
Prasanna Ravi and Sujoy Sinha Roy
prasanna.ravi@ntu.edu.sg, sujoy.sinharoy@iaik.tugraz.at

Side-Channel Analysis of Lattice-based
PQC Candidates

mailto:prasanna.ravi@ntu.edu.sg
mailto:sujoy.sinharoy@iaik.tugraz.at

Notice
• Talk includes published works from journals, conferences, and IACR

ePrint Archive.

• Talk includes works of other researchers (cited appropriately)

• For easier explanation, we ‘simplify’ concepts

• Due to time limit, we do not exhaustively cover all relevant works.
• Main focus on LWE/LWR-based PKE/KEM schemes
• Timing, Power, and EM side-channels

Lattice-based Cryptography

Public Key Encryption (PKE)/
Key Encapsulation Mechanisms (KEM)

LWE/LWR-based
(Kyber, SABER, Frodo)

Digital Signature
Schemes (DSS)

NTRU-based
(NTRU, NTRUPrime)

LWE, Fiat-Shamir with Aborts
(Dilithium)

NTRU, Hash and Sign
(FALCON)

Classification of PQC finalists and alternative candidates

This talk

Outline

• Background:
• Learning With Errors (LWE) Problem
• LWE/LWR-based PKE framework

• Overview of side-channel attacks:
• Algorithmic-level
• Implementation-level

• Overview of masking countermeasures

• Conclusions and future works

Given two linear equations with unknown x and y

3x + 4y = 26
2x + 3y = 19

Find x and y.

3 4
2 3

x
y

26
19=.or

Solving a system of linear equations
System of linear equations with unknown s

Gaussian elimination solves s when number of equations m ≥ n

• Search Learning With Errors (LWE) problem:
Given (A, b) → computationally infeasible to solve (s, e)

• Decisional Learning With Errors (LWE) problem:
Given (A, b) → hard to distinguish from uniformly random

mod q

Matrix A Vector b
Solving a system of linear equations with errors

LWE
a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3
a3,0 a3,1 a3,2 a3,3

s0
s1
s2
s3

e0
e1
e2
e3

b0
b1
b2
b3

=+* (mod q)

Uniformly random matrix

Matrix by rotating first column

Ring LWE
s0
s1
s2
s3

e0
e1
e2
e3

b0
b1
b2
b3

=+* (mod q)

a0
a1
a2
a3

-a3
a0
a1
a2

-a2
-a3
a0
a1

-a1
-a2
-a3
a0

Ring LWE
s0
s1
s2
s3

e0
e1
e2
e3

b0
b1
b2
b3

=+* (mod q)

a0
a1
a2
a3

-a3
a0
a1
a2

-a2
-a3
a0
a1

-a1
-a2
-a3
a0

where
a(x) = (a0 + a1x + a2x2 + a3x3)
s(x) = (s0 + s1x + s2x2 + s3x3)
e(x) = (e0 + e1x + e2x2 + e3x3)
b(x) = (b0 + b1x + b2x2 + b3x3)

a(x) * s(x) + e(x) = b(x) (mod q) (mod x4 + 1)

Polynomial
arithmetic

Module LWE
a0 -a3 -a2 -a1
a1 a0 -a3 -a2
a2 a1 a0 -a3
a3 a2 a1 a0

a4 -a7 -a6 -a5
a5 a4 -a7 -a6
a6 a5 a4 -a7
a7 a6 a5 a4

a8 -a11 -a10 -a9
a9 a8 -a11 -a10
a10 a9 a8 -a11
a11 a10 a7 a8

a12 -a15 -a14 -a13
a13 a12 -a15 -a14
a14 a13 a12 -a15
a15 a14 a13 a12

s0
s1
s2
s3

s4
s5
s6
s7

e0
e1
e2
e3

e4
e5
e6
e7

b0
b1
b2
b3

b4
b5
b6
b7

* + =

a0,0(x) a0,1(x)

a1,0(x) a1,1(x)

s0(x)

s1(x)

e0(x)

e1(x)

b0(x)

b1(x)
* + =

Learning with Rounding (LWR)

mod p

• Errors are generated by performing rounding
• LWR can be extended to “Ring LWR” and “Module LWR”

where p < q

Ring LWE-based PKE (IND-CPA secure)

x +Gen(a)

Gen(s) Gen(e)

a
s e

b = a.s + e

Public Key (pk): (a,b)
Secret Key (sk): (s)

Key Generation:
Output: public key (pk), secret key (sk)

(Ring LWE
sample)

V. Lyubashevsky, C. Peikert, and O. Regev. "On Ideal Lattices and Learning with Errors Over Rings". IACR ePrint 2012/230.

Arithmetic operations are performed in a polynomial ring Rq

x +a

s’ e’

u = a.s’ + e’

x +b +

Enc(m)
v = b.s’ + e’’ + Enc(m)

(1, 0, 1, 0)

(q/2, 0, q/2, 0)

(LWE sample 1)

(LWE sample 2)

Encryption:
 Input: pk = (a,b), message m
Output: ct = (u,v)

m

Encodes’ e’’ Multiplication by q/2

Ring LWE-based PKE (IND-CPA secure)

x -u

s v

m’ = Enc(m) + esmall
Decode

(Erroneous Message Poly)

m

Decryption:
 Input: ct = (u, v), sk = s
Output: m

0

q/2

0

1

Ring LWE-based PKE (IND-CPA secure)

v – u.s = m’= Enc(m) + (e.s’ + e’’ + e’.s)
= Enc(m) + esmall

General Framework for PKE
• The “ring LWE PKE” example can be extended to describe various

standard/ring/module LWE/LWR-based schemes.

• Differences in them
• Variant of LWE/LWR problem
• Operating Ring, Modulus etc.
• Choice of Distribution for secret and error.
• Choice of Error Correcting Code (to reduce decryption failures)
• Specific optimization techniques
• Protocol-level differences
• …

We will use the “ring LWE PKE” example for different side-channel attacks

Chosen Ciphertext Attack (CCA): Key Recovery

Attacker targets the decryption procedure of IND-CPA PKE

Decryption
(Secret Key)

Ciphertext
(Malicious)

M = f(secret key)

Plaintext-Checking Oracle
Guess is correct or
incorrect

Decryption
(Secret Key)

Ciphertext
Re-Encryption

Key = F(Message)
Or

Reject/
Key = Random

Checks for the validity of
Ciphertext

(Re-Encryption)

IND-CCA Secure Decapsulation

CCA-security using FO transformation

Message Ciphertext’
Compare

Fujisaki-Okamoto (FO)
Transform

Decryption
(Secret Key)

Invalid
Ciphertext

Re-Encryption Reject

IND-CCA Secure Decapsulation

CCA-security using FO transformation

Message Ciphertext’
Compare

Attacker cannot gain any information about the message.

Can attacker use side-channel(s) to guess the messages?

Fujisaki-Okamoto (FO)
Transform

Side-Channel-based
Plaintext Checking Oracle

Side-Channel Assisted Chosen Ciphertext Attacks

Decryption
(Secret Key)

FO
Transform

IND-CCA Decapsulation

Ciphertext
Valid Key

or
Rejection

Message

Outline

• Background:
• Learning With Error (LWE) Problem
• LWE/LWR-based PKE framework

• Overview of side-channel attacks:
• Algorithmic-level
• Implementation-level

• Overview of masking countermeasures:

• Conclusions and future works and Conclusion:

Outline

• Background:
• Learning With Error (LWE) Problem
• LWE/LWR-based PKE framework

• Overview of side-channel attacks:
• Algorithmic-level
• Implementation-level

• Overview of masking countermeasures:

• Conclusions and future works and Conclusion:

Classification of SCA of lattice-based PKE/KEMs:

Side-Channel Attacks

Message Recovery

Message Encoding
Amiet et al. [12]

Sim et al. [13]

Key Recovery

Message Decoding
Ravi et al. [10]
Ngo et al. [11]

PC Oracle-based
D’Anvers et al. [7]

Ravi et al. [8]

FD Oracle-based
Xu et al. [9]

Ravi et al. [10]
Ngo et al. [11]

DF Oracle-based
Guo et al. [15]

Bhasin et al. [18]

Side-Channel Assisted Chosen Ciphertext Attacks

 Bauer et al. [BGRR19] – Proposed to use SCA to assist chosen ciphertext attacks for LWE/LWR-based PKE/KEMs.

 D’Anvers et al. [DTVV19] demonstrated a concrete side-channel based Plaintext checking Oracle Attack:
 Target Schemes: LAC and RAMSTAKE
 Timing Side-Channel: Variable run-time of error correcting codes

 Ravi et al. [RRCB20] generalized the attack to constant time implementations:
 EM Side-Channel: Extension of technique to multiple LWE/LWR-based PKE/KEMs

[BGRR19] Bauer, Aurélie, Henri Gilbert, Guénaël Renault, and Mélissa Rossi. "Assessment of the key-reuse resilience of NewHope." In Cryptographers’ Track
at the RSA Conference, pp. 272-292. Springer, Cham, 2019.
[DTVV19] D'Anvers, Jan-Pieter, Marcel Tiepelt, Frederik Vercauteren, and Ingrid Verbauwhede. "Timing attacks on error correcting codes in post-quantum
schemes." In Proceedings of ACM Workshop on Theory of Implementation Security Workshop, pp. 2-9. 2019.
[RRCB20] Ravi, Prasanna, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam Bhasin. "Generic Side-channel attacks on CCA-secure lattice-based PKE and
KEMs." IACR Transactions on Cryptographic Hardware and Embedded Systems (2020): 307-335.

Side-Channel Assisted Chosen Ciphertext Attacks

 Plaintext-Checking (PC) Oracle based attack consists of two parts:

 Part-I: Construction of malicious ciphertexts

 Part-II: Perform SCA to obtain useful information about decryption output for malicious ciphertexts

PC Oracle-based SCA: Constructing Malicious CTs (Part-I)

Chosen u k

u.s

0 0 0 0 0 0

k.s0 k.s1 k.s2 k.s3 k.s4 k.s5 k.s6

Chosen v p 0 0 0 0 0 0

m’ = u.s - v k.s0-p

m = Decode(m) f(s0) 0 0 0 0 0 0

k.s1 k.s2 k.s3 k.s4 k.s5 k.s6

 Decryption:

m0 m1 m2 m3 m4 m5 m6

m’=Decode(m’) f(s0) 0 0 0 0 0 0

m = [0, 0, 0, 0, 0, 0, 0, 0, … , 0] (O)
or

m = [1, 0, 0, 0, 0, 0, 0, 0, … , 0] (X)

Secret
Coeff.

(k,p)

(21,3) (12,1)

-1 X X

0 X O

1 O O

Binary Distinguisher for every candidate of s0
(Round5)

PC Oracle-based SCA: Constructing Malicious CTs (Part-I)

Recover s0 using two
ciphertext queries

 Decryption:

Chosen u k 0 0 0 0 0 0

Chosen v p 0 0 0 0 0 0

f(s0) 0 0 0 0 0 0

Recover s0 using knowledge of O/X

 Polynomial multiplication in polynomial rings have special rotational properties.

 Multitplication of a polynomial with xi ”rotates” the polynomial by ”i” positions (cyclic or anti-cyclic)

m’=Decode(m’)

PC Oracle-based SCA: Constructing Malicious CTs (Part-I)

Chosen u 0 k 0 0 0 0 0

Chosen v p 0 0 0 0 0 0

0 0 0 0 0 0m’=Decode(m’)

PC Oracle-based SCA: Constructing Malicious CTs (Part-I)

f(sn-1)

Recover sn-1 using knowledge of O/X

 Polynomial multiplication in polynomial rings have special rotational properties.

 Multitplication of a polynomial with xi ”rotates” the polynomial by ”i” positions (cyclic or anti-cyclic)

Chosen u 0 0 k 0 0 0 0

Chosen v p 0 0 0 0 0 0

f(sn-2) 0 0 0 0 0 0m’=Decode(m’)

PC Oracle-based SCA: Constructing Malicious CTs (Part-I)

Recover sn-2 using knowledge of O/X

 Polynomial multiplication in polynomial rings have special rotational properties.

 Multitplication of a polynomial with xi ”rotates” the polynomial by ”i” positions (cyclic or anti-cyclic)

Chosen u 0 0 0 k 0 0 0

Chosen v p 0 0 0 0 0 0

0 0 0 0 0 0m’=Decode(m’)

PC Oracle-based SCA: Constructing Malicious CTs (Part-I)

f(sn-3)

Recover sn-3 using knowledge of O/X

 Polynomial multiplication in polynomial rings have special rotational properties.

 Multitplication of a polynomial with xi ”rotates” the polynomial by ”i” positions (cyclic or anti-cyclic)

 No Rotation property in schemes based on Standard LWE/LWR (FrodoKEM) - But, attack still works…
 Location of non-zero bit of message changes (depending upon secret coefficient to recover)

Chosen u k 0 0 0 0 0 0

Chosen v p 0 0 0 0 0 0

f(s0) 0 0 0 0 0 0m’=Decode(m’)

PC Oracle-based SCA: Constructing Malicious CTs (Part-I)

Recover sn-2 using knowledge of O/X

 Polynomial multiplication in polynomial rings have special rotational properties.

 Multitplication of a polynomial with xi ”rotates” the polynomial by ”i” positions (cyclic or anti-cyclic)

 No Rotation property in schemes based on Standard LWE/LWR (FrodoKEM) - But, attack still works…
 Location of non-zero bit of message changes (depending upon secret coefficient to recover)

Chosen u k 0 0 0 0 0 0

Chosen v 0 p 0 0 0 0 0

f(s1) 0 0 0 0 0m’=Decode(m’)

PC Oracle-based SCA: Constructing Malicious CTs (Part-I)

0

Recover sn-1 using knowledge of O/X

 Polynomial multiplication in polynomial rings have special rotational properties.

 Multitplication of a polynomial with xi ”rotates” the polynomial by ”i” positions (cyclic or anti-cyclic)

 No Rotation property in schemes based on Standard LWE/LWR (FrodoKEM) - But, attack still works…
 Location of non-zero bit of message changes (depending upon secret coefficient to recover)

Chosen u k 0 0 0 0 0 0

Chosen v 0 0 p 0 0 0 0

0 f(s2) 0 0 0 0m’=Decode(m’)

PC Oracle-based SCA: Constructing Malicious CTs (Part-I)

0

Recover sn-1 using knowledge of O/X

 Polynomial multiplication in polynomial rings have special rotational properties.

 Multitplication of a polynomial with xi ”rotates” the polynomial by ”i” positions (cyclic or anti-cyclic)

 No Rotation property in schemes based on Standard LWE/LWR (FrodoKEM) - But, attack still works…
 Location of non-zero bit of message changes (depending upon secret coefficient to recover)

Chosen u k 0 0 0 0 0 0

Chosen v 0 0 0 p 0 0 0

0 0 f(s3) 0 0 0m’=Decode(m’)

PC Oracle-based SCA: Constructing Malicious CTs (Part-I)

0

Recover sn-1 using knowledge of O/X

 Polynomial multiplication in polynomial rings have special rotational properties.

 Multitplication of a polynomial with xi ”rotates” the polynomial by ”i” positions (cyclic or anti-cyclic)

 No Rotation property in schemes based on Standard LWE/LWR (FrodoKEM) - But, attack still works…
 Location of non-zero bit of message changes (depending upon secret coefficient to recover)

 D’Anvers et al. [DTVV19] exploited variable runtime of error correcting codes in LAC and RAMSTAKE.
 O - Valid codeword, X - Invalid codeword
 Decode_Time(O) << Decode_Time(X)

Decryption
(Secret Key)

FO
Transform

KeyCiphertext

PC Oracle-based SCA: Using SCA as O/X distinguisher (Part-II)

ECC
Decode

c = 0
(O)CT0CT1

c = 1
(X)

 Pre-Processing Phase (Template Generation):
 Create ciphertexts for both classes: O and X.
 Query ciphertexts to build template for O and X.

 Attack Phase (Template Matching):
 Query with malicious chosen ciphertexts and classify as O or X
 Use O/X info. to recover secret key

 Attack generalized to constant-time implementations by Ravi et al. [RRCB20] using the EM side-channel for
multiple LWE/LWR-based PKE/KEMs.

 Vulnerable operations leaking EM side-channel information about O/X:
 ECC Decoding Procedure (Decode(O) != Decode(X))
 FO Transform (Hash(0,pk) != Hash(1,pk))

Decryption
(Secret Key)

FO
Transform

KeyCTatt ECC
Decode

c = 0/1

Kyber, Saber, NewHope,
Frodo

Round5, LAC

PC Oracle-based SCA: Using SCA as O/X distinguisher (Part-II)

m = 0/1

 ADVANTAGE:
 Easy SCA (Classification Problem with two classes) – No sophisticated SCA setup required.
 Non-profiled Attack
 Attack done in a matter of a few minutes (few thousand traces).

 COUNTERMEASURE: Concrete Masking (additive sharing of message)

Scheme # Coeffs # traces for template # Attack traces Time (Minutes)

Kyber
(KYBER512) 512 2 x 50 = 100 7.7k 10.8

Round5
(R5ND_1KEM_5d) 490 2 x 50 = 100 2.9k 4.5

LAC
(LAC128) 512 2 x 50 = 100 3.0k 25

PC Oracle-based SCA: Experimental Results
Tabulation of attack complexity on different LWE/LWR-based based PKE/KEMs (Source: Ravi et al. [RRCB20])

Target: ARM Cortex-M4, EM-side channel

Classification of SCA on LWE/LWR-based PKE/KEMs:

SCA
(Algorithmic Level)

Key Recovery (Chosen Ciphertext)

PC Oracle-based
D’Anvers et al. [DTVV19]

Ravi et al. [RRCB20]

A Few Observations on the PC Oracle-based SCA…

 Key recovery still requires a few thousand traces.

 Can we do better with much fewer traces???

Chosen u k

 Decryption:

u.s

0 0 0 0

k.s0 k.s1 k.s2 k.s3 k.s4

Chosen v p 0 0 0 0

m’ = u.s - v k.s0-p

m’=Decode(m’) f(s0) 0 0 0 0

k.s1 k.s2 k.s3 k.s4

Can we use all the message bits?

A Few Observations on the PC Oracle-based SCA…

Full Decryption Oracle

Chosen u k

 Decryption:

u.s

0 0 0 0

k.s0 k.s1 k.s2 k.s3 k.s4

Chosen v p 0 0 0 0

m’ = u.s - v k.s0-p

m’=Decode(m’) f(s0) 0 0 0 0

k.s1-p k.s2-p k.s3-p k.s4-p

p p p p

f(s1) f(s2) f(s3) f(s4)

Choose different v

k.s1 k.s2 k.s3 k.s4

Full Decryption (FD) Oracle-based SCA:

Chosen u k 0 0 0 0 0 0

Chosen v p p p p p p p

f(s1) f(s2) f(s3) f(s4) f(s5) f(s6)m’=Decode(m’)

Full Decryption (FD) Oracle-based SCA:

f(s0)

 Proposed by Xu et al. [XPRO20]:
 Full Key Recovery for Kyber512 in 8 queries (improved to 6 queries by Ravi et al. [RBRC20])

 Ngo et al. [NDGJ21] proposed improved techniques for key recovery with FD oracle:
 Error Correction mechanism for noise in recovered message (Saber - 16 queries)

[XPRO20] Xu, Zhuang, Owen Pemberton, Sujoy Sinha Roy, and David Oswald. Magnifying Side-Channel Leakage of Lattice-Based Cryptosystems with Chosen
Ciphertexts: The Case Study of Kyber. Cryptology ePrint Archive, Report 2020/912, 2020. https://eprint.iacr.org/2020/912, 2020.
[RBRC20] Ravi, Prasanna, Shivam Bhasin, Sujoy Sinha Roy, Anupam Chattopadhyay. "On Exploiting Message Leakage in (few) NIST PQC Candidates for Practical
Message Recovery and Key Recovery Attacks." Cryptology ePrint Archive, Report 2020/1559, 2020. https://eprint.iacr.org/2020/1559, 2020.
[NDGJ21] Ngo, Kalle, Elena Dubrova, Qian Guo, and Thomas Johansson. "A Side-Channel Attack on a Masked IND-CCA Secure Saber KEM.” Cryptology ePrint
Archive, Report 2021/079, 2021. https://eprint.iacr.org/2021/079, 2021.

Classification of SCA on LWE/LWR-based PKE/KEMs:

SCA
(Algorithmic Level)

Key Recovery (Chosen Ciphertext)

PC Oracle-based
D’Anvers et al. [7]

Ravi et al. [8]

FD Oracle-based
Xu et al. [XPRO20]

Ravi et al. [RBRC20]
Ngo et al. [NDGJ21]

How does an attacker perform full
message recovery through SCA???

Encoding and Decoding Functions:

 Used to convert message to polynomial and vice versa.

 Encode and Decode - Unique for LWE/LWR-based PKE scheme

 Bitwise manipulation of the message.

 Does bitwise manipulation lead to side-channel leakage?

SCA of Message Encoding

0 1 1 0 1

0 q/2 q/2 0 q/2

Enc Enc Enc Enc Enc

Msg = m Side-Channel Leakage
from Computation

Side-Channel Leakage
from Storage

 Observation: Only two possible types of operation for each bit – (0 encoded to 0) or (1 encoded to q/2)

Compute

Store

 Amiet et al. [ACLZ20] – Single trace message recovery attack on NewHope (Template Matching)

 Sim et al. [SKL+20] – Generalization of attack to multiple schemes (Kyber, SABER, Frodo, Round5, LAC)

SCA of Message Encoding

Single Side channel trace from message encoding Operation
NewHope – Unoptimized Impl. On ARM Cortex-M4

Source: Amiet et al. [12]

[ACLZ20] Amiet, Dorian, Andreas Curiger, Lukas Leuenberger, and Paul Zbinden. "Defeating NewHope with a single trace." In International Conference on
Post-Quantum Cryptography, pp. 189-205. Springer, Cham, 2020.
[SKL+20] Sim, Bo-Yeon, Jihoon Kwon, Joohee Lee, Il-Ju Kim, Tae-Ho Lee, Jaeseung Han, Hyojin Yoon, Jihoon Cho, and Dong-Guk Han. "Single-Trace Attacks
on Message Encoding in Lattice-Based KEMs." IEEE Access 8 (2020): 183175-183191.

Defending against SCA of Message Encoding

 Idea 1: Parallelize the Encoding Procedure
 Vectorization in HW/SW platforms.
 Simultaneous leakage from multiple bits - Removes leakage from individual bits

 Idea 2: Shuffle the Order of Encoding (Sim et al.[SKL+20], Amiet et al. [ACLZ20])
 Shuffle the order of processing of message bits
 Can recover all message bits, but not the correct order.

 But, do these techniques help thwart the attack???

 Ravi et al. [RBRC20] showed that “Ciphertext Malleability” in LWE/LWR-based PKEs can be used to defeat
the aforementioned designs.

[RBRC20] Ravi, Prasanna, Shivam Bhasin, Sujoy Sinha Roy, Anupam Chattopadhyay. "On Exploiting Message Leakage in (few) NIST PQC Candidates for
Practical Message Recovery and Key Recovery Attacks." Cryptology ePrint Archive, Report 2020/1559, 2020. https://eprint.iacr.org/2020/1559, 2020.
[ACLZ20] Amiet, Dorian, Andreas Curiger, Lukas Leuenberger, and Paul Zbinden. "Defeating NewHope with a single trace." In International Conference on
Post-Quantum Cryptography, pp. 189-205. Springer, Cham, 2020.
[SKL+20] Sim, Bo-Yeon, Jihoon Kwon, Joohee Lee, Il-Ju Kim, Tae-Ho Lee, Jaeseung Han, Hyojin Yoon, Jihoon Cho, and Dong-Guk Han. "Single-Trace Attacks
on Message Encoding in Lattice-Based KEMs." IEEE Access 8 (2020): 183175-183191.

x -u

s v

m’ = Enc(m) + esmall
Decode

(Erroneous Message Poly)

m

 Decrypt(ct = (u,v), sk = s) = m:

v = t.s’ + e’’ + Enc(m)
= a.s.s’ + e.s’ + e’’ + Enc(m)
= a.s.s’ + Enc(m) + e.s’ + e’’

u.s = a.s.s’ + e’.s

Ciphertext Malleability in LWE/LWR-based PKE

 Few Observations:
 Message polynomial only additively hidden within the ciphertext component v.

 No diffusion of the message polynomial.

 mi = f(v[i]) - Each coefficient v[i] determines corresponding message bit mi

Large Small

Large Small

 Valid Ciphertext v:

 v = t.s’ + e’’ + Enc(m)

 v’ = v + (q/2).xi

 With (v’ – u.s = m’)
m’[i] = m[i] + e[i] + q/2

 m’i = Decode(m’[i])
= Flip(m’i)

 Adding (q/2) to v[i]:
0

q/2

Bit 0

Bit 1
+ q/2

0

1

0

1

+ q/2

Malleability Property:
To flip mi , add q/2 to v[i]

Decoding of m’[i]

Ciphertext Malleability in LWE/LWR-based PKE

Ciphertext Malleability as a tool for SCA:

 Idea 1: Parallelized Encoding Procedure (x4)

0 1 1 0

0 q/2 q/2 0

Enc Enc Enc Enc

Msg = m

T1 = Leak(Compute(0110))

T2 = Leak(Store(0110))

v = t.s’ + e’’ + Enc(m)

 Step 1: Query Decapsulation device with valid ct = (u,v)

Message Encoding (Re-Encryption)

Compute

Store

Ciphertext Malleability as a tool for SCA:

 Idea 1: Parallelized Encoding Procedure (x4)

1 1 0

q/2 q/2 0

Enc Enc Enc Enc

Msg = m

T1’ = Leak(Compute(1110))

T2’ = Leak(Store(1110))

 Step 2: Modify v to construct v’ and query v’

Flipped
v’ = t.s’ + e’’ + Enc(m) + q/2.x0

10

q/20

Message Encoding (Re-Encryption)

Compute

Store

Ciphertext Malleability as a tool for SCA:

 Idea 1: Parallelized Encoding Procedure (x4)

 Step 3: Compare the leakages T1 and T1’ (resp. T2 and T2’)

 If T1’ > T1, flip is from 0 to 1 => m0 = 0

 If T1’ < T1, flip is from 1 to 0 => m0 = 1

 Attack Simultaneously all nibbles of the message

 If (x 4) parallelization, full message recovery in 5 traces.

 If (x n) parallelization, full message recovery in (n+1) traces.

Ciphertext Malleability as a tool for SCA:

 Idea 2: Shuffle the order of Encoding of bits

v = t.s’ + e’’ + Enc(m)

 Step 1: Query Decapsulation device with valid ct = (u,v)

 Step 3: Modify v to construct v’ and query v’

v’ = t.s’ + e’’ + Enc(m) + q/2.x0

 Step 2: Retrieve all the bits from leakage and let Hamming Weight(m’) = X’ (number of 1s)

 Step 4: Retrieve all the bits from leakage and let Hamming Weight(m’’) = X’’

 Step 5: Compare X and X’ to retrieve m0
 If X’’ = X’ + 1, flip is from 0 to 1 => mi = 0
 If X’’ = X’ – 1, flip is from 1 to 0 => mi = 1

 If “k” bits in message, message recovery can be done in (k+1) traces.

Ciphertext Malleability as a tool for SCA:
 Can also be extended to masked implementations albeit with higher number of traces [RBRC20].

 Attack also applies to message decoding procedure in decryption [RBRC20].

 Protections increase attacker’s complexity, but do not prevent attack.

 Shuffling + Masking - Considered to be secure for message encoding and decoding operation.

 Advantages:
 Very Effective (Full Message Recovery)

 Disadvantages:
 Relatively high SNR required (Identify Precise Leakage Points, Distniguish single bit changes)
 Attack can be made effective using more sophisticated setup (trace filtering, synchronization)

 Leakage from Encoding/Decoding + “Ciphertext Malleability” - Improved/Enhanced SCA for message recovery

[RBRC20] Ravi, Prasanna, Shivam Bhasin, Sujoy Sinha Roy, Anupam Chattopadhyay. "On Exploiting Message Leakage in (few) NIST PQC Candidates for
Practical Message Recovery and Key Recovery Attacks." Cryptology ePrint Archive, Report 2020/1559, 2020. https://eprint.iacr.org/2020/1559, 2020.

Classification of SCA on LWE/LWR-based PKE/KEMs:

SCA
(Algorithmic Level)

Key Recovery (Chosen Ciphertext)

PC Oracle-based
D’Anvers et al. [DTVV19]

Ravi et al. [RRBC20]

FD Oracle-based
Xu et al. [XPRO20]

Ravi et al. [RBRC20]
Ngo et al. [NDGJ21]

Message Recovery

Classification of SCA on LWE/LWR-based PKE/KEMs:

SCA
(Algorithmic Level)

Message Recovery

Message Encoding
Amiet et al. [ACLZ20]

Sim et al. [SKL+20]

Key Recovery (Chosen Ciphertext)

Message Decoding
Ravi et al. [RBRC20]
Ngo et al. [NDGJ21]

PC Oracle-based
D’Anvers et al. [DTVV19]

Ravi et al. [RRBC20]

FD Oracle-based
Xu et al. [XPRO20]

Ravi et al. [RBRC20]
Ngo et al. [NDGJ21]

Decryption
(Secret Key)

Ciphertext
Re-Encryption

Msg Ciphetext’
Compare

IND-CCA Secure Decapsulation

Key = F(Message)
Or

Key = Random

D’Anvers et al. [DTVV19]
Ravi et al. [RRBC20]
Ravi et al. [RBRC20]
Ngo et al. [NDGJ21]

Ravi et al. [RRBC20]
Xu et al. [XPRO20]
Sim et al. [SKL+20]
Amiet et al. [ACLZ20]

Classification of SCA on LWE/LWR-based PKE/KEMs:

Defending against SCA on LWE/LWR-based PKE/KEMs:

Decryption
(Secret Key)

Ciphertext
Re-Encryption

Msg Ciphetext’
Compare

IND-CCA Secure Decapsulation

Key = F(Message)
Or

Key = Random

Does it contain any sensitive
information???

D’Anvers et al. [DTVV19]
Ravi et al. [RRBC20]
Ravi et al. [RBRC20]
Ngo et al. [NDGJ21]

Ravi et al. [RRBC20]
Xu et al. [XPRO20]
Sim et al. [SKL+20]
Amiet et al. [ACLZ20]

Analysis of Ciphertext Comparison:
 For valid Ciphertexts ------ Comparison: PASS

 For Invalid Ciphertexts ------ Comparison: FAIL

 The comparison always fails for invalid ciphertexts (used in chosen ciphertext attacks)

 So, do we need to protect ciphertext comparison???

 Revelation: ”How comparison fails” leaks information about secret key (Guo et al. in [GJN20])

 Decryption Failure Oracle-based SCA

[GJN20] Qian Guo, Thomas Johansson, Alexander Nilsson. "A key-recovery timing attack on post-quantum primitives using the Fujisaki-Okamoto
transformation and its application on FrodoKEM." https://eprint.iacr.org/2020/743 In IACR-CRYPTO 2020.

https://eprint.iacr.org/2020/743

 Modus Operandi:

 Construct a valid ciphertext ct = (u,v) for message m.

Decryption Failure (DF) Oracle-based SCA:

x -u

s v

m’ = Enc(m) + es
Decode m

0

q/2

0

1

Decoding of m’[i]

 Modus Operandi:

 Construct a valid ciphertext ct = (u,v) for message m.

 Add a small error to the ith coefficient of v (v[i]) and observe change in the message m’.

Decryption Failure (DF) Oracle-based SCA:

x -u

s v

Decode
m’ = Enc(m) + es m

0

q/2

0

1

Decoding of m’[i]

 Modus Operandi:

 Construct a valid ciphertext ct = (u,v) for message m.

Decryption Failure (DF) Oracle-based SCA:

x -u

s v + (1.xi)

Decode
m’ = Enc(m) + es + (1.xi)

m’= m

0

q/2

0

1

Decoding of m’[i]

 Modus Operandi:

 Construct a valid ciphertext ct = (u,v) for message m.

Decryption Failure (DF) Oracle-based SCA:

x -u

s v + (2.xi)

Decode
m’ = Enc(m) + es + (2.xi)

m’= m

0

q/2

0

1

Decoding of m’[i]

 Modus Operandi:

 Construct a valid ciphertext ct = (u,v) for message m.

Decryption Failure (DF) Oracle-based SCA:

x -u

s v + (3.xi)

Decode
m’ = Enc(m) + es + (3.xi)

m’= m

0

q/2

0

1

Decoding of m’[i]

 Modus Operandi:

 Construct a valid ciphertext ct = (u,v) for message m.

 Decryption failure at mi (for perturbation k = 4) gives information about es[i]

 es - secret dependent error polynomial

 Attacker can obtain linear hints about secret through decryption failures

 Enough number of hints potentially reveals the secret key.

Decryption Failure (DF) Oracle-based SCA:

x -u

s v + (4.xi)

Decode
m’ = Enc(m) + es + (4.xi)

m’ = Flip(m,i)

0

q/2

0

1

Decryption
Failure

Decoding of m’[i]

How does an attacker identify
decryption failures

through SCA???

Decryption
(Secret Key) Re-Encryption

m’ = m ct’ = (u,v)
Compare

IND-CCA Secure Decapsulation

Key = F(m)

Decryption Failure (DF) Oracle-based SCA:

ct
=

(u,v)

0

q/2

0

1
No difference

Decoding of m’[i]

Decryption
(Secret Key)

ct
=

(u,v+1.xi)
Re-Encryption

m’ = m ct’ = (u,v)
Compare

IND-CCA Secure Decapsulation

Key = Random

Decryption Failure (DF) Oracle-based SCA:

0

q/2

0

1
1 coeff. difference (v[i])

Decoding of m’[i]

Decryption
(Secret Key) Re-Encryption

m’ = m ct’ = (u,v)
Compare

IND-CCA Secure Decapsulation

Decryption Failure (DF) Oracle-based SCA:

ct
=

(u,v+2.xi)

0

q/2

0

1

Key = Random

Decoding of m’[i]

1 coeff. difference (v[i])

Decryption
(Secret Key) Re-Encryption

m’ = m ct’ = (u,v)
Compare

IND-CCA Secure Decapsulation

Decryption Failure (DF) Oracle-based SCA:

ct
=

(u,v+3.xi)

0

q/2

0

1

Key = Random

Decoding of m’[i]

1 coeff. difference (v[i])

Decryption
(Secret Key) Re-Encryption

m’ =
Flip(m,i) ct’ = (u’,v’)

Compare

IND-CCA Secure Decapsulation

Decryption Failure (DF) Oracle-based SCA:

ct
=

(u,v+4.xi)

0

q/2

0

1

Key = Random

Decryption
Failure

Decoding of m’[i]

Diffusion due to hash
functions

Almost all coeff. Different (High Prob.)

Decryption Failure (DF) Oracle-based SCA:

Decryption
(Secret Key) Re-Encryption

m’ =
Flip(m,0) ct’ = (u’,v’)

Compare

IND-CCA Secure Decapsulation
ct
=

(u,v+k.xi)
Key = Random

If (No Decryption Failure):
Only one coeff. Is different

If (Decryption Failure):
Almost All Coeffs. are different (High Prob.)

Side-Channel-based
Decryption Failure Oracle

 Guo et al. [GJN20] presented the first DF oracle-based attack in SCA context on Frodo KEM:
 Timing Attack on Non-Constant Time Comparison

If(Decryption Failure)
Comparison immediately aborts (Lesser Time)

Else if(No Decryption Failure)
Comparison only aborts at ith coeff. (More Time)

 230 decapsulation queries for full secret key recovery (incl. retries to get cleaner timing signal)

 Several approaches known for efficient masked ciphertext comparison (Oder et al. [OSPG18] and Bache et al.
[BPO+20])

 For efficiency, they unmask results of partial checks (under notion that they are non-leaky).

 Unmasking result of partial checks leaks information about decryption failures - Bhasin et al. [BDH+21]

[OSPG18] Oder, Tobias, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu. "Practical CCA2-secure and masked ring-LWE implementation." IACR
Transactions on Cryptographic Hardware and Embedded Systems (2018): 142-174.
[BPO+20] Bache, Florian, Clara Paglialonga, Tobias Oder, Tobias Schneider, and Tim Güneysu. "High-Speed Masking for Polynomial Comparison in Lattice-
based KEMs." IACR Transactions on Cryptographic Hardware and Embedded Systems (2020): 483-507.
[BDH+21] Bhasin, Shivam, Jan-Pieter D’Anvers, Daniel Heinz, Thomas Pöppelmann, and Michiel Van Beirendonck. "Attacking and Defending Masked
Polynomial Comparison for Lattice-Based Cryptography."

Decryption Failure (DF) Oracle-based SCA:

[BDH+21] Bhasin, Shivam, Jan-Pieter D’Anvers, Daniel Heinz, Thomas Pöppelmann, and Michiel Van Beirendonck. "Attacking and Defending Masked
Polynomial Comparison for Lattice-Based Cryptography."

Security of Kyber512 and Kyber768 in function of the number of (approximate) equations retrieved.
Source: Bhasin et al. [BDH+21]

Decryption Failure (DF) Oracle-based SCA:

 Takeaway:
 Implement Constant-time Comparison
 Masked Implementation: Do not unmask partial checks

D’Anvers et al. [DTVV19]
Ravi et al. [RRBC20]
Ravi et al. [RBRC20]
Ngo et al. [NDGJ21]

Ravi et al. [RRBC20]
Xu et al. [XPR020]
Sim et al. [SKL+20]

Amiet et al. [ACLZ20]

Decryption
(Secret Key)

Ciphertext
Re-Encryption

Msg Ciphetext’
Compare

IND-CCA Secure Decapsulation

Key = F(Message)
Or

Key = Random

Guo et al. [GJN20]
Bhasin et al. [BDH+21]

Classification of SCA of LWE/LWR-based PKE/KEMs:

Classification of SCA of LWE/LWR-based PKE/KEMs:
SCA

(Algorithmic Level)

Message Recovery

Message Encoding
Amiet et al. [ACLZ20]

Sim et al. [SKL+20]

Key Recovery (Chosen Ciphertext)

Message Decoding
Ravi et al. [RBRC20]
Ngo et al. [NDGJ21]

PC Oracle-based
D’Anvers et al. [DTVV19]

Ravi et al. [RRBC20]

FD Oracle-based
Xu et al. [XPRO20]

Ravi et al. [RBRC20]
Ngo et al. [NDGJ21]

DF Oracle-based
Guo et al. [GJN20]

Bhasin et al. [BDH+21]

More Efficient

Classification of SCA of LWE/LWR-based PKE/KEMs:
SCA

(Algorithmic Level)

Message Recovery

Message Encoding
Amiet et al. [ACLZ20]

Sim et al. [SKL+20]

Key Recovery (Chosen Ciphertext)

Message Decoding
Ravi et al. [RBRC20]
Ngo et al. [NDGJ21]

PC Oracle-based
D’Anvers et al. [DTVV19]

Ravi et al. [RRBC20]

FD Oracle-based
Xu et al. [XPRO20]

Ravi et al. [RBRC20]
Ngo et al. [NDGJ21]

DF Oracle-based
Guo et al. [GJN20]

Bhasin et al. [BDH+21]

Masking Masking +
Shuffling

Masking +
Shuffling

Masking +
Shuffling

Masking

Outline

• Background:
• Learning With Error (LWE) Problem
• LWE/LWR-based PKE framework

• Overview of side-channel attacks:
• Algorithmic-level
• Implementation-level

• Overview of masking countermeasures:

• Conclusions and future works:

What is masking countermeasure?
• Countermeasure against differential power analysis (DPA)

• Randomizes computation by splitting secret data into random shares

s = s1 + s2 + s3 + … + sk

• No information about s can be obtained by observing a proper subset

Fs F(s) F’s1 F’(s1)

F’sk F’(sk)

When combined,
you get F(s)

Non-masked

Masked

Arithmetic and Boolean shares
• Two common ways of splitting a secret into shares

• Boolean shares: secret bit is split in GF(2)

s = s1 ⊕ s2 ⊕ s3 ⊕ … ⊕ sk mod 2

… applicable to words (vector of bits)

• Arithmetic shares: secret is split in GF(p) where p>2

s = s1 + s2 + s3 + … + sk mod p
E.g., 7 = 8 + 10 mod 11

• Some cryptographic algorithms require working with both types

How to apply masking to lattice-based PKE?

x -u

s v

m’
Decode m

 Decryption:
 Input: ct = (u, v), sk = s
 Output: m

q/4

3q/4

0 1

Ring LWE-based PKE (IND-CPA)

m’= v – u.s = Enc(m) + esmall

Note: ct = (u, v) is controlled by attacker

Masking Idea: Split s into random shares and randomize computation

q/2 0
th() th()

Decode m

1st Order Masking for IND-CPA PKE

• Step1: Split s into two arithmetic shares
s = s1 - s2 mod q

x -u

s1 v

m1’

u

s2

x m2’

How to compute decoding on two shares?
m1’= v – u.s1
m2’= u.s2

Easy to check m1’+m2’ = v – u.s = m’

Masked Decoding

x -u

s1 v

m1’

u

s2

x m2’

Masked
Decoder

m1

m2

What we want:
1. Compute mask-message pair (m1, m2) s.t. m = m1 + m2 mod 2
2. No combination of the two input shares m1’ and m2’

There are several approaches to design masked decoders

Masked Decoder of [RRVV15]

• Observation: Only a few most significant bits of the shares are helpful
to perform threshold decoding

• Example:
If 0 < m’1 < q/4 and q/4 < m’2 < q/2
then q/4 < m’ < 3q/2
 th(m’) = 1

• This observation is used to simplify masked decoding

q/4

3q/4

q/2 0

m’1
m’2

m’

[RRVV15] O. Reparaz, S. S. Roy, F. Vercauteren, I. Verbauwhede. "A Masked Ring-LWE
Implementation". CHES 2015.

Masked Decoder of [RRVV15]

q/4

3q/4

q/2 0

m’1
m’2

m’

[RRVV15] O. Reparaz, S. S. Roy, F. Vercauteren, I. Verbauwhede. "A Masked Ring-LWE
Implementation". CHES 2015.

quad() function is used to output quadrant of a share.

III

III IV

• Observation: Only a few most significant bits of the shares are helpful
to perform threshold decoding

• Example:
If 0 < m’1 < q/4 and q/4 < m’2 < q/2
then q/4 < m’ < 3q/2
 th(m’) = 1

• This observation is used to simplify masked decoding

Masked Decoder of [RRVV15]
Quad-based decoding works if two shares are in adjacent quadrants.

III

III IV

III II

Otherwise, this approach fails.

1. Take a constant δi from a table
2. m’1 := m’1 - δi
3. m’2 := m’2 + δi
4. Check if they are in adjacent quadrants

Iterated a fixed
number of times

Solution proposed in [RRVV15]: Refresh shares and try again.

Results: Masked ring-LWE PKE (IND-CPA) [RRVV15]

Reasons behind increased computation time:
1. Polynomial arithmetic cost doubles

2. Iterative ‘quad-based decoding’ increases the cost further

Unprotected vs Protected

Masking overhead: ~2.7 times more cycles in HW (FPGA)
~5.8 times more cycles in SW (ARM M4

Decryption failure increases.

2x computation

More Efficient Masked Decoder by [OSPG18]

• Assume that m’1 and m’2 are Boolean shares (instead of arithmetic)
i.e., m’ = m’1 ⊕ m’2

• Naturally, MSb(m’) = MSb(m’1) ⊕ MSb(m’2)

• Hence, th(m’) = th(m’1) ⊕ th(m’2)

Masked decoding becomes an easy operation in this setting

Can we realize this for ring/mod LWE/LWR?

Idea in [OSPG18]: Arithmetic to Boolean conversion (A2B)

[OSPG18] T. Oder, T. Schneider, T. Pöppelmann, T. Güneysu.
"Practical CCA2-Secure and Masked Ring-LWE Implementation". TCHES 2018

Masked Decoder with A2B approach [OSPG18]

x -u

s1 v

m1’ mod 2k

u

s
2
x m2’ mod 2k

MSb

m1

m2

A2B

m1”

m2”

Msb

Assume that m1’ and m2’ are in (mod 2k) for some k

A2B requires inputs to be modulo power-of-2

m’ = m1’ + m2’ mod 2k m’ = m1” ⊕ m2”

Masked Decoder with A2B approach [OSPG18]

x -u

s1 v

m1’ mod q

u

s
2
x m2’ mod q MSb

m1

m2

Transform
Pow-2

m1”

m2”

Msb

An additional block “Transform-Power-of-2” is needed [OSPG18]

A2B

Assume that m1’ and m2’ are in (mod q) where q ≠ 2k

m’=m1’+m2’ mod q m’ = m1” ⊕ m2”mod 2L

[OSPG18] T. Oder, T. Schneider, T. Pöppelmann, T. Güneysu.
"Practical CCA2-Secure and Masked Ring-LWE Implementation". TCHES 2018

• Saber uses Module LWR problem

• No explicit noise generation.

• Saber uses power-of-2 moduli p=210 and q=213

 Rounding becomes bit-shift

Masking implementation: Case study for Saber KEM

mod q mod p

LWE LWR-vs-

Saber protocol

Saber.KEM is obtained via the Fujisaki-Okamoto transform.

Saber KEM with masking

Masking of decryption + re-encryption + ct comparison

Saber KEM with masking

Masking of decryption + re-encryption + ct comparison
Building blocks that should be protected:
• Polynomial addition and multiplication
• Rounding (i.e., bit-shifting)

• Keccak-based functions: SHA, SHAKE
• Binomial sampling
• Comparison of ciphertexts

Masking of rounding in Saber
• As p and q are powers-of-2, rounding is bit-shifting in Saber

• Bit-shifting is easy with Boolean shares
To perform x>>k, shift x1>>k and x2>>k where x = x1⊕ x2

• However, inputs to rounding are arithmetic shares

E.g. Output of polynomial arithmetic is rounded

• Idea: Apply A2B transformation before rounding.
Apply B2A transformation after rounding.

• [BDKBV20] proposes an optimized implementation that combines A2B+Shifting+B2A

[BDKBV20] MV. Beirendonck, JP D'Anvers, A. Karmakar, J. Balasch, I. Verbauwhede.
"A Side-Channel Resistant Implementation of SABER", ACM JETC.

Masking of binomial sampling in Saber
• Binomial sampling: Pseudo-random strings x and y as inputs. Produces

Sample z = HammingWeight(x) - HammingWeight(y)

• Easy to compute on arithmetic shares.

• However, pseudorandom strings are generated by Keccak

Keccak x

• Optimized: [BDKBV20] evaluates ‘half adder/subtractor circuits’ on Boolean shares
 Uses bit-slicing to improve performance

Masked
Keccak

x1

x2
Boolean shares

Results: 1st order masking of Saber
SW Results (ARM M4) [BDKBV20]

• Masked IND-CCA decapsulation has 2.5x cycle counts as overhead
• Overall masked decapsulation takes < 3M cycles
• Memory requirement increases by 1.84x

Preliminary HW Results (Xilinx FPGA)
Ongoing work by A. Basso, L. Prakop, and S. S. Roy

• Masked IND-CCA decapsulation has 2.4x cycle counts as overhead
• Area increase 1.3x

What helps masking in Saber?
• Power-of-2 moduli  Easier A2B conversions
• LWR has implicit error  Less error sampling

Outline

 Background:
 Learning With Error (LWE) Problem
 LWE/LWR-based PKE Framework (Main Focus)

 Overview of Side-Channel Attacks:
 Algorithmic-Level
 Implementation-Level

 Overview of Side-Channel Countermeasures:

 Future Works and Conclusion:

Implementation-based SCA on LWE/LWR-based PKE/KEMs

 Major Computation Sub-blocks:
 Polynomial/Matrix-Vector Multiplication
 Error/Secret Sampler (Gaussian/Sub-Gaussian Distribution)
 PRF/PRNG – Extendable Output Function (XOF - (e.g.) SHAKE)

 Single-trace key recovery attacks using power/EM side-channel - Most Potent

Modus Operandi:
 Partition Trace into sub-traces (sensitive intermediates)

 Two common ways to extract information:
 Horizontal CPA/DPA [CFG+10]
 Template Matching and Algebraic techniques

(Soft-Analytical SCA [VGS14])

[CFG+10] Clavier, Christophe, Benoit Feix, Georges Gagnerot, Mylène Roussellet, and Vincent Verneuil. "Horizontal correlation analysis on
exponentiation." In International Conference on Information and Communications Security, pp. 46-61. Springer, Berlin, Heidelberg, 2010.
[VGS14] Veyrat-Charvillon, Nicolas, Benoît Gérard, and François-Xavier Standaert. "Soft analytical side-channel attacks." In International Conference on the
Theory and Application of Cryptology and Information Security, pp. 282-296. Springer, Berlin, Heidelberg, 2014.

Reported Works Attack Technique Target Scheme

School Book Multiplier (Poly Mul./Matrix-Vector Mul.)

Aysu et al. [ATT+18] Horizontal DPA (Extend and Prune) Frodo and NewHope

Bos et al. [BFM+18] Template Attack (Extend and Prune) Frodo

Number Theoretic Transform (Poly Mul.)

Primas et al. [PPM17] Template Attack (SASCA) Generic LWE/LWR-based PKE

Pessl et al. [PP20] Template Attack (SASCA) Generic LWE/LWR-based PKE

SHAKE (PRNG)

Kannwischer et al. [KPP20] Template Attack (SASCA) Generic LWE/LWR-based PKE

Implementation-based SCA on LWE/LWR-based PKE/KEMs

Single Trace Key Recovery Attacks (Implementation Level)

Implementation-based SCA on LWE/LWR-based PKE/KEMs
 Advantages:

 Single Trace Key Recovery
 Only Side-Channel information sufficient (No communication with target-device)

 Disadvantages:
 Requires some/complete knowledge of implementation
 Sensitive to SNR (horizontal noise (jitter))

 Countermeasures:
 Shuffling of intermediate operations within single computation [ZBT19, RPBC20]

[ATT+18] Aysu, Aydin, Youssef Tobah, Mohit Tiwari, Andreas Gerstlauer, and Michael Orshansky. "Horizontal side-channel vulnerabilities of post-quantum key exchange protocols."
In 2018 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 81-88. IEEE, 2018.

[PPM17] Primas, Robert, Peter Pessl, and Stefan Mangard. "Single-trace side-channel attacks on masked lattice-based encryption." In International Conference on Cryptographic Hardware
and Embedded Systems, pp. 513-533. Springer, Cham, 2017.

[PP19] Pessl, Peter, and Robert Primas. "More practical single-trace attacks on the number theoretic transform." In International Conference on Cryptology and Information Security
in Latin America, pp. 130-149. Springer, Cham, 2019.
[HCY20] Huang, Wei-Lun, Jiun-Peng Chen, and Bo-Yin Yang. "Power analysis on NTRU prime." IACR Transactions on Cryptographic Hardware and Embedded Systems (2020): 123-151.

[KPP20] Kannwischer, M. J., Pessl, P., & Primas, R. (2020). Single-Trace Attacks on Keccak. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2020(3), 243-268.

[BFM+18] Bos, Joppe W., Simon Friedberger, Marco Martinoli, Elisabeth Oswald, and Martijn Stam. "Assessing the feasibility of single trace power analysis of frodo." In International
Conference on Selected Areas in Cryptography, pp. 216-234. Springer, Cham, 2018.

[RPBC20] Ravi, Prasanna, Romain Poussier, Shivam Bhasin, and Anupam Chattopadhyay. "On Configurable SCA Countermeasures Against Single Trace Attacks for the NTT."
In International Conference on Security, Privacy, and Applied Cryptography Engineering, pp. 123-146. Springer, Cham, 2020.

[ZBT19] Zijlstra, Timo, Karim Bigou, and Arnaud Tisserand. "FPGA implementation and comparison of protections against SCAs for RLWE." In International Conference on Cryptology in
India, pp. 535-555. Springer, Cham, 2019.

Outline

• Background:
• Learning With Error (LWE) Problem
• LWE/LWR-based PKE framework

• Overview of side-channel attacks:
• Algorithmic-level
• Implementation-level

• Overview of masking countermeasures:

• Conclusions and future works:

Conclusion:
 We cannot ignore side-channel security of lattice-based schemes

 Several practical attacks which break only with a very few traces.

 Requirement of more analysis of SCA-protected implementations of lattice-based schemes.

 Scope for improvement in efficiency of masking countermeasures for LWE/LWR-based PKE/KEMs.

 Requirement of new techniques to concretely estimate security after SCA
 Leaky LWE Estimator (Toolkit: https://github.com/lducas/leaky-LWE-Estimator)

Future Works:
More Attacks
 Scope for algorithmic-level SCA on NTRU:

 Existing SCA mostly target the polynomial multiplier [ABGV08,MKS+10,WZW13,ZWW13,SMS19,HCY20]
 Several PC Oracle-based key recovery attacks known for NTRU-based schemes [JJ00, GP07, ZCQ+21, DDS+19]

Countermeasures
 Fully masked implementations
 Scheme-specific countermeasures

[ABGV08] AC Atici, Lejla Batina, Benedikt Gierlichs, and Ingrid Verbauwhede. Power analysis on NTRU implementations for RFIDs: First results. In The 4th
Workshop on RFID Security, July 9th -11th, Budapest, 2008

[MKS+10] LEE Mun-Kyu, Jeong Eun Song, and HAN Dong-Guk. Countermeasures against power analysis attacks for the NTRU public key cryptosystem. IEICE
transactions on fundamentals of electronics, communications and computer sciences, 93(1):153–163, 2010.
[WZW13] An Wang, Xuexin Zheng, and Zongyue Wang. Power analysis attacks and countermeasures on NTRU-based wireless body area networks. TIIS,
7(5):1094–1107, 2013.
[ZWW13] Xuexin Zheng, An Wang, and Wei Wei. First-order collision attack on protected NTRU cryptosystem. Microprocessors and Microsystems -
Embedded Hardware Design, 37(6-7):601–609, 2013.

[HCY20] Huang, Wei-Lun, Jiun-Peng Chen, and Bo-Yin Yang. "Power analysis on NTRU prime." IACR Transactions on Cryptographic Hardware and Embedded
Systems (2020): 123-151.
[SMS19] Schamberger, Thomas, Oliver Mischke, and Johanna Sepulveda. "Practical evaluation of masking for NTRUEncrypt on ARM Cortex-M4."
In International Workshop on Constructive Side-Channel Analysis and Secure Design, pp. 253-269. Springer, Cham, 2019.

[JJ00] Jaulmes, Éliane, and Antoine Joux. "A chosen-ciphertext attack against NTRU." In Annual International Cryptology Conference, pp. 20-35. Springer,
Berlin, Heidelberg, 2000.
[GP07] Gama, Nicolas, and Phong Q. Nguyen. "New chosen-ciphertext attacks on NTRU." In International Workshop on Public Key Cryptography, pp. 89-
106. Springer, Berlin, Heidelberg, 2007.
[ZCQ+21] Zhang, Xiaohan, Chi Cheng, Yue Qin, and Ruoyu Ding. "Small Leaks Sink a Great Ship: An Evaluation of Key Reuse Resilience
of PQC Third Round Finalist NTRU-HRSS."
[DDS+19] Ding, J., Deaton, J., Schmidt, K., Vishakha, Zhang, Z.: A simple and efficient key reuse attack on ntru cryptosystem (2019), https://eprint.iacr.
org/2019/1022

References:

	Slide Number 1
	Notice
	Slide Number 3
	Outline
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Ring LWE-based PKE (IND-CPA secure)
	Ring LWE-based PKE (IND-CPA secure)
	Ring LWE-based PKE (IND-CPA secure)
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Outline
	Outline
	Classification of SCA of lattice-based PKE/KEMs:
	Slide Number 23
	Slide Number 24
	PC Oracle-based SCA: Constructing Malicious CTs (Part-I)
	PC Oracle-based SCA: Constructing Malicious CTs (Part-I)
	PC Oracle-based SCA: Constructing Malicious CTs (Part-I)
	PC Oracle-based SCA: Constructing Malicious CTs (Part-I)
	PC Oracle-based SCA: Constructing Malicious CTs (Part-I)
	PC Oracle-based SCA: Constructing Malicious CTs (Part-I)
	PC Oracle-based SCA: Constructing Malicious CTs (Part-I)
	PC Oracle-based SCA: Constructing Malicious CTs (Part-I)
	PC Oracle-based SCA: Constructing Malicious CTs (Part-I)
	PC Oracle-based SCA: Constructing Malicious CTs (Part-I)
	PC Oracle-based SCA: Using SCA as O/X distinguisher (Part-II)
	PC Oracle-based SCA: Using SCA as O/X distinguisher (Part-II)
	PC Oracle-based SCA: Experimental Results
	Classification of SCA on LWE/LWR-based PKE/KEMs:
	A Few Observations on the PC Oracle-based SCA…
	A Few Observations on the PC Oracle-based SCA…
	Full Decryption (FD) Oracle-based SCA:
	Full Decryption (FD) Oracle-based SCA:
	Classification of SCA on LWE/LWR-based PKE/KEMs:
	How does an attacker perform full �message recovery through SCA???
	Encoding and Decoding Functions:
	SCA of Message Encoding
	SCA of Message Encoding
	Defending against SCA of Message Encoding
	Ciphertext Malleability in LWE/LWR-based PKE
	Ciphertext Malleability in LWE/LWR-based PKE
	Ciphertext Malleability as a tool for SCA:
	Ciphertext Malleability as a tool for SCA:
	Ciphertext Malleability as a tool for SCA:
	Ciphertext Malleability as a tool for SCA:
	Ciphertext Malleability as a tool for SCA:
	Classification of SCA on LWE/LWR-based PKE/KEMs:
	Classification of SCA on LWE/LWR-based PKE/KEMs:
	Slide Number 58
	Slide Number 59
	Analysis of Ciphertext Comparison:
	Decryption Failure (DF) Oracle-based SCA:
	Decryption Failure (DF) Oracle-based SCA:
	Decryption Failure (DF) Oracle-based SCA:
	Decryption Failure (DF) Oracle-based SCA:
	Decryption Failure (DF) Oracle-based SCA:
	Decryption Failure (DF) Oracle-based SCA:
	How does an attacker identify �decryption failures� through SCA???
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Decryption Failure (DF) Oracle-based SCA:
	Decryption Failure (DF) Oracle-based SCA:
	Decryption Failure (DF) Oracle-based SCA:
	Slide Number 76
	Classification of SCA of LWE/LWR-based PKE/KEMs:
	Classification of SCA of LWE/LWR-based PKE/KEMs:
	Outline
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Ring LWE-based PKE (IND-CPA)
	1st Order Masking for IND-CPA PKE
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Outline
	Implementation-based SCA on LWE/LWR-based PKE/KEMs
	Implementation-based SCA on LWE/LWR-based PKE/KEMs
	Implementation-based SCA on LWE/LWR-based PKE/KEMs
	Outline
	Conclusion:
	Slide Number 107

