

Kerman, Sara J. (Fed)

From: Mustafa Khairallah <khairallah@ieee.org>
Sent: Monday, May 06, 2019 3:32 AM
To: lightweight-crypto
Cc: lwc-forum
Subject: OFFICIAL COMMENT: mixFeed
Attachments: misuse_forgery.c; mixfeed-misuse-forgery.pdf

Dear All,

I think there is a problem with the integrity claims of mixFeed integrity claims in the nonce misuse scenario. The
designers claim integrity up to 2^32 data complexity in the nonce‐misuse model. However, this seems to be not true for
the plaintext/ciphertext. You can find simple forgery attacks in the attached report that require as little as 34 bytes of
data, 2 encryption queries and 1 nonce repetition and succeeds with probability 1. They have been verified on the
reference implementation. Attached is also an example script that can be integrated with the reference implementation
as a replacement to the genkat.c test vector generation file.

Regards,

Mustafa Khairallah

1

Forgery Attack on mixFeed in the Nonce-Misuse
Scenario

Mustafa Khairallah

School of Physical and Mathematical Sciences
Nanyang Technological University

mustafam001@e.ntu.edu.sg

Abstract. mixFeed [CN19] is a round 1 candidate for the NIST Lightweight Cryp-
tography Standardization Project. It is a single-pass, nonce-based, AES-based
authenticated encryption algorithms. The authors claim that while there are no
guarantees for security in terms of confidentiality in case of nonce-misuse (repetition),
the integrity security still holds up to 232 data complexity. In this report, this claim
is not true in case the plaintext length is non-zero (≥ 16 bytes to be exact). We show
a forgery attack that requires only two encryption queries with the same nonce and
34 bytes of data.
Keywords: AEAD · forgery · mixFeed · Nonce Misuse · collision

1 Introduction
mixFeed [CN19] is an AES-based AEAD algorithm submitted to round 1 of the NIST
Lightweight Cryptography Standardization Process. It uses a hybrid feedback structure,
where half the input to the block cipher comes directly from the plaintext, while the
other half is generated from the previous block cipher call and the plaintext in a CBC-like
manner. On page 4, section 3, of [CN19], the authors make the claim that there is no
conventional privacy security in case of nonce misuse. However, the integrity security
remains until 232 data in case of nonce misuse.

While it is not clear in the brief submission document how this bound was calculated,
we believe through our analysis that is should be derived through a similar analysis of the
integrity of the encrypted CBC-MAC [Vau00, PR00] (with 64 bits of random feedback
between every two consecutive block-cipher calls). However, our analysis show that this
claim may only be true for the case when the plaintext size is less than 16 bytes, which is a
very restrictive scenario. In the next section, we show a simple forgery attack that requires
only 32 bytes of plaintext and succeeds with probability 1 after only 1 nonce repetition.

2 Attack on the mixFeed AEAD mode in the Nonce-Misuse
model

1. Generate an associated data string A and a plaintext string M of 32 bytes, divided
into 4 words of 8 bytes each: M0, M1, M2, M3.

2. Generate a plaintext string M
′ of 32 bytes, divided into 4 words of 8 bytes each:

M
′

0, M
′

1, M
′

2, M
′

3.

3. Send the following query to the encryption oracle: (N, A, M), storing the ciphertex-
t/tag pair (C, T), where C consists of 4 words of 8 bytes each.

mailto:mustafam001@e.ntu.edu.sg

2 Forgery Attack on mixFeed in the Nonce-Misuse Scenario

EKa
EKb

EKc

M0

C0

M1

C1

M2

C2

M3

C3

δM

T

Figure 1: Trace of the first encryption query

EKa
EKb

EKc

M
′
0

C
′
0

M
′
1

C
′
1

M
′
2

C
′
2

M
′
3

C
′
3

δM

T
′

Figure 2: Trace of the second encryption query

4. Send the following query to the encryption oracle: (N, A, M
′), storing the ciphertex-

t/tag pair (C ′
, T

′), where C
′ consists of 4 words of 8 bytes each.

5. Calculate a ciphertext string C
′′ = (C0, C1, C2 ⊕ M2 ⊕ M

′

2, C
′

3).

6. Send the following challenge query to the decryption oracle: (N, A, C
′′
, T ′). The

decryption succeed with probability p = 1.

2.1 Attack Details
In order to understand why the attack works, we trace the intermediate values in the
targeted part of the execution for the encryption and decryption queries. In Figures 1
and 2, we show the encryption calls for M and M

′ . The goal on the attacker is to match
the chaining values at the input of the second encryption in the challenge query. Due
to the hybrid feedback structure, different strategies need to be used for different words
of the ciphertext. For the ciphertext feedback branch (bottom branch of Figure 3), we
simply change C3 to C

′

3, which directly decides the imput to the block cipher in the
decryption process. For the plaintext feedback branch (top branch of Figure 3), using
C

′′

2 = C2 ⊕ M2 ⊕ M
′

2 as the ciphertext word leads M
′

2 at the input of the block cipher,
since C2 ⊕ M2 is the output of the block cipher in the previous call (1). Hence, the second
encryption call matches the second encryption call from 2. Since all the calls before this
call match 1 and all the calls afterwards match 2, using the same Tag T

′ from 2 leads to
successful forgery attack.

2.2 Example
We have verified our attack using the reference implementation of mixFeed [CN19]. We
generated the example forgery shown below.

Mustafa Khairallah 3

EKa
EKb

EKc

M0

C0

M1

C1

M
′
2

C
′′
2

= C2 ⊕M2 ⊕M
′
2

M
′′
3

C
′
3

δM

T
′

Figure 3: Trace of the challenge decryption query

The two encryption queries are:

Count = 1
Key = 000102030405060708090A0B0C0D0E0F
Nonce = 000102030405060708090A0B0C0D0E
PT = 000102030405060708090A0B0C0D0E0F

101112131415161718191A1B1C1D1E1F
AD = 000102030405060708090A0B0C0D0E0F
CT = F4C757EEC527CAF2083A4E0E3548EB46

83EA28AB2C68D70AA9A90EF42CA6451E
324946C94446C53C5C77E661FCE80750

Count = 2
Key = 000102030405060708090A0B0C0D0E0F
Nonce = 000102030405060708090A0B0C0D0E
PT = 00081018202830384048505860687078

80889098A0A8B0B8C0C8D0D8E0E8F0F8
AD = 000102030405060708090A0B0C0D0E0F
CT = F4CE45F5E10AFCCD407B145D592D9531

4E21C4BB0B694B376CC43C361BA8B89A
2C55A84A127C07C611B2E35175B7E28C

And the challenge ciphertext is

CT = F4C757EEC527CAF2083A4E0E3548EB46
4E21C4BB0B694B377178C437D053ABF9
2C55A84A127C07C611B2E35175B7E28C

where the decryption oracle outputs

PT = 000102030405060708090A0B0C0D0E0F
DDDAFE0333148A2AC0C8D0D8E0E8F0F8

3 Instantiating the attack with different Associated data
strings

The attack can be also be instantiated using only 16 bytes of plaintext, where the encryption
queries have different associated data strings of equal number of bytes. The attacker can
then select the AD from one query with 8 bytes of the ciphertext and 8 bytes of the
plaintext taken from the other query to forge a decryption query.

4 Forgery Attack on mixFeed in the Nonce-Misuse Scenario

3.1 Example

Count = 1
Key = 000102030405060708090A0B0C0D0E0F
Nonce = 000102030405060708090A0B0C0D0E
PT = 000102030405060708090A0B0C0D0E0F
AD = 000102030405060708090A0B0C0D0E0F
CT = F4C757EEC527CAF2083A4E0E3548EB46

89E7DB42C6777B7BBAFE1ABB4022AF28

Count = 2
Key = 000102030405060708090A0B0C0D0E0F
Nonce = 000102030405060708090A0B0C0D0E
PT = 00081018202830384048505860687078
AD = 00081018202830384048505860687078
CT = BCBA409676B0679FB27F7F70D1A0A6D9

84AE15E2E3347E8886E59A759E43A0D9

CT = BCBA409676B0679F407B145D592D9531
84AE15E2E3347E8886E59A759E43A0D9

PT = 487C157BB792AB6A4048505860687078

4 Conclusion
In this report we showed that the claims of integrity of mixFeed in the nonce misuse case
are not true in general. In fact, it can only be true in case of empty (or potentially very
small) plaintext. This does not affect the security of mixFeed in the nonce respecting case.

References
[CN19] Bishwajit Chakraborty and Mridul Nandi. mixFeed. NIST Lightweight

Cryptography Project, 2019. https://csrc.nist.gov/Projects/
Lightweight-Cryptography/Round-1-Candidates.

[PR00] Erez Petrank and Charles Rackoff. Cbc mac for real-time data sources. Journal
of Cryptology, 13(3):315–338, 2000.

[Vau00] Serge Vaudenay. Decorrelation over infinite domains: the encrypted cbc-mac case.
In International Workshop on Selected Areas in Cryptography, pages 189–201.
Springer, 2000.

https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates

1

From: Mridul Nandi <mridul.nandi@gmail.com>
Sent: Monday, May 06, 2019 3:55 AM
To: Mustafa Khairallah
Cc: lightweight-crypto; lwc-forum
Subject: Re: [lwc-forum] OFFICIAL COMMENT: mixFeed

Dear Mustafa,

Thanks for your analysis on nonce‐misuse and we agree with you. We will not claim the nonce misuse security of
mixFeed.

However, we want to mention that our security claim on nonce‐respecting has no issue and we will be posting a security
proof for mixFeed mode (in a nonce‐respecting model) soon in this forum.

Thank you once again Mustafa.

Thanks and regards
MixFeed Team

Thanks and regards,
Mridul Nandi
Associate Professor
Indian Statistical Institute
Kolkata

On Mon, May 6, 2019 at 1:03 PM Mustafa Khairallah <khairallah@ieee.org> wrote:
Dear All,

I think there is a problem with the integrity claims of mixFeed integrity claims in the nonce misuse scenario. The
designers claim integrity up to 2^32 data complexity in the nonce‐misuse model. However, this seems to be not true
for the plaintext/ciphertext. You can find simple forgery attacks in the attached report that require as little as 34 bytes
of data, 2 encryption queries and 1 nonce repetition and succeeds with probability 1. They have been verified on the
reference implementation. Attached is also an example script that can be integrated with the reference
implementation as a replacement to the genkat.c test vector generation file.

Regards,

Mustafa Khairallah
‐‐
To unsubscribe from this group, send email to lwc‐forum+unsubscribe@list.nist.gov
Visit this group at https://groups.google.com/a/list.nist.gov/d/forum/lwc‐forum
‐‐‐
You received this message because you are subscribed to the Google Groups "lwc‐forum" group.
To unsubscribe from this group and stop receiving emails from it, send an email to lwc‐
forum+unsubscribe@list.nist.gov.

1

From: Mustafa Khairallah <khairallah@ieee.org>
Sent: Thursday, August 1, 2019 7:15 PM
To: lightweight-crypto; lwc-forum
Subject: OFFICIAL COMMENT: mixFeed
Attachments: iacrdoc.pdf

Dear all,

I have found a large set of weal keys that allow forgery with a much lower advantage. I have enhanced the adversarial advantage
by a factor of 2^{67} compared to the advantage mentioned in the specification on mixFeed and a factor of 2^{53} compared to
tag guessing. The set of weak keys I have found is not conclusive and there can be other weak keys.

I have informed the designers about these observations and attacks four days ago and they have acknowledged them and my
understanding is that they are working on a security proof that shall address this issue.

I assert again as I assert in the document that I make no conclusions on whether these attacks affect the security in practice and
I leave this judgment to the designers and the readers.

My analysis is attached.

Regards,
Mustafa

1

From: Bishwajit Chakraborty <bishu.math.ynwa@gmail.com>
Sent: Monday, August 5, 2019 1:27 PM
To: Mustafa Khairallah
Cc: lightweight-crypto; lwc-forum
Subject: Re: [lwc-forum] OFFICIAL COMMENT: mixFeed

Dear all,

We would like to thank Mustafa for finding periods for some keys in the AES key scheduling algorithm used in mixFeed.

Exploiting this, he made some weak key analysis. We would like to note that we wanted to claim security as prescribed by
NIST. More precisely, our construction remains secure as long as Data bytes is less than 2^50 and time (including offline query)
is less than 2^112.

However, we wrote in the caption of Table 2 unintentionally that any attack requires at least 2^50 data bytes "and" 2^112
time. It should be "or" instead of "and" as obvious
from the contra-positive statement of NIST requirement. Clearly, one can have an attack with time as 2^128 (key-size) with few
data bytes almost for all constructions. So one can never achieve this claim for any construction.

This is a silly mistake from our side and we are sorry for making any unnecessary confusion. We note that the same comment
applies to our another design ORANGE.

Finally, we would like to clarify that the analysis due to Mustafa does not violate our security claim (after replacing "and" by "or"
in the caption of the table).

Thanks and Regards,

The MixFeed Team

On Fri, Aug 2, 2019 at 4:45 AM Mustafa Khairallah <khairallah@ieee.org> wrote:
Dear all,

I have found a large set of weal keys that allow forgery with a much lower advantage. I have enhanced the adversarial
advantage by a factor of 2^{67} compared to the advantage mentioned in the specification on mixFeed and a factor of 2^{53}
compared to tag guessing. The set of weak keys I have found is not conclusive and there can be other weak keys.

I have informed the designers about these observations and attacks four days ago and they have acknowledged them and my
understanding is that they are working on a security proof that shall address this issue.

I assert again as I assert in the document that I make no conclusions on whether these attacks affect the security in practice
and I leave this judgment to the designers and the readers.

My analysis is attached.

Regards,
Mustafa
--
To unsubscribe from this group, send email to lwc-forum+unsubscribe@list.nist.gov
Visit this group at https://groups.google.com/a/list.nist.gov/d/forum/lwc-forum

To unsubscribe from this group and stop receiving emails from it, send an email to lwc-forum+unsubscribe@list.nist.gov.

1

From: Mustafa Khairallah <khairallah@ieee.org>
Sent: Monday, August 5, 2019 6:41 PM
To: Bishwajit Chakraborty
Cc: lightweight-crypto; lwc-forum
Subject: Re: [lwc-forum] OFFICIAL COMMENT: mixFeed

Dear Bishwajit,

Thanks for your response.

I would like to point, however, that I mention that my results do not make mixFeed insecure even given the AND clause that you
have just corrected and there seems to be a misunderstanding of the conclusion of my analysis.

First of all, I would like to point out that while I fully agree that any cipher with 128-bit key is vulnerable to an attack with D=O(1)
and T=2^128, this has nothing to do with our discussion and mentioning it is a strawman of my argument. This attack that you
are mentioning is bounded by T/2^128 adversarial advantage. The existence of such an advantage does not contradict having
another advantage of DT/2^192. If the security bound is T/2^128+DT/2^192, then I do not see the problem of saying that the
attacker needs D=2^50 and T=2^112. This is because, at this corner point, the term DT/2^192 dominates the security. Of course,
if we multiply T by 2^16 the other bound will dominate the security and D will be less important. For this reason, I am not so
much concerned about the claims in the table and I am more concerned about the security analysis of the scheme (which
admittedly does not exist in the initial submission except for a brief paragraph). I think having proper security analysis with
correct bounds is more important than the security claims which can be understood in many ways. After all, even if the security
claim is correct, we cannot trust it without proper analysis. The point I am making in my analysis is that T/2^128+DT/2^192 is
not a correct bound. There has to be a term pD/L, where L is the period of the key and p is the probability of such a period. I
believe based on our earlier discussion that you are taking care of this at the moment.

Note that if the probability of the period in my analysis is high, the attacker will be successful, even if the designer does not
know that the probability is high.

Regards,
Mustafa

On Tue, Aug 6, 2019 at 1:27 AM Bishwajit Chakraborty <bishu.math.ynwa@gmail.com> wrote:
Dear all,

We would like to thank Mustafa for finding periods for some keys in the AES key scheduling algorithm used in mixFeed.

Exploiting this, he made some weak key analysis. We would like to note that we wanted to claim security as prescribed by
NIST. More precisely, our construction remains secure as long as Data bytes is less than 2^50 and time (including offline query)
is less than 2^112.

However, we wrote in the caption of Table 2 unintentionally that any attack requires at least 2^50 data bytes "and" 2^112
time. It should be "or" instead of "and" as obvious
from the contra-positive statement of NIST requirement. Clearly, one can have an attack with time as 2^128 (key-size) with few
data bytes almost for all constructions. So one can never achieve this claim for any construction.

This is a silly mistake from our side and we are sorry for making any unnecessary confusion. We note that the same comment
applies to our another design ORANGE.

Finally, we would like to clarify that the analysis due to Mustafa does not violate our security claim (after replacing "and" by
"or" in the caption of the table).

	mixfeed1.pdf
	Introduction
	Attack on the mixFeed AEAD mode in the Nonce-Misuse model
	Attack Details
	Example

	Instantiating the attack with different Associated data strings
	Example

	Conclusion

