
ISAP
v2.0

Submission to NIST

Christoph Dobraunig Maria Eichlseder Stefan Mangard
Florian Mendel Bart Mennink Robert Primas

Thomas Unterluggauer

May 17, 2021

isap@iaik.tugraz.at
https://isap.iaik.tugraz.at

mailto:isap@iaik.tugraz.at
https://isap.iaik.tugraz.at

Contents

1. Introduction 3

2. Specification 4
2.1. Re-Keying with IsapRk . 5
2.2. Encryption with IsapEnc . 5
2.3. Authentication with IsapMac . 5
2.4. Permutations . 8
2.5. Recommended Parameter Sets . 8
2.6. On Hash Functions using Ascon-p or Keccak-p[400] 9

3. Security Claims 10

4. Design Rationale 11
4.1. Robustness of the Mode against DPA . 11
4.2. Sponges and Side-Channel Leakage . 14
4.3. Design of IsapRk . 15
4.4. Design of IsapEnc . 16
4.5. Design of IsapMac . 16
4.6. Choice of the Permutations . 18
4.7. Updates Compared to the Paper . 20

5. Security Analysis 22
5.1. Security of the Mode . 22
5.2. Security of the Keccak-p[400] Instance . 25
5.3. Security of the Ascon-p Instance . 31

6. Implementation 35
6.1. Implementation Security . 35
6.2. Software Implementations . 38
6.3. ASIC Implementations . 39
6.4. FPGA Implementations . 41
6.5. Hardware Accelerators . 41

A. Specification of Ascon-p 43

B. Specification of Keccak-p[400] 45

2

1. Introduction

Isap is a family of nonce-based authenticated ciphers with associated data (AEAD)
designed with a focus on robustness against passive side-channel attacks. All Isap family
members are permutation-based designs that combine variants of the sponge-based Isap
mode with one of several published lightweight permutations.

The main design goal of Isap is to provide out-of-the-box robustness against certain types
of implementation attacks while allowing to add additional defense mechanisms at low
cost. This is essential whenever cryptographic devices are deployed in locations that are
physically accessible by potential attackers – a typical scenario in IoT (Internet of Things)
applications. Secure software and firmware updates on such devices in particular are
both crucial and challenging.

The Isap mode of operation was published at FSE 2017 [DEM+17] as an approach to
provide inherent security against differential power analysis (DPA) attacks. DPA attacks
constitute the most powerful class of passive side-channel attacks in practice and work
by accumulating information of the secret key by observing multiple encryptions (or
decryptions) of different inputs. By integrating a sponge-based re-keying function in
an encrypt-then-MAC construction to always use fresh keys for processing new data,
Isap significantly increases the robustness against DPA and related attacks. Compared to
the original published proposal [DEM+17], we have improved the mode to address a
broader spectrum of implementation attacks, including fault attacks.

We recommend four instances: Isap-A-128a, Isap-K-128a, Isap-A-128 and Isap-K-128. All
instances are designed to provide 128-bit security against cryptanalytic attacks as well as
inherent security against certain classes of side-channel attacks. Two instances apply the
320-bit Ascon-p permutation [DEMS16] introduced by Ascon, the primary recommenda-
tion for lightweight authenticated encryption in the final CAESAR portfolio. We want to
emphasize that both Ascon and Isap are Finalists of NIST’s lightweight crypto standard-
ization process. So, implementations of the permutation Ascon-p enable the flexibility
of using the functionalities provided by Ascon, Isap-A-128a, and Isap-A-128. The other
two instances employ the 400-bit Keccak-p[400] permutation [BDPV11e; Nat15], which
is a smaller sibling of the SHA-3 permutation used among others by Ketje Sr [BDP+16a],
a round-3 candidate in the CAESAR competition.

The security and efficiency of the underlying permutations are critical for the overall
design. Both Keccak-p[400] and Ascon-p have been thoroughly analyzed and bench-
marked by the cryptographic community in the last years, and both provide a comfortable
security margin as well as excellent lightweight implementation characteristics.

3

2. Specification

Isap is a family of sponge-based authenticated encryption schemes using an n-bit permu-
tation P . The Isap instances are parameterized by the security parameter k, which defines
the cryptographic security level of k bits and specifies the size of the key, tag, and nonce.
The instances are further parameterized by (sh, sb, se, sk), which specify the number of
rounds the permutation P is evaluated. We denote the resulting permutations as ph, pb,
pe, and pk. In addition, it is parameterized by two rate values rh and rb. Rate rh will be
applied for states in the unkeyed sponge and in the keyed sponge that are unlikely to be
evaluated more than once, which means that it may be reasonably large as leakage will
be limited. Rate rb will be applied for states in the keyed sponge that may be evaluated
more than once, which means that we must bound the amount of leakage by limiting
the total number of evaluations that may be made for that state. In each of the members
of Isap, we set rh = n− 2k and rb = 1. A member of the Isap family for permutation P
with round parameters sh, sb, se, sk, rates rh, rb, and security parameter k is denoted as

Isap-P-rh,rb
sh,sb,se,sk-k .

Authenticated encryption E and authenticated decryptionD are described in Algorithm 1
and 2 and depicted in Figure 2.1a and 2.1b. Isap can be seen as an encrypt-then-MAC
design, where the same k-bit key is used for encryption and message authentication.
The individual encryption algorithm IsapEnc and message authentication code IsapMac
employed in E and D are further discussed in Section 2.2 and Section 2.3. Both internally
use a re-keying function IsapRk that will first be discussed in Section 2.1. Table 2.1
summarizes the parameters and notation used in the specification of Isap.

Table 2.1.: Notation used for Isap’s interface and mode.
K, N, T Secret key K, nonce N, and tag T, all of k = 128 bits
M, C, A Plaintext M, ciphertext C, associated data A (in rh-bit blocks Mi, Ci, Ai)
⊥ Error, verification of authenticated ciphertext failed

|x| Length of the bitstring x in bits
x ‖ y Concatenation of bitstrings x and y
x⊕ y Xor of bitstrings x and y
S = Sr ‖ Sc The n-bit sponge state S with r-bit outer part Sr and c-bit inner part Sc

x = dxek ‖ bxck Bitstring x split into the first k bits dxek (MSB) and last k bits bxck (LSB)

4

2.1. Re-Keying with IsapRk

The re-keying function IsapRk is called by IsapEnc and IsapMac to generate session keys
K∗e and K∗a to perform encryption and authentication, respectively. The function gets as
input a k-bit key K, a flag f ∈ {enc, mac}, and a k-bit string Y, and transforms it into a
subkey K∗ of size z bits. Here, z and the initial value IV are determined by the flag f :

(IV, z) =

{
(IVke, n− k) , if f = enc ,
(IVka, k) , if f = mac .

The function is described in Algorithm 4 and depicted in Figure 2.1c. It is instantiated
using permutations pk and pb: pk is called in the beginning (to process the master key K)
and at the end (to generate subkey K∗), and pb is called for all intermediate duplexes,
which happen at rate rb. We remind the reader of the fact that rb is small.

2.2. Encryption with IsapEnc

Encryption is performed by using the keyed sponge construction in streamingmode, with
the notable difference that, first, IsapRk is called to generate a subkey K∗e . IsapEnc gets as
input a k-bit key K, a k-bit nonce N, and an arbitrarily large message M, and generates a
ciphertext C of size |M|. The function is described in Algorithm 3 and Figure 2.1d. It
first calls IsapRk for encryption using the flag f = enc to select the initial value IVke and
z = n− k in order to derive a (n− k)-bit subkey K∗e . Once this subkey is generated, a
regular sponge-based streaming mode using permutation pe is evaluated at high rate rh.

IsapEnc is a streaming mode, so decryption is identical with the roles of M, C swapped.

2.3. Authentication with IsapMac

For message authentication, we use a sponge-based hash function to build a suffix-MAC.
IsapMac gets as input a k-bit key K, a k-bit nonce N, arbitrarily large associated data
A, and arbitrarily large ciphertext C, and it outputs a tag T of size k bits. The function
is described in Algorithm 5 and depicted in Figure 2.1e. It starts by initializing the
state as N ‖ IVa and absorbing the non-secret inputs (A, C) in plain sponge mode using
permutation ph with high rate rh. Note that domain separation between A and C is
performed using the xor of a single bit ‘1’ to the inner part of the state. The resulting state
S is then split into a k-bit value dSek and an (n− k)-bit value bScn−k. The value dSe

k is
fed as input string to IsapRk to generate a subkey K∗a, and a final call to the permutation
ph is made on input K∗a ‖ bScn−k to obtain the k-bit tag T.

For verification, the tag T′ is re-computed in the same way from the received nonce N,
associated data A, and ciphertext C, and compared with the received tag T.

5

Algorithm 1 E(K, N, A, M)

Input: key K ∈ {0, 1}k,
nonce N ∈ {0, 1}k,
associated data A ∈ {0, 1}∗,
plaintext M ∈ {0, 1}∗

Output: ciphertext C ∈ {0, 1}|M|,
tag T ∈ {0, 1}k

Encryption
C ← IsapEnc(K, N, M)

Authentication
T ← IsapMac(K, N, A, C)
return C, T

Algorithm 2 D(K, N, A, C, T)

Input: key K ∈ {0, 1}k,
nonce N ∈ {0, 1}k,
associated data A ∈ {0, 1}∗,
ciphertext C ∈ {0, 1}∗,
tag T ∈ {0, 1}k

Output: plaintext M ∈ {0, 1}∗, or error ⊥

Verification
T′ ← IsapMac(K, N, A, C)
if T 6= T′ return ⊥

Decryption
M← IsapEnc(K, N, C)
return M

Algorithm 3 IsapEnc(K, N, M)

Input: key K ∈ {0, 1}k,
nonce N ∈ {0, 1}k,
message M ∈ {0, 1}∗

Output: ciphertext C ∈ {0, 1}|M|

Initialization
M1. . . Mt ← rh-bit blocks of M ‖ 0−|M| mod rh

K∗e ← IsapRk(K, enc, N)
S← K∗e ‖N

Squeeze
for i = 1, . . . , t do

S← pe(S)
Ci ← Srh ⊕Mi

C ← dC1 ‖ . . . ‖Cte|M|
return C

Algorithm 4 IsapRk(K, f , Y)

Input: key K ∈ {0, 1}k,
flag f ∈ {enc, mac},
string Y ∈ {0, 1}k

Output: session key K∗ ∈ {0, 1}z

Initialization
if f = enc then

(IV, z)← (IVke, n− k)
else

(IV, z)← (IVka, k)
Y1 . . . Yw ← rb-bit blocks of Y ‖ 0−k mod rb

S← K ‖ IV
S← pk(S)

Absorb
for i = 1, . . . , w− 1 do

S← pb((Srb ⊕Yi) ‖ Scb)
S← pk((Srb ⊕Yw) ‖ Scb)

Squeeze
K∗ ← dSez
return K∗

Algorithm 5 IsapMac(K, N, A, C)

Input: key K ∈ {0, 1}k,
nonce N ∈ {0, 1}k,
associated data A ∈ {0, 1}∗,
ciphertext C ∈ {0, 1}∗

Output: tag T ∈ {0, 1}k

Initialization
A1. . .As ← rh-bit blocks of A‖1‖0−|A|−1 mod rh

C1. . . Ct ← rh-bit blocks of C‖1‖0−|C|−1 mod rh

S← N ‖ IVa
S← ph(S)

Absorbing Associated Data
for i = 1, . . . , s do

S← ph((Srh ⊕ Ai) ‖ Sch)
S← S⊕ (0n−1 ‖ 1)

Absorbing Ciphertext
for i = 1, . . . , t do

S← ph((Srh ⊕ Ci) ‖ Sch)
Squeezing Tag

K∗a ← IsapRk(K, mac, dSek)
S← ph(K∗a ‖ bScn−k)

T ← dSek
return T

6

IsapEnc IsapMac
IsapRkIsapRk

E

K

N M C A T

(a) Encryption E(K, N, A, M)

IsapEnc IsapMac
IsapRkIsapRk

D

K

N M C A T

(b) Decryption D(K, N, A, C, T)

K ‖ IV

pk

Initialize

Yi
rb

pb
cb

Re-keying

Yw
rb

cb

pk

K∗
z

Squeeze

(c) IsapRk , with (IV, z) = (IVke, n−k) if f = enc else (IVka, k) if flag f = mac

N
k

IsapRk

Kenc
k

K∗e n−k

Initialize

pe

Mi Ci

rh

ch

Encrypt Plaintext

pe

Mt Ct

≤ rh

(d) IsapEnc

N

IVa

ph

k

Initialize

Ai
rh

ph
ch

Authenticate Ass. Data

As
rh

ph
ch

0∗ ‖ 1

Ci
rh

ph
ch

Authenticate Ciphertext

Ct
rh

ph
ch

phIsapRk

T

Kmac

k

k

Y
k

K∗a k

Finalize

(e) IsapMac

Figure 2.1.: Isap’s encryption E(K, N, A, M) and decryption D(K, N, A, C, T) algorithms
composing IsapEnc stream encryption, IsapMac MAC, and IsapRk re-keying.

7

2.4. Permutations

Isap is instantiatedwith either the 320-bit permutation used inAscon [DEMS16; DEMS21]
or the 400-bit permutation Keccak-p[400] [BDPV11e; Nat15]. A detailed specification of
Ascon-p, including the state layout and specification of the inner and outer state parts,
can be found in [DEMS21]. Keccak-p[400] is specified in NIST FIPS PUB 202 [Nat15].
We provide a short description of the two permutations in Appendix A and B.

2.5. Recommended Parameter Sets

Table 2.2 summarizes the recommendedparameter sets for Isap. Themembers Isap-A-128a
and Isap-K-128a, where A and K refer to the underlying cryptographic permutation,
specify a choice of parameters for fast implementations based on our design rationale and
security analysis given in Chapter 4 and Chapter 5. We also specify a more conservative
choice of parameters in Isap-A-128 and Isap-K-128. The recommended parameters (Ta-
ble 2.2) are ordered starting with the primary recommendation, followed by the second,
third, and fourth. We recall that sh, sb, se, sk denote the number of rounds of permutations
ph, pb, pe, pk.

Table 2.2.: Recommended parameter configurations for Isap.

Name Permutation
Security level Bit size of Rounds

k n rh rb sh sb se sk

Isap-A-128a Ascon-p 128 320 64 1 12 1 6 12
Isap-K-128a Keccak-p[400] 128 400 144 1 16 1 8 8
Isap-A-128 Ascon-p 128 320 64 1 12 12 12 12
Isap-K-128 Keccak-p[400] 128 400 144 1 20 12 12 12

The initial values IVa, IVka, and IVke, which serve as domain separation between the
different algorithms, are specified in Table 2.3. They are defined as the concatenated
8-bit integer values of all relevant parameters of the instance, plus a constant for the role
of each IV. The initial values are then padded with zeros until they reach the required
length of n− k bits. For Isap-A-128 and Isap-A-128a, the resulting IVs have a length of
192 bits, while those for Isap-K-128 and Isap-K-128a are 272 bits long.

8

Table 2.3.: Initial values for Isap instances in hex notation.

Isap-P-rh,rb
sh,sb,se,sk -k

IVa 1 ‖ k ‖ rh‖rb ‖ sh‖sb‖se‖sk ‖ 0∗

IVka 2 ‖ k ‖ rh‖rb ‖ sh‖sb‖se‖sk ‖ 0∗

IVke 3 ‖ k ‖ rh‖rb ‖ sh‖sb‖se‖sk ‖ 0∗

Isap-A-128a
IVa 01 80 4001 0C01060C 00*

IVka 02 80 4001 0C01060C 00*

IVke 03 80 4001 0C01060C 00*

Isap-K-128a
IVa 01 80 9001 10010808 00*

IVka 02 80 9001 10010808 00*

IVke 03 80 9001 10010808 00*

Isap-A-128
IVa 01 80 4001 0C0C0C0C 00*

IVka 02 80 4001 0C0C0C0C 00*

IVke 03 80 4001 0C0C0C0C 00*

Isap-K-128
IVa 01 80 9001 140C0C0C 00*

IVka 02 80 9001 140C0C0C 00*

IVke 03 80 9001 140C0C0C 00*

2.6. On Hash Functions using Ascon-p or Keccak-p[400]

Since Isap is based on either Ascon-p or Keccak-p[400], it lends itself to pairing with
already specified hash functions using the same permutations. In the case of Isap-A-128a
and Isap-A-128, we suggest a pairing with the hash function AsconHash specified in the
Ascon v1.2 design document [DEMS21]. Implementations of AsconHash can be found
at https://github.com/ascon/ascon-c. In the case of Isap-K-128a, we suggest a pairing
with sponge[Keccak-p[400, 16],pad10*1, 144](M‖01, 256), and for Isap-K-128 a pairing
with sponge[Keccak-p[400, 20],pad10*1, 144](M‖01, 256), following the specifications in
NIST FIPS PUB 202 [Nat15]. Implementations of Keccak-based hash functions can be
found at https://github.com/XKCP/XKCP.

9

https://github.com/ascon/ascon-c
https://github.com/XKCP/XKCP

3. Security Claims

All Isap family members provide 128-bit security against cryptographic attacks in the
notion of nonce-based authenticated encryption with associated data (AEAD): they
protect the confidentiality of the plaintext (except its length) and the integrity of ciphertext
including the associated data (under adaptive forgery attempts). See also Table 3.1. Note
that as usual, a security loss by a small constant factor is expected.

Table 3.1.: Security claims for recommended parameter configurations of Isap.

Requirement
Security in bits

Isap-A-128a Isap-K-128a Isap-A-128 Isap-K-128

Confidentiality of plaintext 128 128 128 128
Integrity of plaintext 128 128 128 128
Integrity of associated data 128 128 128 128
Integrity of nonce 128 128 128 128

In order to fulfill the security claims stated in Table 3.1, implementations must ensure
that the nonce is never repeated for two encryptions under the same key, and that the
decryption process is only started after successful verification of the final tag. Except
for the single-use requirement, there are no constraints on the choice of the nonce. It is
possible to use a simple counter. It is beneficial that a system or protocol implementing
the algorithm monitors and, if necessary, limits the number of tag verification failures
per key. After reaching this limit, the decryption algorithm rejects all tags. Such a limit is
not required for the security claims above, but may be reasonable in practice to increase
the robustness against certain implementation attacks.

All algorithms are designed to achieve practical security against recovery of the secret
master key by passive side-channel attacks assuming an implementation that is secure
against simple power analysis (SPA) including template attacks. Furthermore, Isap is
designed to improve robustness against other implementation attacks, including certain
fault attacks. We provide a more detailed discussion on these non-cryptographic claims
in Chapter 6.

10

4. Design Rationale

The main goal of Isap is to provide robustness against relevant implementation attacks
at a very low hardware area footprint. Each variant uses a lightweight permutation as
the single primitive, which can be re-used to support hashing and does not require the
implementation of an inverse. While mechanisms to counteract side-channel attacks and
in particular DPA within the cipher itself (e.g., masking) lead to significant overheads
and increase drastically with the protection order, approaches based on fresh re-keying
lead to much lower overheads. Isap is designed to provide robustness against DPA
during authenticated encryption and authenticated decryption and to provide this in-
creased robustness at a much more lightweight footprint than classical countermeasures.
In addition, with the choice of the permutations and details of the mode, we aim to
also strengthen robustness against fault attacks and to allow for an easy integration of
protection mechanisms against SPA.

In the following, we first recall the design rationale for Isap’s mode of operation and its
algorithms IsapRk, IsapEnc, and IsapMac as introduced in the FSE 2017 paper [DEM+17]
in Section 4.1 to Section 4.5. In Section 4.6, we discuss the choice of the permutations in
Isap. Finally, in Section 4.7, we discuss differences of the proposal at hand compared to
the original Isap mode.

4.1. Robustness of the Mode against DPA

For discussing the robustness of our scheme against differential power analysis (DPA),
we prefer to give a more general, high-level view on our mode in Algorithm 6 to better
extract the underlying idea and show the fresh re-keying roots of our scheme. Here,
we essentially use the same assumptions and requirements as other re-keying schemes:
g1, g2 must be two domain-separated (DPA and SPA) secure re-keying functions and
the implementations of ENC, DEC, and MAC must be secure against SPA attacks when
processing arbitrarily long messages. There are no requirements on the implementation
of the hash function H, since it processes only publicly known data.

To achieve robustness against DPA, our authenticated encryption mode in Algorithm 6
incorporates a re-keying approach in an efficient encrypt-then-MAC scheme. The encrypt-
then-MAC approach has become increasingly popular for designing authenticated en-
cryptions schemes that withstand side-channel attacks [DEM+17; BPPS17; BMOS17;
BGP+20]. While simple re-keying of both a MAC and an encryption scheme can only

11

Authenticated Encryption E(K, N, A, M)

Input: key K ∈ {0, 1}k,
nonce N ∈ {0, 1}k,
associated data A ∈ {0, 1}∗,
plaintext M ∈ {0, 1}∗

Output: ciphertext C ∈ {0, 1}|M|,
tag T ∈ {0, 1}k

Encryption
K∗e = g1(N, K)
C = ENCN,K∗e (M)

Authentication
Y = H(N, A, C)
K∗a = g2(Y, K)
T = MACK∗a(Y)
return C, T

Authenticated Decryption D(K, N, A, C, T)

Input: key K ∈ {0, 1}k,
nonce N ∈ {0, 1}k,
associated data A ∈ {0, 1}∗,
ciphertext C ∈ {0, 1}∗,
tag T ∈ {0, 1}k

Output: plaintext M ∈ {0, 1}|C|, or error ⊥

Verification
Y = H(N, A, C)
K∗a = g2(Y, K)
T′ = MACK∗a(Y)
if T 6= T′ return ⊥

Decryption
K∗e = g1(N, K)
M = DECN,K∗e (C)
return M

Algorithm 6: Authenticated encryption and decryption procedures.

provide side-channel robustness for the encryption process, our scheme achieves side-
channel robustness for multiple decryptions as well. Namely, the verification provides
security of the decryption part in case of maliciously modified ciphertexts, while the
MAC is protected by making its session key depend on the authenticated message itself.
In the following, we give a detailed discussion on the DPA robustness of the two parts
encryption/decryption and authentication/verification.

Encryption/Decryption. The encryption and decryption part can be seen as an instance
of fresh re-keying [MSGR10; MPR+11]. Such schemes for fresh re-keying combine an
SPA-secure encryption scheme ENC with a (DPA and SPA) secure re-keying function
g1 : (N, K) 7→ K∗e . As the nonce N that is used to derive the session key K∗e must not be
repeated, fresh session keys are guaranteed and DPA on the encryption scheme ENC is
effectively prevented.

However, for decryption, there is the threat that an adversary could exploit multiple
decryptions with the same nonce N and thus the same session key K∗e , and induce a
DPA setting within the decryption DEC by using different data. To prevent such a DPA
scenario in our mode, verification is performed prior to decryption. Decrypting two
different messages (associated data and ciphertext) with the same K∗e indicates either a
collision of g1 for fixed K (the probability of which is negligible in our use case), or two
ciphertexts that have been encrypted using the same nonce N. Since we require unique
nonces, the latter implies that either the ciphertexts are identical, or one ciphertext has
been forged. If a cryptographically secure MAC is used, the probability of a successful
forgery is negligible and thus the tag verification will fail for one of the ciphertexts with
overwhelming probability.

12

Authenticated ciphers require that no decrypted plaintext is released if tag verification
fails. For protection against DPA attacks, we go one step further and require a failed
verification to abort the authenticated decryption process, so that the decryption part
DEC never starts. This ensures that the same session key K∗e is never used to decrypt
distinct ciphertexts with DEC. Therefore, the verification is responsible for precluding
DPA attacks on the decryption.

Authentication/Verification. The authentication/verification shown in Algorithm 6
is based on a hash-then-MAC paradigm. Here, a session key K∗a is first derived via a
secure re-keying function g2 from the hash value Y that is computed from the nonce
N, associated data A, and ciphertext C using a cryptographic hash function H. Then, a
message authentication code (MAC) is used to compute the tag T from the hash value
Y and the session key K∗a. This is similar to the construction of Pereira et al. [PSV15],
who designed a leakage resilient MAC based on the hash-then-MAC paradigm as well.
However, the main difference to our approach is that in [PSV15] a random nonce N is
used to derive the session key in the re-keying function. This, however, cannot provide
protection against DPA for multiple verifications. Contrary to that, we use the hash of the
message Y = H(N, A, C) to derive the session key K∗a in order to securely allow multiple
verifications while still providing protection against DPA.

In more detail, theMAC in Algorithm 6 computes the tag T using an independent session
key K∗a for every distinct message (N, A, and C). DPA on the MAC is thus prevented
during the generation of the tag T as the same session key K∗a is never used to authenticate
distinct messages.

While the scheme by Pereira et al. [PSV15] also provides side-channel security during
tag generation by the use of a unique nonce input N to the re-keying function, tag
verification imposes different challenges. In fact, during tag verification one cannot rely
on the uniqueness of the nonce anymore, because an attacker can usually modify the
message (N, A, and C) to provoke multiple verifications with different data under the
same nonce N and thus allow for a DPA scenario. However, the MAC in Algorithm 6
prevents such a DPA scenario on the session key K∗a, since K∗a is bound to the data it
processes. Namely, as Y depends on the message (N, A, and C), the MAC session key
K∗a = g2(Y, K) changes whenever the data changes. Adversaries cannot predictably
influence Y due to the use of a cryptographic hash function H. This guarantees that
the key K∗a is unique for every new message as long as there is neither a collision in the
hash function H nor in the re-keying function g2. Thus, DPA on the session key K∗a is
effectively prevented during verification.

Note that collisions in the re-keying function g2 or the hash function H may result in
the same session key K∗a being used in MAC computations of different messages, thus
allowing for a DPA. Yet, collisions in g2 depend on the secret key K∗a and therefore
inputs causing collisions in g2 cannot be calculated off-line. In contrast, collisions in the
hash value Y are directly observable and can be calculated off-line. The complexity of

13

p

r

`i

p

r

c

`i+1

(a) Leaking permutations

p

r

p

r

c′

`i + `i+1

(b) Sponge model

Figure 4.1.: Leakage of information in sponge-based constructions.

calculating collisions off-line is determined by the size of the hash. The generic complexity
of finding a collision for an n-bit hash function is 2n/2. Hence, the size of the hash needs
to be chosen depending on the potential threat of such an event, which depends on the
concrete choice of functions for MAC and g2, as we will see below.

4.2. Sponges and Side-Channel Leakage

While the mode of Section 4.1 ensures protection of the encryption ENC, decryption DEC,
and message authentication code MAC against DPA, the primitives implementing ENC,
DEC, and MAC still have to withstand SPA attacks. Moreover, SPA protection is also
mandatory for the implementations of g1 and g2, in addition to the requirement that they
provide protection against DPA. Besides dedicated countermeasures like, e.g., shuffling,
also the order of the executed instructions and already the choice of the used algorithms
for encryption/decryption and MAC play an important role for the robustness of the
design against SPA.

Our choice for sponge-based designs is motivated by their suitability to model SPA
leakage. Namely, the sponge parameters provide a convenient tool to argue on the side-
channel robustness of keyed sponge constructions given bounded side-channel leakage
of a single permutation evaluation.

For illustration, we model the leakage from a permutation p by allowing an adversary to
learn a certain amount of the state between subsequent permutation calls as depicted in
Figure 4.1. Here, we use ` to denote the information (in bits) that an attacker can learn
about the state from the collected side-channel information. We do not care about how
and where the leakage is created within p, but let the adversary account the learned
information to either the input or the output state of p. Therefore, given two consecutive
permutations p with leakages `i and `i+1, respectively, the maximum an adversary might
learn about the state is `i + `i+1. This means that if each leakage `i, `i+1 is bounded by
λ bits and the adversary can optimally combine these two leakages, the adversary will
learn at most 2λ bits of the state between the respective two permutation calls.

14

One can see the alternative view as a sponge with an adjusted capacity that copes
with the leakage generated by the permutation: it has a capacity c′ = c− 2λ and rate
r′ = r + 2λ. The security level corresponding to capacity c− 2λ is still guaranteed by
the cryptographic properties of the permutation and the associated constrained-input
constrained-output (CICO) problem [BDPV11a]. Sponge-based constructions can thus
be considered to have bounded security loss for bounded leakage of the permutation.

Clearly, the challenge in practice is to build an implementation that bounds the leakage
of p. Especially if many different types of devices have to use the same cryptographic
algorithm, it might be infeasible to make any realistic assumptions about the leakage of
p. Nevertheless, the advantage of the sponge-based construction is that besides standard
SPA countermeasures like hiding and masking, the capacity is an additional and very
natural security parameter that helps to increase the ability of a design to withstand
side-channel attacks in practice.

Note that loading the same master key for the two IsapRk calls and applying the permu-
tation may directly leak information about the key bits. To prevent this, implementations
may store both expanded keys pk(K ‖ IVka) and pk(K ‖ IVke) or, alternatively, use slightly
larger master keys K.

4.3. Design of IsapRk

Recall that g1 and g2 must offer strong DPA protection. In Isap, the role of g1 and g2 is
taken by IsapRk of Figure 2.1c, which is called for different IVs. When setting the rate to
1 bit, the design is related to the classical GGM construction [GGM86] and can be seen
as its sponge-based equivalent, similar to [TS14]. The basic idea in IsapRk is to make
DPA infeasible by reducing the input data complexity accordingly. For this purpose, a
secret state is constantly updated with small portions of public data by repeating two
phases: (i) modifying the secret state according to the public data, and (ii) updating the
state such that predictions on the future state based on the absorbed public data become
infeasible.

Sponge-based constructions are an ideal choice to implement this basic idea as the rate
directly influences the input data complexity for each permutation. IsapRk follows this
approach and first initializes the internal state by applying the initial permutation pk to
the master key K that is padded with the IV. Then, IsapRk repeatedly injects 1 nonce
bit into the state, each separated by a permutation call pb. After full absorption of the
nonce and finalization using again pk, the session key is output. This working principle
is similar to sponge instances of a prefix-MAC. While for general MAC computations the
absorption rate can be as big as the state size [BDPV12; MRV15; DMV17], IsapRk uses a
small absorption rate of 1 bit to limit the data complexity exploitable in a DPA.

On the other hand, since the rate is highly restricted, we can greatly reduce the number
of rounds for pb in the absorbing phase. Nevertheless, since we squeeze more bits and

15

also want to ensure a good diffusion for the keybits, the number of rounds for pk in the
beginning and at the end of IsapRk has to be higher.

In terms of DPA security, permutation pk and pb will produce the leakages for two
different public inputs, since we use two different IV paired with the master key and
set the rate of the further absorption to one. Thus, IsapRk is 2-limiting per permutation
call. This results in IsapRk being a secure re-keying function (regarding DPA) under the
assumption that the combined leakage resulting from the processing of two different
public inputs is bounded such that DPA on the secret state is infeasible. This is a common
assumption also used in recent block-cipher based instantiations of the GGM construction
by Faust et al. [FPS12] or the 2PRG primitive by Standaert et al. [SPY+10].

4.4. Design of IsapEnc

The encryption algorithm IsapEnc is an instance of fresh re-keying [MSGR10; MPR+11]
that combines the secure re-keying function IsapRk in the initialization phase that re-
keys a sponge-based stream cipher in the processing phase. To obtain cryptographic
security on the processing part of IsapEnc, the nonce N must not be repeated for different
plaintexts. This guarantees that the key stream is unpredictable and unique for different
encryptions. The encryption part is initialized with a fresh session key paired with a
unique nonce. Since the re-keying function IsapRk is hard to invert, even the recovery of
the session key by means of implementation attacks does not allow for a recovery of the
master key. Moreover, as long as the session key is never paired with different nonces,
even DPA on the session key itself is prevented as well.

Furthermore, as a part of the authenticated encryption scheme Isap, IsapEnc remains
secure against DPA also for multiple decryption of the same data, since it is guaranteed
that this data is always decrypted under the same nonce: following the encrypt-then-
MAC design of Isap, decryption only starts after authentication has succeeded. Hence,
the authentication part precludes such DPA attacks on the decryption part.

4.5. Design of IsapMac

To get more insight in the design rationale behind IsapMac, consider the alternative
illustration in Figure 4.2. The figure shows a normal sponge hash on input of N, A, C,
padded in an injective way, followed by the hashing of a keyed value K∗a. Note that
IsapRk does not use frame bits for domain separation, but rather follows the approach
of Ascon [DEMS21] and xors a single ‘1’ to the inner part of the state. Although this
reduces the capacity by one bit in the worst case, the practical security loss is considered
to be negligible.

16

IsapMac reminds of the sponge-based suffix-MAC of Bertoni et al. [BDPV11a], where
one puts a key after the message to obtain a secure MAC function, but the idea is not
quite the same: compared to a “standard” sponge-based suffix-MAC, IsapMac uses a
secure re-keying function g2 to absorb the secret key K. While there are several options
for g2, e.g., the polynomial multiplication in [MSGR10], we use the function IsapRk as
g2. Unlike, e.g., polynomial multiplication, IsapRk is not a permutation for a fixed key,
but we do not expect any negative consequences due to this, given that IsapRk ideally
behaves like a pseudo-random function.

IsapMac prevents DPA on the tag computation in two ways. First, and as shown in
Figure 2.1e, the MAC session key K∗a is derived from the hash value Y and the MAC
master key K via the secure re-keying function IsapRk (used as g2), thus precluding DPA
on K. Second, the design prevents DPA on the MAC session key K∗a by binding it to the
data being processed, thus leading to independent MAC session keys K∗a for different
data.

The only problem may pop up if there are collisions in Y: indeed, if two different inputs
to IsapMac give the same hash value Y, they have the same MAC session key K∗a. Yet, to
perform a successful DPA, usually more than two traces will be needed to recover one
fixed session key K∗a. The expected number of multicollisions decreases drastically with
the number of collisions: the generic complexity for finding a v-collision on a k-bit value
is v
√

v! · 2k(v−1) ≈ 2k(v−1)/v [STKT06]. The term is already quite high for small values of
v, given that k = 128.

We remark that even though a DPA attack exploiting multi-collisions might be able to
recover the session key K∗a of IsapMac, this does not imply a key recovery attack on the
master key K, since our re-keying function IsapRk is hard to invert.

IV

N

ph

A1

ph

As

ph

0∗ ‖ 1

C1

ph

Ct

ph

g′2Y K∗a

K

ph

T

Figure 4.2.: Sketch of authentication/verification just using a sponge-based suffix-MAC.
Here, g′2 = g2 ⊕ id.

17

4.6. Choice of the Permutations

We have decided to use the permutation used in Ascon [DEMS16], together with the
permutation Keccak-p[400] [Nat15]. The selection of these permutations is motivated by
the fact that:

• Ascon [DEMS16] is the first choice for the use case of lightweight applications
(resource constrained environments) in CAESAR [CAE14] and is also a finalist in
NIST’s ongoing lightweight cryptography standardization process.

• Keccak-p[400] is the smallest permutation specified inNIST’s FIPS PUB 202 [Nat15]
that allows Isap to be instantiated with a 128-bit security level.

The two permutations share several positive properties and similarities in their design
rationale, including the bitsliced design with a weakly aligned linear layer providing
strong diffusion, and the 5-bit S-boxes with a low algebraic degree that is useful for
efficiently implementing masking countermeasures. There are, however, also differences
and more complementary properties. Most notably, Ascon-p operates on a smaller
state and uses larger 64-bit words internally instead of the 16-bit words in Keccak-p[400],
making it more suitable for efficiently interoperating with higher-end software platforms.

4.6.1. Choice of the Round Numbers for Ascon-p and Keccak-p[400]

We emphasize that we do not require ideal properties for the permutations ph, pb, pe, pk.
Non-random properties, including but not limited to inside-out zero sum distinguishers,
of the permutations ph, pe, pk, and of course pb are known and do not automatically
afflict the claimed security properties of the entire encryption algorithm. For a detailed
security analysis of Isap, refer to Chapter 5.

Parameters for IsapRk and IsapEnc. Both IsapRk and IsapEnc are keyed sponge-based
constructions and according to recent results [BDPV12; GPT15; MRV15], one could apply
full-state absorbtion (with empty capacity) in the absorbing phase, while in the squeezing
phase a minimum of 128 bits capacity is needed to achieve a security level of 128 bits.

However, since we also have to bear side-channel attacks inmind, we set the rate rb to 1 bit
for all instances in the absorption phase for IsapRk, which makes the scheme 2-limiting
per permutation call. This, together with the large capacity of the resulting construction,
significantly increases the effort for an attacker trying to combine the leakage of two
consecutive permutation calls as discussed in Section 4.2.

For IsapEnc, we set the capacity to 256 bits for all instances such that the resulting rate
of n− 256 bits matches the rate of IsapMac. Thus, we obtain a rate of rh = 64 bits for
Ascon-p and of rh = 144 bits for Keccak-p[400] permutation.

18

Table 4.1.: Summary of parameters for Isap (see also Table 2.2).

(a) Parameters for IsapEnc (specified in Section 2.2, Algorithm 3, Figure 2.1d)

Name Permutation P Rate rh Rounds se

Isap-A-128a Ascon-p 64 6
Isap-K-128a Keccak-p[400] 144 8
Isap-A-128 Ascon-p 64 12
Isap-K-128 Keccak-p[400] 144 12

(b) Parameters for IsapRk (specified in Section 2.1, Algorithm 4, Figure 2.1c)

Name Permutation P Rate rb Rounds sb Rounds sk

Isap-A-128a Ascon-p 1 1 12
Isap-K-128a Keccak-p[400] 1 1 8
Isap-A-128 Ascon-p 1 12 12
Isap-K-128 Keccak-p[400] 1 12 12

(c) Parameters for IsapMac (specified in Section 2.3, Algorithm 5, Figure 2.1e)

Name Permutation P Rate rh Rounds sh

Isap-A-128a Ascon-p 64 12
Isap-K-128a Keccak-p[400] 144 16
Isap-A-128 Ascon-p 64 12
Isap-K-128 Keccak-p[400] 144 20

For the number of rounds, Ascon [DEMS16] and theCAESAR candidateKeyak [BDP+16b]
serve as orientation for our choices Isap-A-128 and Isap-K-128. We consider 12 rounds to
be sufficient to create an unpredictable key-stream during the squeezing phase in the en-
cryption for both variants. Moreover, 12 rounds also provide a clear separation between
the single-bit injections during the absorption in IsapRk, so that partially known/leaked
information about the internal secret state is hard to combine over consecutive permuta-
tion calls.

For the fast versions Isap-K-128a and Isap-A-128a, we follow the inspiration of don-
keySponge andmonkeyDuplex [BDPV12] and significantly reduce the number of rounds
in the re-keying and encryption function of the scheme. The CAESAR candidate Ketje
[BDP+16a] serves as inspiration for the version Isap-K-128a. Similar to Ketje Sr, only
one round separates the absorption of the one bit elements using Keccak-p[400] in the
re-keying function. For the outer part we orient the number of rounds on the “stride”
permutation call of Ketje Sr, which has 6 rounds. However, in contrast to Ketje Sr, we
decided to use 8 rounds to add an additional security margin of 2 rounds to the scheme,
since we return more bits in the end. For a similar reason, we also use 8 rounds of
Keccak-p[400] for the encryption function.

19

For the variant Isap-A-128a, we also reduce the number of rounds in the re-keying
function to 1 in the absorbing phase and use 6 rounds in the initialization and finalization.
This is the same number of rounds as used in Ascon-128 in the data processing phase.
For the same reason we also use 6 rounds for the encryption function, which uses the
same rate as Ascon-128.

Parameters for IsapMac. Since we aim for 128-bit security, we use IsapMac in all
instances with a capacity of 256 bits, while allowing the remaining n− 256 bits as rate.
Thus, we have a rate rh of 64 and 144 bits for the Ascon-p andKeccak-p[400] permutation,
respectively. The sponge state is initialized with the k-bit nonce N and a fixed (n− k)-bit
IVa. For Ascon-p, k is larger than the rate rh, but since more than 128 bits of the inner
part are fixed to IVa, this does not affect the security level.

For the choice Isap-A-128a and Isap-A-128, we choose the Ascon-p permutation with 12
rounds as specified in [DEMS16] for the use of Ascon-Hash and Ascon-Xof [DEMS21].
We consider this as a very conservative choice and think that this might be improved
once more analysis of Ascon-Hash and Ascon-Xof is available.

For the choice Isap-K-128, we choose the Keccak-p[400] permutation with 20 rounds as
specified in the the Keccak SHA-3 submission (Version 3.0) [BDPV11b], as the winner of
the SHA-3 competition Keccak and its variants are very well analyzed. Since existing
analysis is far away from threatening full-round versions of Keccak, we use for our fast
variant Isap-K-128a the initial proposal of the designers with 16 rounds as described in
the Keccak sponge function family main document (Version 1.2) [BDPV09].

4.7. Updates Compared to the Paper

We have performed small tweaks on Isap compared to the original FSE 2017 publication
[DEM+17]. In this section, we provide justification for these tweaks.

4.7.1. Absorption of the Nonce N During IsapEnc

Besides side-channel attacks, active implementations attacks like Differential Fault Analy-
sis (DFA) [BS97], Statistical Fault Attacks (SFA) [FJLT13; DEK+16], or Statistical Ineffective
Fault Attacks (SIFA) [DEK+18; DMMP18; DEG+18] pose a threat to cryptographic im-
plementations in a hostile environment. To address this threat, we decided to make the
re-keying performed during IsapEnc hard to invert by overwriting part of the state with
the nonce N. The change is clearly visible in Figure 2.1d: one can consider IsapRk to
serve as re-keying function for a plain sponge-based stream cipher execution with key
input K∗e ‖N. The change implies that an attacker who is able to recover the state during
the generation of the keystream cannot recover the master key K. As a result, neither

20

the knowledge of the session key K∗a nor of the session key K∗e leads to a recovery of the
master key K.

4.7.2. Addition of Ascon-p

We see in Isap a mode of operation that can be instantiated with any suitable permuta-
tion. To emphasize this view, we use two different permutations. One is Keccak-p[400],
the smallest permutation specified in NIST’s FIPS PUB 202 [Nat15] that allows Isap
to be instantiated with a 128-bit security level. The other, and new compared to the
Isap paper [DEM+17], is the 320-bit permutation of Ascon [DEMS16] that has recently
been announced as the first choice for the use case of lightweight applications (re-
source constrained environments) in the final CAESAR portfolio [CAE14]. Compared to
Keccak-p[400], Ascon-p maintains a smaller state size and is furthermore better suited for
implementation on high-end software platforms. Although not standardized, Ascon-p
was thoroughly analyzed during the CAESAR competition, and it offers a comfortable
security margin.

4.7.3. Single Key

Using a single key for both IsapMac and IsapEnc instead of two independent keys has
the advantage that less key material has to be stored compared to the case that different
keys are used. It is also sound from a theoretical perspective, given the use of different
IV’s. On the downside, using the same key exposes this single key to more leakage as
discussed in Section 4.2. In a lightweight use case, we think that the savings in storage
outweigh this downside and hence, we have decided to use a single key. Additionally,
leakage of information about the master key can be compensated for by increasing the
size of the master key K.

21

5. Security Analysis

5.1. Security of the Mode

The mode of Isap combines various ideas and constructions from the unkeyed sponge
and the keyed sponge and duplex. The unkeyed sponge was analyzed in [BDPV07;
BDPV08], the keyed sponge in [BDPV11d; CDH+12; ADMV15; NY16; JLM14; GPT15;
MRV15], and the keyed duplex in [BDPV11c; MRV15; DMV17]. In the remainder of this
section, we detail how the security of the Isap mode relies on these results.

The workhorse in Isap is the keyed duplex construction. It operates on a state S, and
for a call to the duplex on input block M, it (i) outputs dSer and (ii) updates the state to
p(S⊕M). In a very simplified form, the adversary’s advantage in the security analysis
of the keyed duplex [DMV17] is dominated by

LN
2c +

µN
2c +

qN
2k ,

where N is the offline complexity (the number of primitive evaluations of p), L is the
number of repeating paths (noting that for every state there is a specific order of queries
that lead to it), µ a multicollision term on the outer part of the duplex, and q is the
number of state initializations of the duplex. Typically, µ is much smaller than the online
complexity M [DMV17], but L may be between 0 and M depending on whether or not
the specific use case of the duplex allows for repeating paths. Note that if L is large, one
must also take a large capacity c to cope with the loss. If L is small, one can take a smaller
capacity c and hence a larger rate r.

The duplex appears in Isap in two different shapes, namely in IsapRk and in IsapEnc.
IsapRk is a keyed duplex that might have repeated paths, hence L may be large, but also
has a high capacity cb, so the damage of the fact that paths may repeat is limited. Under
the assumption that IsapRk is a good duplex, IsapEnc never starts with a repeating state,
hence has no repeated paths, thus L = 0. This allows us to take a duplex with a lower
capacity ch for IsapEnc.

Odd one out is IsapMac: it also relies on IsapRk but is composed of this function and a
plain sponge hash function [BDPV07] with rate max{rh, k} bits. We can in turn rely on
the fact that the sponge hash function is indifferentiable from a random oracle [BDPV08].
There is a catch, namely that for Isap-A-128 and Isap-A-128a we have k > rh. In this case,
we can rely on the fact that, after the state of a keyless sponge is transformed using the

22

key, one ends up with a keyed sponge for which larger absorption and extraction bits is
possible provided that only one permutation call is made.

These generic provable security results, so far, concern black-box security, where the
underlying permutations are assumed to be perfectly random and leak-free. Dobraunig
and Mennink [DM19a] considered the leakage resilience of the duplex construction, and
showed that the full-state keyed duplex is still secure if a limited amount of leakage per
duplex call takes place, provided that adversarial state manipulation is restricted wisely.
Their result in particular covers the model considered in this work, namely where every
evaluation of p may, non-adaptively, leak a limited amount of information. As one of the
applications, Dobraunig and Mennink demonstrated that the IsapEnc mode (including
the call to IsapRk) is leakage resilient. In a separate work, Dobraunig and Mennink
[DM19c] considered leakage resilience of the suffix sponge, a generalization of IsapMac
with the function IsapRk abstracted, in a comparable leakage model as before (tightness
of their analysis was discussed by Dobraunig and Mennink [DM20]). Dobraunig and
Mennink [DM19b] united these two works and showed that they, jointly, imply leakage
resilience of the Isap mode. For more information on the leakage resilience of Isap, we
refer to the ToSC paper about Isap v2.0 [DEM+20].

Guo et al. [GPPS20] independently considered leakage resilience of the Isap mode. Their
approach to treating confidentiality (i.e., the analysis of IsapEnc) is almost identical
to the approach suggested by Dobraunig and Mennink [DM19a]. The authenticity of
Isap (i.e., the analysis of IsapMac) is only very briefly sketched [GPPS20, Appendix H],
and misses the rigor and detail of the suffix keyed sponge analysis of Dobraunig and
Mennink [DM19c]. Note that GPPS indicate that their proof is a sketch and thus, their
bounds are described in big O notation without supporting computation. On the other
hand, Guo et al. consider a more generous leakage assumption, namely that leakages
are hard-to-invert. Overall, one can say that the approaches of Dobraunig and Mennink
[DM19b] and Guo et al. [GPPS20] are different and complementary.

5.1.1. List of Published Analysis

q Christoph Dobraunig and Bart Mennink. “Leakage Resilient Value Comparison
With Application to Message Authentication”. In: EUROCRYPT 2021. LNCS. to
appear. Springer, 2021. url: https://eprint.iacr.org/2021/402.

q Christoph Dobraunig and Bart Mennink. “Tightness of the Suffix Keyed Sponge
Bound”. In: IACR Transactions of Symmetric Cryptology 2020.4 (2020), pp. 195–212.
doi: 10.46586/tosc.v2020.i4.195-212.

q Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel, Bart
Mennink, Robert Primas, and Thomas Unterluggauer. “Isap v2.0”. In: IACR Trans-
actions of Symmetric Cryptology 2020.S1 (2020), pp. 390–416. doi: 10.13154/tosc.
v2020.iS1.390-416.

23

https://eprint.iacr.org/2021/402
https://doi.org/10.46586/tosc.v2020.i4.195-212
https://doi.org/10.13154/tosc.v2020.iS1.390-416
https://doi.org/10.13154/tosc.v2020.iS1.390-416

q Davide Bellizia, Olivier Bronchain, Gaëtan Cassiers, Vincent Grosso, Chun Guo,
Charles Momin, Olivier Pereira, Thomas Peters, and François-Xavier Standaert.
“Mode-Level vs. Implementation-Level Physical Security in Symmetric Cryptogra-
phy – A Practical Guide Through the Leakage-Resistance Jungle”. In: CRYPTO 2020.
Ed. by Daniele Micciancio and Thomas Ristenpart. Vol. 12170. LNCS. Springer,
2020, pp. 369–400. doi: 10.1007/978-3-030-56784-2_13.

q Christoph Dobraunig and Bart Mennink. “Leakage Resilience of the ISAP Mode: a
Vulgarized Summary”. NIST Lightweight Cryptography Workshop 2019. 2019.

q Christoph Dobraunig and Bart Mennink. “Security of the Suffix Keyed Sponge”.
In: IACR Transactions of Symmetric Cryptology 2019.4 (2019), pp. 223–248. doi:
10.13154/tosc.v2019.i4.223-248.

q Jean Paul Degabriele, Christian Janson, and Patrick Struck. “Sponges Resist Leakage:
The Case of Authenticated Encryption”. In: ASIACRYPT 2019. Ed. by Steven D.
Galbraith and Shiho Moriai. Vol. 11922. LNCS. Springer, 2019, pp. 209–240. doi:
10.1007/978-3-030-34621-8_8.

q Christoph Dobraunig and Bart Mennink. “Leakage Resilience of the Duplex Con-
struction”. In: ASIACRYPT 2019. Ed. by Steven D. Galbraith and Shiho Moriai.
Vol. 11923. LNCS. Springer, 2019, pp. 225–255. doi: 10.1007/978-3-030-34618-
8_8.

q ChunGuo,Olivier Pereira, Thomas Peters, and François-Xavier Standaert. “Towards
Low-Energy Leakage-Resistant Authenticated Encryption from the Duplex Sponge
Construction”. In: IACR Transactions of Symmetric Cryptology 2020.1 (2020), pp. 6–
42. doi: 10.13154/tosc.v2020.i1.6-42.

q Joan Daemen, Bart Mennink, and Gilles Van Assche. “Full-State Keyed Duplex with
Built-In Multi-user Support”. In: ASIACRYPT 2017. Ed. by Tsuyoshi Takagi and
Thomas Peyrin. Vol. 10625. LNCS. Springer, 2017, pp. 606–637. doi: 10.1007/978-
3-319-70697-9_21.

q Yusuke Naito and Kan Yasuda. “New Bounds for Keyed Sponges with Extendable
Output: Independence Between Capacity and Message Length”. In: FSE 2016. Ed.
by Thomas Peyrin. Vol. 9783. LNCS. Springer, 2016, pp. 3–22. doi: 10.1007/978-3-
662-52993-5_1.

q Bart Mennink, Reza Reyhanitabar, and Damian Vizár. “Security of Full-State Keyed
Sponge and Duplex: Applications to Authenticated Encryption”. In: ASIACRYPT
2015. Ed. by Tetsu Iwata and Jung Hee Cheon. Vol. 9453. LNCS. Springer, 2015,
pp. 465–489. doi: 10.1007/978-3-662-48800-3_19.

24

https://doi.org/10.1007/978-3-030-56784-2_13
https://doi.org/10.13154/tosc.v2019.i4.223-248
https://doi.org/10.1007/978-3-030-34621-8_8
https://doi.org/10.1007/978-3-030-34618-8_8
https://doi.org/10.1007/978-3-030-34618-8_8
https://doi.org/10.13154/tosc.v2020.i1.6-42
https://doi.org/10.1007/978-3-319-70697-9_21
https://doi.org/10.1007/978-3-319-70697-9_21
https://doi.org/10.1007/978-3-662-52993-5_1
https://doi.org/10.1007/978-3-662-52993-5_1
https://doi.org/10.1007/978-3-662-48800-3_19

q Peter Gaži, Krzysztof Pietrzak, and Stefano Tessaro. “The Exact PRF Security of
Truncation: Tight Bounds for Keyed Sponges and Truncated CBC”. In: CRYPTO
2015. Ed. by Rosario Gennaro and Matthew Robshaw. Vol. 9215. LNCS. Springer,
2015, pp. 368–387. doi: 10.1007/978-3-662-47989-6_18.

q Elena Andreeva, Joan Daemen, Bart Mennink, and Gilles Van Assche. “Security of
Keyed Sponge Constructions Using a Modular Proof Approach”. In: FSE 2015. Ed.
by Gregor Leander. Vol. 9054. LNCS. Springer, 2015, pp. 364–384. doi: 10.1007/978-
3-662-48116-5_18.

q Yu Sasaki and Kan Yasuda. “How to Incorporate Associated Data in Sponge-Based
Authenticated Encryption”. In: CT-RSA 2015. Ed. by Kaisa Nyberg. Vol. 9048. LNCS.
Springer, 2015, pp. 353–370. doi: 10.1007/978-3-319-16715-2_19.

q Philipp Jovanovic, Atul Luykx, and Bart Mennink. “Beyond 2c/2 Security in Sponge-
Based Authenticated Encryption Modes”. In: ASIACRYPT 2014. Ed. by Palash
Sarkar and Tetsu Iwata. Vol. 8873. LNCS. Springer, 2014, pp. 85–104. doi: 10.1007/
978-3-662-45611-8_5.

q Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. “Duplexing
the Sponge: Single-Pass Authenticated Encryption and Other Applications”. In:
SAC 2011. Ed. by Ali Miri and Serge Vaudenay. Vol. 7118. LNCS. Springer, 2011,
pp. 320–337. doi: 10.1007/978-3-642-28496-0_19.

q Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. “On the
Indifferentiability of the Sponge Construction”. In: EUROCRYPT 2008. Ed. by Nigel
P. Smart. Vol. 4965. LNCS. Springer, 2008, pp. 181–197. doi: 10.1007/978-3-540-
78967-3_11.

5.2. Security of the Keccak-p[400] Instance

Due to the prominence of Keccak [BDPV11b] aswinner of the SHA-3 competition [Nat12],
and Keyak [BDP+16b] and Ketje [BDP+16a] as submissions to CAESAR [CAE14], a
plethora of cryptanalytic results for keyed and unkeyed sponge and duplex constructions
using round reduced versions of the Keccak- f permutations, as well as on the permuta-
tions exist. While arguably the majority of the analyses focuses on the 1600-bit variant of
the Keccak- f permutation, the similarity in structure of the permutation usually allows
to apply variations of the same techniques on smaller permutation variants. A good
overview on existing analysis results on Keccak can be found in [JN15]. In this section,
we recapitulate the from our point of view most relevant attacks on Keccak and discuss
the applicability to our schemes.

25

https://doi.org/10.1007/978-3-662-47989-6_18
https://doi.org/10.1007/978-3-662-48116-5_18
https://doi.org/10.1007/978-3-662-48116-5_18
https://doi.org/10.1007/978-3-319-16715-2_19
https://doi.org/10.1007/978-3-662-45611-8_5
https://doi.org/10.1007/978-3-662-45611-8_5
https://doi.org/10.1007/978-3-642-28496-0_19
https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1007/978-3-540-78967-3_11

5.2.1. Permutation

Zero-sum distinguishers [AM09; BC10] are the permutation distinguishers covering
the highest number of rounds. They exploit the low algebraic degree of the Keccak- f
permutations creating sets of inputs and outputs, which sum to zero. Guo et al. [GLS16]
present zero-sum distinguishers for 12 rounds of Keccak- f [1600] with a complexity of
265 using a 3-round linear structure in the middle of the permutation, while achieving 282

using a 2-round linear structure. They also claim for the 12-round 400-bit permutation
Keccak-p[400,12] zero-sum distinguishers with a complexity 282 using a 2-round linear
structure, while 3-round structures seem to be inapplicable. However, to mount an attack
using zero-sum distinguishers on sponges, an attacker would have to be able to choose
inputs in the middle of the permutation. Thus, no attacks on Keyak and Ketje with
the 12-round Keccak-p permutations are known that exploit zero-sum distinguishers.
Therefore, we conclude that the same is true for Isap-K-128, which also uses 12 rounds
for IsapEnc and IsapRk.

5.2.2. IsapRk and IsapEnc

IsapRk and IsapEnc are sponge-based constructions where the secret key is injected
during the beginning of the absorption phase, similar to a Keccak prefix-MAC, Keyak,
or Ketje. The attacks covering the highest number of rounds for keyed sponges exploit
the low algebraic degree of the Keccak- f permutations. This includes the cube-like
attacks by Dinur et al. [DMP+15], who present amongst others a keystream prediction
for a Keccak-based stream cipher which uses 9 rounds of the 1600-bit permutation to
achieve 512-bit security with time complexity 2256. Huang et al. [HWX+17] present
conditional cube attacks, including a key-recovery attack on 8 rounds of Keyak with a
time complexity of 274.

In the case of Isap-K-128, two factors preclude those attacks. First of all, the permutation
has 12 rounds, whereas the attacks are only capable of covering at most 9 rounds. Second,
the nonce N or the hash value Y are absorbed bitwise separated by 12 rounds of the
permutation, which significantly reduces the ability of an attacker to exploit cubes in
the first place. For Isap-K-128a, the number of rounds between the bitwise injections of
the nonce N or the hash value Y is reduced to one. Still, this means having at least 128
rounds from the point where the key is introduced up to the point when a part of the
state is leaked. Hence, we expect that conditional cube and cube-like attacks do not work
on Isap-K-128a.

Another important attack vector are linear and differential attacks. These are especially
relevant in the case of Isap-K-128a, where only the 1-round permutation is used for
absorption and the 8-round permutation is used for squeezing the sponge. While hav-
ing, e.g., colliding differential trails during absorption would also imply problems for
Ketje, the situation changes for the squeezing phase. Due to the increased rate used in

26

Isap-K-128a compared to Ketje, an attacker has more freedom. For this reason, we have
increased the number of rounds to 8 for pe.

5.2.3. IsapMac

Since IsapMac is a suffix-MAC, attacks when unkeyed sponges are used as hash functions
are also of concern. For instance, collision attacks on the hashing part of IsapMac have
the potential to allow for forgeries. For Keccak, collision attacks for up to 5 rounds were
proposed by Dinur et al. [DDS13]. Recently, the 5-round challenges for 1600-bit and
800-bit permutations of the Keccak crunchy crypto collision contest [BDPV14] have been
solved, while the 5-round challenge for the 400-bit permutation is still open. Regarding
pre-image attacks, attacks for up to 4 rounds for variants of Keccak exist [MPS13; GLS16].
Taking these results together with the result for keyed sponges of Section 5.2.2, we
conclude that having 20 rounds in the case of Isap-K-128 and even 16 rounds in the case
of Isap-K-128a provide a sufficient security margin for IsapMac.

5.2.4. List of Published Analysis

As the winner of the NIST SHA-3 competition [Kay07], Keccak has received a lot of
attention and several results regarding its security have been published. The following
list contains both results evaluating the permutation and evaluation of the security of the
hash function and the authenticated encryption schemes Keyak [BDP+16b] and Ketje
[BDP+16a], both CAESAR round 3 candidates based on the Keccak permutation.

q Rachelle Heim Boissier, Camille Noûs, and Yann Rotella. “Algebraic Collision
Attacks on Keccak”. In: IACR Transactions of Symmetric Cryptology 2021.1 (2021),
pp. 239–268. doi: 10.46586/tosc.v2021.i1.239-268.

q Le He, Xiaoen Lin, and Hongbo Yu. “Improved Preimage Attacks on 4-Round
Keccak-224/256”. In: IACR Transactions of Symmetric Cryptology 2021.1 (2021),
pp. 217–238. doi: 10.46586/tosc.v2021.i1.217-238.

q Fukang Liu, Takanori Isobe, Willi Meier, and Zhonghao Yang. “Algebraic Attacks
on Round-Reduced Keccak/Xoodoo”. Cryptology ePrint Archive, Report 2020/346.
2020. url: https://eprint.iacr.org/2020/346.

q Sahiba Suryawanshi, Dhiman Saha, and Satyam Sachan. “New Results on the
SymSum Distinguisher on Round-Reduced SHA3”. In: AFRICACRYPT. Ed. by
AbderrahmaneNitaj andAmrM.Youssef. Vol. 12174. LNCS. Springer, 2020, pp. 132–
151. doi: 10.1007/978-3-030-51938-4_7.

27

https://doi.org/10.46586/tosc.v2021.i1.239-268
https://doi.org/10.46586/tosc.v2021.i1.217-238
https://eprint.iacr.org/2020/346
https://doi.org/10.1007/978-3-030-51938-4_7

q Guozhen Liu, Weidong Qiu, and Yi Tu. “New Techniques for Searching Differential
Trails in Keccak”. In: IACR Transactions of Symmetric Cryptology 2019.4 (2019),
pp. 407–437. doi: 10.13154/tosc.v2019.i4.407-437.

q Mahesh Sreekumar Rajasree. “Cryptanalysis of Round-Reduced KECCAK Using
Non-linear Structures”. In: INDOCRYPT. Ed. by Feng Hao, Sushmita Ruj, and
Sourav SenGupta. Vol. 11898. LNCS. Springer, 2019, pp. 175–192. doi: 10.1007/978-
3-030-35423-7_9.

q Zheng Li, Xiaoyang Dong, Wenquan Bi, Keting Jia, XiaoyunWang, and Willi Meier.
“New Conditional Cube Attack on Keccak Keyed Modes”. In: IACR Transactions of
Symmetric Cryptology 2019.2 (2019), pp. 94–124.

q Ting Li and Yao Sun. “Preimage Attacks on Round-Reduced Keccak-224/256 via
an Allocating Approach”. In: EUROCRYPT (3). Vol. 11478. LNCS. Springer, 2019,
pp. 556–584. doi: 10.1007/978-3-030-17659-4_19.

q Wenquan Bi, Xiaoyang Dong, Zheng Li, Rui Zong, and Xiaoyun Wang. “MILP-
aided cube-attack-like cryptanalysis on Keccak Keyed modes”. In: Des. Codes
Cryptography 87.6 (2019), pp. 1271–1296. doi: 10.1007/s10623-018-0526-x.

q Fukang Liu, Zhenfu Cao, and Gaoli Wang. “Finding Ordinary Cube Variables for
Keccak-MAC with Greedy Algorithm”. In: IWSEC. Vol. 11689. LNCS. Springer,
2019, pp. 287–305. doi: 10.1007/978-3-030-26834-3_17.

q Haibo Zhou, Zheng Li, Xiaoyang Dong, Keting Jia, and Willi Meier. “Practical
Key-recovery Attacks on Round-Reduced Ketje Jr, Xoodoo-AE and Xoodyak”. Cryp-
tology ePrint Archive, Report 2019/447. 2019. url: https://eprint.iacr.org/
2019/447.

q Ling Song and Jian Guo. “Cube-Attack-Like Cryptanalysis of Round-Reduced
Keccak UsingMILP”. In: IACR Transactions of Symmetric Cryptology 2018.3 (2018),
pp. 182–214. doi: 10.13154/tosc.v2018.i3.182-214.

q Ling Song, Jian Guo, Danping Shi, and San Ling. “New MILP Modeling: Improved
Conditional Cube Attacks on Keccak-Based Constructions”. In: ASIACRYPT 2018.
Ed. by Thomas Peyrin and Steven D. Galbraith. Vol. 11273. LNCS. Springer, 2018,
pp. 65–95. doi: 10.1007/978-3-030-03329-3_3.

q Ting Li, Yao Sun, Maodong Liao, and Dingkang Wang. “Preimage Attacks on the
Round-reduced Keccak with Cross-linear Structures”. In: IACR Transactions of
Symmetric Cryptology 2017.4 (2017), pp. 39–57. doi: 10.13154/tosc.v2017.i4.39-
57.

28

https://doi.org/10.13154/tosc.v2019.i4.407-437
https://doi.org/10.1007/978-3-030-35423-7_9
https://doi.org/10.1007/978-3-030-35423-7_9
https://doi.org/10.1007/978-3-030-17659-4_19
https://doi.org/10.1007/s10623-018-0526-x
https://doi.org/10.1007/978-3-030-26834-3_17
https://eprint.iacr.org/2019/447
https://eprint.iacr.org/2019/447
https://doi.org/10.13154/tosc.v2018.i3.182-214
https://doi.org/10.1007/978-3-030-03329-3_3
https://doi.org/10.13154/tosc.v2017.i4.39-57
https://doi.org/10.13154/tosc.v2017.i4.39-57

q SilviaMella, JoanDaemen, andGilles VanAssche. “New techniques for trail bounds
and application to differential trails in Keccak”. In: IACR Transactions of Symmetric
Cryptology 2017.1 (2017), pp. 329–357. doi: 10.13154/tosc.v2017.i1.329-357.

q Zheng Li,Wenquan Bi, XiaoyangDong, andXiaoyunWang. “ImprovedConditional
Cube Attacks on Keccak Keyed Modes with MILP Method”. In: ASIACRYPT 2017.
Ed. by Tsuyoshi Takagi and Thomas Peyrin. Vol. 10624. LNCS. Springer, 2017,
pp. 99–127. doi: 10.1007/978-3-319-70694-8_4.

q Maolin Li and Lu Cheng. “Distinguishing Property for Full Round KECCAK-f
Permutation”. In: CISIS 2017. Ed. by Leonard Barolli and Olivier Terzo. Vol. 611.
Advances in Intelligent Systems and Computing. Springer, 2017, pp. 639–646. doi:
10.1007/978-3-319-61566-0_59.

q Ling Song, Guohong Liao, and JianGuo. “Non-full Sbox Linearization: Applications
to Collision Attacks on Round-Reduced Keccak”. In: CRYPTO 2017. Ed. by Jonathan
Katz and Hovav Shacham. Vol. 10402. LNCS. Springer, 2017, pp. 428–451. doi:
10.1007/978-3-319-63715-0_15.

q Senyang Huang, Xiaoyun Wang, Guangwu Xu, Meiqin Wang, and Jingyuan Zhao.
“Conditional Cube Attack on Reduced-Round Keccak Sponge Function”. In: EU-
ROCRYPT 2017. Ed. by Jean-Sébastien Coron and Jesper Buus Nielsen. Vol. 10211.
LNCS. 2017, pp. 259–288. doi: 10.1007/978-3-319-56614-6_9.

q Kexin Qiao, Ling Song, Meicheng Liu, and Jian Guo. “New Collision Attacks on
Round-Reduced Keccak”. In: EUROCRYPT 2017. Ed. by Jean-Sébastien Coron and
Jesper Buus Nielsen. Vol. 10212. LNCS. 2017, pp. 216–243. doi: 10.1007/978-3-
319-56617-7_8.

q Jian Guo, Meicheng Liu, and Ling Song. “Linear Structures: Applications to Crypt-
analysis of Round-Reduced Keccak”. In: ASIACRYPT 2016. Ed. by Jung Hee Cheon
and Tsuyoshi Takagi. Vol. 10031. LNCS. 2016, pp. 249–274. doi: 10.1007/978-3-
662-53887-6_9.

q Itai Dinur, Pawel Morawiecki, Josef Pieprzyk, Marian Srebrny, and Michal Straus.
“Cube Attacks and Cube-Attack-Like Cryptanalysis on the Round-Reduced Keccak
Sponge Function”. In: EUROCRYPT 2015. Ed. by Elisabeth Oswald and Marc
Fischlin. Vol. 9056. LNCS. Springer, 2015, pp. 733–761. doi: 10.1007/978-3-662-
46800-5_28.

q Jérémy Jean and IvicaNikolic. “Internal Differential Boomerangs: Practical Analysis
of the Round-Reduced Keccak-f Permutation”. In: FSE 2015. Ed. by Gregor Leander.
Vol. 9054. LNCS. Springer, 2015, pp. 537–556. doi: 10.1007/978-3-662-48116-
5_26.

29

https://doi.org/10.13154/tosc.v2017.i1.329-357
https://doi.org/10.1007/978-3-319-70694-8_4
https://doi.org/10.1007/978-3-319-61566-0_59
https://doi.org/10.1007/978-3-319-63715-0_15
https://doi.org/10.1007/978-3-319-56614-6_9
https://doi.org/10.1007/978-3-319-56617-7_8
https://doi.org/10.1007/978-3-319-56617-7_8
https://doi.org/10.1007/978-3-662-53887-6_9
https://doi.org/10.1007/978-3-662-53887-6_9
https://doi.org/10.1007/978-3-662-46800-5_28
https://doi.org/10.1007/978-3-662-46800-5_28
https://doi.org/10.1007/978-3-662-48116-5_26
https://doi.org/10.1007/978-3-662-48116-5_26

q Sourav Das and Willi Meier. “Differential Biases in Reduced-Round Keccak”. In:
AFRICACRYPT 2014. Ed. by David Pointcheval and Damien Vergnaud. Vol. 8469.
LNCS. Springer, 2014, pp. 69–87. doi: 10.1007/978-3-319-06734-6_5.

q SukhenduKuila, Dhiman Saha,Madhumangal Pal, andDipanwita RoyChowdhury.
“Practical Distinguishers against 6-Round Keccak-f Exploiting Self-Symmetry”. In:
AFRICACRYPT 2014. Ed. by David Pointcheval and Damien Vergnaud. Vol. 8469.
LNCS. Springer, 2014, pp. 88–108. doi: 10.1007/978-3-319-06734-6_6.

q PawelMorawiecki andMarian Srebrny. “A SAT-based preimage analysis of reduced
Keccak hash functions”. In: Information Processing Letters 113.10-11 (2013), pp. 392–
397. doi: 10.1016/j.ipl.2013.03.004.

q Pawel Morawiecki, Josef Pieprzyk, and Marian Srebrny. “Rotational Cryptanalysis
of Round-Reduced Keccak”. In: FSE 2013. Ed. by Shiho Moriai. Vol. 8424. LNCS.
Springer, 2013, pp. 241–262. doi: 10.1007/978-3-662-43933-3_13.

q Stefan Kölbl, Florian Mendel, Tomislav Nad, and Martin Schläffer. “Differential
Cryptanalysis of Keccak Variants”. In: IMA 2013. Ed. by Martijn Stam. Vol. 8308.
LNCS. Springer, 2013, pp. 141–157. doi: 10.1007/978-3-642-45239-0_9.

q Joan Daemen and Gilles Van Assche. “Differential Propagation Analysis of Keccak”.
In: FSE 2012. Ed. by Anne Canteaut. Vol. 7549. LNCS. Springer, 2012, pp. 422–441.
doi: 10.1007/978-3-642-34047-5_24.

q Itai Dinur, Orr Dunkelman, and Adi Shamir. “New Attacks on Keccak-224 and
Keccak-256”. In: FSE 2012. Ed. by Anne Canteaut. Vol. 7549. LNCS. Springer, 2012,
pp. 442–461. doi: 10.1007/978-3-642-34047-5_25.

q Alexandre Duc, Jian Guo, Thomas Peyrin, and Lei Wei. “Unaligned Rebound
Attack: Application to Keccak”. In: FSE 2012. Ed. by Anne Canteaut. Vol. 7549.
LNCS. Springer, 2012, pp. 402–421. doi: 10.1007/978-3-642-34047-5_23.

q Christina Boura, Anne Canteaut, and Christophe De Cannière. “Higher-Order
Differential Properties of Keccak and Luffa”. In: FSE 2011. Ed. by Antoine Joux.
Vol. 6733. LNCS. Springer, 2011, pp. 252–269. doi: 10.1007/978-3-642-21702-
9_15.

q MaríaNaya-Plasencia, AndreaRöck, andWilliMeier. “PracticalAnalysis of Reduced-
Round Keccak”. In: INDOCRYPT 2011. Ed. by Daniel J. Bernstein and Sanjit Chat-
terjee. Vol. 7107. LNCS. Springer, 2011, pp. 236–254. doi: 10.1007/978-3-642-
25578-6_18.

30

https://doi.org/10.1007/978-3-319-06734-6_5
https://doi.org/10.1007/978-3-319-06734-6_6
https://doi.org/10.1016/j.ipl.2013.03.004
https://doi.org/10.1007/978-3-662-43933-3_13
https://doi.org/10.1007/978-3-642-45239-0_9
https://doi.org/10.1007/978-3-642-34047-5_24
https://doi.org/10.1007/978-3-642-34047-5_25
https://doi.org/10.1007/978-3-642-34047-5_23
https://doi.org/10.1007/978-3-642-21702-9_15
https://doi.org/10.1007/978-3-642-21702-9_15
https://doi.org/10.1007/978-3-642-25578-6_18
https://doi.org/10.1007/978-3-642-25578-6_18

q Christina Boura and Anne Canteaut. “A zero-sum property for the Keccak- f per-
mutation with 18 rounds”. In: ISIT 2010. IEEE, 2010, pp. 2488–2492. doi: 10.1109/
ISIT.2010.5513442.

q Christina Boura and Anne Canteaut. “Zero-Sum Distinguishers for Iterated Permu-
tations and Application to Keccak- f and Hamsi-256”. In: SAC 2010. Ed. by Alex
Biryukov, Guang Gong, and Douglas R. Stinson. Vol. 6544. LNCS. Springer, 2010,
pp. 1–17. doi: 10.1007/978-3-642-19574-7_1.

q Wenquan Bi, Zheng Li, Xiaoyang Dong, Lu Li, and Xiaoyun Wang. “Conditional
cube attack on round-reduced River Keyak”. In: Designs, Codes and Cryptography
86.6 (2018), pp. 1295–1310. doi: 10.1007/s10623-017-0396-7.

q Xiaoyang Dong, Zheng Li, Xiaoyun Wang, and Ling Qin. “Cube-like Attack on
Round-Reduced Initialization of Ketje Sr”. In: IACR Transactions of Symmetric
Cryptology 2017.1 (2017), pp. 259–280. doi: 10.13154/tosc.v2017.i1.259-280.

q Thomas Fuhr, María Naya-Plasencia, and Yann Rotella. “State-Recovery Attacks on
Modified Ketje Jr”. In: IACR Transactions of Symmetric Cryptology 2018.1 (2018),
pp. 29–56. doi: 10.13154/tosc.v2018.i1.29-56.

q Itai Dinur, Orr Dunkelman, and Adi Shamir. “Collision Attacks on Up to 5 Rounds
of SHA-3 Using Generalized Internal Differentials”. In: FSE 2013. Ed. by Shiho
Moriai. Vol. 8424. LNCS. Springer, 2013, pp. 219–240. doi: 10.1007/978-3-662-
43933-3_12.

5.3. Security of the Ascon-p Instance

Ascon [DEMS16] has been selected as the primary recommendation for lightweight use-
cases in the final portfolio of the CAESAR [CAE14] competition. As CAESAR [CAE14]
was a competition lasting for nearly 5 years, Ascon has received a large amount of
analysis and we discuss the most important results for the decision of our parameters.

5.3.1. Permutation

Similar as for Keccak, the best known distinguishing property for Ascon’s permutation
are zero-sum distinguishers. In the case of Ascon, such distinguishers exist for 12 rounds
with a complexity of 2130 [DEMS15]. As remarked before, to mount an attack using
zero-sum distinguishers on sponges, an attacker would have to be able to choose inputs
in the middle of the permutation. Hence, no attacks exploiting this property on Ascon
are known. For a detailed discussion of the cryptographic properties of the Ascon
permutation we refer to [DEMS21].

31

https://doi.org/10.1109/ISIT.2010.5513442
https://doi.org/10.1109/ISIT.2010.5513442
https://doi.org/10.1007/978-3-642-19574-7_1
https://doi.org/10.1007/s10623-017-0396-7
https://doi.org/10.13154/tosc.v2017.i1.259-280
https://doi.org/10.13154/tosc.v2018.i1.29-56
https://doi.org/10.1007/978-3-662-43933-3_12
https://doi.org/10.1007/978-3-662-43933-3_12

5.3.2. IsapRk and IsapEnc

The authenticated encryption scheme Ascon-128 has a rate of 64 bits and uses 12 round
of Ascon’s permutation during the initialization and finalization and 6 rounds during
the processing of the data. The best known attacks on Ascon-128 cover 7 out of 12 rounds
of the initialization [LDW17; RHSS21] and 4 out of 12 rounds during the finalization
[DEMS15]. Hence, we use 12 rounds of the permutation in IsapEnc and IsapRk for
Isap-A-128.

For the fast variant Isap-A-128a, we reduce the number of rounds for the permutation pe
used to generate the keystream to 6, which matches the number of rounds of the data
processing of Ascon-128. Furthermore, we reduce the number of rounds of pb used in
IsapRk to 1. Using the same tools as [DEMS15] we searched for differential trails for this
construction and could show that no collision producing trails for less than 5 iterations
exist and any that trail spanning more rounds has at least 64 active S-boxes (probability
� 2−128).

5.3.3. IsapMac

Recently, a hash function based on Ascon’s permutation has been introduced [DEMS21].
Since this construction is rather new, we have decided to base IsapMac for both Isap-A-128
and Isap-A-128a on Ascon-Hash. Thus ph has 12 rounds in both cases. As Ascon-Hash
has a 64-bit rate, also IsapMac has a 64-bit rate for absorbing the associated data and the
ciphertext. The state is initialized to the 128-bit nonce N and a 192-bit fixed IV, similar to
the keyed initial state of the re-keying function.

5.3.4. List of Published Analysis

As the primary selection for lightweight applications in theCAESAR competition [CAE14],
Ascon has received a lot of attention and several results regarding its security have been
published. The following list contains both results evaluating the permutation and eval-
uation of the security of the authenticated encryption and hashing, either using variants
of Ascon’s permutation, or idealized versions of it.

q Raghvendra Rohit, Kai Hu, Sumanta Sarkar, and Siwei Sun. “Misuse-Free Key-
Recovery and Distinguishing Attacks on 7-Round Ascon”. In: IACR Transactions
of Symmetric Cryptology 2021.1 (2021), pp. 130–155. doi: 10.46586/tosc.v2021.
i1.130-155.

q Cihangir Tezcan. “Analysis of Ascon, DryGASCON, and Shamash Permutations”.
In: International Journal of Information Security Science 9.3 (2020), pp. 172–187.
url: https://eprint.iacr.org/2020/1458.

32

https://doi.org/10.46586/tosc.v2021.i1.130-155
https://doi.org/10.46586/tosc.v2021.i1.130-155
https://eprint.iacr.org/2020/1458

q Rui Zong, Xiaoyang Dong, and Xiaoyun Wang. “Collision Attacks on Round-
Reduced Gimli-Hash/Ascon-Xof/Ascon-Hash”. Cryptology ePrint Archive, Re-
port 2019/1115. 2019. url: https://eprint.iacr.org/2019/1115.

q Hailun Yan, Xuejia Lai, Lei Wang, Yu Yu, and Yiran Xing. “New zero-sum distin-
guishers on full 24-roundKeccak-f using the division property”. In: IET Information
Security 13.5 (2019), pp. 469–478. doi: 10.1049/iet-ifs.2018.5263.

q Achiya Bar-On, Orr Dunkelman, Nathan Keller, and Ariel Weizman. “DLCT: A
New Tool for Differential-Linear Cryptanalysis”. In: EUROCRYPT 2019. Ed. by
Yuval Ishai and Vincent Rijmen. Vol. 11476. LNCS. Springer, 2019, pp. 313–342. doi:
10.1007/978-3-030-17653-2_11.

q Gregor Leander, Cihangir Tezcan, and Friedrich Wiemer. “Searching for Subspace
Trails andTruncatedDifferentials”. In: IACRTransactions on Symmetric Cryptology
2018.1 (2018), pp. 74–100. doi: 10.13154/tosc.v2018.i1.74-100.

q Zheng Li, XiaoyangDong, and XiaoyunWang. “Conditional CubeAttack on Round-
Reduced ASCON”. In: IACR Transactions on Symmetric Cryptology 2017.1 (2017),
pp. 175–202. doi: 10.13154/tosc.v2017.i1.175-202.

q Ashutosh Dhar Dwivedi, Miloš Klouček, Pawel Morawiecki, Ivica Nikolič, Josef
Pieprzyk, and SebastianWójtowicz. “SAT-based Cryptanalysis of Authenticated Ci-
phers from the CAESARCompetition”. In: SECRYPT ICETE 2017. Ed. by Pierangela
Samarati, Mohammad S. Obaidat, and Enrique Cabello. SciTePress, 2017, pp. 237–
246. doi: 10.5220/0006387302370246.

q Cihangir Tezcan. “Truncated, Impossible, and Improbable Differential Analysis
of Ascon”. In: ICISSP 2016. Ed. by Olivier Camp, Steven Furnell, and Paolo Mori.
SciTePress, 2016, pp. 325–332. doi: 10.5220/0005689903250332.

q Faruk Göloğlu, Vincent Rijmen, and Qingju Wang. “On the division property of
S-boxes”. Cryptology ePrint Archive, Report 2016/188. 2016. url: https://eprint.
iacr.org/2016/188.

q Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. “Heuristic Tool for
Linear Cryptanalysis with Applications to CAESAR Candidates”. In: ASIACRYPT
2015. Ed. by Tetsu Iwata and Jung Hee Cheon. Vol. 9453. LNCS. Springer, 2015,
pp. 490–509. doi: 10.1007/978-3-662-48800-3_20.

q Yosuke Todo. “Structural Evaluation by Generalized Integral Property”. In: EURO-
CRYPT 2015. Ed. by Elisabeth Oswald andMarc Fischlin. Vol. 9056. LNCS. Springer,
2015, pp. 287–314. doi: 10.1007/978-3-662-46800-5_12.

33

https://eprint.iacr.org/2019/1115
https://doi.org/10.1049/iet-ifs.2018.5263
https://doi.org/10.1007/978-3-030-17653-2_11
https://doi.org/10.13154/tosc.v2018.i1.74-100
https://doi.org/10.13154/tosc.v2017.i1.175-202
https://doi.org/10.5220/0006387302370246
https://doi.org/10.5220/0005689903250332
https://eprint.iacr.org/2016/188
https://eprint.iacr.org/2016/188
https://doi.org/10.1007/978-3-662-48800-3_20
https://doi.org/10.1007/978-3-662-46800-5_12

q Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
“Cryptanalysis of Ascon”. In: CT-RSA 2015. Ed. by Kaisa Nyberg. Vol. 9048. LNCS.
Springer, 2015, pp. 371–387. doi: 10.1007/978-3-319-16715-2_20.

34

https://doi.org/10.1007/978-3-319-16715-2_20

6. Implementation

The main design goal of Isap is to provide out-of-the-box robustness against certain types
of implementation attacks while allowing to add additional defense mechanisms at low
cost. This is essential in situations where cryptographic devices are deployed in locations
where they are physically accessible by potential attackers. The area requirements of Isap
are very low even with integrated countermeasures against side-channel attacks, so the
scheme is suitable for deployment in software or hardware on very constrained devices
that are exposed to physical adversarial access. These features make Isap an excellent
choice for a variety of applications on constrained devices in the IoT (Internet of Things),
particularly for highly sensitive processes with bulk data such as secure software and
firmware updates.

This chapter covers the implementation of Isap. We first discuss the robustness of
Isap against implementation attacks in Section 6.1, including a summary of the general
rationale introduced in Chapter 4 as well as specific aspects to consider for securely
implementing Isap. Then, we provide an overview of Isap’s performance in software in
Section 6.2. With respect to hardware, we discuss dedicated ASIC implementations in
Section 6.3, dedicated FPGA implementations in Section 6.4, and a flexible hardware
accelerator design for both Ascon/Isap in Section 6.5.

6.1. Implementation Security

Isap’s robustness against passive implementation attacks rests on the following pillars:

1. IsapEnc and IsapMac, the encryption/decryption and authentication procedures,
are inherently protected against DPA by Isap’s Encrypt-then-MAC mode with its
re-keying function, which guarantees that fresh keys are used whenever processing
new data (see Section 4.1).

2. IsapEnc’s and IsapMac’s robustness against SPA follows directly from the under-
lying sponge construction under a generous bounded-leakage assumption (see
Section 4.2).

3. IsapRk, the re-keying procedure called internally by IsapEnc and IsapMac, is the
sponge-based equivalent of the 2-limiting GGM construction and thus protected
against DPA (see Section 4.3).

35

4. IsapRk’s robustness against SPA follows from the same model and assumptions as
IsapEnc’s except for the initialization step, which can be protected by either storing
the expanded key or increasing the key size.

6.1.1. Efficiency of Secure Implementations

Protecting cryptographic implementations against implementation attacks has been a
hot research topic during the last two decades. Today, there exist two directions in
counteracting the attacks.

The first approach works by hardening the implementation of cryptographic algorithms
with techniques like hiding or masking. The drawback of this approach is that the over-
head for securing a cryptographic primitive against implementation attacks can be very
high and is not generic as it depends on the cryptographic primitive itself. In particular,
these countermeasures typically imply a significant increase in area requirements. On
top of that, implementing countermeasures for specific primitives can be error-prone
and difficult to verify for correctness in practice.

The second approach to counteract implementation attacks is to use cryptographic
protocols that ensure that certain types of attacks cannot be performed at all on the
underlying cryptographic primitive. Isap mainly follows this second approach but also
allows for additional countermeasures on primitive-level at low cost. While the original
proposal at FSE 2017 [DEM+17] already provides robustness against DPA attacks by
design, the additional modifications in this proposal also provide hardening against
several types of fault attacks such asDFA [BS97], SFA [FJLT13; DEK+16], or SIFA [DEK+18;
DMMP18; DEG+18], the last of which is especially hard to prevent on a primitive-level.
As a consequence, most parts of the underlying cryptographic primitive only need to be
secured against passive attacks that can extract information about the key by observing
cryptographic operations for a single fixed input, i.e., SPA. This induces a significantly
lower implementation overhead of the protected primitive compared to implementations
that need protection against DPA attacks on a primitive-level.

In summary, the second approach as implemented by Isap provides secure implemen-
tations with a significantly lower area overhead and a very low runtime overhead for
processing bulk data. This is ideal for applications that require strong protection while
encrypting or decrypting long messages, such as software or firmware updates on em-
bedded devices or bitstream files for FPGAs. Preventing implementation attacks at the
protocol level does come with a certain runtime overhead for short messages, however:
The protection overhead is shifted to the initialization phase, which only dominates the
runtime for short messages. If we consider the usage of masking for additional SPA
protection Isap profits from the fact that, for longer messages, the majority of the runtime
is spent within IsapMac which is mostly unkeyed (execpt the final tag generation) and
hence does not need to use masked permutations during the absorbtion of A and C. In
other words, the higher the desired masking order, the better the runtime of Isap will be

36

compared to other single-pass AE schemes that would likely still need to integrate even
higher masking orders to cope with DPA attacks.

We provide a comparison of Isap’s performance for short and long messages on different
platforms in Section 6.2 (software) and Section 6.3 (hardware).

6.1.2. SPA Leakage

Isap has primarily been designed to be robust against DPA attacks. Furthermore, the
design of Isap’s components IsapMac, IsapRk, and IsapEnc have an increased capacity
in order to better withstand SPA attacks (see Section 4.2). Still, like for any scheme,
robustness against SPA attacks such as template attacks relies on limiting the leakage
per execution, which may require additional implementation countermeasures such
as hiding. This applies in particular for the decryption, where an attacker may obtain
several measurements for the same data.

As pointed out by Medwed et al. [MSJ12], the concrete security of a construction against
side-channel attacks highly depends on the way it is implemented and on the platform
on which it is executed. For instance, they show that an implementation of the GGM
construction using AES-128 on an 8-bit microcontroller can be broken by using template
attacks. By making assumptions on the implementation, e.g., parallel execution of
the S-boxes, Medwed et al. [MSJ12] and follow-up work [MSNF16] are able to provide
security guarantees with respect to side-channel attacks for their constructions. In
contrast, in this work we do not make any assumption on the way Isap is implemented
and on the countermeasures used to protect the implementations. Clearly, an 8-bit
microcontroller implementation needs more sophisticated SPA countermeasures than a
parallel implementation of the round function. We consider the evaluation of the SPA
robustness of various implementation strategies for Isap to be an interesting research
topic.

6.1.3. Fault Attacks

Isap’s updated mode also provides robustness against certain fault attacks. Since the
nonce changes for each authenticated encryption call, so do K∗a and K∗e , which renders
classical fault attacks like DFA impractical against the authenticated encryption. Other
fault attacks like SFA [FJLT13; DEK+16] or SIFA [DEK+18; DMMP18; DEG+18] might
still be applicable in this setting, but we expect that the SPA countermeasures that are
typically in place to cope with SPA attacks will drastically increase the complexity of
these attacks. In particular, the extremely small rate and the resulting data complexity of
2 in the re-keying function of Isap will significantly increase the complexity of SFA and
SIFA on K. Additionally, in case an attacker manages to obtain one of the two session
keys K∗a or K∗e , it is infeasible to recover the master key K, since the re-keying function
IsapRk is hard to invert.

37

During authenticated decryption, the nonce can be kept constant for multiple computa-
tions, which potentially enables DFA on the decryption. To mitigate this, Isap’s re-keying
functions are hard to invert, forcing an attacker to mount the attack on the re-keying
function itself. However, since the session keys produced by the re-keying function can
typically not be observed by the attacker, DFA attacks on the scheme are significantly
more complicated. Additionally, we can track the number of failed verifications and halt
the device after a few verification failures. This will significantly increase the robustness
of the implementation against fault attacks.

6.1.4. Tag Comparison

Special care has to be taken for tag comparison. On the one hand, an active attacker
performing fault attacks to skip the tag comparison will be able to break the authenticity
of the scheme. Therefore, additional implementation countermeasures are needed to
prevent this. On the other hand, as observed by Berti et al. [BGP+20], the comparison of
the tag should be done in a side-channel secure manner to minimize the leakage of the
correctly computed tag. One option to do this is to mask the comparison. Another option
is to do the comparison after another permutation call. The computed tag T′ and the
transmitted tag T are compared by first looking at k bits of bph(T′‖0∗)ck

?
= bph(T‖0∗)ck,

and the comparison of the actual tags T, T′ is only executed if the first comparison was
successful. In [DM21], the security of this method is analyzed and an improved variant
is proposed. This variant also uses the publicly known value Y that forms the input to
IsapRk in IsapMac, and uses it in the comparison: bph(Y‖T′‖0∗)ck

?
= bph(Y‖T‖0∗)ck.

6.2. Software Implementations

In the following, we present performance metrics of platform-optimized software imple-
mentations of Isap-A-128a and Isap-K-128a for various CPU architectures such as x64,
ARMv8-A, and ARMv7-M. These architectures thus cover high performance scenarios
like 64-bit desktop CPUs, as well as more constrained devices such as 32-bit ARMCortex-
A application processors and ARM Cortex-M microprocessors, where implementation
security is often of particular interest.

We benchmarked our implementations on various platforms, covering scenarios from
high-end desktop CPUs (such as AMD Ryzen 7 1700) to low end microprocessors (such
as STM32F405). We also present some numbers from eBACS [BL] for comparison. The
benchmarked scenarios include authenticated encryption of relatively small messages
(64 bytes), typical Ethernet II frame sizes (1536 bytes), and very large messages (long).
The resulting performance metrics are listed in Table 6.1. For small messages the runtime
of Isap is dominated by the re-keying operation IsapRk while the runtime of hashing and
encrypting dominates for processing longer messages.

38

Table 6.1.: Software performance of Isap instances in cycles/byte (x+0 enc.). We refer to
our website for up to date implementations and performance numbers.

Processor Architecture
Isap-A-128a Isap-K-128a

64 B 1536 B long 64 B 1536 B long

AMD Ryzen 7 17001 x64 85.7 24.5 21.9 295.0 64.1 54.3
AMD Ryzen 5 16002 x64 - - 26.9 - - 67.9
ARM Cortex-A532 ARMv8A - - 41.5 - - 162.0
STM32F3031 ARMv7M 542.0 168.0 152.0 2135.0 415.0 338.0
ARM Cortex-M4F3 ARMv7M 614.0 - - 2163.6 - -
ATmega328P3 AVR 450.0 - - 543.0 - -
1From the ISAP Code Package [Teaa].
2From eBACS [BL].
3From the NIST LWC team [Teac].

6.3. ASIC Implementations

In this section, we discuss various performance and area metrics of Isap-A-128a and
Isap-K-128a in hardware. The presented numbers are either based on the comprehensive
ASIC benchmarking report of round 2 candidates in the NIST Lightweight Cryptography
Standardization Process [AZ21], or derived from our hardware reference implementa-
tions [Teab].

Area. When compared to AesGcm, Isap enables AEAD with just about half the area
at similar throughputs (Table 6.2). Besides that, Isap’s mode-level features additionally
provide protection/hardening against various implementation attacks like DPA. Adding,
e.g., mode-level DPA protection to AesGcm would require the additional cost of other
re-keying functions like a masked polynomial multiplication [MSGR10] or an implemen-
tation of the GGM tree using an AES core computing 1 round per cycle [SPY+10].

Since Isap-A-128a and Isap-K-128a implement the same mode, their area difference is
mostly determined by permutation type and state size. Consequently, the Keccak-p[400]-
based Isap-K-128a does require slightly more area than the Ascon-p-based Isap-A-128a.

Runtime. The runtime of Isap can be divided into two parts: the time for performing
initialization/finalization (latency) and the time for processing data. The latency is
dominated by the re-keying operations in both IsapEnc and IsapMac and is independent
of the length of the message. Its impact on runtime thus vanishes for long messages. The
runtime for processing a single byte is also independent of message length, but defines
the overall runtime for long messages. In Table 6.3 we report the corresponding cycle
counts of our hardware reference implementations [Teab] for AEAD (long+0 enc) and

39

Table 6.2.: Hardware metrics for Isap-A-128a and Isap-K-128a for AEAD (long+0 enc.)
at 50MHz as reported in [AZ21]. We refer to our website for up to date
implementations and metrics.

Scheme Interface Cell Lib Synthesizer? Throughput Area
[cycles/byte] [kGE]

AesGcm 32-bit STM65nm SDC + CE 2.1 53.0
AesGcm 32-bit STM65nm CG + CI 2.1 27.0
AesGcm 32-bit TSMC65nm SDC + CE 2.1 25.8
AesGcm 32-bit TSMC65nm CG + CI 2.1 26.2

Isap-A-128a 32-bit STM65nm SDC + CE 3.2 17.2
Isap-A-128a 32-bit STM65nm CG + CI 3.2 12.9
Isap-A-128a 32-bit TSMC65nm SDC + CE 3.2 11.4
Isap-A-128a 32-bit TSMC65nm CG + CI 3.2 12.0

Isap-K-128a 16-bit STM65nm SDC + CE 2.3 19.6
Isap-K-128a 16-bit STM65nm CG + CI 2.3 14.0
Isap-K-128a 16-bit TSMC65nm SDC + CE 2.3 13.4
Isap-K-128a 16-bit TSMC65nm CG + CI 2.3 13.0
bSPC = Synopsys Design Compiler vP-2019.03, CE = Cadence Encounter v14.13,
CG = Cadence Genus v18.10, CI = Cadence Innovus v18.10.

MAC-only (0+long enc) operation. Quite noticeably, MAC-only operation results in a
faster initialization/finalization and higher throughput. This is mainly due to the fact
that IsapEnc can be entirely skipped if the plain/ciphertext length is zero. In general,
the throughput of Isap-K-128a is higher than in Isap-A-128a due to the larger rate.

Comparison. Isap is an efficient authenticated encryption scheme with low hardware
footprint that prevents implementation attacks like DPA by design. Isap can be im-
plemented securely using a standard implementation of the Ascon-p or Keccak-p[400]
permutation and adds only a small hardware overhead, while a first-order secure thresh-
old implementation to achieve DPA protection on the primitive level would increase
the area by a factor of 3 to 4 [BDN+13]. For other cryptographic primitives such as the
AES, the area overhead for first-order secure masked implementations is similar or even
worse [DRB+16; GMK17]. When higher-order DPA robustness is required, the hardware
overhead of masking rises even more [GMK17]. Consequently, the implementation cost
of standard authenticated encryption modes for AES such as Aes-Ccm and Aes-Gcm
secured via masking rises accordingly.

40

Table 6.3.: Performance of Isap-A-128a and Isap-K-128a hardware reference implementa-
tions from [Teab].

Instance Interface Scenario Latency Throughput
[cycles] [cycles/byte]

Isap-A-128a 32-bit AEAD (long+0 enc.) 368 2.75
Isap-A-128a 32-bit MAC (0+long enc.) 215 1.75

Isap-K-128a 16-bit AEAD (long+0 enc.) 378 2.33
Isap-K-128a 16-bit MAC (0+long enc.) 233 1.38

6.4. FPGA Implementations

In the following, we compare the performance and area of Isap to AesGcm on 7-series
Xilinx FPGA platforms. As can be seen in Table 6.4, area and performance of unprotected
AesGcm implementations [Hel] are roughly on par with Isap, which does offer protec-
tion/hardening against side-channel/fault attacks out of the box. However, even if we
only consider the overhead of 1st-order Threshold Implementations (TI) for AesGcm,
the area increases significantly while the throughput drops. Note that the fast version of
AesGcm TI does reach very high throughput numbers, however only if combined with
an RNG (cost not included in the area) that can deliver randomness at a rate of up to
175.24 Gbit/s, which is impractical [MMNV18].

Table 6.4.: FPGA metrics of Isap compared to the NIST standardized AesGcm mode for
the scenario AEAD (long+0 enc.) The columns SCA and FI indicate if the
designs offer some protection against side-channel/fault-injection attacks.

Design FPGA Slices SCA FI Throughput
[cycles/byte]

AesGcm [MHN+20] Artix-7 1 008 7 7 0.68
AesGcm [MHN+20] Artix-7 810 7 7 2.06
AesGcm TI [MMNV18]? Virtex-7 3 433 3 7 11.82

Isap-A-128a [MHN+20] Artix-7 618 3 3 2.75
Isap-K-128a [MHN+20] Artix-7 655 3 3 2.33
bReported area does not include the RNG.

6.5. Hardware Accelerators

We discuss a hardware accelerator design for Ascon-p, presented at CARDIS 2020 [SP20],
that utilizes tight integration into a processors register file to significantly speed up

41

various Ascon/Isap computations at a comparably low cost.

The key idea behind this accelerator is to couple the combinatorial logic for one round
of Ascon-p to certain words in the processors register file that can then be updated
within one clock cycle via a special assembly instruction. This way, the cryptographic
mode remains flexible in software while the computationally expensive permutation
profits from hardware acceleration. When integrated into the 32-bit RI5CY core [Gro],
this accelerator can be realized with about 4.7 kGE, or about half the area of dedicated
co-processor designs (see Table 6.5). At the same time, authenticated encryption and
hashing see speed-up factors of about 50 to 80, when compared to corresponding pure
software implementations (see Table 6.6).

Table 6.5.: Comparison between the RI5CY core with/without 1-round Ascon-p acceler-
ator and dedicated co-processor designs of Ascon and Isap.

Design Area [kGE]

RI5CY base design 45.6
Ascon-p accelerator 4.7

Ascon co-processor [GWDE15] 7.1
Ascon co-processor [DEMS] 9.4
Isap co-processor [Table 6.2] ≥ 11.4

Table 6.6.: Runtime and code size comparison of ASM implementations of Ascon and
Isap with 1-round Ascon-p hardware acceleration (x+0 enc.)

Scheme
Cycles/Byte

Code Size (B)
64 B 1536 B long

Ascon128 4.2 2.2 2.1 888
AsconHash 4.6 2.6 2.5 484
Isap-A-128a 29.1 5.2 4.2 1 844
Isap-A-128 73.6 7.7 5.0 2 552

42

A. Specification of Ascon-p

The following description of the Ascon-p permutation is adapted from the Ascon speci-
fication [DEMS16; DEMS21].

All members of the Ascon cipher suite operate on a state of 320 bits which they update
with permutations pa (a rounds) and pb (b rounds). The 320-bit state S is divided into
an outer part Sr of r bits and an inner part Sc of c bits, where the rate r and capacity
c = 320− r depend on the Ascon variant.

For the description and application of the round transformations, the 320-bit state S is
split into five 64-bit registers words xi:

S = Sr ‖ Sc = x0 ‖ x1 ‖ x2 ‖ x3 ‖ x4 .

Whenever S needs to be interpreted as a byte-array (or bitstring) for the sponge interface,
this starts with the most significant byte (or bit) of x0 as byte 0 and ends with the least
significant byte (or bit) of x4 as byte 39.

Table A.1 lists the notation and symbols used in the following description.

Table A.1.: Notation used for Ascon’s permutation.
pC, pS, pL constant-addition, substitution and linear layer of p = pL ◦ pS ◦ pC
x0, . . . , x4 The five 64-bit words of the state S
x0,i, . . . , x4,i Bit i, 0 ≤ i < 64, of words x0, . . . , x4, with x·,0 the rightmost bit (LSB)
x⊕ y Bitwise xor of 64-bit words or bits x and y
x� y Bitwise and of 64-bit words or bits x and y (denoted x y in the ANF)
	x Bitwise not of 64-bit word or bit x
x ≫ i Right-rotation (circular shift) by i bits of 64-bit word x

Isap uses Ascon’s two 320-bit permutations pa and pb, as well as an additional variant
reduced to one round, p1. The permutations iteratively apply an SPN-based round
transformation p that in turn consists of three steps pC, pS, pL and differ only in the
number of rounds:

p = pL ◦ pS ◦ pC .

For the description and application of the round transformations, the 320-bit state S is
split into five 64-bit registers words xi, S = x0 ‖ x1 ‖ x2 ‖ x3 ‖ x4.

43

Addition of Constants

The constant addition step pC adds a round constant cr to register word x2 of the state S
in round i. Both indices r and i start from zero and we use r = i for pa and r = i + a− b
for pb (see Table A.2):

x2 ← x2 ⊕ cr .

Table A.2.: The round constants cr used in each round i of pa and pb.
p12 p8 p6 Constant cr p12 p8 p6 Constant cr

0 00000000000000f0 6 2 0 0000000000000096
1 00000000000000e1 7 3 1 0000000000000087
2 00000000000000d2 8 4 2 0000000000000078
3 00000000000000c3 9 5 3 0000000000000069
4 0 00000000000000b4 10 6 4 000000000000005a
5 1 00000000000000a5 11 7 5 000000000000004b

Substitution Layer

The substitution layer pS updates the state S with 64 parallel applications of the 5-bit
S-box S(x) defined in Figure A.1a to each bit-slice of the five registers x0 . . . x4. It is
typically implemented in bitsliced form with operations performed on the 64-bit words.

Linear Diffusion Layer

The linear diffusion layer pL provides diffusion within each 64-bit register word xi. It
applies a linear function Σi(xi) defined in Figure A.1b to each word xi:

xi ← Σi(xi), 0 ≤ i ≤ 4.

x0

x1

x2

x3

x4

x0

x1

x2

x3

x4

(a) Ascon’s 5-bit S-box S(x)

x0 ← Σ0(x0) = x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28)

x1 ← Σ1(x1) = x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 39)

x2 ← Σ2(x2) = x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 6)

x3 ← Σ3(x3) = x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17)

x4 ← Σ4(x4) = x4 ⊕ (x4 ≫ 7)⊕ (x4 ≫ 41)

(b) Ascon’s linear layer with 64-bit functions Σi(xi)

Figure A.1.: Ascon’s substitution layer and linear diffusion layer.

44

B. Specification of Keccak-p[400]

Keccak-p[400] is specified in [BDPV11e; Nat15]. In the following, we briefly recall the
permutation’s state geometry and the round function’s five steps:

R = ι ◦ χ ◦ π ◦ ρ ◦ θ .

The 400-bit state of Keccak-p[400] is labeled as a three-dimensional bit array a[x][y][z]
with 0 ≤ x < 5, 0 ≤ y < 5, and 0 ≤ z < 16. This state is mapped to the bitstring S
as S[16(5y + x) + z] = a[x][y][z], where the outer part for rate r corresponds to the bit
positions S[0, . . . , r− 1].

The steps are defined by

θ : a[x][y][z]← a[x][y][z]⊕
4⊕

y′=0

a[x− 1][y′][z]⊕
4⊕

y′=0

a[x + 1][y′][z− 1] ,

ρ : a[x][y][z]← a[x][y][z− (t + 1)(t + 2)/2], with t < 24 s.t.
(

0 1
2 3

)t (1
0

)
=

(
x
y

)
or t = −1 if x = y = 0,

π : a[x][y]← a[x + 3y][x],
χ : a[x]← a[x]⊕ (a[x + 1]⊕ 1) · a[x + 2] ,
ι : a← a⊕ RC[ir] ,

where multiplications are over F2 (bitwise and) and all index computations are modulo
5 (for x, y) or modulo 16 (for z). The round constants are RC[ir][x][y] = 0 except for
RC[ir][0][0][z] = rc[j + 7ir] for all z = 2j − 1, 0 ≤ j ≤ 4, where rc[i] is specified by an
LFSR with the primitive monomial p(X) = X8 + X6 + X5 + X4 + 1 and i gives the cycles
starting from an initialized binary value of ‘1000000’. If Keccak-p[400] is instantiated
with nr rounds, ir ranges from 20− nr to 19. For a more detailed description, we refer to
[BDPV11e; Nat15].

45

Acknowledgments

The authors would like to thank Mario Werner for many helpful discussions and provid-
ing his hardware description of Keccak.

The research leading to these results has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No 644052
(HECTOR) and agreement No 681402 (SOPHIA). Furthermore, this work has been sup-
ported in part by the Austrian Research Promotion Agency (FFG) under grant number
845589 (SCALAS) and grant ESPRESSO as well as by the Austrian Science Fund (FWF):
P26494-N15 and J 4277-N38. Bart Mennink is supported by a postdoctoral fellowship
from the Netherlands Organisation for Scientific Research (NWO) under Veni grant
016.Veni.173.017.

46

Bibliography

[ADMV15] Elena Andreeva, Joan Daemen, Bart Mennink, and Gilles Van Assche. “Se-
curity of Keyed Sponge Constructions Using a Modular Proof Approach”.
In: FSE 2015. Ed. by Gregor Leander. Vol. 9054. LNCS. Springer, 2015,
pp. 364–384. doi: 10.1007/978-3-662-48116-5_18 (p. 22).

[AM09] Jean-Philippe Aumasson and Willi Meier. “Zero-sum distinguishers for
reduced Keccak- f and for the core functions of Luffa and Hamsi”. 2009.
url: https://131002.net/data/papers/AM09.pdf (p. 26).

[AZ21] Mark D. Aagaard and Nusa Zidaric. “ASIC Benchmarking of Round 2 Can-
didates in the NIST Lightweight Cryptography Standardization Process”.
In: IACR Cryptol. ePrint Arch. 2021 (2021), p. 49. url: https://eprint.
iacr.org/2021/049 (pp. 39, 40).

[BC10] Christina Boura andAnneCanteaut. “A zero-sumproperty for theKeccak- f
permutation with 18 rounds”. In: ISIT 2010. IEEE, 2010, pp. 2488–2492. doi:
10.1109/ISIT.2010.5513442 (p. 26).

[BDN+13] Begül Bilgin, Joan Daemen, Ventzislav Nikov, Svetla Nikova, Vincent Ri-
jmen, and Gilles Van Assche. “Efficient and First-Order DPA Resistant
Implementations of Keccak”. In: CARDIS 2013. Ed. by Aurélien Francillon
and Pankaj Rohatgi. Vol. 8419. LNCS. Springer, 2013, pp. 187–199. doi:
10.1007/978-3-319-08302-5_13 (p. 40).

[BDP+16a] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and
Ronny Van Keer. “Ketje v2”. Submission to Round 3 of the CAESAR compe-
tition. 2016. url: https://competitions.cr.yp.to/round3/ketjev2.pdf
(pp. 3, 19, 25, 27).

[BDP+16b] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and
Ronny Van Keer. “Keyak v2.2”. Submission to Round 3 of the CAESAR
competition. 2016. url: https : / / competitions . cr . yp . to / round3 /
keyakv22.pdf (pp. 19, 25, 27).

[BDPV07] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
“Sponge functions”. Ecrypt Hash Workshop 2007. 2007. url: http : / /
sponge.noekeon.org/SpongeFunctions.pdf (p. 22).

[BDPV08] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. “On
the Indifferentiability of the Sponge Construction”. In: EUROCRYPT 2008.
Ed. by Nigel P. Smart. Vol. 4965. LNCS. Springer, 2008, pp. 181–197. doi:
10.1007/978-3-540-78967-3_11 (p. 22).

47

https://doi.org/10.1007/978-3-662-48116-5_18
https://131002.net/data/papers/AM09.pdf
https://eprint.iacr.org/2021/049
https://eprint.iacr.org/2021/049
https://doi.org/10.1109/ISIT.2010.5513442
https://doi.org/10.1007/978-3-319-08302-5_13
https://competitions.cr.yp.to/round3/ketjev2.pdf
https://competitions.cr.yp.to/round3/keyakv22.pdf
https://competitions.cr.yp.to/round3/keyakv22.pdf
http://sponge.noekeon.org/SpongeFunctions.pdf
http://sponge.noekeon.org/SpongeFunctions.pdf
https://doi.org/10.1007/978-3-540-78967-3_11

[BDPV09] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche.
“Keccak sponge function family main document (Version 1.2)”. 2009. url:
https://keccak.noekeon.org/Keccak-main-1.2.pdf (p. 20).

[BDPV11a] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche.
“Cryptographic sponge functions (Version 0.1)”. 2011. url: https : / /
sponge.noekeon.org/ (pp. 15, 17).

[BDPV11b] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. “The
Keccak SHA-3 submission (Version 3.0)”. 2011. url: https://keccak.
noekeon.org/Keccak-submission-3.pdf (pp. 20, 25).

[BDPV11c] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
“Duplexing the Sponge: Single-Pass Authenticated Encryption and Other
Applications”. In: SAC 2011. Ed. by Ali Miri and Serge Vaudenay. Vol. 7118.
LNCS. Springer, 2011, pp. 320–337. doi: 10.1007/978-3-642-28496-0_19
(p. 22).

[BDPV11d] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. “On
the security of the keyed sponge construction”. In: SKEW 2011. 2011. url:
http://sponge.noekeon.org/SpongeKeyed.pdf (p. 22).

[BDPV11e] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. “The
Keccak reference, Version 3.0”. SHA-3 competition (round 3). 2011. url:
https://keccak.team/files/Keccak-reference-3.0.pdf (pp. 3, 8, 45).

[BDPV12] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
“Permutation-based Encryption, Authentication and Authenticated En-
cryption”. DIACWorkshop. 2012. url: https://www.hyperelliptic.org/
djb/diac/record.pdf (pp. 15, 18, 19).

[BDPV14] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
“Keccak Crunchy Crypto Collision and Pre-image Contest”. 2014. url:
https://keccak.noekeon.org/crunchy_contest.html (p. 27).

[BGP+20] Francesco Berti, Chun Guo, Olivier Pereira, Thomas Peters, and François-
Xavier Standaert. “TEDT, a Leakage-Resilient AEADmode for High (Physi-
cal) Security Applications”. In: IACR Transactions on Cryptographic Hard-
ware and Embedded Systems 2020.1 (2020), pp. 6–42. doi: 10.13154/tches.
v2020.i1.256-320 (pp. 11, 38).

[BL] Daniel J. Bernstein and Tanja Lange, eds. “eBACS: ECRYPT Benchmarking
of Cryptographic Systems”. url: https://bench.cr.yp.to/results-
nistlwc-aead.html (visited on 05/05/2021) (pp. 38, 39).

[BMOS17] Guy Barwell, Daniel P. Martin, Elisabeth Oswald, and Martijn Stam. “Au-
thenticated Encryption in the Face of Protocol and Side Channel Leak-
age”. In: ASIACRYPT 2017. Ed. by Tsuyoshi Takagi and Thomas Peyrin.
Vol. 10624. LNCS. Springer, 2017, pp. 693–723. doi: 10.1007/978-3-319-
70694-8_24 (p. 11).

48

https://keccak.noekeon.org/Keccak-main-1.2.pdf
https://sponge.noekeon.org/
https://sponge.noekeon.org/
https://keccak.noekeon.org/Keccak-submission-3.pdf
https://keccak.noekeon.org/Keccak-submission-3.pdf
https://doi.org/10.1007/978-3-642-28496-0_19
http://sponge.noekeon.org/SpongeKeyed.pdf
https://keccak.team/files/Keccak-reference-3.0.pdf
https://www.hyperelliptic.org/djb/diac/record.pdf
https://www.hyperelliptic.org/djb/diac/record.pdf
https://keccak.noekeon.org/crunchy_contest.html
https://doi.org/10.13154/tches.v2020.i1.256-320
https://doi.org/10.13154/tches.v2020.i1.256-320
https://bench.cr.yp.to/results-nistlwc-aead.html
https://bench.cr.yp.to/results-nistlwc-aead.html
https://doi.org/10.1007/978-3-319-70694-8_24
https://doi.org/10.1007/978-3-319-70694-8_24

[BPPS17] Francesco Berti, Olivier Pereira, Thomas Peters, and François-Xavier Stan-
daert. “On Leakage-Resilient Authenticated Encryption with Decryption
Leakages”. In: IACR Transactions of Symmetric Cryptology 2017.3 (2017),
pp. 271–293. doi: 10.13154/tosc.v2017.i3.271-293 (p. 11).

[BS97] Eli Biham and Adi Shamir. “Differential Fault Analysis of Secret Key Cryp-
tosystems”. In: CRYPTO ’97. Ed. by Burton S. Kaliski Jr. Vol. 1294. LNCS.
Springer, 1997, pp. 513–525. doi: 10.1007/BFb0052259 (pp. 20, 36).

[CAE14] CAESAR committee. “CAESAR: Competition for Authenticated Encryp-
tion: Security, Applicability, andRobustness”. 2014. url: https://competitions.
cr.yp.to/ (pp. 18, 21, 25, 31, 32).

[CDH+12] DonghoonChang,MorrisDworkin, SeokhieHong, JohnKelsey, andMridul
Nandi. “A keyed sponge construction with pseudorandomness in the stan-
dard model”. The Third SHA-3 Candidate Conference (March 2012). 2012
(p. 22).

[DDS13] Itai Dinur, Orr Dunkelman, and Adi Shamir. “Collision Attacks on Up to 5
Rounds of SHA-3 Using Generalized Internal Differentials”. In: FSE 2013.
Ed. by Shiho Moriai. Vol. 8424. LNCS. Springer, 2013, pp. 219–240. doi:
10.1007/978-3-662-43933-3_12 (p. 27).

[DEG+18] Christoph Dobraunig, Maria Eichlseder, Hannes Gross, Stefan Mangard,
Florian Mendel, and Robert Primas. “Statistical Ineffective Fault Attacks on
Masked AES with Fault Countermeasures”. In: ASIACRYPT 2018. Ed. by
Thomas Peyrin and Steven D. Galbraith. Vol. 11273. LNCS. Springer, 2018,
pp. 315–342. doi: 10.1007/978-3-030-03329-3_11 (pp. 20, 36, 37).

[DEK+16] ChristophDobraunig, Maria Eichlseder, Thomas Korak, Victor Lomné, and
Florian Mendel. “Statistical Fault Attacks on Nonce-Based Authenticated
Encryption Schemes”. In: ASIACRYPT 2016. Ed. by Jung Hee Cheon and
Tsuyoshi Takagi. Vol. 10031. LNCS. 2016, pp. 369–395. doi: 10.1007/978-
3-662-53887-6_14 (pp. 20, 36, 37).

[DEK+18] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan Mangard,
Florian Mendel, and Robert Primas. “SIFA: Exploiting Ineffective Fault
Inductions on Symmetric Cryptography”. In: IACR Transactions on Cryp-
tographic Hardware and Embedded Systems 2018.3 (2018), pp. 547–572.
doi: 10.13154/tches.v2018.i3.547-572 (pp. 20, 36, 37).

[DEM+17] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel,
and Thomas Unterluggauer. “ISAP – Towards Side-Channel Secure Au-
thenticated Encryption”. In: IACR Transactions on Symmetric Cryptology
2017.1 (2017), pp. 80–105. doi: 10.13154/tosc.v2017.i1.80-105 (pp. 3,
11, 20, 21, 36).

49

https://doi.org/10.13154/tosc.v2017.i3.271-293
https://doi.org/10.1007/BFb0052259
https://competitions.cr.yp.to/
https://competitions.cr.yp.to/
https://doi.org/10.1007/978-3-662-43933-3_12
https://doi.org/10.1007/978-3-030-03329-3_11
https://doi.org/10.1007/978-3-662-53887-6_14
https://doi.org/10.1007/978-3-662-53887-6_14
https://doi.org/10.13154/tches.v2018.i3.547-572
https://doi.org/10.13154/tosc.v2017.i1.80-105

[DEM+20] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel,
Bart Mennink, Robert Primas, and Thomas Unterluggauer. “Isap v2.0”. In:
IACR Transactions of Symmetric Cryptology 2020.S1 (2020), pp. 390–416.
doi: 10.13154/tosc.v2020.iS1.390-416 (p. 23).

[DEMS] ChristophDobraunig,Maria Eichlseder, FlorianMendel, andMartin Schläf-
fer, eds. “Ascon Hardware Implementations”. url: https://ascon.iaik.
tugraz.at/implementations.html (visited on 04/26/2021) (p. 42).

[DEMS15] ChristophDobraunig,Maria Eichlseder, FlorianMendel, andMartin Schläf-
fer. “Cryptanalysis of Ascon”. In: CT-RSA 2015. Ed. by Kaisa Nyberg.
Vol. 9048. LNCS. Springer, 2015, pp. 371–387. doi: 10.1007/978-3-319-
16715-2_20 (pp. 31, 32).

[DEMS16] ChristophDobraunig,Maria Eichlseder, FlorianMendel, andMartin Schläf-
fer. “Ascon v1.2”. Submission to CAESAR: Competition for Authenticated
Encryption. Security, Applicability, and Robustness. 2016. url: https://
ascon.iaik.tugraz.at/ (pp. 3, 8, 18–21, 31, 43).

[DEMS21] ChristophDobraunig,Maria Eichlseder, FlorianMendel, andMartin Schläf-
fer. “Ascon v1.2”. Submission to NIST. 2019 – 2021. url: https://ascon.
iaik.tugraz.at (pp. 8, 9, 16, 20, 31, 32, 43).

[DM19a] ChristophDobraunig and BartMennink. “Leakage Resilience of theDuplex
Construction”. In: ASIACRYPT 2019. Ed. by Steven D. Galbraith and Shiho
Moriai. Vol. 11923. LNCS. Springer, 2019, pp. 225–255. doi: 10.1007/978-
3-030-34618-8_8 (p. 23).

[DM19b] Christoph Dobraunig and Bart Mennink. “Leakage Resilience of the ISAP
Mode: a Vulgarized Summary”. NIST Lightweight Cryptography Work-
shop 2019. 2019 (p. 23).

[DM19c] Christoph Dobraunig and Bart Mennink. “Security of the Suffix Keyed
Sponge”. In: IACR Transactions of Symmetric Cryptology 2019.4 (2019),
pp. 223–248. doi: 10.13154/tosc.v2019.i4.223-248 (p. 23).

[DM20] Christoph Dobraunig and Bart Mennink. “Tightness of the Suffix Keyed
Sponge Bound”. In: IACR Transactions of Symmetric Cryptology 2020.4
(2020), pp. 195–212. doi: 10.46586/tosc.v2020.i4.195-212 (p. 23).

[DM21] Christoph Dobraunig and Bart Mennink. “Leakage Resilient Value Com-
parison With Application to Message Authentication”. In: EUROCRYPT
2021. LNCS. to appear. Springer, 2021. url: https://eprint.iacr.org/
2021/402 (p. 38).

[DMMP18] Christoph Dobraunig, StefanMangard, FlorianMendel, and Robert Primas.
“Fault Attacks on Nonce-Based Authenticated Encryption: Application to
Keyak and Ketje”. In: SAC 2018. Ed. by Carlos Cid and Michael J. Jacobson
Jr. Vol. 11349. LNCS. Springer, 2018, pp. 257–277. doi: 10.1007/978-3-
030-10970-7_12 (pp. 20, 36, 37).

50

https://doi.org/10.13154/tosc.v2020.iS1.390-416
https://ascon.iaik.tugraz.at/implementations.html
https://ascon.iaik.tugraz.at/implementations.html
https://doi.org/10.1007/978-3-319-16715-2_20
https://doi.org/10.1007/978-3-319-16715-2_20
https://ascon.iaik.tugraz.at/
https://ascon.iaik.tugraz.at/
https://ascon.iaik.tugraz.at
https://ascon.iaik.tugraz.at
https://doi.org/10.1007/978-3-030-34618-8_8
https://doi.org/10.1007/978-3-030-34618-8_8
https://doi.org/10.13154/tosc.v2019.i4.223-248
https://doi.org/10.46586/tosc.v2020.i4.195-212
https://eprint.iacr.org/2021/402
https://eprint.iacr.org/2021/402
https://doi.org/10.1007/978-3-030-10970-7_12
https://doi.org/10.1007/978-3-030-10970-7_12

[DMP+15] Itai Dinur, Pawel Morawiecki, Josef Pieprzyk, Marian Srebrny, and Michal
Straus. “Cube Attacks and Cube-Attack-Like Cryptanalysis on the Round-
Reduced Keccak Sponge Function”. In: EUROCRYPT 2015. Ed. by Elisabeth
Oswald and Marc Fischlin. Vol. 9056. LNCS. Springer, 2015, pp. 733–761.
doi: 10.1007/978-3-662-46800-5_28 (p. 26).

[DMV17] Joan Daemen, Bart Mennink, and Gilles Van Assche. “Full-State Keyed
Duplex with Built-In Multi-user Support”. In: ASIACRYPT 2017. Ed. by
Tsuyoshi Takagi and Thomas Peyrin. Vol. 10625. LNCS. Springer, 2017,
pp. 606–637. doi: 10.1007/978-3-319-70697-9_21 (pp. 15, 22).

[DRB+16] ThomasDeCnudde, Oscar Reparaz, Begül Bilgin, SvetlaNikova, Ventzislav
Nikov, andVincent Rijmen. “MaskingAESwith d+ 1 Shares inHardware”.
In: CHES 2016. Ed. by Benedikt Gierlichs and Axel Y. Poschmann. Vol. 9813.
LNCS. Springer, 2016, pp. 194–212. doi: 10.1007/978-3-662-53140-2_10
(p. 40).

[FJLT13] Thomas Fuhr, Éliane Jaulmes, Victor Lomné, and Adrian Thillard. “Fault
Attacks on AES with Faulty Ciphertexts Only”. In: FDTC 2013. Ed. by
Wieland Fischer and Jörn-Marc Schmidt. IEEE Computer Society, 2013,
pp. 108–118. doi: 10.1109/FDTC.2013.18 (pp. 20, 36, 37).

[FPS12] Sebastian Faust, Krzysztof Pietrzak, and Joachim Schipper. “Practical Leak-
age-Resilient Symmetric Cryptography”. In: CHES 2012. Ed. by Emmanuel
Prouff and Patrick Schaumont. Vol. 7428. LNCS. Springer, 2012, pp. 213–
232. doi: 10.1007/978-3-642-33027-8_13 (p. 16).

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. “How to construct
random functions”. In: Journal of the ACM 33.4 (1986), pp. 792–807. doi:
10.1145/6490.6503 (p. 15).

[GLS16] Jian Guo, Meicheng Liu, and Ling Song. “Linear Structures: Applications
to Cryptanalysis of Round-Reduced Keccak”. In: ASIACRYPT 2016. Ed. by
Jung Hee Cheon and Tsuyoshi Takagi. Vol. 10031. LNCS. 2016, pp. 249–274.
doi: 10.1007/978-3-662-53887-6_9 (pp. 26, 27).

[GMK17] Hannes Gross, Stefan Mangard, and Thomas Korak. “An Efficient Side-
Channel Protected AES Implementation with Arbitrary Protection Order”.
In: CT-RSA 2017. Ed. by Helena Handschuh. Vol. 10159. LNCS. Springer,
2017, pp. 95–112. doi: 10.1007/978-3-319-52153-4_6 (p. 40).

[GPPS20] Chun Guo, Olivier Pereira, Thomas Peters, and François-Xavier Standaert.
“Towards Low-Energy Leakage-Resistant Authenticated Encryption from
the Duplex Sponge Construction”. In: IACR Transactions of Symmetric
Cryptology 2020.1 (2020), pp. 6–42. doi: 10.13154/tosc.v2020.i1.6-42
(p. 23).

51

https://doi.org/10.1007/978-3-662-46800-5_28
https://doi.org/10.1007/978-3-319-70697-9_21
https://doi.org/10.1007/978-3-662-53140-2_10
https://doi.org/10.1109/FDTC.2013.18
https://doi.org/10.1007/978-3-642-33027-8_13
https://doi.org/10.1145/6490.6503
https://doi.org/10.1007/978-3-662-53887-6_9
https://doi.org/10.1007/978-3-319-52153-4_6
https://doi.org/10.13154/tosc.v2020.i1.6-42

[GPT15] Peter Gaži, Krzysztof Pietrzak, and Stefano Tessaro. “The Exact PRF Secu-
rity of Truncation: Tight Bounds for Keyed Sponges and Truncated CBC”.
In: CRYPTO2015. Ed. byRosarioGennaro andMatthewRobshaw.Vol. 9215.
LNCS. Springer, 2015, pp. 368–387. doi: 10.1007/978-3-662-47989-6_18
(pp. 18, 22).

[Gro] OpenHW Group, ed. “OpenHW Group CORE-V CV32E40P RISC-V IP”.
url: https://github.com/openhwgroup/cv32e40p (visited on 04/26/2021)
(p. 42).

[GWDE15] Hannes Gross, Erich Wenger, Christoph Dobraunig, and Christoph Ehren-
höfer. “Suit up! Made-to-Measure Hardware Implementations of Ascon”.
Cryptology ePrint Archive, Report 2015/034. 2015. url: https://eprint.
iacr.org/2015/034 (p. 42).

[Hel] Helion Technology Limited. “AES-GCM cores”. (accessed: 09/2020). url:
https://www.heliontech.com/aes_gcm.htm (p. 41).

[HWX+17] SenyangHuang, XiaoyunWang, GuangwuXu,MeiqinWang, and Jingyuan
Zhao. “Conditional Cube Attack on Reduced-Round Keccak Sponge Func-
tion”. In: EUROCRYPT 2017. Ed. by Jean-Sébastien Coron and Jesper Buus
Nielsen. Vol. 10211. LNCS. 2017, pp. 259–288. doi: 10.1007/978-3-319-
56614-6_9 (p. 26).

[JLM14] Philipp Jovanovic, Atul Luykx, and Bart Mennink. “Beyond 2c/2 Security
in Sponge-Based Authenticated Encryption Modes”. In: ASIACRYPT 2014.
Ed. by Palash Sarkar and Tetsu Iwata. Vol. 8873. LNCS. Springer, 2014,
pp. 85–104. doi: 10.1007/978-3-662-45611-8_5 (p. 22).

[JN15] Jérémy Jean and Ivica Nikolic. “Internal Differential Boomerangs: Practical
Analysis of the Round-Reduced Keccak-f Permutation”. In: FSE 2015. Ed.
by Gregor Leander. Vol. 9054. LNCS. Springer, 2015, pp. 537–556. doi:
10.1007/978-3-662-48116-5_26 (p. 25).

[Kay07] Richard F. Kayser. “Announcing Request for Candidate Algorithm Nom-
inations for a New Cryptographic Hash Algorithm (SHA-3) Family”. In:
Federal Register Notice 72.212 (2007), pp. 62212–62220. url: http://csrc.
nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf (p. 27).

[LDW17] Zheng Li, Xiaoyang Dong, and Xiaoyun Wang. “Conditional Cube Attack
on Round-Reduced ASCON”. In: IACR Transactions on Symmetric Cryp-
tology 2017.1 (2017), pp. 175–202. doi: 10.13154/tosc.v2017.i1.175-202
(p. 32).

[MHN+20] Kamyar Mohajerani, Richard Haeussler, Rishub Nagpal, Farnoud Farah-
mand, Abubakr Abdulgadir, Jens-Peter Kaps, and Kris Gaj. “FPGA Bench-
marking of Round 2 Candidates in the NIST Lightweight Cryptography
Standardization Process: Methodology, Metrics, Tools, and Results”. In:
IACR Cryptol. ePrint Arch. 2020 (2020), p. 1207. url: https://eprint.
iacr.org/2020/1207 (p. 41).

52

https://doi.org/10.1007/978-3-662-47989-6_18
https://github.com/openhwgroup/cv32e40p
https://eprint.iacr.org/2015/034
https://eprint.iacr.org/2015/034
https://www.heliontech.com/aes_gcm.htm
https://doi.org/10.1007/978-3-319-56614-6_9
https://doi.org/10.1007/978-3-319-56614-6_9
https://doi.org/10.1007/978-3-662-45611-8_5
https://doi.org/10.1007/978-3-662-48116-5_26
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
https://doi.org/10.13154/tosc.v2017.i1.175-202
https://eprint.iacr.org/2020/1207
https://eprint.iacr.org/2020/1207

[MMNV18] Nele Mentens, Vojtech Miskovsky, Martin Novotny, and Jo Vliegen. “High-
speed Side-channel-protected Encryption and Authentication in Hard-
ware”. Cryptology ePrint Archive, Report 2018/1088. 2018. url: https:
//eprint.iacr.org/2018/1088 (p. 41).

[MPR+11] Marcel Medwed, Christophe Petit, Francesco Regazzoni, Mathieu Renauld,
and François-Xavier Standaert. “Fresh Re-keying II: Securing Multiple
Parties against Side-Channel and Fault Attacks”. In: CARDIS 2011. Ed.
by Emmanuel Prouff. Vol. 7079. LNCS. Springer, 2011, pp. 115–132. doi:
10.1007/978-3-642-27257-8_8 (pp. 12, 16).

[MPS13] Pawel Morawiecki, Josef Pieprzyk, and Marian Srebrny. “Rotational Crypt-
analysis of Round-Reduced Keccak”. In: FSE 2013. Ed. by Shiho Moriai.
Vol. 8424. LNCS. Springer, 2013, pp. 241–262. doi: 10.1007/978-3-662-
43933-3_13 (p. 27).

[MRV15] Bart Mennink, Reza Reyhanitabar, and Damian Vizár. “Security of Full-
State Keyed Sponge and Duplex: Applications to Authenticated Encryp-
tion”. In: ASIACRYPT 2015. Ed. by Tetsu Iwata and Jung Hee Cheon.
Vol. 9453. LNCS. Springer, 2015, pp. 465–489. doi: 10.1007/978-3-662-
48800-3_19 (pp. 15, 18, 22).

[MSGR10] Marcel Medwed, François-Xavier Standaert, Johann Großschädl, and Fran-
cesco Regazzoni. “Fresh Re-keying: Security against Side-Channel and
Fault Attacks for Low-Cost Devices”. In: AFRICACRYPT 2010. Ed. by
Daniel J. Bernstein and Tanja Lange. Vol. 6055. LNCS. Springer, 2010,
pp. 279–296. doi: 10.1007/978-3-642-12678-9_17 (pp. 12, 16, 17, 39).

[MSJ12] Marcel Medwed, François-Xavier Standaert, and Antoine Joux. “Towards
Super-Exponential Side-Channel Security with Efficient Leakage-Resilient
PRFs”. In: CHES 2012. Ed. by Emmanuel Prouff and Patrick Schaumont.
Vol. 7428. LNCS. Springer, 2012, pp. 193–212. doi: 10.1007/978-3-642-
33027-8_12 (p. 37).

[MSNF16] Marcel Medwed, François-Xavier Standaert, Ventzislav Nikov, and Martin
Feldhofer. “Unknown-Input Attacks in the Parallel Setting: Improving
the Security of the CHES 2012 Leakage-Resilient PRF”. In: ASIACRYPT
2016. Ed. by Jung Hee Cheon and Tsuyoshi Takagi. Vol. 10031. LNCS. 2016,
pp. 602–623. doi: 10.1007/978-3-662-53887-6_22 (p. 37).

[Nat12] National Institute of Standards and Technology. “SHA-3 Competition”.
2007–2012. url: https://csrc.nist.gov/groups/ST/hash/sha-3/index.
html (p. 25).

[Nat15] National Institute of Standards and Technology. “FIPS PUB 202: SHA-3
Standard: Permutation-Based Hash and Extendable-Output Functions”.
Federal Information Processing Standards Publication 202, U.S. Depart-
ment of Commerce. Aug. 2015. doi: 10.6028/NIST.FIPS.202 (pp. 3, 8, 9,
18, 21, 45).

53

https://eprint.iacr.org/2018/1088
https://eprint.iacr.org/2018/1088
https://doi.org/10.1007/978-3-642-27257-8_8
https://doi.org/10.1007/978-3-662-43933-3_13
https://doi.org/10.1007/978-3-662-43933-3_13
https://doi.org/10.1007/978-3-662-48800-3_19
https://doi.org/10.1007/978-3-662-48800-3_19
https://doi.org/10.1007/978-3-642-12678-9_17
https://doi.org/10.1007/978-3-642-33027-8_12
https://doi.org/10.1007/978-3-642-33027-8_12
https://doi.org/10.1007/978-3-662-53887-6_22
https://csrc.nist.gov/groups/ST/hash/sha-3/index.html
https://csrc.nist.gov/groups/ST/hash/sha-3/index.html
https://doi.org/10.6028/NIST.FIPS.202

[NY16] Yusuke Naito and Kan Yasuda. “New Bounds for Keyed Sponges with Ex-
tendable Output: Independence Between Capacity and Message Length”.
In: FSE 2016. Ed. by Thomas Peyrin. Vol. 9783. LNCS. Springer, 2016, pp. 3–
22. doi: 10.1007/978-3-662-52993-5_1 (p. 22).

[PSV15] Olivier Pereira, François-Xavier Standaert, and Srinivas Vivek. “Leakage-
Resilient Authentication and Encryption from Symmetric Cryptographic
Primitives”. In: ACM SIGSAC 2015. Ed. by Indrajit Ray, Ninghui Li, and
Christopher Kruegel. ACM, 2015, pp. 96–108. doi: 10 . 1145 / 2810103 .
2813626 (p. 13).

[RHSS21] Raghvendra Rohit, Kai Hu, Sumanta Sarkar, and Siwei Sun. “Misuse-Free
Key-Recovery and Distinguishing Attacks on 7-Round Ascon”. In: IACR
Transactions of Symmetric Cryptology 2021.1 (2021), pp. 130–155. doi:
10.46586/tosc.v2021.i1.130-155 (p. 32).

[SP20] Stefan Steinegger and Robert Primas. “A Fast and Compact RISC-V Accel-
erator for Ascon and Friends”. In: CARDIS. Vol. 12609. Lecture Notes in
Computer Science. Springer, 2020, pp. 53–67 (p. 41).

[SPY+10] François-Xavier Standaert, Olivier Pereira, Yu Yu, Jean-Jacques Quisquater,
Moti Yung, and Elisabeth Oswald. “Leakage Resilient Cryptography in
Practice”. In: Towards Hardware-Intrinsic Security. Ed. by Ahmad-Reza
Sadeghi and David Naccache. Information Security and Cryptography.
Springer, 2010, pp. 99–134. doi: 10.1007/978-3-642-14452-3_5 (pp. 16,
39).

[STKT06] Kazuhiro Suzuki, DongvuTonien, KaoruKurosawa, andKoji Toyota. “Birth-
day Paradox for Multi-collisions”. In: ICISC 2006. Ed. by Min Surp Rhee
and Byoungcheon Lee. Vol. 4296. LNCS. Springer, 2006, pp. 29–40. doi:
10.1007/11927587_5 (p. 17).

[Teaa] ISAP Team. “ISAP Code Package”. (accessed: 05/2021). url: https://
github.com/isap-lwc/isap-code-package (p. 39).

[Teab] ISAP Team. “ISAP Hardware Package”. (accessed: 05/2021). url: https:
//github.com/isap-lwc/isap-hardware-package (pp. 39, 41).

[Teac] NIST LWC Team. “Benchmarking of Lightweight Cryptographic Algo-
rithms on Microcontrollers”. (accessed: 05/2021). url: https://github.
com/usnistgov/Lightweight-Cryptography-Benchmarking (p. 39).

[TS14] Mostafa M. I. Taha and Patrick Schaumont. “Side-channel countermeasure
for SHA-3 at almost-zero area overhead”. In: HOST 2014. IEEE Computer
Society, 2014, pp. 93–96. doi: 10.1109/HST.2014.6855576 (p. 15).

54

https://doi.org/10.1007/978-3-662-52993-5_1
https://doi.org/10.1145/2810103.2813626
https://doi.org/10.1145/2810103.2813626
https://doi.org/10.46586/tosc.v2021.i1.130-155
https://doi.org/10.1007/978-3-642-14452-3_5
https://doi.org/10.1007/11927587_5
https://github.com/isap-lwc/isap-code-package
https://github.com/isap-lwc/isap-code-package
https://github.com/isap-lwc/isap-hardware-package
https://github.com/isap-lwc/isap-hardware-package
https://github.com/usnistgov/Lightweight-Cryptography-Benchmarking
https://github.com/usnistgov/Lightweight-Cryptography-Benchmarking
https://doi.org/10.1109/HST.2014.6855576

	Introduction
	Specification
	Re-Keying with IsapRk
	Encryption with IsapEnc
	Authentication with IsapMac
	Permutations
	Recommended Parameter Sets
	On Hash Functions using Ascon-p or Keccak-p[400]

	Security Claims
	Design Rationale
	Robustness of the Mode against DPA
	Sponges and Side-Channel Leakage
	Design of IsapRk
	Design of IsapEnc
	Design of IsapMac
	Choice of the Permutations
	Updates Compared to the Paper

	Security Analysis
	Security of the Mode
	Security of the Keccak-p[400] Instance
	Security of the Ascon-p Instance

	Implementation
	Implementation Security
	Software Implementations
	ASIC Implementations
	FPGA Implementations
	Hardware Accelerators

	Specification of Ascon-p
	Specification of Keccak-p[400]

