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4%

14,717,618,286*

* since 2013



Why so Few?
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“…because it would have hurt Yahoo’s ability to index and search message data…” 

— J. Bonforte in NY Times



Q: can we search on encrypted data?
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Can we? 
[SWP00]

O(#docs) 
[Goh03,CM05]

sec. defs 
[Goh03,CM05]

OPT time 
[CGKO06]

adaptive sec. defs 
[CGKO06]

dynamic in OPT time 
[KPR12,NPG14,CJJJKRS14]

forward private 
[SPS14,B16,…]

dual secure 
[AKM19]

I/O efficient 
[CJJJKRS14,CT14,…]

parallel 
[KPR13]

multi-user 
[CGKO06,JJKRS13,PPY18,…]

snapshot secure 
[AKM19]

graphs 
[CK10,MKNK15]

relational DBs 
[HILI02,KC05, 
PRZB11,KM19] beyond search 

[CK10]

attacks 
[IKK12,CGPR15,ZKP16,BKM19] Boolean in sub-linear 

[CJJJ+13,PKVK+14,KM17]

ranges 
[PBP16,…]

range attacks 
[NKW15,KKNO17,LMP18,…]

leakage suppression 
[KMO18,KM19]
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Real-World Problem

• Major companies 
• Microsoft, SAP 
• Cisco, Google 

Research 
• Hitachi, Fujitsu 
• more…
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• Funding agencies 
• NSF 
• IARPA 
• DARPA

• Startups 
• too many to list



Q: what about real-world customers?
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Is this Real?
• Banks 
• Government agencies (US & Europe) 
• Fintech companies 
• Tech companies 
• Healthcare 
• Biotech 
• …
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Encrypted Search
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Encrypted Search
• Sub-field focused on designing  

• sub-linear algorithms over encrypted data 
• search engines & databases 

• Searchable (symmetric) encryption (SSE) 
• keyword search over collection of encrypted files/documents 
• ElasticSearch, Lucene, … 

• Encrypted databases (EDBs) 
• encrypted NoSQL & SQL (relational) databases 
• Postgres, SQL Server, MongoDB, CouchDB, …
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Encrypted Search (Building Blocks)
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Property-Preserving 
Encryption (PPE)

Fully-Homomorphic 
Encryption (FHE)

Functional 
Encryption

Oblivious RAM 
(ORAM)

Structured 
Encryption (STE)Very leaky

Ω(n)

O(n)



Efficiency

LeakageFunctionality
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Core Primitive: Structured Encryption
• Schemes that  
• encrypt data structures (e.g., multi-maps, dictionaries, …) 
• support private queries on encrypted structures 

• Applications 
• sub-linear searchable encryption (i.e., index-based SSE) 
• encrypted NoSQL & SQL databases 
• encrypted graph algorithms 
• secure multi-party computation
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Structured Encryption  
[Chase-K.10]
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Setup(1k, DS) ⟶ (K, EDS) 

Token(K, q) ⟶ tk

Query(EDS, tk) ⟶ ans 

DS EDS

ans

tk



Desiderata
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Setup leakage

Query leakage

Size of EDS

Size of state

Size of token
Query time

ans

EDS

tk



Structured Encryption  
[Chase-K.10]

• Many variants of STE 
• response-revealing 
• EDS query reveals answer in plaintext 

• response-hiding 
• EDS query reveals encrypted answer 

• non-interactive queries 
• clients sends single message called a token 

• interactive queries 
• client and server execute multi-round protocol
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Background: Data Structures
• Dictionaries map labels to values 

  

• Put: DX[ℓ2] := v2 
• Get: DX[ℓ2] returns v2

• Multi-Maps map labels to tuples 
 
	  

• Put: MM[ℓ3]:= (v2,v4) 
• Get: MM[ℓ3] returns (v2,v4)

18

DX

ℓ1 v1

ℓ2 v2

ℓ3 v3

MM

ℓ1 v1

ℓ2 v3

ℓ3 v2

v3 v4

v4



Structured Encryption: Encrypted Dictionary 
[Chase-K.10]

19

Setup(1k, DS) ⟶ (K, EDX) 

Token(K, q) ⟶ tk

Query(EDX, tk) ⟶ ans 

DX EDX

ans

tk



Structured Encryption: Encrypted Multi-Map  
[Chase-K.10]
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Setup(1k, DS) ⟶ (K, EMM) 

Token(K, q) ⟶ tk

Query(EMM, tk) ⟶ ans 

MM EMM

ans

tk



Adversarial Models
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Persistent (Adaptive) Security  
[Curtmola-Garay-K.-Ostrovsky06,Chase-K.10]

• An STE scheme is (ℒS, ℒQ)-secure vs. a persistent adv. if 

• it reveals no information about the structure beyond ℒS 
• it reveals no information about the structure and query beyond 

ℒQ
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Snapshot (Adaptive) Security  
[Amjad-K.-Moataz19]

• We say that an STE scheme is ℒSnp-secure vs. a snapshot adv. if 

• it reveals no information about the structure beyond ℒSnp
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Efficiency vs. Persistent Security
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Not Scientific!



Efficiency vs. Snapshot Security
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Leakage
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Leakage-Parameterized Definitions  
[Curtmola-Garay-K.-Ostrovsky, Chase-K.10]

• This area is about tradeoffs 
• but traditional cryptographic definitions don’t capture tradeoffs 

• in 00’s, different approaches were proposed to capture leakage 
• #1: limit adversary’s power in the proof 
• #2: make assumptions on data (e.g., high entropy) 

• Original motivations for leakage-parameterized definitions 
• Approaches #1 & #2 are misleading (sweep leakage under the rug) 
• Leakage should be made explicit and not be implicit 

• gives clear target for cryptanalysis 
• makes it (somewhat) easier to compare schemes
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Modeling Leakage

• Each scheme has a leakage profile: 𝚲 = (ℒS, ℒQ, ℒU) 
• where ℒS = (patt1, …, pattn) is the Setup leakage 
• ℒQ = (patt1, …, pattn) is the Query leakage 
• ℒU = (patt1, …, pattn) is the Update leakage 

• Each “operational” leakage is composed of leakage patterns 
• (patt1, …, pattn )
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Common Leakage Patterns

• qeq: query equality 
• a.k.a. search pattern 

• rid: response identity 
• a.k.a. access pattern 

• qlen: query length
• trlen: total resp. length 
• rlen/vol: response length 
• a.k.a. volume pattern
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• req: response equality 
• mqlen: max query length 
• mrlen: max resp. length 
• srlen: sequence resp. length 
• dsize: data size 
• usize: update size 
• did: data identity 



Example Leakage Profiles
• The “Baseline” leakage profile for response-revealing EMMs 
• 𝚲 = (ℒS, ℒQ, ℒU) = (dsize, (qeq, rid), usize) 

• The “Baseline” leakage profile for response-hiding EMMs 
• 𝚲 = (ℒS, ℒQ, ℒU) = (dsize, qeq, usize) 

• Several new constructions have better leakage profiles 
• AZL and FZL [K.-Moataz-Ohrimenko18] 
• VLH and AVLH  [K.-Moataz19]
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Structured Encryption vs. Other Primitives
• Encrypted structures appear implicitly throughout crypto 

• Oblivious RAM can be viewed as a 
• response-hiding encrypted array  
• with leakage profile 𝚲ORAM = (ℒS, ℒQ, ℒU) = (dsize, vol, vol) 

• Garbled gates can be viewed as  
• response-revealing 2x2 arrays 
• 𝚲GG = (ℒS, ℒQ) = (dsize, qeq)

31



How do we Deal with Leakage?
• Our definitions allow us to prove that our schemes 
• achieve a certain leakage profile 
• but doesn’t tell us if a leakage profile is exploitable? 

• We need more than proofs
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The Methodology
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Leakage Analysis Proof of Security
Leakage Attacks/

Cryptanalysis

• Leakage analysis: what is being leaked? 
• Proof: prove that scheme leaks no more  
• Cryptanalysis: can we exploit this leakage?



Leakage Attacks
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Leakage Attacks
• Target 

• query recovery: recovers information about query 
• data recovery: recovers information about data 

• Adversarial model 
• persistent: needs EDS and tokens 
• snapshot: needs EDS 

• Auxiliary information 
• known sample: needs sample from same distribution 
• known data: needs actual data 

• Passive vs. active 
• injection: needs to inject data
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Leakage Attacks
• Leakage cryptanalysis is crucial but… 

• …unfortunately much of the attack literature  
• lacks experimental rigor 
• is just plain wrong 
• overhyped 

• there is a need for higher standards
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Leakage Attacks
• IKK attack 
• highly cited but doesn’t work 
• too few keywords, auxiliary & test data correlated, … 

• Count attack 
• based on strong assumptions 
• adversary needs to know ≥ 75% of client’s data! 

• Some target very niche applications & rely on strong assumptions
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Leakage Attacks
• Should we discount attacks? Of course not  
• More rigorous 
• Less hyperbolic 
• More upfront about attack limitations & assumptions 

• [Blackstone-K.-Moataz’20]: Revisiting Leakage-Abuse Attacks 

• [KKMSTY’21]: re-implementation & re-evaluation of most known 
attacks
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How Should we Handle Leakage?
• Approach #1: ORAM simulation 
• Store and simulate data structure with ORAM 
• polylog overhead per read/write on top of simulation 
• still leaks information that is exploitable 

• [Kellaris-Kollios-O’neill-Nissim’16, Blackstone-K.-Moataz’20]  

• Approach #2: Custom oblivious structures
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How Should we Handle Leakage?
• Approach #3: Rebuild [K.14] 
• Rebuild encrypted structure after t queries 
• Set t using cryptanalysis 
• Open question: can you rebuild encrypted structures? 
• Yes [K.-Moataz-Ohrimenko’18, George-K.-Moataz’21] 

• Approach #4: Leakage suppression 
• Suppression compilers 
• Suppression transforms
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Leakage Suppression
• Techniques to reduce/eliminate leakage 

• Suppressing query equality (aka access pattern) 
• general compiler [K.-Moataz-Ohrimenko’18, Geoge-K.-Moataz’21] 

• Suppressing co-occurrence (needed by IKK and Count attacks) 
• see appendix in [Blackstone-K.-Moataz19]
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Leakage Suppression
• Suppressing volume (aka response size) 
• padding & clustering techniques [Bost-Fouque17] 
• computational techniques  

[K.-Moataz19, Patel-Persiano-Yeo-Yung’20] 

• “General-purpose” suppression 
• worst-case vs. average-case leakage [Agarwal-K.1’9] 
• distributing data [Agarwal-K.’19]
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Leakage Suppression
• New tradeoffs to explore 
• leakage vs. correctness [K.-Moataz19] 
• leakage vs. latency [K.-Moataz-Ohrimenko18]
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Thanks!
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