (−a1) · i ∈ Fp2 is the additive inverse (−a), where the values 
(−ai) are computed in the feld Fp. 

2 2 2 2• Multiplicative Inversion: If a ∈ Fp, a , 0, then (a0(a0 + a1)
−1 + ((−a1)(a0 + a1)

−1) · i) ∈ Fp2 is the 
multiplicative inverse a−1, where the operations take place in Fp. 

√ 
• Square root: If there exists an r ∈ Fp2 such that r2 = s, then we defne s as t ∈ {−r, r} where Pdlog2 pet = α + β · i with α, β ∈ Fp, such that α0 = 0, where α = j=0 α j2 j in binary representation (i.e. 
α j ∈ {0, 1} for all j). 
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1.1.4 Montgomery curves 

A Montgomery curve is a special form of an elliptic curve. Let A, B ∈ Fq be feld elements satisfying 
B(A2 − 4) , 0 in Fq (where char(Fq) , 2). A Montgomery curve EA,B defned over Fq, denoted EA,B/Fq, is 
defned to be the set of points P = (x, y) of solutions in Fq to the equation 

By2 = x3 + Ax2 + x, 

together with an extra point O, called the point at infnity. For convenience, we may refer to the curve as: 

• EA,B when the underlying feld Fq is either fxed by context, or unspecifed, 

• E(Fq) when the curve parameters are either fxed by context, or unspecifed, 

• E when both the feld and the curve parameters A, B are either fxed by context, or unspecifed. 

At times it will be convenient to refer to the x-coordinate of a point P. We will use the notation xP to refer 
to the x-coordinate of P, and analogously yP to refer to the y-coordinate. 

The set of points of E together with the point at infnity form a fnite abelian group under a point addition 
rule. The order of an elliptic curve E over a fnite feld Fq, denoted #E(Fq), is the number of points in E 
including O. 

Oftentimes, Montgomery curves are indicated by MA,B, but we will use the notation EA,B instead. 

1.1.5 Point addition 

Given two points P = (xP, yP) and Q = (xQ, yQ) such that P , ±Q on a Montgomery curve EA,B over a 
fnite feld Fq, we can compute R = P + Q as 

xR = Bλ2 − (xP + xQ) − A 

and 
yR = λ(xP − xR) − yP, 

where R = (xR, yR) and λ = (yP − yQ)/(xP − xQ). 

We can add a point to itself multiple times, say k times, as follows: P + P + . . . + P = [k]P. 

The order ord(P) of a point P is the smallest positive integer n such that [n]P = O (the point at infnity). 

1.1.6 Point doubling 

Let P = (xP, yP) ∈ EA,B be a point whose order does not divide 2. Then [2]P = (x[2]P, y[2]P) ∈ EA,B can be 
computed as !2 2 4 2(xP − 1)2 (xP − 1)(xP + 2Ax3 

P + 6xP + 2AxP + 1)
(x[2]P , y[2]P) = , yP · . 

4xP(x2 
P + AxP + 1) 8x2 

P(x2 
P + AxP + 1)2 

Observe that x[2]P only depends on xP and A. The optimized, inversion-free algorithm that takes advantage 
of this is given in Algorithm 3 of Appendix A. 
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1.1.7 Point tripling 

Let P = (xP, yP) ∈ EA,B be a point whose order does not divide 3. Then [3]P = (x[3]P, y[3]P) ∈ EA,B can be 
computed as 

(x4 
P − 4AxP − 6x2 

P − 3)2xP 
x[3]P = ,

(4Ax3 
P + 3x4 

P + 6x2 
P − 1)2 

and � � 
(x4 

P − 4AxP − 6x2 
P − 3) x8 

P + 4Ax7 
P + 28x6 

P + 28Ax5 
P + (16A2 + 6)x4 

P + 28Ax3 
P + 28x2 

P + 4AxP + 1 
y[3]P = yP · . 

(4Ax3 
P + 3x4 

P + 6x2 
P − 1)3 

Again we see that x[3]P only depends on xP and A. The algorithm that takes advantage of this is given in 
Algorithm 6 of Appendix A. 

1.1.8 Additional properties of elliptic curves 

For any group G, and a set of elements {P1, P2, . . . , Pt} ⊆ G we can defne the subgroup hP1, P2, . . . Pti 
generated by this set to be the smallest subgroup of G containing the elements P1, P2, . . . , Pt. For an 
abelian group G, we say a set of elements {P1, P2, . . . Pt} ⊆ G form a basis of G if every element P of G 
admits a unique expression of the form 

P = [k1]P1 + [k2]P2 + · · · [kt]Pt 

where 0 ≤ ki < ord(Pi) for all i. Analogously, we say a set {P1, P2, . . . , Pt} ⊆ H forms a basis of a subgroup 
H ⊆ G when all elements of the subgroup H admit a unique expression as above. The Weil pairing [27] 
can assist in determining whether or not a set forms a basis, since for n = ord(P) = ord(Q), the order-n 
Weil pairing en has the property that ord(en(P, Q)) = n if and only if hPi ∩ hQi = {O}. 

For a positive integer m, we defne the set E[m] of m-torsion elements of an elliptic curve E(Fq) to be the 
set of points in E(F̄q) such that [m]P = O. 

An elliptic curve E(Fq) over a feld of characteristic p is called supersingular if p | (q + 1 − #E(Fq)), and 
ordinary otherwise. 

The j-invariant of the elliptic curve EA,B is computed as 

256(A2 − 3)3 

j(EA,B) = .
A2 − 4 

The j-invariant of an elliptic curve over a feld Fq is unique up to isomorphism of the elliptic curve. The 
SIKE protocol defnes a shared secret as a j-invariant of an elliptic curve. 

4 



1.1.9 Isogenies 

Let E1 and E2 be elliptic curves over a fnite feld Fq. An isogeny φ : E1 → E2 is a non-constant rational 
map defned over Fq which is also a group homomorphism from E1(Fq) to E2(Fq). If such a map exists we 
say E1 is isogenous to E2, and two curves E1 and E2 over Fq are isogenous if and only if #E1(Fq) = #E2(Fq). 

An isogeny φ can be expressed in terms of two rational maps f and g over Fq such that φ((x, y)) = ( f (x), y · 
g(x)). We can write f (x) = p(x)/q(x) with polynomials p(x) and q(x) over Fq that do not have a common 
factor, and similarly for g(x). We defne the degree deg(φ) of the isogeny to be max{deg(p(x)), deg(q(x))}, 
where p(x) and q(x) are as above. It is often convenient to do isogeny calculations using only the f (x) 
component of the isogeny. 

Given an isogeny φ : E1 → E2 we defne the kernel of φ as follows: 

ker(φ) = {P ∈ E1 : φ(P) = O}. 

For any fnite subgroup H of E(Fq), there is a unique isogeny (up to isomorphism) φ : E → E0 such that 
ker(φ) = H and deg(φ) = |H|, where |H| denotes the cardinality of H. In this case, we denote by E/H 
the curve E0 . ), V´Given a subgroup H ⊆ E(Fq elu’s formula [39] can be used to fnd the isogeny φ and 
isogenous curve E/H. Vélu’s formula is computationally impractical for arbitrary subgroups. SIKE uses 
isogenies over subgroups that are powers of 4 and 3. 

Let (x4, y4) ∈ EA,B be a point of order 4 with x4 , ±1 and let φ4 : EA,B → EA0 ,B0 be the unique (up to 
isomorphism) 4-isogeny with kernel h(x4, y4)i. Then EA0 ,B0 can be computed as � � 

(A0 , B0) = 4x4
4 − 2 , −x4(x2

4 + 1) · B/2 

Observe that A0 only depends on x4. The inversion-free algorithm that takes advantage of this is given in 
Algorithm 11 of Appendix A . 

If P = (xP, yP) is any point on EA,B that is not in ker(φ4), then φ4 : (xP, yP) 7→ (xφ4(P), yφ4(P)), and this can be 
computed as 

−(xPx2 
4 + xP − 2x4)xP(xPx4 − 1)2 

xφ4(P) = ,
(xP − x4)2(2xPx4 − x4

2 − 1) 

and 

2 4 2 3 3 2 4 2 3 2−2x4(xPx4 − 1)(xP(x4 + 1) − 4xP(x4 + x4) + 2xP(x4 + 5x4) − 4xP(x4 + x4) + x4 + 1) 
yφ4(P) = yP · . 

(xP − x4)3(2xPx4 − x2
4 − 1)2 

Observe that xφ4(P) only depends on xP and x4. The inversion-free algorithm that takes advantage of this is 
given in Algorithm 12 of Appendix A. 

Let (x3, y3) ∈ EA,B be a point of order 3 and let φ3 : EA,B → EA0 ,B0 be the unique (up to isomorphism) 
3-isogeny with kernel h(x3, y3)i. Then EA0 ,B0 can be computed as � � 

(A0 , B0) = (Ax3 − 6x2
3 + 6)x3 , Bx2

3 
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The new coefficient A0 only depends on A and x3. The inversion-free algorithm that takes advantage of 
this is given in Algorithm 13 of Appendix A. 

If P = (xP, yP) is any point on EA,B that is not in ker(φ3), then φ3 : (xP, yP) 7→ (xφ3(P), yφ3(P)), and this can be 
computed as 

! 
xP(xPx3 − 1)2 (xPx3 − 1)(x2 

Px3 − 3xPx3
2 + xP + x3)

(xφ3(P), yφ3(P)) = , yP · .
(xP − x3)2 (xP − x3)3 

Observe that xφ3(P) only depends on xP and x3. The inversion-free algorithm that takes advantage of this is 
given in Algorithm 14 of Appendix A. 

The SIKE protocol defnes secret keys from two separate key spaces, K2 and K3 (cf. §1.3.8). A secret 
key sk defnes a subgroup H of E(Fq), which in turn defnes an isogeny φsk : E → E/H. The public key 
is determined by the isogeny φsk and points P, Q ∈ E(Fq) (which are fxed globally as public parame-
ters and do not depend on sk). More specifcally, the public key corresponding to sk is determined by 
{E/H, φsk(P), φsk(Q)}. The points P and Q are chosen so that {P, Q} forms a basis for E[`e` ] . In our imple-
mentations, for efficiency reasons we represent a public key as a triplet of feld elements, namely the three 
x-coordinates {xφsk(P), xφsk(Q), xφsk(P−Q)} of three points under the isogeny. It is possible to convert between 
representations using the methods given in [7]. For example, the Montgomery curve coefficient A of E/H 
can be recovered by the three x-coordinates of a public key {xφsk(P), xφsk(Q), xφsk(P−Q)} using the equation 

A = 
(1 − xφsk(P)xφsk(Q) − xφsk(P)xφsk(P−Q) − xφsk(Q)xφsk(P−Q))2 

− xφsk(P) − xφsk(Q) − xφsk(P−Q).4xφsk(P)xφsk(Q)xφsk(P−Q) 

Similarly, the points φsk(P) and φsk(Q) can be recovered (up to simultaneous sign) from xφsk(P) and xφsk(Q) 

using the formula q
yφsk(P) = x3 + Ax2 + xφsk(P)φsk(P) φsk(P)

and q
= x3 + Ax2yφsk(Q) φsk(Q) φsk(Q) + xφsk(Q), 

and if !2yφsk(Q) − yφsk(P)
+ A , ,xφsk(P−Q) + xφsk(Q) + xφsk(P) xφsk(Q) − xφsk(P) 

then set yφsk(Q) = −yφsk(Q). 

1.2 Data types and conversions 

The SIKE protocol specifed in this document involves operations using several data types. This section 
lists the different data types and describes how to convert one data type to another. 
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1.2.1 Curve-from-public-key computation - cfpk 

An elliptic curve from a public key should be computed as described in this section. Informally, three 
feld elements are interpreted as x-coordinates to three points P, Q, and P − Q, from which a curve E0 is 
computed and returned. 

Input: Three feld elements (xP, xQ, xR) of Fp2 . 

Output: A elliptic curve E0 over Fp2 or FAIL. 

Action: Convert (xP, xQ, xR) to an elliptic curve as follows: 

1. For i ∈ [P, Q, R] verify xi , 0 or return FAIL. 
(1−xPxQ−xPxR−xQxR)2 

2. Compute A = − xP − xQ − xR in Fp2 .4xPxQxR 

3. Set E0 = EA. 
4. Output E0 . 

1.2.2 Octet-string-to-integer conversion - ostoi 

Octet strings should be converted to integers as described in this section. This routine takes as input an 
octet string M of length mlen and interprets the octet string in base 28 of an integer. 

Input: An octet string M of length mlen. 

Output: An integer a. 

Action: Convert M to an integer a as follows: 

1. Parse M = M0M1 . . . Mmlen −1 into mlen-many octets. 
2. Interpret each octet Mi as an integer in [0, 255].Pmlen −13. Compute a = i=0 Mi28i . 

4. Output a. 

1.2.3 Octet-string-to-feld-p-element conversion - ostofp 

Octet strings should be converted to elements of Fp as described in this section. This routine takes as input 
an octet string M of length Np = d(log2 p)/8e and converts it to an integer, verifying that the integer is in 
the range [0, p − 1]. 

Input: An octet string M of length Np. 

Output: A feld element a ∈ Fp or FAIL. 

Action: Convert the octet string M to feld element as follows: 

1. Convert M to an integer a (cf. §1.2.2) using M and Np as inputs. 
2. If a < [0, p − 1] output FAIL, otherwise output a. 
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1.2.4 Octet-string-to-feld-p2-element conversion - ostofp2 

Octet strings should be converted to elements of Fp2 as described in this section. This routine takes as 
input an octet string M of length 2Np, where Np = d(log2 p)/8e and converts it to two integers, verifying 
each is in the range [0, p − 1], and interprets the results as an element of Fp2 . 

Input: An octet string M of length 2Np. 

Output: A feld element a ∈ Fp2 or FAIL. 

Action: Convert the octet string M to feld element as follows: 

1. Parse M = M0M1 where each Mi is of length Np. 

2. For i ∈ [0, 1] convert Mi to a feld element ai (cf. §1.2.3) or output FAIL. 

3. Form a = a0 + a1 · i, and return a. 

1.2.5 Octet-string-to-public-key conversion - ostopk 

Octet strings should be converted to public keys as described in this section. This routine takes as input 
and octet string M of length 6Np, where Np = d(log2 p)/8e and converts it to three feld elements of Fq, 
interpreted as x-coordinates of three points P, Q, and R. 

Input: An octet string M of length 6Np. 

Output: A public key (xP, xQ, xR) or FAIL. 

Action: Convert the octet string M to a public key as follows: 

1. Parse M = M1M2M3, where each Mi is an octet string of length 2Np. 

2. For i ∈ [1, 2, 3] convert Mi to a feld element xi (cf. §1.2.4) or return FAIL. 

3. Output pk` = (x1, x2, x3). 

1.2.6 Integer-to-octet-string conversion - itoos 

Integers should be converted to octet strings as described in this section. This routine takes as input an 
integer a and an octet length mlen is provided as input. The routine will represent a in base 28 and convert 
that to an octet string. A restriction is that 28·mlen > a. 

Input: A non-negative integer a together with a desired length mlen of the octet string, such that 28·mlen > 
a. 

Output: An octet string M of length mlen octets. 

Actions: Convert a into an mlen-length octet string as follows: 
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= amlen −128(mlen −1) + amlen −228(mlen −2)1. Convert a + · · · + a128 + a0 represented in base 28. 

2. For 0 ≤ i < mlen, set Mi = ai. 

3. Form M = M0M1 . . . Mmlen −1. 

4. Output M. 

1.2.7 Field-p-to-octet-string conversion - fptoos 

Field elements of Fp should be converted to octet strings as described in this section. Informally the idea 
is that an element of Fp is an integer in [0, p − 1] and is converted to a fxed length octet string. 

Input: An element a ∈ Fp. 

Output: An octet string M of length Np = d(log2 p)/8e. 

Actions: Compute the octet string as follows: 

1. Since a is an integer in the interval [0, p − 1], convert a to an octet string M (cf. §1.2.6), with 
inputs a and Np. 

2. Output M. 

1.2.8 Field-p2-to-octet-string conversion - fp2toos 

Field elements Fp2 should be converted to octet strings as described in this section. Informally the idea is 
that the elements of Fp2 consists of two feld elements of Fp, each of these are converted to an octet string 
and the result is concatenated. 

Input: An element a ∈ Fp2 . 

Output: An octet string M of length 2 · Np where Np = d(log2 p)/8e. 

Actions: Compute the octet string as follows: 

1. Since a ∈ Fp2 , we can represent it as a = a0 + a1 · i where ai ∈ Fp. 

2. Convert ai into an octet string Mi of the length Np (cf. §1.2.7). 

3. Form M = M0M1. 

4. Output M. 
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1.2.9 Public-key-to-octet-string conversion - pktoos 

Public keys (xP, xQ, xR) should be converted to octet strings as described in this section. This routine 
converts each x-coordinate as an octet string encoding of a feld elements and concatenates them to form 
the output octet string. 

In portions of the spec we will refer to a public key pk in octet string format without explicitly referencing 
the public-key-to-octet-string conversion. 

Input: A public key (xP, xQ, xR) over a fnite feld Fp2 

Output: An octet string M of length 6 · Np where Np = d(log2 p)/8e 

Actions: Compute the octet string as follows: 

1. Convert xP, xQ, xR into an octet strings M1, M2, M3 respectively, each of length 2Np (cf. §1.2.8). 

2. Form M = M1M2M3. 

3. Output M. 

1.3 Detailed protocol specifcation 

This section specifes the supersingular isogeny key encapsulation (SIKE) protocol. Some options have 
been omitted from this specifcation for the purpose of simplicity. In particular, the specifcation below 
does not employ point compression. Users seeking the compression of public keys described in [1, 6] 
should refer to the implementation provided at https://github.com/Microsoft/PQCrypto-SIDH. 

The set of public parameters for SIKE is defned in §1.3.1. The two necessary isogeny computation 
algorithms are defned in §1.3.4. The IND-CPA PKE scheme is defned in §1.3.9. The subsequent IND-
CCA KEM is defned in §1.3.10. The security proofs of both the PKE and the KEM are in §4.3. 

1.3.1 Public parameters 

The public parameters in SIKE are: 

• Two positive integers e2 and e3 that defne a fnite feld Fp2 where p = 2e23e3 − 1, 

• A starting supersingular elliptic curve E0/Fp2 , 

• A set of three x-coordinates corresponding to points in E0[2e2], and 

• A set of three x-coordinates corresponding to points in E0[3e3]. 

10 

https://github.com/Microsoft/PQCrypto-SIDH


1.3.2 Starting curve 

The public starting curve is the supersingular elliptic curve 

E0/Fp2 : y2 = x3 + x, 

with #E0(Fp2) = (2e23e3)2 and j-invariant equal to j(E0) = 1728. This is the special instance of the 
Montgomery curve By2 = x3 + Ax2 + x, where A = 0 and B = 1. 

1.3.3 Public generator points 

The three x-coordinates in the public parameters corresponding to points in E0[2e2] are specifed as follows. 
We frst specify two points 

P2 ∈ E0(Fp2) \ E0(Fp) and Q2 ∈ E0(Fp) 

such that both points have exact order 2e2 , and {P2, Q2} forms a basis for E0(Fp2)[2e2], i.e., the order-2e2 

Weil pairing e2e2 (P2, Q2) ∈ F× 
p2 has full order, or equivalently, e2([2e2−1]P2, [2e2−1]Q2) ∈ F× 

p2 is not equal to 
1. Similarly, we specify two points 

P3 ∈ E0(Fp2) \ E0(Fp) and Q3 ∈ E0(Fp) 

such that both points have exact order 3e3 , and {P3, Q3} forms a basis for E0(Fp2)[3e3]. 

The points P2, Q2, P3, Q3 are determined according to the following procedure: 

• Q2 is frst specifed by setting x0 = 1 ∈ Fp and, if necessary, incrementing x0 ← x0 + 1 until q
both x0

3 + x0 is a square in Fp, and the point (x0, y0) ∈ E0(Fp) with y0 = x0
3 + x0 is such that 

(xQ2 , yQ2) = [3e3](x0, y0) has exact order 2e2 . The point Q2 is then defned as Q2 = (xQ2 , yQ2). 

• P2 is then specifed by setting x0 = i + 1 and, if necessary, incrementing x0 ← x0 + 1 until x3 + x0 is q 0 

a square in Fp2 , the point (x0, y0) ∈ E0(Fp2) with y0 = x0
3 + x0 is such that (xP2 , yP2) = [3e3](x0, y0) 

has exact order 2e2 , and the order-2e2 Weil pairing of Q2 and (xP2 , yP2) has full order. The point P2 is 
then defned as P2 = (xP2 , yP2). 

• Q3 is specifed by setting x0 = 1 ∈ Fp and, if necessary, incrementing x0 ← x0+1 until both x0
3+x0 is a q

square in Fp, and the point (x0, y0) ∈ E0(Fp) with y0 = x0
3 + x0 is such that (xQ3 , yQ3) = [2e2](x0, y0) 

has exact order 3e3 . The point Q3 is then defned as Q3 = (xQ3 , yQ3). 

• P3 is then specifed by setting x0 = i + 1 and, if necessary, incrementing x0 ← x0 + 1 until x3
0 + x0 is q

a square in Fp2 , the point (x0, y0) ∈ E0(Fp2) with y0 = x0
3 + x0 is such that (xP3 , yP3) = [2e2](x0, y0) 

has exact order 3e3 , and the order-3e3 Weil pairing of Q3 and (xP3 , yP3) has full order. The point P3 is 
then defned as P3 = (xP3 , yP3). 

The points P2, Q2, P3, Q3 could serve as public parameters for SIKE, but instead, for efficiency reasons 
(as described in [7]), we encode the points P2 and Q2 using the three x-coordinates xP2 , xQ2 and xR2 , 
where R2 = P2 − Q2. Similarly, we encode P3, Q3 using the three x-coordinates xP3 , xQ3 and xR3 , where 
R3 = P3 − Q3. 
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1.3.4 Isogeny computations 

In this section we fx `, m ∈ {2, 3} such that ` , m. The two fundamental isogeny algorithms described 
are isogen` and isoex`. On input of the public parameters and a secret key, isogen` outputs the public 
key corresponding to the input secret key. On input of a secret key and a public key, isoex` outputs the 
corresponding shared key. These two algorithms will be used as building blocks for the PKE and KEM 
schemes defned in the subsequent sections. 

Both algorithms compute an `e` -degree isogeny via the composition of e` individual `-degree isogenies; 
these `-degree isogenies are evaluated on at least one point lying on the domain curve. Following [7, 9], 
rather than evaluating the image of an isogeny on a point R = (xR, yR), it is more efficient to evaluate 
its image under the x-only projection (xR, yR) 7→ xR. Since the coordinate maps for an isogeny ψ : E → 
E0 , R 7→ ψ(R) can always be written such that xψ(R) = f (xR) for some function f [39], the isogen` 
and isoex` algorithms will assume the i-th `-degree isogeny φi adheres to this framework by writing 
φi : (x, — ) 7→ ( fi(x), — ). 

Note that the defnition of public parameters and public keys allows for the possibility of a generic imple-
mentation that reverts back to full isogeny computations which compute both the x- and y-coordinates of 
image points in either the Montgomery or short Weierstrass frameworks. In particular, the starting curve 
E0 defned in §1.3.2 is a special instance of a Montgomery curve and a short Weierstrass curve, and the 
public generator points in §1.3.3 uniquely defne the y-coordinates of P2, Q2, P3 and Q3. 

1.3.5 Computing public keys: isogen` 

A supersingular isogeny key pair consists of a secret key sk`, an integer, and a set of three x-coordinates 
pk` = (xP, xQ, xR). 

Public parameters. A prime p = 2e23e3−1, the starting curve E0/Fp2 , and public generators
� 
xP2 , xQ2 , xR2�

and xP3 , xQ3 , xR3 . 

Input. A secret key sk`. 

Output. A public key pk`. 

Actions. Compute a public key pk`, as follows: 

1. Set xS ← xP`+[sk`]Q` ; � �
2. Set (x1, x2, x3) ← xPm , xQm , xRm ; 

3. For i from 0 to e` − 1 do 

(a) Compute the x portion for an `-isogeny 

φi : Ei → E0 

(x, — ) 7−→ ( fi(x), — ) 

such that ker φi = h[`e`−i−1]S i, where S is a point on Ei with x-coordinate xS ; 
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(b) Set Ei+1 ← E0; 
(c) Set xS ← fi(xS ); 
(d) Set (x1, x2, x3) ← ( fi(x1), fi(x2), fi(x3)); 

4. Output pk` = (x1, x2, x3). 

1.3.6 Establishing shared keys: isoex` 

Public parameters. A prime p = 2e23e3 − 1. 

Input. A public key pkm = 
� 
xPm , xQm , xRm 

� 
and a secret key sk`. 

Output. A shared secret j, an octet string of length 2Np. 

Actions. Compute a shared secret j, as follows: 

1. Compute E0 
0 from pkm using cfpk (cf. §1.2.1); 

2. Set xS ← xPm+[sk`]Qm; 

3. For i from 0 to e` − 1 do 

(a) Compute the x portion for an `-isogeny 

φi : Ei 
0 → E0 

(x, — ) 7−→ ( fi(x), — ) 

such that ker φi = h[`e`−i−1]S i, where S is a point on Ei 
0 with x-coordinate xS ; 

(b) Set Ei
0 
+1 ← E0; 

(c) Set xS ← fi(xS ); 

4. Encode j(Ee
0 
` 
) into j using fp2toos (cf. §1.2.8). 

1.3.7 Optimized isogen` and isoex` 

The algorithms isogen` and isoex` described above, though polynomial-time, are relatively inefficient 
in practice. In both cases, the most expensive part is the computation of the point [`e`−i−1]S in step 4.a of 
each. Indeed, one such computation requires (at most) e` multiplications by the scalar `, and is repeated 
e` times, for a total of O(e2) elementary operations.` 

In optimized implementations, following [9], it is recommended to replace the for loops by a recursive 
decomposition of the isogeny computation into elementary operations, requiring only O(e` log e`) multi-
plications by the scalar `, and a similar amount of evaluations of `-isogenies. 

We call such a decomposition a computational strategy, and we describe it by a full binary tree on e` − 1 
nodes1. If we draw such trees so that all nodes lie within a triangular region of a hexagonal lattice, with all 
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Figure 1.1: Three computational strategies of size e` − 1 = 6. The simple approach used in Sections 1.3.5 
and 1.3.6 corresponds to the leftmost strategy. 

leaves on one border, then the path length of the tree is proportional to the computational effort required 
by the strategy. See Figure 1.1 for an example, and [9, §4] for a more formal defnition. 

In practice, we represent any full binary tree on e` −1 nodes in the following way: associate to any internal 
node the number of leaves to its right, then walk the tree in depth-frst left-frst order and output the labels 
as they are encountered. See Figure 1.2 for an example. 

3 

2 

1 1 
2 

1 

Linearization: (3, 2, 1, 1, 2, 1) 

Figure 1.2: Linear representation of a strategy on 6 nodes. 

Given any full binary tree represented this way, the computation in step 3 of isogen` can be replaced by 
the following recursive procedure: 

Input. A starting curve E, the x-coordinate xS of a point S on E, a list of x-coordinates ( x1, x2, . . . ) on E. 
A strategy (s1, . . . , st−1) of size t − 1. 

Output. The image curve E0 = E/hS i of the isogeny ψ : E → E/hS i with kernel hS i, the list of image 
coordinates (ψ(x1), ψ(x2), . . . ) on E0 . 

Actions. 

1. If t = 1 (i.e., the strategy is empty) then 

(a) Compute an `-isogeny 

φ : E → E0 

(x, — ) 7−→ ( f (x), — ) 

such that ker φ = hS i; 
(b) Return (E0 , f (x1), f (x2), . . . ); 

2. Let n = s1 ; 
1We recall that a full binary tree on n nodes is a binary tree with exactly n nodes of degree 2 and n + 1 nodes (leaves) of 

degree 0. 
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3. Let L = (s2, . . . , st−n) and R = (st−n+1, . . . , st−1); 
4. Set xT ← x[`n]S ; 
5. Set (E, (xU , x1, x2, . . . )) ← Recurse on (E, xT , (xS , x1, x2, . . . )) with strategy L; 
6. Set (E, (x1, x2, . . . )) ← Recurse on (E, xU , (x1, x2, . . . )) with strategy R; 
7. Return (E, (x1, x2, . . . )). 

A similar algorithm, without the inputs (x1, x2, . . . ), can be replaced inside isoex` to obtain the same 
speedup. Remark that the simple algorithms of Sections 1.3.5 and 1.3.6 correspond to the strategy 
(e` − 1, . . . , 2, 1). A derecursivized version of this algorithm is given in Appendix A. 

We stress that the computational strategy is a public parameter independent of the (secret) input: it can 
be chosen once for all, and can possibly be hardcoded in the implementation. Changing it has no impact 
whatsoever on the security of the protocols (other than it affects the possible set of side-channel attacks). 
An implementer needs only be concerned with whether or not a given linear representation (s1, . . . , st−1) 
correctly defnes a strategy, i.e. that it belongs to the language S t defned by the following grammar: 

S 1 ::= �, 

S a+b ::= b . S a . S b. 

This can be readily verifed with the following recursive procedure, that throws an error whenever a strat-
egy is invalid, and terminates otherwise. 

Input. A strategy (s1, . . . , st−1) of size t − 1. 

Actions. 

1. If t = 1 (i.e., the strategy is empty) return. 
2. Let n ← s1 ; 
3. If n < 1 or n ≥ t halt with error “Invalid strategy”; 
4. Let L = (s2, . . . , st−n) and R = (st−n+1, . . . , st−1); 
5. Recurse on L; 
6. Recurse on R. 

These checks can easily be integrated into the isogeny computation algorithm. An analogous check is 
performed in the derecursivized versions of Appendix A. 

1.3.8 Secret keys 

The PKE and KEM schemes require two secret keys, sk2 and sk3, which are used to compute 2e2-isogenies 
and 3e3-isogenies, respectively (see §1.3.9 and §1.3.10). 

Let Nsk2 = de2/8e. Secret keys sk2 correspond to integers in the range {0, 1, . . . , 2e2 − 1}, encoded as an 
octet string of length Nsk2 using itoos (cf. §1.2.6). The corresponding keyspace is denoted K2. 

Let s = blog2 3e3c and Nsk3 = ds/8e. Secret keys sk3 correspond to integers in the range {0, 1, . . . , 2s − 
1}, encoded as an octet string of length Nsk3 using itoos (cf. §1.2.6). The corresponding keyspace is 
denoted K3. 
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1.3.9 Public-key encryption 

Algorithm 1 defnes a public-key encryption scheme PKE = (Gen, Enc, Dec) [9, §3.3]. The two keyspaces 
K2 and K3 are defned in 1.3.8. The size of the message space M = {0, 1}n, as well as the function F 
that maps the shared secret j to bitstrings, are left unspecifed; concrete choices corresponding to our 
implementations are specifed in Section 1.4. Note that the function Enc generates randomness sk2. In 
the case of the key encapsulation mechanism we want to pass this randomness as input, in which case we 
write (c0, c1) ← Enc(pk3, m; sk2) (see Line 7 of Algorithm 2). 

Algorithm 1: PKE = (Gen, Enc, Dec) 

function Gen 
Input: () 
Output: (pk3, sk3) 

1 sk3 ←R K3 

2 pk3 ← isogen3(sk3) � � 
3 return pk3, sk3 

function Enc 
Input: pk3, m ∈ M 

Output: (c0, c1) 

4 sk2 ←R K2 

5 c0 ← isogen2(sk2) 

6 j ← isoex2(pk3, sk2) 

7 h ← F( j) 

8 c1 ← h ⊕ m 

9 return (c0, c1) 

function Dec 
Input: sk3, (c0, c1) 

Output: m 

10 j ← isoex3(c0, sk3) 

11 h ← F( j) 

12 m ← h ⊕ c1 

13 return m 

1.3.10 Key encapsulation mechanism 

Algorithm 2 defnes a key encapsulation mechanism KEM = (KeyGen, Encaps, Decaps), by applying a 
transformation of Hofheinz, Hövelmanns and Kiltz [18] to the PKE defned in §1.3.9. We slightly modify 
this transformation by including pk3 in the input to G (as in [3]), and by simplifying “re-encryption” 
(see the proof of Theorem 1). Again, The two keyspaces K2 and K3 are defned in 1.3.8. The size of 
M = {0, 1}n as well as the functions G and H, are left unspecifed; concrete choices corresponding to our 
implementations are specifed in Section 1.4. 

NIST’s API for the KEM 

We now defne how the inputs and outputs in Algorithm 2 match the API used in the implementations. 
NIST specifes the following API for the KEM: 

int crypto_kem_keypair(unsigned char *pk, unsigned char *sk); 
int crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk); 
int crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk); 
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Algorithm 2: KEM = (KeyGen, Encaps, Decaps) 

function KeyGen function Encaps function Decaps 
Input: () 
Output: (s, sk3, pk3) 

1 sk3 ←R K3 5 

2 pk3 ← isogen3(sk3) 6 

3 s ←R {0, 1}n 7 � � 
4 return s, sk3, pk3 8 

9 

Input: pk3 

Output: (c, K) 

m ←R {0, 1}n 10 

r ← G(m || pk3) 11 

(c0, c1) ← Enc(pk3, m; r) 12 

K ← H(m || (c0, c1)) 13 

return ((c0, c1), K) 14 

15 

16 

17 

Input: (s, sk3, pk3), (c0, c1) 

Output: K 

m0 ← Dec(sk3, (c0, c1)) 

r0 ← G(m0 || pk3) 
0c ← isogen2(r0)0 

if c0 0 = c0 then 
K ← H(m0 || (c0, c1)) 

else 
K ← H(s || (c0, c1)) 

return K 

The public key pk is given by pk3. The secret key sk consists of the concatenation of s, sk3 and pk3
2. The 

ciphertext ct consists of the concatenation of c0 and c1. Finally, the shared secret ss is given by K. 

1.4 Symmetric primitives 

The three hash functions F, G and H that are used in the key encapsulation mechanism KEM are all instan-
tiated with the SHA-3 derived function cSHAKE256 as specifed by NIST in [21]. 

Specifcally, the function G hashes the random bit string m ∈ M = {0, 1}n concatenated with the public 
key pk3. It is instantiated with cSHAKE256, taking m || pk3 as the input, requesting e2 output bits. In 
the notation of [21], this means G(m || pk3) = cSHAKE256(m || pk3, e2, "", 0), where the function-name 
bit string is left empty, using the value 0 for the customization bit string. The value n corresponds to 
n ∈ {192, 256, 320}. 

The function F is used as a key derivation function on the j-invariant during public key encryption and is 
computed as F( j) = cSHAKE256( j, n, "", 2) using the notation of [21], where the requested output consists 
of n bits, the function-name bit string is left empty and the value 2 is used for the customization bit string. 
Again, the value n corresponds to n ∈ {192, 256, 320}. 

The third function H is used to derive the k-bit shared key K from the random bit string m and the ciphertext 
c produced by Enc. It is computed as cSHAKE256(m || c, k, "", 1) with m || c as the input and the value 1 
for the customization bit string. The value k corresponds to the number of bits of classical security, i.e., 
k ∈ {128, 192, 256}. 

1.5 Parameter sets 

2Since NIST’s decapsulation API does not include an input for the public key, it needs to be included as part of the secret 
key. 
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This section presents parameter sets for three different levels of security. The concrete security of these 
parameter sets is discussed in §5. For w ∈ {8, 12, 16}, the underlying prime felds with p = 2e23e3 − 1 were 
determined such that dlog2 pe ≤ 64w, i.e., such that the prime does not exceed 64w bits. For each w, these 
primes were chosen with the aim of maximizing the overall security while achieving a close balance on 
both sides of the protocol, i.e., maximizing the value of min{e2, log2 3e3} (see §5) such that 2e2 ≈ 3e3 . 

The three sets of parameters are SIKEp503, SIKEp751 and SIKEp964, named so because of the bitlength 
of the prime feld characteristic. In each case the parameters are, in order: the prime p and the values 
e2 and e3; the values xQ2,0 and xQ2,1 such that xQ2 = xQ2,0 + xQ2,1 · i; the values xP2,0 and xP2,1 such that 
xP2 = xP2,0 + xP2,1 · i; the values xR2,0 and xR2,1 such that xR2 = xR2,0 + xR2,1 · i; the values xQ3,0 and xQ3,1 such 
that xQ3 = xQ3,0 + xQ3,1 · i; the values xP3,0 and xP3,1 such that xP3 = xP3,0 + xP3,1 · i; the values xR3,0 and xR3,1 

such that xR3 = xR3,0 + xR3,1 · i. 

1.5.1 SIKEp503 

p = 00000004 066F5418 11E1E604 5C6BDDA7 7A4D01B9 BF6C87B7 E7DAF130 

85BDA221 1E7A0ABF 809FFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 

FFFFFFFF FFFFFFFF FFFFFFFF 

e2 = 000000FA 

e3 = 0000009F 

xQ20 = 00097453 912E12F3 DAF32EEF FD618BD9 3D3BBBF3 99137BD3 9858CADE 

FAE382E4 2D6E60A6 2FD62417 AD61A14B 60DB2612 5273EC98 0981325D 

86E55C45 E3BB46B1 

xQ21 = 00000000 

yQ20 = 0009B666 40A4CC79 F82B68D7 26092338 12DF76E8 B0422EF3 527A1F2A 

9915EFF1 6E094004 0DF4A15A 84A5ACF0 24FC2ED8 A50102A7 31E8D20D 

033B4803 5B63DD62 

yQ21 = 00000000 

xP20 = 001F6D52 A7563BB9 356B98A1 16A0CA97 75DBB738 2EB29E24 E45299D8 

939959EA EEB47FF3 113F6088 2D12103E 4B8B8CD2 B97DA146 57AE8C12 

8BE82209 D2DDFCA9 

xP21 = 002D44C3 FAD24E4C BDDC8A2D 9DE336A9 2A9912EE 6D09E2DD 5C33AB26 

D60A268A C91F38E1 AF4C2D5B FA2B87DD 55C8CA60 19C6B0C0 8ED92B5A 

EB6C65A8 E06E53E9 

yP20 = 003C9F7C 397283C0 871F78D9 F74ECC0A 8F89579C CBEF8FE6 0D07338A 

F0A0322E 3F0C66CA 826AA5BF 85EB5366 6C272C8E AEC9B808 B3B78E64 

22330617 AC23D6F2 

yP21 = 0038222A E95DA234 ABD1B90F D897C2E2 E7995B2C 0006DC92 CC079B7C 

60C94DCA E9961CC7 A4BAEAC9 D294F6D5 760D4D65 4821193A E92AD42A 
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C0047ADE 55C343FC 

xR20 = 00173775 ECBEC79C 78FD1ED5 FE36075A ACE1F53F 8FFB97D2 A7E80DFC 

2875E77E C72D1D4A 99E13353 EC9D147B ADD96126 948A72B3 0BDD7CEB 

AD7B54F8 DDB5CD06 

xR21 = 0002EAA2 24DDDA14 9BBBB908 9D2B2C47 1D068ECA 203465CE 97DBC1C8 

ED0EBB0F F90E4FBE 7E266BBA 99CBAE05 1797B4D3 5D28E36C 1B1CB994 

AEEED1CB 59FE5015 

xQ30 = 001E7D6E BCEEC9CF C47779AF FD696A88 A971CDF3 EC61E009 DF55CAF4 

B6E01903 B2CD1A12 089C2ECE 106BDF74 5894C14D 7E39B699 7F70023E 

0A23B4B3 787EF08F 

xQ31 = 00000000 

yQ30 = 002EC0AA EF9FBBDD 75FBDA11 DA19725F 79E842FB C355071F D631C1CD 

F90E08E6 01929FAE C5DAEB0D 96BBB4AD 50FC7C8A D47064F0 5C06DC5D 

4AAE61CC CEFF1F26 

yQ31 = 00000000 

xP30 = 0021B709 8B640A01 D88708B7 29837E87 0CFF9DF6 D4DF86D8 6A7409F4 

1156CB5F 7B851482 2730940C 9B51E0D9 821B0A67 DD7ED98B 9793685F 

A2E22D6D 89D66A4E 

xP31 = 002F37F5 75BEBBC3 3851F75B 7AB5D89F C3F07E4D F3CC5234 9804B8D1 

7A17000A 42FC6C57 34B9FCFD E669730F 3E8569CE B53821D3 E8012F7F 

391F5736 4F402909 

yP30 = 0000078F 8A30AB36 B301BDF6 72D9E351 8AF741F8 227CC95A 9F351B99 

623A826D E3F8D90D D6ED42FF 298E394E 77B7AEFE E6010CDF 34A7DE9F 

9E239B10 3E7B3EEE 

yP31 = 0037F3C6 00488EBB 6B11462C 4CAFC41C D5DC611A 9B0C804E 3BF50D6D 

8F75C4E7 A136E29E 00D80EB8 653CA830 F2AED61D 04F9F3A8 317F7916 

E016F273 3B828AC0 

xR30 = 000D4818 D120A24A BF48DB51 D129E6B1 F24F4BBB 2C16FACC 0C8C0632 

3EEEC2FA 5B5E887E 17226417 B1907310 BFE6784F DEBBAC8C 2A9ABBE7 

53F52259 A7B7D70E 

xR31 = 0019E75F 0F03312D 22CBBF15 3747525D 89E5155B ABB8BF0C 130CB567 

CA532F69 AAF57EA7 682B9957 021D9041 4433ABBE EDC233E9 08218578 

1C16724C 8C356777 
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1.5.2 SIKEp751 

p = 00006FE5 D541F71C 0E12909F 97BADC66 8562B504 5CB25748 084E9867 

D6EBE876 DA959B1A 13F7CC76 E3EC9685 49F878A8 EEAFFFFF FFFFFFFF 

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 

FFFFFFFF FFFFFFFF FFFFFFFF 

e2 = 00000174 

e3 = 000000EF 

xQ20 = 00003E82 027A38E9 429C8D36 FF46BCC9 3FA23F89 F6BE06D2 B1317AD9 

04386217 83FDB7A4 AD3E83E8 6CAE096D 5DB822C9 8E561E00 8FA0E3F3 

B9AC2F40 C56D6FA4 A58A2044 9AF1F133 5661D14A B7347693 63264608 

6CE3ACD5 4B0346F5 CCE233E9 

xQ21 = 00000000 

yQ20 = 00003BBF 8DCD4E7E B6236F5F 598D56EB 5E15915A 755883B7 C331B043 

DA010E6A 163A7421 DFA8378D 1E911F50 BF3F721A 8ED5950D 80325A8D 

0F147EF3 BD0CFEC5 236C7FAC 9E69F7FD 5A99EBEC 3B5B8B00 0F8EEA73 

70893430 12E0D620 BFB341D 

yQ21 = 00000000 

xP20 = 00005492 1C31F0DC 9531CB89 0FC5EC66 DF2E7F0D 55761363 C6E375DA 

69B0682C ABE5C0FF FCBE6E1A D46563F0 42FA06B9 F207FCF3 CDD26736 

52828FF5 0C3F7B75 5C0BE072 950D16CA 747C1467 75C0267A 401FFC73 

8B03A49E 9A36B395 72AFB363 

xP21 = 00002884 9BC0D81E 01993137 A5B63D6E 633C4E97 AB4FF118 CCF63DFE 

623092AC 86B6D4A9 B751797C BA1A1775 00E9EB5A F7852B7D F02C3348 

44D652EF C4729178 A1DBAD8C A47BB7E7 57C6D43B 799811A6 3BEBE649 

C18101F0 3AD752CD CD73BF66 

yP20 = 00001961 19D87272 DC3AA722 3476C8C3 269D48CA EFAE692F 68DCF2D6 

E1BEB5B9 7525D502 6C157C7C 740B41AD E80A8CF2 E1E0B37E 5F5FD4ED 

88235BF7 404BE391 89C137E2 1C035EF6 339D7FAC BA38E72D 69043710 

E76266A5 FC14EFB9 5E5FBC7C 

yP21 = 0000D3AC 09A67D59 CC8D78B0 FA6681AE 78BDF0C8 F558E386 6005E435 

5B0B1993 18D9CDD6 7C0A7DB2 34F9EA1E C4C5F1E5 9168B7DB D14281F0 

9E8DF904 A3D574CA D526DC5A 3667490A DE1A4C13 B09F7B11 5C4E488F 

D4DD5F76 70B58973 22AD41D 

xR20 = 000022A0 B5A35A2B 0C56135A 7CEC5CFB 97964A7C 6226FE90 9F374362 

A8ECA3AB 14A1B7B0 C87AC875 DCE5888D 83B623BF 0011A4AC 138F62EF 

6B2D2D84 F636548A 9F920F23 8336E5A3 6E45E405 5940E3C9 4385B8FC 
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53743964 32EEF2AE 178CEFDD 

xR21 = 00000F9C 4AFCDA80 9C3358B0 96B250C6 9B20310F DF2EF631 711AA4EF 

EC49A4E7 6483F320 B793F2EB C63365EE D14AA3F6 EA33FEB5 6796F011 

BA6C6DFB 4D0A00AA C4D27866 46D914AD 026CBB4A 592EC74B 5485372E 

51382D44 528DD491 B83D9547 

xQ30 = 00002F1D 80EF06EF 960A01AB 8FF409A2 F8D5BCE8 59ED725D E145FE2D 

525160E0 A3AD8E17 B9F9238C D5E69CF2 6DF23742 9BD37786 59023B9E 

CB610E30 288A7770 D3785AAA A4D646C5 76AECB94 B919AEED D9E1DF56 

6C1D26D3 76ED2325 DCC93103 

xQ31 = 00000000 

yQ30 = 00000127 A46D082A 1ACAF351 F09AB55A 15445287 ED1CC55D C3589212 

3951D4B6 E302C512 9C049EEB 399A6EDB 2EEB2F9B 0A94F06C DFB3EADE 

76EBA0C8 419745E9 7D12754F 00E898A3 15B52912 2CFE3CA6 BBC6BAF5 

F6BA40BB 91479226 A0687894 

yQ31 = 00000000 

xP30 = 000005FD 1A3C4DD0 F6309741 96FED351 9152BC70 98B9E2B1 21ECA46B 

D10A5CC9 F4BCC6C6 89B8E4C0 63B37980 75FCEE6E DAA9EB10 8B3CD004 

95CF04DD 8CE4A08F BE685A12 7D40E45F 4CF45098 A578DEB4 43686993 

94C43BFC 9BC5E000 52F78E8D 

xP31 = 00002B88 A03360B3 38954773 2C9140C0 5DEA6516 881FE108 211BE887 

CC43FCB8 0C06A1D8 6FF5457D 3BB7DB93 6394EC33 821AA393 33A60AF8 

4B537974 CFA0BA82 87D699D2 BF79BA55 9026C64A 6ED61050 1D2357C1 

0B9A6C8F 83742492 2275ACBF 

yP30 = 000053B5 5053E3F0 4FC315EF B1B7B2C4 AFCB4FEF 12CE744A F3B243C6 

E6B1417E 94A78D49 80DDE181 89646492 3E01AACC 3DA040A0 747CA675 

54A35268 4DA207C4 9022D930 732DF6BD 0BF37E1F 5C169176 69A70F88 

059C1C73 9A79D7CF A0C529D9 

yP31 = 0000044E 44196909 252ECD7B 91643238 15294F02 AED22C4E 4EB43D2C 

E2BC5F29 EB575D45 CA8B6B4C 4242E369 AE3A1EFC 844E9D1C 57B0AE33 

74BC2CED AD16B0C6 99158332 E2D9AB3F 0025C034 8C5F70FD C4DD7C48 

65E64B8B 843F03D8 07447D5E 

xR30 = 0000077B 3BB69009 428A327D 43CA6016 9715F547 454F88CD 017B32DF 

58A7252C 2B3C3D00 D52CCD31 33D54041 D8BCAEA2 91F20572 02328712 

CD395575 CD7CCD3C E70C0A1E BF633BA9 46559458 878F41F9 FDD1727E 

2C31125B 2FE5B713 06704829 

xR31 = 00006D91 393A57DB F47FD6DC F841F17E CD719CAE 1D33C683 2A75B0F1 

68855BCC 38D2A479 2DFF9BC8 6DEACA10 B1AA808D 539B167D 73BBA321 
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68687FA3 F85AE93A 1ADDE5BD 1FD5B681 DCC6C344 54D44969 76C22D80 

C95E42B1 2576FC0F B4074B9F 

1.5.3 SIKEp964 

p = 00000008 6B5BFF76 43C64F7A 10028248 AD4FC4B1 50CBAA75 A2A1FA44 

CBAB2451 35469BAB 093F2B8D AD5281E7 E56EF6AA 57A94749 ABB38EAB 

467ACDE5 451CD4BF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 

FFFFFFFF FFFFFFFF FFFFFFFF 

e2 = 000001E6 

e3 = 0000012D 

xQ20 = 00000001 CD5AEB4E 02DBE2CE B712A45E ED7720D3 EA94116F 1E45C834 

FDFF3A86 7BBB267B F8F5F9B1 9C369F7A FE141B85 D591243E 7310B6D0 

2E78DB88 8615254D F178C1F7 5F2BDAF7 03E83BB9 7DBCDC3D FDB60BA3 

85EC8F42 D4AD1505 21ECA6EC 4D3086A7 783698A7 1544E10A 45EA605E 

1B86A894 7F14FA2E 03845DAE 

xQ21 = 00000000 

yQ20 = 00000002 2E751F1F 60841CF4 E8D4D3BD 8D400F58 9761CA1F 71A9C1F3 

83C0FE55 3E6492DB E1F78D5F 9A768920 B682786E 8125398F 765A481B 

32913561 FD16B270 19D9C10C 4F9062AC 1513FEB2 FE942DD2 2AC53F6E 

C319C4D1 8A53A481 430F3DFA 22E57EDA 0D067C37 F91EA8F1 3E4B1C65 

4E974856 781F8E0A 397ED362 

yQ21 = 00000000 

xP20 = 00000006 ED767E28 04975D81 80368FB9 A72CE64E 838A5497 4865BFF1 

A86AEF07 D6171A8A 4DF351F1 D4C94AAF 82BD6EBD 396F3342 48282F50 

73178AB5 7B906BEF 89A2A152 A10D04A5 B20A0FFF 96B0B48F 0599FC9B 

D2AD52E0 81BB7FEA 7B5E8BF4 C3B0AB13 0731F4C5 A974CFA5 AD678121 

7A20F9EC D30691D9 D1941D03 

xP21 = 00000003 FE63FBDC A589518A 3DA694EC C8B65934 6693C45B D8AC86B6 

F0C778CF 290C9F42 9163FEF6 4AFAD182 ADE1B0C4 DFC8CF29 C35455C7 

BA69C225 59F2E0D4 20AE05BB 0AE3ADC0 9A4A0AF2 8CE1A1C5 93171033 

7AA68884 EFCCD60A C76FD3F1 7ED50205 305509E0 5955F60D 5008D788 

B83F5FA4 57FD79EC DC7179D1 

yP20 = 00000000 4E0A8662 85403BC0 408F9BCA 912025E3 17111896 1C865461 
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2AE20CEE AF91A98A 4F278EAE BB704602 8AD90CD9 5B99BF6B 34233CD4 

B084B2CA 4598DF3A 6D4839CA 6EA493ED 420CF4C1 3A1F37F1 EC59620F 

08693649 C72380A8 479E3753 93D3F4A7 59DF65F1 F74B4C65 6B79DF2A 

5DA2959E FB006BDA D015D252 

yP21 = 00000007 38846048 2319281B 78C6AC1F E1A91DB7 2A2C9AA3 4BEE1EBE 

A33EF043 AA1BFA0C 45894142 95E94C91 1E19E808 246B2A0A 98593958 

E1F70888 E00332DE AE7D7FDB CA53398E 59530E5D 2A292463 7533F46C 

4684373D DDB8D09B 2A75C307 3EA3C19E CF946FCB 2B428B6E 9CF93F22 

33DD257C 5CAD4041 3F78CD1D 

xR20 = 00000008 44F024B8 D993B660 48C9DA7F 1724AE2E 4C6162F8 4804FE3F 

E290FBEB 5ABF7DF2 5C395121 77C8E4A4 7A35F8EC D037B699 E34F58EF 

675AE188 A1537838 A4DDBA69 FC7BC3FA CB7E3815 F3031244 AF1BCCE1 

95AF45B4 2A587EE8 7A00BF2D A1E972D8 D662F4DC 5EC1CDB1 03D9EED2 

215D4DD7 48004985 8925A63A 

xR21 = 00000007 35F06B97 66B69FF9 17835EAD C539A00F FC186ED2 5947F701 

FDA7EDEA F517039F 9B0DA172 1FDAE978 4838C75B 46A452DC 902EC8DD 

1F462564 3B42C596 C2CF0404 5A7AA804 3F07C9A9 F82611D2 02F06834 

512A3803 EF64650E 5309163F 25CCC336 CC852764 9E340F59 CDDFB51B 

24D1C02E 8CB2653E 7A05B709 

xQ30 = 00000003 81DBCAB1 EE7A4CA3 192CDA85 3F4E0F42 6522EB9D 3277421C 

29D73CC4 F70BEFE7 009767C4 AE451600 3B237223 422C0E75 2ACD9D8F 

CE07263D 2C1D1013 08C0B97E DB8D4A8C 53C2064B 05DF9A61 E8216CA1 

FFAC55F4 CA043972 52704945 C27136A0 56F6B5CF 8838B7F6 52BC16C1 

392B5597 36CAF63B F0058A53 

xQ31 = 00000000 

yQ30 = 00000001 AFBFA81B 55C7D789 B6E89BC7 A311F3CE E4B733B0 FA5B7D56 

D29A644B 596B7729 778E0773 F908D76E 0377B3CA 41C03D79 7DE4F0B7 

985EB512 7D2151EC 4B6C1136 1AEB4CEA A3F776E0 8E4AD01B 7BB46074 

D425C8A2 61E88B14 5C4153BF 67732E82 9986EB9D 29C88385 1EEEB87C 

C4FD96A0 84332542 6C108687 

yQ31 = 00000000 

xP30 = 00000004 FE46F0B0 09171C87 0FE840B7 FD0C3F14 93813CD1 25C2191C 

9FA4BDE4 0941A603 124F1B81 BBFBEBFD AC06F808 07562639 FC61A579 

62AE6E6B 7EE793CF 7B359746 FEB0DA11 0D704681 F83EF6B4 40DC5DED 

D2A42471 49D0A44C 452ED374 A394319A 8888A2A0 9CC4A0F3 5A07AA3D 

248CF780 3E77EAD2 A4BEA308 

xP31 = 00000006 DD4FC176 8E1ADEE5 4DC4E41C FAA7B810 4644DD69 0616D374 
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A9139013 FD847C2C D11BA6CA 4C4FC26A 63FE198B 666B7912 FBF889E9 

91CF4B90 3651F441 4CD4AA50 BC02CE2E C986A7BF C1A8D364 F93410AD 

E3B959FF 1F036F36 EF3AFF88 D28DB500 8276C340 2158ADB4 A44BAECE 

D2AF6503 093FD8B6 A58EC136 

yP30 = 00000003 EA8CDCF4 BC1C1B9D 2D449022 387D4DDE F05CE98C B63E722B 

0EA14717 C5FFA82E E107832E 5FE58C28 90185D2C 90D1BD94 AC13C69F 

D483AC80 66B1F1A4 844F7655 884B2379 0088A6DA 915FD709 EFE79A88 

028108F4 D4DFBFAD BA65EFBB C5D621BA 31F12BE6 FB717D3B 1D8CD78D 

CD05B0D2 B7E87C10 3D1897C0 

yP31 = 00000007 77607A21 85C04FBF CFA5EAF7 7F38F40F 42746739 748CA176 

BBE31739 4BDA28F3 D971DFB9 CCB67207 E201FFB0 0A9A3E6B 9B7E804F 

BB6EF61E CEBDB8AC 68831E10 E8A72613 A47F132B D9A2309E 404FCFFF 

7EA7BC87 AD448B8B 8798AB61 CA6F97DB 3B240887 9DEB8A9F 930C4EE4 

69486FA1 129E89B6 7C084CD9 

xR30 = 00000007 DE290085 EBBDC801 A1D6292D 1F2E89FF 463669ED 2F5F6C02 

B8010A75 245C4D39 84002821 B8A243C7 56512A5F C1FC0867 A84583D7 

6B0404E7 E73CEB70 71E2AE3B F43BFB77 A87BC98F DF888E28 5CD4A3C9 

4E4D1795 009E41ED B8A3AD8F 81321138 E4A87B69 416AEFF0 94E541F4 

8681863B AD30FB2F 32EA019A 

xR31 = 00000007 A2A2DFA4 FB567336 60ACCB80 308A4482 B1A46D3B 9BB20313 

F164CC80 9A3A6B4D 2FBC4357 4994354D C06D409F 9F647E82 F4F05D6C 

5A70E340 DF4B9555 9787F82E AD7F7295 590FDCD9 D54B8001 094DC809 

29EF4C5A BB8E388A 53AA0BD3 88D890B5 980F1FD1 9404025B 582C640D 

DFDA1BDF 46D37046 4A812732 
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Chapter 2 

Detailed performance analysis 

The submission package includes: 

1. A generic reference implementation written exclusively in portable C with simple algorithms to 
compute isogeny and feld operations, using GMP for multi-precision arithmetic, 

2. An optimized implementation written exclusively in portable C that includes efficient algorithms to 
compute isogeny and feld operations, 

3. An additional, optimized implementation for x64 platforms that exploits x64 assembly, 

4. An additional, optimized implementation for ARM64 platforms that exploits ARMv8 assembly, 

5. An additional, speed-optimized VHDL model for FPGA and ASIC platforms that parallelizes vari-
ous aspects of the isogeny computation and feld operations, and 

6. An additional, simple textbook implementation written exclusively in portable C, using elliptic 
curves in short Weierstrass form. 

All implementations except implementations number 1 and 6 are protected against timing and cache at-
tacks at the software level. Specifcally, they avoid the use of secret address accesses and secret branches. 

The generic reference implementation (number 1) supports all three parameter sets: SIKEp503, SIKEp751 
and SIKEp964. The optimized and assembly-optimized implementations (number 2, 3, 4) support the 
SIKEp503 and SIKEp751 parameter sets. The VHDL implementation (number 5) supports the SIKEp751 
parameter set. The Weierstrass implementation (number 6) is not compatible with any of the parameter 
sets, because its main purpose is to illustrate isogeny computations using textbook formulas over ellip-
tic curves in short Weierstrass form, whereas the parameter sets are defned using Montgomery curves. 
Converting between curves in short Weierstrass form and the curves of Montgomery form used in the 
parameter sets would defeat the purpose of having a simple textbook implementation. 

In this chapter we describe the main features of the implementations and analyze their performance. 
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2.1 Reference implementation 

The reference implementation is written in portable C, and uses simple algorithms for isogeny and elliptic 
curve computations. Isogenies are computed using a dense tree traversal algorithm, and elliptic curve com-
putations use affine coordinates and a double-and-add scalar multiplication algorithm. Specifcally, this 
implementation makes use of Algorithms 23–41 listed in Appendix B. As in the optimized implementation 
(see §2.2), the reference implementation uses Montgomery elliptic curves in the form By2 = x3 + Ax2 + x, 
but with full x- and y-coordinates. The implementation is generic and is built to a single library supporting 
all SIKE instantiations. Additionally, a small library supporting the NIST KEM API is built for each of 
the SIKE instantiations. The code base is split in several layers: 

1. Multiprecision arithmetic using GMP. 

2. Finite feld arithmetic over Fp is implemented with a generic API, hiding the underlying GMP func-
tions. The same API is used for any prime. The function headers are available in fp.h. 

3. Quadratic extension feld arithmetic over Fp2 is built on top of the Fp API. The function headers are 
available in fp2.h. 

4. Montgomery elliptic curve arithmetic uses the Fp2 code and implements point addition, point dou-
bling, point tripling, 3/4-isogeny generation and evaluation, scalar multiplication and j-invariant 
computation. For simplicity reasons, the scalar multiplication algorithm is not safe against side-
channel attacks, but could be protected with well known countermeasures against side-channel at-
tacks for ECC. The headers for Montgomery curve arithmetic and 3/4-isogeny generation are avail-
able in montgomery.h and isogeny.h, respectively. 

5. The SIDH key agreement scheme is implemented with the key-generation algorithm (corresponding 
to isogen`) and the shared secret algorithm (corresponding to isoex`). The function headers are 
available in sidh.h. 

6. The SIKE key encapsulation protocol is built on top of SIDH and implements PKE encryption, 
PKE decryption, KEM encapsulation and KEM decapsulation. The function headers are available 
in sike.h and api generic.h. 

7. The parameters for SIKEp503, SIKEp751 and SIKEp964 are instantiated, all using the same generic 
implementation. The parameters are defned in sike params.h. Each instantiation leads to a small 
library that support the NIST KEM API defned in api.h. 

The reference implementation uses the same public-key format and encoding that is used in the optimized 
implementation. KATs are compatible with both the reference implementation and the optimized imple-
mentation. 
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2.2 Optimized and x64 assembly implementations 

The optimized implementation, which is written in portable C only, uses efficient algorithms for isogeny 
and elliptic curve computations using projective coordinates on Montgomery curves, the Montgomery lad-
der, and efficient tree traversal strategies for fast isogeny computation. Specifcally, this implementation 
makes use of Algorithms 3–22 listed in Appendix A. The optimal tree traversal strategies used in Algo-
rithms 17 and 18 are given in Appendix C along with the algorithm used to compute them. Operations 
over Fp2 exploit efficient techniques such as Karatsuba and lazy reduction. Multiprecision multiplication 
is implemented using a fully rolled version of Comba, and modular reduction is implemented using a fully 
rolled version of Montgomery reduction. Hence, the feld arithmetic implementation is generic and very 
compact. Conveniently, the optimized implementation reuses the same codebase for all the security levels. 

The only difference between the optimized and the additional x64 implementation is that the latter exploits 
x64 assembly to implement the feld arithmetic. Thus the feld arithmetic in the x64 implementation is 
specialized per security level. All the rest of the code between the optimized and x64 implementations is 
shared, making the library compact and simple. 

In the case of the additional x64 implementation, integer multiplication is implemented using one-level 
Karatsuba built on top of schoolbook multiplication. For our implementation, schoolbook offers a better 
performance than Comba thanks to the availability of MULX and ADX instructions in modern x64 pro-
cessors. Modular reduction is implemented using an efficient version of Montgomery reduction that has 
been specialized for primes of the form 2e23e3 − 1 [7]. 

As previously stated, the optimized and additional x64 implementations follow standard practices to pro-
tect against timing and cache attacks at the software level and, hence, are expected to run in constant time 
on typical x64 Intel platforms. 

2.2.1 Performance on x64 Intel 

To evaluate the performance of the optimized and x64-assembly implementations, we ran our benchmark-
ing suite on a machine powered by a 3.4GHz Intel Core i7-6700 (Skylake) processor, running Ubuntu 
16.04.3 LTS. The reference implementation is linked against GMP 6.1.1. As is standard practice, Tur-
boBoost was disabled during the tests. For compilation we used clang version 3.8.0 with the command 
clang -O3. Results are similar, although slightly slower, when compiling with GNU GCC version 5.4.0. 

Table 2.1 details the performance of the reference, optimized and x64-assembly implementations of SIKE. 
As we can see, the constant-time optimized implementation is roughly 15 times faster than the variable-
time reference implementation, thanks to the use of more efficient elliptic curve arithmetic and optimal 
strategies for isogeny computation. The use of assembly optimizations further improves performance 
greatly. Compilers still do a poor job of generating efficient code for multiprecision operations, especially 
multiprecision multiplication and reduction. Thus, our best performance for SIKEp503 and SIKEp751 
(i.e., 10.1 msec. and 30.5 msec., respectively, obtained by adding the times for encapsulation and decap-
sulation) is achieved with the use of hand-tuned x64 assembly. 
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Scheme KeyGen Encaps Decaps 
total 

(Encaps + Decaps) 

Reference Implementation 
SIKEp503 1,561,680 2,207,324 2,663,521 4,870,845 
SIKEp751 4,735,527 6,485,322 7,996,219 14,481,541 
SIKEp964 10,563,749 14,995,526 17,957,283 32,952,809 

Optimized Implementation 
SIKEp503 86,156 141,821 150,790 292,611 
SIKEp751 288,886 467,776 502,972 970,748 

Additional implementation using x64 assembly 
SIKEp503 10,134 16,619 17,696 34,315 
SIKEp751 30,919 50,014 53,838 103,852 

Table 2.1: Performance (in thousands of cycles) of SIKE on a 3.4GHz Intel Core i7-6700 (Skylake) 
processor. Cycle counts are rounded to the nearest 103 cycles. 

Scheme secret key 
sk 

public key 
pk 

ciphertext 
ct 

shared secret 
ss 

SIKEp503 (56+378) 434 378 402 16 
SIKEp751 (80+564) 644 564 596 24 
SIKEp964 (100+726) 826 726 766 32 

Table 2.2: Size (in bytes) of inputs and outputs in SIKE. 

Memory analysis 

First, in Table 2.2 we summarize the sizes, in terms of bytes, of the different inputs and outputs required 
by the KEM. We point out that we also include the public key in the secret key sizes in order to comply 
with NIST’s API guidelines. Specifcally, since NIST’s decapsulation API does not include an input for 
the public key, it needs to be included as part of the secret key (see §1.3.10). 

Table 2.3 shows the peak (stack) memory usage per function of the reference, optimized and additional 
x64-assembly implementations. In addition, on the right-most column we display the size of the produced 
static libraries. 

To determine the memory usage we frst run valgrind (http://valgrind.org/) to get “memory use 
snapshots” during execution of the test program: 

$ valgrind --tool=massif --stacks=yes --detailed-freq=1 ./sike/test_KEM 

The command above produces a fle of the form massif.out.xxxxx. Afterwards, we run massif-
cherrypick (https://github.com/lnishan/massif-cherrypick), which is an extension that out-
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Scheme KeyGen 
(stack) 

Encaps 
(stack) 

Decaps 
(stack) 

static library 
speed (-O3) size (-Os) 

Reference Implementation 
SIKEp503 512 762 1528 107,450 96,386 
SIKEp751 2880 1332 2280 107,450 96,386 
SIKEp964 3744 2262 2936 107,450 96,386 

Optimized Implementation 
SIKEp503 8,040 8,632 9,464 122,612 60,020 
SIKEp751 13,864 14,024 14,680 167,508 61,404 

Additional implementation using x64 assembly 
SIKEp503 8,120 8,520 8,952 132,688 62,488 
SIKEp751 14,032 14,176 14,944 188,720 67,080 

Table 2.3: Peak memory usage (stack memory, in bytes) and static library size (in bytes) of the various im-
plementations of SIKE on a 3.4GHz Intel Core i7-6700 (Skylake) processor. Static libraries were obtained 
by compiling with clang and optimizing for speed (-O3) and for size (-Os). 

puts memory usage per function: 

$ ./massif-cherrypick massif.out.xxxxx kem_function 

Looking at the results in Table 2.3, one can note that the use of stack memory is relatively low. This is 
one advantage of supersingular isogeny based schemes, which is partly due to the fact that these schemes 
exhibit the most compact keys among popular post-quantum cryptosystems. 

It can also be seen that the static library sizes can grow relatively high (see option compiled for speed). 
However, it is possible to reduce the library sizes signifcantly, to around 60KB, at little performance cost: 
compiling the additional implementations for size more than halves the library sizes and reduces speed 
by less than 1%. It should be noted that the reference implementation is a single library for all SIKE 
instantiations, and that GMP attributes to its size because of static linking. The stack memory usage is 
relatively low due to GMP’s internal memory management. 

2.3 64-bit ARM assembly implementation 

The submission includes an additional implementation for 64-bit ARM processors. This implementation 
is identical to the additional x64 implementation with the exception of the feld arithmetic, which is written 
with hand-optimized ARMv8 assembly. 

To evaluate the performance of this implementation, we ran our benchmarking suite on a machine powered 
by a 1.992GHz 64-bit ARM Cortex-A72 processor, running Ubuntu 16.04.2 LTS. For compilation we used 
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Scheme KeyGen Encaps Decaps 
total 

(Encaps + Decaps) 

Optimized Implementation 
SIKEp503 150,000 247,078 262,795 509,873 
SIKEp751 515,036 834,451 896,767 1,731,217 

Additional implementation using ARMv8 assembly 
SIKEp503 31,252 51,629 54,826 106,454 
SIKEp751 101,963 164,890 176,935 341,825 

Table 2.4: Performance (in thousands of cycles) of SIKE on a 1.992GHz 64-bit ARM Cortex-A72 proces-
sor. Results have been scaled to cycles using the nominal processor frequency. Cycle counts are rounded 
to the nearest 103 cycles. 

clang version 3.8.0 with the command clang -O3. Results are similar, although slightly slower, when 
compiling with GNU GCC version 5.4.0. 

Table 2.4 details the performance of the optimized and additional ARMv8-assembly implementations 
of SIKE. As we can see, the specialized implementation is roughly 5 times faster than the optimized 
implementation, which is mainly due to the use of assembly. Our best performance for SIKEp503 and 
SIKEp751 on the targeted platform is given by 53.4 msec. and 171.6 msec., respectively, which correspond 
to the time that takes to compute the encapsulation and decapsulation operations. 

We comment that similar results (after scaling) were achieved on a 1.7GHz 64-bit ARM Cortex-A57 
processor, running Ubuntu 14.04.5 LTS. 

2.4 VHDL hardware implementation 

The optimized VHDL hardware implementation accelerates SIKE operations by using Algorithms 3–22 
listed in Appendix A. Thus, this hardware implementation uses projective coordinates on Montgomery 
curves, an efficient double-point multiplication ladder, and an efficient tree traversal algorithm for isogeny 
computation. A separate tree traversal strategy was computed with Algorithm 42 in Appendix C using 
p = 2 and q = 1 which emphasizes isogeny evaluations. Notably, the hardware implementation focuses 
on exploiting additional amounts of parallelism through the use of high-radix Montgomery multiplication, 
simultaneous isogeny evaluation, and efficient scheduling of resources. This hardware implementation 
emphasizes speed over area and power consumption. 

The isogeny accelerator architecture includes a controller, program ROM, fnite feld arithmetic unit, reg-
ister fle, Keccak block, and secret message buffer. After populating the register fle with the public 
parameters, adding keys, and writing a command, the controller can perform each step of the key encap-
sulation mechanism or the individual isogeny computations (isogen2, isogen3, isoex2, and isoex3) for 
the public parameters listed in SIKEp751. 
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#Multipliers Scheme Cycle counts (cc × 103) 
KeyGen Encaps Decaps Total 

2 3,920 6,563 6,992 13,555 
4 2,464 4,214 4,488 8,702 
6 SIKEp751 1,941 3,459 3,633 7,092 
8 1,798 3,221 3,383 6,603 
10 1,698 3,112 3,240 6,352 

Table 2.5: Summary of cycle counts for SIKE accelerator architecture over parameters listed in SIKEp751. 
The number of multipliers is a design parameter. 

# 
Mults 

Area Freq Time (msec) 
# 

FFs 
# 

LUTs 
# 

Slices 
# 

DSPs 
# 

BRAMs (MHz) KeyGen Encaps Decaps total 
(Encaps + Decaps) 

8 51,914 44,822 16,756 376 56.5 198 9.08 16.27 17.08 33.35 

Table 2.6: FPGA implementation results of SIKE accelerator over SIKEp751 on a Xilinx Virtex-7 FPGA. 

2.4.1 Performance 

The SIKE hardware accelerator can perform KEM functions for the public parameters listed in SIKEp751. 
There is some confgurability in the number of replicated dual-multipliers which affects the number of 
cycles per operation. Since the isogeny operations require the most time, this implementation parallelizes 
various fnite feld arithmetic and isogeny calculations. In Table 2.5, we specify the total number of cycles 
to perform the key encapsulation operations based on the number of multipliers. In the hardware package, 
we include the version with 4 dual-multipliers, or 8 total multipliers. 

2.4.2 FPGA SIKE Accelerator 

The VHDL SIKE accelerator core was compiled for FPGA with Xilinx Vivado design suite version 2015.4 
to a Xilinx Virtex-7 xc7vx690tffg1157-3 board. All results were obtained after place-and-route. The area 
and timing results of our SIKEp751 accelerator core on FPGA are shown in Table 2.6. For our design, we 
had the option of choosing how many dual multipliers to replicate. We focused on 4 replicated multipliers 
in our design to ensure the parallelism in isogeny-based computations could be taken advantage of. These 
are constant-time results. For the FPGA implementation over SIKEp751, encapsulation and decapsulation 
can be performed in 16.27 and 17.08 msec, respectively. This results in a total KEM time of 33.35 msec. 

2.4.3 ASIC SIKE Accelerator 

The SIKE accelerator core was synthesized using Synopsys Design Compiler. The TSMC 65-nm CMOS 
standard technology and CORE65LPSVT standard cell library were used for results. This implementation 
was optimized for performance. 

The area was converted to Gate Equivalents (GE), where the size of a single NAND gate is considered 
1 GE. For our particular technology library, the size of a synthesized NAND gate was 1.41 µm2, so this 
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Area Frequency Time (msec) 

Tech (nm) #Mults Area (kGE) (MHz) KeyGen Encaps Decaps 
total 

(Encaps + Decaps) 
65 8 1,210 350 5.14 9.20 9.67 18.87 

Table 2.7: Optimized hardware synthesis results for SIKE accelerator over SIKEp751. The area results do 
not include synthesized program ROM, register fle, or strategy lookup table results. 

was used as the conversion factor. For the ASIC implementation over SIKEp751, encapsulation and 
decapsulation can be performed in 9.20 and 9.67 msec, respectively. Thus, the total KEM time is 18.87 
msec. The area and timing results of our design are shown in Table 2.7. 
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Chapter 3 

Known Answer Test values 

The submission includes KAT values with tuples containing secret keys (sk), public keys (pk), cipher-
texts (ct) and shared secrets (ss) corresponding to the proposed KEM schemes SIKEp503, SIKEp751, 
and SIKEp964. The KAT fles can be found in the media folder of the submission: \KAT\PQCkemKAT_ 
426.rsp, \KAT\PQCkemKAT_636.rsp, and \KAT\PQCkemPAT_826.rsp for SIKEp503, SIKEp751 and 
SIKEp964, respectively. 

In addition, we provide a test suite that can be used to verify the KAT values against any of the imple-
mentations. Instructions to compile and run the KAT test suite can be found in the README fle in the 
top-level directory of the media folder (see Section 2, “Quick Instructions”). 
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Chapter 4 

Expected security strength 

4.1 Security 

The security of SIKE informally relies on the (supersingular) isogeny walk problem: given two elliptic 
curves E, E0 in the same isogeny class, fnd a path made of isogenies of small degree between E and E0 . 

The isogeny walk problem has been considered in the literature even before the introduction of isogeny-
based cryptography. The best generic algorithm currently known is due to Galbraith [12]: it is a meet-
in-the-middle strategy that, on average, requires a number of elementary steps proportional to the square 
root of the size of the isogeny class of E and E0. In the supersingular case, an improvement due to Delfs 
and Galbraith [10] has roughly the same computational complexity, but only uses a constant amount of 
memory. 

Over Fp2 , there is a unique isogeny class of supersingular elliptic curves (up to twist), and it has size 
roughly p/12. Thus, the algorithm of Delfs and Galbraith would fnd an isogeny between the starting 
curve E0 and a public curve E0 in O(

√ 
p) time.1 Nevertheless, these generic algorithms do not improve 

upon exhaustive search. Indeed, if p = 2e2 · 3e3 − 1, the key spaces K2 and K3 have sizes roughly 2e2 and
√

3e3 ; thus, if these are chosen to balance out, then the size of the key spaces is roughly p. 

However, the idea of Galbraith’s meet-in-the-middle approach can be easily adapted to attack SIKE in 
4 `e`only O(
√ 

p) operations. To fnd the secret isogeny of degree between E0 and E0, an attacker builds a 
tree of all curves isogenous to E0 via isogenies of degree `e`/2, and a similar tree of all curves isogenous 
to E0 of degree `e`/2. Since we suppose that an isogeny of degree `e` exists between E0 and E0, and since 
the length of this walk is much shorter than the size of the graph, with high probability the two trees will 
have exactly one curve E00 in common, so the secret isogeny will be recovered by composing the paths √ 
E0 → E00 and E00 → E0. This procedure only requires O( `e` ) elementary steps, or O(

√
4 p), as announced. 

Given two functions f : A → C and g : B → C with domain of equal size, fnding a pair (a, b) such 
that f (a) = g(b) is known as the claw problem in complexity theory. The claw problem can obviously be 
solved using O(|A| + |B|) invocations of f and g on average, by building a hash table holding f (a) for any 

1The attentive reader will have noticed that knowing a generic path between E0 and E0 is not necessarily equivalent to 
knowing the secret path generated by isogen`. However, a complete reduction of the security of SIKE to the isogeny walk 
problem is presented in [14]. 
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a ∈ A and looking for hits for g(b) where b ∈ B. However, one can do better with a quantum computer 
using Tani’s claw-fnding algorithm [37], which only uses O(

√3
|A||B|) invocations to quantum oracles for 

f and g. These complexities are optimal for a black-box claw attack [42]. For given supersingular curves 
E, E0 we could, for example, let A resp. B be the set of points of order exactly `e`/2 on E resp. E0, and 

`e`C the set of supersingular j-invariants. The functions f and g compute /2-isogenies which have kernels 
generated by their input points and return the j-invariant of the fnal curve. Classically this is exactly √ 
the O( `e` ) attack described above, while applying Tani’s algorithm to SIKE gives an attack requiring √3 √
O( `e` ) = O( 6 p) invocations of a quantum isogeny computation oracle. 

We further discuss the implications of the claw-fnding attacks on the security of SIKE in Section 5.2. 
We stress that, while breaking SIKE keys can be reduced to claw fnding, no reduction is known in the 
opposite direction, nor is it widely believed that such a reduction should exist. The security of SIKE is 
modeled after a much more specifc problem named SIDH (see Problem 1). In particular the knowledge of 
the coordinates (x1, x2, x3) output by isogen` apparently gives more information than what is available in 
the claw problem. Nevertheless, to this day no attack seems to be able to exploit this auxiliary knowledge 
against SIKE. For this reason, we assume that the security of the claw problem and SIDH are equivalent, 
and analyze security accordingly. 

4.2 Other attacks 

Other attacks applying to specifc security models have recently appeared in the literature. 

Galbraith, Petit, Shani and Ti [14] exhibit a very efficient polynomial-time attack against SIDH with static 
keys. Their technique is readily adapted to a chosen ciphertext attack against the scheme PKE. However, 
their attack does not apply to KEM, as we will prove in the next section that the scheme is CCA secure. 

Many authors have considered the security of SIDH under various side-channel scenarios: 

• Galbraith, Petit, Shani and Ti [14] show how a secret j-invariant can be recovered from some partial 
knowledge of it. 

• Ti [38] explains how a random perturbation to the inputs of isogen` yields to a key recovery with 
very high probability in most protocols derived from SIDH. It is not clear, however, how the tech-
nique can be used against the public key format specifed in 1.2.9. 

• Gélin and Wesolowski [15] present a loop-abort fault attack that potentially leads to an efficient key 
recovery against the “simple” version of isogen` given in Algorithms 15 and 16. However their 
attack is efficiently countered by the additional checks in Algorithms 17 and 18. 

A recent preprint by Petit [29] presents various polynomial-time attacks against generalizations of SIDH. 
None of the systems successfully attacked by Petit had previously appeared in the literature, and in partic-
ular the schemes presented in this document are not affected by the attack. It is not clear that Petit’s attacks 
could possibly be extended to break real uses of SIDH and derived schemes. The technique employed by 
Petit, however, sheds some light on the separation between the isogeny walk problem and the possibly 
(though not yet shown to be) easier SIDH problem. 
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Even more recently, Petit and Lauter [30] showed that the isogeny walk problem used to construct the 
Charles-Goren-Lauter hash function [4] is equivalent to the problem of computing endomorphism rings of 
supersingular elliptic curves, which is possibly (but not yet shown to be) harder than the SIDH problem. 
However, it does not appear to be possible to extend the Charles-Goren-Lauter hash construction to yield 
key exchange. 

4.3 Security proofs 

The PKE scheme in §1.3.9 is a modifed version of the classical hashed ElGamal scheme that replaces 
the group-based computational Diffie-Hellman problem by its analogue in the setting of supersingular 
isogenies (Problem 1 below). As such, the proofs of the IND-CPA PKE scheme and the subsequent IND-
CCA KEM are standard; these are given in §4.3.2 and §4.3.3. 

4.3.1 The SIDH problem 

Problem 1 is the Supersingular Isogeny Diffie-Hellman (SIDH) problem [9, Problem 5.3]. 

Problem 1. Let sk2 ∈ K2 and sk3 ∈ K3. Let pk2 = isogen2(sk2) and pk3 = isogen3(sk3). Given� �
E0, pk2, pk3 , compute j = isoex2(pk3, sk2) = isoex3(pk2, sk3). 

4.3.2 IND-CPA PKE 

Defne the IND-CPA security of a public-key encryption scheme in the standard way (e.g. see [2, 22]). 
Assume that F is a random oracle. 

Proposition 1. In the random oracle model, PKE is IND-CPA if SIDH is hard. 

Proof. The public-key encryption scheme is the classical hashed ElGamal scheme converted to the setting 
of supersingular isogeny graphs. More specifcally, note that we can view ElGamal as a static-ephemeral 
Diffie–Hellman key exchange to obtain a shared secret, which is hashed and used a secret key for a sym-
metric algorithm (for example the one-time pad) to encrypt a message. The scheme PKE simply replaces 
the original group-based Diffie–Hellman exchange by an SIDH key exchange, but is otherwise identical 
to hashed ElGamal. As a result, its proof of security is completely analogous. For example, see [22, Thm 
5], [13, Thm 20.4.11] or [20, Thm 11.21]. � 

Remark 1. There exist alternative proofs of security in the standard model, reducing the security to a 
decisional variant of SIDH [9, Problem 5.4] instead of SIDH (see [9, Thm 6.2], based on [34, Thm 2] 
and [33, §3.4]). 
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4.3.3 IND-CCA KEM 

Theorem 1 ([18]). For any IND-CCA adversary B against KEM, issuing at most qG (resp. qH) queries to 
the random oracle G (resp. H), there exists an IND-CPA adversary A against PKE with 

2qG + qH + 1
AdvIND−CCA · AdvIND−CPA(B) ≤ + 3 (A).KEM PKE2n 

Proof. This is the bound obtained by combining the results from Theorem 3.2 and Theorem 3.4 from [18], 
setting KEM = U 6⊥[T [PKE, G], H]. 

Note that Decaps slightly deviates from the defnition in [18]. Instead of full “re-encryption” (c0 0, c
0 
1) ← 

Enc(pk3, m
0; G(m0 || pk3)), we only re-compute c0 . However, full computation would yield 0

c0 = m0 ⊕ F(isoex2(pk3, G(m0 || pk3))) = m0 ⊕ F(isoex3(c0
0 , sk3)),1 

while c1 = m0 ⊕ F(isoex3(c0, sk3)). Hence it is clear that c0 0 = c0 implies c0 1 = c1, making the computation 
of c0 1 redundant. � 
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Chapter 5 

Analysis with respect to known attacks 

In choosing concrete parameter sizes, our goal is to ensure that the computational cost of breaking 
SIKEpXXX, where XXX ∈ {503, 751, 964}, requires resources comparable to those required for key search 
on a k-bit (ideal) block cipher B, where k ∈ {128, 192, 256}. We give a precise statement of this design 
goal in §5.1, and a more detailed justifcation in §5.2. 

5.1 Security levels 

If a k-bit key block cipher B is viewed as a black box, the optimal way (classically) to retrieve the key 
is to try all 2k different options. On average, this takes 2k−1 attempts. However, if we have B as a (black √ 
box) quantum circuit, we can apply Grover’s algorithm [17]. This requires only (approximately) 2k 

applications of B. This motivates the following defnition. 

Defnition 1. A block cipher B with a k-bit key is called classically (resp. quantum) secure if on average √ 
we need 2k−1 (resp. 2k) invocations of B to retrieve the key. 

`e`Similarly, let p = 2e2 · 3e3 − 1, and = min(2e2 , 3e3). Then the classical (resp. quantum) complexity √ √3of breaking the isogeny problem is assumed to be O( `e` ) (resp. O( `e` )). The complexity of these 
`e`algorithms is measured in the number of queries to an oracle I, computing isogenies of degree /2 (see 

§4.1). Assuming the cost of I to be larger than the cost of B (see §5.2), we obtain the following security 
statement. 

Theorem 2. The scheme SIKEpXXX, where XXX ∈ {503, 751, 964}, is classically (resp. quantum) k-bit √ 
secure if breaking the respective SIDH problem requires at least 2k−1 (resp. 2k) invocations of I. 

Proof. Follows from Proposition 1 and Theorem 1. � 

The security levels are summarized in Table 5.1. 
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k 2k−1 min( 2e2 , 3e3) 2k min( 3 2e2 , 
3 3e3) 

SIKEp503 128 2127 1.00 · 2125 264 1.26 · 283 

SIKEp751 192 2191 1.00 · 2186 296 1.00 · 2124 

SIKEp964 256 2255 1.45 · 2238 2128 1.02 · 2159 

√√ √ √ √ 

Table 5.1: Classical and quantum security estimates 

Remark 2. For a k-bit security level the prime p is chosen to be the largest prime of the form p = 22i ·3 j−1 
such that p < 24k and 22i ≈ 3 j. Due to the sparseness of primes of this shape this leads to security levels 
(slightly) below k, most notably for SIKEp964. However, choosing p to have fewer than 4k bits allows us 
to represent Fp-elements using 4k bits. As a result, we use a register less (e.g. a 32-bit or 64-bit register) 
than we would need for p ≥ 24k, and gain a signifcant efficiency improvement. Moreover, this seemingly 
lower security is (easily) made up for by the higher cost of constructing a circuit implementing isogeny 
computations when compared to implementing a block cipher (see Remark 3). 

5.2 Detailed analysis 

We observe that even though the defnitions in the previous section may be theoretically sound, it re-
mains unclear how they would refect the size and run-time of actual cryptanalytic circuits. Therefore we 
elaborate on estimates of the gate count and depth of a circuit solving the above problems. 

Classical circuits. Let GC 
B (resp. GC 

I
) be the number of classical gates necessary to construct a classical 

circuit implementing B (resp. I). Let DC 
B and DC 

I be the respective depths of the circuits. If B has a k-bit 
key and is classically secure, the above defnitions imply that a circuit retrieving the key contains at least 
2k−1 · GC 

B gates. Since the invocations of B are completely independent, we can run anywhere between 1 
and 2k−1 B-circuits in parallel. That means we can retrieve the key with depth anywhere between 2k−1 · DC 

B 
and DC 

B
. Similarly, if we have a k-bit secure instantiation of SIKE, breaking the scheme requires a circuit 

of at least 2k−1 · GC 
I gates. Moreover, queries to I are all independent in the classic claw-fnding algorithm. 

√ √ 
Assuming that GC ≤ GC 

I
, DC ≤ DC (see Remark 3) and min( 2e2 , 3e3) ≈ 2k−1, this shows that the 

B B I 
computational cost of classically breaking SIKE refects the computational cost of classically retrieving 
the key of B. 

Quantum circuits. Let G
B 
Q (resp. G

I 
Q) be the number of quantum gates needed to construct a quantum 

circuit implementing B (resp. I). Let D
B 
Q and D

I 
Q be the respective depths of the circuits. If B is quantum 

secure, a quantum circuit retrieving the key similarly needs at least 
√ 

2k ·G
B 
Q gates (by Grover’s algorithm). 

Estimates for these costs using T -gates and Clifford gates are made by Grassl et al. [16, Table 5] for AES-
{128, 192, 256}. They assume all invocations of AES to be done in serial1. By breaking up the search 
space into smaller parts, it is obvious that one can reduce the depth of such a circuit. However, a result by 

1There are in fact parallel applications of AES, but these are only done to ensure uniqueness of the solution. 
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Zalka [40] shows that reducing the depth by a factor M, increases the number of gates by at least the same 
factor. In particular, if we restrict the depth to maximum value MAXDEPTH, we need at least � �

#gates × depth / MAXDEPTH (5.1) 

gates. 

On the other hand, to break a k-bit quantum secure instantiation of SIKE, we require a quantum circuit 
containing at least 

√ 
2k · G

I 
Q gates. Naı̈vely, we run all queries in serial and obtain a circuit of depth 

√ 
2k ·D

I 
Q. In this case, unfortunately, there is no result analog to Zalka’s about the consequences of reducing 

the depth. However, we conjecture that reducing the depth by a factor M also increases the gate count by a 
factor M. The idea is that the quantum claw-fnding algorithm by Tani [37] relies on a quantum algorithm 
by Szegedy [36], which generalizes Grover’s algorithm. Therefore we expect the behavior with respect to 
parallelization to be comparable, but emphasize that this fact remains to be proven. As a result, we expect 
Equation (5.1) to hold. Therefore, assuming GQ 

≤ G
I 
Q , DQ 

≤ DQ (see Remark 3) and 
√3
`e` ≈

√ 
2k, the 

B B I 
computational cost of breaking SIKE with a quantum circuit refects the computational cost of retrieving 
the key of B. 

√3Moreover, this analysis ignores the number of qubits required. The algorithm of Tani [37] requires O( `e` ) 
qubits whereas, e.g., the implementation by Grassl et al. [16] only uses a few thousand. 

Remark 3. For B = AES, estimates for GC 
B are 216, 216 and 217 for 128, 192 and 256-bit security levels, re-

spectively (see [28]). On the other hand, isogeny computations of I rely on Fp2-element operations, which 
in turn are composed of Fp-multiplications. If we assume an n-bit multiplication to have a lower bound 
of n log2 n gates, where n = log2 p, then we need as few as 15 Fp-multiplications to obtain GC 

B
≤ GC 

I at 
any of our security levels. In reality, an isogeny computation requires many more Fp-multiplications while 
Fp-multiplications do not achieve the lower bound of n log2 n, so this analysis remains very conservative. 
Moreover, many of these multiplications must be done in serial, so that also DC 

B
≤ DC 

I
. The same results 

are expected to hold for quantum circuits. 

5.3 Side-channel attacks 

Side-channel analysis targets various physical phenomena that are emitted by a cryptographic implemen-
tation to reveal critical internal information of the device. Power consumption information, timing in-
formation, and electromagnetic radiation are all emitted externally as cryptographic computations are 
performed. Simple power analysis (SPA) analyzes a single power signature of a device, while differential 
power analysis (DPA) statistically analyzes many power runs of a device. Timing analysis targets timing 
information of various portions of the computation. Electromagnetic radiation can be seen as an extension 
of power analysis attacks by analyzing electromagnetic emissions instead of power. 

In general, isogeny-based cryptography comes down to two computations: generation of a secret kernel 
and computing a large-degree isogeny over that kernel. In schemes like SIKE, the secret kernel is found 
by computing a double-point multiplication over a torsion basis. Thus, there are 2 general approaches an 
attacker can exploit to attack the security of the cryptosystem via side-channel analysis: 

1. Reveal parts of the hidden kernel point, 
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2. Reveal secret isogeny walks during the isogeny computation. 

Regarding the frst approach, a double-point multiplication over a torsion basis is used to compute the 
hidden kernel. This computation shares many similarities with traditional elliptic curve cryptography. 
Accordingly, existing techniques for elliptic curve cryptography side-channel attacks can be applied to 
reveal information about this ladder and what kind of hidden kernel point was generated. Further, invalid 
parameters may be injected by providing an invalid torsion basis or invalid curve, thus limiting the possible 
number of valid kernel points of full isogeny order. 

For the second approach, the hidden kernel point is used to perform various walks of small degree on an 
isogeny graph. If an attacker can identify specifc walks used during this computation, then the attacker 
has a subset of the isogeny computation between two distant isomorphism classes and the security of 
SIKE is weakened. As this part of the computation has no analogue in traditional ECC, this category of 
side-channels attacks is being actively investigated by the research community. 

In targeting these parts of the SIKE cryptosystem, an attacker no doubt has access to a wide range of 
power, timing, fault, and various other side-channels. Constant-time implementations using a constant set 
of operations has been shown to be a good countermeasure against SPA and timing attacks. Higher level 
differential power analysis attacks and fault injection attacks are much harder to defend against. Papers 
and publications describing side-channel attacks against SIKE and countermeasures include [15, 24, 38]. 
We remark that most, if not all, post-quantum cryptosystems are vulnerable to side-channel attacks to 
some extent, and research in this area is extremely active. 
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Chapter 6 

Advantages and Limitations 

Despite their relatively short lifespans as foundations for cryptographic key exchange, problems relating 
to the computation of isogenies between elliptic curves defned over fnite felds have been studied since at 
least as far back as the mid 1990’s [23]. Although there exists a subexponential quantum algorithm [5] that 
can solve the analogue of SIDH that uses ordinary curves (this scheme was frst suggested by Couveignes 
in 1997 [8] and later published by Rostovtsev and Stolbunov in 2006 [31, 35]), the best classical attacks 
against this protocol remain exponential. Moreover, given that problems for which there exist subexpo-
nential classical algorithms (e.g., RSA) are widely used and considered secure in the classical sense, even 
the existence of a quantum subexponential attack against the ordinary analogue of SIDH does not neces-
sarily preclude its consideration in the quantum setting. Nevertheless, the supersingular case is currently 
preferred because it is more efficient, and because the best known classical and quantum algorithms for 
solving well-formed instances of the SIDH problem (see §4.3.1) are exponential. Computational number 
theorists therefore have reasonable evidence that the underlying problems are hard. Furthermore, if the 
best algorithms for SIDH remain the claw-style algorithms, then the complexities used to generate the sets 
of parameters in §1.5 are already known to be optimal (cf. §4.1), and this gives us some confdence in the 
long-term quantum-security of the proposed SIKE instantiations, analogous to the (classical) confdence 
in discrete logarithm security that one derives from generic lower bounds [32]. 

Notwithstanding the current limitations in the knowledge of the future of quantum computation, the well-
understood (classical and quantum) complexities of the claw algorithms make for relatively straightfor-
ward scaling of SIKE parameters at different levels of security. In addition, the number of isogeny classes 
that can be used at any given security level are plentiful; even when restricting to the case of 2e2- and 
3e3-isogenies, there are many primes of the form p = f · 2e23e3 − 1 (where f is a small cofactor [9]) with 
2e2 ≈ 3e3 that can be used for secure SIKE instantiations. Fixing f = 1 still yields many choices at any 
given security level, and the SIKEp503, SIKEp751 and SIKEp964 parameters were selected from these 
candidates according to the criteria discussed in §1.5. 

Following decades of intense research on traditional elliptic curve cryptography, one advantage of isogeny-
based schemes is that there already exists a wide-reaching global expertise in the secure implementation 
of curve-based cryptography. History has shown that the most serious reported real-world attacks against 
public-key cryptography have not been a result of algorithms that break the underlying mathematical 
problems, but rather a result of attacks that exploit poor implementations (e.g., side-channel attacks). 
Isogeny-based cryptography essentially inherits all of its operations from elliptic curve cryptography, so 
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any implementer that is experienced with producing secure code for real-world ECC should fnd little or 
no trouble developing secure code for the scheme in this proposal. 

Compared to other primitives that are conjectured to offer reasonable quantum security, the main practical 
advantage of SIKE is its relatively small key sizes. The uncompressed public keys corresponding to 
SIKEp503 are 378 bytes, which is comparable to the 384-byte RSA public keys corresponding to a 3072-
bit modulus, those which are conjectured to offer 128 bits of classical security. Likewise, SIKEp751 
public keys are 564 bytes, and the largest of our parameter sets, SIKEp964, has 723-byte uncompressed 
public keys. Note that the technique of public-key compression [1, 6], which we have omitted from this 
specifcation, affords users the option of compressing SIKE public keys to around 60% of their original 
size. Under current cryptanalytic knowledge, SIKE with key compression provides smaller public keys 
than any other post-quantum public-key cryptosystem at comparable security levels. The performance cost 
of key compression in the published literature is approximately double the computation time of regular 
key exchange [6]. A very recent preprint [41], not yet published, improves key compression performance 
by an additional factor of two to fve. 

The ease of partnering supersingular isogeny-based public-key cryptography with strong classical elliptic 
curve cryptography (ECC) is discussed in [7, §8]. In particular, a sound SIKE software library contains all 
of the ingredients necessary to securely implement elliptic curve Diffie-Hellman in a hybrid key exchange 
scheme, with a minimal amount of additional coding effort required. As in the case of high-performance 
ECC implementations, a large portion of the code is dedicated to tailored arithmetic in the underlying fnite 
feld. Strong, well-chosen Montgomery curves (like those recently chosen for adoption in TLS [26]) can be 
defned over any large enough prime feld, and (beyond the feld arithmetic) are essentially implemented in 
the same way. Even when defned over the 503-bit prime feld corresponding to SIKEp503, this technique 
gives rise to a SIKE+ECDH hybrid that offers around the same classical ECDLP security as the strongest 
NISTp521 curve. The corresponding uncompressed public keys infate by a factor of no more than 1.17x 
relative to SIKE alone, and the benchmarks reported in [7, Table 3] show that the performance slowdown 
is even less than this factor. 

Relative to other post-quantum candidates, the main practical limitation of SIKE currently lies in its per-
formance. Although the benchmarks in §2.2 show that, especially for the SIKEp503 parameters, SIKE is 
already practical enough for many applications, it is still at least an order of magnitude slower than some 
popular lattice- and code-based alternatives. Nevertheless, high-performance supersingular isogeny-based 
public-key cryptography is arguably much less developed than its counterparts, and a similar trade-off 
(small keys versus larger latencies) was seen in the early days of classical elliptic curve cryptography; this 
was before the decades of research and performance optimizations brought ECC to the high-performance 
alternative it is today. In addition, for many applications, such as protocols with fxed-size packets, band-
width is a more precious commodity than computational cycles, and SIKE represents a good ft for such 
situations. 
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Appendix A 

Explicit algorithms for isogen` and isoex`: 
Optimized implementation 

This section contains explicit formulas for computing the isogenies described in §1.3.5 and §1.3.6. As-
suming access to all of the feld operations in Fp2 , Algorithms 3–22 can compute isogen` and isoex` for 
` ∈ {2, 3} in their entirety. 

The notation (XP : ZP) with ZP , 0 is used for the projective tuple in P1(Fp2) representing the Montgomery 
x-coordinate xP = XP/ZP; lower case letters are used for normalized coordinates, upper cases for projective 
coordinates. 

Several variants of the Montgomery curve constants are used below for enhanced performance. Write Ea 

for the curve Ea/Fp2 : y2 = x3+ax2+ x and use (A : C) to denote the equivalence (A : C) ∼ (a : 1) in P1(Fp2). 
Furthermore, defne (A+ 

24 : C24) ∼ (A+2C : 4C), (A+ 
24) ∼ (A+2C : A−2C), and (a+ : 1) ∼ (A+2C : 4C).24 : A− 

24 

Algorithm 8, which computes the three point ladder, uses the recent and improved algorithm from [11]. 

Algorithms 17 and 18 use a deque (double ended queue) data structure with three defned operations: push 
adds an item on top of the deque, pop removes an item from the top of the deque, and pull removes an 
item from the bottom of the deque. 

Algorithm 3: Coordinate doubling 

function xDBL 
Input: (XP : ZP) and (A+ 

24 : C24) 

Output: (X[2]P : Z[2]P) 

1 t0 ← XP − ZP 4 t1 ← t2 
1 7 t1 ← t1 − t0 10 Z[2]P ← Z[2]P · t1 

2 t1 ← XP + ZP 5 Z[2]P ← C24 · t0 8 t0 ← A+ 
24 · t1 11 return (X[2]P : Z[2]P) 

3 t0 ← t2 
0 6 X[2]P ← Z[2]P · t1 9 Z[2]P ← Z[2]P + t0 

48 



3 

Algorithm 4: Repeated coordinate doubling 

function xDBLe 
Input: (XP : ZP), (A+ 

24 : C24), and e ∈ Z 

Output: (X[2e]P : Z[2e]P) 

1 (X0 : Z0) ← (XP : ZP) 

2 for i = 1 to e do � � 
(X0 : Z0) ← xDBL (X0 : Z0), (A+ // Alg. 324 : C24) 

4 return (X0 : Z0) 

Algorithm 5: Combined coordinate doubling and differential addition 

function xDBLADD 
Input: (XP : ZP), (XQ : ZQ), (XQ−P : ZQ−P), and (a+ : 1) ∼ (A + 2C : 4C)24 

Output: (X[2]P : Z[2]P), (XP+Q : ZP+Q) 

1 t0 ← XP + ZP 8 t1 ← t1 · XP+Q 15 Z[2]P ← Z[2]P · t2 

2 t1 ← XP − ZP 9 t2 ← X[2]P − Z[2]P 16 ZP+Q ← ZP
2 
+Q 

3 X[2]P ← t0
2 10 X[2]P ← X[2]P · Z[2]P 17 XP+Q ← XP

2 
+Q 

4 t2 ← XQ − ZQ 11 XP+Q ← a+ 18 ZP+Q ← XQ−P · ZP+Q24 · t2 

5 XP+Q ← XQ + ZQ 12 ZP+Q ← t0 − t1 19 XP+Q ← ZQ−P · XP+Q 

6 t0 ← t0 · t2 13 Z[2]P ← XP+Q + Z[2]P 20 return {(X[2]P : Z[2]P), 

7 Z[2]P ← t2 14 XP+Q ← t0 + t1 (XP+Q : ZP+Q)}1 

Algorithm 6: Coordinate tripling 

function xTPL 
Input: (XP : ZP) and (A+ 

24 : A
− 
24) 

Output: (X[3]P : Z[3]P) 

1 t0 ← XP − ZP 7 t1 ← t2 
4 13 t2 ← t2 · t6 19 X[3]P ← t2 · t4 

2 t2 ← t2 
0 8 t1 ← t1 − t3 14 t3 ← t2 − t3 20 t1 ← t3 − t1 

3 t1 ← XP + ZP 9 t1 ← t1 − t2 15 t2 ← t5 − t6 21 t1 ← t2 
1 

4 t3 ← t2 
1 10 t5 ← t3 · A+ 

24 16 t1 ← t2 · t1 22 Z[3]P ← t1 · t0 

5 t4 ← t1 + t0 11 t3 ← t5 · t3 17 t2 ← t3 + t1 23 return (X[3]P : Z[3]P) 

6 t0 ← t1 − t0 12 t6 ← t2 · A− 
24 18 t2 ← t2 

2 
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3 

Algorithm 7: Repeated coordinate tripling 

function xTPLe 
Input: (XP : ZP), (A+ 

24), and e ∈ Z+ 
24 : A− 

Output: (X[3e]P : Z[3e]P) 

1 (X0 : Z0) ← (XP : ZP) 

2 for i = 1 to e do � � 
(X0 : Z0) ← xTPL (X0 : Z0), (A+ ) // Alg. 624 : A− 

24

4 return (X0 : Z0) 

Algorithm 8: Three point ladder 

function Ladder3pt 
Input: m = (m`−1, . . . , m0)2 ∈ Z, (xP, xQ, xQ−P), and (a+ : 1) 24 

Output: (XQ+[m]P : ZQ+[m]P) � � � � 
1 (X0 : Z0), (X1 : Z1), (X2 : Z2) ← (xQ : 1), (xP : 1), (xQ−P : 1)

2 for i = 0 to ` − 1 do 
3 if mi = 1 then � � � � 
4 (X0 : Z0), (X1 : Z1) ← xDBLADD (X0 : Z0), (X1 : Z1), (X2 : Z2), (a+ : 1) // Alg. 524 

5 else � � � � 
6 (X0 : Z0), (X2 : Z2) ← xDBLADD (X0 : Z0), (X2 : Z2), (X1 : Z1), (a+ 

24 : 1) // Alg. 5 

7 return (X1 : Z1) 

Algorithm 9: Montgomery j-invariant computation 

function jInvariant 
Input: (A : C) 

Output: j-invariant j(EA/C) ∈ Fp2 

1 j ← A2 6 j ← t0 − t1 11 t1 ← t2 
0 16 j ← t0 · j 

2 t1 ← C2 7 t1 ← t2 
1 12 t0 ← t0 · t1 17 return j 

3 t0 ← t1 + t1 8 j ← j · t1 13 t0 ← t0 + t0 

4 t0 ← j − t0 9 t0 ← t0 + t0 14 t0 ← t0 + t0 

5 t0 ← t0 − t1 10 t0 ← t0 + t0 15 j ← 1/ j 
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Algorithm 10: Recovering the Montgomery curve coefficient 

function get A 
2 3Input: xP, xQ and xQ−P corresponding to points on EA : y = x + Ax2 + x 

Output: A ∈ Fp2 

1 t1 ← xP + xQ 5 t0 ← t0 · xQ−P 9 t0 ← t0 + t0 13 A ← A − t1 

2 t0 ← xP · xQ 6 A ← A − 1 10 A ← A2 14 return A 

3 A ← xQ−P · t1 7 t0 ← t0 + t0 11 t0 ← 1/t0 

4 A ← A + t0 8 t1 ← t1 + xQ−P 12 A ← A · t0 

Algorithm 11: Computing the 4-isogenous curve 

function 4 iso curve 
Input: (XP4 : ZP4 ), where P4 has exact order 4 on EA/C 

Output: (A+ + 2C0 : 4C0) corresponding to EA0/C0 = EA/C/hP4i, and constants 24 : C24) ∼ (A0 

(K1, K2, K3) ∈ (Fp2 )3 

1 K2 ← XP4 − ZP4 4 K1 ← K1 + K1 7 A+ 10 return A+ , C24,24 ← XP
2

4 24

2 K3 ← XP4 + ZP4 5 C24 ← K2 8 A+ 
24 + A+ (K1, K2, K3)1 24 ← A+ 

24 

3 K1 ← Z2 6 K1 ← K1 + K1 9 A+ )2 
P4 24 ← (A+ 

24

Algorithm 12: Evaluating a 4-isogeny at a point 

function 4 iso eval 
Input: Constants (K1, K2, K3) ∈ (Fp2 )3 from 4 iso curve, and (XQ : ZQ) where Q ∈ EA/C 

Output: (XQ0 : ZQ0 ) corresponding to Q0 ∈ EA0/C0 , where EA0/C0 is the curve 4-isogenous to EA/C output 

from 4 iso curve 

1 t0 ← XQ + ZQ , 5 t0 ← t0 · t1, 9 t1 ← t1
2 , 13 XQ ← XQ · t1, 

2 t1 ← XQ − ZQ , 6 t0 ← t0 · K1, 10 ZQ ← ZQ
2 , 14 ZQ ← ZQ · t0, 

3 XQ ← t0 · K2, 7 t1 ← XQ + ZQ , 11 XQ ← t0 + t1, 15 return (XQ0 : ZQ0 ) 

4 ZQ ← t1 · K3, 8 ZQ ← XQ − ZQ , 12 t0 ← ZQ − t0 , 
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Algorithm 13: Computing the 3-isogenous curve 

function 3 iso curve 
Input: (XP3 : ZP3 ), where P3 has exact order 3 on EA/C 

Output: Curve constant (A+ ) ∼ (A0 + 2C0 : A0 − 2C0) corresponding to EA0/C0 = EA/C/hP3i, and 24 : A− 
24

constants (K1, K2) ∈ (Fp2 )2 

1 K1 ← XP3 − ZP3 , 7 t3 ← t2 
3 , 13 t4 ← t1 + t4 , 19 t0 ← t4 − A− 

24 , 

2 t0 ← K2 
1 , 8 t3 ← t3 − t2 , 14 A− 

24 ← t2 · t4 , 20 A+ 
24 ← A− 

24 + t0 , 

3 K2 ← XP3 + ZP3 , 9 t2 ← t1 + t3 , 15 t4 ← t1 + t2 , 21 return (A+ 
24 : A

− 
24), 

4 t1 ← K2 
2 , 10 t3 ← t3 + t0 , 16 t4 ← t4 + t4 , (K1, K2) ∈ (Fp2 )2 

5 t2 ← t0 + t1 , 11 t4 ← t3 + t0 , 17 t4 ← t0 + t4 , 

6 t3 ← K1 + K2 , 12 t4 ← t4 + t4 , 18 t4 ← t3 · t4 , 

Algorithm 14: Evaluating a 3-isogeny at a point 

function 3 iso eval 
Input: Constants (K1, K2) ∈ (Fp2 )3 output from 3 iso curve together with (XQ : ZQ) corresponding to 

Q ∈ EA/C 

Output: (XQ0 : ZQ0 ) corresponding to Q0 ∈ EA0/C0 , where EA0/C0 is 3-isogenous to EA/C 

1 t0 ← XQ + ZQ , 4 t1 ← K2 · t1 , 7 t2 ← t2
2 , 10 ZQ0 ← ZQ · t0. 

2 t1 ← XQ − ZQ , 5 t2 ← t0 + t1 , 8 t0 ← t0
2 , 11 return (XQ0 : ZQ0 ), 

3 t2 ← K1 · t0 , 6 t0 ← t1 − t0 , 9 XQ0 ← XQ · t2 , (K1, K2) ∈ (Fp2 )2 
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Algorithm 15: Computing and evaluating a 2e-isogeny, simple version 

function 2 e iso 
Static parameters: Integer e2 from the public parameters 

Input: Constants (A+ 
24 : C24) corresponding to a curve EA/C, (XS : ZS ) where S has exact order 

2e2 on EA/C 

Optional input: (X1 : Z1), (X2 : Z2) and (X3 : Z3) on EA/C 
0 : C0Output: (A+ ) corresponding to the curve EA0/C0 = E/hS i24 24

Optional output: (X1
0 : Z1

0 ), (X2
0 : Z2

0 ) and (X3
0 : Z3

0 ) on EA0/C0 

1 for e = e2 − 2 downto 0 by −2 do 
2 

3 

4 

5 

6 

� � 
(XT : ZT ) ← xDBLe (XS : ZS ), (A+ // Alg. 4 � � 24 : C24), e 

(A+ ← 4 iso curve ((XT : ZT )) // Alg. 1124 : C24), (K1, K2, K3) 

(XS : ZS ) ← 4 iso eval ((K1, K2, K3), (XS : ZS )) // Alg. 12 

for (Xj : Zj) in optional input do � � 
(Xj : Zj) ← 4 iso eval (K1, K2, K3), (Xj : Zj) // Alg. 12 � � 

7 return (A+ (X1 : Z1), (X2 : Z2), (X3 : Z3)24 : C24), 

Algorithm 16: Computing and evaluating a 3e-isogeny, simple version 

function 3 e iso 
Static parameters: Integer e3 from the public parameters 

Input: Constants (A+ 
24) corresponding to a curve EA/C, (XS : ZS ) where S has exact order 24 : A− 

3e3 on EA/C 

Optional input: (X1 : Z1), (X2 : Z2) and (X3 : Z3) on EA/C 

Output: (A+ 0 : A− 0) corresponding to the curve EA0/C0 = E/hS i24 24 

Optional output: (X1
0 : Z1

0 ), (X2
0 : Z2

0 ) and (X3
0 : Z3

0 ) on EA0/C0 

1 for e = e3 − 1 downto 0 by −1 do 
2 

3 

4 

5 

6 

� � 
(XT : ZT ) ← xTPLe (XS : ZS ), (A+ 

24), e // Alg. 7 � � 24 : A− 

(A+ 
24), (K1, K2) ← 3 iso curve ((XT : ZT )) // Alg. 1324 : A− 

(XS : ZS ) ← 3 iso eval ((K1, K2), (XS : ZS )) // Alg. 14 

for (Xj : Zj) in optional input do � � 
(Xj : Zj) ← 3 iso eval (K1, K2), (Xj : Zj) // Alg. 14 � � 

7 return (A+ 
24),24 : A− (X1 : Z1), (X2 : Z2), (X3 : Z3)
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Algorithm 17: Computing and evaluating a 2e-isogeny, optimized version 

function 2 e iso 
Static parameters: Integer e2 from the public parameters, a strategy 

(s1, . . . , se2/2−1) ∈ (N+)e2/2−1 

Input: Constants (A+ 
24 : C24) corresponding to a curve EA/C, (XS : ZS ) where S has exact order 

2e2 on EA/C 

Optional input: (X1 : Z1), (X2 : Z2) and (X3 : Z3) on EA/C 

Output: (A+ 0 : C0 ) corresponding to the curve EA0/C0 = E/hS i24 24

Optional output: (X1
0 : Z1

0 ), (X2
0 : Z2

0 ) and (X3
0 : Z3

0 ) on EA0/C0 

1 Initialize empty deque S � � 
2 push S, (e2/2, (XS : ZS ))

3 i ← 1 

4 while S not empty do 
5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

(h, (X : Z)) ← pop(S) 

if h = 1 then � 
(A+ 

24 : C24), (K1, K2, K3) 
� 
← 4 iso curve ((X : Z)) 

Initialize empty deque S0 
// Alg. 11 

while S not empty do 
(h, (X : Z)) ← pull(S) 

(X : Z) ← 4 iso eval ((K1, K2, K3), (X : Z)) 

push 
�
S0 , (h − 1, (X : Z))

� // Alg. 12 

S ← S0 

for (Xj : Zj) in optional input do 
(Xj : Zj) ← 4 iso eval 

� 
(K1, K2, K3), (Xj : Zj) 

� 
// Alg. 12 

else if 0 < si < h then � � 
push S, (h, (X : Z))� � 
(X : Z) ← xDBLe (X : Z), (A+ · si // Alg. 424 : C24), 2� � 
push S, (h − si, (X : Z))

i ← i + 1 

else 
Error: Invalid strategy � � 

23 return (A+ (X1 : Z1), (X2 : Z2), (X3 : Z3)24 : C24), 
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Algorithm 18: Computing and evaluating a 3e-isogeny, optimized version 

function 3 e iso 
Static parameters: Integer e3 from the public parameters, a strategy (s1, . . . , se3−1) ∈ (N+)e3−1 

Input: Constants (A+ 
24) corresponding to a curve EA/C, (XS : ZS ) where S has exact order 24 : A− 

3e3 on EA/C 

Optional input: (X1 : Z1), (X2 : Z2) and (X3 : Z3) on EA/C 

Output: (A+ 0 : A− 0) corresponding to the curve EA0/C0 = E/hS i24 24 

Optional output: (X1
0 : Z1

0 ), (X2
0 : Z2

0 ) and (X3
0 : Z3

0 ) on EA0/C0 

1 Initialize empty deque S � � 
2 push S, (e3, (XS : ZS ))

3 i ← 1 

4 while S not empty do 
5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

(h, (X : Z)) ← pop(S) 

if h = 1 then � 
(A+ 

24 : A
− 
24), (K1, K2) 

� 
← 3 iso curve ((X : Z)) 

Initialize empty deque S0 
// Alg. 13 

while S not empty do 
(h, (X : Z)) ← pull(S) 

(X : Z) ← 3 iso eval ((K1, K2), (X : Z)) 

push 
�
S0 , (h − 1, (X : Z))

� // Alg. 14 

S ← S0 

for (Xj : Zj) in optional input do 
(Xj : Zj) ← 3 iso eval 

� 
(K1, K2), (Xj : Zj) 

� 
// Alg. 14 

else if 0 < si < h then � � 
push S, (h, (X : Z))� � 
(X : Z) ← xTPLe (X : Z), (A+ 

24), si // Alg. 724 : A− � � 
push S, (h − si, (X : Z))

i ← i + 1 

else 
Error: invalid strategy � � 

23 return (A+ 
24),24 : A− (X1 : Z1), (X2 : Z2), (X3 : Z3)
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Algorithm 19: Computing public keys in the 2-torsion 

function isogen2 
Input: Secret key sk2 ∈ Z (see §1.2.6) and public parameters 

{e2, e3, p, xP2, xQ2, xR2, xP3, xQ3, xR3} (see §1.5) 

Output: Public key pk2 = (x1, x2, x3) equivalent to the output of Step 4 of isogen` (see §1.3.5)� � 
1 (A : C), (A+ 

24 : C24) ← ((0 : 1), (1 : 2)) 

2 ((X1 : Z1), (X2 : Z2), (X3 : Z3)) ← ((xP3 : 1), (xQ3 : 1), (xR3 : 1)) 

3 (XS : ZS ) ← Ladder3pt(sk2, (xP2, xQ2, xR2), (A : C))� � // Alg. 8 

4 (A+ 
24 : C24), (X1 : Z1), (X2 : Z2), (X3 : Z3)� ← � 
2 e iso (A+ 

24 : C24), (XS : ZS ), (X1 : Z1), (X2 : Z2), (X3 : Z3) // Alg. 15 or Alg. 17 

5 ((x1 : 1), (x2 : 1), (x3 : 1)) ← ((X1 : Z1), (X2 : Z2), (X3 : Z3)) 

6 return pk2 = (x1, x2, x3) // Encoded as in §1.2.9 

Algorithm 20: Computing public keys in the 3-torsion 

function isogen3 
Input: Secret key sk3 ∈ Z (see §1.2.6) and public parameters 

{e2, e3, p, xP2, xQ2, xR2, xP3, xQ3, xR3} (see §1.5) 

Output: Public key pk3 = (x1, x2, x3) equivalent to the output of Step 4 of isogen` (see §1.3.5)� � 
1 (A : C), (A+ 

24 : A
− 
24) ← ((0 : 1), (2 : − 2)) 

2 ((X1 : Z1), (X2 : Z2), (X3 : Z3)) ← ((xP2 : 1), (xQ2 : 1), (xR2 : 1)) 

3 (XS : ZS ) ← Ladder3pt(sk3, (xP3, xQ3, xR3), (A : C))� � // Alg. 8 

4 (A+ 
24 : A

− 
24), (X1 : Z1), (X2 : Z2), (X3 : Z3)� ← � 

3 e iso (A+ 
24 : A

− 
24), (XS : ZS ), (X1 : Z1), (X2 : Z2), (X3 : Z3) // Alg. 16 or Alg. 18 

5 ((x1 : 1), (x2 : 1), (x3 : 1)) ← ((X1 : Z1), (X2 : Z2), (X3 : Z3)) 

6 return pk3 = (x1, x2, x3) // Encoded as in §1.2.9 
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Algorithm 21: Establishing shared keys in the 2-torsion 

function isoex2 

Input: Secret key sk2 ∈ Z (see §1.2.6), public key pk3 = (x1, x2, x3) ∈ (Fp2)3 (see §1.2.9), and 

parameter e2 (see §1.5) 

Output: A j-invariant j2 equivalent to the output of Step 4 of isogen` (see §1.3.6) 

1 (A : C) ← (get A(x1, x2, x3) : 1) // Alg. 10 

2 (XS : ZS ) ← Ladder3pt(sk2, (x1, x2, x3), (A : C)) // Alg. 8 

3 (A+ 
24 : C24) ← (A + 2: 4) � � 

4 (A+ (A+ 
24 : C24) ← 2 e iso 24 : C24), (XS : ZS ) // Alg. 15 or Alg. 17 

5 (A : C) ← (4A+ − 2C24 : C24)24 

6 j = j inv((A : C)) // Alg. 9 

7 return j // Encoded as in §1.2.8 

Algorithm 22: Establishing shared keys in the 3-torsion 

function isoex3 

Input: Secret key sk3 ∈ Z (see §1.2.6), public key pk2 = (x1, x2, x3) ∈ (Fp2)3 (see §1.2.9), and 

parameter e3 (see §1.5) 

Output: A j-invariant j3 equivalent to the output of Step 4 of isogen` (see §1.3.6) 

1 (A : C) ← (get A(x1, x2, x3) : 1) // Alg. 10 

2 (XS : ZS ) ← Ladder3pt(sk3, (x1, x2, x3), (A : C)) // Alg. 8 

3 (A+ 
24) ← (A + 2: A − 2)24 : A− � � 

4 (A+ 
24) ← 3 e iso (A+ // Alg. 16 or Alg. 1824 : A− 

24 : A24), (XS : ZS ) 

5 (A : C) ← (2 · (A− ) : A+ 
24)24 + A+ 

24 24 − A− 

6 j = j inv((A : C)) // Alg. 9 

7 return j // Encoded as in §1.2.8 
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Appendix B 

Explicit algorithms for isogen` and isoex`: 
Reference implementation 

This section contains explicit formulas for computing the isogenies described in §1.3.5 and §1.3.6 as used 
in the reference implementation. Assuming access to all of the feld operations in Fp2 , Algorithms 23–41 
can compute isogen` and isoex` for ` ∈ {2, 3} in their entirety. 

The notation (xP, yP) is used for the affine tuple in P1(Fp2) representing the Montgomery x/y-coordinate. 
For simplicity, the reference implementation operates only on normalized, affine coordinates. 

Only a single variant of the Montgomery curve constants are used with the tuple (a, b). Write Ea,b for the 
curve Ea,b/Fp2 : by2 = x3 + ax2 + x. 

Algorithm 23: Affine coordinate doubling 

function xDBL 
Input: (xP, yP) and (a, b) 

Output: (x[2]P, y[2]P) 

1 if P = ∞ then 
2 return ∞ 

3 t0 ← xP
2 10 t1 ← b · yP 17 t2 ← t2 − xP 24 y[2]P ← y[2]P + a 

4 t1 ← t0 + t0 11 t1 ← t1 + t1 18 t2 ← t2 − xP 25 y[2]P ← y[2]P · t0 

5 t0 ← t0 + t1 12 t1 ← t1−1 19 t1 ← t0 · t1 26 y[2]P ← y[2]P − t1 

6 t1 ← a · xP 13 t0 ← t0 · t1 20 t1 ← b · t1 27 x[2]P ← t2 

7 t1 ← t1 + t1 14 t1 ← t02 21 t1 ← t1 + yP 28 return (x[2]P, y[2]P) 

8 t0 ← t0 + t1 15 t2 ← b · t1 22 y[2]P ← xP + xP 

9 t0 ← t0 + t2 16 t2 ← t2 − a 23 y[2]P ← y[2]P + xP 
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Algorithm 24: Repeated affine coordinate doubling 

function xDBLe 
Input: (xP, yP), (a, b), and e ∈ Z 

Output: (x[2e]P, y[2e]P) 
01 (x , y0) ← (xP, yP) 

2 for i = 1 to e do 
0 03 (x , y0) ← xDBLAffine ((x , y0), (a, b)) // Alg. 23 

04 return (x , y0) 

Algorithm 25: Affine coordinate addition 

function xADD 
Input: P = (xP, yP), Q = (xQ, yQ), and (a, b) 

Output: (xP+Q, yP+Q) 

1 if P = ∞ then 5 if P = Q then 
2 return (xQ, yQ) 6 return xDBL ((xP, yP), (a, b)) 

3 if Q = ∞ then 7 if P = −Q then 
4 return (xP, yP) 8 return ∞ 

9 t0 ← yQ − yP 14 t2 ← xP + xP 19 t0 ← b · t0 24 t1 ← t1 − xP 

10 t1 ← xQ − xP 15 t2 ← t2 + xQ 20 t0 ← t0 + yP 25 x[P+Q] ← t1 − xQ 

11 t1 ← t1−1 16 t2 ← t2 + a 21 t0 ← t2 − t0 26 y[P+Q] ← t0 

12 t0 ← t0 · t1 17 t2 ← t2 · t0 22 t1 ← b · t1 27 return (xP+Q, yP+Q) 

13 t1 ← t02 18 t0 ← t0 · t1 23 t1 ← t1 − a 

Algorithm 26: Affine coordinate tripling 

function xTPL 
Input: (xP, yP) and (a, b) 

Output: (x[3]P, y[3]P) 

1 (x[2]P, y[2]P) ← xDBL ((xP, yP), (a, b)) 

2 (x[3]P, y[3]P) ← xADD 
�
(xP, yP), (x[2]P, y[2]P), (a, b)

� // Alg. 23 

// Alg. 25 

3 return (x[3]P, y[3]P) 
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Algorithm 27: Repeated affine coordinate tripling 

function xTPLe 
Input: (xP, yP), (a, b), and e ∈ Z+ 

Output: (x[3e]P, y[3e]P) 
01 (x , y0) ← (xP, yP) 

2 for i = 1 to e do 
0 03 (x , y0) ← xTPL ((x , y0), (a, b)) // Alg. 26 

04 return (x , y0) 

Algorithm 28: Double-and-add scalar multiplication 

function double and add 
Input: m = (m`−1, . . . , m0)2 ∈ Z, P = (x, y), and (a, b) 

Output: (x[m]P, y[m]P) 

1 (x0, y0) ← (0, 0) 

2 for i = ` − 1 to 0 by −1 do 
3 (x0, y0) ← xDBL ((x0, y0), (a, b)) // Alg. 23 

4 if mi = 1 then 
5 (x0, y0) ← xADD ((x0, y0), (x, y), (a, b)) // Alg. 25 

6 return (x0, y0) 

Algorithm 29: Montgomery j-invariant computation 

function j inv 
Input: a 

Output: j-invariant j(Ea,b) ∈ Fp2 

1 t0 ← a2 6 j ← j + j 11 j ← j + j 16 t0 ← t0−1 

2 j ← 3 7 j ← j + j 12 j ← j + j 17 j ← j · t0 

3 j ← t0 − j 8 j ← j + j 13 j ← j + j 18 return j 
4 t1 ← j2 9 j ← j + j 14 t1 ← 4 

5 j ← j · t1 10 j ← j + j 15 t0 ← t0 − t1 
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Algorithm 30: Computing the 4-isogenous curve 

function curve 4 iso 
Input: xP4 and b, where P4 has exact order 4 on Ea,b 

0Output: (a , b0) corresponding to Ea0 ,b0 = Ea,b/hP4i 

2 01 t1 ← xP4 5 t2 ← 2 9 t1 ← t1 · b 13 return (a , b0) 
2 a0 ← t12 6 a0 ← a0 − t2 10 t2 ← t2−1 

0 ← a0 03 a + a 7 t1 ← xP4 · t1 11 t2 ← −t2 

0 04 a0 ← a + a 8 t1 ← t1 + xP4 12 b0 ← t2 · t1 

Algorithm 31: Evaluating a 4-isogeny at a point 

function eval 4 iso 
Input: (xQ, yQ) and xP4 , where P ∈ Ea,b, and P4 has exact order 4 on Ea,b 

Output: (xQ0 , yQ0 ) corresponding to Q0 ∈ Ea0 ,b0 , where Ea0 ,b0 is the curve 4-isogenous to Ea,b output from 

curve 4 iso 

1 t1 ← xQ
2 17 t4 ← xP4 · t3 33 t4 ← t2 − 1 49 y0 Q ← y0 Q · t5 

2 t2 ← t12 18 t5 ← t1 · t4 34 t2 ← t2 + t2 50 t1 ← t1 · t2 

3 t3 ← xP4 
2 19 t5 ← t5 + t5 35 t5 ← t2 + t2 51 t1 ← t1−1 

4 t4 ← t2 · t3 20 t5 ← t5 + t5 36 t1 ← t1 − t5 52 t4 ← t42 

5 t2 ← t2 + t4 21 t2 ← t2 − t5 37 t1 ← t4 · t1 53 t1 ← t1 · t4 

6 t4 ← t1 · t3 22 t1 ← t1 · xP4 38 t1 ← t3 · t1 54 t1 ← xQ · t1 

7 t4 ← t4 + t4 23 t1 ← t1 + t1 39 t1 ← yQ · t1 55 t2 ← xQ · t3 

8 t5 ← t4 + t4 24 t1 ← t1 + t1 40 t1 ← t1 + t1 56 t2 ← t2 + xQ 

9 t5 ← t5 + t5 25 t1 ← t2 − t1 41 y0 Q ← −t1 57 t3 ← xP4 + xP4 

10 t4 ← t4 + t5 26 t2 ← xQ · t4 42 t2 ← t2 − t3 58 t2 ← t2 − t3 

11 t2 ← t2 + t4 27 t2 ← t2 + t2 43 t1 ← t2 − 1 59 t2 ← −t2 

12 t4 ← t3 · t3 28 t2 ← t2 + t2 44 t2 ← xQ − xP4 60 x0 Q ← t1 · t2 

13 t5 ← t1 · t4 29 t1 ← t1 − t2 45 t1 ← t2 · t1 61 return (xQ0 , yQ0 ) 

14 t5 ← t5 + t5 30 t1 ← t1 + t3 46 t5 ← t12 

15 t2 ← t2 + t5 31 t1 ← t1 + 1 47 t5 ← t5 · t2 

16 t1 ← t1 · xQ 32 t2 ← xQ · xP4 48 t5 ← t5−1 
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Algorithm 32: Computing the 3-isogenous curve 

function curve 3 iso 
Input: xP3 and (a, b), where P3 has exact order 3 on Ea,b 

0Output: Curve constant (a , b0) corresponding to Ea0 ,b0 = Ea,b/hP3i 

21 t1 ← xP3 4 t2 ← t1 + t1 7 t1 ← t1 − t2 10 a0 ← t1 · xP3 

02 b0 ← b · t1 5 t1 ← t1 + t2 8 t2 ← a · xP3 11 return (a , b0) 
3 t1 ← t1 + t1 6 t2 ← 6 9 t1 ← t2 − t1 

Algorithm 33: Evaluating a 3-isogeny at a point 

function eval 3 iso 
Input: (xQ, yQ) and xP3 , where P ∈ Ea,b, and P3 has exact order 3 on Ea,b 

Output: (xQ0 , yQ0 ) corresponding to Q0 ∈ Ea0 ,b0 , where Ea0 ,b0 is the curve 3-isogenous to Ea,b output from 

curve 3 iso 

1 t1 ← xQ
2 7 t1 ← t1 − t2 13 t2 ← t2 · t3 19 t2 ← t2 · t3 

2 t1 ← t1 · xP3 8 t1 ← t1 + xQ 14 t4 ← xQ · xP3 20 x0 Q ← xQ · t2 

3 t2 ← xP3 
2 9 t1 ← t1 + xP3 15 t4 ← t4 − 1 21 y0 Q ← yQ · t1 

4 t2 ← xQ · t2 10 t2 ← xQ − xP3 16 t1 ← t4 · t1 22 return (xQ0 , yQ0 ) 

5 t3 ← t2 + t2 11 t2 ← t2−1 17 t1 ← t1 · t2 

6 t2 ← t2 + t3 12 t3 ← t22 18 t2 ← t42 
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Algorithm 34: Computing and evaluating a 2e-isogeny, simple version 

function iso 2 e 
Static parameters: Integer e2 from the public parameters 

Input: Constants (a, b) corresponding to a curve Ea,b, (xS , yS ) where S has exact order 2e2 on 

Ea,b 

Optional input: {(x1, y1), ..., (xn, yn)} on Ea,b 

Output: (a0 , b0) corresponding to the curve Ea0 ,b0 = E/hS i 

Optional output: {(x0 1, y
0 ), ..., (x0 , y0 )} on Ea0 ,b01 n n

1 for e = e2 − 2 downto 0 by −2 do 
2 (xT , yT ) ← xDBLe ((xS , yS ), (a, b), e) // Alg. 24 

3 (a0 , b0) ← curve 4 iso (xT , yT ) // Alg. 30 

4 (xS , yS ) ← eval 4 iso ((xS , yS ), xT ) // Alg. 31 

5 for (x j, y j) in optional input do � � 
6 (x0 j, y

0 
j) ← eval 4 iso (x j, y j), xT // Alg. 31 

7 return (a0 , b0), 
�
(x0 1, y

0 
1), ..., (x

0 
n, y

0 
n)
� 

Algorithm 35: Computing and evaluating a 3e-isogeny, simple version 

function iso 3 e 
Static parameters: Integer e3 from the public parameters 

Input: Constants (a, b) corresponding to a curve Ea,b, (xS , yS ) where S has exact order 3e3 on 

Ea,b 

Optional input: {(x1, y1), ..., (xn, yn)} on Ea,b 

Output: (a0 , b0) corresponding to the curve Ea0 ,b0 = E/hS i 

Optional output: {(x0 1, y
0 ), ..., (x0 , y0 )} on Ea0 ,b01 n n

1 for e = e3 − 1 downto 0 by −1 do 
2 (xT , yT ) ← xTPLe ((xS , yS ), (a, b), e) // Alg. 27 

3 (a0 , b0) ← curve 3 iso (xT , yT ) // Alg. 32 

4 (xS , yS ) ← eval 3 iso ((xS , yS ), xT ) // Alg. 33 

5 for (x j, y j) in optional input do � � 
6 (x0 j, y

0 
j) ← eval 3 iso (x j, y j), xT // Alg. 33 

7 return (a0 , b0), 
�
(x0 1, y

0 
1), ..., (x

0 
n, y

0 
n)
� 
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Algorithm 36: Recovering the x-coordinate of R 

function get xR 
Input: Parameters of Ea,b with generator points: (a, b), P = (xP, yP), Q = (xQ, yQ) 

Output: xR, such that R = P − Q � � 
1 (xR, yR) ← xADD (xP, yP), (xQ, −yQ), (a, b) // Alg. 25 

2 return xR 

Algorithm 37: Recovering the y-coordinates of P and Q, and the Montgomery curve coefficient a 

function get yP yQ A B 
Input: pk = (xP, xQ, xR) // Encoded as in §1.2.8 

Output: (yP, yQ, a, b) 

1 a ← get A(xP, xQ, xR) // Alg. 1.2.9 

2 b ← 1 

3 t1 ← xP 
2 6 t1 ← t2 + t1 9 t1 ← xQ 

2 12 t1 ← t2 + t1 

4 t2 ← xP · t1 

5 t1 ← a · t1 

7 t1 ← t1 + xP 

8 yP ← 
√ 

t1 

15 (xT , yT ) ← xADD 
�
(xP, yP), (xQ, −yQ), (a, b)

� 
16 if xT , xR then 

10 t2 ← xQ · t1 

11 t1 ← a · t1 

13 t1 ← t1 + xQ 

14 yQ ← 
√ 

t1 

// Alg. 25 

17 yQ ← −yQ 

18 return (yP, yQ, a, b) 

Algorithm 38: Computing public keys in the 2-torsion 

function isogen2 
Input: Secret key sk2 ∈ Z (see §1.2.6) and public parameters 

{e2, e3, p, (xP2, yP2), (xQ2, yQ2), (xP3, yP3), (xQ3, yQ3)} (see §1.5) 

Output: Public key pk2 = (x0 P3, x
0 
Q3, x

0 
R3) equivalent to the output of Step 4 of isogen` 

(see §1.3.5) 

1 (a, b) ← (0, 1) 

2 (xS , yS ) ← mult double add 
�
sk2, (xQ2, yQ2), (a, b)

� 
// Alg. 28 

3 (xS , yS ) ← xADD ((xP2, yP2), (xS , yS ), (a, b)) 

4 
� 
(a0 , b0), (x0 P3, y

0 
P3), (x

0 
Q3, y

0 
Q3) 

� 
← 2 e iso 

�
(a, b), (xS , yS ), (xP3, yP3), (xQ3, yQ3)

� � � 
// Alg. 25 

// Alg. 34 

5 x0 R3 ← get xR (a, b), (x0 P3, y
0 
P3), (x

0 
Q3, y

0 
Q3) 

6 return pk2 = (x0 P3, x
0 
Q3, x

0 
R3) // Encoded as in §1.2.9 

64 



Algorithm 39: Computing public keys in the 3-torsion 

function isogen3 
Input: Secret key sk3 ∈ Z (see §1.2.6) and public parameters 

{e2, e3, p, (xP2, yP2), (xQ2, yQ2), (xP3, yP3), (xQ3, yQ3)} (see §1.5) 
0 0 0Output: Public key pk3 = (xP2, xQ2, xR2) equivalent to the output of Step 4 of isogen` 

(see §1.3.5) 

1 (a, b) ← (0, 1) � � 
2 (xS , yS ) ← mult double add sk3, (xQ3, yQ3), (a, b) // Alg. 28 

3 (xS , yS ) ← xADD ((xP3, yP3), (xS , yS ), (a, b)) // Alg. 25 � � � � 
4 (a0 , b0), (x0 P2, y

0 
P2), (x

0 
Q2, y

0 
Q2) ← 3 e iso (a, b), (xS , yS ), (xP2, yP2), (xQ2, yQ2) // Alg. 35 � � 

5 x0 ← get xR (a, b), (x0 P2, y
0 ), (x0 Q2, y

0 )R3 P2 Q2

6 return pk3 = (x0 P2, x
0 
Q2, xR

0 
2) // Encoded as in §1.2.9 

Algorithm 40: Establishing shared keys in the 2-torsion 

function isoex2 

Input: Secret key sk2 ∈ Z (see §1.2.6), public key pk3 = (x0 P2, x
0 
Q2, x

0 
R2) ∈ (Fp2)3 (see §1.2.9), 

and parameter e2 (see §1.5) 

Output: A j-invariant j2 equivalent to the output of Step 4 of isogen` (see §1.3.6) 

1 (y0 P2, y
0 
Q2, a, b) ← get yP yQ A B(x0 P2, x

0 
Q2, x

0 
R2) // Alg. 37 � � 

2 (xS , yS ) ← mult double add sk2, (x0 Q2, y
0 
Q2), (a, b) // Alg. 28 � � 

3 (xS , yS ) ← xADD (x0 P2, y
0 
P2), (xS , yS ), (a, b) // Alg. 25 

4 (a, b) ← 2 e iso ((a, b), (xS , yS )) // Alg. 34 

5 j2 = j inv((a, b)) // Alg. 29 

6 return j2 // Encoded as in §1.2.8 
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Algorithm 41: Establishing shared keys in the 3-torsion 

function isoex3 

Input: Secret key sk3 ∈ Z (see §1.2.6), public key pk2 = (x0 P3, x
0 
Q3, x

0 
R3) ∈ (Fp2)3 (see §1.2.9), 

and parameter e3 (see §1.5) 

Output: A j-invariant j3 equivalent to the output of Step 4 of isogen` (see §1.3.6) 

1 (y0 P3, y
0 
Q3, a, b) ← get yP yQ A B(x0 P3, x

0 
Q3, x

0 
R3) // Alg. 37 � � 

2 (xS , yS ) ← mult double add sk3, (x0 Q3, y
0 
Q3), (a, b) // Alg. 28 � � 

3 (xS , yS ) ← xADD (x0 P3, y
0 
P3), (xS , yS ), (a, b) // Alg. 25 

4 (a, b) ← 3 e iso ((a, b), (xS , yS )) // Alg. 35 

5 j3 = j inv ((a, b)) // Alg. 29 

6 return j3 // Encoded as in §1.2.8 
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Appendix C 

Computing optimized strategies for fast isogeny 
computation 

Algorithms 17 and 18 need to be parameterized by a computational strategy as described in Section 1.3.7. 
Any valid strategy, i.e. any sequence (s1, . . . , sn−1) corresponding to a full binary tree, can be used without 
affecting the security of the protocol. 

For the sake of efficiency, we recommend using the parameters specifed in this section. They were 
generated by the algorithm below. The inputs to the algorithm are the strategy size n, which is one less 
than the number of leaves in the tree, the cost for a scalar multiplication step p and the cost for an isogeny 
computation and evaluation step q. Specifcally, we use n4, the size of the strategy for computations using 
the 2-torsion group, p4 the cost of two xDBL operations, q4 the cost of computation and evaluation of a 
4-isogeny, i.e. of the functions 4 iso curve and 4 iso eval. Similarly, n3 is the size of the strategy for 
computations using the 3-torsion group, p3 the cost of a xTPL operation, and q3 the cost of computation and 
evaluation of a 3-isogeny, i.e. of the functions 3 iso curve and 3 iso eval. We denote the respective 
strategies by S 4 and S 3, respectively. 

Algorithm 42: Computing optimized strategy 

function compute strategy 
Input: Strategy size n, parameters p, q > 0 

Output: Optimal strategy of size n 

1 S ← [1 → �] 

2 C ← [1 → 0] 

3 for i = 2 to n + 1 do 
4 Set b ← argmin0<b<i(C[i − b] + C[b] + bp + (i − b)q) 

5 Set S [i] ← b . S [i − b] . S [b] 

6 Set C[i] ← C[i − b] + C[b] + bp + (i − b)q 

7 return S [n + 1] 
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C.1 Strategies for SIKEp503 

C.1.1 2-torsion 

n4 = 124 

p4 = 7290 

q4 = 7278 

S4 = (61, 32, 16, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 
16, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 29, 16, 

8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 13, 8, 4, 2, 

1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 5, 4, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1) 

C.1.2 3-torsion 

n3 = 158 

p3 = 7189 

q3 = 7051 

S3 = (71, 38, 21, 13, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 5, 4, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 
9, 5, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 1, 2, 1, 1, 17, 9, 5, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 

4, 2, 1, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 33, 17, 9, 5, 3, 2, 1, 1, 

1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 16, 8, 4, 

2, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1) 

C.2 Strategies for SIKEp751 

C.2.1 2-torsion 

n4 = 185 

p4 = 14166 

q4 = 13810 

S4 = (80, 48, 27, 15, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 7, 4, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 
12, 7, 4, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 5, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 21, 12, 7, 4, 2, 1, 1, 
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2, 1, 1, 3, 2, 1, 1, 1, 1, 5, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 9, 5, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 

1, 1, 2, 1, 1, 33, 20, 12, 7, 4, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 5, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 

8, 5, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 2, 1, 1, 16, 8, 4, 2, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 

1, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1) 

C.2.2 3-torsion 

n3 

p3 

q3 

S3 

= 

= 

= 

= 

238 

13898 

13409 

(112, 63, 32, 16, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 
1, 16, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 31, 16, 

8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 15, 8, 4, 2, 1, 

1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 7, 4, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 49, 31, 16, 8, 4, 2, 1, 1, 2, 

1, 1, 4, 2, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 15, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 

1, 1, 2, 1, 1, 7, 4, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 21, 12, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 

1, 5, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 9, 5, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 1, 2, 1, 1) 

C.3 Strategies for SIKEp964 

C.3.1 2-torsion 

n4 

p4 

q4 

S4 

= 

= 

= 

= 

242 

19900 

19420 

(116, 63, 32, 16, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 
1, 1, 16, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 

31, 16, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 15, 

8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 7, 4, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 57, 27, 16, 8, 

4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 12, 7, 4, 2, 1, 1, 

2, 1, 1, 3, 2, 1, 1, 1, 1, 5, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 27, 14, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 

1, 1, 6, 4, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 12, 7, 4, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 5, 3, 2, 1, 1, 

1, 1, 2, 1, 1, 1) 
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C.3.2 3-torsion 

n3 = 300 

p3 = 19660 

q3 = 18870 

S3 = (137, 73, 39, 22, 14, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 6, 4, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 
1, 9, 5, 4, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 1, 2, 1, 1, 17, 9, 5, 4, 2, 1, 1, 2, 1, 1, 2, 1, 1, 

1, 4, 2, 1, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 33, 17, 9, 6, 4, 2, 1, 1, 2, 1, 

1, 2, 2, 1, 1, 1, 4, 2, 1, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 16, 8, 4, 2, 1, 

1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 65, 33, 17, 9, 5, 4, 2, 

1, 1, 2, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 16, 8, 

4, 2, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 32, 16, 8, 4, 

2, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 16, 8, 4, 2, 1, 1, 

2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1) 
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Appendix D 

Notation 

`, m Integers `, m ∈ {2, 3} such that ` , m 
e` The index of ` in the degree of the `-power isogeny 
sk` The secret key corresponding to points in the `e` -torsion 
pk` The public key corresponding to points in the `e` -torsion 
φ` The secret `e` -isogeny corresponding to sk` 

`e`P` A point of exact order in E0(Fp2) \ E0(Fp), such that the order-`e` 

`e`Weil pairing, e`e` (P`, Q`), has exact order 
`e`Q` A point of exact order in E0(Fp) 

R` The point defned as R` = Q` − P` 

isogen` The algorithm that computes public keys – see §1.3.5 
isoex` The algorithm that establishes shared keys – see §1.3.6 

Ea The Montgomery curve defned by Ea/Fp2 : y2 = x3 + ax2 + x 
p The prime feld characteristic defned as p = 2e23e3 − 1 
xP The x-coordinate of the point P 
yP The y-coordinate of the point P 
K2 The keyspace corresponding to points in the 2e2-torsion 
K3 The keyspace corresponding to points in the 3e3-torsion 
Np The number of bytes used to represent elements in Fp 

Nsk The number of bytes used to represent secret keys 
Npk The number of bytes used to represent public keys 
Z The ring of integers 
Fq The fnite feld with q elements 
F̄q The algebraic closure of the fnite feld with q elements 
Fp The prime feld with p elements 
Fp2 The quadratic extension feld Fp2 , constructed over the prime feld Fp as 

Fp2 = Fp(i) with i2 + 1 = 0 
Pn(K) The projective space of dimension n over the feld K 

Q2 A point of exact order 2e2 in E0(Fp) 
P2 A point of exact order 2e2 in E0(Fp2) \ E0(Fp), such that the order-2e2 

Weil pairing, e2e2 (P2, Q2), has exact order 2e2 

R2 The point defned as R2 = Q2 − P2 
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Q3 

P3 

R3 

SIKE 
SIDH 
PKE 
KEM 

IND-CPA 
IND-CCA 

SIDH 
RSA 
ECC 
⊕ 
I 
B 

GC 

GQ 

DC 

DQ 

AES 
PKE 
KEM 
Gen 
Enc 
Dec 
KeyGen 
Encaps 
Decaps 

F 
G 
H 

cSHAKE256 
c0 

c1 

A point of exact order 3e3 in E0(Fp) 
A point of exact order 3e3 in E0(Fp2) \ E0(Fp), such that the order-3e3 

Weil pairing, e2e3 (P3, Q3), has exact order 3e3 

The point defned as R3 = Q3 − P3 

Supersingular isogeny key encapsulation 
Supersingular isogeny Diffie–Hellman 
Public-key encryption 
Key encapsulation mechanism 
Indistinguishability under chosen plaintext attack 
Indistinguishability under chosen ciphertext attack 
Supersingular Isogeny Diffie–Hellman 
Rivest–Shamir–Adleman (cryptosystem) 
Elliptic curve cryptography 
The binary exclusive or (XOR) of equal-length bitstrings 

`e`An oracle computing isogenies of degree /2 

A block cipher 
The number of gates of a classical circuit 
The number of gates of a quantum circuit 
The depth of a classical circuit 
The depth of a quantum circuit 
Advanced Encryption Standard 
An isogeny-based public-key encryption scheme 
An isogeny-based key encapsulation mechanism 
Key generation algorithm for PKE 
Encryption algorithm for PKE 
Decryption algorithm for PKE 
Key generation algorithm for KEM 
Encapsulation algorithm for KEM 
Decapsulation algorithm for KEM 
A random oracle 
A random oracle 
A random oracle 
A customizable extendable-output function standardized by NIST 
First part of an encapsulation of KEM 
Second part of an encapsulation of KEM 
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