
Pyjamask

v1.0

Dahmun Goudarzi1, Jérémy Jean2, Stefan Kölbl3, Thomas Peyrin4, Matthieu Rivain5,
Yu Sasaki6, and Siang Meng Sim4

1 PQShield, Oxford, United Kingdom
Dahmun.Goudarzi@pqshield.com

2 ANSSI, Paris, France
Jean.Jeremy@gmail.com

3 CyberCrypt A/S, Denmark
kste@mailbox.org

4 School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore

Thomas.Peyrin@ntu.edu.sg, crypto.s.m.sim@gmail.com

5 CryptoExperts, Paris, France
Matthieu.Rivain@cryptoexperts.com

6 NTT Secure Platform Laboratories, Japan
Sasaki.Yu@lab.ntt.co.jp

Table of Contents

1 Introduction . 3
2 Specification of Pyjamask . 3

2.1 Preliminary . 3
2.2 Family Members and Security Claims . 4
2.3 OCB Mode of Operation . 5

2.3.1 Original Description . 5
2.3.2 Pyjamask-96-AEAD . 7

2.4 The Block Cipher Family . 7
2.4.1 Data Representation . 8
2.4.2 Round Function . 9
2.4.3 Inverse Round Function . 10
2.4.4 Key Schedule . 10
2.4.5 Pseudo-code . 12

3 Rationale . 13
3.1 Parameters for the 96-bit Version of the OCB Mode. 13

3.1.1 Choice of the Sboxes . 14
3.1.2 Choice of the Diffusion Matrices . 15
3.1.3 Choice of the Key Schedule . 17

4 Security Analysis . 17
4.1 Differential Analysis . 17
4.2 Algebraic Analysis . 19
4.3 Invariant Subspace Cryptanalysis . 19

5 Implementations and Performances . 20
5.1 Software . 20

5.1.1 Bitslice Implementation . 20
5.1.2 Masked Implementation . 21
5.1.3 Performances . 23
5.1.4 Comparison . 24
5.1.5 Source Code . 25

5.2 Hardware . 25
6 Test Vectors . 27

6.1 Test Vectors for the Block Ciphers . 27
6.2 Test Vectors for the AEAD Schemes . 27

7 Intellectual Property . 27
A Elementary Components Used in Pyjamask . 30

A.1 Sboxes . 30
A.2 Diffusion Matrices . 30

B Changelog . 35

1 Introduction

This document specifies Pyjamask, an authenticated encryption with associated data
(AEAD) scheme based on a new block cipher (BC) called Pyjamask and on the AEAD
operating mode OCB.

Pyjamask targets side-channel resistance as one of its main goal. More precisely, it
strongly minimizes the number of nonlinear gates used in its internal primitive in order
to allow efficient masked implementations, especially for high-order masking. Our newly
designed block cipher Pyjamask has thus the smallest number of AND gates per bit as of
today (except LowMC [2] or Rasta [12] which work on unconventional plaintext/key sizes).
Even though Pyjamask minimizes such an important criterion, it remains rather lightweight
and efficient, thanks to a general bitslice construction that enables to computation of all
nonlinear gates in parallel.

As for the operating mode, we adopt the provably secure AEAD mode OCB [27]. It has
been extensively studied and has the benefit to offer full parallelization. Of course, other
block cipher-based modes such as COFB [8] can be considered as well if other performance
profiles are to be targeted.

Organization of the document. In Section 2, we first introduce the recommended
parameter sets, the various members of the Pyjamask family as well as their respective
security claims. We then describe Pyjamask and recall the AEAD mode OCB. We provide
a security analysis of Pyjamask (and in particular Pyjamask) in Section 4 and explain the
design rationale in Section 3. Finally, we provide performances measurements/estimations
of Pyjamask in Section 5.

2 Specification of Pyjamask

We describe here the full specification of our submission Pyjamask. In the first section below,
after some preliminary definitions and notations, we start by giving the two members within
the submission. Then, we describe the mode of operation for authenticated encryption
OCB we use in Pyjamask in its original form, the small modifications we have made to
accommodate it to our constraints, and finally we describe two new block ciphers used
within these modes: Pyjamask-96 and Pyjamask-128.

2.1 Preliminary

Notations. We denote by F2 the finite field having two elements. From a vector r of t
elements over F2, we define the matric cir(r) as the circulant binary matrix over F2 where
the i-th row equals the vector r rotated by i positions to the right, 0 ≤ i < t.

For a given block cipher E, we denote EK(P) the encryption of the n-bit plaintext
P with k-bit key K. Similarly, D represents the decryption operation, and we have
DK(Ek(P)) = EK(Dk(P)) = P for all P .

The concatenation operation is represented by ‖ and pad10∗ is the function that applies
the 10∗ padding on n bits, i.e. pad10∗(X) = X‖1‖0n−|X|−1 when |X| < n. For the empty
string ε, the 10∗ padding does not add any bit: pad10∗(ε) = ε. Finally, we denote by
X ≪ a the word X rotated by a positions to the left.

High-Level Description. The cryptographic algorithms defined in the Pyjamask sub-
mission are all authenticated encryption schemes with associated data (AEAD), which
are composed of an encryption part and a verification/decryption part. The encryption
part E takes as input a variable-length plaintext M (with |M | = m), a variable-length
associated data A (with |A| = a), a fixed-length public message number N and a k-bit

3

key K. It outputs a m-bit ciphertext C and a τ -bit tag, denoted tag (with τ ∈ [0, . . . , n]),
i.e. (C, tag) = EK(N,A,M). The verification/decryption part D takes as input a variable-
length ciphertext C (with |C| = m), a τ -bit authentication tag tag (with τ ∈ [0, . . . , n]), a
variable-length associated data A (with a = |A|), a fixed-length public message number
N and a k-bit key K. It outputs either an error string ⊥ to inform that the verification
failed, or an m-bit string M = DK(N,A,C, tag) when the tag is valid.

2.2 Family Members and Security Claims

We further specify two AEAD algorithms in the Pyjamask family, as show in Table 13.

Table 1: Submission members for Pyjamask. All the values are given in bits.

Member Name Mode Block Cipher n k |N | τ

Pyjamask-128-AEAD † OCB Pyjamask-128 128 128 96 128

Pyjamask-96-AEAD OCB Pyjamask-96 96 128 64 96

†: Primary member.

Security Claims. We consider the nonce-respecting authenticated encryption with
associated data model for the adversary: nonce values in encryption queries may be chosen
by the adversary but they must be distinct. He queries for nonce/associated data/message
tuples (N,A,M) to the encryption oracle and obtains the corresponding ciphertext/tag
(C, T). When interacting with the decryption oracle, he can use any nonce value, even
repeating. However, he queries for nonce/associated data/ciphertext/tag tuples (N,A,C, T)
to the decryption oracle, but only obtains the corresponding message M if the tag T is
valid for that query.

Our security claims are summarized in Table 2. The variables in the table denote the
required workload, in terms of data complexity, of an adversary to break the cipher, in
base-2 logarithm. The data complexity of attacker consists of the number of queries and
the total amount of processed message blocks. If it reaches the suggested number, then
there is no security guarantee anymore, and the cipher can be broken. For simplicity, small
constant factors, which are determined from the concrete security bounds, are neglected in
these tables. A more detailed analysis can be found in the OCB [27] document.

Table 2: Security claims of Pyjamask under the assumption that nonces never repeat.
The values are given in bits.

Member Name Privacy Authentication Key Recovery

Pyjamask-128-AEAD 64 64 128

Pyjamask-96-AEAD 48 48 128

4

2.3 OCB Mode of Operation

2.3.1 Original Description

In addition to the block cipher E, we require the doubling operation in the finite field dbl,
which applies to a 128-bit string as:

dbl(x) =

{
x� 1 if msb(x) = 0

(x� 1)⊕ 0x87 otherwise.
(1)

We further require the function ntz(x), which computes the number of trailing zero bits
in the base-2 representation of x.

We split the description in three parts as given in RFC 7253 [27]: Authentication,
Encryption and Decryption/Verification. For all functions, we first have to compute:

L∗ = EK(0),

L$ = dbl(L∗),

L0 = dbl(L$),

Li = dbl(Li−1).

(2)

Authentication Part. It takes as input the keyK and the associated data A and produces
the intermediate value auth (see Figure 1). We denote this function as (K,A) 7→ HASH(K,A).
We consider A as a sequence of 128-bit blocks. Let l be the largest integer such that
128l ≤ |A|, then A = A1|| . . . ||Am||A∗. Here, A∗ is the last (possibly empty) partial block.

First, we process the full blocks. Let S0 = 0, O0 = 0 and compute for 1 ≤ i ≤ m:

Oi = Oi−1 ⊕ Lntz(i),

Si = Si−1 ⊕ EK(Ai ⊕Oi).
(3)

If the length of the partial block A∗ is nonzero, we further compute

O∗ = Om ⊕ L∗,
auth = Sm ⊕ EK((A∗||1||0127−|A∗|)⊕O∗),

(4)

otherwise we set auth = Sm.

A1

L∗, L$,L0 ← Init()

L1 ← dbl(L0)

O1

EK

0n

A2

L2 ← dbl(L1)

O2

EK

A3

L3 ← dbl(L2)

O3

EK

auth

(a) Without padding.

A1

L∗, L$,L0,← Init()

L1 ← dbl(L0)

O1

EK

0n

A2

L2 ← dbl(L1)

O2

EK

pad(A∗)

L∗

O∗

EK

auth

(b) With padding.

Figure 1: Processing of the associated data in OCB.

5

Encryption Part. It takes as input the key K, the nonce N , associated data A, plain-
text M and produces a ciphertext C and tag tag (see Figure 2). We consider M as
a sequence of 128-bit blocks. Let l be the largest integer such that 128l ≤ |M |, then
M = M1|| . . . ||Mm||M∗. Here, M∗ is the last (possibly empty) partial block.

In order to derive O0 and sum0, we compute

nonce = τ ||0120−|N |||1||N,
bottom = nonce[123..128],

Ktop = EK(nonce[1..122]||06),

Stretch = Ktop||(Ktop[1..64]⊕ Ktop[9..72]),

O0 = Stretch[(1 + bottom)..(128 + bottom)],

sum0 = 0128.

(5)

We then process the full message blocks in the following way for 1 ≤ i ≤ m:

Oi = Oi−1 ⊕ Lntz(i),

Ci = Oi ⊕ EK(Mi ⊕Oi),

sumi = sumi−1 ⊕Mi.

(6)

If the length of the partial block P∗ nonzero, then we further compute

O∗ = Om ⊕ L∗
Pad = EK(O∗)

C∗ = M∗ ⊕ Pad[1..|M∗|]
sum∗ = summ ⊕ (M∗||1||0127−|M∗|)

O$ = O∗ ⊕ L$

tag = EK(sum∗ ⊕O$)⊕ HASH(K,A),

(7)

otherwise
O$ = Om ⊕ L$

tag = EK(summ ⊕O$)⊕ HASH(K,A).
(8)

The ciphertext is given by C = C1|| . . . ||Cm||C∗.

M1

L∗, L$,L0,← Init()

L1 ← dbl(L0)

O1

EK

O1

C1

M2

L2 ← dbl(L1)

O2

EK

O2

C2

M3

L3 ← dbl(L2)

O3

EK

O3

C3

M∗

L∗

O∗

EK

C∗

Pad

sum

L$

O$

EK

auth

tag

Figure 2: Encryption part of OCB.

6

Verification and Decryption Part. Takes as input the key K, the nonce N , associated
data A, ciphertext C and produces a plaintext M . We consider C as a sequence of 128-bit
blocks. Let l be the largest integer such that 128l ≤ |C|, then C = C1|| . . . ||Cm||C∗. Here,
C∗ is the last (possibly empty) partial block.

First, we have to derive O0 and sum0 in the exact same way as given in Equation 5.
We then process the full blocks for 1 ≤ i ≤ m as:

Oi = Oi−1 ⊕ Lntz(i),

Pi = Oi ⊕DK(Ci ⊕Oi),

sumi = sumi−1 ⊕Mi.

(9)

If the length of the partial block C∗ is nonzero, then we further compute

O∗ = Om ⊕ L∗,
Pad = EK(O∗),

M∗ = C∗ ⊕ Pad[1..|C∗|],
sum∗ = summ ⊕ (M∗||1||0127−|M∗|),

tag′ = EK(sum∗ ⊕O∗ ⊕ L$)⊕ HASH(K,A),

(10)

otherwise
tag′ = EK(summ ⊕Om ⊕ L$)⊕ HASH(K,A). (11)

If tag′ = tag, then output M = M1|| . . . ||Mm||M∗ and the authentication succeeds,
otherwise output ⊥ to indicate failure.

2.3.2 Pyjamask-96-AEAD

The original OCB mode has been designed for 128-bit block ciphers. Consequently, we use
it as described in the previous section for Pyjamask-128. However, we have made some
slight modifications to handle our 96-bit block cipher describe in the next section: the
most important changes are reported below.

Finite Field Arithmetic. For the multiplication in GF(296), we define the irreducible
polynomial to be x96 + x10 + x9 + x6 + 1.

Therefore, the doubling operation on 96-bit dbl96 is defined as

dbl96(x) =

{
x� 1 if msb(x) = 0

(x� 1)⊕ 0x641 otherwise.

Stretch-then-shift Hash Function. The parameter of the stretch-then-shift hash func-
tion (that computes Stretch in Equation 5) is modified. In particular, the left-shift value
is changed from c = 8 to c = 9. In other words, the stretch-then-shift hash function is
defined as

Stretch96 = Ktop||(Ktop[1..64]⊕ Ktop[10..73]).

2.4 The Block Cipher Family

The block cipher family Pyjamask used in this submission contains two algorithms: one
with a 96-bit block size called Pyjamask-96, and a second with a 128-bit block size called
Pyjamask-128. The parameters of the two instances are summarized in Table 3 and detailed
hereafter. Our cipher share some similarities with existing ciphers, such as NOEKEON [11]

7

Table 3: Parameters of Pyjamask block ciphers. All the sizes are in bits.

Instance State size Rows Columns Key size Rounds

n r n/r k

Pyjamask-96 96 3 32 128 14

Pyjamask-128 128 4 32 128 14

(for its general strucure), LowMC [13] (for the different linear layers on each slice) or even
LowMC [2] (for its general AND gate minimisation).

The ciphers rely on a Substitution-Permutation Network (SPN) structure that trans-
forms the initial plaintext to a ciphertext through several applications of a key-dependent
round function. Each round key is derived from the secret key through an iterated key
schedule algorithm. In the rest of this section, we first describe the data representation
within the cipher. Then, we give a detailed specification of the round function, inverse round
function and key schedule. We conclude the section with pseudocode for the encryption,
decryption and key schedule algorithms.

2.4.1 Data Representation

The plaintext is initially loaded into the internal states of the ciphers (see Figure 3) which
are viewed as matrices of bits having r rows and 32 columns (r = 3 for Pyjamask-96 and
r = 4 for Pyjamask-128).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

Figure 3: Internal state of Pyjamask-128 with r = 4 words of 32 bits: each cell represents
a single bit.

The first (resp. 2nd, 3rd, 4th) group of 4 bytes of the plaintext is loaded into the
first (resp. 2nd, 3rd, 4th) row of the state in big endian format. For instance, the 16-byte
plaintext

[0x00, 0x11, 0x22, 0x33, 0x44, . . . , 0xff]

is loaded into the state as 
0x00112233

0x44556677

0x8899aabb

0xccddeeff

 ,

the first row being 0x00112233 and the last row being 0xccddeeff. Within one row, the
cell of lowest index holds the most significant bit of the word while the cell of greatest
index holds the least significant bit of the word. In the above example, the first row is
loaded with 0x00112233, which means that the cell of Index 0 holds the most significant
bit of 0x00 (i.e. 0), and the cell of Index 31 holds the least significant bit of 0x33 (i.e. 1).

8

2.4.2 Round Function

The number of rounds applied is 14 for both Pyjamask-96 and Pyjamask-128. The round
functions of the two ciphers are similar and only differ due to the extra row present in
Pyjamask-128. In detail, one round is composed of the following transformations (see
also Figure 4):

• AddRoundKey – Bitwise addition of the first n bits of the key state (define below) into
the internal state. For Pyjamask-128, the full key state is XORed to the internal state.
For Pyjamask-96, the 3 first rows of the key state are XORed to the internal state.

• SubBytes – The same Sbox is applied to each of the 32 columns of the internal state.
For Pyjamask-96, the Sbox is S3 and for Pyjamask-128, the Sbox is S4 (see definitions
hereafter).

• MixRows – Each row Ri of the the internal state, with i ∈ {0, 1, 2} for Pyjamask-96

and i ∈ {0, 1, 2, 3} for Pyjamask-128 is seen as a column vector of 32 elements in F2

and is replaced by Mi · Ri. The matrices Mi are 32 × 32 constant circulant binary
matrices defined below.

After the last round has been applied, a final AddRoundKey operation adds a post-
whitening key to the internal state.

0

32

64

96

1

33

65

97

2

34

66

98

3

35

67

99

4

36

68

100

5

37

69

101

6

38

70

102

7

39

71

103

8

40

72

104

9

41

73

105

10

42

74

106

11

43

75

107

12

44

76

108

13

45

77

109

14

46

78

110

15

47

79

111

16

48

80

112

17

49

81

113

18

50

82

114

19

51

83

115

20

52

84

116

21

53

85

117

22

54

86

118

23

55

87

119

24

56

88

120

25

57

89

121

26

58

90

122

27

59

91

123

28

60

92

124

29

61

93

125

30

62

94

126

31

63

95

127

Input State

AddRoundKey: Subkey Addition

S4 S4

SubBytes: Sbox Layer

M0

M1

M2

M3

MixRows: Diffusion Layer

0

32

64

96

1

33

65

97

2

34

66

98

3

35

67

99

4

36

68

100

5

37

69

101

6

38

70

102

7

39

71

103

8

40

72

104

9

41

73

105

10

42

74

106

11

43

75

107

12

44

76

108

13

45

77

109

14

46

78

110

15

47

79

111

16

48

80

112

17

49

81

113

18

50

82

114

19

51

83

115

20

52

84

116

21

53

85

117

22

54

86

118

23

55

87

119

24

56

88

120

25

57

89

121

26

58

90

122

27

59

91

123

28

60

92

124

29

61

93

125

30

62

94

126

31

63

95

127

Output State

Figure 4: Round function of Pyjamask-128.

9

Sboxes. The 3-bit Sbox used in Pyjamask-96 is given by the following lookup table:

S3 = [1, 3, 6, 5, 2, 4, 7, 0],

and the 4-bit Sbox used in Pyjamask-128 is described by the following lookup table:

S4 = [0x2, 0xd, 0x3, 0x9, 0x7, 0xb, 0xa, 0x6, 0xe, 0x0, 0xf, 0x4, 0x8, 0x5, 0x1, 0xc].

In both cases, the MSB of the inputs and outputs of the Sboxes are located in the top
row of the internal state depicted on Figure 4.

Matrices. The binary circulant matrices used in the MixRows operation are given below:

M0 = cir ([1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0]) ,

M1 = cir ([0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1]) ,

M2 = cir ([0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1]) ,

M3 = cir ([0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1]) .

Note that M0, M1 and M2 are used in both Pyjamask-96 and Pyjamask-128, but M3 is
only used in Pyjamask-128. In Appendix, we also give the same matrices in regular form.

2.4.3 Inverse Round Function

As the decryption functionality of some mode of operation requires the decryption prim-
itive of the block cipher, we also give a description of the inverse round function. It is
defined similarly to the forward round function but applies the inverse of the elementary
transformations in reversed order. Namely, if performs 14 times the following operations:

• invAddRoundKey – Bitwise addition of the first n bits of the key state into the internal
state.

• invMixRows – Each row Ri of the the internal state, with i ∈ {0, 1, 2} for Pyjamask-96
and i ∈ {0, 1, 2, 3} for Pyjamask-128 is seen as a column vector of 32 elements in F2

and is replaced by M−1
i ·Ri.

• invSubBytes – The inverse Sbox (either S−13 or S−14) is applied to all 32 columns of the
internal state.

Again, after the last inverse round, a last subkey is XORed to the internal state.The inverse
matrices and Sboxes used in Pyjamask-96 and Pyjamask-128 are given in Appendix.

2.4.4 Key Schedule

The two ciphers Pyjamask-96 and Pyjamask-128 shares the same key schedule: the only
difference is the size of the subkeys extracted from key state that are injected into the
internal state during the AddRoundKey operations.

In both ciphers, the secret key consists of 128 bits. It is initially loaded into the 128-bit
key state in the same ordering as the internal state (Figure 3). Then, the 128-bit key state
undergoes three elementary transformations (see Figure 5):

• MixColumns – Each 4-bit column Ci of the key state is seen as a vector of four element
over F2 and is replaced by M · Ci, where the matrix M is defined by:

M =


0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

 .

10

0

32

64

96

1

33

65

97

2

34

66

98

3

35

67

99

4

36

68

100

5

37

69

101

6

38

70

102

7

39

71

103

8

40

72

104

9

41

73

105

10

42

74

106

11

43

75

107

12

44

76

108

13

45

77

109

14

46

78

110

15

47

79

111

16

48

80

112

17

49

81

113

18

50

82

114

19

51

83

115

20

52

84

116

21

53

85

117

22

54

86

118

23

55

87

119

24

56

88

120

25

57

89

121

26

58

90

122

27

59

91

123

28

60

92

124

29

61

93

125

30

62

94

126

31

63

95

127

Key State

M M

Column Diffusion

MK

≪ 8

≪ 15

≪ 18

Row Diffusion

0x24

0x3f

0x6a

0x8 CTR ∈ {0, . . . ,13}

Constant Addition

0

32

64

96

1

33

65

97

2

34

66

98

3

35

67

99

4

36

68

100

5

37

69

101

6

38

70

102

7

39

71

103

8

40

72

104

9

41

73

105

10

42

74

106

11

43

75

107

12

44

76

108

13

45

77

109

14

46

78

110

15

47

79

111

16

48

80

112

17

49

81

113

18

50

82

114

19

51

83

115

20

52

84

116

21

53

85

117

22

54

86

118

23

55

87

119

24

56

88

120

25

57

89

121

26

58

90

122

27

59

91

123

28

60

92

124

29

61

93

125

30

62

94

126

31

63

95

127

Key State

Figure 5: Key schedule of Pyjamask-96 and Pyjamask-128.

• MixAndRotateRows – The first row R0 of the key state is seen as vector of 32 elements
over F2 and is replaced by Mk ·R0, where the matrix Mk is defined by:

MK = cir ([1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0]) .

The second row R1, third row R2, and fourth row R3 are left-rotated of 8, 15, 18
positions. Namely they are replaced by R1 ≪ 8, R2 ≪ 15, and R3 ≪ 18 respectively.

• AddConstant – In the final step, a 32-bit round constant is defined and separated in
four bytes which are bitwise added to various parts of the rows of the key state. The
last four bits of the constant encode a counter equal to the round number between
0 and 13, and the remaining 28 bits are fixed to a constant represented on Figure 5
using the hexadecimal value 0x243f6a8:

CONSTANT = [0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0].

Then, the most significant byte (MSB) of this constant is XORed to the MSB of the
fourth row R3, the second MSB of this constant is XORed to the MSB of the third
row R2, the third MSB of this constant is XORed to the MSB of the second row R1,
and eventually the LSB of this constant is XORed to the LSB of the first row R0.

11

2.4.5 Pseudo-code

We give hereafter some high-level pseudo-code for the encryption, decryption and key
schedule algorithms. The Load primitive loads a 4r-byte input (plaintext or ciphertext)
into an r-row state as described above, with r ∈ {3, 4}. The Unload primitive consists in
the inverse operation. The KeySchedule algorithm takes a 16-byte key (denoted key) and
produces a table of 15 round keys (denoted roundkey[0 : 14]), each round key being made
of r rows of the key state. The AddRoundKey, SubBytes and MixRows primitives are the
round transformations as defined above. The inverse of the two latter transformations are
further denoted InvSubBytes and InvMixRows.

The Pyjamask encryption of plaintext under key proceeds as follows:

Encryption:

1: state← Load(plaintext)
2: roundkey[0 : 14]← KeySchedule(key)
3: for i = 0 to 13 do
4: state← AddRoundKey(state, roundkey[i])
5: state← SubBytes(state)
6: state← MixRows(state)
7: end for
8: state← AddRoundKey(state, roundkey[14])
9: ciphertext← Unload(state)

10: return ciphertext

The Pyjamask decryption of ciphertext under key proceeds as follows:

Decryption:

1: state← Load(ciphertext)
2: roundkey[0 : 14]← KeySchedule(key)
3: state← AddRoundKey(state, roundkey[14])
4: for i = 13 downto 0 do
5: state← InvMixRows(state)
6: state← InvSubBytes(state)
7: state← AddRoundKey(state, roundkey[i])
8: end for
9: plaintext← Unload(state)

10: return plaintext

In the following pseudo-code, we denote by MixColumns, MixAndRotateRows and
AddConstant the key schedule transformations as defined above. The Pyjamask key schedule
expand key into roundkey[0 : 14] as follows:

Key schedule:

1: keystate← Load(key)
2: roundkey[0]← keystate

3: for i = 1 to 14 do
4: keystate← MixColumns(keystate)
5: keystate← MixAndRotateRows(keystate)
6: keystate← AddConstant(keystate, i)
7: roundkey[i]← keystate

8: end for
9: return roundkey[0 : 14]

12

3 Rationale

Pyjamask aims to provide symmetric (authenticated) encryption enjoying fast software
implementations with high levels of security against side-channel attacks. To achieve this
goal, Pyjamask has been designed to be as lightweight as possible in the presence of high-
order masking in software, while still enjoying unmasked and/or hardware implementations
with satisfying performances.

In the presence of masking, each variable in the computation are split into d shares,
which are bound to the original variable through completeness relation, and which satisfy
some randomness property to wipe out the side-channel information leakage. Under some
realistic assumptions, the number of shares, or the masking order d− 1, has indeed been
argued to be a sound security parameter for the masked implementation [9, 14, 30]. In
the masking world, the evaluation of a nonlinear operation has a complexity O(d2) while
for a linear operation the complexity is of O(d) (the linearity being with respect to the
sharing operation, which is usually the bitwise addition). When a masking of high order is
involved, most of the computation is hence dedicated to the masked nonlinear operations
and the linear layers are virtually free. Several works have recently shown that the best
performances for high-order masked implementations are obtained through the use of
bitslicing [17,18,19,21,23,24]. In such implementations, the nonlinear layers are performed
through `-bitwise AND operations (`-AND), where ` is the size of the underlying architecture
(e.g., ` equals 8, 32, or 64 bits). The obtained performances are then highly correlated to
the number of `-AND operations in the original computation.

Pyjamask has been designed to enjoy such fast bitslice implementations in the presence
of high-order masking. Specifically, we have favored

• a minimal number of 32-AND operations for efficient implementation on 32-bit platforms,
• a parallelization degree to address 64-bit platforms and/or processor with vector

instructions,
• a design with reasonable performances for unmasked and/or hardware implementations,
• a design that relies on the well-studied SPN architecture (Sbox layer, linear diffusion

layer, and bitwise key addition).

To fulfill the above criteria, we have opted for a design based on the following choices:

• The nonlinear layer is composed of 32 parallel applications of a small Sbox, either a
3-bit or a 4-bit Sbox, which yield two instances of the cipher with either a 96-bit state
(Pyjamask-96) or a 128-bit state (Pyjamask-128). For each instance, the Sbox has the
minimal cost in terms of AND gates, i.e., m AND gates of the m-bit Sbox, m ∈ {3, 4}.
This makes a nonlinear layer that can be evaluated with m 32-AND operations in total.
• The 4-bit Sbox enjoys a possible parallelization of the AND gates, namely it can be

evaluated with two pairs of parallel AND gates. As a result, the nonlinear layer of
Pyjamask-128 can be evaluated with two 64-AND operations in total, which makes it
further well suited for 64-bit architectures (or processors with vector instructions).

• Since linear parts are virtually free in the masking world, the linear layer of the
Pyjamask block cipher has been conceived to provide high diffusion by means of 32×32
binary matrices. Different matrices are used for the different 32-bit slices in order to
avoid too much regularity. On the other hand, we chose to use circulant matrices to
obtain acceptable performances for unmasked and/or hardware implementations.

• The key-schedule of the cipher has been designed to only involve linear operations for
an optimal performances in the presence of masking.

We further describe these design choices in the rest of this section.

3.1 Parameters for the 96-bit Version of the OCB Mode

Irreducible Polynomial. The irreducible polynomial of degree 96 has been chosen for
its low weight, as listed in [32]. In addition, we note x = 2 is a primitive element.

13

Stretch-then-shift Hash Function. In [26], the empirical result shows that the hash
function H : {0, 1}128 × [0..63]→ {0, 1}128 defined by

H(K,x) = (Stretch� x)[1..128],

where Stretch = K‖(K ⊕ (K � c)) is strongly XOR-universal for c = 8. This implies
two properties, HK(x) is uniformly distributed in {0, 1}n (universal-1), and for all x 6= x′,
HK(x)⊕HK(x′) is uniformly distributed in {0, 1}n (XOR-universal).

We did a similar analysis as described in [26] for our 96-bit hash function H96 :
{0, 1}96 × [0..63]→ {0, 1}96 defined by

H96(K,x) = (Stretch� x)[1..96],

where Stretch = K‖(K⊕(K � c)). We have found several candidates c ∈ {2, 6, 7, 9, 10, 14, . . . }
to construct a 96-bit strongly XOR-universal hash function. Notice that for n = 96, c = 8
does not result in a strongly XOR-universal hash function.

We chose c = 9 to be as close as possible from a multiple of 8 for it is minimally better
on some platforms (8-bit microcontrollers, when one can only shift by 1, therefore any
multiple of 8± 1 would be preferred [4].

3.1.1 Choice of the Sboxes

For concise discussion, we express the lookup table of Sboxes using a sequence of hexadeci-
mal without spacing or comma. For instance, S3 = 13652470 and S4 = 2d397ba6e0f4851c.

Our Sboxes selection criteria are as follows:

(C1) To obtain optimal differential and linear properties with as few non-linear gates as
possible.

(C2) Avoid cycles in the differential and (resp. linear) transitions with both input and
output difference (resp. mask) of Hamming weight one.

(C3) If such cycles cannot be avoided, select one with the longest cycles.

The first criterion (C1) is self-explanatory. Note that the best known 3- and 4-bit Sboxes
have maximum differential probability (m.d.p.) 2−2 and maximum linear approximation
(m.l.a) 2−2. To construct the Sboxes used in Pyjamask that reach those bounds, we use
simple operations as the building blocks: namely, (a, b, c) 7→ (b, c⊕ (a ∧ b), a) for the 3-bit
Sbox and (a, b, c, d) 7→ (b, c, d⊕ (a∧b), a) for the 4-bit Sbox. The choice of these elementary
operations are reminiscent of the design of the PICCOLO and the SKINNY Sboxes. By simply
iterating these operations three times for the 3-bit Sbox (resp. four times for the 4-bit
Sbox), we obtain Sboxes S′3 = 01254736 and (resp. S′4 = 012745e98badfc36) with optimal
differential and linear properties.

The criteria (C2) and (C3) focus on the sub-tables of the differential distribution
table (DDT) and the linear approximation table (LAT) where the input and output values
have Hamming weight exactly one. Indeed, if there is a 1-cycle (or fixed point) in the
sub-table, it implies that active bits in that particular row of the internal state can stay in
that row without propagating to other rows. To avoid this undesirable property, we apply
some linear transformations Lin

3 and Lout
3 (resp. Lin

4 and Lout
4) before and after the Sbox

S′3 (resp. S′4) to obtain linearly equivalent optimal Sboxes but without short cycle (resp.
without any cycle) in the differential transitions with both input and output difference of

14

Hamming weight one, same goes for the linear aspects of the Sboxes.

Lin
3 =

1 1 0

0 1 1

0 0 1

 , Lout
3 =

0 1 0

1 1 0

1 0 1

 ,

Lin
4 =


1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 1

 , Lout
4 =


1 0 0 0

1 1 0 0

0 0 0 1

0 1 1 0

 .
Last but not least, we introduce some offset value to both Sboxes to remove fixed

points, the offset is denoted by A3(x) = x ⊕ 0x1 and A4(x) = x ⊕ 0x2. In the end, the
Sboxes that we use in Pyjamask are defined as:

S3 = A3 ◦ Lout
3 ◦ S′3 ◦ Lin

3 ,

S4 = A4 ◦ Lout
4 ◦ S′4 ◦ Lin

4 .

In the end, we arrive at our current Sboxes S3 and S4, The DDT and LAT of S3 are
presented in Table 4 and Table 5, where we highlighted the entries that have both input
and output differences/masks having Hamming weight one. Similarly, we give the DDT and
LAT of S4 in Table 6 and Table 7. In all these four tables, rows (resp. columns) represent
input (resp. output) differences or masks.

Table 4: DDT of S3.

DDT 0 1 2 3 4 5 6 7

0 8 -

1 . . 2 2 . . 2 2

2 2 2 2 2

3 . . 2 2 2 2 . -

4 . 2 . 2 . 2 . 2

5 . 2 2 . . 2 2 -

6 . 2 . 2 2 . 2 -

7 . 2 2 . 2 . . 2

Table 5: LAT of S3.

LAT 0 1 2 3 4 5 6 7

0 4

1 . . −2 −2 . . 2 −2

2 2 −2 −2 −2

3 . . 2 −2 2 2 . .

4 . −2 . −2 . −2 . 2

5 . 2 2 . . −2 2 .

6 . −2 . 2 2 . 2 .

7 . −2 2 . −2 . . −2

3.1.2 Choice of the Diffusion Matrices

To choose the diffusion matrices, we have run a probabilistic search in a particular subspace
fitting the constraints of the ciphers, and simply picked five matrices that ranked best in
terms of implementation sizes.

To elaborate on the actual subspace, we first recall the constraints imposed by the
design (refer to Section 2.4). The matrices have to be defined over F2 and must be of
dimension 32. In terms of security, we would like them to achieve the best possible branching
number [1]. Looking at the best known linear codes of these dimensions, one knows that
the best theoretically achievable minimum distance is 16 [7, 20].However, one does know

15

Table 6: DDT of S4.

DDT 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 -

1 2 2 4 4 2 2

2 . 4 . . 4 4 . . . 4 . -

3 . 4 . . 4 2 2 . . 2 2

4 4 4 . 2 2 2 2

5 . . . 4 . 4 . . 2 2 2 2 . . . -

6 . 2 2 . 2 . . 2 2 . . 2 2 . . 2

7 . 2 2 . 2 . . 2 2 . 2 . 2 . 2 -

8 2 2 4 4 2 2

9 . . 4 4 . . 4 4 -

a . . 2 2 . . 2 2 . 4 . . . 4 . -

b . . 2 2 . . 2 2 . . 2 2 . . 2 2

c . . 4 . . 4 . . 2 2 2 2 . . . -

d 4 . 4 2 2 2 2

e . 2 . 2 2 . 2 . 2 . . 2 2 . . 2

f . 2 . 2 2 . 2 . 2 . 2 . 2 . 2 -

Table 7: LAT of S4.

LAT 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 8

1 . . −4 . 2 2 2 −2 . −4 . . 2 −2 −2 −2

2 4 . 4 4 . −4

3 . 4 . . −2 −2 2 −2 . . −4 . −2 2 −2 −2

4 4 . 4 4 . −4 .

5 . . −4 . −2 −2 −2 2 . . . −4 2 2 −2 2

6 . 4 . −4 4 . 4 .

7 . . . −4 2 −2 −2 −2 . . 4 . −2 2 −2 −2

8 . −2 −4 −2 2 . −2 . . 2 −4 2 −2 . 2 .

9 . 2 . 2 . 2 −4 −2 4 −2 . 2 . 2 . 2

a . −2 . 2 −2 . −2 −4 . 2 . −2 2 . 2 −4

b . −2 . −2 . 2 4 −2 4 2 . −2 . 2 . 2

c . −2 4 −2 2 . −2 . . −2 −4 −2 2 . −2 .

d . 2 . 2 4 −2 . 2 4 2 . −2 . −2 . −2

e . 2 . −2 −2 4 −2 . . 2 . −2 −2 −4 −2 .

f . 2 . 2 4 2 . −2 −4 2 . −2 . 2 . 2

any linear code that reaches that bound: the best achievable one has minimum distance
12. Consequently, in the choice of the diffusion matrices for the Pyjamask block cipher, we
looked for 32× 32 binary diffusion matrices with branch number 12.

16

To compare two binary matrices having the targeted branch number, we use an
implementation-related metric that counts the number of bitwise additions required to
evaluate the matrix multiplication as done in a recent series of academic papers, e.g.,
[15, 22, 25]. More specifically, for each candidate matrix, we have run Paar1 algorithm [28],
which returns the number of 2-input XOR gates required to implement the evaluation.
This measure allows to rank the various matrices and eventually pick the ones that reach
branch number 12 and a low number of XOR in the implementation at the same time.

Finally, to restrict the search space, rather than randomly picking 32 × 32 binary
matrices, we have chosen to rely on circulant matrices, which can be defined by a single
32-element vector over F2. To reach branch number 12, this vector necessarily has to have
a least 11 nonzero coefficients. As a result, we randomly picked circulant matrices defined
by a vector having exactly 11 nonzero elements, checked that their branch numbers was
12, and ranked them accordingly to Paar1’s algorithm. We then picked five matrices in the
best candidates: the resulting matrices are given fully in Appendix.

3.1.3 Choice of the Key Schedule

In the key schedule, to differentiate every steps, we chose to inject a round counter to 4 bits
of the first row of state. Additionally, to break potential symmetries, it is customary for
symmetric ciphers to embed round constant within the key schedule. In Pyjamask, we have
decided to derive a 28-bit constant from the hexadecimal encoding of the fractional part
of π = 3.243f 6a88 85a3, which therefore yields 0x243f6a8. The same choice has been
followed by the designers of MIDORI [3]. We determined to separate this 7-nibble constant
and 1-nibble counter to 2 nibbles each and to added each of them for each row. This is to
provide better security against the invariant cryptanalysis which will be explained in the
security analysis section.

The rotation constants in the key schedule have been chosen to maximize diffusion and
to be as close as possible from a multiple of 8. Indeed, as remarked in [4], on a typical
8-bit micro-controller a rotation by 8k + 2 is twice as expensive as a rotation by 8k + 1, a
rotation by 8k + 3 three times as expensive, etc.

4 Security Analysis

We present in this section a preliminary analysis of the block ciphers introduced in Pyjamask.
While we try to give convincing security arguments and cover the most commonly known
cryptanalysis techniques, we emphasize that not all the possible attack vectors have been
deeply investigated.

4.1 Differential Analysis

We give in Table 10 lower bounds on the number of active Sboxes for up to four rounds of
Pyjamask-96 and Pyjamask-128. To derive those bounds, we have used a SAT approach
based on the CryptoSMT framework proposed by Kölbl in [33]. We have added both
variants of Pyjamask to the tool which allows us to search for the optimal differential
characteristics taking into account the exact transitions of the difference through the Sbox.
We note that due to the high number of variables present in the SAT models, reaching
more than four rounds requires long computations which we could not afford. Nonetheless,
the bounds obtained provide a strong indication that no high probability characteristic
exist for both variants of Pyjamask.

In Table 10, we give the bounds on the best differential characteristics possible in terms
of the number of active Sboxes. In order to explore the possibility of characteristics with a
low number of active Sboxes for more rounds we use the optimal 2-round characteristic

17

and extend it in both directions. Note that the extension in both directions finds the best
possible trail, but this does not imply that there is no better trail for 6 rounds exist.

We emphasize that the computations to derive bounds for higher number of rounds by
using a general-purpose tool such as SAT are computationally intensive: covering three
rounds is still within practical range, but four rounds involve long optimization periods.
We may communicate on updated figures in the future.

Searching for Efficient Differential Characteristics

Regarding Pyjamask-96, it is still possible to find a highly efficient differential characteristic
owing to the differential behaviors of the 3-bit Sbox S3. At a high level, we first introduce
a method to compress the 96-bit state to a 32-bit state, which we call MiniPyjamask-96,
and then find efficient characteristics by exhaustively trying all differential propagations
for MiniPyjamask-96.

As indicated by the DDT in Table 4, S3 allows the iteration of the differential propaga-
tions from 1-bit difference to 1-bit difference, namely, the difference 0x1 is propagated to
the difference 0x2 with probability 2−2, the difference 0x2 is propagated to the difference
0x4 with probability 2−2, and the difference 0x4 is propagated to the difference 0x1 with
probability 2−2. Given this property, we set that all active Sboxes in Round i (resp. i+ 1
and i + 2) have the input difference 0x1 (resp. 0x2 and 0x4) and produce the output
difference 0x2 (resp. 0x4 and 0x1). Hence in any round, only one of three rows are active
and the other two rows are inactive. This allows us to focus only on the active row to
analyze the differential propagation through MixRows. Note that the MSB (resp. LSB) of
the Sbox is the top (resp. bottom) row of the state. Therefore,

• After the difference becomes 0x1, M2 is applied.

• After the difference becomes 0x2, M1 is applied.

• After the difference becomes 0x4, M0 is applied.

We are now ready to define MiniPyjamask-96. It takes a 32-bit value as input and the
round function is a linear function M2, M1, and M0. The order of the linear functions is

• M2, M1, and M0 when the input difference of all active Sboxes in Round 1 is 0x1.

• M1, M0, and M2 when the input difference of all active Sboxes in Round 1 is 0x2.

• M0, M2, and M1 when the input difference of all active Sboxes in Round 1 is 0x4.

In the end, MiniPyjamask-96 is a 32-bit linear code and the most efficient differential
characteristic can be found by searching for the propagation with the lowest Hamming
weight. Because the input size is only 32 bits, exhaustive search is feasible. As a result, we
found a 5-round propagation with weight 43, which is shown below.

00a04e67 (wt11)
M1−→ a900010a (wt7)

M0−→ 2040b886 (wt9)
M2−→

04010c62 (wt7)
M1−→ 0a3a0841 (wt9)

M0−→ d22a6797

This corresponds to the differential characteristic with probability 2−2×43 = 2−86 of
Pyjamask-96. To be precise, the corresponding differential characteristic for Pyjamask-96
is given in Table 8.

We also confirmed that there is no differential propagation for 6 rounds in this strategy
whose probability is higher than 2−96 (the weight for MiniPyjamask-96 is less than 48).

Regarding Pyjamask-128, the 4-bit Sbox S4 does not allow the iteration of the propa-
gation from 1-bit difference to 1-bit difference, which prevents the application of a similar
strategy. The best characteristic we found for Pyjamask-128 is shown in Table 9.

18

Table 8: Differential characteristic for 5-round Pyjamask-96.

Round Input to Sbox Layer Input to Linear Layer Active

0 00000000 00a04e67 00000000 00a04e67 00000000 00000000 11

1 a900010a 00000000 00000000 00000000 00000000 a900010a 9

2 00000000 00000000 2040b886 00000000 2040b886 00000000 7

3 00000000 04010c62 00000000 04010c62 00000000 00000000 9

4 0a3a0841 00000000 00000000 00000000 00000000 0a3a0841 7

5 00000000 00000000 d22a6797

Table 9: Differential characteristic for 6-round Pyjamask-128.

Round Input to Sbox Layer Input to Linear Layer Active

0 281a088b200200020000200000080001 08100888280a088b081808092012200a 11

1 1b8983b0175328ad345a10f629c9b369 00000000031b2a090cd88bb03b99b3ff 26

2 0000000000000001180040c9000040c8 000000000000000000000000180040c9 7

3 0000000000000000000000000114a000 0114a000011480000114200000000000 5

4 e6e2431674f49dd216e2eb1900000000 c684f6152430b9cec4b29804b6c6eac3 27

5 041000c802100180060000c8061000c8 061001c800100180061001c804100148 7

6 7d31d40c9f26e70a5b4dcd134fa24e25

Table 10: Lower bounds on the number of active Sboxes in Pyjamask for one up to four
rounds.

Cipher 1 2 3 4

Pyjamask-96 1 12 19 ∈ {27, . . . , 30}
Pyjamask-128 1 12 ∈ {18, 19} ≥ 20

4.2 Algebraic Analysis

In order to estimate the security of Pyjamask against algebraic attacks we first compute a
bound on the maximum algebraic degree (see Table 11) for different number of rounds
according to the degree estimate given in [6].

Table 11: Bound on the algebraic degree of Pyjamask from 1 to 14 rounds.

Cipher 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Pyjamask-96 2 4 8 16 32 64 80 88 92 94 95 95 95 95

Pyjamask-128 3 9 27 59 91 109 118 123 125 126 127 127 127 127

4.3 Invariant Subspace Cryptanalysis

Invariant subspace cryptanalysis is a weak-key attack. The attacker chooses the plaintext
and the key values so that the state value only takes a subspace of all the possible values.
By observing that the ciphertext is included in the subspace, the attacker can distinguish
the cipher. We found that Pyjamask-96 allows the invariant subspace cryptanalysis if we
relax the following two operations during the key schedule: the first one is the complete
omission of MixColumns, and the second one is modifying the AddConstant so that all the

19

constant nibbles are added to the first row. Here, we describe the attack which implies the
rationale of those design choices.

Attack Procedure. We set up the plaintext and the weak key as follows.

• Let S32 be the set of 232 state values in which the first row can take any value, the
second row is fixed to 0xffffffff and the third row is fixed to 0x00000000.

• Let K32 be the set of 232 key state values in which the first row can take any value
and the second, third and forth rows are fixed to 0x00000000.

The attacker chooses any plaintext from S32 and suppose that the key is chosen from K32.
Then, the corresponding ciphertext is in S32 with probability 1.

Analysis. Due to the omission of the MixColumns and the modification of the constant,
the second, third, and forth rows of the key state will not change through the key schedule.
Hence, all subkeys will be in the subspace of K32. Note that the value of the first row
changes but this does not help to escape from the invariant subspace K32.

The plaintext is chosen from S32. Even after adding any key from K32, the state value
stays in the subspace S32. During SubBytes, each 3-bit input to the Sbox is now either 0x2
or 0x6 depending on the value for the first row. Here the Sbox of Pyjamask-96 has the
property such that S3(2) = 6 and S3(6) = 2, i.e. the subspace S is invariant by the Sbox.
Hence even after SubBytes the state value stays in S32. During MixRows, the input value to
the second row 0xffffffff is mapped to 0xffffffff by a multiplication of the circulant
matrix with an odd weight. The input value to the third row 0x00000000 is mapped to
0x00000000 by any linear operation. Hence even after MixRows the state value stays in
S32. In the end, the ciphertext is in the subspace of S32.

To describe the exploited invariant subspace generally, the 3-bit Sbox S3 maps the
affine space A :< 0x4 > +0x2 to A, where < v > is the vector space spanned by v, and
MixRows preserves the space as long as all the Sbox outputs are in A. We then chose the
plaintext so that each input to the Sbox is in A and chose the key such that all columns
for all subkeys are in < 0x4 >.

Note that Pyjamask-96 prevents this attack first by using MixColumns in the key
schedule, and second by adding constants to all the rows.

5 Implementations and Performances

5.1 Software

5.1.1 Bitslice Implementation

Bitslice is an implementation strategy initially proposed by Biham in [5]. It consists in
performing several parallel evaluations of a Boolean circuit in software where the logic
gates are replaced by instructions working on registers of several bits. More precisely,
each software bitwise instruction corresponds to the simultaneous execution of ` Boolean
logical gates, where ` is the register size on the target architecture. This strategy was
originally applied to compute ` parallel evaluations of a full block cipher when several
blocks must be processed and when parallelism is possible [5]. It can also be applied to
speed-up the encryption of a single block with parallel evaluations of the Sboxes [21].
For standard SPN block ciphers, this implies that the only nonlinear operations in the
parallel Sbox processing (and hence in the full cipher) are bitwise AND (or, NAND, OR,
NOR) instructions between `-bit registers which is particularly well suited for the efficient
application of high-order masking [19].

Similarly to NOEKEON [10] and LS-designs [21], Pyjamask is especially tailored for bitslice
implementation with a parallel computation of the Sboxes on architectures of size ` = 32.

20

In a bitslice implementation of Pyjamask, each row of the state is stored in a 32-bit register
(three registers for Pyjamask-96 and four registers for Pyjamask-128). The key state is
equally stored row-wise, which makes the key addition very simple (3 or 4 32-XOR).

The Sboxes enjoy simple Boolean representations, which makes their bitslice implemen-
tation very efficient. Let Ri denotes the ith row register, with i ∈ {0, 1, 2} for Pyjamask-96
and i ∈ {0, 1, 2, 3} for Pyjamask-128. Let ⊕ and ∧ respectively denote the 32-XOR and
32-AND instructions. The Sbox layer can be implemented as follows:

SubBytes (Pyjamask-96):

1: R0 ← R0 ⊕R1

2: R1 ← R1 ⊕R2

3: R2 ← R2 ⊕ (R0 ∧R1)
4: R0 ← R0 ⊕ (R1 ∧R2)
5: R1 ← R1 ⊕ (R0 ∧R2)
6: R2 ← R2 ⊕R0

7: R0 ← R0 ⊕R1

8: R2 ← not(R2)
9: swap(R0, R1)

SubBytes (Pyjamask-128):

1: R0 ← R0 ⊕R3

2: R3 ← R3 ⊕ (R0 ∧R1)
3: R0 ← R0 ⊕ (R1 ∧R2)
4: R1 ← R1 ⊕ (R2 ∧R3)
5: R2 ← R2 ⊕ (R0 ∧R3)
6: R2 ← R2 ⊕R1

7: R1 ← R1 ⊕R0

8: R3 ← not(R3)
9: swap(R2, R3)

The binary matrix multiplication can be efficiently implemented thanks to the circulant
property of the matrix. Let R denote an input row register, let M denote a circulant binary
matrix and let C denote the leftmost column of M . By the circulant property, the product
M ·R satisfies

M ·R =
(
R[0] · (C ≫ 0)

)
⊕
(
R[1] · (C ≫ 1)

)
⊕ · · · ⊕

(
R[31] · (C ≫ 31)

)
where ≫ denotes the right rotation operator and R[i] denotes the ith (leftmost) bit of R.
In the above equation, R[i] · (C ≫ i) stands for the scalar product of the 32-bit vector
(C ≫ i) by the bit R[i]. The binary matrix multiplication can hence be implemented in
32 steps which

• extract the ith bit of R and spread it to 32 bits to get a mask msk:

msk =

{
0x00000000 if R[i] = 0

0xffffffff if R[i] = 1

• update an accumulator acc:

acc = acc⊕ (msk ∧ (C ≫ i)) .

In C, the computation of msk can be done as msk = 0 − R[i]. In ARM v7, it comes for
free thanks to the arithmetic shift right (ASR), which can be applied to an instruction
operand. A slightly faster implementation could be obtained by the use of look-up tables.
We purposely avoided such an implementation strategy for the sake of security against
cache timing attacks.

5.1.2 Masked Implementation

In a masked implementation of Pyjamask, the state is split into d shares state[0], . . . ,
state[d− 1]. All along the computation, the shares are processed in such a way that the
following relation is always satisfied:

state[0]⊕ state[1]⊕ · · · ⊕ state[d− 1] = state ,

21

At the beginning of the computation, d− 1 of the shares are filled with fresh randomness
and the last one is computed according to the above equation. The same applies to the key
state, which yields shared round keys roundkey[i][j], where i ∈ [0, 14] is the round index
and j ∈ [0, d− 1] is the share index.

The linear operations are applied sharewisely. Namely, the MixRows operation is
performed as

for j = 0 to d− 1 do: state[j]← MixRows(state[j]) .

The AddRoundKey operation (for the ith round key) is performed as

for j = 0 to d− 1 do: state[j]← AddRoundKey(state[j], roundkey[i][j]) .

Being fully linear, the key schedule can also be applied sharewisely. Let us denote key[0],
. . . , key[d− 1], the shares of the secret key. The key schedule is initially performed as

for j = 0 to d− 1 do: roundkey[0 : 14][j]← KeySchedule(key[j]) .

Note that in order to keep the consistency, the constant addition is applied in the key
schedule for a single share, let’s say for i = 0, and it is skipped for the other shares.

The Sbox layer is computed according to the circuits described above where each 32-XOR
operation is replaced by d sharewise 32-XOR operations and where the 32-AND are performed
using a secure masked multiplication scheme. Specifically, we use an ISW multiply and
accumulate (MACC), which computes the following operation

C ← C ⊕ (A ∧B) , (12)

on the shares of A, B and C. From the input shares (A1, . . . , Ad), (B1, . . . , Bd), and
(C1, . . . , Cd), such an ISW MACC proceeds as follows:

ISW MACC:

1: for i = 1 to d do
2: Ci ← Ci ⊕ (Ai ∧Bi)
3: for j = i+ 1 to d do
4: R← $
5: Ci ← Ci ⊕R
6: Cj ← Cj ⊕ ((Ai ∧Bj)⊕R)
7: Cj ← Cj ⊕ (Aj ∧Bi)
8: end for
9: end for

In the above pseudocode, R ← $ denotes the sampling of a random 32-bit value,
through a (physical true, or pseudo) random number generator. It can be checked that the
output shares satisfy⊕d

j=1
C

(out)
j =

⊕d

j=1
C

(in)
j ⊕

(⊕d

j=1
Aj

)
∧
(⊕d

j=1
Bj

)
= C ⊕ (A ∧B) .

For high-order masking, where d is up to several dozens, the ISW MACC is the most
time-consuming operation since it requires O(d2) elementary operations against O(d) for
the linear parts. This is hence the operation to be primarily optimized. In practice, an
implementation of the ISW MACC is composed of logical instructions and memory accesses
to read/write the input shares and intermediate variables. While the number of logical
operations {⊕,∧} and the number of RNG invocations are fully determined by the masking
order d, an efficient implementation should try to optimize the memory accesses and the
loop management.

22

Cortex-M4 implementations. Our benchmark implementations target ARM (v7) ar-
chitectures and have been benchmarked on a Cortex-M4 processor. The binary matrix
multiplication and ISW MACC routines have been written and optimized at the assembly
level. Using the implementation strategy described above, we get a binary matrix multipli-
cation with a total of 32× 3 CPU instructions. For the ISW MACC, we have developed
two variants. In the basic setting (variant v1) the shares Ai, Bi, Ci are kept in CPU
registers during the whole iteration i. The shares Aj , Bj , Cj are read (from memory) and
the share Cj is written (in memory) at each iteration j. Three pointers are used for the
three sharings. Given the loop indexes and the RNG address, this ISW MACC routine
makes full usage of the CPU registers. In the speed-optimized setting (variant v2) the
iteration of the main loop are processed by pairs (i, i+ 1). The shares Ai, Bi, Ci, Ai+1,
Bi+1, Ci+1 are kept in CPU registers during the whole pair of iterations (i, i+ 1). This is
made possible by only keeping the address of the state and by hardcoding the mapping
between the indexes of the state rows and the operands A, B and C. We hence need one
instance of the ISW MACC per MACC instruction in the Sbox (i.e. 3 for Pyjamask-96

and 4 for Pyjamask-128). This variant (v2) is hence faster but slightly heavier in code
size.

5.1.3 Performances

Our implementation have been benchmarked on an STM32F4 Discovery board. This
board embeds an ARM Cortex-M4 processor, which can be clocked up to 168 MHz, and
multiple peripherals among which a hardware Random Number Generator (RNG). The
RNG comprises a hardware status register indicating when a new 32-bit word of fresh
randomness is available, which occurs every 65 clock cycles (duration of the entropy pooling
phase). When fresh randomness is available, it can be accessed through a load instruction
in a single clock cycle. We have benchmarked our implementation with the two following
RNG modes.

– Pooling mode: The RNG routine checks the availability of fresh randomness before
reading the RNG output register. This takes a few clock cycles for testing, possibly
waiting up to 65 clock cycles (depending on the last read), plus a few clock cycles for
reading and managing the routine call. This mode is typically what one should do on
the considered STM32F4 board.

– Fast mode: The RNG routine simply reads the RNG output register (without wondering
whether fresh randomness is ready). This mode simulates a context in which the target
architecture has a fast hardware RNG with a pooling phase taking a small number of
clock cycles (so that fresh randomness is always ready when the RNG is read).

Table 12 summarizes the obtained performances for the two implementation variants
(v1 / v2), the two RNG modes (pooling / fast), and for a masking order d scaling from
4 to 128. These results have been obtained using the -Ofast compilation option (which
optimizes the timings). In all the scenarios, the performances of encryption and decryption
are similar. We observe in particular that for a masking order d = 128 our implementations
of Pyjamask-96 and Pyjamask-128 run in 6.3 and 8.1 megacycles in fast RNG mode,
which makes 38 and 48.5 milliseconds assuming a 168 MHz clock. In pooling RNG mode
this increases to 28.5 and 37.9 megacycles (which makes 170 and 225.5 milliseconds with a
168 MHz clock).

We note that the code size slightly increases with the masking order up to d = 16 and
then drops by a factor 2. This is presumably due to the fact that the compiler unrolls the
loops in the C code up to a certain number of iterations.

23

Table 12: Performance benchmark on ARM Cortex-M4.

Variant TRNG d = 4 d = 8 d = 16 d = 32 d = 64 d = 128

Timings (kilocycles)

v1 pooling 59 178 606 2213 8173 30772

Pyjamask-96 v1 fast 41 95 249 736 2419 8253

v2 pooling 55 165 556 2018 7397 28518

v2 fast 38 86 215 604 1898 6341

v1 pooling 74 230 792 2918 10807 40890

Pyjamask-128 v1 fast 51 119 316 948 3145 10858

v2 pooling 69 213 726 2657 9785 37901

v2 fast 47 106 267 758 2398 8102

RAM (kilobytes)

Pyjamask-96 v1/v2 - 1.2 2.2 4.1 8.2 16.2 32.3

Pyjamask-128 v1/v2 - 1.2 2.2 4.2 8.3 16.6 32.9

Code size (bytes)

Pyjamask-96 v1 - 3712 5296 5320 2892 2896 2920

v2 - 5340 6922 6952 4524 4528 4552

Pyjamask-128 v1 - 4070 5776 5686 3158 3198 3198

v2 - 5696 7418 7306 4778 4818 4818

Pj-96 + Pj-128 v1 - 6652 9940 9872 4920 4964 4988

v2 - 8232 11516 11452 6504 6548 6572

5.1.4 Comparison

Implementation results. Up to our knowledge, only a few papers in the literature
provide implementation results for masking of high orders (e.g., d > 4). In [34], Wang et
al. describe an efficient implementation of AES in ARM NEON (typically on a Cortex-A8
processor) for a masking order up to d = 8. Their implementation takes advantage of the
NEON 128-bit vector instructions, which makes it hard to compare to our implementations.

In [19], Goudarzi and Rivain presents several low-level optimization of various masking
schemes on ARM v7 architectures. In particular, they benchmark efficient bitslice imple-
mentations of AES and PRESENT for a masking order up to d = 11. We have benchmarked
their bitslice AES implementation on the STM32F4 board. The results are given in Table 13
and compared to our implementations of Pyjamask-128. We note that the AES implemen-
tation of [19] takes an expanded masked key as input and does not perform the AES key
schedule. We see that compared to this optimized implementation, our implementation of
Pyjamask-128 (v2) is between 3 and 4 times faster at high orders.

Finally, Journault and Standaert report efficient masked bitslice implementations of AES
and Fantomas in [23] at the order d = 32. They give performance results for a Cortex-M4
processor embedded on a SAM4C-EK evaluation board. On this board the pooling phase
of the RNG takes 80 clock cycles, which is slightly slower than on the STM32F4 board
but the results are still comparable. Their AES implementation runs in 9.7 megacycles and
their Fantomas implementation in 4.1 megacycles. In comparison, our implementations

24

Table 13: Performance comparison on ARM Cortex-M4.

Variant TRNG d = 4 d = 8 d = 16 d = 32 d = 64 d = 128

Timings (kilocycles)

AES-128 [19] - pooling 153 547 2072 8073 30572 121430

- fast 86 237 746 2592 9597 36882

v1 pooling 74 230 792 2918 10807 40890

Pyjamask-128 v1 fast 51 119 316 948 3145 10858

v2 pooling 69 213 726 2657 9785 37901

v2 fast 47 106 267 758 2398 8102

RAM (kilobytes)

AES-128 [19] - - 2.4 4.8 9.6 19.2 38.4 76.8

Pyjamask-128 v1/v2 - 1.2 2.2 4.2 8.3 16.6 32.9

Code size (bytes)

AES-128 [19] - - 7532 7532 7532 7532 7532 7532

Pyjamask-128 v1 - 4070 5776 5686 3158 3198 3198

v2 - 5696 7418 7306 4778 4818 4818

of Pyjamask-128 at order d = 32 run in 2.9 megacycles (v1) and 2.6 megacycles (v2) in
pooling RNG mode.

High-level comparison. We provide hereafter a more general comparison of the Pyjamask
design to the state of the art. As explained in Section 3, the prime efficiency parameter for
a masked bitslice implementation at high orders on a `-bit architecture is the number `-AND.
We therefore report in Table 14 the counts of 32-AND and 64-AND for several 96-bit and
128-bit ciphers. For Pyjamask-96, the Sbox is composed of 3 multiplications. This implies
that we can compute the full Sbox layer with three 32-AND. For Pyjamask-128, the Sbox is
composed of 4 multiplications that can be computed as 2 pairs of parallel multiplications.
This implies that we can compute the full Sbox layer with four 32-AND or with two 64-AND.
For completeness we also report the total count of Boolean AND operations. Note that we
ignore the AND operations in the key schedule.

5.1.5 Source Code

The software source code of Pyjamask block cipher is available at https://github.com/pyjamask-
cipher.

5.2 Hardware

In order to minimize the number of rounds needed and thus the amount of non-linear
operations, Pyjamask uses an important amount of binary XOR operations. As XOR
gates are not so cheap (2.67 GE7 on UMC 180 for example using MAOI1 gates, compared

7A Gate Equivalent (GE) is the area of the smallest 2-input NAND gate in the cell library
under consideration

25

Table 14: Comparision of the bitwise multiplicative complexity of several ciphers.

key size # rounds # AND # 32-AND # 64-AND

96-bit block ciphers

SIMON-96/96 96 52 4992 104∗ 52∗

Pyjamask-96 128 14 1344 42 42∗

SIMON-96/144 144 54 5184 108∗ 54∗

128-bit block ciphers

LowMC-128 (m = 3) 128 88 792 88∗ 88∗

AES-128 128 10 5120 160 100∗

SIMON-128/128 128 68 4352 136 68

NOEKEON 128 16 2048 64 32

Robin 128 16 3072 96 96∗

Fantomas 128 12 2304 72 72∗

Mysterion-128 128 12 1536 48 24

Pyjamask-128 128 14 1792 56 28

∗ Does not achieve full parallelisation (i.e. some registers are not full with data).

with 1 GE of a NAND gate), this will have a negative impact on the area of ASIC
implementations.

We provide some estimation for an encryption-only round-based implementations of
Pyjamask-128 on ASIC using UMC 180 technology.

Memory Size. For an internal state of 128 bits and a 128-bit key, 256 bits need to stored,
which amounts to about 256 · 4.67 = 1195 GE.

Sbox. In Pyjamask-128, there are 32 Sboxes of 4 bits, and each can be implemented with 4
AND gates and 7 XOR/XNOR gates. This amounts to about 32×(4·1.33+7·2.67) = 768 GE.

Binary Matrices. The cipher relies on five matrices of dimension 32 over F2: four to
update the internal state, and one for the key update. Using Paar’s algortihm [29], we have
evaluated that they can all be implemented using at most 347 XOR gates. This amounts
to 5× (347 · 2.67) = 4632 GE.

Key Schedule. The key scheduling operation also relies on 32 binary matrices of dimension
4, and each can be implemented with only 6 XORs. This amounts to about 32× (6 ·2.67) =
512 GE.

Key Addition. To XOR the subkey into the state, 128 XOR gates with two inputs are
requires. This amounts to about 128× 2.67 = 342 GE.

Constant Addition. The XOR of round constant is negligible, only a dozen 1 bits have
to be XORed.

Control Logic. Extra logic to control the execution flow is hard to predict, but for
lightweight ciphers it usually contributes to a small percentage of the total area. Moreover,
Pyjamask has a very regular structure that should reduce the significance of that part
in the whole implementation size. Therefore, we will not count the control logic in our
estimation.

26

In total, we estimate that a Pyjamask-128 round-based implementation (encryption
only) should require about 7500 GE (and 14 cycles), which remains much better than
an AES round-based implementation [31]. We emphasize that this is only a very rough
estimation, we will provide real synthesis number in the future.

A possible better tradeoff than this basic round-based implementation would be to rely
on the circulant structure on the diffusion matrices and to compute them in a circulant
way: this would allow a important reduction of the implementation size at the expense of
using more cycles.

We note that other performance improvements could probably be considered: for
instance, better implementations of the matrices (requiring less XOR gates), use of more
complex gates such as XOR3 that compute the XOR of three values (one XOR3 gate is
generally cheaper than two XOR2 gates), etc.

6 Test Vectors

6.1 Test Vectors for the Block Ciphers

/* Pyjamask -96 */
Key: 00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff
Plaintext: 50 79 6a 61 6d 61 73 6b 39 36 3a 29
Ciphertext: ca 9c 6e 1a bb de 4e dc 27 07 3d a6

/* Pyjamask -128 */
Key: 00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff
Plaintext: 50 79 6a 61 6d 61 73 6b 2d 31 32 38 3a 29 3a 29
Ciphertext: 48 f1 39 a1 09 bd d9 c0 72 6e 82 61 f8 d6 8e 7d

6.2 Test Vectors for the AEAD Schemes

/* Pyjamask -128- AEAD */
Key: 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
Nonce: 00 01 02 03 04 05 06 07 08 09 0a 0b
Data: 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
Plaintext: 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

Ciphertext: 08 e4 7f e9 7b d3 76 13 ab 9a 32 2e a2 b2 51 55
Tag: 9f c7 ec 33 3c 01 54 d9 ec 57 2b d6 18 62 24 2b

/* Pyjamask -96-AEAD */
Key: 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
Nonce: 00 01 02 03 04 05 06 07
Data: 00 01 02 03 04 05 06 07 08 09 0a 0b
Plaintext: 00 01 02 03 04 05 06 07 08 09 0a 0b

Ciphertext: 91 80 1a be 9a a4 15 62 d3 4d 07 b3
Tag: ee 0c b7 7d a2 92 43 2b 87 a2 6e bf

7 Intellectual Property

Pyjamask is not patented and is free for use in any application. We note Pyjamask uses the
mode OCB which, to the best of our knowledge, has “United States Patent No. 7,949,129”
and “United States Patent No. 8,321,675”. Despite that, the inventor has stated that
anyone is

• authorized to make, use, and distribute open-source software implementations of OCB,
• (aside from military uses) authorized to make, use, and distribute (1) any software

implementation of OCB and (2) non-software implementations of OCB for noncommercial
or research purposes, and

• authorize use of OCB in OpenSSL.

27

References

1. : Advanced Encryption Standard (AES). National Institute of Standards and Technology
(NIST), FIPS PUB 197, U.S. Department of Commerce (November 2001)

2. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for MPC
and FHE. In Oswald, E., Fischlin, M., eds.: Advances in Cryptology - EUROCRYPT 2015
- 34th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I. Volume 9056 of Lecture
Notes in Computer Science., Springer (2015) 430–454

3. Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hiwatari, H., Akishita, T., Regazzoni,
F.: Midori: A block cipher for low energy. In Iwata, T., Cheon, J.H., eds.: Advances in
Cryptology - ASIACRYPT 2015 - 21st International Conference on the Theory and Application
of Cryptology and Information Security, Auckland, New Zealand, November 29 - December 3,
2015, Proceedings, Part II. Volume 9453 of Lecture Notes in Computer Science., Springer
(2015) 411–436

4. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: Notes on the
design and analysis of SIMON and SPECK. Cryptology ePrint Archive, Report 2017/560
(2017) https://eprint.iacr.org/2017/560.

5. Biham, E.: A fast new DES implementation in software. In Biham, E., ed.: FSE’97. Volume
1267 of LNCS., Springer, Heidelberg (January 1997) 260–272

6. Boura, C., Canteaut, A., Cannière, C.D.: Higher-order differential properties of keccak and
Luffa. In: FSE. Volume 6733 of Lecture Notes in Computer Science., Springer (2011) 252–269

7. Brouwer, A.E.: Bounds on the size of linear codes. In Pless, V.S., Huffman, W., eds.: Handbook
of Coding Theory. Elsevier, Amsterdam (1998) 295–461

8. Chakraborti, A., Iwata, T., Minematsu, K., Nandi, M.: Blockcipher-based authenticated
encryption: How small can we go? [16] 277–298

9. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract
power-analysis attacks. In Wiener, M.J., ed.: Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, Santa Barbara, California, USA, August 15-19,
1999, Proceedings. Volume 1666 of Lecture Notes in Computer Science., Springer (1999)
398–412

10. Daemen, J., Peeters, M., añd Vincent Rijmen, G.V.A.: Nessie Proposal: the Block Cipher
Noekeon. Nessie submission (2000) http://gro.noekeon.org/.

11. Daemen, J., Peeters, M., Assche, G.V., Rijmen, V.: Nessie Proposal: the Block Cipher
Noekeon. Nessie submission (2000) http://gro.noekeon.org/.

12. Dobraunig, C., Eichlseder, M., Grassi, L., Lallemand, V., Leander, G., List, E., Mendel, F.,
Rechberger, C.: Rasta: A cipher with low anddepth and few ands per bit. In Shacham, H.,
Boldyreva, A., eds.: Advances in Cryptology - CRYPTO 2018 - 38th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part I.
Volume 10991 of Lecture Notes in Computer Science., Springer (2018) 662–692

13. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2. Submission to the
CAESAR competition: http://competitions.cr.yp.to/round3/asconv12.pdf (2016)

14. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: From probing attacks to noisy
leakage. In Nguyen, P.Q., Oswald, E., eds.: Advances in Cryptology - EUROCRYPT 2014
- 33rd Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings. Volume 8441 of Lecture
Notes in Computer Science., Springer (2014) 423–440

15. Duval, S., Leurent, G.: Mds matrices with lightweight circuits. IACR Transactions on
Symmetric Cryptology 2018(2) (Jun. 2018) 48–78

16. Fischer, W., Homma, N., eds.: CHES 2017. In Fischer, W., Homma, N., eds.: CHES 2017.
Volume 10529 of LNCS., Springer, Heidelberg (September 2017)

17. Goudarzi, D., Journault, A., Rivain, M., Standaert, F.X.: Secure multiplication for bitslice
higher-order masking: Optimisation and comparison. In Fan, J., Gierlichs, B., eds.: COSADE
2018. Volume 10815 of LNCS., Springer, Heidelberg (April 2018) 3–22

18. Goudarzi, D., Rivain, M.: On the multiplicative complexity of boolean functions and bitsliced
higher-order masking. In Gierlichs, B., Poschmann, A.Y., eds.: CHES 2016. Volume 9813 of
LNCS., Springer, Heidelberg (August 2016) 457–478

28

https://eprint.iacr.org/2017/560
http://gro.noekeon.org/
http://gro.noekeon.org/
http://competitions.cr.yp.to/round3/asconv12.pdf

19. Goudarzi, D., Rivain, M.: How fast can higher-order masking be in software? In Coron, J.,
Nielsen, J.B., eds.: EUROCRYPT 2017, Part I. Volume 10210 of LNCS., Springer, Heidelberg
(April / May 2017) 567–597

20. Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes. Online
available at http://www.codetables.de (2007) Accessed on 2019-02-19.

21. Grosso, V., Leurent, G., Standaert, F.X., Varici, K.: LS-designs: Bitslice encryption for efficient
masked software implementations. In Cid, C., Rechberger, C., eds.: FSE 2014. Volume 8540
of LNCS., Springer, Heidelberg (March 2015) 18–37

22. Jean, J., Peyrin, T., Sim, S., Tourteaux, J.: Optimizing implementations of lightweight
building blocks. IACR Transactions on Symmetric Cryptology 2017(4) (Dec. 2017) 130–168

23. Journault, A., Standaert, F.X.: Very high order masking: Efficient implementation and
security evaluation. [16] 623–643

24. Journault, A., Standaert, F., Varici, K.: Improving the security and efficiency of block ciphers
based on ls-designs. Des. Codes Cryptography 82(1-2) (2017) 495–509

25. Kranz, T., Leander, G., Stoffelen, K., Wiemer, F.: Shorter linear straight-line programs for
mds matrices. IACR Transactions on Symmetric Cryptology 2017(4) (Dec. 2017) 188–211

26. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption modes.
In: Fast Software Encryption - 18th International Workshop, FSE 2011, Lyngby, Denmark,
February 13-16, 2011, Revised Selected Papers. (2011) 306–327

27. Krovetz, T., Rogaway, P.: The OCB authenticated-encryption algorithm. RFC 7253 (2014)
1–19

28. Paar, C.: Optimized arithmetic for reed-solomon encoders. In: Proceedings of IEEE Interna-
tional Symposium on Information Theory. (June 1997) 250–

29. Paar, C.: Optimized arithmetic for Reed-Solomon encoders. In: Proceedings of IEEE
International Symposium on Information Theory, IEEE (1997) 250

30. Prouff, E., Rivain, M.: Masking against side-channel attacks: A formal security proof. In
Johansson, T., Nguyen, P.Q., eds.: EUROCRYPT 2013. Volume 7881 of LNCS., Springer,
Heidelberg (May 2013) 142–159

31. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A Compact Rijndael Hardware Architecture
with S-Box Optimization. In Boyd, C., ed.: Advances in Cryptology - ASIACRYPT 2001,
7th International Conference on the Theory and Application of Cryptology and Information
Security, Gold Coast, Australia, December 9-13, 2001, Proceedings. Volume 2248 of Lecture
Notes in Computer Science., Springer (2001) 239–254

32. Seroussi, G.: Table of low-weight binary irreducible polynomials. In: HP Labs Technical
Reports. (1998) 98–135

33. Stefan Kölbl: CryptoSMT: An easy to use tool for cryptanalysis of symmetric primitives
https://github.com/kste/cryptosmt.

34. Wang, J., Vadnala, P.K., Großschädl, J., Xu, Q.: Higher-order masking in practice: A vector
implementation of masked AES for ARM NEON. In Nyberg, K., ed.: CT-RSA 2015. Volume
9048 of LNCS., Springer, Heidelberg (April 2015) 181–198

29

http://www.codetables.de
https://github.com/kste/cryptosmt

A Elementary Components Used in Pyjamask

A.1 Sboxes

We give here the inverse of the Sboxes used in Pyjamask-96 and Pyjamask-128:

S−13 = [7, 0, 4, 1, 5, 3, 2, 6],

S−14 = [0x9, 0xe, 0x0, 0x2, 0xb, 0xd, 0x7, 0x4, 0xc, 0x3, 0x6, 0x5, 0xf, 0x1, 0x8, 0xa].

A.2 Diffusion Matrices

M0 =



1 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 0
0 1 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1
1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0
0 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0
0 0 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0
0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1
1 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1
1 1 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1
1 1 1 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0
0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0
0 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0
0 0 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0
0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1
1 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
1 1 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 1 1 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 1 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 1
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0
0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 0 1 1
1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 0 1



30

M−1
0 =



0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1
1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0
0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 1 1 0 1 1 0
0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 1 1 0 1 1
1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 1 1 0 1
1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 1 1 0
0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 1 1
1 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 1
1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1
1 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1
1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0
0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1
1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0
0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0
0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0
0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0
0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1
1 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1
1 0 0 1 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0
0 0 1 0 0 1 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 1
1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0



M1 =



0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 1
1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1
1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0
0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 1 0 1 1 0 0
0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 1 0 1 1 0
0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 1 0 1 1
1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 1 0 1
1 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 1 0
0 1 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 1
1 0 1 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0
0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0
0 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0
0 0 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0
0 0 0 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0
0 0 0 0 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1
1 0 0 0 0 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0
0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 1
1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1
1 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1
1 1 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0
0 1 1 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0
0 0 1 1 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0
0 0 0 1 1 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0
0 0 0 0 1 1 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0
0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 0 1 0
0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 0 1
1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 0
0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0
0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 1 0 1 0 0
0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 1 0 1 0
0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 1 0 1
1 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 1 0



31

M−1
1 =



0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1
1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 0 0
0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 0
0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1
1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 1 1 1 1
1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 1 1 1
1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 1 1
1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 1
1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1
1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1
1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1
1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0
0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0
0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1
1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0
0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1
1 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 1 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1
1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0



M2 =



0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1
1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1
1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0
0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 1
1 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0
0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 1 1 0 1 0 0 1 0
0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 1 1 0 1 0 0 1
1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 1 1 0 1 0 0
0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 1 1 0 1 0
0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 1 1 0 1
1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 1 1 0
0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 1 1
1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 1
1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0
0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0
0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1
1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1
1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1
1 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1
1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0
0 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0
0 0 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 1
1 0 0 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0
0 1 0 0 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1
1 0 1 0 0 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0
0 0 0 1 0 1 0 0 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0
0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0
0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0
0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0
0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0



32

M−1
2 =



1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 1
1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0
0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0
0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1 0 1 0 1
1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1 0 1 0
0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1 0 1
1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1 0
0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1
1 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0
0 1 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0
0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1
1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1
1 1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0
0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 1
1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1
1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0
0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0
0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0
0 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1
1 0 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1
1 1 0 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 1 1 0 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1



M3 =



0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1
1 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0
0 1 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0
0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1
1 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 0
0 1 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0
0 0 1 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0
0 0 0 1 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1
1 0 0 0 1 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0
0 1 0 0 0 1 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1
1 0 1 0 0 0 1 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0
0 1 0 1 0 0 0 1 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0
0 0 1 0 1 0 0 0 1 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1
1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0
0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1
1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
0 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 1
1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0
0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 1 0
0 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 1
1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 1 0 0 1 0 0 0 0 0
0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 1 0 0 1 0 0 0 0
0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 1 0 0 1 0 0 0
0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 1 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 1 0 0 1 0
0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 1 0 0 1
1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 1 0 0
0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 1 0
0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 1
1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1
1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0



33

M−1
3 =



0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0
0 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1
1 0 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1
1 1 0 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0
0 1 1 0 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 1 1 0
0 0 1 1 0 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 1 1
1 0 0 1 1 0 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 1
1 1 0 0 1 1 0 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0
0 1 1 0 0 1 1 0 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 1 0 1
1 0 1 1 0 0 1 1 0 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 1 0
0 1 0 1 1 0 0 1 1 0 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 1
1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0
0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1 0 0 1
1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1 0 0
0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1 0
0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1
1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 0
0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1
1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0 1 0 0 0 1 0 0 0 1
1 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0 1 0 0 0 1 0 0 0
0 1 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0 1 0 0 0 1 0 0
0 0 1 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0 1 0 0 0 1 0
0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0 1 0 0 0 1
1 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0 1 0 0 0
0 1 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0 1 0 0
0 0 1 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0 1 0
0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0 1
1 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0
0 1 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1
1 0 1 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1
1 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0



Mk =



1 0 1 0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0
0 1 0 1 0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 1
1 0 1 0 1 0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1
1 1 0 1 0 1 0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1
1 1 1 0 1 0 1 0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0
0 1 1 1 0 1 0 1 0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0
0 0 1 1 1 0 1 0 1 0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0
0 0 0 1 1 1 0 1 0 1 0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1
1 0 0 0 1 1 1 0 1 0 1 0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0
0 1 0 0 0 1 1 1 0 1 0 1 0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0
0 0 1 0 0 0 1 1 1 0 1 0 1 0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0 0 0 0
0 0 0 1 0 0 0 1 1 1 0 1 0 1 0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0 0 0
0 0 0 0 1 0 0 0 1 1 1 0 1 0 1 0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0 0
0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 1 0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0
0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 1 0 1 0 0 1 1 1 0 0 1 1 1 0 1 1
1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 1 0 1 0 0 1 1 1 0 0 1 1 1 0 1
1 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 1 0 1 0 0 1 1 1 0 0 1 1 1 0
0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 1 0 1 0 0 1 1 1 0 0 1 1 1
1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 1 0 1 0 0 1 1 1 0 0 1 1
1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 1 0 1 0 0 1 1 1 0 0 1
1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 1 0 1 0 0 1 1 1 0 0
0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 1 0 1 0 0 1 1 1 0
0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 1 0 1 0 0 1 1 1
1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 1 0 1 0 0 1 1
1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 1 0 1 0 0 1
1 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 1 0 1 0 0
0 1 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 1 0 1 0
0 0 1 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 1 0 1
1 0 0 1 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 1 0
0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 1
1 0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0
0 1 0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1



34

M−1
k =



1 1 0 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0
0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0
0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0
0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1
1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1
1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0
0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1
1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0
0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 1 0
0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 1
1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1
1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1
1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0
0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1
1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0
0 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1
1 0 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1



B Changelog

• 2019-03-29: version v1.0.

35

	Introduction
	Specification of Pyjamask
	Preliminary
	Family Members and Security Claims
	OCB Mode of Operation
	Original Description
	Pyjamask-96-AEAD

	The Block Cipher Family
	Data Representation
	Round Function
	Inverse Round Function
	Key Schedule
	Pseudo-code

	Rationale
	Parameters for the 96-bit Version of the OCB Mode
	Choice of the Sboxes
	Choice of the Diffusion Matrices
	Choice of the Key Schedule

	Security Analysis
	Differential Analysis
	Algebraic Analysis
	Invariant Subspace Cryptanalysis

	Implementations and Performances
	Software
	Bitslice Implementation
	Masked Implementation
	Performances
	Comparison
	Source Code

	Hardware

	Test Vectors
	Test Vectors for the Block Ciphers
	Test Vectors for the AEAD Schemes

	Intellectual Property
	Elementary Components Used in Pyjamask
	Sboxes
	Diffusion Matrices

	Changelog

