
SUNDAE-GIFT

v1.0

Subhadeep Banik3, Andrey Bogdanov4,5, Thomas Peyrin1,2, Yu Sasaki6,
Siang Meng Sim1, Elmar Tischhauser5, and Yosuke Todo6

1 Nanyang Technological University, Singapore
thomas.peyrin@ntu.edu.sg

crypto.s.m.sim@gmail.com

2 Temasek Labs@NTU, Singapore

3 LASEC, École Polytechnique Fédérale de Lausanne, Switzerland
subhadeep.banik@epfl.ch

4 Technical University of Denmark, Denmark
anbog@dtu.dk

5 Cybercrypt A/S, Denmark
elmar@cyber-crypt.com

6 NTT Secure Platform Laboratories, Japan
Sasaki.Yu@lab.ntt.co.jp

yosuke.todo.xt@hco.ntt.co.jp

Table of Contents

1 Introduction . 3
2 Specification . 4

2.1 Notations . 4
2.2 The AEAD Scheme SUNDAE-GIFT . 5
2.3 Specification of SUNDAE . 6
2.4 Specification of GIFT-128 . 10
2.5 Format of Incoming Data . 12

3 Security . 14
3.1 Security Goals and Security Claims . 14
3.2 Security Rationale . 14

4 Performance . 15
4.1 Hardware Performance in ASIC . 15
4.2 Timing . 17
4.3 Performance . 17
4.4 Performance in FPGA . 17
4.5 Threshold Implementation . 18

5 Features and Design Rationales . 19

1 Introduction

Lightweight block cipher design is one of the most mature research areas, with constructions
going back to 2007, optimizing for a variety of efficiency goals such as latency [11], area [15],
and energy [3]. Although optimizing block cipher design is an important first step, block
ciphers on their own are only building blocks, and should be used in modes of operation
to achieve security. In particular, ensuring data confidentiality and authenticity is done
using an authenticated encryption (AE) mode of operation.

Even if a block cipher is ideally suited to a given environment when considered in
isolation, it could be used in an AE mode of operation which erases many of the block
cipher’s benefits. In fact, AE modes are often not designed to account for the different
requirements imposed by lightweight settings. The mode might require two separate,
independent keys, as with SIV [30], a state size of at least thrice that of the underlying
block size, as with COPA [2], or multiple initial block cipher calls before it can start
processing data, like in EAX [12].

Exceptions include the AE modes CLOC [21], JAMBU [33], and COFB [16], which
try to reduce state size and number of block cipher calls to optimize for short messages.
However, the challenges imposed by constrained environments are not limited to efficiency
constraints, as fundamental security assumptions might be difficult to guarantee as well.
For example, devices might lack proper randomness sources, or have limited secure storage
to maintain state, in which case they might not be able to generate the nonces necessary
to ensure that modes such as CLOC, JAMBU, and COFB maintain security. In such cases,
algorithms which provide more robust security are better, such as nonce-misuse resistant
AE [30], as they do not fail outright in the wrong conditions.

An efficient nonce-misuse resistant dedicated instantiation of SIV called GCM-SIV
was proposed by Gueron and Lindell at CCS 2015 [19]. While it attains very competitive
performance in software on recent Intel architectures, it requires full multiplications in
GF (2128), which makes the scheme unattractive in hardware and on resource-constrained
platforms. The importance of good implementation characteristics on all platforms was
already pointed out in [25]: the same cryptographic algorithms used on the small devices
of the Internet of Things also have to be employed on the servers that are communicating
with them. Crucially, however, the few designs explicitly aiming at being simultaneously
efficient on lightweight as well as high-performance platforms such as [14,24] do not provide
nonce-misuse resistant authenticated encryption.

We introduce an AE mode of operation, SUNDAE-GIFT, which

1. competes with CLOC and JAMBU in number of block cipher calls for short messages,

2. improves over those algorithms and COFB in terms of state size,

3. provides maximal robustness to a lack of proper randomness or secure state, and

4. simultaneously offers good implementation characteristics on lightweight and high-
performance platforms.

SUNDAE-GIFT is based on the mode of operation SUNDAE [4], introduced in ToSC 2019.
We choose the block cipher GIFT-128 [9] as the underlying block cipher because of the
natural advantages it offers on lightweight platforms. GIFT improves over PRESENT in
both security and efficiency. Interestingly, GIFT offers extremely good performances and
even surpasses both SKINNY and SIMON for round-based implementations (see Table 1).
This indicates that GIFT is probably the cipher the most suited for the very important
low-energy consumption use cases. Due to its simplicity and natural bitslice organisation
of the inner data flow, our cipher is very versatile and performs also very well on software,
reaching similar performances as SIMON [9], the current fastest lightweight candidate on
software.

3

Table 1: Hardware performances of round-based implementations of PRESENT, SKINNY,
SIMON and our new cipher GIFT, synthesized with STM 90nm Standard cell library.

Area Delay Cycles TPMAX Power (µW) Energy
(GE) (ns) (MBit/s) (@10MHz) (pJ)

GIFT-64-128 1345 1.83 29 1249.0 74.8 216.9
SKINNY-64-128 1477 1.84 37 966.2 80.3 297.0
PRESENT 64/128 1560 1.63 33 1227.0 71.1 234.6
SIMON 64/128 1458 1.83 45 794.8 72.7 327.3

GIFT-128-128 1997 1.85 41 1729.7 116.6 478.1
SKINNY-128-128 2104 1.85 41 1729.7 132.5 543.3
SIMON 128/128 2064 1.87 69 1006.6 105.6 728.6

For the rest of this document, we refer the SUNDAE publication in ToSC2018 [4] as
the SUNDAE paper and the GIFT article posted on Cryptology ePrint Archive [10] (the full
version of the publication in CHES2017 [9]) as the GIFT paper.

2 Specification

2.1 Notations

Unless specified otherwise, all sets are finite. If X is a set, then Xn is the set of length-n
sequences of X, X≤q the set of sequences of X of length not greater than q including the
empty sequence, and X∗ the set of finite-length sequences of X. If X ∈ X∗, then |X| is its
length. Given X,Y ∈ X∗, concatenation of X and Y is denoted X‖Y , or simply XY when
no confusion arises.

The notation x 7→ y is used to denote a function which maps the symbol x on the left
to the symbol y on the right. If f is a function with domain X× Y, then we write f(X,Y)
and fX(Y) interchangeably, and use the notation fX to denote the function obtained by
fixing the first input of f to X.

Throughout the paper, n = 128 denotes block size. The set of blocks is {0, 1}≤n, and
B := {0, 1}n denotes the subset of complete blocks, with all other blocks called incomplete.
The element 0n ∈ B denotes the complete block consisting of only zeroes.

The empty string is denoted ε. Given two equal-length elements X,Y ∈ {0, 1}∗, X ⊕ Y
denotes their bitwise XOR. If X ∈ {0, 1}∗, then bXcm denotes truncating X to the m most
significant bits of X. Splitting a non-empty string X into blocks is done by computing its
block length `, which is the smallest integer greater than or equal to |X|/n, and processing
X as

X[1]X[2] · · ·X[`− 1]X[`]
n←− X

where |X[i]| = n for 1 ≤ i < `, and 0 < |X[`]| ≤ n.
A 128-bit block X ∈ B can further be expressed as 4 32-bit segments, 8 16-bit words,

16 bytes or 128 bits as follows

S0S1S2S3
32←−X

W0W1 · · ·W6W7
16←−X

B0B1 · · ·B14B15
8←−X

b127b126 · · · b1b0
1←−X,

where b127 being the most significant bit of X[i]. Note that only the indexing of the bits is
in the reverse order.

4

Padding. The function pad : {0, 1}≤n → B pads an incomplete block X with a 1 followed
by 127− |X| zeroes, and leaves complete blocks as-is:

pad(X) =

{
X ‖ 10127−|X| if |X| < n

X otherwise .

Multiplier. Given X ∈ B, we let 2×X and 4×X denote multiplications defined as the
following

2× (B0‖B1‖ · · · ‖B15) = B1‖B2‖ · · · ‖B10‖B11 ⊕B0‖B12‖B13 ⊕B0‖B14‖B15 ⊕B0‖B0,

and 4×X = 2× (2×X).

Block Cipher Encryption. The function E : K× B→ B denotes GIFT-128 encryption,
with K := {0, 1}128 the set of keys.

Conditional. The expression a ? b : c evaluates to b if a is true and c otherwise.

2.2 The AEAD Scheme SUNDAE-GIFT

As the name suggested, SUNDAE-GIFT is a family of AEAD schemes that is based on the
AEAD scheme SUNDAE with GIFT-128 as the underlying block cipher.

Parameter Sets. There are four members in the SUNDAE-GIFT family, as seen in the
following

Member Name Nonce length Key length Tag length
1 (primary) SUNDAE-GIFT-96 96 128 128

2 SUNDAE-GIFT-0 0 128 128
3 SUNDAE-GIFT-128 128 128 128
4 SUNDAE-GIFT-64 64 128 128

Notice that SUNDAE-GIFT-0 is the original SUNDAE scheme presented in the SUNDAE paper
which does not require a nonce.

The members are arranged in the order of preference and potential use-case. The
primary member, SUNDAE-GIFT-96, satisfies the requirements set by NIST. Next, member
2, SUNDAE-GIFT-0, is preferred as it removes the overhead for sending a nonce, which is non-
negligible overhead cost for small messages. Subsequently, we believe that the use-case of
128-bit nonce is more common than 64-bit nonce, hence the ordering of SUNDAE-GIFT-128
and SUNDAE-GIFT-64.

Modification of the existing mode and primitive There is sight modifications to
SUNDAE (see Section 2.3) as compared to the specification in SUNDAE paper but only for the
purpose to accommodate fixed length nonce as specified in the NIST requirement. There
is no modification to the GIFT-128 algorithm, apart from some update in the notations
and a new perspective of viewing the incoming data (see Section 2.4 and 2.5).

5

2.3 Specification of SUNDAE

SUNDAE consists of an encryption algorithm and a decryption algorithm. It is parametrized
by a block cipher, which in this document is GIFT-128 with a key set K := {0, 1}128 and
block size n = 128.The encryption algorithm enc takes as input a key K ∈ K, an associated
data A ∈ {0, 1}∗, and a message M ∈ {0, 1}∗. Depending on the variant, SUNDAE may
accept a fixed length nonce N (details to follow) which is prepended to and regarded
as part of the associated data A. Thus, for simplicity, we omit the notation N and let

A← N‖A. It outputs a ciphertext C ∈ {0, 1}n+|M |, where the first n bits of the ciphertext
are interpreted as a tag T . The decryption algorithm dec takes as input a key K ∈ K,
an associated data A ∈ {0, 1}∗, and a ciphertext C ∈ {0, 1}n × {0, 1}∗, and outputs

M ∈ {0, 1}|C|−n, or the error symbol ⊥ if verification is not successful. The encryption
and decryption algorithms are such that for all K ∈ K, A ∈ {0, 1}∗, M ∈ {0, 1}∗, with
|A|+ |M | ≥ 0,

decK
(
A, encK(A,M)

)
= M .

The key K ∈ K is assumed uniformly at random from K. After fixing a key, uniqueness
should be guaranteed of each pair (A,M) of associated data and message input; associated
data can be repeated if the message is changed, and message input may be repeated if
the associated data is changed. Caution must be taken so that intermediate values used
during encryption and decryption are not leaked. In particular, unverified plaintext from
the decryption algorithm should not be released [1].

Fig. 1 gives a diagram of encryption. All block cipher calls are performed with a fixed
key K. Both encryption and decryption algorithms only use the “forward” block cipher
EK , hence the decryption algorithm of the block cipher is not required.

Encryption Algorithm The encryption algorithm performs the first pass of the associ-
ated data and message to produce the tag. After which, the tag is used to encrypt the
message to produce the ciphertext.

Initialization. An initial block B = b127b126b125b124‖0124 is defined depending on the
variant and input parameters, where

b127 =

{
0 if |A| = 0

1 otherwise .

b126 =

{
0 if |M | = 0

1 otherwise .

b125b124 =

00 if |N | = 0

01 if |N | = 64

10 if |N | = 96

11 if |N | = 128 .

Note that if the nonce is non-empty, |N | > 0, then naturally b127 = 1 as the nonce is
part of the associated data.
Next, a block cipher call is made to produce the initial chaining value V .

V ← EK(B)

If there is no associated data and message, the encryption is completed and V is
outputted as tag, T = V .

6

Processing associated data. If the associated data A is empty, this step is skipped and
proceed to processing message directly. If A is non-empty, it is partitioned into n-bit
blocks,

A[1]A[2] · · ·A[`A]
n←− A .

For the first `A − 1 blocks, it is XORed to V followed by another block cipher call.

V ← EK(V ⊕A[i]), ∀i ∈ {1, . . . , `A − 1} .

For the last block A[`A], it is first padded before XORing to V , and V is updated by
some multiplication depending on the length of A[`A].

V ← EK(m× (V ⊕ pad(A[`A]))) , where m =

{
2 if |A[`A]| < n

4 otherwise .

If the message M is empty, then the encryption is completed and V is outputted as
tag T = V which is like a MAC for the associated data.

Processing message. The message M is partitioned into n-bit blocks,

M [1]M [2] · · ·M [`M]
n←−M .

For the first `M − 1 blocks, it is XORed to V followed by another block cipher call.

V ← EK(V ⊕M [i]), ∀i ∈ {1, . . . , `M − 1} .

For the last block M [`M], it is first padded before XORing to V , and V is updated by
some multiplication depending on the length of M [`M].

V ← EK(m× (V ⊕ pad(M [`M]))) , where m =

{
2 if |M [`M]| < n

4 otherwise .

Extracting tag. The tag T is assigned with the chaining value V .

T ← V

Encrypting message. The message blocks are encrypted block by block without padding
as follows

V ← EK(V)

C[i]← bEK(V)c|M [i]| ⊕M [i]
∀i ∈ {1, . . . , `M} .

Finally, the tag and ciphertext blocks are concatenated and outputted as the ciphertext
C.

C ← TC[1]C[2] · · ·C[`M]

Decryption Algorithm The decryption algorithm first decrypts the ciphertext with the
given tag before processing the associated data and decrypted message to produce another
tag for verification.

Extracting tag. The ciphertext C is partitioned into n-bit blocks,

C[1]C[2] · · ·C[`C]
n←− C .

The first block of C is taken as the chaining value V ← C[1].

7

Decrypting message. If |C| = n, then this step is skipped and proceed to generating the
tag. Otherwise, the decryption is similar to the encryption,

V ← EK(V)

M [i− 1]← bEK(V)c|C[i]| ⊕ C[i]
∀i ∈ {2, . . . , `C} .

Generating tag. The exact same steps in the encryption algorithm, from “initialization”
to “extracting tag”, are performed to generate a new tag T ′ based on the associated
data and decrypted message.

Verifying tag. If the new tag does not match the given tag, i.e. T ′ 6= C[1], the verification
fails and there will be null output ⊥. Otherwise, the decrypted message blocks (if any)
are concatenated and outputted as the decrypted message M .

M ←

{
M [1] · · ·M [`C − 1] if |C| > n

ε otherwise .

8

EK

11b125b1240124

EK EK EK EK EK EK+ + + +

A[1] A[2] M [1] M [2]

pad pad

× ×

b·c|M [2]|

+ +M [1] M [2]

C[1] C[2]T

(a) SUNDAE-GIFT encryption with associated and plaintext data. The box below the rightmost
block cipher call represents truncation.

EK10b125b1240124 EK EK+ +

A[1] A[2]

pad

×

T

(b) SUNDAE-GIFT without plaintext data, meaning only a tag is produced, like a MAC.

EK01b125b1240124 EK EK EK EK+ +

M [1] M [2]

pad

×

b·c|M [2]|

+ +M [1] M [2]

C[1] C[2]T

(c) SUNDAE-GIFT encryption with only plaintext data.

Fig. 1: Diagrams of SUNDAE-GIFT encryption and authentication. The initial block cipher
call changes depending upon the presence of associated and plaintext data. b125b124 is
defined based on the SUNDAE-GIFT member used. The multiplication × by 2 or 4 and
depends on the length of the last blocks.

9

2.4 Specification of GIFT-128

GIFT-128 is an 128-bit Substitution-Permutation network (SPN) based block cipher with
a key length of 128-bit. It has is a 40-round iterative block cipher with identical round
function. There are two versions of GIFT, namely GIFT-64 and GIFT-128. But since we are
focusing only on GIFT-128 in this document, we use GIFT and GIFT-128 interchangeably.

There are different ways to perceive GIFT-128, the more pictorial description is detailed
in Section 2 of the GIFT paper, which looks like a larger version of PRESENT cipher with 32
4-bit S-boxes and an 128-bit bit permutation (see Figure 2). In this document, we will be
using bitslice description which is similar to Appendix A of the GIFT paper.

Round function. Each round of GIFT consists of 3 steps: SubCells, PermBits, and
AddRoundKey.

Initialization. The 128-bit plaintext is loaded into the cipher state S which will be
expressed as 4 32-bit segments. In the perspective of a 2-dimensional array, the bit
ordering is from top-down, then right to left.

S =

S0

S1

S2

S3

←

b124 · · · b8 b4 b0
b125 · · · b9 b5 b1
b126 · · · b10 b6 b2
b127 · · · b11 b7 b3

 .
The 128-bit secret key is loaded into the key state KS partitioned into 8 16-bit words.
In the perspective of a 2-dimensional array, the bit ordering is from right to left, then
bottom-up.

KS =

W0 ‖W1

W2 ‖W3

W4 ‖W5

W6 ‖W7

←

b127 · · · b112 ‖ b111 · · · b98 b97 b96
b95 · · · b80 ‖ b79 · · · b66 b65 b64
b63 · · · b48 ‖ b47 · · · b34 b33 b32
b31 · · · b16 ‖ b15 · · · b2 b1 b0

Refer to Section 2.5 for details of the incoming data.

SubCells. Update the cipher state with the following instructions:

S1 ← S1 ⊕ (S0 & S2)

S0 ← S0 ⊕ (S1 & S3)

S2 ← S2 ⊕ (S0 | S1)

S3 ← S3 ⊕ S2

S1 ← S1 ⊕ S3

S3 ← ∼ S3

S2 ← S2 ⊕ (S0 & S1)

{S0, S1, S2, S3} ← {S3, S1, S2, S0},

where &, | and ∼ are AND, OR and NOT operation respectively.

PermBits. Different 32-bit bit permutations are applied to each Si independently.
In Table 2, the row “Index” shows the indexing of the 32 bits in all Si’s and the row
“Si” shows the ending position of the bits. For example, bit 1 (the 2nd rightmost bit)
of S1 is shifted 1 position to the right, to the initial position of bit 0, while bit 0 is
shifted 8 positions to the left.

10

Table 2: Specifications of GIFT-128 bit permutation.
Index 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S0 29 25 21 17 13 9 5 1 30 26 22 18 14 10 6 2 31 27 23 19 15 11 7 3 28 24 20 16 12 8 4 0

S1 30 26 22 18 14 10 6 2 31 27 23 19 15 11 7 3 28 24 20 16 12 8 4 0 29 25 21 17 13 9 5 1

S2 31 27 23 19 15 11 7 3 28 24 20 16 12 8 4 0 29 25 21 17 13 9 5 1 30 26 22 18 14 10 6 2

S3 28 24 20 16 12 8 4 0 29 25 21 17 13 9 5 1 30 26 22 18 14 10 6 2 31 27 23 19 15 11 7 3

AddRoundKey. This step consists of adding the round key and round constant. Two
32-bit segments U, V are extracted from the key state as the round key.

RK = U‖V.

For the addition of round key, U and V are XORed to S2 and S1 of the cipher state
respectively.

S2 ← S2 ⊕ U,
S1 ← S1 ⊕ V.

For the addition of round constant, S3 is updated as follows,

S3 ← S3 ⊕ 0x800000XY,

where the byte XY = 00c5c4c3c2c1c0.

Key schedule and round constants. A round key is first extracted from the key state
before the key state update. Four 16-bit words of the key state are extracted as the round
key RK = U‖V .

U ←W2‖W3, V ←W6‖W7.

The key state is then updated as follows,
W0 ‖W1

W2 ‖W3

W4 ‖W5

W6 ‖W7

←

W6 ≫ 2 ‖W7 ≫ 12
W0 ‖ W1

W2 ‖ W3

W4 ‖ W5

 ,
where ≫ i is an i bits right rotation within the 16-bit word.

The round constants are generated using the a 6-bit affine LFSR, whose state is denoted
as c5c4c3c2c1c0. Its update function is defined as:

c5‖c4‖c3‖c2‖c1‖c0 ← c4‖c3‖c2‖c1‖c0‖c5 ⊕ c4 ⊕ 1.

The six bits are initialized to zero, and updated before being used in a given round. The
values of the constants for each round are given in the table below, encoded to byte values
for each round, with c0 being the least significant bit.

Rounds Constants

1 - 16 01,03,07,0F,1F,3E,3D,3B,37,2F,1E,3C,39,33,27,0E

17 - 32 1D,3A,35,2B,16,2C,18,30,21,02,05,0B,17,2E,1C,38

33 - 48 31,23,06,0D,1B,36,2D,1A,34,29,12,24,08,11,22,04

11

Decryption of GIFT-128. We omit the description of the inverse of GIFT-128 as it is
not required for SUNDAE-GIFT.

2.5 Format of Incoming Data

As seen in the “Initialization” phase, the loading of the data (plaintext) bits is column-wise.
Typically, that would require additional instructions to rearrange and pack the incoming
data into the Si’s, and unpack them back to the initial data format after the encryption.
Such practice, however, is merely a matter of perspective and does not affect the security.
In fact, it incurs additional clock cycles in software implementation to pack them into
the desired format. To save on this unnecessary overhead, we regard the incoming data
and key as having the desired format and load them into the states in the most natural
manner.

S =

S0

S1

S2

S3

←

B0 ‖ B1 ‖ B2 ‖ B3

B4 ‖ B5 ‖ B6 ‖ B7

B8 ‖ B9 ‖ B10 ‖ B11

B12 ‖ B13 ‖ B14 ‖ B15

 ,

KS =

W0 ‖W1

W2 ‖W3

W4 ‖W5

W6 ‖W7

←

B0‖B1 ‖ B2‖B3

B4‖B5 ‖ B6‖B7

B8‖B9 ‖ B10‖B11

B12‖B13 ‖ B14‖B15

 ,
where Bi are the arriving bytes.

Relation to GIFT-128 LUT implementation. An alternative implementation of GIFT
is using look-up table (LUT) for the SubCells operation. Such implementation prefers
having the data in the conventional format, i.e. B0B1 · · ·B15 = b127b126 · · · b1b0.

The conversion from an LUT implementation to our bitslice implementation is simple:
Note that we perceive the incoming data as bitslice format,

B0 ‖ B1 ‖ B2 ‖ B3

B4 ‖ B5 ‖ B6 ‖ B7

B8 ‖ B9 ‖ B10 ‖ B11

B12 ‖ B13 ‖ B14 ‖ B15

 =

b124b120b116 · · · b96 ‖ b92 · · · b64 ‖ b60 · · · b32 ‖ b28 · · · b0
b125b121b117 · · · b97 ‖ b93 · · · b65 ‖ b61 · · · b33 ‖ b29 · · · b1
b126b122b118 · · · b98 ‖ b94 · · · b66 ‖ b62 · · · b34 ‖ b30 · · · b2
b127b123b119 · · · b99 ‖ b95 · · · b67 ‖ b63 · · · b35 ‖ b31 · · · b3

 .
First, unpack the data into the conventional format. Next, perform the LUT implementation
of GIFT. Finally, pack the output data back to the bitslice format. No additional pack-
ing/unpacking is required for the key. This will yield the exact same bitslice implementation
as we described in the Section 2.4.

Test Vectors
Key : 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

Plaintext : 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

Ciphertext : A9 4A F7 F9 BA 18 1D F9 B2 B0 0E B7 DB FA 93 DF

Key : E0 84 1F 8F B9 07 83 13 6A A8 B7 F1 92 F5 C4 74

Plaintext : E4 91 C6 65 52 20 31 CF 03 3B F7 1B 99 89 EC B3

Ciphertext : 33 31 EF C3 A6 60 4F 95 99 ED 42 B7 DB C0 2A 38

12

0
4

8
1
2

1
6

2
0

2
4

2
8

3
2

3
6

4
0

4
4

4
8

5
2

5
6

6
0

6
4

6
8

7
2

7
6

8
0

8
4

8
8

9
2

9
6

1
0
0

1
0
4

1
0
8

1
1
2

1
1
6

1
2
0

1
2
4

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

G
S

R
K

i

R
K

i+
1

F
ig

.2
:

2
ro

u
n

d
s

o
f
G
I
F
T
-
1
2
8
.

13

3 Security

3.1 Security Goals and Security Claims

Two security goals are listed by the NIST requirements document, which are expected to
hold as long as the nonce is not repeated under the same key:

1. confidentiality of the plaintexts under adaptive chosen-plaintext attacks, and
2. integrity of the ciphertexts under adaptive forgery attempts.

We claim all SUNDAE-GIFT members satisfy both goals by achieving AE security as given by
the nAE security definition of Namprempre et al. [28]. Note that one of the SUNDAE-GIFT

family members does not have a nonce input — we claim nAE security for the
nonceless SUNDAE-GIFT-0 assuming the combination of plaintext and associated
data does not repeat.

Furthermore, all SUNDAE-GIFT members are designed as deterministic AEAD schemes,
hence they achieve DAE security as defined in the SUNDAE paper. This means that if
the combination of nonce, plaintext, and associated data is repeated, then only equality
of plaintexts is leaked. In particular, integrity is always maintained, and confidentiality
maintained for any unique combination of nonce, plaintext, and associated data.

We give our security claims for both nAE and DAE security relative to a mode
confidence level ε and primitive confidence level δ, which are values between zero and one
denoting the maximum probability that an adversary will be able to breach security of the
mode and the primitive, respectively. The adversary’s overall success probability is ε+ δ.

We claim that adversaries will not be able to mount attacks against the primitive more
successfully than generic attacks possible against any block cipher with the same key and
block sizes. Then, assuming δ remains negligbly small (say, δ ≤ 2−16) and adversaries do
not capture or produce more than β bytes of plaintext, associated data, or ciphertext,

ε ≤ 42

256
· β

2

2128
. (1)

Note that the above equation represents a conservative upper bound. A less conservative
relationship between ε and β can be computed using the original bound contained in the
SUNDAE paper (where σ = β/16). Table 3 lists some bounds on the amount of data that
the adversary can capture or produce (β), relative to values of ε7.

Table 3: Minimum data limits per key that adversaries should produce or capture to
achieve the given adversarial advantage.

Data Limit (Bytes) β 235 240 245 250 255 260

Adversarial Advantage ε 2−60 2−50 2−40 2−30 2−20 2−10

3.2 Security Rationale

Mode Security. For brevity’s sake, we do not rewrite the security analysis and refer
readers to in Section 4 of the SUNDAE paper. Assuming GIFT is secure as a pseudorandom
permutation, SUNDAE’s bounds hold.

7Note that SUNDAE-GIFT is not unique in having data limits relative to adversarial advantage:
all modes of operation will have similar limits.

14

Primitive Security. The security analysis of GIFT-128 is provided in Section 4 of the
GIFT paper. Here we highlight several important features.

Differential cryptanalysis. Zhu et al. applied the mixed-integer-linear-programming based
differential characteristic search method for GIFT-128 and found an 18-round differen-
tial characteristic with probability 2−109 [34], which was further extended to a 23-round
key recovery attack with complexity (Data, T ime,Memory) = (2120, 2120, 280). We
expect that full (40) rounds are secure against differential cryptanalysis.

Linear cryptanalysis. GIFT-128 has a 9-round linear hull effect of 2−45.99, which means
that we would need around 27 rounds to achieve correlation potentially lower than
2−128. Therefore, we expect that 40-round GIFT-128 is enough to resist against linear
cryptanalysis.

Integral attacks. The lightweight 4-bit S-box in GIFT may allow efficient integral attacks.
The bit-based division property is evaluated against GIFT-128 by the designers, which
detected a 11-round integral distinguisher.

Meet-in-the-middle attacks. Meet-in-the-middle attack exploits the property that a part
of key does not appear during a certain number of rounds. The designers and the
follow-up work by Sasaki [32] showed the attack against 15-rounds of GIFT-64 and
mentioned the difficulty of applying it to GIFT-128 because of the larger ratio of the
number of subkey bits to the entire key bits per round; each round uses 32 bits and
64 bits of keys per round in GIFT-64 and GIFT-128, respectively, while the entire key
size is 128 bits for both.

4 Performance

4.1 Hardware Performance in ASIC

Lightweight implementations of CLOC, SILC [21] and AES-OTR [26], with AES-128 as the
underlying block cipher has already been published in [5]. As with all rate 1/2 modes like
CLOC, SILC, and also some rate 1 modes like OTR [5] there is a need for offline storage of
message blocks for reading them twice. Note that this was also assumed in the lightweight
implementation of the above modes in [5]. In this work, the authors use the 8-bit serial
implementation of AES given in [27]. The authors implemented the above modes for two
typical use cases (a) aggressive and (b) conservative. The aggressive design implemented
a version of the circuit that only catered to a limited set of sizes of the plaintext and
associated data. For example, the aggressive circuit was only designed to process user
inputs in which the associated data was empty and the length of the plaintext was an
integral multiple of the block size of the underlying block cipher. The intermediate outputs
produced by circuit were stored offline, and an external processor made them available at
the input buses as required by the design. This relaxed many of the storage requirements
in the circuit, and so the circuit occupied lower gate area. The conservative circuit had no
such constraints and was designed to handle all types of user inputs within certain bounds
(upto 8 blocks of associated data and 256 blocks of plaintext). All outputs of intermediate
modules were stored in additional registers in the circuit. As a result of which its gate area
was significantly larger.

SUNDAE was implemented with both AES [18] and PRESENT [13] as the underlying block
ciphers in [4]. Since the mode of operation was designed in a manner that did not require
temporary storage of any intermediate results, as a result no additional storage elements
are required for this purpose. For the AES based mode, the Atomic-AES architectures
developed in [7, 8] were used. These were 8-bit serial architectures for AES meant for
accommodating both encryption/decryption on the same platform. Furthermore, the
requirement of an additional register to perform field doublings and quadruplings was done
away with by changing the structure of the finite field. In stead of performing doubling

15

over GF(2128), 8 doublings over GF(216)/ < x16 + x5 + x3 + x+ 1 > was done in a way
that could be easily accommodated in the Atomic-AES architecture.

However as noted in [6], in addition to low throughput, serial architectures do not
have very good energy performance, as any basic operation like encryption/decryption
takes a lot of clock cycles to execute. Thus keeping energy and speed aspects in mind, our
primary implementation is based on the round based block cipher circuits. The GIFT block
cipher was designed with a motivation for good performance on lightweight platforms.
The roundkey additon for the cipher is over only half the state and the keyschedule being
only a bit permutation does not require logic gates. These characteristics make the GIFT

well suited for lightweight applications. In fact as reported in [9], among the block ciphers
defined for 128-bit block size GIFT-128 has the lowest hardware footprint and very low
energy consumption.

⊕⊕ ⊕ ⊕ ⊕bb b b

b bbb

b

⊕
2X

GIFT
round

function

AD

Plaintext
CT

V

CT V

GIFT
key

schedule

K

KKey

State register Key register

Sel

Control Signal Generator
Length AD

Length PT

b b b b

Init

Sel, Init

Fig. 3: Hardware circuit for round based SUNDAE-GIFT

Figure 3 details the hardware circuit for round based SUNDAE-GIFT. The mode is
designed in a manner so as to not require any additional state bits apart from the ones
used in the block cipher circuit. Thus the design only requires the state and key registers
for storage. The initial input (denoted by Init in the above figure) to the encryption
routine, and other control signals are generated centrally depending on the length of the
plaintext and associated data. Depending on the phase of operation the state register may
need to feed either Init, output of the doubling circuit or the signal generated by adding
the associated data/plaintext to the GIFT-128 round function. Plaintext addition is not
required in the second pass of the message during which the Sel signal controlling the and
gate before addition is set to 0.

16

4.2 Timing

The GIFT-128 block cipher takes E = 40 cycles to complete one encryption function.
This is the number of clock cycles required in the encryption of the Init signal. Each
block of associated data would take E cycles to process. At the end of the associated
data pass, Da = 1 or 2 clock cycles are required for doubling or quadrupling according
as the last associated data block is full length or not. Similar number of clock cycles are
required in the first message pass, and an additional Dm = 1 or 2 cycles are required in
case of doubling or quadrupling as required. Each block of plaintext in the final message
pass, would again take E cycles. Hence the total number of cycles taken is equal to
T = E + naE +Da + nmE +Dm + nmE, where na, nm are the total number of associated
data/ message blocks.

4.3 Performance

In Table 4 we present the synthesis results for the designs. The following design flow was
used: first the design was implemented in VHDL. Then, a functional verification was first
done using Mentor Graphics Modelsim software. The designs were synthesized using the
standard cell library of the 90nm logic process of STM (CORE90GPHVT v2.1.a) with the
Synopsys Design Compiler, with the compiler being specifically instructed to optimize the
circuit for area. A timing simulation was done on the synthesized netlist. The switching
activity of each gate of the circuit was collected while running post-synthesis simulation.
The average power was obtained using Synopsys Power Compiler, using the back annotated
switching activity.

Our implementation of SUNDAE-GIFT occupied 3494 GE. A component-wise breakup of
the circuit is givem in Figure 4. In Table 4 we present detailed comparison of SUNDAE-GIFT
with SUNDAE implemented with other block ciphers. We measure energy consumed at 10
Mhz for various lengths of associated data and plaintext. The 8 and 4 bit serial circuits
although have a lower hardware footprint, they take more clock cycles to compute a unit
encryption and hence are not energy efficient.

SUNDAE-GIFT (3494 GE)

Key Register (650 GE)

State Register (650 GE)

Gift Round Function (696 GE)

Multiplexers (470 GE)

Control Logic, Xor, And gates (1028 GE)

18.6%

18.6%

19.9%
13.4%

29.6%

Fig. 4: Component-wise breakup of the SUNDAE-GIFT circuit

4.4 Performance in FPGA

A comprehensive study of implementation of the GIFT cipher on various FPGA platforms
(of the Spartan 6 and Artix 7 families) was done in [23]. The authors reported three
possible architectures of GIFT: round-based, and two types of serial architectures that
operates using different widths of datapaths. The first serial architecture (referred to as
Serial-1) uses 8-bit input/output ports for data loading/unloading and has a serialized

17

Block Cipher Circuit Area (GE) Power(µW) Energy(nJ)

AD PT AD PT AD PT

0B 16B 16B 16B 16B 32B

AES-128 8-bit serial 2524 126.1 9.3 12.3 18.1
PRESENT-80 4-bit serial 1452 50.9 14.8 19.8 30.9
GIFT-128 Round based 3494 170.1 2.1 2.8 4.2

Table 4: Implementation results for SUNDAE. (Power reported at 10 MHz)

application of the substitution layer based on two 4-bit Sboxes. Thus the substitution
layer of GIFT-128 would take 128/8=16 cycles in Serial-1. The permutation layer and key
addition is performed in the 17th clock cycle much like the PRESENT architecture in [31],
resulting in an encryption latency of 16 + 40 ∗ 17 + 16 = 712 cycles.

The second serial architecture (referred to as Serial-2) uses 32-bit input/output ports
for data loading/unloading and has a serialized application of the substitution layer based
on eight 4-bit. Sboxes. Thus 4 clock cycles are required for the substitution layer. This
implementation takes advantage of the fact that the GIFT-128 permutation function can
be written as the composition of a columnwise permutation and a transposition function.
The strategy therefore is to compute at the same time the columnwise S-box, key addition
and permutation functions in the 4 cycles allotted for the substitution function. The 5-th
cycle is used for the matrix transposition operation, resulting in a 5-cycle round and a
total latency of 4 + 5 ∗ 40 + 4 = 208 cycles.

In this submission we have tweaked slightly the format of the incoming data, and thus
the implementations reported in [23] needs to be tweaked slightly, only for the Serial-1 and
Serial-2 architectures. Namely we will need to spend one extra cycle per round to permute
the arrangement of bits of the incoming bitslice format to the conventional format before
applying round function operations. This incurs only a 40 cycle penalty in the encryption
latency.

4.5 Threshold Implementation

The algebraic degree of the GIFT Sbox is 3 (same as PRESENT) and as such constructing
threshold circuits is slightly more difficult than for quadratic Sboxes. However threshold
implementations of the round-based GIFT-128 circuit has been extensively studied in [20].
Since the S-box is cubic, the number of direct shares it must be decomposed to needs to
be at least 4. However, the authors in [20] report three philosophies.

The first decomposes the Sbox as the composition F ◦G of two quadratic S-boxes F, G,
and implements each decomposed Sbox using 3 shares with a register separating the two
shared implementations, as in [29]. The shares of both G,F being algebraically similar
to each other, and differing only in the order of input bits, the authors further apply an
optimization due to [22], that reduces the area of the circuit by implementing the shares
over 3 cycles, using a multiplexer to permute the order of bits each time.

The second is a direct sharing approach using 4 shares, and a third approach proposed
by them uses only 3 shares for strictly resource-constrained platforms. In total the authors
propose 9 different threshold circuits for GIFT-128, depending on whether the key is shared
or not, and the type of circuit optimization used. The circuits were synthesized using the
TSMC low power 65 nm standard cell library. The smallest implementation uses 3 shares
and 256 random bits and occupies around 13349 GE and is around 5.38 times the size of
the unprotected circuit. The largest implementation uses 4 direct shares for both the key
and datapath and occupies around 94 kGE. For more results, we refer the reader to [20].

18

5 Features and Design Rationales

We highlight the main features of SUNDAE-GIFT:

• Deterministic authenticated encryption: The design does not depend on the
randomness or uniqueness of the nonce, providing maximal robustness to a lack of
proper randomness or secure state.

• Proven secure: The security of the SUNDAE mode of operation is proven secure relative
to its underlying block cipher.

• Small area: The state size of SUNDAE is optimal as it only requires the minimum
of one single n-bit state. The underlying primitive GIFT-128 is one of, if not the,
most lightweight 128-bit block ciphers. Therefore, SUNDAE-GIFT is possibly the most
lightweight construction (in terms of hardware area) that one would achieve for a block
cipher based AEAD scheme.

• Efficient on short messages: SUNDAE-GIFT is particularly suitable for short mes-
sages, which are typical in many deployment scenarios for lightweight cryptography.

• High performance in hardware and software: While offering high performance
in hardware implementations, SUNDAE-GIFT can also be implemented very efficiently
in a bitsliced manner for high-performance software environments, making full use of
SIMD instructions such as AVX2 or AVX-512 on Intel platforms. It is thus equally
suitable for deployment on resource-constrained devices and the server side.

A downside of SUNDAE-GIFT is that it requires a two-pass of the message, alternatively
perceives as rate 0.5. But we argue that it is acceptable for small messages.

Rationale for Bitslicing GIFT-128. For brevity sake, we do not rewrite the design
rationale of GIFT-128 and refer readers to in Section 3 of the GIFT paper. In short, the
4-bit Sbox of GIFT-128 is extremely lightweight, but has the drawback of having branching
number 2 only. This issue was taken care of by carefully choosing the linear layer of
GIFT-128, which actually corrected the well-known linear cryptanalysis weaknesses of
PRESENT. The linear layer of GIFT-128 is basically for free in a round-based hardware
implementation (being composed of bit-wiring), and the same can be said for the key
schedule that consists of simple shifts. Finally, the constant are generated with a very
lightweight LFSR.

We now explain the choice of using bitslice implementation of GIFT-128. Although
there is almost no impact on hardware implementation, there are several motivations for
using bitslice implementation (non-LUT based) instead of LUT based implementation
of GIFT-128 when we consider software implementation. Here, we will state the 3 most
obvious benefits relating to its 3 steps in a round function.

Firstly for the non-linear layer, for LUT based implementation, we can consider updating
2 GIFT Sboxes (1 byte) in a single memory call with a reasonable 256 entries LUT. This
would require 16 lookups and it takes approximately 16 to 64 cycles to do all Sboxes
in a round, assuming a few cycles to access the RAM. Using bitslice implementation, it
requires just 11 basic operations (or 10 with XNOR operation) to compute all the Sboxes
in parallel. And more importantly, using bitslice implementation has the nice feature that
it doesn’t need any RAM and that it is constant time, mitigating potential timing attacks.

Secondly for the linear layer, while it is basically free on hardware, for software
implementation it is extremely slow and complex to implement. This effect can be reduced
by doing several blocks in parallel using none other than bitslice implementation. Even for
a single block encryption, bitslice implementation is still more efficient that LUT based
implementation because of the way the bits are packed.

Third and lastly the key addition, for LUT based implementation, the subkeys need
to be XORed to bit positions that are 3 bits apart, making the key addition tedious and

19

non-trivial. An option is to precompute the subkeys, but even so the key addition would
require several XOR operations to update the 128-bit state. Using bitslice, the bits that
were once 3 bits apart are now packed together in 32-bit words, making the key addition
as simple as just 2 XOR operations.

Acknowledgments

Subhadeep Banik is supported by the Ambizione grant PZ00P2 179921, awarded by the
Swiss National Science Foundation. Thomas Peyrin is supported by the Temasek Labs
grant (DSOCL16194). The authors would like to thank Atul Luykx for the meaningful
discussions with regards to this submission.

References

1. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How to
securely release unverified plaintext in authenticated encryption. In Sarkar, P., Iwata, T.,
eds.: Advances in Cryptology - ASIACRYPT 2014 - 20th International Conference on the
Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C.,
December 7-11, 2014. Proceedings, Part I. Volume 8873 of Lecture Notes in Computer Science.,
Springer (2014) 105–125

2. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda, K.: Paralleliz-
able and authenticated online ciphers. In Sako, K., Sarkar, P., eds.: Advances in Cryptology -
ASIACRYPT 2013 - 19th International Conference on the Theory and Application of Cryp-
tology and Information Security, Bengaluru, India, December 1-5, 2013, Proceedings, Part I.
Volume 8269 of Lecture Notes in Computer Science., Springer (2013) 424–443

3. Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hiwatari, H., Akishita, T., Regazzoni,
F.: Midori: A block cipher for low energy. In Iwata, T., Cheon, J.H., eds.: Advances in
Cryptology - ASIACRYPT 2015 - 21st International Conference on the Theory and Application
of Cryptology and Information Security, Auckland, New Zealand, November 29 - December 3,
2015, Proceedings, Part II. Volume 9453 of Lecture Notes in Computer Science., Springer
(2015) 411–436

4. Banik, S., Bogdanov, A., Luykx, A., Tischhauser, E.: Sundae: Small universal deterministic
authenticated encryption for the internet of things. IACR Transactions on Symmetric
Cryptology 2018(3) (Sep. 2018) 1–35

5. Banik, S., Bogdanov, A., Minematsu, K.: Low-area hardware implementations of cloc, SILC
and AES-OTR. In Robinson, W.H., Bhunia, S., Kastner, R., eds.: 2016 IEEE International
Symposium on Hardware Oriented Security and Trust, HOST 2016, McLean, VA, USA, May
3-5, 2016, IEEE Computer Society (2016) 71–74

6. Banik, S., Bogdanov, A., Regazzoni, F.: Exploring energy efficiency of lightweight block
ciphers. In: Selected Areas in Cryptography - SAC 2015 - 22nd International Conference,
Sackville, NB, Canada, August 12-14, 2015, Revised Selected Papers. (2015) 178–194

7. Banik, S., Bogdanov, A., Regazzoni, F.: Atomic-aes: A compact implementation of the AES
encryption/decryption core. In Dunkelman, O., Sanadhya, S.K., eds.: Progress in Cryptology
- INDOCRYPT 2016 - 17th International Conference on Cryptology in India, Kolkata, India,
December 11-14, 2016, Proceedings. Volume 10095 of Lecture Notes in Computer Science.
(2016) 173–190

8. Banik, S., Bogdanov, A., Regazzoni, F.: Atomic-aes v 2.0. IACR Cryptology ePrint Archive
2016 (2016) 1005

9. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: A small present
- towards reaching the limit of lightweight encryption. In: Cryptographic Hardware and
Embedded Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan, September
25-28, 2017, Proceedings. (2017) 321–345

10. Banik, S., Pandey, S.K., Peyrin, T., Sim, S.M., Todo, Y., Sasaki, Y.: Gift: A small present.
Cryptology ePrint Archive, Report 2017/622 (2017) https://eprint.iacr.org/2017/622.

20

https://eprint.iacr.org/2017/622

11. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y., Sasdrich, P., Sim,
S.M.: The SKINNY family of block ciphers and its low-latency variant MANTIS. In Robshaw,
M., Katz, J., eds.: Advances in Cryptology - CRYPTO 2016 - 36th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II.
Volume 9815 of Lecture Notes in Computer Science., Springer (2016) 123–153

12. Bellare, M., Rogaway, P., Wagner, D.: The EAX mode of operation. In Roy, B.K., Meier,
W., eds.: Fast Software Encryption, 11th International Workshop, FSE 2004, Delhi, India,
February 5-7, 2004, Revised Papers. Volume 3017 of Lecture Notes in Computer Science.,
Springer (2004) 389–407

13. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin,
Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In Paillier, P., Verbauwhede,
I., eds.: Cryptographic Hardware and Embedded Systems - CHES 2007, 9th International
Workshop, Vienna, Austria, September 10-13, 2007, Proceedings. Volume 4727 of Lecture
Notes in Computer Science., Springer (2007) 450–466

14. Bogdanov, A., Mendel, F., Regazzoni, F., Rijmen, V., Tischhauser, E.: ALE: aes-based
lightweight authenticated encryption. In Moriai, S., ed.: Fast Software Encryption - 20th
International Workshop, FSE 2013, Singapore, March 11-13, 2013. Revised Selected Papers.
Volume 8424 of Lecture Notes in Computer Science., Springer (2013) 447–466

15. Cannière, C.D., Dunkelman, O., Knezevic, M.: KATAN and KTANTAN - A family of small
and efficient hardware-oriented block ciphers. In Clavier, C., Gaj, K., eds.: Cryptographic
Hardware and Embedded Systems - CHES 2009, 11th International Workshop, Lausanne,
Switzerland, September 6-9, 2009, Proceedings. Volume 5747 of Lecture Notes in Computer
Science., Springer (2009) 272–288

16. Chakraborti, A., Iwata, T., Minematsu, K., Nandi, M.: Blockcipher-based authenticated
encryption: How small can we go? In Fischer, W., Homma, N., eds.: Cryptographic Hardware
and Embedded Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan,
September 25-28, 2017, Proceedings. Lecture Notes in Computer Science, Springer (2017) 21
To appear.

17. Cid, C., Rechberger, C., eds.: Fast Software Encryption - 21st International Workshop, FSE
2014, London, UK, March 3-5, 2014. Revised Selected Papers. Volume 8540 of Lecture Notes
in Computer Science., Springer (2015)

18. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard.
Information Security and Cryptography. Springer (2002)

19. Gueron, S., Lindell, Y.: GCM-SIV: full nonce misuse-resistant authenticated encryption at
under one cycle per byte. In Ray, I., Li, N., Kruegel, C., eds.: Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, October
12-6, 2015, ACM (2015) 109–119

20. Gupta, N., Jati, A., Chattopadhyay, A., Sanadhya, S.K., Chang, D.: Threshold implementa-
tions of GIFT: A trade-off analysis. IACR Cryptology ePrint Archive 2017 (2017) 1040

21. Iwata, T., Minematsu, K., Guo, J., Morioka, S.: CLOC: authenticated encryption for short
input. [17] 149–167

22. Kutzner, S., Nguyen, P.H., Poschmann, A., Wang, H.: On 3-share threshold implementations
for 4-bit s-boxes. In: Constructive Side-Channel Analysis and Secure Design - 4th International
Workshop, COSADE 2013, Paris, France, March 6-8, 2013, Revised Selected Papers. (2013)
99–113

23. Lara-Nino, C.A., Diaz-Perez, A., Morales-Sandoval, M.: Fpga-based assessment of midori
and gift lightweight block ciphers. In: Information and Communications Security - 20th
International Conference, ICICS 2018, Lille, France, October 29-31, 2018, Proceedings. (2018)
745–755

24. Luykx, A., Preneel, B., Tischhauser, E., Yasuda, K.: A MAC mode for lightweight block
ciphers. In Peyrin, T., ed.: Fast Software Encryption - 23rd International Conference, FSE
2016, Bochum, Germany, March 20-23, 2016, Revised Selected Papers. Volume 9783 of Lecture
Notes in Computer Science., Springer (2016) 43–59

25. Matsuda, S., Moriai, S.: Lightweight cryptography for the cloud: Exploit the power of bitslice
implementation. In Prouff, E., Schaumont, P., eds.: Cryptographic Hardware and Embedded
Systems - CHES 2012 - 14th International Workshop, Leuven, Belgium, September 9-12, 2012.
Proceedings. Volume 7428 of Lecture Notes in Computer Science., Springer (2012) 408–425

21

26. Minematsu, K.: Parallelizable rate-1 authenticated encryption from pseudorandom functions.
In Nguyen, P.Q., Oswald, E., eds.: Advances in Cryptology - EUROCRYPT 2014 - 33rd
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Copenhagen, Denmark, May 11-15, 2014. Proceedings. Volume 8441 of Lecture Notes in
Computer Science., Springer (2014) 275–292

27. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: A very compact
and a threshold implementation of AES. In Paterson, K.G., ed.: Advances in Cryptology -
EUROCRYPT 2011 - 30th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings. Volume 6632
of Lecture Notes in Computer Science., Springer (2011) 69–88

28. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition. Cryptology
ePrint Archive, Report 2014/206 (2014) https://eprint.iacr.org/2014/206.

29. Poschmann, A., Moradi, A., Khoo, K., Lim, C., Wang, H., Ling, S.: Side-channel resistant
crypto for less than 2, 300 GE. J. Cryptology 24(2) (2011) 322–345

30. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap problem. In
Vaudenay, S., ed.: Advances in Cryptology - EUROCRYPT 2006, 25th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, St. Petersburg,
Russia, May 28 - June 1, 2006, Proceedings. Volume 4004 of Lecture Notes in Computer
Science., Springer (2006) 373–390

31. Rolfes, C., Poschmann, A., Leander, G., Paar, C.: Ultra-Lightweight Implementations for
Smart Devices - Security for 1000 Gate Equivalents. In Grimaud, G., Standaert, F.X., eds.:
CARDIS. Volume 5189 of Lecture Notes in Computer Science., Springer (2008) 89–103

32. Sasaki, Y.: Integer linear programming for three-subset meet-in-the-middle attacks: Appli-
cation to gift. In Inomata, A., Yasuda, K., eds.: Advances in Information and Computer
Security, Cham, Springer International Publishing (2018) 227–243

33. Wu, H., Huang, T.: The JAMBU Lightweight Authentication Encryption Mode (v2.1).
CAESAR submissions (2016) https://competitions.cr.yp.to/round3/jambuv21.pdf.

34. Zhu, B., Dong, X., Yu, H.: Milp-based differential attack on round-reduced gift. Cryptology
ePrint Archive, Report 2018/390 (2018) https://eprint.iacr.org/2018/390.

Changelog

• 29-03-2019: version v1.0

22

https://eprint.iacr.org/2014/206
https://competitions.cr.yp.to/round3/jambuv21.pdf
https://eprint.iacr.org/2018/390

	Introduction
	Specification
	Notations
	The AEAD Scheme SUNDAE-GIFT
	Specification of SUNDAE
	Specification of GIFT-128
	Format of Incoming Data

	Security
	Security Goals and Security Claims
	Security Rationale

	Performance
	Hardware Performance in ASIC
	Timing
	Performance
	Performance in FPGA
	Threshold Implementation

	Features and Design Rationales

