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Abstract 
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1 Introduction 

This technical note accompanies the ThreeBears submission. It sketches 

a proof that ThreeBears is secure in the quantum random oracle model 

(QROM) [BDF+11], assuming that the Integer Module Learning with Errors 

(I-MLWE) distinguishing problem is hard. 

The proof is by a sequence of games, where successive games have a small 

Euclidean distance between their quantum states, which implies a small 

difference in the probability that the adversary succeeds. 

2 Quantum computing 

We use the model of quantum computing from [BDF+11]. An n-bit classical 

computer has a state s ∈ {0, 1}n . But an n-qubit quantum computer instead 

has a complex amplitude zs to be in each of these states. More formally, the 

state of a quantum computer is a unit vector X 
|ψi := zs · |si ∈ C2

n 

s∈{0,1}n 

where each classical state s gets its own basis element |si (“ket s”). As a 
general notation convention, we use the Greek letters |φi or |ψi to refer to 
a fully quantum state. We use Latin |si to refer to the sth canonical basis 

vector in the space C2n 
, and likewise for numeric states like |0i. That is, |si 

is the quantum version of the classical state s, but |ψi might be an arbitrary 

superposition of classical states. 

The quantum computation proceeds as a sequence of unitary transforma-

tions of C2n 
and calls to quantum oracles for classical functions F . The 

oracles are also unitary, and are modeled as in [BDF+11] by mapping 

|xi ⊗ |yi → |xi ⊗ |y ⊕ F (x)i 

To model a classical oracle for F , we add a query log which stores the input 
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and output of each query to the oracle: 

|xi ⊗ |yi ⊗ |zeroi → |xi ⊗ |y ⊕ F (x)i ⊗ |zero ⊕ (x, F (x))i 

Here the value |zeroi is set to |0i in the input, and a separate state is used in 

each query, so it is actually |0i at the beginning of the oracle call. The prac-
tical implementation of this is just a circuit that measures x and responds 

with F (x), but we describe it this way so that we can talk about the distance 

between states after the adversary has queried a classical oracle. 

A quantum process can conditionally halt by calling a classical oracle Halt(data), 

where data = 0 indicates no halt and data 6= 0 indicates a halt. 

This model of quantum processes is deterministic, but since the final mea-

surement is random (in the Copenhagen interpretation), it can fully describe 

a randomized algorithm. 

2.1 Proof strategy 

Our proof is by a series of games. Between games, we will change the oracles 

slightly. Since the adversary is deterministic until the final measurement, 

we will measure how far this moves the final state |ψi, instead of what it 

does to the probability of each output. We can then convert between the 

two under lemma 3 and corollary 6. 

3 Quantum lemmas 

We will need several lemmas about quantum computation in our proof. 

These lemmas may be of independent interest. First, let’s see how far we 

move the adversary by changing the oracle. 

Lemma 1 (Perturbation from small random changes). Let O and P be 

oracles drawn from some joint distribution, both taking input from a set X . 

Suppose there is some � ≥ 0 such that for each x ∈ X , 

Pr [P(x) 6= O(x) : input, O] ≤ � 
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Let |ψi resp |ψ0i be the final states of AO(input) resp AP (input). Then 

Exp 
� ���� ψ0� − |ψi ��� √ 

≤ 2q � 

If the oracle is classical, then instead 

Exp 
� ���� ψ0� − |ψi ��� ≤p

2q� 

In both cases, the expectation is over possible oracles P, given a particular 

O and input. 

Proof. See appendix A.1. 

This lemma applies best if the oracles differ in places that are independent of 

O (or, because the lemma’s bounds are symmetric, independent of P). 

But what if they differ in a place that an adversary might compute? We 

would like to show that the adversary still can’t tell the difference without 

actually querying the oracles in these places. We do this by measuring clas-

sically whether O and P differ on the queried value, but nothing else. 

We then have the following lemma, which may be regarded as a variant of 

Unruh’s lemma [Unr14, TU16]. 

Lemma 2 (Punctured oracles). Let O be a quantum oracles for a functions 

from X to Y, and P be an oracle or function from X to {0, 1}. Let O\P 

denote the oracle 

(O\P)(x) :=

(
O(x) if P(x) = 0 
Halt(x) if P(x) = 1 

Let |ψi resp |ψ0i be the final states of AO(input) resp AO\P . Then ���� ψ0� − |ψi �� ≤q
(q + 1) · Pr 

�� 
AO\P (input) halts with x : P(x) = 1 

Proof. See appendix A.2. 
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We now show some ways to apply these lemmas to probabilities instead of 

quantum states. The first is simplest, and is useful for showing a property 

such as one-way-ness, where the goal is reached with low probability. 

Lemma 3 (Perturbation to small probabilities). Suppose that the adver-

sary’s goal is to output a value in some set Goal, and suppose that it ends 

up in a quantum state that’s either |ψi or |ψ0i. 

Pr [measure(|ψ0i) ∈ Goal] 
���

Then ��� ≤ 
���� ψ0�p p ��Pr [measure(|ψi) ∈ Goal] − − |ψi 

Proof. See appendix A.3. 

Lemma 4 (Random puncturing). Let O resp P be chosen from some joint 

distribution of functions X → Y resp X → {0, 1}. Suppose there is some 

� ≥ 0 such that for all x ∈ X , 

Pr [P(x) = 1 : O, input] ≤ � 

Then ih 
Pr AO\P (input) halts with x : P(x) = 1 ≤ 2q 2� 

In particular, if P(x) = 1 for exactly one input x which is independent of 

input and O, then ih 
Pr AO\P (input) = (x, n) ≤ 2q 2/card (X ) 

Proof. See appendix A.4. 

We could also use these results for indistinguishability arguments, but the 

following lemma is stronger (and also stronger than [BV93], lemma 3.2.6): 

Lemma 5 (Perturbation to L1 distance). Let |ψi and |ψ0i be quantum 

states, and D and D0 be the distributions produced by measuring them, and 

let ��D0 −D 
�� X 
:=

1 
d∈D∪D0 

��Pr(d ← D0) − Pr(d ← D) 
�� 

be the L1 statistical distance between these distributions. Then ��D0 −D 
�� ≤ 2 · 

���� ψ0� ��− |ψi
1 
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Proof. See appendix A.5. 

Corollary 6 (Perturbation to advantage). Suppose |ψi resp |ψ0i are the 

final states of two quantum algorithm A resp A0 that output either 0 or 1. 

Then �� Pr(A(input) = 1) − Pr(A0(input) = 1) 
�� = 

��D0 −D 
�� ≤ 

���� ψ0
� ��1 − |ψi

12 

4 IND-KPA security 

We define the IND-KPA (“indistinguishability under known-plaintext at-

tack”) advantage of an algorithm A against a public-key encryption system 

as follows. A challenger runs: 

R
(pk, sk) ← Keygen(coins1) where coins1 ← CKeygen 

R
(m0,m1, b) ← M×M× {0, 1} 

ct ← Enc(pk,mb, coins2) where coins2 ← CEnc 
b0 ← A(pk,m0,m1, ct) 

The adversary’s output b0 is a guess at b, i.e. at which message the challenger 

encrypted. Its advantage is defined as 

AdvKPA(A) := 
��Pr � b0 = 1 : b = 1 ���� �

b0 = 1 : b = 0 − Pr 

We note that IND-KPA security follows trivially from IND-CPA security 

(indistinguishability under chosen plaintext attack). 
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4.1 Core IND-KPA security of ThreeBears 

Let ThreeBearsR be the core of ThreeBears, where the coins are chosen 

at random instead of using cSHAKE. Specifically, let 

KeygenR = ((M, A), a) : M ← Rd×d; a ← χd; �a ← χd; A ← Ma + � 

EncR((M, A),m) = (C, E) : b ← χd; �b ← χd; �0 ← χ; 

C ← b>M + �> 
b ; D ← b>A + �0; E ← encode(D, m) 

DecR(a, (C, E)) = decode(Ca, E) 

R
where encode(K, m) is within δ of uniformly random when K ← R, regard-

less of m. 

Then for any IND-KPA adversary A against ThreeBearsR, there is an 

I-MLWE adversary A0 with e = d + 1, running in about the same time as 

A, such that 

AdvKPA(A) ≤ 2 · AdvI-MLWE(A0) + δ 

The proof is a straightforward sequence of four games: 

• Game 0 is the real game. 

• In Game 1, the public key is drawn from Duniform instead of DMLWE. 
Distinguishing between this and Game 0 is as hard as MLWE((Z/NZ)d×d, χ). 

• In Game 2, the values ((M, A), D) are drawn from Duniform instead 

of DMLWE. Distinguishing between this and Game 2 is as hard as 

MLWE((Z/NZ)(d+1)×d, χ). 

• Finally in Game 3, E is instead uniformly random, which is within δ 

of its distribution in Game 2. 

The same proof applies to IND-CPA security. 

4.2 Backdoored variant of ThreeBears 

Since we use explicit rejection, we need a way for the simulator to decrypt an 

encrypted message by using the random oracle. That is, we need to define a 
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backdoored version of ThreeBears which differs only in the random oracle. 

To do this, recall that in the CCA-secure mode the coins for encryption are 

derived by computing 

(b, �b, �
0 , sharedSecret) ← H(matrixSeed, encSeed) 

where with high probability the matrixSeed uniquely determines the public 

key, and thus determines both M and A. Therefore, we can modify the 

random oracle to work as follows: 

• First choose (b, �0 , sharedSecret) by hashing (matrixSeed, encSeed). 

• Look up the public key component A based on matrixSeed, and com-

pute the ciphertext component 

E ← encode(b>A + �0 , encSeed) 

• Choose �b by hashing E with a private random oracle G. There should 

be a negligible probability of collision on E, so this is very close to a 

uniformly random function of (matrixSeed, encSeed). 

We further modify the oracle called for matrix seed expansion to always 

produce an invertible matrix; this happens anyway with overwhelming prob-
1ability > 1 − , because Z/NZ is a field. The simulator can now decrypt N−1 

with no possibility of failure (for well-formed capsules) as follows: 

• Hash �b ← G(E) and compute 

b = M−1(C> − �b) 

• Compute b>A and encSeed ← decode(b>A, E). Now b>A is close 

enough to b>A+�0 that decoding always produces the correct encSeed. 

• Finally, check that re-encryption with the recovered encSeed produces 

the same ciphertext, and if not output ⊥ just like the real decryption 

algorithm. 
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5 CCA2 security 

Theorem 1 (Informal). Let A be an IND-CCA2 adversary against the 

CCA-secure variants of ThreeBears. Suppose that A treats cSHAKE 

as a random oracle, and makes at most q queries to it. Then there is an 

adversary A0 using similar resources to A such that p
2/28·encSeedBytes)AdvIND−CCA2 (A) ≤ (q + 1) · (AdvIND−KPA(A0) + 2q√ √ 

2−8·privateKeyBytes + 4q+ 2q δ + �0 

where �0 is negligible and δ is the decryption failure probability. In particular, 

if AdvIND−CCA2 (A) ≈ 1 then �p � 
1/δ, 24·privateKeyBytes 28/3·encSeedBytesq ≈ min , , 1/AdvIND−KPA(A0) 

Proof. The proof is by a sequence of games. Let |ψii be the adversary’s final 
state before measurement in Game i. 

Game 0 Game 0 is the real CCA game. 

Game 1 Game 1 is the same as Game 0, except that the simulator back-

doors calls to H(matrixSeed of challenge public key, . . .) using the random 

oracle as described in Section 4.2. This produces a negligibly-different prob-

ability of success, because the backdoored random oracle is within some 

negligible statistical distance �0 from uniformly random. 

Game 2 Game 2 is the same as Game 1, except that the challenge public 

key is created using KeygenR instead of Keygen. Equivalently, it is the same 

except that the random oracle is changed at the seeds used to create the 

challenge public key. Then by lemma 1, 

√ 
2−8·privateKeyBytes Exp [||ψ2i − |ψ1i|] ≤ 2q 
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Game 3 Game 3 is the same as Game 2, except that we modify H so that 

decryption can’t fail. The simulator knows the challenge private key, so it 

can test whether a given set of coins would cause a decryption failure. It 

then rejection-samples possible outputs of H until decryption would succeed. 

This changes H on a δ-fraction of inputs. 

Which inputs cause failure in Game 2 is independent of Game 3. By 

lemma 1, √ 
Exp [||ψ3i − |ψ2i|] ≤ 2q δ 

Game 30 Game 30 is the same as Game 3, except that on a decryption 

query for a ciphertext ct, the oracle recovers m using the backdoor decoder 

instead of with Dec. Since neither decryption algorithm can fail, this pro-

duces the same output, so 

|ψ30 i = |ψ3i 

Game 4 Game 4 is the same as Game 30 , except that H is no longer 

modified to prevent the ordinary decryption algorithm from failing. The 

decryption oracle still can’t fail, since it uses the backdoor decoder. Again, 

the inputs on which this changes Game 4 are independent from anything 

that happens in Game 30 . Then 

√ 
Exp [||ψ4i − |ψ3i|] ≤ 2q δ 

In Game 4, the simulator doesn’t use the private key anymore. 

Game 5 Let ( 
1 if x = (pk,m)

P(x) := 
0 otherwise 

In Game 5, the simulator still creates the challenge ciphertext coins using 

H(pk,m), but then it runs AH\P . This takes about the same time as AH . 

By lemma 2, q � � 
||ψ5i − |ψ4i| ≤ (q + 1) · Pr AH\P (input) halts with (pk,m) 
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Now H\P is independent of the challenge coins, since it halts instead of 

returning when queried on (pk,m). So those coins are uniformly random and 

independent of everything else in Game 5. In other words, the encryption 

is equivalent to encrypting with EncR. 

But now, what would happen if we ran the adversary with a different chal-
0lenge ciphertext, EncR(pk,m0) where m is random and unrelated to m? 

This would create a new input, input0, and the real m would be used only 

to puncture the oracle H\P. By lemma 4, h i 
Pr AH\P (input0) halts with (pk,m) ≤ 2q 2/card (M) 

Therefore we can treat AH\P as an IND-KPA adversary against ThreeBearsR 

where h i 
Pr AH\P (input) halts with (pk, seed) ≤ AdvIND-KPA(AH\P ) 

+ 2q 2/card (M) 

Therefore,1 q
Exp [||ψ5i − |ψ4i|] ≤ (q + 1) · (AdvIND-KPA(AH\P ) + q2/28·encSeedBytes) 

Summing up Summing the perturbations from Game 1 through Game 5, 

we have 

√ √ 
2−8·privateKeyBytes +Exp [||ψ5i − |ψ1i|] ≤ 4q δ + 2q q

2/28·encSeedBytes)+ (q + 1) · (AdvIND-KPA(AH\P ) + 2q

By corollary 6, 

AdvIND-CCA2 (A) ≤ ||ψ5i − |ψ1i| + �0 

This completes the proof. Note that we have not assumed that the adversary 

has only classical access to the decryption oracle. 

1We are using AM-QM here, since we have a probability inside the square root and 

need an expectation outside the square root. 
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Not also that by lemma 3, p √ 
AdvOW-CCA2 (A) − 28·sharedSecretBytes ≤ ||ψ5i − |ψ1i| + �0 

Let’s compare the terms of ||ψ5i − |ψ1i| to known attacks. 
√ 

• 2q 2−8·privateKeyBytes represents an attack on the key generation seed 

using Grover’s algorithm. 
√ 

• 4q δ represents a failure attack, like [HGNP+03]. Here the adversary 

uses Grover’s algorithm [Gro96] to find a ciphertext that causes a 

decryption failure. In order to use Grover’s algorithm, the adversary 

needs either quantum access to a decryption oracle or a way to predict 

whether a given decryption will fail. Realistically, the adversary will 

probably have neither, so this attack should be less powerful than √ 
4q δ. 

• �0 is an artifact of the backdoor technique. It roughly captures our cer-

tainty that the adversary cannot successfully encrypt without knowing 

the message he’s encrypting. 

• (q + 1) · AdvIND-KPA(A) represents an attack on the underlying en-

cryption scheme, but it is loose by a factor of (q + 1). 

2/28·encSeedBytes• (q + 1) · 2q is an attack on the message used in the 

challenge encryption. This should work with probability on the order 

of q2/28·encSeedBytes, so this term is also loose by a factor of about q +1. 
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A Proofs of lemmas 

A.1 Proof of lemma 1 

Lemma 1 (Perturbation from small random changes). Let O and P be 

oracles drawn from some joint distribution, both taking input from a set X . 

Suppose there is some � ≥ 0 such that for each x ∈ X , 

Pr [P(x) 6= O(x) : input, O] ≤ � 

Let |ψi resp |ψ0i be the final states of AO(input) resp AP (input). Then 

Exp 
� ���� ψ0� − |ψi ��� √ 

≤ 2q � 

If the oracle is classical, then instead 

Exp 
� ���� ψ0� − |ψi ��� ≤p

2q� 

In both cases, the expectation is over possible oracles P, given a particular 

O and input. 

Proof. We’ll deal with the quantum case first. Let Δ be the set where the 

oracles differ. Let |ψii be the final state of the AOi (input), where Oi answers 

the first i queries from O and the rest from P. Let X 
φi := zxy · |xyi 

x∈X ,y∈Y 

be its state at the beginning of the ith oracle query. Now 

|ψii = U(O(|φii)) and |ψi−1i = U(P(|φii)) 
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2 

for some unitary transformation U , so that 

||ψii − |ψi−1i|2 |O(|φii) − P(|φii)|2 

· |xi ⊗ (|y ⊕O(x)i − |y ⊕ P(x)i) 

������ 
= ������ 

X 
= zxy 

x∈Δ, y∈Y ������ 
������ 
2 X 

(zxy⊕O(x) − zxy⊕P(x)) · |xi ⊗ |yi= 
x∈Δ, y∈Y ��X ��2 

zxy⊕O(x) − z= xy⊕P(x) 
x∈Δ, y∈Y X 

≤ 
x∈Δ, y∈Y 

4 |zxy|2 

Then in expectation, ihr 
|O(φi) − P(φi)|2Exp [|O(φi) − P(φi)|] ≤ Exp vuuut

⎤ X ⎡ 
4 |zxy|2⎦⎣≤ Exp 

x∈Δ, y∈Y 
√ 

≤ 2 � 

The quantum case of the lemma then follows by summing over all i and 

applying the triangle inequality. 

We note that the leading 4 may not be tight here. For example [BBBV97], 
√ 

Theorem 3.3 seems to imply a bound of q � instead. 

The classical case is easier. We’ll use the variable Q to refer to a query log, 

so that 

Then 

XX ��ψ0 Q 

� 
|ψQi ⊗ |Qi and ψ0 = ⊗ |Qiψ = 

Q Q 

XX��ψ0 ��ψ0 Q 

� � 
− |ψi = |ψQi ⊗ |Qi − ⊗ |Qi 

(x,P(x))∈Q,x∈Δ (x,O(x))∈Q,x∈Δ 
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Because the query logs in the two sums are different – the ones on the left 

contain (x, P(x)) and the ones on the right (x, O(x)) where O(x) 6 –= P(x) 
all the terms in the sums are mutually orthogonal. Therefore r 

Exp 
h���|ψ0i − |ψi2 

i���Exp 
� ���� ψ0� − |ψi ��� ≤ pp2Pr [A queried anything in Δ] 

2q� 

=

≤

as claimed. 

A.2 Proof of lemma 2 

Lemma 2 (Punctured oracles). Let O be a quantum oracles for a functions 

from X to Y, and P be an oracle or function from X to {0, 1}. Let O\P 

denote the oracle 

(O\P)(x) :=

(
O(x) if P(x) = 0 
Halt(x) if P(x) = 1 

qLet |ψi resp |ψ0i be the final states of AO(input) resp AO\P 

ψ0

. Then ���� ��� 
− | iψ 

�� 
AO\P (input) halts with x : P(x) = 1 ≤ (q + 1) · Pr 

O,PProof. Let’s start by defining an algorithm Ac that counts how many 

times A queries values x such that P(x) = 1. It allocates dlog2 qe extra 
2qubits, which are all 0 in the input and are unused by A. After each query 

x to O, AOc ,P applies a unitary Count transform to x and the counter: 

Count(|xi ⊗ |ii) =

(
|xi ⊗ |i + 1i for each x where P(x) = 0 
|xi ⊗ |ii for each x where P(x) = 1 

X Consider the state |ψ00i at the end of AOc ,P (input)). This may be written 

q�� � �� � 
ψ00 ψ00 i ⊗ |ii= 

i=0 

2Technically this means |ψi = AO (input) ⊗ |0i instead of just AO(input). 
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Because Count only changes the counter bits, we must have 

qX�� � 
ψ00 i|ψi = ⊗ |0i 

i=0 

Therefore, 

q

����� 
X 

����� 
2q q

i=1 i=1 

q

X
X 

X���� ψ00
� �� �� ���� ��� �2 2

ψ00 i ψ00 i− |ψi += 

!2 ���� �� ���� ��� � 2
ψ00 i ψ00 i≤ (triangle inequality) + 

i=1 
qX ! i=1 Xq

+ 
���� �� ���� ��� �2 2
ψ00 i ψ00 i≤ (AM-QM inequality) q · 

X i=1 i=1 
q

= (q + 1) 
���� ��� 2ψ00 i 

i=1 

For the searching algorithm AO\P , instead the oracle halts when P(x) = 1. 

Let’s do the same calculations for its final state |ψ0i. Let H1 be the set of 

halt-oracle transcripts where the system halted during a call to O\P, and 

H0 the set where it did not. Expand X��ψ0� = 
��ψ0 h 

� 
⊗ |ii 

h∈H0∪H1 P 
X 

|ψh
0 i = |ψ0 

00i by construction. Since 

q

where h∈H0 X���� �� ���� ��� �2 2
ψ00 i ψ0 h = 1 = 

X 
i=0 h∈H0∪H1 

we must also have 
q X���� �� ���� ��� �2 2

ψ00 i ψ0 h = 
i=1 h∈H1 

Therefore 

− |ψi 
��2 
= 

����� 
����� 
2Xq

i=1 h∈H1 
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X���� ψ0
� �� ���� ψ0 h 

��� � 2
ψ00 i + 



where ����� 
����� 
2q q

i=1 i=1 h∈H1 

XX X�� ���� �� ���� ��� � �2 2
ψ00 i ψ00 i ψ0 h≤ q · = q · 

so that X���� ψ0
� �� ���� ψ0 h 

���2 2− |ψi ≤ (q + 1) 
h∈H1 P 

But h∈H1 
||ψ0 i|2 is exactly the probability that O\P halted. And if does h

halt, then by construction it halts with some value x such that P(x) = 1. 

Taking the square root of both sides gives ���� ψ0� − |ψi �� ≤q
(q + 1) · Pr 

�� 
BO\P (input) halts with x : P(x) = 1 

as claimed. 

A.3 Proof of lemma 3 

Lemma 3 (Perturbation to small probabilities). Suppose that the adver-

sary’s goal is to output a value in some set Goal, and suppose that it ends 

up in a quantum state that’s either |ψi or |ψ0i. 

Pr [measure(|ψ0i) ∈ Goal] 
���

Then ��� ≤ 
���� ψ0 ���p p

Pr [measure(|ψi) ∈ Goal] − − |ψi 

Proof. Let P be the projection map to span(|Gi : G ∈ Goal). Then q
Pr[AO(input) ∈ Goal] = |P (|ψi)| 

and likewise for |ψ0i. Since P is a contraction map, ���� ��ψ0� ) ��− |P (|ψi)| 
�� ≤ 

��P ( 
��ψ0� ) − P (|ψi) 

�� ≤ 
���� ψ0� − |ψi ��P ( 

as claimed. 
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A.4 Proof of lemma 4 

Lemma 4 (Random puncturing). Let O resp P be chosen from some joint 

distribution of functions X → Y resp X → {0, 1}. Suppose there is some 

� ≥ 0 such that for all x ∈ X , 

Pr [P(x) = 1 : O, input] ≤ � 

Then ih 
Pr AO\P (input) halts with x : P(x) = 1 ≤ 2q 2� 

In particular, if P(x) = 1 for exactly one input x which is independent of 

input and O, then ih 
Pr AO\P (input) = (x, n) ≤ 2q 2/card (X ) 

Proof. We follow the exact same proof as for lemma 1, except that in the 

step ������ 
������ 
2 X X 

|2· |xi ⊗ (|y ⊕O(x)i − |y ⊕ (O\P)(x)i) ≤ 4 |zxyzxy 

x∈Δ, y∈Y x∈Δ, y∈Y 

we instead have ������ 
X 

x∈Δ, y∈Y 

zxy · |xi ⊗ (|y ⊕O(x)i ⊗ |0i − |yi ⊗ |1i) 

������ 
2 X 

|2≤ 2 |zxy
x∈Δ, y∈Y 

which is a factor of 2 tighter. Now AO doesn’t halt during O queries, so by 

lemma 3 the probability that BO\P halts in this way is at most ||ψ0i − |ψi|2 ≤ 

2q2� as claimed. 

A.5 Proof of lemma 5 

Lemma 5 (Perturbation to L1 distance). Let |ψi and |ψ0i be quantum 

states, and D and D0 be the distributions produced by measuring them, and 

let ��D0 −D 
�� X 
:=

1 
d∈D∪D0 

��Pr(d ← D0) − Pr(d ← D) 
�� 
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be the L1 statistical distance between these distributions. Then ��D0 −D 
�� ≤ 2 · 

���� ψ0� ��− |ψi
1 

Proof. To rephrase this, let |ψ1i and |ψ2i be unit vectors, and {ei} be an 

orthonormal basis. We wish to show that ��X 
i 

hei, |ψ1ii2 − hei, |ψ2ii2 
�� ≤ 2 · ||ψ1i − |ψ2i| 

Let α and β be any two unit vectors; then since for all real x, y we have 
2x · y ≤ 1 (x + y2), we also have 2 X 1X 

|hα, eii|2 + |hβ, eii|2|hα, eii · hβ, eii| ≤ 
2 

i i 

1 
(|α|2 + |β|2)= 
2

= 1 

Plugging in 
|ψ1i + |ψ2i |ψ1i − |ψ2i 

α, β := ,
||ψ1i + |ψ2i| ||ψ1i − |ψ2i| 

we get �� ��hei, ψ1i2 − hei, ψ2i2 

||ψ1i + |ψ2i| · ||ψ1i − |ψ2i|i i 

X X 
= |hα, eii · hβ, eii| ≤ 1 

We complete the proof by multiplying both sides by ||ψ1i + |ψ2i|·||ψ1i − |ψ2i|, 
and noting that ||ψ1i + |ψ2i| ≤ 2. 

Special thanks to Daniel Kane for the key ingredients of this proof. 
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