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Abstract. KNOT is a family of permutation-based and bit-sliced lightweight AEAD and hashing algo-
rithms. In this report, we will review the new cryptanalytic results of KNOT and summarize the new 
implementation results of KNOT in both software and hardware. 

1 Security Analysis 

In the design document[15], we have evaluated in detail the security of the underlying KNOT permutations 
against differential, linear, division-based integral, impossible differential and algebraic cryptanalysis. Although 
distinguishers of the permutations can give insights in the resistance of the AEAD and hash primitives against 
various cryptanalytic attacks, they usually can not be directly used in an attack. To have a better understanding 
of the security of KNOT, we furthermore studied the best differential and linear distinguishers with constraints 
in [6], which are corresponding to 7 important attack models and can be directly used to mount attacks on 
KNOT-AEAD or KNOT-Hash. 

In [6], for security analysis of KNOT-AEAD, we considered 5 attack models, which are differential distin-
guishing attack targeting the initialization phase, linear key-recovery attack targeting the initialization phase, 
linear distinguishing attack targeting the initialization phase, linear distinguishing attack targeting the en-
cryption phase and forgery attack targeting the finalization phase. For security analysis of KNOT-Hash, we 
considered 2 attack models, one is collision attack, the other is near-collision attack. 

For the security margin of KNOT-AEAD, we consider this problem from 2 aspects: 

1. Scenario I: the amount of data under an adversary’s control is limited to the data limit M . A typical 
scenario is that the adversary can only obtain data under a single key (the concrete values of M can be 
found in Table 1). For the primary member of KNOT-AEAD, the data limit is 264 data blocks, which is 
sufficient for lightweight applications in practice. Under this scenario, the adversary can either recover the 
secret key or distinguish the key-stream blocks from binary pseudorandom sequences. 

2. Scenario II: the amount of data under an adversary’s control is limited to 2s , where s is the security 
bound (the concrete values of s can be found in Table 1). Which means, the computational complexity 
of an adversary is upper limited to 2s executions of the underlying permutation. Under this scenario, an 
adversary can obtain data under multiple keys; with multiple-key data complexity, the adversary can only 
mount distinguishing attacks. 

The KNOT family has three different state sizes: 256, 384 and 512 bits. Especially, the primary KNOT-
AEAD member and the primary KNOT-Hash member both have a state of 256 bits. The KNOT-AEAD family 
has 4 members. Let KNOT-AEAD(k, b, r) denote a KNOT-AEAD member with k-bit key, b-bit state and r-bit 
rate. Based on the results in [6], Table 1 presents the rounds of the best distinguishers for each KNOT-AEAD 
under Scenario I and Scenario II respectively. The KNOT hash family also has 4 members. For KNOT-Hash, 
a similar categorization of attack scenarios is followed: Scenario I with M data limitation, Scenario II with 2s 

data limitation. Let KNOT-Hash(n, b, r, r ′ ) denote a KNOT-Hash member with n-bit hash output, b-bit state, 
r-bit absorbing rate and r ′ -bit squeezing rate. Based on the results in [6], Table 2 presents the rounds of the 
best distinguishers for collision attacks on each KNOT-Hash under Scenario I and Scenario II respectively. 

The results in Table 1 show that, under Scenario I, each KNOT-AEAD have a quite generous security 
margin against the 4 attack models considered, as the rounds of the best distinguisher is less than 50% of 
the full number of rounds respectively for the initialization, encryption and finalization phase. However, under 

mailto:baozhenzhen10@gmail.com
mailto:zhouchunning}@iie.ac.cn


Table 1. Best Known Security Analysis of KNOT-AEAD Family 

Name 
Rounds 

Data 
Limit M 

Rounds-Scen.I 
Security 
Bound s 

Rounds-Scen.II 

nr0 nr nrf Init. Enc. Final. Init. Enc. Final. 

KNOT-AEAD(128, 256, 64) 52 28 32 264 14 11 13 125 27 24 26 

KNOT-AEAD(128, 384, 192) 76 28 32 264 13 12 14 128 27 25 27 

KNOT-AEAD(192, 384, 96) 76 40 44 296 21 18 20 189 40 36 39 

KNOT-AEAD(256, 512, 128) 100 52 56 2128 27 24 26 253 53 49 53 

1. KNOT-AEAD(128, 256, 64) is the primary AEAD member. 
2. nr0, nr and nrf denote the number of rounds for the initialization (Init.), the processing of plaintext (Enc.) 

and the finalization (Final.) respectively. 
3. data limit: the number of input data blocks under one key. 
4. Rounds-Scen.I/Rounds-Scen.II: rounds of the best distinguishers under Scenario I/Scenario II, for the Init., Enc. 

and Final. phase respectively. 
5. security bound: the logarithm based 2 of the attack cost, the unit is the underlying KNOT permutation. 

Scenario II, taking multiple-key attacks into account, the results in Table 1 suggest that the values of nr and 
nrf need to be increased to have a more comfortable security margin. 

From Table 2, even in Scenario II, all KNOT-Hash members have sufficient security margin against the 2 
attack models considered. 

Table 2. Best Known Security Analysis of KNOT-Hash Family 

Name 
Rounds 

Data 
Limit M 

Rounds-Scen.I Securiy 
Bound s 

Rounds-Scen.II 
nrh 

KNOT-Hash(256,256,32,128) 68 264 13 112 23 

KNOT-Hash(256,384,128,128) 80 264 13 128 27 

KNOT-Hash(384,384,48,192) 104 296 20 168 35 

KNOT-Hash(512,512,64,256) 140 2128 26 224 47 

1. where KNOT-Hash(256, 256, 32, 128) is the primary hash member. 
2. data limit: the message length limit. 
3. Rounds-Scen.I/Rounds-Scen.II: rounds of the best distinguishers for collision attacks under Scenario I/Scenario II. 
4. security bound: the logarithm based 2 of a collision attack cost, the unit is the underlying KNOT permutation. 

2 Software and Hardware Implementations 

2.1 Software Implementations on 64-bit Platform 

From the measurement results of the toolkit SUPERCOP [13] by third-parties, we chose the results of KNOT 
on an AMD computer and that on an Intel computer to present in Table 3; speeds of AES-GCM on the two 
computers are also presented (note that the performance of AES can be supreme when using AES-NI that is 
available on the two computers). From Table 3, performance of all members of KNOT on 64-bit platforms are 
satisfactory. 

2.2 Software Implementations on Microcontrollers 

All members of KNOT show remarkable characteristics and friendliness on microcontrollers. Since KNOT-AEAD 
is inverse-free, only a small overhead is needed for supporting authenticated decryption on top of authenticated 
encryption. Furthermore, supporting hashing on top of AEAD costs limited additional resources. 

On 8-bit Platform. We developed two sets of implementations of KNOT on 8-bit MCUs. One set is targeted at 
minimizing ROM requirement, and the other is targeted at optimizing speed. In both sets, the implementation of 
the permutation is in the bit-sliced way. They are performed in a constant time regardless values of input data. 
The cores of our implementations are written in assembly with C APIs that compliant with the SUPERCOP API. 
These two sets of implementations were submitted to the benchmarking project [10]. The resulted performance 
of KNOT family on 8-bit MCUs are collected in Table 4. 

We also measured our speed-priority implementations of all members of KNOT independently. From our 
measurements, all members of KNOT-AEAD can be implemented with code size less than 2500 bytes, and all 
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Table 3. The speed of KNOT-AEAD ENC and KNOT-HASH on SUPERCOP 

AMD EPYC Intel Xeon Gold 
LEN (adlen = mlen = msglen) 64 1536 long 64 1536 long 
KNOT-AEAD(128,256,64) 
KNOT-AEAD(128,384,192) 
KNOT-AEAD(192,384,96) 
KNOT-AEAD(256,512,128) 

29.69 
27.19 
55.16 
61.41 

23.38 
16.07 
41.87 
41.60 

23.09 
15.44 
41.18 
40.72 

29.33 
32.17 
61.45 
66.17 

24.98 
17.30 
46.85 
44.55 

25.35 
16.66 
46.07 
43.59 

KNOT-Hash(256,256,32,128) 
KNOT-Hash(256,384,128128) 
KNOT-Hash(384,384,48,192) 
KNOT-Hash(512,512,64,256) 

126.88 
95.31 

254.69 
270.62 

112.25 
64.79 

227.29 
216.72 

111.6 
63.38 

224.49 
213.90 

132.03 
104.50 
275.84 
289.81 

117.17 
70.67 

246.37 
233.88 

115.97 
69.08 

244.01 
231.29 

AES128GCMV1 
AES256GCMV1 

5.16 
12.19 

0.94 
1.15 

0.82 
0.66 

6.27 
12.16 

0.94 
1.09 

0.79 
0.64 

1 The presented results are from https://bench.cr.yp.to/results-aead.html and https://bench.cr.yp.to/ 
results-hash.html. 

2 LEN: Data length, is in Bytes; speed is in cycle per byte. 
3 Computer information : 2019 AMD EPYC 7702;amd64;Zen2 (830f10); 64 x 2000MHz; genji346, supercop-
20191017. 

4 Computer information : 2019 Intel Xeon Gold 6248; amd64; CascadeLake (50657); 20 x 2500MHz; pmnod076, 
supercop-20191017. 

5 For KNOT-AEAD, the speed of authenticated decryption is almost equal to that of the authenticated 
encryption (which is not generally hold by deffirent designs). 

members of KNOT-Hash can be less than 1600 bytes. To support full functionality (authenticated encryption, 
authenticated decryption, and hashing), all KNOT-Pairs require less than 3000 bytes of ROM, less than 120 
bytes of RAM. Specifically, for the primary pair KNOT-Pair I, AEAD requires less than 2000 bytes of ROM, 
70 bytes of RAM, and runs (executing both authenticated enc. and dec.) at an average speed faster than 2500 
cycles per byte; hashing requires less than 1000 bytes of ROM, 40 bytes of RAM, and runs at an average speed 
faster than 4500 cycles per byte. Supporting both AEAD and hashing requires less than 2500 bytes of ROM. 

On 32-bit Platforms. The implementations of KNOT family on 32-bit platforms can apply the technique of 
bit-interleaving [5]. Adopting bit-interleaving and in the bit-sliced way, we implemented all members of KNOT 
for 32-bit MCUs. The implementations are all written in inline assembly with C code. The C APIs are compliant 
with the SUPERCOP API, so that we can submitted our implementations to the benchmarking project [10]. 
Some of the resulted performances of KNOT family on 32-bit MCUs are collected in Table 4. 

Performance benchmarks of KNOT-AEAD on lwc.las3.de. The platform introduced in [10] provides benchmarks 
of software implementations of AEAD of the second-round candidates. This platform facilitates comparisons 
among different algorithms on different microcontrollers (MCUs). To generate benchmarks of KNOT on this 
platform, we submitted several sets of our implementations of KNOT for 8-bit and 32-bit MCUs. Table 4 
presents performance benchmarks of members of KNOT-AEAD provided by this platform, where two sets of 
implementations are included. One set is targeted at optimizing speed (fastest), and the other is targeted at 
minimizing ROM (smallest). The performance of AES128K96N provided by this platform is also presented. 

From the results on Arduino Uno R3 (8-bit MCU), members of KNOT-AEAD, especially the primary KNOT-
AEAD member, achieve the lowest ROM and outstanding speed. For other MCUs, the primary AEAD member 
performs better than AES128K96N both in terms of speed and ROM on all the four 32-bit microcontrollers1 . 
On all MCUs, the most significant advantage of members of KNOT-AEAD is the low ROM requirement. 

2.3 Hardware Implementations of KNOT 

We prepared two different sets of KNOT implementations to evaluate the intrinsic hardware performance and 
the flexibility of KNOT. The first is the basic iterative implementations for all four versions of KNOT-AEAD and 
KNOT-HASH. We also extended our KNOT-AEAD implementations to be compliant with the LWC Hardware 
API [9]. The basic iterative implementation results are compared to the existing hardware implementations of 
AES-GCM from NIST SP800-38D [7]. 

The basic iterative implementations have full-sized I/O interfaces for plaintext, ciphertext, etc. We note that 
architectures with full-sized interface are not suitable to be directly used as the top-module of implementations 
on FPGAs and ASICs due to potential oversized I/O utilization. However, they can function as independent IP 
cores for SoCs or reference implementations for optimizations. 

To evaluate the hardware performance of our basic iterative implementations, the proposed design was 
synthesized with Synopsys Design Compiler G-2012.06-SP5 to the NANGATE45 open cell library(PDKv1 3 
v2010 12). With the wire load model specified as 5K hvratio 1 1, all our implementations could pass a frequency 
constraint of 800MHz. 
1 On the plateform, there is no available benchmarks of AES128K96N on Arduino Uno R3. 
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Table 4. Performance benchmarks of KNOT-AEAD on microcontrollers from the platform lwc.las3.de 

Arduino 
Uno R3 

STM32F1 
”bluepill” 

Espressif 
ESP32 

STM32 
NUCLEOF746ZG 

Sipeed 
Maixduino 

Cipher 
avg 
time 

ROM 
avg 
time 

ROM 
avg 
time 

ROM 
avg 
time 

ROM RAM 
avg 
time 

ROM 

fa
st
es
t KNOT-AEAD(128,256,64) 

KNOT-AEAD(128,384,192) 
KNOT-AEAD(192,384,96) 
KNOT-AEAD(256,512,128) 

2362.62 
3148.28 
4802.83 
7717.22 

1384 
1682 
1668 
1884 

176.714 
270.33 
391.89 
700.23 

6464 
22540 
17388 
3400 

53.122 
132.01 
200.47 
360.87 

8544 
3728 
3504 
4064 

26.587 
36.15 
55.21 

100.51 

6868 
2188 
2752 
3392 

558 
526 
542 
582 

14.35 
20.97 
31.76 
32.24 

2240 
3264 
3136 
3904 

sm
a
ll
es
t KNOT-AEAD(128,256,64) 

KNOT-AEAD(128,384,192) 
KNOT-AEAD(192,384,96) 
KNOT-AEAD(256,512,128) 

5432.69 
5959.75 
9132.62 
13811.2 

1142 
1220 
1206 
1276 

278.291 
289.45 
530.22 
700.23 

1264 
2296 
2756 
3400 

69.405 
132.01 
200.47 
360.87 

2224 
3728 
3504 
4064 

27.719 
36.15 
77.43 

100.51 

1856 
2188 
2744 
3392 

570 
526 
670 
582 

14.35 
20.97 
31.76 
32.24 

2240 
3264 
3136 
3904 

AES128K96N - - 337.2 9908 67.75 14832 36.22 9836 1185 24.11 14272 

1 The presented results are from https://lwc.las3.de/table.php. 
2 RAM is in Bytes, ROM is in Bytes,Time is microsecond. 
3 The top half is for implementations targeted at optimizing speed, the second half is for that targeted at 
minimizing ROM. 

4 To reflect the real ROM requirement, the ROM required for nocrypt.memcpy is subtracted from what 
was presented in the webpage. 

Table 5. Characteristics of KNOT and related implementations. 

Area Frequency Throughput Throughput/Area Power Energy
Designs 

(GE) (MHz) (Mbps) (Mbps/GE) (mW) (pJ/byte) 
KNOT-AEAD(128,256, 64) 4553 800 1828.57 0.40 5.16 22.57 
KNOT-AEAD(128,384,192) 7482 800 5485.7 0.73 8.2 11.95 
KNOT-AEAD(192,384, 96) 6709 800 1920 0.29 7.58 31.58 
KNOT-AEAD(256,512,128) 8849 800 1969.23 0.22 10.1 41.03 

KNOT-HASH(256,256, 32,128) 3803 800 376 0.10 4.17 88.72 
KNOT-HASH(256,384,128,129) 5850 800 1280 0.22 6.38 39.88 
KNOT-HASH(384,384, 48,192) 5608 800 369 0.07 6.22 134.85 
KNOT-HASH(512,512, 64,256) 7420 800 365 0.05 8.24 180.6 
AES-GCM @ 40nm TSMC [2] 14993 500 1455 0.10 N.A. N.A. 

AES-GCM @ 130nm [11] 34500 200 2560 0.07 N.A. N.A. 

The results of our implementations are collected in Table 5. For these round-based implementations, the 
KNOT-AEAD(128, 256, 64) and the KNOT-HASH(256, 256, 32, 128) from the KNOT-Pair I have the smallest 
area of 4553 GE and 3803 GE respectively. The KNOT-AEAD(128, 384, 192) and KNOT-HASH(256, 384, 128, 
129) from the KNOT-Pair II have the largest throughput and the best energy efficiency while processing long 
messages. 

Compared to existing AES-GCM implementations, all our KNOT-AEAD implementations have smaller area 
and better throughput. The implementation area of primary version KNOT-AEAD(128, 256, 64) is 3× smaller 
than [2] under a similar technology node. The implementation of KNOT-AEAD(128, 384, 192) has a largest 
throughput of 5.486Gbps, which is 2.77× faster than [2]. For a fairer comparison, a metric TOA defined as 
Throughput/Area is used. The implementations of KNOT-AEAD(128, 256, 63) and KNOT-AEAD(128, 384, 
192) are 4× and 6.3× better than [2] in TOA, respectively. 

We extended our hardware implementation to be fully compliant with the LWC Hardware API. The KNOT-
LWC implementations was delivered to the CERG-GMU LWC Team for further benchmarking and a better 
comparison to other candidates. The LWC Hardware API also provides a common and flexible interface with 
popular existing micro-controllers. 

2.4 Capability of Integrating Side-Channel Countermeasures 

For application scenarios where side-channel resistance is critical, KNOT by design can be implemented effi-
ciently. Implementations of the KNOT families could follow the bit-slice style without using the look-up tables, 
which helps to mitigate the threat of cache-timing attack. The 4-bit S-box used in KNOT comes from the same 
family as popular block ciphers, such as RECTANGLE and PRESENT. The existence of countermeasures for 
S-boxes of RECTANGLE and PRESENT implies the feasibility of implementing efficient first-order and higher-
order masking, or threshold implementations for KNOT families. According to the analysis on stream ciphers 
in [8], in the scenario of DPA attacks, the side-channel protection of KNOT should focus on the initialization 
phase, while the protection of Ascon need to take care both the initialization and finalization [1]. It enables 
efficient TI or masking implementations of KNOT. 
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3 Target Applications and Use Cases of KNOT 

Based on the implementation results of KNOT in section 2, owing to the bit-slice style, KNOT allows for very 
efficient and flexible implementations in both hardware and software environments. Due to its Duplex/Sponge 
modes, compact state size, 4-bit Sbox and a bit permutation based diffusion layer, KNOT is well-suited for 
different constrained devices. Moreover, the implementation of the round function can be reused in the KNOT-
AEAD and KNOT-Hash of the same KNOT-Pair, which reduces the hardware area or software ROM. The 
bit-slice style, together with carefully selected S-box, enables efficient side-channel resistant implementations of 
KNOT. 

4 Planned Tweak Proposal 

We will consider the following 2 tweaks: 

1. If the security against multi-key attacks is essential for lightweight AEADs, we will increase the number 
of rounds nr and nrf of KNOT-AEADs. Take the primary member of KNOT-AEAD for example, we will 
increase nr from 28 to 36 and increase nrf from 32 to 40. As a result, the security margin of the primary 
KNOT-AEAD w.r.t the number of unattacked rounds is approximately 33% against an adversary with 2125 

data complexity and 2125 time complexity; the software speed (or the hardware throughput) is decreased 
approximately 28% with the ROM and RAM requirements (or hardware area) almost unchanged. 

2. To support hashing on top of AEAD more seamlesssly, within each KNOT-Pairs, the LFSRs used to generate 
round constants of the underlying permutation is planned to be defined as exactly the same. 

5 Other Information 

More details of the security analysis and implementations of KNOT are available at the KNOT website [14]. 
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