
Name of Proposal:

Rainbow

Principal Submitter:

Jintai Ding

email: jintai.ding@gmail.com
phone: 513 – 556 - 4024

organization: University of Cincinnati
postal address: 4314 French Hall, OH 45221 Cincinnati, USA

Auxiliary Submitters: Ming-Shing Chen, Albrecht
Petzoldt, Dieter Schmidt, Bo-Yin Yang

Inventors: c.f. Submitters

Owners: c.f. Submitters

Jintai Ding (Signature)

Additional Point of Contact:
Bo-Yin Yang

email: by@crypto.tw
phone: 886-2-2788-3799
Fax: 886-2-2782-4814

organization: Academia Sinica
postal address: 128 Academia Road, Section 2

Nankang, Taipei 11529, Taiwan

1

Rainbow - Algorithm Specification and

Documentation

The 2nd Round Proposal

Type: Signature scheme

Family: Multivariate Cryptography, SingleField
schemes

2

1 Changes to the first round submission

We applied the following changes to our submission.

1. Improvements on Key Generation Process:

We improved the key generation algorithm for the original Rainbow scheme
as submitted in our first round proposal.

In order to speed up the key generation process of Rainbow, we switched
from computing the public key by interpolation to computing the public
key using matrix products.
Firstly, we restrict to homogeneous maps S, F and T . Note that this
leads to a homogeneous public key P. It is widely accepted that the
complexity of direct attacks is determined only by the homogeneous part
of highest degree. All other known attacks against Rainbow (see Section
8) explicitly use the (symmetric) matrices representing this homogeneous
quadratic part. Therefore the security of Rainbow is not weakened by this
modification.
Secondly, we restrict the linear maps S and T to a special form. We use

S =

(
1o1×o1 S′o1×o2
0o2×o1 1o2×o2

)
and

T =

 1v1×v1 T
(1)
v1×o1 T

(2)
v1×o2

0o1×v1 1o1×o1 T
(3)
o1×o2

0o2×v1 0o2×o1 1o2×o2

 .

Since for every Rainbow public key P there exists a corresponding Rain-
bow private key (S,F , T) with P = S ◦ F ◦ T and S and T being of the
above form, the security of Rainbow is not weakened by this assumption.
For a Rainbow scheme fulfilling these two conditions, we can perform the
key generation process (both for the standard and modified variants which
we will discuss below) using a number of matrix products (see Section 3)
which enables us to speed up the Rainbow key generation process drasti-
cally.

2. Parameter Choice:
Compared to the 9 recommended parameter sets of the first round sub-
mission, we narrow them to three parameter sets, namely

• Ia: F=GF(16), (v1, o1, o2) = (32, 32, 32) for the NIST security cate-
gories I and II,

• IIIc: F= GF(256), (v1, o1, o2) = (68, 36, 36) for the NIST security
categories III and IV and

• Vc: F=GF(256), (v1, o1, o2) = (92, 48, 48) for the NIST security cat-
egories V and VI.

3

3. Key Size and Performance Trade-off Variants:

We propose two variants of Rainbow, which make a trade-off in key size
and performance. The first one of these is denoted as “cyclic Rainbow”
and allows us to reduce the public key size of the scheme by up to 70 %
at a higher cost of signature verification. The second version (denoted as
“compressed Rainbow”) furthermore stores the private key in the form of
a 512 bit seed, thus enabling us to store the private key easily on small
devices at the cost of the efficiency of the signature generation process.
By proposing these Rainbow variants we want to illustrate the flexibility
of the Rainbow signature scheme.

2 Algorithm Specification

In this section we present the Rainbow signature scheme as proposed in [7].

2.1 Parameters

• finite field F = Fq with q elements

• integers 0 < v1 < · · · < vu < vu+1 = n

• index sets Vi = {1, . . . , vi}, Oi = {vi + 1, . . . , vi+1} (i = 1, . . . , u)
Note that each k ∈ {v1 + 1, . . . , n} is contained in exactly one of the sets
Oi.

• we have |Vi| = vi and set oi := |Oi| (i = 1, . . . , u)

• number of equations: m = n− v1

• number of variables: n

2.2 Key Generation

Private Key. The private key consists of

• two invertible affine maps S : Fm → Fm and T : Fn → Fn

• the quadratic central map F : Fn → Fn, consisting of m multivariate
polynomials f (v1+1), . . . , f (n).
Remember that, according to the definition of the sets Oi (see Section
2.1), there exists, for any k ∈ {v1 + 1, . . . , n} exactly one ` ∈ {1, . . . , u}
such that k ∈ O`. The polynomials f(k) (k = v1 + 1, . . . , n) are of the

4

form

f (k)(x1, . . . , xn) =
∑

i,j∈V`,i≤j

α
(k)
ij xixj

+
∑

i∈V`,j∈O`

β
(k)
ij xixj +

∑
i∈V`∪O`

γ
(k)
i xi + δ(k), (1)

where ` ∈ {1, . . . , u} is the only integer such that k ∈ O` (see above). The

coefficients α
(k)
ij , β

(k)
ij , γ

(k)
i and δ(k) are randomly chosen F elements.

The size of the private key is

m · (m+ 1)︸ ︷︷ ︸
affine map S

+ n · (n+ 1)︸ ︷︷ ︸
affine map T

+

u∑
i=1

(
vi · (vi + 1)

2
+ vi · oi + vi + oi + 1

)
︸ ︷︷ ︸

central map F

field elements.

Public Key. The public key is the composed map

P = S ◦ F ◦ T : Fn → Fn

and therefore consists of m quadratic polynomials in the ring F[x1, . . . , xn].
The size of the public key is

m · (n+ 1) · (n+ 2)

2

field elements.

5

2.3 Signature Generation

Given a document d to be signed, one uses a hash function H : {0, 1} → Fm to
compute the hash value h = H(d) ∈ Fm. A signature z ∈ Fn of the document
d is then computed as follows.

1. Compute x = S−1(h) ∈ Fm.

2. Compute a pre-image y ∈ Fn of x under the central map F . This is done
as shown in Algorithm 1.

3. Compute the signature z ∈ Fn by z = T −1(y).

Algorithm 1 Inversion of the Rainbow central map

Input: Rainbow central map F = (f (v1+1), . . . , f (n)), vector x ∈ Fm.
Output: vector y ∈ Fn with F(y) = x.

1: Choose random values for the variables y1, . . . , yv1 and substitute these val-
ues into the polynomials f (i) (i = v1 + 1, . . . , n).

2: for ` = 1 to u do
3: Perform Gaussian Elimination on the polynomials f (i) (i ∈ O`)

to get the values of the variables yi (i ∈ O`).
4: Substitute the values of yi (i ∈ O`) into the polynomials f (i)

(i = v`+1 + 1, . . . , n).
5: end for
6: return y = (y1, . . . , yn)

2.4 Signature Verification

Given a document d and a signature z ∈ Fn, the authenticity of the signature
is checked as follows.

1. Use the hash function H to compute the hash value h = H(d) ∈ Fm.

2. Compute h′ = P(z) ∈ Fm.

If h′ = h holds, the signature z is accepted, otherwise it is rejected.

The Rainbow signature scheme can be defined for any number of layers u. For
u = 1 we obtain the well known UOV signature scheme. However, choosing
u = 2 leads to a scheme with more efficient computations and smaller key sizes
at the same level of security. Choosing u > 2 gives only a very small benefit
in terms of performance, but needs larger keys to reach the same security level.
Therefore, for ease of implementation, 2 is a common choice for the number
of Rainbow layers. For ease of implementation and performance issues, it is
further common to choose the size of the two Rainbow layers (i.e. the values of
o1 and o2) to be equal. In our parameter recommendations, we follow these two

6

guidelines.
The following algorithms RainbowKeyGen, RainbowSign and RainbowVer illus-
trate the key generation, signature generation and signature verification pro-
cesses of Rainbow in algorithmic form.
Note that, in order to speed up the key generation of our scheme, we developed
for our implementation alternative key generation algorithms. The details of
these algorithms are described in Section 3 (see Algorithms 9 and 10).

Algorithm 2 RainbowKeyGen: Key Generation of Rainbow

Input: Rainbow parameters (q, v1, o1, o2)
Output: Rainbow key pair (sk, pk)

1: m← o1 + o2

2: n← m+ v1

3: repeat
4: MS ← Matrix(q,m,m)
5: until IsInvertible(MS) == TRUE
6: cS ←R Fm

7: S ← Aff(MS , cS)
8: InvS ←M−1

S

9: repeat
10: MT ← Matrix(q, n, n)
11: until IsInvertible(MT) == TRUE
12: cT ←R Fn

13: T ← Aff(MT , cT)
14: InvT ←M−1

T

15: F ← Rainbowmap(q, v1, o1, o2)
16: P ← S ◦ F ◦ T
17: sk ← (InvS, cS ,F , InvT, cT)
18: pk ← P
19: return (sk, pk)

The possible input values of Algorithm RainbowKeyGen are specified in Section
2.8. Matrix(q,m, n) returns an m×n matrix with coefficients chosen uniformly
at random in Fq, while Aff(M, c) returns the affine map M · x+ c.
Rainbowmap(q, v1, o1, o2) returns a Rainbow central map according to the pa-

rameters (q, v1, o1, o2) (see equation (1)). The coefficients α
(k)
ij , β

(k)
ij , γ

(k)
i and

δ(k) are hereby chosen uniformly at random from Fq.

Altogether, we need in RainbowKeyGen the following number of randomly chosen

7

Fq-elements:

m · (m+ 1)︸ ︷︷ ︸
affine map S

+ n · (n+ 1)︸ ︷︷ ︸
affine map T

+ o1 ·
(
v1 · (v1 + 1)

2
+ v1 · o1 + v1 + o1 + 1

)
︸ ︷︷ ︸

central polynomials of the first layer

+ o2 ·
(

(v1 + o1) · (v1 + o1 + 1)

2
+ (v1 + o1) · o2 + v1 + o1 + o2 + 1

)
︸ ︷︷ ︸

central polynomials of the second layer

Algorithm 3 RainbowSign: Signature generation process of Rainbow

Input: Rainbow private key (InvS, cS ,F , InvT, cT), document d
Output: signature z ∈ Fn such that P(z) = H(d)

1: h← H(d)
2: x← InvS · (h− cS)
3: y← InvF(F ,x)
4: z← InvT · (y − cT)
5: return z

Algorithm 4 InvF: Inversion of the Rainbow central map

Input: Rainbow central map F = (f (v1+1), . . . , f (n)), vector x ∈ Fm.
Output: vector y ∈ Fn with F(y) = x.

1: repeat
2: y1, . . . , yv1 ←R F
3: f̂ (v1+1), . . . , f̂ (n) ← f (v1+1)(y1, . . . , yv1), . . . , f (n)(y1, . . . , yv1).

4: t, (yv1+1, . . . , yv2)← Gauss(f̂ (v1+1) = xv1+1, . . . , f̂
(v2) = xv2)

5: if t == TRUE then
6: f̂ (v2+1), . . . , f̂ (n) ← f̂ (v2+1)(yv1+1, . . . , yv2), . . . , f̂ (n)(yv1+1, . . . , yv2)

7: t, (yv2+1, . . . , yn)← Gauss(f̂ (v2+1) = xv2+1, . . . , f̂
(n) = xn)

8: end if
9: until t == TRUE

10: return y = (y1, . . . , yn)

In Algorithm InvF, the function Gauss returns a binary value t ∈ {TRUE,
FALSE} indicating whether the given linear system is solvable, and if so a
random solution of the system. In InvF we make use of at least v1 random
field elements (depending on how often we have to perform the loop to find a
solution).

2.5 Changes needed to achieve EUF-CMA Security

The standard Rainbow signature scheme as described above provides only uni-
versal unforgeability. In order to obtain EUF-CMA security, we apply a trans-
formation similar to that in [16]. The main difference is the use of a random

8

Algorithm 5 RainbowVer: Signature verification of Rainbow

Input: document d, signature z ∈ Fn

Output: TRUE or FALSE
1: h← H(d)
2: h′ ← P(z)
3: if h’==h then
4: return TRUE
5: else
6: return FALSE
7: end if

binary vector r called salt. Instead of generating a signature for h = H(d) as in
Algorithm RainbowSign, we generate a signature for H(H(d)||r). The modified
signature has the form σ = (z, r), where z is a standard Rainbow signature.
By doing so, we ensure that an attacker is not able to forge any (hash value/
signature) pair. In particular, we apply the following changes to the algorithms
RainbowKeyGen, RainbowSign and Rainbowver.

• In the algorithm RainbowKeyGen?, we choose an integer ` as the length of
a random salt; ` is appended both to the private and the public key.

• In the algorithm RainbowSign?, we choose first randomly the values of the
vinegar variables ∈ F v1 ; after that, we choose a random salt r ∈ {0, 1}`
and perform the standard Rainbow signature generation process for h =
H(H(d)||r) to obtain a signature σ = (z||r). If the linear system in step
2 of the signature generation process has no solutions, we choose a new
value for the salt r and try again.

• The verification algorithm RainbowVer? returns TRUE if P(z) = H(H(d)||r),
and FALSE otherwise

Algorithms RainbowKeyGen?, RainbowSign? and RainbowVer? show the modi-
fied key generation, signing and verification algorithms.

Algorithm 6 KeyGen?: Modified Key Generation Algorithm for Rainbow

Input: Rainbow parameters (q, v1, o1, o2), length ` of salt
Output: Rainbow key pair (sk, pk)

1: pk, sk ← RainbowKeyGen(q, v1, o1, o2)
2: sk ← sk, `
3: pk ← pk, `
4: return (sk, pk)

9

Algorithm 7 RainbowSign?: Modified signature generation process for Rain-
bow
Input: document d, Rainbow private key (InvS, cS ,F , InvT, cT), length ` of

the salt
Output: signature σ = (z, r) ∈ Fn × {0, 1}` such that P(z) = H(H(d)||r)

1: repeat
2: y1, . . . , yv1 ←R F
3: f̂ (v1+1), . . . , f̂ (n) ← f (v1+1)(y1, . . . , yv1), . . . , f (n)(y1, . . . , yv1)

4: (F̂ , cF)← Aff−1(f̂ (v1+1), . . . , f̂ (n))
5: until IsInvertible(F̂) == TRUE
6: InvF = F̂−1

7: repeat
8: r ← {0, 1}`
9: h← H(H(d)||r)

10: x← InvS · (h− cS)
11: (yv1+1, . . . , yv2)← InvF · ((xv1+1, . . . , xv2)− cF)

12: f̂ (v2+1), . . . , f̂ (n) ← f̂ (v2+1)(yv1+1, . . . , yv2
), . . . , f̂ (n)(yv1+1, . . . , yv2)

13: t, (yv2+1, . . . , yn)← Gauss(f̂ (v2+1) = xv2+1, . . . , f̂
(n) = xn)

14: until t == TRUE
15: z = InvT · (y − cT)
16: σ ← (z, r)
17: return σ

In Algorithm RainbowSign?, the function Aff−1 takes as input an affine map
G = M · x+ c and returns M and c.
Note that, in line 9 of the algorithm, we do not computeH(d||r), butH(H(d)||r).
In case we have to perform this step several times for a long message d, this
improves the efficiency of our scheme significantly.

Algorithm 8 RainbowVer?: Modified signature verification process for Rain-
bow

Input: document d, signature σ = (z, r) ∈ Fn × {0, 1}`
Output: boolean value TRUE or FALSE

1: h← H(H(d)||r)
2: h′ ← P(z)
3: if h’ == h then
4: return TRUE
5: else
6: return FALSE
7: end if

10

Similar to [16] we find that every attacker, who can break the EUF-CMA se-
curity of the modified scheme, can also break the standard Rainbow signature
scheme.

In order to get a secure scheme, we have to ensure that no salt is used for
more than one signature. Under the assumption of up to 264 signatures being
generated with the system [13], we choose the length of the salt r to be 128 bit
(independent of the security level).

2.6 Note on the Hash Function

In our implementation we use SHA-2 as the underlying hash function. The
SHA-2 hash function family contains the four hash functions SHA224, SHA256,
SHA384 and SHA512 with output lengths of 224, 256, 384 and 512 bits respec-
tively. In the Rainbow instance 1a aimed at the NIST security categories I and
II, we use SHA256 as the underlying hash function. For the Rainbow instances
IIIc and Vc, aimed for the security categories III/IV and V/VI, we use SHA384
and SHA512 respectively.

In case a slightly longer (non standard) hash output is needed for our scheme
(Rainbow schemes over GF(256)), we proceed as follows. In order to obtain a
hash value of length 256 < k < 384 bit for a document d, we set

H(d) = SHA256(d) || SHA256(SHA256(d))|1,...,k−256.

(analogously for hash values of length 384 < k < 512 bits and k > 512 bits)
By doing so, we ensure that a collision attack against the hash function H is at
least as hard as a collision attack against SHA256 (rsp. SHA384, SHA512).

2.7 Note on the Generation of Random Field Elements

During the key and signature generation of Rainbow, we make use of a large
number of random field elements. These are obtained by calling a cryptographic
random number generator such as that from the OpenSSL library. The random
number generator used in our implementations is the AES CTR_DRBG function.In
debug mode, our software can either generate the random bits and store them
in a file, or read the required random bits from a file (for Known Answer Tests).

2.8 Parameter Choice

We propose the following three parameter sets for Rainbow

Ia (F, v1, o1, o2) = (GF(16), 32, 32, 32) (64 equations, 96 variables)

IIIc (F, v1, o1, o2) = (GF(256), 68, 36, 36) (72 equations, 140 variables)

Vc (F, v1, o1, o2) = (GF(256), 92, 48, 48) (96 equations, 188 variables)

11

S , F , T ⇒ P

S , T , P ⇒ F , P

Figure 1: Standard key generation (above) and alternative key generation for
Rainbow. The yellow parts are chosen by the user, the blue parts are computed
during the key generation process.

The proposed parameter sets are denoted as follows: The roman numeral in-
dicates the NIST security category which the given Rainbow instance aims at
(see Section 7.2). The letter indicates the finite field used in the scheme (a for
GF(16) and c for GF(256))1 Note that each of the given parameter sets fulfills
the requirements of two of the NIST security categories. In particular, the Rain-
bow instance Ia meets the requirements of the security categories I and II, the
parameter set IIIc is designed for security categories III and IV, and Vc meets
the requirements of security categories V and VI.
For all three parameter sets we propose a standard as well as a cyclic and a
compressed variant of the corresponding Rainbow instance.

2.9 Rainbow Variants

Additionally to the standard Rainbow scheme, we propose in this paper also a
“cyclic” and a “compressed” variant of Rainbow. Here, the term “cyclic” does
not mean that some parts of our keys can be represented by cyclic matrices.
However, we use the term “cyclic” to indicate that our scheme is motivated by
Petzoldt’s cyclic Rainbow scheme of [15]. In [15], Petzoldt developed a tech-
nique to insert a structured matrix into the public key of the Rainbow scheme
and to compute a corresponding private key (see Figure 1).
The technique not only allows to insert cyclic matrices into the public key, but
also to create major parts of the public key from a small seed spub using a
PRNG. In our proposal, we follow this approach. Therefore, instead of storing
the whole public key, we can simply store the seed spub as well as some small
portion P2 of the public key. By doing so, we can reduce the public key size of
the Rainbow scheme by a factor of up to 70 %.
However, the key generation algorithm of cyclic Rainbow presented in [15] is far
too inefficient for our purposes. Therefore, we developed a new key generation
algorithm for the cyclic Rainbow scheme (see Section 3.3), which is only slighly

1The letter b originally referred to the underlying field GF(31). However, we omitted these
scheme in the current proposal.

12

slower than the standard key generation process. However since, during the ver-
ification process, we have to decompress the public key before evaluating it, the
verification process of the scheme is slowed down significantly. 2 Additionally
to the standard and the “cyclic” variant, we also propose a Rainbow variant
with a “compressed” key. This compressed Rainbow variant works very similar
to the cyclic variant, but additionally stores the private key in the form of a 512
bit seed.

2However, we want to note that this slow down is caused completely by the use of the
cryptographically secure, AES-based PRNG supplied by OpenSSL (which is the same as the
NIST supplied one) to generate the “fixed” parts of the public key. By using a faster stream
cipher or even generating the public key using a Linear Feedback Shift Register (LFSR), this
slow down can be avoided nearly completely. Furthermore, additional structure in the public
key might be used to speed up the evaluation of the public key further (see [14]). However, we
believe that the security of Rainbow schemes with structured keys is not understood enough
to propose them as a cryptographic standard. We therefore feel safer by using a public key
which was generated by a cryptographically secure PRNG. However, we hope that proposing
a non standard Rainbow variant here might motivate researchers to intensify their research
on the security of Rainbow schemes with structured public key, too.

13

3 Efficient Key Generation

In this section we describe how to generate Rainbow key pairs in an efficient
way. In the first subsection (Subsection 3.1) we introduce some general con-
ventions and notations used in the remainder of this proposal. Subsection 3.2
then describes how to efficiently generate a key pair of the standard Rainbow
signature scheme, while Subsection 3.3 deals with the key generation of the
cyclicRainbow signature scheme. We note here that the term “cyclicRainbow”
does not indicate that parts of the public key of our scheme are given by cyclic
matrices. Instead we use this term to indicate that our scheme is motivated
by the idea of cyclicRainbow [15]. In our proposed scheme, major parts of the
public key can be generated from a small seed using a PRNG.

3.1 Conventions

In order to speed up the key generation process, we make the following restric-
tions on our Rainbow instances.

• We restrict to Rainbow schemes with two layers. Thus, the scheme is
determined by the parameters v1, o1 and o2 and we have m = o1 + o2

equations and n = v1 + m variables. Note that our parameter proposals
are of this type.

• We restrict to homogeneous maps S, F and T . Note that, due to this
choice, the public key P is a homogeneous quadratic map from Fn to Fm.
It is widely accepted that the complexity of direct attacks against a mul-
tivariate system P is determined solely by the homogeneous part of P of
highest degree. All other attacks against the Rainbow scheme neglect the
linear part of the Rainbow public key and only use the (symmetric) matri-
ces representing the homogeneous quadratic part. Therefore, restricting
to homogeneous keys does not weaken the security of Rainbow.

• We use linear maps S and T of the form

S =

(
Io1×o1 S′o1×o2
0o2×o1 Io2×o2

)
,

T =

 Iv1×v1 T
(1)
v1×o1 T

(2)
v1×o2

0o1×v1 Io1×o1 T
(3)
o1×o2

0o2×v1 0o2×o1 Io2×o2

 . (2)

Note that, for every Rainbow public key P, there exists a corresponding
private key (S,F , T) with S and T being of form (2) (c.f. [18]). So, the
upper assumption does not weaken the security of our scheme.

14

For our special choice of S and T we have det(S) = det(T) = 1 and

S−1 =

(
Io1×o1 S′o1×o2
0o2×o1 Io2×o2

)
= S,

T −1 =

 I T (1) T (1) · T (3) − T (2)

0 I T (3)

0 0 I

 . (3)

For abbreviation, we set T (4) := T (1) · T (3) − T (2).

Furthermore, we introduce an intermediate map Q = F ◦T . Note that the three
maps F , Q and P can be represented by matrices in two different ways

1. as Macaulay matrices MF , MQ and MP ∈ Fm×D, where D = n·(n+1)
2 is

the number of terms in the Rainbow public key.

2. as a set of m n× n matrices F (i) (i = v1 + 1, . . . , n) (or Q(i), P (i) respec-
tively). We write these matrices as upper triangular matrices and divide
them into submatrices as shown in equation (4).

Q(i) =

 Q
(i,1)
v1×v1

Q
(i,2)
v1×o1 Q

(i,3)
v1×o2

0o1×v1 Q
(i,5)
o1×o1 Q

(i,6)
o1×o2

0o2×v1 0o2×o1 Q
(i,9)
o2×o2

 (4)

(same with F (i), P (i)).

In our algorithm, we use both representations.

3.2 Efficient Key Generation of standard Rainbow

First, we choose a 256-bit seed spriv and use a PRNG to generate from spriv the
matrices S′ ∈ Fo1×o2 , T (1) ∈ Fv1×o1 , T (2) ∈ Fv1×o2 , T (3) ∈ Fo1×o2 as well as the
non zero coefficients of the central map.
These coefficients are written into the matrices F (i) (i = v1 +1, . . . , n) as shown
in Figure 2.
All elements of the white parts of the matrices are zero.

Computing the matrices Q(i)

For the polynomials of the first layer we get from Q(i) = TT · F (i) · T

Q
(i)
1 = F

(i)
1 ,

Q
(i)
2 = (F

(i)
1 + (F

(i)
1)T) · T1 + F

(i)
2 ,

Q
(i)
3 = (F

(i)
1 + (F

(i)
1)T) · T2 + F2 · T3,

Q
(i)
5 = UT(TT

1 · F
(i)
1 · T1 + TT

1 · F
(i)
2 ,

Q
(i)
6 = TT

1 (F
(i)
1 + (F

(i)
1)T) · T2 + TT

1 · F
(i)
2 · T3 + (F

(i)
2)T · T2,

Q
(i)
9 = UT(TT

2 · F
(i)
1 · T2 + TT

2 · F
(i)
2 · T3). (5)

15

0

F
(i)
1 F

(i)
2

0

v1 + 1 ≤ i ≤ v2

0

F
(i)
1 F

(i)
2 F

(i)
3

F
(i)
5 F

(i)
6

0

v2 + 1 ≤ i ≤ n

Figure 2: Matrices F (i) (i = v1 + 1, . . . , n)

MP =

MP1

MP2

MQ =

MQ1

MQ2

Figure 3: Matrices MQ and MP for the standard Rainbow signature scheme

For the polynomials of the second layer we get from Q(i) = TT · F (i) · T

Q
(i)
1 = F

(i)
1 ,

Q
(i)
2 = (F

(i)
1 + (F

(i)
1)T) · T1 + F

(i)
2 ,

Q
(i)
3 = (F

(i)
1 + (F

(i)
1)T) · T2 + F

(i)
2 · T3 + F

(i)
3 ,

Q
(i)
5 = UT(TT

1 · F
(i)
1 · T1 + TT

1 · F
(i)
2 + F

(i)
5 ,

Q
(i)
6 = TT

1 · (F
(i)
1 + (F

(i)
1)T) · T2 + TT

1 · F
(i)
2 · T3

+ TT
1 · F

(i)
3 + (F

(i)
2)T · T2 + (F

(i)
5 + (F

(i)
5)T) · T3 + F

(i)
6 , (6)

Q
(i)
9 = UT(TT

2 · F
(i)
1 · T2 + TT

2 · F
(i)
2 · T3 + TT

3 · F
(i)
5 · T3 + TT

2 · F
(i)
3 + TT

3 · F
(i)
6).

Here, UT(A) transforms the matrix A into an upper triangular matrix.

Computing the matrix MQ

We define m × n·(n+1)
2 matrices MQ and MP of the form shown in Figure 3.

We insert the elements of the matrices Q(i) i = v1 + 1, . . . , n into the matrix
MQ as follows

• The n·(n+1)
2 non-zero elements of the matrix Q(i) are inserted into the

(i− v1)-th row of MQ as follows

16

– The first v1·(v1+1)
2 + v1o1 positions of the (i − v1)-th row are filled

with the elements of the matrix Q
(i)
1 ||Q

(i)
2 (from left to right and top

to bottom).

– The next v1 · o2 positions are filled with the elements of Q
(i)
3 (again

from left to right and top to bottom).

– The next o1·(o1+1)
2 + o1o2 positions are filled with the elements of

Q
(i)
5 ||Q

(i)
6 (from left to right and top to bottom).

– The last o2·(o2+1)
2 positions of the row are filled with the elements of

the matrix Q
(i)
9

Computing the public key

Finally, we compute the matrix MP containing the coefficients of the public
key by

MP1 = MQ1 + S′ ·MQ2 and

MP2 = MQ2.

Algorithm 9 shows the standard key generation process for the Rainbow signa-
ture scheme in compact form.

Algorithm 9 Efficient Key Generation of standard Rainbow

Input: linear transformations S, T of form (2), matrices F (i) (i = v1 +1, . . . , n)
Output: Rainbow public key P (consisting of the matrices MP1 and MP2)

1: for i = v1 + 1 to v2 do
2: Compute the matrices Q

(i)
1 , Q

(i)
2 , Q

(i)
3 , Q

(i)
5 , Q

(i)
6 , Q

(i)
9 using equation (5).

3: end for
4: for i = v2 + 1 to n do
5: Compute Q

(i)
1 , Q

(i)
2 , Q

(i)
3 , Q

(i)
5 , Q

(i)
6 , Q

(i)
9 using equation (7).

6: end for
7: for i = v1 + 1 to n do
8: Insert the elements of the matrix Q(i) into the (i − v1)-th row of the

matrix MQ (as described above)
9: end for

10: Compute the Rainbow public key by MP1 = MQ1 +S′ ·MQ2, MP2 = MQ2

11: return MP1,MP2.

3.3 Efficient Key Generation of cyclicRainbow

For the key generation of cyclicRainbow, we divide the matrices MQ and MP

of Figure 3 into submatrices as shown in Figure 4. Here, D1 = v1·(v1+1)
2 +v1o1 is

the number of non-zero coefficients in the central polynomials of the first layer,

D2 = v2·(v2+1)
2 is the number of non-zero coefficients in the central polynomials

17

MQ =

m

o1

D1 D2 D

MQ1,1 MQ1,2 MQ1,3

MQ2,1 MQ2,2 MQ2,3

MP =

m

o1

MP1,1 MP1,2 MP1,3

MP2,1 MP2,2 MP2,3

Figure 4: Matrices MQ and MP for cyclic Rainbow

of the second layer and D = n·(n+1)
2 is the number of terms in the public

polynomials.

We choose two 256 bit seeds spriv and spub. We use a PRNG to generate from
spriv the matrices S′, T (1), T (2) and T (3) and from spub the matrices MP1,1,
MP2,1 and MP2,2 (see Figure 4).

First step: Compute the matrices MQ(1,1), MQ(2,1) and MQ(2,2)

Due to the relation P = S · Q we find(
MQ1,1

MQ2,1

)
= S−1 ·

(
MP1,1

MP2,1

)
=

(
MP1,1 + S′ ·MP2,1

MP2,1

)
and

MQ2,2 = (S−1)22 ·B2 = B2.

Second Step: Compute the central polynomials of the first Rainbow
layer

For this, we represent the first o1 components of the map Q as upper triangular
matrices Q(i) as shown in (4). Therefore, Q(i) looks as shown below.

18

0

Q
(i)
1 Q

(i)
2 Q

(i)
3

Q
(i)
5 Q

(i)
6

Q
(i)
9

We insert the D1 elements of the i-th row of MQ1,1 into the dark gray parts

of the matrices Q
(i)
1 and Q

(i)
2 (from left to right and top to bottom). The light

gray parts of the matrices Q(i) contain (yet unknown) elements of the field F.
The corresponding matrix F (i) representing the i-th central polynomial looks
like

0

F
(i)
1 F

(i)
2

0

Here, the only non zero elements are located in the gray parts of F
(i)
1 and

F
(i)
2 .

We consider the relation

F (i) = (T−1)T ·Q(i) · T−1

and find that the elements of F
(i)
1 and F

(i)
2 only depend on the (already known)

elements of Q
(i)
1 and Q

(i)
2 . Such we get

F
(i)
1 = Q

(i)
1 ,

F
(i)
2 = (Q

(i)
1 + (Q

(i)
1)T) · T1 +Q

(i)
2 . (7)

All the other elements of the matrices F (i) (i ∈ {1, . . . , o1}) are zero. So, after

having determined the elements of F
(i)
1 and F

(i)
2 , we can use the inverse relation

Q(i) = TT · F (i) · T

to compute the light gray parts of Q(i). We find

Q
(i)
3 = (F

(i)
1 + (F

(i)
1)T) · T2 + F2 · T3,

Q
(i)
5 = UT(TT

1 · F
(i)
1 · T1 + TT

1 · F
(i)
2 ,

Q
(i)
6 = TT

1 (F
(i)
1 + (F

(i)
1)T) · T2 + TT

1 · F
(i)
2 · T3 + (F

(i)
2)T · T2,

Q
(i)
9 = UT(TT

2 · F
(i)
1 · T2 + TT

2 · F
(i)
2 · T3). (8)

Here, UT(M) means bringing the square matrix M into upper triangular form.

19

Third Step: Compute the central polynomials of the second Rainbow
layer

For this, we represent the o1 + 1, . . . ,m components of the map Q as upper
triangular matrices Q(i) as shown in (4). Therefore, Q(i) looks as shown below.

0

Q
(i)
1 Q

(i)
2 Q

(i)
3

Q
(i)
5 Q

(i)
6

Q
(i)
9

We insert the D1 elements of the i-th row of MQ(2,1) into the dark gray parts of

the matrices Q
(i)
1 and Q

(i)
2 (from left to right and top to bottom). The D2−D1

elements of the i-th row of the matrix MQ(2,2) are inserted into the dark gray

parts of the matrices Q
(i)
3 , Q

(i)
5 and Q

(i)
6 (again left to right and top to bottom;

i.e. we fill the matrix Q
(i)
3 first.). The light gray part of the matrix Q

(i)
9 contains

(yet unknown) elements of the field F.
The corresponding matrix F (i) representing the i-th central polynomial looks
like

Here, the only non zero elements are located in the gray parts of F
(i)
1 , F

(i)
2 ,

F
(i)
3 , F

(i)
5 and F

(i)
6 .

We consider the relation

F (i) = (T−1)T ·Q(i) · T−1

and find that the elements of F
(i)
1 , F

(i)
2 , F

(i)
3 , F

(i)
5 and F

(i)
6 only depend on the

already known elements of Q(i). Such we get

F
(i)
1 = Q

(i)
1 ,

F
(i)
2 = (Q

(i)
1 + (Q

(i)
1)T) · T1 +Q

(i)
2 ,

F
(i)
3 = (Q

(i)
1 + (Q

(i)
1)T) · T4 +Q

(i)
2 · T3 +Q

(i)
3 ,

F
(i)
5 = UT(TT

1 ·Q
(i)
1 · T1 + TT

1 ·Q
(i)
2 +Q

(i)
5 ,

F
(i)
6 = TT

1 · (Q
(i)
1 + (Q

(i)
1)T) · T4 + TT

1 ·Q
(i)
2 · T3

+ TT
1 ·Q

(i)
3 + (Q

(i)
2)T · T4 + (Q

(i)
5 + (Q

(i)
5)T) · T3 +Q

(i)
6 (9)

The other elements of the matrices F (i) (i ∈ {o1 + 1, . . . ,m}) are zero. So, after

having determined the elements of F
(i)
1 , F

(i)
2 , F

(i)
3 , F

(i)
5 and F

(i)
6 , we can use

the inverse relation
Q(i) = TT · F (i) · T

20

to compute the light gray parts of Q(i). We find

Q
(i)
9 = UT(TT

2 ·F
(i)
1 ·T2 +TT

2 ·F
(i)
2 ·T3 +TT

3 ·F
(i)
5 ·T3 +TT

2 ·F
(i)
3 +TT

3 ·F
(i)
6). (10)

Here, UT(M) means bringing the square matrix M into upper triangular form.

Computing the remaining parts of the public key

For this last step, we transform the matrices Q(i) back into a Macaulay matrix
MQ. Here, the i-th row of the matrix MQ contains all the elements of the matrix
Q(i). In particular, the i-th rows of the matrices MQ1,1 and MQ2,1 contain the

elements of the matrices Q
(i)
1 and Q

(i)
2 (read from left to right and from top to

bottom). The i-th rows of the matrices MQ1,2 and MQ2,2 contain the elements

of the matrices Q
(i)
3 , Q

(i)
5 and Q

(i)
6 (again read from left to right and from top

to bottom; i.e. the elements of Q
(i)
3 come first). The i− th rows of the matrices

MQ1,3 and MQ2,3 contain the elements of the matrix Q
(i)
9 (read from left to

right and to bottom). Finally, we compute the matrix MP by

MP = S ·MQ

or

MP1,2 = MQ1,2 + S′ ·MQ2,2,

MP1,3 = MQ1,3 + S′ ·MQ2,3,

MP2,3 = MQ2,3 (11)

Algorithm 10 shows the key generation process of cyclic Rainbow in a compact
form.
In Cyclic Rainbow, the secret key and signing map has exactly the same form
as for standard Rainbow.
Also, in Cyclic Rainbow, a majority of the verification (public map) time is
taken up by the PRNG. Here, the default AES-based DRBG is not very fast,
and a better DRBG would make the verification and key generation a lot faster
(see also Subsection 6.5).

3.4 Key and Signature Generation of Compressed Rain-
bow

The key generation process of the compressed Rainbow scheme works in exactly
the same way as that of the cyclic Rainbow scheme described above. However,
we do not store the central map F computed by the algorithm, but only the
seeds spriv and spub used to generate the maps S an T as well as the matrices
B1 and B2 used in the algorithm. In order to sign a message / hash value, we
first have to generate the full private key from these two seeds. We use spriv to
generate the matrices S and T of form (2) and spub to create the matrices B1

and B2 used in Algorithm 10. Next, we compute the central map F as shown

21

Algorithm 10 Efficient Key Generation of cyclic Rainbow

Input: linear transformations S, T of form (2), matrices B1 ∈ Fm×D1 and
B2 ∈ Fm×(D2−D1)

Output: Rainbow central map S, matrices MP1,2, MP1,3, MP2,3

1:

(
MQ1,1

MQ2,1

)
= S−1 ·B1 . First Step

2: MQ2,2 = B2

3: for i = v1 + 1 to v2 do . Second Step
4: Define an upper triangular matrix Q(i) of form (4).
5: Insert the coefficients of the (i − v1)-th row of the matrix MQ1,1 into

the submatrices Q
(i)
1 and Q

(i)
2 .

6: Set F
(i)
1 = Q

(i)
1 and F

(i)
2 = (Q

(i)
1 + (Q

(i)
1)T) · T1 +Q

(i)
2 .

7: Compute the matrices Q
(i)
3 , Q

(i)
5 , Q

(i)
6 , Q

(i)
9 using equation (8).

8: end for
9: for i = v2 + 1 to n do . Third Step

10: Define an upper triangular matrix Q(i) of form (4).
11: Insert the coefficients of the (i − v1)-th row of the matrix MQ2,1 into

the submatrices Q
(i)
1 and Q

(i)
2 .

12: Insert the coefficients of the (i − v1)-th row of the matrix MQ2,2 into

the submatrices Q
(i)
3 , Q

(i)
5 and Q

(i)
6 .

13: Compute F
(i)
1 , F

(i)
2 , F

(i)
3 , F

(i)
5 , F

(i)
6 using equation (9).

14: Compute Q
(i)
9 using equation (10).

15: end for
16: for i = v1 + 1 to n do . Fourth Step
17: Insert the elements of the matrix Q(i) into the (i − v1)-th row of the

matrix MQ (as described above)
18: end for
19: Compute the remaining parts of the public key by equation (11).
20: return F (1), . . . , F (m),MP1,2,MP1,3,MP2,3.

22

in the algorithm (using line 1 to 6 as well as 9 to 13). Finally, we generate the
signature in the same way as for the standard Rainbow scheme.
Since we have to perform parts of the key generation process during the signa-
ture generation, the signature generation of compressed Rainbow is much more
inefficient than for standard and cyclic Rainbow.

4 Key Storage

4.1 Representation of Finite Field Elements

4.1.1 GF(16)

Elements of GF(2) are stored as one bit 0 or 1. Elements of GF(4) are stored in
two bits as linear polynomials over GF(2). The constant term of the polynomial
is hereby stored in the least significant bit. Elements of GF(16) are stored in 4
bits as linear polynomials over GF(4). The constant term of the polynomial is
hereby stored in the 2 least significant bits. Two adjacent GF(16) elements are
packed into one byte. In a byte, the “lower” nibble is taken to come before the
“higher” nibble.

4.1.2 GF(256)

Elements of GF(256) are stored in one byte as linear polynomials over GF(16).
The constant term of the polynomial is hereby stored in the 4 least significant
bits.

4.2 Public Key

The public key P of Rainbow is a system of m multivariate quadratic polyno-
mials in n variables (we write P :=MQ(m,n)).

We write it as a Macaulay matrix in column-major (the coefficients in dif-
ferent equations but of the same monomial are adjacent) form, with monomials
ordered by lexicographic order (x2

1, x1x2, x1x3....x1xn, x
2
2 . . . x

2
n−1, xn−1xn, x

2
n).

y1 = q1,1,1x1x1 + q1,2,1x1x2 + · · ·+ q1,n,1x1xn + q2,2,1x2x2 + · · ·
y2 = q1,1,2x1x1 + q1,2,2x1x2 + · · ·+ q1,n,2x1xn + q2,2,2x2x2 + · · ·

... =
...

ym = q1,1,mx1x1 + q1,2,mx1x2 + · · ·+ q1,n,mx1xn + q2,2,mx2x2 + · · ·
(12)

Hereby, qi,j,k is the coefficient of the quadratic monomial xixj of the polynomial
yk, where i ≤ j. If we consider the indices of the coefficients qi,j,k as a 3-digit
number, we order the coefficient with smaller indices in front. The coefficient

23

sequence of the MQ(m,n) system (12) , is therefore stored (for the underlying
fields GF(16) and GF(256)) in the form

[q1,1,1, q1,1,2, . . . , q1,1,m, q1,2,1, . . . , q1,n,m, q2,2,1, . . . qn,n,m].

Cyclic version of Rainbow The public key of cyclic (and compressed) Rain-
bow contains first a 32-byte (256-bit) seed spub. The AES counter mode DRBG
of the reference implementation uses 48 bytes of AES key and nonce. Here,
we use spub concatenated with the first 16 bytes of SHA256(spub) as the in-
put to the AES-based DRBG. From this DRBG we read out MP1,1, MP2,1 and
MP2,2 in that order (cf. Section 3.3). The remainder of the public key comprises
MP1,2,MP1,3,MP2,3 in that order. Within MP1,2, we list the coefficients cor-

responding to those in matrices Q
(i)
3 , Q

(i)
5 , Q

(i)
6 in that order. MP1,3 and MP2,3

corresponds to coefficients in matrices Q
(i)
9 . Within each block, we order the

coefficients as shown above. That is, if we denote by pi,j,k the coefficient of xixj
(where i ≤ j) in equation k, then within each block, the coefficients are sorted
by k then i then j.

4.3 Secret Key

The secret key comprises the three components T ,S, and F . These components
are stored in the order T ,S, and F .

4.3.1 The affine maps T and S

The affine maps T : Fn → Fn and S : Fm → Fm are stored as in Section 3

(Equation 2). That is, we store S′o1×o2 , T
(1)
v1×o1 , T

(4)
v1×o2 , and T

(3)
o1×o2 . Within

each block, we store it column-major.

4.3.2 The central map F

The central map F consists of two layers of quadratic equations. Recall that
F = (f (v1+1)(x), . . . , f (n)(x)) and

f (k)(x) =
∑

i,j∈V`,i≤j

α
(k)
ij xixj +

∑
i∈V`,j∈O`

β
(k)
ij xixj ,

where ` ∈ {1, 2} is again the only integer such that k ∈ O`.

For the first layer we have V1 := {1, . . . , v1} and O1 := {v1 + 1, . . . , v1 + o1}, for
the second layer V2 := {1, . . . , v2 = v1 +o1} and O2 := {v2 +1, . . . , n = v2 +o2}.
The two layers of the central map F are stored separately.

While storing the first layer of F , the coefficients of the equations f (v1+1), . . . , f (v2)

are further divided into parts denoted as F1 (“vv”) and F2 (“vo”) and are stored
in the secret key in the orderF1 (“vv”) followed by F2 (“vo”).

24

F1 (vv) : The F1 (“vv”) part is an MQ(o1, v1) system, whose components
are of the form ∑

i,j∈V1,i≤j

α
(k)
ij xixj for k ∈ O1 .

It is stored in the same manner as theMQ(m,n) system of the public key (see

Section 4.3). That is, α
(k)
ij is ordered by i first, then j, then by k.

Note that the F1 (“vv”) part contains the coefficients of the quadratic v× v
terms.

The F1 (“vv”) part of the secret key of the first layer corresponds to the

matrices F
(k)
1 .

F2 (vo) : The F2 (“vo”) part contains the remaining quadratic terms :

∑
i∈V1

∑
j∈O1

β
(k)
ij xixj =

[
xv1+1, . . . , xv1+o1

] 
β

(k)
11 . . . β

(k)
v11

...
. . .

β
(k)
1o1

. . . β
(k)
v1o1


 x1

...
xv1

 for k ∈ O1 .

The F2 (“vo”) of the secret key of the first layer corresponds to the matrices

F
(k)
2 . The F2 (“vo”) part has its coefficients ordered just like F1, so in the

sequence

[β
(v1+1)
11 , . . . , β

(v1+o1)
11 , β

(v1+1)
12 , . . . , β

(v1+o1)
1n , β

(v1+1)
22 , . . . , β(v1+o1)

v1o1].

The coefficients of the second Rainbow layer are stored similarly. However,

the parts are ordered corresponding to the matrices F
(k)
1 , F

(k)
2 , F

(k)
3 , F

(k)
5 , and

F
(k)
6 , where F

(k)
1 , F

(k)
2 , F

(k)
5 comprise the “vv” part and F

(k)
3 and F

(k)
6 the “vo”

part. Again, in each block we order the coefficients first by the corresponding
monomials xixj (where i ≤ j) and then by the equation index k.

Cyclic and Compressed Rainbow

In the case of Cyclic Rainbow, the secret key is stored in exactly the same form
as above. For Compressed Rainbow, the secret key consists of the two 256 bit
seeds spriv and spub which are stored in this order.3

3Note that we consider spub here as part of the secret key, although it is publicly known.
The reason for this is that spub is needed during the signature generation to recover the
missing parts of the private key. Therefore, spub is considered as part of both the public and
secret key.

25

5 Implementation Details

5.1 Arithmetic over Finite Fields

5.1.1 The case of GF(16)

For multiplications over GF(16), our general strategy is the use of VPSHUFB/TBL
for multiplication tables. While multiplying a bunch a of GF(16) elements stored
in an SIMD register with a scalar b ∈ GF(16), we load the table of results of
multiplication with b and follow with one (V)PSHUFB for the result a · b.

Time-Constancy issues: Addressing table entries is a side-channel leakage
which reveals the value of b to a cache-time attack [4].
When time-constancy is needed, the straightforward method is again to use
VPSHUFB. However, we do not use multpilication tables as above, but logarithm
and exponentiation tables, and store the result in log-form if warranted. That is,
we compute a · b = g(logg a+logg b), and due to the characteristic of (V)PSHUFB,
setting logg 0 = −42 is sufficient to make this operation time-constant even
when multiplying three elements.4 We shall see a different method below when
working on an constant-time evaluation of a multivariate quadratic system over
GF(16) (in the following sections, we denote this task shortly by “Evaluation of
MQ”).

5.1.2 The case of GF(256)

Multiplications over GF(256) can be implemented using 2 table lookup instruc-
tions in the mainstream Intel SIMD instruction set. One (V)PSHUFB is used for
the lower 4 bits, the other one for the top 4 bits.

Time-Constancy issues: For time-constant multiplications, we adopt the
tower field representation of GF(256) which considers an element in GF(256)
as a degree-1 polynomial over GF(16). The sequence of tower fields from which
we build GF(256) is the following:

GF(4) := GF(2)[e1]/(e2
1 + e1 + 1),

GF(16) := GF(4)[e2]/(e2
2 + e2 + e1),

GF(256) := GF(16)[e3]/(e2
3 + e3 + e2e1) .

Using this representation, we can build constant-time multiplications over GF(256)
from the techniques of GF(16). A time-constant GF(256) multiplication costs
about 3 GF(16) multiplications for multiplying 2 degree-1 polynomials over
GF(16) with the Karatsuba method and one extra table lookup instruction for
reducing the degree-2 term.

4Here, g is a generator of the multiplicative group GF(16)?.

26

5.2 The Public Map and Evaluation of MQ

The public map of Rainbow is a straightforward evaluation of an MQ system.
For pure public-key operations, the multiplications over GF(16) can be done
by simply (1) loading the multiplication tables (multab) by the value of the
multiplier and (2) performing a VPSHUFB for 32 results simultaneously. The
multiplications over GF(256) can be performed with the same technique via 2
VPSHUFB instructions, using the fact that one lookup covers 4 bits. Another
trick is to multiply a vector of GF(16) elements by two GF(16) elements with
one VPSHUFB since VPSHUFB can actually be seen as 2 independent PSHUFB in-
structions.

5.2.1 Constant-Time Evaluation of MQ over GF(16) and GF(256)

While time-constancy issues are not important for the public key operations,
we have to consider this issue during the evaluation of the “vv” terms of the
central map F .
In order to achieve time-constancy, we have to avoid loading multab according
to a secret index for preventing cache-time attacks. To do this, we “generate”
the desired multab instead of “loading” it by a secret value. More precisely,
when evaluating MQ with a vector w = (w1, w2, . . . , wn) ∈ GF(16)n, we can
achieve a time-constant evaluation if we already have the multab of w, which
is (w1 · 0x0, . . . , w1 · 0xf), . . . , (wn · 0x0, . . . , wn · 0xf), in the registers. 5 In
other words, instead of performing memory access indexed by a secret value,
we perform a sequential memory access indexed by the index of variables to
prevent revealing side-channel information.
We show the generation of multab for elements w ∈ GF(16) in Figure 5. A
further matrix-transposition-like operation is needed to generate the desired
multab. The reason for this is that the initial byte from each register forms
our first new table, corresponding to w1, the second byte from each register is
the table of multiplication by w2, etc. Computing one of these tables costs 16
calls of PSHUFB and we can generate 16 or 32 tables simultaneously using the
SIMD environment. The amortized cost for generating one multab is therefore
1 PSHUFB plus some data movements.
As a result, the constant-time evaluation of MQ over GF(16) or GF(256) is
only slightly slower than the non-constant time version.

5.3 Gaussian Elimination in Constant Time

We use constant-time Gaussian elimination in the signing process of Rainbow.
Constant-time Gaussian elimination was originally presented in [1] for GF(2)

5Note here and in the following. If we have a natural basis (b0 = 1, b1, . . .) of a binary field
GF(q), we represent bj by 2j for convenience. So b1 is 2, 1 + b1 is 3, . . . , 1 + b1 + b2 + b3
is 0xF for elements of GF(16), and analogously for larger fields; using the same method, the
AES field representation of GF(28) is called 0x11B because it uses x8 + x4 + x3 + x + 1 as
irreducible polynomial.

27

w · 0x0
w · 0x1

...

w · 0xf

7−→

w1 · 0x0
w1 · 0x1

...

w1 · 0xf

,

w2 · 0x0
w2 · 0x1

...

w2 · 0xf

, . . .

w15 · 0x0
w15 · 0x1

...

w15 · 0xf

Figure 5: Generating multab for w = (w1, w2, . . . w16). After w · 0x0, w · 0x1,
. . . , w · 0xf are calculated, each row stores the results of multiplications and
the columns are the multab corresponding to w1, w2, . . . , w15. The multab of
w1, w2, . . . ,w15 can be generated by collecting data in columns.

matrices and we extend the method to other finite fields. The problem of elim-
inations is that the pivot may be zero and one has to swap rows with zero
pivots with other rows, which reveals side-channel information. To test pivots
against zero and switch rows in constant time, we can use the current pivot as
a predicate for conditional moves and switch with every possible row which can
possibly contain non-zero leading terms. This constant-time Gaussian elimina-
tion is slower than a straightforward Gaussian elimination (see Table 1), but is
still an O(n3) operation.

Table 1: Benchmarks on solving linear systems with Gauss elimination on Intel
XEON E3-1245 v3 @ 3.40GHz, in CPU cycles.

system plain elimination constant version

GF(16), 32× 32 6,610 9,539
GF(256), 20× 20 4,702 9,901

28

6 Performance Analysis

6.1 Key and Signature Sizes

parameter parameters public key private key hash size signature
set (F, v1, o1, o2) size (kB) size (kB) (bit) size (bit) 1

Ia (GF(16),32,32,32) 149.0 93.0 256 512

IIIc (GF(256),68,36,36) 710.6 511.4 576 1,248

Vc (GF(256), 92,48,48) 1,705.5 1,227.1 768 1,632
1 128 bit salt included

Table 2: Key and Signature Sizes for Rainbow

parameter parameters public key private key hash size signature
set (F, v1, o1, o2) size (kB) size (kB)2 (bit) size (bit) 1

Ia (GF(16),32,32,32) 58.1 93.0 256 512

IIIc (GF(256),68,36,36) 206.7 511.4 576 1,248

Vc (GF(256), 92,48,48) 491.9 1,227.1 768 1,632
1 128 bit salt included
2 can be compressed to a seed of 512 bits (compressed Rainbow)

Table 3: Key and Signature Sizes for cyclic/ compressed Rainbow

29

6.2 Performance on the NIST Reference Platform

Processor: Intel(R) Xeon(R) CPU E3-1225 v5 @ 3.30GHz (Skylake)
Clock Speed: 3.30GHz
Memory: 64GB (4x16) ECC DIMM DDR4 Synchronous 2133 MHz (0.5 ns)
Operating System: Linux 4.8.15, GCC compiler version 6.4
No use of special processor instructions

parameter set key gen. sign. gen. sign. verif.

Ia
cycles 35.0M 402K 155K

time (ms) 10.6 0.122 0.0468
memory 3.5MB 3.0MB 2.6MB

IIIc
cycles 340M 1.70M 1.64M

time (ms) 103 0.516 0.497
memory 4.6MB 2.9MB 3.1MB

Vc
cycles 757M 3.64M 2.39M

time (ms) 229 1.10 0.723
memory 7.0MB 3.7MB 3.9MB

Table 4: Performance of standard Rainbow on the NIST Reference Platform
(Linux/Skylake)

parameter set key gen. sign. gen.* sign. verif.

Ia
cycles 40.2M 20.2M 3.44M

time (ms) 12.2 6.13 1.04
memory 3.5MB 3.0MB 2.6MB

IIIc
cycles 402M 217M 19.4M

time (ms) 122 65.8 5.89
memory 4.6MB 2.9MB 3.1MB

Vc
cycles 879M 469M 45.4M

time (ms) 266 142 13.7
memory 7.0MB 3.7MB 3.9MB

Table 5: Performance of cyclic/compressed Rainbow on the NIST Reference
Platform (Linux/Skylake)

* decompressing from 512-bit secret key (compressed Rainbow), otherwise the
same as in Table 4

30

6.3 Performance on Other Platforms

Processor: Intel(R) Xeon(R) CPU E3-1275 v5 @ 3.60GHz (Skylake)
Clock Speed: 3.60GHz
Memory: 64GB (4x16) ECC DIMM DDR4 Synchronous 2133 MHz (0.5 ns)
Operating System: Linux 4.8.5, GCC compiler version 6.4
Use of AVX2 vector instructions

parameter set key gen. sign. gen. sign. verif.

Ia
cycles 8.29M 67.7K 21.7K

time (ms) 2.30 0.019 0.006
memory 3.5MB 3.0MB 2.8MB

IIIc
cycles 94.8M 588K 114K

time (ms) 26.3 0.163 0.032
memory 4.6MB 3.5MB 3.3MB

Vc
cycles 126M 755K 197K

time (ms) 34.9 0.210 0.055
memory 7.0MB 4.2MB 4.5MB

Table 6: Performance of standard Rainbow on Linux/Skylake (AVX2)

parameter set key gen. sign. gen.* sign. verif.

Ia
cycles 9.28M 6.41M 3.37M

time (ms) 2.58 1.781 0.936
memory 3.5MB 3.0MB 2.8MB

IIIc
cycles 110M 61.8M 17.8M

time (ms) 30.5 17.2 4.94
memory 4.6MB 3.5MB 3.3MB

Vc
cycles 137M 87.2M 43.0M

time (ms) 38.0 24.2 11.9
memory 7.0MB 4.2MB 4.5MB

Table 7: Performance of cyclic/compressed Rainbow on Linux/Skylake (AVX2)

* decompressing from 512-bit secret key (compressed Rainbow), otherwise
the same as in Table 6

31

Processor: Intel(R) Xeon(R) CPU E7-8860 v3 @ 2.20GHz (Haswell)
Clock Speed: 2.2GHz
Memory: 2TB ECC DIMM DDR4 Synchronous 2133 MHz (0.5 ns)
Operating System: Linux 4.15.0-39, GCC compiler version 7.3
Use of AVX2 vector instructions

parameter set key gen. sign. gen. sign. verif.

Ia
cycles 8.90M 75.4K 26.9K

time (ms) 4.05 0.034 0.012
memory 3.5MB 2.9MB 2.7MB

IIIc
cycles 88.3M 654K 141K

time (ms) 40.1 0.297 0.064
memory 4.6MB 3.4MB 3.3MB

Vc
cycles 121M 836K 276K

time (ms) 55.0 0.380 0.125
memory 7.0MB 4.1MB 4.2MB

Table 8: Performance of standard Rainbow on Linux/Haswell (AVX2)

parameter set key gen. sign. gen.* sign. verif.

Ia
cycles 9.74M 5.94M 3.06M

time (ms) 4.43 2.70 1.39
memory 3.5MB 2.9MB 2.7MB

IIIc
cycles 101M 66.7M 16.7M

time (ms) 46.1 30.3 7.60
memory 4.6MB 3.4MB 3.3MB

Vc
cycles 130M 90.3M 40.3M

time (ms) 59.2 41.0 18.3
memory 7.0MB 4.1MB 4.2MB

Table 9: Performance of cyclic/compressed Rainbow on Linux/Haswell (AVX2)

* decompressing from 512-bit secret key (compressed Rainbow), otherwise
the same as in Table 8

6.4 Note on the Measurements

Turboboost is disabled on our platforms. The main compilation flags are gcc

-O2 -std=c99 -Wall -Wextra (-mavx2). The used memory is measured dur-
ing an actual run using /usr/bin/time -f "%M" (average of 10 runs) and in-
clude overheads such as system libraries. For key generation we take the average
of 10 runs; for signature generation and verification the average of 500 runs. As

32

expected, Skylake is superior to Haswell (which is almost the same as Broadwell)
in standard Rainbow. It is to be noted that our cyclic and compressed Rain-
bow measurements are more about memory performance, which our Haswell
platform is very good at.

6.5 Note on the Verification Timings

As can be seen from Tables 5, 7 and 9, the signature verification process of
cyclic and compressed Rainbow is significantly slower than that of the stan-
dard Rainbow scheme. However, we want to note that this slow down is caused
completely by the use of the cryptographically secure, AES-based PRNG sup-
plied by OpenSSL (which is the same as the NIST supplied one) to generate
the “fixed” parts of the public key. By using a faster stream cipher or even
generating the public key using a Linear Feedback Shift Register (LFSR), this
slow down can be avoided nearly completely. Furthermore, additional structure
in the public key might be used to speed up the evaluation of the public key fur-
ther (see [14]). However, we believe that the security of Rainbow schemes with
structured keys is not understood enough to propose them as a cryptographic
standard. We therefore feel safer by using a public key which was generated
by a cryptographically secure PRNG. However, we hope that proposing a non
standard Rainbow variant here might motivate researchers to intensify their
research on the security of Rainbow schemes with structured public key, too.

6.6 Trends as the number n of variables increases

Signing: The secret map involves Gaussian Elimination and time-constant
MQ evaluation. Both are O(n3) operations.

Verification: The public map involves straightforward MQ evaluations, which
are O(n3) operations (note: the public key size is also n3).

Key Generation: Key generation is done via computing matrix products
which is of order O(n2). The size of the resulting public key is O(n3).

These theoretical estimations match very well the above experimental data
(when looking at Rainbow instances over the same base field).

33

7 Expected Security Strength

The following table gives an overview over the 6 NIST security categories pro-
posed in [13]. The three values for the number of quantum gates correspond to
values of the parameter MAXDEPTH of 240, 264 and 296.

category log2 classical gates log2 quantum gates
I 143 130 / 106 / 74
II 146
III 207 193 / 169 / 137
IV 210
V 272 258 / 234 / 202
VI 274

Table 10: NIST security categories

All known attacks against Rainbow are basically classical attacks, some of which
can be sped up by Grover’s algorithm. Due to the long serial computation of
Grover’s algorithm and the large memory consumption of the attacks, we feel
safe in choosing a value of MAXDEPTH between 264 and 296.

7.1 General Remarks

The Rainbow signature scheme as described in Section 2.5 of this proposal fulfills
the requirements of the EUF-CMA security model (existential unforgeability
under chosen message attacks). The parameters of the scheme (in particular
the length of the random salt) are chosen in a way that up to 264 messages can
be signed with one key pair. The scheme can generate signatures for messages
of arbitrary length (as long as the underlying hash function can process them).

7.2 Practical Security

In this section we analyze the security offered by the parameter sets proposed
in Section 2.8.

Since there is no proof for the practical security of Rainbow, we choose the
parameters of the scheme in such a way that the complexities of the known
attacks against the scheme (see Section 8) are beyond the required levels of
security.

The formulas in Section 8 give complexity estimates for the attacks in terms
of field multiplications. To translate these complexities into gate counts as pro-
posed in the NIST specification, we assume the following.

• one field multiplication in the field GF(q) takes about log2(q)2 bit multi-
plications (AND gates) and the same number of additions (XOR gates).

34

• for each field multiplication performed in the process of the attack, we also
need an addition of field elements. Each of these additions costs log2(q)
bit additions (XOR).

Therefore, the number of gates required by an attack can be computed as

#gates = #field multiplications · (2 · log2(q)2 + log2(q)).

The following tables show the security provided by the proposed Rainbow in-
stances against

• direct attacks (Section 8.2)

• the MinRank attack (Section 8.3)

• the HighRank attack (Section 8.4)

• the UOV attack (Section 8.5) and

• the Rainbow Band Separation (RBS) attack (Section 8.6).

While the direct attack is a signature forgery attack, which has to be performed
for each message separately, the MinRank, HighRank, UOV and RBS attack
are key recovery attacks. After having recovered the Rainbow private key using
one of these attacks, an adversary can generate signatures in the same way as
a legitimate user.

For each parameter set and each attack, the first entry in the cell shows (the
base 2 logarithm of) the number of classical gates, while the second entry (if
available) shows (the base 2 logarithm of) the number of logical quantum gates
needed to perform the attack. In each row, the value printed in bold shows the
complexity of the best attack against the given Rainbow instance.

parameter parameters log2(#gates)
set (F, v1, o1, o2) direct MinRank HighRank UOV RBS

Ia (GF(16),32,32,32)
164.5 161.3 150.3 149.2 145.0
146.5 95.3 86.3 87.2 145.0

A collision attack against the hash function underlying the Rainbow instance
Ia is at least as hard as a collision attack against SHA256 (see Section 2.6).
Therefore, Rainbow instance Ia meet the requirements of security category I.

35

parameter parameters log2(#gates)
set (F, v1, o1, o2) direct MinRank HighRank UOV RBS

IIIc (GF(256),68,36,36)
215.2 585.1 313.9 563.8 217.4
183.5 309.1 169.9 295.8 217.4

A collision attack against the hash functions underlying the Rainbow instances
IIIc is at least as hard as a collision attack against SHA384. Therefore, the
Rainbow instance IIIc meet the requirements of the security categories III and
IV.

parameter parameters log2(#gates)
set (F, v1, o1, o2) direct MinRank HighRank UOV RBS

Vc (GF(256),92,48,48)
275.4 778.8 411.2 747.4 278.6
235.5 406.8 219.2 393.4 278.6

A collision attack against the hash functions underlying the Rainbow instance
Vc is at least as hard as a collision attack against SHA512. Therefore, the
Rainbow instance Vc meets the requirements of the security categories V and
VI.

7.2.1 Overview

The following table gives an overview of the security provided by our Rainbow
instances. For each of the NIST security categories I, III, and V [13] it lists the
proposed Rainbow instances meeting the corresponding requirements.

security
category GF(16) GF(256)

I Ia -
III(IV) - IIIc
V(VI) - Vc

Table 11: Proposed Rainbow Instances and their Security Categories

7.3 Side Channel Resistance

In our implementation of the Rainbow signature scheme (see Section 5) all key
dependent operations are performed in a time-constant manner. Therefore, our
implementation is immune against timing attacks.

36

8 Analysis of Known Attacks

Known attacks against the Rainbow signature scheme include

• collision attacks against the hash function (Section 8.1)

• direct attacks (Section 8.2)

• the MinRank attack (Section 8.3)

• the HighRank attack (Section 8.4)

• The Rainbow-Band-Separation (RBS) attack (Section 8.6)

• The UOV attack (Section 8.5)

In the presence of quantum computers, one also has to consider brute force
attacks accelerated by Grover’s algorithm (see Section 8.7).
While direct and brute force attacks are signature forgery attacks, which have
to be performed for every message separately, rank attacks as well as the RBS
and UOV attack are key recovery attacks. After having recovered the Rainbow
private key using one of these attacks, the attacker can generate signatures in
the same way as a legitimate user.

8.1 Collision attacks against the hash function

Since the Rainbow signature scheme follows the Hash then Sign approach, it can
be attacked by finding collisions of the used hash function. We do not consider
specific attacks against hash functions here, but consider the used hash function
H as a perfect random function H : {0, 1}? → Fm.
Therefore, in order to prevent a (classical) collision attack against the hash
function used in the Rainbow scheme, the number m of equations in the public
system of Rainbow must be chosen such that

m · log2q ≥ seclev,

where q is the cardinality of the finite field and seclev is the required level of
security. In other words, in order to prevent collision attacks against the used
hash function, the number m of equations in the public key (and central map)
of Rainbow must be chosen to be at least

m ≥ 2 · seclev

log2q
.

By this choice of m, we ensure that a (classical) collision attack against the hash
function used in the Rainbow scheme requires at least 2seclev evaluations of the
hash function H.

37

8.2 Direct Attacks

The most straightforward attack against multivariate schemes such as Rainbow
is the direct algebraic attack, in which the public equation P(z) = h is consid-
ered as an instance of the MQ-Problem. Since the public system of Rainbow is
an underdetermined system with n ≈ 1.5 ·m, the most efficient way to solve this
equation is to fix n−m variables to create a determined system before applying
an algorithm such as XL or a Gröbner Basis technique such as F4 or F5 [10]. It
can be expected that the resulting determined system has exactly one solution.
In some cases one obtains even better results when guessing additional variables
before solving the system (hybrid approach) [2]. The complexity of solving such
a system of m quadratic equations in m variables using an XL Wiedemann
approach can be estimated as

Complexitydirect; classical = mink

(
qk · 3 ·

(
m− k + dreg

dreg

)2

·
(
m− k

2

))
field multiplications, where dreg is the so called degree of regularity of the system.
As it was shown by experiments, the public systems of Rainbow behave very
similar to random systems. We therefore can estimate the degree of regularity
as the smallest integer d for which the coefficient of td in

(1− t2)m

(1− t)m−k

is non-positive.

In the presence of quantum computers, the additional guessing step of the hy-
brid approach might be sped up by Grover’s algorithm. By doing so, we can
estimate the complexity of a quantum direct attack by

Complexitydirect; quantum = mink

(
qk/2 · 3 ·

(
m− k + dreg

dreg

)2

·
(
m− k

2

))
field multiplications. Here, the value of dreg can be estimated as above.

8.3 The MinRank Attack

In the MinRank attack [3] the attacker tries to find a linear combination of
the public polynomials of minimal rank. In the case of Rainbow, such a linear
combination of rank v2 corresponds to a linear combination of the central poly-
nomials of the first layer. By finding o1 of these low rank linear combinations,
it is therefore possible to identify the central polynomials of the first layer and
to recover an equivalent Rainbow private key. As shown by Billet et al. [3], this
step can be performed by

ComplexityMinRank; classical = qv1+1 ·m ·
(
n3

3
− m2

6

)
(13)

38

field multiplications.

By the use of Grover’s algorithm in the searching step, we can reduce this
complexity to

ComplexityMinRank; quantum = q
v1+1

2 ·m ·
(
n3

3
− m2

6

)
(14)

field multiplications.

There exists an alternative formulation of the MinRank attack, the so called
Minors Modeling. In this formulation, the MinRank problem is solved by solv-
ing a system of nonlinear polynomial equations (given by the v2 + 1 minors of
the matrix representing the required linear combination). The complexity of
this attack can be estimated as

ComplexityMinRank; Minors =

(
n+ v2 + 1

v2 + 1

)ω

,

where 2 < ω ≤ 3 is the linear algebra constant of solving a system of linear
equations.
However, in the case of Rainbow, this complexity is higher than that of the Min-
Rank attack using linear algebra techniques (see equation (13)). Furthermore,
since we deal with a highly overdetermined system here, the MinRank attack
using Minors Modeling can not be sped up by quantum techniques.

When analyzing the security of our Rainbow instances (see Section 7.2), we
therefore use equations (13) and (14) to estimate the complexity of the Min-
Rank attack.

8.4 The HighRank attack

The goal of the HighRank attack [5] is to identify the (linear representation of
the) variables appearing the lowest number of times in the central polynomials
(these correspond to the Oil-variables of the last Rainbow layer, i.e. the variables
xi with i ∈ Ou). The complexity of this attack can be estimated as

ComplexityHighRank; classical = qou · n
3

6
.

In the presence of quantum computers, we can speed up the searching step using
Grover’s algorithm. Such we get

ComplexityHighRank; quantum = qou/2 · n
3

6
.

field multiplications.

39

8.5 UOV - Attacks

Since Rainbow can be viewed as an extension of the well known Oil and Vinegar
signature scheme [11], it can be attacked using all known UOV attacks. In
particular the Reconciliation attack [8] and the UOV “Oil Subspace” attack of
Kipnis and Shamir [12], of which the more serious is the latter.
One considers Rainbow as an UOV instance with v = v1 + o1 and o = o2. The
goal of this attack is to find the pre-image of the so called Oil subspace O under
the affine transformation T , where O = {x ∈ Fn : x1 = · · · = xv = 0}. Finding
this space allows to separate the oil from the vinegar variables and recovering
the private key.
The complexity of this attack can be estimated as

ComplexityUOV−Attack; classical = qn−2o2−1 · o4
2

field multiplications.
Using Grover’s algorithm, this complexity might be reduced to

ComplexityUOV−Attack; quantum = q
n−2o2−1

2 · o4
2

field multiplications.

8.6 Rainbow-Band-Separation Attack

The Rainbow-Band-Separation attack [8] aims at finding linear transformations
S and T transforming the public polynomials into polynomials of the Rainbow
form (i.e. Oil × Oil terms must be zero). To do this, the attacker has to
solve several nonlinear multivariate systems. The complexity of this step is
determined by the complexity of solving the first (and largest) of these systems,
which consists of n + m − 1 quadratic equations in n variables. Since this
is an overdetermined system (more equations than variables), we usually do
not achieve a speed up by guessing variables before applying an algorithm like
XL. However, in order to be complete, we consider the hybrid approach in our
complexity estimate. Such we get

ComplexityRBS; classical = mink · qk · 3 ·
(
n+ dreg − k

dreg

)2

·
(
n− k

2

)
field multiplications. Again, the multivariate quadratic systems generated by
this attack behave much like random systems. We can therefore estimate the
value of dreg as the smallest integer d, for which the coefficient of td in

(1− t2)m+n−1

(1− t)n−k

is non-positive.

40

By using Grover’s algorithm, we can speed up the guessing step of the hybrid
approach. By doing so, we get

ComplexityRBS; quantum = mink · qk/2 · 3 ·
(
n+ dreg − k

dreg

)2

·
(
n− k

2

)
field multiplications. The value of dreg can be estimated as above.
However, as the optimal number k of variables to be guessed during the attack
is very small (in most cases it is 0), the impact of quantum speed up on the
complexity of the Rainbow-Band-Separation attack is quite limited.

8.7 Quantum Brute-Force-Attacks

In the presence of quantum computers, a brute force attack against the scheme
can be sped up drastically using Grover’s algorithm. For example, in [17] it was
shown that a binary system of m equations in m variables can be solved using

2m/2 · 2 ·m3

bit operations. In general, we expect due to Grover’s algorithm a quadratic
speed up of a brute force attack. To reach a security level of seclev bits, we
therefore need at least

m ≥ 2 · seclev

log2q

equations.
However, this condition is already needed to prevent collision attacks against
the hash function. Therefore, we do not consider quantum brute force attacks
in the parameter choice of our Rainbow instances.

8.8 Security of our Rainbow Variants

Cyclic Rainbow

In [15] a number of experiments was performed which showed that the com-
plexity of the above mentioned attacks against cyclic Rainbow is the same as
against the standard Rainbow signature scheme. We furthermore do not know
of any results which use the special structure of the public key of cyclic Rain-
bow for an attack against the scheme. We are reinforced in the security of our
scheme by the fact that, due to the use of a cryptographically secure PRNG,
our public key contains no visible structure. Finally, we want to mention that
the key generation processes of standard and cyclic Rainbow use exactly the
same subroutines and yield a one-to-one relation between the fixed parts of the
public key and the central map.
We are therefore confirmed that cyclic Rainbow offers the same security as the
standard Rainbow scheme and that we can use for both variants the same pa-
rameter sets.

41

Compressed Rainbow

The only difference of the compressed Rainbow scheme compared to cyclic Rain-
bow is the use of the PRNG during the signature generation process. So, if the
used PRNG is cryptographically secure, the security analysis of compressed
Rainbow scheme is identical to that of cyclic Rainbow.
We furthermore note that the standard Rainbow scheme, as well as many other
(multivariate) schemes, uses a PRNG during the generation of the private key
and therefore depend on the security of the PRNG, too. Therefore, the modifi-
cation used in compressed Rainbow does not weaken the security of the scheme.

42

9 Advantages and Limitations

The main advantages of the Rainbow signature scheme are

• Efficiency. The signature generation process of Rainbow consists of sim-
ple linear algebra operations such as matrix vector multiplication and
solving linear systems over small finite fields. Therefore, the Rainbow
scheme can be implemented very efficiently and is one of the fastest avail-
able signature schemes [9].

• Short signatures. The signatures produced by the Rainbow signature
scheme are of size only a few hundred bits and therefore much shorter than
those of RSA and other post-quantum signature schemes (see Section 6.1).

• Modest computational requirements. Since Rainbow only requires
simple linear algebra operations over a small finite field, it can be efficiently
implemented on low cost devices, without the need of a cryptographic
coprocessor [6].

• Security. Though there does not exist a formal security proof which
connects the security of Rainbow to a hard mathematical problem such
as MQ, we are quite confident in the security of our scheme. Rainbow is
based on the well known UOV signature scheme, against which, since its
invention in 1999, no attack has been found. Rainbow itself was proposed
in 2005, and the last attack requiring a parameter change was found in
2008 (ten years ago). Since then, despite of rigorous cryptanalysis, no
attack against Rainbow has been developed. We furthermore note here
that, in contrast to some other post-quantum schemes, the theoretical
complexities of the known attacks against Rainbow match very well the
experimental data. So, all in all, we are quite confident in the security of
the Rainbow signature scheme.

• Simplicity. The design of the Rainbow schemes is extremely simple.
Therefore, it requires only minimum knowledge in algebra to understand
and implement the scheme. This simplicity also implies that there are
not many structures of the scheme which could be utilized to attack the
scheme. Therefore it is very unlikely that there are additional structures
that can be used to attack the scheme which have not been discovered
during more than 12 years of rigorous cryptanalysis.

On the other hand, the main disadvantage of Rainbow is the large size of the
public and private keys. The (public and private) key sizes of Rainbow are,
for security levels beyond 128 bit, in the range of 100 kB-1 MB and therefore
much larger than those of classical schemes such as RSA and ECC and some
other post-quantum schemes. However, due to increasing memory capabilities
even of medium devices (e.g. smartphones), we do not think that this will be
a major problem. Furthermore, we would like to point out that there exists a

43

technique to reduce the public key size of Rainbow by up to 65 % [15]. How-
ever such techniques in general come with the cost of a slower key generation
process, and more important, these techniques often make the security analysis
harder. This is why we do not want to apply these techniques for now. Never-
theless, in the future, we may apply these techniques, in particular, for special
applications.

References

[1] D.J. Bernstein, T. Chou, P. Schwabe: McBits: Fast constant-time code
based cryptography. CHES 2013, LNCS vol. 8086, pp. 250 - 272. Springer,
2013.

[2] L. Bettale, J.-C. Faugére, L. Perret: Hybrid approach for solving multivari-
ate systems over finite fields. Journal of Mathematical Cryptology, 3: 177-
197, 2009.

[3] O. Billet, H. Gilbert. Cryptanalysis of Rainbow: SCN 2006, LNCS vol.
4116, pp. 336 - 347. Springer, 2006.

[4] J. Bonneau, I. Mironov: Cache-Collision Timing Attacks Against AES.
CHES 2006, LNCS vol. 4249, pp. 201 - 215. Springer, 2006.

[5] D. Coppersmith, J. Stern, S. Vaudenay: Attacks on the birational signature
scheme. CRYPTO 1994, LNCS vol. 773, pp. 435 - 443. Springer, 1994.

[6] P. Czypek, S. Heyse, E. Thomae: Efficient implementations of MQPKS on
constrained devices. CHES 2012, LNCS vol. 7428, pp. 374-389. Springer,
2012.

[7] J. Ding, D. Schmidt: Rainbow, a new multivariable polynomial signature
scheme. ACNS 2005, LNCS vol. 3531, pp. 164 - 175. Springer, 2005.

[8] J. Ding, B.-Y. Yang, C.-H. O. Chen, M.-S. Che, C.-M. Cheng: New
differential-algebraic attacks and reparametrization of Rainbow. ACNS
2008, LNCS vol. 5037, pp. 242 - 257. Springer, 2008.

[9] eBACS: ECRYPT Benchmarking of Cryptographic Systems.
https://bench.cr.yp.to

[10] J.-C. Faugére: A new efficient algorithm for computing Gröbner Bases (F4).
Journal of Pure and Applied Algebra, 139:61 - 88, 1999.

[11] A. Kipnis, J. Patarin, L. Goubin: Unbalanced Oil and Vinegar schemes.
EUROCRYPT 1999, LNCS vol. 1592, pp. 206 - 222. Springer, 1999.

[12] A. Kipnis, A. Shamir: Cryptanalysis of the Oil and Vinegar signature
scheme. CRYPTO 1998, LNCS vol. 1462, pp. 257 - 266. Springer, 1998.

44

[13] NIST: Submission Requirements and Evaluation Criteria for the
Post-Quantum Cryptography Standardization Process. Available at
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/

documents/call-for-proposals-final-dec-2016.pdf

[14] A. Petzoldt and S. Bulygin. Linear Recurring Sequences for the UOV Key
Generation Revisited. ICISC 2012, LNCS vol. 7839, pp. 441-455, Springer
2012.

[15] A. Petzoldt, S. Bulygin, J. Buchmann: CyclicRainbow - a Multivariate
Signature Scheme with a Partially Cyclic Public Key. INDOCRYPT 2010,
LNCS vol. 6498, pp. 33 - 48. Springer, 2010.

[16] K. Sakumoto, T. Shirai, H. Hiwatari: On Provable Security of UOV and
HFE Signature Schemes against Chosen-Message Attack. PQCrypto 2011,
LNCS vol. 7071, pp 68 - 82. Springer, 2011.

[17] P. Schwabe, B. Westerbaan: Solving Binary MQ with Grover’s Algorithm.
SPACE 2016, LNCS vol. 10076, pp. 303 - 322. Springer 2016.

[18] C. Wolf and B. Preneel. Equivalent keys in hfe, c*, and variations. In
Mycrypt 2005, volume 3715 of Lecture Notes in Computer Science, pages
33–49. Springer, 2005.

45

