Pyjamask

v1.0

Dahmun Goudarzi', Jérémy Jean?, Stefan Kolbl?, Thomas Peyrin*, Matthieu Rivain®,
Yu Sasaki®, and Siang Meng Sim*

1 PQShield, Oxford, United Kingdom
Dahmun.Goudarzi@pgshield.com

2 ANSSI, Paris, France
Jean.Jeremy@gmail.com

3 CyberCrypt A/S, Denmark
kste@mailbox.org

4 School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore
Thomas.Peyrin@ntu.edu.sg, crypto.s.m.sim@gmail.com

5 CryptoExperts, Paris, France
Matthieu.Rivain@cryptoexperts.com

6 NTT Secure Platform Laboratories, Japan
Sasaki.Yu@lab.ntt.co.jp

BN

Table of Contents

Introduction. 3
Specification of Pyjamaskttt 3
2.1 Preliminary e 3
2.2 Family Members and Security Claims o i, 4
2.3 0CB Mode of Operationc.iuiiiinn i, 5
2.3.1 Original Description....... i i 5
2.3.2 Pyjamask-96-AEADoouiii i 7
2.4 The Block Cipher Family 7
2.4.1 Data Representation, 8
2.4.2 Round Functioncoiiiii ittt 9
2.4.3 Inverse Round Function.......... i ... 10
2.4.4 Key Schedule 10
2.4.5 Pseudo-code.o 12
Rationale e 13
3.1 Parameters for the 96-bit Version of the 0CB Mode..................... 13
3.1.1 Choice of the SHoxes i 14
3.1.2 Choice of the Diffusion Matrices 15
3.1.3 Choice of the Key Schedule o .. 17
Security Analysis e 17
4.1 Differential Analysist i e 17
4.2 Algebraic Analysis.oouiiii i e 19
4.3 Invariant Subspace Cryptanalysis........... 19
Implementations and Performances.......... i .. 20
5.1 SOftWAre ..ot 20
5.1.1 Bitslice Implementation.......... ... i 20
5.1.2 Masked Implementation 21
5.1.3 Performances i 23
5.1.4 CompariSOmvv vttt e 24
5.1.5 Source Code. . .vvu it 25
5.2 Hardwaret e e 25
Test VeCtorS . . oot 27
6.1 Test Vectors for the Block Ciphers......... 27
6.2 Test Vectors for the AEAD Schemes, 27
Intellectual Propertyo e 27
Elementary Components Used in Pyjamask..............coiiiiineinn... 30
AL SDOXES .« vttt e e 30
A2 Diffusion Matrices . .. vvv vt e e 30

Changelog . ..ot 35

1 Introduction

This document specifies Pyjamask, an authenticated encryption with associated data
(AEAD) scheme based on a new block cipher (BC) called Pyjamask and on the AEAD
operating mode OCB.

Pyjamask targets side-channel resistance as one of its main goal. More precisely, it
strongly minimizes the number of nonlinear gates used in its internal primitive in order
to allow efficient masked implementations, especially for high-order masking. Our newly
designed block cipher Pyjamask has thus the smallest number of AND gates per bit as of
today (except LowMC [2] or Rasta [12] which work on unconventional plaintext/key sizes).
Even though Pyjamask minimizes such an important criterion, it remains rather lightweight
and efficient, thanks to a general bitslice construction that enables to computation of all
nonlinear gates in parallel.

As for the operating mode, we adopt the provably secure AEAD mode 0CB [27]. It has
been extensively studied and has the benefit to offer full parallelization. Of course, other
block cipher-based modes such as COFB [8] can be considered as well if other performance
profiles are to be targeted.

Organization of the document. In Section 2, we first introduce the recommended
parameter sets, the various members of the Pyjamask family as well as their respective
security claims. We then describe Pyjamask and recall the AEAD mode 0CB. We provide
a security analysis of Pyjamask (and in particular Pyjamask) in Section 4 and explain the
design rationale in Section 3. Finally, we provide performances measurements/estimations
of Pyjamask in Section 5.

2 Specification of Pyjamask

We describe here the full specification of our submission Py jamask. In the first section below,
after some preliminary definitions and notations, we start by giving the two members within
the submission. Then, we describe the mode of operation for authenticated encryption
0CB we use in Pyjamask in its original form, the small modifications we have made to
accommodate it to our constraints, and finally we describe two new block ciphers used
within these modes: Pyjamask-96 and Pyjamask-128.

2.1 Preliminary

Notations. We denote by 5 the finite field having two elements. From a vector r of ¢
elements over o, we define the matric cir(r) as the circulant binary matrix over o where
the ¢-th row equals the vector r rotated by ¢ positions to the right, 0 <17 < .

For a given block cipher E, we denote Ex (P) the encryption of the n-bit plaintext
P with k-bit key K. Similarly, D represents the decryption operation, and we have
DK(Ek(P)) = EK(Dk(P)) = P for all P.

The concatenation operation is represented by || and pad10™ is the function that applies
the 10* padding on n bits, i.e. pad10*(X) = X||1][0"~XI=1 when |X| < n. For the empty
string €, the 10* padding does not add any bit: padl0*(e) = e. Finally, we denote by
X <« a the word X rotated by a positions to the left.

High-Level Description. The cryptographic algorithms defined in the Pyjamask sub-
mission are all authenticated encryption schemes with associated data (AEAD), which
are composed of an encryption part and a verification/decryption part. The encryption
part £ takes as input a variable-length plaintext M (with |M| = m), a variable-length
associated data A (with |A| = a), a fixed-length public message number N and a k-bit

key K. It outputs a m-bit ciphertext C' and a 7-bit tag, denoted tag (with 7 € [0,...,n]),
ie. (C,tag) = Ex (N, A, M). The verification/decryption part D takes as input a variable-
length ciphertext C' (with |C| = m), a 7-bit authentication tag tag (with 7 € [0,...,n]), a
variable-length associated data A (with a = |A]), a fixed-length public message number
N and a k-bit key K. It outputs either an error string 1 to inform that the verification
failed, or an m-bit string M = Dk (N, A, C, tag) when the tag is valid.

2.2 Family Members and Security Claims

We further specify two AEAD algorithms in the Pyjamask family, as show in Table 13.

Table 1: Submission members for Pyjamask. All the values are given in bits.

Member Name Mode Block Cipher n k |N| T
Pyjamask-128-AEAD f 0CB Pyjamask-128 128 128 96 128
Pyjamask-96-AEAD 0CB Pyjamask-96 96 128 64 96

t: Primary member.

Security Claims. We consider the nonce-respecting authenticated encryption with
associated data model for the adversary: nonce values in encryption queries may be chosen
by the adversary but they must be distinct. He queries for nonce/associated data/message
tuples (N, A, M) to the encryption oracle and obtains the corresponding ciphertext/tag
(C,T). When interacting with the decryption oracle, he can use any nonce value, even
repeating. However, he queries for nonce/associated data/ciphertext/tag tuples (N, A, C,T)
to the decryption oracle, but only obtains the corresponding message M if the tag T is
valid for that query.

Our security claims are summarized in Table 2. The variables in the table denote the
required workload, in terms of data complexity, of an adversary to break the cipher, in
base-2 logarithm. The data complexity of attacker consists of the number of queries and
the total amount of processed message blocks. If it reaches the suggested number, then
there is no security guarantee anymore, and the cipher can be broken. For simplicity, small
constant factors, which are determined from the concrete security bounds, are neglected in
these tables. A more detailed analysis can be found in the 0CB [27] document.

Table 2: Security claims of Pyjamask under the assumption that nonces never repeat.
The values are given in bits.

Member Name Privacy Authentication Key Recovery
Pyjamask-128-AEAD 64 64 128
Pyjamask-96-AEAD 48 48 128

2.3 0CB Mode of Operation
2.3.1 Original Description

In addition to the block cipher E, we require the doubling operation in the finite field dbl,
which applies to a 128-bit string as:
1 if msb(z) =0
dbl(z) =4S if msb(z) (1)
(r <1) @ 0x87 otherwise.

We further require the function ntz(z), which computes the number of trailing zero bits
in the base-2 representation of x.

We split the description in three parts as given in RFC 7253 [27]: Authentication,
Encryption and Decryption/Verification. For all functions, we first have to compute:

L.= EK(O)v

Ls = dbl(L.),

Lo = dbl(Lg), 2)
Li = dbl(Li_,).

Authentication Part. It takes as input the key K and the associated data A and produces
the intermediate value auth (see Figure 1). We denote this function as (K, A) — HASH(K, A).
We consider A as a sequence of 128-bit blocks. Let [be the largest integer such that
1281 < |A|, then A = A4]|...||Am||A«. Here, A, is the last (possibly empty) partial block.
First, we process the full blocks. Let Sy = 0, Op = 0 and compute for 1 < i < m:

O; = Oi—1 ® Lyez(i)s

3
Si=8i1®Ex(4;©0;).)

If the length of the partial block A, is nonzero, we further compute

O* == Om > L*a
auth = Sy, @ Ex ((AL|[1[027 1) @ 0,),

otherwise we set auth = S,,.

L., Lg,Lo < Init() L., Lg,Lo, Init()
L1+ dbl(Lo) Ly« dbl(Ly) Ls ¢ dbl(Ls) L1 ¢=dbl(Lo) Ly « dbl(L1) L.
] [®=] [&]] [=] [
D+ O D+ 0 D+ 03 B+ O, P+ 0, @<« O.
Ex Ex Ex Ex Ex Ex
on @D @ @D [autn | o @ @

(a) Without padding. (b) With padding.

Figure 1: Processing of the associated data in OCB.

Encryption Part. It takes as input the key K, the nonce N, associated data A, plain-
text M and produces a ciphertext C and tag tag (see Figure 2). We consider M as
a sequence of 128-bit blocks. Let [be the largest integer such that 128/ < |M]|, then
M = M||...||Mp||M,. Here, M, is the last (possibly empty) partial block.

In order to derive Oy and sumg, we compute

nonce = 7|02~ V| |1]|N,
bottom = nonce[123..128],
Ktop = Ex(nonce[1..122](|0°%),
Stretch = Ktop||(Ktop[l..64] ® Ktop[9..72]),
Op = Stretch[(1 + bottom)..(128 + bottom)],

sumy = 0128,

We then process the full message blocks in the following way for 1 <1i < m:
O; = 0;-1 & Laez(4),
Ci=0;® Ex(M; ® O;), (6)

sum; = sum;_1 D Mz
If the length of the partial block P, nonzero, then we further compute

O* = OnL ©® L*
Pad = EK(O*)
C. = M, @ Pad[1..|M,]

7
sum, = sum,, @ (M,]|1]|0*27~ M-y @)
Og =0, ® Lg
tag = Ex(sum, ¢ Og) & HASH(K, A),
otherwise
O$ =0,,9 Lg (8)
tag = Ex (sum,, ® Og) & HASH(K, A).
The ciphertext is given by C' = Cy]|...||Cpn||Cs.
Ly, Lg,Lo, < Init()
L1 = dbl(Lo) Lo < dbl(L1) Ls « dbl(L2) L, Ls
|M1||M2||M3||M*|—
! ! ! Lo
D O D+ 02 P+ 0s O D+ Os
|
Ex Ex Ex Ex Ex
! ! ! P} !
B0 B0 B0 P @[auth |
'

Lo | L[] [e

Figure 2: Encryption part of OCB.

Verification and Decryption Part. Takes as input the key K, the nonce N, associated
data A, ciphertext C' and produces a plaintext M. We consider C' as a sequence of 128-bit
blocks. Let ! be the largest integer such that 128 < |C|, then C = C1]]...||Cp||Cy. Here,
C, is the last (possibly empty) partial block.

First, we have to derive Oy and sum in the exact same way as given in Equation 5.
We then process the full blocks for 1 < i < m as:

O; = 0i—1 ® Lyez(i)s
P, =0;® Dk(C; ®O;), 9)

sum; = sum;_1 b M;.

If the length of the partial block C, is nonzero, then we further compute

O* - Om S L*7
Pad = EK(O*),
M, = C, @ Pad[l..|C,]], (10)

sum, = sum,, & (M,]|1]|0*27~ M-Iy,

tag/ = EK(SU.IH* (S5) O* D L$) S¥ HASH(Ka A>7

otherwise
tag’ = Ex(sum,, ® O,,, & Lg) ® HASH(K, A). (11)

If tag’ = tag, then output M = M;||...||M;,||M, and the authentication succeeds,
otherwise output L to indicate failure.

2.3.2 Pyjamask-96-AEAD

The original 0CB mode has been designed for 128-bit block ciphers. Consequently, we use
it as described in the previous section for Pyjamask-128. However, we have made some
slight modifications to handle our 96-bit block cipher describe in the next section: the
most important changes are reported below.

Finite Field Arithmetic. For the multiplication in GF(2°), we define the irreducible
polynomial to be x% 4+ x10 + x% 4+ x6 4+ 1.
Therefore, the doubling operation on 96-bit dblgg is defined as

dblog (x) = r<1 if msb(xz) =0
ST (2 < 1) @ 0x641 otherwise.

Stretch-then-shift Hash Function. The parameter of the stretch-then-shift hash func-
tion (that computes Stretch in Equation 5) is modified. In particular, the left-shift value
is changed from ¢ = 8 to ¢ = 9. In other words, the stretch-then-shift hash function is
defined as

Stretchgs = Ktop||(Ktop[l..64] @ Ktop[10..73]).

2.4 The Block Cipher Family

The block cipher family Pyjamask used in this submission contains two algorithms: one
with a 96-bit block size called Pyjamask-96, and a second with a 128-bit block size called
Pyjamask-128. The parameters of the two instances are summarized in Table 3 and detailed
hereafter. Our cipher share some similarities with existing ciphers, such as NOEKEON [11]

Table 3: Parameters of Pyjamask block ciphers. All the sizes are in bits.

Instance State size Rows Columns Key size Rounds
n r n/r k

Pyjamask-96 96 3 32 128 14

Pyjamask-128 128 4 32 128 14

(for its general strucure), LowMC [13] (for the different linear layers on each slice) or even
LowMC [2] (for its general AND gate minimisation).

The ciphers rely on a Substitution-Permutation Network (SPN) structure that trans-
forms the initial plaintext to a ciphertext through several applications of a key-dependent
round function. Each round key is derived from the secret key through an iterated key
schedule algorithm. In the rest of this section, we first describe the data representation
within the cipher. Then, we give a detailed specification of the round function, inverse round
function and key schedule. We conclude the section with pseudocode for the encryption,
decryption and key schedule algorithms.

2.4.1 Data Representation

The plaintext is initially loaded into the internal states of the ciphers (see Figure 3) which
are viewed as matrices of bits having r rows and 32 columns (r = 3 for Pyjamask-96 and
r = 4 for Py jamask-128).

32 | 33 | 34 |35 |36 |37 |38 |39 40| 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 [54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63

64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 72 | 73 |74 | 75 | 76 | TT | 78 | 79 | 80 | 81 82 | 83 | 84 | 85 | 86 | 87 | 88 [89 | 90 [91 92 | 93 | 94 | 95

96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127

Figure 3: Internal state of Pyjamask-128 with r = 4 words of 32 bits: each cell represents
a single bit.

The first (resp. 2nd, 3rd, 4th) group of 4 bytes of the plaintext is loaded into the
first (resp. 2nd, 3rd, 4th) row of the state in big endian format. For instance, the 16-byte
plaintext

[0x00, 0x11, 0x22, 0x33, 0x44, ... ,0xff]

is loaded into the state as

0x00112233
0x44556677
0x8899aabb
Oxccddeeff

)

the first row being 0x00112233 and the last row being Oxccddeeff. Within one row, the
cell of lowest index holds the most significant bit of the word while the cell of greatest
index holds the least significant bit of the word. In the above example, the first row is
loaded with 0x00112233, which means that the cell of Index 0 holds the most significant
bit of 0x00 (i.e. 0), and the cell of Index 31 holds the least significant bit of 0x33 (i.e. 1).

2.4.2 Round Function

The number of rounds applied is 14 for both Pyjamask-96 and Pyjamask-128. The round
functions of the two ciphers are similar and only differ due to the extra row present in
Pyjamask-128. In detail, one round is composed of the following transformations (see
also Figure 4):

e AddRoundKey — Bitwise addition of the first n bits of the key state (define below) into
the internal state. For Pyjamask-128, the full key state is XORed to the internal state.
For Pyjamask-96, the 3 first rows of the key state are XORed to the internal state.

e SubBytes — The same Sbox is applied to each of the 32 columns of the internal state.
For Pyjamask-96, the Sbox is S3 and for Pyjamask-128, the Sbox is S4 (see definitions
hereafter).

e MixRows — Each row R; of the the internal state, with i € {0,1,2} for Pyjamask-96
and 7 € {0, 1,2, 3} for Pyjamask-128 is seen as a column vector of 32 elements in Iy
and is replaced by M, - R;. The matrices M; are 32 x 32 constant circulant binary
matrices defined below.

After the last round has been applied, a final AddRoundKey operation adds a post-
whitening key to the internal state.

Input State

0 1 2 3 4 5 6 7 8 9 10 | 11 12 13 | 14 | 15 16 | 17 | 18 19 | 20 | 21 | 22 | 23 | 24 | 25 26 | 27 [28 | 29 | 30 | 31

32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 62 | 63

64 | 65 | 66 [67 | 68 | 69 | 70 | 71 72| 73 |74 [75 | 76 | TT | 78 | 79 | 80 | 81 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 92 | 93 | 94 | 95

96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127

AddRoundKey: Subkey Addition l
D|D|D|D|D|DB|D|P|DP|D|P|D|D|DP|D|P|D|D|P|D|D|PDDDPDDP|DPD
D|D|D|D|D|DB|D|P|D|D|D|D|D|DP|D|D|D|D|D|D|D|P|D|D|D|D|D|D|D|D|D

D B|D|DP|D|D|B|D|DP|D|DP DD |D|D|D D|D|D D D|B|D|P|D|DP|D|D|D|D|D D

DD|D|DD|DP|DD|DD DD DD P DD DD D DPD DD DD D DD

SubBytes: Sbox Layer l

S Sa|Sa|Sa|Sa|Sa|Sa|Sa|Sa|Sa|Sa|Sa|Sa|[Sa|Sa|Sa|Sa|Sa|Sa|Sa|[Sa|Sa|Sa|Sa|[Sa|[Ss|Sa|Sa|Sa|[Ss|Sa|Sa

MixRows: Diffusion Layer l
[Mg l
{ i l
{ My l
{ My }
Output State l

0 1 2 3 4 5 6 7 8 9 10 | 11 12 13 | 14 | 15 16 | 17 | 18 19 | 20 | 21 | 22 | 23 | 24 | 25 26 | 27 | 28 | 29 | 30 | 31

32 | 33 |34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 62 | 63

64 [65 | 66 [67 | 68 | 69 | 70 | 71 72 | 73 |74 [75 | 76 | 7T | 78 | 79 | 80 | 81 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 92 | 93 | 94 | 95

96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 [111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127

Figure 4: Round function of Pyjamask-128.

Sboxes. The 3-bit Sbox used in Pyjamask-96 is given by the following lookup table:
S; =[1,3,6,5,2,4,7,0],
and the 4-bit Sbox used in Pyjamask-128 is described by the following lookup table:
S, = [0x2,0xd, 0x3, 0x9, 0x7, O0xb, Oxa, 0x6, Oxe, 0x0, 0xf, 0x4, 0x8, 0x5, 0x1, Oxc].

In both cases, the MSB of the inputs and outputs of the Sboxes are located in the top
row of the internal state depicted on Figure 4.

Matrices. The binary circulant matrices used in the MixRows operation are given below:

M, = cir([1,1,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,1,1,1,0,0,0,1,0]),
M, = cir([0,1,0,0,0,0,1,0,0,0,0,0,0,1,1,1,0,1,0,0,0,0,0,1,0,1,1,0,0,0,1,1]),
M, = cir ([0,0,0,0,0,0,0,0,1,0,1,0,0,1,1,1,1,0,0,1,1,0,1,0,0,1,0,0,1,0, 1,1])
M; = cir([0,1,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,0,1,0,0,1]).

i

Note that My, M; and My are used in both Pyjamask-96 and Pyjamask-128, but Mj is
only used in Pyjamask-128. In Appendix, we also give the same matrices in regular form.

2.4.3 Inverse Round Function

As the decryption functionality of some mode of operation requires the decryption prim-
itive of the block cipher, we also give a description of the inverse round function. It is
defined similarly to the forward round function but applies the inverse of the elementary
transformations in reversed order. Namely, if performs 14 times the following operations:

e invAddRoundKey — Bitwise addition of the first n bits of the key state into the internal
state.

e invMixRows — Each row R; of the the internal state, with ¢ € {0, 1,2} for Pyjamask-96
and i € {0,1,2,3} for Pyjamask-128 is seen as a column vector of 32 elements in Iy
and is replaced by M L R;.

e invSubBytes — The inverse Sbox (either S3* or S;') is applied to all 32 columns of the
internal state.

Again, after the last inverse round, a last subkey is XORed to the internal state.The inverse
matrices and Sboxes used in Pyjamask-96 and Pyjamask-128 are given in Appendix.

2.4.4 Key Schedule

The two ciphers Pyjamask-96 and Pyjamask-128 shares the same key schedule: the only
difference is the size of the subkeys extracted from key state that are injected into the
internal state during the AddRoundKey operations.

In both ciphers, the secret key consists of 128 bits. It is initially loaded into the 128-bit
key state in the same ordering as the internal state (Figure 3). Then, the 128-bit key state
undergoes three elementary transformations (see Figure 5):

e MixColumns — Each 4-bit column C; of the key state is seen as a vector of four element
over Iy and is replaced by M - C;, where the matrix M is defined by:

0111
1011
1101
1110

10

Key State

0

1 2 3 4 5 6 7 8 9 10 | 11 12 13 | 14 15 16 | 17 18 19 | 20 | 21 | 22 23 | 24 |25 | 26 | 27 | 28 | 29 | 30 | 31

32

33 | 34|35 |36 |37 |38 39|40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 [55 | 56 | 57 | 58 | 59 [60 | 61 | 62 | 63

64

65 | 66 | 67 | 68 | 69 | 70 | T1 72 | 73 | T4 | 75 | 76 | 7T | 78 | 79 | 80 | 81 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 92 | 93 | 94 | 95

96

97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127

(—_—

Column Diffusion l

D U W W U U U W W U U WD W WD W WD W S U W U U WD WD W G U W W S S

Row Diffusion l

[
[
[
{

A
A
i
(5

Constant Addition l

‘ ‘ ‘ ‘ ‘ ‘ ‘ 0x8 CTR € {0,...,13}

HEEEEN

Key State l

0

1 2 3 4 5 6 7 8 9 10 | 11 12 13 | 14 15 16 | 17 18 19 | 20 | 21 | 22 23 | 24 |25 | 26 | 27 | 28 | 29 | 30 | 31

32

33 | 34|35 |36 |37 |38 |39 |40 |41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 [51 | 52 | 53 | 54 [55 | 56 | 57 | 58 | 59 [60 | 61 | 62 | 63

64

65 | 66 | 67 | 68 | 69 | 70 | T1 72 | 73 | T4 | 75 | 76 | 7T | 78 | 79 | 80 | 81 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95

96

97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127

Figure 5: Key schedule of Pyjamask-96 and Pyjamask-128.

MixAndRotateRows — The first row Ry of the key state is seen as vector of 32 elements
over 5 and is replaced by My - Ry, where the matrix My, is defined by:

Mg = cir([1,0,1,0,1,0,0,1,1,1,0,0,1,1,1,0,1,1,0,0,0,0,0,0,1,0,0,0,1,1,1,0]).

The second row Rj, third row Rg, and fourth row Rj3 are left-rotated of 8, 15, 18
positions. Namely they are replaced by R; << 8, Ra < 15, and R3 << 18 respectively.
AddConstant — In the final step, a 32-bit round constant is defined and separated in
four bytes which are bitwise added to various parts of the rows of the key state. The
last four bits of the constant encode a counter equal to the round number between
0 and 13, and the remaining 28 bits are fixed to a constant represented on Figure 5
using the hexadecimal value 0x243f6a8:

CONSTANT = [0,0,1,0, 0,1,0,0, 0,0,1,1, 1,1,1,1, 0,1,1,0, 1,0,1,0, 1,0,0,0].
Then, the most significant byte (MSB) of this constant is XORed to the MSB of the
fourth row Rj3, the second MSB of this constant is XORed to the MSB of the third

row R, the third MSB of this constant is XORed to the MSB of the second row Ry,
and eventually the LSB of this constant is XORed to the LSB of the first row Ry.

11

2.4.5 Pseudo-code

We give hereafter some high-level pseudo-code for the encryption, decryption and key
schedule algorithms. The Load primitive loads a 4r-byte input (plaintext or ciphertext)
into an r-row state as described above, with r € {3,4}. The Unload primitive consists in
the inverse operation. The KeySchedule algorithm takes a 16-byte key (denoted key) and
produces a table of 15 round keys (denoted roundkey|0 : 14]), each round key being made
of r rows of the key state. The AddRoundKey, SubBytes and MixRows primitives are the
round transformations as defined above. The inverse of the two latter transformations are
further denoted InvSubBytes and InvMixRows.

The Pyjamask encryption of plaintext under key proceeds as follows:

Encryption:
: state « Load(plaintext)
roundkey[0 : 14] < KeySchedule(key)
for i =0 to 13 do
state < AddRoundKey(state, roundkey]i])
state < SubBytes(state)
state < MixRows(state)
end for
state < AddRoundKey(state, roundkey[14])
ciphertext + Unload(state)
return ciphertext

—
@

The Pyjamask decryption of ciphertext under key proceeds as follows:

Decryption:
: state < Load(ciphertext)
roundkey[0 : 14] < KeySchedule(key)
state < AddRoundKey(state, roundkey[14])
for ¢ = 13 downto 0 do
state < InvMixRows(state)
state < InvSubBytes(state)
state < AddRoundKey(state, roundkey]i])
end for
plaintext < Unload(state)
return plaintext

—_
e

In the following pseudo-code, we denote by MixColumns, MixAndRotateRows and
AddConstant the key schedule transformations as defined above. The Py jamask key schedule
expand key into roundkey[0 : 14] as follows:

Key schedule:

: keystate + Load(key)

roundkey[0] < keystate

: fori=1to 14 do
keystate < MixColumns(keystate)
keystate + MixAndRotateRows(keystate)
keystate + AddConstant(keystate,)
roundkey[i] + keystate

end for

return roundkey[0 : 14]

12

3 Rationale

Pyjamask aims to provide symmetric (authenticated) encryption enjoying fast software
implementations with high levels of security against side-channel attacks. To achieve this
goal, Pyjamask has been designed to be as lightweight as possible in the presence of high-
order masking in software, while still enjoying unmasked and/or hardware implementations
with satisfying performances.

In the presence of masking, each variable in the computation are split into d shares,
which are bound to the original variable through completeness relation, and which satisfy
some randomness property to wipe out the side-channel information leakage. Under some
realistic assumptions, the number of shares, or the masking order d — 1, has indeed been
argued to be a sound security parameter for the masked implementation [9,14,30]. In
the masking world, the evaluation of a nonlinear operation has a complexity O(d?) while
for a linear operation the complexity is of O(d) (the linearity being with respect to the
sharing operation, which is usually the bitwise addition). When a masking of high order is
involved, most of the computation is hence dedicated to the masked nonlinear operations
and the linear layers are virtually free. Several works have recently shown that the best
performances for high-order masked implementations are obtained through the use of
bitslicing [17,18,19,21,23,24]. In such implementations, the nonlinear layers are performed
through ¢-bitwise AND operations (¢-AND), where £ is the size of the underlying architecture
(e.g., £ equals 8, 32, or 64 bits). The obtained performances are then highly correlated to
the number of ¢-AND operations in the original computation.

Pyjamask has been designed to enjoy such fast bitslice implementations in the presence
of high-order masking. Specifically, we have favored

e a minimal number of 32-AND operations for efficient implementation on 32-bit platforms,

e a parallelization degree to address 64-bit platforms and/or processor with vector
instructions,

e a design with reasonable performances for unmasked and/or hardware implementations,

e a design that relies on the well-studied SPN architecture (Sbox layer, linear diffusion

layer, and bitwise key addition).
To fulfill the above criteria, we have opted for a design based on the following choices:

e The nonlinear layer is composed of 32 parallel applications of a small Sbox, either a
3-bit or a 4-bit Sbox, which yield two instances of the cipher with either a 96-bit state
(Pyjamask-96) or a 128-bit state (Pyjamask-128). For each instance, the Sbox has the
minimal cost in terms of AND gates, i.e., m AND gates of the m-bit Sbox, m € {3,4}.
This makes a nonlinear layer that can be evaluated with m 32-AND operations in total.

e The 4-bit Sbox enjoys a possible parallelization of the AND gates, namely it can be
evaluated with two pairs of parallel AND gates. As a result, the nonlinear layer of
Pyjamask-128 can be evaluated with two 64-AND operations in total, which makes it
further well suited for 64-bit architectures (or processors with vector instructions).

e Since linear parts are virtually free in the masking world, the linear layer of the
Pyjamask block cipher has been conceived to provide high diffusion by means of 32 x 32
binary matrices. Different matrices are used for the different 32-bit slices in order to
avoid too much regularity. On the other hand, we chose to use circulant matrices to
obtain acceptable performances for unmasked and/or hardware implementations.

e The key-schedule of the cipher has been designed to only involve linear operations for
an optimal performances in the presence of masking.

We further describe these design choices in the rest of this section.

3.1 Parameters for the 96-bit Version of the 0CB Mode

Irreducible Polynomial. The irreducible polynomial of degree 96 has been chosen for
its low weight, as listed in [32]. In addition, we note x = 2 is a primitive element.

13

Stretch-then-shift Hash Function. In [26], the empirical result shows that the hash
function H : {0,1}'28 x [0..63] — {0, 1}'28 defined by

H(K,z) = (Stretch < x)[1..128],

where Stretch = K||(K @ (K < ¢)) is strongly XOR-universal for ¢ = 8. This implies
two properties, Hg () is uniformly distributed in {0,1}™ (universal-1), and for all = # 2/,
Hy (z) ® Hg (2') is uniformly distributed in {0,1}" (XOR-universal).

We did a similar analysis as described in [26] for our 96-bit hash function Hyg :
{0,1}9¢ x [0..63] — {0,1}% defined by

Hys(K, z) = (Stretch < x)[1..96],

where Stretch = K||(K®(K < ¢)). We have found several candidates ¢ € {2,6,7,9,10,14, ...
to construct a 96-bit strongly XOR-universal hash function. Notice that for n =96, c =8
does not result in a strongly XOR-universal hash function.

We chose ¢ = 9 to be as close as possible from a multiple of 8 for it is minimally better
on some platforms (8-bit microcontrollers, when one can only shift by 1, therefore any
multiple of 8 £ 1 would be preferred [4].

3.1.1 Choice of the Sboxes

For concise discussion, we express the lookup table of Sboxes using a sequence of hexadeci-
mal without spacing or comma. For instance, S3 = 13652470 and S; = 2d397ba6e0f4851c.

Our Sboxes selection criteria are as follows:

(C1) To obtain optimal differential and linear properties with as few non-linear gates as
possible.

(C2) Avoid cycles in the differential and (resp. linear) transitions with both input and
output difference (resp. mask) of Hamming weight one.

(C3) If such cycles cannot be avoided, select one with the longest cycles.

The first criterion (C1) is self-explanatory. Note that the best known 3- and 4-bit Sboxes
have maximum differential probability (m.d.p.) 272 and maximum linear approximation
(m.l.a) 272, To construct the Sboxes used in Pyjamask that reach those bounds, we use
simple operations as the building blocks: namely, (a,b,c) — (b,c® (a A b),a) for the 3-bit
Sbox and (a, b, ¢,d) — (b,c,d® (aAb),a) for the 4-bit Sbox. The choice of these elementary
operations are reminiscent of the design of the PICCOLO and the SKINNY Sboxes. By simply
iterating these operations three times for the 3-bit Sbox (resp. four times for the 4-bit
Sbox), we obtain Sboxes S§ = 01254736 and (resp. S} = 012745e98badfc36) with optimal
differential and linear properties.

The criteria (C2) and (C3) focus on the sub-tables of the differential distribution
table (DDT) and the linear approximation table (LAT) where the input and output values
have Hamming weight exactly one. Indeed, if there is a 1-cycle (or fixed point) in the
sub-table, it implies that active bits in that particular row of the internal state can stay in
that row without propagating to other rows. To avoid this undesirable property, we apply
some linear transformations LY and L$* (resp. Li® and L3*) before and after the Sbox
S (resp. S)}) to obtain linearly equivalent optimal Sboxes but without short cycle (resp.
without any cycle) in the differential transitions with both input and output difference of

14

Hamming weight one, same goes for the linear aspects of the Sboxes.

110] 010]
L= 1lo11], L =|110],
001] 101]
1001] 1000]
Lin = o1oo, Lot — 1100
0010 0001
0001] 0110]

Last but not least, we introduce some offset value to both Sboxes to remove fixed
points, the offset is denoted by Asz(z) = z ® 0x1 and A,(z) = = ® 0x2. In the end, the
Sboxes that we use in Pyjamask are defined as:

out / n
53:A30L3 OSSOLS,

S4 = A4 o Lzut] Sil o Lin

In the end, we arrive at our current Sboxes Sz and S4, The DDT and LAT of S3 are
presented in Table 4 and Table 5, where we highlighted the entries that have both input
and output differences/masks having Hamming weight one. Similarly, we give the DDT and
LAT of Sy in Table 6 and Table 7. In all these four tables, rows (resp. columns) represent
input (resp. output) differences or masks.

Table 4: DDT of S3. Table 5: LAT of Ss.

DDT| o0 t 2 3 4 5 6 7 LAT| 0o 1 2 3 4 5 6 7
o |8 . o |4 .
1 212 . 2 1 2] -2 2 -2
2 2 2 2 22 —2 2
3 2 2 2 2 - 3 2 —2 2 2
4]2|\2] \2 2 4]—2|.\—2] \—2 2
5 2 . 2 - 5 2 2 . —2
6 2 . 6 -2 2 2
7 2 2 7 -2 2 -2 -2

3.1.2 Choice of the Diffusion Matrices

To choose the diffusion matrices, we have run a probabilistic search in a particular subspace
fitting the constraints of the ciphers, and simply picked five matrices that ranked best in
terms of implementation sizes.

To elaborate on the actual subspace, we first recall the constraints imposed by the
design (refer to Section 2.4). The matrices have to be defined over Fy and must be of
dimension 32. In terms of security, we would like them to achieve the best possible branching
number [1]. Looking at the best known linear codes of these dimensions, one knows that
the best theoretically achievable minimum distance is 16 [7,20].However, one does know

15

Table 6: DDT of S,.
DDT| 0 1 2 3 4 5 6 7 8 9 a b [d e f

o | ..
1 . 2 2 4 4 2 2
2 4 4 o] 4 4 .
3 4 4 .. .22 2
4 L]] a4 4o . [2]2 . 2
5 4 . 4 2 2 2 .
6 2 2 2 2 2
7 2 2 2 . .
o |-] - [] 22442 o
9 4 4 . -
a 2 4 4 -
b 2 . 2 2
c 4 4 2 -
d 4 4 2 . 2 2
e 2 2 .2
£ 2 2 2 -

Table 7: LAT of S,.
LAT 0 1 2 3 4 5 6 7 8 9 a b [d e f

0 8 . .

1 4 2 2 —2 4 9 2 —2 —9
2 . 4 4 4
3 4. 2 2 2 —2 . . —4) 2 2
A .)4

5 4 2 2 2 2 4 2 —2 2
6 4 . -4 4

7 L -4 2 -2 —2 —2 . . 4 2 2 —2 —9
8 [—2][-4] —2[2] 2] 2 4 2 2

9 2 . 2 2 —4 -2 4 -2 2 2 2
a 2 2 2 2 4 2 2 2 4
b 2 2 2 4 —2 4 2 2 2
c 2 4 —2 2 o 2 4 —2 2)

d 2 4 -2 2 4 —9))
o 2 2 4 -2 2 2 4 -2

£ 2 4 2 2 4 2 . —2 . 2 . 2

any linear code that reaches that bound: the best achievable one has minimum distance
12. Consequently, in the choice of the diffusion matrices for the Pyjamask block cipher, we
looked for 32 x 32 binary diffusion matrices with branch number 12.

16

To compare two binary matrices having the targeted branch number, we use an
implementation-related metric that counts the number of bitwise additions required to
evaluate the matrix multiplication as done in a recent series of academic papers, e.g.,
[15,22,25]. More specifically, for each candidate matrix, we have run Paarl algorithm [28],
which returns the number of 2-input XOR gates required to implement the evaluation.
This measure allows to rank the various matrices and eventually pick the ones that reach
branch number 12 and a low number of XOR in the implementation at the same time.

Finally, to restrict the search space, rather than randomly picking 32 x 32 binary
matrices, we have chosen to rely on circulant matrices, which can be defined by a single
32-element vector over IF5. To reach branch number 12, this vector necessarily has to have
a least 11 nonzero coefficients. As a result, we randomly picked circulant matrices defined
by a vector having exactly 11 nonzero elements, checked that their branch numbers was
12, and ranked them accordingly to Paarl’s algorithm. We then picked five matrices in the
best candidates: the resulting matrices are given fully in Appendix.

3.1.3 Choice of the Key Schedule

In the key schedule, to differentiate every steps, we chose to inject a round counter to 4 bits
of the first row of state. Additionally, to break potential symmetries, it is customary for
symmetric ciphers to embed round constant within the key schedule. In Py jamask, we have
decided to derive a 28-bit constant from the hexadecimal encoding of the fractional part
of m = 3.243f 6a88 85a3, which therefore yields 0x243f6a8. The same choice has been
followed by the designers of MIDORI [3]. We determined to separate this 7-nibble constant
and 1-nibble counter to 2 nibbles each and to added each of them for each row. This is to
provide better security against the invariant cryptanalysis which will be explained in the
security analysis section.

The rotation constants in the key schedule have been chosen to maximize diffusion and
to be as close as possible from a multiple of 8. Indeed, as remarked in [4], on a typical
8-bit micro-controller a rotation by 8k + 2 is twice as expensive as a rotation by 8k + 1, a
rotation by 8k + 3 three times as expensive, etc.

4 Security Analysis

We present in this section a preliminary analysis of the block ciphers introduced in Py jamask.
While we try to give convincing security arguments and cover the most commonly known
cryptanalysis techniques, we emphasize that not all the possible attack vectors have been
deeply investigated.

4.1 Differential Analysis

We give in Table 10 lower bounds on the number of active Sboxes for up to four rounds of
Pyjamask-96 and Pyjamask-128. To derive those bounds, we have used a SAT approach
based on the CryptoSMT framework proposed by Kolbl in [33]. We have added both
variants of Pyjamask to the tool which allows us to search for the optimal differential
characteristics taking into account the exact transitions of the difference through the Sbox.
We note that due to the high number of variables present in the SAT models, reaching
more than four rounds requires long computations which we could not afford. Nonetheless,
the bounds obtained provide a strong indication that no high probability characteristic
exist for both variants of Pyjamask.

In Table 10, we give the bounds on the best differential characteristics possible in terms
of the number of active Sboxes. In order to explore the possibility of characteristics with a
low number of active Sboxes for more rounds we use the optimal 2-round characteristic

17

and extend it in both directions. Note that the extension in both directions finds the best
possible trail, but this does not imply that there is no better trail for 6 rounds exist.

We emphasize that the computations to derive bounds for higher number of rounds by
using a general-purpose tool such as SAT are computationally intensive: covering three
rounds is still within practical range, but four rounds involve long optimization periods.
We may communicate on updated figures in the future.

Searching for Efficient Differential Characteristics

Regarding Py jamask-96, it is still possible to find a highly efficient differential characteristic
owing to the differential behaviors of the 3-bit Sbox S3. At a high level, we first introduce
a method to compress the 96-bit state to a 32-bit state, which we call MiniPyjamask-96,
and then find efficient characteristics by exhaustively trying all differential propagations
for MiniPyjamask-96.

As indicated by the DDT in Table 4, S3 allows the iteration of the differential propaga-
tions from 1-bit difference to 1-bit difference, namely, the difference 0x1 is propagated to
the difference 0x2 with probability 272, the difference 0x2 is propagated to the difference
0x4 with probability 272, and the difference 0x4 is propagated to the difference 0x1 with
probability 272. Given this property, we set that all active Sboxes in Round i (resp. i + 1
and i 4+ 2) have the input difference 0x1 (resp. 0x2 and 0x4) and produce the output
difference 0x2 (resp. 0x4 and 0x1). Hence in any round, only one of three rows are active
and the other two rows are inactive. This allows us to focus only on the active row to
analyze the differential propagation through MixRows. Note that the MSB (resp. LSB) of
the Sbox is the top (resp. bottom) row of the state. Therefore,

e After the di