
Status Update on Elephant

Tim Beyne1 , Yu Long Chen1 , Christoph Dobraunig2,3 , and Bart Mennink2

1 KU Leuven and imec-COSIC, Leuven, Belgium
2 Radboud University, Nijmegen, The Netherlands

3 Graz University of Technology, Austria
elephant@cs.ru.nl

September 17, 2020

1 Planned Tweak Proposal

Before discussing new proofs, analyses, and implementations, we will first dis-
cuss a tweak to the Elephant v1.1 mode that we are planning to apply. In a
nutshell, the change consists of moving from a Wegman-Carter-Shoup style au-
thenticator [16,18] in v1.1 to a protected counter sum style authenticator [2,13]
in v2. In addition, the role of the masks has been changed slightly to enhance
the efficiency of the new variant. In more detail, Elephant v1.1 is depicted in Fig-
ure 1a and Elephant v2 is depicted in Figure 1b. Note that the roles of the masks
are now (·, 0) for associated data authentication (used to be encryption), (·, 1)
for encryption (used to be ciphertext authentication), and (·, 2) for ciphertext
authentication (used to be associated data authentication).

The two versions have a comparable security bound and a comparable level of
efficiency. As a bonus, Elephant v2 achieves authenticity even under nonce-reuse.
In other words, these two constructions achieve the following security properties:

Elephant v1.1 Elephant v2

security confidentiality authenticity confidentiality authenticity

nonce-respecting ! ! ! !
nonce-misuse % % % !

2 New Proofs Supporting the Security Claims

Elephant v1.1 already came with a tight generic security analysis. The security
analysis has been published in [3]. We have already derived a tight generic secu-
rity proof for Elephant v2.

3 New Third-Party Analysis

During the second round of the competition, various third-party analyses have
appeared. We distinguish between dedicated analysis of Elephant in Section 3.1,
and specific analysis on Spongent and Keccak in Section 3.2.

mailto:elephant@cs.ru.nl

N k0n−m Nk0n−m

` M −1,0mask0,0

P
maskK K

M` MM1 · · ·

P

C1 C` M

A1 A` A C1 C` C

mask0,2

P
mask ` A−1,2

P
mask0,1

P
mask ` C −1,1

K K K K

b·ct

P

· · · · · · T

(a) Elephant v1.1

N k0n−m Nk0n−m

P
mask0,1

K
P

mask ` M −1,1
K

M1 M` M · · ·

C1 C` M

A1 A2 A` A C1 C` C

P
mask1,0 mask ` A−1,0

P
mask0,2

P
mask ` C −1,2

K K K K
P

· · · · · · TP

mask0,0
K

b·ct

(b) Elephant v2

Fig. 1: Depiction of Elephant v1.1 and v2. For the encryption part (top): message
is padded as M1 . . .M` M ←−

n
M , and ciphertext equals C = bC1 . . . C` M c|M |.

For the authentication part (bottom): nonce and associated data are padded as
A1 . . . A` A ←−

n
NkAk1, and ciphertext is padded as C1 . . . C` C ←−

n
Ck1.

3.1 Dedicated Analysis

Zhou et al. [20] derived an interpolation attack against round-reduced Keccak-
f , and applied it to Delirium. Their analysis targets a round-reduced version of
the encryption of Delirium, where the number of rounds of the used variant of
the Keccak permutation is reduced from the specified 18 rounds to 8 rounds.
The time complexity of the attack is estimated as 298.3 XOR operations, the
memory complexity is 270 bits, and the required amount of data 270 blocks. The

2

attack makes use of the fact that an affine space of dimension 65 sums to zero
after 6 rounds, which are then followed by 2 rounds for key recovery. Since the
encryption of Elephant v1.1 and Elephant v2 are the same (the sole change is in
the authentication), the analysis is applicable in a similar manner. We note that
algebraic attacks on 8-round Delirium were anticipated in §5.3 of the Elephant
specification.

3.2 Spongent and Keccak Permutation

One new article investigating the strength of the Spongent permutation has
appeared [17]. This article only considers round-reduced versions of the Spongent
permutation itself. It forms no threat to Dumbo and Jumbo (neither v1.1 nor v2).
Furthermore, various works investigating the strength of the Keccak permutation
have appeared [4,6–12,14,19]. These only consider round-reduced versions of the
Keccak permutation or usage of this permutation in different modes. They form
no threat to Delirium (neither for v1.1 nor for v2).

4 New Implementations

This section summarizes new results related to the implementation of Elephant.
In Section 4.1, the impact of the proposed changes in Elephant v2 is discussed.
Section 4.2 discusses a new reference implementation of Delirium which exploits
parallelization. Third-party implementation results are discussed in Section 4.3.

4.1 Impact of the Changes in Elephant v2

The impact of the changes from Elephant v1.1 to Elephant v2 on existing im-
plementations should be minimal. The final permutation call cannot be paral-
lelized, which could have a limited impact on the performance for certain message
lengths. This is only a concern for implementations that process the associated
data and message in parallel when possible.

4.2 New Parallel Reference Implementation

As a proof of concept, we have released an additional parallelized reference im-
plementation for Delirium. 4 A similar implementation will be included in the up-
dated reference code package for Elephant v2. The new implementation processes
up to eight blocks in parallel using an optimized parallel Keccak-f [200] imple-
mentation. The Keccak-f [200] implementation was generated using the Keccak-
Tools package, by making suitable modifications to the Keccak-f [1600] parame-
ters. Thus, the same strategy can be directly applied to obtain implementations
with varying levels of parallelism suited to the target word size.

Unsurprisingly, the new parallel reference implementation is significantly
faster than the standard reference implementation. For example, for moderately

4 Available at https://github.com/TimBeyne/Elephant.

3

https://github.com/TimBeyne/Elephant

long messages, speedups between around 8 and 80 (depending on compilation op-
tions) over the standard reference implementation are realized. However, because
only the implementation of the primitive has been optimized, we recommend
against using the parallel reference implementation for benchmarking purposes.
Especially for short messages, this would result in a distorted performance pic-
ture. Needless to say, the same applies to the serial reference implementation.

4.3 New Third-Party Implementation Results

A few third-party software implementations have appeared during the second
round of the competition. We are not aware of any hardware-implementations
of Elephant at this time.

Campos et al. [5] provided a C implementation of Delirium which exploits
parallelism on platforms with 32-bit words. For messages longer than 64 bytes,
their implementation achieves a speedup of about 1.5 to 2 over the original
reference implementation. However, we remark that their parallel Keccak-f [200]
implementation is based on a reference rather than an optimized implementation.
Our own experiments with the new parallel reference implementation suggest
that this can have a strong performance impact.

Beläıd et al. [1] introduced a tool to automatically generate masked (and
unmasked) bitsliced implementations. They apply the tool to several primitives,
including Spongent-π. Their work illustrates that, despite the hardware-oriented
nature of Spongent-π, reasonable software performance can be obtained by means
of bitslicing. Due to its inherent parallelism, the Elephant mode is a good match
for such implementations. The implementation in [1] processes up to eight blocks
in parallel, but the target word size (32 bits) would allow increasing this to up
to 32 blocks. We also note that there is significant room for improvement in
the efficiency of bitsliced implementations of Spongent-π, because alternative
representations of Spongent-π could be exploited (as for Present [15]).

5 Target Applications

In general, the target application of Elephant is lightweight cryptography with
a small footprint, while still providing the option to speed up using parallel im-
plementations. Note that, indeed, Elephant is the candidate in the competition
with the smallest cryptographic primitive, while still achieving comparable secu-
rity. This, together with the different levels of security that the mode achieves,
additionally puts Elephant v2 at advantage over the current NIST standards.

References

1. Beläıd, S., Dagand, P., Mercadier, D., Rivain, M., Wintersdorff, R.: Tornado: Auto-
matic Generation of Probing-Secure Masked Bitsliced Implementations. In: Can-
teaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III. LNCS, vol. 12107, pp.
311–341. Springer (2020)

4

2. Bernstein, D.J.: How to Stretch Random Functions: The Security of Protected
Counter Sums. J. Cryptology 12(3), 185–192 (1999)

3. Beyne, T., Chen, Y.L., Dobraunig, C., Mennink, B.: Dumbo, Jumbo, and Delir-
ium: Parallel Authenticated Encryption for the Lightweight Circus. IACR Trans.
Symmetric Cryptol. 2020(S1), 5–30 (2020)

4. Bi, W., Dong, X., Li, Z., Zong, R., Wang, X.: MILP-aided cube-attack-like crypt-
analysis on Keccak Keyed modes. Des. Codes Cryptogr. 87(6), 1271–1296 (2019)

5. Campos, F., Jellema, L., Lemmen, M., Müller, L., Sprenkels, D., Viguier, B.: As-
sembly or Optimized C for Lightweight Cryptography on RISC-V? Cryptology
ePrint Archive, Report 2020/836 (2020)

6. Chen, Y., Gao, X.: Quantum Algorithms for Boolean Equation Solving and
Quantum Algebraic Attack on Cryptosystems. Cryptology ePrint Archive, Report
2018/008 (2018)

7. Guo, J., Liao, G., Liu, G., Liu, M., Qiao, K., Song, L.: Practical Collision Attacks
against Round-Reduced SHA-3. J. Cryptology 33(1), 228–270 (2020)

8. Kumar, R., Mittal, N., Singh, S.: Cryptanalysis of 2 Round Keccak-384. In:
Chakraborty, D., Iwata, T. (eds.) INDOCRYPT 2018. LNCS, vol. 11356, pp. 120–
133. Springer (2018)

9. Kumar, R., Rajasree, M.S., AlKhzaimi, H.: Cryptanalysis of 1-Round KECCAK.
In: Joux, A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831,
pp. 124–137. Springer (2018)

10. Li, T., Sun, Y.: Preimage Attacks on Round-Reduced Keccak-224/256 via an Al-
locating Approach. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III.
LNCS, vol. 11478, pp. 556–584. Springer (2019)

11. Li, Z., Dong, X., Bi, W., Jia, K., Wang, X., Meier, W.: New Conditional Cube
Attack on Keccak Keyed Modes. IACR Trans. Symmetric Cryptol. 2019(2), 94–
124 (2019)

12. Liu, F., Cao, Z., Wang, G.: Finding Ordinary Cube Variables for Keccak-MAC
with Greedy Algorithm. In: Attrapadung, N., Yagi, T. (eds.) IWSEC 2019. LNCS,
vol. 11689, pp. 287–305. Springer (2019)

13. Luykx, A., Preneel, B., Tischhauser, E., Yasuda, K.: A MAC Mode for Lightweight
Block Ciphers. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 43–59. Springer
(2016)

14. Rajasree, M.: Cryptanalysis of Round-Reduced KECCAK using Non-Linear Struc-
tures. Cryptology ePrint Archive, Report 2019/884 (2019)

15. Reis, T.B.S., Aranha, D.F., López-Hernández, J.C.: PRESENT Runs Fast - Effi-
cient and Secure Implementation in Software. In: Fischer, W., Homma, N. (eds.)
CHES 2017. LNCS, vol. 10529, pp. 644–664. Springer (2017)

16. Shoup, V.: On Fast and Provably Secure Message Authentication Based on Uni-
versal Hashing. In: Koblitz, N. (ed.) CRYPTO ’96. LNCS, vol. 1109, pp. 313–328.
Springer (1996)

17. Sun, L., Wang, W., Wang, M.: MILP-aided bit-based division property for primi-
tives with non-bit-permutation linear layers. IET Inf. Secur. 14(1), 12–20 (2020)

18. Wegman, M.N., Carter, L.: New Hash Functions and Their Use in Authentication
and Set Equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)

19. Zhou, H., Li, Z., Dong, X., Jia, K., Meier, W., Ashur, T.: Practical Key-Recovery
Attacks On Round-Reduced Ketje Jr, Xoodoo-AE And Xoodyak. Comput. J.
63(8), 1231–1246 (2020)

20. Zhou, H., Zong, R., Dong, X., Jia, K., Meier, W.: Interpolation Attacks on
Round-Reduced Elephant, Kravatte and Xoofff. Cryptology ePrint Archive, Re-
port 2020/781 (2020)

5

	Status Update on Elephant
	Planned Tweak Proposal
	New Proofs Supporting the Security Claims
	New Third-Party Analysis
	Dedicated Analysis
	Spongent and Keccak Permutation

	New Implementations
	Impact of the Changes in Elephant v2
	New Parallel Reference Implementation
	New Third-Party Implementation Results

	Target Applications

