
Updates on WAGE

Mark Aagaard1 , Riham AlTawy2 , Guang Gong1 , Kalikinkar Mandal3 , Raghvendra Rohit4 ,
and Nusa Zidaric1

1 Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada
2 Department of Electrical and Computer Engineering, University of Victoria, Victoria, Canada

3 Faculty of Computer Science, University of New Brunswick, Fredericton, Canada
4 University of Rennes, CNRS, IRISA, France

Abstract. In this document, we report the activity progress of the WAGE authenticated cipher
after the round 2 submission to NIST. The following activities were performed on WAGE: addi-
tional security analysis, proposing side-channel countermeasures and their evaluation in hardware
and software, additional feature as pseudorandom bit generator, and some usecase studies for In-
ternet of Things (IoT) protocol applications. We also propose a tweak to increase the throughput
of WAGE.

1 Introduction

WAGE is a hardware-oriented lightweight authenticated cipher in the ongoing NIST lightweight cryp-
tography standardization competition [5]. It is designed while keeping hardware efficiency in mind
which is desirable for RFID and sensor applications. WAGE [2] is published as a formal publication
at IACR Transactions on Symmetric Cryptology (ToSC), Volume 2020, Special Issue 1 [4], where we
have provided further analysis of the security of WAGE against diffusion and differential attacks (See
Section 2). In addition to a sponge-based pseudorandom bit generator (PRBG), we have shown in
[4] how WAGE can be configured as a WG-PRBG with proven statistical properties. WAGE is ana-
lyzed against the correlation power attacks on the microcontroller platform, more specifically on ARM
Cortex-M4F. To prevent against side-channel (e.g., DPA) attacks in both hardware and software, a
higher-order masking scheme for WAGE is proposed in the t-SNI security model [8]. We evaluated the
hardware performance of protected WAGE on two different technologies. The detailed results can be
found in [8]. An Athena compliance API for WAGE is developed and submitted to the GMU group
for performance evaluation. Finally, we have considered applications of WAGE in IEEE 802.11X [9]
and CoAP [15] protocols for IoT in [14]. We also propose a tweak in the operating mode of WAGE to
improve its throughput. The detailed security analysis of the tweaked variant will be available soon.

2 Security Analysis

2.1 Additional Security Analysis by the Designers

We briefly highlight some analysis from [4, Section 3].

Diffusion behavior. We model the diffusion behavior of WAGE to show its resistance against
meet/miss-in-the middle distinguishers. Let Si denote the algebraic normal form (ANF) of the k-thj,k

bit of word j after the i-th round. We say WAGE achieves full bit diffusion at i-th round if Si is aj,k

function of S0 = 0, 1, . . . , 36 and ∀ k = 0, 1, . . . , 6. Note that both WGP and SB sboxes have thej,k, ∀ j
full bit diffusion property but the multiplication by ω mixes only two bits at a time.

Since WAGE adopts an NLFSR based design, the word at position 0 is mixed at a slower rate than
others. Thus, it is sufficient to find i for which S0

i
,k achieves full bit diffusion ∀ k = 0, 1, . . . , 6. Table 1

depicts such a behavior for word 0 while for other words the details are provided in [4].
From Table 1, we observe that WAGE achieves full bit diffusion in 28 rounds. Thus, WAGE (with

111 rounds) provides a huge security margin against meet/miss-in-the middle distinguishers as 56 (=
28+28) rounds guarantee full bit diffusion in both the forward and backward direction.

Table 1: Diffusion behavior of 0-th word of WAGE
Si
0,k Round i

k 1 4 7 11 15 19 23 27 28
0, · · · , 6 1 1 8 22 36 84 168 252 259

Analysis on input and output differences. We have analyzed the differential properties of WAGE
permutation by restricting the input and output differences at rate positions only, i.e., differences are
allowed at words 8, 9, 15, 16, 18, 27, 28, 34, 35 and 36. This case analyzes the resistance of WAGE
authenticated encryption against differential and linear attacks in a sponge mode.

Analysis on the forgery attacks against improper domain separation. The choice of domain
separators is crucial in resisting forgery attacks. WAGE-AE-128 uses 2-bit domain separators 0x01
and 0x02 while processing associated data and message blocks, respectively. We showed that 2-bits
are enough to distinguish all cases including empty, partial and complete associated data and/or
plaintext/ciphertext blocks.

2.2 Side-channel Analysis

Analysis by the designers [8]. We have analyzed WAGE against correlation power attacks in the
microcontroller environment. We detected secret key leakage from power consumption in the first 12
(out of 111) rounds of the WAGE permutation and requires about 10,000 power traces to recover the
128-bit secret key. To resist such attacks, we proposed a masking scheme for WAGE (see Section 3.1).

Third-party analysis by Bellizia et al. [6]. Recently, Bellizia et al. have analyzed the leakage-
resistance of NIST LWC round 2 candidates by classifying them into modes and primitives. WAGE along
with ACE, ASCON, SPIX and Spook has been shown to be CIML2 and CCAmL1 secure. Adopting the
[6, Def. 1 & 2], CIML2 refers to the “ciphertext integrity with misuse-resistance (i.e., no constraint on
nonces) and leakage in encryption and decryption”, while CCAmL1 means “chosen ciphertext security
with nonce misuse-resilience (i.e., fresh challenge nonce) and leakage in encryption only”. For the
proof details, the reader is referred to [6].

3 Performance Results

3.1 Side-channel Protection in Hardware and Software

Side-channel implementation of WAGE in hardware. We proposed a higher-order masking
scheme of the WAGE authenticated encryption cipher in the strong non-interference (SNI) security
model. We investigated different masking schemes for S-boxes by exploiting their internal structures
and leveraging the state-of-the-art masking techniques. To practically demonstrate the effectiveness of
masking, we performed the test vector leakage assessment on the 1-order masked WAGE. We evaluated
the hardware performance of WAGE for 1, 2, and 3-order security and provided a comparison with
other NIST LWC round 2 candidates. For instance, the 1-order masking scheme of WAGE consumed
about 11,177 GE in ASIC on the ST Micro 65 nm technology. For the details, we refer the reader to
[8].

Side-channel implementation of WAGE in software. The higher-order SNI-secure scheme of
WAGE also provides side-channel resistance for software (e.g., microcontroller) implementations. In
our proposed scheme, we used the randomized lookup table approach for 7-bit S-boxes to implement
them in software. For the analysis, we first converted the C code to the ARM Cortex-M4F environment.
We then performed the standard test vector leakage assessment (TVLA) to validate that our masked
implementation is free of the first-order leakage. We observed that power traces do not detect leakage
till 60,000 time points for the protected implementation while only 600 time points are sufficient to
detect leakage in case of the unprotected implementation. For the details, the reader is referred to [8].

2

3.2 Software Performance

Third-party software performance evaluation. WAGE is included in Rhys Weatherley’s AVR
framework [13] to measure the performance of NIST LWC round 2 candidates on 8-bit and 32-bit
microcontrollers where the timings are compared against the ChaChaPoly algorithm. For the details,
the reader is referred to [13].

3.3 Hardware Performance

In 2019, a comprehensive analysis of parallel implementations of WAGE was presented in [3], and we
included the implementation results for four ASIC technologies in the round 2 submission document [2].
For example, unparallelized WAGE has the area of 2900 GE and reaches a throughput of 518 Mbps using
ST Micro 65 nm library. Throughput of 878 Mbps was acheived with the 8× parallel implementation,
with area 12150 GE. In [3], we also present energy per bit, measured as the average value while
performing cryptographic operations over 8192 bits of data at 10 MHz, which for unparallelized WAGE
ST Micro 65 nm implementation yields 20.0 nJ.

Recently, protected WAGE implementations using two ASIC technologies are reported in [8]. As was
already mentioned, the smallest implementation requires 11,177 GE using ST Micro 65 nm library. In
[2], we also included implementation results for Xilinx Spartan-3 and Spartan-6, and for Intel/Altera
Stratix IV. New preliminary LWC API compliant [11] results for WAGE on a Xilinx Spartan-6 are
shown in Table 2.

4 Features

4.1 Psudorandom Bit Generator from WAGE

We presented an additional feature of WAGE as a pseudorandom bit generator (PRBG), which has
appeared in [4]. We proposed two alternatives on how to configure WAGE and generate pseudorandom
bits with minimal overheads: a) One construction is Sponge-PRBG, and b) Our second construction
is based on the WG transformation, called WG-PRBG, by reusing certain circuitry of WAGE. The
Sponge-PRBG construction from a permutation is based on the standard sponge construction, which
was introduced in [7]. In such a construction, in order to generate a pseudorandom sequence of longer
length, reseeding is required, meaning that after outputting a certain number of bits the generator
needs to reseed to further produce output bits using the current internal state, requiring an external
source for reseeding. However, it is hard to guarantee the randomness properties of the produced bits or
sequences mathematically. In WG-PRBG, we can mathematically ensure certain randomness properties.
One limitation is that WG-PRBG can generate a limited number of bits securely. However, it can be used
for an arbitrarily length nonces and IVs. Note that, for WG-PRBG, the WAGE permutation functionality
needs to be tweaked. The reader is referred to [4] for further details on both constructions and their
security analyses.

4.2 Applications and Use-cases

WAGE can be implemented using 2540 GE at 940 MHz with a throughput of 536 Mbps and energy
consumption of 39.2 nJ on ST Micro 90 nm [3], which is suitable for the RFID and sensor network
applications.

Application of WAGE in IEEE 802.11X and CoAP protocols. We have considered applications
of WAGE in IEEE 802.11X [9] and CoAP [15] protocols for IoT. We have shown in [14] how to configure
WAGE as a key derivation function (KDF) and a message integrity check (MIC) generation function for
the use in the IEEE 802.11X and CoAP handshake mutual authentication and key establishment
protocols. We benchmark the performances of WAGE for KDF and MIC functionalities and handshaking
and data protection protocols on microcontrollers as a major portion of IoT devices are equipped with
microcontrollers. Our experimental results show that WAGE take about 2,903, 2,955, and 2,808 ms to
complete the IEEE802.11X authentication protocol using ATmega128, MSP430F2370, and Cortex-M3,

3

respectively. For the data protection protocol, WAGE achieves a throughput of 41, 34 and 53 Kbits/s
on ATmega128, MSP430F2370, and Cortex-M3, respectively to encrypt and authenticate a plaintext of
1024 bits and an associated data of 128-bits. More details can be found in [14].

4.3 Comparison with AES-GCM

Using [10], we developed a hardware implementation of WAGE compliant with LWC API [11]. As the
hardware implementation results for WAGE by the GMU Cryptographic Engineering Research Group
are not yet available, we provide our own preliminary results. Upper half of the Table 2 shows our
post Place-and-Route static timing results obtained for balanced design goal with Xilinx ISE Project
Navigator 14.4 for the Xilinx Spartan-6 FPGA (XC6LX16-CS324).

Table 2: Comparison with AES-GCM
f Area TP TPA TPA2

Cipher FPGA [MHz] [LUT] [Mbps] [Mbps/LUT] [kbps/LUT2] Ref
AEC-GCM Spartan-6 144.7 3350 1683.6 0.503 0.15 [12]

WAGE Spartan-6 124.1 1325 69.7 0.053 0.04

ASIC library [GHz] [GE] [Gbps] [Mbps/GE] [bps/GE2]
AEC-GCM ST Micro 65 nm 0.5 20580 5.82 0.28 13.7 [1]

WAGE ST Micro 65 nm 0.56 7205 0.31 0.04 6.1

The WAGE Spartan-6 results are compared to AES-GCM reported in [12]. This preliminary results
show that WAGE requires only 40% of the area used by AES-GCM, and reaches approximately 85% of
AES-GCM clock speed. The higher speed and block-size of AES-GCM result in a higher throughput
(TP) and throughput per area metrics (TPA). We added the throughput per area squared metric
(TPA2). Then we synthesized the GMU’s AES-GCM code [1] for ST Micro 65 nm library; the logic
synthesis results are shown in the lower half of Table 2. WAGE implementation requires only 35% of
the area used by AES-GCM, and has a slightly higher frequency. The AES-GCM throughput and the
derived metrics are still higher, but in comparison, WAGE is closer to AES-GCM for ST Micro 65 nm
than for the Spartan-6 FPGA.

5 Proposed Tweaks

The initialization (resp. finalization) phase of WAGE comprises three (resp. two) calls for the WAGE
permutation. Specifically, under the current recommended parameters, the initialization (resp. final-
ization) runs 333 (resp. 222) rounds of the underlying permutation. We propose to change the number
of rounds of the WAGE permutation in the initialization, associated data processing and finalization
phases from 111 to 74, if WAGE is selected as a finalist. Our choice limits the number of permutation
calls in the initialization (resp. finalization) runs 222 (resp. 148) rounds, which offers sufficient security
margin. Additionally, the total number of rounds is reduced by at least 185 which when processing
short messages gives the throughput a good boost, e.g., when processing a 128-bit message, and 128-
bit AD, throughput is improved by a factor 1.3. Note that this tweak does not require any change
in hardware area (except an additional comparator and multiplexer on the round counter), software
code size or RAM. Furthermore, based on our analysis it does not pose any threats to the security of
WAGE. We now briefly explain our initial security analysis and full details will be available soon.

Permutation behavior. Note that an adversary can only obtain plaintext/ciphertexts and tag as
outputs. For the plaintext/ciphertext phase, we are using the full 111 rounds of WAGE permutation,
so its behavior is close to that of a random permutation. For the tag generation phase, since the keys
are absorbed in state in the finalization phase, the WAGE permutation is in fact called for 74 × 2 = 148
rounds before outputting the tag.

4

Security against differential/linear attacks. For 74 rounds of WAGE permutation, the minimum
number of active sboxes is 59 (Case I: no constraints on input and output differences) and 72 (Case
II: input and output differences are restricted to rate positions only). The corresponding maximum
expected differential characteristic probability (resp. maximum expected linear characteristic squared
correlation) in log2(·) scale are -236 (-299.7) and -288 (-365.7) for Case I and Case II, respectively. See
[4, Table 4, 5] for more details.

In a single-key setting, an adversary can only inject the differences in nonce (which will pass through
74 × 3 rounds), associated data (a 64-bit block is processed with 74 rounds) and plaintext/ciphertext
(a 64-bit block is processed with 111 rounds). In all the cases, the differential probabilities/squared
correlation are way higher than the available 64-bit degrees of freedom and the prescribed data limit
of 264 bits.

References

[1] George mason university: Source code for aes gcm v1.0 (jun 2016). https://cryptography.gmu.edu/
athena/index.php?id=CAESAR_source_codes.

[2] Mark D. Aagaard, Riham AlTawy, Guang Gong, Kalikinkar Mandal, Raghvendra Rohit, and Nusa
Zidaric. Wage: An authenticated cipher, 2019. https://csrc.nist.gov/CSRC/media/Projects/
lightweight-cryptography/documents/round-2/spec-doc-rnd2/wage-spec-round2.pdf.

[3] Mark D. Aagaard, Marat Sattarov, and Nuša Zidarič. Hardware design and analysis of the ACE and
WAGE ciphers. NIST LWC Workshop 2019. Also available at https://arxiv.org/abs/1909.12338.

[4] Riham AlTawy, Guang Gong, Kalikinkar Mandal, and Raghvendra Rohit. Wage: An authenticated en-
cryption with a twist. IACR Transactions on Symmetric Cryptology, 2020(S1):132–159, Jun. 2020.

[5] Lawrence Bassham, Cagdas Calik, Donghoon Chang, Jinkeon Kang, Kerry McKay, and Meltem Son-
mez Turan. Lightweight cryptography: Round 2 candidates, 2019. https://csrc.nist.gov/Projects/
lightweight-cryptography/round-2-candidates.

[6] Davide Bellizia, Olivier Bronchain, Gaëtan Cassiers, Vincent Grosso, Chun Guo, Charles Momin, Olivier
Pereira, Thomas Peters, and François-Xavier Standaert. Mode-level vs. implementation-level physical
security in symmetric cryptography a practical guide through the leakage-resistance jungle. In Crypto,
2020.

[7] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge-based pseudo-random
number generators. In Stefan Mangard and François-Xavier Standaert, editors, Cryptographic Hardware
and Embedded Systems, CHES 2010, pages 33–47, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[8] Yunsi Fei, Guang Gong, Cheng Gongye, Kalikinkar Mandal, Raghvendra Rohit, Tianhong Xu, Yunjie Yi,
and Nusa Zidaric. Correlation power analysis and higher-order masking implementation of wage. pages
1–25, 2020.

[9] IEEE 802.11 Working Group et al. 802.11ax - ieee draft standard for information technology – telecom-
munications and information exchange between systems local and metropolitan area networks. IEEE Std,
2019.

[10] Ekawat Homsirikamol William Diehl Jens-Peter Kaps Michael Tempelmeier, Farnoud Farahmand and Kris
Gaj. Development package for hardware implementations compliant with the hardware api for lightweight
cryptography, v1.0.3;. https://cryptography.gmu.edu/athena/index.php?id=LWC.

[11] Ekawat Homsirikamol William Diehl Jens-Peter Kaps Michael Tempelmeier, Farnoud Farahmand and Kris
Gaj. Implementer’s guide to hardware implementations compliant with the hardware api for lightweight
cryptography, v1.0.1 (nov 2019). https://cryptography.gmu.edu/athena/LWC/LWC_HW_Implementers_
Guide.pdf.

[12] Behnaz Rezvani, Flora Coleman, Sachin Sachin, and William Diehl. Hardware implementations of nist
lightweight cryptographic candidates: A first look. Cryptology ePrint Archive, Report 2019/824, 2019.
https://eprint.iacr.org/2019/824.

[13] Rhys Weatherley. Lightweight cryptography primitives, 2020. https://rweather.github.io/
lightweight-crypto/performance_avr.html.

[14] Yunjie Yi, Guang Gong, and Kalikinkar Mandal. Implementation of lightweight ciphers and their integra-
tion into entity authentication with ieee 802.11 physical layer transmission, 2020. In submission at IEEE
Internet of Things Journal.

[15] K. Hartke C. Bormann Z. Shelby, K. Hartke. The constrained application protocol (coap). RFC 7252,
2014. https://tools.ietf.org/pdf/rfc7252.pdf.

5

https: //cryptography.gmu.edu/athena/index.php?id=CAESAR_source_codes
https: //cryptography.gmu.edu/athena/index.php?id=CAESAR_source_codes
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/wage-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/wage-spec-round2.pdf
https://arxiv.org/abs/1909.12338
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
https://cryptography.gmu.edu/athena/index.php?id=LWC
https://cryptography.gmu. edu/athena/LWC/LWC_HW_Implementers_Guide.pdf
https://cryptography.gmu. edu/athena/LWC/LWC_HW_Implementers_Guide.pdf
https://eprint.iacr.org/2019/824
https://rweather.github.io/lightweight-crypto/performance_avr.html
https://rweather.github.io/lightweight-crypto/performance_avr.html
https://tools.ietf.org/pdf/rfc7252.pdf

	Updates on WAGE
	Mark Aagaard, Riham AlTawy, Guang Gong, Kalikinkar Mandal, Raghvendra Rohit, and Nusa Zidaric

