
Security analysis sketch for ThreeBears

Mike Hamburg∗

Based on collaboration with Dominique Unruh and Eike Kiltz

November 29, 2017

Abstract

This is a sketch of how to do a security proof of chosen-ciphertext

security for a post-quantum key encapsulation mechanism such as

ThreeBears. We intend to collaborate on a more comprehensive

version in 2018.

∗ Rambus Security Division

Contents

1 Introduction 3

2 Quantum computing 3

2.1 Proof strategy . 4

3 Quantum lemmas 4

4 IND-KPA security 7

4.1 Core IND-KPA security of ThreeBears 8

4.2 Backdoored variant of ThreeBears 8

5 CCA2 security 10

6 Acknowledgements 13

A Proofs of lemmas 16

A.1 Proof of lemma 1 . 16

A.2 Proof of lemma 2 . 18

A.3 Proof of lemma 3 . 20

A.4 Proof of lemma 4 . 21

A.5 Proof of lemma 5 . 21

2

1 Introduction

This technical note accompanies the ThreeBears submission. It sketches

a proof that ThreeBears is secure in the quantum random oracle model

(QROM) [BDF+11], assuming that the Integer Module Learning with Errors

(I-MLWE) distinguishing problem is hard.

The proof is by a sequence of games, where successive games have a small

Euclidean distance between their quantum states, which implies a small

difference in the probability that the adversary succeeds.

2 Quantum computing

We use the model of quantum computing from [BDF+11]. An n-bit classical

computer has a state s ∈ {0, 1}n . But an n-qubit quantum computer instead

has a complex amplitude zs to be in each of these states. More formally, the

state of a quantum computer is a unit vector X
|ψi := zs · |si ∈ C2

n

s∈{0,1}n

where each classical state s gets its own basis element |si (“ket s”). As a
general notation convention, we use the Greek letters |φi or |ψi to refer to
a fully quantum state. We use Latin |si to refer to the sth canonical basis

vector in the space C2n
, and likewise for numeric states like |0i. That is, |si

is the quantum version of the classical state s, but |ψi might be an arbitrary

superposition of classical states.

The quantum computation proceeds as a sequence of unitary transforma-

tions of C2n
and calls to quantum oracles for classical functions F . The

oracles are also unitary, and are modeled as in [BDF+11] by mapping

|xi ⊗ |yi → |xi ⊗ |y ⊕ F (x)i

To model a classical oracle for F , we add a query log which stores the input

3

and output of each query to the oracle:

|xi ⊗ |yi ⊗ |zeroi → |xi ⊗ |y ⊕ F (x)i ⊗ |zero ⊕ (x, F (x))i

Here the value |zeroi is set to |0i in the input, and a separate state is used in

each query, so it is actually |0i at the beginning of the oracle call. The prac-
tical implementation of this is just a circuit that measures x and responds

with F (x), but we describe it this way so that we can talk about the distance

between states after the adversary has queried a classical oracle.

A quantum process can conditionally halt by calling a classical oracle Halt(data),

where data = 0 indicates no halt and data 6= 0 indicates a halt.

This model of quantum processes is deterministic, but since the final mea-

surement is random (in the Copenhagen interpretation), it can fully describe

a randomized algorithm.

2.1 Proof strategy

Our proof is by a series of games. Between games, we will change the oracles

slightly. Since the adversary is deterministic until the final measurement,

we will measure how far this moves the final state |ψi, instead of what it

does to the probability of each output. We can then convert between the

two under lemma 3 and corollary 6.

3 Quantum lemmas

We will need several lemmas about quantum computation in our proof.

These lemmas may be of independent interest. First, let’s see how far we

move the adversary by changing the oracle.

Lemma 1 (Perturbation from small random changes). Let O and P be

oracles drawn from some joint distribution, both taking input from a set X .

Suppose there is some � ≥ 0 such that for each x ∈ X ,

Pr [P(x) 6= O(x) : input, O] ≤ �

4

Let |ψi resp |ψ0i be the final states of AO(input) resp AP (input). Then

Exp
� ���� ψ0� − |ψi ��� √

≤ 2q �

If the oracle is classical, then instead

Exp
� ���� ψ0� − |ψi ��� ≤p

2q�

In both cases, the expectation is over possible oracles P, given a particular

O and input.

Proof. See appendix A.1.

This lemma applies best if the oracles differ in places that are independent of

O (or, because the lemma’s bounds are symmetric, independent of P).

But what if they differ in a place that an adversary might compute? We

would like to show that the adversary still can’t tell the difference without

actually querying the oracles in these places. We do this by measuring clas-

sically whether O and P differ on the queried value, but nothing else.

We then have the following lemma, which may be regarded as a variant of

Unruh’s lemma [Unr14, TU16].

Lemma 2 (Punctured oracles). Let O be a quantum oracles for a functions

from X to Y, and P be an oracle or function from X to {0, 1}. Let O\P

denote the oracle

(O\P)(x) :=

(
O(x) if P(x) = 0
Halt(x) if P(x) = 1

Let |ψi resp |ψ0i be the final states of AO(input) resp AO\P . Then ���� ψ0� − |ψi �� ≤q
(q + 1) · Pr

��
AO\P (input) halts with x : P(x) = 1

Proof. See appendix A.2.

5

We now show some ways to apply these lemmas to probabilities instead of

quantum states. The first is simplest, and is useful for showing a property

such as one-way-ness, where the goal is reached with low probability.

Lemma 3 (Perturbation to small probabilities). Suppose that the adver-

sary’s goal is to output a value in some set Goal, and suppose that it ends

up in a quantum state that’s either |ψi or |ψ0i.

Pr [measure(|ψ0i) ∈ Goal]
���

Then ��� ≤
���� ψ0�p p ��Pr [measure(|ψi) ∈ Goal] − − |ψi

Proof. See appendix A.3.

Lemma 4 (Random puncturing). Let O resp P be chosen from some joint

distribution of functions X → Y resp X → {0, 1}. Suppose there is some

� ≥ 0 such that for all x ∈ X ,

Pr [P(x) = 1 : O, input] ≤ �

Then ih
Pr AO\P (input) halts with x : P(x) = 1 ≤ 2q 2�

In particular, if P(x) = 1 for exactly one input x which is independent of

input and O, then ih
Pr AO\P (input) = (x, n) ≤ 2q 2/card (X)

Proof. See appendix A.4.

We could also use these results for indistinguishability arguments, but the

following lemma is stronger (and also stronger than [BV93], lemma 3.2.6):

Lemma 5 (Perturbation to L1 distance). Let |ψi and |ψ0i be quantum

states, and D and D0 be the distributions produced by measuring them, and

let ��D0 −D
�� X
:=

1
d∈D∪D0

��Pr(d ← D0) − Pr(d ← D)
��

be the L1 statistical distance between these distributions. Then ��D0 −D
�� ≤ 2 ·

���� ψ0� ��− |ψi
1

6

Proof. See appendix A.5.

Corollary 6 (Perturbation to advantage). Suppose |ψi resp |ψ0i are the

final states of two quantum algorithm A resp A0 that output either 0 or 1.

Then �� Pr(A(input) = 1) − Pr(A0(input) = 1)
�� =

��D0 −D
�� ≤

���� ψ0
� ��1 − |ψi

12

4 IND-KPA security

We define the IND-KPA (“indistinguishability under known-plaintext at-

tack”) advantage of an algorithm A against a public-key encryption system

as follows. A challenger runs:

R
(pk, sk) ← Keygen(coins1) where coins1 ← CKeygen

R
(m0,m1, b) ← M×M× {0, 1}

ct ← Enc(pk,mb, coins2) where coins2 ← CEnc
b0 ← A(pk,m0,m1, ct)

The adversary’s output b0 is a guess at b, i.e. at which message the challenger

encrypted. Its advantage is defined as

AdvKPA(A) :=
��Pr � b0 = 1 : b = 1 ���� �

b0 = 1 : b = 0 − Pr

We note that IND-KPA security follows trivially from IND-CPA security

(indistinguishability under chosen plaintext attack).

7

4.1 Core IND-KPA security of ThreeBears

Let ThreeBearsR be the core of ThreeBears, where the coins are chosen

at random instead of using cSHAKE. Specifically, let

KeygenR = ((M, A), a) : M ← Rd×d; a ← χd; �a ← χd; A ← Ma + �

EncR((M, A),m) = (C, E) : b ← χd; �b ← χd; �0 ← χ;

C ← b>M + �>
b ; D ← b>A + �0; E ← encode(D, m)

DecR(a, (C, E)) = decode(Ca, E)

R
where encode(K, m) is within δ of uniformly random when K ← R, regard-

less of m.

Then for any IND-KPA adversary A against ThreeBearsR, there is an

I-MLWE adversary A0 with e = d + 1, running in about the same time as

A, such that

AdvKPA(A) ≤ 2 · AdvI-MLWE(A0) + δ

The proof is a straightforward sequence of four games:

• Game 0 is the real game.

• In Game 1, the public key is drawn from Duniform instead of DMLWE.
Distinguishing between this and Game 0 is as hard as MLWE((Z/NZ)d×d, χ).

• In Game 2, the values ((M, A), D) are drawn from Duniform instead

of DMLWE. Distinguishing between this and Game 2 is as hard as

MLWE((Z/NZ)(d+1)×d, χ).

• Finally in Game 3, E is instead uniformly random, which is within δ

of its distribution in Game 2.

The same proof applies to IND-CPA security.

4.2 Backdoored variant of ThreeBears

Since we use explicit rejection, we need a way for the simulator to decrypt an

encrypted message by using the random oracle. That is, we need to define a

8

backdoored version of ThreeBears which differs only in the random oracle.

To do this, recall that in the CCA-secure mode the coins for encryption are

derived by computing

(b, �b, �
0 , sharedSecret) ← H(matrixSeed, encSeed)

where with high probability the matrixSeed uniquely determines the public

key, and thus determines both M and A. Therefore, we can modify the

random oracle to work as follows:

• First choose (b, �0 , sharedSecret) by hashing (matrixSeed, encSeed).

• Look up the public key component A based on matrixSeed, and com-

pute the ciphertext component

E ← encode(b>A + �0 , encSeed)

• Choose �b by hashing E with a private random oracle G. There should

be a negligible probability of collision on E, so this is very close to a

uniformly random function of (matrixSeed, encSeed).

We further modify the oracle called for matrix seed expansion to always

produce an invertible matrix; this happens anyway with overwhelming prob-
1ability > 1 − , because Z/NZ is a field. The simulator can now decrypt N−1

with no possibility of failure (for well-formed capsules) as follows:

• Hash �b ← G(E) and compute

b = M−1(C> − �b)

• Compute b>A and encSeed ← decode(b>A, E). Now b>A is close

enough to b>A+�0 that decoding always produces the correct encSeed.

• Finally, check that re-encryption with the recovered encSeed produces

the same ciphertext, and if not output ⊥ just like the real decryption

algorithm.

9

5 CCA2 security

Theorem 1 (Informal). Let A be an IND-CCA2 adversary against the

CCA-secure variants of ThreeBears. Suppose that A treats cSHAKE

as a random oracle, and makes at most q queries to it. Then there is an

adversary A0 using similar resources to A such that p
2/28·encSeedBytes)AdvIND−CCA2 (A) ≤ (q + 1) · (AdvIND−KPA(A0) + 2q√ √

2−8·privateKeyBytes + 4q+ 2q δ + �0

where �0 is negligible and δ is the decryption failure probability. In particular,

if AdvIND−CCA2 (A) ≈ 1 then �p �
1/δ, 24·privateKeyBytes 28/3·encSeedBytesq ≈ min , , 1/AdvIND−KPA(A0)

Proof. The proof is by a sequence of games. Let |ψii be the adversary’s final
state before measurement in Game i.

Game 0 Game 0 is the real CCA game.

Game 1 Game 1 is the same as Game 0, except that the simulator back-

doors calls to H(matrixSeed of challenge public key, . . .) using the random

oracle as described in Section 4.2. This produces a negligibly-different prob-

ability of success, because the backdoored random oracle is within some

negligible statistical distance �0 from uniformly random.

Game 2 Game 2 is the same as Game 1, except that the challenge public

key is created using KeygenR instead of Keygen. Equivalently, it is the same

except that the random oracle is changed at the seeds used to create the

challenge public key. Then by lemma 1,

√
2−8·privateKeyBytes Exp [||ψ2i − |ψ1i|] ≤ 2q

10

Game 3 Game 3 is the same as Game 2, except that we modify H so that

decryption can’t fail. The simulator knows the challenge private key, so it

can test whether a given set of coins would cause a decryption failure. It

then rejection-samples possible outputs of H until decryption would succeed.

This changes H on a δ-fraction of inputs.

Which inputs cause failure in Game 2 is independent of Game 3. By

lemma 1, √
Exp [||ψ3i − |ψ2i|] ≤ 2q δ

Game 30 Game 30 is the same as Game 3, except that on a decryption

query for a ciphertext ct, the oracle recovers m using the backdoor decoder

instead of with Dec. Since neither decryption algorithm can fail, this pro-

duces the same output, so

|ψ30 i = |ψ3i

Game 4 Game 4 is the same as Game 30 , except that H is no longer

modified to prevent the ordinary decryption algorithm from failing. The

decryption oracle still can’t fail, since it uses the backdoor decoder. Again,

the inputs on which this changes Game 4 are independent from anything

that happens in Game 30 . Then

√
Exp [||ψ4i − |ψ3i|] ≤ 2q δ

In Game 4, the simulator doesn’t use the private key anymore.

Game 5 Let (
1 if x = (pk,m)

P(x) :=
0 otherwise

In Game 5, the simulator still creates the challenge ciphertext coins using

H(pk,m), but then it runs AH\P . This takes about the same time as AH .

By lemma 2, q � �
||ψ5i − |ψ4i| ≤ (q + 1) · Pr AH\P (input) halts with (pk,m)

11

Now H\P is independent of the challenge coins, since it halts instead of

returning when queried on (pk,m). So those coins are uniformly random and

independent of everything else in Game 5. In other words, the encryption

is equivalent to encrypting with EncR.

But now, what would happen if we ran the adversary with a different chal-
0lenge ciphertext, EncR(pk,m0) where m is random and unrelated to m?

This would create a new input, input0, and the real m would be used only

to puncture the oracle H\P. By lemma 4, h i
Pr AH\P (input0) halts with (pk,m) ≤ 2q 2/card (M)

Therefore we can treat AH\P as an IND-KPA adversary against ThreeBearsR

where h i
Pr AH\P (input) halts with (pk, seed) ≤ AdvIND-KPA(AH\P)

+ 2q 2/card (M)

Therefore,1 q
Exp [||ψ5i − |ψ4i|] ≤ (q + 1) · (AdvIND-KPA(AH\P) + q2/28·encSeedBytes)

Summing up Summing the perturbations from Game 1 through Game 5,

we have

√ √
2−8·privateKeyBytes +Exp [||ψ5i − |ψ1i|] ≤ 4q δ + 2q q

2/28·encSeedBytes)+ (q + 1) · (AdvIND-KPA(AH\P) + 2q

By corollary 6,

AdvIND-CCA2 (A) ≤ ||ψ5i − |ψ1i| + �0

This completes the proof. Note that we have not assumed that the adversary

has only classical access to the decryption oracle.

1We are using AM-QM here, since we have a probability inside the square root and

need an expectation outside the square root.

12

Not also that by lemma 3, p √
AdvOW-CCA2 (A) − 28·sharedSecretBytes ≤ ||ψ5i − |ψ1i| + �0

Let’s compare the terms of ||ψ5i − |ψ1i| to known attacks.
√

• 2q 2−8·privateKeyBytes represents an attack on the key generation seed

using Grover’s algorithm.
√

• 4q δ represents a failure attack, like [HGNP+03]. Here the adversary

uses Grover’s algorithm [Gro96] to find a ciphertext that causes a

decryption failure. In order to use Grover’s algorithm, the adversary

needs either quantum access to a decryption oracle or a way to predict

whether a given decryption will fail. Realistically, the adversary will

probably have neither, so this attack should be less powerful than √
4q δ.

• �0 is an artifact of the backdoor technique. It roughly captures our cer-

tainty that the adversary cannot successfully encrypt without knowing

the message he’s encrypting.

• (q + 1) · AdvIND-KPA(A) represents an attack on the underlying en-

cryption scheme, but it is loose by a factor of (q + 1).

2/28·encSeedBytes• (q + 1) · 2q is an attack on the message used in the

challenge encryption. This should work with probability on the order

of q2/28·encSeedBytes, so this term is also loose by a factor of about q +1.

6 Acknowledgements

Special thanks to Dominique Unruh and Eike Kiltz for collaboration on the

proof outline, and for refining and finding holes in the arguments.

Special thanks to Daniel Kane for his help in proving 5.

Special thanks to Fernando Virdia and Amit Deo for checking our math.

13

References

[BBBV97] Charles H Bennett, Ethan Bernstein, Gilles Brassard, and

Umesh Vazirani. Strengths and weaknesses of quantum com-

puting. SIAM journal on Computing, 26(5):1510–1523, 1997.

[BDF+11] Dan Boneh, ¨ Ozgür Dagdelen, Marc Fischlin, Anja Lehmann,

Christian Schaffner, and Mark Zhandry. Random oracles in a

quantum world. In Dong Hoon Lee and Xiaoyun Wang, edi-

tors, ASIACRYPT 2011, volume 7073 of LNCS, pages 41–69.

Springer, Heidelberg, December 2011.

[BDK+17] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim

Lyubashevsky, John M. Schanck, Peter Schwabe, and Damien

Stehlé. CRYSTALS – kyber: a CCA-secure module-lattice-

based KEM. Cryptology ePrint Archive, Report 2017/634,

2017. http://eprint.iacr.org/2017/634.

[BV93] Ethan Bernstein and Umesh V. Vazirani. Quantum complexity

theory. In 25th ACM STOC, pages 11–20. ACM Press, May

1993.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for

database search. In 28th ACM STOC, pages 212–219. ACM

Press, May 1996.

[HGNP+03] Nick Howgrave-Graham, Phong Q. Nguyen, David Pointcheval,

John Proos, Joseph H. Silverman, Ari Singer, and William

Whyte. The impact of decryption failures on the security of

NTRU encryption. In Dan Boneh, editor, CRYPTO 2003, vol-

ume 2729 of LNCS, pages 226–246. Springer, Heidelberg, Au-

gust 2003.

[SXY17] Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa.

Tightly-secure key-encapsulation mechanism in the quantum

14

http://eprint.iacr.org/2017/634

random oracle model. Cryptology ePrint Archive, Report

2017/1005, 2017. http://eprint.iacr.org/2017/1005.

[TU16] Ehsan Ebrahimi Targhi and Dominique Unruh. Post-quantum

security of the fujisaki-okamoto and OAEP transforms. In Mar-

tin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, vol-

ume 9986 of LNCS, pages 192–216. Springer, Heidelberg, Octo-

ber / November 2016. doi:10.1007/978-3-662-53644-5_8.

[Unr14] Dominique Unruh. Revocable quantum timed-release en-

cryption. In Phong Q. Nguyen and Elisabeth Oswald, ed-

itors, EUROCRYPT 2014, volume 8441 of LNCS, pages

129–146. Springer, Heidelberg, May 2014. doi:10.1007/

978-3-642-55220-5_8.

15

http://eprint.iacr.org/2017/1005
http://dx.doi.org/10.1007/978-3-662-53644-5_8
http://dx.doi.org/10.1007/978-3-642-55220-5_8
http://dx.doi.org/10.1007/978-3-642-55220-5_8

A Proofs of lemmas

A.1 Proof of lemma 1

Lemma 1 (Perturbation from small random changes). Let O and P be

oracles drawn from some joint distribution, both taking input from a set X .

Suppose there is some � ≥ 0 such that for each x ∈ X ,

Pr [P(x) 6= O(x) : input, O] ≤ �

Let |ψi resp |ψ0i be the final states of AO(input) resp AP (input). Then

Exp
� ���� ψ0� − |ψi ��� √

≤ 2q �

If the oracle is classical, then instead

Exp
� ���� ψ0� − |ψi ��� ≤p

2q�

In both cases, the expectation is over possible oracles P, given a particular

O and input.

Proof. We’ll deal with the quantum case first. Let Δ be the set where the

oracles differ. Let |ψii be the final state of the AOi (input), where Oi answers

the first i queries from O and the rest from P. Let X
φi := zxy · |xyi

x∈X ,y∈Y

be its state at the beginning of the ith oracle query. Now

|ψii = U(O(|φii)) and |ψi−1i = U(P(|φii))

16

2

for some unitary transformation U , so that

||ψii − |ψi−1i|2 |O(|φii) − P(|φii)|2

· |xi ⊗ (|y ⊕O(x)i − |y ⊕ P(x)i)

������
= ������

X
= zxy

x∈Δ, y∈Y ������
������
2 X

(zxy⊕O(x) − zxy⊕P(x)) · |xi ⊗ |yi=
x∈Δ, y∈Y ��X ��2

zxy⊕O(x) − z= xy⊕P(x)
x∈Δ, y∈Y X

≤
x∈Δ, y∈Y

4 |zxy|2

Then in expectation, ihr
|O(φi) − P(φi)|2Exp [|O(φi) − P(φi)|] ≤ Exp vuuut

⎤ X ⎡
4 |zxy|2⎦⎣≤ Exp

x∈Δ, y∈Y
√

≤ 2 �

The quantum case of the lemma then follows by summing over all i and

applying the triangle inequality.

We note that the leading 4 may not be tight here. For example [BBBV97],
√

Theorem 3.3 seems to imply a bound of q � instead.

The classical case is easier. We’ll use the variable Q to refer to a query log,

so that

Then

XX ��ψ0 Q

�
|ψQi ⊗ |Qi and ψ0 = ⊗ |Qiψ =

Q Q

XX��ψ0 ��ψ0 Q

� �
− |ψi = |ψQi ⊗ |Qi − ⊗ |Qi

(x,P(x))∈Q,x∈Δ (x,O(x))∈Q,x∈Δ

17

Because the query logs in the two sums are different – the ones on the left

contain (x, P(x)) and the ones on the right (x, O(x)) where O(x) 6 –= P(x)
all the terms in the sums are mutually orthogonal. Therefore r

Exp
h���|ψ0i − |ψi2

i���Exp
� ���� ψ0� − |ψi ��� ≤ pp2Pr [A queried anything in Δ]

2q�

=

≤

as claimed.

A.2 Proof of lemma 2

Lemma 2 (Punctured oracles). Let O be a quantum oracles for a functions

from X to Y, and P be an oracle or function from X to {0, 1}. Let O\P

denote the oracle

(O\P)(x) :=

(
O(x) if P(x) = 0
Halt(x) if P(x) = 1

qLet |ψi resp |ψ0i be the final states of AO(input) resp AO\P

ψ0

. Then ���� ���
− | iψ

��
AO\P (input) halts with x : P(x) = 1 ≤ (q + 1) · Pr

O,PProof. Let’s start by defining an algorithm Ac that counts how many

times A queries values x such that P(x) = 1. It allocates dlog2 qe extra
2qubits, which are all 0 in the input and are unused by A. After each query

x to O, AOc ,P applies a unitary Count transform to x and the counter:

Count(|xi ⊗ |ii) =

(
|xi ⊗ |i + 1i for each x where P(x) = 0
|xi ⊗ |ii for each x where P(x) = 1

X Consider the state |ψ00i at the end of AOc ,P (input)). This may be written

q�� � �� �
ψ00 ψ00 i ⊗ |ii=

i=0

2Technically this means |ψi = AO (input) ⊗ |0i instead of just AO(input).

18

Because Count only changes the counter bits, we must have

qX�� �
ψ00 i|ψi = ⊗ |0i

i=0

Therefore,

q

�����
X

�����
2q q

i=1 i=1

q

X
X

X���� ψ00
� �� �� ���� ��� �2 2

ψ00 i ψ00 i− |ψi +=

!2 ���� �� ���� ��� � 2
ψ00 i ψ00 i≤ (triangle inequality) +

i=1
qX ! i=1 Xq

+
���� �� ���� ��� �2 2
ψ00 i ψ00 i≤ (AM-QM inequality) q ·

X i=1 i=1
q

= (q + 1)
���� ��� 2ψ00 i

i=1

For the searching algorithm AO\P , instead the oracle halts when P(x) = 1.

Let’s do the same calculations for its final state |ψ0i. Let H1 be the set of

halt-oracle transcripts where the system halted during a call to O\P, and

H0 the set where it did not. Expand X��ψ0� =
��ψ0 h

�
⊗ |ii

h∈H0∪H1 P
X

|ψh
0 i = |ψ0

00i by construction. Since

q

where h∈H0 X���� �� ���� ��� �2 2
ψ00 i ψ0 h = 1 =

X
i=0 h∈H0∪H1

we must also have
q X���� �� ���� ��� �2 2

ψ00 i ψ0 h =
i=1 h∈H1

Therefore

− |ψi
��2
=

�����
�����
2Xq

i=1 h∈H1

19

X���� ψ0
� �� ���� ψ0 h

��� � 2
ψ00 i +

where �����
�����
2q q

i=1 i=1 h∈H1

XX X�� ���� �� ���� ��� � �2 2
ψ00 i ψ00 i ψ0 h≤ q · = q ·

so that X���� ψ0
� �� ���� ψ0 h

���2 2− |ψi ≤ (q + 1)
h∈H1 P

But h∈H1
||ψ0 i|2 is exactly the probability that O\P halted. And if does h

halt, then by construction it halts with some value x such that P(x) = 1.

Taking the square root of both sides gives ���� ψ0� − |ψi �� ≤q
(q + 1) · Pr

��
BO\P (input) halts with x : P(x) = 1

as claimed.

A.3 Proof of lemma 3

Lemma 3 (Perturbation to small probabilities). Suppose that the adver-

sary’s goal is to output a value in some set Goal, and suppose that it ends

up in a quantum state that’s either |ψi or |ψ0i.

Pr [measure(|ψ0i) ∈ Goal]
���

Then ��� ≤
���� ψ0 ���p p

Pr [measure(|ψi) ∈ Goal] − − |ψi

Proof. Let P be the projection map to span(|Gi : G ∈ Goal). Then q
Pr[AO(input) ∈ Goal] = |P (|ψi)|

and likewise for |ψ0i. Since P is a contraction map, ���� ��ψ0�) ��− |P (|ψi)|
�� ≤

��P (
��ψ0�) − P (|ψi)

�� ≤
���� ψ0� − |ψi ��P (

as claimed.

20

A.4 Proof of lemma 4

Lemma 4 (Random puncturing). Let O resp P be chosen from some joint

distribution of functions X → Y resp X → {0, 1}. Suppose there is some

� ≥ 0 such that for all x ∈ X ,

Pr [P(x) = 1 : O, input] ≤ �

Then ih
Pr AO\P (input) halts with x : P(x) = 1 ≤ 2q 2�

In particular, if P(x) = 1 for exactly one input x which is independent of

input and O, then ih
Pr AO\P (input) = (x, n) ≤ 2q 2/card (X)

Proof. We follow the exact same proof as for lemma 1, except that in the

step ������
������
2 X X

|2· |xi ⊗ (|y ⊕O(x)i − |y ⊕ (O\P)(x)i) ≤ 4 |zxyzxy

x∈Δ, y∈Y x∈Δ, y∈Y

we instead have ������
X

x∈Δ, y∈Y

zxy · |xi ⊗ (|y ⊕O(x)i ⊗ |0i − |yi ⊗ |1i)

������
2 X

|2≤ 2 |zxy
x∈Δ, y∈Y

which is a factor of 2 tighter. Now AO doesn’t halt during O queries, so by

lemma 3 the probability that BO\P halts in this way is at most ||ψ0i − |ψi|2 ≤

2q2� as claimed.

A.5 Proof of lemma 5

Lemma 5 (Perturbation to L1 distance). Let |ψi and |ψ0i be quantum

states, and D and D0 be the distributions produced by measuring them, and

let ��D0 −D
�� X
:=

1
d∈D∪D0

��Pr(d ← D0) − Pr(d ← D)
��

21

be the L1 statistical distance between these distributions. Then ��D0 −D
�� ≤ 2 ·

���� ψ0� ��− |ψi
1

Proof. To rephrase this, let |ψ1i and |ψ2i be unit vectors, and {ei} be an

orthonormal basis. We wish to show that ��X
i

hei, |ψ1ii2 − hei, |ψ2ii2
�� ≤ 2 · ||ψ1i − |ψ2i|

Let α and β be any two unit vectors; then since for all real x, y we have
2x · y ≤ 1 (x + y2), we also have 2 X 1X

|hα, eii|2 + |hβ, eii|2|hα, eii · hβ, eii| ≤
2

i i

1
(|α|2 + |β|2)=
2

= 1

Plugging in
|ψ1i + |ψ2i |ψ1i − |ψ2i

α, β := ,
||ψ1i + |ψ2i| ||ψ1i − |ψ2i|

we get �� ��hei, ψ1i2 − hei, ψ2i2

||ψ1i + |ψ2i| · ||ψ1i − |ψ2i|i i

X X
= |hα, eii · hβ, eii| ≤ 1

We complete the proof by multiplying both sides by ||ψ1i + |ψ2i|·||ψ1i − |ψ2i|,
and noting that ||ψ1i + |ψ2i| ≤ 2.

Special thanks to Daniel Kane for the key ingredients of this proof.

22

	Introduction
	Quantum computing
	Proof strategy

	Quantum lemmas
	IND-KPA security
	Core IND-KPA security of ThreeBears
	Backdoored variant of ThreeBears

	CCA2 security
	Acknowledgements
	Proofs of lemmas
	Proof of lem:indep
	Proof of lem:diffo
	Proof of lem:pertsmall
	Proof of lem:indep2
	Proof of lem:dist

