

1

ITL BULLETIN FOR OCTOBER 2017

NIST GUIDANCE ON APPLICATION CONTAINER SECURITY

Ramaswamy Chandramouli, Murugiah Souppaya, and Karen Scarfone,1 Editors
Computer Security Division
Information Technology Laboratory
National Institute of Standards and Technology
U.S. Department of Commerce

Introduction

NIST’s Information Technology Laboratory has released Special Publication (SP) 800-190, Application Container
Security Guide and NIST Internal Report (NISTIR) 8176, Security Assurance Requirements for Linux Application
Container Deployments. Application container technology is increasingly being used to deploy, manage, and
maintain applications. Transitioning from traditional application architectures to container-based implementations
can have both positive and negative effects on an organization’s security. NIST SP 800-190 and NISTIR 8176 are
intended to help organizations understand the negative effects and provide practical recommendations for
addressing them when planning for, implementing, and maintaining containers.

This bulletin offers an overview of application container technology and its most notable security challenges. It
starts by explaining basic application container concepts and the typical application container technology
architecture, including how that architecture relates to the container life cycle. Next, the article examines how the
immutable nature of containers further affects security. The last portion of the article discusses potential
countermeasures that may help to improve the security of application container implementations and usage.

Introduction to Application Container Technology

Operating system (OS) virtualization provides a separate virtualized view of the OS to each application on a server,
keeping each application on the server isolated from all others. Each application can only see and affect itself. OS
virtualization has become increasingly popular due to advances in its ease of use and a greater focus on developer
agility as a key benefit. Today’s OS virtualization technologies focus on providing a portable, reusable, and
automatable way to package and run applications (apps). The terms application container or simply container are
used to refer to these technologies.

Container architectures often divide an app into many components, each with a single well-defined function. Each
app component runs in a separate container, and sets of containers called microservices work together to
compose an app. An image is a package that contains all the files required to run a container. An image should
include only the executables and libraries required by the app itself; all other OS functionality is provided by the OS
kernel within the underlying host OS. With this approach, app deployment is more flexible and scalable.
Development is also simpler because functionality is more self-contained. However, there are many more objects
to manage and secure, which may cause problems for app management and security tools and processes.

Modern container technologies have largely emerged along with the adoption of development and operations
(DevOps) practices that seek to increase the integration between building and running apps. The portable and
declarative nature of containers is particularly well suited to these practices because they allow an organization to

1 Karen Scarfone is a Guest Researcher from Scarfone Cybersecurity.

https://doi.org/10.6028/NIST.SP.800-190
https://doi.org/10.6028/NIST.SP.800-190
https://doi.org/10.6028/NIST.IR.8176
https://doi.org/10.6028/NIST.IR.8176

2

be consistent among development, test, and production environments. Organizations often use continuous
integration processes to put their apps into containers directly in the build process, so that from the beginning of
the app’s life cycle, consistency of its runtime environment is guaranteed.

Container images are typically designed to be portable across machines and environments, so an image created in
a development lab can be easily moved to a test lab for evaluation, and then copied into a production environment
to run without modification. The downside of this approach is that the security tools and processes used to protect
containers should not make assumptions about specific cloud providers, host OSs, network topologies, or other
aspects of the container runtime environment, which may frequently change. More critically, security should be
consistent across all of these environments and throughout the app life cycle, from development to test to
production.

Figure 1 shows a simplified example of a typical container technology architecture, which shows its three life cycle
phases: 1) image creation, testing, and accreditation; 2) image storage and retrieval; and 3) container deployment
and management. These three phases are described below.

Image Creation, Testing, and Accreditation

(1) Image Creation, Testing, and Accreditation: Software developers create and build app components, and
then package them into one or more images. Image creation typically uses build management and
automation tools to assist with the continuous integration process. These tools take the libraries, binaries,
and other components of an app, perform testing on them, and then assemble images out of them based
on a developer-created manifest.

After an image is created, organizations typically perform testing and accreditation. For example, test
automation tools and personnel would use the images to validate the app’s functionality, and security
teams would perform accreditation on the same images. The consistency of building, testing, and
accrediting exactly the same artifacts for an app is one of the key operational and security benefits of

Figure 1. Typical Container Technology Architecture, which shows the three phases of a container’s life cycle
(bottom three boxes).

3

containers. Once testing and accreditation has been successfully completed, the images are signed and
sent to a registry.

(2) Image Storage and Retrieval: Images are typically stored in central locations to make it easy to control,

share, find, and reuse them across hosts. Registries are services that allow developers to easily store
images as they are created, tag and catalog images for identification and version control to aid in
discovery and reuse, and find and download images that others have created.

Registries provide application programming interfaces (APIs) that enable automating common image-
related tasks. For example, organizations may have triggers in the image creation phase that
automatically push images to a registry once tests pass. The registry may have triggers that automate the
deployment of new images. This automation enables faster iteration on projects with more consistent
results.

(3) Container Deployment and Management: Tools known as orchestrators enable DevOps personas – or

automation working on their behalf – to pull images from registries, deploy those images into containers,
and manage the running containers. This deployment process is what results in a usable version of the
app, running and ready to respond to requests. When an image is deployed into a container, the image
itself is not changed—a copy of it is placed within the container and transitioned from being a dormant
set of app code to a running instance of the app.

The abstraction provided by an orchestrator allows a DevOps persona to simply specify how many
containers need to be running a given image and what resources, such as memory, processing, and disk
need to be allocated to each. The orchestrator knows the state of each host within the cluster, including
what resources are available for each host, and determines which containers will run on which hosts. The
orchestrator then pulls the required images from the registry and runs them as containers with the
designated resources.

Orchestrators are also responsible for monitoring container resource consumption, job execution, and
machine health across hosts. Depending on its configuration, an orchestrator may automatically restart
containers on new hosts if the hosts on which they were initially running failed.

The Immutable Nature of Container Operations

What most distinguishes container technologies from other technologies is the concept of immutability in their
operations. Most container technologies intend for containers to be operated as stateless entities that are
deployed but not changed. When a running container needs to be upgraded or have its contents otherwise
changed, it is destroyed and replaced with a new container based on an updated image. This “continuous delivery”
automation enables developers to simply build a new version of the image for their app, test the image, push it to
the registry, and then rely on the automation tools to deploy it to the target environment.

Container automation enables developers and support engineers to make and push changes to apps at a much
faster pace. Organizations may go from deploying a new version of their app every quarter to deploying new
components weekly or daily. This approach also has significant potential security benefits because it enables
organizations to build, test, validate, and deploy exactly the same software in exactly the same configuration. As
updates are made to apps, organizations can ensure that the most recent versions are used by configuring their
orchestrators to pull the most up-to-date version of each image from the registry.

4

This means that all vulnerability management, including patches and configuration settings, is typically taken care
of by the developer when building a new image version. With containers, developers are largely responsible for
the security of apps and images instead of the operations team. This change in responsibilities often requires much
greater coordination and cooperation among personnel than was previously necessary.

The immutable nature of containers also has implications for data persistence. Rather than intermingling the app
with the data it uses, containers stress the concept of isolation. Data persistence should be achieved not through
simple writes to the container root file system, but instead by using external, persistent data stores such as
databases or cluster-aware persistent volumes. The data containers use should be stored outside of the
containers, so when the next version of an app replaces the containers running the existing version, all data is still
available to the new version.

Security Countermeasures for Application Container Technology

To help organizations understand the security concerns regarding application container technology, NIST SP 800-
190 identifies security threats to platforms hosting the containers as well as the technology components involved
in building containers and storing them prior to launch. Taking into consideration the overall security implications
for the entire ecosystem, the document recommends six levels of security countermeasures: image, registry,
orchestrator, container, host OS, and hardware.

NISTIR 8176 builds on this information to examine potential security solutions that provide the necessary
countermeasures, as well as the kind of security assurance requirements each solution should satisfy. Because
security solutions for containers vary significantly based on the host OS, NISTIR 8176 is scoped to focus on Linux-
based environments only, which enables detailed security assurance requirements to be defined.

There are too many potential solutions and associated security assurance requirements to cover in this bulletin, so
here are two examples of such solutions, called hardware-based countermeasures and host operating system-
based countermeasures, which are discussed in more detail in NISTIR 8176.

(1) Hardware-Based Countermeasures: Implementing a trusted computing model starts with measured/secured

boot, provides a verified system platform, and builds a chain of trust rooted in hardware. This chain of trust
then extends to bootloaders, the OS kernel, and the OS components to enable cryptographic verification of
boot mechanisms, system images, container images, and other components. There are two approaches to a
trusted computing model solution, and they both involve a combination of a hardware-based (physical)
trusted platform module (TPM) and a software-based (virtual) TPM (called a vTPM). The difference between
the approaches is where the vTPM is placed: in the Linux kernel or in a dedicated container.

Each of these approaches has different security assurance requirements:

• If the vTPM is placed in the Linux kernel and the kernel is completely trusted, containers can reliably
attest to their own state.

• If the vTPM is placed in the Linux kernel and the kernel is not completely trusted, the hardware
platform provider can sign an endorsement key stating that the TPM is trustworthy. This can then be
extended by giving each vTPM instance its own endorsement key and using the hardware-based TPM
to sign the endorsement keys.

• If the vTPM is placed in a dedicated container, the host OS can provide isolation between processes
belonging to different containers through the namespaces feature. However, this approach provides
less protection than if the vTPM were placed in the kernel because the kernel is more reliable in
limiting access.

5

(2) Host OS-Based Countermeasures: The host OS should mitigate threats involving “escape” from a container,

particularly to protect each container from all other containers on the same host. Many access control
solutions are available in Linux environments. These solutions use kernel-loadable modules referred to as
Linux Kernel Modules (LKMs). These solutions enforce access control policies in a variety of ways, such as
labeling each container and only allowing actions authorized for that label, and specifying which system calls
are available for an application within a container for interfacing with the underlying kernel. The goal of these
LKMs is to provide another level of security checks on the access rights of processes and users beyond that
provided by the standard file-level access control.

Security assessment requirements that need to be satisfied include the following:

• A user authorized to run applications in a container should not be allowed access to the LKM-based
access control solutions.

• If supported, both a syscall whitelist (allowable system calls) and a blacklist (prohibited calls) should
be generated for each container. Whitelists should be based on the type of application hosted in the
container, the deployment situation, and the container size. Blacklists should include high-risk calls,
such as ones that allow loading LKMs, rebooting the host, and triggering mount operations.

• Containers should be prevented from mounting/remounting sensitive directories and/or specific
system directories critical to security enforcement (e.g., cgroups, procfs, sysfs).

Summary

NIST SP 800-190 and NISTIR 8176 provide information on the basics of application container technology, the
potential security issues of implementing and using this technology, and the countermeasures that should be used
and the security assurance requirements that should be met to address those issues. NIST SP 800-190 offers
general guidance on the topic of application container technology security, while NISTIR 8176 complements NIST
SP 800-190 by taking a more detailed look at Linux container security.

ITL Bulletin Publisher: Elizabeth B. Lennon
Information Technology Laboratory
National Institute of Standards and Technology
elizabeth.lennon@nist.gov

Disclaimer: Any mention of commercial products or reference to commercial organizations is for information only;
it does not imply recommendation or endorsement by NIST nor does it imply that the products mentioned are
necessarily the best available for the purpose.

mailto:elizabeth.lennon@nist.gov

