
LOTUS-AEAD and LOCUS-AEAD

Designers/Submitters:

Avik Chakraborti - NTT Secure Platform Laboratories, Japan
Nilanjan Datta - Indian Statistical Institute, Kolkata, India
Ashwin Jha - Indian Statistical Institute, Kolkata, India

Cuauhtemoc Mancillas Lopez - Computer Science Department, CINVESTAV-IPN, Mexico
Mridul Nandi - Indian Statistical Institute, Kolkata, India
Yu Sasaki - NTT Secure Platform Laboratories, Japan

avikchkrbrti@gmail.com, nilanjan isi jrf@yahoo.com, ashwin.jha1991@gmail.com,
cuauhtemoc.mancillas83@gmail.com, mridul.nandi@gmail.com, sasaki.yu@lab.ntt.co.jp

September 27, 2019



Chapter 1

Introduction

In this document, we propose two new modes of operation, called LOTUS-AEAD and LOCUS-AEAD, for
lightweight nonce-based authenticated encryption with associated data (NAEAD) functionality. As the
name suggests, LOTUS-AEAD and LOCUS-AEAD follow the general design paradigms of popular NAEAD
modes OTR [9] and OCB [8, 7], respectively. However, we remark that LOTUS-AEAD and LOCUS-AEAD
introduce several key changes (see section 2.1 for more details) in order to add new features. Some of the
important changes include nonce-based rekeying, intermediate checksum based tag generation, short-tweak
based domain separation etc.

LOTUS-AEAD and LOCUS-AEAD, achieve higher NAEAD security bounds with lighter primitives. They
allow close to 264 data and 2128 time limit, when instantiated by a block cipher with 64-bit block and
128-bit key. Notably, they satisfy the NIST lightweight standardization requirements, even with a 64-bit
block cipher. To the best of our knowledge, none of the existing NAEAD modes satisfy this criteria while
maintaining a state size comparable to LOTUS-AEAD and LOCUS-AEAD. Both LOTUS-AEAD and LOCUS-
AEAD are fully parallelizable, and provide integrity security even when the decryption algorithm releases
unverified plaintext. These modes are quite versatile, in the sense that, they are equally suitable for memory
constrained environments, and high performance applications.

We instantiate LOTUS-AEAD and LOCUS-AEAD with TweGIFT-64, a tweakable variant of the GIFT-64-
128 [3] block cipher. TweGIFT-64 is a dedicated design, built upon the original GIFT-64-128 block cipher,
for efficient processing of small tweak values of size 4-bit. TweGIFT-64 provides sufficient security while
maintaining the lightweight features of GIFT-64-128.

We propose TweGIFT-64 LOTUS-AEAD and TweGIFT-64 LOCUS-AEAD, the TweGIFT-64 based instanti-
ations of LOTUS-AEAD and LOCUS-AEAD, respectively, as our concrete submissions. We fix TweGIFT-
64 LOTUS-AEAD as our primary submission to the standardization process.

1.1 Notations and Conventions

For n ∈ N, we write {0, 1}+ and {0, 1}n to denote the set of all non-empty binary1 strings, and the set of all
n-bit binary strings, respectively. We write λ to denote the empty string, and {0, 1}∗ = {0, 1}+ ∪ {λ}. For
A ∈ {0, 1}∗, |A| denotes the length (number of the bits) of A, where |λ| = 0 by convention. For all practical
purposes, we use the little-endian format for representing binary strings, i.e. the least significant bit is the
right most bit. For any non-empty binary string X, (Xk−1, . . . , X0)

n← x denotes the n-bit block parsing of
X, where |Xi| = n for 0 ≤ i ≤ k − 2, and 1 ≤ |Xk−1| ≤ n. For A,B ∈ {0, 1}∗ and |A| = |B|, we write A⊕B
to denote the bitwise XOR of A and B.

For n, τ, κ ∈ N, Ẽ-n/τ/κ denotes a tweakable block cipher family Ẽ, parametrized by the block length

n, tweak length τ , and key length κ. For K ∈ {0, 1}κ, T ∈ {0, 1}τ , and M ∈ {0, 1}n, we use ẼK,T (M) :=

Ẽ(K,T,M) to denote invocation of the encryption function of Ẽ on input K, T , and M . The decryption

function is analogously defined as Ẽ−1K,T (M). We fix positive even integers n, τ , κ, r, and t to denote the
block size, tweak size, key size, nonce size, and tag size, respectively, in bits. Throughout this document, we
fix n = 64, τ = 4, and κ = 128, r = κ, and t = n.

1Alphabet set is {0, 1}.

1



We sometime use the terms (complete) blocks for n-bit strings, and partial blocks for m-bit strings, where
m < n. Throughout, we use the function ozs, defined by the mapping

∀X ∈
n⋃

m=1

{0, 1}m, X 7→
{

0n−|X|−1‖1‖X if |X| < n,

X otherwise,

as the padding rule to map partial blocks to complete blocks. Note that the mapping is injective over partial
blocks. For any X ∈ {0, 1}+ and 0 ≤ i ≤ |X| − 1, xi denotes the i-th bit of X. The function chop takes a
string X and an integer i ≤ |X|, and returns the least significant i bits of X, i.e. xi−1 · · ·x0.

1.1.1 Finite Field Arithmetic

The set {0, 1}κ can be viewed as the finite field F2κ consisting of 2κ elements. We interchangeably think
of an element A ∈ F2κ in any of the following ways: (i) as a κ-bit string aκ−1 . . . a1a0 ∈ {0, 1}κ; (ii) as a
polynomial A(x) = aκ−1xκ−1+aκ−2xκ−2+ · · ·+a1x+a0 over the field F2; (iii) a non-negative integer a < 2κ;
(iv) an abstract element in the field. Addition in F2κ is just bitwise XOR of two κ-bit strings, and hence
denoted by ⊕. P (x) denotes the primitive polynomial used to represent the field F2κ , and α denotes the
primitive element in this representation. The multiplication of A,B ∈ F2κ is defined as A�B := A(x) ·B(x)
(mod P (x)), i.e. polynomial multiplication modulo P (x) in F2. For κ = 128, we fix the primitive polynomial

P (x) = x128 + x7 + x2 + x+ 1. (1.1)

Then, α, the primitive element, is 2 ∈ F128. It is well-known [10, 7] that multiplication of any field element
with α is computationally efficient. For any A ∈ F2128 , we have

A� α =

{
A� 1 if a|A|−1 = 0,

(A� 1)⊕ 012010000111 if a|A|−1 = 1.

Clearly, we need one shift and one conditional XOR. We refer to this process of multiplying any element
A ∈ F2128 with α, by α-multiplication.

2



Chapter 2

Specification

In this chapter, we present the specifications of LOTUS-AEAD and LOCUS-AEAD along with their underlying
block cipher TweGIFT-64. We also give detailed algorithmic descriptions for the modes. Finally, we list the
recommended instantiations, TweGIFT-64 LOTUS-AEAD and TweGIFT-64 LOCUS-AEAD.

2.1 LOTUS-AEAD and LOCUS-AEAD Modes

The encryption algorithm of both LOTUS-AEAD and LOCUS-AEAD modes receives an encryption key K ∈
{0, 1}κ, a nonceN ∈ {0, 1}κ, an associated data A ∈ {0, 1}∗, and a messageM ∈ {0, 1}∗ as inputs, and returns
a ciphertext C ∈ {0, 1}|M |, and a tag T ∈ {0, 1}n. The decryption algorithm receives a key K ∈ {0, 1}κ, a
nonce N ∈ {0, 1}κ, an associated data A ∈ {0, 1}∗, a ciphertext C ∈ {0, 1}∗, and a tag T ∈ {0, 1}n as inputs,
and returns the plaintext M ∈ {0, 1}|C| corresponding to C, if T authenticates.

Both LOTUS-AEAD and LOCUS-AEAD operate on n-bit blocks and use a tweakable block cipher Ẽ-n/τ/κ
as the underlying primitive. Both the algorithms share a common initialization and associated data processing
phase. During the initialization phase, the κ-bit nonce N is XORed with the κ-bit secret key K to generate
a κ-bit nonce-dependent encryption key KN . Then, an n-bit nonce-dependent masking key ∆N is generated
using double encrypting a fixed value (here we have used 0n) with key K and KN successively with Ẽ.

2.1.1 Associated Data Processing in LOTUS-AEAD and LOCUS-AEAD

For associated data processing, we parse the data into n-bit blocks and process them in a similar way as
as the hash layer of PMAC [5]. To process an associated data block, we first update the current key value

via α-multiplication (see section 1.1.1). Next, we XOR the block with ∆N and encrypt the value using Ẽ
with the fixed tweak 0010 (which we alternatively denote by 2, the integer value corresponding to the binary
representation) and the updated key KN and finally accumulate the encrypted output by XORing it to the
previous checksum value. If the final block is partial, we use the tweak 0011 (or denoted by 3) to process the
final block. We refer to the output of associated data processing as the AD checksum. Complete description
of the associated data processing is depicted in Fig. 2.1 and formally specified in Algorithm 1.

2.1.2 Description of LOTUS-AEAD

To process a message in LOTUS-AEAD, we parse the data into 2n-bit di-blocks and process them in a similar
manner as OTR [9]. For each message di-block, we apply a simple variant of two-round Feistel. However,
instead of one upper layer encryption and one lower layer encryption, here we use two successive encryptions
in both upper layer as well in lower layer. The intermediate states in between the encryptions in each layers
are used to generate the checksum (that we call intermediate checksum), which helps in obtaining integrity
security under RUP setting. To process a di-block, the key is first updated by an α-multiplication (see section

1.1.1) and the same key is used in the four tweakable block cipher Ẽ calls. However, we use different tweaks
in the upper and lower layers (tweak 0100 in the upper layer and 0101 in the lower layer) for the purpose
of domain separation. Also, we use two different tweaks 1100 and 1101 during the final di-block processing.
The final di-block processing is slightly different and uses the length of the final di-block. To generate the

3



A0

∆N

⊕

Ẽ0
KN ,2

U0

V0

A1

∆N

⊕

Ẽ1
KN ,2

U1

V1

⊕ · · ·

Aa−1

∆N

⊕

Ẽa−1
KN ,2/3

Ua−1

Va−1

⊕ V⊕

Figure 2.1: Associated Data Processing for both LOCUS-AEAD and LOTUS-AEAD. Here Ẽi
KN ,2 denotes invocation

of Ẽ with key αi+1�KN and tweak 0010. For the final associated data block, the use of Ẽa−1
KN ,2/3 indicates invocation

of Ẽ with key αa �KN and tweak 0010 or 0011 depending on whether the final block is full or partial.

tag, we apply XEX [10] like transformation on the XOR of intermediate checksum, AD checksum, and the
final message block. Complete specification of LOTUS-AEAD authenticated encryption is given in Algorithm
1. Corresponding verification-decryption algorithm can be found in Algorithm 2. Figure 2.2 gives a pictorial
description of the encryption process.

M2i M2i+1

C2i+1 C2i

⊕

⊕

⊕

∆N

∆N

⊕
Ẽi
KN ,4 Ẽi

KN ,4

Ẽi
KN ,5 Ẽi

KN ,5

W2i

W2i+1

〈len〉n M2c

C2c+1 C2c

⊕

⊕

⊕

∆N

M2c+1

∆N

⊕
Ẽm−1
KN ,12 Ẽm−1

KN ,12

Ẽm−1
KN ,13 Ẽm−1

KN ,13

W2c−1

W2c

V⊕ ⊕W⊕ ⊕Mm−1

∆N

Ẽm
KN ,6⊕

∆N

⊕ T

Figure 2.2: Processing of an m block message M and Tag Generation for LOTUS-AEAD. The upper left part shows
the message processing of an intermediate di-block and the upper right part depicts the message processing of the
final di-block. The lower part shows the tag generation process. c denotes the number of di-blocks in the message i.e.
c = dm/2e − 1. The dotted part in the final di-block is executed only when the message has even number of blocks.

We use the notation Ẽi
KN ,j to denote invocation of Ẽ with key αa+i+1�KN and tweak j, where a denotes the number

of blocks of associated data corresponding to the message. Here W⊕ denotes the intermediate checksum value and
V⊕ denotes the AD checksum value. 〈len〉n is used to denote the n bit representation of the size of the final di-block
in bits.

2.1.3 Description of LOCUS-AEAD

To process a message in LOCUS-AEAD, we parse the data into n-bit blocks and process them in a similar
manner as OCB [11]. For each of the message blocks, we first mask the block, then encrypt with the tweakable

4



Algorithm 1 The encryption algorithm of LOTUS-AEAD.

1: function LOTUS-AEAD Ẽ.enc(K,N,A,M)

2: C ← ⊥,W⊕ ← 0, V⊕ ← 0

3: (KN ,∆N )← init(K,N)

4: if |A| 6= 0 then

5: (KN , V⊕)← proc ad(KN ,∆N , A)

6: if |M | 6= 0 then

7: (KN ,W⊕, C)← proc pt(KN ,∆N ,M)

8: T ← proc tg(KN ,∆N , V⊕,W⊕)

9: return (C, T )

10: function init(K,N)

11: Y ← ẼK,0(0n)

12: KN ← K ⊕N
13: ∆N ← ẼKN ,1(Y )

14: return (KN ,∆N )

15: function proc ad(KN ,∆N , A)

16: L← KN

17: (Aa−1, . . . , A0)
n← A

18: for i = 0 to a− 2 do

19: X ← Ai ⊕∆N

20: L← L� α
21: V ← ẼL,2(X)

22: V⊕ ← V⊕ ⊕ V
23: X ← ozs(Aa−1)⊕∆N

24: L← L� α
25: V ← (|Aa−1| = n)? ẼL,2(X) : ẼL,3(X)

26: V⊕ ← V⊕ ⊕ V
27: return (L, V⊕)

1: function proc pt(KN ,∆N ,M)

2: L← KN

3: (Mm−1, . . . ,M0)
n←M

4: d = dm/2e
5: for i = 0 to d− 2 do

6: j = 2i

7: X1 ←Mj ⊕∆N

8: L← L� α
9: W1 ← ẼL,4(X1)

10: Y1 ← ẼL,4(W1)

11: X2 ← Y1 ⊕Mj+1

12: W2 ← ẼL,5(X2)

13: Y2 ← ẼL,5(W2)

14: W⊕ ←W⊕ ⊕W1 ⊕W2

15: Cj ← X2 ⊕∆N

16: Cj+1 ← X1 ⊕ Y2

17: X1 ← 〈|M | − 2(d− 1)n〉n ⊕∆N

18: L← L� α
19: W1 ← ẼL,12(X1)

20: Y1 ← ẼL,12(W1)

21: X2 ← Y1 ⊕M2d−2

22: C2d−2 ← chop(X2 ⊕∆N , |M2d−2|)
23: W⊕ ←W⊕ ⊕W1

24: C ← (C2d−2, . . . , C0)

25: if 2d = m then

26: W2 ← ẼL,13(X2)

27: W⊕ ←W⊕ ⊕W2

28: Y2 ← ẼL,13(W2)

29: C2d−1 ← chop(X1 ⊕ Y2, |M2d−1|)⊕M2d−1

30: C ← C2d−1‖C

31: W⊕ ←W⊕ ⊕Mm−1

32: return (L,W⊕, C)

33: function proc tg(KN ,∆N , V⊕,W⊕)

34: L← KN � α
35: T ← ẼL,6(V⊕ ⊕W⊕ ⊕∆N )⊕∆N

36: return T

5



Algorithm 2 The verification-decryption algorithm of LOTUS-AEAD. The subroutine proc ad and proc tag
are identical to the one used in the encryption algorithm of LOTUS-AEAD.

1: function LOTUS-AEAD Ẽ.dec(K,N,A,C, T )

2: M ← ⊥, W⊕ ← 0, V⊕ ← 0

3: (KN ,∆N )← init(K,N)

4: if |A| 6= 0 then

5: (KN , V⊕)← proc ad(KN ,∆N , A)

6: if |M | 6= 0 then

7: (KN ,W⊕,M)← proc ct(KN ,∆N , C)

8: T ′ ← proc tg(KN ,∆N , V⊕,W⊕)

9: if T ′ = T then

10: return M

11: else

12: return ⊥

1: function proc ct(KN ,∆N , C)

2: L← KN

3: (Cm−1, . . . , C0)
n← C

4: d = dm/2e
5: for i = 0 to d− 2 do

6: j = 2i

7: L← L� α
8: X1 ← Cj ⊕∆N

9: W1 ← ẼL,5(X1)

10: Y1 ← ẼL,5(W1)

11: X2 ← Cj+1 ⊕ Y1

12: W2 ← ẼL,4(X2)

13: Y2 ← ẼL,4(W2)

14: W⊕ ←W⊕ ⊕W1 ⊕W2

15: Mj ← X2 ⊕∆N

16: Mj+1 ← Y2 ⊕X1

17: X1 ← 〈|C| − 2(d− 1)n〉n ⊕∆N

18: L← L� α
19: W1 ← ẼL,12(X1)

20: Y1 ← ẼL,12(W1)

21: M2d−2 ← chop(Y1 ⊕∆N , |C2d−2|)⊕ C2d−2

22: X2 ← Y1 ⊕M2d−2

23: W⊕ ←W⊕ ⊕W1

24: M ← (M2d−2, . . . ,M0)

25: if 2d = m then

26: W2 ← ẼL,13(X2)

27: W⊕ ←W⊕ ⊕W2

28: Y2 ← ẼL,13(W2)

29: M2d−1 ← chop(X1 ⊕ Y2, |C2d−1|)⊕ C2d−1

30: M ←M2d−1‖M

31: W⊕ ←W⊕ ⊕Mm−1

32: return (L,W⊕,M)

6



block cipher twice and then again mask to obtain the corresponding ciphertext block. Similar to OTR, the
∆N masking is same along a query and the intermediate states (Wi in Fig. 2.3) between the two block cipher
calls are XORed together to generate the intermediate checksum. For the last message block, instead of
applying XEX on the message block, we apply it on the final block message length and XOR the output with
the final message block. This strategy ensures identical processing for complete or incomplete final blocks.
Again, similar to LOTUS-AEAD, we update the key by α-multiplication (see section 1.1.1) before each block
processing, and we use tweak 4 and 5 for non-final and final blocks respectively. The tag is generated
identically to that of LOTUS-AEAD. The complete specification of LOCUS-AEAD authenticated encryption
and corresponding verification-decryption algorithm is given in Algorithm 3. The message processing part of
the encryption algorithm is depicted in Fig. 2.3.

M0

∆N ⊕

Ẽ0
KN ,4

X0

Ẽ0
KN ,4

W0

∆N ⊕

C0

Mm−2

∆N ⊕

Ẽm−2
KN ,4

Xm−2

Ẽm−2
KN ,4

Wm−2

∆N ⊕

Cm−2

〈M〉

∆N ⊕

Ẽm−1
KN ,5

Xm−1

Ẽm−1
KN ,5

Wm−1

∆N Mm−1⊕

Cm−1

· · ·
V⊕ ⊕W⊕ ⊕Mm−1

Ẽm
KN ,6

⊕ ∆N

T

⊕ ∆N

Figure 2.3: Processing of an m block message M and tag generation for LOCUS-AEAD. 〈len〉n is used to denote
the n bit representation of the size of the final block in bits. W⊕ denotes the intermediate checksum value and V⊕
denotes the AD checksum value. Ẽi

KN ,j is defined in a similar manner as in Fig. 2.2.

2.2 The TweGIFT-64 Tweakable Block Cipher

TweGIFT-64, or more formally TweGIFT-64/4/128, is a 64-bit tweakable block cipher with 4-bit tweak and
128-bit key. As the name suggests, it is a tweakable variant of GIFT-64-128 [3] block cipher. TweGIFT-64 is
composed of 28 rounds and each round consists following operations:

SubCells: TweGIFT-64 employs the same invertible 4-bit S-box as GIFT-64-128 and applies it to each nibble
of the cipher state. Description of this S-box is given in Table 2.1.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
GS(x) 1 A 4 C 6 F 3 9 2 D B 7 5 0 8 E

Table 2.1: The GIFT S-Box GS. Each value is a hexadecimal number.

PermBits: TweGIFT-64 also uses the same bit permutation that was used in GIFT-64-128. This bit mapping
is presented in Table 2.2. Note that, this permutation maps bits from bit position i of the cipher state to bit
position GP (i), where

GP (i) = 4bi/16
⌋

+ 16
((

3b(i mod 16)/4c+ (i mod 4)
)
mod 4

)
+ (i mod 4).

7



Algorithm 3 The encryption and verification-decryption algorithms of LOCUS-AEAD. The subroutine
proc ad and proc tag are identical to the one used in LOTUS-AEAD.

1: function LOCUS-AEAD Ẽ.enc(K,N,A,M)

2: C ← ⊥, W⊕ ← 0, V⊕ ← 0

3: (KN ,∆N )← init(K,N)

4: if |A| 6= 0 then

5: (KN , V⊕)← proc ad(KN ,∆N , A)

6: if |M | 6= 0 then

7: (KN ,W⊕, C)← proc pt(KN ,∆N ,M)

8: T ← proc tg(KN ,∆N , V⊕,W⊕)

9: return (C, T )

10: function proc pt(KN ,∆N ,M)

11: L← KN

12: (Mm−1, . . . ,M0)
n←M

13: for j = 0 to m− 2 do

14: X ←Mj ⊕∆N

15: L← L� α
16: W ← ẼL,4(X)

17: W⊕ ←W⊕ ⊕W
18: Y ← ẼL,4(W )

19: Cj ← Y ⊕∆N

20: L← L� α
21: X ← 〈|Mm−1|〉n ⊕∆N

22: W ← ẼL,5(X)

23: Y ← ẼL,5(W )

24: Cm−1 ← chop(Y ⊕∆N , |Mm−1|)⊕Mm−1

25: W⊕ ←W⊕ ⊕W ⊕Mm−1

26: C ← (Cm−1, . . . , C0)

27: return (L,W⊕, C)

1: function LOCUS-AEAD Ẽ.dec(K,N,A,C, T )

2: M ← ⊥, W⊕ ← 0, V⊕ ← 0

3: (KN ,∆N )← init(K,N)

4: if |A| 6= 0 then

5: (KN , V⊕)← proc ad(KN ,∆N , A)

6: if |M | 6= 0 then

7: (KN ,W⊕,M)← proc ct(KN ,∆N , C)

8: T ′ ← proc tg(KN ,∆N , V⊕,W⊕)

9: if T ′ = T then

10: return M

11: else

12: return ⊥

13: function proc ct(KN ,∆N , A, C, T )

14: L← KN

15: (Cm−1, . . . , C0)
n← C

16: for j = 0 to m− 2 do

17: Y ← Cj ⊕∆N

18: L← L� α
19: W ← Ẽ−1

L,4(Y )

20: W⊕ ←W⊕ ⊕W
21: X ← Ẽ−1

L,4(W )

22: Mj ← X ⊕∆N

23: L← L� α
24: X ← 〈|Cm−1|〉n ⊕∆N

25: W ← ẼL,5(X)

26: Y ← ẼL,5(W )

27: Mm−1 ← chop(Y ⊕∆N , |Cm−1|)⊕ Cm−1

28: W⊕ ←W⊕ ⊕W ⊕Mm−1

29: M ← (Mm−1, . . . ,M0)

30: return (L,W⊕,M)

8



i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
GP (i) 0 17 34 51 48 1 18 35 32 49 2 19 16 33 50 3

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
GP (i) 4 21 38 55 52 5 22 39 36 53 6 23 20 37 54 7

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
GP (i) 8 25 42 59 56 9 26 43 40 57 10 27 24 41 58 11

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
GP (i) 12 29 46 63 60 13 30 47 44 61 14 31 28 45 62 15

Table 2.2: The GIST Bit-Permutation GP .

AddRoundKey: In this step, a 32-bit round key is extracted from the master key state and added to the cipher
state. This operation is also identical to that of GIFT.

AddRoundConstant: A single bit “1” and a 6-bit round constant are XORed into the cipher state at bit
position 63, 23, 19, 15, 11, 7 and 3, respectively. The round constants are generated using the same 6-bit
affine LFSR as SKINNY [4] and GIFT-64-128 [3].

AddTweak: For tweak processing, we first expand the 4-bit tweak into a 16-bit codeword using an efficient
linear code and then XOR this expanded codeword to the state at an interval of 4 rounds.

The complete specification of TweGIFT-64 is presented in Algorithm 4.

2.3 Recommended Instantiations

We recommend the following concrete instantiations:

• TweGIFT-64 LOTUS-AEAD: This is the NAEAD scheme obtained by instantiating the LOTUS-AEAD
mode of operation with TweGIFT-64 block cipher. Here, the key size is 128 bits; nonce size is 128 bits;
and tag size is 64 bits. We also recommend TweGIFT-64 LOTUS-AEAD, due to its inverse-free
nature, as the primary version among our submissions.

• TweGIFT-64 LOCUS-AEAD: This is the NAEAD scheme obtained by instantiating the LOCUS-AEAD
mode of operation with TweGIFT-64 block cipher. Here, the key size is 128 bits; nonce size is 128 bits;
and tag size is 64 bits.

9



Algorithm 4 The TweGIFT-64 tweakable block cipher.

1: function TweGIFT(K, t,X)

2: C ← 000000

3: for i = 0 to 27 do

4: X ← SubCells(X)

5: X ← PermBits(X)

6: (K,X)← AddRoundKey(K,X)

7: (C,X)← AddRoundConstant(C,X)

8: if i ∈ {3, 7, 11, 15, 19, 23} then
9: X ← AddTweak(X, t)

10: return X

11: function SubCells(X)

12: (x15, . . . , x0)
4← X

13: for i = 0 to 15 do

14: xi ← GS(xi)

15: return X

16: function AddRoundKey(K,X)

17: (k7, . . . , k0)
16← K

18: (x63, . . . , x0)
1← X

19: u15..0 ← k1

20: v15..0 ← k0

21: for i = 0 to 31 do

22: x4i+1 ← x4i+1 ⊕ ui

23: x4i ← x4i ⊕ vi
24: k7‖ · · · ‖k0 ← k1 ≫ 2‖k0 ≫ 12‖k7‖ · · · ‖k2
25: return (K,X)

1: function AddTweak(X, t)

2: (x63, . . . , x0)
1← X

3: (t3, . . . , t0)
1← t

4: t⊕ ← t0 ⊕ t1 ⊕ t2 ⊕ t3
5: for i = 0 to 3 do

6: ti+4 ← ti ⊕ t⊕
7: t15..8 ← t7..0

8: for i = 0 to 15 do

9: x4i+2 ← x4i+2 ⊕ ti
10: return X

11: function PermBits(X)

12: (x63, . . . , x0)
1← X

13: for i = 0 to 63 do

14: xGP (i) ← xi

15: return X

16: function AddRoundConstant(C,X)

17: (c5, . . . , c0)
1← C

18: (x63, . . . , x0)
1← X

19: x63 ← x63 ⊕ 1

20: for i = 0 to 5 do

21: x4i+3 ← x4i+3 ⊕ ci
22: (c5, . . . , c0)← (c4, . . . , c0, c5 ⊕ c4 ⊕ 1)

23: return (C,X)

10



Chapter 3

Security

In this chapter, we summarize the security details of TweGIFT-64 LOTUS-AEAD and TweGIFT-64 LOCUS-
AEAD. Section 3.1 gives the concrete data and time limits achieved by the two instantiations. It also lists
all the relevant conditions to be adhered in order to maintain adequate security level. Section 3.2 presents
a brief analysis against generic attacks (assuming the underlying block cipher is ideal), i.e. the security of
modes. Section 3.3 presents a brief analysis on the security of TweGIFT-64, showing that it displays close to
ideal behavior under the given data and time limit.

3.1 Security Claims

NAEAD modes Security Data complexity Time complexity
Model (in log2 of bytes) (in log2)

TweGIFT-64 LOTUS-AEAD IND-CPA 64 128
TweGIFT-64 LOTUS-AEAD INT-CTXT (RUP) 64 128
TweGIFT-64 LOCUS-AEAD IND-CPA 64 128
TweGIFT-64 LOCUS-AEAD INT-CTXT (RUP) 64 128

Table 3.1: Security levels for TweGIFT-64 LOTUS-AEAD and TweGIFT-64 LOCUS-AEAD. The data and time limits
indicate the amount of data and time required to make the attack advantage close to 1.

In Table 3.1, we list the security levels of TweGIFT-64 LOTUS-AEAD and TweGIFT-64 LOCUS-AEAD. We
assume a nonce-respecting adversary, i.e. for a fixed key, no pair of distinct encryption queries share the
same public nonce value, although we remark that the security may even hold when the public nonce value
is sampled uniformly at random from the nonce space for each encryption query. TweGIFT-64 LOTUS-AEAD
and TweGIFT-64 LOCUS-AEAD provide integrity security under a stronger model (see section 3.2.3), where
the decryption algorithm releases unverified plaintext (RUP model). Here we strongly remark that the same
is not true in case of privacy, i.e. we do not claim privacy security in RUP model. All our security claims
are based on full round TweGIFT-64, and we do not claim any security for TweGIFT-64 LOTUS-AEAD and
TweGIFT-64 LOCUS-AEAD with round-reduced variants of TweGIFT-64.

3.1.1 Statement

We declare that there are no hidden weaknesses in LOTUS-AEAD and LOCUS-AEAD modes of operation.
Further, to the best of our knowledge, public third-party analysis do not raise any security threat to the
submissions, TweGIFT-64 LOTUS-AEAD and TweGIFT-64 LOCUS-AEAD, within the data and time limit
prescribed in Table 3.1.

3.2 Security of LOTUS-AEAD and LOCUS-AEAD

The two modes are quite identical barring the fact that LOTUS-AEAD processes diblocks of data at a time. So
from the point of view of generic attacks similar strategies apply to both LOTUS-AEAD and LOCUS-AEAD.

11



We describe some possible strategies to attack the LOTUS-AEAD and LOCUS-AEAD modes, and give a rough
estimate on the amount of data and time required to mount those attacks. In the following discussion:

• D denotes the data complexity of the attack. This parameter quantifies the online resource require-
ments, and includes the total number of blocks (among all messages and associated data) processed
through the underlying block cipher for a fixed master key. For the sake of simplicity, we also use D
to denote the data complexity of forging attempts.

• T denotes the time complexity of the attack. This parameter quantifies the offline resource requirements,
and includes the total time required to process the offline evaluations of the underlying block cipher.
Since one call of the block cipher can be assumed to take a constant amount of time, we generally take
T as the total number of offline calls to the block cipher.

3.2.1 Guessing Key and (Mask)

Guessing the Master Key: The adversary can try to guess the master key using offline block cipher
queries. Once the master key is known the adversary can certainly distinguish, forge valid ciphertexts, or
worse, recover the plaintext. But, since the master key is chosen uniformly, this attack strategy would require
T ≈ 2κ many offline queries and a constant number of construction queries, i.e. D = O(1).

Guessing the Nonce-based Key and Mask: The adversary can try to guess the nonce-based key and
mask for some nonce value using a combination of offline and online queries. Once the key and the mask
is known, the adversary can forge valid ciphertexts for this particular nonce value. Note that guessing just
one of the key or the mask is not sufficient as the other value is random. Further, guessing both the key
and the mask requires the product, DT ≈ 2n+κ. This can be argued using list matching arguments, i.e.
the adversary creates a list LT of T offline query-response tuples and a list LD of D online query-response
tuples (with empty plaintext and associated data). It then tries to get a matching between LT and LD, and
for each matching it tries an appropriate forging attempt. A matching between any element of LT and any
element of LD would happen with approx. 2−192 probability (as the key and mask are random and almost
independent of each other). So, we need DT ≈ 2n+κ.

3.2.2 Privacy Security of LOTUS-AEAD and LOCUS-AEAD

We consider the well-established notion of IND-CPA for privacy security. In IND-CPA security model, the
adversary is concerned with distinguishing attacks using the output of the encryption algorithm on adversary’s
choices of input. Note that, the adversary is not allowed to repeat the nonce value, i.e. the adversary is
nonce-respecting. In addition to the encryption queries, the adversary is also allowed offline queries to the
block cipher. A trivial attack strategy is guessing the master key (as discussed in section 3.2.1). Non-trivially,
the adversary can distinguish the modes from the ideal if there is no randomness in some ciphertext (or tag)
blocks. This is possible in the following two ways:

• Online-Online Block Matching: For a pair of distinct online (in this case encyrption) query block,
the triple of key, tweak and input of the underlying block cipher, matches. Then, the block that appears
later will have non-random behavior. Note that this matching is only accidental and will happen with
probability approx. 2−192. So we need D2 ≈ 2n+κ.

• Online-Offline Block Matching: For an online query block, the triple key, tweak and input of the
underlying block cipher matches with the key, tweak and input of the block cipher in some offline query.
Again this matching will happen accidentally with probability approx. 2−192, which gives DT ≈ 2n+κ.

In the absence of above given cases, the two modes behave identically to an ideal nonce-based authenticated
encryption scheme.

3.2.3 Integrity Security of LOTUS-AEAD and LOCUS-AEAD in RUP

We consider a stronger variant of the well-known INT-CTXT notion for integrity security. In this case, the
adversary is concerned with forging a new and valid (passes verification) ciphertext and tag pair. In classical
INT-CTXT security model the adversary is allowed to make encryption queries to the encryption algorithm
and forging queries to the decryption algorithm. The decryption algorithm does not release plaintext unless

12



𝑅0 𝑅1 𝑅2 𝑅3 

𝑇𝑒 

𝑅4 𝑅5 𝑅6 𝑅7 

𝑇𝑒 

𝑅8 𝑅9 𝑅10 𝑅11 

𝑇𝑒 

𝑅12 𝑅13 𝑅14 𝑅15 

𝑇𝑒 

𝑅16 𝑅17 𝑅18 𝑅19 

𝑇𝑒 

𝑅20 𝑅21 𝑅22 𝑅23 

𝑇𝑒 

𝑅24 𝑅25 𝑅26 𝑅27 

4-𝑟𝑜𝑢𝑛𝑑 𝑐𝑜𝑟𝑒 4-𝑟𝑜𝑢𝑛𝑑 𝑐𝑜𝑟𝑒 4-𝑟𝑜𝑢𝑛𝑑 𝑐𝑜𝑟𝑒 4-𝑟𝑜𝑢𝑛𝑑 𝑐𝑜𝑟𝑒 4-𝑟𝑜𝑢𝑛𝑑 𝑐𝑜𝑟𝑒 4-𝑟𝑜𝑢𝑛𝑑 𝑐𝑜𝑟𝑒 

Figure 3.1: Six 4-round cores of TweGIFT-64. Te is the 16-bit expanded tweak generated from the 4-bit tweak.

the ciphertext and tag pair passes verification. But we allow additional power to the adversary in that the
decryption algorithm releases the plaintext, irrespective of the authentication result, i.e. we claim INT-CTXT
in RUP model [1]. Note that the release of unverified plaintext does not help the adversary in anyway, as
only an encrypted form of the plaintext (which is never released) is used to compute the final tag.

Here, the adversary can apply previous strategies of key and mask guessing as in section 3.2.1, or guessing
the internal variables V (encryption of masked AD blocks) or W (decryption of masked ciphertext blocks)
using the approach in section 3.2.2; or, try a new strategy of guessing the tag output for each forging attempt.
Previous strategies would lead to bounds of the form T ≈ 2κ and DT ≈ 2n+κ. On the other hand, the tag
guessing strategy is similar to guessing a 64-bit random value which would yield D ≈ 2n.

3.2.4 Validation of Security Claims

The security levels in Table 3.1 can be validated by simply substituting n = 64 and κ = 128.

3.3 Security Analysis of TweGIFT-64

In this section, we provide the security analysis on TweGIFT-64 in the related-key setting. Without exploiting
the tweak, TweGIFT-64 offers exactly the same security as the original GIFT-64-128. Hence we focus our
attention on the attacks that exploit the tweak injection.

The exact security bound, e.g. the lower bound of the number of active S-boxes and the upper bound of
the differential characteristic probability, can be obtained by using various tools based on MILP and SAT,
however to derive such bounds for the entire construction with 128-bit key difference is often infeasible.

Here we focus on the feature that the tweak expansion function ensures a large number of active bits at
the expanded tweak. This implies that differential trails with non-zero tweak difference will have a relatively
large number of active S-boxes around the tweak injection. This motivates us to evaluate the tight bound
of the differential characteristic probability for the 2-round transformation followed by the tweak injection
and another 2-round transformation, which we call “4-round core”. Let pcore be the maximum differential
characteristic probability of the 4-round core. Then, the probability for the entire construction is upper
bounded by (pcore)

6 because 28 rounds of TweGIFT-64 contain six sequence of the 4-round core (Fig. 3.1).
We used the MILP based tool to derive pcore. It turned out that the pcore is 2−16, hence the maximum

differential characteristic probability of 28 rounds can be upper bounded by 2−16×6 = 2−96. This can also be
viewed that the maximum differential characteristic probability reaches 2−16×4 = 2−64 and we have 8 rounds
for the margin.

One of the best differential trails for the 4-round core with probability 2−16 is fully specified in Table 3.2.
The tweak expansion ensures that the number of active bits in Te is at least 8 when the tweak difference
is non-zero. We note that, in the very middle round, both AddRoundKey and AddTweak are performed.
However the key bits and tweak bits are XORed to different bit positions of the state. Thus, they cannot
cancel each other to avoid affecting the state.

Remarks on Three 8-Round Cores

28 rounds of TweGIFT-64 can also be viewed as containing three of the 8-round core: 4-round transformation
followed by the tweak injection and another 4-round transformation. We also evaluated the maximum
differential characteristic probability of the 8-round core by using the MILP-based tool, which turned out
to be 2−26.7. Hence, from this evaluation, the probability for the entire construction can be upper bounded
only by 23×−26.7 = 2−80.1.

13



Table 3.2: The Best Differential Trail for 4-Round Core of TweGIFT-64.

Round Mask Differential Mask Probability

1
Before SC 0000 0000 0000 0000

1
After SC 0000 0000 0000 0000

Round key 0000 0000 0000 0000

2
Before SC 0000 0000 0000 0000

1
After SC 0000 0000 0000 0000

Round key 0000 0000 0000 0000

tweak difference: 8880 0008 8880 0008

3
Before SC 8880 0008 8880 0008

2−16
After SC 3330 0003 3330 0003

Round key 3030 3030 1212 2121

4
Before SC 0000 0000 0000 0000

1
After SC 0000 0000 0000 0000

Round key 0000 0000 0000 0000

This observation demonstrates the difficulties of exploiting our tweak injection in another way. The
difficulty of controlling differential trails lies in the heavy weight of the expanded tweak and thus to count
as many tweak injection as possible would be the best to derive good bounds.

14



Chapter 4

Features

Here we succinctly cover the salient features of our proposals:

1. High Security: The use of nonce-based encryption key and masking key ensures that both LOTUS-
AEAD and LOCUS-AEAD achieve beyond the birthday bound security. In fact, both of them achieve
the optimal security level, DT = O(2n+κ), where D and T denote the data and time complexity,
respectively. Here D < 2n, and T < 2κ are obvious conditions.

2. Lightweight: To the best of our knowledge, LOTUS-AEAD and LOCUS-AEAD, are the only modes
which can achieve the NIST lightweight standardization requirements with 64-bit block ciphers. This
reduces the overall state size of the AEAD candidates, when instantiated with ultra-lightweight block
ciphers. Our dedicated tweakable block cipher, TweGIFT-64, is a perfectly suitable candidate for this.

3. High Performance: LOTUS-AEAD and LOCUS-AEAD preserve the inherent high performance fea-
tures of OCB and OTR. Both of them are single pass and fully parallelizable. Moreover, LOTUS-AEAD
is inverse-free which makes it very efficient in applications, where both encryption and decryption
modules are required to be implemented on the same device.

4. INT-RUP Secure: Most of the existing block cipher based modes, notably OCB, OTR, COFB [6],
SUNDAE [2], do not provide any security in RUP model. This might be an issue in memory-constrained
lightweight environments or low-latency real-time streaming protocols. Our proposals solves the prob-
lem partially as they provide integrity security under RUP model.

5. Versatility: Probably, the single most important feature of our proposals is their scope of applicability.
At one end of the spectrum, the parallelizability of LOTUS-AEAD and LOCUS-AEAD make them a
perfect candidate for applications in high performance infrastructures. On the other end, their overall
state size is competitively small with respect to many existing lightweight candidates, which makes
them suitable for low-area hardware implementations.

15



Chapter 5

Design Rationale

In this section, we briefly describe the various design choices and rationale for our proposals.

5.1 Choice of the Modes: LOTUS-AEAD and LOCUS-AEAD

Our primary goal is to design a lightweight AEAD that should be efficient, provides high performance
capability and performs reasonably well in low-end devices as well. For efficiency, the AEAD should be one
pass. To obtain high performance capability, we aim for parallelizability. In addition, we demand integrity
in RUP model. This is specially useful for memory-constrained lightweight applications.

We start with two well-known modes, namely OCB and OTR. Both OCB and OTR satisfy the first two
properties. OCB is online, one-pass and parallelizable. OTR has all these features plus it offers inverse-free
feature, albeit in exchange for a larger state (as it works on di-blocks). However, both of them are insecure
under the RUP model. This motivates us to design an AE mode which is structurally as simple as OCB and
OTR but achieves RUP security while keeping the primary features, such as efficiency and parallelism, intact.

The new proposals LOTUS-AEAD and LOCUS-AEAD replace one block cipher call by two calls. The
rationale behind this modification is the observation that the intermediate state between the two block
cipher invocations can be used to generate a checksum, which is completely hidden and hence cannot be
controlled by the adversary (even if the adversary is allowed to make RUP queries). This hidden checksum
ensures integrity security in RUP model. The additional block cipher call per message block increases the
number of block cipher calls from ` to 2`+ 1 to process an `-block message. However, this seems optimal as
for any INT-RUP secure parallel AEAD mode, at least 2`+ 1 non-linear invocations are necessary to process
an `-block message.

5.1.1 Associated Data Processing

The associated data processing phase is based on a simple variant of the hash layer of PMAC, and the
computation is completely parallel. The associated data processing can be done in parallel with the plaintext
and/or ciphertext processing in order to maximize the performance in parallel computing environments.

5.1.2 Tag Generation

Both OCB and OTR generate the tag using the checksum (simple XORs) of all the plain text blocks and
the output of the processed associated data. However, two separate states are required to hold the message
checksum and the AD checksum. We obtain INT-RUP security, by using an intermediate checksum (hidden
to the adversary) instead of the plaintext checksum. Moreover, we do not store the intermediate checksum
and AD checksum separately. Rather, we XOR the two checksums, which means that in a sequential im-
plementations, the intermediate checksum can be computed on top of the AD checksum. This reduces the
overall state size by size of one block.

16



5.1.3 Nonce and Position Dependent Keys

A notable change in LOTUS-AEAD and LOCUS-AEAD is the use of nonce and position dependent keys. OCB
and OTR have only birthday bound security on the block size. This is because the security is generally
lost once the input/output of any two distinct block cipher calls matches, as the two calls share the same
encryption key. In LOTUS-AEAD and LOCUS-AEAD, we overcome the birthday bound barrier by changing
the key and tweak pair for each block cipher call. So even if there is a collision among inputs/outputs, the
security remains intact, as the block cipher keys or tweaks are distinct. In fact, our modes are secure up
to data complexity of 2n, and time complexity of 2κ, and combined data-time complexity up to 2n+κ (see
section 3 for more details). This, in turn, helps us to construct AEAD algorithms with the desired security
level using an ultra-lightweight block cipher TweGIFT-64.

5.2 Choice of the Tweakable Block Cipher: TweGIFT-64

The main motivation behind TweGIFT-64 is the lack of a good short-tweak tweakable block cipher, which
is essential for instantiating our modes LOTUS-AEAD and LOCUS-AEAD. There are some extremely good
tweakable block cipher candidates, most notably SKINNY [4], but they are designed to handle general purpose
tweaks, and hence not optimized for very short tweaks of size 4 bits. In contrast, TweGIFT-64 is especially
designed on top of the GIFT-64-128 block cipher to handle such small tweak values.

5.2.1 Tweak Expansion

For the tweak expansion, we use a simple linear code that converts a 4-bit tweak value into an 8-bit codeword.
The linear code is described below:

(x3, x2, x1, x0)→ (S ⊕ x3, S ⊕ x2, S ⊕ x1, S ⊕ x0, x3, x2, x1, x0), where S = x0 ⊕ x1 ⊕ x2 ⊕ x3.

This linear code has two advantages: (i) it is a distance 4 code, and (ii) it is very simple and requires only
7 XOR operations. We use two copies of the codeword to get a 16-bit codeword, which has distance 8. This
high distance linear code ensures good differential characteristics for TweGIFT-64 (see section 3.3).

5.2.2 Tweak Injection

We choose to inject the expanded tweak into the block cipher state by masking it to the third bit of each
nibble. This bit position has been chosen as the other three positions are already masked by the round key
and round constant bits. As shown in section 3.3, tweak injection at intervals of 4 rounds ensures very low
differential probability for TweGIFT-64.

17



Chapter 6

Hardware Implementation

In this chapter, we provide a brief idea on the FPGA implementations of our designs. We first briefly describe
our hardware implementation details of the TweGIFT-64 module. We have implemented TweGIFT-64 on Vir-
tex 6 (target device xc6vlx760) using the RTL approach and a basic iterative type architecture. We would like
to emphasize that our implementation is round based and it uses 64-bit data path, a smaller implementation
can be obtained using smaller datapaths 4-bit, 8-bit, 16-bit or even serialized implementations.

6.1 Implementation of TweGIFT-64

Table 6.1 provides the implementation details of TweGIFT-64 on Virtex 6. It is evident from the results
that the difference in the number of LUTs is 119 (caused by the inclusion of the decryption rounds and the
multiplexers to select the input to the state register). The difference in terms of the number of slices is about
36 such that one slice in Virtex 6 has 4 LUTs and 2 Flip-flops (depends how a design is optimized and placed
by the Xilinx tools).

Table 6.1: TweGIFT-64 Implemented FPGA Results on Virtex 6

Mode
# Slice
Registers

# LUTs # Slices
Frequency

(MHZ)
Gbps

Mbps/
LUT

Mbps/
Slice

Enc-Dec 273 734 270 425.99 0.94 1.28 3.48
Enc 275 333 134 540.56 1.19 3.57 8.88

Table 6.2: TweGIFT-64 Implemented FPGA Results on Virtex 7

Platform
# Slice
Registers

# LUTs # Slices
Frequency

(MHZ)
Gbps

Mbps/
LUT

Mbps/
Slice

Enc-Dec 273 730 265 441.71 0.97 1.32 3.66
Enc 275 329 134 554.32 1.22 3.71 9.10

6.2 Implementation of LOCUS-AEAD and LOTUS-AEAD

The hardware implementations of LOCUS-AEAD and LOTUS-AEAD are written in VHDL and are imple-
mented on both Virtex 6 xc6vlx760 and Virtex 7 xc7vx415t. We use the RTL approach and use a basic round
based architecture. The areas are provided in terms of the number of slice registers, slice LUTs and the
number of occupied slices. The detailed implementation results are depicted in Table 6.3.

18



Table 6.3: LOCUS-AEAD and LOTUS-AEAD (combined Enc-Dec circuit) Implemented FPGA Results.

Platform Scheme
# Slice
Registers

# LUTs # Slices
Frequency

(MHZ)
Throughput

(Gbps)
Mbps/
LUT

Mbps/
Slice

Virtex 6 LOCUS-AEAD 437 1146 418 348.67 0.39 0.34 0.94
Virtex 7 LOCUS-AEAD 430 1154 439 392.20 0.44 0.38 1.00
Virtex 6 LOCUS-AEAD-Enc 427 698 250 368.34 0.41 0.59 1.65
Virtex 7 LOCUS-AEAD-Enc 424 704 272 406.84 0.46 0.65 1.68
Virtex 6 LOTUS-AEAD 571 868 317 351.25 0.39 0.45 1.24
Virtex 7 LOTUS-AEAD 565 865 317 424.45 0.48 0.55 1.50
Virtex 6 LOTUS-AEAD-Enc 564 801 251 380.84 0.43 0.53 1.70
Virtex 7 LOTUS-AEAD-Enc 564 800 249 414.42 0.47 0.58 1.87
Virtex 6 LOTUS-AEAD-Dec 566 804 245 379.83 0.43 0.53 1.74
Virtex 7 LOTUS-AEAD-Dec 563 791 254 418.91 0.47 0.59 1.85

19



Bibliography

[1] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Nicky Mouha, and Kan Yasuda. How
to securely release unverified plaintext in authenticated encryption. IACR Cryptology ePrint Archive,
2014:144, 2014.

[2] Subhadeep Banik, Andrey Bogdanov, Atul Luykx, and Elmar Tischhauser. Sundae: Small universal
deterministic authenticated encryption for the internet of things. IACR Transactions on Symmetric
Cryptology, 2018(3):1–35, Sep. 2018.

[3] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, and Yosuke Todo.
GIFT: A small present - towards reaching the limit of lightweight encryption. In Cryptographic Hardware
and Embedded Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan, September 25-28,
2017, Proceedings, pages 321–345, 2017.

[4] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi, Thomas Peyrin, Yu Sasaki,
Pascal Sasdrich, and Siang Meng Sim. The SKINNY family of block ciphers and its low-latency vari-
ant MANTIS. In Advances in Cryptology - CRYPTO 2016 - 36th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, pages 123–153, 2016.

[5] John Black and Phillip Rogaway. A block-cipher mode of operation for parallelizable message authen-
tication. In Advances in Cryptology - EUROCRYPT 2002, International Conference on the Theory
and Applications of Cryptographic Techniques, Amsterdam, The Netherlands, April 28 - May 2, 2002,
Proceedings, pages 384–397, 2002.

[6] Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, and Mridul Nandi. Blockcipher-based authenti-
cated encryption: How small can we go? In CHES 2017, pages 277–298, 2017.

[7] Ted Krovetz and Phillip Rogaway. The Software Performance of Authenticated-Encryption Modes. In
FSE, pages 306–327, 2011.

[8] Ted Krovetz and Phillip Rogaway. OCB(v1.1). Submission to CAESAR, 2016. https://competitions.
cr.yp.to/round3/ocbv11.pdf.

[9] Kazuhiko Minematsu. AES-OTR v3.1. Submission to CAESAR, 2016. https://competitions.cr.yp.
to/round3/aesotrv31.pdf.

[10] Phillip Rogaway. Efficient instantiations of tweakable blockciphers and refinements to modes OCB
and PMAC. In Advances in Cryptology - ASIACRYPT 2004, 10th International Conference on the
Theory and Application of Cryptology and Information Security, Jeju Island, Korea, December 5-9,
2004, Proceedings, pages 16–31, 2004.

[11] Phillip Rogaway, Mihir Bellare, and John Black. OCB: A block-cipher mode of operation for efficient
authenticated encryption. ACM Trans. Inf. Syst. Secur., 6(3):365–403, 2003.

20

https://competitions.cr.yp.to/round3/ocbv11.pdf
https://competitions.cr.yp.to/round3/ocbv11.pdf
https://competitions.cr.yp.to/round3/aesotrv31.pdf
https://competitions.cr.yp.to/round3/aesotrv31.pdf

	Introduction
	Notations and Conventions
	Finite Field Arithmetic


	Specification
	LOTUS-AEAD and LOCUS-AEAD Modes
	Associated Data Processing in LOTUS-AEAD and LOCUS-AEAD
	Description of LOTUS-AEAD
	Description of LOCUS-AEAD

	The TweGIFT-64 Tweakable Block Cipher
	Recommended Instantiations

	Security
	Security Claims
	Statement

	Security of LOTUS-AEAD and LOCUS-AEAD
	Guessing Key and (Mask)
	Privacy Security of LOTUS-AEAD and LOCUS-AEAD
	Integrity Security of LOTUS-AEAD and LOCUS-AEAD in RUP
	Validation of Security Claims

	Security Analysis of TweGIFT-64

	Features
	Design Rationale
	Choice of the Modes: LOTUS-AEAD and LOCUS-AEAD
	Associated Data Processing
	Tag Generation
	Nonce and Position Dependent Keys

	Choice of the Tweakable Block Cipher: TweGIFT-64
	Tweak Expansion
	Tweak Injection


	Hardware Implementation
	Implementation of TweGIFT-64
	Implementation of LOCUS-AEAD and LOTUS-AEAD


