
NIST-PEC comments on the ZkpComRef 0.2

Luís T. A. N. Brandão, René Peralta, Angela Robinson

National Institute of Standards and Technology∗

April 17, 2020, Gaithersburg USA

The Privacy Enhancing Cryptography (PEC) project at the National Institute of Standards and
Technology (NIST) encourages the development of reference material about zero-knowledge proofs,
such as that being developed in the scope of the ZKProof initiative.

This document provides comments on the ZKProof Community Reference (ZkpComRef), ,
publicly available on GitHub since December 31, 2019. This is in follow-up to:

(i) our (April 2019) on the initial ZKProof documentation; and
(ii) our (Sep/Oct 2019) to advance the ZkpComRef from to version 0.2.

Index

1 Generic comment 2

2 Development context 3

3 New and revised comments 4

3.1 On chapter 1 (Security) 4

F1.1. Clearer “Introduction” (Sec. 1.1) 4

F1.2. Terminology example (Sec. 1.2) . 4

F1.3. Statement representations (Sec. 1.3) 4

F1.4. Definition of Proof of knowledge 5

F1.5. Concurrency [old C8] 5

3.2 On chapter 2 (Paradigms) 5

F2.1. Clarify how a PCP works 5

F2.2. Explain the several paradigms . 5

3.3 On chapter 3 (Implementation) . . 5

F3.1. Backend choice NIZK-R1CS [old C17] 5

F3.2. Backends and frontends 6

F3.3. APIs and file formats 6

F3.4. Side-channels [old C20] 6

F3.5. Validation [old C21] 6

3.4 On chapter 4 (Applications) 6

F4.1. References on existing applications 6

F4.2. Illustrative diagram per application 6

F4.3. Shorter structured descriptions . 6

F4.4. More use-cases 6

3.5 On transversal editorial aspects . . 7

F5.1. Recommendations [based on old C2] 7

F5.2. Glossary [based on old C4] 7

F5.3. Examples [old C6] 7

F5.4. References [based on old C16] 7

∗ Opinions expressed in this paper are from the authors and are not to be construed as official or as views of the U.S. Department
of Commerce. Certain commercial entities, equipment, or materials may be identified in this document in order to describe an
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by
NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

https://csrc.nist.gov/projects/pec
https://www.nist.gov
https://www.nist.gov
https://www.zkproof.org

ZKProof Community Reference
Version 0.2

December 31, 2019

This document is an ongoing work.

Feedback and contributions are encouraged.

Find the latest version at https://zkproof.org.

Send your comments to editors@zkproof.org.

Attribution 4.0 International (CC BY 4.0)

https://zkproof.org

mailto:editors@zkproof.org

https://creativecommons.org/licenses/by/4.0/

Abstract

Zero-knowledge proofs enable proving mathematical statements while maintaining the confiden-
tiality of supporting data. This can serve as a privacy-enhancing cryptographic tool in a wide
range of applications, but its usability is dependent on secure, practical and interoperable deploy-
ments. This ZKProof Community Reference — an output of the ZKProof standardization effort
— intends to serve as a reference for the development of zero-knowledge-proof technology. The
document arises from contributions by the community and for the community. It covers theoretical
aspects of definition and theory, as well as practical aspects of implementation and applications.

Keywords: cryptography; interoperability; privacy, security; standards; zero-knowledge proofs.

About this version. This is the version 0.2 of the ZKProof Community Reference. It results
from the help of many contributors, as described in the Acknowledgments, in the Version history,
and in the documentation of previous ZKProof workshops. At a 0.x version, this document should
be considered as being in an incomplete state, serving as a basis for further development. Reaching
a future stable version requires additional revision and substantial contributions.

Citing this version: ZKProof. ZKProof Community Reference. Version 0.2. Ed. by D. Benarroch,
L. T. A. N. Brandão, E. Tromer. Pub. by zkproof.org. Dec. 2019. Updated versions at https://zkproof.org

Bibtex code

@report{2019:zkproof:community-reference-0.2,author = {ZKProof},title = {ZKProof Community Reference},subtitle = {Version 0.2},year = {2019},month = {December},publisher = {zkproof.org},editor = {Benarroch, Daniel and Brandão, Luís T. A. N. and Tromer, Eran},license = {Creative Commons Attribution 4.0 International},key = {ZKP},addendum = {Updated versions at https://zkproof.org}}

About this community reference

This “ZKProof Community Reference” arises within the scope of the ZKProof open initiative, which
seeks to mainstream zero-knowledge proof (ZKP) cryptography. This is an inclusive community-
driven process that focuses on interoperability and security, aiming to advance trusted specifications
for the implementation of ZKP schemes and protocols.

ZKProof holds annual workshops, attended by world-renowned cryptographers, practitioners and
industry leaders. These events are a forum for discussing new proposals, reviewing cutting edge
projects, and advancing reference material. That is the genesis of this document, which intends to
be a community-built reference for understanding and aiding the development of ZKP systems.

The following items provide guidance for the expected development process of this document, which
is open to contributions from and for the community.

Purpose. The purpose of developing the ZKProof Community Reference document is to provide,
within the principles laid out by the ZKProof charter, a reference for the development of zero-
knowledge-proof technology that is secure, practical and interoperable.

Aims. The aim of the document is to consolidate reference material developed and/or discussed in
collaborative processes during the ZKProof workshops. The document intends to be accessible to a
large audience, including the general public, the media, the industry, developers and cryptographers.

Scope. The document intends to cover material relevant for its purpose — the development of
secure, practical and interoperable technology. The document can also elaborate on introductory
concepts or works, to enable an easier understanding of more advanced techniques. When a focus
is chosen from several alternative options, the document should include a rationale describing
comparative advantages, disadvantages and applicability. However, the document does not intend
to be a thorough survey about ZKPs, and does not need to cover every conceivable scenario.

Format. To achieve its accessibility goal, and considering its wide scope, the document favors the
inclusion of: a well defined structure (e.g., chapters, sections, subsections); introductory descrip-
tions (e.g., an executive summary and one introduction per chapter); illustrative examples covering
the main concepts; enumerated recommendations and requirements; summarizing tables; glossary
of technical terms; appropriate references for presented claims and results.

Editorial methodology. The development process of this community reference is proposed to
happen in cycles of four phases:

(i) open discussion during ZKProof workshops, with corresponding annotations to serve as
reference for subsequent development;

(ii) content development, by voluntary contributors, according to a set of contribution pro-
posals and during a defined period;

(iii) integration of contributions into the document, by the editors;
(iv) public feedback about the state of the document, to be used as a basis of development in

the next cycle.

The team of editors coordinates the process, promoting transparency by means of public calls for
contributions and feedback, using editorial discretion towards the improvement of the document
quality, and enabling an easy way to identify the changes and their rationale.

i

ZKProof charter

ZKProof Charter (Boston, May 10th and 11th 2018).
The goal of the ZKProof Standardization effort is to advance the use of Zero Knowledge Proof technology
by bringing together experts from industry and academia. To further the goals of the effort, we set the
following guiding principles:

• The initiative is aimed at producing documents that are open for all and free to use.
◦ As an open initiative, all content issued from the ZKProof Standards Workshop is under

Creative Commons Attribution 4.0 International license.
• We seek to represent all aspects of the technology, research and community in an inclusive manner.
• Our goal is to reach consensus where possible, and to properly represent conflicting views where

consensus was not reached.
• As an open initiative, we wish to communicate our results to the industry, the media and to the

general public, with a goal of making all voices in the event heard.
◦ Participants in the event might be photographed or filmed.
◦ We encourage you to tweet, blog and share with the hashtag #ZKProof. Our official twitter

handle is @ZKProof.
For further information, please refer to contact@zkproof.org

Editors note: The requirement of a Creative Commons license was initially within the scope of the 1st ZKProof workshop.
The section below (about intellectual property expectations) widens the scope to cover this Community reference and beyond.

Intellectual property — expectations on disclosure and licensing
ZKProof is an open initiative that seeks to promote the secure and interoperable use of zero-
knowledge proofs. To foster open development and wide adoption, it is valuable to promote tech-
nologies with open-source implementations, unencumbered by royalty-bearing patents. However,
some useful technologies may fall within the scope of patent claims. Since ZKProof seeks to
represent the technology, research and community in an inclusive manner, it is valuable to set
expectations about the disclosure of intellectual property and the handling of patent claims.

The members of the ZKProof community are hereby strongly encouraged to provide information
on known patent claims (their own and those from others) potentially applicable to the guidance,
requirements, recommendations, proposals and examples provided in ZKProof documentation, in-
cluding by disclosing known pending patent applications or any relevant unexpired patent. Partic-
ularly, such disclosure is promptly required from the patent holders, or those acting on their behalf,
as a condition for providing content contributions to the “Community Reference” and to “Propos-
als” submitted to ZKProof for consideration by the community. The ZKProof documentation will
be updated based on received disclosures about pertinent patent claims.

ZKProof aims to produce documents that are open for all and free to use. As such, the con-
tent produced for publication within the context of the ZKProof Standardization effort should be
made available under a Creative Commons Attribution 4.0 International license. Furthermore, any
technology that is promoted in said ZKProof documentation and that falls within patent claims
should be made available under licensing terms that are reasonable, and demonstrably free of unfair
discrimination, preferably allowing free open-source implementations.

Please email relevant information to editors@zkproof.org.

ii

mailto:contact@zkproof.org

mailto:editors@zkproof.org

Contents

Table of Contents

Abstract . B
About this version . B
About this community reference . i
ZKProof charter . ii
Intellectual property — expectations on disclosure and licensing ii
Contents . iii
Executive summary . vii

1 Security 1
1.1 Introduction . 1

1.1.1 What is a zero-knowledge proof? . 1
1.1.2 Requirements for a ZK proof system specification 2

1.2 Terminology . 2
1.3 Specifying Statements for ZK . 3

1.3.1 Circuit representation . 4
1.3.2 R1CS representation . 4
1.3.3 Types of relations . 5

1.4 ZKPs of knowledge vs. ZKPs of membership . 6
1.4.1 Example: ZKP of knowledge of a discrete logarithm (discrete-log) 6
1.4.2 Example: ZKP of knowledge of a hash pre-image 7
1.4.3 Example: ZKP of membership for graph non-isomorphism 7

1.5 Syntax . 8
1.5.1 Prove . 8
1.5.2 Verify . 8
1.5.3 Setup . 9

1.6 Definition and Properties . 10
1.6.1 Completeness . 10
1.6.2 Soundness . 11
1.6.3 Proof of knowledge . 11
1.6.4 Zero knowledge . 12
1.6.5 Advanced security properties . 13
1.6.6 Transferability vs. deniability . 13

iii

1.6.7 Examples of setup and trust . 14
1.7 Assumptions . 15
1.8 Efficiency . 16

1.8.1 Characterization of security properties . 17
1.8.2 Computational security levels for benchmarking 17
1.8.3 Statistical security levels for benchmarking 18

2 Construction paradigms 19
2.1 Taxonomy of Constructions . 19

2.1.1 Proof Systems . 20
2.1.2 Compilers: Cryptographic . 21
2.1.3 Compilers: Information-theoretic . 22

2.2 Interactivity . 22
2.2.1 Advantages of Interactive Proof and Argument Systems 23
2.2.2 Disadvantages of Interactive Proof and Argument Systems 24
2.2.3 Nuances on transferability vs. interactivity 25

(Non)-Transferability/Deniability of Zero-Knowledge Proofs 26
2.3 Several construction paradigms . 27

3 Implementation 29
3.1 Overview . 29

3.1.1 What this document is NOT about: . 29
3.2 Backends: Cryptographic System Implementations 29
3.3 Frontends: Constraint-System Construction . 30
3.4 APIs and File Formats . 31

3.4.1 Generic API . 31
3.4.2 R1CS File Format . 33

3.5 Benchmarks . 35
3.5.1 What metrics and components to measure . 35
3.5.2 How to run the benchmarks . 36
3.5.3 What benchmarks to run . 37

3.6 Correctness and Trust . 38
3.6.1 Considerations . 38
3.6.2 SRS Generation . 41
3.6.3 Contingency plans . 42

3.7 Extended Constraint-System Interoperability . 43
3.7.1 Statement and witness formats . 43
3.7.2 Statement semantics, variable representation & mapping 43
3.7.3 Witness reduction . 44

iv

3.7.4 Gadgets interoperability . 44
3.7.5 Procedural interoperability . 44
3.7.6 Proof interoperability . 45
3.7.7 Common reference strings . 45

3.8 Future goals . 46
3.8.1 Interoperability . 46
3.8.2 Frontends and DSLs . 46
3.8.3 Verification of implementations . 46

4 Applications 47
4.1 Introduction . 47
4.2 Types of verifiability . 48
4.3 Previous works . 49
4.4 Gadgets within predicates . 49
4.5 Identity framework . 53

4.5.1 Overview . 53
4.5.2 Motivation for Identity and Zero Knowledge 53
4.5.3 Terminology / Definitions . 53
4.5.4 The Protocol Description . 54
4.5.5 A use-case example of credential aggregation 59

4.6 Asset Transfer . 62
4.6.1 Privacy-preserving asset transfers and balance updates 62
4.6.2 Zero-Knowledge Proofs in the asset-tracking model 63
4.6.3 Zero-Knowledge proofs in the balance model 65

4.7 Regulation Compliance . 68
4.7.1 Overview . 68
4.7.2 An example in depth: Proof of compliance for aircraft 69
4.7.3 Protocol high level . 70

4.8 Conclusions . 71

Acknowledgments 73

References 75

A Acronyms and glossary 81
A.1 Acronyms . 81
A.2 Glossary . 81

B Version history 83

v

List of Figures

Figure 3.1: Abstract parties and objects in a NIZK . 32

List of Tables

Table 1.1: Example scenarios for zero-knowledge proofs 3

Table 2.1: Different types of PCPs . 20

Table 3.1: APIs and interfaces by types of universality and preprocessing 32

Table 4.1: List of gadgets . 50
Table 4.2: Commitment gadget . 50
Table 4.3: Signature gadget . 51
Table 4.4: Encryption gadget . 51
Table 4.5: Distributed-decryption gadget . 51
Table 4.6: Random-function gadget . 51
Table 4.7: Set-membership gadget . 52
Table 4.8: Mix-net gadget . 52
Table 4.9: Generic-computation gadget . 52
Table 4.10: Holder identification . 56
Table 4.11: Issuer identification . 57
Table 4.12: Credential Issuance . 57
Table 4.13: Credential Revocation . 58

vi

Executive summary

Zero-knowledge proofs (ZKPs) are an important privacy-enhancing tool from cryptography. They
allow proving the veracity of a statement, related to confidential data, without revealing any in-
formation beyond the validity of the statement. ZKPs were initially developed by the academic
community in the 1980s, and have seen tremendous improvements since then. They are now of
practical feasibility in multiple domains of interest to the industry, and to a large community of
developers and researchers. ZKPs can have a positive impact in industries, agencies, and for per-
sonal use, by allowing privacy-preserving applications where designated private data can be made
useful to third parties, despite not being disclosed to them.

The development of this reference document aims to serve the broader community, particularly
those interested in understanding ZKP systems, making an impact in their advancement, and
using related products. This is a step towards enabling wider adoption of ZKP technology, which
may precede the establishment of future standards. However, this document is not a substitution
for research papers, technical books, or standards. It is intended to serve as a reference handbook
of introductory concepts, basic techniques, implementation suggestions and application use-cases.

ZKP systems involve at least two parties: a prover and a verifier. The goal of the prover is to
convince the verifier that a statement is true, without revealing any additional information. For
example, suppose the prover holds a birth certificate digitally signed by an authority. In order
to access some service, the prover may have to prove being at least 18 years old, that is, that
there exists a birth certificate, tied to the identify of the prover and digitally signed by a trusted
certification authority, stating a birthdate consistent with the age claim. A ZKP allows this, without
the prover having to reveal the birthdate.

This document describes important aspects of the current state of the art in ZKP security, im-
plementation, and applications. There are several use-cases and applications where ZKPs can add
value. To better assess this it is useful to benchmark implementations under several metrics, evalu-
ate tradeoffs between security and efficiency, and develop an interoperability basis. The security of
a proof system is paramount for the system users, but efficiency is also essential for user experience.

The “Security” chapter introduces the theory and terminology of ZKP systems. A ZKP system can
be described with three components: setup, prove, verify. The setup, which can be implemented
with various techniques, determines the initial state of the prover and the verifier, including private
and common elements. The prove and verify components are the algorithms followed by the prover
and verifier, respectively, possibly in an interactive manner. These algorithms are defined so as to
ensure three main security requirements: completeness, soundness, and zero-knowledge.

Completeness requires that if both prove and verify are correct, and if the statement is true, then
at the end of the interaction the prover is convinced of this fact. Soundness requires that not even
a malicious prover can convince the verifier of a false statement. Zero knowledge requires that even
a malicious verifier cannot extract any information beyond the truthfulness of the given statement.

The “Implementation” chapter focuses on devising a framework for the implementation of ZKPs,
which is important for interoperability. One important aspect to consider upfront is the represen-
tation of statements. In a ZKP protocol, the statement needs to be converted into a mathematical
object. For example, in the case of proving that an age is at least 18, the statement is equivalent to
proving that the private birthdate Y1-M1-D1 (year-month-day) satisfies a relation with the present

vii

date Y2-M2-D2, namely that their distance is greater than or equal to 18 years. This simple example
can be represented as a disjunction of conditions: Y2 >Y1+18, or Y2=Y1+18 ∧ M2>M1, or Y2=Y1+18 ∧
M2=M1 ∧ D2≥D1. An actual conversion suitable for ZKPs, namely for more complex statements, can
pose an implementation challenge. There are nonetheless various techniques that enable converting
a statement into a mathematical object, such as a circuit. This document gives special attention to
representations based on a Rank-1 constraint system (R1CS) and quadratic arithmetic programs
(QAP), which are adopted by several ZKP solutions in use today. Also, the document gives special
emphasis to implementations of non-interactive proof systems.

The privacy enhancement offered by ZKPs can be applied to a wide range of scenarios. The “Appli-
cations” chapter presents three use-cases that can benefit from ZKP systems: identity framework;
asset transfer; regulation compliance. In a privacy-preserving identity framework, one can for ex-
ample prove useful personal attributes, such as age and state of residency, without revealing more
detailed personal data such as birthdate and address. In an asset-transfer setting, financial institu-
tions that facilitate transactions usually require knowing the identities of the sender and receiver,
and the asset type and amount. ZKP systems enable a privacy-preserving variant where the trans-
action is performed between anonymous parties, while at the same time ensuring they and their
assets satisfy regulatory requirements. In a regulation compliance setting, ZKPs enables an auditor
to obtain proof that a process satisfies a number of requirements, without having to learn details
about how they were achieved. These use cases, as well as a wide range of many other conceivable
privacy-preserving applications, can be enabled by a common set of tools, or gadgets, for example
including commitments, signatures, encryption and circuits.

The interplay between security concepts and implementation guidelines must be balanced in the
development of secure, practical, and interoperable ZKP applications. Solutions provided by ZKP
technology must be ensured by careful security practices and realistic assumptions. This document
aims to summarize security properties and implementation techniques that help achieve these goals.

viii

Chapter 1. Security

1.1 Introduction

1.1.1 What is a zero-knowledge proof?

A zero-knowledge proof (ZKP) makes it possible to prove a statement is true while preserving
confidentiality of secret information [GMR89]. This makes sense when the veracity of the statement
is not obvious on its own, but the prover knows relevant secret information (or has a skill, like super-
computation ability) that enables producing a proof. The notion of secrecy is used here in the sense
of prohibited leakage, but a ZKP makes sense even if the ‘secret’ (or any portion of it) is known
apriori by the verifier(s).

There are numerous uses of ZKPs, useful for proving claims about confidential data, such as:

1. adulthood, without revealing the birth date;

2. solvency (not being bankrupt), without showing the portfolio composition;

3. ownership of an asset, without revealing or linking to past transactions;

4. validity of a chessboard configuration, without revealing the legal sequence of chess moves;

5. correctness (demonstrability) of a theorem, without revealing its mathematical proof.

Some of these claims (commonly known by the prover and verifier, and here described as informal
statements) require a substrate (called instance, also commonly known by the prover and verifier)
to support an association with the confidential information (called witness, known by the prover
and to not be leaked during the proof process). For example, the proof of solvency (the statement)
may rely on encrypted and certified bank records (the instance), and with the verifier knowing the
corresponding decryption key and plaintext (the witness) as secrets that cannot be leaked. Table 1.1
in Section 1.2 differentiates these elements across several examples. In concrete instantiations, the
exemplified ZKPs are specified by means of a more formal statement of knowledge of a witness.

A zero-knowledge proof system is a specification of how a prover and verifier can interact for the
prover to convince the verifier that the statement is true. The proof system must be complete,
sound and zero-knowledge.

• Complete: If the statement is true and both prover and verifier follow the protocol; the
verifier will accept.

• Sound: If the statement is false, and the verifier follows the protocol; the verifier will not be
convinced.

• Zero-knowledge: If the statement is true and the prover follows the protocol; the verifier
will not learn any confidential information from the interaction with the prover but the fact
the statement is true.

1

Section 1.2 Terminology

Proofs vs. arguments. The theory of ZKPs distinguishes between proofs and arguments, as
related to the computational power of the prover and verifier. Proofs need to be sound even against
computationally unbounded provers, whereas arguments only need to preserve soundness against
computationally bounded provers (often defined as probabilistic polynomial time algorithms). For
simplicity, “proof” is used hereafter to designate both proofs and arguments, although there are
theoretical circumstances where the distinction can be relevant.

1.1.2 Requirements for a zero-knowledge proof system specification

A full proof system specification MUST include:

1. Precise specification of the type of statements the proof system is designed to handle

2. Construction including algorithms used by the prover and verifier

3. If applicable, description of setup the prover and verifier use

4. Precise definitions of security the proof system is intended to provide

5. A security analysis that proves the zero-knowledge proof system satisfies the security defini-
tions and a full list of any unproven assumptions that underpin security

Efficiency claims about a zero-knowledge proof system should include all relevant performance
parameters for the intended usage. Efficiency claims must be reported fairly and accurately, and if
a comparison is made to other zero-knowledge proof systems a best effort must be made to compare
apples to apples.

The remainder of the document will outline common approaches to specifying a zero-knowledge
proof system, outline some construction paradigms, and give guidelines for how to present efficiency
claims.

1.2 Terminology

Instance: Input commonly known to both prover (P) and verifier (V), and used to support the
statement of what needs to be proven. This common input may either be local to the prover–verifier
interaction, or public in the sense of being known by external parties. Notation: x. (Some scientific
articles use “instance” and “statement” interchangeably, but we distinguish between the two.)

Witness: Private input to the prover. Others may or may not know something about the witness.
Notation: w.

Relation: Specification of relationship between instances and witness. A relation can be viewed
as a set of permissible pairs (instance, witness). Notation: R.

Language: Set of instances that appear as a permissible pair in R. Notation: L.

Statement: Defined by instance and relation. Claims the instance has a witness in the relation
(which is either true or false). Notation: x ∈ L.

Security parameter: Positive integer indicating the desired security level (e.g. 128 or 256)
where higher security parameter means greater security. In most constructions, distinction is made

2

Security

between computational security parameter and statistical security parameter. Notation: k (com-
putational) or s (statistical).

Setup: The inputs given to the prover and to the verifier, apart from the instance x and the wit-
ness w. The setup of each party can be decomposed into a private component (“PrivateSetupP ” or
“PrivateSetupV ”, respectively not known to the other party) and a common component “Common-
Setup = CRS” (known by both parties), where CRS denotes a “common reference string” (required
by some zero-knowledge proof systems). Notation: setupP = (PrivateSetupP , CRS) and setupV =
(PrivateSetupV , CRS).”

For simplicity, some parameters of the setup are left implicit (possibly inside the CRS), such as the
security parameters, and auxiliary elements defining the language and relation. See more details
in Section 1.5.3. While the witness (w) and the instance (x) could be assumed as elements of the
setup of a concrete ZKP protocol execution, they are often distinguished in their own category. In
practice, the term “Setup” is often used with respect to the setup of a proof system that can then
be instantiated for multiple executions with varying instances (x) and witnesses (w).

Table 1.1 exemplifies at a high level a differentiation between the statement, the instance and the
witness elements for the initial examples mentioned in Section 1.1.1.

Table 1.1: Example scenarios for zero-knowledge proofs

#
Scenarios

Elements Statement
being proven

Instance
used as substrate

Witness
treated as confidential

1 Legal age for
purchase I am an adult Tamper-resistant

identification chip

Birthdate and personal
data (signed by a cer-
tification authority)

2 Hedge fund
solvency We are not bankrupt Encrypted & certified

bank records
Portfolio data and
decryption key

3 Asset
transfer I own this <asset> A blockchain or

other commitments

Sequence of transactions
(and secret keys that
establish ownership)

4 Chessboard
configuration

This <configuration>
can be reached (The rules of Chess) A sequence of valid

chess moves

5 Theorem
validity

This <expression>
is a theorem

(A set of axioms,
and the logical
rules of inference)

A sequence of logical
implications

1.3 Specifying Statements for ZK

This document considers types of statements defined by a relation R between instances x and
witnesses w. The relation R specifies which pairs (x,w) are considered related to each other, and
which are not related to each other. The relation defines a matching language L consisting of
instances x that have a witness w in R.

A statement is either a membership claim of the form “x ∈ L”, or a knowledge claim of the form “In
the scope of relation R, I know a witness for instance x.” For some cases, the knowledge and member-
ship types of statement can be informally considered interchangeable, but formally there are techni-
cal reasons to distinguish between the two notions. In particular, there are scenarios where a state-
ment of knowledge cannot be converted into a statement of membership, and vice-versa (as exem-

3

Section 1.3 Specifying Statements for ZK

plified in Section 1.4). The examples in this document are often based on statements of knowledge.

The relation R can for instance be specified as a program (e.g. in C or Java), which given inputs
x and w decides to accept, meaning (x,w) ∈ R, or reject, meaning w is not a witness to x ∈ L.
Examples of such specifications of the relation are detailed in the Applications track. In the
academic literature, relations are often specified either as random access memory (RAM) programs
or through Boolean and arithmetic circuits, described below.

1.3.1 Circuit representation

A circuit is a directed acyclic graph (DAG) comprised of nodes and labels for nodes, which satisfy
the following constraints:

• Nodes with in-degree 0 are referred to as the input nodes and are labeled with some constant
(e.g., 0, 1, . . .) or with input variable names (e.g., v1, v2, . . .)

• There is a single node with out-degree 0 that is referred to as the output node.

• Internal nodes are referred to as gate nodes and describe a computation performed at the
node.

Parameters. Depending on the application, various parameters may be important, for instance
the number of gates in the circuit, the number of instance variables nx, the number of witness
variables nw, the circuit depth, or the circuit width.

Boolean Circuit satisfiability. The relation R has instances of the form x = (C, v1, . . . , vnx)
and witnesses w = (w1, ..., wnw). For (x,w) to be in the relation, C must be a circuit with fan-in 2
gate nodes that are labeled with Boolean operations, e.g., XOR or AND, v1, ..., vnx must specify truth
values for some of the input nodes, and w1, ..., wnw must specify truth values for the remaining
input variables, such that when evaluating the circuit the output node becomes 1 (true).

Arithmetic Circuit satisfiability. The relation has instances of the form x = (F,C, v1, ..., vnx)
and witnesses w = (w1, ..., wnw). For (x,w) to be in the relation, F must be a finite field (e.g.,
integers modulo a prime p), C must be a circuit with gate nodes that are labeled with field oper-
ations, i.e., addition or multiplication, v1, ..., vnx must specify field elements for some of the input
nodes, and w1, ..., wnw must specify field elements for the remaining input variables, such that when
evaluating the circuit the output node becomes 1.

1.3.2 R1CS representation

A rank-1 constraint system (R1CS) is a system of equations represented by a list of triplets (⃗a, b⃗, c⃗)
of vectors of elements of some field. Each triplet defines a “constraint” as an equation of the form
(A) · (B) − (C) = 0. Each of the three elements — (A), (B), (C) — in such equation is a linear
combination (e.g., (C) = c1 · s1 + c2 · s2 + ...) of variables si of the so called solution s⃗ vector.

4

Security

R1CS satisfiability. For all triplets (⃗a, b⃗, c⃗) of vectors in the R1CS, the solution vector s⃗ must
satisfy ⟨⃗a, s⃗⟩ ·

⟨⃗
b, s⃗

⟩
− ⟨c⃗, s⃗⟩ = 0, where ⟨·, ·⟩ denotes the dot product of two vectors. The first

element of s⃗ is fixed to the constant 1 (instead of a variable), to enable encoding constants in the
constraints. The remaining elements represent several kinds of variables:

• Witness variables: known only to the prover; represent external inputs to the constraint
system — the witness of the ZK proof system.

• Internal variables: known only to the prover; internal to the constraint system (represent
the inputs and outputs of multiplication gates);

• Instance variables: known by both prover and verifier.

A R1CS does not produce an output from an input (as for example a circuit does), but can be
used to verify the correctness of a computation (e.g., performed by circuits with logic and/or
arithmetic gates). The R1CS checks that the output variables (commonly known by both prover
and verifier) are consistent with all other variables (possibly known only by the prover) in the
solution vector. R1CS is only an intermediate representation, since the actual use in a ZKP system
requires subsequent formulations (e.g., into a QAP) to enable verification without revealing the
secret variables.

A R1CS can be used to represent a Boolean circuit satisfiability problem and also to verify compu-
tations in arithmetic circuits. It is sufficient to observe that arbitrary circuits can be represented
using multiplication and linear combination of polynomials, and these in turn correspond to R1CS
constraints. For example:

• Boolean circuits operations:

– NOT operation: If x is a Boolean variable, then 1−x is the negation of x. Put differently,
if x is 0 or 1, then 1− x is respectively 1 or 1.

– AND operation: can be implemented as (A)× (B)

– XOR operation (c = a XOR b): can be implemented as (2 · a) × (b) = (a + b − c), or
equivalently as c = a+ b− (a AND b) ∗ 2

• Arithmetic circuit operations:

– Multiplication gates are directly represented as equations of the form a ∗ b = c.
– Linear constraints are used to keep track of inputs and outputs across these gates, and

to represent addition and multiplication-by-constants.

1.3.3 Types of relations

Special purpose relations: Circuit satisfiability is a complete problem within the non-deter-
ministic polynomial (NP) class, i.e., it is NP-complete, but a relation does not have to be that.
Examples of statements that appear in cryptographic usage include that a committed value falls in
a certain range [A;B] or belongs to a set S, that a ciphertext has plaintext 0 or that two ciphertexts
encrypt the same value, that the prover has a secret key associated with a set of public verification
keys for a signature scheme, etc.

5

Section 1.4 ZKPs of knowledge vs. ZKPs of membership

Setup-dependent relations: Sometimes it is convenient to let the relation R take an additional
input setupR, i.e., let the relation contain triples (setupR, x, w). The input setupR can be used
to specify persistent information. For example, for arithmetic circuit satisfiability, if the same
finite field F and circuit C are used many times, then setupR = (F, C) and x = (v1, ..., vnx). The
input setupR can also be used to capture trusted input the relation does not check, e.g., a trusted
Rivest–Shamir–Adleman (RSA) modulus.

1.4 ZKPs of knowledge vs. ZKPs of membership

The theory of ZKPs distinguishes between two types of proofs, based on the type of statement (and
also on the type of security properties — see Sections 1.6.2 and 1.6.3):

• A ZKP of knowledge (ZKPoK) proves the veracity of a statement of knowledge, i.e., it proves
knowledge of private data that supports the statement, without revealing the former.

• A ZKP of membership proves the veracity of a statement of membership, i.e., that the instance
belongs to the language, as related to the statement, but without revealing information that
could not have been produced by a computationally bounded verifier.

The statements exemplified in Table 1.1 were expressed as facts, but each of them corresponds to
a knowledge of a secret witness that supports the statement in the context of the instance. For
example, the statement “I am an adult” in scenario 1 can be interpreted as an abbreviation of “I
know a birthdate that is consistent with adulthood today, and I also know a certificate (signed by
some trusted certification authority) associating the birthdate with my identity.”

The first three use-cases (adulthood, solvency and asset ownership) in Table 1.1 have instances
with some kind of protection, such as physical access control, encryption, signature and/or com-
mitments. The “chessboard configuration” and the “theorem validity” use-cases are different in
that their instances do not contain any cryptographic support or physical protection. Each of
those two statements can be seen as a claim of membership, in the sense of claiming that the ex-
pression/configuration belongs respectively to the language of valid chessboard configurations (i.e.,
reachable by a sequence of moves), or the language of theorems (i.e., of provable expressions). At
the same time, a further specification of the statement can be expressed as a claim of knowledge
of a sequence of legal moves or a sequence of logical implications.

1.4.1 Example: ZKP of knowledge of a discrete logarithm (discrete-log)

Consider the classical example of proving knowledge of a discrete-log [Sch90]. Let p be a large
prime (e.g., with 4096 bits) of the form p = 2q + 1, where q is also a prime. Let g be a generator
of the group Z∗

p = {1, ..., p − 1} =
{
gi : i = 1, ..., p− 1

}
under multiplication modulo p. Assume

that it is computationally infeasible to compute discrete-logs in this group, and that the primality
of p and q has been verified by both prover and verifier. Let w be a secret element (the witness)
known by the prover, and let x = gw(mod p) be the instance known by both the prover and verifier,
corresponding to the following statement by the prover: “I know the discrete-log (base g) of the
instance (x), modulo p” (in other words: “I know a secret exponent that raises the generator (g) into
the instance (x), modulo p”). Consider now the relation R = {(x,w) : gw = x (mod p)}. In this

6

Security

case, the corresponding language L = {x : ∃w : (x,w) ∈ R} is simply the set Z∗
p = {1, 2, ..., p− 1},

for which membership is self-evident (without any knowledge of w). In that sense, a proof of
membership does not make sense (or can be trivially considered accomplished with even an empty
bit string). Conversely, whether or not the prover knows a witness is a non-trivial matter, since
the current publicly-known state of the art does not provide a way to compute discrete-logs in time
polynomial in the size of the prime modulus (except if with a quantum computer). In summary,
this is a case where a ZKPoK makes sense but a ZKP of membership does not.

1.4.2 Example: ZKP of knowledge of a hash pre-image

Consider a cryptographic hash function H : {0, 1}512 → {0, 1}256, restricted to binary inputs of
length 512. In this definition of H, the set of all 256-bit strings is the co-domain, which might be
a super-set of the image L =

{
H(x) : x ∈ {0, 1}512

}
(a.k.a. range) of H. Let w be a witness (hash

pre-image), known by the prover and unpredictable to the verifier, for some instance x = H(w)
that the prover presents to the verifier. Since a cryptographic hash function is one-way, there is
significance in providing a ZKPoK of a pre-image, which proves knowledge of a witness in the re-
lation R = {(x,w) : H(w) = x}. Such proof also constitutes directly a proof of membership in the
language L, i.e., that the instance x is a member of the image of H. However, interestingly depend-
ing on the known properties of H, this membership predicate might or might not be self-evident
from the instance x.

• If H is known to have as image the set of all bit-strings of length 256 (i.e., if L = {0, 1}256),
then membership is self-evident. In this case a ZKP of membership is superfluous, since it is
trivial to verify the property of a bit-string having 256 bits.

• H may instead have the property that an element x uniformly selected from the co-domain
{0, 1}256 is not in the image of H, with some noticeable probability (e.g., ≈0.368, if H
is modeled as a random function), and with the membership predicate being difficult to
determine. In this setting it can be useful to have the ability to perform a ZKP of membership.

1.4.3 Example: ZKP of membership for graph non-isomorphism

In the theoretical context of provers with super-polynomial computation ability (e.g., unbounded),
one can conceive a proof of membership without the notion of witness. Therefore, in this case the
dual notion of a ZKP of knowledge does not apply. A classical example uses the language of pairs
of non-isomorphic graphs [GMW91], for which the proof is about convincing a verifier that two
graphs are not isomorphic. The classical example uses an interactive proof that does not follow
from a witness, but rather from a super-ability, by the prover, in deciding isomorphism between
graphs. The verifier challenges the prover to detect which of the two graphs is isomorphic to a
random permutation of one of the two original graphs. If the prover decides correctly enough
times, without ever failing, then the verifier becomes convinced of the non-isomorphism.

This document is not focused on settings that require provers with super-polynomial ability (in an
asymptotic setting). However, this notion of ZKP of membership without witness still makes sense
in other conceivable applications, namely within a concrete setting (as opposed to asymptotic).
This may apply in contexts of proofs of work, or when provers are “supercomputers” or quantum

7

Section 1.5 Syntax

computers, possibly interacting with verifiers with significantly less computational resources. An-
other conceivable setting is when a verifier wants to confirm whether the prover is able to solve a
mathematical problem, for which the prover claims to have found a first efficient technique, e.g.,
the ability to decide fast about graph isomorphism.

1.5 Syntax

A proof system (for a relation R defining a language L) is a protocol between a prover and a verifier
sending messages to each other. The prover and verifier are defined by two algorithms, here called
Prove and Verify. The algorithms Prove and Verify may be probabilistic and may keep internal
state between invocations.

1.5.1 Prove(state,m)→ (state, p)

The Prove algorithm in a given state receiving messagem, updates its state and returns a message p.

• The initial state of Prove must include an instance x and a witness w. The initial state may
also include additional setup information setupP , e.g., state = (setupP , x, w).

• If receiving a special initialization message m = start when first invoked it means the prover
is to initiate the protocol.

• If Prove outputs a special error symbol p = error, it must output error on all subsequent
calls as well.

1.5.2 Verify(state, p) → (state,m)

The Verify algorithm in a given state receiving message p, updates its state and returns a messagem.

• The initial state of Verify must include an instance x.

• The initial state of Verify may also include additional setup information setupV , e.g., state =
(setupV , x).

• If receiving a special initialization message p = start, it means the verifier is to initiate the
protocol.

• If Verify outputs a special symbol m = accept, it means the verifier accepts the proof of the
statement x ∈ L. In this case, Verify must return m = accept on all future calls.

• If Verify outputs a special symbol m = reject, it means the verifier rejects the proof of the
statement x ∈ L. In this case, Verify must return m = reject on all future calls.

The setup information setupP and setupV can take many forms. A common example found in the
cryptographic literature is that setupP = setupV = k, where k is a security parameter indicating
the desired security level of the proof system. It is also conceivable that setupP and setupV contain
descriptions of particular choices of primitives to instantiate the proof system with, e.g., to use
the SHA-256 hash function or to use a particular elliptic curve. The setup information may also

8

Security

be generated by a probabilistic process. For example: it may be that setupP and setupV include
a common reference string; or, in the case of designated-verifier proofs, setupP and setupV may
be correlated in a particular way. When we want to specifically refer to this process, we use a
probabilistic setup algorithm Setup.

1.5.3 Setup(parameters) → (setupR, setupP , setupV , auxiliary output)

The setup algorithm may take input parameters, which could for instance be computational or
statistical security parameters indicating the desired security level of the proof system, or size
parameters specifying the size of the statements the proof system should work for, or choices of
cryptographic primitives e.g. the SHA-256 hash function or an elliptic curve.

• The setup algorithm returns an input setupR for the relation the proof system is for. An
important special case is where the setupR is just the empty string, i.e., the relation is
independent of any setup.

• The setup algorithm returns setupP for the prover and setupV for the verifier.

• There may potentially be additional auxiliary outputs.

• If the inputs are malformed or any error occurs, the Setup algorithm may output an error
symbol.

Some examples of possible setups.

• NIZK proof system for 3SAT in the uniform reference string model based on trapdoor per-
mutations

– setupR = n, where n specifies the maximal number of clauses
– setupP = setupV = uniform random string of length N = size(n, k) for some function

size(n, k) of n and security parameter k

• Groth-Sahai proofs for pairing-product equations
– setupR = description of bilinear group defining the language
– setupP = setupV = common reference string including description of the bilinear group

in setupR plus additional group elements

• SNARK for QAP such as e.g. Pinocchio
– setupR = QAP specification including finite field F and polynomials
– setupP = setupV = common reference string including a bilinear group defined over the

same finite field and some group elements
The prover and verifier do not use the same group elements in the common reference
string. For efficiency reasons, one may let setupP be the subset of the group elements the
prover uses, and setupV another (much smaller) subset of group elements the verifier uses.

• Cramer-Shoup hash proof systems
– setupR = specifies finite cyclic group of prime order
– setupP = the cyclic group and some group elements
– setupV = the cyclic group and some discrete logarithms

9

Section 1.6 Definition and Properties

It depends on the concrete setting how Setup runs. In some cases, a trusted third party runs an
algorithm to generate the setup. In other cases, Setup may be a multi-party computation offering
resilience against a subset of corrupt and dishonest parties (and the auxiliary output may represent
side-information the adversarial parties learn from the MPC protocol). Yet, another possibility
is to work in the plain model, where the setup does nothing but copy a security parameter, e.g.,
setupP = setupV = k.

There are variations of proof systems, e.g., multi-prover proof systems and commit-and-prove sys-
tems; this document only covers standard systems.

Common reference string: If the setup information is public and known to everybody, we say
the proof system is in the common reference string model. The setup may for instance specify
setupR = setupP = setupV , which we then refer to as a common reference string CRS.

Non-interactive proof systems: A proof system is non-interactive if the interaction consists of
a single message from the prover to the verifier. After receiving the prover’s message p (called a
proof), the verifier then returns accept or reject.

Public verifiability vs designated verifier: If setupV is public information (e.g. in the CRS
model) known to multiple parties in a non-interactive proof system, then they can all verify a proof
p. In this case, the proof is transferable, the prover only needs to create it once after which it can
be copied and transferred to many verifiers. If on the other hand, setupV is private we refer to it
as a designated verifier proof system.

Public coin: In an interactive proof system, we say it is public coin if the verifier’s messages are
uniformly random and independent of the prover’s messages.

1.6 Definition and Properties

A proof system (Setup, Prove, Verify) for a relation R must be complete and sound. It may have
additional desirable security properties such as being a proof of knowledge or being zero knowledge.

1.6.1 Completeness

Intuitively, a proof system is complete if an honest prover with a valid witness w for a statement
x ∈ L can convince an honest verifier that the statement is true. A full specification of a proof
system must include a precise definition of completeness that captures this intuition. We give an
example of a definition below for a proof system where the prover initiates.

Consider a completeness attacker Adversary in the following experiment.

1. Run Setup(parameters) → (setupR, setupP , setupV , aux)

2. Let the adversary choose a worst case instance and witness:
Adversary(parameters, setupR, setupP , setupV , aux)→ (x,w)

3. Run the interaction between Prove and Verify until the prover returns error or the verifier
accepts or rejects. Let result be the outcome, with the convention that result = error if the
protocol does not terminate. ⟨Prove(setupP , x, w, start) ; Verify(setupV , x)⟩ → result

10

Security

• Adversary wins if (setupR, x, w) ∈ R and result is not accept.

We define the adversary’s advantage as a function of parameters to be Advantage(parameters) =
Pr[Adversary wins]

A proof system for R running on parameters is complete if nobody ever constructs an efficient
adversary with significant advantage.

It depends on the application what is an efficient adversary (computing equipment, running time,
memory consumption, usage lifetime, incentives, etc.) and how large an advantage can be tolerated.
Special strong cases include statistical completeness (aka unconditional completeness) where the
winning probability is small for any adversary, and perfect completeness, where for any adversary
the advantage is exactly 0.

1.6.2 Soundness

Intuitively, a proof system is sound if a cheating prover has little or no chance of convincing an
honest verifier that a false statement is true. A full specification of a proof system must include a
precise definition of soundness that captures this intuition. We give an example of a definition below.

Consider a soundness attacker Adversary in the following experiment.

1. Run Setup(parameters) → (setupR, setupP , setupV , aux)

2. Let the (stateful) adversary choose an instance
Adversary(parameters, setupR, setupP , setupV , aux)→ x

3. Let the adversary interact with the verifier and result be the verifier’s output (letting result =
reject if the protocol does not terminate). ⟨Adversary ; Verify(setupV , x)⟩ → result

• Adversary wins if (setupR, x) /∈ L and result is accept.

We define the adversary’s advantage as a function of parameters to be
Advantage(parameters) = Pr[Adversary wins]

A proof system for R running on parameters is sound if nobody ever constructs an efficient adversary
with significant advantage.

It depends on the application what is considered an efficient adversary (computing equipment,
running time, memory consumption, usage lifetime, etc.) and how large an advantage can be
tolerated. Special strong notions of soundness includes statistical soundness (aka unconditional
soundness) where any adversary has small chance of winning, and perfect soundness, where for any
adversary the advantage is exactly 0.

1.6.3 Proof of knowledge

Intuitively, a proof system is a proof of knowledge if it is not just sound, but that the ability to
convince an honest verifier implies that the prover must “know” a witness. To “know” a witness
can be defined as it being possible to extract a witness from a successful prover. If a proof system

11

Section 1.6 Definition and Properties

is claimed to be a proof of knowledge, then the full specification must include a precise definition
of knowledge soundness that captures this intuition, but we do not define proofs of knowledge here.

To improve. A future version of this document should include here a game definition for the
extractor required by the formal notion of proof of knowledge. This security property also arises
naturally in the ideal/real simulation paradigm, in the context of an ideal ZKP functionality that,
in the ideal world, receives the witness directly from the prover.

1.6.4 Zero knowledge

Intuitively, a proof system is zero knowledge if it does not leak any information about the prover’s
witness beyond what the attacker may already know about the witness from other sources. Zero
knowledge is defined through the specification of an efficient simulator that can generate kosher
looking proofs without access to the witness. If a proof system is claimed to be zero knowledge,
then the full specification MUST include a precise definition of zero knowledge that captures this
intuition. We give an example of a definition below.

A proof system is zero knowledge if the designers provide additional efficient algorithms SimSetup,
SimProve such that realistic attackers have small advantage in the game below. Let Adversary
be an attacker in the following experiment:

1. Choose a bit uniformly at random 0,1 → b

2. If b = 0 run Setup(parameters) → (setupR, setupP , setupV , aux)

3. Else if b = 1 run SimSetup(parameters) → (setupR, setupP , setupV , aux, trapdoor)

4. Let the (stateful) adversary choose an instance and witness
Adversary(parameters, setupR, setupP , setupV , aux)→ (x,w)

5. If (setupR, x, w) /∈ R return guess = 0

6. If b = 0 let the adversary interact with the prover and output a guess (letting guess = 0 if
the protocol does not terminate). ⟨Prove(setupP , x, w) ; Adversary⟩ → guess

7. Else if b = 1 let the adversary interact with a simulated prover and output a guess (letting
guess = 0 if the protocol does not terminate)
⟨SimProve(setupP , x, trapdoor) ; Adversary⟩ → guess

• Adversary wins if guess = b

We define the adversary’s advantage as a function of parameters to be
Advantage(parameters) = | Pr[Adversary wins] - 1/2 |

A proof system for R running on parameters is zero knowledge if nobody ever constructs an efficient
adversary with significant advantage.

It depends on the application what is considered an efficient adversary (computing equipment,
running time, memory consumption, usage lifetime, etc.) and how large an advantage can be toler-
ated. Special strong notions include statistical zero knowledge (aka unconditional zero knowledge)
where any adversary has small advantage, and perfect zero knowledge, where for any adversary the
advantage is exactly 0.

12

Security

multi-theorem zero knowledge. In the zero-knowledge definition, the adversary interacts with the
prover or simulator on a single instance. It is possible to strengthen the zero-knowledge definition
to guard also against an adversary that sees proofs for multiple instances.

Honest verifier zero knowledge. A weaker privacy notion is honest verifier zero-knowledge, where
we assume the adversary follows the protocol honestly (i.e., in steps 6 and 7 in the definition it
runs the verification algorithm). It is a common design technique to first construct an HVZK
proof system, and then use efficient standard transformations to get a proof system with full zero
knowledge.

Witness indistinguishability and witness hiding. Sometimes a weaker notion of privacy than zero
knowledge suffices. Witness-indistinguishable proof systems make it infeasible for an adversary to
distinguish which out of several possible witnesses the prover has. Witness-hiding proof systems
ensure the interaction with an honest prover does not help the adversary to compute a witness.

1.6.5 Advanced security properties

The literature describes many advanced security notions a proof system may have. These include
security under concurrent composition and nonmalleability to guard against man-in-the-middle
attacks, security against reset attacks in settings where the adversary has physical access, simula-
tion soundness and simulation extractability to assist sophisticated security proofs, and universal
composability.

Universal composability. The UC framework defines a protocol to be secure if it realizes an ideal
functionality in an arbitrary environment. We can think of an ideal zero-knowledge functionality as
taking an input (x,w) from the prover and if and only if (x,w) ∈ R it sends the message(x, accept)
to the verifier. The ideal functionality is perfectly sound, since no statement without valid witness
will be accepted, and perfectly zero knowledge, since the proof is just the message accept. A proof
system is then UC secure, if the real life execution of the system is ‘security-equivalent’ to the
execution of the ideal proof system functionality. Usually it takes more work to demonstrate a
proof system is UC secure, but on the other hand the framework offers strong security guarantees
when the proof system is composed with other cryptographic protocols.

1.6.6 Transferability vs. deniability

In the traditional notion of zero-knowledge, a ZKP system prevents the verifier from even being
able to convincingly advertise having interacted in a legitimate proof execution. In other words,
the verifier cannot transfer onto others the confidence gained about the proven statement. This
property is sometimes called deniability or non-transferability, since a prover that has interacted
as a legitimate prover in a proof is later able to plausibly deny having done so, even if the original
verifier releases the transcript publicly.

Despite deniability being often a desired property, the dual property of transferability can also be
considered a feature, and such a setting is also of interest in this document. Transferability means
that the verifier in a legitimate proof execution becomes able to convince an external party that
the corresponding statement is true. In the case of a statement of knowledge, this means being
convinced that some prover did indeed have the claimed knowledge. In some cases this can be done

13

Section 1.6 Definition and Properties

by simply sending the transcript (the verifier’s view) of the interaction (messages exchanged and
the internal state of the verifier).

For a proper security analysis of an application, it is important to characterize whether deniability
of transferability (or a nuanced version of them) is intended. This may be an important aspect of
composability with other applications.

1.6.7 Examples of setup and trust

The security definitions assume a trusted setup. There are several variations of what the setup
looks like and the level of trust placed in it.

• No setup or trustless setup. This is when no trust is required, for instance because the setup
is just a copy of a security parameter k, or because everybody can verify the setup is correct
directly.

• Uniform random string. All parties have access to a uniform random string URS = setupR=
setupP= setupV . We can distinguish between the lighter trust case where the parties just need
to get a uniformly sampled string, which they may for instance get from a trusted common
source of randomness e.g. sunspot activity, and the stronger trust case where zero-knowledge
relies on the ability to simulate the URS generation together with a simulation trapdoor.

• Common reference string. The URS model is a special case of the CRS model. But in the CRS
model it is also possible that the common setup is sampled with a non-uniform distribution,
which may exclude easy access to a trusted common source. A distinction can be made
whether the CRS has a verifiable structure, i.e., it is easy to verify it is well-formed, or
whether full trust is required.

• Designated verifier setup. If we have a setup that generates correlated setupP and setupV ,
where setupV is intended only for a designated verifier, we also need to place trust in the
setup algorithm. This is for instance the case in Cramer-Shoup public-key encryption where
a designated verifier NIZK proof is used to provide security under chosen-ciphertext attack.
Here the setup is generated as part of the key generation process, and the recipient can be
trusted to do this honestly because it is the recipient’s own interest to make the encryption
scheme secure.

• Random oracle model. The common setup describes a cryptographic hash function, e.g.,
SHA256. In the random oracle model, the hash function is heuristically assumed to act
like a random oracle that returns a random value whenever it is queried on an input not seen
before. There are theoretical examples where the random oracle model fails, exploiting the
fact that in real life the hash function is a deterministic function, but in practice the heuristic
gives good efficiency and currently no weaknesses are known for ‘natural’ proof systems.

• There are several proposals to reduce the trust in the setup such as using secure multi-party
computation to generate a CRS, using a multi-string model where there are many CRSs and
security only relies on a majority being honestly generated, and subversion resistant CRS
where zero-knowledge holds even against a maliciously generated CRS.

14

Security

1.7 Assumptions

A full specification of a proof system must state the assumptions under which it satisfies the
security definitions and demonstrate the assumptions imply the proof system has the claimed
security properties.

A security analysis may take the form of a mathematical proof by reduction, which demonstrates
that a realistic adversary gaining significant advantage against a security property, would make it
possible to construct a realistic adversary gaining significant advantage against one of the under-
pinning assumptions.

To give an example, suppose soundness relies on a collision-resistant hash function. The demon-
stration of this fact may take the form of describing a simple and efficient algorithm Reduction,
which may call a soundness attacker Adversary as a subroutine a few times. Furthermore, the
demonstration may establish that the advantage Reduction has in finding a collision is closely
related to the advantage an arbitrary Adversary has against soundness, for instance

Advantage_soundness(parameters) ≤ 8 × Advantage_collision(parameters)

Suppose the proof system is designed such that we can instantiate it with the SHA-256 hash
function as part of the parameters. If we assume the risk of an attacker with a budget of $1,000,000
finding a SHA-256 collision within 5 years is less than 2−128, then the reduction shows the risk of
an adversary with similar power breaking soundness is less than 2−125.

Cryptographic assumptions: Cryptographic assumptions, i.e. intractability assumptions, spec-
ify what the proof system designers believe a realistic attacker is incapable of computing. Sometimes
a security property may rely on no cryptographic assumptions at all, in which case we say security
of unconditional, i.e., we may for instance say a proof system has unconditional soundness or uncon-
ditional zero knowledge. Usually, either soundness or zero knowledge is based on an intractability
assumption though. The choice of assumption depends on the risk appetite of the designers and
the type of adversary they want to defend against.

Plausibility. At all costs, an intractability assumption that has been broken should not be used.
We recommend designing flexible and modular proof systems such that they can be easily updated
if an underpinning cryptographic assumption is shown to be false.

Sometimes, but not always, it is possible to establish an order of plausibility of assumptions. It is
for instance known that if you can break the discrete logarithm problem in a particular group, then
you can also break the computational Diffie-Hellman problem in the same group, but not necessarily
the other way around. This means the discrete logarithm assumption is more plausible than the
computational Diffie-Hellman assumption and therefore preferable from a security perspective.

Post-quantum resistance. There is a chance that quantum computers will be developed within a few
decades. Quantum computers are able to efficiently break some cryptographic assumptions, e.g.,
the discrete logarithm problem. If the expected lifetime of the proof system extends beyond the
emergence of quantum computers, then it is necessary to rely on intractability assumptions that are
believed to resist quantum computers. Different security properties may require different lifetimes.
For instance, it may be that proofs are verified immediately and hence post-quantum soundness is
not required, while at the same time an attacker may collect and store proof transcripts and later
try to learn something from them, so post-quantum zero knowledge is required.

15

Section 1.8 Efficiency

Concrete parameters. It is common in the cryptographic literature to use vague phrasing such as
“the advantage of a polynomial time adversary is negligible” when describing the theory behind a
proof system. However, concrete and precise security is needed for real-world deployment. A proof
system should therefore come with concrete parameter recommendation and a statement about the
level of security they are believed to provide.

System assumptions: Besides cryptographic assumptions, a proof system may rely on assump-
tions about the equipment or environment it works in. As an example, if the proof system relies
on a trusted setup it should be clearly stated what kind of trust is placed in.

Setup. If the prover or verifier are probabilistic, they require an entropy source to generate
randomness. Faulty pseudorandomness generation has caused vulnerabilities in other types of
cryptographic systems, so a full specification of a proof system should make explicit any assumptions
it makes about the nature or quality of its source of entropy.

1.8 Efficiency

A specification of a proof system may include claims about efficiency and if it does the units of
measurement MUST be clearly stated. Relevant metrics may include:

• Round complexity: Number of transmissions between prover and verifier. Usually mea-
sured in the number of moves, where a move is a message from one party to the other. An
important special case is that of 1-move proof systems, aka non-interactive proof systems,
where the verifier receives a proof from the prover and directly decides whether to accept or
not. Non-interactive proofs may be transferable, i.e., they can be copied, forwarded and used
to convince several verifiers.

• Communication: Total size of communication between prover and verifier. Usually mea-
sured in bits.

• Prover computation: Computational effort the prover expends over the duration of the
protocol. Sometimes measured as a count of the dominant cryptographic operations (to avoid
system dependence) and sometimes measured in seconds on a particular system (when making
concrete measurements).

• Depending on the intended usage, many other metrics may be important: memory consump-
tion, energy consumption, entropy consumption, potential for parallelisation to reduce time,
and offline/online computation trade-offs.

• Verifier computation: Computational effort the verifier expends over the duration of the
protocol.

• Setup cost: Size of setup parameters, e.g. a common reference string, and computational
cost of creating the setup.

Readers of a proof system specification may differ in the granularity they need in the efficiency
measurements. Take as an example a proof system consisting of an information theoretic core that
is then compiled with cryptographic primitives to yield the full system. An implementer will likely
want to have a detailed performance analysis of the information theoretic core as well as the cryp-
tographic compilation, since this will guide her choice of trade-offs and optimizations. A consumer

16

Security

on the other hand will likely want to have a high-level performance analysis and an apples-to-apples
comparison to competing proof systems. We therefore recommend to provide both a detailed anal-
ysis that quantifies all the dominant efficiency costs, and a bottom-line analysis that summarizes
performance for reasonable choices of parameters and identifies the optimal performance region.

1.8.1 Characterization of security properties

The benchmarking of a technique should clarify the distinct security levels achieved/conjectured
for different security properties, e.g., soundness vs. zero-knowledge. In each case, the security
type should also be clarified with respect to being unconditional, statistical or computational.
When considering computational security, it should be clarified to what extent pre-computations
may affect the security level, and whether/how known attacks may be parallelizable. All security
claims/assertions should be qualified clearly with respect to whether they are based on proven
security reductions or on heuristic conjectures. In either case the security analysis should make
clear which computational assumptions and implementation requirements are needed. It should be
made explicit whether (and how) the security levels relate to classical or quantum adversaries. When
applicable, the benchmarking should characterize the security (including possible unsuitability) of
the technique against quantum adversaries.

1.8.2 Computational security levels for benchmarking

The benchmarks for each technique shall include at least one parametrization achieving a con-
jectured computational security level κ approximately equal to, or greater than, 128 bits. Each
technique should also be benchmarked for at least one additional higher computational security
level, such as 192 or 256 bits. (If only one, the latter is preferred.) The benchmarking at more
than one level aids the understanding of how the efficiency varies with the security level. The
interest in a security level as high as 256 bits can be considered a precautious (and heuristic) safety
margin, compared for example with intended 128 bits. This is intended to handle the possibility
that the conjectured level of security is later found to have been over-estimated. The evaluation
at computational security below 128 bits may be justified for the purpose of clarifying how the
execution complexity or time varies with the security parameter, but should not be construed as a
recommendation for practical security.

An exception allowing lower computational security parameter. With utmost care, a
computational security level may be justified below 128 bits, including for benchmarking. The
following text describes as exception. In some interactive ZKPs (see Section 2.2), there may be
cryptographic properties that only need to be held during a portion of a protocol execution, which
in turn may be required to take less than a fixed amount of time, say, one minute. For example, a
commitment scheme used to enable temporary hiding during a coin-flipping protocol may only need
to hold until the other party reveals a secret value. In such case the property may be implemented
with less than 128 bits of security, under special care (namely with respect to composition in a
concurrent setting) and if the difference in efficiency is substantial. Such decreased security level
of a component of a protocol may also be useful for example to enable properties of deniability
(non-transferability).

Depending on the application, other exceptions may be acceptable, upon careful analysis, when

17

Section 1.8 Efficiency

the witness whose knowledge is being proven is itself discoverable from the ZK instance with less
computational resources than those corresponding to 128 bits of security.

1.8.3 Statistical security levels for benchmarking

The soundness security of certain interactive ZKP systems may be based on the ability of the
verifier(s) to validate-or-trust the freshness and entropy of a challenge (e.g., a nonce produced by
a verifier, or randomness obtained by a trusted randomness Beacon). In some of those cases, a
statistical security parameter σ (e.g., 40 or 64 bits) may be used to refer to the error probability
(e.g., 2−40 or 2−64, respectively) of a protocol with “one-shot” security, i.e., when the ability of
a malicious prover to succeed without knowledge of a valid witness requires guessing in advance
what the challenge would be. A lower statistical security parameter may be suitable if there is a
mechanism capable of detecting and preventing a repetition of failed proof attempts.

While an appropriate minimal parameter may depend on the application scenario, benchmarking
shall be done with at least one parametrization achieving a conjectured statistical security level
of at least 64 bits. Whenever the efficiency variation is substantial across variations of statistical
security parameter, it is recommended that more than one security level be benchmarked. The
cases of 40, 64, 80 and 128 bits are suggested.

For interactive techniques where the efficiency upon using 64 bits of statistical security is similar to
that of using a higher parameter similar to the computation security parameter (at least 128 bits),
then the benchmark should use at least one higher statistical parameter that enables retaining high
computational security (at least 128 bits) even if the protocol is transformed into a non-interactive
version via a Fiat-Shamir transformation or similar. In the resulting non-interactive protocols, the
prover is the sole generator of the proof, and so a malicious prover can rewind and restart an at-
tempt to generate a forged proof whenever a non-interactively produced challenge is unsuitable to
complete the forgery. Computational security remains if the expected number of needed attempts
is of the order of 2κ.

18

Chapter 2. Construction paradigms

2.1 Taxonomy of Constructions

There are many different types of zero-knowledge proof systems in the literature that offer different
tradeoffs between communication cost, computational cost, and underlying cryptographic assump-
tions. Most of these proofs can be decomposed into an “information-theoretic” zero-knowledge
proof system, sometimes referred to as a zero-knowledge probabilistically checkable proof (PCP),
and a cryptographic compiler, or crypto compiler for short, that compiles such a PCP into a zero-
knowledge proof. (Here and in the following, we will sometimes omit the term “zero-knowledge”
for brevity even though we focus on zero-knowledge proof systems by default.)

Different kinds of PCPs require different crypto compilers. The crypto compilers are needed be-
cause PCPs make unrealistic independence assumptions between values contributed by the prover
and queries made by the verifier, and also do not take into account the cost of communicating a
long proof. The main advantage of this separation is modularity: PCPs can be designed, analyzed
and optimized independently of the crypto compilers, and their security properties (soundness and
zero-knowledge) do not depend on any cryptographic assumptions. It may be beneficial to apply
different crypto compilers to the same PCP, as different crypto compilers may have incomparable
efficiency and security features (e.g., trade succinctness for better computational complexity or
post-quantum security).

PCPs can be divided into two broad categories: ones in which the verifier makes point queries,
namely reads individual symbols from a proof string, and ones where the verifier makes linear
queries that request linear combinations of field elements included in the proof string. Crypto
compilers for the former types of PCPs typically only use symmetric cryptography (a collision-
resistant hash function in their interactive variants and a random oracle in their non-interactive
variants) whereas crypto compilers for the latter type of PCPs typically use homomorphic public-
key cryptographic primitives (such as SNARK-friendly pairings).

Table 2.1 summarizes different types of PCPs and corresponding crypto compilers. The efficiency
and security features of the resulting zero-knowledge proofs depend on both the parameters of the
PCP and the features of the crypto compiler.

19

Section 2.1 Taxonomy of Constructions

Table 2.1: Different types of PCPs

Proof System Inter-
action Queries to Proof Crypto Compilers Features

Classical proof
(no zk)

No All GMW, ..., 1,2,3e
Cramer-Damgård 98, ... 1,3e

Classical PCP No Point Queries Kilian, Micali, IMS 1,2,3b
Linear PCP No Inner-product Queries IKO,[Gro10],GGPR,BCIOP 3a

IOP Yes Point Queries BCS16+ZKStarks 1,2,3b
BCS16+Ligero 1,2,3d

Linear IOP Yes Inner-product
Queries

Hyrax 1,3b/3c
vSQL 3c
vRAM [ZGKPP18] 3b

ILC Yes Matrix-vector
Queries

Bootle 16,[BCGJM18] 1,3b
Bootle 17 1,2,3d

Notation: We say that a verifier makes “point queries” to the proof Π if the verifier has access
to a proof oracle OΠ that takes as input an index i and outputs the i-th symbol Π(i) of the proof.
We say that a verifier makes “inner-product queries” to the proof Π ∈ Fm (for some finite field F)
if the proof oracle takes as input a vector q ∈ Fm and returns the value ⟨ Π, q ⟩ ∈ F. We say that
a verifier makes “matrix-vector queries” to the proof Π ∈ Fm×k if the proof oracle takes as input a
vector q ∈ Fk and returns the matrix-vector product (Π.q) ∈ Fm.

1. No trusted setup

2. Relies only on symmetric-key cryptography (e.g., collision-resistant hash functions and/or
random oracles)

3. Succinct proofs
(a) Fully succinct: Proof length independent of statement size. O(1) crypto elements (fully)
(b) Polylog succinct: Polylogarithmic number of crypto elements
(c) Depth-succinct: Depends on depth of a verification circuit representing the statement.
(d) Sqrt succinct: Proportional to square root of circuit size
(e) Non succinct: Proof length is larger than circuit size.

2.1.1 Proof Systems

Note: For all of the applications we consider, the prover must run in polynomial time, given a
statement-witness pair, and the verifier must run in (possibly randomized) polynomial time.

a. Classical Proofs: In a classical NP/MA proof, the prover sends the verifier a proof string π,
the verifier reads the entire proof π and the entire statement x, and accepts or rejects.

b. PCP (Probabilistically Checkable Proofs): In a PCP proof, the prover sends the verifier a
(possibly very long) proof string π, the verifier makes “point queries” to the proof, reads the

20

Construction paradigms

entire statement x, and accepts or rejects. Relevant complexity measures for a PCP include
the verifier’s query complexity, the proof length, and the alphabet size.

c. Linear PCPs: In a linear PCP proof, the prover sends the verifier a (possibly very long)
proof string π, which lies in some vector space Fm. The verifier makes some number of linear
queries to the proof, reads the entire statement x, and accepts or rejects. Relevant complexity
measures for linear PCPs include the proof length, query complexity, field size, and the
complexity of the verifier’s decision predicate (when expressed as an arithmetic circuit).

d. IOP (Interactive Oracle Proofs): An IOP is a generalization of a PCP to the interactive set-
ting. In each round of communication, the verifier sends a challenge string ci to the prover and
the prover responds with a PCP proof πi that the verifier may query via point queries. After
several rounds of interactions, the verifier accepts or rejects. Relevant complexity measures
for IOPs are the round complexity, query complexity, and alphabet size. IOP generalizes
the notion of Interactive PCP [KR08], and coincides with the notion of Probabilistically
Checkable Interactive Proof [RRR16].

e. Linear IOP: A linear IOP is a generalization of a linear PCP to the interactive setting. (See
IOP above.) Here the prover sends in each round a proof vector πi that the verifier may query
via linear (inner-product) queries.

f. ILC (Ideal Linear Commitment): The ILC model is similar to linear IOP, except that the
prover sends in each round a proof matrix rather than proof vector, and the verifier learns the
product of the proof matrix and the query vector. This model relaxes the Linear Interactive
Proofs (LIP) model from [BCIOP13]. (That is, each ILC proof matrix may be the output of
an arbitrary function of the input and the verifier’s messages. In contrast, each LIP proof
matrix must be a linear function of the verifier’s messages.) Important complexity measures
for ILCs are the round complexity, query complexity, and dimensions of matrices.

2.1.2 Compilers: Cryptographic

a. Cramer-Damgård [CD98]: Compiles an NP proof into a zero-knowledge proof. The prover
evaluates the circuit C recognizing the relation on its statement-witness pair (x,w). The
prover commits to every wire value in the circuit and sends these commitments to the verifiers.
The prover then convinces the verifier using sigma protocols that the wire values are all
consistent with each other. The prover opens the input wires to x and thus convinces the
verifier that the circuit C(x, .) is satisfied on some witness w. The compiler uses additively
homomorphic commitments (instantiated using the discrete-log assumption, for example) and
generating or verifying the proof requires a number of public-key operations that is linear in
the size of the circuit C.

b. Kilian [Kil95] / Micali [Mic00] / IMS [IMS12]: Compiles a PCP with a small number of
queries into a succinct proof. The prover produces a PCP proof that x in L. The prover
commits to the entire PCP proof using a Merkle tree. The verifier asks the prover to open
a few positions in the proof. The prover opens these positions and uses Merkle proofs to
convince the verifier that the openings are consistent with the Merkle commitment. The
verifier accepts iff the PCP verifier accepts. The compiler can be made non-interactive in the
random oracle model via the Fiat-Shamir heuristic.

21

Section 2.2 Interactivity

c. GGPR [GGPR13a] / BCIOP [BCIOP13]: Compiles a linear PCP into a SNARG via a trans-
formation to LIPs. The public parameters of the SNARG are as long as the linear PCP
proof and the SNARG proof consists of a constant number of ciphertexts/commitments (if
the linear PCP has constant query complexity). In the public verification setting, this com-
piler relies on “SNARG-friendly” bilinear maps and is thus not post-quantum secure. In
the designated verifier setting, it can be made post-quantum secure via linear-only encryp-
tion [BISW17]. Generating the proof requires a number of public-key operations that grows
linearly (or quasi-linearly) in the size of the circuit recognizing the relation.

d. BCS16 [BCS16]: A generalization of the Fiat-Shamir compiler that is useful for collapsing
many-round public-coin proofs (such as IOPs) into NIZKs in the random-oracle model.

e. Hyrax [WTSTW18] and vSQL [ZGKPP17]: Give mechanisms for compiling the GKR proto-
col [GKR15] into NIZKs in the random oracle model. The techniques in these works generalize
to compile any public-coin linear IOP (without zero knowledge) into a non-interactive zero-
knowledge proof in the random-oracle model, that additionally relies on algebraic commitment
schemes. The latter are typically implemented using homomorphic public-key cryptography.

f. Bootle16 [BCCGP16]: Compiler for converting an ILC proof into a many-round succinct proof
under the discrete-log assumption. Generating and verifying the proof requires a number of
public-key operations that grows linearly with the size of the circuit recognizing the NP
relation in question.

Note: In addition to the crypto compilers described above, there are information-theoretic compilers
that convert between different types of information-theoretic objects.

2.1.3 Compilers: Information-theoretic

a. MPC-in-the-Head (IKOS [IKOS07], ZKboo [GMO16], Ligero [AHIV17]): Compiles secure
multi-party computation protocols into either (zero-knowledge) PCPs or IOPs.

b. BCIOP [BCIOP13]: Compiles quadratic arithmetic programs (QAPs) or quadratic span pro-
grams (QSPs) into linear PCPs such that resulting linear PCP has a degree-two decision
predicate. The BCIOP paper also gives a compiler for converting linear PCP into 1-round
LIP/ILC and adding zero-knowledge to linear PCP.

c. Bootle17 [BCGGHJ17]: Compiles a proof in the ILC model into an IOP. They also give an
example instantiation of the ILC proof that yields an IOP proof system with square-root
complexity.

2.2 Interactivity

Several of the proof systems described in the Taxonomy of Constructions given in Section 2.1 are
interactive, including classical interactive proofs (IPs), IOPs, and linear IOPs. This means that
the verifier sends multiple challenge messages to the prover, with the prover replying to challenge
i before receiving challenge i+ 1; soundness relies on the prover being unable to predict challenge
i+1 when it responds to challenge i. The other proof systems from the Taxonomy of Constructions

22

Construction paradigms

are non-interactive, namely classical PCPs and linear PCPs. All of these proof systems can be com-
bined with cryptographic compilers to yield argument systems that may or may not be interactive,
depending on the compiler.

2.2.1 Advantages of Interactive Proof and Argument Systems

a. Efficiency and Simplicity. Interactive proof systems can be simpler or more efficient than non-
interactive ones. As an example, researchers introduced the IOP model [BCS16; RRR16],
which is interactive, in part because interactivity allowed for circumventing efficiency bottle-
necks arising in state of the art PCP constructions [BCGT13]. As another example, some
argument systems derived from IPs [WTSTW18; XZZPS19] have substantially better space
complexity for the prover (a key scalability bottleneck) than state of the art PCPs [BCGT13]
or linear PCPs [GGPR13a; Gro16].
Yet, if an interactive protocol is public coin, it can be rendered non-interactive and publicly
verifiable in most settings via the Fiat-Shamir transformation (see Section 2.1.2), often with
little loss in efficiency. This means that protocol designers have the freedom to leverage
interactivity as a “resource” to simplify protocol design, improve efficiency, weaken or remove
trusted setup, etc., and still have the option of obtaining a non-interactive argument using
the Fiat-Shamir transformation.
(Applying the Fiat-Shamir heuristic to an interactive protocol to obtain a non-interactive
argument may increase soundness error, and may transform statistical security to computa-
tional security — see Section 1.8.3. However, recent works [BCS16; CCHL+19] show that
when the transformation is applied to specific IP, IOP, and linear IOP protocols of both
practical and theoretical interest, the blowup in soundness error is only polynomial in the
number of rounds of interaction.)

b. Setup. Cryptographic compilers for linear PCPs currently require a structured reference string
(SRS) (see Section 3.6.2). Here, an SRS is a structured string that must be generated by
a trusted third party during a setup phase, and soundness requires that any trapdoor used
during this trusted setup must not be revealed. In contrast, some compilers that apply to IPs,
IOPs (as well as PCPs), and linear IPs yields arguments in which the prover and the verifier
need only access a uniform random string (URS), which can be obtained from a common
source of randomness. Such a setup is referred as transparent setup in the literature.

c. Cryptographic Primitives. Argument systems derived from IPs, IOPs, or linear IOPs also
sometimes rely on more desirable cryptographic primitives. For example, IPs themselves
are information-theoretically secure, relying on no cryptographic assumptions at all. And
in contrast to arguments derived from linear PCPs, those derived from IOPs rely only on
symmetric-key cryptographic primitives (see, e.g., [BCS16]). Finally, it has long been known
how to obtain succinct interactive arguments in the plain model based on falsifiable as-
sumptions like collision-resistant hash families [Kil95], but this is not the case for succinct
non-interactive arguments.

d. Non-transferability. In some applications, it is essential that proofs be deniable or non-
transferable (i.e., it must be impossible for a verifier to convince a third party of the validity
of the statement — see Sections 1.6.6). While these properties are not unique to interactive
protocols, interaction offers a natural way to make proofs non-transferable (for details, see
Section 2.2.3).

23

Section 2.2 Interactivity

e. Interactivity May Limit Adversaries’ Abilities. Interactive protocols can potentially be run
with fewer bits of security and hence be more efficient. For example, interactive settings
may allow for the enforcement of a time limit for the protocol to terminate, limiting the
runtime of attackers. Alternatively, in an interactive setting it may be possible to ensure
that adversaries only have one attempt to attack a protocol, while this will not be possible
in many non-interactive settings. See Section 1.8.2 for details.

f. Interactivity May Be Inherent to Applications. Many applications are inherently interactive.
For example, real-world networking protocols involve multiple messages just to initiate a con-
nection. In addition, zero-knowledge protocols are often combined with other cryptographic
primitives in applications (e.g., oblivious transfer). If the other primitives are interactive, then
the final cryptographic protocol will be interactive regardless of whether the zero-knowledge
protocol is non-interactive. If an application is inherently interactive, it may be reasonable to
leverage the interaction as a resource if it can render a protocol simpler, more efficient, etc.

2.2.2 Disadvantages of Interactive Proof and Argument Systems

1. Interactive protocols must occur online. In an interactive protocol, the proof cannot simply
be published or posted and checked later at the verifier’s convenience, as can be done with
non-interactive protocols.

2. Public Verifiability. Many applications require that proofs be verifiable by any party at
any time. Public verifiability may be difficult to achieve for interactive protocols. This is
because soundness of interactive protocols relies on the prover being unable to predict the
next challenge it will receive in the protocol. Unless there is a publicly trusted source of
unpredictable randomness (e.g., a randomness beacon) and a way for provers to timestamp
messages, it is not clear how any party other than the one sending the challenges can be
convinced that the challenges were properly generated, and the prover replied to challenge i
before learning challenge i+ 1. See Section 2.2.3 below for further details.

3. Network latency can make interactive protocols slow. If an interactive protocol consists of
many messages sent over a network, network latency may contribute significantly to the
total execution time of the protocol.

4. Timing or Side Channel Attacks. Because interactive protocols require the prover to send
multiple messages, there may be more vulnerability to side channel or timing attacks compared
to non-interactive protocols. Timing attacks will only affect zero-knowledge, not soundness,
for public-coin protocols, because the verifier’s messages are simply random coins, and timing
attacks should not leak information to the prover in this case. In private coin protocols, both
zero-knowledge and soundness may be affected by these attacks.

5. Concurrent Security. If an interactive protocol is not used in isolation, but is instead used
in an environment where multiple interactive protocols may be executed concurrently, then
considerable care should be taken to ensure that the protocol remains secure. See for example
[Gol13, Section 2.1] and the references therein. Issues of concurrent execution security are
greatly mitigated for non-interactive protocols [GOS06].

6. Proof Length. Currently, the zero-knowledge protocols with the shortest known proofs are
based on linear PCPs, which are non-interactive. These proofs are just a few group elements
(see Table 2.1). While (public-coin) zero-knowledge protocols based on IPs or IOPs can

24

Construction paradigms

be rendered non-interactive with the Fiat-Shamir heuristic, they currently produce longer
proofs. The longer proofs may render these protocols unsuitable for some applications (e.g.,
public blockchain), but they may still be suitable for other applications (even related ones,
like enterprise blockchain applications).

2.2.3 Nuances on transferability vs. interactivity

The relation between interactivity and transferability/deniability is not without nuances. The
following paragraphs show several possible combinations.

Non-interactive and deniable. A non-interactive ZKP may be non-transferable. This may be
based for example on a setup assumption such as a local CRS that is itself deniable. In that case,
a malicious verifier cannot prove to an external party that the CRS was the one used in a real
protocol execution, leading the external party to have reasonable suspicion that the verifier may
have simulated the CRS so as to become able to simulate a protocol execution transcript, without
actual participation of a legitimate prover. Another example of non-transferability is when a ZKP
intended to prove (i) an assertion (of membership or knowledge) actually proves its disjunction
with (ii) the knowledge of the secret key of a designated verifier, for example assuming a public key
infrastructure (PKI). This suffices to convince the original verifier the initial statement (i) is true,
since the verifier knows that the prover does not actually know the secret key (ii). In other words,
a success in the interactive proof stems from the initial assertion (i) being truthful. However, for
any external party, the transcript of the proof may conceivably have been produced by the original
designated verifier, who can simply do it with the knowledge of the secret key (ii). In that sense,
the designated verifier would be unable to convince others that the transcript of a legitimate proof
was not simulated by the verifier.

Non-interactive and transferable. If transferability is intended as a feature, then a non-
interactive protocol can be achieved for example with a public (undeniable) CRS. For example,
if a CRS is generated by a trusted randomness beacon, and if soundness follows from the inability
of the prover to control the CRS, then any external party (even one not involved with the prover
at the time of proof generation) can at a later time verify that a proof transcript could have only
been generated by a legitimate prover.

Interactive and deniable. A classical example (in a standalone setting, without concurrent exe-
cutions) for obtaining the deniability property comes from interactive ZKP protocols proven secure
based on the use of rewinding. Here, deniability follows from the simulatability of transcripts for
any malicious verifier. For each interactive step, the simulator learns the challenge issued by the
possibly malicious verifier, and then rewinds to reselect the preceding message of the prover, so as
to be able to answer the subsequent challenge. Some techniques require the use of commitments
and/or trapdoors, and may enable this property even for straight-line simulation (i.e., without
rewinding), provided there is an appropriate trusted setup.

Interactive and transferable. In certain settings it is possible, even from an interactive ZKP
protocol execution, to produce a transcript that constitutes a transferable proof. Usually, trans-
ferability can be achieved when the (possibly malicious) verifier can convincingly show to external
parties that the challenges selected during a protocol execution were unpredictable at the time of
the determination of the preceding messages of the prover. The transferable proof transcript is then
composed of the messages sent by the prover and additional information from the internal state of

25

Section 2.2 Interactivity

a malicious verifier, including details about the generation of challenges. For example, a challenge
produced (by the verifier) as a cryptographic hash output (or as a keyed pseudo-random function)
of the previous messages may later be used to provide assurance that only a legitimate prover would
have been able to generate a valid subsequent message (response). As another example, if the inter-
active ZKP protocol is composed with a communication protocol where the prover authenticates all
sent messages (e.g., signed within a PKI, and timestamped by a trusted service), then the overall
sequence of those certified messages becomes, in the hands of the verifier, a transferable proof. Fur-
thermore, from a transferable transcript, the actual transfer can also be performed in an interactive
way: the verifier (in possession of the transcript) acts as prover in a transferable ZKP of knowledge of
a transferable transcript, thereby transferring to the external verifier a new transferable transcript.

(Non)-Transferability/Deniability of Zero-Knowledge Proofs

Off-line non-transferability (deniability) of ZK proofs. Zero-knowledge proofs are in gen-
eral interactive. Interaction is inherent without a setup. Indeed, Goldreich and Oren showed that
for non-trivial languages zero-knowledge proofs require at least 3 rounds.

The zero-knowledge property in absence of setup guarantees a property called off-line non-transfer-
ability, also known as deniability — note that a verifier could always compute an equivalent tran-
script by running the simulator. This property means that the verifier gets no evidence of having
received an accepting proof from a prover and thus has no advantage in transferring the received
proof to others.

On-line non-transferability of ZK proofs. The situation is more complicated in case of on-
line non-transferability. Indeed, in this case a malicious verifier plays with a honest prover in
a zero-knowledge proof system and at the same time the malicious verifier plays with others in
the attempt of transferring the proof that he his receiving from the prover. Non-transferability
is therefore a form of security against man-in-the-middle attacks. Security against such attacks
is typically referred to as non-malleability when the same zero-knowledge proof system is used by
the adversary to try to transfer the proof to a honest verifier. When instead different protocols
are involved as part of the activities of the adversary, some stronger notions are required to model
security under such attacks (e.g., universal composability).

Transferability of a NIZK proof: publicly verifiable ZK. The transferability of a zero-
knowledge proof could become unavoidable when some forms of setups are considered and the zero-
knowledge proof makes some crucial use of it. Indeed, notice that both in the common reference
string model and in the programmable random oracle model one can construct non-interactive
zero-knowledge proofs. Such proofs cannot be simulated by the verifier with the same setup or the
same instantiation of the random oracle. More specifically, non-interactive zero-knowledge proofs
are constructed without the contribution of any verifier, therefore they are publicly verifiable proofs
that can naturally be transferred among verifiers.

Designated-verifier NIZK proofs. With more sophisticated setups other options become pos-
sible. Consider for instance a verifier possessing a public identity implemented through a public key.
In this case the prover can compute a non-interactive zero-knowledge proof that makes crucially
use of the public key of the verifier at the point that the verifier using the corresponding secret key

26

Construction paradigms

could compute an indistinguishable proof. In this case we have that the proof is a non-interactive
designated-verifier zero-knowledge proof and is non-transferable since the verifier that receives the
proof could have computed an equivalent proof by herself, therefore there is no evidence to share
with others about the fact that the proof comes from a honest prover.

Transferability of interactive ZK proofs. The use of identities implemented through public
keys can also have impact in the interactive case. Consider the case where there is no trusted
setup. In this case one can design an interactive zero-knowledge proof system that can have a
transferability flavor by exploiting the public keys of prover and verifier. Indeed, if the prover signs
the transcript, then the proof is transferable by the verifier to whoever believes that the prover is
honest.

2.3 Several construction paradigms

Zero-knowledge proof protocols can be devised within several paradigms, such as:

• Specialized protocols for specialized proofs of membership or proofs of knowledge

• Proofs based on discrete-log and/or pairings

• Probabilistic checkable proofs

• Quadratic arithmetic programs

• GKR

• Interactive oracle proofs

• MPC in the head

• Using garbled circuits

27

Page intentionally blank

28

Chapter 3. Implementation

3.1 Overview

By having a standard or framework around the implementation of ZKPs, we aim to help platforms
adapt more easily to new constructions and new schemes, that may be more suitable because of
efficiency, security or application-specific changes. Application developers and the designers of
new proof systems all want to understand the performance and security tradeoffs of different ZKP
constructions when invoked in various applications. This track focuses on building a standard
interface that application developers can use to interact with ZKP proof systems, in an effort
to improve facilitate interoperability, flexibility and performance comparison. In this first effort
to achieve such an interface, our focus is on non-interactive proof systems (NIZKs) for general
statements (NP) that use an R1CS/QAP-style constraint system representation. This includes
many, though not all, of the practical general-purpose ZKP schemes currently deployed. While
this focus allows us to define concrete formats for interoperability, we recognize that additional
constraint system representation styles (e.g., arithmetic and Boolean circuits) are in use, and are
within scope of the ongoing effort. We also aim to establish best practices for the deployment of
these proof systems in production software.

3.1.1 What this document is NOT about:

• A unique explanation of how to build ZKP applications

• An exhaustive list of the security requirements needed to build a ZKP system

• A comparison of front-end tools

• A show of preference for some use-cases or others

3.2 Backends: Cryptographic System Implementations

The backend of a ZK proof implementation is the portion of the software that contains an imple-
mentation of the low-level cryptographic protocol. It proves statements where the instance and
witness are expressed as variable assignments, and relations are expressed via low-level languages
(such as arithmetic circuits, Boolean circuits, R1CS/QAP constraint systems or arithmetic con-
straint satisfaction problems).

The backend typically consists of a concrete implementation of the ZK proof system(s) given as
pseudocode in a corresponding publication (see the Security Track document for extensive discussion
of these), along with supporting code for the requisite arithmetic operations, serialization formats,
tests, benchmarking etc.

There are numerous such backends, including implementations of many of the schemes discussed
in the Security Track. Most have originated as academic research prototypes, and are available

29

Section 3.3 Frontends: Constraint-System Construction

as open-source projects. Since the offerings and features of backends evolve rapidly, we refer the
reader to the curated taxonomy at https://zkp.science for the latest information.

Considerations for the choice of backends include:

• ZK proof system(s) implemented by the backend, and their associated security, assumptions
and asymptotic performance (as discussed in the Security Track document)

• Concrete performance (see Benchmarks section)

• Programming language and API style (this consideration may be satisfied by adherence to
prospective ZK proof standards; see the the API and File Formats section)

• Platform support

• Availability as open source

• Active community of maintainers and users

• Correctness and robustness of the implementation (as determined, e.g., by auditing and formal
verification)

• Applications (as evidence of usability and scrutiny).

3.3 Frontends: Constraint-System Construction

The frontend of a ZK proof system implementation provides means to express statements in a
convenient language and to prove such statements in zero knowledge by compiling them into a
low-level representation and invoking a suitable ZK backend.

A frontend consists of:

• The specification of a high-level language for expressing statements.

• A compiler that converts relations expressed in the high-level language into the low-level
relations suitable for some backend(s). For example, this may produce an R1CS constraint
system.

• Instance reduction: conversion of the instance in a high-level statement to a low-level instance
(e.g., assignment to R1CS instance variables).

• Witness reduction: conversion of the witness to a high-level statement to a low-level witness
(e.g., assignment to witness variables).

• Typically, a library of ”gadgets” consisting of useful and hand-optimized building blocks for
statements.

Languages for expressing statements, which have been implemented in frontends to date include:
code library for general-purpose languages, domain-specific language, suitably-adapted general-
purpose high-level language, and assembly language for a virtual CPU.

Frontends’ compilers, as well as gadget libraries, often implement various optimizations aiming to
reduce the cost of the constraint systems (e.g., the number of constraints and variables). This in-
cludes techniques such as making use of “free linear combinations” in R1CS, using nondeterministic

30

Implementation

advice given in witness variables (e.g., for integer arithmetic or random-access memory), removing
redundancies, using cryptographic schemes tailored for the given algebraic settings (e.g., Pedersen
hashing on the Jubjub curve or MiMC for hash functions, RSA verification for digital signatures),
and many other techniques. See the Zcon0 Circuit Optimisation handout for further discussion.

There are many implemented frontends, including some that provide alternative ways to invoke
the same underlying backends. Most have originated as academic research prototypes, and are
available as open-source projects. Since the offerings and features of frontends evolve rapidly, we
refer the reader to the curated taxonomy at https://zkp.science for the latest information.

3.4 APIs and File Formats

Our primary goal is to improve interoperability between proving systems and frontend consumers
of proving system implementations. We focused on two approaches for building standard interfaces
for implementations:

1. We aim to develop a common API for proving systems to expose their capabilities to frontends
in a way that is maximally agnostic to the underlying implementation details.

2. We aim to develop a file format for encoding a popular form of constraint systems (namely
R1CS), and its assignments, so that proving system implementations and frontends can in-
teract across language and API barriers.

We did not aim to develop standards for interoperability between backends implementing the same
(abstract) scheme, such as serialization formats for proofs (see the Extended Constraint-System
Interoperability section for further discussion).

3.4.1 Generic API

In order to help compare the performance and usability tradeoffs of proving system implemen-
tations, frontend application developers may wish to interact with the underlying proof systems
via a generic interface, so that proving systems can be swapped out and the tradeoffs observed in
practice. This also helps in an academic pursuit of analysis and comparison.

The abstract parties and objects in a NIZK are depicted in Figure 3.1.

31

https://docs.google.com/document/d/1aZ1GUAJOBFuqD4GOo9HqAH8w4xJo7HM4Bjte5-wkdnU/edit?usp=sharing

https://zkp.science

Section 3.4 APIs and File Formats

Language Gen pp Prover Proof

pp pp

Witness

Instance

Figure 3.1. Abstract parties and objects in a NIZK

We did not complete a generic API design for proving systems, but we did survey numerous tradeoffs
and design approaches for such an API that may be of future value.

We separate the APIs and interfaces between the universal and non-universal NIZK setting. In
the universal setting, the NIZK’s CRS generation is independent of the relation (i.e., one CRS
enables proving any NP statement). In the non-universal settings, the CRS generation depends on
the relation (represented as a constraint system), and a given CRS enables proving the statements
corresponding to any instance with respect to the specific relation.

Table 3.1: APIs and interfaces by types of universality and preprocessing

Preprocessing
(Generate has superpoly-
logarithmic runtime / output
size as function of constraint
system size)

Non-preprocessing
(Generate runtime and output
size is fast and CRS is at most
polylogarithmic in constraint sys-
tem size)

Non-universal
(Generate needs con-
straint system as input)

QAP-based [PHGR13],
[GGPR13b], [BCGTV13]

?

Universal
(Generate needs just a
size bound)

vnTinyRAM, vRAM, Bullet-
proofs (with explicit CRH)

Bulletproofs (with PRG-based
CRH generation)

32

Implementation

Universal and scalable
(Generate needs nothing
but security parameter)

(impossible) “Fully scalable” SNARKs based
on PCD (recursive composition)

In any case, we identified several capabilities that proving systems may need to express via a generic
interface:

1. The creation of CRS objects in the form of proving and verifying parameters, given the input
language or size bound.

2. The serialization of CRS objects into concrete encodings.

3. Metadata about the proving system such as the size and characteristic of the field (for arith-
metic constraints).

4. Witness objects containing private inputs known only to the prover, and Instance objects
containing public inputs known to the prover and verifier.

5. The creation of Proof objects when supplied proving parameters, an Instance, and a Witness.

6. The verification of Proof objects given verifying parameters and an Instance.

Future work: We would like to see a concrete API design which leverages our tentative model,
with additional work to encode concepts such as recursive composition and the batching of proving
and verification operations.

3.4.2 R1CS File Format

There are many frontends for constructing constraint systems, and many backends which consume
constraint systems (and variable assignments) to create or verify proofs. We focused on creating a
file format that frontends and backends can use to communicate constraint systems and variable
assignments. Goals include simplicity, ease of implementation, compactness and avoiding hard-
coded limits.

Our initial work focuses on R1CS due to its popularity and familiarity. Refer to the Security
Track document for more information about constraint systems. The design we arrived at is
tentative and requires further iteration. Implementation and specification work will appear at
https://github.com/zkpstandard/file_formats.

R1CS (Rank 1 Constraint Systems) is an NP-complete language for specifying relations as a sys-
tem of bilinear constraints (i.e., a rank 1 quadratic constraint system), as defined in [BCGTV13,
Appendix E in extended version]; this is a more intuitive reformulation of QAP QAP (Quadratic
Arithmetic Program), defined in [PHGR13]. R1CS is the native constraint system language of many
ZK proof constructions (see the Security Track document), including many ZK proof applications
in operational deployment.

Our proposed format makes heavy use of variable-length integers which are prevalent in the (space-
efficient) encoding of an R1CS. We refer to VarInt as a variable-length unsigned integer, and
SignedVarInt as a variable-length signed integer. We typically use VarInt for lengths or version

33

https://github.com/zkpstandard/file_formats

Section 3.4 APIs and File Formats

numbers, and SignedVarInt for field element constants. The actual description of a VarInt is not
yet specified.

We’ll be working with primitive variable indices of the following form:

ConstantVar ← SignedVarInt(0)
InstanceVar(i) ← SignedVarInt(-(i + 1))
WitnessVar(i) ← SignedVarInt(i + 1)
VariableIndex ← ConstantVar / InstanceVar(i) / WitnessVar(i)

ConstantVar represents an indexed constant in the field, usually assigned to one. InstanceVar
represents an indexed variable of the instance, or the public input, serialized with negative indices.
WitnessVar represents an indexed variable of the witness, or the private/auxiliary input, serialized
with positive indices. VariableIndex represents one of any of these possible variable indices.

We’ll also be working with primitive expressions of the following form:

Coefficient ← SignedVarInt
Sequence(Entry) ← | length: VarInt | length * Entry |
LinearCombination ← Sequence(| VariableIndex | Coefficient |)

• Coefficients must be non-zero.

• Entries should be sorted by type, then by index:
– | ConstantVar | sorted(InstanceVar) | sorted(WitnessVar) |

Constraint ←
| A: LinearCombination | B: LinearCombination | C: LinearCombination |

We represent a Coefficient (a constant in a linear combination) with a SignedVarInt. (TODO: there
is no constraint on its canonical form.) These should never be zero. We express a LinearCombi-
nation as sequences of VariableIndex and Coefficient pairs. Linear combinations should be sorted
by type and then by index of the VariableIndex; i.e., ConstantVar should appear first, InstanceVar
should appear second (ascending) and WitnessVar should appear last (ascending).

We express constraints as three LinearCombination objects A, B, C, where the encoded constraint
represents A * B = C.

The file format will contain a header with details about the constraint system that are important
for the backend implementation or for parsing.

Header(version, vals) ←
| version: VarInt | vals: Sequence(SignedVarInt) |

The vals component of the Header will contain information such as:

• P ← Field characteristic

• D ← Degree of extension

• N_X ← Number of instance variables

• N_W ← Number of witness variables

The representation of elements of extension fields is not currently specified, so D should be 1.

34

Implementation

The file format contains a magic byte sequence “R1CSstmt”, a header, and a sequence of constraints,
as follows:

R1CSFile ←
| "R1CSstmt" | Header(0, [P, D, N_X, N_W, …]) | Sequence(Constraint) |

Further values in the header are undefined in this specification for version 0, and should be ignored.
The file extension “.r1cs” is used for R1CS circuits.

Further work: We wish to have a format for expressing the assignments for use by the backend
in generating the proof. We reserve the magic “R1CSasig” and the file extention “.assignments”
for this purpose. We also wish to have a format for expressing symbol tables for debugging. We
reserve the magic “R1CSsymb” and the file extention “.r1cssym” for this purpose.

In the future we also wish to specify other kinds of constraint systems and languages that some
proving systems can more naturally consume.

3.5 Benchmarks

As the variety of zero-knowledge proof systems and the complexity of applications has grown, it
has become more and more difficult for users to understand which proof system is the best for their
application. Part of the reason is that the tradeoff space is high-dimensional. Another reason is
the lack of good, unified benchmarking guidelines. We aim to define benchmarking procedures that
both allow fair and unbiased comparisons to prior work and also aim to give enough freedom such
that scientists are incentivized to explore the whole tradeoff space and set nuanced benchmarks in
new scenarios and thus enable more applications.
The benchmark standardisation is meant to document best practices, not hard requirements. They
are especially recommended for new general-purpose proof systems as well as implementations
of existing schemes. Additionally the long-term goal is to enable independent benchmarking on
standardized hardware.

3.5.1 What metrics and components to measure

We recommend that as the primary metrics the running time (single-threaded) and the com-
munication complexity (proof size, in the case of non-interactive proof systems) of all compo-
nents should be measured and reported for any benchmark. The measured components should
at least include the prover and the verifier. If the setup is significant then this should also be
measured, further system components like parameter loading and number of rounds (for interactive
proof systems) are suggested.

The following metrics are additionally suggested:

• Parallelizability

• Batching

• Memory consumption (either as a precise measurement or as an upper bound)

• Operation counts (e.g., number of field operations, multi-exponentiations, FFTs and their

35

Section 3.5 Benchmarks

sizes)

• Disk usage/Storage requirement

• Crossover point: point where verifying is faster than running the computation

• Largest instance that can be handled on a given system

• Witness generation (this depends on the higher-level compiler and application)

• Tradeoffs between any of the metrics.

3.5.2 How to run the benchmarks

Benchmarks can be both of analytical and computational nature. Depending on the system either
may be more appropriate or they can supplement each other. An analytical benchmark consists of
asymptotic analysis as well as concrete formulas for certain metrics (e.g. the proof size). Ideally
analytical benchmarks are parameterized by a security level or otherwise they should report the
security level for which the benchmark is done, along with the assumptions that are being used.

Computational benchmarks should be run on a consistent and commercially available machine.
The use of cloud providers is encouraged, as this allows for cheap reproducibility. The machine
specification should be reported along with additional restrictions that are put on it (e.g. throt-
tling, number of threads, memory supplied). Benchmarking machines should generally fall into
one of the following categories and the machine description should indicate the category. If the
software implementation makes certain architectural assumptions (such as use of special hardware
instructions) then this should be clearly indicated.

• Battery powered mobile devices

• Personal computers such as laptops

• Server style machines with many cores and large memories

• Server clusters using multiple machines

• Custom hardware (should not be used to compare to software implementations)

We recommend that most runs are executed on a single-threaded machine, with parallelizability
being an optional metric to measure. The benchmarks should be obtained preferably for more than
one security level, following the recommendations stated in Sections 1.8.2 and 1.8.3.

In order to enable better comparisons we recommend that the metrics of other proof systems/
implementations are also run on the same machine and reported. The onus is on the library
developer to provide a simple way to run any instance on which a benchmark is reported. This
will additionally aid the reproducibility of results. Links to implementations will be gathered at
zkp.science and library developers are encouraged to ensure that their library is properly referenced.
Further we encourage scientific publishing venues to require the submission of source code if an
implementation is reported. Ideally these venues even test the reproducibility and indicate whether
results could be reproduced.

36

Implementation

3.5.3 What benchmarks to run

We propose a set of benchmarks that is informed by current applications of zero-knowledge proofs,
as well as by differences in proving systems. This list in no way complete and should be amended
and updated as new applications emerge and new systems with novel properties are developed.
Zero-knowledge proof systems can be used in a black-box manner on an existing application, but
often designing the application with a proof system in mind can yield large efficiency gains. To
cover both scenarios we suggest a set of benchmarks that include commonly used primitives (e.g.
SHA-256) and one where only the functionality is specified but not the primitives (e.g. a collision-
resistant hash function at 128-bit classical security).

Commonly used primitives. Here we list a set of primitives that both serve as microbench-
marks and are of separate interest. Library developers are free to choose how their library runs a
given primitive, but we will aid the process by providing circuit descriptions in commonly used file
formats (e.g. R1CS).

Recommended:

1. SHA-256

2. AES

3. A simple vector or matrix product at different sizes

Further suggestions:

- Zcash Sapling “spend” relation

- RC4 (for RAM memory access)

- Scrypt

- TinyRAM running for n steps with memory size s

- Number theoretic transform (coefficients to points): Small fields; Big fields; Pattern matching.

Repetition:

• The above relations, parallelized by putting n copies in parallel.

Functionalities. The following are examples of cryptographic functionalities that are especially
interesting to application developers. The realization of the primitive may be secondary, as long
as it achieves the security properties. It is helpful to provide benchmarks for a constraint-system
implementation of a realization of these primitives that is tailored for the NIZK backend.

In all of the following, the primitive underlying the ZKP statement should be given at a level of
128 bits or higher and match the security of the NIZK proof system.

• Asymmetric cryptography
- Signature verification
- Public key encryption
- Diffie Hellman key exchange over any group with 128 bit security

37

Section 3.6 Correctness and Trust

• Symmetric & Hash
- Collision-resistant hash function on a 1024-byte message
- Set membership in a set of size 220 (e.g., using Merkle authentication tree)
- MAC
- AEAD

• The scheme’s own verification circuit, with matching parameters, for recursive composition
(Proof-Carrying Data)

• Range proofs [Freely chosen commitment scheme]
- Proof that number is in [0, 264)

- Proof that number is positive

• Proof of permutation (proving that two committed lists contain the same elements)

3.6 Correctness and Trust

In this section we explore the requirements for making the implementation of the proof system
trustworthy. Even if the mathematical scheme fulfills the claimed properties (e.g., it is proven
secure in the requisite sense, its assumptions hold and security parameters are chosen judiciously),
many things can go wrong in the subsequent implementation: code bugs, structured reference
string subversion, compromise during deployment, side channels, tampering attacks, etc. This
section aims to highlight such risks and offer considerations for practitioners.

3.6.1 Considerations

Design of high-level protocol and statement. The specification of the high-level protocol
that invokes the ZK proof system (and in particular, the NP statement to be proven in zero
knowledge) may fail to achieve the intended domain-specific security properties.

Methodology for specifying and verifying these protocols is at its infancy, and in practice often relies
on manual review and proof sketches. Possible methods for attaining assurance include reliance on
peer-reviewed academic publications (e.g., Zerocash [BCGG+14] and Cinderella [DFKP16]) reuse of
high-level gadgets as discussed in the Applications Track, careful manual specification and proving
of protocol properties by trained cryptographers, and emerging tools for formal verification.

Whenever nontrivial optimizations are applied to a statement, such as algebraic simplification, or
replacement of an algorithm used in the original intended statement with a more efficient alternative,
those optimizations should be supported by proofs at an appropriate level of formality.

See the Applications Track document for further discussion.

Choice of cryptographic primitives. Traditional cryptographic primitives (hash functions,
PRFs, etc.) in common use are generally not designed for efficiency when implemented in circuits
for ZK proof systems. Within the past few years, alternative ”circuit-friendly” primitives have

38

Implementation

been proposed that may have efficiency advantages in this setting (e.g., LowMC and MiMC). We
recommend a conservative approach to assessing the security of such primitives, and advise that
the criteria for accepting them need to be as stringent as for the more traditional primitives.

Implementation of statement. The concrete implementation of the statement to be proven
by the ZK proof system (e.g., as a Boolean circuit or an R1CS) may fail to capture the high-level
specification. This risk increases if the statement is implemented in a low abstraction level, which
is more prone to errors and harder to reason about.

The use of higher-level specifications and domain-specific languages (see the Front Ends section)
can decrease the risk of this error, though errors may still occur in the higher-level specifications
or in the compilation process.

Additionally, risk of errors often arises in the context of optimizations that aim to reduce the size
of the statement (e.g., circuit size or number of R1CS constraints).

Note that correct statement semantics is crucial for security. Two implementations that use the
same high-level protocol, same constraint system and compatible backends may still fail to correctly
interoperate if their instance reductions (from high-level statement to the low-level input required
by the backend) are incompatible – both in completeness (proofs don’t verify) or soundness (causing
false but convincing proofs, implying a security vulnerability).

Side channels. Developers should be aware of the different processes in which side channel
attacks can be detrimental and take measure to minimize the side channels. These include:

- SRS generation — in some schemes, randomly sampled elements which are discarded can be
used, if exposed, to subvert the soundness of the system.

- Assignment generation / proving — the private auxiliary data can be exposed, which allows
the attacker to understand the secret data used for the proof.

Auditing. First of all, circuit designers should provide a high-level description of their circuit
and statement alongside the low-level circuit, and explain the connections between them.

The high-level description should facilitate auditing of the security properties of the protocol being
implemented, and whether these match the properties intended by the designers or that are likely
to be expected by users.

If the low-level description is not expressed directly in code, then the correspondence between
the code and the description should be clear enough to be checked in the auditing process, either
manually or with tool support.

A major focus of auditing the correctness and security of a circuit implementation will be in verifying
that the low-level description matches the high-level one. This has several aspects, corresponding
to the security properties of a ZK proof system:

• An instance for the low-level circuit must reveal no more information than an instance for the
high-level statement. This is most easily achieved by ensuring that it is a canonical encoding
of the high-level instance.

39

Section 3.6 Correctness and Trust

• It must not be possible to find an instance and witness for the low-level circuit that does not
correspond to an instance and witness for the high-level statement.

At all levels of abstraction, it is beneficial to use types to clarify the domains and representations
of the values being manipulated. Typically, a given proving system will not be able to *directly*
represent all of the types of value needed for a given high-level statement; instead, the values will
be encoded, for example as field elements in the case of R1CS-based proof systems. The available
operations on these elements may differ from those on the values they are representing; for instance,
field addition does not correspond to integer addition in the case of overflow.

An adversary who is attempting to prove an instance of the statement that was not intended to be
provable, is not necessarily constrained to using instance and witness variables that correspond to
these intended representations. Therefore, close attention is needed to ensuring that the constraint
system explicitly excludes unintended representations.

There is a wide space of design tradeoffs in how the frontend to a proof system can help to address
this issue. The frontend may provide a rich set of types suitable for directly expressing high-level
statements; it may provide only field elements, leaving representation issues to the frontend user;
it may provide abstraction mechanisms by which users can define new types; etc. Auditability of
statements expressed using the frontend should be a major consideration in this design choice.

If the frontend takes a ”gadget” approach to composition of statement elements, then it must be
clear whether each gadget is responsible for constraining the input and/or output variables to their
required types.

Testing. Methods to test constraint systems include:

- Testing for failure - does the implementation accept an assignment that should not be ac-
cepted?

- Fuzzing the circuit inputs.

- Finding missing constraints - e.g., missing boolean constraints on variables that represent
bits, or other missing type constraints.

- Finding dead constraints, and reporting them (instead of optimising out).

- Detection of unintended nondeterminism. For instance, given a partial fixed assignment, solve
for the remainder and check that there is only one solution.

A proof system implementation can support testing by providing access, for test and debugging
purposes, to the reason why a given assignment failed to satisfy the constraints. It should also
support injection of values for instance and witness variables that would not occur in normal use
(e.g. because they do not represent a value of the correct type). These features facilitate “white
box testing”, i.e. testing that the circuit implementation rejects an instance and witness for the
intended reason, rather than incidentally. Without this support, it is difficult to write correct tests
with adequate coverage of failure modes.

40

Implementation

3.6.2 SRS Generation

A prominent trust issue arises in proving systems which require a parameter setup process (struc-
tured reference string) that involves secret randomness. These may have to deal with scenarios
where the process is vulnerable or expensive to perform security. We explore the real world so-
cial and technical problems that these setups must confront, such as air gaps, public verifiability,
scalability, handing aborts, and the reputation of participants, and randomness beacons.

ZKP schemes require a URS (uniform reference string) or SRS (structured reference string) for their
soundness and/or ZK properties. This necessitates suitable randomness sources and, in the case of
a common reference string, a securely-executed setup algorithm. Moreover, some of the protocols
create reference strings that can be reused across applications. We thus seek considerations for
executing the setup phase of the leading ZKP scheme families, and for sharing of common resources.
This section summarizes an open discussion made by the participants of the Implementation Track,
aiming to provide considerations for practitioners to securely generate a CRS.

SRS subversion and failure modes. Constructing the SRS in a single machine might fit some
scenarios. For example, this includes a scenario where the verifier is a single entity — the one
who generates the SRS. In that scenario, an aspect that should be considered is subversion zero-
knowledge — a property of proving schemes allowing to maintain zero-knowledge, even if the SRS
is chosen maliciously by the verifier.

Strategies for subversion zero knowledge include:

- Using a multi-party computation to generate the SRS

- Adaptation of either [Gro16] [PHGR13]

- Updatable SRS - the SRS is generated once in a secure manner, and can then be specialized
to many different circuits, without the need to re-generate the SRS

There are other subversion considerations which are discussed in the ZKProof Security Track.

SRS generation using MPC In order to reduce the need of trust in a single entity generating
the SRS, it is possible to use a multi-party computation to generate the SRS. This method should
ideally be secure as long as one participant is honest (per independent computation phase). Some
considerations to strengthen the security of the MPC include:

- Have as many participants as possible
– Diversity of participants; reduce the chance they will collude
– Diversity of implementations (curve, MPC code, compiler, operating system, language)
– Diversity of hardware (CPU architecture, peripherals, RAM)

- One-time-use computers
- GCP / EC2 (leveraging enterprise security)

– If you are concerned about your hardware being compromised, then avoid side channels
(power, audio/radio, surveillance)

- Hardware removal:

41

Section 3.6 Correctness and Trust

- Remove WiFi/Bluetooth chip
- Disconnect webcam / microphone / speakers
- Remove hard disks if not needed, or disable swap

- Air gaps
– Deterministic compilation
– Append-only logs
– Public verifiability of transcripts
– Scalability
– Handling aborts
– Reputation

- Information extraction from the hardware is difficult
- Flash drives with hardware read-only toggle

Some protocols (e.g., Powers of Tau) also require sampling unpredictable public randomness. Such
randomness can be harnessed from proof of work blockchains or other sources of entropy such
as stock markets. Verifiable Delay Functions can further reduce the ability to bias these sources
[BBBF18]

SRS reusability For schemes that require an SRS, it may be possible to design an SRS generation
process that allows the re-usability of a part of the SRS, thus reducing the attack surface. A good
example of it is the Powers of Tau method for the Groth16 construction, where most of the SRS
can be reused before specializing to a specific constraint system.

Designated-verifier setting There are cases where the verifier is a known-in-advance single
entity. There are schemes that excel in this setting. Moreover, schemes with public verifiability
can be specialized to this setting as well.

3.6.3 Contingency plans

We would like to explore in future workshops the notion of contingency plans. For example, how
do we cope:

- With our proof system being compromised?

- With our specific circuit having a bug?

- When our ZKP protocol has been breached (identifying proofs with invalid witness, etc)

Some ideas that were discussed and can be expanded on are:

- Scheme-agility and protocol-agility in protocols - when designing the system, allow flexibility
for the primitives used

- Combiners (using multiple proof systems in parallel) - to reduce the reliance on a single proof
system, use multiple

42

https://github.com/ebfull/powersoftau

https://eprint.iacr.org/2016/260

Implementation

- Discuss ways to identify when ZKP protocol has been breached (identifying proofs with invalid
witness, etc)

3.7 Extended Constraint-System Interoperability

The following are stronger forms of interoperability which have been identified as desirable by
practitioners, and are to be addressed by the ongoing standardization effort.

3.7.1 Statement and witness formats

In the R1CS File Format section and associated resources, we define a file format for R1CS con-
straint systems. There remains to finalize this specification, including instances and witnesses. This
will enable users to have their choice of frameworks (frontends and backends) and streaming for
storage and communication, and facilitate creation of benchmark test cases that could be executed
by any backend accepting these formats.

Crucially, analogous formats are desired for constraint system languages other than R1CS.

3.7.2 Statement semantics, variable representation & mapping

Beyond the above, there’s a need for different implementations to coordinate the semantics of the
statement (instance) representation of constraint systems. For example, a high-level protocol may
have an RSA signature as part of the statement, leaving ambiguity on how big integers modulo a
constant are represented as a sequence of variables over a smaller field, and at what indices these
variables are placed in the actual R1CS instance.

Precise specification of statement semantics, in terms of higher-level abstraction, is needed for
interoperability of constraint systems that are invoked by several different implementations of the
instance reduction (from high-level statement to the actual input required by the ZKP prover and
verifier). One may go further and try to reuse the actual implementation of the instance reduction,
taking a high-level and possibly domain-specific representation of values (e.g., big integers) and
converting it into low-level variables. This raises questions of language and platform incompatibility,
as well as proper modularization and packaging.

Note that correct statement semantics is crucial for security. Two implementations that use the
same high-level protocol, same constraint system and compatible backends may still fail to cor-
rectly interoperate if their instance reductions are incompatible – both in completeness (proofs
don’t verify) or soundness (causing false but convincing proofs, implying a security vulnerability).
Moreover, semantics are a requisite for verification and helpful for debugging.

Some backends can exploit uniformity or regularity in the constraint system (e.g., repeating patterns
or algebraic structure), and could thus take advantage of formats and semantics that convey the
requisite information.

At the typical complexity level of today’s constraint systems, it is often acceptable to handle all of
the above manually, by fresh re-implementation based on informal specifications and inspection of

43

Section 3.7 Extended Constraint-System Interoperability

prior implementation. We expect this to become less tenable and more error prone as application
complexity grows.

3.7.3 Witness reduction

Similar considerations arise for the witness reduction, converting a high-level witness representation
(for a given statement) into the assignment to witness variables. For example, a high-level protocol
may use Merkle trees of particular depth with a particular hash function, and a high-level instance
may include a Merkle authentication path. The witness reduction would need to convert these
into witness variables, that contain all of the Merkle authentication path data (encoded by some
particular convention into field elements and assigned in some particular order) and moreover the
numerous additional witness variables that occur in the constraints that evaluate the hash function,
ensure consistency and Booleanity, etc.

The witness reduction is highly dependent on the particular implementation of the constraint
system. Possible approaches to interoperability are, as above: formal specifications, code reuse and
manual ad hoc compatibility.

3.7.4 Gadgets interoperability

At a finer grain than monolithic constraint systems and their assignments, there is need for sharing
subcircuits and gadgets. For example, libsnark offers a rich library of highly optimized R1CS
gadgets, which developers of several front-end compilers would like to reuse in the context of their
own constraint-system construction framework.

While porting chunks of constraints across frameworks is relatively straightforward, there are chal-
lenges in coordinating the semantics of the externally-visible variables of the gadget, analogous
to but more difficult than those mentioned above for full constraint systems: there is a need to
coordinate or reuse the semantics of a gadget’s externally-visible variables, as well as to coordinate
or reuse the witness reduction function of imported gadgets in order to converts a witness into an
assignment to the internal variables.

As for instance semantics, well-defined gadget semantics is crucial for soundness, completeness and
verification, and is helpful for debugging.

3.7.5 Procedural interoperability

An attractive approach to the aforementioned needs for instance and witness reductions (both at
the level of whole constraint systems and at the gadget level) is to enable one implementation
to invoke the instance/witness reductions of another, even across frameworks and programming
languages.

This requires communication not of mere data, but invocation of procedural code. Suggested ap-
proaches to this include linking against executable code (e.g., .so files or .dll), using some elegant
and portable high-level language with its associated portable, or using a low-level portable exe-
cutable format such as WebAssembly. All of these require suitable calling conventions (e.g., how
are field elements represented?), usage guidelines and examples.

44

Implementation

Beyond interoperability, some low-level building blocks (e.g., finite field and elliptic curve arith-
metic) are needed by many or all implementations, and suitable libraries can be reused. To a large
extent this is already happening, using the standard practices for code reuse using native libraries.
Such reused libraries may offer a convenient common ground for consistent calling conventions as
well.

3.7.6 Proof interoperability

Another desired goal is interoperability between provers and verifiers that come from different
implementations, i.e., being able to independently write verifiers that make consistent decisions
and being able to re-implement provers while still producing proofs that convince the old verifier.

This is especially pertinent in applications where proofs are posted publicly, such as in the context
of blockchains (see the Applications Track document), and multiple independent implementations
are desired for both provers and verifiers.

To achieve such interoperability, provers and verifiers must agree on all of the following:

• ZK proof system (including fixing all degrees of freedom, such as choice of finite fields and
elliptic curves)

• Instance and witness formats (see above subsection)

• Prover parameters formats

• Verifier parameters formats

• Proof formats

• A precise specification of the constraint system (e.g., R1CS) and corresponding instance and
witness reductions (see above subsection).

Alternatively: a precise high-level specification along with a precisely-specified, deterministic fron-
tend compilation.

3.7.7 Common reference strings

There is also a need for standardization regarding Common Reference String (CRS), i.e., prover
parameters and verifier parameters. First, interoperability is needed for streaming formats (com-
munication and storage), and would allow application developers to easily switch between different
implementations, with different security and performance properties, to suit their need. Moreover,
for Structured Reference Strings (SRS), there are nontrivial semantics that depend on the ZK proof
system and its concrete realization by backends, as well as potential for partial reuse of SRS across
different circuits in some schemes (e.g., the Powers of Tau protocol).

45

Section 3.8 Future goals

3.8 Future goals

3.8.1 Interoperability

Many additional aspects of interoperability remain to be analyzed and supported by standards,
to support additional ZK proof system backends as well as additional communication and reuse
scenarios. Work has begun on multiple fronts both, and a dedicated public mailing list is established.

Additional forms of interoperability. As discussed in the Extended Constraint-System Inter-
operability section above, even within the R1CS realm, there are numerous additional needs beyond
plain constraint systems and assignment representations. These affect security, functionality and
ease of development and reuse.

Additional relation styles. The R1CS-style constraint system has been given the most focus
in the Implementation Track discussions in the first workshop, leading to a file format and an
API specification suitable for it. It is an important goal to discuss other styles of constraint
systems, which are used by other ZK proof systems and their corresponding backends. This includes
arithmetic and Boolean circuits, variants thereof which can exploit regular/repeating elements, as
well as arithmetic constraint satisfaction problems.

Recursive composition. The technique of recursive composition of proofs, and its abstraction as
Proof-Carrying Data (PCD) [CT10; BCTV14], can improve the performance and functionality of
ZK proof systems in applications that deal with multi-stage computation or large amounts of data.
This introduces additional objects and corresponding interoperability considerations. For example,
PCD compliance predicates are constraint systems with additional conventions that determine their
semantics, and for interoperability these conventions require precise specification.

Benchmarks. We strive to create concrete reference benchmarks and reference platforms, to
enable cross-paper milliseconds comparisons and competitions.

We seek to create an open competition with well-specified evaluation criteria, to evaluate different
proof schemes in various well-defined scenarios.

3.8.2 Frontends and DSLs

We would like to expand the discussion on the areas of domain-specific languages, specifically in
aspects of interoperability, correctness and efficiency (even enabling source-to-source optimisation).

The goal of Gadget Interoperability, in the Extended Constraint-System Interoperability section,
is also pertinent to frontends.

3.8.3 Verification of implementations

We would to discuss the following subjects in future workshops, to assist in guiding towards best
practices: formal verification, auditing, consistency tests, etc.

46

https://groups.google.com/a/zkproof.org/forum/#!forum/interoperability

Chapter 4. Applications

4.1 Introduction

This chapter aims to overview existing techniques for building ZKP-based applications, including
designing the protocols to meet best-practice security requirements. We distinguish between high-
level and low-level applications, where the former are the protocols designed for specific use-cases
and the latter are the necessary underlying operations or sub-protocols. Each use case admits a
circuit, and we discuss the sub-circuits needed to ensure security and functionality of the protocol.
We refer to the circuits as predicates and the sub-circuits as gadgets:

• Predicate: The relation or condition that the statement and witness must satisfy. Can be
represented as a circuit.

• Gadget: The underlying tools needed to construct the predicate. In some cases, a gadget
can be interpreted as a security requirement (e.g., using the commitment verification gadget
is equivalent to ensuring the privacy of underlying data).

Recall from Section 1.5 the syntax of a proof system between a prover and verifier. As we will see,
the protocols can be abstracted and generalized to admit several use-cases; similarly, there exist
compilers that will generate the necessary gadgets from commonly used programming languages.
Creating the constraint systems is a fundamental part of the applications of ZKP, which is the
reason why there is a large variety of front-end software options available.

Functionality vs. performance. The design of ZKPs is subject to the tradeoff between func-
tionality and performance. Users would like to have powerful ZKPs, in the sense that the system
permits constructing proofs for any predicate, which leads to the necessity of universal ZKPs. On
the other hand, users would like to have efficient constructions. According to Table 3.4.1, it is
possible to classify ZKPs as: (i) universal or non-universal; (ii) scalable or non-scalable; and (iii)
preprocessing or non-preprocessing. Item (i) is related to the functionality of the underlying ZKP,
while items (ii) and (iii) are related to performance. The utilization of zk-SNARKs allows universal
ZKPs with very efficient verifiers. However, many proposals depend upon an expensive preprocess-
ing, which makes such systems hard to scale for some use-cases. A technique called Proof-Carrying
Data (PCD), originally proposed in Ref. [CT10], allows obtaining recursive composition for exist-
ing ZKPs in a modular way. This means that zk-SNARKs can be used as a building block to
construct scalable and non-preprocessing solutions. The result is not only an efficient verifier, as
in zk-SNARKs, but also a prover whose consumption of computational resources is efficient, in
particular with respect to memory requirements, as described in Refs. [BCTV17] and [BCCT13].

Organization. Section 4.2 mentions different types of verifiability properties of interest to ap-
plications. Section 4.3 enumerates some prior works. Section 4.4 describes possible gadgets useful
for diverse applications. The subsequent three sections present three ZKP use-cases: Section 4.5
describes a use-case related to identity management; Section 4.6 examines an application context
related to asset transfer; Section 4.7 exemplifies one use-case related to regulation compliance.

47

Section 4.2 Types of verifiability

4.2 Types of verifiability

Verifiability type. When designing ZK based applications, one needs to keep in mind which of
the following three models (that define the functionality of the ZKP) is needed:

1. Public. Publicly verifiable as a requirement: a scheme / use-case where there is a system
requirement that the proofs are transferable.

2. Designated. Designated verifier as a security feature: only the intended receiver of the proof
can verify it, making the proof non-transferable. This property can apply to both interactive
and non-interactive ZKPs.

3. Optional. There is no need to be able to transfer but also no non-transferability requirement.
This property is applicable both in the interactive and in the non-interactive model.

Section 2.2.3 discusses transferability vs. deniability, which is strongly related to aspects of public
verifiability vs. designated verifiability, both in the interactive and in the non-interactive settings.
As a use-case example, consider some application related to blockchain currency, where aspects of
user-privacy and regulatory-control are relevant.

Publicly-verifiable ZKPs can be appropriate when the validity of a transaction should be public
(e.g., so that everyone knows that some asset changed owner), while some supporting data needs to
remain private (e.g., the secret key of a blockchain address, controlling the ownership of the asset).
However, sometimes even the statement being proven should remain private beyond the scope of
the verifier, and therefore a non-transferable proof should be used. This may apply for example
to a proof of having enough funds available for a purchase, or also of knowing the secret key of a
certain blockchain address. Alice wants to prevent Bob from using the received proof to convince
Charley of the claims made by Alice. For that purpose, Alice can perform a deniability interactive
proof with Bob. Alternatively, Alice can send to Bob a (non-interactive) proof transcript built for
Bob as a designated verifier. Depending on the use case, both public-verifiability and designated-
verifiability may make sense as an application goal, and it is important to distinguish between
both.

The “designation of verifiers” allows resolving possible conflicts between authenticity and privacy
[JSI96]. For example, a voting center wants only Bob to be convinced that the vote he cast was
counted; the voting center designates Bob to be the one convinced by the validity of the proof, in
order to prevent a malicious coercer to force him to prove how he voted. Since the designated-verifier
proofs are non-transferable, Bob cannot transfer the proof even if he wants to.

Suppose Alice wants to convince only Bob that a statement θ is true. For that purpose, Alice can
prove the disjunction “Either θ is true or I know the secret key of Bob”. Given that Bob knows his
own secret key, Bob could have produced such proof by himself. Therefore, a third party Charlie
will not be convinced that θ is true after seeing such proof transcript sent from Bob. This holds
even if Bob shares his secret key to Charlie, or if the key has been publicly leaked.

Designated proofs are possible both in the interactive and non-interactive settings. In the interac-
tive setting (e.g., proving being the signer of an undeniable signature) the prover has the ability
to control when the verification takes place. However, in general (without a designated-verifier
approach) the prover may be unable to control who is able to verify the proof, namely if the verifier
is acting as a relay to another controlling party. The use of a designated proof has the potential

48

Applications

to solve this problem.

4.3 Previous works

This section includes an overview of some of the works and applications existing in the zero-
knowledge world. [Contribution needed: add more references.]

ZKP protocols for anonymous credentials have been studied extensively in academic spaces [CKS10;
BCDE+14; CDD17; BCDL+17; NVV18]. Products such as Miracl, Val:ID, Sovrin [Sov18], and
LibZmix [Mik19] offer practical solutions to achieve privacy-preserving identity frameworks.

Zerocash began as an academic work and was later developed into a product ensuring anonymous
transactions [BCGG+14]. Baby ZoE enables Zerocash over Ethereum [zca18]. HAWK also uses
zk-SNARKS to enable smart-contracts with transactional privacy [KMSWP16].

4.4 Gadgets within predicates

Formalizing the security of these protocols is a very difficult task, especially since there is no
predetermined set of requirements, making it an ad-hoc process. Use-cases must be sure to
distinguish between privacy requirements and security guarantees. We discuss the use-case case of
privacy-preserving asset transfer to illustrate the difference.

Secure asset transfer is possible at several financial institutions, provided that the institution has
knowledge of the identities of the sender, recipient, asset, and amount. In a privacy-preserving asset
transfer, the identities of sender and recipient may be concealed even from the entity administering
the transfer. It is important to note that a successful transfer must meet privacy requirements as
well as provide security guarantees.

Privacy requirements might include the anonymity of sender and recipient, concealment of asset
type and asset amount. Security guarantees might include the inability of anyone besides the sender
to initiate a transfer on the sender’s behalf or the inability of a sender to execute a transfer of asset
type without sufficient holdings of the asset.

Here we outline a set of initial gadgets to be taken into account. See Table 4.1 for a simple list
of gadgets — this list should be expanded continuously and on a case by case basis. For each of
the gadgets we write the following representations, specifying what is the secret / witness, what is
public / statement:

NP statements for non-technical people:

For the [public] chess board configurations A and B;
I know some [secret] sequence S of chess moves;
such that when starting from configuration A, and applying S, all moves are
legal and the final configuration is B.

General form (Camenisch-Stadler): Zk { (wit): P(wit, statement) }

Example of ring signature: Zk { (sig): VerifySignature(P1, sig) or VerifySignature(P2,

49

Section 4.4 Gadgets within predicates

sig) }

Table 4.1: List of gadgets

Gadget name English description of the initial gadget
(before adding ZKP)

Table with
examples

G1 Commitment Envelope Table 4.2

G2 Signatures Signature authorization letter Table 4.3

G3 Encryption Envelope with a receiver stamp Table 4.4

G4 Distributed decryption Envelope with a receiver stamp that requires
multiple people to open

Table 4.5

G5 Random function Lottery machine Table 4.6

G6 Set membership Whitelist/blacklist Table 4.7

G7 Mix-net Ballot box Table 4.8

G8 Generic circuits, TMs,
or RAM programs

General calculations Table 4.9

Table 4.2: Commitment gadget (G1; envelope)

Enhanced gadget (after
adding ZKP)

ZKP statement (in
a PoK notation)

Prover knows a wit-
ness ...

...for the pub-
lic instance ...

...s.t. the following
predicate holds

I know the value hidden inside
this envelope, even though I
cannot change it

Knowledge of com-
mitted value(s)
(openings)

Opening O = (v, r)
containing a value
and randomness

Commitment
C

C = Comm(v, r)

I know that the value hidden
inside these two envelopes are
equal

Equality of com-
mitted values

Openings
O1 = (v, r1) and
O2 = (v, r2)

Commitments
C1 and C2

C1 = Comm(v, r1)
and C2 =
Comm(v, r2)

I know that the values hidden
inside these two envelopes are
related in a specific way

Relationships be-
tween committed
values – logical,
arithmetic, etc.

Openings
O1 = (v1, r1)
and O2 = (v2, r2)

Commitments
C1 and C2,
relation R

C1 = Comm(v1, r1),
C2 = Comm(v2, r2),
and R(v1, v2) = True

The value inside this envelope
is within a particular range

Range proofs Opening O = (v, r) Commitment
C, interval I

C = Comm(v, r) and
v is in the range I

50

Applications

Table 4.3: Signature gadget (G2; signature authorization letter)

Enhanced gadget
(after adding ZKP)

ZKP statement (in a PoK no-
tation)

Prover knows
a witness ...

...for the public
instance ...

...s.t. the following
predicate holds

Secret valid signa-
ture over commonly
known message

Knowledge of a secret signa-
ture σ on a commonly known
message M

Signature σ Verification key
V K, message M

Verify(V K,M, σ) =
True

Secret valid signa-
ture over committed
message

Knowledge of a secret signa-
ture σ on a commonly known
commitment C of a secret
message M

Opening O,
signature σ

Verification key
V K, commit-
ment C

C = Comm(M) and
Verify(V K,M, σ) =
True

Table 4.4: Encryption gadget (G3; envelope with a receiver stamp)

Enhanced gadget (after
adding ZKP)

ZKP statement (in
a PoK notation)

Prover knows a
witness ...

...for the public in-
stance ...

...s.t. the following
predicate holds

The output plaintext(s) cor-
respond to the public ci-
phertext(s).

Knowledge of a se-
cret plaintext M

Secret decryption
key SK

Ciphertext(s) C
and Encryption
key PK

Dec(SK,C) = M ,
component-wise if ∃
multiple C and M

Table 4.5: Distributed-decryption gadget (G4; envelope with a receiver stamp that requires
multiple people to open)

Enhanced gadget (after
adding ZKP)

ZKP statement (in
a PoK notation)

Prover knows a
witness ...

...for the pub-
lic instance ...

...s.t. the following predi-
cate holds

The output plaintext(s)
correspond to the public
ciphertext(s).

Knowledge of a se-
cret plaintext M

Secret shares [SKi]
of the decryption
key SK

Ciphertext(s)
C and En-
cryption key
PK

SK = Derive([SKi]) and
Dec(SK,C) = M , compo-
nent-wise if ∃ multiple C

Table 4.6: Random-function gadget (G5; lottery machine)

Enhanced gadget
(after adding ZKP)

ZKP statement (in a PoK notation) Prover knows a
witness ...

...for the pub-
lic instance ...

...s.t. the following
predicate holds

Verifiable random
function (VRF)

VRF was computed from a secret
seed and a public (or secret) input

Secret seed W Input X,
Output Y

Y = V RF (W,X)

51

Section 4.4 Gadgets within predicates

Table 4.7: Set-membership gadget (G6; whitelist/blacklist)

Enhanced gadget
(after adding ZKP)

ZKP statement (in a PoK
notation)

Prover knows a
witness ...

...for the public
instance ...

...s.t. the following
predicate holds

Accumulator Set inclusion Secret element X Public set S X ∈ S

Universal accumula-
tor

Set non-inclusion Secret element X Public set S X /∈ S

Merkle Tree Element occupies a certain
position within the vector

Secret element X Public vector V X = V [i] for some i

Table 4.8: Mix-net gadget (G7; ballot box)

Enhanced gadget
(after adding ZKP)

ZKP statement (in a PoK nota-
tion)

Prover knows
a witness ...

...for the public
instance ...

...s.t. the following
predicate holds

Shuffle The set of plaintexts in the in-
put and the output ciphertexts
respectively are identical.

Permutation
π, Decryption
key SK

Input ciphertext
list C and Output
ciphertext list C′

∀j,Dec(SK, π(Cj)) =
Dec(SK,C′

j)

Shuffle and reveal The set of plaintexts in the input
ciphertexts is identical to the set
of plaintexts in the output.

Permutation
π, Decryption
key SK

Input ciphertext
list C and Output
plaintext list P

∀j,Dec(SK, π(Cj)) =
Pj

Table 4.9: Generic circuits, TMs, or RAM programs gadgets (G8; general calculations)

Enhanced gadget (after
adding ZKP)

ZKP statement (in a
PoK notation)

Prover knows a
witness ...

...for the public instances.t. the fol-
lowing predi-
cate holds

There exists some secret
input that makes this
calculation correct

ZK proof of correctness
of circuit/Turing ma-
chine/RAM program
computation

Secret input w Program C (either a cir-
cuit, TM, or RAM pro-
gram), public input x, out-
put y

C(x,w) = y

This calculation is cor-
rect, given that I already
know that some sub-
calculation is correct

ZK proof of verification
+ post-processing of
another output (Com-
position)

Secret input w Program C with subrou-
tine C′, public input x,
output y, intermediate
value z = C′(x,w), zk
proof π that z = C′(x,w)

C(x,w) = y

52

Applications

4.5 Identity framework

4.5.1 Overview

In this section we describe identity management solutions using zero knowledge proofs. The idea
is that some user has a set of attributes that will be attested to by an issuer or multiple issuers,
such that these attestations correspond to a validation of those attributes or a subset of them.

After attestation it is possible to use this information, hereby called a credential, to generate a
claim about those attributes. Namely, consider the case where Alice wants to show that she is
over 18 and lives in a country that belongs to the European Union. If two issuers were responsible
for the attestation of Alice‘s age and residence country, then we have that Alice could use zero
knowledge proofs in order to show that she possesses those attributes, for instance she can use zero
knowledge range proofs to show that her age is over 18, and zero knowledge set membership to
prove that she lives in a country that belongs to the European Union. This proof can be presented
to a Verifier that must validate such proof to authorize Alice to use some service. Hence there are
three parties involved: (i) the credential holder; (ii) the credential issuer; (iii) and the verifier.

4.5.2 Motivation for Identity and Zero Knowledge

Digital identity has been a problem of interest to both academics and industry practitioners since
the creation of the internet. Specifically, it is the problem of allowing an individual, a company,
or an asset to be identified online without having to generate a physical identification for it, such
as an ID card, a signed document, a license, etc. Digitizing Identity comes with some unique
risks, loss of privacy and consequent exposure to Identity theft, surveillance, social engineering and
other damaging efforts. Indeed, this is something that has been solved partially, with the help
of cryptographic tools to achieve moderate privacy (password encryption, public key certificates,
internet protocols like TLS and several others). Yet, these solutions are sometimes not enough
to meet the privacy needs to the users / identities online. Cryptographic zero knowledge proofs
can further enhance the ability to interact digitally and gain both privacy and the assurance of
legitimacy required for the correctness of a process.

The following is an overview of the generalized version of the identity scheme. We define the
terminology used for the data structures and the actors, elaborate on what features we include and
what are the privacy assurances that we look for.

4.5.3 Terminology / Definitions

In this protocol we use several different data structures to represent the information being trans-
ferred or exchanged between the parties. We have tried to generalize the definitions as much as
possible, while adapting to the existing Identity standards and previous ZKP works.

Attribute. The most fundamental information about a holder in the system (e.g.: age, nation-
ality, univ. Degree, pending debt, etc.). These are the properties that are factual and from which
specific authorizations can be derived.

53

Section 4.5 Identity framework

(Confidential and Anonymous) Credential. The data structure that contains attribute(s)
about a holder in the system (e.g.: credit card statement, marital status, age, address, etc). Since
it contains private data, a credential is not shareable.

(Verifiable) Claim. A zero-knowledge predicate about the attributes in a credential (or many of
them). A claim must be done about an identity and should contain some form of logical statement
that is included in the constraint system defined by the zk-predicate.

Proof of Credential. The zero knowledge proof that is used to verify the claim attested by the
credential. Given that the credential is kept confidential, the proof derived from it is presented as
a way to prove the claim in question.

The following are the different parties present in the protocol:

Holder. The party whose attributes will be attested to. The holder holds the credentials that
contain his / her attributes and generates Zero Knowledge Proofs to prove some claim about these.
We say that the holder presents a proof of credential for some claim.

Issuer. The party that attests attributes of holders. We say that the issuer issues a credential to
the holder.

Verifier. The party that verifies some claim about a holder by verifying the zero knowledge proof
of credential to the claim.

Remark: The main difference between this protocol and a non-ZK based Identity protocol is the
fact that in the latter, the holder presents the credentials themselves as the proof for the claim
/ authorization, whereas in this protocol, the holder presents a zero knowledge proof that was
computed from the credentials.

4.5.4 The Protocol Description

Functionality. There are many interesting features that we considered as part of the identity
protocol. There are four basic functionalities that we decided to include from the get go:

(1) third party anonymous and confidential attribute attestations through credential issuance
by the issuer;

(2) confidentially proving claims using zero knowledge proofs through the presentation of proof
of credential by the holder;

(3) verification of claims through zero knowledge proof verification by the verifier; and

(4) unlinkable credential revocation by the issuer.

There are further functionalities that we find interesting and worth exploring but that we did not
include in this version of the protocol. Some of these are credential transfer, authority delegation
and trace auditability. We explain more in detail what these are and explore ways they could be
instantiated.

54

Applications

Privacy requirements. One should aim for a high level of privacy for each of the actors in
the system, but without compromising the correctness of the protocol. We look at anonymity
properties for each of the actors, confidentiality of their interactions and data exchanges, and
at the unlinkability of public data (in committed form). These usually can be instantiated as
cryptographic requirements such as commitment non-malleability, indistinguishability from random
data, unforgeability, accumulator soundness or as statements in zero-knowledge such as proving
knowledge of preimages, proving signature verification, etc.

• Holder anonymity: the underlying physical identity of the holder must be hidden from the
general public, and if needed from the issuer and verifier too. For this we use pseudo-random
strings called identifiers, which are tied to a secret only known to the holder.

• Issuer anonymity: only the holder should know what issuer issued a specific credential.

• Anonymous credential: when a holder presents a credential, the verifier may not know who
issued the certificate. He / She may only know that the credential was issued by some
approved issuer.

• Holder untraceability: the holder identifiers and credentials can’t be used to track holders
through time.

• Confidentiality: no one but the holder and the issuer should know what the credential at-
tributes are.

• Identifier linkability: no one should be able to link two identifier unless there is a proof
presented by the holder.

• Credential linkability: No one should be able to link two credentials from the publicly available
data. Mainly, no two issuers should be able to collude and link two credentials to one same
holder by using the holder’s digital identity.

In depth view. For the specific instantiation of the scheme, we examine in Tables 4.10–4.13
the different ways that these requirements can be achieved and what are the trade-offs to be done
(e.g.: using pairwise identifiers vs. one fixed public key; different revocation mechanisms; etc.) and
elaborate on the privacy and efficiency properties of each.

Functionalities vs. privacy and robustness requirements. The following four tables de-
scribe, for four functionalities/problems, Several aspects of instantiation method, proof details and
privacy/robustness are described in the following four tables related to four functionalities/problems:

• Table 4.10: Holder identification

• Table 4.11: Issuer identification

• Table 4.12: Credential issuance

• Table 4.13: Credential revocation

55

Section 4.5 Identity framework

Table 4.10: Holder identification: how to identify a holder of credentials

Instantiation Method Proof Details Privacy / Robustness

Single identifier in the feder-
ated realm: PRF based Public
Key (idPK) derived from the
physical ID of the entity and
attested / onboarded by a fed-
eral authority

- The first credential an entity
must get is the onboarding cre-
dential that attests to its iden-
tity on the system

- Any proof of credential gener-
ated by the holder must include
a verification that the idPK was
issued an onboarding credential

- Physical identity is hidden yet connected to
the public key.

- Issuers can collude to link different creden-
tials by the same holder.

- An entity can have only one identity in the
system

Single identifier in the self-
sovereign realm: PRF based
Public Key (idPK) self derived
by the entity.

- Any proof of credential must
show the holder knows the
preimage of the idPK and that
the credential was issued to the
idPK in question

- Physical identity is hidden and does not nec-
essarily have to be connected to the public
key

- Issuers can collude to link different creden-
tials by the same holder

- An entity can have several identities and
conveniently forget any of them upon is-
suance of a “negative credential”

Multiple identifiers: Pairwise
identification through identi-
fiers. For each new inter-
action the holder generates a
new identifier.

- Every time a holder needs to
connect to a previous issuer, it
must prove a connection of the
new and old identifiers in ZK

- Any proof of credential must
show the holder knows the se-
cret of the identifier that the
credential was issued to.

- Physical identity is hidden and does not nec-
essarily have to be connected to the public
key

- Issuers cannot collude to link the credentials
by the same holder

- An entity can have several identities and
conveniently forget any of them upon is-
suance of a “negative credential”

56

Applications

Table 4.11: Issuer identification

Instantiation Method Proof Details Privacy / Robustness

Federated permissions: there is a list
of approved issuers that can be up-
dated by either a central authority
or a set of nodes

- To accept a credential one must
validate the signature against one
from the list. To maintain the
anonymity of the issuer, ring sig-
natures can be used

- For every proof of credential, a
holder must prove that the signa-
ture in its credential is of an issuer
in the approved list

- The verifier / public would not
know who the issuer of the cre-
dential is but would know it is ap-
proved.

Free permissions: anyone can be-
come an issuer, which use identifiers:

- Public identifier: type 1 is the is-
suer whose signature verification
key is publicly available

- Pair-wise identifiers: type 2 is the
issuer whose signature verification
key can be identified only pair-wise
with the holder / verifier

- The credentials issued by type 1 is-
suers can be used in proofs to un-
related parties

- The credentials issued by type 2 is-
suers can only be used in proofs
to parties who know the issuer in
question.

- If ring signatures are used, the type
one issuer identifiers would not im-
ply that the identity of the issuer
can be linked to a credential, it
would only mean that “Key K_a
belongs to company A”

- Otherwise, only the type two is-
suers would be anonymous and un-
linkable to credentials

Table 4.12: Credential Issuance

Instantiation Method Proof Details Privacy / Robustness

Blind signatures: the issuer signs
on a commitment of a self-
attested credential after seeing
a proof of correct attestation; a
second kind of proof would be
needed in the system

- The proof of correct attestation must
contain the structure, data types,
ranges and credential type that the is-
suer allows

- In some cases, the proof must contain
verification of the attributes themselves
(e.g.: address is in Florida, but not
know the city)

– The proof of credential must not be
accepted if the signature of the cre-
dential was not verified either in zero-
knowledge or as part of some public
verification

- Issuer’s signatures on credentials
add limited legitimacy: a holder
could add specific values / at-
tributes that are not real and the
issuer would not know

- An Issuer can collude with a
holder to produce blind signatures
without the issuer being blamed

In the clear signatures: the issuer
generates the attestation, sign-
ing the commitment and sending
the credential in the clear to the
holder

- The proof of credential must not be
accepted if the signature of the cre-
dential was not verified either in zero-
knowledge or as part of some public ver-
ification

- Issuer must be trusted, since she
can see the Holder’s data and
could share it with others

- The signature of the issuer can be
trusted and blame could be allo-
cated to the issuer

57

Section 4.5 Identity framework

Table 4.13: Credential Revocation

Instantiation Method Proof Details Privacy / Robustness

Credential Revocation
Positive accumulator revo-
cation: the issuer revokes
the credential by removing
an element from an accu-
mulator [BCDL+17]

- The holder must prove set membership of
a credential to prove it was issued and was
not revoked at the same time

- The issuer can revoke a credential by re-
moving the element that represents it from
the accumulator

- If the accumulator is maintained by
a central authority, then only the au-
thority can link the revocation to the
original issuance, avoiding timing at-
tacks by general parties (join-revoke
linkability)

- If the accumulator is maintained
through a public state, then there can
be linkability of revocation with is-
suance since one can track the added
values and test its membership

Negative accumulator re-
vocation: the issuer re-
vokes by adding an element
to an accumulator

- The holder must prove set membership of
a credential to prove it was issued

- The issuer can revoke a credential by
adding to the negative accumulator the re-
vocation secret related to the credential to
be revoked

- The holder must prove set non-
membership of a revocation secret
associated to the credential in question

- The verifier must use the most recent ver-
sion of the accumulator to validate the
claim

- Even when the accumulator is main-
tained through a public state, the re-
vocation cannot be linked to the is-
suance since the two events are inde-
pendent of each other

Gadgets. Each of the methods for instantiating the different functionalities use some of the
following gadgets that have been described in the Gadgets section. There are three main parts to
the predicate of any proof.

1. The first is proving the veracity of the identity, in this case the holder, for which the following
gadgets can / should be used:
• Commitment for checking that the identity has been attested to correctly.
• PRF for proving the preimage of the identifier is known by the holder
• Equality of strings to prove that the new identifier has a connection to the previous

identifier used or to an approved identifier.

2. Then there is the part of the constraint system that deals with the legitimacy of the creden-
tials, the fact that it was correctly issued and was not revoked.
• Commitment for checking that the credential was correctly committed to.
• PRF for proving that the holder knows the credential information, which is the preimage

of the commitment .
• Equality of strings to prove that the credential was issued to an identifier connected

to the current identifier.

58

Applications

• Accumulators (Set membership / non-membership) to prove that the commit-
ment to the credential exists in some set (usually an accumulator), implying that it was
issued correctly and that it was not revoked.

3. Finally there is the logic needed to verify the rules / constraints imposed on the attributes
themselves. This part can be seen as a general gadget called “credentials”, which allows to
verify the specific attributes embedded in a credential. Depending on the credential type, it
uses the following low level gadgets:
• Data Type used to check that the data in the credential is of the correct type
• Range Proofs used to check that the data in the credential is within some range
• Arithmetic Operations (field arithmetic, large integers, etc.) used for verifying

arithmetic operations were done correctly in the computation of the instance.
• Logical Operators (bigger than, equality, etc.) used for comparing some value in

the instance to the data in the credentials or some computation derived from it.

Security caveats

1. If the Issuer colludes with the Verifier, they could use the revocation mechanism to reveal
information about the Holder if there is real-time sharing of revocation information.

2. Furthermore, if the commitments to credentials and the revocation information can be tracked
publicly and the events are dependent of each other (e.g.: revocation by removing a commit-
ment), then there can be linkability between issuance and revocation.

3. In the case of self-attestation or collusion between the issuer and the holder, there is a much
lower assurance of data integrity. The inputs to the ZKP could be spoofed and then the proof
would not be sound.

4. The use of Blockchains create a reliance on a trusted oracle for external state. On the other
hand, the privacy guaranteed at blockchain-content level is orthogonal to network-level traffic
analysis.

4.5.5 A use-case example of credential aggregation

We are going to focus our description on a specific use case: accredited investors. In this scenario
the credential holder will be able to show that she is accredited without revealing more information
than necessary to prove such a claim.

Use-case description. As a way to illustrate the above protocol, we present a specific use-case
and explicitly write the predicate of the proof. Mainly, there is an identity, Alice, who wants to
prove to some company, Bob Inc. that she is an accredited investor, under the SEC rules, in order
to acquire some company shares. Alice is the prover; the IRS, the AML entity and The Bank are
all issuers; and Bob Inc. is the verifier.

The different processes in the adaptation of the use-case are the following:

59

Section 4.5 Identity framework

1. Three confidential credentials are issued to Alice which represent the rules that we apply on
an entity to be an accredited investor1:
(a) The IRS issues a tax credential, C0, that testifies to the claim “from 1/1/2017 until

1/1/2018, Alice, with identifier X0, owes 0$ to the IRS, with identifier Y ” and holds two
attributes: the net income of Alice, $income, and a bit b such that b = 1 if Alice has
paid her taxes.

(b) The AML entity issues a KYC credential, C1, that testifies to claim T1:= “Alice, with
identifier X1, has NO relation to a (set of) blacklisted organization(s)”

(c) The Bank issues a net-worth credential, C2, that testifies to claim T2:= “Alice has a net
worth of V Alice”

2. Alice then proves to Bob Inc. that:
(a) “Alice’s identifier, XBob, is related to the identifiers, Xi for i = 0, 1, 2 that are connected

to the confidential credentials Ci”
(b) “I know the credentials, which are the preimage of some commitment, Ci, were issued

by the legitimate issuers”
(c) “The credentials, which are the preimage of some commitment, Ci, that exist in an

accumulator, U , satisfy the three statements Ti”

Instantiation details. Based on the different options laid out in the table above, the following
have been used:

• Holder identification: we instantiate the identifiers as a unique anonymous identifier, pub-
licKey

• Issuance identification: the identity of the issuers is known to all the participants, who can
publicly verify the signature on the credentials they issue2.

• Credential issuance: credentials are issued by publishing a signed commitment to a positive
accumulator and sharing the credential in the clear to Alice.

• Credential revocation: is done by removing the commitment of credential from a dynamic and
positive accumulator. Alice must prove membership of commitment to show her credential
was not revoked.

• Credential verification: Bob Inc. then verifies the cryptographic proof with the instance.

Note that the transfer of company shares as well as the issuance of company shares is outside of the
scope of this use-case, but one could use the “Asset Transfer” section of this document to provide
that functionality.

On another note, the fact that the proving and verification keys were validated by the SEC is an
assurance to Bob Inc. that proof verification implies Alice is an accredited investor.

1We assume that the SEC generates the constraint system for the accreditation rules as the circuit used to generate
the proving and verification keys. In the real scenario, here are the Federal Rules for accreditation.

2With public signature verification keys that are hard coded into the circuit

60

https://www.ecfr.gov/cgi-bin/retrieveECFR?gp=&SID=8edfd12967d69c024485029d968ee737&r=SECTION&n=17y3.0.1.1.12.0.46.176

Applications

The Predicate

• Blue = publicly visible in protocol / statement

• Red = secret witness, potentially shared between parties when proving

Definitions / Notation:

Public state: Accumulator, for issuance and revocation, which includes all the commitments to the
credentials.

ConfCred = Commitment to Cred = { Revoke, certificateType, publicKey, Attribute(s) }

Where, again, the IRS, AML and Bank are authorities with well-known public keys. Alice’s pub-
licKey is her long term public key and one cannot create a new credential unless her long term ID
has been endorsed. The goal of the scheme is for the holder to create a fresh proof of confidential
aggregated credentials to the claim of accredited investor.

IRS issues a ConfCredIRS = Commitment(openIRS, revokeIRS, “IRS”, myID, $Income, b), sigIRS
AML issues ConfCredAML= Commitment(openAML, revokeAML, “AML”, myID, “OK”), sigAML

Holder generates a fresh public key freshCred to serve as an ephemeral blinded aggregate credential,
and a ZKP of the following:

ZkPoK{ (witness: myID, ConfCredIRS, ConfCredAML, sigIRS, sigAML, $Income, , mySig, openIRS,
openAML statement: freshCred, minIncomeAccredited) : Predicate:

- ConfCredIRS is a commitment to the IRS credential (openIRS, “IRS”, myID, $Income)

- ConfCredAML is the AML crdential to (openAML, “AML”, myID, “OK”)

- $Income >= minIncomeAccredited

- b = 1 = “myID paid full taxes”

- mySig is a signature on freshCred for myID

- ProveNonRevoke()

}

Present the credential to relying party: freshCred and zkp.

ProveNonRevoke(rhIRS, w_hrIRS, rhAML, w_hrAML, a_IRS

• revokeIRS: revocation handler from IRS. Can be embedded as an attribute in ConfCredtIRS
and is used to handle revocations.

• witrhIRS: accumulator witness of revokeIRS.

• revokeAML: revocation handler from AML. Can be embedded as an attribute in ConfCredtAML
and is used to handle revocations.

• witrhAML: accumulator witness of revokeAML.

• accIRS: accumulator for IRS.

61

Section 4.6 Asset Transfer

• CommRevokeIRS: commitment to revokeIRS. The holder generates a new commitment for
each revocation to avoid linkability of proofs.

• accAML: accumulator for AML.

• CommRevokeAML: commitment to revokeAML. The holder generates a new commitment for
each revocation to avoid linkability of proofs.

ZkPoK{ (witness: rhIRS, openrhIRS, wrhIRS, rhAML, openrhAML, wrhAML|| statements: CIRS, aIRS,
CAML, aAML): Predicate:

- CIRS is valid commitment to (openrhIRS, rhIRS)

- rhIRS is part of accumulator aIRS, under witness wrhIRS

- rhIRS is an attribute in CertIRS

- CAML is valid commitment to (openrhAML, rhAML)

- rhAML is part of accumulator aAML, under witness wrhAML

- rhAML is an attribute in CertAML

}

- myCred is unassociated with myID, with sigIRS, sigAML etc.

- Withstands partial compromise: even if IRS leaks myID and sigIRS, it cannot be used to
reveal the sigAML or associated myID with myCred

4.6 Asset Transfer

4.6.1 Privacy-preserving asset transfers and balance updates

In this section, we examine two use-cases involving using ZK Proofs (ZKPs) to facilitate private
asset-transfer for transferring fungible or non-fungible digital assets. These use-cases are motivated
by privacy-preserving cryptocurrencies, where users must prove that a transaction is valid, without
revealing the underlying details of the transaction. We explore two different frameworks, and
outline the technical details and proof systems necessary for each.

There are two dominant paradigms for tracking fungible digital assets, tracking ownership of assets
individually, and tracking account balances. The Bitcoin system introduced a form of asset-tracking
known as the UTXO model, where Unspent Transaction Outputs correspond roughly to single-use
“coins”. Ethereum, on the other hand, uses the balance model, and each account has an associated
balance, and transferring funds corresponds to decrementing the sender’s balance, and incrementing
the receiver’s balance accordingly.

These two different models have different privacy implications for users, and have different rules
for ensuring that a transaction is valid. Thus the requirements and architecture for building ZK
proof systems to facilitate privacy-preserving transactions are slightly different for each model, and
we explore each model separately below.

62

Applications

In its simplest form, the asset-tracking model can be used to track non-fungible assets. In this
scenario, a transaction is simply a transfer of ownership of the asset, and a transaction is valid if:
the sender is the current owner of the asset. In the balance model (for fungible assets), each account
has a balance, and a transaction decrements the sender’s account balance while simultaneously
incrementing the receivers. In a “balance” model, a transaction is valid if 1) The amount the
sender’s balance is decremented is equal to the amount the receiver’s balance is incremented, 2)
The sender’s balance remains non-negative 3) The transaction is signed using the sender’s key.

4.6.2 Zero-Knowledge Proofs in the asset-tracking model

In this section, we describe a simple ZK proof system for privacy-preserving transactions in the
asset-tracking (UTXO) model. The architecture we outline is essentially a simplification of the
ZCash system. The primary simplification is that we assume that each asset (“coin”) is indivisible.
In other words, each asset has an owner, but there is no associated value, and a transaction is
simply a transfer of ownership of the asset.

Motivation: Allow stakeholders to transfer non-fungible assets, without revealing the ownership
of the assets publicly, while ensuring that assets are never created or destroyed.

Parties: There are three types of parties in this system: a Sender, a Receiver and a distributed
set of validators. The sender generates a transactions and a proof of validity. The (distributed)
validators act as verifiers and check the validity of the transaction. The receiver has no direct role,
although the sender must include the receiver’s public-key in the transaction.

What is being proved: At high level, the sender must prove three things to convince the
validators that a transaction is valid.

• The asset (or “note”) being transferred is owned by the sender. (Each asset is represented by
a unique string)

• The sender proves that they have the private spending keys of the input notes, giving them
the authority to send asset.

• The private spending keys of the input assets are cryptographically linked to a signature over
the whole transaction, in such a way that the transaction cannot be modified by a party who
did not know these private keys.

What information is needed by the verifier:

• The verifiers need access to the CRS used by the proof system

• The validators need access to the entire history of transactions (this includes all UTXOs,
commitments and nullifiers as described later). This history can be stored on a distributed
ledger (e.g. the Bitcoin blockchain)

Possible attacks:

• CRS compromise: If an attacker learns the private randomness used to generate the CRS,
the attacker can forge proofs in the underlying system

• Ledger attacks: validating a transaction requires reading the entire history of transactions,
and thus a verifier with an incorrect view of the transaction history may be convinced to

63

Section 4.6 Asset Transfer

accept an incorrect transaction as valid.

• Re-identification attacks: The purpose of incorporating ZKPs into this system is to facilitate
transactions without revealing the identities of the sender and receiver. If anonymity is not
required, ZKPs can be avoided altogether, as in Bitcoin. Although this system hides the
sender and receiver of each transaction, the fact that a transaction occurred (and the time of
its occurrence) is publicly recorded, and thus may be used to re-identify individual users.

• IP-level attacks: by monitoring network traffic, an attacker could link transactions to spe-
cific senders or receivers (each transaction requires communication between the sender and
receiver) or link public-keys (pseudonyms) to real-world identities

• Man-it-the-Middle attacks: An attacker could convince a sender to transfer an asset to an
“incorrect” public-key

Setup scenario: This system is essentially a simplified version of Zcash proof system, modified
for indivisible assets. Each asset is represented by a unique AssetID, and for simplicity we assume
that the entire set of assets has been distributed, and no assets are ever created or destroyed.

At any given time, the public state of the system consists of a collection of “asset notes”. These notes
are stored as leaves in a Merkle Tree, and each leaf represents a single indivisible asset represented
by unique assetID. In more detail, a “note” is a commitment to {Nullifier, publicKey, assetID},
indicating that publicKey “owns” assetID.

Main transaction type: Sending an asset from Current Owner A to New Owner B

Security goals:

• Only the current owner can transfer the asset

• Assets are never created or destroyed

Privacy goals: Ideally, the system should hide all information about the ownership and trans-
action patterns of the users. The system sketched below does not attain that such a high-level of
privacy, but instead achieves the following privacy-preserving features

• Transactions are publicly visible, i.e., anyone can see that a transaction occurred

• Transactions do not reveal which asset is being transferred

• Transactions do not reveal the identities (public-keys) of the sender or receiver.
– Limitation: Previous owner can tell when the asset is transferred. (Mitigation: after

receiving asset, send it to yourself)

Details of a transfer: Each transaction is intended to transfer ownership of an asset from a
Current Owner to a New Owner. In this section, we outline the proofs used to ensure the validity
of a transaction. Throughout this description, we use Blue to denote information that is globally
and publicly visible in the protocol / statement. We use Red to denote private information, e.g.

64

Applications

a secret witness held by the prover or information shared between the Current Owner and New
Owner.

The Current Owner, A, has the following information

• A publicKey and corresponding secretKey

• An assetID corresponding to the asset being transferred

• A note in the MerkleTree corresponding to the asset

• Knows how to open the commitment (Nullifier, assetID, publicKey) publicKeyOut of the new
Owner B

The Current Owner, A, generates

• A new NullifierOut

• A new commitment commitment (NullifierOut, assetID, publicKey)

The Current owner, A, sends

• Privately to B: NullifierOut, publicKeyOut, assetID

• Publicly to the blockchain: Nullifier, comOut, ZKProof (the structure of ZKProof is outlined
below)

If Nullifier does not exist in MerkleTree and and ZKProof validates, then comOut is added to the
merkleTree.

The structure of the Zero-Knowledge Proof: We use a modification of Camenisch-Stadler
notation to describe the describe the structure of the proof.

Public state: MerkleTree of Notes: Note = Commitment to { Nullifier, publicKey, assetID }

ZKProof = ZkPoKpp{

(witness: publicKey, publicKeyOut, merkleProof, NullifierOut, com, assetID, sig

statement: MerkleTree, Nullifier, comOut) :

predicate:
- com is included in MerkleTree (using merkleProof)
- com is a commitment to (Nullifier, publicKey, assetID)
- comOut is a commitment to (NullifierOut, publicKeyOut, assetID)
- sig is a signature on comOut for publicKey

}

4.6.3 Zero-Knowledge proofs in the balance model

In this section, we outline a simple system for privately transferring fungible assets, in the “balance
model.” This system is essentially a simplified version of zkLedger. The state of the system is an

65

https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/69316/eth-3353-01.pdf

https://www.usenix.org/system/files/conference/nsdi18/nsdi18-narula.pdf

Section 4.6 Asset Transfer

(encrypted) account balance for each user. Each account balance is encrypted using an additively
homomorphic cryptosystem, under the account-holder’s key. A transaction decrements the sender’s
account balance, while incrementing the receiver’s account by a corresponding amount. If the
number of users is fixed, and known in advance, then a transaction can hide all information about
the sender and receiver by simultaneously updating all account balances. This provides a high-
degree of privacy, and is the approach taken by zkLedger. If the set of users is extremely large,
dynamically changing, or unknown to the sender, the sender must choose an “anonymity set” and
the transaction will reveal that it involved members of the anonymity set, but not the amount of the
transaction or which members of the set were involved. For simplicity of presentation, we assume
a model like zkLedger’s where the set of parties in the system is fixed, and known in advance, but
this assumption does not affect the details of the zero-knowledge proofs involved.

Motivation: Each entity maintains a private account balance, and a transaction decrements the
sender’s balance and increments the receiver’s balance by a corresponding amount. We assume that
every transaction updates every account balance, thus all information the origin, destination and
value of a transaction will be completely hidden. The only information revealed by the protocol is
the fact that a transaction occurred.

Parties:

• A set of n stakeholders who wish to transfer fungible assets anonymously

• The stakeholder who initiates the transaction is called the “prover” or the “sender”

• The receiver, or receivers do not have a distinguished role in a transaction

• A set of validators who maintain the (public) state of the system (e.g. using a blockchain or
other DLT).

What is being proved: The sender must convince the validators that a proposed transaction is
“valid” and the state of the system should be updated to reflect the new transaction. A transaction
consists of a set of n ciphertexts, (c1, . . . , cn), and where ci = Encpk(xi), and a transaction is valid if:

• The sum of all committed values is 0 (i.e., x1 + · · ·+ xn = 0)

• The sender owns the private key corresponding to all negative xi

• After the update, all account balances remain positive

What information is needed by the verifier:

• The verifiers need access to the CRS used by the proof system

• The verifiers need access to the current state of the system (i.e., the current vector of n
encrypted account balances). This state can be stored on a distributed ledger

Possible attacks:

• CRS compromise: If an attacker learns the private randomness used to generate the CRS,
the attacker can forge proofs in the underlying system

• Ledger attacks: validating a transaction requires knowing the current state of the system
(encrypted account balances), thus a validator with an incorrect view of the current state
may be convinced to accept an incorrect transaction as valid.

66

Applications

• Re-identification attacks: The purpose of incorporating ZKPs into this system is to facilitate
transactions without revealing the identities of the sender and receiver. If anonymity is not
required, ZKPs can be avoided altogether, as in Bitcoin. Although this system hides the
sender and receiver of each transaction, the fact that a transaction occurred (and the time of
its occurrence) is publicly recorded, and thus may be used to re-identify individual users.

• IP-level attacks: by monitoring network traffic, an attacker could link transactions to specific
senders or receivers (each transaction requires communication between the sender and the
validators) or link public-keys (pseudonyms) to real-world identities

• Man-it-the-Middle attacks: An attacker could convince a sender to transfer an asset to an
“incorrect” public-key. This is perhaps less of a concern in the situation where the user-base
is static, and all public-keys are known in advance.

Setup scenario: There are fixed number of users, n. User i has a known public-key, pki. Each
user has an account balance, maintained as an additively homomorphic encryption of their current
balance under their pk. Each transaction is a list of n encryptions, corresponding to the amount
each balance should be incremented or decremented by the transaction. To ensure money is never
created or destroyed, the plaintexts in an encrypted transaction must sum to 0. We assume that
all account balance are initialized to non-negative values.

Main transaction type: Transferring funds from user i to user j

Security goals:

• An account balance can only be decremented by the owner of that account

• Account balances always remain non-negative

• The total amount of money in the system remains constant

Privacy goals: Ideally, the system should hide all information about the ownership and trans-
action patterns of the users. The system sketched below does not attain that such a high-level of
privacy, but instead achieves the following privacy-preserving features:

• Transactions are publicly visible, i.e., anyone can see that a transaction occurred

• Transactions do not reveal which asset is being transferred

• Transactions do not reveal the identities (public-keys) of the sender or receiver.
Limitation: transaction times are leaked

Details of a transfer: Each transaction is intended to update the current account balances
in the system. In this section, we outline the proofs used to ensure the validity of a transaction.
Throughout this description, we use Blue to denote information that is globally and publicly visible
in the protocol / statement. We use Red to denote private information, e.g. a secret witness held
by the prover.

67

Section 4.7 Regulation Compliance

The Sender, A, has the following information

• Public keys pk1, . . . , pkn
• secretKeyi corresponding to publicKeyi, and a values xj , to transfer to user j

• The sender’s own current account balance, yi

The Sender, A, generates

• a vector of ciphertexts, C1, . . . , Cn with Ct = Encpkt(xt)

The Sender, A, sends

• The vector of ciphertexts C1, . . . , Cn and ZKProof (described below) to the blockchain

ZK Circuit:

Public state: The current state of the system, i.e., a vector of (encrypted) account balances,
B1, . . . , Bn.

ZKProof = ZkPoKpp{ (witness: i, x1, . . . , xn, sk statement: C1, . . . , Cn) :

predicate:

- Ct is an encryption to xt under public key pkt for t = 1, . . . , n

- x1 + · · ·+ xn = 0

- xt ≥ 0 OR sk corresponds to pkt for t = 1, . . . , n

- xt ≥ 0 OR current balance Bt encrypts a value no smaller than |xt| for t = 1, . . . , n

}

4.7 Regulation Compliance

4.7.1 Overview

An important pattern of applications in which zero-knowledge protocols are useful is within settings
in which a regulator wishes to monitor, or assess the risk related to some item managed by a
regulated party. One such example can be whether or not taxes are being paid correctly by an
account holder, or is a bank or some other financial entity solvent, or even stable.

The regulator in such cases is interested in learning “the bottom line”, which is typically derived
from some aggregate measure on more detailed underlying data, but does not necessarily need to
know all the details. For example, the answer to the question of “did the bank take on too many
loans?” Is eventually answered by a single bit (Yes/No) and can be answered without detailing
every single loan provided by the bank and revealing recipients, their income, and other related
data.

Additional examples of such scenarios include:

– Checking that taxes have been properly paid by some company or person.

68

Applications

– Checking that a given loan is not too risky.

– Checking that data is retained by some record keeper (without revealing or transmitting the
data)

– Checking that an airplane has been properly maintained and is fit to fly

The use of Zero knowledge proofs can then allow the generation of a proof that demonstrate the
correctness of the aggregate result. The idea is to show something like the following statement:
There is a commitment (possibly on a blockchain) to records that show that the result is correct.

Trusting data fed into the computation: In order for a computation on hidden data to prove
valuable, the data that is fed in must be grounded as well. Otherwise, proving the correctness
of the computation would be meaningless. To make this point concrete: A credit score that was
computed from some hidden data can be correctly computed from some financial records, but when
these records are not exposed to the recipient of the proof, how can the recipient trust that they
are not fabricated?

Data that is used for proofs should then generally be committed to by parties that are separate
from the prover, and that are not likely to be colluding with the prover. To continue our example
from before: an individual can prove that she has a high credit score based on data commitments
that were produced by her previous lenders (one might wonder if we can indeed trust previous
lenders to accurately report in this manner, but this is in fact an assumption implicitly made in
traditional credit scoring as well).

The need to accumulate commitments regarding the operation and management of the processes
that are later audited using zero-knowledge often fits well together with blockchain systems, in
which commitments can be placed in an irreversible manner. Since commitments are hiding, such
publicly shared data does not breach privacy, but can be used to anchor trust in the veracity of
the data.

4.7.2 An example in depth: Proof of compliance for aircraft

An operator is flying an aircraft, and holds a log of maintenance operations on the aircraft. These
records are on different parts that might be produced by different companies. Maintenance and
flight records are attested to by engineers at various locations around the world (who we assume
do not collude with the operator).

The regulator wants to know that the aircraft is allowed to fly according to a certain set of rules.
(Think of the Volkswagen emissions cheating story.)

The problem: Today, the regulator looks at the records (or has an auditor do so) only once in a
while. We would like to move to a system where compliance is enforced in “real time”, however,
this reveals the real-time operation of the aircraft if done naively.

Why is zero-knowledge needed? We would like to prove that regulation is upheld, without revealing
the underlying operational data of the aircraft which is sensitive business operations. Regulators
themselves prefer not to hold the data (liability and risk from loss of records), prefer to have
companies self-regulate to the extent possible.

What is the threat model beyond the engineers/operator not colluding? What about the parts

69

Section 4.7 Regulation Compliance

manufacturers? Regulators? Is there an antagonistic relationship between the parts manufacturers?

This scheme will work on regulation that isn’t vague, such as aviation regulation. In some cases,
the rules are vague on purpose and leave room for interpretation.

4.7.3 Protocol high level

Parties:

• Operator / Party under regulation: performs operations that need to comply to a regulation.
For example an airline operator that operates aircrafts

• Risk bearer / Regulator : verifies that all regulated parties conform to the rules; updates the
rules when risks evolve. For example, the FAA regulates and enforces that all aircrafts to
be airworthy at all times. For an aircraft owner leasing their assets, they want to know that
operation and maintenance does not degrade their asset. Same for a bank that financed an
aircraft, where the aircraft is the collateral for the financing.

• Issuer / 3rd party attesting to data: Technicians having examined parts, flight controllers
attesting to plane arriving at various locations, embarked equipment providing signed readings
of sensors.

What is being proved:

• The operator proves to the regulator that the latest maintenance data indicates the aircraft
is airworthy

• The operator proves to the bank that the aircraft maintenance status means it is worth a
given value, according to a formula provided by that bank

What are the privacy requirements?

• An operator does not want to reveal the details of his operations and assets maintenance
status to competition

• The aircraft identity must be kept anonymous from all parties except the regulators and the
technicians.

• The technician’s identity must be kept anonymous from the regulator but if needed the
operator can be asked to open the commitments for the regulator to validate the reports

The proof predicate: “The operator is the owner of the aircraft, and knows some signed data
attesting to the compliance with regulation rules: all the components are safe to fly”.

• The plane is made up of the components x1, . . . , xn and for each of the components:
– There is an legitimate attestation by an engineer who checked the component, and signed

it’s OK
– The latest attestation by a technician is recent: the timestamp of the check was done

before date D

What is the public / private data:

• Private:

70

Applications

– Identity of the operator
– Airplane record
– Examination report of the technicians
– Identity of the technician who signed the report

• Public:
– Commitment to airplane record

There is a record for the airplane that is committed to a public ledger, which includes miles flown.
There are records that attest to repairs / inspections by mechanics that are also committed to the
ledger. The decommitment is communicated to the operator. These records reference the identifier
of the plane.

Whenever the plane flies, the old plane record needs to be invalidated, and a new on committed
with extra mileage.
When a proof of “airworthiness” is required, the operator proves that for each part, the mileage
is below what requires replacement, or that an engineer replaced the part (pointing to a record
committed by a technician).

At the gadget level:

• The prover proves knowledge of a de-commitment of an airplane record (decommitment)

• The record is in the set of records on the blockchain (set membership)

• and knowledge of de-commitments for records for the parts (decommitment) that are also in
the set of commitments on the ledger (set membership)

• The airplane record is not revoked (i.e., it is the most recent one), (requires set non-membership
for the set of published nullifiers)

• The id of the plane noted in the parts is the same as the id of the plane in the plane record.
(equality)

• The mileage of the plane is lower than the mileage needed to replace each part (range proofs)
OTHERWISE

• There exists a record (set membership)that says that the part was replaced by a technician
(validate signature of the technician (maybe use ring signature outside of ZK?))

4.8 Conclusions

– The asset transfer and regulation can be used in the identity framework in a way that the
additions complete the framework.

– External oracles such as blockchain used for storing reference to data commitments

71

Page intentionally blank

72

Acknowledgments

The development of this community reference counts with the support of numerous individuals.

Version 0. The “proceedings” of the 1st ZKProof workshop (Boston, May 2018) formed the initial
basis for this document. The contributions were organized in three tracks:

• Implementation track. Chairs: Sean Bowe, Kobi Gurkan, Eran Tromer. Participants:
Benedikt Bünz, Konstantinos Chalkias, Daniel Genkin, Jack Grigg, Daira Hopwood, Jason
Law, Andrew Poelstra, abhi shelat, Muthu Venkitasubramaniam, Madars Virza, Riad S.
Wahby, Pieter Wuille.

• Applications Track. Chairs: Daniel Benarroch, Ran Canetti, Andrew Miller. Participants:
Shashank Agrawal, Tony Arcieri, Vipin Bharathan, Josh Cincinnati, Joshua Daniel, Anuj
Das Gupta, Angelo De Caro, Michael Dixon, Maria Dubovitskaya, Nathan George, Brett
Hemenway Falk, Hugo Krawczyk, Jason Law, Anna Lysyanskaya, Zaki Manian, Eduardo
Morais, Neha Narula, Gavin Pacini, Jonathan Rouach, Kartheek Solipuram, Mayank Varia,
Douglas Wikstrom, Aviv Zohar.

• Security track. Chairs: Jens Groth, Yael Kalai, Muthu Venkitasubramaniam. Partici-
pants: Nir Bitansky, Ran Canetti, Henry Corrigan-Gibbs, Shafi Goldwasser, Charanjit Jutla,
Yuval Ishai, Rafail Ostrovsky, Omer Paneth, Tal Rabin, Maryana Raykova, Ron Rothblum,
Alessandra Scafuro, Eran Tromer, Douglas Wikström.

Version 0.1. Prior to the 2nd ZKProof workshop, the ZKProof organization team requested feed-
back from NIST about the developed documentation. The NIST PEC team (Luís Brandão, René
Peralta, Angela Robinson) then elaborated the “NIST comments on the initial ZKProof documen-
tation” with 28 comments/suggestions for subsequent development of a “Community Reference
Document”. Luís Brandão ported to LaTeX the proceedings into a LaTeX version, along with
inline comments, which became named as version 0.1.

Version 0.2. The contributions from version 0.1 to version 0.2 followed the editorial process
initiated at the 2nd ZKProof Workshop (Berkeley, April 2019). Several suggested contributions
stemmed from the breakout discussions in the workshop, which were possible by the collaboration
of scribes, moderators and participants, as documented in the Workshop Notes [ZKP19]. The ac-
tual content contributions were developed thereafter by several contributors, including Yu Hang,
Eduardo Morais, Justin Thaler, Ivan Visconti, Riad Wahby and Yupeng Zhang, besides the NIST
PEC team (Luís Brandão, René Peralta, Angela Robinson) and the Editors team (Daniel Benar-
roch, Luís Brandão, Eran Tromer). The detailed description of the changes, contributions and
contributors appears in the “diff” version of the community reference.

Miscellaneous. A general “thank you” goes to all who have so far collaborated with the ZKProof
initiative. This includes the workshop speakers, participants, organizers and sponsors, as well as the
ZKProof steering committee and program committee members, and the participants in the online
ZKProof forum. Detailed information about ZKProof is available on the zkproof.org website.

73

https://zkproof.org/

Page intentionally blank

74

References

[AHIV17] S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam. “Ligero: Lightweight
Sublinear Arguments Without a Trusted Setup”. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. CCS ’17. Pub.
by ACM, 2017, pp. 2087–2104. doi: 10.1145/3133956.3134104. 22

[BCDL+17] F. Baldimtsi, J. Camenisch, M. Dubovitskaya, A. Lysyanskaya, L. Reyzin, K. Samelin,
and S. Yakoubov. “Accumulators with Applications to Anonymity-Preserving Re-
vocation”. In: 2017 IEEE European Symposium on Security and Privacy (EuroS P).
Apr. 2017, pp. 301–315. doi: 10.1109/EuroSP.2017.13. IACR Cryptology Eprint
Archive: ia.cr/2017/043. 49, 58

[BCGG+14] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M.
Virza. “Zerocash: Decentralized Anonymous Payments from Bitcoin”. In: 2014 IEEE
Symposium on Security and Privacy. May 2014, pp. 459–474. doi: 10.1109/SP.2014.
36. http://zerocash-project.org/media/pdf/zerocash-extended-20140518.pdf. 38, 49

[BCGT13] E. Ben-Sasson, A. Chiesa, D. Genkin, and E. Tromer. “On the Concrete Efficiency of
Probabilistically-checkable Proofs”. In: Proceedings of the Forty-fifth Annual ACM
Symposium on Theory of Computing. STOC ’13. Pub. by ACM, 2013, pp. 585–594.
doi: 10.1145/2488608.2488681. 23

[BCGTV13] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. “SNARKs for C:
Verifying Program Executions Succinctly and in Zero Knowledge”. In: Advances in
Cryptology – CRYPTO 2013. Ed. by R. Canetti and J. A. Garay. Pub. by Springer
Berlin Heidelberg, 2013, pp. 90–108. doi: 10.1007/978-3-642-40084-1_6. IACR
Cryptology Eprint Archive: ia.cr/2013/507. 32, 33

[BCS16] E. Ben-Sasson, A. Chiesa, and N. Spooner. “Interactive Oracle Proofs”. In: Theory
of Cryptography. Ed. by M. Hirt and A. Smith. Pub. by Springer Berlin Heidelberg,
2016, pp. 31–60. doi: 10.1007/978-3- 662-53644-5_2. IACR Cryptology Eprint
Archive: ia.cr/2016/116. 22, 23

[BCTV14] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. “Scalable Zero Knowledge via
Cycles of Elliptic Curves”. In: Advances in Cryptology – CRYPTO 2014. Ed. by J. A.
Garay and R. Gennaro. Pub. by Springer Berlin Heidelberg, 2014, pp. 276–294. doi:
10.1007/978-3-662-44381-1_16. IACR Cryptology Eprint Archive: ia.cr/2014/595. 46

[BCTV17] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. “Scalable Zero Knowledge Via
Cycles of Elliptic Curves”. In: Algorithmica 79.4 (Dec. 2017), pp. 1102–1160. doi:
10.1007/s00453-016-0221-0. 47

[BCDE+14] P. Bichsel, J. Camenisch, M. Dubovitskaya, R. R. Enderlein, S. Krenn, I. Krontiris,
A. Lehmann, G. Neven, J. D. Nielsen, C. Paquin, F.-S. Preiss, K. Rannenberg,
A. Sabouri, and M. Stausholm. D2.2 - Architecture for Attribute-based Credential
Technologies - Final Version. Ed. by A. Sabour. Aug. 2014. https://abc4trust.eu/
download/Deliverable_D2.2.pdf. 49

75

https://doi.org/10.1145/3133956.3134104

https://doi.org/10.1109/EuroSP.2017.13

https://eprint.iacr.org/2017/043

https://doi.org/10.1109/SP.2014.36

https://doi.org/10.1109/SP.2014.36

https://doi.org/10.1145/2488608.2488681

https://doi.org/10.1007/978-3-642-40084-1_6

https://eprint.iacr.org/2013/507

https://doi.org/10.1007/978-3-662-53644-5_2

https://eprint.iacr.org/2016/116

https://doi.org/10.1007/978-3-662-44381-1_16

https://eprint.iacr.org/2014/595

https://doi.org/10.1007/s00453-016-0221-0

https://abc4trust.eu/download/Deliverable_D2.2.pdf

https://abc4trust.eu/download/Deliverable_D2.2.pdf

References

[BCCT13] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. “Recursive Composition and
Bootstrapping for SNARKS and Proof-carrying Data”. In: Proceedings of the Forty-
fifth Annual ACM Symposium on Theory of Computing. STOC ’13. Pub. by ACM,
2013, pp. 111–120. doi: 10.1145/2488608.2488623. 47

[BCIOP13] N. Bitansky, A. Chiesa, Y. Ishai, R. Ostrovsky, and O. Paneth. “Succinct Non-
interactive Arguments via Linear Interactive Proofs”. In: Theory of Cryptography.
Ed. by A. Sahai. Pub. by Springer Berlin Heidelberg, 2013, pp. 315–333. doi: 10.
1007/978-3-642-36594-2_18. IACR Cryptology Eprint Archive: ia.cr/2012/718. 21, 22

[BISW17] D. Boneh, Y. Ishai, A. Sahai, and D. J. Wu. “Lattice-Based SNARGs and Their
Application to More Efficient Obfuscation”. In: Advances in Cryptology – EURO-
CRYPT 2017. Ed. by J.-S. Coron and J. B. Nielsen. Pub. by Springer International
Publishing, 2017, pp. 247–277. doi: 10.1007/978-3-319-56617-7_9. IACR Cryptol-
ogy Eprint Archive: ia.cr/2017/240. 22

[BCCGP16] J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit. “Efficient Zero-Knowledge
Arguments for Arithmetic Circuits in the Discrete Log Setting”. In: Advances in
Cryptology – EUROCRYPT 2016. Ed. by M. Fischlin and J.-S. Coron. Pub. by
Springer Berlin Heidelberg, 2016, pp. 327–357. doi: 10 .1007/978- 3- 662- 49896-
5_12. IACR Cryptology Eprint Archive: ia.cr/2016/263. 22

[BCGGHJ17] J. Bootle, A. Cerulli, E. Ghadafi, J. Groth, M. Hajiabadi, and S. K. Jakobsen.
“Linear-Time Zero-Knowledge Proofs for Arithmetic Circuit Satisfiability”. In: Ad-
vances in Cryptology – ASIACRYPT 2017. Ed. by T. Takagi and T. Peyrin. Pub.
by Springer International Publishing, 2017, pp. 336–365. doi: 10.1007/978-3-319-
70700-6_12. IACR Cryptology Eprint Archive: ia.cr/2017/872. 22

[BCGJM18] J. Bootle, A. Cerulli, J. Groth, S. Jakobsen, and M. Maller. “Arya: Nearly Linear-
Time Zero-Knowledge Proofs for Correct Program Execution”. In: Advances in
Cryptology – ASIACRYPT 2018. Ed. by T. Peyrin and S. Galbraith. Pub. by
Springer International Publishing, 2018, pp. 595–626. doi: 10 .1007/978- 3- 030-
03326-2_20. 20

[CDD17] J. Camenisch, M. Drijvers, and M. Dubovitskaya. “Practical UC-Secure Delegatable
Credentials with Attributes and Their Application to Blockchain”. In: Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
CCS ’17. Pub. by ACM, 2017, pp. 683–699. doi: 10.1145/3133956.3134025. 49

[CKS10] J. Camenisch, M. Kohlweiss, and C. Soriente. “Solving Revocation with Efficient
Update of Anonymous Credentials”. In: Security and Cryptography for Networks.
Ed. by J. A. Garay and R. De Prisco. Pub. by Springer Berlin Heidelberg, 2010,
pp. 454–471. doi: 10.1007/978-3-642-15317-4_28. 49

[CCHL+19] R. Canetti, Y. Chen, J. Holmgren, A. Lombardi, G. N. Rothblum, R. D. Rothblum,
and D. Wichs. “Fiat-Shamir: From Practice to Theory”. In: Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing. STOC 2019. Pub. by
ACM, 2019, pp. 1082–1090. doi: 10.1145/3313276.3316380. 23

[CT10] A. Chiesa and E. Tromer. “Proof-Carrying Data and Hearsay Arguments from
Signature Cards”. In: Innovations in Computer Science — ICS 2010. Vol. 10. 2010,
pp. 310–331. 46, 47

76

https://doi.org/10.1145/2488608.2488623

https://doi.org/10.1007/978-3-642-36594-2_18

https://doi.org/10.1007/978-3-642-36594-2_18

https://eprint.iacr.org/2012/718

https://doi.org/10.1007/978-3-319-56617-7_9

https://eprint.iacr.org/2017/240

https://doi.org/10.1007/978-3-662-49896-5_12

https://doi.org/10.1007/978-3-662-49896-5_12

https://eprint.iacr.org/2016/263

https://doi.org/10.1007/978-3-319-70700-6_12

https://doi.org/10.1007/978-3-319-70700-6_12

https://eprint.iacr.org/2017/872

https://doi.org/10.1007/978-3-030-03326-2_20

https://doi.org/10.1007/978-3-030-03326-2_20

https://doi.org/10.1145/3133956.3134025

https://doi.org/10.1007/978-3-642-15317-4_28

https://doi.org/10.1145/3313276.3316380

References

[CD98] R. Cramer and I. Damgård. “Zero-knowledge proofs for finite field arithmetic, or:
Can zero-knowledge be for free?” In: Advances in Cryptology — CRYPTO ’98.
Ed. by H. Krawczyk. Pub. by Springer Berlin Heidelberg, 1998, pp. 424–441. doi:
10.1007/BFb0055745. 21

[DFKP16] A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, and B. Parno. “Cinderella: Turning
Shabby X.509 Certificates into Elegant Anonymous Credentials with the Magic of
Verifiable Computation”. In: 2016 IEEE Symposium on Security and Privacy (SP).
May 2016, pp. 235–254. doi: 10.1109/SP.2016.22. 38

[GGPR13a] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. “Quadratic Span Programs
and Succinct NIZKs without PCPs”. In: Advances in Cryptology – EUROCRYPT
2013. Ed. by T. Johansson and P. Q. Nguyen. Pub. by Springer Berlin Heidelberg,
2013, pp. 626–645. doi: 10.1007/978-3-642-38348-9_37. IACR Cryptology Eprint
Archive: ia.cr/2012/215. 22, 23

[GGPR13b] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. “Quadratic Span Programs
and Succinct NIZKs without PCPs”. In: Advances in Cryptology – EUROCRYPT
2013. Ed. by T. Johansson and P. Q. Nguyen. Pub. by Springer Berlin Heidelberg,
2013, pp. 626–645. doi: 10.1007/978-3-642-38348-9_37. IACR Cryptology Eprint
Archive: ia.cr/2012/215. 32

[GMO16] I. Giacomelli, J. Madsen, and C. Orlandi. “ZKBoo: Faster Zero-Knowledge for
Boolean Circuits”. In: 25th USENIX Security Symposium (USENIX Security 16).
Pub. by USENIX Association, 2016, pp. 1069–1083. 22

[Gol13] O. Goldreich. “A Short Tutorial of Zero-Knowledge”. In: Secure Multi-Party Com-
putation. Ed. by M. M. Prabhakaran and A. Sahai. Vol. 10. Cryptology and In-
formation Security Series. 2013, pp. 28–60. doi: 10.3233/978-1-61499-169-4-28.

24

[GMW91] O. Goldreich, S. Micali, and A. Wigderson. “Proofs That Yield Nothing but Their
Validity or All Languages in NP Have Zero-knowledge Proof Systems”. In: J. ACM
38.3 (July 1991), pp. 690–728. doi: 10.1145/116825.116852. 7

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff. “The Knowledge Complexity of Interactive
Proof Systems”. In: SIAM Journal on Computing 18.1 (1989), pp. 186–208. doi:
10.1137/0218012. 1

[GKR15] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. “Delegating Computation: Inter-
active Proofs for Muggles”. In: J. ACM 62.4 (Sept. 2015), 27:1–27:64. doi: 10.1145/
2699436. 22

[Gro10] J. Groth. “Short Non-interactive Zero-Knowledge Proofs”. In: Advances in Cryptol-
ogy - ASIACRYPT 2010. Ed. by M. Abe. Pub. by Springer Berlin Heidelberg, 2010,
pp. 341–358. doi: 10.1007/978-3-642-17373-8_20. 20

[Gro16] J. Groth. “On the Size of Pairing-Based Non-interactive Arguments”. In: Advances
in Cryptology – EUROCRYPT 2016. Ed. by M. Fischlin and J.-S. Coron. Pub. by
Springer Berlin Heidelberg, 2016, pp. 305–326. doi: 10.1007/978-3-662-49896-5_11.
IACR Cryptology Eprint Archive: ia.cr/2016/260. 23, 41

[GOS06] J. Groth, R. Ostrovsky, and A. Sahai. “Perfect Non-interactive Zero Knowledge for
NP”. In: Advances in Cryptology - EUROCRYPT 2006. Ed. by S. Vaudenay. LNC.
Pub. by Springer Berlin Heidelberg, 2006, pp. 339–358. doi: 10.1007/11761679_21. 24

77

https://doi.org/10.1007/BFb0055745

https://doi.org/10.1109/SP.2016.22

https://doi.org/10.1007/978-3-642-38348-9_37

https://eprint.iacr.org/2012/215

https://doi.org/10.1007/978-3-642-38348-9_37

https://eprint.iacr.org/2012/215

https://doi.org/10.3233/978-1-61499-169-4-28

https://doi.org/10.1145/116825.116852

https://doi.org/10.1137/0218012

https://doi.org/10.1145/2699436

https://doi.org/10.1145/2699436

https://doi.org/10.1007/978-3-642-17373-8_20

https://doi.org/10.1007/978-3-662-49896-5_11

https://eprint.iacr.org/2016/260

https://doi.org/10.1007/11761679_21

References

[IKOS07] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. “Zero-knowledge from Secure
Multiparty Computation”. In: Proceedings of the Thirty-ninth Annual ACM Sym-
posium on Theory of Computing. STOC ’07. Pub. by ACM, 2007, pp. 21–30. doi:
10.1145/1250790.1250794. 22

[IMS12] Y. Ishai, M. Mahmoody, and A. Sahai. “On Efficient Zero-Knowledge PCPs”. In:
Theory of Cryptography. Ed. by R. Cramer. Pub. by Springer Berlin Heidelberg,
2012, pp. 151–168. doi: 10.1007/978-3-642-28914-9_9. 21

[JSI96] M. Jakobsson, K. Sako, and R. Impagliazzo. “Designated Verifier Proofs and Their
Applications”. In: Advances in Cryptology — EUROCRYPT ’96. Ed. by U. Maurer.
Pub. by Springer Berlin Heidelberg, 1996, pp. 143–154. doi: 10.1007/3-540-68339-
9_13. 48

[KR08] Y. T. Kalai and R. Raz. “Interactive PCP”. In: Proceedings of the 35th International
Colloquium on Automata, Languages and Programming, Part II. ICALP ’08. Pub.
by Springer-Verlag, 2008, pp. 536–547. doi: 10.1007/978-3-540-70583-3_44. 21

[Kil95] J. Kilian. “Improved Efficient Arguments”. In: Advances in Cryptology — CRYPT0’
95. Ed. by D. Coppersmith. Vol. 1070. LNCS. Pub. by Springer Berlin Heidelberg,
1995, pp. 311–324. doi: 10.1007/3-540-44750-4_25. 21, 23

[KMSWP16] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. “Hawk: The Blockchain
Model of Cryptography and Privacy-Preserving Smart Contracts”. In: 2016 IEEE
Symposium on Security and Privacy (SP). May 2016, pp. 839–858. doi: 10.1109/
SP.2016.55. 49

[Mic00] S. Micali. “Computationally Sound Proofs”. In: SIAM J. Comput. 30.4 (Oct. 2000),
pp. 1253–1298. doi: 10.1137/S0097539795284959. 21

[Mik19] Mikelodder7/Ursa. Z-mix. 2019. https://github.com/mikelodder7/ursa/tree/master/libzmix. 49

[NVV18] N. Narula, W. Vasquez, and M. Virza. “zkLedger: Privacy-Preserving Auditing for
Distributed Ledgers”. In: 15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18). Pub. by USENIX Association, 2018, pp. 65–80.
IACR Cryptology Eprint Archive: ia.cr/2018/241. 49

[PHGR13] B. Parno, J. Howell, C. Gentry, and M. Raykova. “Pinocchio: Nearly Practical
Verifiable Computation”. In: 2013 IEEE Symposium on Security and Privacy. May
2013, pp. 238–252. doi: 10.1109/SP.2013.47. IACR Cryptology Eprint Archive:
ia.cr/2013/279. 32, 33

[RRR16] O. Reingold, G. N. Rothblum, and R. D. Rothblum. “Constant-round Interactive
Proofs for Delegating Computation”. In: Proceedings of the Forty-eighth Annual
ACM Symposium on Theory of Computing. STOC ’16. Pub. by ACM, 2016, pp. 49–
62. doi: 10.1145/2897518.2897652. 21, 23

[Sch90] C. P. Schnorr. “Efficient Identification and Signatures for Smart Cards”. In: Ad-
vances in Cryptology — EUROCRYPT ’89. Ed. by J.-J. Quisquater and J. Vande-
walle. Vol. 434. LNCS. Pub. by Springer Berlin Heidelberg, 1990, pp. 688–689. doi:
10.1007/3-540-46885-4_68. 6

[Sov18] F. Sovrin. SovrinTM: A Protocol and Token for Self-Sovereign Identity and Decen-
tralized Trust. Jan. 2018. https://sovrin.org/wp-content/uploads/2018/03/Sovrin-
Protocol-and-Token-White-Paper.pdf. 49

78

https://doi.org/10.1145/1250790.1250794

https://doi.org/10.1007/978-3-642-28914-9_9

https://doi.org/10.1007/3-540-68339-9_13

https://doi.org/10.1007/3-540-68339-9_13

https://doi.org/10.1007/978-3-540-70583-3_44

https://doi.org/10.1007/3-540-44750-4_25

https://doi.org/10.1109/SP.2016.55

https://doi.org/10.1109/SP.2016.55

https://doi.org/10.1137/S0097539795284959

https://eprint.iacr.org/2018/241

https://doi.org/10.1109/SP.2013.47

https://eprint.iacr.org/2013/279

https://doi.org/10.1145/2897518.2897652

https://doi.org/10.1007/3-540-46885-4_68

https://sovrin.org/wp-content/uploads/2018/03/Sovrin-Protocol-and-Token-White-Paper.pdf

https://sovrin.org/wp-content/uploads/2018/03/Sovrin-Protocol-and-Token-White-Paper.pdf

References

[WTSTW18] R. S. Wahby, I. Tzialla, A. Shelat, J. Thaler, and M. Walfish. “Doubly-efficient
zkSNARKs without trusted setup”. In: 2018 IEEE Symposium on Security and Pri-
vacy (SP). IEEE. 2018, pp. 926–943. IACR Cryptology Eprint Archive: ia.cr/2017/1132.

22, 23

[XZZPS19] T. Xie, J. Zhang, Y. Zhang, C. Papamanthou, and D. Song. “Libra: Succinct Zero-
Knowledge Proofs with Optimal Prover Computation”. In: Advances in Cryptology -
CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2019, Proceedings, Part III. 2019, pp. 733–764. doi: 10.
1007/978-3-030-26954-8_24. IACR Cryptology Eprint Archive: ia.cr/2019/317. 23

[zca18] zcash-hackworks/babyzoe. Baby ZoE - first step towards Zerocash over Ethereum.
2018. https://github.com/zcash-hackworks/babyzoe. 49

[ZGKPP17] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou. “vSQL:
Verifying Arbitrary SQL Queries over Dynamic Outsourced Databases”. In: 2017
IEEE Symposium on Security and Privacy (SP). May 2017, pp. 863–880. doi:
10.1109/SP.2017.43. 22

[ZGKPP18] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou. “vRAM:
Faster Verifiable RAM with Program-Independent Preprocessing”. In: 2018 IEEE
Symposium on Security and Privacy (SP). May 2018, pp. 908–925. doi: 10.1109/
SP.2018.00013. 20

[ZKP19] ZKProof. Notes of the 2nd ZKProof Workshop. Ed. by D. Benarroch, L. T. A. N.
Brandão, and E. Tromer. Pub. by zkproof.org, Dec. 2019. (The workshop was held
at Berkeley, USA, in April 2019). 73

79

https://eprint.iacr.org/2017/1132

https://doi.org/10.1007/978-3-030-26954-8_24

https://doi.org/10.1007/978-3-030-26954-8_24

https://eprint.iacr.org/2019/317

https://doi.org/10.1109/SP.2017.43

https://doi.org/10.1109/SP.2018.00013

https://doi.org/10.1109/SP.2018.00013

Page intentionally blank

80

Appendix A. Acronyms and glossary

A.1 Acronyms

• 3SAT: 3-satisfiability
• AND: AND gate (Boolean gate)
• API: application program interface
• CRH: collision-resistant hash (function)
• CRS: common-reference string
• DAG: directed acyclic graph
• DSL: domain specific languages
• FFT: fast-Fourier transform
• ILC: ideal linear commitment
• IOP: interactive oracle proofs
• LIP: linear interactive proofs
• MA: Merlin–Arthur
• NIZK: non-interactive zero-knowledge
• NP: non-deterministic polynomial
• PCD: proof-carrying data
• PCP: probabilistic chackable proof

• PKI: public-key infrastructure
• QAP: quadratic arithmetic program
• R1CS: rank-1 constraint system
• RAM: random access memory
• RSA: Rivest–Shamir–Adleman
• SHA: secure hash algorithm
• SMPC: secure multiparty computation
• SNARG: succinct non-interactive argument
• SNARK: SNARG of knowledge
• SRS: structured reference string
• UC: universal composability or universally

composable
• URS: uniform random string
• XOR: eXclusive OR (Boolean gate)
• ZK: zero knowledge
• ZKP: zero-knowledge proof

A.2 Glossary

• NIZK: Non-Interactive Zero-Knowledge. Proof system, where the prover sends a single message
to the verifier, who then decides to accept or reject. Usually set in the common reference string
model, although it is also possible to have designated verifier NIZK proofs.

• SNARK: Succinct Non-interactive ARgument of Knowledge. A special type of non-interactive
proof system where the proof size is small and verification is fast.

• Instance: Public input that is known to both prover and verifier. Notation: x. (Some scientific
articles use “instance” and “statement” interchangeably, but we distinguish between the two.)

• Witness: Private input to the prover. Others may or may not know something about the
witness. Notation: w.

• Application Inputs: Parts of the witness interpreted as inputs to an application, coming from
an external data source. The complete witness and the instance can be computed by the prover
from application inputs.

• Relation: Specification of relationship between instances and witness. A relation can be viewed
as a set of permissible pairs (instance, witness). Notation: R.

• Language: Set of instances that have a witness in R. Notation: L.

81

Section A.2 Glossary

• Statement: Defined by instance and relation. Claims the instance has a witness in the relation,
which is either true or false. Notation: x ∈ L.

• Constraint System: a language for specifying relations.
• Proof System: A zero-knowledge proof system is a specification of how a prover and verifier

can interact for the prover to convince the verifier that the statement is true. The proof system
must be complete, sound and zero-knowledge.
– Complete: If the statement is true and both prover and verifier follow the protocol; the verifier

will accept.
– Sound: If the statement is false, and the verifier follows the protocol; he will not be convinced.
– Zero-knowledge: If the statement is true and the prover follows the protocol; the verifier will

not learn any confidential information from the interaction with the prover but the fact the
statement is true.

• Backend: an implementation of ZK proof’ system’s low-level cryptographic protocol.
• Frontend: means to express ZK statements in a convenient language and to prove such state-

ments in zero knowledge by compiling them into a low-level representation and invoking a suitable
ZK backend.

• Instance reduction: conversion of the instance in a high-level statement to an instance for a
low-level statement (suitable for consumption by the backend), by a frontend.

• Witness reduction: conversion of the witness to a high-level statement to witness for a low-level
statement (suitable for consumption by the backend), by a frontend.

• R1CS (Rank 1 Constraint Systems): an NP-complete language for specifying relations,
as system of bilinear constraints (i.e., a rank 1 quadratic constraint system), as defined in
[BCGTV13, Appendix E in extended version]. This is a more intuitive reformulation of QAP.

• QAP (Quadratic Arithmetic Program): An NP-complete language for specifying relations
via a quadratic system in polynomials, defined in [PHGR13]. See R1CS for an equivalent formu-
lation.

Reference strings:

• CRS (Common Reference String): A string output by the NIZK’s Generator algorithm,
and available to both the prover and verifier. Consists of proving parameters and verification
parameters. May be a URS or an SRS.

• URS (Uniform Random String): A common reference string created by uniformly sampling
from some space, and in particular involving no secrets in its creation. (Also called Common
Random String in prior literature; we avoid this term due to the acronym clash with Common
Reference String).

• SRS (Structured Reference String): A common reference string created by sampling from
some complex distribution, often involving a sampling algorithm with internal randomness that
must not be revealed, since it would create a trapdoor that enables creation of convincing proofs
for false statements. The SRS may be non-universal (depend on the specific relation) or universal
(independent of the relation, i.e., serve for proving all of NP).

• PP (Prover Parameters) or Proving Key: The portion of the Common Reference String
that is used by the prover.

• VP (Verifier Parameters) or Verification Key: The portion of the Common Reference
String that is used by the verifier.

82

Appendix B. Version history

The development of the ZKProof Community reference can be tracked across a sequence of main
versions. Here is a summarized description of their sequence:

• Version 0 [2018-08-01]: Baseline documents. The proceedings of the 1st ZKProof
Workshop (May 2018), with contributions settled by 2018-08-01 and available at ZKProof.org,
along with the ZKProof Charter, constitute the starting point of the ZKProof Community
reference. Each of the three Workshop tracks — security, applications, implementation —
lead to a corresponding proceedings document, named “ZKProof Standards ⟨track name⟩
Track Proceedings”. The ZKProof charter is also part of the baseline documents.

• Version 0.1 [2019-04-11]: LaTeX/PDF compilation. Upon the ZKProof organization
team requested feedback from the NIST-PEC team, the content in the several proceedings was
ported to LaTeX code and compiled into a single PDF document entitled “ZKProof Commu-
nity Reference” (version 0.1) for presentation and discussion at the 2nd ZKProof workshop.
The version includes editorial adjustments for consistent style and easier indexation.

• Version 0.2 [2019-12-31]: Consolidated draft. The process of consolidating the draft
community reference document started at the 2nd ZKProof workshop (April 2019), where an
editorial process was introduced and several “breakout sessions” were held for discussion on
focused topics, including the “NIST comments on the initial ZKProof documentation”. The
discussions yielded suggestions of topics to develop and incorporate in a new version of the
document. Several concrete items of “proposed contributions” were then defined as GitHub
issues, and the subsequently submitted contributions provided several content improvements,
such as: distinguish ZKPs of knowledge vs. of membership; recommend security parameters
for benchmarks; clarify some terminology related to ZKP systems (e.g., statements, CRS,
R1CS); discuss interactivity vs. non-interactivity, and transferability vs. deniability; clarify
the scope of use-cases and applications; update the “gadgets” table; add new references. The
new version also includes numerous editorial improvements towards a consolidated document,
namely a substantially reformulated frontmatter with several new sections (abstract, open to
contributions, change log, acknowledgments, intellectual property, executive summary), a
reorganized structure with a new chapter (still to be completed) on construction paradigms.
The changes are tracked in a “diff” version of the document.

External resources. Additional documentation covering the history of development of this com-
munity reference can be found in the following online resources:

• ZKProof GitHub repository: https://github.com/zkpstandard/

• ZKProof documentation: https://zkproof.org/documents.html

• ZKProof Forum: https://community.zkproof.org/

83

https://zkproof.org/documents

https://github.com/zkpstandard/

https://zkproof.org/documents.html

https://community.zkproof.org/

Page intentionally blank

84

		Front matter

		ZKProof Community Reference (cover)

		Abstract

		About this version

		About this community reference

		ZKProof charter

		Intellectual property — expectations on disclosure and licensing

		Contents

		Table of Contents

		List of Figures

		List of Tables

		Executive summary

		1 Security

		1.1 Introduction

		1.1.1 What is a zero-knowledge proof?

		1.1.2 Requirements for a ZK proof system specification

		1.2 Terminology

		Table 1.1

		1.3 Specifying Statements for ZK

		1.3.1 Circuit representation

		1.3.2 R1CS representation

		1.3.3 Types of relations

		1.4 ZKPs of knowledge vs. ZKPs of membership

		1.4.1 Example: ZKP of knowledge of a discrete logarithm (discrete-log)

		1.4.2 Example: ZKP of knowledge of a hash pre-image

		1.4.3 Example: ZKP of membership for graph non-isomorphism

		1.5 Syntax

		1.5.1 Prove

		1.5.2 Verify

		1.5.3 Setup

		1.6 Definition and Properties

		1.6.1 Completeness

		1.6.2 Soundness

		1.6.3 Proof of knowledge

		1.6.4 Zero knowledge

		1.6.5 Advanced security properties

		1.6.6 Transferability vs. deniability

		1.6.7 Examples of setup and trust

		1.7 Assumptions

		1.8 Efficiency

		1.8.1 Characterization of security properties

		1.8.2 Computational security levels for benchmarking

		1.8.3 Statistical security levels for benchmarking

		2 Construction paradigms

		2.1 Taxonomy of Constructions

		Table 2.1

		2.1.1 Proof Systems

		2.1.2 Compilers: Cryptographic

		2.1.3 Compilers: Information-theoretic

		2.2 Interactivity

		2.2.1 Advantages of Interactive Proof and Argument Systems

		2.2.2 Disadvantages of Interactive Proof and Argument Systems

		2.2.3 Nuances on transferability vs. interactivity

		(Non)-Transferability/Deniability of Zero-Knowledge Proofs

		2.3 Several construction paradigms

		3 Implementation

		3.1 Overview

		3.1.1 What this document is NOT about:

		3.2 Backends: Cryptographic System Implementations

		3.3 Frontends: Constraint-System Construction

		3.4 APIs and File Formats

		3.4.1 Generic API

		Figure 3.1

		Table 3.1

		3.4.2 R1CS File Format

		3.5 Benchmarks

		3.5.1 What metrics and components to measure

		3.5.2 How to run the benchmarks

		3.5.3 What benchmarks to run

		3.6 Correctness and Trust

		3.6.1 Considerations

		3.6.2 SRS Generation

		3.6.3 Contingency plans

		3.7 Extended Constraint-System Interoperability

		3.7.1 Statement and witness formats

		3.7.2 Statement semantics, variable representation & mapping

		3.7.3 Witness reduction

		3.7.4 Gadgets interoperability

		3.7.5 Procedural interoperability

		3.7.6 Proof interoperability

		3.7.7 Common reference strings

		3.8 Future goals

		3.8.1 Interoperability

		3.8.2 Frontends and DSLs

		3.8.3 Verification of implementations

		4 Applications

		4.1 Introduction

		4.2 Types of verifiability

		4.3 Previous works

		4.4 Gadgets within predicates

		Table 4.1

		Table 4.2

		Table 4.3

		Table 4.4

		Table 4.5

		Table 4.6

		Table 4.7

		Table 4.8

		Table 4.9

		4.5 Identity framework

		4.5.1 Overview

		4.5.2 Motivation for Identity and Zero Knowledge

		4.5.3 Terminology / Definitions

		4.5.4 The Protocol Description

		Table 4.10

		Table 4.11

		Table 4.12

		Table 4.13

		4.5.5 A use-case example of credential aggregation

		4.6 Asset Transfer

		4.6.1 Privacy-preserving asset transfers and balance updates

		4.6.2 Zero-Knowledge Proofs in the asset-tracking model

		4.6.3 Zero-Knowledge proofs in the balance model

		4.7 Regulation Compliance

		4.7.1 Overview

		4.7.2 An example in depth: Proof of compliance for aircraft

		4.7.3 Protocol high level

		4.8 Conclusions

		Acknowledgments

		References

		A Acronyms and glossary

		A.1 Acronyms

		A.2 Glossary

		B Version history

ZkpComRef Version 0.2 (2019-12-31)

https://github.com/zkpstandard/zkreference

NIST comments on the initial ZKProof documentation

April 6, 2019

Luís Brandão, René Peralta, Angela Robinson

NIST, Gaithersburg USA

The Privacy Enhancing Cryptography (PEC) team at the National Institute of Standards and
Technology (NIST) is interested in the development and dissemination of cryptographic technology
capable of enabling privacy. This includes zero-knowledge proofs (ZKPs) and secure multi-party
computation (SMPC).

In early 2019, members of ZKProof.org — an open initiative promoting an effort towards the
standardization of ZKPs — invited us (at the NIST PEC team) to participate in the 2nd ZKProof
workshop (Berkeley, April 2019), and to provide feedback on the ZKProof documentation. That
documentation includes the proceedings of the 1st ZKProof workshop (Boston, May 2018), and is
publicly available online and open to collaborative editing at https://zkproof.org/documents.html.

We appreciate the character of openness and inclusivity expressed in the ZKProof charter, and wel-
come the initiative. We find that the ongoing ZKProof documentation has great potential to develop
into a valuable reference for secure, practical, and interoperable zero-knowledge proof technology.

While we see the ZKProof effort as aligned with the goal of promoting the development of useful
reference material, this does not imply on our part any official position about standardization of the
material being developed.

We intend to contribute constructively. This document includes a few editorial suggestions and
content-related comments. We are glad to be able to participate in the upcoming workshop and we
anticipate more detailed discussion will take place therein and thereafter.

1. Selected comments

1.1. Editorial — adjustments and indexation

C1. Reference document. Consider merging the set of proceedings, and ongoing contributions
across workshops, into one consolidated reference document on ZK proofs, in a manner that
promotes consistent style and notation across all sections, and enables future contributions
from multiple sources. For this purpose, consider:

• defining the development of the proceedings of each workshop to be limited in time (having
a closure, acknowledging its possible informal content, identifying all participants);

• building the reference document as a coherent combination of the relevant content
produced across time, taking into account all contributions.

C2. Recommendations and requirements. To highlight suggested and essential practices,
consider enhancing the identifiability and organization (e.g., indexation) of “recommendations”
and “requirements” throughout the document.

https://zkproof.org/documents.html

C3. Scope of the Creative Commons license. The current CC BY 4.0 International license
expressed in the Charter is focused on “content issued from the ZKProof Standards Workshop”
(notice the singular). Consider widening this to cover the collaborative edits performed and to
be performed within the editable documentation made available for community collaboration.

C4. Glossary. Consider adding a comprehensive glossary, listing all technical terms and providing
corresponding links to where each term is defined, exemplified, and used in the document.

1.2. Editorial — producing new content

C5. Executive summary. Consider adding an executive summary, describing at a high level the
structure and content of the overall reference documentation. Consider doing the same for
each chapter or track.

C6. Examples. To enhance accessibility to a broader audience, consider enhancing the document
with indexed examples that illustrate concepts that may be unfamiliar to some target audience.
Each example can be highlighted with a caption (e.g., “Example 5: ZK proof setup with a CRS
with trapdoor”), an explanation (possibly an illustration) within a boxed environment, and a
footnote identifying the included concepts (e.g., “setup, trapdoor, CRS, prover and verifier”).

1.3. Track 1: security/theory

C7. Proofs of knowledge. Consider making a clearer distinction of ZK proofs of membership vs.
ZK proofs of knowledge, including by means of examples and definitions. Consider clarifying
how the formalism can adequately model proofs of knowledge. A definition of an “extractability”
property/game may be useful.

C8. Concurrency. Aspects of concurrency could be addressed more explicitly. Do the prover and
verifier know in which session they are interacting? Consider mentioning the need for session ids.

C9. Transferability. The concept of transferability could benefit from more attention. For
example, in an interactive protocol over the Internet, how do regular authenticated channels
vs. “ideally” authenticated channels affect transferability? Would a non-transferable protocol
become transferable when the prover signs all sent messages and the verifier uses the output
of a cryptographic hash function to select random challenges?

C10. Circuits vs. R1CS. The first track (“security” / “theory”?) mentions Boolean circuits but
not R1CS. The third track (“implementation”) focuses on R1CS without explaining why/when
it is preferable to a circuit representation. Consider explaining better (in the “security” track)
what is R1CS. Consider introducing and exemplifying a circuit-to-R1CS translation and/or
vice-versa. Consider clarifying better in the “implementation” track why the focus is on R1CS,
for example compared with circuits.

C11. Common vs. public. Consider clarifying the distinction between common knowledge (be-
tween prover and verifier) and public knowledge. The lack of distinction is noticed in several
parts when trying to think of a comparison between transferable vs. non-transferable cases.
CRS is being defined as public, although in practice it could be obtained as common to the
intervening parties, private to a particular interaction.

2

1.4. Track 2: Applications

C12. Motivation. Section “2.1 Introduction and motivation” could benefit from more motivation
about the three application use-cases that will be discussed. Consider providing a short
intuitive explanation about each one.

C13. Gadgets. The enumeration (table) of gadgets is very useful. Consider completing the table.

C14. Interactivity vs. transferability. In Section 2.2, consider revising the assertion in item 1:
“Only non-interactive ZK (NIZK) can actually hold this property” [being publicly verifiable /
transferable?]. If transferability is a design goal, then there are settings where it is possible to
design interactive protocols for which the view (transcript) of the original verifier (interacting
with the original prover) can later serve as a transferable proof for other verifiers.

C15. Implicit scope of use-cases. The last paragraph in section 2.2 says “digital money based
applications belong to the first model” [public verifiable as a requirement]. This assertion
appears implicitly scoped in a too narrow subset of conceivable applications about digital
money. Conversely, one could consider a scenario where Alice wants to convince Bob, in a
non-transferable way, that Alice bought something from Charlie. Consider clarifying better
the scope of examples vs. the scope of areas of application.

C16. References. Consider adding references when mentioning “while adapting to the existing
Identity standards”. Same comment of adding references applies (across sections) to other
cases where specific prior results, definitions, claims, etc. are mentioned but not referenced.
(This does not intend to suggest that the document becomes a survey, but simply that what is
mentioned in concrete be supported with corresponding references that the reader can lookup
for fact-checking and further reading.)

1.5. Track 3: Implementation

C17. Backend choice NIZK-R1CS. Consider providing more rationale for the choice on NIZK
and R1CS. Section 3.2 could benefit from a comparative overview of the various low-level
backend options for representing relations. Comparing the advantages and disadvantages
of interactive vs. non-interactive, and of several representations (e.g., including arithmetic
circuits), may open more room for future document contributions on the cases that have not
yet been explored in the existing documentation.

C18. Computational security parameter. Consider providing rationale for the recommendation
of 120 bits of computational security.

C19. Statistical security. Consider discussing various examples of acceptable values of statistical
security parameter. It can be useful to explore how interactive to non-interactive transforma-
tions may affect the requirements on the statistical security parameter, e.g., making it become
a computational parameter when applying Fiat-Shamir.

C20. Side-channels. Consider exemplifying conceivable cases where side-channels are problematic.

C21. Validation. Consider including some discussion on testing and validation of implementations.

C22. Intellectual property. Consider discussing possible guidance regarding intellectual property.

3

2. Towards a reference document

2.1. Setting expectations and orientation

Consider setting, during the 2nd workshop, some expectations for the development of a ZKProof refer-
ence document. Such expectations may be useful for receiving more targeted feedback from the com-
munity. Concepts to agree upon might include: title, purpose, aim, scope, and editorial methodology.

D1. Title. Something that identifies the “reference” aspect, e.g., “ZKProof community reference
on zero-knowledge proofs”.

D2. Purpose. For example: The purpose of developing the ZKProof reference document is to
provide, within the principles laid out by the ZKProof charter, a reference for the development of
zero-knowledge-proof technology that is secure, practical and interoperable.

D3. Aim. For example: The aim of the document is to consolidate the reference material developed in
collaborative processes during the ZKProof workshops. The document intends to be accessible to a large
audience, which includes the general public, the media, the industry, developers and cryptographers.

D4. Scope. For example: The document intends to cover material relevant for the development
of secure, practical and interoperable technology, as identified in the purpose. The document will
also elaborate on introductory concepts or works, as a way to enable an easier understanding of
more advanced techniques. When a focus is chosen from several alternative options, the document
should try to include a rationale describing, if possible, comparative advantages, disadvantages and
applicability. However, the document does not intend to be a thorough survey about ZKPs, and does
not need to cover every conceivable scenario.

D5. Format. For example: To achieve its accessibility goal, and considering its wide scope, the
document favors the inclusion of: a well defined structure (e.g., chapters, sections, ...), executive
summaries (one general and one per chapter); illustrative examples covering the main concepts;
enumerated recommendations and requirements; summarizing tables; glossary of technical terms;
appropriate references for presented claims, results.

D6. Editorial methodology. For example: The primary direction for the development of reference
material arises in connection with the ZKProof workshops. Each workshop produces proceedings that
provide a scope of content; then, a process ensues for integration of material into a consolidated
reference that can evolve across several workshops. Assuming a 12-months gap between workshops,
here is a possible 11-months editorial process to evolve the reference document:

1. (Session chairs) 2 months to produce workshop proceedings (informal, focused on discussed
content and suggestions).

2. (Editors) 2 months to integrate the new proceedings into the evolving reference document. This
step culminates with the release of: a new “beta” version of the reference; a “diff” highlighting
the changes since the last version; as needed, a description of editorial decisions; and a call
for comments, indicating areas that may require specialized contribution.

3. (General public) 2 months open to submit public feedback.

4. (Editors) 1.5 months to integrate the feedback, essentially repeating step 2, but also publishing,
in the diff, a table with all received comments and cross-referencing them to all changes made.

4

5. Repeat step 3.

6. Repeat step 4, and let the output be called the new “stable” version.

At each step of the process, the ZKProof steering committee supervises the progress and issues
recommendations or formal opinions, as needed.

2.2. A possible starting point

D7. Initial compilation. Consider enhancing the indexation and labeling features of the reference
document, to ensure that any part of the content can be easily referenced in a direct manner
when making comments or proposing adjustments. As an initial contribution in this direction, we
ported to LATEX the content of the six original documents available online, and compiled it into
a single document, making several editorial adjustments therein. We make this compilation and its
source-code available for appreciation by the ZKProof team. A summary of the editorial adjustments:

• indexed all lines, pages, sections, subsections, tables, figures;

• uniformized the numbering and style of sections and subsections;

• upgraded some paragraph headers to subsections;

• added captions to the figure and the tables; split some tables;

• added table of contents, lists of tables and figures, PDF bookmarks and hyperlinks;

• added bibtex source for references and generated the corresponding tags and hyperlinks;

• used math font for math symbols;

• moved around and merged some repeated/related material (e.g., change log, references, external
resources, glossaries);

• initiated a list of acronyms;

• added some pop-up annotations with minor suggestions.

5

		NIST comments on the initial ZKProof documentation

		1. Selected comments

		1.1. Editorial — adjustments and indexation

		C1. Reference document

		C2. Recommendations and requirements

		C3. Scope of the Creative Commons license

		C4. Glossary

		1.2. Editorial — producing new content

		C5. Executive summary

		C6. Examples

		1.3. Track 1: security/theory

		C7. Proofs of knowledge

		C8. Concurrency

		C9. Transferability

		C10. Circuits vs. R1CS

		C11. Common vs. public

		1.4. Track 2: Applications

		C12. Motivation

		C13. Gadgets

		C14. Interactivity vs. transferability

		C15. Implicit scope of use-cases

		C16. References

		1.5. Track 3: Implementation

		C17. Backend choice NIZK-R1CS

		C18. Computational security parameter

		C19. Statistical security

		C20. Side-channels

		C21. Validation

		C22. Intellectual property

		2. Towards a reference document

		2.1. Setting expectations and orientation

		D1. Title

		D2. Purpose

		D3. Aim

		D4. Scope

		D5. Format

		D6. Editorial methodology

		2.2. A possible starting point

		D7. Initial compilation

NIST comments on the initial ZKProof documentation

NIST-PEC contributions to advance the draft
ZKProof Community Reference from version 0.1 to 0.2

Luís T. A. N. Brandão, René Peralta, Angela Robinson

National Institute of Standards and Technology

October 10, 2019,∗ Gaithersburg USA

The Privacy-Enhancing Cryptography (PEC) team at the National Institute of Standards and Tech-
nology (NIST) is interested in the development of reference material to aid in the advancement of
cryptographic technology that can be used to enhance privacy in a secure, practical, and interop-
erable way. In this scope, we are collaborating with the development of the ZKProof Community
Reference, which intends to promote zero-knowledge proofs technology in an open and inclusive
manner. Our collaboration follows the editorial process initiated in the 2nd ZKProof Workshop
(April 10–12, 2019).

In the present document, we propose contributions to the process of advancing the draft version 0.1
of the ZKProof Community Reference to a new draft version 0.2. Our contributions are organized
into seven topics, as indexed in the table below. Each topic relates to a comment included in the
“NIST comments on the initial ZKProof documentation” (April 06, 2019) and further detailed as
an “issue” in the Github repository of ZKProof.

Topic NIST early
comment #

Github
issue #

In this document
Section Comments

Intellectual property C22 Issue #5 1 D1.1
Executive summary C5 Issue #1 2 D2.1

Proofs of Knowledge C7 Issue #2 3 D3.1–D3.12
CRS public or not C11 Issue #4 4 D4.1–D4.2

Computational security C18 Issue #3 5 D5.1–D5.6
Statistical security C19 Issue #10 6 D6.1

Transferability C9 Issue #6 7 D7.1–D7.3

We offer these contributions as part of an ongoing editorial process. The proposed items cover a
limited number of components in a draft that is expected to be subjected to more revision stages.
Our participation should not be construed as endorsement of standardization of any content.

1. Proposal about Intellectual Property

1.1. Context

In community efforts that promote the development of new technologies, the subject of intellectual
property involves a diverse set of perspectives from different stakeholders. This topic deserves
∗This is a revision with improvements over the version (with the same title) dated September 10, 2019.

Page 1 of 17

https://github.com/zkpstandard/zkreference/issues

https://github.com/zkpstandard/zkreference/issues/5

https://github.com/zkpstandard/zkreference/issues/1

https://github.com/zkpstandard/zkreference/issues/2

https://github.com/zkpstandard/zkreference/issues/4

https://github.com/zkpstandard/zkreference/issues/3

https://github.com/zkpstandard/zkreference/issues/10

https://github.com/zkpstandard/zkreference/issues/6

explicit consideration and setting of community expectations. For that reason we have proposed
that some related guidance be included in the ZKProof Reference document.

In the “NIST comments on the initial ZKProof documentation” (April 6, 2019) we commented the
following: “C22. [...] Consider discussing possible guidance regarding intellectual property.”

After the 2nd ZKProof workshop, we detailed further the proposed contribution in the GitHub
ZKProof Reference repository, as Issue #5 (“Mention intellectual property”): Present (in one or
two paragraphs), in a non-legalese way, several remarks about intellectual property (IP). A main
goal is to raise awareness about the role that IP may take or might not take in the adoption of recom-
mendations and requirements in the community reference document. We are aware this is a delicate
topic, so a goal of the contribution is to also motivate future constructive discussion/consideration
by the ZKProof community, e.g., about open-source, IP rights, reasonable and non-discriminatory
IP terms, etc.

Section 1.2 shows the actual text proposed for inclusion in the Community Reference. The text
tries, without an overly legalese format, to convey clear expectations related to licensing terms
and disclosure of patent claims. We shared in advance with the ZKProof Editors and Steering
Committee an earlier version of the proposal, for feedback. We propose that the current text, to
be integrated in the new draft Community Reference, also be presented to the community during
the 3rd ZKProof Workshop.

1.2. Proposed changes

D1.1. Add IP guidance

In the preamble, before the executive summary, add the following unnumbered section:

Expectations on disclosure and licensing of intellectual property

ZKProof is an open initiative that seeks to promote the secure and interoperable use of zero-
knowledge proofs. To foster open development and wide adoption, it is valuable to promote tech-
nologies with open-source implementations, unencumbered by royalty-bearing patents. However,
some useful technologies may fall within the scope of patent claims. Since ZKProof seeks to
represent the technology, research and community in an inclusive manner, it is valuable to set
expectations about the disclosure of intellectual property and the handling of patent claims.

The members of the ZKProof community are hereby strongly encouraged to provide information
on known patent claims potentially applicable to the guidance, requirements, recommendations,
proposals and examples provided in ZKProof documentation, including by disclosing known pend-
ing patent applications or any relevant unexpired patent. Particularly, such disclosure is promptly
required from the patent holders, or those acting on their behalf, as a condition for providing con-
tent contributions to the “Community Reference” and to “Proposals” submitted to ZKProof for
consideration by the community. Furthermore, any technology that is promoted in said ZKProof
documentation and that falls within patent claims should be made available under licensing terms
that are reasonable, and demonstrably free of unfair discrimination, preferably allowing free open-
source implementations.

The ZKProof documentation will be updated based on received disclosures about pertinent patent
claims. Please email information to editors@zkproof.org.

Page 2 of 17

https://github.com/zkpstandard/zkreference/issues/5

mailto:editors@zkproof.org

2. Proposal about Executive Summary

2.1. Context

In the “NIST comments on the initial ZKProof documentation” (April 6, 2019) we commented the
following: “C5. [...] Consider adding an executive summary, describing at a high level the structure
and content of the overall reference documentation. [...] ”

After the 2nd ZKProof workshop, we further detailed the proposed contribution in the GitHub
ZKProof Reference repository, as Issue #1 (“Add an executive summary”): “include an ‘executive
summary’ describing at a high level the structure and content of the overall ‘ZKProof community
reference’ document; the new text may also allude to the purpose, aim, scope and format of the
document.”

Some of the mentioned elements — purpose, aim, scope and format — can be left to an editorial
note different from the executive summary. Section 2.2 shows the actual text proposed as an initial
executive summary for inclusion in the Community Reference.

2.2. Proposed changes

D2.1. Add an executive summary

In the preamble of the document, add the following as a new unnumbered section:

Executive Summary

Zero-knowledge proofs (ZKPs) are an important privacy-enhancing tool from cryptography. They
preserve confidentiality of data, while proving the veracity of statements about the data. They
can also be used to prove knowledge of such data without having to disclose it. ZKPs can have
a positive impact in industries, agencies, and for personal use, by allowing privacy-preserving
applications where designated private data can be made useful to third parties, despite not being
disclosed to them. The development of this “ZKProof Community Reference” is a step towards
enabling wider adoption of interoperable ZKP technology, possibly preceding the establishment of
future standards.

ZKPs were developed by the academic community in the 1980s, and have seen tremendous im-
provements since then. They are now of practical feasibility in multiple domains of interest to
the industry, and to a large community of developers and researchers. This document aims to be
a community-built reference for understanding and aiding the development of ZKP systems in a
secure, practical and interoperable manner. It is not a substitution for research papers, technical
books, or standards. It is intended to serve as a reference handbook of introductory concepts, basic
techniques, implementation suggestions and application use-cases. This aims to serve the broader
community, particularly those interested in understanding ZKP systems, making an impact in
their advancement, and using related products.

ZKP systems involve at least two parties: a prover and a verifier. The goal of the prover is to
convince the verifier that a statement is true, without revealing any additional information. For
example, suppose the prover holds a birth certificate digitally signed by an authority. In order
to access some service, the prover may have to prove being at least 18 years old, that is, that
there exists a birth certificate, tied to the identify of the prover and digitally signed by a trusted
certification authority, stating a birthdate consistent with the age claim. A ZKP allows this,

Page 3 of 17

https://github.com/zkpstandard/zkreference/issues/1

without the prover having to reveal the birthdate.

This document describes important aspects of the current state of the art in ZKP security, imple-
mentation, and applications. There are several use-cases and applications where ZKPs can add
value. However, this requires benchmarking implementations under several metrics, evaluating
tradeoffs between security and efficiency, and developing a basis for interoperability. The security
of a proof system is paramount for the system users, but system efficiency is also essential for user
experience.

The “Security” chapter introduces the theory and terminology of ZKP systems. A ZKP system can
be described with three components: setup, prove, verify. The setup, which can be implemented
with various techniques, determines the initial state of the prover and the verifier, including private
and common elements. The prove and verify components are the algorithms followed by the prover
and verifier, respectively, possibly in an interactive manner. These algorithms are defined so as to
ensure three main security requirements: completeness, soundness, and zero-knowledge.

Completeness requires that if both prove and verify are correct, and if the statement is true, then
at the end of the interaction the prover is convinced of this fact. Soundness requires that not even
a malicious prover can convince the verifier of a false statement. Zero knowledge requires that even
a malicious verifier cannot extract any information beyond the truthfulness of the given statement.

The “Implementation” chapter focuses on devising a framework for the implementation of ZKPs,
which is important for interoperability. One important aspect to consider upfront is the represen-
tation of statements. In a ZKP protocol, the statement needs to be converted into a mathematical
object. For example, in the case of proving that an age is at least 18, the statement is equiva-
lent to proving that the private birthdate Y1-M1-D1 (year-month-day) satisfies a relation with the
present date Y2-M2-D2, namely that their distance is greater than or equal to 18 years. This simple
example can be represented as a disjunction of conditions: Y2 >Y1+18, or Y2=Y1+18 ∧ M2>M1, or
Y2=Y1+18 ∧ M2=M1 ∧ D2≥D1. An actual conversion suitable for ZKPs, namely for more complex
statements, can pose an implementation challenge. There are nonetheless various techniques that
enable converting a statement into a mathematical object, such as a circuit. This document gives
special attention to representations based on a Rank-1 constraint system (R1CS) and quadratic
arithmetic programs (QAP), which are adopted by several ZKP solutions in use today. Also, the
document gives special emphasis to implementations of non-interactive proof systems.

The privacy enhancement offered by ZKPs can be applied to a wide range of scenarios. The
“Applications” chapter presents two use-cases that can benefit from ZKP systems: identity frame-
work and asset transfer. In a privacy-preserving identity framework, one can for example prove
useful personal attributes, such as age and state of residency, without revealing more detailed per-
sonal data such as birthdate and address. In an asset-transfer setting, financial institutions that
facilitate transactions usually require knowing the identities of the sender and receiver, and the
asset type and amount. ZKP systems enable a privacy-preserving variant where the transaction
is performed between anonymous parties, while at the same time ensuring they and their assets
satisfy regulatory requirements. These use cases, as well as a wide range of many other conceivable
privacy-preserving applications, can be enabled by a common set of tools, or gadgets, for example
including commitments, signatures, encryption and circuits.

The interplay between security concepts and implementation guidelines must be balanced to enable
the development of secure, practical, and interoperable ZKP applications. Solutions provided by
ZKP technology must be ensured by careful security practices and realistic assumptions. This
document aims to summarize security properties and implementation techniques that help achieve
these goals.

Page 4 of 17

3. Proposal about Proofs of Knowledge

3.1. Context

In the “NIST comments on the initial ZKProof documentation” (April 6, 2019) we commented:
“C7. [...] Consider making a clearer distinction of ZK proofs of membership vs. ZK proofs of knowl-
edge, including by means of examples and definitions. Consider clarifying how the formalism can ad-
equately model proofs of knowledge. A definition of an “extractability” property/game may be useful.”

After the 2nd ZKProof workshop, we detailed further the proposed contribution in the GitHub
ZKProof Reference repository, Issue #2 (“Explain the computational security parameter”): “make
a clearer distinction of ZK proofs of membership vs. ZK proofs of knowledge, including by means
of examples and definitions; clarify how the formalism can adequately model proofs of knowledge;
may also include a definition of “extractability” property/game.”

Section 3.2 shows the proposed changes to the Community Reference.

3.2. Proposed changes

The following proposed changes relate to old sections 1.1, 1.3, and 1.5.3, and propose a new section
1.4.

D3.1. Introduce acronym ZKP

In Section 1.1.1, line 131, introduce the ZKP acronym, when first writing the extended form. Where
it says “A zero-knowledge proof makes it possible [...]”, write:

A zero-knowledge proof (ZKP) makes it possible [...]

D3.2. Clarify secrecy of witness

In Section 1.1.1, line 132, introduce sentences clarifying the meaning of secret information. Within
the text “[...] secret information. There are numerous uses of [...]”, write:

[...] secret information. This makes sense when the veracity of the statement is not obvious on its
own, but the prover knows relevant secret information (or has a skill, like super-computation ability)
that enables producing a proof. The notion of secrecy is used here in the sense of prohibited leakage,
but a ZKP makes sense even if the ‘secret’ (or any portion of it) is known apriori by the verifier(s).

There are numerous uses of [...]

D3.3. List examples at a high level

In section 1.1.1, lines 132–133 (before Table 1.1), the draft 0.1 contained Table 1.1 with examples
of ZKP scenarios. Further below, comment D3.6 proposes enhancing the table, to convey intuition
about additional elements in a ZKP. However, to retain a simple beginning of Section 1, before the
table gets more complex, we can mention first in running text (in an enumerated environment) a
simple description of the scenarios (including two new proposed ones).

Page 5 of 17

https://github.com/zkpstandard/zkreference/issues/2

Proposed change — where it says “There are numerous uses of zero-knowledge proofs. Table 1.1
gives three examples where proving claims about confidential data can be useful.”, change the text
to:

There are numerous uses of ZKPs, useful for proving claims about confidential data, such as:

1. adulthood, without revealing the birth date;
2. solvency (not being bankrupt), without showing the portfolio composition;
3. ownership of an asset, without revealing or linking to past transactions;
4. validity of a chessboard configuration, without revealing the legal sequence of chess moves;
5. correctness (demonstrability) of a theorem, without revealing its mathematical proof.

D3.4. Allude to the need of an instance

In section 1.1.1, after the enumeration of scenarios proposed in the previous item, add a paragraph
alluding to the need of a supporting instance (a substrate) and to the qualification of statement of
knowledge. Proposed text:

Some of these claims (commonly known by the prover and verifier, and here described as informal
statements) require a substrate (called instance, also commonly known by the prover and verifier) to
support an association with the confidential information (called witness, known by the prover and
to not be leaked during the proof process). For example, the proof of solvency (the statement) may
rely on encrypted and certified bank records (the instance), and with the verifier knowing the cor-
responding decryption key and plaintext (the witness) as secrets that cannot be leaked. Table 1.1
in Section 1.2 differentiates these elements across several examples. In concrete instantiations, the
exemplified ZKPs are specified by means of a more formal statement of knowledge of a witness.

D3.5. Mention proof vs. argument

In the end of section 1.1.1, after old line 147, add a paragraph conveying at a high level the distinc-
tion between “proof” and “argument” and stating that in [the current version of] this document
the terminology is simplified to simply use “proof”:

Proofs vs. arguments. The theory of ZKPs distinguishes between proofs and arguments, as
related to the computational power of the prover and verifier. Proofs need to be sound even against
computationally unbounded provers, whereas arguments only need to preserve soundness against
computationally bounded provers (often defined as probabilistic polynomial time algorithms). For
simplicity, “proof” is used hereafter to designate both proofs and arguments, although there are
theoretical circumstances where the distinction can be relevant.

D3.6. Enhance table of examples

From section 1.1.1, move and change Table 1.1 (old lines 134–137) to the end of section 1.2. Trans-
pose the table to enable space for more examples, and add a column to describe the “instance”
(commonly known by prover and verifier) for each example scenario, in order to enable intuition
about the substrate (the instance) that supports the statement with respect to the confidential
info. In the table, add an example with the chessboard configuration problem (mentioned in old

Page 6 of 17

section 3.4 “Gadgets within predicates”), as well as a similar but more formal example on theorem
validity. These examples are also useful to compare the perspectives of ZKP of knowledge vs. ZKP
of membership. As a way to let section 1.1 remain simple, we propose that the table, which became
more complex, be moved to the end of old section 1.2 (“Terminology”), along with an introductory
sentence mentioning it. Here is the proposed result for the end of section 1.2:

Page 7 of 17

Table 1.1 exemplifies at a high level a differentiation between the statement, the instance and the
witness elements for the initial examples mentioned in Section 1.1.1.

Table 1.1: Example scenarios for zero-knowledge proofs

#
Scenarios

Elements Statement
being proven

Instance
used as substrate

Witness
treated as confidential

1 Legal age for
purchase I am an adult Tamper-resistant

identification chip
Birthdate and personal
data (signed by a CA)

2 Hedge fund
solvency We are not bankrupt Encrypted & certified

bank records
Portfolio data and
decryption key

3 Asset
transfer I own this <asset> A blockchain or

other commitments

Sequence of transactions
(and secret keys that
establish ownership)

4 Chessboard
configuration

This <configuration>
can be reached (The rules of Chess) A sequence of valid

chess moves

5 Theorem
validity

This <expression>
is a theorem

(A set of axioms,
and the logical
rules of inference)

A sequence of logical
implications

Legend: CA = certification authority

D3.7. Distinguish types of statements: knowledge vs. membership

In section 1.3, old line 183, change “A statement is a claim x ∈ L, which can be true or false” to:

A statement is either a membership claim of the form “x ∈ L”, or a knowledge claim of the form “In
the scope of relation R, I know a witness for instance x.” For some cases, the knowledge and member-
ship types of statement can be informally considered interchangeable, but formally there are techni-
cal reasons to distinguish between the two notions. In particular, there are scenarios where a state-
ment of knowledge cannot be converted into a statement of membership, and vice-versa (as exem-
plified in Section 1.4). The examples in this document are often based on statements of knowledge.

See related contribution items D3.8–D3.11.

D3.8. Distinguish types of ZKP: knowledge vs. membership

After Section 1.3, old line 221, add a new Section (1.4) conveying the distinction between ZKP of
knowledge and ZKP of membership, as follows:

1.4 ZKPs of knowledge vs. ZKPs of membership. The theory of ZKPs distinguishes
between two types of proofs, based on the type of statement (and also on the type of security
properties — see Sections 1.6.2 and 1.6.3):

• A ZKP of knowledge (ZKPoK) proves the veracity of a statement of knowledge, i.e., it proves
knowledge of private data that supports the statement, without revealing the former.

• A ZKP of membership proves the veracity of a statement of membership, i.e., that the in-
stance belongs to the language, as related to the statement, but without revealing information
that could not have been produced by a computationally bounded verifier.

Page 8 of 17

The statements exemplified in Table 1.1 were expressed as facts, but each of them corresponds to
a knowledge of a secret witness that supports the statement in the context of the instance. For
example, the statement “I am an adult” in scenario 1 can be interpreted as an abbreviation of “I
know a birthdate that is consistent with adulthood today, and I also know a certificate (signed by
some trusted certification authority) associating the birthdate with my identity.”

The first three use-cases (adulthood, solvency and asset ownership) in Table 1.1 have instances
with some kind of protection, such as physical access control, encryption, signature and/or com-
mitments. The “chessboard configuration” and the “theorem validity” use-cases are different in
that their instances do not contain any cryptographic support or physical protection. Each of
those two statements can be seen as a claim of membership, in the sense of claiming that the
expression/configuration belongs respectively to the language of valid chessboard configurations
(i.e., reachable by a sequence of moves), or the language of theorems (i.e., of provable expressions).
At the same time, a further specification of the statement can be expressed as a claim of knowledge
of a sequence of legal moves or a sequence of logical implications.

D3.9. Example: ZKPoK of DL

After the text from contribution D3.8 (creating a new Section 1.4), add as a new subsection (1.4.1)
a concrete example of a ZKP of knowledge (of discrete log) that does not have a dual ZKP of
membership:

1.4.1 Example: ZKP of knowledge of a discrete logarithm (discrete-log). Let p be a
large prime (e.g., with 4096 bits) of the form p = 2q+1, where q is also a prime. Let g be a generator
of the group Z∗

p = {1, ..., p − 1} =
{
gi : i = 1, ..., p− 1

}
under multiplication modulo p. Assume

that it is computationally infeasible to compute discrete-logs in this group, and that the primality
of p and q has been verified by both prover and verifier. Let w be a secret element (the witness)
known by the prover, and let x = gw(mod p) be the instance known by both the prover and verifier,
corresponding to the following statement by the prover: “I know the discrete-log (base g) of the
instance (x), modulo p” (in other words: “I know a secret exponent that raises the generator (g) into
the instance (x), modulo p”). Consider now the relation R = {(x,w) : gw = x (mod p)}. In this
case, the corresponding language L = {x : ∃w : (x,w) ∈ R} is simply the set Z∗

p = {1, 2, ..., p− 1},
for which membership is self-evident (without any knowledge of w). In that sense, a proof of
membership does not make sense (or can be trivially considered accomplished with even an empty
bit string). Conversely, whether or not the prover knows a witness is a non-trivial matter, since
the current publicly-known state of the art does not provide a way to compute discrete-logs in time
polynomial in the size of the prime modulus (except if with a quantum computer). In summary,
this is a case where a ZKPoK makes sense but a ZKP of membership does not.

D3.10. Example: ZKPoK of hash pre-image

After the example of ZKPoK from contribution D3.9, add as a new subsection (1.4.2) an example
of a ZKP of knowledge (of a hash pre-image) with a different subtlety about the duality between
knowledge vs. of membership:

1.4.2 Example: ZKP of knowledge of a hash pre-image. Consider a cryptographic hash
function H : {0, 1}512 → {0, 1}256, restricted to binary inputs of length 512. For many (possibly
all) 256-bit instances in the co-domain {0, 1}256 of H there are many pre-images in {0, 1}256. Let
w be a witness (hash pre-image) know by the prover (and unpredictable to the verifier), for some
instance x = H(w) known by the verifier. Since a cryptographic hash function is one-way, it makes
sense to give a ZKPoK of a pre-image, corresponding to proving knowledge of a witness in the

Page 9 of 17

relation R = {(x,w) : H(w) = x}. Such proof also constitutes directly a proof of membership, i.e.,
that the instance x does in fact belong to the co-domain of H. However, interestingly, membership
in the co-domain of H is a problem that might or might not make sense depending on the known
properties of the hash function H. If H is known to have as a co-domain the set of all bit-strings
of length 256, then membership is self-evident. Otherwise it may be that an element x uniformly
selected from the range {0, 1}256 is in fact not in the co-domain of H, case in which a proof of
membership makes sense.

D3.11. Example: ZKP of graph non-isomorphism

After the previous proposed item, provide as a new subsection (1.4.3) an example of ZKP of
membership without a ZKPoK counterpart:

1.4.3 Example: ZKP of membership for graph non-isomorphism. In the theoretical
context of provers with super-polynomial computation ability (e.g., unbounded), one can conceive
a proof of membership without the notion of witness. Therefore, in this case the dual notion of a
ZKP of knowledge does not apply. A classical example uses the language of pairs of non-isomorphic
graphs, for which the proof is about convincing a verifier that two graphs are not isomorphic. The
classical example uses an interactive proof that does not follow from a witness, but rather from a
super-ability, by the prover, in deciding isomorphism between graphs. The verifier challenges the
prover to detect which of the two graphs is isomorphic to a random permutation of one of the two
original graphs. If the prover decides correctly enough times, without ever failing, then the verifier
becomes convinced of the non-isomorphism.

This document is not focused on settings that require provers with super-polynomial ability (in an
asymptotic setting). However, this notion of ZKP of membership without witness still makes sense
in other conceivable applications, namely within a concrete setting (as opposed to asymptotic).
This may apply in contexts of proofs of work, or when provers are “supercomputers” or quantum
computers, possibly interacting with verifiers with significantly less computational resources. An-
other conceivable setting is when a verifier wants to confirm whether the prover is able to solve a
mathematical problem, for which the prover claims to have found a first efficient technique, e.g.,
the ability to decide fast about graph isomorphism.

D3.12. Suggestion to define ZKPoK game

In the end of old subsection 1.5.3 (new subsection 1.6.3), after old line 356, add the following
editorial suggestion, to be carefully addressed in a future revision:

[[To improve. Consider adding, in a future version of this document draft, a game definition
for the extractor required by the formal notion of proof of knowledge. This security property also
arises naturally in the ideal/real simulation paradigm, in the context of an ideal ZKP functionality
that, in the ideal world, receives the witness directly from the prover.]]

4. Proposal about CRS as public or not

4.1. Context

In the “NIST comments on the initial ZKProof documentation” (April 6, 2019) we commented
the following: “C11. [...] Consider clarifying the distinction between common knowledge (between

Page 10 of 17

prover and verifier) and public knowledge. The lack of distinction is noticed in several parts when
trying to think of a comparison between transferable vs. non-transferable cases. CRS is being defined
as public, although in practice it could be obtained as common to the intervening parties, private to
a particular interaction.”.

After the 2nd ZKProof workshop, we detailed further the proposed contribution in the GitHub
ZKProof Reference repository, as Issue #4 (“Explain the computational security parameter”):
“Clarify the distinction between common (as in shared between prover and verifier) and public
knowledge (as in known externally). The lack of distinction was noticed in several parts of the doc-
ument, when thinking of a comparison between transferable vs. non-transferable ZK proofs. CRS
is sometimes being defined as public, although in practice it could be obtained as common to the
intervening parties, yet private to a particular interaction. For example, line 177 says ‘common
public input’ when first talking of a ‘common reference string’, but the ‘public’ aspect is arguable

— being public vs. common-but-not-public may make the difference between transferability vs. non-
transferability.”

Section 4.2 shows the proposed changes to the Community Reference.

4.2. Proposed changes

The following proposed changes relate to section 1.2.

D4.1. Clarify public vs. common input

In section 1.2 “Terminology”, old lines 187–188, change “Instance: Public input that is known to
both prover and verifier. Sometimes scientific articles use ‘instance’ and ‘statement’ interchangeably,
but we distinguish between the two.” to:

Instance: Input commonly known to both prover and verifier, and used to support the statement of
what needs to be proven. This common input may either be local to the prover–verifier interaction,
or public in the sense of being known by external parties.

D4.2. Syntax of setup — common and private components

In section 1.2 “Terminology”, old line 200–202, where it says “Setup: Input to e.g. prover and
verifier. Common reference string: Some zero-knowledge systems require common public input,
e.g., CRS = setupP = setupV .” adjust as follows:

Setup: The inputs given to the prover and to the verifier, apart from the instance x and the wit-
ness w. The setup of each party can be decomposed into a private component (“PrivateSetupP ” or
“PrivateSetupV ”, respectively not known to the other party) and a common component “Common-
Setup = CRS” (known by both parties), where CRS denotes a “common reference string” (required
by some zero-knowledge proof systems). Notation: setupP = (PrivateSetupP , CRS) and setupV

= (PrivateSetupV , CRS).”

For simplicity, some parameters of the setup are left implicit (possibly inside the CRS), such as the
security parameters, and auxiliary elements defining the language and relation. See more details
in section 1.5.3.

Note: while the witness (w) and the instance (x) could be assumed as elements of the setup of a

Page 11 of 17

https://github.com/zkpstandard/zkreference/issues/4

concrete ZKP protocol execution, they are often distinguished in their own category. In practice,
the term “Setup” is often used with respect to the setup of a proof system that can then be
instantiated for multiple executions with varying instances (x) and witnesses (w).

5. Proposal about Computational Security parameter

5.1. Context

In the “NIST comments on the initial ZKProof documentation” (April 6, 2019) we commented
the following: “C18. [...] Consider providing rationale for the recommendation of 120 bits of
computational security. [...] ”

After the 2nd ZKProof workshop, we detailed further the proposed contribution in the GitHub
ZKProof Reference repository, as Issue #3 (“Explain the computational security parameter”):
“Add text about possible computational security parameters, and the different security properties
they may apply to (e.g., soundness, ZK, short-term vs. long-term, ...). In section 2.5, replace
occurrences of ‘120’ by ‘128’.”

Section 5.2 shows the proposed changes to the Community Reference.

5.2. Proposed changes

The following proposed changes relate to the old section 2.5 (new number 3.5) and to a new
subsection 1.5.6

D5.1. Benchmark security levels

In old section 2.5.2 “How to run the benchmarks” (new section 3.5.2), old line 916, replace “The
benchmarks should be run at approximately 120-bit security or larger.” by:

The benchmarks should be obtained preferably for more than one security level, following the
recommendations stated in Section 1.7.1

Note: See D5.4 for the proposal of creating the new subsection 1.7.1 (within section the old section
“1.7 Efficiency”), moving and adapting there the content of old section 2.5.4. This will also contain
requirements and recommendation about statistical security levels (as proposed in Section 6.2)

D5.2. SHA-256 at 128-bit level

In old section 2.5.3 “What benchmarks to run” (new section 3.5.3), old line 935: where it says “(e.g.
SHA-256) [...] at 120-bit classical security.” change to

(e.g., SHA-256) [...] at 128-bit classical security.

D5.3. Primitives at 128-bit level

In old section 2.5.3 “What benchmarks to run” (new section 3.5.3), old line 959: where it says “the
primitive should be given at a level of 120 bits or higher” change to

Page 12 of 17

https://github.com/zkpstandard/zkreference/issues/3

the primitive underlying the ZKP statement should be given at a level of 128 bits or higher.

D5.4. Characterize the security properties

Move the old section “2.5.4 Security”, old lines 978–981, to the end of old Section “1.7 Efficiency”
in Chapter ”1 Security”. Then, replace “2.5.4 Security To aid this benchmarks should make it
clear which security level (Definition see theory track document) is being used. In particular the
benchmark should clearly state under which assumptions the claimed security is achieved. If the
security is conjectured then benchmarks should display both the conjectured as well as the proven
performance.” as follows (beginning a new subsection 1.7.1):

1.7.1 Characterization of security properties.

The benchmarking of a technique should clarify the distinct security levels achieved/conjectured
for different security properties, e.g., soundness vs. zero-knowledge. In each case, the security
type should also be clarified with respect to being unconditional, statistical or computational.
When considering computational security, it should be clarified to what extent pre-computations
may affect the security level, and whether/how known attacks may be parallelizable. All security
claims/assertions should be qualified clearly with respect to whether they are based on proven
security reductions or on heuristic conjectures. In either case the security analysis should make clear
which computational assumptions and implementation requirements are needed. It should be made
explicit whether (and how) the security levels relate to classical or quantum adversaries. When
applicable, the benchmarking should characterize the security (including possible unsuitability) of
the technique against quantum adversaries.

D5.5. Computational security levels

In the paragraph of old section “2.5.4 Security”, lines 981-982 (proposed in D5.4 to be moved to
the new subsection 1.7.1), change “Benchmarks should be run with at least 120-bit security.” to
(begin a new subsection 1.7.2) as follows:

1.7.2 Computational security levels for benchmarking.

The benchmarks for each technique shall include at least one parameterization for achieving a
conjectured computational security level κ approximately equal to, or greater than, 128 bits. Each
technique should also be benchmarked for at least one additional higher computational security
level, such as 192 or 256 bits. (If only one, the latter is preferred.) The benchmarking at more
than one level aids with the understanding of how the efficiency varies with the security level. The
interest in a security level as high as 256 bits can be considered a precautious (and heuristic) safety
margin, compared for example with intended 128 bits. This is intended to handle the possibility
that the conjectured level of security is later found to have been over-estimated. The evaluation
at computational security below 128 bits may be justified for the purpose of clarifying how the
execution complexity or time varies with the security parameter, but should not be construed as
a recommendation for practical security.

D5.6. Exception for lower levels

In the newly proposed subsection 1.7.2 (see D5.5), add the following paragraph:

Page 13 of 17

An exception allowing lower computational security parameter. With utmost care, a
computational security level may be justified below 128 bits, including for benchmarking.

Here is an exception: In some interactive ZKPs (see Section 2.2), there may be cryptographic
properties that only need to be held during a portion of a protocol execution, which in turn may
be required to take less than a fixed amount of time, say, one minute. For example, a commitment
scheme used to enable temporary hiding during a coin-flipping protocol may only need to hold until
the other party reveals a secret value. In such case the property may be implemented with less than
128 bits of security, under special care (namely with respect to composition in a concurrent setting)
and if the difference in efficiency is substantial. Such decreased security level of a component of a
protocol may also be useful for example to enable properties of deniability (non-transferability).

Depending on the application, other exceptions may be acceptable, upon careful analysis, when
the witness whose knowledge is being proven is itself discoverable from the ZK instance with less
computational resources than those corresponding to 128 bits of security.

6. Proposal about Statistical security

6.1. Context

In the “NIST comments on the initial ZKProof documentation” (April 6, 2019) we commented:
“C19. [...] Consider discussing various examples of acceptable values of statistical security
parameter. It can be useful to explore how interactive to non-interactive transformations may affect
the requirements on the statistical security parameter, e.g., making it become a computational
parameter when applying Fiat-Shamir.”

After the 2nd ZKProof workshop, we transcribed the proposed contribution in the GitHub ZKProof
Reference repository, Issue #10 (“Explain the statistical security parameter”), with a slight varia-
tion that added the example of a possibility of 40 bits of statistical security.

Section 6.2 shows the proposed changes to the Community Reference.

6.2. Proposed changes

D6.1. Statistical security levels

In the end of section “1.7 Efficiency” (after the proposed new subsection 1.7.2 — see D5.5), add a
new subsection 1.7.3 with considerations about the statistical security parameter, including guid-
ance for benchmarking:

1.7.3 Statistical Security levels for benchmarking. The soundness security of certain
interactive ZKP systems may be based on the ability of the verifier(s) to validate-or-trust the
freshness and entropy of a challenge (e.g., a nonce produced by a verifier, or randomness obtained
by a trusted randomness Beacon). In some of those cases, a statistical security parameter σ (e.g.,
40 or 64 bits) may be used to refer to the error probability (e.g., 2−40 or 2−64, respectively) of a
protocol with “one-shot” security, i.e., when the ability of a malicious prover to succeed without
knowledge of a valid witness requires guessing in advance what the challenge would be. In those
cases, a low statistical security parameter may be suitable if there is a mechanism capable of
detecting and preventing a repetition of failed proof attempts.

Page 14 of 17

https://github.com/zkpstandard/zkreference/issues/10

While an appropriate minimal parameter may depend on the application scenario, benchmarking
shall be done with statistical security of at least 64 bits. Whenever the efficiency variation is
substantial across variations of statistical security parameter, it is recommended that more than
one security level be benchmarked. The cases of 40, 64, 80 and 128 bits are suggested.

For interactive techniques where the efficiency upon using 64 bits of statistical security is similar to
that of using a higher parameter similar to the computation security parameter (at least 128 bits),
then the benchmark should use at least one higher statistical parameter that enables retaining
high computational security (at least 128 bits) even if the protocol is transformed into a non-
interactive version via a Fiat-Shamir transformation or similar. In the resulting non-interactive
protocols, the prover is the sole generator of the proof, and so a malicious prover can rewind and
restart an attempt to generate a forged proof whenever a non-interactively produced challenge is
unsuitable to complete the forgery. Computational security remains if the expected number of
needed attempts is of the order of 2κ.

7. Proposal about transferability and deniability

7.1. Context

In the “NIST comments on the initial ZKProof documentation” (April 6, 2019) we commented:
“C9. [...] The concept of transferability could benefit from more attention. For example, in
an interactive protocol over the Internet, how do regular authenticated channels vs. ‘ideally’
authenticated channels affect transferability? Would a non-transferable protocol become transferable
when the prover signs all sent messages and the verifier uses the output of a cryptographic hash
function to select random challenges?”

After the 2nd ZKProof workshop, we detailed further the proposed contribution in the GitHub
ZKProof Reference repository, as Issue #10 (“Discuss transferability and deniability”): Elaborate
more on the concept of transferability. [...content mentioned above...]

Also, in Section 3.2, revise the incorrect assertion in item 1: ‘Only non-interactive ZK (NIZK) can
actually hold this property’ [being publicly verifiable / transferable?]. For example, if transferability
is a design goal then there are settings where it is possible to design interactive protocols for which
the view (transcript) of the original verifier (interacting with the original prover) can later serve as
a transferable proof for other verifiers.

This topic was also discussed in the breakout session on “Interactive Zero Knowledge” during the
2nd ZKProof Workshop (April 10–12, 2019), and is expected to receive complementary contribu-
tions.

Section 7.2 shows the proposed changes to the Community Reference.

7.2. Proposed changes

[Note: some of the contributions described herein may be adapted to related contributions that
may appear concurrently in connection with the discussion of interactivity in ZKP systems.]

D7.1. Mention deniability vs. transferability

After old section 1.5.5 (new section 1.6.5), after old line 417, add a new subsection (1.6.6) intro-

Page 15 of 17

https://github.com/zkpstandard/zkreference/issues/10

ducing the dual features of transferability and deniability:

1.6.6 Transferability vs. deniability

In the traditional notion of zero-knowledge, a ZKP system prevents the verifier from even being
able to convincingly advertise having interacted in a legitimate proof execution. In other words,
the verifier cannot transfer onto others the confidence gained about the proven statement. This
property is sometimes called deniability or non-transferability, since a prover that has interacted
as a legitimate prover in a proof is later able to plausibly deny having done so, even if the original
verifier releases the transcript publicly.

Despite deniability being often a desired property, the dual property of transferability can also be
considered a feature, and such a setting is also of interest in this document. Transferability means
that the verifier in a legitimate proof execution becomes able to convince an external party that
the corresponding statement is true. In the case of a statement of knowledge, this means being
convinced that some prover did indeed have the claimed knowledge. In some cases this can be
done by simply sending the transcript (the verifier’s view) of the interaction (messages exchanged
and the internal state of the verifier).

For a proper security analysis of an application, it is important to characterize whether deniability
of transferability (or a nuanced version of them) is intended. This may be an important aspect of
composability with other applications.

D7.2. Remove incorrect statement

In old section 3.2 (new section 4.2), lines 1325–1326, item 1 (“Publicly verifiable as a requirement),
remove the statement “Only non-interactive ZK (NIZK) can actually hold this property.”

D7.3. Nuances on transferability vs. interactivity

Within the new section 2.2 to be developed about “Interactivity” in the scope of another contri-
bution — see GitHub Issue #18 “Introduction to interactive zero-knowledge proofs”) – add a new
subsection 2.2.3 with a discussion of nuanced possibilities of transferability/deniability vs. interac-
tivity:

2.2.x Transferability/deniability vs. interactivity.

The relation between interactivity and transferability/deniability is also not without nuances. The
following paragraphs show several possible combinations.

Non-interactive and deniable. A non-interactive ZKP may be non-transferable. This may be
based for example on a setup assumption such as a local CRS that is itself deniable. In that case,
a malicious verifier cannot prove to an external party that the CRS was the one used in a real
protocol execution, leading the external party to have reasonable suspicion that the verifier may
have simulated the CRS so as to become able to simulate a protocol execution transcript, without
actual participation of a legitimate prover. Another example of non-transferability is when a ZKP
intended to prove (i) an assertion (of membership or knowledge) actually proves its disjunction
with (ii) the knowledge of the secret key of a designated verifier, for example assuming a public key
infrastructure (PKI). This suffices to convince the original verifier the initial statement (i) is true,
since the verifier knows that the prover does not actually know the secret key (ii). In other words,
a success in the interactive proof stems from the initial assertion (i) being truthful. However, for
any external party, the transcript of the proof may conceivably have been produced by the original

Page 16 of 17

https://github.com/zkpstandard/zkreference/issues/18

designated verifier, who can simply do it with the knowledge of the secret key (ii). In that sense,
the designated verifier would be unable to convince others that the transcript of a legitimate proof
was not simulated by the verifier.

Non-interactive and transferable. If transferability is intended as a feature, then a non-
interactive protocol can be achieved for example with a public (undeniable) CRS. For example, if
a CRS is generated by a trusted randomness beacon, and if soundness follows from the inability
of the prover to control the CRS, then any external party (even one not involved with the prover
at the time of proof generation) can at a later time verify that a proof transcript could have only
been generated by a legitimate prover.

Interactive and deniable. A classical example (in a standalone setting, without concurrent exe-
cutions) for obtaining the deniability property comes from interactive ZKP protocols proven secure
based on the use of rewinding. Here, deniability follows from the simulatability of transcripts for
any malicious verifier. For each interactive step, the simulator learns the challenge issued by the
possibly malicious verifier, and then rewinds to reselect the preceding message of the prover, so as
to be able to answer the subsequent challenge. Some techniques require the use of commitments
and/or trapdoors, and may enable this property even for straight-line simulation (i.e., without
rewinding), provided there is an appropriate trusted setup.

Interactive and transferable. In certain settings it is possible, even from an interactive ZKP
protocol execution, to produce a transcript that constitutes a transferable proof. Usually, trans-
ferability can be achieved when the (possibly malicious) verifier can convincingly show to external
parties that the challenges selected during a protocol execution were unpredictable at the time of
the determination of the preceding messages of the prover. The transferable proof transcript is
then composed of the messages sent by the prover and additional information from the internal
state of a malicious verifier, including details about the generation of challenges. For example, a
challenge produced (by the verifier) as a cryptographic hash output (or as a keyed pseudo-random
function) of the previous messages may later be used to provide assurance that only a legitimate
prover would have been able to generate a valid subsequent message (response). As another ex-
ample, if the interactive ZKP protocol is composed with a communication protocol where the
prover authenticates all sent messages (e.g., signed within a PKI, and timestamped by a trusted
service), then the overall sequence of those certified messages becomes, in the hands of the verifier,
a transferable proof. Furthermore, from a transferable transcript, the actual transfer can also be
performed in an interactive way: the verifier (in possession of the transcript) acts as prover in a
transferable ZKP of knowledge of a transferable transcript, thereby transferring to the external
verifier a new transferable transcript.

Page 17 of 17

		NIST-PEC contributions to advance the draft ZKProof Community Reference from version 0.1 to 0.2

		1. Proposal about Intellectual Property

		1.1. Context

		1.2. Proposed changes

		D1.1. Add IP guidance

		2. Proposal about Executive Summary

		2.1. Context

		2.2. Proposed changes

		D2.1. Add an executive summary

		3. Proposal about Proofs of Knowledge

		3.1. Context

		3.2. Proposed changes

		D3.1. Introduce acronym ZKP

		D3.2. Clarify secrecy of witness

		D3.3. List examples at a high level

		D3.4. Allude to the need of an instance

		D3.5. Mention proof vs. argument

		D3.6. Enhance table of examples

		D3.7. Distinguish types of statements: knowledge vs. membership

		D3.8. Distinguish types of ZKP: knowledge vs. membership

		D3.9. Example: ZKPoK of DL

		D3.10. Example: ZKPoK of hash pre-image

		D3.11. Example: ZKP of graph non-isomorphism

		D3.12. Suggestion to define ZKPoK game

		4. Proposal about CRS as public or not

		4.1. Context

		4.2. Proposed changes

		D4.1. Clarify public vs. common input

		D4.2. Syntax of setup — common and private components

		5. Proposal about Computational Security parameter

		5.1. Context

		5.2. Proposed changes

		D5.1. Benchmark security levels

		D5.2. SHA-256 at 128-bit level

		D5.3. Primitives at 128-bit level

		D5.4. Characterize the security properties

		D5.5. Computational security levels

		D5.6. Exception for lower levels

		6. Proposal about Statistical security

		6.1. Context

		6.2. Proposed changes

		D6.1. Statistical security levels

		7. Proposal about transferability and deniability

		7.1. Context

		7.2. Proposed changes

		D7.1. Mention deniability vs. transferability

		D7.2. Remove incorrect statement

		D7.3. Nuances on transferability vs. interactivity

NIST-PEC contributions to advance the draft ZKProof Community Reference from version 0.1 to 0.2

ZKProof Community Reference1

Version 0.12

(Draft 2019-04-11)3

A compilation of documents available at4

https://zkproof.org/documents.html5

Attribution 4.0 International
(CC BY 4.0)

https://zkproof.org/documents.html

Change Log6

• 2018-08-01 (common to all tracks): Initial version. Summarizes the deliberations at 1st7

ZKProof Standards Workshop, and subsequent major contributions.8

• Specific to implementations track:9

– Also summarizes the deliberations at the ZKProof breakout session at Zcon0 (see notes10

from Zcon0), and subsequent major contributions by Benedikt Bünz, Daira Hopwood,11

Jack Grigg and the track chairs Sean Bowe, Kobi Gurkan, and Eran Tromer.12

– Ongoing. Added reference to Daira Hopwood’s Zcon0 Circuit Optimisation handout.13

Miscellaneous local additions and clarifications. Added brief discussion of recursive com-14

position interoperability.15

• 2019-April-01 (and ongoing): merged the six original documents into a single one, upon16

porting code to LaTeX; numerous editorial adjustments for easier indexation of content and17

consistent style.18

External resources19

• ZKProof repository: https://github.com/zkpstandard/20

• ZKProof repository for file formats: https://github.com/zkpstandard/file_formats21

• ZKProof documents on Security, Applications and Implementation Tracks on22

https://zkproof.org/documents.html23

• zkp.science - a curated and annotated list of references24

• Zcon0 ZKProof Workshop breakout notes: https://zkproof.org/zcon0_notes.pdf25

Acknowledgments26

The workshops underlying these proceedings were sponsored by QED-it, Zcash Foundation, Check-27

Point Institute for Information Security, Accenture, Danhua Capital, R3, Stratumn, Thundertoken,28

UR Ventures and Vmware.29

Luís B.

Consider revising to simplify, and to uniformize the format across all tracks.

Luís B.

Suggestion: adjust later, to clarify the document development process: compilation of 1st workshop proceedings and zon0 notes; then further contributions related to 2nd workshop.

https://zkproof.org/zcon0_notes.pdf

https://zkproof.org/zcon0_notes.pdf

https://zkproof.org/zcon0_notes.pdf

https://docs.google.com/document/d/1aZ1GUAJOBFuqD4GOo9HqAH8w4xJo7HM4Bjte5-wkdnU/edit?usp=sharing

https://github.com/zkpstandard/

https://github.com/zkpstandard/file_formats

https://zkproof.org/documents.html

zkp.science

https://zkproof.org/zcon0_notes.pdf

Table of Contents30

ZKProof charter . 131

ZKProof code of conduct . 232

1 Security track 333

1.1 Introduction . 334

1.2 Terminology . 435

1.3 Specifying Statements for ZK . 536

1.4 Syntax . 637

1.5 Definition and Properties . 838

1.6 Assumptions . 1239

1.7 Efficiency . 1440

1.8 Taxonomy of Constructions . 1441

2 Implementation track 1942

2.1 Overview . 1943

2.2 Backends: Cryptographic System Implementations 2044

2.3 Frontends: Constraint-System Construction . 2045

2.4 APIs and File Formats . 2146

2.5 Benchmarks . 2547

2.6 Correctness and Trust . 2848

2.7 Extended Constraint-System Interoperability . 3349

2.8 Future goals . 3650

3 Applications track 3951

3.1 Introduction and Motivation . 3952

3.2 Notation and Definitions . 4053

3.3 Previous works . 4054

3.4 Gadgets within predicates . 4055

3.5 Identity framework . 4156

3.6 Asset Transfer . 5457

3.7 Regulation Compliance . 6058

3.8 Conclusions . 6359

4 ZCon0 6560

4.1 Session 1: Document Overview & Feedback . 6561

4.2 Session 2: Trust and Security . 6862

4.3 Session 3: Front-ends . 6963

References 7164

A Acronyms and glossary 7565

A.1 Acronyms . 7566

A.2 Glossary . 7567

i

List of Tables68

Table 1.1: Basic example scenarios for ZK proofs . 369

Table 1.2: Different types of PCPs . 1570

Table 2.1: APIs and interfaces by types of universality and preprocessing 2271

Table 3.1: List of gadgets . 4172

Table 3.2: Commitment gadget . 4273

Table 3.3: Signature gadget . 4274

Table 3.4: Encryption gadget . 4375

Table 3.5: Distributed-decryption gadget . 4376

Table 3.6: Random-function gadget . 4377

Table 3.7: Set-membership gadget . 4478

Table 3.8: Mix-net gadget . 4479

Table 3.9: Generic-computation gadget . 4480

Table 3.10: Functionalities vs. privacy and robustness requirements 4881

List of Figures82

Figure 2.1: Abstract parties and objects in a NIZK . 2283

ii

ZKProof charter84

Boston, May 10th and 11th 201885

The goal of the ZKProof Standardardization effort is to advance the use of Zero Knowledge Proof86

technology by bringing together experts from industry and academia. To further the goals of the87

effort, we set the following guiding principles:88

• The initiative is aimed at producing documents that are open for all and free to use.89

◦ As an open initiative, all content issued from the ZKProof Standards Workshop is under90

Creative Commons Attribution 4.0 International license.91

• We seek to represent all aspects of the technology, research and community in an inclusive92

manner.93

• Our goal is to reach consensus where possible, and to properly represent conflicting views94

where consensus was not reached.95

• As an open initiative, we wish to communicate our results to the industry, the media and to96

the general public, with a goal of making all voices in the event heard.97

◦ Participants in the event might be photographed or filmed.98

◦ We encourage you to tweet, blog and share with the hashtag #ZKProof. Our official99

twitter handle is @ZKProof.100

For further information, please refer to contact@zkproof.org101

1

Luís B.

Consider adding a logo and mention "CC BY 4.0 International License" in the cover page. The statement mentions workshop in singular. Could this be widened to cover edits performed in the documents made available by ZKProof for communitary collaboration?

mailto:contact@zkproof.org

ZKProof code of conduct102

Boston, May 10th and 11th 2018103

All participants, speakers and sponsors of the ZKProof Standard Workshop shall adhere to the104

following code of conduct to ensure a safe and productive environment for everybody1:105

At the workshop, you agree to:106

• Respect the boundaries of other attendees.107

• Respect the opinions of other attendees even if you are not in agreement with them.108

• Avoid aggressively pushing your own services, products or causes.109

• Respect confidentiality requests by participants.110

• Look out for one another.111

These behaviors don’t belong at the workshop:112

• Invasion of privacy113

• Being disruptive, drinking excessively, stalking, following or threatening anyone.114

• Abuse of power (including abuses related to position, wealth, race or gender).115

• Homophobia, racism or behavior that discriminates against a group or class of people.116

• Sexual harassment of any kind, including unwelcome sexual attention and inappropriate phys-117

ical contact.118

For further information, please refer to contact@zkproof.org119

1This code of conduct is adapted from that of TEDx.

2

Luís B.

Consider adding a link. Is it the code of conduct from TEDx or TED?

mailto:contact@zkproof.org

Chapter 1. Security track120

Original title: ZKProof Standards Security Track Proceedings121

Date: 1 August 2018 + subsequent revisions122

This document is an ongoing work in progress.123

Feedback and contributions are encouraged.124

Track chairs: Jens Groth, Yael Kalai, Muthu Venkitasubramaniam125

Track participants: Nir Bitansky, Ran Canetti, Henry Corrigan-Gibbs, Shafi Goldwasser, Charan-126

jit Jutla, Yuval Ishai, Rafail Ostrovsky, Omer Paneth, Tal Rabin, Maryana Raykova, Ron Rothblum,127

Alessandra Scafuro, Eran Tromer, Douglas Wikström128

1.1 Introduction129

1.1.1 What is a zero-knowledge proof?130

A zero-knowledge proof makes it possible to prove a statement is true while preserving confidential-131

ity of secret information. There are numerous uses of zero-knowledge proofs. Table 1.1 gives three132

example where proving claims about confidential data can be useful.133

Table 1.1: Basic example scenarios for ZK proofs134

135
Elements

Scenarios 1. Legal age
for purchase 2. Hedge fund solvency 3. Asset transfer

136 Statement I am an adult We are not bankrupt I own this asset

137
Confidential
information

Exact age and
personal data Composition of portfolio Past transactions

A zero-knowledge proof system is a specification of how a prover and verifier can interact for the138

prover to convince the verifier that the statement is true. The proof system must be complete, sound139

and zero-knowledge.140

• Complete: If the statement is true and both prover and verifier follow the protocol; the141

verifier will accept.142

• Sound: If the statement is false, and the verifier follows the protocol; the verifier will not be143

convinced.144

• Zero-knowledge: If the statement is true and the prover follows the protocol; the verifier145

will not learn any confidential information from the interaction with the prover but the fact146

the statement is true.147

3

Luís B.

Edited: Changed from ``, the table below gives a few examples'' to ``Table 1.1 gives three examples''

Luís B.

Suggestion: Consider saying ``example scenarios'', since the table calls it ``scenarios''

Luís B.

Edited: Introduced table caption and table number in this and in all other tables. In the first cell, introduced the qualifier "elements" to differentiate from "scenarios"

Luís B.

Suggestion: To enable adding new examples, consider transposing the table (i.e., one example scenario per row).

Luís B.

Suggestion: Comment and suggestion.Contrary to the chess example in section 2.4, where there is no commitment as a starting point, for each of the three examples in Table 1.1 there must be some substract (an ``instance'') to support the statement with respect to the confidential info. Without the ``instance'', a ZK proof in these cases seems like magic: how can I prove that the license place of my car starts with the letter ``C'' if there is no corresponding substract (e.g., a picture of the car, or a car-registration record? (do you even known whether or not I have a car?). Suggestion: Consider providing some intuition about the need for a supporting ``instance''. Depending on where the intuition is added, a corresponding row ``Supporting instance'' could possibly be added to Table 1.1, e.g., with values ``Driver's license smartcard chip''; ``Encrypted bank records''; ``Blockchain block''. More generally, a reflection about how to position this may come from considering how to distinguish ZKPs of membership from ZKPoKs. Might the chessboard example (described in Section 3.4) be interesting to put in this table? It implicitly contains the supporting instance — everything is about the chessboard and chess rules that the verifier already known.

Chapter 1. Security track

1.1.2 Requirements for a zero-knowledge proof system specification148

A full proof system specification MUST include:149

1. Precise specification of the type of statements the proof system is designed to handle150

2. Construction including algorithms used by the prover and verifier151

3. If applicable, description of setup the prover and verifier use152

4. Precise definitions of security the proof system is intended to provide153

5. A security analysis that proves the zero-knowledge proof system satisfies the security defini-154

tions and a full list of any unproven assumptions that underpin security155

Efficiency claims about a zero-knowledge proof system should include all relevant performance156

parameters for the intended usage. Efficiency claims must be reported fairly and accurately, and if157

a comparison is made to other zero-knowledge proof systems a best effort must be made to compare158

apples to apples.159

The remainder of the document will outline common approaches to specifying a zero-knowledge proof160

system, outline some construction paradigms, and give guidelines for how to present efficiency claims.161

1.2 Terminology162

Instance: Public input that is known to both prover and verifier. Sometimes scientific articles use163

“instance” and “statement” interchangeably, but we distinguish between the two. Notation: x.164

Witness: Private input to the prover. Others may or may not know something about the witness.165

Notation: w.166

Relation: Specification of relationship between instances and witness. A relation can be viewed as167

a set of permissible pairs (instance, witness). Notation: R.168

Language: Set of instances that appear as a permissible pair in R. Notation: L.169

Statement: Defined by instance and relation. Claims the instance has a witness in the relation170

(which is either true or false). Notation: x ∈ L.171

Security parameter: Positive integer indicating the desired security level (e.g. 128 or 256) where172

higher security parameter means greater security. In most constructions, distinction is made between173

computational security parameter and statistical security parameter. Notation: k (computational)174

or s (statistical).175

Setup: Input to e.g. prover and verifier176

Common reference string: Some zero-knowledge systems require common public input, e.g.,177

CRS = setupP = setupV .178

4

Luís B.

Suggestion: Consider defining upfront the symbols for prover (P) and verifier (V), since the symbols will often be used as subscripts and/or as abbreviated forms. For example: ``A zero-knowledge proof exists in a context of two parties with different roles — the prover produces the proof; the verifier verifies the proof. Notation: P (prover); V (verifier). Some generalizations consider the existence of several verifiers.''

Luís B.

Suggestion: Change ``public input'' to ``common input''. Rationale: ZK proofs make sense even in a context private to prover-and-verifier, where the input made available to the verifier is not supposed to be disclosed publicly, e.g., to avoid linkability in a broader context; while the use of ``public'' may be usual (e.g., present when mentioning ``private|public'' key systems, where ``private'' means ``secret'', and where ``public'' may mean ``private but shareable''), a more cautious use (e.g., ``common'') can be more informative about the actual requirement — that it be known by both prover and verifier.

Luís B.

Suggestion: Consider organizing the set of definitions in two or three classes: : a) participants (prover and verifier); : b) elements instantiated in each proof execution (instance, witness, statement, setup); : c) elements defining a proof system (language, relation) that define the proof system;

Luís B.

Suggestion: Include ``CRS'' as a sub-item of the ``setup''; differentiate private setup from common setup; make a concrete definition, rather than one based on example "e.g.";Concrete suggestion: "Setup: The inputs given to the prover and to the verifier, independent from the instance x and the witness w. The setup of each party can be decomposed into a private component (``PrivateSetup_P'' or ``PrivateSetup_V'', respectively not known to the other party) and a common component ``CommonSetup = CRS'' (known by both parties). Notation: setup_P = (PrivateSetup_P, CRS) and : setup_V = (PrivateSetup_V, CRS), where CRS denotes a ``common reference string'' (required by some zero-knowledge proof systems)." Another option could be to define the common setup to include x, and the private setup of P to include w, but that does not seem to be the notation option used in the subsequent sections.

Luís B.

Suggestion: Comment and suggestion: As is, the text may convey (there is an ``e.g.'' but it's easy to miss it) that the existence of a CRS implies that the full setup of P is equal to the full setup of V. Suggestion — explicitly define CRS as the CommonSetup component of the setup, regardless of whether or not there is a PrivateSetup components. Then if useful provide two examples, one where a CRS is enough; another where there is for example a PKI with secret keys. The text, using ``common public'', also seems to convey that the CRS must be public. Suggestion: remove "public" and require only the ``common'' aspect. FOr example, being public vs. common-but-not-public may make the difference between a ZK proof being transferable or not.

Section 1.3. Specifying Statements for ZK

1.3 Specifying Statements for ZK179

This document considers types of statements defined by a relation R between instances x and180

witnesses w. The relation R specifies which pairs (x,w) are considered related to each other, and181

which are not related to each other. The relation defines a matching language L consisting of182

instances x that have a witness w in R. A statement is a claim x ∈ L, which can be true or false.183

The relation R can for instance be specified as a program (e.g. in C or Java), which given inputs184

x and w decides to accept, meaning (x,w) ∈ R, or reject, meaning w is not a witness to x ∈ L.185

Examples of such specifications of the relation are detailed in the Applications track. In the academic186

literature, relations are often specified either as random access memory (RAM) programs or through187

Boolean and arithmetic circuits, which we describe below.188

Circuits: A circuit is a directed acyclic graph (DAG) comprised of nodes and labels for nodes,189

which satisfy the following constraints:190

• Nodes with in-degree 0 are referred to as the input nodes and are labeled with some constant191

(e.g., 0, 1, . . .) or with input variable names (e.g., v1, v2, . . .)192

• There is a single node with out-degree 0 that is referred to as the output node.193

• Internal nodes are referred to as gate nodes and describe a computation performed at the194

node.195

Parameters. Depending on the application, various parameters may be important, for instance the196

number of gates in the circuit, the number of instance variables nx, the number of witness variables197

nw, the circuit depth, or the circuit width.198

Boolean Circuit satisfiability. The relation R has instances of the form x = (C, v1, . . . , vnx) and199

witnesses w = (w1, ..., wnw). For (x,w) to be in the relation, C must be a circuit with fan-in 2200

gate nodes that are labeled with Boolean operations, e.g., XOR or AND, v1, ..., vnx must specify truth201

values for some of the input nodes, and w1, ..., wnw must specify truth values for the remaining input202

variables, such that when evaluating the circuit the output node becomes 1 (true).203

Arithmetic Circuit satisfiability. The relation has instances of the form x = (F,C, v1, ..., vnx) and204

witnesses w = (w1, ..., wnw). For (x,w) to be in the relation, F must be a finite field (e.g., integers205

modulo a prime p), C must be a circuit with gate nodes that are labeled with field operations, i.e.,206

addition or multiplication, v1, ..., vnx must specify field elements for some of the input nodes, and207

w1, ..., wnw must specify field elements for the remaining input variables, such that when evaluating208

the circuit the output node becomes 1.209

Special purpose relations: Circuit satisfiability is a complete problem within the non-deterministic210

polynomial (NP) class, i.e., it it NP-complete, but a relation does not have to be that. Examples211

of statements that appear in cryptographic usage include that a committed value falls in a certain212

range [A;B] or belongs to a set S, that a ciphertext has plaintext 0 or that two ciphertexts encrypt213

the same value, that the prover has a secret key associated with a set of public verification keys for214

a signature scheme, etc.215

Setup-dependent relations: Sometimes it is convenient to let the relation R take an additional216

input setupR, i.e., let the relation contain triples (setupR, x, w). The input setupR can be used to217

5

Luís B.

Edited: Introduced the extended expression of the acronym

Luís B.

Suggestion: Consider adjusting all items to become of the form <new term>: <description>.

Luís B.

Edited: ``will be'' –> ``are'', consistent with the text in the first bullet

Luís B.

Edited: introduced the extended form of NP

Chapter 1. Security track

specify persistent information, e.g., for arithmetic circuit satisfiability maybe the same finite field218

and circuit is used many times, so we let setupR = (F,C) and x = (v1, ..., vnx). The input setupR219

can also be used to capture trusted input the relation does not check, e.g., a trusted Rivest–Shamir–220

Adleman (RSA) modulus.221

1.4 Syntax222

A proof system (for a relation R defining a language L) is a protocol between a prover and a verifier223

sending messages to each other. The prover and verifier are defined by two algorithms, which we224

call Prove and Verify. The algorithms Prove and Verify may be probabilistic and may keep internal225

state between invocations.226

1.4.1 Prove(state,m)→ (state, p)227

The Prove algorithm in a given state receiving messagem, updates its state and returns a message p.228

• The initial state of Prove must include an instance x and a witness w. The initial state may229

also include additional setup information setupP , e.g., state = (setupP , x, w).230

• If receiving a special initialization message m = start when first invoked it means the prover231

is to initiate the protocol.232

• If Prove outputs a special error symbol p = error, it must output error on all subsequent233

calls as well.234

1.4.2 Verify(state, p) → (state,m)235

The Verify algorithm in a given state receiving message p, updates its state and returns a messagem.236

• The initial state of Verify must include an instance x.237

• The initial state of Verify may also include additional setup information setupV , e.g., state =238

(setupV , x).239

• If receiving a special initialization message p = start, it means the verifier is to initiate the240

protocol.241

• If Verify outputs a special symbol m = accept, it means the verifier accepts the proof of the242

statement x ∈ L. In this case, Verify must return m = accept on all future calls.243

• If Verify outputs a special symbol m = reject, it means the verifier rejects the proof of the244

statement x ∈ L. In this case, Verify must return m = reject on all future calls.245

The setup information setupP and setupV can take many forms. A common example found in the246

cryptographic literature is that setupP = setupV = k, where k is a security parameter indicating247

the desired security level of the proof system. It is also conceivable that setupP and setupV contain248

descriptions of particular choices of primitives to instantiate the proof system with, e.g., to use the249

SHA-256 hash function or to use a particular elliptic curve. The setup information may also be250

generated by a probabilistic process, e.g., it may be that setupP and setupV include a common251

6

Luís B.

Edited: Introduced the extended form of the acronym.

Section 1.4. Syntax

reference string, or in the case of designated verifier proofs that setupP and setupV are correlated252

in a particular way. When we want to specifically refer to this process, we use a probabilistic setup253

algorithm Setup.254

1.4.3 Setup(parameters) → (setupR, setupP , setupV , auxiliary output)255

The setup algorithm may take input parameters, which could for instance be computational or256

statistical security parameters indicating the desired security level of the proof system, or size257

parameters specifying the size of the statements the proof system should work for, or choices of258

cryptographic primitives e.g. the SHA-256 hash function or an elliptic curve.259

• The setup algorithm returns an input setupR for the relation the proof system is for. An260

important special case is where the setupR is just the empty string, i.e., the relation is inde-261

pendent of any setup.262

• The setup algorithm returns setupP for the prover and setupV for the verifier.263

• There may potentially be additional auxiliary outputs.264

• If the inputs are malformed or any error occurs, the Setup algorithm may output an error265

symbol.266

Some examples of possible setups.267

• NIZK proof system for 3SAT in the uniform reference string model based on trapdoor permu-268

tations269

– setupR = n, where n specifies the maximal number of clauses270

– setupP = setupV = uniform random string of length N = size(n, k) for some function271

size(n, k) of n and security parameter k272

• Groth-Sahai proofs for pairing-product equations273

– setupR = description of bilinear group defining the language274

– setupP = setupV = common reference string including description of the bilinear group275

in setupR plus additional group elements276

• SNARK for QAP such as e.g. Pinocchio277

– setupR = QAP specification including finite field F and polynomials278

– setupP = setupV = common reference string including a bilinear group defined over the279

same finite field and some group elements280

The prover and verifier do not use the same group elements in the common reference281

string. For efficiency reasons, one may let setupP be the subset of the group elements the282

prover uses, and setupV another (much smaller) subset of group elements the verifier uses.283

• Cramer-Shoup hash proof systems284

– setupR = specifies finite cyclic group of prime order285

– setupP = the cyclic group and some group elements286

– setupV = the cyclic group and some discrete logarithms287

It depends on the concrete setting how Setup runs. In some cases, a trusted third party runs an288

algorithm to generate the setup. In other cases, Setup may be a multi-party computation offering289

resilience against a subset of corrupt and dishonest parties (and the auxiliary output may represent290

side-information the adversarial parties learn from the MPC protocol). Yet, another possibility291

is to work in the plain model, where the setup does nothing but copy a security parameter, e.g.,292

7

Luís B.

Suggestion: Consider using params (in math mode) as the variable containing the ``parameters'', and using aux (in math mode) instead of ``auxiliary output''. Notice that aux is anyway used from Section 1.5.1 onward.

Chapter 1. Security track

setupP = setupV = k.293

There are variations of proof systems, e.g., multi-prover proof systems and commit-and-prove sys-294

tems; this document only covers standard systems.295

Common reference string: If the setup information is public and known to everybody, we say296

the proof system is in the common reference string model. The setup may for instance specify297

setupR = setupP = setupV , which we then refer to as a common reference string CRS.298

Non-interactive proof systems: A proof system is non-interactive if the interaction consists of299

a single message from the prover to the verifier. After receiving the prover’s message p (called a300

proof), the verifier then returns accept or reject.301

Public verifiability vs designated verifier: If setupV is public information (e.g. in the CRS302

model) known to multiple parties in a non-interactive proof system, then they can all verify a proof303

p. In this case, the proof is transferable, the prover only needs to create it once after which it can304

be copied and transferred to many verifiers. If on the other hand, setupV is private we refer to it305

as a designated verifier proof system.306

Public coin: In an interactive proof system, we say it is public coin if the verifier’s messages are307

uniformly random and independent of the prover’s messages.308

1.5 Definition and Properties309

A proof system (Setup, Prove, Verify) for a relation R must be complete and sound. It may have310

additional desirable security properties such as being a proof of knowledge or being zero knowledge.311

1.5.1 Completeness312

Intuitively, a proof system is complete if an honest prover with a valid witness w for a statement313

x ∈ L can convince an honest verifier that the statement is true. A full specification of a proof314

system must include a precise definition of completeness that captures this intuition. We give an315

example of a definition below for a proof system where the prover initiates.316

Consider a completeness attacker Adversary in the following experiment.317

1. Run Setup(parameters) → (setupR, setupP , setupV , aux)318

2. Let the adversary choose a worst case instance and witness:319

Adversary(parameters, setupR, setupP , setupV , aux)→ (x,w)320

3. Run the interaction between Prove and Verify until the prover returns error or the verifier321

accepts or rejects. Let result be the outcome, with the convention that result = error if the322

protocol does not terminate. 〈Prove(setupP , x, w, start) ; Verify(setupV , x)〉 → result323

• Adversary wins if (setupR, x, w) ∈ R and result is not accept.324

8

Luís B.

Should it be \pi?

Section 1.5. Definition and Properties

We define the adversary’s advantage as a function of parameters to be Advantage(parameters) =325

Pr[Adversary wins]326

A proof system for R running on parameters is complete if nobody ever constructs an efficient327

adversary with significant advantage.328

It depends on the application what is an efficient adversary (computing equipment, running time,329

memory consumption, usage lifetime, incentives, etc.) and how large an advantage can be tolerated.330

Special strong cases include statistical completeness (aka unconditional completeness) where the331

winning probability is small for any adversary, and perfect completeness, where for any adversary332

the advantage is exactly 0.333

1.5.2 Soundness334

Intuitively, a proof system is sound if a cheating prover has little or no chance of convincing an335

honest verifier that a false statement is true. A full specification of a proof system must include a336

precise definition of soundness that captures this intuition. We give an example of a definition below.337

Consider a soundness attacker Adversary in the following experiment.338

1. Run Setup(parameters) → (setupR, setupP , setupV , aux)339

2. Let the (stateful) adversary choose an instance340

Adversary(parameters, setupR, setupP , setupV , aux)→ x341

3. Let the adversary interact with the verifier and result be the verifier’s output (letting result =342

reject if the protocol does not terminate). 〈Adversary ; Verify(setupV , x)〉 → result343

• Adversary wins if (setupR, x) /∈ L and result is accept.344

We define the adversary’s advantage as a function of parameters to be345

Advantage(parameters) = Pr[Adversary wins]346

A proof system for R running on parameters is sound if nobody ever constructs an efficient adversary347

with significant advantage.348

It depends on the application what is considered an efficient adversary (computing equipment,349

running time, memory consumption, usage lifetime, etc.) and how large an advantage can be350

tolerated. Special strong notions of soundness includes statistical soundness (aka unconditional351

soundness) where any adversary has small chance of winning, and perfect soundness, where for any352

adversary the advantage is exactly 0.353

1.5.3 Proof of knowledge354

Intuitively, a proof system is a proof of knowledge if it is not just sound, but that the ability to355

convince an honest verifier implies that the prover must “know” a witness. To “know” a witness can356

9

Chapter 1. Security track

be defined as it being possible to extract a witness from a successful prover. If a proof system is357

claimed to be a proof of knowledge, then the full specification must include a precise definition of358

knowledge soundness that captures this intuition, but we do not define proofs of knowledge here.359

1.5.4 Zero knowledge360

Intuitively, a proof system is zero knowledge if it does not leak any information about the prover’s361

witness beyond what the attacker may already know about the witness from other sources. Zero362

knowledge is defined through the specification of an efficient simulator that can generate kosher363

looking proofs without access to the witness. If a proof system is claimed to be zero knowledge,364

then the full specification MUST include a precise definition of zero knowledge that captures this365

intuition. We give an example of a definition below.366

A proof system is zero knowledge if the designers provide additional efficient algorithms SimSetup,367

SimProve such that realistic attackers have small advantage in the game below. Let Adversary368

be an attacker in the following experiment:369

1. Choose a bit uniformly at random 0,1 → b370

2. If b = 0 run Setup(parameters) → (setupR, setupP , setupV , aux)371

3. Else if b = 1 run SimSetup(parameters) → (setupR, setupP , setupV , aux, trapdoor)372

4. Let the (stateful) adversary choose an instance and witness373

Adversary(parameters, setupR, setupP , setupV , aux)→ (x,w)374

5. If (setupR, x, w) /∈ R return guess = 0375

6. If b = 0 let the adversary interact with the prover and output a guess (letting guess = 0 if376

the protocol does not terminate). 〈Prove(setupP , x, w) ; Adversary 〉 → guess377

7. Else if b = 1 let the adversary interact with a simulated prover and output a guess (letting378

guess = 0 if the protocol does not terminate)379

〈SimProve(setupP , x, trapdoor) ; Adversary 〉 → guess380

• Adversary wins if guess = b381

We define the adversary’s advantage as a function of parameters to be382

Advantage(parameters) = | Pr[Adversary wins] - 1/2 |383

A proof system for R running on parameters is zero knowledge if nobody ever constructs an efficient384

adversary with significant advantage.385

It depends on the application what is considered an efficient adversary (computing equipment,386

running time, memory consumption, usage lifetime, etc.) and how large an advantage can be toler-387

ated. Special strong notions include statistical zero knowledge (aka unconditional zero knowledge)388

where any adversary has small advantage, and perfect zero knowledge, where for any adversary the389

advantage is exactly 0.390

10

Luís B.

Suggestion: Consider explaining better the meaning of ZKPoK, and presenting the definition / game for extractability. It's unclear why the document makes the option to not proceed with this discussion.

Section 1.5. Definition and Properties

391

multi-theorem zero knowledge. In the zero-knowledge definition, the adversary interacts with the392

prover or simulator on a single instance. It is possible to strengthen the zero-knowledge definition393

to guard also against an adversary that sees proofs for multiple instances.394

Honest verifier zero knowledge. A weaker privacy notion is honest verifier zero-knowledge, where we395

assume the adversary follows the protocol honestly (i.e., in steps 6 and 7 in the definition it runs the396

verification algorithm). It is a common design technique to first construct an HVZK proof system,397

and then use efficient standard transformations to get a proof system with full zero knowledge.398

Witness indistinguishability and witness hiding. Sometimes a weaker notion of privacy than zero399

knowledge suffices. Witness-indistinguishable proof systems make it infeasible for an adversary to400

distinguish which out of several possible witnesses the prover has. Witness-hiding proof systems401

ensure the interaction with an honest prover does not help the adversary to compute a witness.402

1.5.5 Advanced security properties403

The literature describes many advanced security notions a proof system may have. These include404

security under concurrent composition and nonmalleability to guard against man-in-the-middle at-405

tacks, security against reset attacks in settings where the adversary has physical access, simulation406

soundness and simulation extractability to assist sophisticated security proofs, and universal com-407

posability.408

Universal composability. The UC framework defines a protocol to be secure if it realizes an ideal409

functionality in an arbitrary environment. We can think of an ideal zero-knowledge functionality as410

taking an input (x,w) from the prover and if and only if (x,w) ∈ R it sends the message(x, accept)411

to the verifier. The ideal functionality is perfectly sound, since no statement without valid witness412

will be accepted, and perfectly zero knowledge, since the proof is just the message accept. A proof413

system is then UC secure, if the real life execution of the system is ‘security-equivalent’ to the414

execution of the ideal proof system functionality. Usually it takes more work to demonstrate a415

proof system is UC secure, but on the other hand the framework offers strong security guarantees416

when the proof system is composed with other cryptographic protocols.417

1.5.6 Examples of setup and trust418

The security definitions assume a trusted setup. There are several variations of what the setup419

looks like and the level of trust placed in it.420

• No setup or trustless setup. This is when no trust is required, for instance because the setup421

is just a copy of a security parameter k, or because everybody can verify the setup is correct422

directly.423

• Uniform random string. All parties have access to a uniform random string URS = setupR=424

setupP= setupV . We can distinguish between the lighter trust case where the parties just need425

to get a uniformly sampled string, which they may for instance get from a trusted common426

source of randomness e.g. sunspot activity, and the stronger trust case where zero-knowledge427

11

Luís B.

Suggestion: Consider adding the following remark / special case: ``The ZK property of a proof does not depend on whether or not the verifier knows something about the witness being proven. However, certain proofs may be designed for the specific case where the verifier also knows the witness (or a valid witness), and where such knowledge enables an efficient production of a proof (via some interaction), and/or an efficient verification.''

Chapter 1. Security track

relies on the ability to simulate the URS generation together with a simulation trapdoor.428

• Common reference string. The URS model is a special case of the CRS model. But in the CRS429

model it is also possible that the common setup is sampled with a non-uniform distribution,430

which may exclude easy access to a trusted common source. A distinction can be made whether431

the CRS has a verifiable structure, i.e., it is easy to verify it is well-formed, or whether full432

trust is required.433

• Designated verifier setup. If we have a setup that generates correlated setupP and setupV ,434

where setupV is intended only for a designated verifier, we also need to place trust in the435

setup algorithm. This is for instance the case in Cramer-Shoup public-key encryption where436

a designated verifier NIZK proof is used to provide security under chosen-ciphertext attack.437

Here the setup is generated as part of the key generation process, and the recipient can be438

trusted to do this honestly because it is the recipient’s own interest to make the encryption439

scheme secure.440

• Random oracle model. The common setup describes a cryptographic hash function, e.g. SHA256.441

In the random oracle model, the hash function is heuristically assumed to act like a random442

oracle that returns a random value whenever it is queried on an input not seen before. There443

are theoretical examples where the random oracle model fails, exploiting the fact that in real444

life the hash function is a deterministic function, but in practice the heuristic gives good445

efficiency and currently no weaknesses are known for ‘natural’ proof systems.446

• There are several proposals to reduce the trust in the setup such as using secure multi-party447

computation to generate a CRS, using a multi-string model where there are many CRSs and448

security only relies on a majority being honestly generated, and subversion resistant CRS449

where zero-knowledge holds even against a maliciously generated CRS.450

1.6 Assumptions451

A full specification of a proof system must state the assumptions under which it satisfies the secu-452

rity definitions and demonstrate the assumptions imply the proof system has the claimed security453

properties.454

A security analysis may take the form of a mathematical proof by reduction, which demonstrates that455

a realistic adversary gaining significant advantage against a security property, would make it possible456

to construct a realistic adversary gaining significant advantage against one of the underpinning457

assumptions.458

To give an example, suppose soundness relies on a collision-resistant hash function. The demon-459

stration of this fact may take the form of describing a simple and efficient algorithm Reduction,460

which may call a soundness attacker Adversary as a subroutine a few times. Furthermore, the461

demonstration may establish that the advantage Reduction has in finding a collision is closely462

related to the advantage an arbitrary Adversary has against soundness, for instance463

Advantage_soundness(parameters) ≤ 8 × Advantage_collision(parameters)464

Suppose the proof system is designed such that we can instantiate it with the SHA-256 hash function465

as part of the parameters. If we assume the risk of an attacker with a budget of $1,000,000 finding a466

SHA-256 collision within 5 years is less than 2−128, then the reduction shows the risk of an adversary467

12

Section 1.7. Efficiency

with similar power breaking soundness is less than 2−125.468

Cryptographic assumptions: Cryptographic assumptions, i.e. intractability assumptions, spec-469

ify what the proof system designers believe a realistic attacker is incapable of computing. Sometimes470

a security property may rely on no cryptographic assumptions at all, in which case we say security471

of unconditional, i.e., we may for instance say a proof system has unconditional soundness or uncon-472

ditional zero knowledge. Usually, either soundness or zero knowledge is based on an intractability473

assumption though. The choice of assumption depends on the risk appetite of the designers and474

the type of adversary they want to defend against.475

Plausibility. At all costs, an intractability assumption that has been broken should not be used. We476

recommend designing flexible and modular proof systems such that they can be easily updated if477

an underpinning cryptographic assumption is shown to be false.478

Sometimes, but not always, it is possible to establish an order of plausibility of assumptions. It is479

for instance known that if you can break the discrete logarithm problem in a particular group, then480

you can also break the computational Diffie-Hellman problem in the same group, but not necessarily481

the other way around. This means the discrete logarithm assumption is more plausible than the482

computational Diffie-Hellman assumption and therefore preferable from a security perspective.483

Post-quantum resistance. There is a chance that quantum computers will be developed within a few484

decades. Quantum computers are able to efficiently break some cryptographic assumptions, e.g.,485

the discrete logarithm problem. If the expected lifetime of the proof system extends beyond the486

emergence of quantum computers, then it is necessary to rely on intractability assumptions that are487

believed to resist quantum computers. Different security properties may require different lifetimes.488

For instance, it may be that proofs are verified immediately and hence post-quantum soundness is489

not required, while at the same time an attacker may collect and store proof transcripts and later490

try to learn something from them, so post-quantum zero knowledge is required.491

Concrete parameters. It is common in the cryptographic literature to use vague phrasing such as492

“the advantage of a polynomial time adversary is negligible” when describing the theory behind a493

proof system. However, concrete and precise security is needed for real-world deployment. A proof494

system should therefore come with concrete parameter recommendation and a statement about the495

level of security they are believed to provide.496

System assumptions: Besides cryptographic assumptions, a proof system may rely on assump-497

tions about the equipment or environment it works in. As an example, if the proof system relies on498

a trusted setup it should be clearly stated what kind of trust is placed in.499

Setup. If the prover or verifier are probabilistic, they require an entropy source to generate random-500

ness. Faulty pseudorandomness generation has caused vulnerabilities in other types of cryptographic501

systems, so a full specification of a proof system should make explicit any assumptions it makes502

about the nature or quality of its source of entropy.503

13

Chapter 1. Security track

1.7 Efficiency504

A specification of a proof system may include claims about efficiency and if it does the units of505

measurement MUST be clearly stated. Relevant metrics may include:506

• Round complexity: Number of transmissions between prover and verifier. Usually measured507

in the number of moves, where a move is a message from one party to the other. An important508

special case is that of 1-move proof systems, aka non-interactive proof systems, where the509

verifier receives a proof from the prover and directly decides whether to accept or not. Non-510

interactive proofs may be transferable, i.e., they can be copied, forwarded and used to convince511

several verifiers.512

• Communication: Total size of communication between prover and verifier. Usually mea-513

sured in bits.514

• Prover computation: Computational effort the prover expends over the duration of the515

protocol. Sometimes measured as a count of the dominant cryptographic operations (to avoid516

system dependence) and sometimes measured in seconds on a particular system (when making517

concrete measurements).518

• Depending on the intended usage, many other metrics may be important: memory consump-519

tion, energy consumption, entropy consumption, potential for parallelisation to reduce time,520

and offline/online computation trade-offs.521

• Verifier computation: Computational effort the verifier expends over the duration of the522

protocol.523

• Setup cost: Size of setup parameters, e.g. a common reference string, and computational cost524

of creating the setup.525

Readers of a proof system specification may differ in the granularity they need in the efficiency526

measurements. Take as an example a proof system consisting of an information theoretic core that527

is then compiled with cryptographic primitives to yield the full system. An implementer will likely528

want to have a detailed performance analysis of the information theoretic core as well as the cryp-529

tographic compilation, since this will guide her choice of trade-offs and optimizations. A consumer530

on the other hand will likely want to have a high-level performance analysis and an apples-to-apples531

comparison to competing proof systems. We therefore recommend to provide both a detailed anal-532

ysis that quantifies all the dominant efficiency costs, and a bottom-line analysis that summarizes533

performance for reasonable choices of parameters and identifies the optimal performance region.534

1.8 Taxonomy of Constructions535

There are many different types of zero-knowledge proof systems in the literature that offer different536

tradeoffs between communication cost, computational cost, and underlying cryptographic assump-537

tions. Most of these proofs can be decomposed into an “information-theoretic” zero-knowledge proof538

system, sometimes referred to as a zero-knowledge probabilistically checkable proof (PCP), and a539

cryptographic compiler, or crypto compiler for short, that compiles such a PCP into a zero-knowledge540

proof. (Here and in the following, we will sometimes omit the term “zero-knowledge” for brevity541

even though we focus on zero-knowledge proof systems by default.)542

14

Section 1.8. Taxonomy of Constructions

Different kinds of PCPs require different crypto compilers. The crypto compilers are needed be-543

cause PCPs make unrealistic independence assumptions between values contributed by the prover544

and queries made by the verifier, and also do not take into account the cost of communicating a545

long proof. The main advantage of this separation is modularity: PCPs can be designed, analyzed546

and optimized independently of the crypto compilers, and their security properties (soundness and547

zero-knowledge) do not depend on any cryptographic assumptions. It may be beneficial to apply548

different crypto compilers to the same PCP, as different crypto compilers may have incompara-549

ble efficiency and security features (e.g., trade succinctness for better computational complexity or550

post-quantum security).551

PCPs can be divided into two broad categories: ones in which the verifier makes point queries,552

namely reads individual symbols from a proof string, and ones where the verifier makes linear queries553

that request linear combinations of field elements included in the proof string. Crypto compilers554

for the former types of PCPs typically only use symmetric cryptography (a collision-resistant hash555

function in their interactive variants and a random oracle in their non-interactive variants) whereas556

crypto compilers for the latter type of PCPs typically use homomorphic public-key cryptographic557

primitives (such as SNARK-friendly pairings).558

Table 1.2 summarizes different types of PCPs and corresponding crypto compilers. The efficiency559

and security features of the resulting zero-knowledge proofs depend on both the parameters of the560

PCP and the features of the crypto compiler.561

Table 1.2: Different types of PCPs562

563 Proof System Inter-
action Queries to Proof Crypto Compilers Features

564 Classical proof
(no zk)

No All GMW, ..., 1,2,3e
565 Cramer-Damgård 98, ... 1,3e
566 Classical PCP No Point Queries Kilian, Micali, IMS 1,2,3b
567 Linear PCP No Inner-product Queries IKO,Groth10,GGPR,BCIOP 3a
568 IOP Yes Point Queries BCS16+ZKStarks 1,2,3b
569 BCS16+Ligero 1,2,3d
570

Linear IOP Yes Inner-product
Queries

Hyrax 1,3b/3c
571 vSQL 3c
572 vRAM 3b
573 ILC Yes Matrix-vector

Queries
Bootle 16,18 1,3b

574 Bootle 17 1,2,3d

Notation: We say that a verifier makes “point queries” to the proof Π if the verifier has access to575

a proof oracle OΠ that takes as input an index i and outputs the i-th symbol Π(i) of the proof.576

We say that a verifier makes “inner-product queries” to the proof Π ∈ Fm (for some finite field F)577

if the proof oracle takes as input a vector q ∈ Fm and returns the value 〈 Π, q 〉 ∈ F. We say that578

a verifier makes “matrix-vector queries” to the proof Π ∈ Fm×k if the proof oracle takes as input a579

vector q ∈ Fk and returns the matrix-vector product (Π.q) ∈ Fm.580

1. No trusted setup581

15

Luís B.

To-do: Replace/add entries in this column by/with corresponding citation tags using command \cite{...}

Chapter 1. Security track

2. Relies only on symmetric-key cryptography (e.g., collision-resistant hash functions and/or582

random oracles)583

3. Succinct proofs584

(a) Fully succinct: Proof length independent of statement size. O(1) crypto elements (fully)585

(b) Polylog succinct: Polylogarithmic number of crypto elements586

(c) Depth-succinct: Depends on depth of a verification circuit representing the statement.587

(d) Sqrt succinct: Proportional to square root of circuit size588

(e) Non succinct: Proof length is larger than circuit size.589

1.8.1 Proof Systems590

Note: For all of the applications we consider, the prover must run in polynomial time, given a591

statement-witness pair, and the verifier must run in (possibly randomized) polynomial time.592

a. Classical Proofs: In a classical NP/MA proof, the prover sends the verifier a proof string π,593

the verifier reads the entire proof π and the entire statement x, and accepts or rejects.594

b. PCP (Probabilistically Checkable Proofs): In a PCP proof, the prover sends the verifier a595

(possibly very long) proof string π, the verifier makes “point queries” to the proof, reads the596

entire statement x, and accepts or rejects. Relevant complexity measures for a PCP include597

the verifier’s query complexity, the proof length, and the alphabet size.598

c. Linear PCPs: In a linear PCP proof, the prover sends the verifier a (possibly very long)599

proof string π, which lies in some vector space Fm. The verifier makes some number of600

linear queries to the proof, reads the entire statement x, and accepts or rejects. Relevant601

complexity measures for linear PCPs include the proof length, query complexity, field size, and602

the complexity of the verifier’s decision predicate (when expressed as an arithmetic circuit).603

d. IOP (Interactive Oracle Proofs): An IOP is a generalization of a PCP to the interactive set-604

ting. In each round of communication, the verifier sends a challenge string ci to the prover and605

the prover responds with a PCP proof πi that the verifier may query via point queries. After606

several rounds of interactions, the verifier accepts or rejects. Relevant complexity measures607

for IOPs are the round complexity, query complexity, and alphabet size. IOP generalizes the608

notion of Interactive PCP [KR08], and coincides with the notion of Probabilistically Checkable609

Interactive Proof [RRR16].610

e. Linear IOP: A linear IOP is a generalization of a linear PCP to the interactive setting. (See611

IOP above.) Here the prover sends in each round a proof vector πi that the verifier may query612

via linear (inner-product) queries.613

f. ILC (Ideal Linear Commitment): The ILC model is similar to linear IOP, except that the614

prover sends in each round a proof matrix rather than proof vector, and the verifier learns the615

product of the proof matrix and the query vector. This model relaxes the Linear Interactive616

Proofs (LIP) model from [BCIOP13]. (That is, each ILC proof matrix may be the output of617

an arbitrary function of the input and the verifier’s messages. In contrast, each LIP proof618

matrix must be a linear function of the verifier’s messages.) Important complexity measures619

for ILCs are the round complexity, query complexity, and dimensions of matrices.620

16

Section 1.8. Taxonomy of Constructions

1.8.2 Compilers: Cryptographic621

a. Cramer-Damgård [CD98]: Compiles an NP proof into a zero-knowledge proof. The prover622

evaluates the circuit C recognizing the relation on its statement-witness pair (x,w). The prover623

commits to every wire value in the circuit and sends these commitments to the verifiers. The624

prover then convinces the verifier using sigma protocols that the wire values are all consistent625

with each other. The prover opens the input wires to x and thus convinces the verifier that626

the circuit C(x, .) is satisfied on some witness w. The compiler uses additively homomorphic627

commitments (instantiated using the discrete-log assumption, for example) and generating or628

verifying the proof requires a number of public-key operations that is linear in the size of the629

circuit C.630

b. Kilian [Kil95] / Micali [Mic00] / IMS [IMS12]: Compiles a PCP with a small number of queries631

into a succinct proof. The prover produces a PCP proof that x in L. The prover commits to632

the entire PCP proof using a Merkle tree. The verifier asks the prover to open a few positions633

in the proof. The prover opens these positions and uses Merkle proofs to convince the verifier634

that the openings are consistent with the Merkle commitment. The verifier accepts iff the635

PCP verifier accepts. The compiler can be made non-interactive in the random oracle model636

via the Fiat-Shamir heuristic.637

c. GGPR [GGPR13a] / BCIOP [BCIOP13]: Compiles a linear PCP into a SNARG via a trans-638

formation to LIPs. The public parameters of the SNARG are as long as the linear PCP proof639

and the SNARG proof consists of a constant number of ciphertexts/commitments (if the linear640

PCP has constant query complexity). In the public verification setting, this compiler relies641

on “SNARG-friendly” bilinear maps and is thus not post-quantum secure. In the designated642

verifier setting, it can be made post-quantum secure via linear-only encryption [BISW17].643

Generating the proof requires a number of public-key operations that grows linearly (or quasi-644

linearly) in the size of the circuit recognizing the relation.645

d. BCS16 [BCS16]: A generalization of the Fiat-Shamir compiler that is useful for collapsing646

many-round public-coin proofs (such as IOPs) into NIZKs in the random-oracle model.647

e. Hyrax [WTSTW18] and vSQL [ZGKPP17]: Give mechanisms for compiling the GKR protocol648

[GKR15] into NIZKs in the random oracle model. The techniques in these works generalize649

to compile any public-coin linear IOP (without zero knowledge) into a non-interactive zero-650

knowledge proof in the random-oracle model, that additionally relies on algebraic commitment651

schemes. The latter are typically implemented using homomorphic public-key cryptography.652

f. Bootle16 [BCCGP16]: Compiler for converting an ILC proof into a many-round succinct proof653

under the discrete-log assumption. Generating and verifying the proof requires a number of654

public-key operations that grows linearly with the size of the circuit recognizing the NP relation655

in question.656

Note: In addition to the crypto compilers described above, there are information-theoretic compilers657

that convert between different types of information-theoretic objects.658

17

Luís B.

add somewhere a reference to the Fiat-Shamir transformation

Chapter 1. Security track

1.8.3 Compilers: Information-theoretic659

a. MPC-in-the-Head (IKOS [IKOS07], ZKboo [GMO16], Ligero [AHIV17]): Compiles secure multi-660

party computation protocols into either (zero-knowledge) PCPs or IOPs.661

b. BCIOP [BCIOP13]: Compiles quadratic arithmetic programs (QAPs) or quadratic span pro-662

grams (QSPs) into linear PCPs such that resulting linear PCP has a degree-two decision663

predicate. The BCIOP paper also gives a compiler for converting linear PCP into 1-round664

LIP/ILC and adding zero-knowledge to linear PCP.665

c. Bootle17 [BCGGHJ17]: Compiles a proof in the ILC model into an IOP. They also give an666

example instantiation of the ILC proof that yields an IOP proof system with square-root667

complexity.668

List of references: [BCIOP13], [BCS16], [BISW17], [BCCGP16], [BCGGHJ17], [BCGJM18],669

[CD98], [GGPR13a], [GKR15], [Gro10], [WTSTW18], [IKOS07], [IMS12], [Kil95], [KR08], [AHIV17],670

[Mic00], [RRR16], [ZGKPP18], [ZGKPP17], [GMO16].671

18

Chapter 2. Implementation track672

Original title: ZKProof Standards Implementation Track Proceedings673

Date: 1 August 2018 + subsequent revisions674

This document is an ongoing work in progress.675

Feedback and contributions are encouraged.676

Track chairs: Sean Bowe, Kobi Gurkan, Eran Tromer677

Track participants: Benedikt Bünz, Konstantinos Chalkias, Daniel Genkin, Jack Grigg, Daira Hop-678

wood, Jason Law, Andrew Poelstra, abhi shelat, Muthu Venkitasubramaniam, Madars Virza,679

Riad S. Wahby, Pieter Wuille680

2.1 Overview681

By having a standard or framework around the implementation of ZKPs, we aim to help platforms682

adapt more easily to new constructions and new schemes, that may be more suitable because of683

efficiency, security or application-specific changes. Application developers and the designers of684

new proof systems all want to understand the performance and security tradeoffs of different ZKP685

constructions when invoked in various applications. This track focuses on building a standard686

interface that application developers can use to interact with ZKP proof systems, in an effort687

to improve facilitate interoperability, flexibility and performance comparison. In this first effort688

to achieve such an interface, our focus is on non-interactive proof systems (NIZKs) for general689

statements (NP) that use an R1CS/QAP-style constraint system representation. This includes690

many, though not all, of the practical general-purpose ZKP schemes currently deployed. While691

this focus allows us to define concrete formats for interoperability, we recognize that additional692

constraint system representation styles (e.g., arithmetic and Boolean circuits) are in use, and are693

within scope of the ongoing effort. We also aim to establish best practices for the deployment of694

these proof systems in production software.695

2.1.1 What this document is NOT about:696

• A unique explanation of how to build ZKP applications697

• An exhaustive list of the security requirements needed to build a ZKP system698

• A comparison of front-end tools699

• A show of preference for some use-cases or others700

19

Chapter 2. Implementation track

2.2 Backends: Cryptographic System Implementations701

The backend of a ZK proof implementation is the portion of the software that contains an implemen-702

tation of the low-level cryptographic protocol. It proves statements where the instance and witness703

are expressed as variable assignments, and relations are expressed via low-level languages (such704

as arithmetic circuits, Boolean circuits, R1CS/QAP constraint systems or arithmetic constraint705

satisfaction problems).706

The backend typically consists of a concrete implementation of the ZK proof system(s) given as707

pseudocode in a corresponding publication (see the Security Track document for extensive discussion708

of these), along with supporting code for the requisite arithmetic operations, serialization formats,709

tests, benchmarking etc.710

There are numerous such backends, including implementations of many of the schemes discussed711

in the Security Track. Most have originated as academic research prototypes, and are available as712

open-source projects. Since the offerings and features of backends evolve rapidly, we refer the reader713

to the curated taxonomy at https://zkp.science for the latest information.714

Considerations for the choice of backends include:715

• ZK proof system(s) implemented by the backend, and their associated security, assumptions716

and asymptotic performance (as discussed in the Security Track document)717

• Concrete performance (see Benchmarks section)718

• Programming language and API style (this consideration may be satisfied by adherence to719

prospective ZK proof standards; see the the API and File Formats section)720

• Platform support721

• Availability as open source722

• Active community of maintainers and users723

• Correctness and robustness of the implementation (as determined, e.g., by auditing and formal724

verification)725

• Applications (as evidence of usability and scrutiny).726

2.3 Frontends: Constraint-System Construction727

The frontend of a ZK proof system implementation provides means to express statements in a728

convenient language and to prove such statements in zero knowledge by compiling them into a729

low-level representation and invoking a suitable ZK backend.730

A frontend consists of:731

• The specification of a high-level language for expressing statements.732

• A compiler that converts relations expressed in the high-level language into the low-level733

relations suitable for some backend(s). For example, this may produce an R1CS constraint734

system.735

• Instance reduction: conversion of the instance in a high-level statement to a low-level instance736

(e.g., assignment to R1CS instance variables).737

20

Section 2.4. APIs and File Formats

• Witness reduction: conversion of the witness to a high-level statement to a low-level witness738

(e.g., assignment to witness variables).739

• Typically, a library of "gadgets" consisting of useful and hand-optimized building blocks for740

statements.741

Languages for expressing statements, which have been implemented in frontends to date include:742

code library for general-purpose languages, domain-specific language, suitably-adapted general-743

purpose high-level language, and assembly language for a virtual CPU.744

Frontends’ compilers, as well as gadget libraries, often implement various optimizations aiming745

to reduce the cost of the constraint systems (e.g., the number of constraints and variables). This746

includes techniques such as making use of “free linear combinations” in R1CS, using nondeterministic747

advice given in witness variables (e.g., for integer arithmetic or random-access memory), removing748

redundancies, using cryptographic schemes tailored for the given algebraic settings (e.g., Pedersen749

hashing on the Jubjub curve or MiMC for hash functions, RSA verification for digital signatures),750

and many other techniques. See the Zcon0 Circuit Optimisation handout for further discussion.751

There are many implemented frontends, including some that provide alternative ways to invoke the752

same underlying backends. Most have originated as academic research prototypes, and are available753

as open-source projects. Since the offerings and features of frontends evolve rapidly, we refer the754

reader to the curated taxonomy at https://zkp.science for the latest information.755

2.4 APIs and File Formats756

Our primary goal is to improve interoperability between proving systems and frontend consumers757

of proving system implementations. We focused on two approaches for building standard interfaces758

for implementations:759

1. We aim to develop a common API for proving systems to expose their capabilities to frontends760

in a way that is maximally agnostic to the underlying implementation details.761

2. We aim to develop a file format for encoding a popular form of constraint systems (namely762

R1CS), and its assignments, so that proving system implementations and frontends can inter-763

act across language and API barriers.764

We did not aim to develop standards for interoperability between backends implementing the same765

(abstract) scheme, such as serialization formats for proofs (see the Extended Constraint-System766

Interoperability section for further discussion).767

2.4.1 Generic API768

In order to help compare the performance and usability tradeoffs of proving system implementations,769

frontend application developers may wish to interact with the underlying proof systems via a generic770

interface, so that proving systems can be swapped out and the tradeoffs observed in practice. This771

also helps in an academic pursuit of analysis and comparison.772

21

https://docs.google.com/document/d/1aZ1GUAJOBFuqD4GOo9HqAH8w4xJo7HM4Bjte5-wkdnU/edit?usp=sharing

https://zkp.science

Chapter 2. Implementation track

The abstract parties and objects in a NIZK are depicted in Figure 2.1.773

Language Gen pp Prover Proof

pp pp

Witness

Instance

Figure 2.1. Abstract parties and objects in a NIZK

We did not complete a generic API design for proving systems, but we did survey numerous tradeoffs774

and design approaches for such an API that may be of future value.775

We separate the APIs and interfaces between the universal and non-universal NIZK setting. In776

the universal setting, the NIZK’s CRS generation is independent of the relation (i.e., one CRS777

enables proving any NP statement). In the non-universal settings, the CRS generation depends on778

the relation (represented as a constraint system), and a given CRS enables proving the statements779

corresponding to any instance with respect to the specific relation.780

Table 2.1: APIs and interfaces by types of universality and preprocessing781

Preprocessing
(Generate has superpolyloga-
rithmic runtime / output size
as function of constraint sys-
tem size)

Non-preprocessing
(Generate runtime and out-
put size is fast and CRS is at
most polylogarithmic in con-
straint system size)

782

Non-universal
(Generate needs constraint
system as input)

QAP-based
[PHGR13], [GGPR13b],
[BCGTV13]

?
783

22

Aurélien Nicolas

the Verifier could appear here. PP, Instance, and Proof go into the Verifier box.

Section 2.4. APIs and File Formats

Universal
(Generate needs just a size
bound)

vnTinyRAM
vRAM
Bulletproofs (with explicit
CRH)

Bulletproofs (with PRG-
based CRH generation)

784

Universal and scalable
(Generate needs nothing but
security parameter)

(impossible) “Fully scalable” SNARKs
based on PCD (recursive
composition)

785

In any case, we identified several capabilities that proving systems may need to express via a generic786

interface:787

1. The creation of CRS objects in the form of proving and verifying parameters, given the input788

language or size bound.789

2. The serialization of CRS objects into concrete encodings.790

3. Metadata about the proving system such as the size and characteristic of the field (for arith-791

metic constraints).792

4. Witness objects containing private inputs known only to the prover, and Instance objects793

containing public inputs known to the prover and verifier.794

5. The creation of Proof objects when supplied proving parameters, an Instance, and a Witness.795

6. The verification of Proof objects given verifying parameters and an Instance.796

Future work: We would like to see a concrete API design which leverages our tentative model,797

with additional work to encode concepts such as recursive composition and the batching of proving798

and verification operations.799

2.4.2 R1CS File Format800

There are many frontends for constructing constraint systems, and many backends which consume801

constraint systems (and variable assignments) to create or verify proofs. We focused on creating802

a file format that frontends and backends can use to communicate constraint systems and variable803

assignments. Goals include simplicity, ease of implementation, compactness and avoiding hard-804

coded limits.805

Our initial work focuses on R1CS due to its popularity and familiarity. Refer to the Security Track806

document for more information about constraint systems. The design we arrived at is tentative and807

requires further iteration. Implementation and specification work will appear at https://github.808

com/zkpstandard/file_formats.809

R1CS (Rank 1 Constraint Systems) is an NP-complete language for specifying relations as a sys-810

tem of bilinear constraints (i.e., a rank 1 quadratic constraint system), as defined in [BCGTV13,811

23

https://github.com/zkpstandard/file_formats

https://github.com/zkpstandard/file_formats

https://github.com/zkpstandard/file_formats

Chapter 2. Implementation track

Appendix E in extended version]; this is a more intuitive reformulation of QAP QAP (Quadratic812

Arithmetic Program), defined in [PHGR13]. R1CS is the native constraint system language of many813

ZK proof constructions (see the Security Track document), including many ZK proof applications814

in operational deployment.815

Our proposed format makes heavy use of variable-length integers which are prevalent in the (space-816

efficient) encoding of an R1CS. We refer to VarInt as a variable-length unsigned integer, and Signed-817

VarInt as a variable-length signed integer. We typically use VarInt for lengths or version numbers,818

and SignedVarInt for field element constants. The actual description of a VarInt is not yet specified.819

We’ll be working with primitive variable indices of the following form:820

ConstantVar ← SignedVarInt(0)821

InstanceVar(i) ← SignedVarInt(-(i + 1))822

WitnessVar(i) ← SignedVarInt(i + 1)823

VariableIndex ← ConstantVar / InstanceVar(i) / WitnessVar(i)824

ConstantVar represents an indexed constant in the field, usually assigned to one. InstanceVar825

represents an indexed variable of the instance, or the public input, serialized with negative indices.826

WitnessVar represents an indexed variable of the witness, or the private/auxiliary input, serialized827

with positive indices. VariableIndex represents one of any of these possible variable indices.828

We’ll also be working with primitive expressions of the following form:829

Coefficient ← SignedVarInt830

Sequence(Entry) ← | length: VarInt | length * Entry |831

LinearCombination ← Sequence(| VariableIndex | Coefficient |)832

• Coefficients must be non-zero.833

• Entries should be sorted by type, then by index:834

– | ConstantVar | sorted(InstanceVar) | sorted(WitnessVar) |835

Constraint ←836

| A: LinearCombination | B: LinearCombination | C: LinearCombination |837

We represent a Coefficient (a constant in a linear combination) with a SignedVarInt. (TODO: there838

is no constraint on its canonical form.) These should never be zero. We express a LinearCombination839

as sequences of VariableIndex and Coefficient pairs. Linear combinations should be sorted by type840

and then by index of the VariableIndex ; i.e., ConstantVar should appear first, InstanceVar should841

appear second (ascending) and WitnessVar should appear last (ascending).842

We express constraints as three LinearCombination objects A, B, C, where the encoded constraint843

represents A * B = C.844

The file format will contain a header with details about the constraint system that are important845

for the backend implementation or for parsing.846

Header(version, vals) ←847

| version: VarInt | vals: Sequence(SignedVarInt) |848

24

Section 2.5. Benchmarks

The vals component of the Header will contain information such as:849

• P ← Field characteristic850

• D ← Degree of extension851

• N_X ← Number of instance variables852

• N_W ← Number of witness variables853

The representation of elements of extension fields is not currently specified, so D should be 1.854

The file format contains a magic byte sequence “R1CSstmt”, a header, and a sequence of constraints,855

as follows:856

R1CSFile ←857

| "R1CSstmt" | Header(0, [P, D, N_X, N_W, ...]) | Sequence(Constraint) |858

Further values in the header are undefined in this specification for version 0, and should be ignored.859

The file extension “.r1cs” is used for R1CS circuits.860

Further work: We wish to have a format for expressing the assignments for use by the backend861

in generating the proof. We reserve the magic “R1CSasig” and the file extention “.assignments” for862

this purpose. We also wish to have a format for expressing symbol tables for debugging. We reserve863

the magic “R1CSsymb” and the file extention “.r1cssym” for this purpose.864

In the future we also wish to specify other kinds of constraint systems and languages that some865

proving systems can more naturally consume.866

2.5 Benchmarks867

As the variety of zero-knowledge proof systems and the complexity of applications has grown, it868

has become more and more difficult for users to understand which proof system is the best for their869

application. Part of the reason is that the tradeoff space is high-dimensional. Another reason is870

the lack of good, unified benchmarking guidelines. We aim to define benchmarking procedures that871

both allow fair and unbiased comparisons to prior work and also aim to give enough freedom such872

that scientists are incentivized to explore the whole tradeoff space and set nuanced benchmarks in873

new scenarios and thus enable more applications.874

The benchmark standardisation is meant to document best practices, not hard requirements. They875

are especially recommended for new general-purpose proof systems as well as implementations of876

existing schemes. Additionally the long-term goal is to enable independent benchmarking on stan-877

dardized hardware.878

2.5.1 What metrics and components to measure879

We recommend that as the primary metrics the running time (single-threaded) and the com-880

munication complexity (proof size, in the case of non-interactive proof systems) of all components881

should be measured and reported for any benchmark. The measured components should at least882

include the prover and the verifier. If the setup is significant then this should also be measured,883

25

Chapter 2. Implementation track

further system components like parameter loading and number of rounds (for interactive proof884

systems) are suggested.885

The following metrics are additionally suggested:886

- Parallelizability887

- Batching888

- Memory consumption (either as a precise measurement or as an upper bound)889

- Operation counts (e.g. number of field operations, multi-exponentiations, FFTs and their890

sizes)891

- Disk usage/Storage requirement892

- Crossover point: point where verifying is faster than running the computation893

- Largest instance that can be handled on a given system894

- Witness generation (this depends on the higher-level compiler and application)895

- Tradeoffs between any of the metrics.896

2.5.2 How to run the benchmarks897

Benchmarks can be both of analytical and computational nature. Depending on the system either898

may be more appropriate or they can supplement each other. An analytical benchmark consists of899

asymptotic analysis as well as concrete formulas for certain metrics (e.g. the proof size). Ideally900

analytical benchmarks are parameterized by a security level or otherwise they should report the901

security level for which the benchmark is done, along with the assumptions that are being used.902

Computational benchmarks should be run on a consistent and commercially available machine. The903

use of cloud providers is encouraged, as this allows for cheap reproducibility. The machine spec-904

ification should be reported along with additional restrictions that are put on it (e.g. throttling,905

number of threads, memory supplied). Benchmarking machines should generally fall into one of the906

following categories and the machine description should indicate the category. If the software im-907

plementation makes certain architectural assumptions (such as use of special hardware instructions)908

then this should be clearly indicated.909

- Battery powered mobile devices910

- Personal computers such as laptops911

- Server style machines with many cores and large memories912

- Server clusters using multiple machines913

- Custom hardware (should not be used to compare to software implementations)914

We recommend that most runs are executed on a single-threaded machine, with parallelizability915

being an optional metric to measure. The benchmarks should be run at approximately 120-bit916

security or larger. The conjectured security level, and whether it is in a post-quantum or classical917

setting, should be clearly stated.918

In order to enable better comparisons we recommend that the metrics of other proof systems/919

implementations are also run on the same machine and reported. The onus is on the library920

developer to provide a simple way to run any instance on which a benchmark is reported. This921

will additionally aid the reproducibility of results. Links to implementations will be gathered at922

26

Section 2.5. Benchmarks

zkp.science and library developers are encouraged to ensure that their library is properly referenced.923

Further we encourage scientific publishing venues to require the submission of source code if an924

implementation is reported. Ideally these venues even test the reproducibility and indicate whether925

results could be reproduced.926

2.5.3 What benchmarks to run927

We propose a set of benchmarks that is informed by current applications of zero-knowledge proofs,928

as well as by differences in proving systems. This list in no way complete and should be amended and929

updated as new applications emerge and new systems with novel properties are developed. Zero-930

knowledge proof systems can be used in a black-box manner on an existing application, but often931

designing the application with a proof system in mind can yield large efficiency gains. To cover both932

scenarios we suggest a set of benchmarks that include commonly used primitives (e.g. SHA-256)933

and one where only the functionality is specified but not the primitives (e.g. a collision-resistant934

hash function at 120-bit classical security).935

Commonly used primitives. Here we list a set of primitives that both serve as microbenchmarks936

and are of separate interest. Library developers are free to choose how their library runs a given937

primitive, but we will aid the process by providing circuit descriptions in commonly used file formats938

(e.g. R1CS).939

Recommended940

- SHA-256941

- AES942

- A simple vector or matrix product at different sizes943

Further suggestions944

- Zcash Sapling “spend” relation945

- RC4 (for RAM memory access)946

- Scrypt947

- TinyRAM running for n steps with memory size s948

- Number theoretic transform (coefficients to points)949

- Small fields950

- Big fields951

- Pattern matching952

Repetition953

The above relations, parallelized by putting n copies in parallel.954

Functionalities. The following are examples of cryptographic functionalities that are especially955

interesting to application developers. The realization of the primitive may be secondary, as long956

as it achieves the security properties. It is helpful to provide benchmarks for a constraint-system957

implementation of a realization of these primitives that is tailored for the NIZK backend.958

27

Chapter 2. Implementation track

In all of the following, the primitive should be given at a level of 120 bits or higher and match the959

security of the NIZK proof system.960

• Asymmetric cryptography961

- Signature verification962

- Public key encryption963

- Diffie Hellman key exchange over any group with 128 bit security964

• Symmetric & Hash965

- Collision-resistant hash function on a 1024-byte message966

- Set membership in a set of size 220 (e.g., using Merkle authentication tree)967

- MAC968

- AEAD969

• The scheme’s own verification circuit, with matching parameters, for recursive composition970

(Proof-Carrying Data)971

• Range proofs [Freely chosen commitment scheme]972

- Proof that number is in [0, 264)973

- Proof that number is positive974

• Proof of permutation (proving that two committed lists contain the same elements)975

2.5.4 Security976

When benchmarking it is important to compare the claimed and achieved security of different proof977

systems. To aid this benchmarks should make it clear which security level (Definition see theory978

track document) is being used. In particular the benchmark should clearly state under which979

assumptions the claimed security is achieved. If the security is conjectured then benchmarks should980

display both the conjectured as well as the proven performance. Benchmarks should be run with at981

least 120-bit security. If the proof system claims to be quantum-resistant it should be clearly stated982

whether the benchmarks are in the classical or quantum setting. Further if the quantum setting is983

benchmarked, the benchmarked primitives should be adjusted as well.984

2.6 Correctness and Trust985

In this section we explore the requirements for making the implementation of the proof system986

trustworthy. Even if the mathematical scheme fulfills the claimed properties (e.g., it is proven987

secure in the requisite sense, its assumptions hold and security parameters are chosen judiciously),988

many things can go wrong in the subsequent implementation: code bugs, structured reference string989

subversion, compromise during deployment, side channels, tampering attacks, etc. This section aims990

to highlight such risks and offer considerations for practitioners.991

2.6.1 Considerations992

Design of high-level protocol and statement. The specification of the high-level protocol that993

invokes the ZK proof system (and in particular, the NP statement to be proven in zero knowledge)994

28

Luís B.

Suggestion: Revise ``Security'' vs. ``Theory''?

Section 2.6. Correctness and Trust

may fail to achieve the intended domain-specific security properties.995

Methodology for specifying and verifying these protocols is at its infancy, and in practice often relies996

on manual review and proof sketches. Possible methods for attaining assurance include reliance on997

peer-reviewed academic publications (e.g., Zerocash [BCGG+14] and Cinderella [DFKP16]) reuse of998

high-level gadgets as discussed in the Applications Track, careful manual specification and proving999

of protocol properties by trained cryptographers, and emerging tools for formal verification.1000

Whenever nontrivial optimizations are applied to a statement, such as algebraic simplification, or1001

replacement of an algorithm used in the original intended statement with a more efficient alternative,1002

those optimizations should be supported by proofs at an appropriate level of formality.1003

See the Applications Track document for further discussion.1004

Choice of cryptographic primitives. Traditional cryptographic primitives (hash functions,1005

PRFs, etc.) in common use are generally not designed for efficiency when implemented in circuits1006

for ZK proof systems. Within the past few years, alternative "circuit-friendly" primitives have1007

been proposed that may have efficiency advantages in this setting (e.g., LowMC and MiMC). We1008

recommend a conservative approach to assessing the security of such primitives, and advise that1009

the criteria for accepting them need to be as stringent as for the more traditional primitives.1010

Implementation of statement. The concrete implementation of the statement to be proven1011

by the ZK proof system (e.g., as a Boolean circuit or an R1CS) may fail to capture the high-level1012

specification. This risk increases if the statement is implemented in a low abstraction level, which1013

is more prone to errors and harder to reason about.1014

The use of higher-level specifications and domain-specific languages (see the Front Ends section)1015

can decrease the risk of this error, though errors may still occur in the higher-level specifications or1016

in the compilation process.1017

Additionally, risk of errors often arises in the context of optimizations that aim to reduce the size1018

of the statement (e.g., circuit size or number of R1CS constraints).1019

Note that correct statement semantics is crucial for security. Two implementations that use the1020

same high-level protocol, same constraint system and compatible backends may still fail to correctly1021

interoperate if their instance reductions (from high-level statement to the low-level input required1022

by the backend) are incompatible – both in completeness (proofs don’t verify) or soundness (causing1023

false but convincing proofs, implying a security vulnerability).1024

Side channels. Developers should be aware of the different processes in which side channel attacks1025

can be detrimental and take measure to minimize the side channels. These include:1026

- SRS generation — in some schemes, randomly sampled elements which are discarded can be1027

used, if exposed, to subvert the soundness of the system.1028

- Assignment generation / proving — the private auxiliary data can be exposed, which allows1029

the attacker to understand the secret data used for the proof.1030

29

Chapter 2. Implementation track

Auditing. First of all, circuit designers should provide a high-level description of their circuit and1031

statement alongside the low-level circuit, and explain the connections between them.1032

The high-level description should facilitate auditing of the security properties of the protocol being1033

implemented, and whether these match the properties intended by the designers or that are likely1034

to be expected by users.1035

If the low-level description is not expressed directly in code, then the correspondence between the1036

code and the description should be clear enough to be checked in the auditing process, either1037

manually or with tool support.1038

A major focus of auditing the correctness and security of a circuit implementation will be in verifying1039

that the low-level description matches the high-level one. This has several aspects, corresponding1040

to the security properties of a ZK proof system:1041

• An instance for the low-level circuit must reveal no more information than an instance for the1042

high-level statement. This is most easily achieved by ensuring that it is a canonical encoding1043

of the high-level instance.1044

• It must not be possible to find an instance and witness for the low-level circuit that does not1045

correspond to an instance and witness for the high-level statement.1046

At all levels of abstraction, it is beneficial to use types to clarify the domains and representations1047

of the values being manipulated. Typically, a given proving system will not be able to *directly*1048

represent all of the types of value needed for a given high-level statement; instead, the values will1049

be encoded, for example as field elements in the case of R1CS-based proof systems. The available1050

operations on these elements may differ from those on the values they are representing; for instance,1051

field addition does not correspond to integer addition in the case of overflow.1052

An adversary who is attempting to prove an instance of the statement that was not intended to be1053

provable, is not necessarily constrained to using instance and witness variables that correspond to1054

these intended representations. Therefore, close attention is needed to ensuring that the constraint1055

system explicitly excludes unintended representations.1056

There is a wide space of design tradeoffs in how the frontend to a proof system can help to address1057

this issue. The frontend may provide a rich set of types suitable for directly expressing high-level1058

statements; it may provide only field elements, leaving representation issues to the frontend user;1059

it may provide abstraction mechanisms by which users can define new types; etc. Auditability of1060

statements expressed using the frontend should be a major consideration in this design choice.1061

If the frontend takes a "gadget" approach to composition of statement elements, then it must be1062

clear whether each gadget is responsible for constraining the input and/or output variables to their1063

required types.1064

Testing. Methods to test constraint systems include:1065

- Testing for failure - does the implementation accept an assignment that should not be ac-1066

cepted?1067

- Fuzzing the circuit inputs.1068

30

Section 2.6. Correctness and Trust

- Finding missing constraints - e.g., missing boolean constraints on variables that represent bits,1069

or other missing type constraints.1070

- Finding dead constraints, and reporting them (instead of optimising out).1071

- Detection of unintended nondeterminism. For instance, given a partial fixed assignment, solve1072

for the remainder and check that there is only one solution.1073

A proof system implementation can support testing by providing access, for test and debugging1074

purposes, to the reason why a given assignment failed to satisfy the constraints. It should also1075

support injection of values for instance and witness variables that would not occur in normal use1076

(e.g. because they do not represent a value of the correct type). These features facilitate “white1077

box testing”, i.e. testing that the circuit implementation rejects an instance and witness for the1078

intended reason, rather than incidentally. Without this support, it is difficult to write correct tests1079

with adequate coverage of failure modes.1080

2.6.2 SRS Generation1081

A prominent trust issue arises in proving systems which require a parameter setup process (struc-1082

tured reference string) that involves secret randomness. These may have to deal with scenarios1083

where the process is vulnerable or expensive to perform security. We explore the real world so-1084

cial and technical problems that these setups must confront, such as air gaps, public verifiability,1085

scalability, handing aborts, and the reputation of participants, and randomness beacons.1086

ZKP schemes require a URS (uniform reference string) or SRS (structured reference string) for their1087

soundness and/or ZK properties. This necessitates suitable randomness sources and, in the case of1088

a common reference string, a securely-executed setup algorithm. Moreover, some of the protocols1089

create reference strings that can be reused across applications. We thus seek considerations for1090

executing the setup phase of the leading ZKP scheme families, and for sharing of common resources.1091

This section summarizes an open discussion made by the participants of the Implementation Track,1092

aiming to provide considerations for practitioners to securely generate a CRS.1093

SRS subversion and failure modes. Constructing the SRS in a single machine might fit some1094

scenarios. For example, this includes a scenario where the verifier is a single entity — the one1095

who generates the SRS. In that scenario, an aspect that should be considered is subversion zero-1096

knowledge — a property of proving schemes allowing to maintain zero-knowledge, even if the SRS1097

is chosen maliciously by the verifier.1098

Strategies for subversion zero knowledge include:1099

- Using a multi-party computation to generate the SRS1100

- Adaptation of either [Gro16] [PHGR13]1101

- Updatable SRS - the SRS is generated once in a secure manner, and can then be specialized1102

to many different circuits, without the need to re-generate the SRS1103

There are other subversion considerations which are discussed in the ZKProof Security Track.1104

31

Chapter 2. Implementation track

SRS generation using MPC In order to reduce the need of trust in a single entity generating1105

the SRS, it is possible to use a multi-party computation to generate the SRS. This method should1106

ideally be secure as long as one participant is honest (per independent computation phase). Some1107

considerations to strengthen the security of the MPC include:1108

- Have as many participants as possible1109

– Diversity of participants; reduce the chance they will collude1110

– Diversity of implementations (curve, MPC code, compiler, operating system, language)1111

– Diversity of hardware (CPU architecture, peripherals, RAM)1112

- One-time-use computers1113

- GCP / EC2 (leveraging enterprise security)1114

– If you are concerned about your hardware being compromised, then avoid side channels1115

(power, audio/radio, surveillance)1116

- Hardware removal:1117

- Remove WiFi/Bluetooth chip1118

- Disconnect webcam / microphone / speakers1119

- Remove hard disks if not needed, or disable swap1120

- Air gaps1121

[label=-]1122

– Deterministic compilation1123

– Append-only logs1124

– Public verifiability of transcripts1125

– Scalability1126

– Handling aborts1127

– Reputation1128

- Information extraction from the hardware is difficult1129

- Flash drives with hardware read-only toggle1130

Some protocols (e.g., Powers of Tau) also require sampling unpredictable public randomness. Such1131

randomness can be harnessed from proof of work blockchains or other sources of entropy such1132

as stock markets. Verifiable Delay Functions can further reduce the ability to bias these sources1133

[BBBF18]1134

SRS reusability For schemes that require an SRS, it may be possible to design an SRS generation1135

process that allows the re-usability of a part of the SRS, thus reducing the attack surface. A good1136

example of it is the Powers of Tau method for the Groth16 construction, where most of the SRS1137

can be reused before specializing to a specific constraint system.1138

Designated-verifier setting There are cases where the verifier is a known-in-advance single1139

entity. There are schemes that excel in this setting. Moreover, schemes with public verifiability can1140

be specialized to this setting as well.1141

32

https://github.com/ebfull/powersoftau

https://eprint.iacr.org/2016/260

Section 2.7. Extended Constraint-System Interoperability

2.6.3 Contingency plans1142

We would like to explore in future workshops the notion of contingency plans. For example, how1143

do we cope:1144

- With our proof system being compromised?1145

- With our specific circuit having a bug?1146

- When our ZKP protocol has been breached (identifying proofs with invalid witness, etc)1147

Some ideas that were discussed and can be expanded on are:1148

- Scheme-agility and protocol-agility in protocols - when designing the system, allow flexibility1149

for the primitives used1150

- Combiners (using multiple proof systems in parallel) - to reduce the reliance on a single proof1151

system, use multiple1152

- Discuss ways to identify when ZKP protocol has been breached (identifying proofs with invalid1153

witness, etc)1154

2.7 Extended Constraint-System Interoperability1155

The following are stronger forms of interoperability which have been identified as desirable by1156

practitioners, and are to be addressed by the ongoing standardization effort.1157

2.7.1 Statement and witness formats1158

In the R1CS File Format section and associated resources, we define a file format for R1CS constraint1159

systems. There remains to finalize this specification, including instances and witnesses. This will1160

enable users to have their choice of frameworks (frontends and backends) and streaming for storage1161

and communication, and facilitate creation of benchmark test cases that could be executed by any1162

backend accepting these formats.1163

Crucially, analogous formats are desired for constraint system languages other than R1CS.1164

2.7.2 Statement semantics, variable representation & mapping1165

Beyond the above, there’s a need for different implementations to coordinate the semantics of the1166

statement (instance) representation of constraint systems. For example, a high-level protocol may1167

have an RSA signature as part of the statement, leaving ambiguity on how big integers modulo a1168

constant are represented as a sequence of variables over a smaller field, and at what indices these1169

variables are placed in the actual R1CS instance.1170

Precise specification of statement semantics, in terms of higher-level abstraction, is needed for1171

interoperability of constraint systems that are invoked by several different implementations of the1172

instance reduction (from high-level statement to the actual input required by the ZKP prover and1173

33

Chapter 2. Implementation track

verifier). One may go further and try to reuse the actual implementation of the instance reduction,1174

taking a high-level and possibly domain-specific representation of values (e.g., big integers) and1175

converting it into low-level variables. This raises questions of language and platform incompatibility,1176

as well as proper modularization and packaging.1177

Note that correct statement semantics is crucial for security. Two implementations that use the1178

same high-level protocol, same constraint system and compatible backends may still fail to correctly1179

interoperate if their instance reductions are incompatible – both in completeness (proofs don’t verify)1180

or soundness (causing false but convincing proofs, implying a security vulnerability). Moreover,1181

semantics are a requisite for verification and helpful for debugging.1182

Some backends can exploit uniformity or regularity in the constraint system (e.g., repeating patterns1183

or algebraic structure), and could thus take advantage of formats and semantics that convey the1184

requisite information.1185

At the typical complexity level of today’s constraint systems, it is often acceptable to handle all of1186

the above manually, by fresh re-implementation based on informal specifications and inspection of1187

prior implementation. We expect this to become less tenable and more error prone as application1188

complexity grows.1189

2.7.3 Witness reduction1190

Similar considerations arise for the witness reduction, converting a high-level witness representation1191

(for a given statement) into the assignment to witness variables. For example, a high-level protocol1192

may use Merkle trees of particular depth with a particular hash function, and a high-level instance1193

may include a Merkle authentication path. The witness reduction would need to convert these1194

into witness variables, that contain all of the Merkle authentication path data (encoded by some1195

particular convention into field elements and assigned in some particular order) and moreover the1196

numerous additional witness variables that occur in the constraints that evaluate the hash function,1197

ensure consistency and Booleanity, etc.1198

The witness reduction is highly dependent on the particular implementation of the constraint system.1199

Possible approaches to interoperability are, as above: formal specifications, code reuse and manual1200

ad hoc compatibility.1201

2.7.4 Gadgets interoperability1202

At a finer grain than monolithic constraint systems and their assignments, there is need for sharing1203

subcircuits and gadgets. For example, libsnark offers a rich library of highly optimized R1CS1204

gadgets, which developers of several front-end compilers would like to reuse in the context of their1205

own constraint-system construction framework.1206

While porting chunks of constraints across frameworks is relatively straightforward, there are chal-1207

lenges in coordinating the semantics of the externally-visible variables of the gadget, analogous to1208

but more difficult than those mentioned above for full constraint systems: there is a need to co-1209

ordinate or reuse the semantics of a gadget’s externally-visible variables, as well as to coordinate1210

34

Section 2.7. Extended Constraint-System Interoperability

or reuse the witness reduction function of imported gadgets in order to converts a witness into an1211

assignment to the internal variables.1212

As for instance semantics, well-defined gadget semantics is crucial for soundness, completeness and1213

verification, and is helpful for debugging.1214

2.7.5 Procedural interoperability1215

An attractive approach to the aforementioned needs for instance and witness reductions (both at the1216

level of whole constraint systems and at the gadget level) is to enable one implementation to invoke1217

the instance/witness reductions of another, even across frameworks and programming languages.1218

This requires communication not of mere data, but invocation of procedural code. Suggested ap-1219

proaches to this include linking against executable code (e.g., .so files or .dll), using some elegant and1220

portable high-level language with its associated portable, or using a low-level portable executable1221

format such as WebAssembly. All of these require suitable calling conventions (e.g., how are field1222

elements represented?), usage guidelines and examples.1223

Beyond interoperability, some low-level building blocks (e.g., finite field and elliptic curve arithmetic)1224

are needed by many or all implementations, and suitable libraries can be reused. To a large extent1225

this is already happening, using the standard practices for code reuse using native libraries. Such1226

reused libraries may offer a convenient common ground for consistent calling conventions as well.1227

2.7.6 Proof interoperability1228

Another desired goal is interoperability between provers and verifiers that come from different1229

implementations, i.e., being able to independently write verifiers that make consistent decisions and1230

being able to re-implement provers while still producing proofs that convince the old verifier.1231

This is especially pertinent in applications where proofs are posted publicly, such as in the context1232

of blockchains (see the Applications Track document), and multiple independent implementations1233

are desired for both provers and verifiers.1234

To achieve such interoperability between provers and verifiers, they must agree on all of the following:1235

• ZK proof system (including fixing all degrees of freedom, such as choice of finite fields and1236

elliptic curves)1237

• Instance and witness formats (see above subsection)1238

• Prover parameters formats1239

• Verifier parameters formats1240

• Proof formats1241

• A precise specification of the constraint system (e.g., R1CS) and corresponding instance and1242

witness reductions (see above subsection).1243

Alternatively: a precise high-level specification along with a precisely-specified, deterministic fron-1244

tend compilation.1245

35

Chapter 2. Implementation track

2.7.7 Common reference strings1246

There is also a need for standardization regarding Common Reference String (CRS), i.e., prover1247

parameters and verifier parameters. First, interoperability is needed for streaming formats (com-1248

munication and storage), and would allow application developers to easily switch between different1249

implementations, with different security and performance properties, to suit their need. Moreover,1250

for Structured Reference Strings (SRS), there are nontrivial semantics that depend on the ZK proof1251

system and its concrete realization by backends, as well as potential for partial reuse of SRS across1252

different circuits in some schemes (e.g., the Powers of Tau protocol).1253

2.8 Future goals1254

2.8.1 Interoperability1255

Many additional aspects of interoperability remain to be analyzed and supported by standards,1256

to support additional ZK proof system backends as well as additional communication and reuse1257

scenarios. Work has begun on multiple fronts both, and a dedicated public mailing list is established.1258

Additional forms of interoperability. As discussed in the Extended Constraint-System Inter-1259

operability section above, even within the R1CS realm, there are numerous additional needs beyond1260

plain constraint systems and assignment representations. These affect security, functionality and1261

ease of development and reuse.1262

Additional relation styles. The R1CS-style constraint system has been given the most focus1263

in the Implementation Track discussions in the first workshop, leading to a file format and an API1264

specification suitable for it. It is an important goal to discuss other styles of constraint systems,1265

which are used by other ZK proof systems and their corresponding backends. This includes arith-1266

metic and Boolean circuits, variants thereof which can exploit regular/repeating elements, as well1267

as arithmetic constraint satisfaction problems.1268

Recursive composition. The technique of recursive composition of proofs, and its abstraction1269

as Proof-Carrying Data (PCD) [CT10][BCTV14], can improve the performance and functionality of1270

ZK proof systems in applications that deal with multi-stage computation or large amounts of data.1271

This introduces additional objects and corresponding interoperability considerations. For example,1272

PCD compliance predicates are constraint systems with additional conventions that determine their1273

semantics, and for interoperability these conventions require precise specification.1274

Benchmarks. We strive to create concrete reference benchmarks and reference platforms, to1275

enable cross-paper milliseconds comparisons and competitions.1276

We seek to create an open competition with well-specified evaluation criteria, to evaluate different1277

proof schemes in various well-defined scenarios.1278

36

https://groups.google.com/a/zkproof.org/forum/#!forum/interoperability

Section 2.8. Future goals

2.8.2 Frontends and DSLs1279

We would like to expand the discussion on the areas of domain-specific languages, specifically in1280

aspects of interoperability, correctness and efficiency (even enabling source-to-source optimisation).1281

The goal of Gadget Interoperability, in the Extended Constraint-System Interoperability section, is1282

also pertinent to frontends.1283

2.8.3 Verification of implementations1284

We would to discuss the following subjects in future workshops, to assist in guiding towards best1285

practices: formal verification, auditing, consistency tests, etc.1286

List of references: [BBBF18], [BCGG+14], [BCGTV13], [BCTV14], [CT10], [DFKP16], [Gro16],1287

[GGPR13b], [PHGR13].1288

37

Chapter 2. Implementation track

38

Chapter 3. Applications track1289

Original title: ZKProof Standards Applications Track Proceedings1290

Date: 1 August 2018 + subsequent revisions1291

This document is an ongoing work in progress.1292

Feedback and contributions are encouraged.1293

Track chairs: Daniel Benarroch, Ran Canetti and Andrew Miller1294

Track participants: Shashank Agrawal, Tony Arcieri, Vipin Bharathan, Josh Cincinnati, Joshua1295

Daniel, Anuj Das Gupta, Angelo De Caro, Michael Dixon, Maria Dubovitskaya, Nathan George,1296

Brett Hemenway Falk, Hugo Krawczyk, Jason Law, Anna Lysyanskaya, Zaki Manian, Eduardo1297

Morais, Neha Narula, Gavin Pacini, Jonathan Rouach, Kartheek Solipuram, Mayank Varia, Douglas1298

Wikstrom and Aviv Zohar1299

3.1 Introduction and Motivation1300

In this track we aim to overview existing techniques for building ZKP based systems, including1301

designing the protocols to meet the best-practice security requirements. One can distinguish between1302

high-level and low-level applications, where the former are the protocols designed for specific use-1303

cases and the latter are the underlying operations needed to define a ZK predicate. We call gadgets1304

the sub-circuits used to build the actual constraint system needed for a use-case. In some cases, a1305

gadget can be interpreted as a security requirement (e.g.: using the commitment verification gadget1306

is equivalent to ensuring the privacy of underlying data).1307

As we will see, the protocols can be abstracted and generalized to admit several use-cases; similarly,1308

there exist compilers that will generate the necessary gadgets from commonly used programming1309

languages. Creating the constraint systems is a fundamental part of the applications of ZKP, which1310

is the reason why there is a large variety of front-ends available.1311

In this document, we present three use-cases and a set of useful gadgets to be used within the pred-1312

icate of each of the three use-cases: identity framework, asset transfer and regulation compliance.1313

What this document is NOT about:1314

• A unique explanation of how to build ZKP applications1315

• An exhaustive list of the security requirements needed to build a ZKP system1316

• A comparison of front-end tools1317

• A show of preference for some use-cases or others1318

39

Eran Tromer

Missing coverage of recursive composition and Proof-Carrying Data as an important high-level tool (in existing prototypes and emerging real applications). There's a couple of brief mentions in the Implementation track, but those don't cover the usefulness in applications.

Chapter 3. Applications track

3.2 Notation and Definitions1319

See Security and Implementation tracks for definitions of predicate / prover / verifier / proof /1320

proving key, etc.1321

When designing ZK based applications, one needs to keep in mind which of the following three1322

models (that define the functionality of the ZKP) is needed:1323

1. Publicly verifiable as a requirement: a scheme / use-case where the proofs are transferable,1324

where such property is actually a requirement of the system. Only non-interactive ZK (NIZK)1325

can actually hold this property.1326

2. Designated verifier as a security feature: only the intended receiver of the proof can verify1327

it, making the proof non-transferable.This property can apply to both interactive and non-1328

interactive ZK.1329

3. The final model is one where neither of the above is needed: a ZK where there is no need to1330

be able to transfer but also no non-transferability requirement. Again, this model can apply1331

both in the interactive and non-interactive model.1332

For example, digital money based applications belong to the first model, compliance for regulation1333

lives in the second model (albeit depending on the use-case). In general, the credential system can1334

be in both of the last two models, given the extra constraints that would make it belong to the1335

second model.1336

3.3 Previous works1337

This section will include an overview of some of the works and applications existing in the zero-1338

knowledge world. We asked the Applications track participants to send us a description of their1339

work. We are now in the process of collecting the content.1340

3.4 Gadgets within predicates1341

Formalizing the security of these protocols is a very difficult task, especially since there is no1342

predetermined set of requirements, making it an ad-hoc process. Here we outline a set of initial1343

gadgets to be taken into account. See Table 3.1 for a simple list of gadgets — this list should be1344

expanded continuously and on a case by case basis. For each of the gadgets we write the following1345

representations, specifying what is the secret / witness, what is public / statement:1346

NP statements for non-technical people:1347

For the [public] chess board configurations A and B;
I know some [secret] sequence S of chess moves;
such that when starting from configuration A, and applying S, all moves are
legal and the final configuration is B.

1348

40

Luís B.

Consider revising this assertion, since if transferability is a design goal, it can still be obtained with an interactive protocol.

Luís B.

Unclear why. Seems reasonable to devise use-cases where one wants to perform a non-transferable ZKP about something that happened with digital money.

Luís B.

Suggestion: Consider formatting all explicitly-temporary text with another color.

Luís B.

Edited: Created one table containing only the gadget names and the description in English; then included one table for each gadget. This enables shorter tables, not breaking the page, and allows easier indexing of each gadget (e.g., now showing in the initial List of Tables).

Luís B.

Suggestion: This is a nice example that does not require whose instance does not require commitments or encryption — consider perhaps adding it to Table 1.1, depending on how the documentation wants to position ZKPs of language vs. ZKPoKs.

Luís B.

(Another chess-related example can be formed from the ``eight queens puzzle''. A party wants to prove that it knows a chess-table configuration with 8 queens, such that no queen is attacking any other.This is not a suggestion for inclusion in the text, but just a note to recall to check how the distinct definitions/notations of ZKP of membership vs. ZKP of knowledge cover different examples.

Section 3.5. Identity framework

1349

General form (Camenisch-Stadler): Zk { (wit): P(wit, statement) }1350

Example of ring signature: Zk { (sig): VerifySignature(P1, sig) or VerifySignature(P2,1351

sig) }1352

Table 3.1: List of gadgets1353

1354

Gadget name
English description of the initial gadget

(before adding ZKP)
Table with
examples

1355
G1 Commitment Envelope Table 3.2

1356
G2 Signatures <fill with description>

(inc. blind, ring, homom?)
Table 3.3

1357
G3 Encryption Envelope with a receiver stamp Table 3.4

1358
G4 Distributed decryption Envelope with a receiver stamp that requires

multiple people to open
Table 3.5

1359
G5 Random function Lottery machine Table 3.6

1360
G6 Set membership <fill with description> Table 3.7

1361
G7 Mix-net Ballot box Table 3.8

1362
G8 Generic circuits, TMs,

or RAM programs
General calculations Table 3.9

3.5 Identity framework1363

3.5.1 Overview1364

In this section we describe identity management solutions using zero knowledge proofs. The idea is1365

that some user has a set of attributes that will be attested to by an issuer or multiple issuers, such1366

that these attestations correspond to a validation of those attributes or a subset of them.1367

After attestation it is possible to use this information, hereby called a credential, to generate a claim1368

about those attributes. Namely, consider the case where Alice wants to show that she is over 181369

and lives in a country that belongs to the European Union. If two issuers were responsible for the1370

attestation of Alice‘s age and residence country, then we have that Alice could use zero knowledge1371

proofs in order to show that she possesses those attributes, for instance she can use zero knowledge1372

range proofs to show that her age is over 18, and zero knowledge set membership to prove that she1373

41

Luís B.

``Commitment'' is traditionally equated to a ``sealed envelop'' ... but a ``vault'' would have the additional feature of requiring a secret key for the opening phase. (Reflect on the best way to convey intuition to a non-cryptographer.) One can actually implement a commitment by sending a vault by mail ... and later the key

C
hapter

3.
A
pplications

track

Table 3.2: Commitment gadget (G1; envelope)1376

1377
Enhanced gadget (after
adding ZKP)

ZKP statement (in a
PoK notation)

Prover knows a witness
...

...for the public instance

...
...s.t. the following pred-
icate holds

Technical
notation
(API)

1378
I know the value hid-
den inside this envelope,
even though I cannot
change it

Knowledge of committed
value(s) (openings)

Opening(s) O = (v, r)
containing a value and
randomness

Committed value(s) C C = Comm(O),
component-wise if
there are multiple C,O

1379
I know that the value
hidden inside these two
envelopes are equal

Equality of committed
values

Opening O Committed values C1

and C2

C1 = Comm(O) and
C2 = Comm(O)

1380
I know that the values
hidden inside these two
envelopes are related in
a specific way

Relationships between
committed values –
logical, arithmetic, etc.

Witnesses O1 and O2 Committed values C1

and C2, relation R
C1 = Comm(O1),
C2 = Comm(O2), and
R(O1, O

′
2) = True

1381
The value inside this en-
velope is within a partic-
ular range

Range proofs Opening O Committed value C, in-
terval I

C = Comm(O) and O is
in the range I

Table 3.3: Signature gadget (G2; <fill with description>)1382

1383
Enhanced gadget (after
adding ZKP)

ZKP statement (in a
PoK notation)

Prover knows a witness
...

...for the public instance

...
...s.t. the following pred-
icate holds

Technical
notation
(API)

1384
<fill with description> Knowledge of a signa-

ture on a message
Signature σ Verification key V K,

message M
Verify(V K,m, σ) =
True

1385
propose: blind, ring,
group, homom.

Knowledge of a signa-
ture on a committed
value

Message M , signature σ Verification key V K,
committed value C

C = Comm(M) and
Verify(V K,m, σ) =
True

42

Luís B.

Would it be better to include these tables in landscape-oriented pages?Should each row have its own index, e.g., G1a, G1b, G1c, G1d?

Luís B.

Suggestion: Consider differentiating more explicitly the secret vs. public info. For example: ``Knowledge of a secret signature of a public message'' or ``Knowledge of a secret signature of a commonly known message''

Luís B.

To-do: Unclear in the original document if this row is to be within the signature gadget. I just assumed yes, as in blind signature, ring signature, ...

Luís B.

Suggestion: Consider differentiating more explicitly the secret vs. public info. For example: ``Knowledge of a secret signature on a publicized commitment of a known secret message [and knowledge of its opening]'' (maybe the suggestion fails by stretching the sentence too much, but the current statement seems somewhat dubious about what is secret.)

Luís B.

Suggestion: It appears that an opening O should also be included here. An alternative (more contrived) scenario is the prover only knowing a transferable NIZK that C is a correct commitment of M, and proving possessing such NIZK :-) ...

Section
3.5.

Identity
fram

ew
ork

Table 3.4: Encryption gadget (G3; envelope with a receiver stamp)1386

1387
Enhanced gadget (after
adding ZKP)

ZKP statement (in a
PoK notation)

Prover knows a witness
...

...for the public instance

...
...s.t. the following pred-
icate holds

Technical
notation
(API)

1388
<fill with description> Knowledge of a signa-

ture on a message
Signature σ Verification key V K,

message M
Verify(V K,m, σ) =
True

Table 3.5: Distributed-decryption gadget (G4; envelope with a receiver stamp that requires multiple people to open)1389

1390
Enhanced gadget (after
adding ZKP)

ZKP statement (in a
PoK notation)

Prover knows a witness
...

...for the public instance

...
...s.t. the following pred-
icate holds

Technical
notation
(API)

1391
The output plaintext(s)
correspond to the public
ciphertext(s).

Knowledge of the plain-
text

Secret shares of the de-
cryption key

Ciphertext(s) C and En-
cryption key PK

Dec(SK,C) = P ,
component-wise if ∃
multiple C

Table 3.6: Random-function gadget (G5; lottery machine)1392

1393
Enhanced gadget (after
adding ZKP)

ZKP statement (in a
PoK notation)

Prover knows a witness
...

...for the public instance

...
...s.t. the following pred-
icate holds

Technical
notation
(API)

1394
Verifiable random func-
tion (VRF)

VRF was computed cor-
rectly from a secret seed
and a public (or secret)
input

Secret seed W Input X, Output Y Y = V RF (W,X)

43

C
hapter

3.
A
pplications

track

Table 3.7: Set-membership gadget (G6; <fill with description>)1395

1396
Enhanced gadget (after
adding ZKP)

ZKP statement (in a
PoK notation)

Prover knows a witness
...

...for the public instance

...
...s.t. the following pred-
icate holds

Technical
notation
(API)

1397
Accumulator Set inclusion <fill with description> <fill with description> <fill with description>

1398
<fill with description> Set non-inclusion <fill with description> <fill with description> <fill with description>

Table 3.8: Mix-net gadget (G7; ballot box)1399

1400
Enhanced gadget
(after adding ZKP)

ZKP statement (in a PoK nota-
tion)

Prover knows a wit-
ness ...

...for the public instance

...
...s.t. the following pred-
icate holds

Technical
notation
(API)

1401
Shuffle The set of plaintexts in the in-

put and the output ciphertexts
respectively are identical.

Permutation π, De-
cryption key SK

Input ciphertext list C
and Output ciphertext
list C′

∀j,Dec(SK, π(Cj)) =
Dec(SK,C′

j)

1402
Shuffle and reveal The set of plaintexts in the input

ciphertexts is identical to the set
of plaintexts in the output.

Permutation π, De-
cryption key SK

Input ciphertext list C
and Output plaintext
list P

∀j,Dec(SK, π(Cj)) =
Pj

Table 3.9: Generic circuits, TMs, or RAM programs gadgets (G8; general calculations)1403

1404
Enhanced gadget (after
adding ZKP)

ZKP statement (in a PoK no-
tation)

Prover knows a
witness ...

...for the public instances.t. the following
predicate holds

Technical
notation
(API)

1405
There exists some secret
input that makes this
calculation correct

ZK proof of correctness of
circuit/Turing machine/RAM
program computation

Secret input w Program C (either a circuit, TM,
or RAM program), public input
x, output y

C(x,w) = y

1406
This calculation is cor-
rect, given that I already
know that some sub-
calculation is correct

ZK proof of verification +
postprocessing of another out-
put (Composition)

Secret input w Program C with subroutine C′,
public input x, output y, inter-
mediate value z = C′(x,w), zk
proof π that z = C′(x,w)

C(x,w) = y

44

Luís B.

Suggestion: Find a more concise name to identify the type of gadget

Section 3.5. Identity framework

lives in a country that belongs to the European Union. This proof can be presented to a Verifier1374

that must validate such proof to authorize Alice to use some service. Hence there are three parties1375

involved: (i) the credential holder; (ii) the credential issuer; (iii) and the verifier.1407

We are going to focus our description on a specific use case: accredited investors. In this scenario1408

the credential holder will be able to show that she is accredited without revealing more information1409

than necessary to prove such a claim.1410

3.5.2 Motivation for Identity and Zero Knowledge1411

Digital identity has been a problem of interest to both academics and industry practitioners since1412

the creation of the internet. Specifically, it is the problem of allowing an individual, a company,1413

or an asset to be identified online without having to generate a physical identification for it, such1414

as an ID card, a signed document, a license, etc. Digitizing Identity comes with some unique1415

risks, loss of privacy and consequent exposure to Identity theft, surveillance, social engineering and1416

other damaging efforts. Indeed, this is something that has been solved partially, with the help1417

of cryptographic tools to achieve moderate privacy (password encryption, public key certificates,1418

internet protocols like TLS and several others). Yet, these solutions are sometimes not enough1419

to meet the privacy needs to the users / identities online. Cryptographic zero knowledge proofs1420

can further enhance the ability to interact digitally and gain both privacy and the assurance of1421

legitimacy required for the correctness of a process.1422

The following is an overview of the generalized version of the identity scheme. We define the1423

terminology used for the data structures and the actors, elaborate on what features we include and1424

what are the privacy assurances that we look for.1425

3.5.3 Terminology / Definitions1426

In this protocol we use several different data structures to represent the information being transferred1427

or exchanged between the parties. We have tried to generalize the definitions as much as possible,1428

while adapting to the existing Identity standards and previous ZKP works.1429

1430

Attribute. The most fundamental information about a holder in the system (e.g.: age, nationality,1431

univ. Degree, pending debt, etc.). These are the properties that are factual and from which specific1432

authorizations can be derived.1433

(Confidential and Anonymous) Credential. The data structure that contains attribute(s)1434

about a holder in the system (e.g.: credit card statement, marital status, age, address, etc). Since1435

it contains private data, a credential is not shareable.1436

(Verifiable) Claim. A zero-knowledge predicate about the attributes in a credential (or many of1437

them). A claim must be done about an identity and should contain some form of logical statement1438

that is included in the constraint system defined by the zk-predicate.1439

Proof of Credential. The zero knowledge proof that is used to verify the claim attested by the1440

45

Luís B.

Add citation. Capitalized it.

Luís B.

Unclear why it ``must'' be about an identity.

Chapter 3. Applications track

credential. Given that the credential is kept confidential, the proof derived from it is presented as1441

a way to prove the claim in question.1442

1443

The following are the different parties present in the protocol:1444

Holder. The party whose attributes will be attested to. The holder holds the credentials that1445

contain his / her attributes and generates Zero Knowledge Proofs to prove some claim about these.1446

We say that the holder presents a proof of credential for some claim.1447

Issuer. The party that attests attributes of holders. We say that the issuer issues a credential to1448

the holder.1449

Verifier. The party that verifies some claim about a holder by verifying the zero knowledge proof1450

of credential to the claim.1451

1452

Remark: The main difference between this protocol and a non-ZK based Identity protocol is the1453

fact that in the latter, the holder presents the credentials themselves as the proof for the claim1454

/ authorization, whereas in this protocol, the holder presents a zero knowledge proof that was1455

computed from the credentials.1456

3.5.4 The Protocol Description1457

Functionality. There are many interesting features that we considered as part of the identity1458

protocol. There are four basic functionalities that we decided to include from the get go:1459

(1) third party anonymous and confidential attribute attestations through credential issuance1460

by the issuer;1461

(2) confidentially proving claims using zero knowledge proofs through the presentation of proof1462

of credential by the holder;1463

(3) verification of claims through zero knowledge proof verification by the verifier; and1464

(4) unlinkable credential revocation by the issuer.1465

There are further functionalities that we find interesting and worth exploring but that we did not1466

include in this version of the protocol. Some of these are credential transfer, authority delegation1467

and trace auditability. We explain more in detail what these are and explore ways they could be1468

instantiated.1469

Privacy requirements. One should aim for a high level of privacy for each of the actors in the1470

system, but without compromising the correctness of the protocol. We look at anonymity prop-1471

erties for each of the actors, confidentiality of their interactions and data exchanges, and at the1472

unlinkability of public data (in committed form). These usually can be instantiated as crypto-1473

graphic requirements such as commitment non-malleability, indistinguishability from random data,1474

unforgeability, accumulator soundness or as statements in zero-knowledge such as proving knowledge1475

of preimages, proving signature verification, etc.1476

46

Section 3.5. Identity framework

• Holder anonymity: the underlying physical identity of the holder must be hidden from the1477

general public, and if needed from the issuer and verifier too. For this we use pseudo-random1478

strings called identifiers, which are tied to a secret only known to the holder.1479

• Issuer anonymity: only the holder should know what issuer issued a specific credential.1480

• Anonymous credential: when a holder presents a credential, the verifier may not know who1481

issued the certificate. He / She may only know that the credential was issued by some approved1482

issuer.1483

• Holder untraceability: the holder identifiers and credentials can’t be used to track holders1484

through time.1485

• Confidentiality: no one but the holder and the issuer should know what the credential at-1486

tributes are.1487

• Identifier linkability: no one should be able to link two identifier unless there is a proof pre-1488

sented by the holder.1489

• Credential linkability: No one should be able to link two credentials from the publicly available1490

data. Mainly, no two issuers should be able to collude and link two credentials to one same1491

holder by using the holder’s digital identity.1492

In depth view. For the specific instantiation of the scheme, we examine in Table 3.10 the different1493

ways that these requirements can be achieved and what are the trade-offs to be done (e.g.: using1494

pairwise identifiers vs. one fixed public key; different revocation mechanisms; etc.) and elaborate1495

on the privacy and efficiency properties of each.1496

Gadgets. Each of the methods for instantiating the different functionalities use some of the fol-1497

lowing gadgets that have been described in the Gadgets section. There are three main parts to the1498

predicate of any proof.1499

1. The first is proving the veracity of the identity, in this case the holder, for which the following1500

gadgets can / should be used:1501

• Commitment for checking that the identity has been attested to correctly.1502

• PRF for proving the preimage of the identifier is known by the holder1503

• Equality of strings to prove that the new identifier has a connection to the previous1504

identifier used or to an approved identifier.1505

2. Then there is the part of the constraint system that deals with the legitimacy of the credentials,1506

the fact that it was correctly issued and was not revoked.1507

• Commitment for checking that the credential was correctly committed to.1508

• PRF for proving that the holder knows the credential information, which is the preimage1509

of the commitment .1510

• Equality of strings to prove that the credential was issued to an identifier connected1511

to the current identifier.1512

• Accumulators (Set membership / non-membership) to prove that the commit-1513

ment to the credential exists in some set (usually an accumulator), implying that it was1514

issued correctly and that it was not revoked.1515

3. Finally there is the logic needed to verify the rules / constraints imposed on the attributes1516

themselves. This part can be seen as a general gadget called “credentials”, which allows to1517

47

Luís B.

It is unclear the actual meaning of ``physical identity''. Why does it have to be physical for the anonymity concept to apply? Consider clarifying.

Luís B.

Edited: Added reference to the table.

C
hapter

3.
A
pplications

track

Table 3.10: Functionalities vs. privacy and robustness requirements1519

Functionality /
Problem

Instantiation Method Proof Details Privacy / Robustness Reference
1520

Holder identifica-
tion: how to iden-
tify a holder of cre-
dentials

Single identifier in the federated
realm: PRF based Public Key
(idPK) derived from the physical
ID of the entity and attested / on-
boarded by a federal authority

– The first credential an entity must
get is the onboarding credential
that attests to its identity on the
system

– Any proof of credential generated
by the holder must include a veri-
fication that the idPK was issued
an onboarding credential

– Physical identity is hidden yet
connected to the public key.

– Issuers can collude to link different
credentials by the same holder.

– An entity can have only one iden-
tity in the system

1521

Single identifier in the self-sovereign
realm: PRF based Public Key
(idPK) self derived by the entity.

– Any proof of credential must show
the holder knows the preimage of
the idPK and that the credential
was issued to the idPK in question

– Physical identity is hidden and
does not necessarily have to be
connected to the public key

– Issuers can collude to link different
credentials by the same holder

– An entity can have several identi-
ties and conveniently forget any of
them upon issuance of a “negative
credential”

1522

Multiple identifiers: Pairwise iden-
tification through identifiers. For
each new interaction the holder
generates a new identifier.

– Every time a holder needs to con-
nect to a previous issuer, it must
prove a connection of the new and
old identifiers in ZK

– Any proof of credential must show
the holder knows the secret of the
identifier that the credential was
issued to.

– Physical identity is hidden and
does not necessarily have to be
connected to the public key

– Issuers cannot collude to link the
credentials by the same holder

– An entity can have several identi-
ties and conveniently forget any of
them upon issuance of a “negative
credential”

1523

48

Luís B.

To-do: Consider breaking this into 4 tables, each with only 3 columns

Luís B.

What is the physical ID. Does it mean the person, some hardware (e.g., smartcard), ...?

Luís B.

Editorial: issuers can always collude; the question is what capabilities they can gain therefrom. Consider: "A set of colluding issuers cannot ..."

Luís B.

Consider clarifying the meaning of negative credential.

Section
3.5.

Identity
fram

ew
ork

Issuer identifica-
tion

Federated permissions: there is a
list of approved issuers that can be
updated by either a central author-
ity or a set of nodes

– To accept a credential one must
validate the signature against one
from the list. To maintain the
anonymity of the issuer, ring sig-
natures can be used

– For every proof of credential, a
holder must prove that the signa-
ture in its credential is of an issuer
in the approved list

– The verifier / public would not
know who the issuer of the cre-
dential is but would know it is ap-
proved.

1524

Free permissions: anyone can be-
come an issuer, which use identi-
fiers:

– Public identifier: type 1 is the is-
suer whose signature verification
key is publicly available

– Pair-wise identifiers: type 2 is the
issuer whose signature verification
key can be identified only pair-
wise with the holder / verifier

– The credentials issued by type 1
issuers can be used in proofs to
unrelated parties

– The credentials issued by type 2
issuers can only be used in proofs
to parties who know the issuer in
question.

– If ring signatures are used, the
type one issuer identifiers would
not imply that the identity of the
issuer can be linked to a creden-
tial, it would only mean that “Key
K_a belongs to company A”

– Otherwise, only the type two is-
suers would be anonymous and
unlinkable to credentials

1525

Credential Is-
suance

Blind signatures: the issuer signs on
a commitment of a self-attested cre-
dential after seeing a proof of cor-
rect attestation; a second kind of
proof would be needed in the sys-
tem

– The proof of correct attestation
must contain the structure, data
types, ranges and credential type
that the issuer allows

– In some cases, the proof must con-
tain verification of the attributes
themselves (e.g.: address is in
Florida, but not know the city)

∗ The proof of credential must not
be accepted if the signature of
the credential was not verified ei-
ther in zero-knowledge or as part
of some public verification

– Issuer’s signatures on credentials
add limited legitimacy: a holder
could add specific values / at-
tributes that are not real and the
issuer would not know

– An Issuer can collude with a
holder to produce blind signatures
without the issuer being blamed

1526

49

C
hapter

3.
A
pplications

track

In the clear signatures: the issuer
generates the attestation, signing
the commitment and sending the
credential in the clear to the holder

– The proof of credential must not
be accepted if the signature of the
credential was not verified either
in zero-knowledge or as part of
some public verification

– Issuer must be trusted, since she
can see the Holder’s data and
could share it with others

– The signature of the issuer can be
trusted and blame could be allo-
cated to the issuer

1527

Credential Revo-
cation

Positive accumulator revocation:
the issuer revokes the credential by
removing an element from an accu-
mulator

– The holder must prove set mem-
bership of a credential to prove it
was issued and was not revoked at
the same time

– The issuer can revoke a credential
by removing the element that rep-
resents it from the accumulator

– If the accumulator is maintained
by a central authority, then only
the authority can link the revo-
cation to the original issuance,
avoiding timing attacks by general
parties (join-revoke linkability)

– If the accumulator is maintained
through a public state, then there
can be linkability of revocation
with issuance since one can track
the added values and test its mem-
bership

[CDD17]
1528

Negative accumulator revocation:
the issuer revokes by adding an el-
ement to an accumulator

– The holder must prove set mem-
bership of a credential to prove it
was issued

– The issuer can revoke a credential
by adding to the negative accumu-
lator the revocation secret related
to the credential to be revoked

– The holder must prove set non-
membership of a revocation se-
cret associated to the credential in
question

– The verifier must use the most re-
cent version of the accumulator to
validate the claim

– Even when the accumulator is
maintained through a public
state, the revocation cannot be
linked to the issuance since the
two events are independent of
each other

1529

50

Section 3.5. Identity framework

verify the specific attributes embedded in a credential. Depending on the credential type, it1518

uses the following low level gadgets:1530

• Data Type used to check that the data in the credential is of the correct type1531

• Range Proofs used to check that the data in the credential is within some range1532

• Arithmetic Operations (field arithmetic, large integers, etc.) used for verifying1533

arithmetic operations were done correctly in the computation of the instance.1534

• Logical Operators (bigger than, equality, etc.) used for comparing some value in1535

the instance to the data in the credentials or some computation derived from it.1536

Security caveats1537

1. If the Issuer colludes with the Verifier, they could use the revocation mechanism to reveal1538

information about the Holder if there is real-time sharing of revocation information.1539

2. Furthermore, if the commitments to credentials and the revocation information can be tracked1540

publicly and the events are dependent of each other (e.g.: revocation by removing a commit-1541

ment), then there can be linkability between issuance and revocation.1542

3. In the case of self-attestation or collusion between the issuer and the holder, there is a much1543

lower assurance of data integrity. The inputs to the ZKP could be spoofed and then the proof1544

would not be sound.1545

4. The use of Blockchains create a reliance on a trusted oracle for external state. On the other1546

hand, the privacy guaranteed at blockchain-content level is orthogonal to network-level traffic1547

analysis.1548

3.5.5 A use-case example of credential aggregation1549

Use-case description. As a way to illustrate the above protocol, we present a specific use-case1550

and explicitly write the predicate of the proof. Mainly, there is an identity, Alice, who wants to1551

prove to some company, Bob Inc. that she is an accredited investor, under the SEC rules, in order1552

to acquire some company shares. Alice is the prover; the IRS, the AML entity and The Bank are1553

all issuers; and Bob Inc. is the verifier.1554

The different processes in the adaptation of the use-case are the following:1555

1. Three confidential credentials are issued to Alice which represent the rules that we apply on1556

an entity to be an accredited investor1:1557

(a) The IRS issues a tax credential, C0, that testifies to the claim “from 1/1/2017 until1558

1/1/2018, Alice, with identifier X0, ows 0$ to the IRS, with identifier Y ” and holds two1559

attributes: the net income of Alice, $income, and a bit b such that b = 1 if Alice has1560

paid her taxes.1561

1We assume that the SEC generates the constraint system for the accreditation rules as the circuit used to generate
the proving and verification keys. In the real scenario, here are the Federal Rules for accreditation.

51

https://www.ecfr.gov/cgi-bin/retrieveECFR?gp=&SID=8edfd12967d69c024485029d968ee737&r=SECTION&n=17y3.0.1.1.12.0.46.176

Chapter 3. Applications track

(b) The AML entity issues a KYC credential, C1, that testifies to claim T1:= “Alice, with1562

identifier X1, has NO relation to a (set of) blacklisted organization(s)”1563

(c) The Bank issues a net-worth credential, C2, that testifies to claim T2:= “Alice has a net1564

worth of V Alice”1565

2. Alice then proves to Bob Inc. that:1566

(a) “Alice’s identifier, XBob, is related to the identifiers, Xi for i = 0, 1, 2 that are connected1567

to the confidential credentials Ci”1568

(b) “I know the credentials, which are the preimage of some commitment, Ci, were issued by1569

the legitimate issuers”1570

(c) “The credentials, which are the preimage of some commitment, Ci, that exist in an1571

accumulator, U , satisfy the three statements Ti”1572

Instantiation details. Based on the different options laid out in the table above, the following1573

have been used:1574

• Holder identification: we instantiate the identifiers as a unique anonymous identifier, pub-1575

licKey1576

• Issuance identification: the identity of the issuers is known to all the participants, who can1577

publicly verify the signature on the credentials they issue2.1578

• Credential issuance: credentials are issued by publishing a signed commitment to a positive1579

accumulator and sharing the credential in the clear to Alice.1580

• Credential revocation: is done by removing the commitment of credential from a dynamic and1581

positive accumulator. Alice must prove membership of commitment to show her credential1582

was not revoked.1583

• Credential verification: Bob Inc. then verifies the cryptographic proof with the instance.1584

1585

Note that the transfer of company shares as well as the issuance of company shares is outside of the1586

scope of this use-case, but one could use the “Asset Transfer” section of this document to provide1587

that functionality.1588

On another note, the fact that the proving and verification keys were validated by the SEC is an1589

assurance to Bob Inc. that proof verification implies Alice is an accredited investor.1590

The Predicate1591

• Blue = publicly visible in protocol / statement1592

• Red = secret witness, potentially shared between parties when proving1593

Definitions / Notation:1594

Public state: Accumulator, for issuance and revocation, which includes all the commitments to the1595

credentials.1596

2With public signature verification keys that are hard coded into the circuit

52

Section 3.5. Identity framework

ConfCred = Commitment to Cred = { Revoke, certificateType, publicKey, Attribute(s) }1597

Where, again, the IRS, AML and Bank are authorities with well-known public keys. Alice’s pub-1598

licKey is her long term public key and one cannot create a new credential unless her long term ID1599

has been endorsed. The goal of the scheme is for the holder to create a fresh proof of confidential1600

aggregated credentials to the claim of accredited investor.1601

IRS issues a ConfCredIRS = Commitment(openIRS, revokeIRS, “IRS”, myID, $Income, b), sigIRS1602

AML issues ConfCredAML= Commitment(openAML, revokeAML, “AML”, myID, “OK”), sigAML1603

Holder generates a fresh public key freshCred to serve as an ephemeral blinded aggregate credential,1604

and a ZKP of the following:1605

ZkPoK{ (witness: myID, ConfCredIRS, ConfCredAML, sigIRS, sigAML, $Income, , mySig, openIRS,1606

openAML statement: freshCred, minIncomeAccredited) : Predicate:1607

- ConfCredIRS is a commitment to the IRS credential (openIRS, “IRS”, myID, $Income)1608

- ConfCredAML is the AML crdential to (openAML, “AML”, myID, “OK”)1609

- $Income >= minIncomeAccredited1610

- b = 1 = “myID paid full taxes”1611

- mySig is a signature on freshCred for myID1612

- ProveNonRevoke()1613

}1614

Present the credential to relying party: freshCred and zkp.1615

ProveNonRevoke(rhIRS, w_hrIRS, rhAML, w_hrAML, a_IRS1616

• revokeIRS: revocation handler from IRS. Can be embedded as an attribute in ConfCredtIRS1617

and is used to handle revocations.1618

• witrhIRS: accumulator witness of revokeIRS.1619

• revokeAML: revocation handler from AML. Can be embedded as an attribute in ConfCredtAML1620

and is used to handle revocations.1621

• witrhAML: accumulator witness of revokeAML.1622

• accIRS: accumulator for IRS.1623

• CommRevokeIRS: commitment to revokeIRS. The holder generates a new commitment for1624

each revocation to avoid linkability of proofs.1625

• accAML: accumulator for AML.1626

• CommRevokeAML: commitment to revokeAML. The holder generates a new commitment for1627

each revocation to avoid linkability of proofs.1628

ZkPoK{ (witness: rhIRS, openrhIRS, wrhIRS, rhAML, openrhAML, wrhAML|| statements: CIRS, aIRS,1629

CAML, aAML): Predicate:1630

- CIRS is valid commitment to (openrhIRS, rhIRS)1631

- rhIRS is part of accumulator aIRS, under witness wrhIRS1632

- rhIRS is an attribute in CertIRS1633

53

Luís B.

The term ``relying party'' requires prior definition.

Chapter 3. Applications track

- CAML is valid commitment to (openrhAML, rhAML)1634

- rhAML is part of accumulator aAML, under witness wrhAML1635

- rhAML is an attribute in CertAML1636

}1637

- myCred is unassociated with myID, with sigIRS, sigAML etc.1638

- Withstands partial compromise: even if IRS leaks myID and sigIRS, it cannot be used to1639

reveal the sigAML or associated myID with myCred1640

3.6 Asset Transfer1641

3.6.1 Privacy-preserving asset transfers and balance updates1642

In this section, we examine two use-cases involving using ZK Proofs (ZKPs) to facilitate private1643

asset-transfer for transferring fungible or non-fungible digital assets. These use-cases are motivated1644

by privacy-preserving cryptocurrencies, where users must prove that a transaction is valid, without1645

revealing the underlying details of the transaction. We explore two different frameworks, and outline1646

the technical details and proof systems necessary for each.1647

There are two dominant paradigms for tracking fungible digital assets, tracking ownership of assets1648

individually, and tracking account balances. The Bitcoin system introduced a form of asset-tracking1649

known as the UTXO model, where Unspent Transaction Outputs correspond roughly to single-use1650

“coins”. Ethereum, on the other hand, uses the balance model, and each account has an associated1651

balance, and transferring funds corresponds to decrementing the sender’s balance, and incrementing1652

the receiver’s balance accordingly.1653

These two different models have different privacy implications for users, and have different rules for1654

ensuring that a transaction is valid. Thus the requirements and architecture for building ZK proof1655

systems to facilitate privacy-preserving transactions are slightly different for each model, and we1656

explore each model separately below.1657

In its simplest form, the asset-tracking model can be used to track non-fungible assets. In this1658

scenario, a transaction is simply a transfer of ownership of the asset, and a transaction is valid if:1659

the sender is the current owner of the asset. In the balance model (for fungible assets), each account1660

has a balance, and a transaction decrements the sender’s account balance while simultaneously1661

incrementing the receivers. In a “balance” model, a transaction is valid if 1) The amount the1662

sender’s balance is decremented is equal to the amount the receiver’s balance is incremented, 2)1663

The sender’s balance remains non-negative 3) The transaction is signed using the sender’s key.1664

3.6.2 Zero-Knowledge Proofs in the asset-tracking model1665

In this section, we describe a simple ZK proof system for privacy-preserving transactions in the1666

asset-tracking (UTXO) model. The architecture we outline is essentially a simplification of the1667

54

Section 3.6. Asset Transfer

ZCash system. The primary simplification is that we assume that each asset (“coin”) is indivisible.1668

In other words, each asset has an owner, but there is no associated value, and a transaction is simply1669

a transfer of ownership of the asset.1670

Motivation: Allow stakeholders to transfer non-fungible assets, without revealing the ownership1671

of the assets publicly, while ensuring that assets are never created or destroyed.1672

Parties: There are three types of parties in this system: a Sender, a Receiver and a distributed1673

set of validators. The sender generates a transactions and a proof of validity. The (distributed)1674

validators act as verifiers and check the validity of the transaction. The receiver has no direct role,1675

although the sender must include the receiver’s public-key in the transaction.1676

What is being proved: At high level, the sender must prove three things to convince the validators1677

that a transaction is valid.1678

• The asset (or “note”) being transferred is owned by the sender. (Each asset is represented by1679

a unique string)1680

• The sender proves that they have the private spending keys of the input notes, giving them1681

the authority to send asset.1682

• The private spending keys of the input assets are cryptographically linked to a signature over1683

the whole transaction, in such a way that the transaction cannot be modified by a party who1684

did not know these private keys.1685

What information is needed by the verifier:1686

• The verifiers need access to the CRS used by the proof system1687

• The validators need access to the entire history of transactions (this includes all UTXOs,1688

commitments and nullifiers as described later). This history can be stored on a distributed1689

ledger (e.g. the Bitcoin blockchain)1690

Possible attacks:1691

• CRS compromise: If an attacker learns the private randomness used to generate the CRS, the1692

attacker can forge proofs in the underlying system1693

• Ledger attacks: validating a transaction requires reading the entire history of transactions,1694

and thus a verifier with an incorrect view of the transaction history may be convinced to1695

accept an incorrect transaction as valid.1696

• Re-identification attacks: The purpose of incorporating ZKPs into this system is to facilitate1697

transactions without revealing the identities of the sender and receiver. If anonymity is not1698

required, ZKPs can be avoided altogether, as in Bitcoin. Although this system hides the1699

sender and receiver of each transaction, the fact that a transaction occurred (and the time of1700

its occurrence) is publicly recorded, and thus may be used to re-identify individual users.1701

• IP-level attacks: by monitoring network traffic, an attacker could link transactions to specific1702

senders or receivers (each transaction requires communication between the sender and receiver)1703

or link public-keys (pseudonyms) to real-world identities1704

• Man-it-the-Middle attacks: An attacker could convince a sender to transfer an asset to an1705

“incorrect” public-key1706

Setup scenario: This system is essentially a simplified version of Zcash proof system, modified1707

55

Chapter 3. Applications track

for indivisible assets. Each asset is represented by a unique AssetID, and for simplicity we assume1708

that the entire set of assets has been distributed, and no assets are ever created or destroyed.1709

At any given time, the public state of the system consists of a collection of “asset notes”. These notes1710

are stored as leaves in a Merkle Tree, and each leaf represents a single indivisible asset represented1711

by unique assetID. In more detail, a “note” is a commitment to Nullifier, publicKey, assetID ,1712

indicating that publicKey “owns” assetID.1713

Main transaction type: Sending an asset from Current Owner A to New Owner B1714

Security goals:1715

• Only the current owner can transfer the asset1716

• Assets are never created or destroyed1717

Privacy goals: Ideally, the system should hide all information about the ownership and trans-1718

action patterns of the users. The system sketched below does not attain that such a high-level of1719

privacy, but instead achieves the following privacy-preserving features1720

• Transactions are publicly visible, i.e., anyone can see that a transaction occurred1721

• Transactions do not reveal which asset is being transferred1722

• Transactions do not reveal the identities (public-keys) of the sender or receiver.1723

– Limitation: Previous owner can tell when the asset is transferred. (Mitigation: after1724

receiving asset, send it to yourself)1725

Details of a transfer: Each transaction is intended to transfer ownership of an asset from a1726

Current Owner to a New Owner. In this section, we outline the proofs used to ensure the validity of1727

a transaction. Throughout this description, we use Blue to denote information that is globally and1728

publicly visible in the protocol / statement. We use Red to denote private information, e.g. a secret1729

witness held by the prover or information shared between the Current Owner and New Owner.1730

The Current Owner, A, has the following information1731

• A publicKey and corresponding secretKey1732

• An assetID corresponding to the asset being transferred1733

• A note in the MerkleTree corresponding to the asset1734

• Knows how to open the commitment (Nullifier, assetID, publicKey) publicKeyOut of the new1735

Owner B1736

The Current Owner, A, generates1737

• A new NullifierOut1738

• A new commitment commitment (NullifierOut, assetID, publicKey)1739

The Current owner, A, sends1740

56

Section 3.6. Asset Transfer

• Privately to B: NullifierOut, publicKeyOut, assetID1741

• Publicly to the blockchain: Nullifier, comOut, ZKProof (the structure of ZKProof is outlined1742

below)1743

If Nullifier does not exist in MerkleTree and and ZKProof validates, then comOut is added to the1744

merkleTree.1745

The structure of the Zero-Knowledge Proof: We use a modification of Camenisch-Stadler1746

notation to describe the describe the structure of the proof.1747

Public state: MerkleTree of Notes: Note = Commitment to { Nullifier, publicKey, assetID }1748

ZKProof = ZkPoKpp{1749

(witness: publicKey, publicKeyOut, merkleProof, NullifierOut, com, assetID, sig1750

statement: MerkleTree, Nullifier, comOut) :1751

predicate:1752

- com is included in MerkleTree (using merkleProof)1753

- com is a commitment to (Nullifier, publicKey, assetID)1754

- comOut is a commitment to (NullifierOut, publicKeyOut, assetID)1755

- sig is a signature on comOut for publicKey1756

}1757

3.6.3 Zero-Knowledge proofs in the balance model1758

In this section, we outline a simple system for privately transferring fungible assets, in the “balance1759

model.” This system is essentially a simplified version of zkLedger. The state of the system is an1760

(encrypted) account balance for each user. Each account balance is encrypted using an additively1761

homomorphic cryptosystem, under the account-holder’s key. A transaction decrements the sender’s1762

account balance, while incrementing the receiver’s account by a corresponding amount. If the1763

number of users is fixed, and known in advance, then a transaction can hide all information about1764

the sender and receiver by simultaneously updating all account balances. This provides a high-1765

degree of privacy, and is the approach taken by zkLedger. If the set of users is extremely large,1766

dynamically changing, or unknown to the sender, the sender must choose an “anonymity set” and1767

the transaction will reveal that it involved members of the anonymity set, but not the amount of the1768

transaction or which members of the set were involved. For simplicity of presentation, we assume1769

a model like zkLedger’s where the set of parties in the system is fixed, and known in advance, but1770

this assumption does not affect the details of the zero-knowledge proofs involved.1771

Motivation: Each entity maintains a private account balance, and a transaction decrements the1772

sender’s balance and increments the receiver’s balance by a corresponding amount. We assume that1773

every transaction updates every account balance, thus all information the origin, destination and1774

value of a transaction will be completely hidden. The only information revealed by the protocol is1775

the fact that a transaction occurred.1776

57

https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/69316/eth-3353-01.pdf

https://www.usenix.org/system/files/conference/nsdi18/nsdi18-narula.pdf

Chapter 3. Applications track

Parties:1777

• A set of n stakeholders who wish to transfer fungible assets anonymously1778

• The stakeholder who initiates the transaction is called the “prover” or the “sender”1779

• The receiver, or receivers do not have a distinguished role in a transaction1780

• A set of validators who maintain the (public) state of the system (e.g. using a blockchain or1781

other DLT).1782

What is being proved: The sender must convince the validators that a proposed transaction is1783

“valid” and the state of the system should be updated to reflect the new transaction. A transaction1784

consists of a set of n ciphertexts, (c1, . . . , cn), and where ci = Encpk(xi), and a transaction is valid if:1785

• The sum of all committed values is 0 (i.e., x1 + · · ·+ xn = 0)1786

• The sender owns the private key corresponding to all negative xi1787

• After the update, all account balances remain positive1788

What information is needed by the verifier:1789

• The verifiers need access to the CRS used by the proof system1790

• The verifiers need access to the current state of the system (i.e., the current vector of n1791

encrypted account balances). This state can be stored on a distributed ledger1792

Possible attacks:1793

• CRS compromise: If an attacker learns the private randomness used to generate the CRS, the1794

attacker can forge proofs in the underlying system1795

• Ledger attacks: validating a transaction requires knowing the current state of the system1796

(encrypted account balances), thus a validator with an incorrect view of the current state may1797

be convinced to accept an incorrect transaction as valid.1798

• Re-identification attacks: The purpose of incorporating ZKPs into this system is to facilitate1799

transactions without revealing the identities of the sender and receiver. If anonymity is not1800

required, ZKPs can be avoided altogether, as in Bitcoin. Although this system hides the1801

sender and receiver of each transaction, the fact that a transaction occurred (and the time of1802

its occurrence) is publicly recorded, and thus may be used to re-identify individual users.1803

• IP-level attacks: by monitoring network traffic, an attacker could link transactions to specific1804

senders or receivers (each transaction requires communication between the sender and the1805

validators) or link public-keys (pseudonyms) to real-world identities1806

• Man-it-the-Middle attacks: An attacker could convince a sender to transfer an asset to an1807

“incorrect” public-key. This is perhaps less of a concern in the situation where the user-base1808

is static, and all public-keys are known in advance.1809

Setup scenario: There are fixed number of users, n. User i has a known public-key, pki. Each1810

user has an account balance, maintained as an additively homomorphic encryption of their current1811

balance under their pk. Each transaction is a list of n encryptions, corresponding to the amount1812

each balance should be incremented or decremented by the transaction. To ensure money is never1813

created or destroyed, the plaintexts in an encrypted transaction must sum to 0. We assume that all1814

account balance are initialized to non-negative values.1815

58

Section 3.6. Asset Transfer

Main transaction type: Transferring funds from user i to user j1816

Security goals:1817

• An account balance can only be decremented by the owner of that account1818

• Account balances always remain non-negative1819

• The total amount of money in the system remains constant1820

Privacy goals: Ideally, the system should hide all information about the ownership and trans-1821

action patterns of the users. The system sketched below does not attain that such a high-level of1822

privacy, but instead achieves the following privacy-preserving features:1823

• Transactions are publicly visible, i.e., anyone can see that a transaction occurred1824

• Transactions do not reveal which asset is being transferred1825

• Transactions do not reveal the identities (public-keys) of the sender or receiver.1826

Limitation: transaction times are leaked1827

Details of a transfer: Each transaction is intended to update the current account balances in1828

the system. In this section, we outline the proofs used to ensure the validity of a transaction.1829

Throughout this description, we use Blue to denote information that is globally and publicly visible1830

in the protocol / statement. We use Red to denote private information, e.g. a secret witness held1831

by the prover.1832

The Sender, A, has the following information1833

• Public keys pk1, . . . , pkn1834

• secretKeyi corresponding to publicKeyi, and a values xj , to transfer to user j1835

• The sender’s own current account balance, yi1836

The Sender, A, generates1837

• a vector of ciphertexts, C1, . . . , Cn with Ct = Encpkt(xt)1838

The Sender, A, sends1839

• The vector of ciphertexts C1, . . . , Cn and ZKProof (described below) to the blockchain1840

ZK Circuit:1841

Public state: The current state of the system, i.e., a vector of (encrypted) account balances,1842

B1, . . . , Bn.1843

ZKProof = ZkPoKpp{ (witness: i, x1, . . . , xn, sk statement: C1, . . . , Cn) :1844

predicate:1845

- Ct is an encryption to xt under public key pkt for t = 1, . . . , n1846

59

Chapter 3. Applications track

- x1 + · · ·+ xn = 01847

- xt ≥ 0 OR sk corresponds to pkt for t = 1, . . . , n1848

- xt ≥ 0 OR current balance Bt encrypts a value no smaller than |xt| for t = 1, . . . , n1849

}1850

3.7 Regulation Compliance1851

3.7.1 Overview1852

An important pattern of applications in which zero-knowledge protocols are useful is within settings1853

in which a regulator wishes to monitor, or assess the risk related to some item managed by a regulated1854

party. One such example can be whether or not taxes are being paid correctly by an account holder,1855

or is a bank or some other financial entity solvent, or even stable.1856

The regulator in such cases is interested in learning “the bottom line”, which is typically derived1857

from some aggregate measure on more detailed underlying data, but does not necessarily need to1858

know all the details. For example, the answer to the question of “did the bank take on too many1859

loans?” Is eventually answered by a single bit (Yes/No) and can be answered without detailing every1860

single loan provided by the bank and revealing recipients, their income, and other related data.1861

Additional examples of such scenarios include:1862

– Checking that taxes have been properly paid by some company or person.1863

– Checking that a given loan is not too risky.1864

– Checking that data is retained by some record keeper (without revealing or transmitting the1865

data)1866

– Checking that an airplane has been properly maintained and is fit to fly1867

The use of Zero knowledge proofs can then allow the generation of a proof that demonstrate the1868

correctness of the aggregate result. The idea is to show something like the following statement:1869

There is a commitment (possibly on a blockchain) to records that show that the result is correct.1870

Trusting data fed into the computation: In order for a computation on hidden data to prove1871

valuable, the data that is fed in must be grounded as well. Otherwise, proving the correctness of the1872

computation would be meaningless. To make this point concrete: A credit score that was computed1873

from some hidden data can be correctly computed from some financial records, but when these1874

records are not exposed to the recipient of the proof, how can the recipient trust that they are not1875

fabricated?1876

Data that is used for proofs should then generally be committed to by parties that are separate from1877

the prover, and that are not likely to be colluding with the prover. To continue our example from1878

before: an individual can prove that she has a high credit score based on data commitments that1879

were produced by her previous lenders (one might wonder if we can indeed trust previous lenders1880

to accurately report in this manner, but this is in fact an assumption implicitly made in traditional1881

credit scoring as well).1882

60

Section 3.7. Regulation Compliance

The need to accumulate commitments regarding the operation and management of the processes1883

that are later audited using zero-knowledge often fits well together with blockchain systems, in1884

which commitments can be placed in an irreversible manner. Since commitments are hiding, such1885

publicly shared data does not breach privacy, but can be used to anchor trust in the veracity of the1886

data.1887

3.7.2 An example in depth: Proof of compliance for aircraft1888

An operator is flying an aircraft, and holds a log of maintenance operations on the aircraft. These1889

records are on different parts that might be produced by different companies. Maintenance and1890

flight records are attested to by engineers at various locations around the world (who we assume do1891

not collude with the operator).1892

The regulator wants to know that the aircraft is allowed to fly according to a certain set of rules.1893

(Think of the Volkswagen emissions cheating story.)1894

The problem: Today, the regulator looks at the records (or has an auditor do so) only once in a1895

while. We would like to move to a system where compliance is enforced in “real time”, however, this1896

reveals the real-time operation of the aircraft if done naively.1897

Why is zero-knowledge needed? We would like to prove that regulation is upheld, without revealing1898

the underlying operational data of the aircraft which is sensitive business operations. Regulators1899

themselves prefer not to hold the data (liability and risk from loss of records), prefer to have1900

companies self-regulate to the extent possible.1901

What is the threat model beyond the engineers/operator not colluding? What about the parts1902

manufacturers? Regulators? Is there an antagonistic relationship between the parts manufacturers?1903

This scheme will work on regulation that isn’t vague, such as aviation regulation. In some cases,1904

the rules are vague on purpose and leave room for interpretation.1905

3.7.3 Protocol high level1906

Parties:1907

• Operator / Party under regulation: performs operations that need to comply to a regulation.1908

For example an airline operator that operates aircrafts1909

• Risk bearer / Regulator : verifies that all regulated parties conform to the rules; updates the1910

rules when risks evolve. For example, the FAA regulates and enforces that all aircrafts to1911

be airworthy at all times. For an aircraft owner leasing their assets, they want to know that1912

operation and maintenance does not degrade their asset. Same for a bank that financed an1913

aircraft, where the aircraft is the collateral for the financing.1914

• Issuer / 3rd party attesting to data: Technicians having examined parts, flight controllers1915

attesting to plane arriving at various locations, embarked equipment providing signed readings1916

of sensors.1917

What is being proved:1918

61

Chapter 3. Applications track

• The operator proves to the regulator that the latest maintenance data indicates the aircraft1919

is airworthy1920

• The operator proves to the bank that the aircraft maintenance status means it is worth a1921

given value, according to a formula provided by that bank1922

What are the privacy requirements?1923

• An operator does not want to reveal the details of his operations and assets maintenance1924

status to competition1925

• The aircraft identity must be kept anonymous from all parties except the regulators and the1926

technicians.1927

• The technician’s identity must be kept anonymous from the regulator but if needed the oper-1928

ator can be asked to open the commitments for the regulator to validate the reports1929

The proof predicate: “The operator is the owner of the aircraft, and knows some signed data1930

attesting to the compliance with regulation rules: all the components are safe to fly”.1931

• The plane is made up of the components x1, . . . , xn and for each of the components:1932

– There is an legitimate attestation by an engineer who checked the component, and signed1933

it’s OK1934

– The latest attestation by a technician is recent: the timestamp of the check was done1935

before date D1936

What is the public / private data:1937

• Private:1938

– Identity of the operator1939

– Airplane record1940

– Examination report of the technicians1941

– Identity of the technician who signed the report1942

• Public:1943

– Commitment to airplane record1944

–1945

There is a record for the airplane that is committed to a public ledger, which includes miles flown.1946

There are records that attest to repairs / inspections by mechanics that are also committed to the1947

ledger. The decommitment is communicated to the operator. These records reference the identifier1948

of the plane.1949

Whenever the plane flies, the old plane record needs to be invalidated, and a new on committed1950

with extra mileage.1951

When a proof of “airworthiness” is required, the operator proves that for each part, the mileage1952

is below what requires replacement, or that an engineer replaced the part (pointing to a record1953

committed by a technician).1954

At the gadget level:1955

• The prover proves knowledge of a de-commitment of an airplane record (decommitment)1956

• The record is in the set of records on the blockchain (set membership)1957

• and knowledge of de-commitments for records for the parts (decommitment) that are also in1958

62

Section 3.8. Conclusions

the set of commitments on the ledger (set membership)1959

• The airplane record is not revoked (i.e., it is the most recent one), (requires set non-membership1960

for the set of published nullifiers)1961

• The id of the plane noted in the parts is the same as the id of the plane in the plane record.1962

(equality)1963

• The mileage of the plane is lower than the mileage needed to replace each part (range proofs)1964

OTHERWISE1965

• There exists a record (set membership)that says that the part was replaced by a technician1966

(validate signature of the technician (maybe use ring signature outside of ZK?))1967

3.8 Conclusions1968

– The asset transfer and regulation can be used in the identity framework in a way that the1969

additions complete the framework.1970

– External oracles such as blockchain used for storing reference to data commitments1971

List of references: FHE standards [ACCG+17], ZERO CASH [BCGG+14], Baby-zoe [zca18],1972

HAWK []; ZKledger [NVV18]. Other identity references: SovrinTM [Sov18], [BCDE+14], [CDD17],1973

[BCDL+17] (mentioned in Table 3.10), [CKS10].1974

63

Chapter 3. Applications track

64

Chapter 4. ZKProof Workshop at ZCon01975

Date: 2018/06/271976

Speakers: Daniel Benarroch, Eran Tromer, Muthu Venkitasubramaniam, Andrew Miller, Sean1977

Bowe, Nicola Greco, Izaak Meckler, Thibaut Schaeffer1978

Note takers: Arthur Prats, Vincent Cloutier and Daniel Benarroch1979

4.1 Session 1: Document Overview & Feedback1980

4.1.1 Intro — Eran1981

The goal is to standardize the works of different parties working with SNARKs. Need to define1982

common methodology, definition, – understand the trade off, to come up with a standard This1983

workshops are accompanied by documents. Zkproof.org to find those documents and it is an open1984

effort. Trying to get a mechanism to get feedback, this is also an open problem.1985

Want to help users specify what properties of SNARKs they want or need, so that clients can ask1986

practitioners possible things.1987

Libsnark comes from the academic world, but continued evolving outside academia. Contains all the1988

fancy features, like recursive composition and many gadgets. There is a dozen frontends wrapping1989

around libsnark. The gadget library is still competitive.1990

Snarky is a DSL written in OCaml. Written to be a functional replacement to libsnark, and to be1991

more integrated to avoid mistakes. Really inspired by the functional languages.1992

Making those librairies and others interoperable is a big goal of this workshop. Also making the1993

gadget reusable would be extremely useful.1994

4.1.2 Security — Muthu Venkitasubramaniam1995

- Simulation paradigm arised from original work1996

- Every cryptog application can be modeled under a simulation agent — can even reach ideal1997

functionality1998

- Provide a template for theoreticians or designers of systems to explain how zk and its properties1999

are achieved.2000

- Composability of cryptographic primitives implies need to use UC framework.2001

- Language, terminology and notation (prover, witness, instance, etc.)2002

- How to write statements2003

- Clearly describe the properties of the scheme2004

- Describe the setup of the ZK scheme2005

- Specify the construction based on combinatorial vs cryptographic parts (interesting open2006

65

Zkproof.org

Chapter 4. ZCon0

problem to2007

- What are the assumptions and proving that the security is met.2008

Specification:2009

- statements: bodeme or arithmetic circuit — you should clearly specify how you represent your2010

statement. Should we add ram program? The consensus is no as there are too much changes2011

- syntax / Alg: specify algorithms are in the proof: prove alg, verify algo, setup algo (sometimes2012

you can add trusted setup which can be included into setup) (setup: what kind of predicate,2013

parameters, what the is going in the prover, verifier)2014

- properties — those are local –– completeness sound and ZK2015

- setup: trusted (structure reference string and a random reference string) and on trusted (there2016

is more here) what are the ramification,2017

- construction: combinatorial part and cryptography part — there is security implication in2018

both side2019

- assumption (INISA in Europe)2020

(- efficiency that can potentially add here)2021

Security:2022

Want to provide a template to follow in order to explain how their zero knowledge is written in2023

their paper (I want quantum, I do not want. . . .) this is the motivation to start2024

4.1.3 Applications — Andrew Miller2025

The first draft of the document is online2026

Three case studies:2027

- Asset tracking and transfer2028

- Credential aggregation2029

- Regulation compliance of supply chain2030

For each of the use-cases / apps we want to have modularity of building schemes (gadgets and2031

requirements) and focus on the security2032

- Desired security requirements and privacy goals2033

- Introduce camenisch stadler notation for gadgets + zk functionality as black box2034

- None of the applications level description did not get into security parameter considera-2035

tion / does not specify the program2036

- The specs are good to give to an implementation team and have them implement under2037

the hood but not worry about the black boxes2038

- Describe the problem that the app solves2039

- Specify what is the public state, the witness, instance?2040

- Describe the predicate in english and technical terms2041

- Quests / Future work:2042

- Formal verification for snark applications2043

- Doc INCONSISTENCIES2044

- Abstraction of accumulator gadget vs specific merkle tree gadget2045

66

Luís B.

Something seemd to be missing here

https://zkproof.org/ZKProof%20Applications%20Draft%200.1.pdf

Section 4.1. Session 1: Document Overview & Feedback

Standardise on Camenisch-Stadler Notation2046

Zk {(wit) : p(stmt, wit) = 1}2047

wit is the secret witness, p is a predicate, sometimes also called statement2048

pp← Setup(I, p)2049

π ← Prove(pp, wit, stmt)2050

{0, 1} ← Verify(pp, π, stmt)2051

Example: zcash-like asset Public State: merkle tree of notes2052

Note: commitment {Nullifier, Pubkey, assetId}2053

ZK {(pubkey, pubkeyOut, merkleProof, NullifierOut, assetId, sig)}2054

The state transition is in the zkSNARK. It also checks that the transition was valid.2055

4.1.4 Implementation — Sean Bowe2056

- Middle boundary between apps and security2057

- Security → good way to test / benchmark proving systems2058

- In itself2059

- Apps → ensure can use zk as black box by defining APIs2060

- Two kinds of API2061

- Non-universal (specific to R1CS) - setup, parameter format, prover (takes in instance2062

and witness), verification2063

- Universal API for any general language / constraint system2064

- File formats such as field properties, constraints2065

- Benchmarks (what kind of explanations / descriptions need to be given when making2066

statements about the benchmark of their system. Also what other specifications) - de-2067

grees of freedom2068

- Here is a constraint system check it2069

- Prove a merkle tree with 128 bit security2070

- Trusting the tech by ensuring some aspects (CRS, etc.)2071

Specifications:2072

- File formats for the constraint systems and metadata.2073

- Field properties2074

- Constraints (2075

- Discussion of the layer of metadata like2076

- variable names2077

Benchmarks:2078

- security level2079

67

Luís B.

Original version had "P" in this expression, instead of "p", but hereafter there was only "p".

Chapter 4. ZCon0

- criteria on how they should grade their system2080

constraints system or merkle tree xxxx? (choose your hash function)2081

Correctness and trust:2082

- generic list: air gaps, option for contributing. . . .2083

Consensus in the group where if a cryptographic construct secures a lot of money, there is a lot2084

more trust over time. Non consensus on if having multiple bodies check a design would help. There2085

is nothing checking a theory against the real world.2086

Zcash is good use case for zero knowledge proof, because all the information comes from the2087

blockchain. In the real world, it’s much harder, because the oracle problem becomes worse. They2088

are problems that arise from the composition of secure primitive.2089

4.2 Session 2: Trust and Security2090

We want to focus on different topics concerning the trust of ZKP schemes and applications. These in-2091

clude, among others, the following list. We have generated some questions to guide the conversation.2092

Session moderator: Daniel Benarroch, Muthu Venkitasubramaniam2093

Poll the audience: why do you (not) trust Zero-Knowledge Proof based systems?2094

Guide the discussion to acknowledge all of the following, and try to map lay perspective and mist2095

- Cryptographic definitions (completeness, soundness, zero knowledge):2096

- How to explain the technical definitions to a non-technical person?2097

- How to convince someone that the ZKP scheme meets the definitions?2098

- How to explain and convince non-technical people that the security of the scheme relies2099

on some assumption (also how to argue about those assumptions?)2100

- Example of caveats:2101

- Knowledge vs Argument - the difference between “there is a witness” and “I know a2102

witness” can be subtle, need to have further assurance than the scheme itself2103

- Extractability of witness as part of the condition for catching a cheater2104

- Key generation / trapdoor prevention:2105

- Use of trusted setup for prevention of CRS subversion2106

- How do you trust that no trapdoor exists?2107

- Protocol caveats:2108

- Defining and proving high-level domain-specific security properties2109

- Common pitfall: provenance of data2110

- Protocol must assure through some public verification all issues regarding data orig-2111

ination.2112

- Must create trust that the inputs / private data are not spoofed or faked.2113

68

Section 4.3. Session 3: Front-ends

- Example: proving properties of biometric data without being assured of the prove-2114

nance2115

- Legal context2116

- How does the security definitions of the scheme delegate decisions / trust in the legal2117

or economic context2118

- Reliance of protocol on support of the legal system as a fallback mechanism (e.g.,2119

commitments as assurance of data provenance) and to recognize protocol outputs as2120

legally binding (e.g., if the robbers hows a ZKP proof that they hold my coins, who2121

legally owns them?)2122

- Trust in the provider of technology2123

- How does a company prove it knows what it is doing without giving out the code? Not2124

as simple as “use my software” since security requirements are hidden within the protocol2125

design.2126

- If we give the client the code, what can they do? Bounded rationality, limited expertise,2127

possibility of backdoors.2128

More Notes2129

- In general the question lies in a continuous spectrum between a very technical person who2130

would trust it by his / her own judgement by understanding the construction / security to2131

the other end where someone who does not have the ability to understand believes it is magic2132

and adopts it because technical people trust it2133

- There is a chain of trust from theoretician to implementer / provider of tech2134

- Outside the scheme, at protocol level2135

- Technology provider2136

- Legal environment / support2137

- Visualization and analogies (waldo, sudoku, etc. . .)2138

- User interface2139

- Protocol UC composability or ensuring caveats (inputs etc..)2140

- Bug bounties2141

- More applications and adoption incentivizes the consumer / public to trust2142

- Inside the scheme, ZKP2143

- Definitions2144

- Assumptions2145

- Peer review2146

- Key generation2147

4.3 Session 3: Front-ends2148

Panel participants: Sean Bowe, Izaak Meckler, Thibaut Schaeffer, Eran Tromer2149

Moderator: Nicola Greco2150

Questions2151

69

Chapter 4. ZCon0

- Can you share an example from your experience of an unexpected decision or change of mind2152

you had when designing your respective front end?2153

- Can you share examples of feedback you have received from users writing applications in2154

Snarky/libsnark/Bellman/ZoKrates? What is good or needs improvement?2155

- What level of abstraction makes sense for export/import interoperability between Frontend2156

languages?2157

- What would you recommend to newcomers who want to contribute, equal reading in PL and2158

in crypto? Or, what frontend approaches/paradigms do you think are promising but haven’t2159

yet been explored?2160

- There are many other frontend projects that seem somehow less well popularized, e.g. Buffet,2161

Geppetto. I’m not sure yet how to form a productive question out of this, but i would like to2162

acknowledge this even broader space. In a later iteration of the zkproof workshop, we plan to2163

systematically survey front-ends (but this panel is not expected to be a survey)2164

More Notes2165

- Many different libraries — have 4 / 5 different wrong ways to implement snark systems2166

- Setup list of mistakes / api flaws and design based on same gadget interface2167

- Merge three components for witnessing variables in libsnark2168

- Circuit adaptability by non-determinism and conditional programming2169

- Forced to import libsnark into more native wrapper2170

- Good that there are many different implementations2171

- Witness generation cannot separated from constraint generation since one can screw things2172

up2173

- Where do we see the implementations going? Converging or not?2174

- Gadgets vs other kind of structures / terminology2175

- Converge towards one API?2176

- Defining usability well2177

- Interoperability between many front-ends to back-ends.2178

70

References

References2179

[AHIV17] S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam. “Ligero: Lightweight2180

Sublinear Arguments Without a Trusted Setup”. In: Proceedings of the 2017 ACM2181

SIGSAC Conference on Computer and Communications Security. CCS ’17. ACM,2182

2017, pp. 2087–2104. doi: 10.1145/3133956.3134104.2183

[ACCG+17] D. Archer, L. Chen, J. H. Cheon, R. Gilad-Bachrach, R. A. Hallman, Z. Huang, X.2184

Jiang, R. Kumaresan, B. A. Malin, H. Sofia, Y. Song, and S. Wang. Applications2185

of Homomorphic Encryption. Tech. rep. 2017. http://homomorphicencryption.org/2186

white_papers/applications_homomorphic_encryption_white_paper.pdf.2187

[BCDL+17] F. Baldimtsi, J. Camenisch, M. Dubovitskaya, A. Lysyanskaya, L. Reyzin, K. Samelin,2188

and S. Yakoubov. “Accumulators with Applications to Anonymity-Preserving Re-2189

vocation”. In: 2017 IEEE European Symposium on Security and Privacy (EuroS P).2190

Apr. 2017, pp. 301–315. doi: 10.1109/EuroSP.2017.13. IACR Cryptology Eprint2191

Archive: ia.cr/2017/043.2192

[BCGG+14] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M.2193

Virza. “Zerocash: Decentralized Anonymous Payments from Bitcoin”. In: 2014 IEEE2194

Symposium on Security and Privacy. May 2014, pp. 459–474. doi: 10.1109/SP.2014.2195

36. http://zerocash-project.org/media/pdf/zerocash-extended-20140518.pdf.2196

[BCGTV13] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. “SNARKs for C:2197

Verifying Program Executions Succinctly and in Zero Knowledge”. In: Advances in2198

Cryptology – CRYPTO 2013. Ed. by R. Canetti and J. A. Garay. Springer Berlin2199

Heidelberg, 2013, pp. 90–108. doi: 10.1007/978-3-642-40084-1_6. IACR Cryptology2200

Eprint Archive: ia.cr/2013/507.2201

[BCS16] E. Ben-Sasson, A. Chiesa, and N. Spooner. “Interactive Oracle Proofs”. In: Theory2202

of Cryptography. Ed. by M. Hirt and A. Smith. Springer Berlin Heidelberg, 2016,2203

pp. 31–60. doi: 10.1007/978-3-662-53644-5_2. IACR Cryptology Eprint Archive:2204

ia.cr/2016/116.2205

[BCTV14] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. “Scalable Zero Knowledge via2206

Cycles of Elliptic Curves”. In: Advances in Cryptology – CRYPTO 2014. Ed. by2207

J. A. Garay and R. Gennaro. Springer Berlin Heidelberg, 2014, pp. 276–294. doi:2208

10.1007/978-3-662-44381-1_16. IACR Cryptology Eprint Archive: ia.cr/2014/595.2209

[BCDE+14] P. Bichsel, J. Camenisch, M. Dubovitskaya, R. R. Enderlein, S. Krenn, I. Krontiris,2210

A. Lehmann, G. Neven, J. D. Nielsen, C. Paquin, F.-S. Preiss, K. Rannenberg,2211

A. Sabouri, and M. Stausholm. D2.2 - Architecture for Attribute-based Credential2212

Technologies - Final Version. Ed. by A. Sabour. Aug. 2014. https://abc4trust.eu/2213

download/Deliverable_D2.2.pdf.2214

[BCIOP13] N. Bitansky, A. Chiesa, Y. Ishai, R. Ostrovsky, and O. Paneth. “Succinct Non-2215

interactive Arguments via Linear Interactive Proofs”. In: Theory of Cryptography.2216

Ed. by A. Sahai. Springer Berlin Heidelberg, 2013, pp. 315–333. doi: 10.1007/978-2217

3-642-36594-2_18. IACR Cryptology Eprint Archive: ia.cr/2012/718.2218

71

https://doi.org/10.1145/3133956.3134104

http://homomorphicencryption.org/white_papers/applications_homomorphic_encryption_white_paper.pdf

http://homomorphicencryption.org/white_papers/applications_homomorphic_encryption_white_paper.pdf

http://homomorphicencryption.org/white_papers/applications_homomorphic_encryption_white_paper.pdf

https://doi.org/10.1109/EuroSP.2017.13

https://eprint.iacr.org/2017/043

https://doi.org/10.1109/SP.2014.36

https://doi.org/10.1109/SP.2014.36

https://doi.org/10.1109/SP.2014.36

https://doi.org/10.1007/978-3-642-40084-1_6

https://eprint.iacr.org/2013/507

https://doi.org/10.1007/978-3-662-53644-5_2

https://eprint.iacr.org/2016/116

https://doi.org/10.1007/978-3-662-44381-1_16

https://eprint.iacr.org/2014/595

https://abc4trust.eu/download/Deliverable_D2.2.pdf

https://abc4trust.eu/download/Deliverable_D2.2.pdf

https://abc4trust.eu/download/Deliverable_D2.2.pdf

https://doi.org/10.1007/978-3-642-36594-2_18

https://doi.org/10.1007/978-3-642-36594-2_18

https://doi.org/10.1007/978-3-642-36594-2_18

https://eprint.iacr.org/2012/718

References

[BBBF18] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch. “Verifiable Delay Functions”. In:2219

Advances in Cryptology – CRYPTO 2018. Ed. by H. Shacham and A. Boldyreva.2220

Springer International Publishing, 2018, pp. 757–788. IACR Cryptology Eprint Archive:2221

ia.cr/2018/601.2222

[BISW17] D. Boneh, Y. Ishai, A. Sahai, and D. J. Wu. “Lattice-Based SNARGs and Their2223

Application to More Efficient Obfuscation”. In: Advances in Cryptology – EURO-2224

CRYPT 2017. Ed. by J.-S. Coron and J. B. Nielsen. Springer International Pub-2225

lishing, 2017, pp. 247–277. doi: 10.1007/978-3-319-56617-7_9. IACR Cryptology2226

Eprint Archive: ia.cr/2017/240.2227

[BCCGP16] J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit. “Efficient Zero-Knowledge2228

Arguments for Arithmetic Circuits in the Discrete Log Setting”. In: Advances in2229

Cryptology – EUROCRYPT 2016. Ed. by M. Fischlin and J.-S. Coron. Springer2230

Berlin Heidelberg, 2016, pp. 327–357. doi: 10.1007/978-3-662-49896-5_12. IACR2231

Cryptology Eprint Archive: ia.cr/2016/263.2232

[BCGGHJ17] J. Bootle, A. Cerulli, E. Ghadafi, J. Groth, M. Hajiabadi, and S. K. Jakobsen.2233

“Linear-Time Zero-Knowledge Proofs for Arithmetic Circuit Satisfiability”. In: Ad-2234

vances in Cryptology – ASIACRYPT 2017. Ed. by T. Takagi and T. Peyrin. Springer2235

International Publishing, 2017, pp. 336–365. doi: 10.1007/978-3-319-70700-6_12.2236

IACR Cryptology Eprint Archive: ia.cr/2017/872.2237

[BCGJM18] J. Bootle, A. Cerulli, J. Groth, S. Jakobsen, and M. Maller. “Arya: Nearly Linear-2238

Time Zero-Knowledge Proofs for Correct Program Execution”. In: Advances in Cryp-2239

tology – ASIACRYPT 2018. Ed. by T. Peyrin and S. Galbraith. Springer Interna-2240

tional Publishing, 2018, pp. 595–626. doi: 10.1007/978-3-030-03326-2_20.2241

[CDD17] J. Camenisch, M. Drijvers, and M. Dubovitskaya. “Practical UC-Secure Delegatable2242

Credentials with Attributes and Their Application to Blockchain”. In: Proceedings2243

of the 2017 ACM SIGSAC Conference on Computer and Communications Security.2244

CCS ’17. ACM, 2017, pp. 683–699. doi: 10.1145/3133956.3134025.2245

[CKS10] J. Camenisch, M. Kohlweiss, and C. Soriente. “Solving Revocation with Efficient2246

Update of Anonymous Credentials”. In: Security and Cryptography for Networks.2247

Ed. by J. A. Garay and R. De Prisco. Springer Berlin Heidelberg, 2010, pp. 454–2248

471. doi: 10.1007/978-3-642-15317-4_28.2249

[CT10] A. Chiesa and E. Tromer. “Proof-Carrying Data and Hearsay Arguments from Sig-2250

nature Cards”. In: Innovations in Computer Science — ICS 2010. Vol. 10. 2010,2251

pp. 310–331.2252

[CD98] R. Cramer and I. Damgård. “Zero-knowledge proofs for finite field arithmetic, or:2253

Can zero-knowledge be for free?” In: Advances in Cryptology — CRYPTO ’98. Ed.2254

by H. Krawczyk. Springer Berlin Heidelberg, 1998, pp. 424–441. doi: 10 . 1007 /2255

BFb0055745.2256

[DFKP16] A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, and B. Parno. “Cinderella: Turning2257

Shabby X.509 Certificates into Elegant Anonymous Credentials with the Magic of2258

Verifiable Computation”. In: 2016 IEEE Symposium on Security and Privacy (SP).2259

May 2016, pp. 235–254. doi: 10.1109/SP.2016.22.2260

72

https://eprint.iacr.org/2018/601

https://doi.org/10.1007/978-3-319-56617-7_9

https://eprint.iacr.org/2017/240

https://doi.org/10.1007/978-3-662-49896-5_12

https://eprint.iacr.org/2016/263

https://doi.org/10.1007/978-3-319-70700-6_12

https://eprint.iacr.org/2017/872

https://doi.org/10.1007/978-3-030-03326-2_20

https://doi.org/10.1145/3133956.3134025

https://doi.org/10.1007/978-3-642-15317-4_28

https://doi.org/10.1007/BFb0055745

https://doi.org/10.1007/BFb0055745

https://doi.org/10.1007/BFb0055745

https://doi.org/10.1109/SP.2016.22

References

[GGPR13a] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. “Quadratic Span Programs and2261

Succinct NIZKs without PCPs”. In: Advances in Cryptology – EUROCRYPT 2013.2262

Ed. by T. Johansson and P. Q. Nguyen. Springer Berlin Heidelberg, 2013, pp. 626–2263

645. doi: 10 . 1007/978 - 3 - 642 - 38348 - 9_37. IACR Cryptology Eprint Archive:2264

ia.cr/2012/215.2265

[GGPR13b] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. “Quadratic Span Programs and2266

Succinct NIZKs without PCPs”. In: Advances in Cryptology – EUROCRYPT 2013.2267

Ed. by T. Johansson and P. Q. Nguyen. Springer Berlin Heidelberg, 2013, pp. 626–2268

645. doi: 10 . 1007/978 - 3 - 642 - 38348 - 9_37. IACR Cryptology Eprint Archive:2269

ia.cr/2012/215.2270

[GMO16] I. Giacomelli, J. Madsen, and C. Orlandi. “ZKBoo: Faster Zero-Knowledge for2271

Boolean Circuits”. In: 25th USENIX Security Symposium (USENIX Security 16).2272

USENIX Association, 2016, pp. 1069–1083.2273

[GKR15] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. “Delegating Computation: Inter-2274

active Proofs for Muggles”. In: J. ACM 62.4 (Sept. 2015), 27:1–27:64. doi: 10.1145/2275

2699436.2276

[Gro10] J. Groth. “Short Non-interactive Zero-Knowledge Proofs”. In: Advances in Cryptol-2277

ogy - ASIACRYPT 2010. Ed. by M. Abe. Springer Berlin Heidelberg, 2010, pp. 341–2278

358. doi: 10.1007/978-3-642-17373-8_20.2279

[Gro16] J. Groth. “On the Size of Pairing-Based Non-interactive Arguments”. In: Advances2280

in Cryptology – EUROCRYPT 2016. Ed. by M. Fischlin and J.-S. Coron. Springer2281

Berlin Heidelberg, 2016, pp. 305–326. doi: 10.1007/978-3-662-49896-5_11. IACR2282

Cryptology Eprint Archive: ia.cr/2016/260.2283

[IKOS07] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. “Zero-knowledge from Secure2284

Multiparty Computation”. In: Proceedings of the Thirty-ninth Annual ACM Sym-2285

posium on Theory of Computing. STOC ’07. ACM, 2007, pp. 21–30. doi: 10.1145/2286

1250790.1250794.2287

[IMS12] Y. Ishai, M. Mahmoody, and A. Sahai. “On Efficient Zero-Knowledge PCPs”. In:2288

Theory of Cryptography. Ed. by R. Cramer. Springer Berlin Heidelberg, 2012, pp. 151–2289

168. doi: 10.1007/978-3-642-28914-9_9.2290

[KR08] Y. T. Kalai and R. Raz. “Interactive PCP”. In: Proceedings of the 35th Interna-2291

tional Colloquium on Automata, Languages and Programming, Part II. ICALP ’08.2292

Springer-Verlag, 2008, pp. 536–547. doi: 10.1007/978-3-540-70583-3_44.2293

[Kil95] J. Kilian. “Improved Efficient Arguments”. In: Advances in Cryptology — CRYPT0’2294

95. Ed. by D. Coppersmith. Springer Berlin Heidelberg, 1995, pp. 311–324. doi:2295

10.1007/3-540-44750-4_25.2296

[Mic00] S. Micali. “Computationally Sound Proofs”. In: SIAM J. Comput. 30.4 (Oct. 2000),2297

pp. 1253–1298. doi: 10.1137/S0097539795284959.2298

[NVV18] N. Narula, W. Vasquez, and M. Virza. “zkLedger: Privacy-Preserving Auditing for2299

Distributed Ledgers”. In: 15th USENIX Symposium on Networked Systems Design2300

and Implementation (NSDI 18). USENIX Association, 2018, pp. 65–80. IACR Cryp-2301

tology Eprint Archive: ia.cr/2018/241.2302

73

https://doi.org/10.1007/978-3-642-38348-9_37

https://eprint.iacr.org/2012/215

https://doi.org/10.1007/978-3-642-38348-9_37

https://eprint.iacr.org/2012/215

https://doi.org/10.1145/2699436

https://doi.org/10.1145/2699436

https://doi.org/10.1145/2699436

https://doi.org/10.1007/978-3-642-17373-8_20

https://doi.org/10.1007/978-3-662-49896-5_11

https://eprint.iacr.org/2016/260

https://doi.org/10.1145/1250790.1250794

https://doi.org/10.1145/1250790.1250794

https://doi.org/10.1145/1250790.1250794

https://doi.org/10.1007/978-3-642-28914-9_9

https://doi.org/10.1007/978-3-540-70583-3_44

https://doi.org/10.1007/3-540-44750-4_25

https://doi.org/10.1137/S0097539795284959

https://eprint.iacr.org/2018/241

References

[PHGR13] B. Parno, J. Howell, C. Gentry, and M. Raykova. “Pinocchio: Nearly Practical Ver-2303

ifiable Computation”. In: 2013 IEEE Symposium on Security and Privacy. May2304

2013, pp. 238–252. doi: 10.1109/SP.2013.47. IACR Cryptology Eprint Archive:2305

ia.cr/2013/279.2306

[RRR16] O. Reingold, G. N. Rothblum, and R. D. Rothblum. “Constant-round Interactive2307

Proofs for Delegating Computation”. In: Proceedings of the Forty-eighth Annual2308

ACM Symposium on Theory of Computing. STOC ’16. ACM, 2016, pp. 49–62. doi:2309

10.1145/2897518.2897652.2310

[Sov18] F. Sovrin. SovrinTM: A Protocol and Token for Self-Sovereign Identity and Decentral-2311

ized Trust. Jan. 2018. https:1514//sovrin.org/wp-content/uploads/2018/03/Sovrin-2312

Protocol-and-Token-White-Paper.pdf.2313

[WTSTW18] R. S. Wahby, I. Tzialla, A. Shelat, J. Thaler, and M. Walfish. “Doubly-efficient zk-2314

SNARKs without trusted setup”. In: 2018 IEEE Symposium on Security and Privacy2315

(SP). IEEE. 2018, pp. 926–943. IACR Cryptology Eprint Archive: ia.cr/2017/1132.2316

[zca18] zcash-hackworks/babyzoe. Baby ZoE - first step towards Zerocash over Ethereum.2317

2018. https://github.com/zcash-hackworks/babyzoe.2318

[ZGKPP17] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou. “vSQL:2319

Verifying Arbitrary SQL Queries over Dynamic Outsourced Databases”. In: 20172320

IEEE Symposium on Security and Privacy (SP). May 2017, pp. 863–880. doi: 10.2321

1109/SP.2017.43.2322

[ZGKPP18] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou. “vRAM:2323

Faster Verifiable RAM with Program-Independent Preprocessing”. In: 2018 IEEE2324

Symposium on Security and Privacy (SP). May 2018, pp. 908–925. doi: 10.1109/2325

SP.2018.00013.2326

74

https://doi.org/10.1109/SP.2013.47

https://eprint.iacr.org/2013/279

https://doi.org/10.1145/2897518.2897652

https: 1514 //sovrin.org/wp-content/uploads/2018/03/Sovrin-Protocol-and-Token-White-Paper.pdf

https: 1514 //sovrin.org/wp-content/uploads/2018/03/Sovrin-Protocol-and-Token-White-Paper.pdf

https: 1514 //sovrin.org/wp-content/uploads/2018/03/Sovrin-Protocol-and-Token-White-Paper.pdf

https://eprint.iacr.org/2017/1132

https://doi.org/10.1109/SP.2017.43

https://doi.org/10.1109/SP.2017.43

https://doi.org/10.1109/SP.2017.43

https://doi.org/10.1109/SP.2018.00013

https://doi.org/10.1109/SP.2018.00013

https://doi.org/10.1109/SP.2018.00013

Appendix A. Acronyms and glossary2327

A.1 Acronyms2328

• 3SAT: 3-satisfiability2329

• AND: AND gate (Boolean gate)2330

• API: application program interface2331

• CRH: collision-resistant hash (function)2332

• CRS: common-reference string2333

• DAG: directed acyclic graph2334

• DSL: domain specific languages2335

• ILC: ideal linear commitment2336

• IOP: interactive oracle proofs2337

• LIP: linear interactive proofs2338

• MA: Merlin–Arthur2339

• NIZK: non-interactive zero-knowledge2340

• NP: non-deterministic polynomial2341

• PCD: proof-carrying data2342

• PCP: probabilistic chackable proof2343

• PKI: public-key infrastructure2344

• QAP: quadratic arithmetic program2345

• R1CS: rank-1 constraint system2346

• RAM: random access memory2347

• RSA: Rivest–Shamir–Adleman2348

• SHA: secure hash algorithm2349

• SMPC: secure multiparty computation2350

• SNARG: succinct non-interactive argument2351

• SNARK: SNARG of knowledge2352

• SRS: structured reference string2353

• UC: universal composability or universally2354

composable2355

• URS: uniform random string2356

• XOR: eXclusive OR (Boolean gate)2357

• ZK: zero knowledge2358

• ZKP: zero-knowledge proof2359

• ...2360

A.2 Glossary2361

• NIZK: Non-Interactive Zero-Knowledge. Proof system, where the prover sends a single mes-2362

sage to the verifier, who then decides to accept or reject. Usually set in the common reference2363

string model, although it is also possible to have designated verifier NIZK proofs.2364

• SNARK: Succinct Non-interactive ARgument of Knowledge. A special type of non-interactive2365

proof system where the proof size is small and verification is fast.2366

• zk-SNARK: Zero-Knowledge SNARK.2367

• Instance: Public input that is known to both prover and verifier. Sometimes scientific2368

articles use instance and statement interchangeably, but we will distinguish between the two.2369

Notation: x.2370

• Witness: Private input to the prover. Others may or may not know something about the2371

witness. Notation: w.2372

• Application Inputs: Parts of the witness interpreted as inputs to an application, coming2373

from an external data source. The complete witness and the instance can be computed by the2374

prover from application inputs.2375

• Relation: Specification of relationship between instances and witness. A relation can be2376

viewed as a set of permissible pairs (instance, witness). Notation: R.2377

• Language: Set of instances that have a witness in R. Notation: L.2378

• Statement: Defined by instance and relation. Claims the instance has a witness in the2379

relation, which is either true or false. Notation: x ∈ L.2380

• Constraint System: a language for specifying relations.2381

75

Luís B.

Consider listing all technical terms and providing corresponding links to where each term is defined, exemplified, and used in the document

Luís B.

Edited: The first three entries were originally in the glossary of the Security track. Removed the CRS entry because it is superseded by another entry further below, originally in the glossary of the Implementations track.

Luís B.

Suggestion: Several of these definitions are given ipsis verbis elsewhere, e.g., in Section 1.2. Consider removing the redundancy, by simply providing the page (with a hyperlink) and section where the definition is given.

Appendix A. Acronyms and glossary

• Proof System: A zero-knowledge proof system is a specification of how a prover and verifier2382

can interact for the prover to convince the verifier that the statement is true. The proof2383

system must be complete, sound and zero-knowledge.2384

– Complete: If the statement is true and both prover and verifier follow the protocol; the2385

verifier will accept.2386

– Sound : If the statement is false, and the verifier follows the protocol; he will not be2387

convinced.2388

– Zero-knowledge: If the statement is true and the prover follows the protocol; the verifier2389

will not learn any confidential information from the interaction with the prover but the2390

fact the statement is true.2391

• Backend: an implementation of ZK proof’ system’s low-level cryptographic protocol.2392

• Frontend: means to express ZK statements in a convenient language and to prove such2393

statements in zero knowledge by compiling them into a low-level representation and invoking2394

a suitable ZK backend.2395

• Instance reduction: conversion of the instance in a high-level statement to an instance for2396

a low-level statement (suitable for consumption by the backend), by a frontend.2397

• Witness reduction: conversion of the witness to a high-level statement to witness for a2398

low-level statement (suitable for consumption by the backend), by a frontend.2399

• R1CS (Rank 1 Constraint Systems): an NP-complete language for specifying relations,2400

as system of bilinear constraints (i.e., a rank 1 quadratic constraint system), as defined in2401

[BCGTV13, Appendix E in extended version]. This is a more intuitive reformulation of QAP.2402

• QAP (Quadratic Arithmetic Program): An NP-complete language for specifying rela-2403

tions via a quadratic system in polynomials, defined in [PHGR13]. See R1CS for an equivalent2404

formulation.2405

Reference strings:2406

• CRS (Common Reference String): A string output by the NIZK’s Generator algorithm,2407

and available to both the prover and verifier. Consists of proving parameters and verification2408

parameters. May be a URS or an SRS.2409

• URS (Uniform Random String): A common reference string created by uniformly sam-2410

pling from some space, and in particular involving no secrets in its creation. (Also called2411

Common Random String in prior literature; we avoid this term due to the acronym clash with2412

Common Reference String).2413

• SRS (Structured Reference String): A common reference string created by sampling from2414

some complex distribution, often involving a sampling algorithm with internal randomness2415

that must not be revealed, since it would create a trapdoor that enables creation of convincing2416

proofs for false statements. The SRS may be non-universal (depend on the specific relation)2417

or universal (independent of the relation, i.e., serve for proving all of NP).2418

• PP (Prover Parameters) or Proving Key: The portion of the Common Reference String2419

that is used by the prover.2420

• VP (Verifier Parameters) or Verification Key: The portion of the Common Reference2421

String that is used by the verifier.2422

76

		Preliminaries

		ZKProof Community Reference (cover)

		Change Log

		External resources

		Acknowledgments

		Contents

		Table of Contents

		List of Tables

		List of Figures

		ZKProof charter

		ZKProof code of conduct

		1 Security track

		1.1 Introduction

		1.1.1 What is a zero-knowledge proof?

		Table 1.1

		1.1.2 Requirements for a ZK proof system specification

		1.2 Terminology

		1.3 Specifying Statements for ZK

		1.4 Syntax

		1.4.1 Prove

		1.4.2 Verify

		1.4.3 Setup

		1.5 Definition and Properties

		1.5.1 Completeness

		1.5.2 Soundness

		1.5.3 Proof of knowledge

		1.5.4 Zero knowledge

		1.5.5 Advanced security properties

		1.5.6 Examples of setup and trust

		1.6 Assumptions

		1.7 Efficiency

		1.8 Taxonomy of Constructions

		Table 1.2

		1.8.1 Proof Systems

		1.8.2 Compilers: Cryptographic

		1.8.3 Compilers: Information-theoretic

		List of references

		2 Implementation track

		2.1 Overview

		2.1.1 What this document is NOT about:

		2.2 Backends: Cryptographic System Implementations

		2.3 Frontends: Constraint-System Construction

		2.4 APIs and File Formats

		2.4.1 Generic API

		Figure 2.1

		Table 2.1

		2.4.2 R1CS File Format

		2.5 Benchmarks

		2.5.1 What metrics and components to measure

		2.5.2 How to run the benchmarks

		2.5.3 What benchmarks to run

		2.5.4 Security

		2.6 Correctness and Trust

		2.6.1 Considerations

		2.6.2 SRS Generation

		2.6.3 Contingency plans

		2.7 Extended Constraint-System Interoperability

		2.7.1 Statement and witness formats

		2.7.2 Statement semantics, variable representation & mapping

		2.7.3 Witness reduction

		2.7.4 Gadgets interoperability

		2.7.5 Procedural interoperability

		2.7.6 Proof interoperability

		2.7.7 Common reference strings

		2.8 Future goals

		2.8.1 Interoperability

		2.8.2 Frontends and DSLs

		2.8.3 Verification of implementations

		List of references

		3 Applications track

		3.1 Introduction and Motivation

		3.2 Notation and Definitions

		3.3 Previous works

		3.4 Gadgets within predicates

		Table 3.1

		3.5 Identity framework

		3.5.1 Overview

		Table 3.2

		Table 3.3

		Table 3.4

		Table 3.5

		Table 3.6

		Table 3.7

		Table 3.8

		Table 3.9

		3.5.2 Motivation for Identity and Zero Knowledge

		3.5.3 Terminology / Definitions

		3.5.4 The Protocol Description

		Table 3.10

		3.5.5 A use-case example of credential aggregation

		3.6 Asset Transfer

		3.6.1 Privacy-preserving asset transfers and balance updates

		3.6.2 Zero-Knowledge Proofs in the asset-tracking model

		3.6.3 Zero-Knowledge proofs in the balance model

		3.7 Regulation Compliance

		3.7.1 Overview

		3.7.2 An example in depth: Proof of compliance for aircraft

		3.7.3 Protocol high level

		3.8 Conclusions

		List of references

		4 ZCon0

		4.1 Session 1: Document Overview & Feedback

		4.1.1 Intro — Eran

		4.1.2 Security — Muthu Venkitasubramaniam

		4.1.3 Applications — Andrew Miller

		4.1.4 Implementation — Sean Bowe

		4.2 Session 2: Trust and Security

		4.3 Session 3: Front-ends

		References

		A Acronyms and glossary

		A.1 Acronyms

		A.2 Glossary

ZKProof Community Reference Version 0.1 (2019-04-11)

1. Generic comment

The version 0.2 of the ZKProof Community Reference (ZkpComRef) [ZKP19a] consolidates a draft
reference about zero-knowledge proof (ZKP) technology, congregating content contributed by the
community. It is useful in highlighting various aspects relevant to the development of secure,
practical and interoperable ZKP implementation and applications.

We find positive the emphasis placed on community engagement and openness, as expressed in the
charter, in the expectations on intellectual property, and in the outlined editorial process. The
process of congregating contributions from various stakeholders poses inherent challenges, but also
opportunities for promoting consensus and credibility, and for paving a basis for possible standards.

The document could benefit from a major text revision towards more clarity and rigor of concepts,
and a more precise description of options and concrete examples. It is important to keep aiming
at a wide audience, to better enable that readers from different backgrounds can easily navigate
the document, and find and understand the content pertinent to them. Ideally, various track-
record experts in ZK proofs would first provide voluntary detailed feedback, à la peer reviewing.
Additional contributors could then address the received comments, editing existing content and
complementing with identified missing elements, such as some descriptions, examples, references
and figures. It may be relevant that in a revision step the contributors be given the role to revise
the text of at least a full section, to promote a more uniform and careful style in several places.

We start with five high-level comments/suggestions:

G1. Editorial. Per chapter of the ZkpComRef-0.2, promote that two (or more) volunteer ZKP-
experts commit to carefully read the chapter and provide detailed public feedback
about editorial aspects and content. The resulting comments, referring to the line
numbers in the “Annotated Changes” version, can then be an additional basis for development
of content by other contributors and integration by the editors. See Section 5.

G2. Chapter Security. Some rewriting could make the material more accessible to readers that
have a general computer science background but no background on zero-knowledge. It would
be useful for the introduction to explain ZKPs and ZKPs of knowledge in separate paragraphs.
Examples to go with the explanations would be useful. See Section 1.

G3. Chapter Paradigms. The chapter presents a useful systematization / organization structure
of different paradigms. However, it does not yet provide an easy intuition of how and why
each paradigm works. It would be useful to provide intuitive explanations of how a technique
can actually be achieved within each paradigm, preferably with complementary diagrams (for
visual intuition), simple examples of instantiation, and relevant references. See Section 2.

G4. Chapter Implementations. The chapter is not entirely self contained, leaving the reader
to locate details on a few external web links. It would be useful to include a few examples of
backend and frontend options with perhaps some performance comparisons. See Section 3.

G5. Chapter Applications. Some application use-cases could be described more succinctly,
while still adding one diagram for a visual interpretation. Widening the variety of use-cases
may also enhance the motivation support for ZKPs. See Section 4.

Page 2 of 7

https://github.com/zkpstandard/zkreference/raw/master/changes-v0.2-from-v0.1.pdf

2. Development context

Initial comments. In reply to a request for feedback from ZKProof in early 2019, we elaborated
the “NIST comments on the initial ZKProof documentation” [PEC19a], dated April 6, 2019, with 22
comments (C1–C22) about the content of the initial documentation, and seven comments (D1–D7)
promoting the compilation of a community reference. These comments were presented during the
2nd ZKProof workshop [ZKP19b] and served as a basis for some of the subsequent contributions.

From version 0.1 to 02. After the 2nd ZKProof Workshop there was a call for contributions, in
response to which we produced the “NIST-PEC contributions to advance the draft ZKProof Com-
munity Reference from version 0.1 to 0.2” [PEC19b]. The initial version, dated September 10, 2019,
was followed by subsequent corrections. The document elaborated contributions on seven of the ini-
tial comments (C5, C7, C9, C11, C18, C19 and C22). Other ten of those initial comments (C1, C3,
D1–D7) were directly used as contributions integrated by the editors. External contributions also
addressed six other initial comments (C10, C12–C16). Various mentioned comments/contributions
were integrated in the ZkpComRef 0.2 (December 31, 2019). Table 1 enumerates the mentioned
initial comments that were addressed. Further contributions were possible by other contributors.

Table 1: Old comments [PEC19a] that have been resolved or partially addressed in ZkpComRef-0.2
Title Brief description
C1 Reference Document Created a consolidated reference document
C3 Scope of Creative Commons License Widened the license to cover the new reference
C5 Executive summary Created one
C7 Proofs of knowledge Explains PoK/PoM, but needs more formalization
C9 Transferability Now discussed in §1.6.6 and §2.2
C10 Circuits vs. R1CS There is now an intro description to R1CS
C11 Common vs. public More clear distinction in some points
C12 Motivation Improved intro of chapter Applications
C13 Gadgets The table of gadgets was improved
C14 Interactivity vs. transferability Now discussed in new chapter Interactivity
C15 Implicit scope of use-cases Some updates in the text
C16 References Added some references
C18 Computational security parameter Propose parameters for benchmarking
C18 Statistical security Explain the concept and propose parameters
C22 Intellectual property Added expectations about disclosure and licensing

New comments on version 0.2, towards version 03. This document updates a list of com-
ments, intending to serve as a basis for consideration of new contributions towards an improved
version (0.3?) of the ZkpComRef. Section 3 presents the list of comments — one set per each
chapter of the ZkpComRef, and then some additional editorial comments. Several comments are
new; others are updates from still-applicable previous comments.

Page 3 of 7

3. New and revised comments

3.1. On chapter 1 (Security)

The chapter contains the most relevant concepts before implementation. The chapter can benefit
from a re-write more considerate of a reader not yet acquainted with zero-knowledge. There should
be paragraphs that intend to explain at an introductory level, and different paragraphs that intend
to specify and/or explain at a detailed level. In general, consider revising which details can be left
outside of the introductory explanations, and should be included in subsequent paragraphs that
“specify” concepts in more detail.

F1.1. Clearer “Introduction” (Sec. 1.1). If a reader does not know about zero-knowledge
already, part of the current description is difficult to follow. Some examples:

• Secrecy from the point of view of the prover. The meaning of “secret” and
“secrecy” is fairly intuitive and usual when dealing with ZKPs (and cryptography in
general). It may however get confusing when explaining that the secret can already be
known to the verifier (is it then really a secret?). It is still important to make the point,
since the security properties should hold regardless of apriori knowledge by the verifier.
Consider improving the text wrt this.

• Common (known both by the prover and verifier). Version 0.2 of the ZkpComRef
revised the text to use the word “commonly” was a way to address a needed distinction
between what is “public” vs. what is “common” input (to both prover and verifier, e.g.,
as also used in the “C” of CRS). However, the the current use of “commonly known
by the prover and verifier” may be confused with “usually” or “typically”. Consider
replacing by (or explaining that it means) “known both by the prover and verifier”.

• ZKP vs. ZKPoK. After the initial explanation of zero-knowledge proofs, consider
making more explicit the distinction between ZKPoK and ZKP. The distinction is not
yet sufficiently clear throughout the document, so it is helpful to make it explicit from
the start. There is some challenge (worth tackling) in writing such distinction in a clear
way right in the intro. It could be considered while doing a careful revision of the text.

• Types of requirements. Section 1.1.2 proposes five “specification requirements” for
a ZK proof system. However, only the first three (syntax; setup; algorithms) seem to
be about actual specification of the proof system. Consider differentiating better those
and the other two (security definitions; security analysis), which may be requirements
for acceptability of use and/or of standardization, but are not about specifying the proof
system taking place between a prover and a verifier.

F1.2. Terminology example (Sec. 1.2). Section 1.2 introduces important terminology (relation
R, instance w, witness w, language L). It would be useful to start with an example of a zero-
knowledge proof statement (maybe graph colorability). Then say an instance x is “a graph”.
A witness w is “a three-coloring of the graph”. The language L is the set of three-colorable
graphs. The relation R is the set of pairs {(x,w) where (x is an instance) and (w is a witness,)
and (w is a three-coloring of x) }.

F1.3. Statement representations (Sec. 1.3).
Consider improving the explanations of statement representations. Same portions could have
simpler descriptions, visual examples, and a better justification of some restrictions applied
to the definitions. For example:

Page 4 of 7

• Types of circuits. In general a circuit may have several outputs, but the current
description states that it is only allowed to have one output. This may be reasonable
when in a clear context of verifying a Boolean predicate. But a reader may also be
inclined to think in terms of proving/verifying that the input of a circuit (e.g., for
multiplication) is equal to a certain output (e.g., composite number). Consider clarifying
/ justifying the context to make explicit why some restrictions may be being applied.
Consider also adding a figure of a circuit to highlight the mentioned components.

• R1CS. Version 0.2 of the ZCRef improved by explaining R1CS. R1CS is not such
a difficult concept, but Section 1.3.2 is somewhat difficult to read. Consider revising
towards a simpler description. Also, as mentioned for the explanation of circuits, consider
distinguishing a general definition of R1CS from particular choices/restrictions (e.g.,
large field) that are being tailored due to the subsequent steps towards succinct ZKPs.
Consider also adding a concrete simple example (preferable within a figure) of translation
between a Boolean circuit and an R1CS.

F1.4. Definition of Proof of knowledge. Consider completing Section 1.6.3, which currently
has a placeholder (“To improve. A future version of this document should include here ...”)
a formal description of “proof of knowledge” — to be in style similar to the game-based
definitions given for soundness and zero-knowledge.

F1.5. Concurrency [old C8]. Aspects of concurrency could be addressed more explicitly. Do
the prover and verifier know in which session they are interacting? In Section 1.6, consider
mentioning the need for session ids.

3.2. On chapter 2 (Paradigms)

F2.1. Clarify how a PCP works. While section 2.1 is focused a lot on PCPs (and that is okay),
it could provide a stronger intuition on how they can be achieved. It talks about certain types
of queries, but a reader outside of the area might not understand how is the proof string with
respect to which these queries will be answered, or why this approach enables proving the
validity of a proof. Some terms (e.g., MA) are used but not explained. Consider adding a
sub-section whose goal is to provide a sketch of how and why a PCP works. This can then
also serve as a running example enabling the reader to appreciate the enhancements that are
possible across various proof systems.

F2.2. Explain the several paradigms. The current Section 2.3 is a simple bulleted list identifying
several distinct paradigms of how to achieve ZKPs. It would be useful to have one subsection
(e.g., one page long) per paradigm, explaining a basis to understand the main techniques. It
could be specially useful to have one diagram per technique, to enable a visual intuition of
the protocol flow. Several relevant references could be added to each description.

3.3. On chapter 3 (Implementation)

F3.1. Backend choice NIZK-R1CS [old C17]. Consider providing more rationale for the choice
of NIZK and R1CS. Section 3.2 could benefit from a comparative overview of the various low-
level backend options for representing relations. Comparing the advantages and disadvantages
of interactive vs. non-interactive, and of several representations (e.g., including arithmetic
circuits), may open more room for future document contributions on the cases that have not
yet been explored in the existing documentation.

Page 5 of 7

F3.2. Backends and frontends. Sections 3.2 and 3.3 mention that numerous choices for back-
ends and frontends exist, including many implementations, but the given references are too
vague (previous chapter, external websites) and the reader is left too wonder about concrete
examples. It would be useful to name a few concrete examples, so that the document is better
self-contained and the reader does not need not rely on external links.

F3.3. APIs and file formats. Subsection 3.4 could benefit from being moved to its own section
and ensuring the contents are self-contained. The goal of designing a file format for encoding
R1CS and its assignments to promote interoperability is declared, and a preliminary design
is mentioned on line 1414, but the result is not given. Perhaps the goal of this section could
be modified to discuss API and file format considerations and a more general level.

F3.4. Side-channels [old C20]. Consider exemplifying conceivable cases where side-channels are
problematic.

F3.5. Validation [old C21]. Consider including some discussion on testing and validation of imple-
mentations.

3.4. On chapter 4 (Applications)

F4.1. References on existing applications. Section 4.3 “Previous works” is proposing to include
an overview of works and applications existing in the ZK world. This section needs expansion,
and a short description for each of the several references. The section may be organized into
a few subsections, each covering a type of application, and including an enumerated list
of references. Each reference could get a short description (no more than 5 lines of text).
Consider also moving to here the references mentioned in section 4.1. In contrast to the rest
of the document, this section is a place where it is specifically useful to let the reader learn
about existing work, with a corresponding citation that the interested reader can follow.

F4.2. Illustrative diagram per application. Chapter 4 discusses three examples at length,
across sections 4.5, 4.6 and 4.7. For each of the three applications, consider adding a page
sized figure, containing a diagram depicting the parties involved, the flow of information, and
the requirements about said flow. Each figure should serve to: enable an initial intuition of the
detailed explanation that follows; a come-back-to point for sanity check of the understanding
that the reader gets after reading through the section.

F4.3. Shorter structured descriptions. Some of the descriptions are too long, namely section
4.5, remaining abstract for the most part. For each application (a section 4.x), consider
handling separately two goals: (i) convey an idea of the capability brought by ZK to an ap-
plication (with goals, roles, requirements, etc.); (ii) give a more-simplified but more-concrete
example (possibly toy-example), showing the actual values, names, identifiers and relations,
and their flow in an application, instead of always keeping it abstract (some service, some
claim, some value, some commitment, ...). The current text conveys does attempt to show
concrete use-cases, but we think their descriptions is still too difficult to grasp by a reader
trying to gain a sense of how ZKPs can be used in practice.

F4.4. More use-cases. Without increasing the size of the chapter, consider which other application
use-cases could be relevant to include in order to widen the motivation for ZKPs and facilitate
the understanding of the ZKP capabilities. It may be beneficial to decrease the size of
description of some of the currently present applications, in favor of (within the same overall
space) describing a few more applications, overall covering a wider area of interest. With

Page 6 of 7

more use-cases described, it may also become clear what are the basic concepts and tools
(gadgets, etc.) that can form the basis to support a simple description of all (or most) use-
cases. One example of application, with major privacy considerations, that recently became
of obvious interest is contact tracing, where information exchanged in encounters, possibly
including coordinates (time and geolocation), may enable measurements useful to determine
a risk of infection during a pandemic. Within which time-frame are zero-knowledge proofs
for deployment as an essential tool at play in this kind of applications?

3.5. On transversal editorial aspects

The following comments pertain to editorial aspects (adjustments and indexing) or to new generic
content (e.g., recommendations and examples) that apply to all chapters.

F5.1. Recommendations [based on old C2]. To highlight suggested and essential practices, con-
sider enhancing the identifiability and organization (e.g., indexing) of “recommendations”
throughout the document. The reference document could then add a “List of Recommenda-
tions” similarly to how it contains a “List of Tables”. Note: the old comment also mentioned
“requirements”; now we are simplifying the suggestion to focus on the useful starting step of
identification of recommendations.

F5.2. Glossary [based on old C4]. Consider making the glossary more comprehensive, listing all
technical terms and providing corresponding links to where they are defined and/or used in
the document. Revise some of the definitions in the glossary for better consistency with those
given in the main text.

F5.3. Examples [old C6]. For better accessibility to a broad audience, consider enhancing the
document with indexed examples that illustrate concepts that may be unfamiliar to some
target audience. Each example can be highlighted with a caption (e.g., “Example 5: ZK
proof setup with a CRS with trapdoor”), an explanation (possibly an illustration) within a
boxed environment, and a footnote identifying the included concepts (e.g., “setup, trapdoor,
CRS, prover and verifier”).

F5.4. References [based on old C16]. While bearing in mind that the ZkpComRef is not positioned
as a survey of all prior work on ZKPs, consider adding supporting bibliographic references in
numerous places where the text mentions specific prior results, definitions, claims, etc. This
should aim at being helpful to the reader that may want to fact-check and do further reading,
as well as to ensure proper attribution.

References

[PEC19a] L.B., R.P., A.R. NIST comments on the initial ZKProof documentation. Apr. 2019.
[PEC19b] L.B., R.P., A.R. NIST-PEC contributions to advance the draft ZKProof Community

Reference from version 0.1 to 0.2. Sept. 2019. Revised on Oct. 2019.
[ZKP19a] ZKProof. ZKproof Community Reference. Version 0.2 (Draft). Ed. by D. Benarroch,

L. T. A. N. Brandão, and E. Tromer. Pub. by zkproof.org, Dec. 2019. Check latest
version at https://github.com/zkpstandard/zkreference/.

[ZKP19b] ZKProof. 2nd ZKProof Workshop. zkproof.org, Apr. 2019. Berkeley, USA.

Page 7 of 7

	NIST-PEC comments on the ZkpComRef 0.2
	1 Generic comment
	2 Development context
	3 New and revised comments
	3.1 On chapter 1 (Security)
	F1.1. Clearer ``Introduction'' (Sec. 1.1)
	F1.2. Terminology example (Sec. 1.2)
	F1.3. Statement representations (Sec. 1.3)
	F1.4. Definition of Proof of knowledge
	F1.5. Concurrency [old C8]

	3.2 On chapter 2 (Paradigms)
	F2.1. Clarify how a PCP works
	F2.2. Explain the several paradigms

	3.3 On chapter 3 (Implementation)
	F3.1. Backend choice NIZK-R1CS [old C17]
	F3.2. Backends and frontends
	F3.3. APIs and file formats
	F3.4. Side-channels [old C20]
	F3.5. Validation [old C21]

	3.4 On chapter 4 (Applications)
	F4.1. References on existing applications
	F4.2. Illustrative diagram per application
	F4.3. Shorter structured descriptions
	F4.4. More use-cases

	3.5 On transversal editorial aspects
	F5.1. Recommendations [based on old C2]
	F5.2. Glossary [based on old C4]
	F5.3. Examples [old C6]
	F5.4. References [based on old C16]

		2020-04-17T19:06:55-0400
	Gaithersburg
	Timestamping
	Timestamping

