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The best of both worlds?

           -BW

           -time 

           -BW

[CK, Eurocrypt’19 best student paper]
Assume:              client storage, OWF



Classical PIR 
(no preprocessing)

Preprocessing PIR
(one-time preprocessing, 

Our result: 2-server preprocessing PIR 
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Assume: Hardness of LWE
Assume:              client storage

Assume: hardness of LWE



Open question:
A truly practical PIR scheme ?



Inefficient strawman

Privately Puncturable 
Pseudorandom Sets

Our scheme

Inspired by [CK19]
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This requires ~O(n)client space!
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Correct if (S2’ = S2 | resample 6  ) removes 6
This happens w.h.p.
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k-fold repetition amplifies correctness
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S’ = S | resample 6
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Desiderata: Puncturable Pseudorandom Set

Sample a key K 

   Set(K) enumerates the set

Puncture(K, x) gives a key that 
resamples whether x is in the set
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Desiderata: Puncturable Pseudorandom Set

 Punctured key hide punctured point 

Fast membership test : 

Fast set enumeration :



Strawman using Privately Puncturable PRF



 Ordinary PRF



Privately Puncturable PRF

[BKM17,CC17,BTVW17]
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Privately Puncturable PRF: known from LWE
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[BKM17,CC17,BTVW17]
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Would this work?

is included iff
has            trailing 0s 

punctures 

Set enumeration takes O(n) time!



Other strawman attempts

1
2...

Set

Slow membership test!



Inefficient strawman

Privately Puncturable 
Pseudorandom Sets

Our scheme



Key Insight
Sample the set with a carefully crafted 
distribution

Fast membership test
Fast set enumeration
“Breaks” puncturing “just a little”
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x = 
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To puncture a point x = 00001010:
Puncture all relevant suffixes from the PRF key

x = 
001010

H(1010)     1
H(010)    1

000

H(00001010)    1
... ...



Set size 

Membership test

Set enumeration

x = 
001010

H(1010)     1
H(010)    1

000

H(00001010)    1
... ...



Set Enumeration

010                         110
  H(010) = 1                  H(110) = 1



Set Enumeration

010                         110

0010    1010 0110      1110

H(0010)     1
H(1010)      1

H(0110)     1
H(1110)      1



Set Enumeration
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010                         110

0010    0110      1110

00010    10010          00110    11110

Set Enumeration



Each level has                  size in this tree

010                         110

0010    0110      1110

00010    10010          00110    11110

Set enumeration time: 



x included            y more likely included

x = 00001 010
y = 00 1 1 1 010



Puncturing x removes y with small prob!

x = 00001 010
y = 00 1 1 1 010

x included            y more likely included



Summary: Our PIR scheme

Key idea: a new puncturable PR Set

Conceptually very simple construction

Proofs are non-trivial

Towards practicality: need a concretely 
efficient Privately puncturable PRF



See our paper for:

Detailed proofs

Correctness proof is actually tricky!

Trade off client space and online time

https://eprint.iacr.org/2020/1592



Open question:
A truly practical PIR scheme ?

Thank you !
  runting@cs.cmu.edu


