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1 Introduction

This work proposes the Oribatida family of permutation-based authenticated-encryption
schemes.

Oribatida Is Lightweight. As a keyed permutation-based mode of operation, Oribatida

has to store neither the state of the permutation (plus a small overhead) nor subkeys or
tweaks. Authentication and encryption can be performed fully online and impose no need
on buffering the input. For instantiations, we employ a lightweight family of permutations
SimP that is very close to the block-cipher variants Simon-96-96 or Simon-128-128 and their
respective key schedules. As a result, the instances of SimP possess a low state size of
only 192 and 256 bits, respectively.

Oribatida Is Performant. For a security level of close to 128 bits, Oribatida provides a
rate of 1/2 (two calls to a permutation for processing n-bit message material) for authen-
tication and encryption even with a small permutation size of only n = 192 or n = 256
bits due to the way it masks ciphertext blocks.

Oribatida Alleviates Its Usage Across Different Platforms. Our proposed instantia-
tions of Oribatida with the SimP family of permutations can be implemented with only
the basic operations AND, rotations, and XOR. Since SimP avoids the use of S-boxes,
implementations can split the state flexibly according to the target platforms’ needs.

Oribatida Is Based on Well-known Components. The design of Oribatida is based on
the well-known duplex mode. Therefore, it founds on well-established results. Since SimP

is very close to the design of Simon, it can profit from the existing cryptanalysis, and rely
on its already well-understood permutation design.

Oribatida Is Secure. The design of Oribatida inherits the minimal security guarantees
of the duplex mode. Moreover, Oribatida augments the usual sponge by a ciphertext
masking that boosts the security. While this specification omits tedious proof details, all
members of the Oribatida family are expected to provide 128-bit security for encryption
and integrity.

Oribatida Is Robust under Release of Unverified Plaintexts. While authenticated en-
cryption can be realized in an online manner, proper authenticated decryption must be
offline. However, resource-constrained devices can hardly buffer long messages until the
authentication tag is verified, which can lead to a complete loss of privacy and integrity.
The ciphertext masking of Oribatida limits the security damage in such cases. In the case
of accidental misuse, Oribatida provides integrity also in the case that plaintext material
leaks from invalid ciphertexts.

2 Notations

General Notations. We use uppercase letters (e.g., X , Y ) for functions and variables,
lowercase letters (e.g., x, y) for indices and lengths, as well as calligraphic uppercase
letters (e.g., X ,Y) for sets and spaces. We write F2 for the field of characteristic 2 and
F

n
2 = {0, 1}n for the set of vectors over F2, i.e., strings of n bits. |X | denotes the number

of bits of X . Given X ∈ F
n
2 , we write X [i] for the i-th (least significant) bit of X , and

define the bit order by X = (X [n − 1] ‖ . . . ‖X [1] ‖X [0]). We write ∅ for the empty set
and ε for the empty string.
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We denote by X [x..y] the range of X [x], . . . , X [y] for non-zero integers x and y. Given
binary strings X and Y , we denote their concatenation by X ‖ Y and their bitwise XOR
by X⊕Y when |X | = |Y |. For positive integers x and y and bit strings of different lengths
X ∈ F

x
2 and Y ∈ F

y
2 with x ≥ y, we define X ⊕y Y =def X ⊕ (0x−y ‖ Y ).

We write X և X to indicate that X is chosen uniformly at random and independent
from other variables from a set X . We consider Func(X ,Y) to be the set of all mappings
F : X → Y, and Perm(X ) to be the set of all permutations over X . Given an event E, we
denote the probability of E by Pr[E]. We denote the invalid symbol by ⊥. Moreover, we

denote by (n)k =def
∏k−1

i=0 (n− i) the falling factorial.

For X ∈ F
∗
2, we denote by (X1, X2, . . . , Xx)

n
←− X the splitting of X into n-bit strings X1,

. . . , Xx−1, and |Xx| ≤ n, in form of X1 ‖ . . . ‖Xx = X . Moreover, for Y ∈ Fx, we write

(X1, X2, . . . , Xm)
x1,x2,...,xm
←−−−−−−− Y to denote the splitting of Y into X1 = Y [x − 1..x − x1],

X2 = Y [x − x1 − 1..x− x1 − x2], . . . , Xm = Y [xm − 1..0], where x = x1 + x2 + . . . + xm

holds. For a given set X and some non-negative integer x, we write X≤x for the union
set ∪x

i=0X
i. Given a non-negative integer x < 2n, we write 〈x〉n for its conversion into an

n-bit binary string with the most significant bit left, e.g., 〈135〉8 = (10000111). We omit
n if it is clear from the context.

Nonce-based Authenticated Encryption. Let K be a set of keys, N be a set of nonces,
A a set of associated data,M a set of messages, C a set of ciphertexts, and T a set of au-
thentication tags. A nonce N ∈ N is an input that must be unique for each authenticated
encryption query.
A nonce-based authenticated encryption scheme with associated data Π = (E ,D) is a tuple
of deterministic encryption algorithm E : K × N × A ×M → C × T and deterministic
decryption algorithm D : K ×N ×A× C × T →M× {⊥} with associated key space K.
The encryption algorithm E takes a tuple (K, N, A, M) and outputs (C, T ), where C is a
ciphertext and T an authentication tag. We assume that |C| = |M | holds for all inputs
(K, N, A, M) and their corresponding ciphertexts. The associated data is authenticated,
but not encrypted. The decryption function D takes a tuple (K, N, A, C, T ) and outputs
either the unique plaintext M for which EK(N, A, M) = (C, T ) holds, or outputs ⊥ if the

input is invalid. We introduce EN,A
K (M) as short form of EK(N, A, M) and DN,A

K (C, T )
for DK(N, A, C, T ), respectively.
We assume that authenticated encryption schemes are both correct and tidy. Correct
means that for all (K, N, A, M) ∈ K × N × A ×M, it holds that DN,A

K (EN,A
K (M)) =

M . Tidy means that for all (K, N, A, C, T ) ∈ K × N × A × C × T , it holds that

EN,A
K (DN,A

K (C, T )) = (C, T ) iff DN,A
K (C, T ) 6= ⊥.

Standard Notions. The ideal AE scheme provides two oracles $ : N×A×M→ C×T and
⊥ : N×A×C×T →M×{⊥} that offer access to encryption and verification. Note that we
overload the ⊥ notation to mean the oracle and the symbol of an invalid decryption. Given
a tuple (N, A, M), the ideal encryption oracle outputs ciphertext-tag tuples (C, T ) that

are random bits of the expected length, i.e., computes (C′, T ′) = EN,A
K (M) and samples

C և {0, 1}|C
′| and T և {0, 1}τ . The ideal decryption oracle ensures correctness. That

is, given an input (N, A, C, T ) where (C, T ) had been the output to a previous encryption
query (N, A, M), the decryption oracle outputs the corresponding message M . Otherwise,
the decryption always returns the invalid symbol ⊥ for every new decryption query that
had not been the answer of an earlier encryption query.

Ideal-permutation Model. Since this work studies schemes based on public permuta-
tions, we employ the usual security notions in the ideal-permutation model. So, the
adversary always has an additional oracle π± that provides access to the public permuta-
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tion π in forward and backward direction. We write Π[π] and E [π], D[π], etc. to indicate
that an authenticated-encryption scheme Π and its algorithms are based on a primitive
π և Perm(B), where B = {0, 1}n is some block space.

Definition 1 (nAE Security). Let K և K, π և Perm(B), and let Π[π] = (E [π]K ,D[π]K)
be a nonce-based authenticated scheme. Let A be a nonce-respecting adversary. Then,

Adv
nAE

Π[π](A)
def
= ∆A(E [π]K ,D[π]K , π±; $,⊥, π±).

Notions under Release of Unverified Plaintext Material. In the RUP model by An-
dreeva et al. [ABL+14], the understanding of a nonce-based AE scheme differs slightly
from the previous definition. To formulate the forgery goal, the oracles are adapted. A
verification oracle outputs 1 iff the input is valid, and 0 otherwise. A nonce-based RUP
authenticated encryption scheme Π̃ = (ẼK , D̃K , ṼK) is a 3-tuple of encryption algorithm

Ẽ : K ×N ×A×M→ C × T , decryption algorithm D̃ : K ×N ×A× C × T →M, and
verification algorithm ṼK : K×N ×A×C ×T → {0, 1}. The signature of the encryption
and decryption algorithms are unchanged, but the decryption oracle always outputs the
resulting would-be plaintext. We consider the security of integrity in this model, dubbed
INT-RUP by [ABL+14].

Definition 2 (INT-RUP Security). Let K և K, π և Perm(B), and let Π̃[π] = (Ẽ [π]K ,

D̃[π]K , Ṽ [π]K) be a nonce-based RUP authenticated scheme. Let A be a nonce-respecting
adversary. Then

AdvINT-RUP

Π[π] (A)
def
= ∆

A

(Ẽ [π]K , D̃[π]K , Ṽ [π]K , π±; Ẽ [π]K , D̃[π]K ,⊥, π±).

3 Specification of Oribatida

This section defines the Oribatida authenticated-encryption scheme.

General Definitions. Let n denote the state size, k the key size, r the rate, c the capacity,
s the mask size, ν the nonce size, d a domain size, and τ a tag size in bits, all of which
are non-negative integers. We define:

• The key space K = F
k
2 , with k ≤ n.

• The state space S = F
n
2 .

• We denote by r the rate and by c the capacity of the Oribatida mode, where r+c = n
bits. We define a block space B = F

r
2.

• The nonce space N = F
ν
2 , with ν ≤ r. Oribatida requires ν + k = n.

• A finite set of domains DO = F
d
2 for d = 4 bits.

• We define positive integers amax and mmax for the maximal length in bits of associ-
ated data message inputs, respectively.

• The associated-data space A = F
≤amax

2 .

• Message and ciphertext spacesM = C = F
≤mmax

2 .

• Moreover, we define the space of authentication tags T = F
τ
2 with τ ≤ r.
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Figure 1: Authentication of an a-block associated data A and the encryption of an m-
block plaintext M with Oribatida, for a, m > 1. P and P ′ are permutations, K the secret
key, N the nonce, C the resulting ciphertext, and T the resulting authentication tag.

We define s ≤ c for the mask size in bits. We write two permutations P, P ′ ∈ Perm(S).
We denote the state after the i-th call to the permutations by Si = (Ui ‖Vi), and the
state after XORing the subsequent associated-data block Ai or message block Mi−a to it
by (Xi ‖ Yi), where a denotes the number of associated-data blocks after padding. We say
that A is integral if its length is a multiple of r bits, and say that it is partial otherwise.
Similarly, we say that M (or C) is integral if its length is a multiple of r bits, and call it
partial otherwise.

The Core Idea. Oribatida is a variant of the monkey-wrap design [BDPVA12], as used
before, e.g., in Ascon [DEMS16] or NORX [AJN14]. Oribatida extends previous designs
by a ciphertext-block masking that increases the resilience against release of unverified
plaintext material. We denote by (Ui, Vi) the outputs of and by (Xi, Yi) the inputs to the
permutation. As in the classical sponge, Oribatida considers the state Si = (Ui ‖Vi) as a
rate part Ui of r bits, where inputs are XORed to, and a capacity part Vi of c = n − r
bits. Unlike the usual sponge, an s-bit part of the capacity is used to mask the subsequent
ciphertext block. The definition is given in Algorithm 1. In the following, explanations
and details are presented.

3.1 Proposed Parameter Sets

Oribatida-n-s is proposed in two versions, parametrized by the state size of the permu-
tation n, and a mask size s. Table 1 lists the proposed parameter sets. We define a
security parameter z = c + s that should be defined as 192 (the target for NIST secu-
rity requirements). We briefly recall the parameters and the conditions satisfied by these
parameters.

1. We always choose a key size of k = 128 bits.

2. n denotes the size of the permutation in bits, which is either 256 or 192.

3. The nonce length ν is chosen such that ν + k = n holds.
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Table 1: Recommended schemes of Oribatida in the order of recommendation. The top-
most is our primary recommendation. All integer values are given in bits. The state size
is given by r + c. Rec. = Recommendation.

State size

Permutations Key Nonce Tag Rate Capacity Mask

Rec. Name P P ′ (k) (ν) (τ ) (r) (c) (s)

1 Oribatida-256-64 SimP-256-4 SimP-256-2 128 128 128 128 128 64

2 Oribatida-192-96 SimP-192-4 SimP-192-2 128 64 96 96 96 96

4. The capacity of the permutation is chosen as c = 192 − s bits (by the security
requirement mentioned above).

5. Thus, the mask size s is at most the capacity: s ≤ c.

6. Finally, the tag length is set to τ = n− c bits.

Oribatida-n-s employs two internal permutations P, P ′ ∈ Perm(Fn
2 ), where P ′ is chosen as

a round-reduced variant of P to process the associated data more efficiently. The following
members of the Oribatida-n-s family are proposed, based on instantiations from the SimP

family of permutations:

• Our primary recommendation is Oribatida-256-64. For P , this variant uses SimP-
256-4 with rs = 34 rounds per step and θ = 4 steps. Moreover, for P ′, it employs
SimP-256-2 with rs = 34 rounds per step and θ = 2 steps.

• Our secondary recommendation is Oribatida-192-96. For P , this variant uses
SimP-192-4 with rs = 26 and θ = 4 steps. For P ′, it employs SimP-192-2 with
rs = 26 and θ = 2 steps.

3.2 Limitations

The encryption of Oribatida produces a ciphertext of the same length as the plaintext,
and a τ -bit authentication tag. Its decryption will – if the given tuple of key, nonce,
associated data, ciphertext, and tag is valid – produce a plaintext of the same length as
the ciphertext. The nonce must be unique for each encryption query, even if the message
is empty. There is no secret message number for Oribatida.
At most 250 − 1 bytes, over all the summed lengths of all nonces, associated data after
padding, and messages after padding of all queries, are allowed to be processed under
the same secret key before the key must be changed. At most 250 − 1 bytes, over the
summed length of nonce, associated data after padding, and message after padding, are
allowed in a single query. In each encryption or verification query, the associated data can
be empty or present; in each encryption query, the message can be empty or present; in
each decryption query, the ciphertext can be empty or present. Oribatida demands that
no information about would-be plaintexts is released to the outside if a decryption query
is deemed invalid. The security guarantees in the INT-RUP model are a safety measure
in temporarily exposed or exceptionally resource-constrained settings, but must not be
interpreted as a recommendation to release unverified plaintexts.
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Algorithm 1 Specification of Oribatida.

101: function EN,A

K
(M)

102: ℓA ← |A|
103: ℓE ← |M|
104: dN ← GetDomainForN(ℓA, ℓE)
105: dA ← GetDomainForA(ℓA, ℓE)
106: dE ← GetDomainForE(ℓE)
107: A← padr(A)
108: M ← padr(M)
109: (S1, Vf )← Init(K, N, dN , ℓA)
110: Sa+1 ← ProcessAD(S1, A, dA)
111: (C, T )← Encrypt(Sa+1, M, Vf , dE, ℓE)
112: return (C, T )

121: function GetDomainForN(ℓA, ℓE)
122: if ℓA = 0 ∧ ℓE = 0 then return 〈9〉n

123: return 〈5〉n

131: function GetDomainForA(ℓA, ℓE)
132: if ℓA = 0 then return 〈4〉n

133: if ℓE > 0 ∧ ℓA mod r = 0 then return 〈4〉n

134: if ℓE > 0 ∧ ℓA mod r 6= 0 then return 〈6〉n

135: if ℓE = 0∧ ℓA mod r = 0 then return 〈12〉n

136: if ℓE = 0∧ ℓA mod r 6= 0 then return 〈14〉n

141: function GetDomainForE(ℓE )
142: if ℓE = 0 then return 〈0〉n

143: if ℓE mod r = 0 then return 〈13〉n

144: if ℓE mod r 6= 0 then return 〈15〉n

151: function padx(X)
152: if |X| mod x = 0 then return X

153: return X ‖ 1 ‖ 0x−(|X| mod x)−1

161: function Init(K, N, dN , ℓA)
162: V0 ← lsbs(N ‖K)
163: S1 ← P ((N ‖K)⊕d dN )
164: V1 ← lsbs(S1)
165: if ℓA = 0 then return (S1, V0)

166: if ℓA 6= 0 then return (S1, V1)

171: function ProcessAD(S1, A, dA)

172: (A1, · · · , Aa)
r
←− A

173: for i = 1..a− 1 do

174: Si+1 ← P ′(Si ⊕ (Ai ‖ 0c))

175: Sa+1 ← P (Sa ⊕ (Aa ‖ 0c)⊕d dA)
176: return Sa+1

181: function lsbx(X)
182: if |X| ≤ x then return X

183: return X[(|X| − x− 1)..0]

191: function msbx(X)
192: if |X| ≤ x then return X

193: return X[(|X| − 1)..(|X| − x)]

201: function DN,A

K
(C, T )

202: ℓA ← |A|
203: ℓE ← |C|
204: dN ← GetDomainForN(ℓA, ℓE)
205: dA ← GetDomainForA(ℓA, ℓE)
206: dE ← GetDomainForE(ℓE)
207: A← padr(A)
208: C ← padr(C)
209: (S1, Vf )← Init(K, N, dN , ℓA)
210: Sa+1 ← ProcessAD(S1, A, dA)
211: (M, T ′)← Decrypt(Sa+1, C, Vf , dE, ℓE)
212: if T = T ′

then return M

213: else return ⊥

221: function Encrypt(Sa+1, M, Vf , dE, ℓE)
222: x← ℓE mod r

223: (M1, · · · , Mm)
r
←− M

224: V ← Vf

225: for i = 1..m do

226: (Ua+i, Va+i)
r,c
←−− Sa+i

227: Xa+i ←Mi ⊕ Ua+i

228: Ci ← Xa+i ⊕s lsbs(V )
229: Ya+i ← Va+i

230: if i = m then

231: Ya+i ← Ya+i ⊕d dE

232: Cm ← msbx(Cm)

233: V ← Va+i

234: Sa+i+1 ← P (Xa+i ‖ Ya+i)

235: C ← (C1 ‖C2 ‖ · · · ‖Cm)
236: T ← msbτ (Sa+m+1)
237: return (C, T )

241: function Decrypt(Sa+1, C, Vf , dE, ℓE)
242: x← ℓE mod r
243: if ℓE = 0 then

244: T ′ ← msbτ (Sa+1)
245: return (ε, T ′)

246: (C1, · · · , Cm)
r
←− C

247: V ← Vf

248: for i = 1..m do

249: (Ua+i, Va+i)
r,c
←−− Sa+i

250: Xa+i ← Ci ⊕s lsbs(V )
251: Ya+i ← Va+i

252: Mi ← Ua+i ⊕Xa+i

253: if i = m then

254: Ya+i ← Ya+i ⊕d dE

255: Mm ← msbx(Mm)

256: V ← Va+i

257: Sa+i+1 ← P (Xa+i ‖ Ya+i)

258: M ← (M1 ‖M2 ‖ · · · ‖Mm)
259: T ′ ← msbτ (Sa+m+1)
260: return (M, T ′)

3.3 Workflow of Oribatida

Initialization. Each variant of Oribatida uses a fixed-size nonce N whose length ν is
chosen such that k + ν = n bits. N is concatenated with the key K to initialize the state:
N ‖K: (U0, V0)← (N ‖K)⊕d dN . The domain dN is XORed to the d least significant bits
of the initial state. Then, the first state value S1 results from a call to the permutation:
(U1 ‖V1)← P (U0 ‖V0). Note that we store the value of V0 or V1 (aliased by Vf ), depending
on whether the associated data is empty or not, to mask the first block of ciphertext later.

Processing Associated Data. After the initialization, the associated data A is padded
with a 10∗-padding if |A| mod r 6= 0 such that its length becomes the next highest multiple
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of r bits. Thereupon, the padded associated data A is split into r-bit blocks (A1, · · · , Aa).

Given the state (Ui, Vi)
r,c
←−− Si, Ai is XORed to the rate part of the state: Xi ← Ui ⊕Ai,

for 1 ≤ i < a. For all non-final blocks of A, the capacity part of the permutation output,
Vi, is simply forwarded to the capacity part of the subsequent input to the permutation P ′:
Yi ← Vi. The next state is computed by a call to the reduced permutation P ′ afterwards,
for all indices 1 < i < a but the final a-th block of A: Si ← P ′(Xi ‖ Yi). When the final
block Aa is processed, a domain dA that depends on the lengths of A and M is XORed
to the least significant byte of the capacity.

Encryption. After the associated data has been processed, the message M is encrypted.
If the length of M is not a multiple of r bits, M is padded with a 10∗-padding such that
its length after padding becomes the next highest multiple of r bits. Thereupon, M is
split into r-bit blocks (M1, · · · , Mm) after padding.

The blocks Mi are processed one after the other. Given the state value (Ua+i, Va+i)
r,c
←−−

Sa+i, the current block Mi is XORed to the rate part Ua+i: Xa+i ← Mi ⊕ Ua+i. The
capacity part is simply forwarded: Ya+i ← Va+i. Then, (Xa+i ‖ Ya+i) is used as input to
a call to P to derive the next state value Sa+i+1 ← P (Xa+i ‖ Ya+i).
The ciphertext blocks Ci are computed from a sum of the current rate, the current plain-
text block, and a (partial) earlier value from the capacity. The first ciphertext block is
computed from

C1 ← Xa+i ⊕s lsbs(Vf ).

If it is the final block, then, C1 is computed from

C1 ← msbℓE
(Xa+i ⊕s lsbs(Vf )),

where ℓE denotes the length of M before padding.
The further non-final ciphertext blocks Ci, 1 < i < m are computed from Ci ← Xa+i ⊕s

lsbs(Va+i−1), for 1 < i < m. If m > 1, the final ciphertext block Cm is computed from

Cm ← msbℓE mod r(Xa+m ⊕s lsbs(Va+m−1)).

For the final message block, a domain dE is XORed to the least significant byte of the
capacity: Ya+m ← Va+m⊕d dE . Thereupon, P is called another time to derive Sa+m+1 ←
P (Xa+m ‖ Ya+m). Its rate part – truncated to τ bits if necessary – is released as the
authentication tag: T ← msbτ (Sa+m+1).

Decryption. The decryption algorithm takes a tuple (K, N, A, C, T ). Again, the initial-
ization with K and N as well as the processing of the associated data A is performed
in the same manner as for encryption. If |C| mod r 6= 0, the decryption pads C with
a 10∗-padding to the next multiple of r bits. In all cases, it splits C into r-bit blocks
(C1, · · · , Cm−1) plus a final block Cm. If m > 1, the plaintext block is computed as

Xa+i ← Ci ⊕s lsbs(V )

Mi ← (Ua+i ⊕Xa+i),

where V = Vf for i = 1 and V = Va+i−1 otherwise. The capacity is again simply forwarded
to the next call of the permutation: Ya+i ← Va+i. The subsequent state is then computed
by (Ua+i+1 ‖Va+i+1) = Sa+i+1 ← P (Xa+i ‖ Ya+i).
For the final block m, the final plaintext block is computed from the padded ciphertext
block Cm as

Xa+m ← Cm ⊕s lsbs(V )

9



Mm ← lsbx(Ua+m ⊕Xa+m),

where x =def ℓE mod r. For the final block, the domain dE is XORed to the least sig-
nificant byte of the capacity: Ya+m ← Va+m ⊕d dE . The would-be tag T ′ is derived
by computing (T ′ ‖Z) ← P (Xa+m ‖ Ya+m), and using only its most significant τ bits:
T ′ ← msbτ (T ′ ‖Z) as for the encryption If T = T ′, the ciphertext is considered valid,
and M = (M1 ‖ · · · ‖Mm) is released as plaintext. Otherwise, the ciphertext is deemed
invalid, and ⊥ is returned.

Domain Separation. For the purpose of domain separation, Oribatida defines a set of
domain constants dN , dA and dE . Note that d = 4 bits suffice in practice. The domains
are XORed with the least significant byte of the state at three stages. Domains are
encoded as bit strings, e.g., 〈12〉d = (1100)2. The value depends on the presence of A and
M and whether their final blocks are absent, partial, or integral. This ensures that there
exist no trivial collisions of inputs to P among blocks of A and M .
The constants are determined by the four control bits (t3, t2, t1, t0) that reflect inputs in
the hardware API, similar to, e.g., [CDNY18]. The rationale behind them is the following:

• EOI: t3 is the end-of-input control bit. This bit is set to 1 iff the current data
block is the final block of the input. For all other cases, t3 is set to 0.

• EOT: t2 is the end-of-type control bit. This bit is set to 1 iff the current data block
is the final block of the same type, i.e., it is the last block of the message/associated
data. Note that, if the associated data is empty, the nonce is treated as the final
block of the associated data. So, t2 is set to 1. For all other cases, t2 is set to 0.

• Partial: t1 is the partial-control bit. It is set to 1 if the current data block is
partial, i.e. if its size is less than the required block size. For all other data blocks,
t1 is 0.

• Type: t0 is called the type-control bit. It identifies the type of the current data
block. For the nonce and the processing of the final message block, t0 is set to 1.
For all other cases, t0 is set to 0.

While processing a data block, the domain values are set as the integer representation of
t3 ‖ t2 ‖ t1 ‖ t0. For example, if we are processing the nonce (which is always a complete
r-bit block), where the associated data is empty, and the message is not empty, it holds
that dN = (t3t2t1t0) = (0101)2 = 5.

4 Specification of The SimP Family of Permutations

This section specifies the permutation SimP. From a high-level view, SimP is a variant
of the domain extender Ψr by Coron et al. [CDMS10]. We define SimP to use a round-
reduced variant of the Simon [BSS+13] block cipher and its key schedule through four such
steps. We briefly recall Ψr before we describe the details of Simon, provide an overview
of existing cryptanalysis and close with a discussion of the implications on SimP.

4.1 The Ψr Domain Extender

The Ψr family is a two-branch Feistel-like network that consists of r calls to (pairwise
independent) block ciphers. An illustration of Ψ4 is given at the top of Figure 2. Let
BlockCipher(K,B) denote the set of all block ciphers with key space K and block space B.
For Ψr, π1, π2, . . . , πr ∈ BlockCipher(Fn

2 ×F
n
2 ,Fn

2 ) are independent block ciphers which use

10



L0

R0

L4rs

R4rsπ1 π2 π3 π4

Lrs L2rs L3rs

Rrs R2rs R3rs

L0

R0

L4rs

R4rs

ϕ1 ϕ2 ϕ3 ϕ4

π1 π2 π3 π4

Lrs L2rs L3rs

Rrs R2rs R3rs

Figure 2: Top: The construction Ψ4 [CDMS10]. The blocks πi denote block ciphers over
F

n
2 with key space F

n
2 . Bottom: High-level view of the construction Φ4 as a variant of

Ψ4. The blocks ϕi represent the key schedules that produce the subkeys and which are
externalized from the block ciphers πi in Φ4. ϕi feeds the subkeys to πi and outputs the
final subkey Krs to become the next value Rirs .

one branch Ri as state input, and the other one, Li, as secret key. Coron et al. provide
statements on the indifferentiability of their constructions.

Theorem 1 ([CDMS10]). Let π1, π2, π3 և BlockCipher(Fn
2 ) be pairwise independent

permutations over F
n
2 . The three-step construction Ψ3 with an ideal block cipher is

(tD, tS , q, ǫ)-indifferentiable from an ideal cipher with tS = O(qn) and ǫ = 5q2/2n.

Intuitively, it follows that a four-step construction with a fourth independent permutation
π4 և BlockCipher(K,Fn

2 ) inherits at least the security of the three-step construction.

Definition 3 (Indifferentiability [MRH04]). Let C be a Turing machine with oracle access
to either (Π, {π±1 , . . . , π±m}), where C is a construction and the πi’s are ideal primitives.
C can employ any of the primitives internally. C is said to be (tD, tS , q, ǫ)-indifferentiable
from an tuple (P , {π±1 , . . . , π±m}), where P is an ideal primitive, if there exists a simulator
S with oracle access to P that runs in time at most tS , such that for any distinguisher A

that runs in time at most tD and makes at most q queries, it holds that

∣∣Pr
[
AC,π1,...,πm = 1

]
− Pr

[
AP,π1,...,πm = 1

]∣∣ < ǫ.

C is said to be indifferentiable from P if ǫ is a negligible function of the security parameters
for polynomially bounded q, tD and tS .

4.2 Φr: A Variant of Ψr That Includes The Key Schedule

The Ψr construction has to store the state that is transformed through the block cipher
πi’s state transformation, plus the key of the current step. Internally, the block ciphers πi

also have to expand the secret key to subkeys that add to the total memory requirement.
We propose a variant that avoids the need to store the current secret key input. For this
purpose, we define the key-schedule permutation ϕi : Fn

2 → F
n
2 that takes an initial key

K as input and outputs the subkeys K0, . . . , Krs for fixed number of rounds rs of πi. An
illustration is given at the bottom of Figure 2. Hereafter, we call the construction Φr

when it consists of r steps in total. Note that Φr omits the final swap of the halves for
simplicity and since it does not affect the security.

11
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∧

Figure 3: One iteration of the round function of SimP, which is equivalent to the key-
update function (left) and the state-update function (right) of Simon-2w/2w, where w is
the word size.

4.3 Simon

The Simon family of block ciphers [BSS+13] belongs to the lightest block ciphers in terms
of hardware area and energy efficiency. Its round function consists of only an XOR, three
bit-wise rotations, and a bit-wise AND, which renders it particularly lightweight and
flexible. Moreover, Simon has been analyzed intensively since its proposal; among others,
e.g., [ALLW14, CW16, LLW17a, Rad15, XZBL16] studied the security of Simon-96-96 and
Simon-128-128. Considerably more works targeted the smaller-state variants of Simon,
which has recently been standardized as part of ISO/IEC 29167-21:2018 [ISO18]. For
concreteness, Simon-96-96 uses a word size w = 48 bits and employs 52 rounds, whereas
Simon-128-128 uses w = 64 bits and 68 rounds.

4.4 The SimP-n-θ Family of Permutations

SimP is an instantiation of Φ4 that tries to adhere to the standard as close as possible,
SimP-192 employs the round-reduced Simon-96-96 as π and its key schedule as ϕ. To form
a 256-bit permutation, SimP-256 uses Simon-128-128 with its key schedule. One iteration
of the round function of Simon-2w-2w and its key-update function side by side, as is used
in SimP-n, is illustrated in Figure 3. Internally, the state of SimP-n-θ consists of four w-bit
words (X i

0, X i
1, X i

2, X i
3), where the superscript index i indicates the state after Round i.

We denote by rs the number of rounds per step, and index the steps from 1 to θ, and the
rounds from 1 to θ · rs. The plaintext is denoted as (X0

0 , X0
1 , X0

2 , X0
3 ); the ciphertext is

given as (Xθrs

0 , Xθrs

1 , Xθrs

2 , Xθrs

3 ).
After Round rs, the state halves (Xrs

0 , Xrs

1 ) and (Xrs

2 , Xrs

3 ) are swapped; similarly, they
are swapped also after Round 2rs, . . . , θrs. One round of the permutation is illustrated in
Figure 3. Thus, SimP-192-θ uses Simon-96-96 and consists of four 48-bit words. SimP-256-
θ employs the round function and the key-update function of Simon-128-128 as a 256-bit
permutation. For SimP-256-θ, the state consists of four 64-bit words.

Round Function. Let w be a positive integer for the word size. for SimP-192, w = 48
bits; for SimP-256, w = 64 bits. Let f : F2w → F2w and g : F2w → F2w be defined as

f(x)
def
= (x ≪ 8) ∧ ((x ≪ 1)⊕ (x ≪ 2)) and

g(x)
def
= (x ≫ 3)⊕ (x ≫ 4) .
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Key-update Function. Let ϕj : (F2w )2 → (F2w )2, for 1 ≤ j ≤ θ be key-update functions.
Let ℓ = (j − 1) · rs. On input (Xℓ

0, Xℓ
1), it derives rs keys (Xℓ+i

0 , Xℓ+i
1 ), for 1 ≤ i ≤ rs, as

Xℓ+i
0 ← Xℓ+i−1

1 ⊕ g(Xℓ+i−1
0 )⊕ c⊕ zℓ+i−1 and Xℓ+i

1 ← Xℓ+i−1
0 ,

for 1 ≤ i ≤ rs. Note that c = 0xff...ffc is a w-bit constant.

State-update Function. We define the state-update function as π : (F2w )rs × (F2w )2 →
(F2w )2, where the first input considers the expanded subkeys. Let ℓ = (j − 1) · rs. It
takes rs round keys (Xℓ

0, . . . , Xℓ
rs−1) as key input, as well as (Xℓ

2, Xℓ
3) as state input, and

computes (Xℓ+rs

2 , Xℓ+rs

3 ) recursively as:

Xℓ+i
2 ← f(Xℓ+i−1

2 )⊕Xℓ+i−1
3 ⊕Xℓ+i−1

1 and Xℓ+i
3 ← Xℓ+i−1

2 ,

for 1 ≤ i ≤ rs.

Step Function. Let ρj : F
4
2w → F

4
2w denote the step function, for 1 ≤ j ≤ θ. Define

Li = (X i
0, X i

1) and Ri = (X i
2, X i

3). The step transforms (Li, Ri) = (X i
0, X i

1, X i
2, X i

3) into
(X i+rs

0 , X i+rs

1 , X i+rs

2 , X i+rs

3 ) as

(Lrs , Rrs) = (X i+rs

0 , X i+rs

1 , X i+rs

2 , X i+rs

3 )

ρj(X i
0, X i

1, X i
2, X i

3)
def
= (πj(X i

2, X i
3), ϕj(X i

0, X i
1)),

for 1 ≤ j < θ. One exception is the final step ρθ, which omits the final swap of the halves:

ρθ(X i
0, X i

1, X i
2, X i

3)
def
= (ϕθ(X i

0, X i
1), πθ(X i

2, X i
3)).

SimP-n-θ takes a plaintext (X0
0 , X0

1 , X0
2 , X0

3 ) and outputs (Lr, Rr) = (Xr
0 , Xr

1 , Xr
2 , Xr

3 ),
with r = θrs as ciphertext.

Round Constants. The round constants are those of Simon-96-96 and Simon-128-128
[BSS+13], respectively. It holds that c = 0xff...ffc, i.e., all w bits except for the least
significant two bits are 1. More precisely, for w = 48, it holds that

c = (1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1100)2.

For w = 64, it holds that

c = (1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1100)2.

For both SimP-192 and SimP-256, the constants z = z0z1 . . . z61 are defined as

z = (10 1011 1101 1100 0000 1101 0010 0110 0010 1000 0100 0111 1110 0101 1011 0011)2.

The sequence has a period of 62, so zi = zi mod 62, for non-negative integers i. Note that
the order of the bits zi is reversed.

Number of Steps θ. We consider only the choices of θ ∈ {2, 4}. The case θ = 2 is used
only to process the intermediate associate data blocks. In all other cases, Oribatida uses
θ = 4. Figure 4 shows the step-reduced variant SimP-n-2.

Number of Rounds. SimP-192-4 consists of rs = 26 rounds for each step, and therefore
performs r = 4 · rs = 104 rounds in total. SimP-256-4 consists of rs = 34 rounds for each
block, and therefore performs r = 4 · rs = 136 rounds in total.
Similarly, SimP-192-2 consists of rs = 26 rounds for each step, and performs r = 2 ·rs = 52
rounds in total. SimP-256-2 consists of rs = 34 rounds for each block, and performs
r = 2 · rs = 68 rounds in total. For simplicity, we also denote SimP-n-4 as SimP-n and
SimP-n-2 as SimP′-n. The algorithm for SimP-n-θ is given in Algorithm 2.
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Table 2: Parameters of SimP.

Word size #Steps #Rounds/Step

Variant (w) (θ) (rs)

SimP-192-2 48 2 26

SimP-192-4 48 4 26

SimP-256-2 64 2 34

SimP-256-4 64 4 34

L0

R0

L2rs

R2rs

ϕ1 ϕ2

π1 π2

Lrs

Rrs

Figure 4: SimP-n-2.

Algorithm 2 Specification of the encryption and decryption algorithms of SimP-n-θ.

101: function SimP-n-θ(M)

102: (X0
0

, X0
1

, X0
2

, X0
3

)
w
←−M

103: for i← 1..θ do

104: for j ← 1..rs do

105: ℓ← (i− 1) · rs + j

106: Xℓ
0
← Xℓ−1

1
⊕ g(Xℓ−1

0
)⊕ c⊕ zℓ−1

107: Xℓ
1
← Xℓ−1

0

108: Xℓ
2
← Xℓ−1

3
⊕ f(Xℓ−1

2
)⊕Xℓ−1

1

109: Xℓ
3
← Xℓ−1

2

110: if i 6= θ then

111: (Xℓ
0
, Xℓ

1
, Xℓ

2
, Xℓ

3
)← swap(Xℓ

0
, Xℓ

1
, Xℓ

2
, Xℓ

3
)

112: C ← (Xθrs
0
‖X

θrs
1
‖X

θrs
2
‖X

θrs
3

)
113: return C

121: function f(X)
122: return ((X ≪ 1) ∧ (X ≪ 8))
123: ⊕(X ≪ 2)

131: function g(X)
132: return (X ≫ 3) ⊕ (X ≫ 4)

141: function swap(X0, X1, X2, X3)
142: return (X2, X3, X0, X1)

The Byte Order in Oribatida. For the sake of clarity, Figure 5 visualizes the byte
and word order of the inputs. Let SB denote the state S in bytes; for more clarity, we
further write this ordering in type-writer font. The rate consists of the first r/8 bytes
of the state: SB[0], ..., SB[r/8 - 1]. The capacity represents the last c/8 bytes
SB[r/8], ..., SB[n/8 - 1]. Similarly, the rate part of the state consists of the first
words of the permutation input. If the state is interpreted as an n-bit value, the initial
Byte 0 contains the most significant eight bits: SB[0] = (S[n − 1], S[n − 2], . . . , S[n −
8]). On the other side, the least significant eight bits are stored in Byte SB[n/8 - 1]:
SB[n/8 - 1] = (S[7], S[6], . . . , S[0]).
So, the rate part is used first as input to the key-update function; the capacity is used as
input to the state-update function.

Remark 1. Instantiating a scheme proven in an idealized model such as indifferentiability
with a symmetric-key primitive is almost always a heuristic: there simply exist few prov-
ably secure instantiations. Using the full Simon-2w-2w for each step would be an option for
a more secure, but considerably less performant scheme. Concerning SimP, our approach
follows the prove-then-prune strategy from AEZ [HKR15]. However, after replacing each
step by at least half of the number of rounds, and always using four steps, our approach
is far less aggressive than it, as outlined above and seems to provide a sufficient security
margin.

5 Security Arguments for Oribatida

This section provides arguments on the provable security of our mode. First, we briefly
recall the necessary notions for nonce-based authenticated encryption. Thereupon, we
provide an outline of its security, but omit proof details.
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Figure 5: Byte and word orientation of inputs into and outputs from SimP as used in
Oribatida.

Assume, we consider an information-theoretic nonce-respecting distinguisher A that has
access to a construction oracle that is either Oribatida or random bits. Moreover, A has
access to independent random permutations P, P ′ և Perm(Fn

2 ) in both worlds.

• As usual, we bound the number of primitive queries that A asks to the construction
oracle by qp.

• We further denote the number of encryption and verification queries by qe and qd,
respectively.

• We use σ for the total number of r-bit blocks in associated data, plaintexts, and
ciphertexts over all encryption and verification queries to Oribatida, respectively.
We distinguish between σe and σd for the r-bit blocks used in the encryption and
decryption queries to Oribatida, respectively.

The advantage of the nAE security of the full-stated keyed duplex, adapted to the nAE

setting from [MRV15, Theorem 2], is dominated by

O

(
(qcℓ)2

2n
+

(qcℓ)2

2c
+

qp

2c
+

qp

2k
+

qc + qp

2τ

)
, (1)

which addresses the probabilities of collisions between internal states of the full state, be-
tween parts chosen, guessing the capacity with primitive queries, as well as the probability
to find a valid verification query or the secret key.

Theorem 2 (nAE Security of Oribatida). Let A be a nonce-respecting adversary w.r.t.
Π[π]K . Then

AdvnAE

Π[π]K
(A) ≤

(
σ
r

)
+ 2

(
qp

r

)

2r(r−1)
+

σ2

2n
+

r(qd + σd) + 2σeqp + qpqc + qd(σe + qp)

2c+s
+

3qp

2k
+

2rqp

2n−τ
+

qd

2τ
.

For integrity under release of unverified plaintexts, we have the following bound.

Theorem 3 (INT-RUP Security of Oribatida). Let A be a nonce-respecting adversary
w.r.t. Π[π]K . Then

Adv
INT-RUP

Π[π]K
(A) ≤

σ2
e

2n
+

4σeσd + 4σqp + qcqp + qp + r(σd + qd)

2c+s
+

q2
d +

(
qd+qv

2

)

2c
+

(
qe

r

)

2τ(r−1)
+

3rqp

2n−τ
+

3qp

2k
+

2
(

qp

r

)

2r(r−1)
+

2qv

2τ
.

The proofs of Theorem 2 and 3 are deferred to the publication of Oribatida and are
therefore not part of this submission document.
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Table 3: Security claims for our recommended schemes. RUP = release of unverified
plaintext material.

nAE Security INT-RUP Security

Construction Time (qp) Data (bytes) Time (qp) Data (bytes)

Oribatida-256-64 2121 250 2121 250

Oribatida-192-96 289 250 289 250

Choice of Rate and Capacity Inputs to The Permutation. The omission of the final
swap does not affect the security properties in the context of the permutation, but is
an optimization. Note that the reduced permutation SimP-2 – that employs only two
steps for processing the associated data in Oribatida – is no longer indistinguishable from
a random permutation. It is easy to see that if the key input would be held constant
and the state input would change, the state would remain a permutation, where the zero
difference cannot occur. Since we choose the rate part as the key input, this distinguisher
is not directly exploitable. In contrast, the step-reduced permutation that is used for
processing the associated data needs only the differential probability of P ′ for security.

Security Level. The security level is expressed in bits. A security level of z bits means
that in the single-key setting, the advantage of any adversary to distinguish it from the
ideal primitive or to recover the key is negligible as long as its number of queries q and
its total number of queried r-bit blocks σ over all messages satisfy q, σ ≪ O(2z). Assume
that P and P ′ are independent permutations. Table 3 illustrates the maximal advantages
of a nonce-respecting adversary against the nAE or INT-RUP security, respectively, of our
proposals with the given maximal number of primitive queries qp and data σ in queries to
the constructions. Note that the term of 89 bits of INT-RUP security for Oribatida-192-96
are due to a dominating term of rqp/2n−τ in our INT-RUP bound.

Remark 2 (Higher Security with A Simple Tweaks). Note that for our secondary proposal,
Oribatida-192-96, higher nAE security of about 128 bits, and higher INT-RUP security of
about 121 bits are easily possible when using tags of only τ = 64 bits, which matches
the NIST requirement. In general, Oribatida could be strengthened in a better way: by
masking the tag output by the key, i.e. T ← msbτ (Ua+m+1)⊕msbτ (K). This would yield
121-bit nAE security for our secondary proposal while retaining the tag size of τ = 96 bits.

6 Security of SimP

The number of steps and rounds of SimP was chosen to resist known cryptanalysis tech-
niques. This section provides a rationale of our choices from the existing works.

6.1 Requirements

Oribatida with an random permutation aims at nAE security of O(rσd/2c+s) and INT-

RUP O(q2
d/2c) in the ideal-permutation model. The advantage of those bounds should

be much higher than the complexity to recover or predict the key. An instantiation of
P must be free of distinguishing properties that allow to distinguish it from a random
permutation with non-negligible advantage and considerably less than 2n queries. This
strengthens the adversary compared to the use of P in Oribatida. There, it can inject nonce,
associated data, or message blocks only into the rate part and can observe ciphertext
and tag outputs also only from that part, but masked. Concretely, we require from
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P the absence of (truncated, higher-order) differential characteristics with probability
≥ 2−n, linear approximations with squared correlation ≥ 2−n, or component functions of
degree < n in SimP-4. Moreover, we require the absence of impossible-differential, zero-
correlation, or integral distinguishers in SimP-4. However, we disregard rebound or other
forms of inside-out attacks that are inapplicable in Oribatida, or splice-and-cut attacks
when using SimP as a compression function.

6.2 Existing Cryptanalysis on Simon

Various works analyzed the Simon family of block ciphers since its proposal.

Differential Cryptanalysis. Cryptanalysis that appeared early after the proposal of Si-

mon followed mainly heuristics for differential cryptanalysis: Abed et al. [ALLW14] fol-
lowed a heuristic branch-and-bound approach that yielded differentials for up to 30 rounds
of Simon-96. Biryukov et al. [BRV14] studied more efficient heuristics, but considered the
small variants with state sizes up to 64 bits. Dinur et al. [DDGS15] showed that distin-
guishers on Simon with k key words can be extended by at least k rounds. Interestingly,
boomerangs seemed to be less a threat to Simon-like ciphers than pure differentials.
Kölbl et al. [KLT15] redirected the research focus to the search for optimal characteristics.
More recently, Liu et al. [LLW17a] employed a variant of Matsui’s algorithm [Mat94] to
find optimal differential characteristics. They found that characteristics with probability
higher than 2−96 covered at most 27 rounds. Moreover, they found at best 31-round
differentials with accumulated probability higher than 2−96, i.e., of probability 2−95.34.
For Simon-128, they showed that optimal differential characteristics covered at most 37
rounds and found 41-round differentials with cumulative probability of 2−123.74.

Linear Cryptanalysis is similarly effective for Simon-like ciphers as its differential coun-
terpart. Alizadeh et al. [ABG+13, AAA+14] reported multi-trail linear distinguishers on
all variants of Simon. For Simon-96-96, they proposed a distinguisher on up to 31 rounds
that could be extended by two rounds in a key-recovery attack. Similarly, they reported a
37-round distinguisher for Simon-128-128 that could be extendable by two rounds. Chen
and Wang [CW16] proposed improved key-recovery attacks with the help of dynamic key
guessing. To the best of our knowledge, their attacks are the most effective ones for our
considered variants in terms of the number of covered rounds, with up to 37 rounds of
Simon-96-96 and up to 49 rounds of Simon-128-128 in theory.
Similar as for differentials, Liu et al. studied also optimal linear approximations [LLW17b].
They found that the optimal linear approximations can reach at most 28 rounds for Simon-
96, and at most 37 rounds for Simon-128. Moreover, they determined linear hulls with
potential of 2−93.8 for 31 rounds of Simon-96, and 2−123.15 for 41 rounds of Simon-128.

Integral, Impossible-differential, and Zero-correlation Distinguishers. Integral attacks
cover at most 22 rounds for Simon-96-96 and 26 rounds of Simon-128-128. Initially, Zhang
et al. [ZWW15] found integral distinguishers on up to 21 and 25 rounds for Simon-96 and
Simon-128. Their results were extended by one round each by Xiang et al. [XZBL16],
and later by Todo and Morii [TM16]. The latter could show the absence of integrals for
25-round Simon-96, which was confirmed by Kondo et al. [KSTI18].
The maximal number of rounds that impossible-differential and zero-correlation distin-
guishers can cover is given by at most twice the length of the maximal diffusion. From the
results by Kölbl et al. [KLT15], full diffusion is achieved by 11 rounds for Simon-96 and 13
rounds for Simon-128-128. So, impossible-differential and zero-correlation distinguishers
can cover at most 22 and 26 rounds in the single-key setting.
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Table 4: Existing results of best distinguishers and best key-recovery attacks on Simon-96
in the single-key setting. – = not given; Pr. = probability; Pot. = linear potential; Deg.
= degree.

Type #Rounds Time Data Pr./Pot./Deg. Ref

Simon-96-96 Distinguishers

Algebraic 14 – 20 CPs – [Rad15]

Integral 22 295 295 CP 95 [XZBL16]

Differential 30 – – 92.2 [ALLW14]

Differential 31 – – 95.34 [LLW17a]

Linear 31 – – 93.8 [LLW17b]

Simon-96-96 Key-recovery Attacks

Multiple Linear 33 294.42 294.42 KP 94.42 [AAA+14]

Linear Hull 37 288.0 295.2 KP 95.2 [CW16]

Simon-128-128 Distinguishers

Algebraic 16 – 20 CP – [Rad15]

Integral 26 2126 2126 CP 126 [XZBL16]

Linear 37 – – 128 [AAA+14]

Differential 41 – – 123.74 [LLW17a]

Linear Hull 41 – – 123.15 [LLW17b]

Simon-128-128 Key-recovery Attack

Linear Hull 49 2127.6 2127.6 CP 126.6 [CW16]

Related-key Distinguishers. Kondo et al. [KSTI18] searched for iterative key differences
in Simon. This allowed them to extend previous results by four to 15 rounds. For Simon-96-
96, the authors found iterative key differentials for up to 20 rounds. It remains unclear if
this yields an impossible differential; in the best case, a key-iterated 20-round distinguisher
could be extended by 2 + 2 + 2 wrapping rounds: two more blank rounds where one of the
key words is not used, plus two rounds where the key difference can be canceled by the
state differences, plus two outermost rounds since the result of the non-linear function is
independent of the key and therefore predictable in Simon. So, an impossible-differential
distinguisher could cover up to 26 rounds. Though, such an upper bound has not been
formulated to an attack on the here-considered versions by Kondo et al.; therefore, it is
not contained in the overview in Table 4.

Algebraic Cryptanalysis is unlikely to be a threat on Simon-like constructions for suf-
ficiently many rounds. Raddum [Rad15] pointed out that the large number of rounds is
necessary, by demonstrating that equation systems of up to 14 rounds of Simon-96-96 and
up to 16 rounds of Simon-128 are solvable efficiently in a few minutes on an off-the-shelf
laptop. Extensions to considerably more rounds are still unknown.

Meet-in-the-Middle Attacks are successful primarily on primitives that do not use parts
of the key in sequences of several rounds. The Simon-2w-2w versions use every key bit in
each sequence of two subsequent rounds, which limits the chances of meet-in-the-middle
attacks drastically. Considering 3-subset meet-in-the-middle attacks, together with an
initial structure and partial matching, the length of an attack is limited to roughly that
of twice the full diffusion plus four rounds plus the maximal length of an initial structure
plus two rounds for a splice-and-cut part, which yields 30 rounds as a rough upper bound.
It is unlikely that such attacks cover 30 or more rounds on Simon-2w-2w.
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Table 5: Probabilities of optimal related-key differential characteristics for round-reduced
variants of Simon-96-96 and Simon-128-128. p denotes the probability; SK = single-key
model, RK = related-key model.

#Rounds 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

#Rounds 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Simon-96-96

− log2(p) (SK) 4 6 8 12 14 18 20 26 30 36 38 44 48 54 56 62 64 66

68 72 74 78 80 86 90 96

− log2(p) (RK) 0 2 4 10 12 18 20 26

Simon-128-128

− log2(p) (SK) 4 6 8 12 14 18 20 26 30 36 38 44 48 54 56 62 64 66

68 72 74 78 80 86 90 96 98 104 108 114 116 122 124 126 128

− log2(p) (RK) 0 2 4 10 12 18 20 26

Correlated Sequences. An interesting recent direction may be correlated sequences in-
troduced by Rohit and Gong in [RG18]. Their technique requires only very few texts and
claims to break 27 rounds of Simon-32 and Simeck-32; thus, it might outperformed all pre-
vious attacks by at least three rounds. Though, that approach needs further investigation
and has seen application only to Simon-32-64 until now.

6.3 Implications to SimP

Since the key schedule of Simon is fully linear, the two state words that are transformed
by the key schedule allow prediction of differences, linear and algebraic properties through
a full step. In any case, SimP transforms each input word through at least 2rs rounds of
Simon.

Related-key Differential Cryptanalysis. SimP needs an analysis of related-key differen-
tial and linear characteristics. Existing methods such as the exhaustive search in [LLW17a]
or SAT solvers [KLT15], render such studies difficult due to the large state size since the
known tools cannot scale appropriately. There exist peer-reviewed related-key results on
Simon, e.g., by Wang et al. [WWHL18]. For the sake of feasibility, they restricted their
search to related-key trails for the small variants, i.e., Simon-32, Simon-48, and Simon-64.
We conducted experiments using the SAT-based approach from [KLT15] as well as with
the branch-and-bound approach from [LLW17a] to search for optimal differential charac-
teristics on SimP. Though, the related-key analysis of Simon-like constructions is compu-
tationally difficult because of the large state size. We obtained improved trails for only for
up to seven rounds of Simon-96; starting from eight rounds, the best found characteristics
possessed a zero key difference for up to 10 rounds, which suggests that differences in the
few key words do not improve the best single-key characteristics. It seems that the proba-
bilities of the existing optimal differential characteristics and linear trails for Simon-96-96
and Simon-128-128 also hold for SimP-192-1 and SimP-256-1 beyond that point. Table 5
compares the probabilities of optimal single- and related-key differential characteristics.

Number of Steps and Rounds of SimP. SimP benefits from the intensive existing crypt-
analysis of Simon. The usage of the key-update function of Simon seems to not promote
considerably more effective differential or linear distinguishers compared to the single-key
results on Simon. The usage of the 2w-word key appears not exploitable neither by differ-
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entials and linear characteristics, nor by techniques that try to exploit more available state
such as meet-in-the-middle distinguishers. The reason seems to be mainly the diffusion in
the key schedule together with the relatively large number of rounds.
The number of steps and the number of rounds in our employed instantiations of SimP

have been chosen very conservatively, using the number of rounds per step rs as half
the number of rounds in Simon. This choice guarantees that each bit passes at least
once through the full-round cipher, and therefore is expected to possess at least the
algebraic degree of the full-round cipher. Moreover, the diffusion properties of Simon

render impossible-differential, zero-correlation, or integral distinguishers implausible.
The design of SimP is very close to the original design of Simon. So, any considerable
improvement in the cryptanalysis on SimP would most likely also be a higher threat on
Simon-2w-2w. While such results are not impossible, the higher number of rounds in SimP

provide an additional security margin.

7 Features

Oribatida . . .

• . . . is optimized for messages as short as 8 bytes and

• . . . is optimized for message lengths in full bytes.

As given by [NIS18]

Flexibility. All versions of the Oribatida family support. . .

• . . . nonce lengths of at least 64 bits,

• . . . tag lengths of at least 96 bits,

• . . . plaintext lengths of up to 250 − 1 bytes,

• . . . associated-data lengths of up to 250 − 1 bytes, and

• . . . processing 250 − 1 bytes under a single key.

In particular, our primary recommendation Oribatida-256-128 supports. . .

• . . . a nonce length of 128 bits,

• . . . a tag length of 128 bits, and

• . . . a key length of up to 256 bits.

Efficiency. As a keyed sponge mode that initializes the state from key and nonce, the
key preprocessing is efficient and requires only a single call to the permutation.

Simplicity. The sponge mode is well-understood and has been analyzed intensely. It
is easily adaptable to a hash function or a MAC. The implementation overhead for the
decryption is low since the encryption can also be performed with the sole forward direc-
tion of the permutation. Moreover, a round-reduced permutation is used in between the
associated-data blocks to further boost the performance.

8 Hardware Implementation

This section reports on hardware implementations of SimP and Oribatida.
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Table 6: Implementation results for SimP-256 and Oribatida-256-64 encryption/decryption
and only encryption on Virtex 7 FPGA. LUTs = lookup tables; AD = associated data;
Enc. = encryption; Dec. = decryption.

Frequency Cycles Throughput (Mbps)

LUTs FF #Slices (MHz) AD Message AD Message

SimP

SimP-256 495 340 148 580.51 69 137 1 076.88 542.37

SimP-192 383 259 122 581.98 53 105 1 054.15 532.10

Oribatida-256-64

Enc. and Dec. 940 599 298 554.16 68 138 1 043.12 514.00

Enc. only 805 595 253 560.71 68 138 1 055.45 520.08

8.1 SimP

SimP is lightweight since its transformations are exactly the round function and the key-
update function of Simon-96-96 or Simon-128-128, respectively. Both transformations
are based on simple operations such as rotations, XORs, and ANDs that consume only
routing resources and bit-wise logical operations. The area in GEs is approximately that
of Simon-96 plus some overhead, which is caused from the need of an additional input to
both transformations due to the swapping after rs rounds.
Unprotected implementations of Simon are vulnerable against differential power analysis
attacks using the leakage generated by the transitions in the state register; the Hamming-
distance model captures such leakage. Masking – in particular, Boolean masking (XORing
a random value to the output of the round function) – is one countermeasure that can be
applied to Simon easily. The simple structure of Simon components allow to explore other
countermeasures such as unrolling rounds to achieve higher-order side-channel resistance.

Latency. SimP can be implemented in different levels of serialization, from fully serial
implementations that update solely a single bit per cycle up to round-based implementa-
tions that update the full state in one clock cycle. Depending on the choice, there is a
broad implementation spectrum with a trade-off between throughput and area.

8.2 Oribatida

Hardware implementations of our proposed instance of Oribatida are relatively straight-
forward. It can be implemented efficiently with little extra cost compared to the duplex
sponge. Additional costs result from the use of a module to generate the constants for the
domain separation, which can be held in ROM. In modern FPGAs, this module takes only
four look-up tables (LUTs). For domain separation, only a four-bit XOR is necessary at
the input for capacity of the permutation. An additional 64-bit register to store a mask,
and a 64-bit XOR to add the mask to the ciphertext is requires.
The use of SimP as its main building block allows to directly transfer the same strategy
of using different data-path sizes to Oribatida. Thus, the implementer can choose among
various trade-offs between throughput, latency, area, and power consumption.
In terms of side-channel resistance, the same aspects that hold for SimP also hold for
Oribatida. Thus, Oribatida does not introduce additional weaknesses of side channels.
Table 6 lists our implementations results obtained from Xilinx Vivado 2018 optimizing for
area. All results represent measurements after the place-and-route process.
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In Table 6, we list two columns for the number of clock cycles and throughput, the former
represents the results for the processing of associated data (with the step-reduced SimP),
whereas the latter denotes the results for processing the message (with the non-reduced
SimP). Our results leaves still room for further improvements in the close future.

9 Software Implementation

SimP Is Very Lightweight and Flexible. For SimP, only the round function and the
key-update function of Simon have to be implemented, which can be realized using only
rotations, logical ANDs and XORs. Since those operations treat individual bits separately
without dependencies among the bits of the same words, the employed internal state size
can be arbitrary. Therefore, SimP is well-suited for a variety of platforms independent
of word-size limitations. There are no S-boxes or complex constants that must be stored,
the RAM and ROM sizes are expected low. The round constants zi can be implemented
compactly using a five-bit Linear Feedback-shift Register [BSS+13].

SimP Alleviates Side-channel Countermeasures. The lack for S-boxes renders constant-
time implementations straight-forward. Moreover, the low degree of the internal function
alleviates protections with maskings or sharing-based countermeasures such as threshold
implementations or consolidated masking schemes.

The Memory Footprint of Oribatida Is Also Low. The full implementation state is
given by the n-bit state, the subsequent block, plus the overhead from the mask size, plus
the result of initializing the key. Note that the key needs one single preprocessing call to
the permutation P at initialization. Moreover, there is no overhead for the decryption
operation of the primitive in Oribatida.
To minimize the memory requirements, e.g., Oribatida-192-96 needs 96-bits register for the
block, 96 bits for the mask, plus 192 bits for the current state, and 128 bits for the key.
Note that the state size of Oribatida is analogous to that of lightweight block ciphers with
128-bit security and small 64-bit state such as GIFT or LED. Though, such primitives
either lead to birthday-bound security of at most 232 blocks encrypted under the same
key, or must be used in modes with security beyond the birthday bound that are usually
slower. Therefore, they require further memory to store the previous state. To provide
high security, block-cipher-based modes often have to occupy more memory.

10 Intellectual Property

The submitters are not aware of any patent involved in Oribatida. Furthermore, Oribatida

will not be patented. If any of this information changes, the submitters will promptly
(and within at most one month) announce these changes on the mailing list of the NIST
lightweight competition. According to [BSS+18], “SIMON and SPECK are free from any
intellectual property restrictions. [The work on SIMON and SPECK] was prepared by a
United States Government employee and, therefore, is excluded from copyright by Section
105 of the Copyright Act of 1976. The algorithms [of SIMON and SPECK] are free for
anyone to use. There are no patent or licensing restrictions. Copyright and related rights
are expressly waived through the CC0 1.0 Universal License.”

Acknowledgments. The authors thank Raghvendra Rohit and Sumanta Sarkar for point-
ing out an event in the tag-processing process of the Oribatida-192 version which was
treated in the INT-RUP bound, but lacked a term in the nAE bound. We also treated it
properly in the nAE bound in this version.
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