
Elaine Shi (CMU)
Joint work with Aqeel, Chandrasekaran, and Maggs

To appear in CRYPTO’21

PIR with Nearly Optimal Online
Time and Bandwidth

DNS

 minecraft.com: 1.2.3.4
 google.com: 5.6.7.8

… …
minecraft.com

1.2.3.4

http://www.google.com
http://www.yahoo.com
http://www.google.com

“I want DB[x]” ...DB
1 2 n

Problem Definition

“I want DB[x]” ...DB
1 2 n

Problem Definition

PIR with 2 non-colluding servers

“I want DB[x]”

Classical PIR
(no preprocessing)

Linear-time

 -BW

Classical PIR
(no preprocessing)

Linear-time

Preprocessing PIR

 -BW

(one-time preprocessing,
unbounded queries)

Classical PIR
(no preprocessing)

Linear-time

Preprocessing PIR
(one-time preprocessing,

unbounded queries)

 -time

[CK, Eurocrypt’19 best student paper]
Assume: client storage, OWF

 -BW -BW

Classical PIR
(no preprocessing)

Linear-time

Preprocessing PIR
(one-time preprocessing,

The best of both worlds?

 -BW

 -time

 -BW

[CK, Eurocrypt’19 best student paper]
Assume: client storage, OWF

Classical PIR
(no preprocessing)

Preprocessing PIR
(one-time preprocessing,

Our result: 2-server preprocessing PIR

 -BW

 -time

Assume: Hardness of LWE
Assume: client storage

Assume: hardness of LWE

Open question:
A truly practical PIR scheme ?

Inefficient strawman

Privately Puncturable
Pseudorandom Sets

Our scheme

Inspired by [CK19]

Preprocessing phase

Samples a set:
include each index w.p.

Samples a set:
include each index w.p.

S1: 1, 3, 5, 16, 18

S1: 1, 3, 5, 16, 18
S2: 3, 6, 13, 19, 33

 : 2, 8, 11, 22, 31
...

S1

S1: 1, 3, 5, 16, 18

S1: 1, 3, 5, 16, 18
S2: 3, 6, 13, 19, 33

 : 2, 8, 11, 22, 31
...

1

...DB

parity(S1)

S1: 1, 3, 5, 16, 18
S2: 3, 6, 13, 19, 33

 : 2, 5, 6, 7, 8, 10
...

S

1
0

0

S1: 1, 3, 5, 16, 18
S2: 3, 6, 13, 19, 33

 : 2, 5, 6, 7, 8, 10
...

S

1
0

0

Hint

S1: 1, 3, 5, 16, 18
S2: 3, 6, 13, 19, 33

 : 2, 5, 6, 7, 8, 10
...

S

1
0

0

This requires ~O(n)client space!

S1: 1, 3, 5, 16, 18
S2: 3, 6, 13, 19, 33

 : 2, 5, 6, 7, 8, 10
...

S

1
0

0

Online phase: want

S1: 1, 3, 5, 16, 18
S2: 3, 6, 13, 19, 33

 : 2, 5, 6, 7, 8, 10
...

S

1
0

0

Online phase: want

S1: 1, 3, 5, 16, 18
S2: 3, 6, 13, 19, 33 0

Online phase: want

S1: 1, 3, 5, 16, 18
S2: 3, 6, 13, 19, 33 0

S2’ = S2 \

Online phase: want

Naive approach
parity(S2’)

S1: 1, 3, 5, 16, 18
S2: 3, 6, 13, 19, 33 0

S2’ = S2 \

Online phase: want

This leaks information

parity(S2’)

S1: 1, 3, 5, 16, 18
S2: 3, 6, 13, 19, 33 0

S2’ = S2 | resample 6

Online phase: want

S1: 1, 3, 5, 16, 18
S2: 3, 6, 13, 19, 33 0

S2’ = S2 | resample 6parity(S2’)
1

Online phase: want

0

parity(S2’)

S1: 1, 3, 5, 16, 18
S2: 3, 6, 13, 19, 33 0

1

parity(S2)

1

Online phase: want

0

parity(S2’)

S1: 1, 3, 5, 16, 18
S2: 3, 6, 13, 19, 33 0

1

parity(S2)

1

Correct if (S2’ = S2 | resample 6) removes 6
This happens w.h.p.

0

parity(S2’)

S1: 1, 3, 5, 16, 18
S2: 3, 6, 13, 19, 33 0

1

parity(S2)

1

k-fold repetition amplifies correctness

S1: 1, 3, 5, 16, 18
S2: 3, 6, 13, 19, 33 0

Online: refresh

S1: 1, 3, 5, 16, 18
S2: 3, 6, 13, 19, 33 0

Online: refresh

 S: 5, 6, 11, 16, 32
S’ = S | resample 6

 client space
online BW

 online time

Recap

 client space
online BW

 online time

What we want

Inefficient strawman

Privately Puncturable
Pseudorandom Sets

Our scheme

S1: 1, 3, 5, 16, 18
S2: 3, 6, 13, 19, 33

 : 2, 8, 11, 22, 31
...

K1

S1: 1, 3, 5, 16, 18
Compressed to K1

Preprocessing

S1: 1, 3, 5, 16, 18
S2: 3, 6, 13, 19, 33

 : 2, 8, 11, 22, 31
...

1

...DB

parity(S1)
S1 = Set(K1)

Compressed to K1

K1:
K2:

 :
...

K

1
0

0

Online phase: want

K1:
K2:

 :
...

K

1
0

0

Online phase: want

Find i s.t. K1:
K2:

 :
...

K

1
0

0

Online phase: want

Find i s.t.

= Puncture (,)

K1:
K2:

 :
...

K

1
0

0

Online phase: want

K1:
K2:

 :
...

K

1
0

0

Find i s.t.

= Puncture (,)

Online phase: want

K1:
K2:

 :
...

K

1
0

0

= Puncture (,)

Online phase: want

K1:
K2:

 :
...

K

1
0

0

= Puncture (,)
Parity()

Desiderata: Puncturable Pseudorandom Set

Sample a key K

 Set(K) enumerates the set

Puncture(K, x) gives a key that
resamples whether x is in the set

Desiderata: Puncturable Pseudorandom Set

 Punctured key hide punctured point

sees punctured key

Desiderata: Puncturable Pseudorandom Set

 Punctured key hide punctured point

Fast membership test :
 Find i s.t.

Desiderata: Puncturable Pseudorandom Set

 Punctured key hide punctured point

Fast membership test :

Fast set enumeration :
enumerates set with
punctured key

Desiderata: Puncturable Pseudorandom Set

 Punctured key hide punctured point

Fast membership test :

Fast set enumeration :

Strawman using Privately Puncturable PRF

 Ordinary PRF

Privately Puncturable PRF

[BKM17,CC17,BTVW17]

Privately Puncturable PRF

Punctured key hides punctured point ds

 pseudo-random

[BKM17,CC17,BTVW17]

Privately Puncturable PRF: known from LWE

Punctured key hides punctured point ds

 pseudo-random

[BKM17,CC17,BTVW17]

Strawman Puncturable Pseudorandom Set

is included iff
has trailing 0s

Strawman Puncturable Pseudorandom Set

is included iff
has trailing 0s

punctures

Would this work?

is included iff
has trailing 0s

punctures

Would this work?

is included iff
has trailing 0s

punctures

Set enumeration takes O(n) time!

Other strawman attempts

1
2...

Set

Slow membership test!

Inefficient strawman

Privately Puncturable
Pseudorandom Sets

Our scheme

Key Insight
Sample the set with a carefully crafted
distribution

Fast membership test
Fast set enumeration
“Breaks” puncturing “just a little”

x = 38

x =
001010

x =
001010000

2 loglog n

H(010) 1

x =
001010000

H(01010) 1
H(1010) 1
H(010) 1

x =
001010000

H(001010) 1
H(0001010) 1
H(00001010) 1

x =
001010

H(1010) 1
H(010) 1

000

H(00001010) 1
... ...

To puncture a point x = 00001010:
Puncture all relevant suffixes from the PRF key

x =
001010

H(1010) 1
H(010) 1

000

H(00001010) 1
... ...

Set size

Membership test

Set enumeration

x =
001010

H(1010) 1
H(010) 1

000

H(00001010) 1
... ...

Set Enumeration

010 110
 H(010) = 1 H(110) = 1

Set Enumeration

010 110

0010 1010 0110 1110

H(0010) 1
H(1010) 1

H(0110) 1
H(1110) 1

Set Enumeration

010 110

0010 0110 1110

010 110

0010 0110 1110

00010 10010 00110 11110

Set Enumeration

Each level has size in this tree

010 110

0010 0110 1110

00010 10010 00110 11110

Set enumeration time:

x included y more likely included

x = 00001 010
y = 00 1 1 1 010

Puncturing x removes y with small prob!

x = 00001 010
y = 00 1 1 1 010

x included y more likely included

Summary: Our PIR scheme

Key idea: a new puncturable PR Set

Conceptually very simple construction

Proofs are non-trivial

Towards practicality: need a concretely
efficient Privately puncturable PRF

See our paper for:

Detailed proofs

Correctness proof is actually tricky!

Trade off client space and online time

https://eprint.iacr.org/2020/1592

Open question:
A truly practical PIR scheme ?

Thank you !
 runting@cs.cmu.edu

