

From: pqc-forum@list.nist.gov on behalf of Markku-Juhani O. Saarinen
<mjos.crypto@gmail.com>

Sent: Thursday, December 10, 2020 10:11 AM
To: pqc-forum
Subject: [pqc-forum] ROUND 3 OFFICIAL COMMENT: FrodoKEM -- CCA Bug

Hello,

It looks like the FrodoKEM team also fixed the timing oracle [GJN20] badly and caused a more serious security problem
while trying to do that. This seems to affect FrodoKEM-976 and FrodoKEM-1344, but not FrodoKEM-640. I'd be happy to
be wrong about this, but otoh I think it's better to let people know directly rather than sit on it while these things are in
production somewhere.

The code rarely rejects bad decryptions so this reduces these KEMs to CPA security, allowing direct adaptive attacks.
Note that you don't need a timing oracle to exploit this vulnerability.

In Round3 submitted code, "util.c" (there are 9 equivalent instances of this file in the submission -- for Reference,
Optimized, and Additional):

111:int8_t ct_verify(const uint16_t *a, const uint16_t *b, size_t len)
112:{ // Compare two arrays in constant time.
113: // Returns 0 if the byte arrays are equal, -1 otherwise.
114: uint16_t r = 0;
115:
116: for (size_t i = 0; i < len; i++) {
117: r |= a[i] ^ b[i];
118: }
119:
120: r = (-(int16_t)r) >> (8*sizeof(uint16_t)-1);
121: return (int8_t)r;
122:}

Diagnosis:

Note that the inputs are 16-bit vectors; these have a full range of values in FrodoKEM-976 and FrodoKEM-1344 which
have Q = 2**16. FrodoKEM-640 wtih Q = 2**15 has the high bit set to zero in input vectors, and this function behaves as
claimed.

A 16-bit type is also used for comparisons. If even a single word pair has a difference in the high bit, the high bit of r is 1,
the negation operation makes it into a positive integer, and the function returns 0 -- as if the arrays were equivalent.
Example failures: a=0x0000,b=0x8000 -- returns 1 (illegal value), a=0x0000, b=0x8001, returns 0 even though a != b.

See usage in FO implementation In file "kem.c"
197: int8_t selector = ct_verify(Bp, BBp, PARAMS_N*PARAMS_NBAR) | ct_verify(C, CC,
PARAMS_NBAR*PARAMS_NBAR);
198: // If (selector == 0) then load k' to do ss = F(ct || k'), else if (selector == -1) load s to do ss = F(ct || s)
199: ct_select((uint8_t*)Fin_k, (uint8_t*)kprime, (uint8_t*)sk_s, CRYPTO_BYTES, selector);

1

--

A decryption failure is very likely to be ignored by this rejection mechanism because the selector will be 0 with a high
probability even in case of a mismatch, the failed decryption will be used and returned to the caller, just like in SIKE.

This flaw seems to be also present in some derived, current codebases:

https://github.com/microsoft/PQCrypto-LWEKE/blob/6a82d4d2b6bc32eeac3ad4f9c178c48072b506b3/src/util.c#L111
https://github.com/PQClean/PQClean/blob/c380c628bc41df0a617992c24618f027b36a61b7/crypto_kem/frodokem134
4shake/clean/util.c#L232

I'd assume that the key recovery attacks of [GJN20] are even easier to mount with this new, more powerful oracle.

[GJN20] Qian Guo, Thomas Johansson, Alexander Nilsson. "A key-recovery timing attack on post-quantum primitives
using the Fujisaki-Okamoto transformation and its application on FrodoKEM." https://eprint.iacr.org/2020/743 In IACR-
CRYPTO 2020.

Sincerely,
- markku

Dr. Markku-Juhani O. Saarinen <mjos@pqshield.com> PQShield, Oxford UK.

You received this message because you are subscribed to the Google Groups "pqc-forum" group.
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/a056159b-8184-
41ec-a9dd-4df29a674abfn%40list.nist.gov.

2

https://github.com/PQClean/PQClean/blob/c380c628bc41df0a617992c24618f027b36a61b7/crypto_kem/frodokem134
https://github.com/PQClean/PQClean/blob/c380c628bc41df0a617992c24618f027b36a61b7/crypto_kem/frodokem1344shake/clean/util.c#L232
https://41ec-a9dd-4df29a674abfn%40list.nist.gov
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/a056159b-8184
mailto:pqc-forum+unsubscribe@list.nist.gov
mailto:mjos@pqshield.com
https://eprint.iacr.org/2020/743
https://github.com/microsoft/PQCrypto-LWEKE/blob/6a82d4d2b6bc32eeac3ad4f9c178c48072b506b3/src/util.c#L111

From: 'Patrick Longa' via pqc-forum <pqc-forum@list.nist.gov>
Sent: Friday, December 11, 2020 12:24 PM
To: Markku-Juhani O. Saarinen; pqc-forum
Subject: RE: [pqc-forum] ROUND 3 OFFICIAL COMMENT: FrodoKEM -- CCA Bug

Hi Markku,
Thanks for reporting this bug.

We have replaced the offending line of code in our GitHub repository (https://github.com/microsoft/PQCrypto-LWEKE):

r = (-(int16_t)r) >> (8*sizeof(uint16_t)-1);

By this one:

r = (-(int16_t)(r >> 1) | -(int16_t)(r & 1)) >> (8*sizeof(uint16_t)-1);

Cheers,
Patrick (on behalf of the FrodoKEM team)

From: pqc-forum@list.nist.gov <pqc-forum@list.nist.gov> On Behalf Of Markku-Juhani O. Saarinen
Sent: Thursday, December 10, 2020 7:11 AM
To: pqc-forum <pqc-forum@list.nist.gov>
Subject: [pqc-forum] ROUND 3 OFFICIAL COMMENT: FrodoKEM -- CCA Bug

Hello,

It looks like the FrodoKEM team also fixed the timing oracle [GJN20] badly and caused a more serious security problem
while trying to do that. This seems to affect FrodoKEM-976 and FrodoKEM-1344, but not FrodoKEM-640. I'd be happy to
be wrong about this, but otoh I think it's better to let people know directly rather than sit on it while these things are in
production somewhere.

The code rarely rejects bad decryptions so this reduces these KEMs to CPA security, allowing direct adaptive attacks.
Note that you don't need a timing oracle to exploit this vulnerability.

In Round3 submitted code, "util.c" (there are 9 equivalent instances of this file in the submission -- for Reference,
Optimized, and Additional):

111:int8_t ct_verify(const uint16_t *a, const uint16_t *b, size_t len)
112:{ // Compare two arrays in constant time.
113: // Returns 0 if the byte arrays are equal, -1 otherwise.
114: uint16_t r = 0;
115:
116: for (size_t i = 0; i < len; i++) {
117: r |= a[i] ^ b[i];
118: }
119:
120: r = (-(int16_t)r) >> (8*sizeof(uint16_t)-1);

1

https://github.com/microsoft/PQCrypto-LWEKE
mailto:pqc-forum@list.nist.gov
mailto:pqc-forum@list.nist.gov
mailto:pqc-forum@list.nist.gov

