From: Miguel Montes <miguel.montes@gmail.com>

Sent: Sunday, April 28, 2019 9:33 AM
To: lightweight-crypto

Subject: OFFICIAL COMMENT: ORANGE
Dear all:

Rereading my last email, I've noticed that | made a mistake. The byte that is always even is not in the ciphertext, but in
the keystream. The last bit of that byte in the ciphertext is always equal to the last bit of the corresponding byte of the
plaintext.

Best regards

Miguel Montes

On Sat, Apr 27, 2019 at 5:15 PM Miguel Montes <miguel.montes@gmail.com> wrote:
Dear all:
There is a problem with the implementation of the finite field multiplication used in ORANGE-Zest. The first byte of the
result is always even.
Because of this, when the length of the last block of plaintext is greater than 16, byte 16 of the last block of ciphertext
is always even.

Also | think the implementation of mult does not comply with the specs. The function mult, as specified, seems to swap
both halves of its input. It receives VAb, VAt and returns VAt || atc. VAb

As implemented, it simply multiplies it second half of its input.

Am | misunderstanding the specs?.

Best regards

Miguel Montes

mailto:miguel.montes@gmail.com

From: Bishwajit Chakraborty <bishu.math.ynwa@gmail.com>

Sent: Wednesday, May 01, 2019 12:47 AM

To: Miguel Montes

Cc: lightweight-crypto; lwc-forum@list.nist.gov
Subject: Re: [lwc-forum] OFFICIAL COMMENT: ORANGE
Attachments: errata_ORANGE.pdf; Orange.tar.gz

Dear Miguel,

Thank you very much for pointing out the typos. We have also additionally found few typos in the specification.

Dear all,
The errata for Orange and the revised reference implementation are attached.

Thanks and regards,
ORANGE Team

On Sun, Apr 28, 2019 at 1:45 AM Miguel Montes <miguel.montes@gmail.com> wrote:
Dear all:
There is a problem with the implementation of the finite field multiplication used in ORANGE-Zest. The first byte of the

result is always even.
Because of this, when the length of the last block of plaintext is greater than 16, byte 16 of the last block of ciphertext

is always even.

Also | think the implementation of mult does not comply with the specs. The function mult, as specified, seems to swap
both halves of its input. It receives VAb, VAt and returns VAt || a®c. VAb

As implemented, it simply multiplies it second half of its input.

Am | misunderstanding the specs?.

Best regards

Miguel Montes

To unsubscribe from this group, send email to lwc-forum+unsubscribe@list.nist.gov

Visit this group at https://groups.google.com/a/list.nist.gov/d/forum/lwc-forum

You received this message because you are subscribed to the Google Groups "lwc-forum" group.
To unsubscribe from this group and stop receiving emails from it, send an email to lwc-
forum+unsubscribe @list.nist.gov.

To unsubscribe from this group, send email to lwc-forum+unsubscribe@list.nist.gov
Visit this group at https://groups.google.com/a/list.nist.gov/d/forum/lwc-forum

Errata of ORANGE

Designers/Submitters:
Bishwajit Chakraborty - Indian Statistical Institute,Kolkata
Mridul Nandi - Indian Statistical Institute, Kolkata, India

bishu.math.ynwa@gmail.com
mridul.nandi@gmail.com

May 1, 2019

In spec_orange.pdf: We make the following corrections on the specification document. No corresponding
change is required in the reference implementations.

1. ORANGE-Zest[p.enc line 9: return value (C, proc_tg(U)) and not proc_tg(U).

2. function ORANGISH line 21: There is no o multiplication in Hash. So Z <+ proc_hash(X, (A4—1]| -- - ||, 40),0,0)
and not Z < proc_hash(X, (Ag—1]-.- ||, 40),1,1).

3. function proc_txt line 37: return value is (D', Uy) and not (D', U,).

4. function ORANGE-Zestp).dec :

(a) line 5 : a = 0 is changed to a = 0,m # 0.

(b) line 9 : m # 0 is changed to a # 0,m # 0.
5. function mult line 32 : return value is - V? || V! and not V* || a¢ - V?,

In crypto_aead/orangezestvl/ref/orangemodule.h: The primitive polynomial alpha_128 was getting
reset to 7128 instead of 212® + 27 + 22 + 2 + 1. (in lines 84-90 of orangemodule.h). This is corrected by
using an else argument in line 88 of orangemodule.h.

The revised Test vectors for ORANGE-Zest in Appendix B can be found bellow :

Test vectors for ORANGE-Zest

Test vector 1:

Key = 000102030405060708090A0BOCO0DOEQF
Nonce = 000102030405060708090A0BOCODOEOF
PT =

AD = 00010203

CT = 84A4C553119EA342C50CCCC E43782567

Test vector 2:

Key = 000102030405060708090A0BOCO0DOEQF
Nonce = 000102030405060708090 A0BOCODOEOEF
PT =

AD =

CT = 5A65624F01D1349D2211EF BD52217976

Test vector 3:
Key = 000102030405060708090 A0 BOCODOEOF

Nonce = 000102030405060708090 A0 BOCODOEOF

PT = 000102030405060708090 A0 BOCODOE0F101112131415161718191 A

AD = 000102030405060708090 A0 BOC0OD0E0F101112131415161718191A1B1C1D

CT = 06C8617CFB5C8CACA64F1F2B9460EADETTT6 AB0F814FACF BOE561C621ABIEBOS0D6CE
0D200E80EET4E8C00

Acknowledgment: We would like to thank Miguel Montes for pointing out the mismatch between reference
implementation and pseudocode specification.

From: Bart Mennink <b.mennink@cs.ru.nl>

Sent: Friday, September 6, 2019 3:55 AM

To: lightweight-crypto

Cc: b.mennink@cs.ru.nl; lwc-forum@list.nist.gov; Christoph Dobraunig; Florian Mendel
Subject: [lwc-forum] OFFICIAL COMMENT: ORANGE

Attachments: attack.c

Dear all,

We think that we found a practical forgery for ORANGE. The trick is in the fact that for one-block messages, the input to the
second permutation is fully determined by MO, CO, and K, and it is independent of half of the state YO. In particular, due to how
rho works, the bottom part of YO gets replaced by 2K+MOb, where MOb is the bottom half of MO.

The other half of the state is known to an attacker who knows the message and can be modified with the ciphertext. Hence, an
attacker can change it to a value of its choice.

Please find the implementation of the attack attached.

The authors of ORANGE have also provided a security proof [2]. For this proof, however, the authors consider a slightly modified
version of the scheme, where line 12 of the original proposal, "if m\neg0 then (C,U) <- proc_txt(K,U,M,+)", is replaced with "if
m\neq0 then (C,U) <- proc_txt(S,U,M,+)", where S comes from the internal state after processing the associated data.

This change precisely pinpoints the oversight of the scheme that we exploit, and our attack seems not to apply to this modified
scheme anymore. Nevertheless, our attack demonstrates that the proof of [2] does not convey to the actual LWC submission [1].

Best regards,
Christoph, Florian, and Bart.

[1] Bishwajit Chakraborty and Mridul Nandi. ORANGE. NIST LWC submission (2019).
[2] Bishwajit Chakraborty and Mridul Nandi. Security Proof of ORANGE-Zest (2019).

To unsubscribe from this group, send email to Iwc-forum+unsubscribe@list.nist.gov
Visit this group at https://groups.google.com/a/list.nist.gov/d/forum/lwc-forum

