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What is the problem?

* Al systems are good, but sometimes make mistakes, and human users
will not trust their decisions without explanation or justification
— assurance and explainability are closely tied

* There is a tradeoff between Al accuracy and explainability: the most accurate
methods, such as convolutional neural nets (CNNs), provide no explanations;
understandable methods, such as rule-based, tend to be less accurate

* The black-box nature of these systems that makes explanation difficult
also makes assurance and testing even harder

* Life-critical aviation software requires MCDC testing, white-box criterion
that cannot be used for neural nets and other non-explainable methods



Testing - can we find a solution?

* Gold standard of assurance and verification of life-critical software
can’t be used for lots of new life-critical autonomy software

* We can measure “neuron coverage”, but not clear how closely related
to accuracy and ability to correctly process all of the input space

Nobody at the
wheel ...

* Why not measure the input
space directly?

Then see if the Al system
handles all of it correctly




Scientists have trained rats to drive

tiny cars to collect food
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Things get tricky as the scene becomes complex

* Multiple conditions involved in accidents

* "The camera failed to recognize the white truck
against a bright sky"
*"The sensors failed to pick up street signs, lane

markings, and even pedestrians due to the angle of
the car shifting in rain and the direction of the sun”

* We need to understand what combinations of
conditions are included in testing




Understanding combinations tested

* Cover all 2-way, 3-way, as desired

* Measure coverage of the rest

* Or run scenarios and then measure combinations covered
e Or find set difference of covered/not covered

 We have tools for all of these

COMBINATORIAL TEST SUITE OF STRENGTH 2 FOR THE ROAD SECTION ONTOLOGY Kluck et al., 2019

lanel _traffic _id lanel _linel _id lanel _line2 _id lanel _surface _condition lane2 _traffic _id lane2 _linel _id lane2 _line2 _id lane2 _surface
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Combinatorial coverage — what do we mean?

Tests Variables

1 0 0 0 O

Variable pairs | Variable-value Coverage
combinations
covered

INEEEN - 00,01, 10 7
3 1 O 0 1

ENEEEN 00, 1 50

cd 00, 01, 10, 11 1.0

100% coverage of 33% of combinations
75% coverage of half of combinations
50% coverage of 16% of combinations

NIST

National Institute of
Standards and Techneology



Variable Variable-value Coverage
combinations
covered

00, 01, 10

-- ac 00, 01, 10
bc 00, 11 50
cd 00, 01, 10, 11 1.0 bc 00, 11
Rearranging

the table




Graphing Coverage Measurement
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What else does this chart show?

Untested combinations

(look for problems here)
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Tested combinations



Explainability — what’s current state of the art?

DPA Explainable AI — What Are We Trying To Do?

« Why did you do that?
* Why not something else?
Learning This is a cat « When do you succeed?
Process (p=.93) + When do you fail?
* When can | trust you?
« How do | correct an error?
Training Learned Output User with
Data Function a Task
* | understand why
N = . Thisis a .cat: « | understand why not
ew ¢i / .l *It has fur, whiskers, * | know when you’ll succeed
Learning N VAN 75 B and claws. 1k h 1l fail
P l'l‘ lfl 1| <1t has this feature: | know When :/0;1 f'
rocess $H &b db @t * | know when to trust you
. 3 Ceikl &b bk M ﬁ + | know why you erred
Training Explainable Explanation User with
Data Model Interface a Task

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

Black-box statistical

predictions are
inadequate

Explanations must
be understandable

to non-specialist



How does this vehicle
move?

ski I Wheels | Track

radeoff: |

You are on How many wheels does You are in
a sleigh. it have? atank.
2 I 4 I Lots!
/ Al You areina
Does it have Does it have bus.
an engine? an engine?
Yes I No Yes I No
Youareona You are on Youareina You areon a
motorcycle. a bicycle. motor car. skateboard.
Input , Hidden _ Hidden 2 > Hidden 3 } Qutput
layer layer layer layer layer

neuralnetworksanddeeplearning.com - Michael Nielsen, Yoshua Bengio, lan Goodfellow, and Aaron Courville, 2016.

Expert system:
Good for explanations,
not so good for accuracy

Neural nets:
Good for accuracy,
not so good for explanations

How do we get the
best of both worlds?



What has been tried?

* Interpretable models — e.g. rule-based expert systems: “if patient has
symptoms A and B, or has B with C and D, then illness is X”

* best for explanations
* hard to find rules
* |less accurate than other approaches

* Modify neural nets etc. to add explanations
* reduces accuracy, complicates the system
* explanations still not very understandable

* Model induction - infer explainable model from black-box

* flexible for application, good explanations using only input, output
* hard to produce the explainable model

 Our approach —derive rule predicates from inputs and outputs to
CNNs and other black-box functions



Fault location

Given: a set of tests that the SUT fails, which
combinations of variables/values triggered the failure?

variable/value combinations
In passing tests

variable/value combinations
in failing tests

Combinations in failing but
not in passing tests
These are the ones we want




Relevance to explainable Al

* | understand why

This is a cat: « | understand why not
|t has fur, whiskers, . ;
and clawe. : tnow wEen you,:: fqlc:ceed Non-class
+It has this feature: = L KNOW WIER you & fal
: * | know when to trust you feature
* | know why you erred combinations
Explanation User with
Interface a Task

aquatic,
venomous, 6 legs,

Class feature

Individual
combinations - feature
brown & furry, combinations —
blaFk & furry, brown & furry, Animal shares features
whiskers, claws, ... \whiskers, claws, with cat class

not aquatic, not not aquatic, not |
venomous, not 6 Animal does not share

venomous, not 6 _
legs features with non-cat
’ legs, ...
classes




Class File: |Class file repl.cav; rows=1; cols=16

Input configuration 216!

Mominal File: INominaI file notreptile. cav: rows=96; colz=16 | 2-way: 120 3-way: 560  4-way: 1820  S-way: 4368  G-way: 8.008

Why is this
creature
recognhized as a
reptile?

milk
0

Class File Contents: | hair feathers aquatic predator toothed backbone

eggs
1

airborne
0

OCCUrrences
OCCUrrences
OCCUrrences
OCCUrrences

OCCUrrences
OCCUrrences
OCCUrrences
OCCUrrences
OCCUrrences
OCCUrrences

OCCUrrences
OCCUrrences
OCCUrrences
OCCUrrences
OCCUrrences
ooCuUrrences —

No single feature is sufficient
explanation — shares features with
non-reptiles

oooz
0005
0005
000&
ooos
0011
001=
0013

Mnirr1ec

OCCUrrences
OCCUrrences

No pair of features sufficient —
shares 2-way combinations
w/ non-reptiles g

QCCUrrences

QCCUrrences

OCCUrrences
OCCUrrences
OCCUrrences
OCCUrrences

I
oD oo ooop o

FaT e P EBR R -2 a2 FTa -9 -}

breathes

VENomoLs fing nlegs tail domestic calsize
4

] 2 5 1 =[]
D.573 of cases, milk = 0
0.750 of cases, airbhorne = 0
0.635 of cases, aquatic = 0
0.4538 of cases, predator = 0
0.4068 of cases, toothed = 0
0.813 of cases=s, backbone = 1
0.792 of cases, breathes = 1
0.938 of cases, wvenomous = 0
0.823 of cases, fins = 0
0.373 of cases, nlegs = 4
D.729 of cases, tail = 1
0D0.865 of cases, domestic = 0
D.448 of cases, catsize = 1

milk,nlegs =
eggs, nlegs
toothed, catsi
milk, catsize 0
egqgs, catsize = 1,

0

hair,catsize

. U .



3-way combinations produce rules to explain
recognition of Testudo as a reptile

00000 ooccurrences
00000 ooccurrences

Il
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00000 occurrences .
.000 of cases, hair,nlegs,catsize
000 of cases, milk, aquatic,nlegs
.000 of cases, milk,nlegs,catsize
of cases, predator, toothed, nleq:
010 of cases, eggs,nlegs,catsize = 1,
.010 of cases, eggs,predator,nlegs = 1,0,4
.010 of cases. feathers. toothed. backbhone =

00000 ooccurrences
00000 ooccurrences

0
a,
00000 ooccurrences 0
=

00000 ooccurrences
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00001 ooccurrences

00001 occurrences =

Only reptiles have these combinations of features:

Non-rept|les in the not aquatic AND not toothed AND four legs
database do not have egg-laying AND not aquatic AND four legs
these 3-way not hairy AND four legs AND cat size

not milk-producing AND not aquatic AND four legs
not milk-producing AND four legs AND cat size
not predator AND not toothed AND four legs

combinations



Mapping combinations to expressions

* Report identifies t-way combinations that distinguish the predicted class
from others

* Combinations can be mapped to expressions to produce a rule-based
type of explanation

if (not aquatic AND not toothed AND four legs)
OR (egg-laying AND not aquatic AND four legs)
OR (not hairy AND four legs AND cat size)
OR (not milk-producing AND not aquatic AND four legs)
OR (not milk-producing AND four legs AND cat size)
OR (not predator AND not toothed AND four legs)
then reptile;
else not reptile;

As noted, none of the single factors above is sufficient for explanation
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Clazs File: |Class file @1.cav; rows=1; cols=5
® Morminal File: Mominal file empty.cav; rows=7703; colz=5 |  Z-way: 10 3-way: 10 4wae 5  Swae 1 Gway 0
Example: empty e |
Class File Contents: | Temperature  Humidity Light coz2 HumidityF atio

B3 B3 B2 B2 B4

VS. occupied
rooms, using

S e n S O r d ata FIWET] 3wWay | 4Way | SWay | BWay |

v Enabled

Combinations = 10, Settings = Z10

Why do we conclude this room is occupied? D016 occuUrrences fmd
001l& occurrences 0.
003& occcurrepsps S S ———— - e ———
Ws = 0.005 of cases, COZ,HumidityRatio = EZ, E4
/ 043 occurrences = 0.006 of cases, Light, HumidityRatio = BZ, B4
0054 occurrences = 0.007 of cases, Temperature,C0Z = B3,EZ
These levels of humidity and lighting are strong 0078 occurrences = 0.010 of cases, Humidity,CoZ = B3, B2
indication 0205 occurrences = 0.027 of cases, Temperature, HumidityRatio = E3, E4
0247 occurrences = 0.032 of cases, Temperature, Humidity = E3,E3
0495 occurrences = 0.064 of cases, Humidity, HumidityRatio = E3, B4
ConSidering levels of I|ght|ng, CO2, and 0523 occurrences = 0.068 of cases, Temperature = B3
humidity ratio provide even stronger evidence: g3l occurrences = 0.313 of cases, Humidity = B3
D083 oeccurrences = 0.011 of cases, Light = BZ
Emptv rooms donlt have these IeVGIS 0534 occurrences = 0.0&89 of cases, COCZ .=.B: .
2190 oeccurrences = 0.2B4 of cases, HumidityRatio = B4

00003 ococcurrences =
00005 ococcurrences

.001 of cases, Temperature,Light,C0OZ = B3,BZ,BC
.00l of cases, Humidity, Light, HumidityRatio = E3,EBZ, B4

00008 ooccurrences
00011l ococcurrences =



Clas

File Infarmation
Classz File:

|C|ass file mall.csv; rows=1; colz=18

Mominal File: |Nominal file meta.cav; rows=81; colz=18 | 2-way: 153 3-way: 816 d-way: 3,060 S-way: 8568

A different example:

Class File Contents: | lymphatic affere lyme lymsz bypass extravas regen earh

4 2 1 1 1 1 1

lymph node pathology —
why is this classified as
malignant not metastatic?

ﬂBNMmA]¢Mhy]5%Vw] Bway |

* These combinations are
characteristic of lymphoma that
arises in lymph node instead of
metastatic that spread to node
from somewhere else

[v Enabled

Combinations = 153, Settings = 1358

0000 ooccurrences

0000 occurrences 0.

nininin =S upe T & T

0000 occcurrences = 0.000 of cases, chnode, spec = 4,1

0000 occurrences = 0.000 of cases, defect, chnode = 2,4
0000 occcurrences = 0.000 of cases, extravas,chnode = 1,4
D000 occcurrences = 0.000 of cases, lymphatic,chnode = 4,4
0001 occcurrences = 0.012 of cases, bypass, chnode = 1,4
0001 oeccurrences = 0.01Z2 of cases, chang, chnode = 2,4
0001 occcurrences = 0.012 of cases, chnode, exclu = 4,2
0001 oceccurrences = 0.012 of cases, lyme,chnode = 1,4

D001 occcurrences = 0.01Z2 of cases, lymphatic, spec = 4,1
0002 occurrences = 0.0Z5 of cases, lyms, chnode = 1,4
000Z occurrences = 0.0Z5 of cases, affere,chnode = 2,4
00D0Z oceccurrences — 0.0Z25 of cases, dimin, chnode = 1,4
0002 oeccurrences = 0.0Z25 of cases, esarlyup,chnode = 2,4
0002 occurrences = 0.0Z5 of cases, enlar,chnode = Z,4
0002 oeccurrences = 0.0Z25 of cases, regen,chnode = 1,4
0002 oeccurrences = 0.02Z25 of cases, spec,num = 1,2

0003 occurrences = 0.037 of cases, lymphatic,disloc = 4,1
D004 occurrences = 0.049 of cases, chstru,spec = 8,1

D004 occurrences = 0.049 of cases, lymphatic,chstru = 4,8
D005 occurrences = 0.068Z2 of cases, lymphatic,chang = 4,2
000& occurrences = 0.074 of cases, chstru,num = 8,2

K




Obvious question — Can we use these methods
for prediction as well as explanation?

* Maybe, but consider:



Summary

* Combinatorial methods can provide explainable Al

* We have prototype that applies this approach

* Determine combinations of variable values that differentiate an example from other
possible conclusions

=>» Feature combinations present shared with class
=» Feature combinations not shared with class not present

* Method can be applied to black-box functions such as CNNs

* Present explanation in the preferred form of rules,
“if A& B, or Cwith D & E, then conclusion is X”



Please contact us
if you’re interested!

http://csrc.nist.gov/acts
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