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Abstract –This short paper introduces an approach to producing 
explanations or justifications of decisions made by artificial 
intelligence and machine learning (AI/ML) systems, using 
methods derived from fault location in combinatorial testing. 
We use a conceptually simple scheme to make it easy to justify 
classification decisions: identifying combinations of features 
that are present in members of the identified class and absent or 
rare in non-members. The method has been implemented in a 
prototype tool, and examples of its application are given.  
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I.  INTRODUCTION 
     Artificial intelligence and machine learning (AI/ML) 
systems have exceeded human performance in nearly every 
application where they have been tried and are increasingly 
incorporated into consumer products.  As the current trend 
continues, AI will be increasingly used in safety-critical 
systems such as self-driving cars, medical devices, and 
weapons systems.  Current AI systems are generally accurate, 
but sometimes make mistakes, and human users will not trust 
their decisions without explanation.  Consequently, there is a 
significant need for improvements in explainability of AI/ML 
system functions and decisions [1][2][3][4][5][6][7]. 
   The central problem for explainability, according to the 
Defense Advanced Research Progress Agency (DARPA), is 
to provide sufficient justification for an AI/ML conclusion 
such that users know why a conclusion was reached, or why 
not, and to allow the user to know when an algorithm will 
succeed or fail, and when it can be trusted [1]. Many 
conventional approaches leave users wondering what inputs 
caused a particular conclusion.  More than curiosity is 
involved, as many AI/ML applications may be safety critical, 
and accuracy rates that are high enough for some applications 
are inadequate when safety and lives are at risk. Analysis 
within the aerospace industry concludes that the “artificial 
intelligence (AI) technology that has made spectacular 
progress in the consumer world is thus far unsuited to air 
transport safety standards”, and explainability will be 
essential for certification by regulatory authorities [8]. 
Ideally, the ML algorithm should be able to explain its 
conclusion in a manner similar to a human expert, so that 
other human experts can have confidence in a conclusion, or 
spot a flaw in the reasoning.  This is a significant challenge 
for methods such as neural networks.  
     Typically, there is a tradeoff between AI/ML accuracy and 
explainability:  the most accurate methods, such as 
convolutional neural nets (CNNs), provide no explanations, 
while more understandable methods, such as rule-based 

systems, tend to be less accurate [1][2].  Black-box statistical 
predictions are inadequate, and explanations must be 
understandable to non-specialists, such as physicians, 
financial analysts, and in many cases everyday users.  
     The need for explainability in AI was recognized early, 
and was an inherent component of many of the first AI 
diagnostic systems.  These were often expert systems using 
programming-style if/then rules to make decisions.  For 
example: “if patient has symptoms A and B, or has B with C 
and D, then illness is X”.  Such systems provide natural 
explanations, but rules can be difficult to identify, and in 
many cases are less accurate than other approaches.  
     While neural networks and related methods often provide 
better accuracy, they are opaque to users.  Decisions are 
produced using a vast number of internal connections, and 
some efforts have been aimed at adding explanations to 
neural nets, but this is an ongoing area of research and the 
approach has not been widely adopted.   
     A third way of adding explanations is model induction, 
inferring an explainable model from black-box inputs and 
outputs.  Systems using this approach have been produced to 
attempt to identify the most relevant features used in 
decisions, typically using statistical methods. For example, 
LIME, one of the more widely used methods, determines 
features that are most strongly associated with an output [7]. 
Our method is most similar to these systems, except that we 
identify combinations of feature values. The result is a system 
that can infer explanations that incorporate predicates similar 
to rule based systems, using input/output combinations. 
Predicates that identify distinguishing features can also assist 
in validating the model generated by the ML algorithm, by 
providing more information for human experts in validation. 
Thus, this method adds value in AI/ML for both users, who 
need explanation, and model developers seeking to validate a 
black box model.  

II. HUMAN FACTORS ASPECTS 

     A key question for explainability is the degree to which an 
explanation will be acceptable and trusted by users, which 
necessarily deals with both technical and human factors.  Full 
development of explainable AI will require extensive 
validation through human testing, which has not been 
included in most work in the field [9]. However, the 
applicability of human factors research to explainable AI has 
been studied, building on extensive research from 
psychology on models of human explanation.  Here we 
summarize the major findings of this work, as documented in 
surveys of the field [9] [10][11][12] [13][14].   
Miller et al. [10] suggest that “the most important result from 
this work is that explanations are contrastive:  or more 
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accurately, why-questions are contrastive.  That is, why-
questions are of the form ‘Why P rather than Q?’”  They note 
that the psychological research indicates that generally all 
why-questions are contrastive, seeking an implicit contrast 
case even if one is not stated explicitly.  This is suggested as 
a potential approach to explainable AI, because providing a 
contrast case may be easier than a full set of causes [10][15]. 
     Another aspect of explainability identified in human 
factors research is causal attribution, i.e., the manner in which 
causes are attributed to events. Relevant findings in this area 
include research showing that users may consider 
counterfactuals, what would have happened if some event 
was not present [16][17], and that only a subset of a full event 
chain is typically used [17].  It is perhaps not surprising that 
users prefer simple explanations, with fewer causes or 
factors, but it was also found that simpler explanations were 
preferred over more likely explanations [18].  

III. METHOD 
     The classification problem in machine learning is in some 
ways similar to the problem of fault location in combinatorial 
testing for software.  The objective in both cases is to identify 
a small number of interactions, out of possibly billions or 
more, that trigger a failure (in testing) or produce a 
conclusion (in machine learning).  We have methods and 
tools for fault location in combinatorial testing that can be 
adapted to ML problems, to identify the rare combinations of 
variable values that produce conclusions in AI systems.  This 
approach has not been applied to explainable AI before.  
     A basic approach to fault location for testing is to subtract 
the set of combinations in passing tests from the set of 
combinations in failing tests, then using appropriate 
strategies to narrow down the remaining set to the most likely 
failure inducing combinations. Similar strategies involve 
identifying combinations that are more common in failing 
than in passing tests, to find the most likely cause of a failure.  
     We can apply this general strategy to the AI/ML 
explanation problem. Suppose a given object has been 
identified as a member of a particular class, one of the most 
common operations in machine learning.  A vast number of 
algorithms and statistical methods can be used to make this 
identification, but it must be explained to users why the object 
belongs to the selected class and not some other class. That 
is, what inputs to the classification algorithm are a convincing 
justification for concluding that the object is in class X and 
not any other class?  This is very similar to the problem of 
determining what inputs are the reason for a test to produce a 
failure rather than a passing result.  
     For explainability, we will also consider two sets of 
combinations – class and non-class member features, where 
‘class’ refers to a particular group that an object is assigned 
to. For example, as illustrated in Fig. 1, we may want to 
explain why an animal is classified as a cat, noting that it 
shares features with other class members - brown & furry, 
whiskers, claws – and it does not have features of animals 
outside the cat class - not aquatic, not venomous. Some 

features are shared by both the class and non-class members. 
     While a variety of statistical methods are available for 
identifying one or a few features that contribute to a 
conclusion, more information can be provided by using 
methods from combinatorial testing fault location. We will 
consider t-way combinations, seeking to identify 
combinations that are unique to class members, i.e., not 
present in non-class members.  It is likely that single features 
will not be unique, and many 2-way or higher strength feature 
combinations will also not be unique.  But by considering t-
way combinations with increasing values of t, we are likely 
to reach a point where some t-way combinations are uniquely 
associated with the class under consideration, or are never 
associated with the class and can be used to exclude it.  
 

Individual features (orange) 
– brown & furry, whiskers, 
claws, not aquatic, not 
venomous, 4 legs, ... 
 
Class features (yellow) -
brown & furry, black & furry,  
whiskers, claws, ...not aquatic, 
not venomous, 4 legs, 

 
Fig. 1. Feature identification 

 
     Looking at combinations of features makes sense 
intuitively for explanations, because individual features are 
normally too widely shared among objects of different types.  
Among animals, thousands of types have four legs, or claws, 
or pointed ears, but only a limited number have all of these 
features.  For explanations we will look for combinations that 
are unique, or extremely rare. This is of course essentially the 
same process used to identify members of a taxonomy, by 
looking for features an object shares with members of a 
defined class and for other features that exclude it from a 
specific class. Thus we argue that the method introduced here 
is intuitive for users. By adapting combinatorial fault location 
processes, we can enhance and improve this intuitive method, 
by considering huge numbers of feature combinations, and 
quantifying their degree of association with members/non-
members of classes.  In the following section we illustrate the 
effectiveness of this approach with an example.   
     Example.  For a more comprehensive example, and to 
illustrate the application of a prototype tool referred to as 
ComXAI, we will use the Animals with Attributes (AwA) 
database to explain the classification of an animal as a reptile.  
The AwA database describes a large collection of animals 
using 16 features, 15 boolean and one with six values. For 
example, Testudo the tortoise [22] (University of Maryland 
mascot), is shown in Fig. 2, with the following attributes 
(where 0=false, 1=true): hair=0, feathers=0, egg-laying=1, 
milk-producing=0, airborne=0, aquatic=0, predator=0, 
toothed=0, backbone=1, breathes=1 venomous=0, fins=0, 
num-legs=4, tail=1, domestic=0, cat-size=1.  
     Suppose that an AI/ML algorithm has assigned the class 

Non-class feature 
combinations 

aquatic, venomous,  
6 legs, ...  
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reptile to Testudo.  The prototype ComXAI tool analyzes the 
presence of combinations of these features in the AwA 
database animals that are not reptiles. The objective is to 
identify combinations of reptile features, present in Testudo, 
that are not present (or extremely rare) in non-reptiles.  The 
presence of these feature combinations should be sufficiently 
convincing that a reptile has been identified correctly.  
 

 
Fig 2. Why is this creature recognized as a reptile? 

  

 
Fig. 3. non-reptile single feature combinations. 
      

     As shown in Fig. 3, no single feature is sufficient 
explanation for classifying Testudo as a reptile, as he shares 
features with non-reptiles.  For example, 55.2 % of other 
animals in the database have no hair, and 79.2 % have no 
feathers. Additionally, no pair of features is sufficient, as 
Testudo also  shares 2-way combinations with non-reptiles.  
As shown in Fig. 4, 2.1 % of the animals in the AwA database 
have the feature pair toothless & four-legged, and 5.2 % have 
the feature pair milk-producing & four-legged.    
 

  
Fig. 4. 2-way non-reptile feature combinations. 
 
 

 
Fig. 5. Non-reptiles in the database do not have these 3-way combinations 
 

     Looking at 3-way combinations produces much more 
useful results.  As seen in Fig. 5, several 3-way feature 
combinations uniquely identify reptiles among the animals in 
the AwA database.  No other genus is non-aquatic & 
toothless & four-legged; no other is egg-laying & non-
aquatic & four-legged, and so on.  Only reptiles, among the 
animals in the database, have the 3-way combinations of 
features shown in Fig. 5. 
    It is important to note that a different picture emerges from 
simply listing the individual features that are the strongest 
differentiators:  four legs, toothless, cat-size. As seen in Fig. 
3, none of these individual features is anywhere near 
adequate for identifying a reptile.  Additionally, the 3-way 
combination of these individually-identified features does not 
appear in the list of 3-way combinations that uniquely 
identify a reptile among animals in the database. There are in 
fact many animals in the database with the features four legs 
& toothless & cat-size. This is a significant difference 
between the ComXAI approach and methods of statistically 
identifying the most significant features individually. This 
example shows why it is necessary to check the rate of 
occurrence of t-way combinations, rather than assume that 
the t strongest associations individually are sufficient to 
explain a classification.  

IV. DISCUSSION 
     Validation of this method using human subjects is outside 
the scope of this work, but we can consider the ComXAI 
approach with respect to human factors research on 
explanation, introduced in Sect. II. The method and tool 
described in this paper have been designed to provide 
intuitive explanations by identifying t-way combinations that 
are present in a given member of a class, and not present or 
extremely rare in non-members. We believe this is a natural 
form of explanation because it relies on observable features 
but quantifies the degree to which feature combinations occur 
in the class and non-class sets.  In particular, this approach 
provides explanations that are contrastive, often considered 
the most important characteristic of explanations in the 
psychological literature [10][11].  We identify combinations 
of attributes that characterize the class to be identified, and 
that are not found in non-members of this class. This process 
naturally produces explanations that are contrastive – the 
combinations presented in the explanation are uniquely 
associated with the class identified.  This provides a clear 
answer to the “Why P and not Q?” question implicit in 
explanations. The class is P because these combinations 
occur only in P, and do not occur with any other class Q.  
Using methods developed for fault location makes it possible 
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to apply the approach across many t-way combinations, 
providing strong justifications for AI/ML conclusions. 
     It should also be noted that identifying t-way 
combinations of features that distinguish a class member is 
essentially the same as specifying predicates in a rule-based 
expert system. Referring back to Example 1, the six 3-way 
combinations could be mapped directly to a rule such as “if  
(not aquatic && not toothed && four legs) || (egg-laying && 
not aquatic && four legs) ….  then genus = testudo”.  It is 
often suggested that rule-based expert systems are the most 
interpretable, so this correspondence between t-way 
combinations and rule-based predicates also suggests that the 
ComXAI explanations can be understood well by users.  
     This method can also be compared with a decision tree 
approach, where leaf nodes are t-way combinations of 
features (Fig. 6). Note that the tree uses more attributes, 
leading to more complex predicates, while ComXAI 
identifies unique combinations of only three features. We 
plan to investigate the potential for such decision 
minimization in the future.   

 
Fig. 6.  J48 decision tree for AwA produced by Weka [20]. 

It is also possible to use combinatorial methods to check for 
gaps in ML models [21]. This approach might be used in 
concert with ComXAI to validate ML models.  

V. CONCLUSIONS 
     Explainability is a critical problem in the acceptance of 
artificial intelligence/machine learning, especially for 
critical applications. Human users may not trust AI if 
conclusions cannot be explained. Methods from 
combinatorial testing can be applied to the problem of 
explainable AI, by determining combinations of variable 
values that differentiate an example from other possible 
conclusions. That is, we identify t-way combinations that 
are present in members of a class and not present in objects 
outside the class. A prototype tool ComXAI that applies this 
approach has been developed. 
Acknowledgement and disclaimer:  This paper is an extended version of a 
NIST technical report [19]. Products may be identified in this document, 
but such identification does not imply recommendation by NIST, nor that 
those identified are necessarily the best available for the purpose. 
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