
An Update on the Sparkle Suite 

Christof Beierle1,2, Alex Biryukov1, Luan Cardoso dos Santos1, 
Johann Großschädl1, Léo Perrin3, Aleksei Udovenko1, 

Vesselin Velichkov4 and Qingju Wang1 

1 DCS and SnT, University of Luxembourg, Luxembourg ({first-name.last-name}@uni.lu)
2 Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany 

(christof.beierle@rub.de)
3 Inria, France (leo.perrin@inria.fr)

4 University of Edinburgh, U.K. (vvelichk@ed.ac.uk) 

sparklegrupp@googlegroups.com 

1 The State of the Sparkle Suite 

Intended use case 

The Sparkle cipher suite contains several ciphers providing Authenticated Encryption 
with Associated Data (AEAD) and hash functions. These algorithms are all based on the 
Sparkle permutations that operate on 256, 384, or 512 bits. These algorithms are all 
intended to be both very fast and very small in software, especially on microcontrollers. 
More precisely, we aimed for a high throughput while retaining as low a RAM consumption 
as possible, and as low a code size as possible as well. Since all functionalities rely on the 
Sparkle permutations, it is possible to implement both AEAD and hashing in a very 
small package. 

In terms of security, this cipher suite ofers various trade-ofs, from a 120-bit secure 
AEAD that uses only 256 bits for its internal state, all the way up to 248 bits of security 
for a larger instance. 

Possible 3rd Round Tweaks 

We do not plan to make any substantial change to our cipher suite should it be selected 
for the next round of the competition. 

2 On the Security of the Sparkle Suite 

Like many second-round candidates, our paper presenting this cipher suite along with 
its security analysis was accepted in the dedicated special issue of ToSC [BBC+20]. 
Nevertheless, we can add the following comments to this analysis. 

A Detailed Analysis of Alzette 

The security of our algorithms hinges on the properties of the Sparkle permutations. 
In turn, these all rely on the same component, namely the Alzette ARX-box. It is a 
64-bit permutation parameterized by a 32-bit round constant, and whose properties are at 
the heart of our security arguments against usual cryptanalysis techniques. Our detailed 
analysis of this component was published at CRYPTO 2020 [BBdS+20], along with the 

mailto:{first-name.last-name}@uni.lu
mailto:christof.beierle@rub.de
mailto:leo.perrin@inria.fr
mailto:vvelichk@ed.ac.uk
mailto:sparklegrupp@googlegroups.com


2 An Update on the Sparkle Suite 

design of two new families of primitives based on this component. Having another fully-
reviewed paper on a crucial design component of Sparkle further strengthens the trust 
in our algorithms. 

Because of this work, we have also been able to slightly improve the diferential bound 
of Alzette. More precisely, we now have that the probability of the best 7-round diferential 
trails is equal to 2−26, which improves upon our previous result which only stated that 
this probability was at most 2−24. 

Protection Against Attacks that Recently Emerged 

Like ours, other submissions rely on cryptographic permutations. In fact, the permutations 
used by two candidates to this standardization efort have recently been the target of full-
round analysis, namely Spook [BBB+20] and Gimli [BKL+17]. However, the Sparkle 
permutations are safe from such attacks. In the case of Spook, the attacks in [DHL+20] 
leveraged a strong similarity between the operations applied to diferent parts of the 
internal state along with some unforeseen interactions between the linear layer and the 
round constants, which ultimately allowed limited birthday attacks. In Sparkle, similar 
operations are applied on each branch in parallel as well (namely, Alzette), but these are 
diferentiated using dense and independent 32-bit constants. Thanks to these constants we 
are not worried about limited birthday attacks. 

Like Sparkle, Gimli relies on a two staged difusion process along with a wide S-box 
(96-bit, which is similar to the 64-bit size of Alzette). However, the difusion in Gimli is 
slow due to the structure of the linear layer, which allows efcient guess-and-determine 
algorithms capable of constructing symmetric inputs that are mapped to equally symmetric 
outputs [GLNP+20]. The Feistel structure and the strong (almost-)MDS permutations used 
to construct the linear layer of each Sparkle instance give us confdence that Sparkle is 
safe from such attacks. 

3 On the Efciency of our Cipher Suite 

The updated specifcation we sent to NIST for the second round of evaluation was 
accompanied by reference and optimized C implementations of Schwaemm and Esch, and 
included also assembler implementations of the Sparkle permutations for 8-bit AVR and 
32-bit ARM Cortex-M3 microcontrollers. The submitted assembler code for 8-bit AVR 
is aimed at small (binary) code size, which means we did not apply certain optimization 
techniques that increase performance at the expense of a massive increase in code size, 
e.g. loop unrolling. Instead, to minimize code size, we implemented the permutation in a 
looped and parameterized fashion so that both the number of branches and the number 
of steps can be passed as parameter to the permutation function. In this way, one and 
the same assembler function of Sparkle can be used for all instances of Schwaemm and 
Esch. On the other hand, the assembler implementations for the 32-bit ARM architecture 
can be characterized as “balanced,” which means the goal was to achieve a good trade-of 
between code size and execution time. This concretely means that we fully unrolled the 
branch-loop, but not the step-loop, i.e. the number of steps has to be passed as a parameter 
to the function. Consequently, our ARM implementation of Sparkle consists of three 
separate assembler functions, namely one with four branches (Sparkle256), one with six 
branches (Sparkle384), and one with eight branches (Sparkle512). 

Earlier this year we developed new reference and optimized C implementations of 
Schwaemm and Esch, the latter of which is signifcantly faster than the optimized C 
implementation submitted to NIST last year. This new implementation merges the � and 
rate-whitening functions and comes with a number of other tweaks to improve performance. 
Though this new implementation is not available to the public yet, we published already 



3 Beierle, Biryukov, Cardoso dos Santos, Großschädl, Perrin, Udovenko, Velichkov, Wang 

some preliminary implementation results in [BBC+20]. For example, the new optimized C 
implementation of Schwaemm256-128 requires 118917 clock cycles to encrypt 1536 bytes 
of data on an ARM Cortex-M3 microcontroller (see [BBC+20, Table 14]), which is 13759 
cycles less than the 132676 cycles reported in [BBdS+19, Table 5.4] for the old optimized 
C implementation. We plan to submit the new reference and optimized C code to NIST in 
early October 2020, and we will also publicly announce their availability on the ofcial 
NIST LWC mailing list. 

In addition to the “balanced” ARM assembly implementation of Sparkle contained 
in the second-round submission package, we also developed speed-optimized versions with 
fully unrolled loops. The speed-optimized version of Sparkle384 has an execution time 
of 781 clock cycles on a Cortex-M3 microcontroller, which is 160 cycles less than the 
941 clock cycles of the balanced implementation. The execution times of these speed-
optimized assembly implementation for ARM were already reported in [BBC+20], but 
the source code is not yet publicly available. We plan to submit the new assembly 
implementations together with the improved C implementations to NIST in early October. 
Table 1 shows a comparison of the new speed-optimized Sparkle384 with other relevant 
permutations, namely, the Ascon permutation, Gimli, and Xoodoo. This table also shows 
an important measurement artifact that is often not taken into account: On some devices, 
the fash memory used for program storage is clocked at a much lower frequency than 
the microcontroller core. This diference in clock frequencies requires the insertion of 
wait-states, that depend on program-size, layout, and cache. Results, when measured in 
cycles-per-byte, will tend to be better on a simulator, or boards with no wait states. The 
same efect might not be discernible when measuring performance as data over time, as 
boards with more waitstates usually are confgured with a higher clock. 

Table 1: Execution time of the four permutations as determined by simulation with Keil 
MicroVision using a generic Cortex-M3 device and measurement on Cortex-M3 development 
boards with 0, 2, and 5 fash wait states (values in parentheses are the performance penalties 
over the execution time on the VL Discovery board, which has 0 fash wait states). 

Permutation 
Keil �Vision 
(simulation) 

VL Discovery 
0 wait states 

Nucleo-64 
2 wait states 

Arduino Due 
5 wait states 

ASCON128a (8 rounds) 466 467 748 (1.60) 571 (1.22) 
Gimli (24 rounds) 1041 1043 1656 (1.59) 1287 (1.23) 

Sparkle384 (7 steps) 781 782 1196 (1.53) 936 (1.20) 
Xoodoo (12 rounds) 657 659 1014 (1.54) 795 (1.21) 

Another interesting benchmark for comparison of permutations is the throughout in 
cycles per byte, as permutations operate over diferently sized states. Table 2 shows speed 
in cycles-per-byte, and in cycles-per-rate-byte, the latter ofering a meaningful view on the 
number of cycles needed for processing each payload byte. 

Table 2: Permutation performance in cycles-per-byte (cpb) and cycles-per-rate-byte (cprb) 
of the permutations of the main instances of the AEAD algorithms on an ARM Cortex-M3 
microcontroller. 

Permutation Size cpb cprb 

ASCON128a p8 320 11 29 
Gimli 384 21 65 
Sparkle 384 16 24 
Xoodoo-r12 384 13 27 



4 An Update on the Sparkle Suite 

Third-Party Implementations and Evaluation 

Besides the implementations mentioned above, there also exist a couple of third-party 
implementations. On the software-side, we refer to the implementation and benchmarking 
work of Rhys Weatherley, which is available online.1 They developed optimized C imple-
mentations of Schwaemm and Esch, and also an assembly implementation of Sparkle 
for 8-bit AVR microcontrollers. The latter is optimized for speed and, therefore, faster 
than our size-optimized implementation of Sparkle. We reviewed the source code of 
Weatherley’s AVR implementation and came to the conclusion that it is of high quality 
and leaves little room for improvement. Also, their C implementation is more aggressively 
optimized for performance than our own optimized C code; for example, they unrolled the 
branch-loop of the permutation. Even though this implementation secures Schwaemm one 
of the top spots in the results table for Cortex-M3, we remark that benchmarks collected 
with assembly implementation would be more accurate. 

In general, the benchmarking results generated by Weatherley for 8-bit AVR, 32-bit 
ARM, and 32-bit ESP32 indicate that the algorithms of the Sparkle suite are consistently 
among the best performers. We also remark that, on AVR, our high-security AEAD 
instance Schwaemm256-256 outperforms most of the other candidates despite their lower 
security level. 

Regarding hardware implementation, we refer to [Col20], which presents an FPGA 
design of our suite, both unprotected and protected against SCA. However, we believe 
that it is possible to obtain a better implementation of Schwaemm. Since Schwaemm 
is a classical ARX design, it is conceivable that its 32-bit integer additions would make 
Sparkle more costly to implement in hardware (and introduce a larger critical path delay) 
than an e.g. the permutation of Ascon, which does not use integer additions. However, the 
integer additions alone can not explain why, according to [RCSD19, Table 4], Schwaemm 
reaches only relatively low clock frequency and throughput fgures since e.g. Comet-Cham 
also performs integer additions, but its maximum clock frequencies are twice as high. We 
plan to collaborate with the authors of [RCSD19] and try to improve the implementation 
described in [Col20]. 

References 

[BBB+20] Davide Bellizia, Francesco Berti, Olivier Bronchain, Gaëtan Cassiers, 
Sébastien Duval, Chun Guo, Gregor Leander, Gaëtan Leurent, Itamar Levi, 
Charles Momin, Olivier Pereira, Thomas Peters, François-Xavier Standaert, 
Balazs Udvarhelyi, and Friedrich Wiemer. Spook: Sponge-based leakage-
resistant authenticated encryption with a masked tweakable block cipher. 
IACR Trans. Symm. Cryptol., 2020(S1):295–349, 2020. 

[BBC+20] Christof Beierle, Alex Biryukov, Luan Cardoso dos Santos, Johann Großschädl, 
Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, and Qingju Wang. 
Lightweight AEAD and hashing using the Sparkle permutation family. IACR 
Trans. Symm. Cryptol., 2020(S1):208–261, 2020. 

[BBdS+19] Christof Beierle, Alex Biryukov, Luan Cardoso dos Santos, Johann 
Großschädl, Leo Perrin, Aleksei Udovenko, Vesselin Velichkov, and Qingju 
Wang. Schwaemm and Esch: Lightweight authenticated encryption 
and hashing using the Sparkle permutation family. Specifcation (ver-
sion 1.1), available for download at http://csrc.nist.gov/Projects/ 
lightweight-cryptography/round-2-candidates, 2019. 

1https://rweather.github.io/lightweight-crypto/index.html. 

http://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
http://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
https://rweather.github.io/lightweight-crypto/index.html


5 Beierle, Biryukov, Cardoso dos Santos, Großschädl, Perrin, Udovenko, Velichkov, Wang 

[BBdS+20] Christof Beierle, Alex Biryukov, Luan Cardoso dos Santos, Johann Großschädl, 
Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, and Qingju Wang. Alzette: 
A 64-bit ARX-box - (feat. CRAX and TRAX). In Micciancio and Ristenpart 
[MR20], pages 419–448. 

[BKL+17] Daniel J. Bernstein, Stefan Kölbl, Stefan Lucks, Pedro Maat Costa Massolino, 
Florian Mendel, Kashif Nawaz, Tobias Schneider, Peter Schwabe, François-
Xavier Standaert, Yosuke Todo, and Benoît Viguier. Gimli : A cross-platform 
permutation. In Wieland Fischer and Naofumi Homma, editors, CHES 2017, 
volume 10529 of LNCS, pages 299–320. Springer, Heidelberg, September 2017. 

[Col20] Flora A. Coleman. A hardware evaluation of a nist lightweight 
cryptography candidate. Master thesis from the Virginia Poly-
technic Institute and State University, available online at https: 
//vtechworks.lib.vt.edu/bitstream/handle/10919/98758/Coleman_ 
FA_T_2020.pdf?sequence=1&isAllowed=y?=., 2020. 

[DHL+20] Patrick Derbez, Paul Huynh, Virginie Lallemand, María Naya-Plasencia, Léo 
Perrin, and André Schrottenloher. Cryptanalysis results on spook - bringing 
full-round shadow-512 to the light. In Micciancio and Ristenpart [MR20], 
pages 359–388. 

[GLNP+20] Antonio Flórez Gutiérrez, Gaëtan Leurent, María Naya-Plasencia, Léo Per-
rin, André Schrottenloher, and Ferdinand Sibleyras. New results on Gimli: 
full-permutation distinguishers and improved collisions. In Shiho Moriai 
and Huaxiong Wang, editors, Advances in Cryptology, ASIACRYPT 2020, 
Lecture Notes in Computer Science, Berlin, Heidelberg, 2020. Springer Berlin 
Heidelberg. To appear. 

[MR20] Daniele Micciancio and Thomas Ristenpart, editors. CRYPTO 2020, Part III, 
volume 12172 of LNCS. Springer, Heidelberg, August 2020. 

[RCSD19] Behnaz Rezvani, Flora Coleman, Sachin Sachin, and William Diehl. Hardware 
implementations of nist lightweight cryptographic candidates: A frst look. 
Cryptology ePrint Archive, Report 2019/824, 2019. https://eprint.iacr. 
org/2019/824. 

https://vtechworks.lib.vt.edu/bitstream/handle/10919/98758/Coleman_FA_T_2020.pdf?sequence=1&isAllowed=y?=
https://vtechworks.lib.vt.edu/bitstream/handle/10919/98758/Coleman_FA_T_2020.pdf?sequence=1&isAllowed=y?=
https://vtechworks.lib.vt.edu/bitstream/handle/10919/98758/Coleman_FA_T_2020.pdf?sequence=1&isAllowed=y?=
https://eprint.iacr.org/2019/824
https://eprint.iacr.org/2019/824

	The State of the Sparkle Suite
	On the Security of the Sparkle Suite
	On the Efficiency of our Cipher Suite

