
{ } { }
A 2 {0, 1}�, and a message M 2 {0, 1}� as inputs, and returns a ciphertext C 2 {0, 1}|
and a tag T 2 {0, 1}n.

X[0] EK HyFB+ EK HyFB+ HyFB+ X[a]

A[0]

2∆

A[1]

22∆

A[a− 1]

3 � 2a−1∆

Y [0] X[1] Y [1] · · ·

X[a] EK HyFB+ EK HyFB+ HyFB+ X[a + m]

M [0] C[0] M [1] C[1] M [m− 1] C[m− 1]

3 � 2a∆ 3 � 2a+1∆ 32 � 2a+m−2∆

Y [a] X[a + 1] Y [a + 1] · · ·

EK TX[a + m]

HyENA-v2: Tweak Proposal for HyENA

Avik Chakraborti1, Nilanjan Datta2, Ashwin Jha1 and Mridul Nandi1

1 Indian Statistical Institute, Kolkata, India
{avikchkrbrti,ashwin.jha1991,mridul.nandi}@gmail.com

2 Institute for Advancing Intelligence, TCG CREST, Kolkata, India
nilanjan_isi_jrf@yahoo.com

1 HyENA-v2 Authenticated Encryption Mode
In this section, we present the updated formal specifcation of HyENA-v2 in Algorithm
2. A pictorial description is given in Figure 1. The HyENA authenticated encryption
mode receives an encryption key K 2 0, 1 �, a nonce N 2 0, 1 r, an associated data

M |

Figure 1: HyENA authenticated encryption mode for full data blocks.

mailto:avikchkrbrti@gmail.com,ashwin.jha1991@gmail.com,mridul.nandi@gmail.com
mailto:nilanjan_isi_jrf@yahoo.com

2 HyENA-v2: Tweak Proposal for HyENA

The decryption algorithm receives a key K 2 {0, 1}�, an associated data A 2 {0, 1}�, a
nonce N 2 {0, 1}r, a ciphertext C 2 {0, 1}� and a tag T 2 {0, 1}n as inputs and return
the plaintext M 2 {0, 1}|C|, corresponding to the ciphertext C, if the tag T authenticates.
Complete specifcation of HyENA is presented in Algorithm 2 and the corresponding
pictorial description can be found in Figure 1.

1.1 The Modifcations and Rationale
Here we explicitly mention all the modifcations along with the rationale of the modifcation:

• Updation in the Masking: In the submitted version, for the fnal block of
associated data, the masking value was updated by multipling 22 (full block) and
23 (partial block). In the current version, we update that by 3 (full block) and 32

(partial block). This ensures identical mask generation for associated data and plain
text, and makes the associated data and plain text processing uniform.

• Initialization: In the previous version, we di˙erentiate the following cases (i)
empty data (both associated data and plain text), (ii) empty associated data and
non-empty data, (iii) non-empty associated data by keeping 2 dedicated bits in the
initial state. Here we skip this, and we do not separate these cases. The modifed
padding and the uniqueness of the nonce takes care of it. This saves a MUX in the
hardware, and reduces the overall implementation area.

• Finalization: In the previous version, the tag generation was done by (i) swapping
the most signifcant and least signifcant n/2 bits of the state, and then (ii) performing
a block cipher encryption. In the updated version, we skip the swap operation, and
only perform the encryption. The updated masking takes care of it, and the swap
operation becomes redundant.

2 Security
We claim that HyENA-v2 will provide the following security bound:

Theorem 1.

2˙e ˙2 + qv max{n, nqe/2n/4}0 eAdvAE , ˙e, ˙v, t) �Advprp (q , t0) + +HyENA-v2(qe, qv EK 2n/2
+ 2n 2n/4

n(qe + 3qv + 2˙v) max{n, nqe/2n/4}(qe + 3qv)+ + ,
2n/2 23n/4

0where q = qe + ̇ e + qv + ̇ v which corresponds to the total number of block cipher calls
through the game and t0 = t + O(q0).

Theorem 1 follows from [Theorem 1, [1]]. As per the proof, B2 is used specifcally to
handle the events B4 and B7: specifcally, encryption/decryption frst input block (where
nonce is processed) matches with some encryption last input block (where swapping is
used). However, we have found out that the bad case B2 is redundant, and the analysis of
B4 and B7 can be bounded given negation of B1 itself.

Applying the above result, we summarize the security clains for HyENA-v2 in Table 1.

 �

 �

 �

 �

 �

3 Avik Chakraborti1, Nilanjan Datta2, Ashwin Jha1 and Mridul Nandi1

Algorithm HyENA-Enc(K, N, A, M)

1. Y Init(N, A, M)
2. (X, �) Proc-AD(Y, A)
3. if |M | 6= 0 then

4. (X, C) Proc-TXT(X, �, M, +)
5. T Tag-Gen(X)
6. return (C, T)

Algorithm Init(N, A, M)

1. Y EK (Nk0n−r)
2. return Y

Algorithm Proc-AD(Y, A)

1. � YR

2. if |A| = 0 then

3. � 32 �
4. (X, ?) HyFB+(Y, �, 0n−11)
5. return (X, �)
6. else

n7. (Aa−1, . . . , A0) A

8. for i = 0 to a − 2
9. � 2 �

10. (X, ?) HyFB+(Y, �, Ai)
11. Y EK (X)
12. t (|Aa−1| = n)? 1 : 2
13. � 3t �
14. (X, ?) HyFB+(Y, �, Aa−1)
15. return (X, �)

Algorithm Tag-Gen(X)

1. T EK (X)
2. return T

Algorithm HyENA-Dec(K, N, A, C, T)

1. Y Init(N, A, M)
2. (X, �) Proc-AD(Y, A)
3. if |C| 6= 0 then

4. (X, M) Proc-TXT(X, �, C, −)
5. T 0 Tag-Gen(X)
6. if T 0 = T then return M

7. else return ?

Algorithm HyFB+(Y, �, M)

1. C Trunc|M|(Y) � M

2. M Pad(M), C Pad(C)� �
3. B M Lk(CR � �)
4. X B � Y

5. return (X, C)

Algorithm HyFB−(Y, �, C)

1. M Trunc|C|(Y) � C

2. M Pad(M), C Pad(C)� �
3. B M Lk(CR � �)
4. X B � Y

5. return (X, M)

Algorithm Proc-TXT(X, �, D, dir)
n1. (Dd−1, . . . , D0) D

2. for i = 0 to d − 2
3. � 2 �
4. Y EK (X)
5. if dir = + then

6. (X, Oi) HyFB+(Y, �, Di)
7. else

8. (X, Oi) HyFB−(Y, �, Di)
9. t (|Dd−1| = n)? 1 : 2

10. � 3t �
11. Y EK (X)
12. if dir = + then

13. (X, Od−1) HyFB+(Y, �, Dd−1)
14. else

15. (X, Od−1) HyFB−(Y, �, Dd−1)
16. return (X, (Od−1k . . . kO0))

Figure 2: Formal Specifcation of HyENA Authenticated Encryption and Decryption
algorithm. We use the notation ? to denote values that we do not care.

4 HyENA-v2: Tweak Proposal for HyENA

Table 1: Summary of security claims for HyENA. The data and time limits indicate the
amount of data and time required to make the attack advantage close to 1.

Submissions Privacy Integrity
Time Data (in bytes) Time Data (in bytes)

2128 264 2128 258HyENA-v2

Table 2: Clock cycles per message byte for HyENA-v2

Message length (Bytes)
16 32 64 128 256 512 1024 2048 4096 16384 32768 262144

cpb 10.563 6.656 4.7031 3.727 3.238 2.9941 2.872 2.811 2.781 2.758 2.754 2.750

2.1 Third Party Analysis of HyENA NIST Submission
To the best of our knowledge, there is one valid third-party analysis [2] on HyENA NIST
submitted version. This attack actually targets the � update part and exploits the fact
we have a collision in the � value corresponding to two di˙erent block processing. Finally,
the attack use the collision to make a valid forgery. Due to this attack HyENA needs
a minor fx to achieve a stong mathematical property in � update. This writeup makes
such minor update in the � update function to obtain a prefx-free in the (i, j) sequence
used for � update as 2i · 3j �. This strong mathematical makes the mode provably secure.

3 Hardware Implementation of HyENA-v2
HyENA-v2 aims to achieve a lightweight implementation on low resource devices. We
have already presented the hardware implementation results of a close variant of the
NIST submission HyENA in [1] (the NIST and this version di˙ers only in the � update).
The implementation details in [1] is also presented in this write-up in Table 3. HyENA-
v2 further simplifes the structure with the modifcations described in Sect 1.1 (in fact,
HyENA-v2 omits two operations). Hence, HyENA-v2 is expected to have better hardware
implementation results than the results reported in [1]. The hardware benchmarking
results given in [1, Table 4], also show that HyENA signifcantly outperforms other well
established ciphers such as AES-GCM, ASCON, AES-OTR etc in terms of area. This
establishes HyENA as one of the best ultra-lightweight AEAD cipher.

3.1 Clock Cycle Analysis
We provide a conventional way for speed estimation, i.e, the number of clock cycles to
process input bytes. Since HyENA-v2 processes at least one associated data (AD) block
(one dummy block when AD is empty), we calculate the cpb assuming one AD block and
m message blocks. We use 40 round GIFT and need 40 cycles for the GIFT module. We
use 4 more cycles to compute the feedback and update the � value. Overall, HyENA
needs (44(m + 1) + 81) cycles. Table 2 shows the number of average cycles per input
message bytes, which we call cycles per byte (cpb). The cpb is (44(m + 1) + 81)/16m and
it converges to 2.75 for very large m.

3.2 Implementation Results
We implement HyENA-v2 on Xilinx Virtex 6 and Virtex 7, using VHDL and Xilinx ISE
13.4. Table 3 presents the implementation results of HyENA-v2 on Virtex 7.We follow the
RTL approach and a basic iterative type architecture with 128-bit datapath. The ares are
provided in the number of LUTs and slices. Frequency (MHz), Throughput (Gbps), and

5 Avik Chakraborti1, Nilanjan Datta2, Ashwin Jha1 and Mridul Nandi1

Table 3: FPGA implementation results of HyENA

Design (Platform)
Slice

Registers LUTs Slices
Frequency

(MHz)
Throughput

(Gbps) Mbps/LUT Mbps/Slice
HyENA-v2 (Virtex 7) 336 668 322 410.295 1.28 1.916 3.975

throughput-area eÿciencies are also reported in addition to the hardware areas. Table 3
presents the mapped hardware results of HyENA.

References
[1] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Snehal Mitragotri, and Mridul Nandi.

From combined to hybrid: Making feedback-based AE even smaller. IACR Trans.
Symmetric Cryptol., 2020(S1):417–445, 2020.

[2] Alexandre Mege. ROUND 2 OFFICIAL COMMENT - HYENA, 2020.
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/round-2/official-comments/hyena-round2-official-comment.pdf.

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/official-comments/hyena-round2-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/official-comments/hyena-round2-official-comment.pdf

	HyENA-v2 Authenticated Encryption Mode
	The Modifications and Rationale

	Security
	Third Party Analysis of HyENA NIST Submission

	Hardware Implementation of HyENA-v2
	Clock Cycle Analysis
	Implementation Results

