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1 Introduction

In this document we introduce LAC (Lattice-based Cryptosystems). It consists of four public
key cryptographic primitives based on the learning with errors assumption over rings:

– LAC.CPA: an IND-CPA secure public key encryption scheme;
– LAC.CCA: an IND-CCA secure key encapsulation mechanism, which is obtained by applying

a variant of the FO transformation [27,30,32] to LAC.CPA;
– LAC.KE: a passively secure key exchange protocol which is directly converted from LAC.CPA;
– LAC.AKE: an authenticated key exchange protocol which is obtained by applying a generic

FSXY transformation [25,26] to LAC.CCA and LAC.CPA.

Relations of the four public key cryptographic primitives are shown in Fig. 1.

LAC.CPA LAC.CCA

LAC.KE LAC.AKE

FO

FSXY

Fig. 1. LAC: Lattice-based Cryptosystems

Versions and modifications.

Compared to the version submitted to Round 1 of NIST PQC standardization process (hereafter
referred to as Version 1), the main modifications in this version (referred to as Version 2) are:

1. Message Space/Session Key Size: In Version 1, the message spaces and session key sizes
for security levels I, III and V are 256 bits, 384 bits and 512 bits. In Version 2, we set the
message space and session key size to 256 bits for all security levels. This modification is to
simplify the comparison of LAC with other schemes.

2. Noise/Secret Distribution: In Version 1, the secret and error vectors are chosen from
standard centered binomial distributions. In Version 2, s, e, r, e1 are chosen from fixed ham-
ming weight centered binomial distributions. The hamming weight is fixed to the expectation
of Version 1’s binomial distribution. This modification is to make LAC immune to the high
hamming weight CCA attacks, in which the adversary exploits high hamming weight secret-
s/errors through pre-computation, and causes higher-than-normal decryption error rates.
Remark 1 : Switch to a fixed hamming weight distribution insignificantly reduces the entropy.
We use n = 512 as an example. The entropy of s from standard centered binomial distri-
bution, with a standard deviation of 1/

√
2, is 768. When the hamming weight of s is fixed

to 256, with even number of ones and minus-ones, its entropy is reduced to approximately
log
((

512
128

)
·
(
384
128

))
≈ 758. Later on we will show that such a reduction in entropy will not

affect the security reduction or the concrete security evaluation of LAC.
Remark 2 : An alternative, and perhaps more straightforward way to make LAC robust
against high hamming weight CCA attacks is to increase the capability of BCH codes, at
a cost of reduced efficiency due to heavy error correction. Our analysis shows that, with
this solution we will need to correct 30 errors. This incurs a cost of 27 microseconds. In
comparison, by switching to fixed hamming weight, we only need to correct 16 errors, and
the time cost is 12 microseconds.

3. Error Correction Code: In Version 1, only BCH error correction code was adopted. In
round 2, for LAC-256, additional D2 code are used, while LAC-128/192 remain unchanged.
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The parameter sets for BCH code are also updated. We use [511, 256, 33] for LAC-128/256,
and [511, 256, 17] for LAC-192. This modification is to make the error correction capability
to match the new message space/session key size and secret/error distribution of LAC.

4. Ciphertext Compression: In Version 2, we remove the lower four bits of c2 during the
transmission. Omitting some bits is a popular compression technique in lattice cryptography.
Note that compressions on b and c1 may affect the security reduction, therefore, in LAC we
only compress c2. This will not affect the security reduction. The aim of this modification is
to make LAC more compact.

5. Message Length Counter: In Version 1, we used a counter during the decryption to get
the message length. This counter is removed in Version 2. The length of the message is
implicitly obtained from the length of the ciphertext. Briefly, the dimension of c2 equals to
the sum of the length of the message and the length of error correction bits of BCH. The
aim of this modification is to make LAC simpler and more compact.

6. Constant Time Decoding of BCH: In Version 1, we adopted the code of BCH from
https://github.com/jkent/python-bchlib/tree/master/bchlib. In Version 2, we implemented
a constant time BCH based on this generic implementation. The aim of this modification is
to make LAC immune to timing attacks.

Organization. The document is organized as follows. Firstly, in Section 2, we define the mathe-
matical notations and operations, and introduce the background on lattices and error-correction
codes. Then in Section 3, the overall design rationale is explained. Specifications and parameter
are given in Section 4 and 5, respectively. In Section 6, the formal and concrete security analy-
sis are presented. Section 7 describes implementation and performance analysis. Known answer
test values (KATs) are given in Section 8. Finally, the pros and cons of the cryptosystems are
discussed in Section 9.

2 Preliminaries

In this section we first define several mathematical notations, then introduce backgrounds on
lattices and error correction codes.

2.1 Mathematical Notations

Vectors and Matrices. Vectors are denoted by bold lower-case characters, such as a, and at

denotes the transposition of a.

An m-dimensional vector a = (a0, · · · , am−1), where the ai’s are the components of a for
0 ≤ i < m.

For a scalar s and an m-dimensional vector a, s · a denotes that each component of a is
multiplied by s, i.e., s · a = (s · a0, · · · , s · am−1).

For an m-dimensional vector a = (a0, · · · , am−1) and a non-negative integer l ≤ m, define
(a)l = (a0, · · · , al−1).

Vectors of the same dimension can add component-wise, e.g., for two m-dimensional vectors
a = (a0, · · · , am−1) and b = (b0, · · · , bm−1), a + b = (a0 + b0, · · · , am−1 + bm−1).

Matrices are denoted by upper-case characters, such as A, and At denotes the transposition
of A.

Norms. The length of vectors is measured with norms. For an m-dimensional vector x =
(x0, x1, ..., xm−1), its l1-norm is defined as ‖x‖1 =

∑m−1
i=0 |xi|; the l2-norm, also known as the

Euclidean norm, is defined as ‖x‖2 =
√∑m−1

i=0 x2i , or solely denoted as ‖x‖; the infinity norm

is defined as ‖x‖∞ = max |xi|. The length of a matrix is the norm of its longest column vector,
e.g., ‖X‖ = max ‖xi‖.
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Arrows. For a set S, x
$← S denotes that an element x is chosen from S uniformly at random.

For a distribution D, x
$← D denotes that a random variable x is sampled according to the

distribution D. For a randomized algorithm A, y
$← A(x) denotes that y is assigned the output

of A on input x; if the algorithm A is deterministic, we just write y ← A(x).

Algebraic structures. Let R be real numbers, Q be rational numbers, and Z be integers. For
an integer q ≥ 1, let Zq be the residue class ring modulo q and Zq = {0, · · · , q − 1}. Define the
ring of integer polynomials modulo xn + 1 as R = Z[x]/(xn + 1) for an integer n ≥ 1, and the
ring Rq = Zq[x]/(xn + 1) denotes the polynomial ring modulo xn + 1 where the coefficients are
from Zq. The addition and multiplication of the elements in Rq are operated according to those
of polynomials.

String operations. For two bit-strings s1, s2 ∈ {0, 1}∗, denote their concatenation as s1‖s2.
The length of a bit-string s is denoted as |s|. Sometimes, we treat bit-strings of length m as
m-dimensional vectors. We use ε to denote an empty string.

2.2 Lattices and Hard Problems

Lattices and Dual Lattices. A full-rank m-dimensional lattice Λ generated by a basis B =
{b1, ..., bm} ∈ Rm×m can be defined as

Λ = L(B) = {Bx : x ∈ Zm},

where b1, ..., bm are linearly independent vectors.
For a full-rank m-dimensional lattice Λ, its dual lattice is defined as

Λ∗ = {y ∈ Rm : ∀x ∈ Λ, 〈x,y〉 ∈ Z}.

q-ary Lattices. As with most lattice-based cryptographic applications, we deal with two special
full-rank integer lattices known as q-ary integer lattices. For positive integers n,m, q and a
random integer matrix A ∈ Zm×nq , define the following full-rank m-dimensional integer q-ary
lattices:

Λ(A) = {z ∈ Zm : ∃s ∈ Znq s.t. z = As mod q};

Λ⊥(At) = {z ∈ Zm : Atz = 0 mod q}.

Hard Lattice Problems. The length of the shortest nonzero vector in a lattice Λ is denoted
by λ1(Λ). The most basic computational problem over lattices is the shortest vector problem
(SVP).

Usually the approximation variants of SVP are used, with regard to a parameter γ ≥ 1.

Definition 1 (Search SVPγ). Given a lattice basis B ∈ Zm×n, and γ ≥ 1, find v ∈ L(B) s.t.
‖v‖ ≤ γ · λ1(B).

Definition 2 (GapSVPγ). For γ ≥ 1, given a pair of input (B, r), where B ∈ Zm×m is the
basis of a full-rank m-dimensional lattice and r ∈ Q, it is a YES instance if λ1(L(B)) ≤ r, and
a NO instance if λ1(L(B)) > γ · r.

As the generalization to λ1, the i-th successive minimum λi(Λ) is the smallest radius r s.t.
Λ contains i linearly independent vectors of norm at most r. The related shortest independent
vector problem (SIVP) and its approximation version are defined as follows.

Definition 3 (SIVP). Given B ∈ Zm×m, the basis of a full-rank m-dimensional lattice, output
a set of m linearly independent lattice vectors S = {s1, ..., sm} ⊂ L(B), s.t. ‖si‖ = λi(L(B)).
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Definition 4 (SIVPγ). For γ ≥ 1, given B ∈ Zm×m, the basis of a full-rank m-dimensional
lattice, output a set of m linearly independent lattice vectors S ⊂ L(B), s.t. ‖S‖ ≤ γ ·λn(L(B)).

The γ − uSVP problem is defined as:

Definition 5 (γ− uSVP). For γ ≥ 1, given the basis B of lattice Λ. If there is λ2(Λ) > γλ1(Λ)
for Λ, find a non-zero vector u ∈ Λ, s.t. ‖u‖ = λ1(Λ).

2.3 Learning with Errors (over Rings)

Currently, most lattice-based public key encryption schemes and key exchange protocols are
based on the learning with errors (LWE) assumption [43] and its variants. The proposed cryp-
tosystems in LAC are based on a simplified version of the learning with errors assumption over
rings (ring-LWE) [37], which admits more practical implementations and has been widely used.

Definition 6 (Search LWE). Let n,m, q be positive integers, and χs, χe be distributions over

Z. Given (A, b = As + e), recover the secret s, where A
$← Zm×nq , the secret s

$← χns and the

error e
$← χme .

The reasonability of the LWE assumption is based on hard problems over lattices, namely
the aforementioned GapSVPγ and the SIVPγ problems, where the choice of γ is related to the
parameters n,m, q, and the distributions of the secret and the error χs, χe.

Definition 7 (Decisional LWE). Let n,m, q be positive integers, and χs, χe be distributions
over Z. Distinguish the following two distributions:

– D0 : (A, b), and
– D1 : (A,u),

where b = As + e for A
$← Zm×nq , s

$← χns and e
$← χme , and u

$← Zmq .

The decisional version is polynomially equivalent to the computational case [38].
In the case of ring-LWE, the noisy equations are (a, b = as + e), where a, s, e are chosen

from a ring. Usually the integer polynomial ring Rq = Zq[x]/(xn+ 1) for suitable ring dimension
n is used. Sometimes the special case of ring-LWE over Rq is called poly-LWE [15], in which

case we write v
$← χ to mean that v ∈ R is generated from a distribution where each of its

coefficients is generated according to χ. In LAC we also use poly-LWE. The reasonability of the
ring-LWE assumption is based on the hardness of the SVPγ problem over ideal lattices, rather
than random lattices.

For simplicity, we use the most widely-used definition of ring-LWE, namely poly-LWE over
the polynomial ring Rq = Zq[x]/(xn + 1).

Definition 8 (Search Ring-LWE). Let n, q be positive integers, and χs, χe be distributions

over R. Given (a, b = as + e), recover the secret s, where a
$← Rq, the secret s

$← χs and the

error e
$← χe.

Definition 9 (Decisional Ring-LWE). Let n, q be positive integers, and χs, χe be distribu-
tions over R. Distinguish the following two distributions:

– D0 : (a, b), and
– D1 : (a,u),

where b = as + e for a
$← Rq, s

$← χs and e
$← χe, and u

$← Rq.

2.4 Distributions and Random Sampling

The Uniform Distribution. The uniform distribution over a set X is defined as U(X). For
example, the uniform distribution over Rq is U(Rq).
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The Gaussian Distribution. The secrets and errors in (ring)-LWE are often sampled from
Gaussian distributions. The normal Gaussian distribution is a continuous distribution with prob-
ability density function:

ρσ(x) = (
√

2πσ)−1 exp(−πx2/2πσ2),

where σ is the standard deviation.

The discrete Gaussian distribution over Z is defined as:

∀x ∈ Z,DZ,σ(x) =
ρσ(x)

ρσ(Z)
,

where ρσ(Z) =
∑
y∈Z ρσ(y).

The discrete Gaussian distribution over Zq is defined as:

∀x ∈ Zq,DZq,σ(x) =
∑

w,w=x mod q

DZ,σ(w).

The Centered Binomial Distribution. Since the sampling of discrete Gaussian distribution
is not an easy task, in the design of practical lattice-based cryptosystems, the centered binomial
distribution is also used, as introduced in [8]. Let Ψσ be the centered binomial distribution with
σ being the parameter of the distribution, where the corresponding standard variance is

√
σ
2 . In

the design of LAC we also use centered binomial distribution with parameters 1 and 1
2 (denoted

as Ψ1 and Ψ 1
2

respectively) as follows:

Definition 10 (Ψ1). Sample (a, b)
$← {0, 1}2, and output a− b. Obviously it picks 0 with prob-

ability 1
2 , and ±1 with probability 1

4 according to the distribution Ψ1. The mean of Ψ1 is 0 and
the variance is 1

2 .

Definition 11 (Ψ 1
2
). Sample (a, b)

$← Ψ1, and output a ∗ b. Obviously it picks 0 with probability
3
4 , and ±1 with probability 1

8 according to the distribution Ψ 1
2
. The mean of Ψ 1

2
is 0 and the

variance is 1
4 .

For a positive integer n, Ψnσ denotes the n independently identical distribution of Ψσ. When
sampling according to Ψnσ , the components of the random variable are all independently chosen.

Besides, we define n-ary centered binomial distribution with fixed Hamming weight, denoted
as Ψn,hσ , when 0 < h < n/2 is even. For a random variable according to the distribution, its
Hamming weight is fixed to the expectation h, and the numbers of both 1’s and −1’s are h/2,
the number of 0 is n− h.

Random Sampling. Define an abstract algorithm Samp as the procedure of sampling a random
variable according to a distribution with a given seed:

x← Samp(D; seed),

where D is a distribution, and seed is the random seed used to sample x. For an empty seed = ε,

the process is the same as x
$← D, and is totally randomized. Otherwise, the sampling of x is

always deterministic for the same seed.

We use

(x1, x2, · · · , xt)← Samp(D1, D2, · · · , Dt; seed)

to denote the process of sampling random variables xi according to distribution Di where 1 ≤
i ≤ t.
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3 Design Rationale

Criteria taken into account in the design of LAC as listed as below.

– Security:

• A provable secure design from Ring-LWE;

• Concrete parameters resistant against all known attacks (with considerable margin).

– Efficiency:

• Small key size and ciphertext size;

• High speed.

– Correctness: low decryption error rate;

– Flexibility: easy to set parameters for different security strength categories.

We stress that, while achieving the claimed security, our focus is on the size. This appears to be
the main bottleneck in practice. The most standing out aspect of LAC, from this point of view,
is its byte size modulus.

Our focus on reducing the modulus. Intuitively, the hardness of Ring-LWE problem is mainly
determined by the dimension n and the error rate α, where α = σ

q

√
2π is the ratio of the noise

magnitude (measured with the standard variation σ) to the modulus q. Thus the choices of the
noise distribution and the modulus are critical. According to the concrete hardness analysis in
[6,8,5], suitable choices of the dimension n are 29 = 512 and 210 = 1024, and in Module-LWE
based schemes 28 = 256 is also used. For these choices, q = 12289 or 7681 are chosen to enable
the super efficient NTT multiplications.

On the other hand, this constraint is a bit artificial, in that it is purely decided by NTT, and
not regulated by any security requirement. To be more specific, the security level grows with the
error rate, which is the ratio between the error and the modulus, rather than the modulus itself.
Therefore, to achieve a great compactness with an acceptable level of security, it makes sense to
choose the modulus as small as possible, while keeping the ratio somewhat a constant.

Our main design philosophy is to set the modulus q as small as possible to improve the
bandwidth efficiency. Thus, in LAC we use byte-level modulus, such as q = 251. Although NTT
can not be used to speed up the computational efficiency when q < 7681, for a byte-level
modulus, we can use the Intel Advanced Vector Extensions2 (AVX2) instructions to improve
the computational efficiency. Briefly, the AVX2 instructions can be used to process multiple
multiplication operations in one instruction cycle.

Secrets and noises. One caveat arises along with byte size modulus is that we need precise
control of the noises and secrets. When α becomes too large, the decryption error rate becomes
unacceptable. We limit ourself to trinary secrets and noises, i.e., polynomials with coefficients
over {−1, 0, 1}. In addition, we adopt error correction code with large blocks and large code
distance, such as the BCH code to correct the errors. In principle, any code with enough error
correcting capability can be used in our scheme, such as Goppa, LDPC. For the sake of simplicity
and efficiency we choose BCH code for implementation and benchmarking.

In LAC, we choose to use a centered binomial distribution over {−1, 0, 1} with fixed hamming
weight. This distribution, with appropriate parametrization, is sufficient for our purpose. It also
defeats high hamming weight CCA attacks.

Transformations. It is easy to get an ephemeral key establishment scheme based on a basic
public key encryption scheme using traditional frameworks. The transformations to adaptive
chosen ciphertext secure public key encryption scheme and authenticated key establishment
scheme are more subtle. We use the popular FO [27,28,30,32] framework to get the adaptive
chosen ciphertext secure public key encryption scheme, and the FSXY [25,26] framework to get
the authenticated key establishment scheme.
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4 Description of the Cryptosystems

4.1 LAC.CPA

The IND-CPA secure public key encryption scheme LAC.CPA lays the foundation of the entire
LAC. It comprises three algorithms:

– The key generation algorithm KG, as illustrated in Algorithm 1.
– The encryption algorithm Enc, as illustrated in Algorithm 2.
– The decryption algorithm Dec, as illustrated in Algorithm 3.

Notations. Let q be the modulus, and define the polynomial ring Rq = Zq/(xn + 1).
Define the message space M be {0, 1}lm for a positive integer lm, and the space of random

seeds S be {0, 1}ls for a positive integer ls. The integers lm and ls will be specified afterwards.
We use n independently identical distribution of Ψσ, namely Ψnσ . Beside, we use the n-ary

centered binomial distribution Ψn,hσ , where the concrete choices of parameters will be given later.

Subroutines. In the subroutines dealing with the encoding and decoding of the error correction
codes, ECCEnc,ECCDec, the conversion between a message m ∈ {0, 1}lm and its encoding m̂ ∈
{0, 1}lv is provided, wherein lv is a positive integer denoting the length of the encoding and
depending on the specific choice of the parameter settings.

The algorithms. The algorithm LAC.CPA.KG randomly generates a pair of public key and
secret key (pk, sk).

Algorithm 1 LAC.CPA.KG()

Ensure: A pair of public key and secret key (pk, sk).

1: seeda
$← S

2: a← Samp(U(Rq); seeda) ∈ Rq
3: s

$← Ψn,hσ

4: e
$← Ψn,hσ

5: b← as + e ∈ Rq
6: return (pk := (seeda, b), sk := s)

The algorithm LAC.CPA.Enc on input pk and a message m, encrypts m with the randomness
seed. In case that seed is not given, the process is randomized. Otherwise, the encryption is
deterministic for the same seed. The subroutine ECCEnc converts the message m into a codeword
m̂.

Algorithm 2 LAC.CPA.Enc(pk = (seeda, b),m ∈M; seed ∈ S)

Ensure: A ciphertext c.
1: a← Samp(U(Rq); seeda) ∈ Rq
2: m̂← ECCEnc(m) ∈ {0, 1}lv
3: (r, e1, e2)← Samp(Ψn,hσ , Ψn,hσ , Ψ lvσ ; seed)
4: c1 ← ar + e1 ∈ Rq
5: c2 ← (br)lv + e2 + b q

2
e · m̂ ∈ Zlvq

6: return c := (c1, c2) ∈ Rq × Zlvq

The algorithm LAC.CPA.Dec on input sk and a ciphertext c, recovers the corresponding
message m. The subroutine ECCDec on input an encoding m̂, decoding the codeword in it.
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Usually, a message m ∈M is recovered. When there is a decryption error, the returned message
m /∈M.

Algorithm 3 LAC.CPA.Dec(sk = s, c = (c1, c2))

Ensure: A plaintext m.
1: u← c1s ∈ Rq
2: m̃←c2 − (u)lv ∈ Zlvq
3: for i = 0 to lv − 1 do
4: if q

4
≤ m̃i <

3q
4

then
5: m̂i ← 1
6: else
7: m̂i ← 0
8: end if
9: end for

10: m← ECCDec(m̂)
11: return m

4.2 LAC.CCA

The IND-CCA secure key encapsulation mechanism LAC.CCA is obtained by applying the
Fujisaki-Okamoto transformation [27,30] to the IND-CPA secure encryption scheme LAC.CPA.
The method was suggested by Peikert in [40] and also used in [13].

LAC.CCA comprises the following three algorithms:

– The key generation algorithm KG, which is the same with the key generation algorithm of
LAC.CPA, as illustrated in Algorithm 1.

– The encapsulation algorithm Enc, as illustrated in Algorithm 4.

– The decapsulation algorithm Dec, as illustrated in Algorithm 5.

Notations. The notations for the description of LAC.CCA are the same with those of LAC.CPA.
Additionally, we use a hash function G : {0, 1}lm → S ∈ {0, 1}ls , and a hash function H :
{0, 1}∗ → {0, 1}lk for the FO transformation and generating the encapsulated key, where lk
denotes the length of the session key, and will vary depending on different security levels. In LAC
we always set lk = lm. Currently, the hash functions G and H are implemented with SHA256,
and can be replaced with any other hash functions such as SHAKE256.

The algorithm LAC.CCA.Enc on input pk and a seed seedm, generates a message m, and
encrypts m by invoking LAC.CPA.Enc with pk,m and the randomness seed, which is generated
from m.

Algorithm 4 LAC.CCA.Enc(pk; seedm)

Ensure: A ciphertext and encapsulated key pair (c,K).
1: m← Samp(U(M); seedm) ∈M
2: seed← G(m) ∈ S
3: c← LAC.CPA.Enc(pk,m; seed)
4: K ← H(m, c) ∈ {0, 1}lk
5: return (c,K)

The decapsulation algorithm LAC.CCA.Dec on input sk and a ciphertext, recovers a message
by invoking LAC.CPA.Dec. Then it verifies the correctness of the decryption by a re-encryption
process. In case that the verification is passed, it returns the encapsulated key. Otherwise, it
generates a pseudorandom key from the secret key and the ciphertext.
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Algorithm 5 LAC.CCA.Dec(sk, c)

Ensure: An encapsulated key K.
1: m← LAC.CPA.Dec(sk, c)
2: K ← H(m, c)
3: seed← G(m) ∈ S
4: c′ ← LAC.CPA.Enc(pk,m; seed)
5: if c′ 6= c then
6: K ← H(H(sk), c)
7: end if
8: return K

4.3 LAC.KE

The passively secure unauthenticated key exchange protocol LAC.KE is directly obtained from
the IND-CPA secure encryption scheme LAC.CPA, as described in Figure 2.

Notations. The notations for the description of LAC.KE are the same as those of LAC.CPA.
Additionally, we use a hash function H : {0, 1}∗ → {0, 1}lk for generating the session key, where
lk denotes the length of the session key, and will vary depending on different security levels. The
concrete choice of H will be specified in Section 7.

Fig. 2. LAC.KE: the unauthenticated lattice-based key exchange protocol

Parameters: the specification of LAC.CPA
H : {0, 1}∗ → {0, 1}lk

Alice Bob

(pk, sk)
$← LAC.CPA.KG() pk

r
$← {0, 1}lm

c c
$← LAC.CPA.Enc(pk, r)

r ← LAC.CPA.Dec(sk, c) K ← H(pk, r) ∈ {0, 1}lk

K ← H(pk, r) ∈ {0, 1}lk

Besides, we can also construct a passively secure key exchange protocol directly from LAC.CCA.

4.4 LAC.AKE

The authenticated key exchange protocol LAC.AKE is built from the chosen-plaintext secure
public key encryption LAC.CPA and the chosen-ciphertext secure key encapsulation mechanism
LAC.CCA, by following the framework of [25,26]. The LAC.AKE is secure in Canetti-Krawczyk
mode with weak perfect forward secrecy [17], resistance to key compromise impersonation (KCI)
attack [25,26], and maximal exposure attacks (MEX) [25,26]. The protocol is described in Figure
3.
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Fig. 3. LAC.AKE: the authenticated lattice-based key exchange protocol

Parameters: the specification of LAC.CCA and LAC.CPA
G : {0, 1}∗ → {0, 1}ls , H : {0, 1}∗ → {0, 1}lk

Alice Bob

(pkA, skA)
$← LAC.CCA.KG() (pkB , skB)

$← LAC.CCA.KG()

static public key: pkA static public key: pkB

static secret key: skA static secret key: skB

(pk, sk)
$← LAC.CPA.KG()

r1
$← {0, 1}ls

seed1 ← G(r1, skA)

(c1,K1)←LAC.CCA.Enc(pkB ; seed1) pk, c1

K1 ← LAC.CCA.Dec(skB , c1)

r2
$← {0, 1}ls

seed2 ← G(r2, skB)

(c2,K2)←LAC.CCA.Enc(pkA; seed2)

K3
$← {0, 1}lm

c2, c3 c3
$← LAC.CPA.Enc(pk,K3; ε)

K2 ← LAC.CCA.Dec(skA, c2)

K3 ← LAC.CPA.Dec(sk, c3)

K ← H(pkA, pkB , pk, c3,K1,K2,K3) K ← H(pkA, pkB , pk, c3,K1,K2,K3)

5 Parameter Choices

Almost all lattice based key exchanges and public key encryptions, except for NTRU based
ones, follow a similar framework from [22,40,12,7]. There are a set of theoretical results on the
choice of rings, moduli, errors, etc [42,41,44] that ensure the framework stems from a provable
secure design. However, those theoretical results do not give any guidance on selecting concrete
parameters. Choosing parameters for (Ring-)LWE based schemes becomes an important research
direction in subsequent works [12,7,41,14,33,45], and a main differentiator in most NIST-PQC
submissions [1]. In this section, we present our choice of parameters, and give our design rational
over common choices.

5.1 Modulus

Our first and foremost priority is to reduce the modulus. As mentioned earlier, the payload sizes
are governed mainly by the dimension and the modulus. The choice of power-of-2 cyclotomic
polynomial does not allow much freedom in the choice of n. Hence we focus on a small modulus to
reduce the payload size. Note that the modulus cannot be too small; it needs to be large enough
to tolerant the errors during decryption which will be scaled by a factor of

√
2n. A common

choice was q = 12289. We take a more aggressive approach by using “byte level modulus”.
A byte is the basic operating unit for most processors. Such a choice makes the public keys and

ciphertexts compact, and is also optimal for implementations. The downside is that decryption
errors increase when modulus is smaller. We will give more details in Section 5.3.

Depending on the structure of the polynomial ring, we consider three types of byte-level
modulus.

– Power of Two Modulus: From the view of implementation, the most suitable byte-level
modulus is q = 256, for which the modulus operation can be efficiently realized by ignoring
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the carrier data. However, since q = 256 is not a prime, Z256[x]/(xn+1) does not yield a field
for our choice of n. For conservative purpose we do not use this ring to avoid any potential
weakness of the underlying structure.

– Max-Split Modulus: The reason to choose q ≡ 1 mod 2n is that xn + 1 ∈ Zq[x] can be
completely factorized. For byte-level modulus, this is no longer the case. However, we notice
that when q = 257, xn + 1 ∈ Z257[x] has maximum number of factors:

x512 + 1 =

128∏
i=1

(x4 + τi), x1024 + 1 =

128∏
i=1

(x8 + τi),

where τi ∈ Zq. We call this type of modulus “Max-Split Modulus”, for which xn + 1 can be
maximally factorized into polynomials with very small degrees.

– Min-Split Modulus: Unlike q = 257, for some other modulus, xn + 1 ∈ Zq[x] may have
minimum number of factors. Concretely, we notice that for q = 251, which is the largest
prime smaller than 28, xn + 1 ∈ Z251[x] can be minimally factorized as:

xn + 1 = (xn/2 + 91xn/4 + 250)(xn/2 + 160xn/4 + 250).

We call this type of modulus “Min-Split Modulus”, for which xn + 1 can only be factorized
into two polynomials with the degree of n/2.

It has been argued that less algebraic structure reduces the attacking surface [10]. In that
spirit, and also for the sake of simplicity, we choose the min-split modulus q = 251 for our
scheme.

Remark 1. Our selection principle is simply to minimize algebraic structures. Nonetheless, we
do not see any weakness of the power of two modulus or the max-split modulus. In fact, it has
been shown in theory [42] that Ring-LWE is hard for any ring of integers, which implies that
Z2`/(x

n + 1) is as hard as any other choices, asymptotically speaking. Further, one can convert
instances over one ring to another via modulus switching [4,6], at a cost of increased secrets
and/or errors. In the meantime, from the implementation point of view, the modulus 257 and
256 may deliver better efficiency. We leave the concrete security of those types of modulus to
future research.

5.2 The Errors and Secrets Distribution of Ring-LWE

There are two rules for the choice of the distribution for the error and secret vector of the
poly-LWE problem. Firstly, the errors and the secrets must be large enough to guarantee the
hardness of the poly-LWE problem. Secondly, the errors and the secrets must be small enough
to guarantee the correctness of the decryption algorithm. In literatures, there are mainly two
families of distributions that satisfy the average/worst case reduction theorem [43,37], namely,
discrete Gaussian distribution [37,8] and centered binomial distribution [14]. Gaussian distribu-
tion consumes lots of entropy, is hard to implement (in constant time), and is also vulnerable to
memory based side channel attacks [16] when implemented with look-up tables [23]. Therefore,
we opt to use the centered binomial distribution for our scheme.

In the implementation, as described in [8], a centered binomial distribution with the standard

deviation of
√
λ/2 can be generated as

∑λ
i=1(bi− b̂i), where bi, b̂i ∈ {0, 1} are uniformly random

bits. When a byte-level modulus is used, the error-modulus-ratio becomes large enough even for
small error distributions. This allow us to use the simplest centered binomial distribution with
λ = 1 as our basic error distribution. That is, in order to get a centered binomial distribution
with λ = 1, each element of the error vector is generated by b − b̂, where b, b̂ are uniformly
random bits. Then we can get the distribution Ψ1. Besides, we also use a narrower distribution
Ψ 1

2
.

1. Ψ1: Pr[x = 0] = 1/2, Pr[x = ±1] = 1/4.
2. Ψ 1

2
: Pr[x = 0] = 3/4, Pr[x = ±1] = 1/8.
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As pointed out by Alperin-Sheriff in the comments to LAC [1], when centered binomial
distribution is used, the adversary can increase the decryption error rate by finding high hamming
weight random vectors through pre-computation. The direct approach to resist this attack is to
decrease the error rate by using a more powerful error correction code. However, correcting more
errors will affect the efficiency of the error correction code.

To make LAC immune high hamming weight attack in a more efficient manner, we use n-
ary centered binomial distribution Ψn,hσ with fixed Hamming weight h for the error and secret
vectors s, e, r, e1. Since e2 only has slight influence on the decryption error rate, we still use the
more efficient standard centered binomial distribution for e2. Concretely, we use the following
distributions:

– LAC-128: Sample s, e, r, e1 from Ψn,h1 , e2 from Ψn1 , with n = 512, h = 256.

– LAC-192: Sample s, e, r, e1 from Ψn,h1
2

, e2 from Ψn1
2

, with n = 1024, h = 256.

– LAC-256: Sample s, e, r, e1 from Ψn,h1 , e2 from Ψn1 , with n = 1024, h = 512.

We remark that, when the hamming weight of the secret or error vector is fixed as the
expectation of the standard centered binomial distribution, it only brings a very small effect to
its entropy. Concretely, we compute the entropy of the distributions we used as follows:

– LAC-128: The entropy of s from Ψn1 with n = 512 is 768, when the hamming weight is fixed
as h = 256 with 128 ones and 128 minus-ones, its entropy is about log

((
512
128

)
·
(
384
128

))
≈ 758.

– LAC-192: The entropy of s from Ψn1
2

with n = 1024 is 1086, when the hamming weight is fixed

as h = 256 with 128 ones and 128 minus-ones, its entropy is about log
((

1024
128

)
·
(
896
128

))
≈ 1077.

– LAC-256: The entropy of s from Ψn1 with n = 1024 is 1536, when the hamming weight is fixed
as h = 512 with 256 ones and 256 minus-ones, its entropy is about log

((
1024
256

)
·
(
768
256

))
≈ 1525.

So using fixed weight centered binomial distribution will not affect the security reduction and
concrete security evaluation of LAC.

5.3 Decryption Errors

As shown in the decryption algorithm, the message is recovered via two steps. First, the error
correction code word m̂ is recovered from the ciphertext. Then, the message m is recovered from
the code word. It is easy to verify that:

m̃ = c2 − (c1s)lv
= (br)lv + e2 + b q2em̂− (c1s)lv
= ((as + e)r)lv + e2 + b q2em̂− ((ar + e1)s)lv
= (er − e1s)lv + e2 + b q2em̂

(1)

Let w = (er − e1s)lv + e2, we have that the error rate of each m̃i is δ = 1 − Pr[−b q4e <
wi < b q4e]. If s, e, r, e1, e2 are all randomly chosen from a small distribution with a standard
deviation of σ and an expectation of 0, then according to the central limit theory, wi follows a
distribution that is very close to a discrete Gaussian distribution with a standard deviation of
σ2
√

2n and an expectation of 0. Thus, the error rate for each bit can be approximated by the

Gaussian error function as δ ≈ 1 − erf
(

bq/4e√
2(σ2
√
2n)

)
. For example, For n = 512, q = 251, and a

distribution of Ψ1 with a standard deviation σ = 1/
√

2, the error rate of each bit is estimated
by:

δ ≈ 1− erf

(
b251/4e√

2((1/
√

2)2
√

2× 512)

)
≈ 2−13.195.

Suppose that the BCH code can correct lt errors at most and the code word length is ln = lv,
and assume the coefficients of w are independent from each other, we have the decryption error
rate for a message m:

∆ ≈
lv∑

j=lt+1

((
lv
j

)
δj(1− δ)lv−j

)
(2)
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As pointed out by D’Anvers [20], when single bit error rate δ is too large, we can not assume
that the coefficients of w are independent from each other. The theoretical dependence model
and experiment results of D’Anvers show that the dependence mainly comes from the norm of
s, e, r, e1. When fix hamming weight distribution is used for s, e, r, e1, their norms are also fixed
and the main source of dependence is removed. So we can assume that the coefficients of w are
independent from each other.

5.4 The Error Correction Code

Our byte level modulus incurs a very high decryption error rate by design. Trivial or light error
correction methods such as D2 or D4 code [8] are not capable of handling such a situation. Heavy
error correction methods ought to be used for our use case. In the field of code theory, there
are many powerful codes such as BCH, Goppa, LDPC, Turbo and Polar. In principle, any code
with enough error correcting capability can be used in our scheme. For the sake of simplicity
and efficiency we choose BCH code for implementation and benchmarking.

5.5 Recommended Parameter Categories

We recommend the following parameter sets in Table 1, with respect to three categories of
NIST post-quantum standardization project [1], namely, the equivalent security level of AES128,
AES192 and AES256.

Categories n q dis ecc lm pk sk ct bit-er dec-er

LAC-128 512 251 Ψn1 , Ψ
n,n

2
1 [511, 256, 33] 256 544 512 712 2−12.61 2−116

LAC-192 1024 251 Ψn1
2
, Ψ

n,n
4

1
2

[511, 256, 17] 256 1056 1024 1188 2−22.27 2−143

LAC-256 1024 251 Ψn1 , Ψ
n,n

2
1 [511,256,33]+D2 256 1056 1024 1424 2−12.96 2−122

dis secret and noise distributions ecc error correction code
lm message length sk secret key size (bytes)
pk public key size (bytes) ct ciphertext size (bytes)
bit-er single bit error rate without BCH dec-er decryption error rate

Table 1. Recommended parameter of LAC.CPA

Concretely, dimensions n = 512 and n = 1024 with a basic error distribution Ψ1 discussed as
above are for the low security level LAC-128 and the high security level LAC-256, respectively.
To get the middle security level LAC-192, we use a smaller secret and noise distribution Ψ1/2 and
dimension 1024.

Note that it is sufficient to set the message size according to the security level, since in
practice, public key encryption schemes are mainly used to encrypt session keys for symmetric
encryption scheme. For the sake of simplicity, we set the message size to 256 for all security
levels. In the previous version of LAC parameter sets [36], the message size was twice as the
security level.

The parameters of BCH code are selected to achieve a suitable decryption error rate and
a high efficiency while defeating the high Hamming weight attacks. We have lm = 256 in our
setting. Next, for lm = 256, the minimum available BCH code length ln is 511. Lastly, for the
low security level LAC-128 and the high security level LAC-256, we choose ld = 33 which allows
us to correct 16 bits of errors at most. The redundant data due to this error correction code
is 18 bytes. And for LAC-192, we use ld = 17 which allows to correct up to 8 errors, and the
redundancy is 9 bytes.

Note that the error rate for each coefficient is estimated by a convolution of all the error
terms. In order to minimize the size of the ciphertext, in our implementation the lower 4 bits
for each coefficient in c2 are discarded. This brings an additional uniformly random (under
Ring-LWE assumption) error over [−7, 7].
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A public key consists of a 32 bytes seed seeda, and an n bytes vector b. A secret key is an n
bytes vector. One may simply store a 32 bytes seed for the secret key to minimize storage, at a
cost of slightly slower decryption. In the case where Fujisaki-Okamoto transformation is used to
achieve chosen ciphertext security, a secret key also contains a copy of the corresponding public
key, so that the decryption algorithm can re-encrypt to check the validity of the ciphertext. Thus
the size of a secret key becomes 2n + 32. Finally, a ciphertext contains both an n bytes vector
c1, and lv number of “half-byte” from c2 (since the lower 4 bits of each coefficient in c2 are
discarded). For LAC-128 parameter set, lv = lm + 18× 8, where 18 is the size of the redundant
data. For LAC-192, lv = lm + 9× 8, where 9 is the size of the redundant data. And for LAC-256,
lv = (lm + 18× 8)× 2 due to the use of D2 encoding.

6 Security Analysis

Formal Security: Following the result of [35], the chosen plaintext security of LAC can be easily
reduced to the Ring-LWE assumption. Then, with Fujisaki-Okamoto transformation, we obtain
the chosen ciphertext security version of LAC in both classical random oracle model [27,28] and
quantum random oracle model [32]. It is easy to verify that the embedded error correction code
will not affect the security reduction and these security proofs can be directly extended to the
case of LAC. Therefore, we omit the details for both reductions.

Concrete Security: We consider the best known generic attacks against Ring-LWE with
our parameters, which treat the Ring-LWE problems as plain LWE problems. Those attacks are
well-known by the community; their costs are well understood.

We also consider dedicated attacks that target specific designs of our scheme, namely the
subfield attacks and the high Hamming weight attacks. Those attacks are reported as comments
to the Round 1 version of LAC submission to NIST-PQC. We will show that none of those
dedicated attack works better than generic attacks for our (revised) parameter sets. Therefore,
it is sufficient to use common methods (e.g. BKZ with (quantum) sieving) to evaluate the security
of our scheme.

6.1 Generic Attacks

There are many generic algorithms to solve the LWE problem, see [6,46] for a survey of known
techniques. It has been shown that lattice reduction attacks utilizing the BKZ algorithm [18] are
more powerful than exhaustive search, combinational and algebraic algorithms. For simplicity,
following the analysis of [7], we focus primly on two embedding attacks that are commonly
referred to as primal attack and dual attack. We summarize the security estimates of both
attacks in Table 2.

Algorithm
Primal Attack Dual Attack

Classic Quantum Block Size Classic Quantum Block Size

LAC-128 148 135 509 147 133 505
LAC-192 288 261 986 286 259 978
LAC-256 323 293 1105 320 290 1095

Classic: Classical complexity Quantum: Quantum complexity
Table 2. Concrete security of LAC

Primal attack. In a primal attack, one builds a lattice with a unique-SVP instance from the
LWE samples; then, uses BKZ algorithm to recover this unique shortest vector. In a nutshell,
given an LWE instance (A, b = As+e), A ∈ Zm×nq , the target lattice of dimension d = m+n+1
is constructed as

ΛA = {x ∈ Zm+n+1 : (A|Im| − b)x = 0 mod q}.
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It is easy to verify that, v = (s, e, 1) is the unique-SVP solution when both s and e are reasonably
short. For exmaple, as shown in [7], the attack is successful if and only if σ

√
b ≤ δ2b−d−1× qm/d,

where σ is the standard deviation of the errors and secrets, δ = ((πb)1/bb/2πe)1/(2(b−1)).
BKZ algorithm progressively processes the lattice basis by calling polynomial times a sub-

routine, such as the (quantum) sieving algorithm, to solve the exact shortest vector problem for
sub-lattices with dimension (i.e. blocksize) b. This method is known as BKZ-core-(Q)Sieving,
and its complexity depends solely on the block dimension b that is required for the BKZ algo-
rithm to find the unique solution. According to [7], the best complexity of the SVP oracle is√

3/2
b+o(b)

≈ 20.292b for classical sieving algorithms, and
√

13/9
b+o(b)

≈ 20.265b for quantum
sieving algorithms.

Dual attack. In a dual attack, one firstly tries to build a dual lattice of the aforementioned
primal lattice, and then uses the dual lattice to solve the decisional LWE problem. At a high
level, given the LWE instance (A, b = As + e), A ∈ Zm×nq , the target lattice of dimension
d = m+ n is constructed as

Λ⊥A = {(x,y) ∈ Zm × Zn : Atx = y mod q}.

Again, [7] showed that BKZ is capable of finding a vector v = (x,y) of length l = δd−1qn/d, where
the distance between vtb and the uniform distribution will be bounded by ε = 4 exp (−2π2τ2)
for τ = lσ/q. This breaks the decisional LWE problem with an advantage ε.

Similar to primal attacks, the concrete security of dual attack also depends on the complexity
of BKZ algorithm. There is a slight caveat when BKZ-core-QSieving is used: the attacker is able
to amplify ε to 1/2 by repeating the sieving algorithm for R = max(1, 1/(γε2)) times. This
operation is almost free to the attacker, since sieving algorithm will produce γ = 20.2075b vectors
which far exceed the required number of short vectors 1/ε2 for repeating.

Security Estimates. We use BKZ simulator with core-(Q)sieving model to estimate the secu-
rity for our scheme. The required blocksize to achieve our target root Hermite factor is shown
in Table 2. The corresponding security is then estimated for the obtained blocksize. Note that
in [3], Albrecht et al. independently evaluated the security for all (Ring-)LWE candidates, and
their estimation matches ours for LAC.

We remark that, for the parameters of LAC, hybrid attacks [31,47,29] that used to evaluate
the security of NTRU or LWE problem with particularly small (e.g., binary, ternary) or sparse
vectors will not outperform the core-(Q)sieving model. Briefly, the main idea of hybrid attack is
to split the the lattice into two parts, one part is evaluated by using search algorithm (meet in the
middle or quantum search), the other part is evaluated by solving the BDD problem. According
to the result in [31,47,29] the number of necessary guesses can be reduced to the square root of
the number of guesses needed in a naive brute-force approach by using the meet in the middle
or quantum search algorithm. Thus, the cost of the search part can be roughly evaluated by half
of the entropy of the target vector. It is easy to verify that, the secret and error vectors in LAC
(see 5.2 for detail) have enough entropy to resist hybrid attacks.

6.2 Dedicated Attacks

We stress again that the two attacks we are about to discuss does not perform better than
generic attacks. Specifically, although we revised the parameters partially due to the threat of
high Hamming weight attack, such a revision is only for conservative purpose and the attack
itself does not work on both the original parameter sets and the revised ones.

Subfield Attacks. The idea of exploiting subfields is known to the lattice community for years
[9,2,11,34], and to use this idea to analyze LAC was firstly proposed by Alperin-Sheriff [39] during
the first round evaluation of NIST-PQC. Recall that xn + 1 has two factors modulo q = 251:
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xn + 1 = (xn/2 + 91xn/4 + 250)(xn/2 + 160xn/4 + 250).

In other words, there exist two subfields defined by two polynomials g and h where g =
xn/2 + 91xn/4 + 250 and h = xn/2 + 160xn/4 + 250.

Given (a, b = as + e), one may recover (s, e) by looking at the samples over the subfields.
It may be sufficient to recover (sg := s mod g, eg := e mod g) from (a mod g, b mod g), and
(sh, eh, respectively). Next, it becomes straightforward to recover (s, e) via Chinese remainder
theorem.

Analysis. In the rest, we give a full analysis of this attack. The key point of the attack is
that by moving to the subfield, the lattice dimension is practically halved. Therefore, the BKZ
complexity may be reduced for the new sub-lattices. Note that this is not necessarily always
the case under core-(Q)Sieving model where only the cost of subroutine counts; and the cost
of the subroutine depends only on the root Hermite factor. Nonetheless, to have a meaningful
analysis, we assume that this is not an obstacle: the attacker may access an SVP oracle for BKZ
subroutines solely for this attack.

Our analysis will show that the corresponding vectors in the subfields, (sg, eg), will be larger
than the Gaussian heuristic length. In other words, even if one was able to perform lattice
reduction over the dimension-halved lattices, he will not be able to recover the desired vectors.

The attack reduces the dimension, in the meantime, the modulo operation increases the
size of (sg, eg) (similarly, (sh, eh)). To be precise, when (s, e) are small polynomials with the
coefficients in {−1, 0, 1}, the coefficients of (sg, eg) will lie in {0,±1,±2,±91}. Coefficients of
±91 will be too large. Alperin-Sheriff also pointed out that by multiplying s and e by 11, all the
coefficients of (sg, eg) will be within the interval of [−25, 25].

Let A = [Ag|I|11× bg], where Ag is the matrix generated by ag, if z = [11× sg|11× eg| − 1]
is the shortest solution of Az = 0 mod q, we can recover z with the primal attack. Note that,
the dimension of a primal attack is reduced from d = 2n+ 1 to d = n+ 1 via the subfield attack.
Since A is a random matrix, the q-ary lattice Λ⊥q (A) will behave as a random lattice [19], and
therefore it is sufficient to use Gaussian heuristic to estimate the length of shortest vectors in
this lattice:

λ1(Λ⊥q ) ≈ qm/d
√

d

2πe
.

In the case of n = 512 and n = 1024, the lengths of the shortest vector is expected at 86.36 and
122.4, respectively.

On the other hand, we also need to estimate the length of z. Central limit theory says that the
length of z approximately follows a discrete Gaussian distribution. Our implementation shows
that z closely follows a Gaussian distribution with a mean and deviation pair of (253.59, 6.9) for
LAC-128, (253.26, 6.29) for LAC-192 and (358.42, 6.86) for LAC-2561.

It is easy to verify that, the length of z will be larger than the solution of Az = 0 mod q
except for negligible probability. Hence z will not be a short vector in this lattice. In other words,
if one were to use subfield attack, and assuming that they have free access to SVP oracles simply
for the sub-lattices, they will not be able to locate the vector.

To sum up, the subfield attack described above will not affect the security of LAC for either
original parameter sets or the revised version.

High Hamming Weight Attack. This is a chosen ciphertext attack that exploits the fact that
the secrets and errors (r, e1) in some ciphertexts (with certain probability) may have higher-
than-usual Hamming weight. It is feasible if (r, e1) are randomly selected from Ψ1 or Ψ 1

2
. It is

easy to see that the decryption error rate is influenced by the Hamming weight. Therefore, with
enough number of random samples, an attacker may obtain sufficient number of samples whose

1 The data is obtained over 100,000 random samples for each parameter set using SageMath. The
experiment does not mean to extensive to show any proof of statistical distances; the mean is obviously
much higher than Gaussian heuristic length.
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secrets and errors have very higher Hamming weight, and then invoke the decryption oracle to
extract information of the private key.

In [21] D’Anvers et al. describe the attempt of high Hamming weight attacks against several
NIST PQC candidates, and it turns out that the decryption error estimation of LAC-256 of
the first version of LAC [36] is affected. To immune the attack, we use n-ary centered binomial
distribution with fixed Hamming weight. Thus, the current parameters sets will not be affected
by the attack.

Although, fixed hamming weight centered binomial distribution makes LAC immune high
hamming attack, we also give a detailed analysis of the scenario when standard centered bi-
nomial distribution is used as in the Round 1 version of LAC. The analysis result shows that,
with suitable BCH parameters, LAC is still immune high hamming attack even when standard
centered binomial distribution is used.

Analysis. It has been shown that chosen plaintext secure version of (Ring-)LWE based schemes
suffer from an reaction attack [24]. To address this vulnerability, most schemes rely on Fujisaki-
Okamoto transformation [27,28,32] to achieve chosen ciphertext security. We also adopt the
same approach. Via this transformation, the randomness vectors (r, e1) are generated from
the plaintext message by a pseudorandom generator. Thus the vectors (r, e1) are randomly
distributed from the view of the adversary.

In a comment to the Round 1 version of LAC [1], Alperin-Sheriff showed that, for the LAC-256
parameter set, the probability that a pair of valid (r, e1) with a Hamming weight of at least
1024 + 310 = 1334 is greater than (

2048

1334

)
/22048 = 2−143.

Therefore, with 2207 pre-computations (assuming each access to the pseudorandom generator
incurs a cost of 1), the adversary will obtain 264 messages for which the corresponding (r, e1)
have Hamming weight exceeding 1334. It is worth noting that the adversary only needs to access
the decryption oracle for 264 times in this setting. Next, for samples with such high Hamming
weights, the decryption error rate for each bit of m̃i is expected at

δhigh ≈ 1− erf

(
b251/4e√

2((1/
√

2)
√

(1024 + 310)/2048
√

2× 1024)

)
≈ 2−5.9,

This yields a decryption error rate for the message m:

∆high =

1023∑
j=55+1

((
1023

j

)
δjhigh(1− δhigh)1023−j

)
≈ 2−44.4.

As a result, with 2207 pre-computations and 264 decryption oracle queries, the adversary can get
about 219.6 decryption failures. We remark that, 1334 is a lower bound of the Hamming weight
for decryption errors. Decryption errors may occur for any Hamming weight above 1334, and
therefore the adversary may get (a little) more than 219.6 decryption failures if they were to
perform all above (pre-)computations.

Remark 2. We argue that, as also pointed by D’Anvers [1], it is difficult to get any information
about the private key from these decryption failures. All the information that an adversary may
learn is whether there are more than lt errors in the code word; they cannot determine which
coefficients are failing as in a reaction attack [24].

Following the above example, with a message size of 256, the BCH code can correct up to
lt = 100 errors for the code length of 1023. Consequently, the decryption error rate for high
Hamming weight random vectors r, e1 is estimated as:

∆high =

1023∑
j=100+1

((
1023

j

)
δjhigh(1− δhigh)1023−j

)
≈ 2−147.
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As a result, with 264 message queries, the probability that the adversary gets one decryption
failure is around 2−83. In other words, it will take the adversary over 2256 operations to get a
single decryption error.

However, we notice that, the decoding efficiency decreases drastically when large lt is used.
To resolve this problem, for LAC-256 we use the D2 error correction code [12,7] together with
the BCH code. That is, the message is firstly encoded with BCH, then the code word is encoded
with D2. As a result, the BCH code only need to correct 30 bits of errors.

The upper bound of the decryption error rate in the case of high Hamming weight attack is
presented as follow. We give the upper bound of the Hamming weight that the adversary can
obtain after 2l operations of pre-computation, where l is the security level. Then we estimate the
bit error rate and decryption error rate according to this upper bound of Hamming weight. It is
clear that, for each parameter set, the decryption failure occurs with a negligible probability in
the security parameter.

Categories Ham(r, e1) Prob Bit Error Rate BCH Decryption Error Rate

LAC-128 512+206 2−128 2−9.59 [511,256,61] 2−133

LAC-192 512+333 2−192 2−14.75 [511,256,31] 2−142

LAC-256 1024+416 2−256 2−9.77 [511,256,61] 2−138

Ham(r, e1) denotes the Hamming weight of (r, e1), Prob denotes the probability that the adversary
obtains (r, e1) with target Hamming weight in pre-computation.

Table 3. Decryption error rate of high Hamming attack

7 Implementation and Performance

As mentioned earlier, an important difference between LAC and previous Ring-LWE based pub-
lic key encryption schemes is that our parameters do not support NTT. In this section, we
present some highlights of our customized implementation, including a generalized polynomial
multiplication method (as per NIST-PQC’s request) and an optimized version based on AVX2
instructions.

7.1 Polynomial Multiplication

Polynomial multiplication is the most time consuming operation in the implementation of LAC.
In addition to a reference implementation, we provide two optimized versions as follows:

– General Optimized Version: Our main observation is that, since s and r are selected from
{−1, 0, 1}, the multiplication operation can be implemented by bitwise logical AND operation
as ai × 1 = ai&0xff and ai × 0 = ai&0x00. Further more, we can pack 4 items into one
uint64 t data type.
With q < 256, it is possible to pack 8 coefficients into a single uint64 t unit, in theory. We
choose to hold 4 coefficients at a time, and use the free space as a buffer for the carriers, so
that we are not obliged to perform mod reductions after every arithmetic operation. This
yields better performance in practice.

– AVX2 Based Version: AVX2 allows us to handle 256 bits data type. We are able to store
32 coefficients in a single mm256 data type, and utilize mm256 maddubs epi16 instruction
which does 32 multiplications and adjacent addition operation in a single operation. We
obtain approximately 30x acceleration with this optimization.

7.2 Error Correction

We choose BCH as the error correction code for LAC. We use the generic implementation of bch
algorithm by Ivan Djelic from https://github.com/jkent/python-bchlib/tree/master/bchlib. To
compile it on both Linux and Windows, we remove the header file “endian.h” included in “bch.c”,
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and provide the implementation of the htobe32(x) function and the definition of “EBADMSG”
directly in “bch.c”.

Since the decoding time of the error correction code may vary and reflect the number
of errors, it may cause a timing attack. To avoid the attack, we provide a constant time
implementation of the BCH code, and can be used in situations that a side channel attack
should be resisted. The constant time implementation of BCH can be enabled by defining
“BCH CONSTANT TIME” in “lac-param.h”. Generic more efficient implementation of BCH
will be used if “BCH CONSTANT TIME” is not defined in “lac-param.h”.

7.3 Computational Performance of the Optimized Version

LAC has been implemented in C language for the Intel x64 processor. In this section, we test
the performance of Optimized version of LAC on the platform of ubuntu 16.04 operation system
running on the Intel Core-i7-4770S (Haswell) @ 3.10GHz, memory 7.6GB, with Turbo Boost and
Hyperthreading disabled. In each case we provide two values to describe the performance of the
algorithm the CPU cycles and the microseconds.

Categories
Key generation Encryption Decryption Decryption(Const-BCH)

CPUCycles Times CPUCycles Times CPUCycles Times CPUCycles Times

LAC128 124915 40.28 194118 67.24 81187 26.28 122355 39.47

LAC192 335083 106.20 438204 144.63 292243 93.80 309896 93.80

LAC256 382627 124.23 636997 204.80 302890 95.18 338993 108.25
Table 4. Performance of LAC.CPA

Categories
Key generation Encapsulation Decapsulation Decapsulation(Const-BCH)

CPUCycles Times CPUCycles Times CPUCycles Times CPUCycles Times

LAC128 122691 39.67 209201 65.71 280125 88.07 323221 102.70

LAC192 333649 105.63 445696 145.48 731472 235.42 759871 244.49

LAC256 377123 123.59 643024 208.71 916835 297.01 934385 304.82
Table 5. Performance of LAC.CCA

7.4 Computational Performance of the AVX2 Based Version

LAC has been implemented in C language for the Intel x64 processor. In this section, we test the
performance of AVX2 based version of LAC on the platform of ubuntu 16.04 operation system
running on the Intel Core-i7-4770S (Haswell) @ 3.10GHz, memory 7.6GB. In each case we provide
two values to describe the performance of the algorithm the cpucycles and the microseconds.

Categories
Key generation Encryption Decryption Decryption(Const-BCH)

CPUCycles Times CPUCycles Times CPUCycles Times CPUCycles Times

LAC128 61242 19.98 80173 25.91 25004 7.83 64238 20.77

LAC192 120528 38.87 130286 42.34 63266 26.41 134289 39.95

LAC256 136313 54.23 191543 63.14 72326 30.56 112654 48.99
Table 6. Performance of LAC.CPA with AVX2
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Categories
Key generation Encapsulation Decapsulation Decapsulation(Const-BCH)

CPUCycles Times CPUCycles Times CPUCycles Times CPUCycles Times

LAC128 59584 19.59 89055 28.86 103229 39.26 140221 45.57

LAC192 119246 36.94 137653 65.14 224249 71.52 320135 77.32

LAC256 135780 53.95 207938 87.88 343335 84.21 359209 97.60
Table 7. Performance of LAC.CCA with AVX2

7.5 Key and Ciphertext Size

In this section the key size and ciphertext size of LAC are listed as following.

Categories pk size(bytes) sk size (bytes) ciphertext size (bytes)
LAC128 544 1056 712
LAC192 1056 2080 1188
LAC256 1056 2080 1424

Table 8. Key and Ciphertext size of LAC.CPA and LAC.CCA

Categories
LAC.KE LAC.AKE

Alice (bytes) Bob (bytes) Alice (bytes) Bob (bytes)

LAC128 544 712 1256 1424

LAC192 1056 1188 2244 2376

LAC256 1056 1424 2480 2848
Table 9. Message size of LAC.KE and LAC.AKE

7.6 Memory Cost of Error Correction Code

The parameters bch control defined for the encode and decode algorithm of the BCH error
correction code is the most memory consuming part of LAC. In the optimized implementation
and the AVX2 based implementation, these parameters are statistically defined in “bch128.h”,
“bch192.h” and “bch256.h” for the security strength categories LAC128, LAC192 and LAC256
respectively. Concrete memory cost of these parameters are listed as follows.

Categories
BCH Parameters

bch control(bytes)
code length data length maximum error

LAC128 511 256 16 23736

LAC192 511 256 8 15048

LAC256 511 256 16 23736
Table 10. Memory cost of error correction code

8 Known Answer Test Values

There are four types of known answer tests (KATs):

– LAC.CPA
– LAC.CCA
– LAC.KE
– LAC.AKE
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We test the three sets of parameters described as in Table 1 for each type. We use the source
code offered by NIST at https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/

Post-Quantum-Cryptography-Standardization/Example-Files to generate KATs.

8.1 LAC.CPA

In this section, we test LAC.CPA.KG (Algorithm 1), LAC.CPA.ENC (Algorithm 2), and LAC.CPA.DEC
(Algorithm 3). The name of the test file is “PQCencryptKAT *”, and ‘*’ means the size of secret
key. In the request file, inputs are as follows,

– “seed” denotes the seed which will be used to generate random bytes in every algorithm.

– “msg” denotes the message which will be encrypted by the encryption algorithm.

– “mlen” denotes the size of message.

In the response file, the outputs are as follows:

– “pk” denotes the public key.

– “sk” denotes the secret key.

– “c” denotes the result of LAC.CPA.ENC(PK, PLAINTEXT).

– “clen” denotes the size of ciphertext.

8.2 LAC.CCA

In this section, we test LAC.CCA.KG, LAC.CCA.ENC (Algorithm 4), and LAC.CCA.DEC (Algo-
rithm5). The name of the test file is “PQCkemKAT *”, and ‘*’ means the size of secret key. In
the request file, the input is as follows,

– “seed” denotes the seed which will be used to generate random bytes in every algorithm.

In the response file, outputs are as follows,

– “pk” denotes the public key.

– “sk” denotes the secret key.

– “ct” denotes “c” in LAC.CCA.Enc algorithm 4.

– “ss” denotes “K” in LAC.CCA.Enc algorithm 4.

8.3 LAC.KE

In this section, we test the processes of key exchange between Alice and Bob as described in
Figure 2. The name of the test file is “PQCkeKAT *”, and ‘*’ means the size of secret key. In
the request file, the input is as follows,

– “seed” denotes the seed which will be used to generate random bytes in every algorithm.

In the response file, outputs are as follows,

– “pk” denotes the public key.

– “sk” denotes the secret key.

– “c” denotes the result sent from Bob to Alice.

– “k” denotes Bob’s and Alice’s session key.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization/Example-Files
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization/Example-Files
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8.4 LAC.AKE

In this section, we test the processes of authenticated key exchange between Alice and Bob as
described in Figure 3. The name of the test file is “PQCakeKAT *”, and ‘*’ means the size of
secret key. In the request file, the input is as follows,

– “seed” denotes the seed which will be used to generate random bytes in every algorithm.

In the response file, outputs are as follows,

– “pk a” denotes Alice’s public key.
– “sk a” denotes Alice’s secret key.
– “pk b” denotes Bob’s public key.
– “sk b” denotes Bob’s secret key.
– “pk” denotes the public key.
– “sk” denotes the secret key.
– “c a” denotes “c1” sent from Alice to Bob in Figure 3.
– “c b” denotes “(c2, c3)” sent from Bob to Alice in Figure 3.
– “k” denotes Bob’s and Alice’s session key.

9 The Advantages and Limitations

9.1 Advantages

Implementation aspects:

– LAC can be implemented to run at high speeds on the Intel x64 processors that support the
AVX2 instructions.

– LAC can be implemented to run at high speeds on ARM processors that support vector
instructions such as NEON.

– The main operation of LAC is parallel by design, it is very suitable to be implemented on
multi-core processors.

Simplicity of Design:

– The design rationale of LAC is very simple: use small modulus to cut down the size of the
ciphertexts and keys.

– The distributions of the errors and secrets are very simple and easy to sample.
– The main operation of LAC is polynomial multiplication which is very easy to understand.

Variable security strength categories:

– Four security strength categories of LAC can be easily get by combining the dimensions and
error distributions.

– All of the four security strength categories share the same modulus.

Flexibility:

– The error correction algorithm can be easily replaced for different requirement of the error
rate.

– The security strength can be flexibly adjusted by setting the number of zeros in the errors
and secrets distributions.

9.2 Limitations

The limitations of LAC:

– Can not be sped up by using the NTT technique, which effects its computational performance
on processors that do not support vector instructions.

– The correctness of the decryption algorithm is guaranteed by powerful error correction code
such as the BCH code.

– To avoid a timing attack, the implementation of the error correction code should be constant-
time, which affects the computational efficiency.
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