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Abstract. SpoC is a family of lightweight authenticated encryption algorithm and a round 2 
candidate of the NIST lightweight cryptography standardization competition [5]. In this article, 
we report updates on SpoC since its selection as a round 2 candidate. In particular, we report 
security proof of SpoC mode, new third party cryptanalysis and implementation results. We also 
highlight the target applications and use-cases of SpoC along with our plans of future tweaks. 

1 Security Analysis 

SpoC is a permutation based mode of operation for authenticated encryption with associated data 
functionality [3]. It is a variant of sponge-AEAD where data blocks are absorbed through the capacity 
part instead of rate. SpoC has two members: SpoC-64 and SpoC-128, with core primitives as the 
sLiSCP-light-192 and sLiSCP-light-256 permutations, respectively. For both variants of SpoC with 18 
rounds of sLiSCP-light, we claim that they are secure against attacks targeting confidentiality and 
integrity while the data limit of 250 bytes and time limit of 2112 offline permutation evaluations is not 
violated in a nonce-respecting setting [3, Table 3.1]. In the following, we give details on the security 
proof of SpoC mode and third party cryptanalysis results. 

1.1 Security proof of SpoC mode 

A formal security proof of SpoC has already been published in IACR ToSC Vol. 2020 Issue 2 [8], and 
the full version of the same paper is available in [7]. We refer the readers to [7, Section 7.2] for a 
detailed discussion and formal security results on SpoC. Here, we briefly discuss the implications of 
the formal security bounds proved in [8, 7] on the security claims made in the NIST submission [3]. 

Let D denote the total number of bytes in all queries to the SpoC mode of operation, and T denote 
the number of direct invocations of the underlying permutation. Traditionally, D is called the data 
complexity or online query limit and T is called the time complexity or offline query limit. 

In [7, Section 7.2.1], Chakraborty et al. state that the attack advantage of any adversary A against 
SpoC-64 and SpoC-128 are bounded as follows: 

D 7T 3DT 
Advaead + + ,SpoC-64(A)≤ 

266 2121 2192 
(1)

9D 7T 7DT 
Advaead + + .SpoC-128(A)≤ 

2125 2120 2259 

From the above relations it is evident that SpoC-64 is secure while: 

D < 266 and T < 2118.19 and DT < 2190.41 , 

and SpoC-128 is secure while: 

D < 2121.83 and T < 2117.19 and DT < 2256.19 . 

Clearly, the above data and time limits justify our security claims (secure while D < 250 and T < 2112), 
as given in [3, Table 3.1]. 



1.2 Third-party cryptanalysis results 

Distinguishers on round-reduced sLiSCP-light permutation [9]. Hosoyamada et al. have 
analyzed sLiSCP-light against limited-birthday distinguishers (LBD) which can cover up to 16 out of 
18 rounds of the permutation. The LBDs complexities are 2113 (time) and 237.7 (memory) for sLiSCP-
light-192, and 2154.6 (time) and 248.3 (memory) for sLiSCP-light-256. Although this work improves the 
existing distinguishers on both variants of sLiSCP-light [4, 3] by 2 rounds, they do not pose a direct 
threat to SpoC. This is because the available degrees of freedom are 64 bits and 128 bits per call of 
the permutation, i.e., rate values are 64 and 128 bits for SpoC-64 and SpoC-128, respectively. On the 
other hand, the LBDs require much higher time complexities. 

Cryptanalysis results on SpoC [10]. Kravela et al. have analyzed SpoC against tag forgery, message 
recovery and key-recovery attacks. We briefly discuss their analysis and implications of their results 
on the security of SpoC. In the following, we consider a 128-bit nonce as N = N0kN1 where N0 and 
N1 are 64-bit words. 

1. Tag forgery on 6 rounds of SpoC-128: The idea is to inject an input difference at both key 
and nonce values, and then cancel the output state difference via domain separators. As such, 
the attack model is based on related-key and related-nonce setting, and finding a corresponding 
differential trail with high probability. The authors found a differential trail with probability 
2−106.14 and accordingly presented a tag forgery attack on 6 out of 18 rounds of SpoC-128 with 
2106.14 data and 2107.14 time. 

We emphasize that a similar analysis of differential trails has been investigated in detail by us in 
[4, 14]. The only difference is that we did not consider the related-key and related-nonce scenario 
as this is irrelevant in a single-key setting where the adversary can only inject differences in nonce, 
associated data and/or plaintexts. Although the presented attack do not pose any threat to SpoC-
128, it shows that in the single-key setting, 6-round SpoC-128 provides higher security guarantees 
against differential cryptanalysis than the related-key and related-nonce based differential attacks. 

2. Tag forgery on 7 rounds of SpoC-64: The main idea is similar to the previous attack with 
the only exception that the model is based on the single-key scenario and the input difference 
is injected at N1. The attack has complexities of 2108.2 data and 2109.2 time which violates the 
prescribed data limit of 250 bytes. 

3. Message recovery on 9 rounds of SpoC-64: In this attack, the authors consider the differentials 
for which the state collides. More precisely, they insert input difference in the key and N0 and then 
cancel the output difference at capacity part with the corresponding difference in N1. The attack 
requires 2110.84 data and 2109.84 time. Note that the number of attacked rounds is 2 more than the 
previous case as the related-key setting gives additional degrees of freedom. 

4. Key recovery attack on SpoC-64: The authors claim a key recovery attack on full round SpoC-64 
with complexities of 267 data and 2110 time, which has a success probability of 2−15 . We emphasize 
that their attack is neither surprising nor does it invalidate our security claims. This is justified in 
the following discussion: 
– Attack idea: Their attack strategy involves first guessing the state and then extracting the key 

via inverse call of permutation. This scenario is already considered in our submission document 
(cf. Section 4.1.1 of [3]). As noted in [3, Section 4.1.1], the attack advantage of such attacks 
follow the relation DT = 2b (also present in the security bounds), where D, T , and b, denote 
the data, time (number of offline permutation evaluations) and state size, respectively. Indeed, 

DT this is one of the strategies that contributes a 
2b term in the security bound of SpoC (see Eq. 

(1)). 

267 2110– Attack complexity: The authors choose D = , T = , and b = 192, which naturally 
translates to a success probability of 2−15 (using DT = 2b curve). However, this violates our 
prescribed data limit of 250 bytes by a significant factor of 217 . 
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– Multi-key setting: The authors justify their use of 267 data blocks by stating that they 
aim to query SpoC in multi-key (or multi-user) setting, i.e., multiple instances of SpoC with 
independent keys. We emphasize that our security claims are given in the single-key setting, 
as is the requirement of NIST LwC project (cf. Section 3.1 [1]). 

However, for the sake of discussion, we point out that even under the multi-user setting, 
their attack follows from the single-key to multi-key security degradation (see [6, 11] for more 
details), i.e., it follows the relation µDT = 2b , where µ denotes the number of users (for brevity, 

= 2112we assume identical data complexity for all users), i.e., if we fix D = 250 , and T , then the 
attack requires D = 250 bytes of data per user, from µ = 217 users to get a success probability of 
2−15 in recovering the key of a single user, which is not that significant given the large number 
of users attacked. 

8+n n5. Observations on constants. The authors further mentioned that “the bits rc and rc are 1 1 
equal ... ”. We would like to point out this is a property of a primitive polynomial of LFSR and 
as such it does not add anything new to the security. The constants were chosen so that: 
1) they can be generated by a single LFSR, and 2) the pair of round constants and step 
constants at each round and step are distinct. See [3, Section 4.2.4] for further analysis. 

Summary. The known cryptanalysis results on SpoC and its underlying permutation sLiSCP-light 
do not pose any threats to our security claims. Based on the best known third-party results (which 

are in fact in the related-key setting), the security margin, i.e., 1 − # attacked rounds of SpoC-64 and 
# total rounds 

SpoC-128 are at least 50% and 66%, respectively. 

2 Implementation Results 

2.1 Hardware 

Implementation and benchmarking by Rezvani et al. [13]. The hardware implementation of 
SpoC-64 and its performance across different hardware platforms has been extensively analyzed in a 
recent work of Rezvani et al. Below, we highlight few results from the same work. 

– SpoC-64 has the smallest area in Artix-7, Spartan-6 and Cyclone-V when compared to other 
round 2 candidates such as Ascon, Comet, GIFT-COFB and Sparkle. 

– SpoC-64 achieves the maximum frequencey in Artix-7 and Cyclone-V, and has the lowest 
power consumption among the aforementioned round 2 candidates. 

– SpoC, Comet and GIFT-COFB achieves the lowest power gradient, i.e., lowest increase in power 
consumption with increasing frequency. 

Implementation by SpoC team. We have provided the implementation of SpoC in 
two technologies: ST Micro 65 nm and IBM 130 nm. The codes are available at https: 
//uwaterloo.ca/communications-security-lab/lwc/spoc. Note that our codes currently do 
not follow the LWC API framework of [12]. 

A threshold implementation of SpoC for protection against side-channel attacks will be available 
shortly. 

2.2 Software 

Implementation and benchmarking by Weatherley [16]. SpoC is included in Rhy’s Weatherley 
software benchmarking framework where the performance of round 2 candidates is evaluated on 8-bit 
and 32-bit microcontrollers. Further, a protected implementation of SpoC for up to 6 shares has been 
incorporated in the same framework. For the details on the performance, the reader is referred to [16]. 
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Bitslice implementation by SpoC team. We implemented SpoC in the bit-slice fashion using 
SIMD instruction sets which provides resistance against cache-timing attacks. Our implementation al-
lows to execute multiple independent SpoC instances in parallel. We consider SSE and AVX instruction 
sets in Intel processors where the SSE and AVX instruction sets, support 128-bit and 256-bit SIMD 
registers, known as XMM and YMM, respectively. 

We implemented the sLiSCP-light permutation and both modes in C using SSE2 and AVX2 
instruction sets and measured their performances on two different Intel processors: Coffee Lake 
and Whiskey Lake. The codes on Coffee Lake and Whiskey Lake were compiled using gcc 7.5.0 
and gcc 9.2.1, respectively on 64-bit machines with the compiler flags -O2 -funroll-all-loops 
-march=native. For both implementations, we evaluated four parallel instances and compute the 
throughput of the permutation and its modes. Table 1 presents the performance results in cycles per 
byte (cbp) for both the permutation and entire SpoC where encryption is done for a 1024-bit message 
and a 128-bit associated data, including the tag computation. The codes are publicly available at 
https://uwaterloo.ca/communications-security-lab/lwc/spoc. 

Table 1: Benchmarking the results for the sLiSCP-light permutation and SpoC. 
Primitive Speed 

[cpb] 
Instruction 

Set 
CPU Name 

Spec. 

sLiSCP-light-192 

15.78 
8.80 

SSE2 
AVX2 

Coffee Lake 
Intel i7-9700 

13.60 
7.80 

SSE2 
AVX2 

Whiskey Lake 
Intel i5-8265U 

sLiSCP-light-256 

11.72 
7.32 

SSE2 
AVX2 

Coffee Lake 
Intel i7-9700 

9.12 
6.20 

SSE2 
AVX2 

Whiskey Lake 
Intel i5-8265U 

SpoC-64 

64.65 
41.43 

SSE2 
AVX2 

Coffee Lake 
Intel i7-9700 

50.16 
30.44 

SSE2 
AVX2 

Whiskey Lake 
Intel i5-8265U 

SpoC-128 

36.10 
22.40 

SSE2 
AVX2 

Coffee Lake 
Intel i7-9700 

25.88 
14.58 

SSE2 
AVX2 

Whiskey Lake 
Intel i5-8265U 

3 Features 

Applications and use cases. SpoC is primarily a hardware-oriented lightweight authenticated 
cipher and designed to achieve low area, power and energy which is crucial for RFID and sensor 
network applications. A concrete use case of SpoC in device-to-device communication for 5G Internet 
of Things networks has been investigated in [15]. 

Comparison with AES-GCM. SpoC outperforms AES-GCM in area, frequency and power as 
shown in [2, 13]. For the sake of brevity, we include some performance figures from those papers: [2, 
Table 4] and [13, Table 4]. 

- In Artix-7, SpoC-64 consumes 1344 LUTs while the area of AES-GCM is 1532 LUTs. Similarly, 
the area of SpoC-64 is less than AES-GCM in Spartan-6 and Cyclone-V. 

- SpoC-64 achieves a higher frequency than AES-GCM in Artix-7 (268 vs 222 MHz) and Cyclone-V 
(224.4 vs 165.9 MHz). 
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- In Artix-7, at 50 MHz, the average power values of SpoC-64 and AES-GCM are 34.7 and 35.9 mW, 
respectively. Further, SpoC-64 has lower dP/dF req (0.15 vs 0.18) value while energy values of both 
ciphers are comparable. 

4 Proposed Tweaks 

Currently, we do not have any plans to tweak the design of SpoC. 
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