
GIFT-COFB
v1.1

Designers/Submitters: E-mails:

Subhadeep Banik subhadeep.banik@epfl.ch

Avik Chakraborti avikchkrbrti@gmail.com

Tetsu Iwata tetsu.iwata@nagoya-u.jp

Kazuhiko Minematsu k-minematsu@nec.com

Mridul Nandi mridul.nandi@gmail.com

Thomas Peyrin thomas.peyrin@ntu.edu.sg

Yu Sasaki yu.sasaki.sk@hco.ntt.co.jp

Siang Meng Sim crypto.s.m.sim@gmail.com

Yosuke Todo yosuke.todo.xt@hco.ntt.co.jp

May 17, 2021

Chapter 1

Introduction

Authenticated encryption (AE) is a symmetric-key cryptographic primitive
for providing both confidentiality and authenticity. Due to the recent rise in
communication networks operated on small devices, the era of the so-called
Internet of Things, AE is expected to play a key role in securing these networks.

This document describes GIFT-COFB authenticated, which instantiates the
COFB (COmbined FeedBack) block cipher based AEAD mode with the GIFT
block cipher. COFB primarily focuses on the hardware implementation size.
Here, we consider the overhead in size, thus the state memory size beyond the
underlying block cipher itself (including the key schedule) is the criteria we want
to minimize, which is particularly relevant for hardware implementation.

An initial version of COFB was presented in [12] and this latest version of
COFB is a minor modification over the original COFB mode.

This version supports all the desirable properties mentioned in the NIST
lightweight cryptography portfolio [26], and it is efficient for lightweight imple-
mentations as well.

There are many approaches of designing a secure and lightweight block cipher
based AEAD. We focus on using a lightweight, well analyzed block cipher and
minimizing the total encryption/decryption state size. We deploy a hardware
optimized block cipher GIFT-128 [5]. In addition to that, we use combined
feedback over the block cipher output and the data blocks along with a tweak
dependent secret masking (as used in XEX [30]). This combination helps us to
minimize the amount of masking by a factor of 2 from [30].

The COFB mode achieves several interesting features. It achieves a high value
for rate which is 1 (i.e, needs only one block cipher call for one input block).
The mode is inverse-free, i.e., it does not need a block cipher inverse during
decryption. In addition to these features, this mode has a quite small state size,
namely 1.5n+ k bits, in case the underlying block cipher has an n-bit block and
k-bit keys.

1

Chapter 2

Specification

2.1 Notation

• For any X ∈ {0, 1}∗, where {0, 1}∗ is the set of all finite bit strings
(including the empty string ε), we denote the number of bits of X by |X|.
Note that |ε| = 0.

• For a string X and an integer t ≤ |X|, Trunct(X) is the first t bits of X.

• Throughout this document, n represents the block size in bits of the
underlying block cipher EK . Typically, we consider n = 128 and GIFT-128
is the underlying block cipher, where K is the 128-bit GIFT-128 key.

• For two bit strings X and Y , X‖Y denotes the concatenation of X and Y .

• A bit string X is called a complete (or incomplete) block if |X| = n (or
|X| < n respectively). We write the set of all complete (or incomplete)
blocks as B (or B< respectively). Note that, ε is considered as an incomplete
block and ε ∈ B<.

• Given non-empty Z ∈ {0, 1}∗, we define the parsing of Z into n-bit blocks
as

(Z[1], Z[2], . . . , Z[z])
n←− Z,

where z = d|Z|/ne, |Z[i]| = n for all i < z and 1 ≤ |Z[z]| ≤ n such that
Z = (Z[1] ‖Z[2] ‖ · · · ‖Z[z]). If Z = ε, we let z = 1 and Z[1] = ε. We
write ||Z|| = z (number of blocks present in Z).

• Given any sequence Z = (Z[1], . . . , Z[s]) and 1 ≤ a ≤ b ≤ s, we represent
the sub sequence (Z[a], . . . , Z[b]) by Z[a..b].

• For integers a ≤ b, we write [a..b] for the set {a, a+ 1, . . . , b}.

2

2.1.1 Underlying Finite Field F2n

Let F2s denote the binary Galois field of size 2s, for a positive integer s. Field
addition and multiplication between a, b ∈ F2s are represented by a⊕ b (or a+ b
whenever understood) and a · b respectively. Any field element a ∈ F2s can be
represented by any of the following equivalent ways for a0, a1, . . . , as−1 ∈ {0, 1}.

• An s-bit string as−1 · · · a0 ∈ {0, 1}s.

• A polynomial a(x) = a0 + a1x+ · · ·+ as−1x
s−1 of degree at most (s− 1).

2.1.2 Choice of Primitive Polynomials

In our construction, the primitive polynomial [1] used to represent the field F264

is
p64(x) = x64 + x4 + x3 + x+ 1.

We denote the primitive element 0s−210 ∈ F2s by αs, (here s = 64). We use
α to mean αs for notational simplicity.

64-bit String Polynomial

06210 α

06211 α+ 1

061100 α2

Table 2.1: Various representations of some elements in F264

Thus, the field multiplication a(x) · b(x) is the polynomial r(x) of degree at
most (s− 1) such that a(x)b(x) ≡ r(x) mod ps(x).

Multiplication by Primitive Element α. We first see an example how we
can multiply by α64. Multiplying an element b := b63b62 · · · b0 ∈ F264 by the
primitive element α64 of F264 can be done very efficiently as follows:

b · α64 =

{
b� 1, if a63 = 0

(b� 1)⊕ 05911011, else,

where � r denotes left shift by r bits. Throughout this document, we use α to
denote α64. For, b ∈ F264 , we use 2 · b (or 2m · b) and 3 · b (or 3m · b) to denote
α · b (or αm · b) and (1 + α) · b (or (1 + α)m · b) respectively.

2.2 Recommended Parameter Choice

We propose a construction GIFT-COFB with the underlying block cipher as the
only parameter. The block cipher can be chosen by the following recommendation.

1. n: Length of the block cipher state in bits. The recommended choice is
n = 128.

3

2. τ : Length of the tag in bits. The recommended choice is τ = 128.

3. EK : The recommended choice of EK is the block cipher GIFT-128.

2.3 Input and Output Data

To encrypt a message M with associated data A and nonce N , one needs to
provide the information given below.

The encryption algorithm takes as input

• An encryption key K ∈ {0, 1}128.

• A nonce N ∈ {0, 1}128. This can include the counter to make the nonce
non-repeating.

• Associated data and message A,M ∈ {0, 1}∗.

It generates the following output data:

• Ciphertext C ∈ {0, 1}|M |.

• Tag T ∈ {0, 1}128

To decrypt (with verification) a ciphertext-tag pair (C, T) with associated
data A and nonce N , one needs to provide the information given below.

• An encryption key K ∈ {0, 1}128.

• A nonce N ∈ {0, 1}128.

• Associated data and ciphertext A,C ∈ {0, 1}∗.

• Tag T ∈ {0, 1}128

It generates the following output data:

• Message M ∈ {0, 1}|C| ∪ {⊥}, where ⊥ is a special symbol denoting
rejection.

2.4 Mathematical Components

2.4.1 Block cipher GIFT-128

GIFT-128 is an 128-bit Substitution-Permutation network (SPN) based block
cipher with a key length of 128-bit. It is a 40-round iterative block cipher with
identical round function. There are two versions of GIFT-128, namely GIFT-64
and GIFT-128. But since we are focusing only on GIFT-128 in this document,

4

we use GIFT-128 and GIFT-128 interchangeably. For the rest of this document,
we take the full version of GIFT-128 paper [6] as reference.

There are different ways to perceive GIFT-128, the more pictorial description
is detailed in Section 2 of [6], which looks like a larger version of PRESENT cipher
with 32 4-bit S-boxes and an 128-bit bit permutation (see Figure 2.1). In this
document, we will be using bitslice description which is similar to Appendix A
of [6].

Round function

Each round of GIFT-128 consists of 3 steps: SubCells, PermBits, and AddRound-
Key.

Initialization. The 128-bit plaintext is loaded into the cipher state S which will
be expressed as 4 32-bit segments. In the perspective of a 2-dimensional
array, the bit ordering is from top-down, then right to left.

S =

S0

S1

S2

S3

←

b124 · · · b8 b4 b0

b125 · · · b9 b5 b1

b126 · · · b10 b6 b2

b127 · · · b11 b7 b3

 .
The 128-bit secret key is loaded into the key state KS partitioned into 8
16-bit words. In the perspective of a 2-dimensional array, the bit ordering
is from right to left, then bottom-up.

KS =

W0 ‖ W1

W2 ‖ W3

W4 ‖ W5

W6 ‖ W7

←

b127 · · · b112 ‖ b111 · · · b98 b97 b96

b95 · · · b80 ‖ b79 · · · b66 b65 b64

b63 · · · b48 ‖ b47 · · · b34 b33 b32

b31 · · · b16 ‖ b15 · · · b2 b1 b0

Refer to Section 2.4.2 for details of the arriving data.

SubCells. Update the cipher state with the following instructions:

S1 ← S1 ⊕ (S0 & S2)

S0 ← S0 ⊕ (S1 & S3)

S2 ← S2 ⊕ (S0 | S1)

S3 ← S3 ⊕ S2

S1 ← S1 ⊕ S3

S3 ← ∼ S3

S2 ← S2 ⊕ (S0 & S1)

{S0, S1, S2, S3} ← {S3, S1, S2, S0},

where &, | and ∼ are AND, OR and NOT operation respectively.

5

PermBits. Different 32-bit bit permutations are applied to each Si independently.

Table 2.2: Specifications of GIFT-128 bit permutation.

Index 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

S0 29 25 21 17 13 9 5 1 30 26 22 18 14 10 6 2

S1 30 26 22 18 14 10 6 2 31 27 23 19 15 11 7 3

S2 31 27 23 19 15 11 7 3 28 24 20 16 12 8 4 0

S3 28 24 20 16 12 8 4 0 29 25 21 17 13 9 5 1

Index 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S0 31 27 23 19 15 11 7 3 28 24 20 16 12 8 4 0

S1 28 24 20 16 12 8 4 0 29 25 21 17 13 9 5 1

S2 29 25 21 17 13 9 5 1 30 26 22 18 14 10 6 2

S3 30 26 22 18 14 10 6 2 31 27 23 19 15 11 7 3

In Table 2.2, the row “Index” shows the indexing of the 32 bits in all Si’s
and the row “Si” shows the ending position of the bits. For example, bit
1 (the 2nd rightmost bit) of S1 is shifted 1 position to the right, to the
initial position of bit 0, while bit 0 is shifted 8 positions to the left.

AddRoundKey. This step consists of adding the round key and round constant.
Two 32-bit segments U, V are extracted from the key state as the round
key.

RK = U‖V.

For the addition of round key, U and V are XORed to S2 and S1 of the
cipher state respectively.

S2 ← S2 ⊕ U,
S1 ← S1 ⊕ V.

For the addition of round constant, S3 is updated as follows,

S3 ← S3 ⊕ 0x800000XY,

where the byte XY = 00c5c4c3c2c1c0.

Key schedule and round constants

A round key is first extracted from the key state before the key state update.
Four 16-bit words of the key state are extracted as the round key RK = U‖V .

U ←W2‖W3, V ←W6‖W7.

6

The key state is then updated as follows,
W0 ‖ W1

W2 ‖ W3

W4 ‖ W5

W6 ‖ W7

←

W6 ≫ 2 ‖ W7 ≫ 12

W0 ‖ W1

W2 ‖ W3

W4 ‖ W5

 ,
where ≫ i is an i bits right rotation within a 16-bit word.

The round constants are generated using the a 6-bit affine LFSR, whose state
is denoted as c5c4c3c2c1c0. Its update function is defined as:

c5‖c4‖c3‖c2‖c1‖c0 ← c4‖c3‖c2‖c1‖c0‖c5 ⊕ c4 ⊕ 1.

The six bits are initialized to zero, and updated before being used in a given
round. The values of the constants for each round are given in the table below,
encoded to byte values for each round, with c0 being the least significant bit.

Rounds Constants

1 - 16 01,03,07,0F,1F,3E,3D,3B,37,2F,1E,3C,39,33,27,0E

17 - 32 1D,3A,35,2B,16,2C,18,30,21,02,05,0B,17,2E,1C,38

33 - 48 31,23,06,0D,1B,36,2D,1A,34,29,12,24,08,11,22,04

Decryption of GIFT-128

We omit the description of the inverse of GIFT-128 as it is not required for
GIFT-COFB.

2.4.2 Format of Incoming Data

As seen in the “Initialization” phase, the loading of the data (plaintext) bits is
column-wise. Typically, that would require additional instructions to rearrange
and pack the incoming data into the Si’s, and unpack them back to the initial
data format after the encryption. Such practice, however, is merely a matter of
perspective and does not affect the security. In fact, it costs additional clock
cycles in software implementation to pack them into the desired format. To save
on this unnecessary overhead, we regard the incoming data and key as having
the desired format and load them into the states in the most natural manner.

S =

S0

S1

S2

S3

←

B0 ‖ B1 ‖ B2 ‖ B3

B4 ‖ B5 ‖ B6 ‖ B7

B8 ‖ B9 ‖ B10 ‖ B11

B12 ‖ B13 ‖ B14 ‖ B15

 ,

7

KS =

W0 ‖ W1

W2 ‖ W3

W4 ‖ W5

W6 ‖ W7

←

B0‖B1 ‖ B2‖B3

B4‖B5 ‖ B6‖B7

B8‖B9 ‖ B10‖B11

B12‖B13 ‖ B14‖B15

 ,
where Bi are the arriving bytes.

Relation to GIFT-128 LUT based implementation

An alternative implementation of GIFT-128 is using look-up table (LUT) for
the SubCells operation. Such implementation prefers having the data in the
conventional format, i.e. B0B1 · · ·B15 = b127b126 · · · b1b0.

The conversion from an LUT implementation to our bitslice implementation
is simple: Note that we perceive the incoming data as bitslice format,

B0 ‖ B1 ‖ B2 ‖ B3

B4 ‖ B5 ‖ B6 ‖ B7

B8 ‖ B9 ‖ B10 ‖ B11

B12 ‖ B13 ‖ B14 ‖ B15

=

b124b120b116 · · · b96 ‖ b92 · · · b64 ‖ b60 · · · b32 ‖ b28 · · · b0
b125b121b117 · · · b97 ‖ b93 · · · b65 ‖ b61 · · · b33 ‖ b29 · · · b1
b126b122b118 · · · b98 ‖ b94 · · · b66 ‖ b62 · · · b34 ‖ b30 · · · b2
b127b123b119 · · · b99 ‖ b95 · · · b67 ‖ b63 · · · b35 ‖ b31 · · · b3

 .
First, unpack the data into the conventional format. Next, perform the LUT
implementation of GIFT-128. Finally, pack the output data back to the bitslice
format. No additional packing/unpacking is required for the key. This yields
the exact same bitslice implementation as we described in the Section 2.4.1.

Test Vectors

Key : 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

Plaintext : 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

Ciphertext : A9 4A F7 F9 BA 18 1D F9 B2 B0 0E B7 DB FA 93 DF

Key : E0 84 1F 8F B9 07 83 13 6A A8 B7 F1 92 F5 C4 74

Plaintext : E4 91 C6 65 52 20 31 CF 03 3B F7 1B 99 89 EC B3

Ciphertext : 33 31 EF C3 A6 60 4F 95 99 ED 42 B7 DB C0 2A 38

8

0
4

8
1
2

1
6

2
0

2
4

2
8

3
2

3
6

4
0

4
4

4
8

5
2

5
6

6
0

6
4

6
8

7
2

7
6

8
0

8
4

8
8

9
2

9
6

1
0
0

1
0
4

1
0
8

1
1
2

1
1
6

1
2
0

1
2
4

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

R
K

i

R
K

i+
1

F
ig

u
re

2.
1:

2
ro

u
n

d
s

of
G
I
F
T
-
1
2
8
.

9

2.5 COFB Authenticated Encryption Mode

In this section, we present our proposed mode, COFB in Fig. 2.3. We first specify
the basic building blocks and parameters used in our construction.

Key and Block cipher. The underlying cryptographic primitive is an n-bit
block cipher, EK . We assume that n is a multiple of 4. The key of the scheme
is the key of the block cipher, i.e. K.

Padding Function. For x ∈ {0, 1}∗, we define padding function Pad as

Pad(x) =

{
x if x 6= ε and |x| mod n = 0

x‖10(n−(|x| mod n)−1) otherwise.
(2.1)

Feedback Function. Let Y ∈ {0, 1}n and (Y [1], Y [2])
n/2←−− Y , where Y [i] ∈

{0, 1}n/2. We define G : B → B as

G(Y) = (Y [2], Y [1] ≪ 1),

where for a string X, X ≪ r is the left rotation of X by r bits. We also view G
as the n× n non-singular matrix, so we write G(Y) and G · Y interchangeably.
For M ∈ B and Y ∈ B, we define ρ1(Y,M) = G · Y ⊕M . The feedback function
ρ and its corresponding ρ′ are defined as

ρ(Y,M) = (ρ1(Y,M), Y ⊕M),

ρ′(Y,C) = (ρ1(Y, Y ⊕C), Y ⊕C).

Note that when (X,M) = ρ′(Y,C) then X = (G ⊕ I) · Y⊕C, where I is the
n×n identity matrix. Our choice of G ensures that G⊕ I has rank n− 1. When
Y is chosen randomly for both computations of X (through ρ and ρ′), X also
behaves randomly. We need this property when we bound probability of bad
events later.

We present the specifications of COFB in Fig. 2.3, where α and (1 + α) are
written as 2 and 3. See also Fig. 2.2. The encryption and decryption algorithms
are denoted by COFB-EK and COFB-DK . We remark that the nonce length is n
bits, which is enough for the security up to the birthday bound. The nonce is
processed as EK(N) to yield the first internal chaining value. The encryption
algorithm takes A and M , and outputs C and T such that |C| = |M | and |T | = n.
The decryption algorithm takes (N,A,C, T) and outputs M or ⊥.

10

Figure 2.2: Encryption of COFB. In the rightmost figure, the case of encryption
for empty M (hence a MAC for (N,A)) can be highlighted as T = Truncτ (Y [a])

11

Algorithm COFB-EK(N,A,M)

1. Y [0]← EK(N), L← Truncn/2(Y [0])

2. (A[1], . . . , A[a])
n←− Pad(A)

3. if M 6= ε then

4. (M [1], . . . ,M [m])
n←− Pad(M)

5. for i = 1 to a− 1

6. L← 2 · L
7. X[i]← A[i]⊕G · Y [i− 1]⊕ L‖0n/2

8. Y [i]← EK(X[i])

9. if |A| mod n = 0 and A 6= ε then L← 3 · L
10. else L← 32 · L
11. if M = ε then L← 32 · L
12. X[a]← A[a]⊕G · Y [a− 1]⊕ L‖0n/2

13. Y [a]← EK(X[a])

14. for i = 1 to m− 1

15. L← 2 · L
16. C[i]←M [i]⊕ Y [i+ a− 1]

17. X[i+ a]←M [i]⊕G · Y [i+ a− 1]⊕L‖0n/2

18. Y [i+ a]← EK(X[i+ a])

19. if M 6= ε then

20. if |M | mod n = 0 then L← 3 · L
21. else L← 32 · L
22. C[m]←M [m]⊕ Y [a+m− 1]

23. X[a+m]←M [m]⊕G·Y [a+m−1]⊕L‖0n/2

24. Y [a+m]← EK(X[a+m])

25. C ← Trunc|M |(C[1]|| . . . ||C[m])

26. T ← Truncτ (Y [a+m])

27. else C ← ε, T ← Truncτ (Y [a])

28. return (C, T)

Algorithm COFB-DK(N,A,C, T)

1. Y [0]← EK(N), L← Truncn/2(Y [0])

2. (A[1], . . . , A[a])
n←− Pad(A)

3. if C 6= ε then

4. (C[1], . . . , C[c])
n←− Pad(C)

5. for i = 1 to a− 1

6. L← 2 · L
7. X[i]← A[i]⊕G · Y [i− 1]⊕ L‖0n/2

8. Y [i]← EK(X[i])

9. if |A| mod n = 0 and A 6= ε then L← 3 · L
10. else L← 32 · L
11. if C = ε then L← 32 · L
12. X[a]← A[a]⊕G · Y [a− 1]⊕ L‖0n/2

13. Y [a]← EK(X[a])

14. for i = 1 to c− 1

15. L← 2 · L
16. M [i]← Y [i+ a− 1]⊕ C[i]

17. X[i+ a]←M [i]⊕G · Y [i+ a− 1]⊕ L‖0n/2

18. Y [i+ a]← EK(X[i+ a])

19. if C 6= ε then

20. if |C| mod n = 0 then

21. L← 3 · L
22. M [c]← Y [a+ c− 1]⊕ C[c]

23. else

24. L← 32 · L, c′ ← |C| mod n

25. M [c]← Truncc′(Y [a+c−1]⊕C[c])‖10n−c
′−1

26. X[a+ c]←M [c]⊕G · Y [a+ c− 1]⊕ L‖0n/2

27. Y [a+ c]← EK(X[a+ c])

28. M ← Trunc|C|(M [1]|| . . . ||M [c])

29. T ′ ← Truncτ (Y [a+ c])

30. else M ← ε, T ′ ← Truncτ (Y [a])

31. if T ′ = T then return M , else return ⊥

Figure 2.3: The encryption and decryption algorithms of COFB

12

Chapter 3

Performance

3.1 Hardware Performance

The COFB mode was designed with rate 1, that is every message block is processed
only once. Such designs are not only beneficial for throughput, but also energy
consumption. However the design does need to maintain an additional 64 bit
state, which requires a 64-bit register to additionally included in any hardware
circuit that implements it. Although this might not be energy efficient for short
messages, in the long run COFB performs excellently with respect to energy
consumption. The GIFT-128 block cipher was designed with a motivation for
good performance on lightweight platforms. The round key addition for the cipher
is over only half the state and the key schedule being only a bit permutation does
not require logic gates. These characteristics make the GIFT-128 well suited
for lightweight applications. In fact as reported in [5], among the block ciphers
defined for 128-bit block size GIFT-128 has the lowest hardware footprint and
very low energy consumption. Thus GIFT-COFB combines the best of both the
advantages of the design ideologies.

Figure 3.1 details the hardware circuit for round based GIFT-COFB. The mode
is designed to require one additional 64-bit state apart from the ones used in the
block cipher circuit. Thus the design requires an additional 64-bit register. The
initial nonce (denoted by Nonce in the above figure) to the encryption routine,
and other control signals are generated centrally depending on the length of the
plaintext and associated data. Depending on the phase of operation the state
register may need to feed either the nonce, the output of the GIFT-128 round
function, which is the sum of the encryption output, associated data/plaintext
and the additional state Delta.

The state Delta is updated by multiplying with suitable filed elements of the
form γ = αx(1 +α)y with x+ y ≤ 4. Thus we allocate 4 clock cycles to compute
the potential Delta update signal. Depending on the value of γ, we update the
Delta register by either doubling, tripling or the identity operation. For example
if γ = α2, we execute doubling for 2 cycles and the identity operation for 2

13

⊕⊕
⊕

⊕
⊕

bb
b

b

b
b

b
b

b

⊕

G
G
IF
T

ro
u
n
d

fu
n
ct
io
n

A
D

P
la
in
te
x
t

C
T

V

N
on

ce
V

G
IF
T

ke
y

sc
h
ed
u
le

K

K
K
ey

S
ta
te

re
gi
st
er

K
ey

re
gi
st
er

C
on
tr
ol

S
ig
n
al

G
en
er
at
or

L
en
gt
h
A
D

L
en
gt
h
P
T

b
b

b
b

R
op

S
el

D
el
ta

re
gi
st
er

D
el
ta

U
p
d
at
e

2X
3X

X

S
el

b

⊕⊕
b

R
op

b
64

M
S
B

12
8

64 64

64
64

64 64

2

Figure 3.1: Hardware circuit for round based GIFT-COFB

14

GIFT- COFB (3927 GE)

Key Register (652 GE)

State Register (813 GE)

Delta Register (326 GE)

Gift Round Function (695 GE)

Delta Update (291 GE)

Multiplexers (471 GE)

Control Logic, Xor gates (679 GE)

16.6%

20.7%

8.3%
17.7%

7.4%

12.0%

17.3%

Figure 3.2: Component-wise breakup of the GIFT-COFB circuit

more cycles. Thus in addition to the field operation, the circuit requires a 3:1
multiplexer controlled by a Sel signal generated centrally.

3.1.1 Timing

The GIFT-128 block cipher takes E = 40 cycles to complete one encryption
function. This is the number of clock cycles required in the encryption of the
nonce. Each block of associated data would take E cycles to process. Before
each block of associated data or plaintext is processed we spend Du = 4 cycles
to update the Delta. Thus if na, nm are the total number of associated data/
message blocks an encryption pass requires T = E + (na + nm)(E +Du) cycles
to compute.

3.1.2 Performance

We present the synthesis results for the design. The following design flow was
used: first the design was implemented in VHDL. Then, a functional verification
was first done using Mentor Graphics Modelsim software. The designs were
synthesized using the standard cell library of the 90nm logic process of STM
(CORE90GPHVT v2.1.a) with the Synopsys Design Compiler, with the compiler
being specifically instructed to optimize the circuit for area. A timing simulation
was done on the synthesized netlist. The switching activity of each gate of
the circuit was collected while running post-synthesis simulation. The average
power was obtained using Synopsys Power Compiler, using the back annotated
switching activity.

Our implementation of GIFT-COFB occupied 3927 GE. A component-wise
breakup of the circuit is given in Figure 3.2. The power consumed at an operating
frequency is 156.3 µW. The energy consumption figures for various lengths of
data inputs are given in Table 3.1.

15

Block Cipher Area (GE) Power(µW) Energy(nJ)

AD PT AD PT AD PT

0B 16B 16B 16B 16B 32B

GIFT-128 3927 156.3 1.31 2.00 2.69

Table 3.1: Implementation results for GIFT-COFB. (Power reported at 10 MHz)

1 2 3 4

0.5

1

r-Round

E
n

er
gy

(n
J
/1

28
-b

it
)

GIFT-COFB
SUNDAE-GIFT
HYENA
LOTUS
LOCUS
SKINNY-AEAD
ROMULUS
FORKAE
PYJAMASK
SATURNIN

Figure 3.3: Energy consumption (nJ/128-bit) comparison chart for the r-round
partially-unrolled implementations with r ∈ {1, 2, 3, 4}. For each candidate the
best obtained energy value obtained through techniques is used.

3.1.3 Energy Efficiency

Some more results were recently published in [9] that compares the the energy
efficiency of GIFT-COFB with 9 other modes of operation using lightweight block
ciphers in the NIST LWC. Because of the excellent energy characteristics of
GIFT-128 and the fact that GIFT-COFB is a rate 1 mode, GIFT-COFB was found to
be one of the most energy efficient designs in the NIST LWC. We experimented
with different round unrolled architectures of the core block cipher used in the
design (from round-based to fully unrolled) using the TSMC 90nm standard cell
library. Figure 3.3 charts the optimal energy per 128-bit block value for each
degree of unrolling r and candidate. Table 3.2 details the simulation results.
Note that all the charts and tables are taken from [9].

3.1.4 Threshold Implementations

The s-box of GIFT-128 belongs to the cubic class C172 which is decomposable into
2 quadratics. The algebraic expressions of the output shares of both the 3 and

16

Unrolled Unrolled-IG

0

5

10
E

n
er

gy
(n

J
/1

28
-b

it
)

COFB
SUNDAE-GIFT
HYENA
LOTUS
LOCUS
SKINNY-AEAD
ROMULUS
FORKAE
PYJAMASK
SATURNIN

Figure 3.4: Energy consumption (nJ/128-bit) comparison chart for the fully-
unrolled implementations with and without inverse-gating.

4-share TI can be found in [16]. Table 3.3 lists the simulation results using the
same measurement setup as the unshared round-based implementations. It can
be seen that GIFT-COFB offers both low area and competitive energy efficiency
when compared with other modes of operation.

3.2 Software Implementation Details

In this section, we discuss software implementation of GIFT-128. Due to its
inherent bitslice structure, it seems natural to consider that the most efficient
software implementations of GIFT-128 will be a bitslice strategy, which also offers
a constant-time guarantee. This is also the reason why we have used bitslice
loading of plaintext/key when using GIFT-128 in the operating mode. The COFB
mode being rate-1 and quite simple, as long as a non-parallel implementation is
used the entire GIFT-COFB primitive will have similar throughput to GIFT-128
as the input to be handled becomes longer.

Indeed, since COFB is not a parallel operating mode, one can’t use several
consecutive encryption blocks, which might prevent us to fully use the power
of bitslice implementations. More precisely, as the GIFT-128 Sbox size is 4 bits,
one will need x parallel blocks on a 32x-bit architecture. This fits perfectly
architecture of 32-bit or less. For bigger registers, one can simply use dummy
extra blocks (blocks with random or zero data) to simulate a real bitslice
implementation (1 dummy block for 64-bit registers, 3 dummy blocks for 128-bit
registers, etc.), which will of course lead to an efficiency penalty. We note
however that on a server communicating with several clients, one could consider
avoiding the dummy blocks penalty by ciphering all these communications in
parallel.

Assume then an architecture with 32-bit registers. The 128-bit plaintext,
already in bitslice form, is directly loaded in four registers (similarly for the key).
The implementation of the Sbox is straightforward and is provided below. It

17

Table 3.2: Various GIFT-COFB implementations. Latency and energy is given
for processing a single authenticated data block followed by eight message
blocks.CG denotes clock gated. IG denotes ”inverse-gated” implementation as
per the generic energy reduction technique explained in [3]

Candidate Implementation Latency Area TPmax Power Energy

(cycles) (GE) (Mbps) (µW) (nJ/128-bit)

GIFT-COFB 1-Round 400 4710 615.38 69.3 0.363

1-Round-CG 400 4700 569.17 61.9 0.324

2-Round 200 5548 1192.55 106.8 0.280

2-Round-CG 200 5510 952.06 95.5 0.251

3-Round 140 6372 1211.87 159.0 0.293

3-Round-CG 140 6311 1172.16 156.2 0.288

4-Round 100 7144 1304.64 237.0 0.314

4-Round-CG 100 7036 1140.59 232.4 0.308

Unrolled 10 35735 2015.75 12628.4 3.841

Unrolled-IG 10 43584 711.15 1107.0 0.337

requires only 6 XORs, 3 ANDs, 1 OR and 1 NOT instruction.

1 /* Input: (MSB) x[3], x[2], x[1], x[0] (LSB) */
2 x[1] = x[1] XOR (x[0] AND x[2]);
3 t = x[0] XOR (x[1] AND x[3]);
4 x[2] = x[2] XOR (t OR x[1]);
5 x[0] = x[3] XOR x[2];
6 x[1] = x[1] XOR x[0];
7 x[0] = NOT x[0];
8 x[2] = x[2] XOR (t AND x[1]);
9 x[3] = t;

10 /* Output: (MSB) x[3], x[2], x[1], x[0] (LSB) */

Figure 3.5: Software-optimized implementation of the GIFT Sbox.

Applying the round keys and constants is also straightforward with XOR
instructions (one could even consider that round keys/constants are precomputed
and stored in memory). A much more difficult task if to apply the bit permutation,
as it is quite costly the move individual bits around in software. A crucial property
of the GIFT bit permutations is that a bit in slice i is always sent to the same
slice i during this permutation. Thus, applying the bit permutation layer means
simply permuting the ordering of the bits inside the registers independently.
Fortunately, we have found a new representation of the GIFT-64 and GIFT-128
bit permutations that makes it efficient and simple to implement in software.
This strategy, named fix-slicing [2], indeed leads to very efficient one-block
constant-time GIFT-128 implementations on 32-bit architectures such as ARM

18

Table 3.3: Measurements for the 1-round threshold implementations. The
schemes using GIFT-128 are colored in light gray whereas, SKINNY-AEAD based
schemes are in white. Note that the table has been taken from [9]

Candidate Conf. Shares Latency Area TPmax Power Energy

(cycles) (GE) (Mbps) (mW) (nJ/128-bit)

GIFT-COFB CG-RB 3 800 16386 208.9 0.214 2.243

CG-RB 4 400 25850 350.8 0.358 1.875

SUNDAE-GIFT RB 3 1440 13297 145.7 0.215 3.719

RB 4 720 21848 285.2 0.357 2.999

HYENA CG-RB 3 800 14769 344.9 0.212 2.216

CG-RB 4 400 24540 497.4 0.358 1.875

LOTUS CG 3 2072 14176 121.7 0.145 3.581

CG 4 1036 19712 133.0 0.262 3.232

LOCUS CG 3 2072 12366 121.7 0.137 3.362

CG 4 1036 17597 176.8 0.255 3.148

SKINNY-AEAD CG 3 2240 18501 92.83 0.2264 6.134

ROMULUS CG-RB 3 2056 13450 130.00 0.1865 4.656

FORKAE CG 3 3008 17008 76.60 0.2483 8.304

PYJAMASK CG-RB 3 348 42001 620.2 0.472 1.825

CG-RB 4 180 64577 927.6 0.814 1.628

Cortex-M family of processors (79 cycles/ byte on ARM Cortex-M3), making
GIFT-COFB one of the most efficient candidate according to microcontroller
benchmarks [27, 32]. Using smaller architecture will not be an issue as we will
actually save more operations comparatively, since part of the bit permutation
can be done by proper unrolling and register scheduling. This is confirmed with
8-bit AVR benchmarks [27, 32] where GIFT-COFB is again ranked among the top
candidates. Note that using exactly this implementation will also provide decent
performance on recent high-end processors (and excellent performances if parallel
computations of GIFT-COFB instances are considered and vector instructions
are used).

19

3.3 Other Implementation/Benchmarking Results
on GIFT-COFB

3.3.1 Software Benchmarking by Renner et. al. [27]

This benchmark results are mainly obtained on five different microcontroller unit
platforms. The results are based on the custom made performance evaluation
framework, introduced at the NIST LWC Workshop in November 2019. Pre-
cisely, the result contains speed, ROM and RAM and benchmarks for software
implementations of the 2nd round candidates. We would like to point that,
though GIFT-COFB is not designed for microcontrollers, it still stands among
the top five designs. The detailed table can be found in [27].

3.3.2 Software Implementations and Benchmarking by Weath-
erley et. al. [32]

Rhys Weatherley provides efficient 8-bit AVR and 32-bit ARM Cortex-M3
implementations of GIFT-COFB using the fix-slicing strategy. All these imple-
mentations are available on the corresponding GitHub repository and benchmarks
on these two platforms are provided. Again, we point that, though GIFT-COFB
is not designed for microcontrollers, it still ranks at 3rd place among all NIST
competition candidates.

3.3.3 Hardware Benchmarking by Rezvani et. al. [28]

This work implements 6 NIST LWC Round 2 candidates SpoC, GIFT-COFB,
COMET-AES, COMET-CHAM, ASCON, and Schwaemm and Esch, on Artix-
7, Spartan-6, and Cyclone-V. The results show that SpoC, GIFT-COFB and
COMET-CHAM achieves the lowest increase in dynamic power with increasing
frequency.

3.3.4 Hardware Benchmarking by Rezvani et. al. [29]

This work implements three NIST LWC Round 2 candidates GIFT-COFB, SpoC
and Spook and few other CAESAR candidates on Artix7. All the implementations
are validated on the CAESAR API. The results depict that GIFT-COFB has
the highest throughput-to-area (TPA) ratio at 0.154 Mbps/LUT which is a 4.4
factor margin over Spook.

20

Chapter 4

Security of GIFT-COFB

Our security claims are summarized in Table 4.1.

Construction State Size(bits) IND-CPA(bits) INT-CTXT(bits)

GIFT-COFB 192 (excluding the key state) 64 58

Table 4.1: IND-CPA and INT-CTXT security of GIFT-COFB under the nonce
respecting scenario

In this writeup, we provide a sketch of the security proof for GIFT-COFB. The
complete AE security proof of the COFB mode can be found in [4], where the
AE advantage of COFB is upper bounded by

AdvAE
COFB((q, qf), (σ, σf), t) ≤ Advprp

GIFT(q′, t′) +

(
q′

2

)
2n

+
1

2n/2
+
qf (n+ 4)

2n/2+1

+
3σ2 + qf + 2(q + σ + σf) · σf

2n
(4.1)

with q′ = q+ qf + σ+ σf , which corresponds to the total number of block cipher
calls through the game, and t′ = t+O(q′). Note that, the advantage has been
taken by the maximum advantage over all the adversaries making q encryption
queries, qf decryption queries and running in time t, such that σ, σf are the total
number of blocks queried in the encryption and decryption queries respectively.
For GIFT-COFB, n = 128 and

• GIFT-COFB satisfies the requirement of security against 2112 computations
in a single key setting. This comes from the security assumption of GIFT.
A sketch of the security analysis of GIFT is provided in Section 4.3.

• GIFT-COFB satisfies the requirement that the input size shall not be smaller
than 250−1 bytes under a single key. This comes from the above expression

21

of AE security advantage of COFB (which depicts even a higher bound
than 250 − 1, when n = 128). A sketch of the security analysis is provided
in Section 4.1 and 4.2.

We would also like to mention that, the upper bound of the input length in
blocks for a single query is bounded by 251. This comes from the fact that for all
(a, b) ∈ {0, . . . , 251} × {0, . . . , 10}, 2a3b (needed to update L) are distinct. This
result has been presented by Rogaway in [30].

4.1 IND-CPA Security of GIFT-COFB

To attack against the privacy of GIFT-COFB, we assume that an adversary
runs in time t and makes at most qe encryption queries (Ni, Ai,Mi)i=1...qe to
GIFT-COFB with an aggregate of total σe many blocks. In return the adversary
receives (Ci, Ti)i=1...qe . In this interaction, the adversary tries to distinguish the
construction from a random function with the same domain and range.

If we use a hybrid argument, then we first make a transition by using an n-bit
(uniform) random permutation P instead of the underlying block cipher GIFTK ,
and then to use an n-bit (uniform) random function R instead of P. This two-step
transition requires the first two terms of our bound, from the standard PRP-PRF
switching lemma and from the computation to the information security reduction
(e.g., see [18]). Then what we need is a bound for COFB using R, denoted by
COFB[R].

The adversary can distinguish COFB[R] construction from a random function
with the same domain and range if it finds a state collision among the internal
states (block cipher inputs) of two encryption queries. It is easy to see that the

probability of a collision is bounded by
(σe2)
2128 . This holds as for any two of the σe

block cipher inputs (corresponding to σe input data blocks) are equal with the
probability 2−128 (from the randomness of the previous block cipher outputs).
Hence, the privacy or IND-CPA advantage of GIFT-COFB can be bounded by

Advprp
GIFT(qe, t) +

(qe2)
2128 +

(σe2)
2128 .

4.2 IND-CTXT Security of GIFT-COFB

On the other hand, to attack against the integrity of GIFT-COFB, assume that an
adversary makes at most qe encryption queries (Ni, Ai,Mi)i=1...qe to COFB−EK
with an aggregate of total σe many blocks. In return the adversary receives
(Ci, Ti)i=1...qe . The adversary also tries to forge with qf decryption queries
(N∗j , A

∗
j , C

∗
j , T

∗
j)j=1...qf with a total number of σf blocks to COFB − DK and

receives M∗j or ⊥. Let q = qe + qf +σe +σf . The trivial solution for forging is to

guess the tag which can be bounded by
qf
2128 (One of the qf forged tags is valid).

A bad case B1 occurs if an adversary can obtain an intermediate block cipher
input state collision between an encryption query and a decryption query or

22

between two decryption queries. The probability of this event is bounded by
(qe+σe+2σf)σf

2128 +
64qf
264 (Actually the last term is

0.5nqf
264 and here n = 128).

To bound the probability of B1, we assume the following bad events do not
hold. The bad events are as follows.

• B2: Multicollision of size more than n/2 (with n = 128) on the right half
of the intermediate block cipher inputs for the encryption queries do not
occur. This event is bounded by a negligible probability 2σe

264 .

• B3: Let Xi[j] be the jth block cipher input in the ith encryption query
and X∗i [j] be the jth block cipher input in the ith decryption query. For
each of the decryption queries, after the prefix pi (defined in footnote1),
we define the following event B3 as

X∗i [pi + 1] = Nj and X∗i [pi + 2] = Xi′ [j
′], for some i, j, i′, j′.

This event is bounded by a negligible probability
qf
264 +

qf (qe−1)
2128 .

The part
(qe+σe+2σf)σf

2128 in B1 occurs for block cipher input state collision
between an encryption and an decryption query or between two decryption
queries. Here, the number of such bad pairs is bounded by (qe + σe + 2σf)σf .

The part
64qf
264 in B1 occurs for block cipher input state collision between an

encryption query and a decryption query. The probability bound comes from
the fact that for the ith decryption query, the (pi + 1)st block cipher input is
fresh with high probability due to fact that B2, B3 do not hold. The (pi + 1)st

block cipher input is not fresh with probability bounded by 64
264 . It comes from

the fact that no multi-collision of size more than 64 occurs.
Forging event should imply one of the bad events. Hence the INT-CTXT

advantage of GIFT-COFB is bounded by

qf
2128

+
2σe
264

+
qf
264

+
qf (qe − 1)

2128
+

(qe + σe + 2σf)σf
2128

+
64qf
264

=
3σe + qf

264
+

(qe + σe + 2σf)σf + qf + (qe − 1)qf
2128

+
64qf
264

.

4.3 Security Analysis of GIFT-128 (Extract)

The security analysis of GIFT-128 is provided in Section 4 of [6]. Here we
highlight several important features.

1A prefix for a decryption query is defined as the common prefix blocks between the
decryption query input string and an encryption query output string. The length of the
common prefix for the ith decryption query is denoted as pi. Note that, if the decryption
query uses a fresh nonce, then the decryption query input string does not share any common
prefix with any of the encryption query output strings and we set pi = −1.

23

Differential cryptanalysis. Zhu et al. applied the mixed-integer-linear-programming
based differential characteristic search method for GIFT-128 and found
an 18-round differential characteristic with probability 2−109 [33], which
was further extended to a 23-round key recovery attack with complexity
(Data, T ime,Memory) = (2120, 2120, 280). We expect that full (40) rounds
are secure against differential cryptanalysis.

Linear cryptanalysis. GIFT-128 has a 9-round linear hull effect of 2−45.99, which
means that we would need around 27 rounds to achieve correlation poten-
tially lower than 2−128. Therefore, we expect that 40-round GIFT-128 is
enough to resist against linear cryptanalysis.

Integral attacks. The lightweight 4-bit S-box in GIFT-128 may allow efficient
integral attacks. The bit-based division property is evaluated against
GIFT-128 by the designers, which detected a 11-round integral distin-
guisher.

Meet-in-the-middle attacks. Meet-in-the-middle attack exploits the property
that a part of key does not appear during a certain number of rounds.
The designers and the follow-up work by Sasaki [31] showed the attack
against 15-rounds of GIFT-64 and mentioned the difficulty of applying it
to GIFT-128 because of the larger ratio of the number of round key bits to
the entire key bits per round; each round uses 32 bits and 64 bits of keys
per round in GIFT-64 and GIFT-128, respectively, while the entire key size
is 128 bits for both.

4.4 New third-party analysis and its implications

Besides the security argument by the designers, GIFT-128 has received a lot
of third-party analysis. Moreover, during the first and second rounds, several
groups analyzed the security of GIFT-COFB. Here, we summarize the third-party
analysis against GIFT-128 and GIFT-COFB, which suggests that GIFT-COFB is
highly secure against cryptanalysis.

4.4.1 Third-party analysis on GIFT-128

In short, our underlying 40-round block cipher GIFT-128 [5] remains secure with
high security margin. We have summarized the latest third-party cryptanalysis
results in Table 4.2.

[33] is the corrected version of [34] with the 22-round differential cryptanalysis
on GIFT-128, the original 23-round attack was invalid.

Although GIFT-128 did not make related-key security claims, third-party
analysis [10, 18, 23] have shown that GIFT-128 is actually resistant against
related-key attacks.

24

4.4.2 Third-party analysis on GIFT-COFB

Zong et al. [35] applied their linear cryptanalysis to mount the key-recovery
attack on the reduced-round variant of GIFT-COFB, in which the number of
rounds of GIFT-128 is reduced to 15 rounds. In short, it makes many encryption
queries under different nonces to obtain pairs of plaintext and ciphertext in the
consequent two blocks. The pairs partially reveal the internal state value. By
setting the linear masks only to exploit those values, linear cryptanalysis can be
mounted. The attack complexity is (Time,Data,Memory) = (290.7, 262, 296).
Note that the number of attacked rounds is significantly smaller than that of
GIFT-128, because of the limited degrees of freedom for the attacker to set
the active bit positions. Also note that Zong et al. [35] show that the similar
attack can be mounted on SUNDAE-GIFT up to 16 rounds, 1 round longer than
GIFT-COFB because of the difference of the bit-positions to extract the key stream.
This illustrates the validity of GIFT-COFB on the bit-positions of extracting the
key stream.

Khairallah analyzed the security of GIFT-COFB as a mode [19, 20], i.e.,
GIFT-128 is treated as a black box. In [19], a forgery attack against GIFT-COFB
that makes O(2n/2) encryption queries and O(2n/2) decryption queries in a single
key setting is presented. An analysis in the multi-key setting is also presented.
In [19], the forgery attack is improved to make O(2n/4) encryption queries and
O(2n/2) decryption queries. These attacks are almost matching attacks to the
provable security bound, up to the logarithmic factor. That is, these results
show that the provable security bound presented as Eq. (4.1) is almost tight.

There was a paper posted on Cryptology ePrint Archive 2020/698 [11] claiming
forgery attack on GIFT-COFB, but we have contacted and clarified with the authors
that the attack is invalid due to an oversight of the GIFT-COFB specification and
the authors have since been withdrawn their paper.

4.4.3 Third-party analysis from various viewpoints

In addition to conventional cryptanalysis, GIFT-128 receives third-party evalua-
tion from different viewpoints.

Hou et al. [14] investigated physical security of GIFT-COFB, in particular
differential ciphertext side-channel attacks.

Jang et al. [15] and Bijwe et al. [7] evaluated the post-quantum security of
GIFT-128, in particular, amount of quantum resource to implement the Grover
search on GIFT-128.

25

Table 4.2: Summary of third-party analysis result on GIFT-128. Rounds with
asterisk (∗) are optimal results. SK – single-key, RK – related-key, LC – linear
cryptanalysis, DC – differential cryptanalysis.

Setting Rounds Approach Prob. Time Data Mem. Ref.

Distinguisher

SK 11 Integral 1 - 2127 - [13]

SK 9∗ LC 2−44 - - - [17]

SK 10∗ LC 2−52 - - - [17]

SK 15 LC 2−109 - - - [35]

SK 9∗ DC 2−45.4 - - - [22]

SK 10∗ DC 2−49.4 - - - [22]

SK 11∗ DC 2−54.4 - - - [22]

SK 12∗ DC 2−60.4 - - - [22]

SK 13∗ DC 2−67.8 - - - [22]

SK 14∗ DC 2−79.000 - - - [17]

SK 15∗ DC 2−85.415 - - - [17]

SK 16∗ DC 2−90.415 - - - [17]

SK 17∗ DC 2−96.415 - - - [17]

SK 18 DC 2−109 - - - [33]

SK 18∗ DC 2−103.415 - - - [17]

SK 19 DC 2−110.83 - - - [17]

SK 20 DC 2−121.415 - - - [21]

SK 20 DC 2−120.245 - - - [18]

SK 20 DC 2−121.813 - - - [35]

SK 21 DC 2−126.4 - - - [22]

RK 7 DC 2−15.83 - - - [10]

RK 10 DC 2−72.66 - - - [10]

RK 19 Boomerang 2−121.2 - - - [23]

RK 19 Boomerang 2−109.626 - - - [18]

Key-Recovery

SK 22 LC - 2117 2117 278 [35]

SK 22 DC - 2114 2114 253 [33]

SK 26 DC - 2124.415 2109 2109 [21]

SK 26 DC - 2123.245 2123.245 2109 [18]

SK 27 DC - 2124.83 2123.53 280 [35]

RK 21 Boomerang - 2126.6 2126.6 2126.6 [23]

RK 22 Boomerang - 2112.63 2112.63 252 [18]

RK 23 Rectangle - 2126.89 2121.31 2121.63 [18]

26

Chapter 5

Design Rationale

5.1 AEAD Scheme: GIFT-COFB

COFB is a block cipher based authenticated encryption mode that uses GIFT-128
as the underlying block cipher and GIFT-COFB can be viewed as an efficient
integration of the COFB and GIFT-128. GIFT-128 maintains an 128-bit state and
128-bit key. To be precise, GIFT is a family of block ciphers parametrized by the
state size and the key size and all the members of this family are lightweight
and can be efficiently deployed on lightweight applications. COFB mode on the
other hand, computes of “COmbined FeedBack” (of block cipher output and
data block) to uplift the security level. This actually helps us to design a mode
with low state size and eventually to have a low state implementation. This
technique actually resist the attacker to control the input block and next block
cipher input simultaneously. Overall, a combination of GIFT and COFB can be
considered to be one of the most efficient lightweight, low state block cipher
based AEAD construction.

5.2 Block Cipher Primitive: GIFT-128

GIFT is considered to be one of the lightest design existing in the literature. It
is denoted as “Small PRESENT” as the design rationale of GIFT follows that
of PRESENT [8]. However, GIFT has got rid of several well known weaknesses
existing in PRESENT with regards to linear cryptanalysis. Overall GIFT promises
much increased efficiency (both lighter and faster) over PRESENT. GIFT is a
very simple design that outperforms even SIMON and SKINNY for round based
implementations. It consists of very simple operations such that the total
hardware footprint is almost consumed by the underlying and the cipher storage.
The design is somewhat “optimal” as a weaker S-box (than GIFT S-box) would
lead to a weaker design. The linear layer is completely free for a round-based
implementation in hardware (consisting of simply bit-wiring) and the constants
are generated thanks to a very lightweight LFSR. The key schedule is also very

27

light, simply consisting of shifts. The presented security analysis details and
hardware implementation results also support the claims made by the designers.

Although there is almost no impact on hardware implementation, there are
several motivations for using bitslice implementation (non-LUT based) instead
of LUT based implementation of GIFT-128 when we consider software imple-
mentation. Here, we will state the 3 most obvious benefits relating to its 3 steps
in a round function.

Firstly for the non-linear layer, for LUT based implementation, we can consider
updating 2 GIFT-128 S-boxes (1 byte) in a single memory call with a reasonable
256 entries LUT. This would require 16 lookups and it takes approximately 16 to
64 cycles to do all S-boxes in a round, assuming a few cycles to access the RAM.
Using bitslice implementation, it requires just 11 basic operations (or 10 with
XNOR operation) to compute all the S-boxes in parallel. And more importantly,
using bitslice implementation has the nice feature that it doesn’t need any RAM
and that it is constant time, mitigating potential timing attacks.

Secondly for the linear layer, while it is basically free on hardware, for software
implementation it was extremely slow and complex to implement. However in
2020, a technique called fix-slicing [2] was introduced for bitslice implementation
and it significantly improves the constant-time implementation of GIFT-128 on
32-bit architectures. As a result, bitslice implementation is much more efficient
that LUT based implementation.

Third and lastly the key addition, for LUT based implementation, the round
keys need to be XORed to bit positions that are 3 bits apart, making the key
addition tedious and non-trivial. An option is to precompute the round keys,
but even so the key addition would require several XOR operations to update
the 128-bit state. Using bitslice, the bits that were once 3 bits apart are now
packed together in 32-bit words, making the key addition as simple as just 2
XOR operations.

5.3 Authenticated Encryption Mode: COFB

COFB is a lightweight AEAD mode. The mode presented in this write up differs
slightly with the original proposal. They are as follows.

• We change the nonce to be 128 bit.

• We change the feedback (more precisely the G matrix) to make it more
hardware efficient.

• We now deal with empty data. We change the mask update function for
the purpose.

• We change the padding for the associated data. To be precise, if the
associated data is empty, then padding the associated data will yield the
constant block 10n−1 (n: block cipher state size).

28

We observed that, the updates make the design more lightweight and more
efficient to deal with short data inputs. However, this updates does not have
impact on the security of the mode (only a nominal 1-bit security degradation).

5.4 Proposal for hash functionality

If hash functionality is desired, we propose constructing a 256-bit hash function
using GIFT-128 in the double block length (DBL) hashing construction proposed
by Mennink [25] (“Mennink’s construction” for short) for two reasons.

Firstly, it is a well-established construction. Mennink’s construction was first
proposed at ASIACRYPT 2012 [24], and to the best of our knowledge, after
almost a decade, it remains secure.

Secondly, it is suitable for our primitive block cipher GIFT-128 and provides
sufficiently high security guarantee. Mennink’s construction uses block ciphers
with n-bit block size and n-bit key (also known as DBLn functions), since
GIFT-128 is a 128-bit block cipher with 128-bit key, it is a natural candidate. In
addition, Mennink’s construction provides the highest collision (2n) and preimage
(23n/2) security among other the known DBLn functions.

29

Acknowledgments

Subhadeep Banik is supported by the Ambizione grant PZ00P2 179921, awarded
by the Swiss National Science Foundation. Thomas Peyrin is supported by the
Temasek Labs grant (DSOCL16194).

30

Bibliography

[1] Recommendation for Block Cipher Modes of Operation: The CMAC Mode
for Authentication. NIST Special Publication 800-38B, 2005. National
Institute of Standards and Technology.

[2] Alexandre Adomnicai, Zakaria Najm, and Thomas Peyrin. Fixslicing: A
new GIFT representation. IACR Cryptol. ePrint Arch., 2020:412, 2020.

[3] Subhadeep Banik, Andrey Bogdanov, Francesco Regazzoni, Takanori Isobe,
Harunaga Hiwatari, and Toru Akishita. Inverse gating for low energy
encryption. In HOST, pages 173–176. IEEE Computer Society, 2018.

[4] Subhadeep Banik, Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu,
Mridul Nandi, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, and Yosuke
Todo. GIFT-COFB. IACR Cryptol. ePrint Arch., 2020:738, 2020.

[5] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo. GIFT: A small present - towards
reaching the limit of lightweight encryption. In Cryptographic Hardware and
Embedded Systems - CHES 2017 - 19th International Conference, Taipei,
Taiwan, September 25-28, 2017, Proceedings, pages 321–345, 2017.

[6] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Siang Meng Sim,
Yosuke Todo, and Yu Sasaki. Gift: A small present. Cryptology ePrint
Archive, Report 2017/622, 2017. https://eprint.iacr.org/2017/622.

[7] Subodh Bijwe, Amit Kumar Chauhan, and Somitra Kumar Sanadhya. Quan-
tum Search for Lightweight Block Ciphers: GIFT, SKINNY, SATURNIN.
IACR Cryptol. ePrint Arch., 2020:1485, 2020.

[8] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An Ultra-Lightweight Block Cipher. In CHES 2007, pages
450–466, 2007.

[9] Andrea Caforio, Fatih Balli, and Subhadeep Banik. Energy analysis of
lightweight AEAD circuits. Accepted in Ceryptography and Network Secu-
rity (CANS) 2020.

31

https://eprint.iacr.org/2017/622

[10] Meichun Cao and Wenying Zhang. Related-Key Differential Cryptanalysis
of the Reduced-Round Block Cipher GIFT. IEEE Access, 7:175769–175778,
2019.

[11] Zhe CEN, Xiutao FENG, Zhangyi Wang, and Chunping CAO. (–Withdrawn–
) Forgery attack on the authentication encryption GIFT-COFB. Cryptology
ePrint Archive, Report 2020/698, 2020. https://eprint.iacr.org/2020/
698.

[12] Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, and Mridul Nandi.
Blockcipher-based authenticated encryption: How small can we go? In
Cryptographic Hardware and Embedded Systems - CHES 2017 - 19th Inter-
national Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings,
pages 277–298, 2017.

[13] Zahra Eskandari, Andreas Brasen Kidmose, Stefan Kölbl, and Tyge Tiessen.
Finding Integral Distinguishers with Ease. In SAC, volume 11349 of Lecture
Notes in Computer Science, pages 115–138. Springer, 2018.

[14] Xiaolu Hou, Jakub Breier, and Shivam Bhasin. DNFA: Differential No-Fault
Analysis of Bit Permutation Based Ciphers Assisted by Side-Channel. In
DATE, 2021. to appear. The preprint version is available at IACR Cryptol.
ePrint Arch. 2020/1554.

[15] Kyoungbae Jang, Hyunjun Kim, Siwoo Eum, and Hwajeong Seo. Grover
on GIFT. IACR Cryptol. ePrint Arch., 2020:1405, 2020.

[16] Arpan Jati, Naina Gupta, Anupam Chattopadhyay, Somitra Kumar Sanad-
hya, and Donghoon Chang. Threshold implementations of GIFT: A trade-off
analysis. IEEE Trans. Inf. Forensics Secur., 15:2110–2120, 2020.

[17] Fulei Ji, Wentao Zhang, and Tianyou Ding. Improving Matsui’s Search
Algorithm for the Best Differential/Linear Trails and its Applications for
DES, DESL and GIFT. The Computer Journal, 64(4):610–627, April 2021.
available at IACR Cryptol. ePrint Arch. 2019/1190.

[18] Fulei Ji, Wentao Zhang, Chunning Zhou, and Tianyou Ding. Improved
(Related-key) Differential Cryptanalysis on GIFT. In SAC, Lecture Notes
in Computer Science. Springer, 2021. to appear. The preprint version is
available at IACR Cryptol. ePrint Arch. 2020/1242.

[19] Mustafa Khairallah. Weak Keys in the Rekeying Paradigm: Application to
COMET and mixFeed. IACR Trans. Symmetric Cryptol., 2019(4):272–289,
2019.

[20] Mustafa Khairallah. Observations on the Tightness of the Security Bounds
of GIFT-COFB and HyENA. IACR Cryptol. ePrint Arch., 2020:1463, 2020.

32

https://eprint.iacr.org/2020/698
https://eprint.iacr.org/2020/698

[21] Lingchen Li, Wenling Wu, Yafei Zheng, and Lei Zhang. The Relationship be-
tween the Construction and Solution of the MILP Models and Applications.
IACR Cryptol. ePrint Arch., 2019:49, 2019.

[22] Yu Liu, Huicong Liang, Muzhou Li, Luning Huang, Kai Hu, Chenhe Yang,
and Meiqin Wang. STP Models of Optimal Differential and Linear Trail
for S-box Based Ciphers. Science China Information Sciences, 64(159103),
May 2021. available at IACR Cryptol. ePrint Arch. 2019/25.

[23] Yunwen Liu and Yu Sasaki. Related-Key Boomerang Attacks on GIFT with
Automated Trail Search Including BCT Effect. In ACISP, volume 11547 of
Lecture Notes in Computer Science, pages 555–572. Springer, 2019.

[24] Bart Mennink. Optimal collision security in double block length hashing
with single length key. In Xiaoyun Wang and Kazue Sako, editors, Advances
in Cryptology - ASIACRYPT 2012 - 18th International Conference on the
Theory and Application of Cryptology and Information Security, Beijing,
China, December 2-6, 2012. Proceedings, volume 7658 of Lecture Notes in
Computer Science, pages 526–543. Springer, 2012.

[25] Bart Mennink. Optimal collision security in double block length hashing
with single length key. Des. Codes Cryptogr., 83(2):357–406, 2017.

[26] NIST. Lightweight cryptography project, 2019.

[27] Sebastian Renner, Enrico Pozzobon, and Jurgen Mottok. NIST LWC
Software Performance Benchmarks on Microcontrollers, 2020.

[28] Behnaz Rezvani, Flora Coleman, Sachin Sachin, and William Diehl. Hard-
ware implementations of NIST lightweight cryptographic candidates: A first
look. IACR Cryptol. ePrint Arch., 2019:824, 2019.

[29] Behnaz Rezvani and William Diehl. Hardware Implementations of NIST
Lightweight Cryptographic Candidates: A First Look, 2019.

[30] Phillip Rogaway. Efficient instantiations of tweakable blockciphers and refine-
ments to modes OCB and PMAC. In Advances in Cryptology - ASIACRYPT
2004, 10th International Conference on the Theory and Application of Cryp-
tology and Information Security, Jeju Island, Korea, December 5-9, 2004,
Proceedings, pages 16–31, 2004.

[31] Yu Sasaki. Integer Linear Programming for Three-Subset Meet-in-the-
Middle Attacks: Application to GIFT. In Atsuo Inomata and Kan Yasuda,
editors, Advances in Information and Computer Security, pages 227–243,
Cham, 2018. Springer International Publishing.

[32] Rhys Weatherley. Lightweight Cryptography Primitives, 2020.

[33] Baoyu Zhu, Xiaoyang Dong, and Hongbo Yu. MILP-based Differential At-
tack on Round-reduced GIFT. Cryptology ePrint Archive, Report 2018/390,
2018. https://eprint.iacr.org/2018/390.

33

https://eprint.iacr.org/2018/390

[34] Baoyu Zhu, Xiaoyang Dong, and Hongbo Yu. Milp-based differential attack
on round-reduced GIFT. In CT-RSA, volume 11405 of Lecture Notes in
Computer Science, pages 372–390. Springer, 2019.

[35] Rui Zong, Xiaoyang Dong, Huaifeng Chen, Yiyuan Luo, Si Wang, and Zheng
Li. Towards Key-recovery-attack Friendly Distinguishers: Application to
GIFT-128. IACR Trans. Symmetric Cryptol., 2021(1):156–184, 2021.

34

Changelog

• 29-03-2019: version v1.0

• 17-05-2021: version v1.1. Updated Chapter 3 with latest performance
results. Revised Chapter 4 for clarifications and added third-party analysis
on GIFT-COFB. Added a hash function proposal in Chapter 5. (No change
in GIFT-COFB specification.)

35

	Introduction
	Specification
	Notation
	Underlying Finite Field F2n
	Choice of Primitive Polynomials

	Recommended Parameter Choice
	Input and Output Data
	Mathematical Components
	Block cipher GIFT-128
	Format of Incoming Data

	COFB Authenticated Encryption Mode

	Performance
	Hardware Performance
	Timing
	Performance
	Energy Efficiency
	Threshold Implementations

	Software Implementation Details
	Other Implementation/Benchmarking Results on GIFT-COFB
	Software Benchmarking by Renner et. al. lwc:micro
	Software Implementations and Benchmarking by Weatherley et. al. lwc:rhys
	Hardware Benchmarking by Rezvani et. al. DBLP:journals/iacr/RezvaniD19
	Hardware Benchmarking by Rezvani et. al. RezvaniHWimp2019

	Security of GIFT-COFB
	IND-CPA Security of GIFT-COFB
	IND-CTXT Security of GIFT-COFB
	Security Analysis of GIFT-128 (Extract)
	New third-party analysis and its implications
	Third-party analysis on GIFT-128
	Third-party analysis on GIFT-COFB
	Third-party analysis from various viewpoints

	Design Rationale
	AEAD Scheme: GIFT-COFB
	Block Cipher Primitive: GIFT-128
	Authenticated Encryption Mode: COFB
	Proposal for hash functionality

