
PR s

of a

I I I I

NATIONAL BUREAU OF STANDARDS

GAITHERSBURG, MARYLAND

viJ

I

NOVEMBER 18-20, 1180

TABLE OF CONTENTS

Table of Contents

About the Seminar

About the DoD Computer Security Initiative

Acknowledgements

Program

List of Handouts

"Introduction and Op~ning Remarks," Stephen T. Walker,
Chairman, DoD Computer fecurity Technical Consortium

"Opening Remarks," Seymour Jeffery,
National Bureau of Standards

"DoD Computer Security Initiative," Stephen T. Walker,
Chairman, DoD Computer Security Technical Consortium

"Honeywell Trusted ADP Systems," Irma Wyman, Honeywell

"Computer Security Research at Digital," Paul A. Karger,
Digital Equipment Corporation

"Security and Protection of Data in the IBM System/38,"
Viktors Berstis, IBM

"Gnosis: A Secure Capability Based 370 Operating System,"
Jay Jonekait, TYMSHARE, Inc.

"Computer Security Developments at Sperry Univac,"
Theodore M. P. Lee, Sperry-Univac

Panel: "How Can the Government and the Computer Industry Solve
the Computer Security Problem?" Ted Lee, Sperry-Univac,
Jim Anderson, James P. Anderson, Inc., Steve Lipner, MITRE,
Marvin Schaefer, System Development Corporation,
Bill Eisner, CIA

"Quality Assurance and Evaluation Criteria," Grace H. Nibaldi,
MITRE Corporation

"Specification and Verification Overview," William F. Wilson,

i

iii

iv

v

vi

ix

A-1

B-1

C-1

D-1

E-1

F-1

G-1

H-1

I-1

J-1

MITRE Corporation K-1

i

"FIM: A Formal Methodology for Software Development," Richard
Kemmerer, System Development Corporation L-1

"Building Verified Systems with Gypsy," Donald I. Good,
University of Texas M-1

"An Informal View of the HDM Computational Model," Karl N.
Levitt, Stanford Research Institute International, Inc. N-1

"AFFIRM: A Specification and Verification System,"
Susan L. Gerhart, University of Southern California Information
Information Sciences Institute 0-1

"An Overview of Software Testing," Mary Jo Reece, MITRE
Corporation P-1

"Update on KSOS," John Nagle, Ford Aerospace and
Communications Corporation Q-1

"Assurance Practices in KVM/370," Marvin Schaefer, R-1
System Development Corporation

"Kernelized Secure Operating System (KSOS-6)," Charles H.
Bonneau, Honeywell

ii

S-1

Third Seminar on the

DEPARTMENT OF DEFENSE COMPUTER SECURITY INITIATIVE

ABOUT THE SEMINAR

November 18-20, 1980

National Bureau of Standards
Gaithersburg, Maryland

This is the third in a series of seminars to acquaint computer
system developers and users with the status of "trusted"* ADP system
developments within the Department of Defense and current planning for
the integrity evaluation of commercial implementations of similar
systems. The two previous seminars have stressed user requirements for
trusted computer systems within both the government and private sector.
The first day of this seminar includes presentations by five computer
manufacturers of the trusted system development activities within their
organizations. Following these presentations there will be a panel
discussion on "How can the government and the .computer industry solve
the computer security problem?" Panelists are drawn from industry and
government.

The second day of the seminar opens with a discussion of the
technical evaluation criteria that have been proposed as a basis for
determining the relative merits of computer systems. The assurance
aspects of those criteria provide the context for the second and third
days of the seminar. After the context has been set, we provide an
introduction to formal specification and verification technology to
include descriptions of the basic types of formal specification and the
implications of design and program verification. Representatives of
several prominent specification and verification research groups will
then discuss their systems.

As a way of rounding out the assurance criteria and providing
further context for the later talks, the opening talk on the third day
discusses software testing techniques. Current acquisition program
testing approaches are contrasted with the formal verification
techniques discussed on the second day, emphasizing the role of such
testing in revealing errors which formal verification cannot detect
today. Then the developers of the DoD-sponsored trusted systems will
discuss the techniques they have used to assure a quality product. The
seminar will conclude with a panel discussion on "Where should you put
your assurance dollars?" Panelists are drawn from the verification,
development and testing communities.

*A "trusted" ADP system is one which employs sufficient hardware and
software integrity measures to allow its use for simultaneously
processing multiple levels of classified and/or sensitive information.

iii

ABOUT THE DOD COMPUTER SECURITY INITIATIVE

The Department of Defense (DoD) Computer Security Initiative
was established in 1978 by the Assistant Secretary of Defense for
Communications, Command, Control and Intelligence to achieve the
widespread availability of "trusted" ADP systems for use within the_
DoD. Widespread availability implies the use of commercially
developed trusted ADP systems whenever possible. Recent DoD
research activities are demonstrating that trusted ADP systems can
be developed and successfully employed in sensitive information
handling environments. In addition to these demonstration systems,
a technically sound and consistent evaluation procedure must be
established for determining the environments for which a particular
trusted system is suitable.

The Computer Security Initiative is attempting to foster the
development of trusted ADP systems through technology transfer
efforts and to define reasonable ADP system evaluation procedures to
be applied to both government and commercially developed trusted ADP
systems. This seminar is the third in a series which constitutes an
essential element in the Initiative Technology Transfer Program.

The NBS Institute for Computer Sciences and Technology, through
its Computer Security and Risk Management Standards program, seeks
new technology to satisfy Federal ADP security requirements. The
Institute then promulgates acceptable and cost effective technology
in Federal Information Processing Standards and Guidelines. The
Institute is pleased to assist the Department of Defense in
transferring the interim results of its research being conducted
under the Computer Security Initiative.

iv

ACKNOWLEDGMENTS

A number of people in and outside of the DoD Computer Security
Technical Consortium have helped to make this seminar a success. At
the MITRE Corporation, Grace Nibaldi and Bill Wilson helped to organize
the speakers; Karen Borgeson and Dianne Mazzone managed registration,
and Annie Discepolo and George Huff prepared some of the handouts.

Also, we are grateful to Jo Ann Lorden and Greta Pignone of NBS
for arranging the splendid facilities.

DISCLAIMER

The presentations in this proceedings are provided for
your information. They should not be interpreted as necessarily
representing_the official view or carrying any endorsement, either
expressed or implied, of the Department of Defense or the United
States Government.

S~UdL
Stephen T. Walker, Chairman
Computer Security Technical Consortium

PROGRAM

November 18, 1980 Red Auditorium

9:15 Opening Remarks

Seymour Jeffery,
Institute for Computer Sciences & Technology
National Bureau of Standards

DOD Computer Security Initiative

Stephen T. Walker, Chairman
DOD Computer Security Technical Consortium

INDUSTRY TRUSTED SYSTEM ACTIVITIES

Paul A. Karger
Digital Equipment Corporation

10:45 Break

11:00 INDUSTRY TRUSTED SYSTEM ACTIVITIES -Continued

Irma Wyman
Honeywell

Viktors Berstis
IBM

Jay Jonekait
TYMSHARE, Inc.

Theodore M. P. Lee
Sperry-Univac

1:00 Lunch

2:00 PANEL: "How Can the Government and the Computer
Industry Solve the Computer Security Problem?"

3:00

Theodore M. P. Lee, Sperry Univac
James P. Anderson, Consultant
William Eisner, Central Intelligence Agency
Steven P. Lipner, Mitre Corporation
Marvin Schaefer, System Development Corporation

Break

3:15 PANEL- Continued

4:30 Adjourn

vi

November 19, 1980 Red Auditorium

9:00 "Quality Assurance and Evaluation Criteria"

Grace H. Nibaldi
Mitre Corporation

9:50 "Specification and Verification Overview"

10:45

11:00

12:00

William F. Wilson
Mitre Corporation

Break

SPECIFICATION AND VERIFICATION SYSTEMS

"FDM: A Formal Methodology for Software Development"

Richard Kemmerer
System Development Corporation

"Building Verified Systems with Gypsy"

Donald I. Good
University of Texas

1:00 Lunch

SPECIFICATION AND VERIFICATION SYSTEMS - Continued

2:00 "An Informal View of HDM 0 s Computational Model"

Karl N. Levitt
SRI International

3:00 Break

3: 15 "AFFIRM: A Specification and Verification System"

Susan L. Gerhart
USC Information Sciences Institute

4:15 Adjourn

vii

November 20, 1980 Red Auditorium

9:00 "An Overview of Software Testing"

Mary Jo Reece
Mitre Corporation

THE EXPERIENCES OF TRUSTED SYSTEM DEVELOPERS

9:45 "Update on KSOS"

10:45

11:00

12:00

John Nagle
Ford Aerospace and Communications Corporation

Break

KVM/370

Marvin Schaefer
System Development Corporation

"Kernelized Secure Operating System (KSOS-6)"

Charles H. Bonneau
Honeywell

1:00 Lunch

2:00 PANEL: "Where Would You Put Your Assurance Dollars?"

Panelists: Developers, Researchers, & Testers

3:00 Break

3:15 PANEL- Continued

4:15 Adjourn

vii;i.

LIST OF HANDOUTS

In addition to the information documented in these Proceedings,
the following materials were made available at the Seminar:

Computer Security Initiative Program Trusted Systems Bibliography.

Computer Security Initiative Program Glossary.

M. H. Cheheyl, M. Gasser, G. A.
Specification and Verification:
The MITRE Corporation, Bedford,

Huff, J. K. Millen, "Secure System
Survey of Methodologies," MTR-3904,

Massachusetts, 20 February 1980.

G. H. Nibaldi, "Proposed Technical Evaluation Criteria for Trusted
Computer Systems," M79-225, The MITRE Corporation, Bedford,
Massachusetts, 25 October 1979.

G. H. Nibaldi, "Specification of a Trusted Computing Base (TCB),"
M79-228, The MITRE Corporation, Bedford, Massachusetts, 30 November
1979.

J. D. Tangney, "History of Protection in Computer Systems," MTR-
3999, The MITRE Corporation, Bedford, Massachusetts, 15 July 1980.

E. T. Trotter and P. S. Tasker, "Industry Trusted Computer System
Evaluation Process," MTR-3931, The MITRE Corporation, Bedford,
Massachusetts, 1 May 1980.

ix

OPENING REMARKS

STEPHEN T. WALKER
DIRECTOR, INFORMATION SYSTEMS

ASSISTANT SECRETARY OF DEFENSE FOR
COMMUNICATIONS, COMMAND, CONTROL AND INTELLIGENCE

Good morning and welcome to the third seminar on the DoD Computer Security
Initiative.

My name is Steve Walker and I am Chairman of the DoD Computer Security
Technical Consortium which is the sponsor of these seminars.

I am very pleased to be with you today to report on the progress that has been
made in the area of trusted computer systems in the past several years and
indeed in the past few months.

I am particularly pleased to acknowledge two very significant developments
in the world of computer security that have made major strides since our last
seminar.

First, as you can tell from looking at your program, the major external
objective of the Computer Security Initiative, that of getting the computer
manufacturers involved in the development of trusted computer systems is
being accomplished. The credit for this belongs to many factors over and
above the efforts of the Initiative but as I hope you will realize from
today's presentations, the manufacturers are now seriously involved in
building trusted computer systems.

The other point I want to emphasize is that the Initiative's major internal
objective, that of getting the government organized to perform the technical
evaluation of the integrity of computer systems is also nearing an accomplished
fact. I had hoped to be able to formally announce the establishment of
some form of Computer Security Evaluation Center. I cannot do that but
I can describe some of the concepts being considered at high levels within
the Government and I am sufficiently optimistic about these developments
that I am willing to predict that within a year there will be a technical
integrity evaluation process in being to serve the DoD and perhaps one to
serve the Federal Government as a whole.

I am excited about both of these developments because of the significant
impact that they will have, indeed are now having, on the quality of computer
systems for all users.

I would like now to review with you some of the background leading up to
these developments and to share with you my feelings about where we are
and where we may be going.

A-1

Following this we will hear from 5 manufacturers' representatives about
trusted computer system activities in their companies.

2

This afternoon we will
from the last seminar.
status and pitfalls of

have an expanded version of the "Ted and Jim" Show
We have a select panel of cynics to discuss the

developing and using trusted computer systems.

Tomorrow we will focus on the area of formal specification and verification,
hearing from several researchers. Thursday we will hear the experiences
of several of the DoD system development efforts in their use of these
verification tools.

A-2

...........
- ' -- -- ~ . -. -

OPENING REMARKS

THIRD SEMINAR ON THE
DEPARTMENT OF DEFENSE COMPUTER

SECURITY INITIATIVE PROGRAM

Seymour Jeffery
Institute for Computer Sciences and Technology

National Bureau of Standards

November 18, 1980

On behalf of the Directors of the National Bureau of
Standards and the Institute for Computer Sciences and Technology,
I would like to welcome you to this Third Seminar on the
Department of Defense Computer Security Initiative Program. !CST
is pleased to sponsor a forum for DOD to present the progress
made in the important area of computer security, DOD has defined
the term "trusted" ADP System as one which satisfies the DOD
requirements of simultaneously processing multiple levels of
classified or sensitive information. We at NBS feel there is a
strong need to transfer this technology to the non-DOD Government
sector as well as to private industry so that the technology may
be used to satisfy their computer security requirements. I
believe that this transfer of technology is an important part of
the NBS program in computer security.

This is the third DOD-NBS Seminar on trusted operating
systems. Some of you are new to the field; some of you have been
involved as long as I have; and some perhaps even longer.

Dr. Willis Ware of the RAND Corporation, who keynoted the
first seminar in this series, was the first to articulate the
computer security problem and to outline some approaches to
solving it. In his opening remarks at the first seminar in
January, 1979, Dr. Ware reviewed the computer security problem as
he perceived it in 1967. He noted the successes and the failures
in solving the problems during the last 12 years. I, too, would
like to spend a few minutes looking back at one of the milestone
events in the computer security area. This event was the
Controlled Accessibility Workshop co-sponsored by NBS and ACM and
held at Rancho Santa Fe, California in the Fall of 1972.
Controlled Accessibility was the term used to denote the set of
controls which could be used to limit the access to, and use of,
a computer only to authorized users performing authorized
activities. The Workshop brought together 65 computer security
technologists and managers. The group was tasked with
identifying technical and management controls which would provide

B-1

llfll

.... ·. .- -.·

the desired protections. The controls were divided into five
areas:

Audit
EDP Management
Personal Identification
Security Measurement
Access Controls

Since this seminar emphasizes the automated controls of a
"trusted computer operating system", I want to spend.a few
minutes describing the findings of the Access Controls Working
Group of the 1972 Workshop. This group was led by Clark Weissman
of System Development Corporation. The goal of the Working Group
was to define the nature of an automated access control mechanism
and to identify the technology involved in ensuring secure
computer system operation. Regarding the primary threats which
must be combatted by automated access controls, the group wrote,
"System security is most threatened by the vulnerability of the
internal access control mechanism to unauthorized modification by
subversion of normal internal system service, or exploitation of
system weaknesses, such as incomplete design and coding errors."

Leading towards the technology which will be discussed here
the next three days, the following Points were noted in the
Report of the Controlled Accessibility Workshop published by NBS
in 1973, and I am sure you will hear several of these repeated in
subsequent sessions this week.

One - Control mechanisms should be formal and always
invoked, never by-passed for efficiency or other
rationalized reasons.

Two - The design must accommodate evaluation and easy
system maintenance.

Three - The principle of "least privilege" should be applied
to system operation.

Four - The computer system vendor will have the ultimate
responsibility for delivering systems that can be
operated securely.

Finally - Product acceptance will require application of
certification techniques.

It has been eight years less 23 days since the Controlled
Accessibility Workshop. In some areas technology has advanced
rapidly. The capability of micro-computers has risen
dramatically. The Federal Data Encryption Standard is now
available in 13 different electronic devices which have been

B-2

validated by NBS. The need for such a standard was identified at
that Workshop. In other areas technology has made only modest
advances. For example, automated personal identification through
voice or signature recognition. In the area of "trusted"
systems, DOD has carried the research and development
initiatives. In other areas identified as having high priority
at that Controlled Accessibility Workshop, NBS has initiated the
development of technical standards and management guidelines to
address computer security requirements. These areas include risk
analysis, contingency planning, security audit and evaluation,
data communication and storage protection and physical security.
We have had some successes in these areas. At the first DOD-NBS
seminar, Willis Ware challenged NBS to, I quote, "STEP OUT
SMARTLY" in developing new and innovative standards in computer
security. We are pleased to sponsor this forum so that the
technology being developed to meet DOD's needs is also made
available to satisfy similar needs in the private and public
sectors. Security is not well understood, and in some cases not
well accepted, outside DOD. We feel it is important that the
vendors and the users of the technology underlying "trusted
systems" exchange their views in·an open forum.

As we listen to the needs of the DOD and the private and
public sectors, we will initiate a plan for a tenth anniversary
workshop of the work that was started in 1972.

B-3

DoD

COMPUTER
SECURITY INITIATIVE

••• TO ACHIEVE THE WIDESPREAD
AVAILABILITY OF TRUSTED
COMPUTER SYSTEMS

Stephen T. Walker
Chainaan
DoD Computer Security

Technical Consortium

SEMINA~
ON

DEPARTMENT OF DEFENSE
COMPUTER SECURITY

INITIATIVE

NOVEMBER 18-20, 1980

NATIONAL BUREAU OF.STANDARDS
GAITHERSBURG, MARYLAND 21738

COMPUTER
SECURITY INTIATIVE

TRUSTED: SUFFICIENT HARDWARE AND
SOFTWARE INTEGRITY TO
ALLOW SIMULTANEOUS USE
AT MULTIPLE SECURITY/ .
SENSITIVITY LEVELS

WIDESPREAD: COMMERCIALLY SUPPORTED

C-1

COMPUTER SECURITY

PHYSICAL SECURITY

ADMINISTRATIVE SECURITY

PERSONNEL SECURITY .

COMMUNICATIONS SECURITY

EMANATIONS SECURITY

HARDWARE/SOFTWARE·
SECURITY

C-2

\

COMPUTER NETWORK VULNERABILITIES

HARDWARE/SOFTWARE
SECURITY

e DEVELOP A COMPUTER SYSTEM
THAT WORKS CORRECTLY WITH
RESPECT TO THE CONTROL OF
INFORMATION FLOW

C-3

APPROVAL FOR DoD USE

~ l DO~D 5200.28 .!
~ : POLICY

R •

E DEVELOPMENT 0 PHYSICAL
Q GROUP / ADMINISTRATIVE
U /?PERSONNEL

R
l -SPECIFIC DESIGNATED (HARDWARE/

- SYSTEM - APPROVING ---------; SOFTWARE
E -REQUEST AUTHORITY ----------' SECURITY

~ D ~TEMPEST
N COMSEC

T
s

FOR USE OF ADP
PROCESSING
CLASSIFIED

INFORMATION

INDIVIDUAL
INSTALLATION

APPROVAL

APPROVAL FOR DoD USE
INDUSTRY

! ! ! ! l DO~D 5200.281

R

:. (POLICY
J EVALUATION

DEVELOPMENT 0 CENTER

~ GROUP ·! ! !
u ?:,
~ -SPECIFIC DESIGNATED <Y~_.. __, "EVALUATED

-SYSTEM_, APPROVING - I PRODUCTS
~ -REQUEST AUTHORITY ~ LIST"

~ D"
s

FOR USE OF ADP
PROCESSING
CLASSIFIED

INFORMATION

INDIVIDUAL
INSTALLATION

APPROVAL

C-4

EVALUATED PRODUCTS LIST

TECHNICAL POSSIBLE
CLASS FEATURES EXAMPLES ENVIRONMENTS

MOST COMMERCIAL DEDICATED MODE
SYSTEMS

2 FUNCTIONAL SPECIFICATION "MATURE" BENIGN. NEED TO
REASONABLE PENETRATION "ENHANCED" KNOW
RESULTS OPERATING SYSTEM ENVIRONMENTS

3 REASONABLE MODERN MULTICS AF DATA SERVICE
PROGRAMMING TECHNIQUES CENTER TS-S
LIMITED SYSTEM INTEGRITY
MEASURES

4 FORMAL DESIGN NO USER
SPECIFICATIONS SYSTEM PROGRAMMING
INTEGRITY MEASURES TS-S-C

5 PROVEN DESIGN KSOS LIMITED USER
SPECIFICATIONS VERIFIABLE KVM PROGRAMMING
IMPLEMENTATION LIMITED ,
COVERT PATH PROVISIONS

TS-S-C

6 VERIFIED IMPLEMENTATION FULL USER
AUTOMATED TEST PROGRAMMING
GENERATION EXTENDED TS-S-C
COVERT PATH PROVISIONS
REASONABLE DENIAL OF
SERVICE PROVISIONS

COMPUTER SECURITY INITIATIVE

I. EDUCATION PHASE
PUBLIC SEMINARS/WORKSHOPS !

II. SPECIFICATION PHASE

DRAFT I DoD COORD. I INDUSTRY COORD: ! REVIEW AND ENHANCEMENT .-

HI. EVALUATION PHASE ;;
INFORMAL FORMAL

KSOS-11 INDUSTRY

KVM SUBMITTED

HONEYWELL SYSTEMS

DIGITAL EQUIPMENT CORP

TYMSHARE

"EVALUATED PRODUCTS LIST''

1978 1980 1982 1984

C-5

_- ... ·, .- ·.· .: ·.:.

ttlll

COMPUTER
SECURITY INITIATIVE

DoD R&D IN 1970s

OPERATING SYSTEMS
• MAJOR EMPHASIS
• MOSTLY SOFTWARE, SOME

HARDWARE

APPLJCATIONS
• MINOR FOCUS UNTIL LATE 70s

VERIFICATION TECHNOLOGY
• COMPUTER SECURITY WAS ONE

AMONG MANY POTENTIAL USERS

DoD R&D THRUSTS IN 70s

OPERATING SYSTEMS
EXAMPLES:

KERNELIZED SECURE OPERATING SYSTEM
KERNELIZED VM370 SYSTEM

DRIVEN BY
WHAT CAN WE HOPE TO ACHIEVE IN
3-5 YEARS?
WHERE WOULD WE LIKE TO BE IN
5·8 YEARS?

INTENDED AS DEMONSTRATION
CAPABILITIES, NOT AS COMPETITION
WITH MANUFACTURERS

DoD R&D THRUSTS IN 70s

APPLICATIONS
GUARD, SECURITY FILTERS

• BETWEEN EXISTING SYSTEMS

COMMUNICATIONS, FRONT END SYSTEMS
• ACCESS PROTECTION TO EXISTING SYSTEMS

MULTIPLE SINGLE-LEVEL FUNCTIONS
• KVM

TRUSTED MULTILEVEL SYSTEMS
• SPECIAL PURPOSE-MESSAGE HANDLING
• GENERAL PURPOSE-DBMS

C-6

'
r

'
r

DoD R&D THRUSTS IN 70s

VERIFICATION TECHNOLOGY
• EVOLVED FROM EFFORTS TO BUILD

"CORRECT PROGRAMS"

• SEVERAL APPROACHES ARE
EVOLVING
NONE HAVE COMPLETE PACKAGE.

• PROGRESS EMPHASIZED IN REST
OF THIS SEMINAR

DoD R&D IN 1980s

OPERATING SYSTEMS
RELY MAINLY ON INDUSTRY
EVOLUTION

SOME SPECIALIZED DEVELOPMENT

APPLICATIONS
MAJOR EMPHASIS BY R&D AND
USER COMMUNITY

VERIFICATION TECHNOLOGY
MAJOR THRUST BEGINNING

ENSURE UNDERSTANDING OF
PRODUCT INTEGRITY

TECHNOLOGY EVOLUTION

e HARDWARE CHEAPER. MORE
POWERFUL

• COMPLEX SOFTWARE FUNCTIONS
MOVING INTO HARDWARE

e BETTER UNDERSTANDING OF
OPERATING SYSTEMS

• WHAT IS NEEDED. HOW TO
PROVIDE EFFICIENTLY

e ASSURANCE TECHNIQUES
IMPROVING RAPIDLY

C-7

r

INDUSTRY THRUSTS IN 70s

DRIVING FORCE: IMPROVE PRODUCT QUALITY
• EASE MAINTENANCE. MODIFICATION
• IMPROVE PERFORMANCE

FLEXIBILITY
INTEGRITY
SECURITY

CONSTRAINT: EXISTING CUSTOMER BASE

EVOLUTIONARY VERSUS REVOLUTIONARY

MANUFACTURERS
PROGRESS

DIGITAL EQUIPMENT CORPORATION

HONEYWELL CORPORATION

INTERNATIONAL BUSINESS
MACHINES CORPORATION

TYMSHARE CORPORATION

SPERRY UNIVAC CORPORATION

C-8

HONEYWELL

TRUSTED ADP SYSTEMS

Irma Wyman

INTRODUCTION

It is my pleasure, and my privilege, to share with
you this morning, the position, and philosophy of
Honeywell Information Systems regarding computer
security. And, also, to let you know about our current
activities and future goals in this important area.

Slide 1

POSITION

Computer Security theorists tend to view computer
security in absolute terms, ••• and properly so. Their
visions of absolutely secure hardware/software systems
provide us with the conceptual upper limits of computer
security on what we at Honeywell believe must be viewed
as a spectrum ••• the "Perfect Ten" on a scale of "zero"
to "ten".

Slide 2

Honeywell~s position with respect to computer
security is that computer hardware/software products
should provide the systems integrity necessary to reduce
risks of unauthorized penetration to a level acceptable
to the intended product markets, subject to the
constraints of technology and acceptable costs and
performance.

We believe this position, and even more importantly
our activities in pursuit of the elusive "Perfect Ten",
to be supportive of the Computer Security Initiative
Program~s objective of achieving "trusted" ADP systems.

ISSUES

Before describing our philosophy and current
activities, I~d like to comment on three of the issues
that must be resolved before a "trusted" ADP system is
likely to become a commercial reality.

D-1

Slide 4

1. Perhaps the most obvious issue, and one that I
understand will be addressed in some detail during the
next three days, is that of PROVABILITY. Edsger
Dijkstra (well known for his contributions to the
concepts of structured programming) once s~ggested that
"Testing only reveals the present of .-bugs.-, not their
absence". What then are the criteria and mechanisms to
be used to prove a system as "trusted"? Furthermore,
should this be a binary designation? Should there, in
fact, be a hierarchy of "trustworthiness"?

2. A second issue is concern with terminology--
specifically the terms "system integrity" and "adequate"
(or "sufficient" as used in the Initiative Program--s
definition of a "trusted" system).

I know of no generally accepted definition of "system
integrity" and strongly suspect that if ten of us
here were to write down and compare definitions, we.-d
come up with at least nine different answers.

"Adequate" and "sufficient" are relative terms to
start with. When applied to various definitions
of ''system integrity", the resulting differences
of opinion should be no surprise to anyone.

PHILOSOPHY

Honeywell.-s philosophy, our school of thought, is
that system integrity--" trusted" ADP systems--will be
achieved through a hardware/software mechanism called a
SECURITY KERNEL, based on the REFERENCE MONITOR concept,
and implemented through DESCRIPTOR-DRIVEN PROCESSORS.

Honeywell and other vendors can, of course, offer
their own definitions. I suggest, however, that groups
in the public and private sectors, such as yourselves,
address this issue to mitigate nature vendor biases.
The December 1979 issue of the EDP Analyzer might be
useful in such an endeavor.

3. The third issue deals with the relationship between
technological advancement and practical business
economics. Technological advancement in computer
security (or any other area) is largely dependent upon

D-2

··.~

the resources devoted to that end. Allocation of
resources, of course, is in turn dependent on
management~s estimates of return on investment as the
advanced technology is applied to perceived needs in the
markets served. As I think you will see at the
conclusion of this presentation, Honeywell has perceived
an increasing demand for improved computer security and
is aggressively addressing this issue.

Slide 5

Numerous computer security groups in studying
access control mechanisms recognized the need for
provability of correctness. This led to the recommended
technical approach that computer security must start
with a statement of an abstract, ideal system. This
ideal system became known as the reference monitor. The
reference monitor abstraction permits or prevents access
by subjects to objects, making its decision on the basis
of subject/object identity and the security parameters
of the subject and the object. The implementation of
the abstraction both mechanizes the access rules, and
assures that they are enforced within the system. The
mechanism that implements a reference monitor must meet
three requirements: Complete mediation, isolation and
verifiability. These requirements demand that the
reference monitor implementation include hardware as
well as software. The hardware/software mechanism that
implements the reference monitor abstraction is called a
Security Kernel. It is felt that to implement a trusted
ADP System, the Security Kernel concept must be used.
And to implement the kernel, descriptor-driven
processors must be utilized.

Slide 6

. The kernel mechanism must provide for complete
mediation, and be invoked on every access by a subject
to an object.

Slide 7

The kernel mechanism must provide for complete
isolation for itself, its data base, and for all users.

D-3

II II

·' · .. :.:'

Slide 8

The kernel mechanism must be small, simple an.d
understandable so that it can be completely tested and
verified that it performs its functions properly. This
kernel mechanism is the key to certifiable, multi-level
security and a trusted ADP system.

Slide 9

One of the current challenges in verification and
certification is to find an agency or committee which
will - and can - with authority - say that: The design is
sound, the implementation is correct, the verification
methodology is correct, and it has been correctly applied
to proving the design and implementation of the trusted
ADP system.

Now, let us examine Honeywell~s involvement in
trusted A~P Systems.

Slide 10

1964 - Start of the MULTICS Program - An architecture designed for
controlled sharing.from the beginning. Utilize modified 600.

1968 - The GCOS II o.s. - which included enhanced software security
features.

1969 - MULTICS - Became operational on a G-645.
1969 - GCOS III - Enhance software security on GCOS.
1972 - Implement Multics on a 6190. Additional access control

implemented in hardware.
1972 - The GCOS III O.S. - Provided the vehicle to investigate

and enhance software access control mechanisms.
1974 - Multics implemented on the 6800. Speed up access control

mechanism. Develop an access isolation mechanism to
enforce DOD security policy.

ALCOM 700 - Design and implement a secure remote batch
terminal. The only computer system to be
certified secure. Still the only certified
secure ADP system.

1974 - Project Guardian - Based on Multics - was begun
with the objective to build a provably secure,
general purpose system with a secure front end
processor.

1977 - Level 6 SCOMP Program was initiated to develop secure
communications processor.

1977 - CP-VI Plus Level 66 - Implementation of new, controlled
sharing access mechanisms on Level 66 hardware in order

D-4

to provide access control enhancements and provide an
upgrade path for CP-V users.

1979 - DPS-8/GCOS-8 was announced - New product with advanced
controlled sharing, access mechanisms to replace the
Level 66 and GCOS III. Security is a primary design
goal.

Slide 11

Let us review some of these significant events in
more detail. First, Multics.

Multics was designed as a general purpose computer
utility with interactive processing and controlled
sharing of all information. Data security was a primary
design goal. This controlled sharing is achieved by a
unique file system with virtual memory integration and
hardware enforced access controls.

Slide 12

To enforce complete mediation and allow controlled
sharing of all information, Multics utilizes descriptor
driven processors with segmentation. Each segment has an
access control list. The access control list is checked
by the system when the segment is opened. The system
then sets the access control bit into a descriptor.
Thereafter, the hardware enforces access controls on
every reference.

In addition to the access control list, the Multics
access isolation mechanism extends the basic access
controls of Multics to insure isolation of users
according to DOD security policy. Each user and segment
is assigned an access i~olation mechanism access code
which enforces eight levels of clearance and eighteen
need-to-know category sets. This access code is checked
when a segment is opened, when the access control list is
changed, and when information is exchanged between users
in the system.

Slide 13

For isolation, the Multics structure provides for
eight hierarchical rings which separate the operating
system from system utilities and users, and the users
from each other, providing for complete hardware enforced
isolation.

D-5

·j

Slide 14

For example:

Ring 4 contains procedures "A-1"

Ring 5 contains procedures "B-1"

Procedures "B-1" has read permissions for data
in ring 4.

Slide 15

·Procedure "B" requests access to procedure "A"
data. The request is made via the control mechanism in
ring zero.

Slide 16

The control mechanism in ring zero "O.K.'s" the
request and verifies that a gate mechanism exists
between procedure "A-1" and "B-1".

Slide 17

This gate mechanism permits procedure "B" to "read"
data from procedure "A". (Via Program Q).

Procedure "A" actually writes the data via the gate
to procedure "B".

It should be noted that if the access isolation
mechanism were activated then the request would have
been denied. (It would have been a lower clearance
level attempting to read data at the higher clearance
level.)

This access isolation mechanism was defined as a
part of Project Guardian.

Slide 18

Project Guardian, started in 1974, was the first
attempt to implement a kernel on a Honeywell system. As
a result of government funded studies, the Multics

D-6

system was selected as the host computer for the design
and implementation of a kernel mechanism which would
meet the three requirements of: Complete Mediation,
Isolation, and Verifiability. Unfortunately, Project
Guardian was cancelled because of funding problems prior
to achieving its ultimate goal.

However, as a result of Guardian, the Multics
system has been approved to run in a two level security
mode, simultaneously servicing Secret and Top Secret
users. Project Guardian demonstrated that complete
mediation of access, isolation from unauthorized access,
and verifiability - (that is, provability and
testability) - of a security kernel was possible. In
addition, a proof methodology was defined and a secure
front end processor was defined.

Slide 19

The secure front end processor was based on a
commercial Tempest Honeywell Level 6 minicomputer which
was to be enhanced by a hardware security protection
mechanism and special kernel software. To understand
how the security protection mechanism was to be
implemented, let us quickly review the standard Level 6
memory management mechanism.

Slide 20

Memory management on the Level 6 is embodied in a
hardware memory management unit, which provides for a
four ring architecture, and a descriptor driven
processor with segmentation. The descriptors define
location, size and access controls very similar to a
miniaturized version of the Multics access control
mechanism, and ring architecture. For the secure
front-end processor, this memory management unit was to
be replaced by a "virtual memory interface unit" and
extra hardware called a "security protection module"
which was to implement kernel functionality.

Slide 21

SCOMP -

The Secure Communications Processor (SCOMP) project
was started after the Guardian project. The object of
this project is to pick up the secure front end

D-7

processor development after it was stopped under project
Guardian and make it more general purpose. In other
words, to design and implement a provably secure multi
purpose minicomputer, also known as a Trusted Computing
Base (TCB).

The SCOMP consists of a Level 6 central processor
with a virtual memory interface unit and security
protection module which runs with all other Level 6
hardware. The virtual memory interface unit replaces
the memory management unit previously mentioned. The
security protection module consists of additional
boards. The design of the security protection module is
based on the reference monitor concept and implements a
large portion of the security kernel functionality in
hardware. A key point is that hardware access controls
were extended to include I/0.

That portion of the security kernel functionality
which is not implemented in hardware is handled by a
software security kernel termed KSOS-6.

Some people use the acronym KSOS-6 to refer to both
hardware and software.

Slide 22

The software security kernel (KSOS-6) resides in
ring zero of the SCOMP system. This software security
kernel works in conjunction with the hardware kernel
which is called the security protection mechanism. In
the outer two rings, user application and system
utilities operate. As a part of this project, certain
specialized trusted system routines are being designed
and implemented to form a comprehensive trusted
computing base. A more detailed presentation on the
SCOMP will be given later in this seminar.

While working on joint effort projects, such as
SCOMP and Guardian, Honeywell has also been working on
system integrity control mechanisms.

Slide 23

We have applied the knowledge and experience gained
through these efforts to our product lines.

D-8

And, it is felt that our recently announced DP~-8 -
with an evolving GCOS-8 - is 0 potentially 0 a provable
trusted ADP system.

Slide 24

DPS-8 hardware supports:

1. Virtual Memory

2. Security Mechanisms that are emphasized in the
hardware

3. Domain Protection

Slide 25

The DPS-8 virtual memory architecture allows for
eight trillion bytes of virtual memory. All of the
security access control mechanisms are implemented in
the central processing unit and in the I/0 processing
unit, and reference a common set of working space
tables.

Slide 26

The working space tables are controlled by
descriptors which provide for segment definition and
access controls. This access control mechanism
accomplishes the first requirement of a security kernel,
to provide for complete mediation. The descriptor
mechanism provides protection, segment boundary control,
access control, and the ability to reduce the size or
the access rights to a segment.

Slide 27

The domain mechanism satisfies the second
requirement of a security kernel: to provide absolute
hardware enforced isolation. A domain is a logical
system territory consisting of all segments referenced
by a user's procedure. This mechanism differs from
Multics in that there is no implied hierarchical ring
structure.

D-9

Slide 28

The domain concept allows information to be
delivered strictly on a need-to-know basis for process
execution. All domain context switching is handled by
hardware.

Slide 29

For Example:
The domain of procedure "A" is comprised of the program "A",
systems software working space tables, and different parts
of a data base.

Slide 30

The segments of domain "A" may in turn be shared by
·other domains all under hardware enforced access control
mechanisms. This means that any given entity needs to
exist only once within the operating system.

Slide 31

The domain mechanism also permits temporary sharing
between domains.

For example, procedure "A" desires to query
procedure "B" in domain '':a".

Slide 32

Procedure "B" within domain "B", if the access
permissions are acceptable, will increase its domain
territory to include the argument segment of procedure
"A". Procedure "B" then deposits the requested
information in a temporarily shared portion of domain
"A".

Slide 33

Upon completion, procedure "B" then executes a
command to "shrink" its domain back to its original
territory.

Slide 34

We believe that the DPS-8 architecture provides the
base on which a secure system can be built, and that it

D-10

will prove to be the key to an effective, flexible,
multi-level "trusted" ADP system. Possibly a "Perfect
10".

As indicated by our past and current activities,
Honeywell has been, and is now, committed to aggressive
action in responding to the needs for improved computer
security.

Slide 35

To reduce the costs associated with providing
effective security features in our computer products.

Slide 36

To provide mission optimized, multi-level solutions
to the problems of computer security.

Slide 37

To optimize system efficiency in the multi-level
"trusted" ADP system environment.

Slide 38

To work cooperatively with government and priv-ate
industry to resolve the issue of provability--to
establish the criteria, process and accrediting
authority for "trusted" ADP systems.

We believe we offer the most secure systems
available today, and are determined to maintain our
leadership position in the future.

D-11

Honeywell

Tru$ted ADP Systems
The Leader

1

D-12

. :-:._ -·· ..

2

HOW DO YOU ACHIEVE
TRUSTEDADP

4

D-13

PRINCIPLES OF SECURE SYSTEM
e COMPLETE MEDIATION
• ISOLATION
e CERTIFICATION/SIMPLICITY

SECURITY

FILE OF AUTHORIZED USERS
AND ACCESS PERMISSIONS

5

COMPLETE MEDIATION

6

D-14

ISOLATION

7

VERIRABIUTYlCERTIFIABIUTYlACCREDITA TION

SIMPLE AND STRAIGHTFORWARD
KERNEL

TO PERMIT ANALYSIS

8

D-15

Honeywell.

"KERNEL"
IS KEY TO

CERTIFIABLE MULTILEVEL SECURITY

Honeywell

9

10

D-16

MULTICS

SECURITY

11

MULTICS-THE SECURE SYSTEM

SECURITY MECHANISMS UNIFORMLY APPLIED
• ACCESS CONTROL LISTS
e ACCESS ISOLATION MECHANISM
• RING PROTECTION MECHANISM
• PASSWORDS
e AUDfTTRAILS
e USER DEVICE ATTACHMENT CONTROLS

12

D-17

HIERARCHICAL\
RINGS\

13

3

r;:\
L_j

14

D-18

·Honeywell

a,

r;:\
~

15

r;:\
~

16

D-19

Hone)'Well

-

--

3

r;;'\
L_j

17

PROJECT GUARDIAN
e ACCESS ISOLATION MECHANISM
e KERNEL FEASIBILIIY ESTABLISHED
e PROOF METHODOLOGY DEFINED
e SECURE FRONT-END PROCESSOR DEFINED

Honeywell,

Honeywell

18

D-20

Honeywell

TEMPEST LEVEL 6 MINICOMPUTER

·Honeywell

MEMORY MANAGEMENT

31 SEGMENTS

20

D-21

SPM + LEVEL 6 MINICOMPUTER = SCOMP

CENTRAL SECURITY INPUT/
PROCESSOR PROTECTION OUTPUT MEMORY

UNIT MODULE CONTROLLER

VIRTUAL
MEMORY ~~

INTERFACE
UNIT

CENTRAL
PROCESSOR

UNIT
BUS LOGIC

*- :1: :1: ; .
"sus I . •

21

SOFTWARE OVERVIEW

USER

LOWEST

t
PRIVILEGE

l
USER APPLICATION & USER DOMAIN SYSTEM UTILITIES TRUSTED

ununes OPERATING
UNIX EMULATOR SYSTEM DOMAIN

KERNEL KERNEL DOMAIN
. '

HIGHEST
HARDWARE

22

D-22

DPS8/GCOS8

AN EVOLVING SYSTEM
DPS8 + GCOS8 =
POTENTIALLY PROVABLE TRUSTED ADP SYSTEM

DPS8/GCOS8

SECURITY

23

• VIRTUAL MEMORY
e SECURITY MECHANISM EMPHASIZED

IN HARDWARE
• DOMAINS

Honeywell

24

D-23

/

MAIN MEMORY WORKING SPACE TABLE

MAIN
MEMORY
WORKING

CPU SPACE IOM

'-~ TABLE

CPU&IOMUSE
SAME VIRTUAL REFERENCES

25

ACCESS CONTROL MECHANISM = COMPLETE MEDIATION

SEGMENT

ACCESS RI~TS WO~KING SPACE J~UNDARY

~---~~~,r--.,-----~r~--~~~

BASE --
TYPICAL DESCRIPTION

26
Honeywell

D-24

.' : . . : . ~ . '.

DOMAIN ISOLATION

SECURITY
RELATED
TABLES

27

28

D-25

Honeywell

HARDWARE
DESCRIPTOR
REGISTERS

Honeywell

29

30

D-26

TEMPORARY SHARING BETWEEN DOMAINS

Honeywell

31

32

D-27

33

DPS8/GCOS 8

THE ARCHITECTURAL KEY TO PRODUCTION ORIENTED
MULTI-LEVEL SECURITY

34

D-28

HONEYWELL GOALS
TO REDUCE THE COST FOR SECURE AOP OPERATIONS

35

HONEYWELL GOALS
TO PROVIDE MISSION OPTIMIZED MULTI-
LEVEL SOLUTIONS -

36

D-29

HONEYWELL GOALS
TO OPTIMIZE SYSTEM EFFICIENCY IN THE MULTI
LEVEL TRUSTED ADP SYSTEM ENVIRONMENT

37

HONEYWELL GOALS
TO WORK WITH GOVERNMENT AND INDUSTRY TO
DEFINE AND ··HOPEFULLY SOLVE" THE ACCREDITED/
CERTIFIABLE TRUSTED ADP SYSTEM PROBLEM

38

D-30

COMPUTER SECURITY RESEARCH AT DIGITAL

Third Seminar on the Department of Defense

Computer Security Initiative

18-20 November 1980

Paul A. Karger
Digital Equipment Corporation

' Corporate Research Group
146 Main Street (ML3-2/E41)

Maynard, MA 01754
(617)493-5131

ARPAnet: KARGER@DEC-MARLBORO

COMPUTER SECURITY
RESEARCH

AT

RESEARCH GOAL

UNDERSTAND HOW TO BUILD AND
SUPPORT SECURE SYSTEMS FOR
GOVERNMENT AND COMMERCIAL
USERS

E-1

RESEARCH ISSUES

• EVOLVABLE SECURITY

• PRODUCTION QUAUTY VERIFICATION TOOLS

• NETWORK SECURITY PROTOCOLS

e ENCRYPTION

• LAYERED PRODUCT SECURITY

EVOLVABLE SECURITY

• SECURITY MUST FIT IN WITH EXISTING
PRODUCTS

• SECURITY ENHANCED SYSTEMS FIRST

• THEN VERIFIED SECURITY KERNELS

SECURITY ENHANCED
SYSTEM

• FEATURES OF SECURITY KERNEL
- LATTICE MODEL
- ACCESS CONTROL LISTS

• NOT VERIFIABLE

• BUlL T RESEARCH PROTOTYPE
ON VAX-11/780

E-2

r

'

KERNELIZED SYSTEMS

• PERFORMANCE QUESTIONS

• PRODUCTION QUALITY VERIFICATION TOOLS
-MUST RE-VERIFY FOR NEW RELEASES

• CODE PROOFS IMPORTANT
- TOP LEVEL SPEC PROOFS DON'T FIND

SUBTLE CODING ERRORS

SECURITY ENHANCED SYSTEM

0 SECURITY ENHANCED

SECURITY KERNEL
BASED SYSTEM

APPLICATIONS APPLICATIONS

I:ECURE ,

1

lrECURE .I LAYERED LAYERED
PRODUCTS PRODUCTS

I SECURITY I SECURE NETWORK I SECURITY I
KERNEL KERNEL·

UNTRUSTED I I UNTRUSTED
OPERATING OPERATING
SYSTEM SYSTEM

E-3

NETWORK SECURITY
PROTOCOLS

• AUTHENTICATION FORWARDING
- PASSWORD CONTROL

• ROUTING UNDER LINK ENCRYPTION
- ROUTING NODES ARE HOST COMPUTERS

• NETWORK-WIDE DISCRETIONARY CONTROLS

END-TO-END ENCRYPTION

e ESSENTIAL FOR ETHERNETS

e OUTBOARD FROM OPERATING SYSTEM
- CANNOT TRUST THE HOST

e WHAT WILL DOD SUPPLY?
- CRYPTOGRAPHIC DEVICES
- KEY MANAGEMENT
- SESSION LEVEL PROTOCOLS

LAYERED PRODUCT
SECURITY

• PROTECTED SUBSYSTEM SUPPORT FOR
-DATA BASE SYSTEMS
- ELECTRONIC MAIL SYSTEMS
- TRANSACTION PROCESSING SYSTEMS
-ETC

E-4

li1

WHAT SHOULD
GOVERNMENT DO?

• MAKE CLEAR RFP REQUIREMENTS
-ASK FOR BELL & LAPADULA LATTICE MODEL
- ASK FOR VERIFICATION
- ASK FOR KERNELIZED SYSTEMS

• OTHERWISE VENDORS WON'T BE MOTIVATED

•INITIALLY SEPARATELY PRICED OPTIONS

WHAT ABOUT KSOS-11?

• DIGITAL IS WATCHING KSOS-11
DEVELOPMENT

• WE WOULD LIKE TO EVALUATE IT

• EXTENSIVE HANDS-ON REVIEW
REQUIRED

CONCLUSION

e DIGITAL IS ACTIVE IN SECURITY RESEARCH

• SECURITY IS IMPORTANT IN GOVERNMENT
& COMMERCIAL MARKETS

• SECURITY WILL EVOLVE IN DIGITAL
PRODUCTS

E-5

CORPORATE RESEARCH GROUP

·. . .. ·
. . . .

-

. ···-· .. .
.. · .·

E-6

SECURITY AND PROTECTION OF DATA

IN THE IBM SYSTEM/38

VIKTORS BERSTIS

IBM

ROCHESTER~ MINNESOTA USA

I Btl SYSTEM/38

F-1

J

. ~ ' .· .. :·_ .

WHAT IS THE IBM SYSTEM/38 ?

- SMALL BUSINESS COMPUTER FROM INFORMATION SYSTEMS DIVISION

- REPLACEMENT AND GROWTH FOR SYSTEM/3 USERS

- AVERAGE CUSTOMER HAS 1-2 PROGRAMMERS

- EASE OF USE PRIMARY GOAL

- LANGUAGES ARE RPG-111, COBOL, CL, QUERY AND DDS

- CoNTROL PROGRAMMING FACILITY (CPF)

- HIGH LEVEL MACHINE INTERACE

- DATA BASE FUNCTIONS

- SYSTEM INTEGRITY AND SECURITY

WHAT IS SYSTEf-1/38?

CONTROL RPG Ill INTERACTIVE
PROGRAM COBOL DATA BASE

FACILITY ~=======-==UT=IL=IT=I=ES=~

MICROCODE

PROCESSOR MH10RY

DISKS

F-2

HOW IS WORK DONE DN SYSTEM/38 ?

- USER SIGNS ON TERMINAL WITH PASSWORD

- SUBSYSTEM STARTS PROCESS

- USER PROFILE ASSuCiATED WITH U3ER

- PROGRAMS CALLED TO DO WORK

- OBJECTS AND PROGRAMS ACCESSED

- MACHINE CHECKS AUTHO~!TV TO USE

IMPLEMENTATION OF SECURITY IN IB/1 SYSTEM/38

CAPABILITY BASED ADDRESSING

USER PROFILES

PROCESSES

F-3

I

CONTROL PROGRAMMING FACILITY <CPFl

- COMMANDS

- CONTROL LANGUAGE

- OBJECTS
- FILES
- PROGRAMS
- USER PROFILES
- MESSAGE QUEUES
- SUBSYSTEMS
- JOBS
- DEVICES

- PROMPTING AND HELP

- SPOOLING

- DEBUGGING

- RECOVERY

SECURITY FEATURES

- MATRIX OF USER PROFILES VS OBJECTS

- AUTHORIZED TO CLASSES OF OPERATIONS

- SECURITY OFFICER

- CPF COMMANDS
- GRANT OBJECT AUTHORITY
- REVOKE OBJECT. AUTHORITY
- Dl SPLAY OBJECT ,AUTHORITY
- CHANGE OBJECT OWNER
- DISPLAY USER PROFILE

- CREATE USER PROFILE
- DESTROY USER PROFILE
- CHANGE USER PROFILE
- DISPLAY AUTHORIZED USERS

- DISCRETIONARY AUTHORIZATION

- NO MANDATORY POLl CY ·

F-4

AUTHORITY CATEGORIES

CATEGORY
AUTHORITY

RESOURCE
STORAGE ALLOTMENT

PRIVILEGED INSTRUCTIONS
CREATE USER PROFILE
INITIATE PROCESS
TERMINATE MACHINE PROCESSING
CREATE LOGICAL UNIT DESCRIPTION
CREATE NETWORK DESCRIPTION
CREATE CONTROLLER DESCRIPTION
MOD I FY USER PROFILE
MOD I FY RESOURCE MANAGEMENT CONTROL
DIAGNOSE

SPECIAL AUTHORITIES
ALL OBJECT
DUMP
SUSPEND
LOAD
PROCESS CONTROL
SERVICE
MODIFY MACHINE ATTRIBUTES

OBJECT AUTHORITIES--AUTHORIZED ON A PER OBJECT BASIS
EXISTENCE:

OBJECT CONTROL
ACCESS:

OBJECT MANAGEMENT
AUTHORIZED POINTER

CONTENTS:
SPACE
RETRIEVE
INSERT
DELETE
UPDATE

ADDRESSING

'

PDINTER-
(CAPABILITY) 16 BYTES

VIRTUAL OTHER
ADDRESS INFORMTION

'
' VIRTUAL ADDRESs-~. ' '

SEGMENT
IDENTIFIER

39 40_ 63
OFFSET

OBJECT

SEGI'ENT
HEADER

MORE
OBJECT
CONTENTS

F-5

TAGS

PROGRAM CREA Tl ON

INPUT TO THE CREATE PROGRAM INSTRUCTION DEFINING THE PROGRAM:

INSTRUCTION STREAM

PROGRAM

EXECUTION STRUCTURE

A+ B

PROCESS
CONTROL
SPACE

OPERAND DECLARATIONS

VISIBLE IN A SPACE OBJECT

NOT VISIBLE

AUTOflATIC
SPACE

F-6

STATIC
SPACE

·.:· .·· .. ·· ...
. '" --- ,_.

ADDRESSAB ILl TY FROM A PROCESS

AUTOMATIC
&

STATIC
SPACES

OBJECT AUTHORIZATION

OBJECTS
&

OTHER
SPACES

F-7

OBJECTS
&

OTHER
SPACES

AUTHORITY CHECKING

1 RETRIEVE POINTER <CAPABILITY>

2 CHECK FOR AUTHORITY IN POINTER

3 CHECK FOR PUBLIC AUTHORITY

4 CHECK IF USER IS OWNER

-- IF OWNER, LOOK IN HEADER FOR AUTHORITY

5 CHECK FOR "ALL OBJECT" AUTHORITY

6 CHECK IF USER IS EXPLICITLY AUTHORIZED

-- LOOK IN USER PROFILE

7 OPTIONALLY PUT AUTHORITY IN POINTER FOR NEXT REFERENCE

GOALS OF SECURITY MECHANISM

0 CONTROL ACCESS TO DATA

0 MINIMUM OVERHEAD

0 INTEGRITY/RELIABILITY

F-8

•

GNOSIS

GNOSIS:
A SECURE CAPABILITY BASED 370 OPERATING SYSTEM

Presented by Jay Jonekait
Advanced Systems Development, TYMSHARE Inc .

ABSTRACT

Gnosis is a capability based operating system which
runs on 370 architecture computers. This paper de
scribes why TYMSHARE developed Gnosis, introduces
some basic Gnosis concepts, and shows how they can
be applied to application programs. Gnosis appears
to be an attractive base for applications run in the
high security environments of both DOD and non-DOD
portions of the government. Possible alternatives
for Gnosis are explored at the conclusion of the
paper.

INTRODUCTION

TYMSHARE

About 1972, Tymshare business planners recognized
the need to evolve into new markets in order to sus
ta~n profitable growth. One of the emerging trends
that was observed was that hardware was becoming
cheaper and that ·the market for selling raw time
sharing was likely to flatten out and perhaps
evaporate in the future. At the same time machine
cycles were becoming cheap, access to usable infor
mation was becoming more and more expensive.
Tymshare decided to specialize in the organization
and dissemination of the information.

Analyzing the market, Tymshare noticed several obvi
ous business opportunities for general on-line
databases. In this market, the ability to protect
proprietary data and programs from accidental misuse
or theft was a vital prerequisite. One example of
this type of business is an online chemical patent
database. No customer would ever query the database
if they thought the queries might might become known
to one of their competitors. This kind of security
breech would allow the competitor to find out what
research they were pursuing.

G-1

GNOSIS

In essence, what Tymshare wants to do is to develop
an information utility, with a large number of on
line databases and a large number of programs that
create information from those databases~ Most of
the programs and databases would not be owned by
Tymshare. Protecting the integrity and the security
of those programs is a vital concern to both their
owners and to Tymshare.

THE DEVELOPMENT FRAMEWORK

TYMSHARE

In the process of researching how to build such a
system and analyzing the options available, it was
noted that the existing operating systems running on
existing computer systems were not adequate to do
the job. The basic problem was that there was no
protection mechanism for programs or for data, that
there was no way to let two programs that were writ~
ten by different people interact without having them
trust each other. This kind of interaction would
expose one or the other to possible theft or misuse.
Tymshare had discussions with several manufacturers,
and did a lot of research on its own, while trying
to envision what would happen over the next 5 or 10
years. We concluded that none of the manufacturers
were likely to build the system that would solve our
problems.

During the course of its research, Tymshare discov
ered that there was a rather well-known architecture
called "capability based operating systems" which
had been prototyped in several universities, such as
Hydra from Carnegie Mellon, and CAL TSS from Univer
sity of California. These systems seemed to offer
great promise for being able to solve the kinds of
problems Tymshare needed to solve in order to create
the businesses that it wanted to create.

So, contrary to the then widely accepted philosophy
that it takes a large army or a small hoard to bui.ld
an operating system, a very low key project was
chartered at Tymshare in 1974 to build a commercial
quality, capability-based operating system.

There was a precedent for such temerity. The com
pany had taken another similar risk about six years
earlier when it went against all then common tech
nology wisdom to produce what is now Tymnet. That

G-2

TYMSHARE

GNOSIS

investment was very successful. It was on the
strength of that investment and the fact that some
of the same people involved with Tymnet have been
involved in Gnosis, that the project was approved.

Thus, with a very small group, Tymshare set off to
build an operating system. One of the ideas that
Tymshare had to face up to was the fact that it was
not a hardware vendor and that therefore did not
have the luxury of being able to spe~ify the design
of the system hardware.

Tymshare deliberately selected 370 hardware, despite
the fact that 370 hardware is probably not favored
in the security conscious environment. The primary,
and single biggest reason for selecting 370 hardware
was that there is a wide range of available CPU's
that extend from very small to very large configura
tions. You may have noticed in the last couple of
years, that the small 370 CPU's are becoming smaller
and the largest ones are becoming larger. The trend
appears to be continuing and we expect both 370's on
a chip and 15 MIP processors to appear very soon.

The idea of extensibility was of particular interest
to Tymshare. We have built many applications on
small machines and have been somewhat embarrassed
when those applications became successful and sud
denly there were more users than we knew what to do
with. We couldn't move them to a larger machine be
cause there was no larger machine. We picked the
370 in part because if an application is built on a
small machine and the market grows, it is possible
to move it to a larger machine. Clearly, it is also
convenient to be able to take advantage of Gnosis on
the very small mini and micro 370's.

The second critical feature is that the 360/370
hardware has become an implicit industry standard.
This architecture is going to have a very long life
cycle, and we expect the evolution of the 370 to
continue. There will probably not be any
revolutionary changes to the 370 which will impact
Tymshare's business. Even if there are drastic
changes, at this moment, there are a large number of
second sources for 370 hardware available. We ex
pect to take advantage of that fact if anything is

G-3

GNOSIS

announced which precludes Gnosis operation on future
IBM main frames.

Until now, hardware has been emphasized. There is
also a strong motivation on the software side for
picking 370's. There are literally tens of billions
of dollars of software invested in 370 based operat
ing systems right now. There is a wide range of
language processors, debugging tools, database man
agement systems and utilities. Having limited re
sources, Tymshare didn't want to have to write all
those programs and wanted to take advantage of the
software that other people have written for 370's.

DESIGN GOALS OF GNOSIS

TYMSHARE

To penetrate the markets described earlier, Tymshare
decided to build this system with several design
goals in mind. First and foremost it is necessary
to be able to protect proprietary programs and data;
this involves such things as being able to provide
execute only protection, or at least to have the
image of execute only programs where the source and
object cannot be displayed or tampered with. It
also involves the ability to have dynamic databases
which cannot in any way be accessed except through
the database management system. It involves ultra
secure file systems and so forth.

Second, in order to build this information utility
type system, Tymshare had to have a very high per
formance system to do transaction processing. One
of the systems analyzed when considering possible
operating systems was the Airline Control Program,
ACP. ACP meets many of the performance objectives,
however, it is very difficult to work with and has
almost no security. Thus ACP tends to provide very
high performance, non-secure transaction processing
applications.

The third requirement is that the information utili
ty business tends to lead to very complex applica
tion programs (although complex application programs
and complex operating systems are not solely the
property of the information utility). However, one
of the things observed is that a complex application
is very difficult to enhance. It is also a well
known fact, that in most installations 80% of all

G-4

c" .-:··. :•"•".•"•"•

TYMSHARE

GNOSIS

in-house manpower is utilized doing maintenance and
extending existing applications. Thus the problem
is that when one changes a program to add new func
tion, often something which used to run is de
stroyed.

Tymshare needed to have a system in which changes
could be introduced in a controlled manner without
impacting existing operational software. Gnosis is
such a system.

In addition, even when the system was not being
changed, it was necessary in the utility environment
to have a system which would degrade gracefully in
stead of crashing around our ears. It is the prop
erty of currrent operating systems and current ap
plications to crash and disintegrate, kind of like
an old fashioned string of Christmas tree lights;
when one goes out, they all go out. This is not ac
ceptable in Tymshare's environment. So Tymshare de
signed an environment where very small portions of
an application program or a very small portion of
the operating system can fail without affecting the
rest of the system. Any user who is not particu
larly involved with that portion of the application
or that portion of the operating system will be able
to continue to run unimpaired. All of this leads to
rather substantial benefits in programmer productiv
ity.

Tymshare was not planning on building a military se
curity type operating system. However, when
Tymshare heard about KVM, KSOS, and PSOS, we
wondered if we might have developed a system which
is suitable in this kind of an environment--not be
cause it was designed for that environment--but be
cause by using proper design techniques it solved
the problems of protecting proprietary programs, of
simplifying application maintenance, of building a
fail soft system with high performance and in the
process it also solved most of the security problems
that have been grappled with by many people in this
room. Tymshare obviously hasn't solved all the prob
lems, but it has solved a great number.

G-5

..

GNOSIS

ESSENTIAL GNOSIS CONCEPTS

To clarify how it is possible to make these state
ments, it may be appropriate to introduce you very
briefly to two of the basic ideas of Gnosis. First,
Gnosis, like any other capability based operating
system, allows you to take a program arid break it up
into a bunch of small compartments. Second, it pro
vides for explicit communication paths between
compartments.

EXPliCIT COMMUNICATION

• • IETWIEN COMPAITMINTS
(CAI'AIIUTIES)

This compartmentalization of both the operating sys
tem and of application programs serves the same pur
pose as compartmentalization of information within
other kinds of secure environments. Each component
may have access to information only on a need to
know basis, and may make changes only where it has
the explicit authority to do so.

COMPARISON OF GNOSIS AND 370 SOFTWARE ARCHITECTURE

TYMSHARE

How is Gnosis different from other operating sys
tems? Again' this architecture is not particularly
proprietary to Gnosis but is common to all capabil
ity based operating systems. In a standard operat
ing system, there are a bunch of objects called vir
tual memories or tasks or control regions which con
ta~n user programs. Underneath them is a supervisor
which keeps users from getting in each other's way,
decides which user can do what to whom, schedules
resources and generally controls things.

If an application package contained several pro
grams, some mathematical subroutines, an interface
to a graphics system, and a data base management
system interface, all the code supporting these
functions would co-exist in a single virtual memory.
Since all the programs share the same memory, there
is no asssurance that the code in any one of these
components will not destroy or alter data belonging
to any of the other components.

G-6

TYMSHARE

GNOSIS

In this environment, ·it is possible for any part of
the application to access the data buffers of the
data base manager (if it can find them). Even
though the data base manager carefully cleans up
after itself, a security exposure exists if the ap
plication program processes interrupts from various
external sources. Similarly, a bug in the graphics
package can clobber code in. the mathematical
subroutine package without leaving a clue as to who
did it. These complex unintended interactions lead
to unreliable operating systems and application pro~
grams, frequently with disastrous consequences.

Reliability, integrity, and security can be attained
by breaking applications into separate, isolated
components which can communicate with each other
only through explicit and controlled interfaces. In
such a case, the graphics package, for example,
could exist in its own virtual memory with its code
and data completely protected. If any failure oc
curred in the graphics package, it would be possible
to know with great certainty that that failure was
due to a flaw in that graphics package, and those
parts of the application that did not depend upon
the operation of the graphics package would continue
to run.

In Gnosis, every application, and in fa~t most of
the operating system itself, is divided into small,
self-contained units called domains. Domains may
communicate with selected other domains via expli
citly authorized communication paths called capabil
ities. Domains are created and supervised by a very
small kernel of system code. A Gnosis domain serves
the same purpose as an address space or a virtual
machine in today's systems: it provides a place for
the progra• and its data to exist and to execute.
The difference is that a Gnosis application will
typicaly consist of several domains, each containing
a small subsystem (typically 50-1000 lines of source
code) implementing a specific function.

Each domain will typically hold capabilities which
let it communicate with a small number of selected
domains. It is not possible for a domain to access
its capabilities directly, or to counterfeit the
ability to interact with another doma~n. Thus, a
domain may only interact with those domains with

G-7

TYMSHARE

GNOSIS

which it has been given a capability to interact,
and the interaction may only be of the form repre
sented by the capability. (A domain with a read
only capability to a file may not write into the
file.)

The same compartmentalization into domains has been
applied to the operating system, so the difference
between the operating system and the application in
Gnosis is very blurred. In fact, almost everything,
except the kernel is in domains. One of the inter
esting properties which results from this is that
there is a not a monolithic operating system. That
is, the user does not have to take the whole thing.
If you do not like the Gnosis command system, you
are perfectly free to build your own command system.
If you do not like the Gnosis file system, you are
perfectly free to build your own file system and so
forth.

In particular, this also means that application code
can be replaced selectively. If there is a piece of
an application which is not performing properly and
you want to replace it, the piece can be safely re
placed with another without jeopardizing the remain
der of the application.

Gnosis has a kernel which performs some of the tasks
normally assigned· to the supervisor. The Gnosis
kernel is small, about 10,000 lines of code, as op
posed to half a million lines on some of the large
IBM operating systems. The kernel has been made very
small by making it a mechanism whose task is to im
plement and enforce policy rather than define pol
icy.

Because the kernel is small, we expect it to be more
trustworthy and reliable.

One other fact to be noted, is that the
kernel has been designed in such a manner
can be easily put in microcode.

G-8

Gnosis
that it

. . ' : ·: :·. ~::·- ·.: :. -

GNOSIS

GNOSIS DESIGN OBJECTIVES/INTERDOMAIN COMMUNICATION

TYMSHARE

Consider the relationship between any two domains
(here called A and B) of a Gnosis application pac
kage. If the program in domain A breaks, with a
100% probability, the bug is in the program in
domain A. There's nothing that domain B can do in
any way to impact the internal operation of domain
A. This makes debugging much simpler, since faults
can be clearly isolated.

When domain A calls domain B, information passes
using some protocol agreed upon by the authors of A
and B. The way one can tell that B is working is by
building a test program which exercises all the ap
propriate parts of the protocol with A and checking
to see if B gives the right responses in every case.
Outside of that no one need really care what goes on
inside of B. We have used this property to great
benefit in building the operating system. We spent
a lot of time working on the protocol between any
two domains. The code that goes inside the domains
is often implemented using the simplest possible
algorithms.

So, for example, it's very easy to build a quick and
dirty application domain which implements a proto
col between A and B. If one decides some day later
to put in a high performance version of B, it's a
very simple matter to write a new B to replace the
old B. If the new B obeys its protocol, then A and
B will continue to work with a 100% probability.

One other thing is important to remember about the
connection between A and B. This connection is put
there by a person who has the authority to put the
connection there. This connection cannot be forged
in any way shape or form. There is no password pro
tection, no possibility of A being able to introduce
itself to B unless someone who has the proper au
thority makes the introduction and connects the two
domains. So there is a tremendous amount of secu
rity involved in the architectural structure of
Gnosis .

G-9

GNOSIS

Let us now discuss the idea of connecting domains
together to perform an audit function.

AUDIT ABILITY

The ability to audit specific transactions is vital
in any security concious env~ronment. Gnosis has ex
tremely powerful facilities to assist this activity.
If an auditor wishes.to examine the transactions be
tween A and B, (and if the auditor has the authority
to do so,) it is possible to take the connection be
tween A and B and splice an auditing domain into
that conriection. What is vitally important is that
A and B will continue to interact without being able
to detect the auditor's presence.

The ability to s~lice an auditor in between any two
domains is a significant property of capability
based architecture. It is possible to use this
function for other advantages. For example, one can
insert debugging routines, performance monitors, or
transaction logs.

DISTRIBUTED COMPUTING

TYMSHARE

One of the more interesting ways in which it is pos
sible to use this technology is to implement dis
tributed computing. It is possible to move B physi
cally to a remote machine without making any changes
to the code of either A or B. This is done by in
serting two general purpose import-export domains in
the same manner the auditor was inserted. An
import-export routine is attached to A. B is moved
to a remote computing system and attached to another
import-export domain. When a telephone or satellite
link is established between the import-export
domains, A and B may communicate as before. No
changes were required in either routine, in fact, it
is not possible for either domain to know that B has

G-10

. -- .· .· ..

•

GNOSIS

been moved to another system.

This technique will make it much easier for Tymshare
to develop distributed applications because all the
import-export logic and all the remote communication
logic have been removed from the application pro
gram. Thus, the application programs can be devel
oped on one machine. If the application grows and
will not fit on one machine it can be split and the
pieces put on additional machines as required.

UNIQUE FEATURES OF GNOSIS

There are no major architectural innovations in
Gnosis. The only thing that is unique about Gnosis
is the implementation. Gnosis is an instartce of a
capability based system. Unlike the predecessors
built in universities, Gnosis is a commercial qual
ity system. Gnosis is the only instance, that we
know of, of the union of a capability based system
with 370 architecture, which means.union of theca
pability based system and 370 program compatibility.
This allows the use of most IBM compilers, languages
and application programs.

In addition, the system has been built not as a re
search project, but as far as we know, the first
production quality capability based system.

Gnosis programs can be written in common languages
which provide a great deal of compatibility. Again,
the innovations are in the implementation, not in
the design.

370 ARCHITECTURAL WEAKNESS AND HOW GNOSIS OVERCOMES
THEM.

TYMSHARE G-11

•

GNOSIS

At the current time, the unique feature of Gnosis is
that it combines capability, architecture and 370
architecture. The 370 architecture is much maligned
because of its security weaknesses, and with due
cause. However, what many analysts have confused is
the 370 hardware architecture and the architecture
of the software systems that run on 370's.

Let us address several of the
weaknesses that are often quoted.

architectural

The first perceived weakness is that 370 is a
two. state machine. (Some other computers have
three machine states.) Gnosis extends the lim
ited two state architecture of the 370 by the
use of domains for both the operating system and
application programs. The result is a system
with an unlimited number of distinct states
without an implied heirarchy between them.

The second well known problem with 370 architec
ture is that the I/0 architecture is very com
plex and fraught with security exposures.
Gnosis solves the problem by architecturally
prohibiting any domain programs from executing
any channel programs. The kernel provides I/0
services through a very small set of simple
channel programs which can be thoroughly
debugged.

The third common charge is that 370 system soft
ware has massive denial of resource exposures.
Gnosis has been architected and implemented in
such a way that all denial of resource exposures
are closed, assuming the hardware is performing
correctly.

SYSTEM STATUS

TYMSHARE

Briefly, this is where Gnosis is today:

We are scheduled to do a performance benchmark
on a real machine by the end of 1980.

The kernel is complete and working. It compiles
and runs programs written in any standard 370
language.

G-12

'>·--_-__ ::_::
. . . '

•

GNOSIS

However, with limited resources we have not been
able to put in all the support functions which
one would normally expect in an operating sys
tem. For example, Gnosis does not have: 1) a
data base management system, 2) full screen
display capabilities, or 3) a sophisticated
procedure language at this time.

SECURITY EVALUATION STATUS

We have been involved for the last year with the
Computer Security Initiative and the evaluation team
has come up with a report evaluating Gnosis from a
security standpoint.

The same team is now defining a security policy
which they will recommend be implemented on Gnosis.

We are also evaluating the need to develop formal
specifications for Gnosis.

SECURITY AND OTHER POLICY ISSUES

During the early parts of the evaluation, it was
discovered that the Army had a different set of se
curity requirements from the Navy, which in turn had
a different set of requirements from the CIA, the
NSA, and so forth.

Being confronted by a multiplicity of requirements
and few resources, TYMSHARE realized that since no
security policy was universally acceptable, it was
better to provide universal tools which would enable
users to implement their own specific security poli
cies.

One of the advantages of Gno;is is that it can pro
vide an environment in which more than one, in fact
in which a number of policies can coexist. Each
user must follow the policy established by those in
authority who devise the policy for his group.

A PERSPECTIVE ON GNOSIS

TYMSHARE

Tymshare, during the course of its research, has
tried to visualize where Gnosis fits in the spectrum
of currently available and proposed operating sys
tems. On the Computer Security Initiative rating

G-13

GNOSIS

systems, our current implementation will probably
achieve a level 3 rating. If we choose to produce
formal specifications, it seems possible to achieve
a level 4 or 5 rating. Thus, Gnosis fits somewhere
betwee~ IBM's mainline products and KVM. On a per
formance spectrum we expect extreme variations de~
pending upon whether the application program can
take advantage of Gnosis features. We expect most
applications to run within a binary order of magni
tude (either faster or slower) on Gnosis compared to
IBM's operating systems. Most will rup at about the
sam~ speed.

SUMMARY OF GNOSIS ADVANTAGES

In summary, we expect Gnosis to provide significant
productivity benefits, major enhancements in ease of
maintenance for changing applications, high perfor
mance, compatibility with existing IBM programs and
applications, and a high degree of protection for
both programs and data. Thes~ advantages may be re
alized over a wide range of hardware configurations,
and will allow Tymshare to develop a number of com
puter service businesses which cannot be realized
today.

POTENTIAL SECURE APPLICATIONS

TYMSHARE

Tymshare is now at the crossroads--with a limited
staff we can help prospective clients develop a
trusted environment for selected applications. Es
sentially, there are four products that readily come
to mind that seem to have the highest payoff in
terms of meeting a need for which there is no exis
ting product.

The first, and these are not necessarily in order,
is to combine Gnosis with a relational database sys
tem, to produce a database engine (commonly called a
backend or a database machine) which can be used to
support multi-level secure databases. In this case
we can support relations with multiple security lev
els.

A second product would be a trusted message switch,
using Gnosis as a front-end processor to connect two
or three or five or ten machines, none of which
trusts any other. It might also be used as a mes-

G-14

GNOSIS

sage switch to transport messages between different
users who should not communicate with each other,
except through controlled channels.

The first two examples illustrate that Gnosis is not
particularly a replacement for MVS or for any stan
dard operating system, but a tool with which to
build almost any kind of trusted high-performance
computer system.

If one combines the message switch and the rela
tional database in the same machine, one can build a
secure transaction processing system. We have in
vestigated the possibility of using this system to
help defense contractors who need to have subcon
tractors' information collected in some safe place
but cannot allow subcontractors to see each other's
information.

A network
who don't

of computers
wish to share

be envisioned.

between government agencies
their all secrets can also

The trusted intermediary - An example in the commer
cial world is the case where a person has written a
program which processes seismic oil data and another
person has some oil data that he needs to have pro
cessed. Neither entity is willing to give up the
program or the data and yet the two of them can
cooperate with great mutual benefit.

CONCLUSIONS

TYMSHARE

Tymshare is planning the future of Gnosis. We need
more information about where Gnosis is appropriate,
and where in government there is a need for Gnosis.
We have tried to mention a few po~ential applica
tions here which come to mind. We would like very
much to get more information about whether the ap
plications mentioned are appropriate.

We also are attempting to decide the value of formal
specifications. We would very much like to have
some information as to whether having formal speci
fications would make a difference in terms of the
potential market for Gnosis. To answer these ques
tions, we need your help.

G-15

- .· -:·:

TYMSHARE

GNOSIS

In order to provide you with more background that
has been possible in this brief 30 minute presenta
tion, we have a considerable amount of available
literature. Some information is still preliminary,
but it describes in more detail the system as it
stands, and what we expect to be able to do with it.
We have available the report from the evaluation
team, which deals with the security-oriented aspects
of the system rather than the functionally oriented
aspects of the system. Finally, we are willing to
engage in considerable technical discussion with
those who are interested.

G-16

llfllll

Computer Security Developments at Sperry Univac

Theodore M. P. Lee
Manager, Systems Security

Sperry Univac
Roseville, Minnesota

November 18, 1980

Good morning •. You have heard much -- and will be hearing much
more about a number of efforts at the fore-front of computer
security technology research and development. We thought it
would be useful to set these efforts in perspective by talking
about how the company I work for has dealt with the subject of
computer security in the context of very large, mature operating
systems and a diverse and well-established customer base.

As you know, Sperry Univac is the computer manufacturer with the
second-largest installed customer base in the world. Our share
of the federal government market is larger than our share of the
over-all market, especially when you include our Defense Systems
Division -- which produces the u.s. Navy standard ruggedized
ship-board computers.

One would think that with that kind of customer base we would
feel strong p'ressures and recognize a strong incentive to quickly
produce a "trusted computer system," as that phrase is understood
here. We do perceive a concern and a need, but not ones with
much urgency or clarity; the reasons why this is so are mo·stly
what I am going to be talking about.

Before I begin, however, I'd like to make a comment, lest anyone
misinterpret my purpose. We believe that we do build trustworthy
computer systems. You trusted them when you-flew into the air
port here, o~ almost anyplace else; in fact, you most likely
trusted them when you asked the airline to hold a seat on the
plane for you. Many of you trusted them when you took your pay
check to the bank. If the situation in the MidEast -- or Africa
-- or Afghanistan -- or anyplace else -- gets much worse there
are many people who are going to trust some of our computers to
do what they are supposed to do in that eventuality. There are
also many people who are trusting our machines to help them know
if things are getting worse. And these people really do know and
care about computer security, even if they don~t tal~ to anyone
much about anything. So, in a way, by replacing the word
"secure" in discussions like this by the word "trustworthy" -- so
as not to give the false impression that the computers in the
u.s. government~s inventory are insecure -- my friend Steve may
be making a different set of people upset ~ith him.

So with that off my mind, what am I going to talk about?

H-1

First, I~m going to tell you a little about Sperry Univac and
what it makes.

Then I am going to tell you about what we have done over the last
ten years or so in the name of computer security -- or that has
been done to us.

Finally, I will tell you what we have going on now and in the
near future that I think does show progress towards more trust
worthy computer systems.

What is Sperry Univac?

Sperry Univac is the major revenue and profit-generating part of
the Sperry Corporation (until recently known as the Sperry Rand
Corporation.) It was in effect started by the U.S. Government
shortly after the second World War and has a fascinating history
-- much of which, as they say, remains to be told. Its early
progenitors -- Eckert-Mauchley and Electronic Research Associates

produced the first modern commercial computers: (I~ll let the
courts argue over exactly how to word that and exactly what it
means)

We have six major product development centers -- each of which is
responsible for a different -- but coordinated -- set of pro
ducts, a number of manufacturing locations, and scores of sales
and customer support offices all around the world. (About half
of our business is outside the United States.)

The major product lines, then, are:

In Blue Bell, Pa. -- company headquarters -- we make our series
90 and System 80 lines of small and medium-scale byte-oriented
computers with an architecture similar to the IBM 360/370-style
architecture, supported by our own software.

In Salt Lake City we produce communications processors and termi
nals -- smart and dumb -- used on all the mainframes.

In Irvine, Cal. our
Varian Data Machines a
mini-computers, which
ducts, to ourselves and

Mini-Computer Operations -- acquired from
few years ago -- supplies the V77 line of
are sold both on their own or as OEM pro
to others.

In Cupertino, Cal., ISS makes disk-storage devices.

In the Minneapolis-St. Paul area there are two other major divis
ions.

The Defense Systems Division produces ruggedized and other
special-purpose systems, mostly for the u.s. Defense Department,
mostly for the u.s. Navy. But it is out of there that the air
traffic control computers used at most of the major u.s. airports
come.

H-2

And finally, in Roseville, Mn -- a suburb of St. Paul -- we make
the large-scale 1100 series family of computers. The currently
produced products in that family range in size and cost from the
1100/60 selling for about $500,000, running at about 600,000
instructions~per-second -- to the large-scale 1100/84 about
$10,000,000 at about 8 million instructions-per-second. Previous
products in that family trace back to the ERA 1101, although the
first machines with truly similar architectures began with the
1107 and 1108 in about 1962.

The operating system for the 1108 -- called Exec 8 -- was the
first modern multi-processing operating system that had a full
service file system, full suite of utilities and compilers, and
supported multi-programming and interactive time-sharing. We
take pride -- and incur much technical challenge -- in the fact
that even though the hardware has been continually enhanced over
the years, the current version of the operating system still sup
ports -- from a single source tape of the system -- all previous
versions of the hardware since the 1108. And this includes the
fact that we have added more base registers, added new instruc
tions, and changed I/O and error-reporting interfaces with almost
every new model of the hardware.

The complete set of systems software for OS/1100 contains about
ten million instructions, of which maybe 500,000 are the execu
tive itself, a couple of million lines are in compilers, and the
rest are the data management system, transaction processing sys
tem, and utilities. It has been estimated that the core of the
operating system -- what would form a Trusted Computing Base
could be pared down to about thirty-two thousand instructions.

I know the foregoing sounds like a sales talk, but it is
relevant: we have much history behind us and cannot start
scratch. (I'll have more to say on that shortly, because we
try -- twice, in fact -- to start again from scratch.}

History of Computer Security at Sperry Univac

very
from
did

Although it can be claimed that Sperry Univac's history of com
puter security activities stretches back to the beginning we
had the first equipment approved under TEMPEST criteria before it
was even called TEMPEST -- serious attention was really given to
the problem at the start of the Exec 8 operating system first
delivered in about 1967. Just to make a multi-user, multi
processing, interactive system work reliably we had to have pro
tection features in it -- features that we thought were quite ef
fective for their intended purpose.

It has taken us just as long as our customers and the other ven
dors to recognize that the picture wasn't as comforting as it
seemed.

H-3

The history of our loss of innocence parallels that of everyone
else. It probably started with our attempt to bid an 1100 series
system on the WWMCCS program. We did bid and were technically
responsive. We did meet the half-formed "security requirements"
of the RFP through major special additions to the standard soft
ware. Partly as a result of this WWMCCS experience, but also
following close on the issuance of DoOR 5200.28, our federal gov
ernment marketing organization put together a task force to make
recommendations on what we should be doing about computer secur
ity. Other members of the task force came from both our domestic
and international marketing groups, and from product development.
Customer representatives were invited to present their needs and
thoughts. Perhaps coincidentally, a subcommittee of our user~s
organization was formed at about the same time to make. computer
security recommendations: the report of the marketing task force
mostly echoed and endorsed the user~s report.

Both reports were issued in March of 1973. Notice that DoD
5200.28 had just been issued in January, the Ware report was
still classified, and the Anderson report had not yet been widely
read.

The report of our user~s group is interesting, for its history
tells much about the education and communication problems in this
field. The committee writing the report was chaired by the head
of the University of Maryland~s computer center and the other
members came from NSA, the Navy, the National Bureau of Stand
ards, and RCA. Neither of the two reports said anything about
assurance -- as we now understand that subject -- or much about
security labelling of output media. The user~s report said noth
ing about special access categories or compartments or about
need-to-know lists. The marketing report strongly felt it was
impossible to fix on a single form of security policy -- such as
the DoD policy -- for all customers and instead asked for a quite
general, almost programmable, means to specify the security
"authority" of a user and the security "requirements" to be met
for accessing a particular file.

It took us back in Roseville a number years to draft our response
to the marketing report -- for it contained numerous detailed
recommended changes that needed to be coordinated with our other
development plans and commitments -- and we are now just about to
ship the first pieces of code implemented in response to that
process.

During this long period we have had until recently very few addi
tional demands from our customers. In 1973 NRL commissioned a
small penetration study of a particular widely-used but already
obsolete version of Exec 8. They documented one already-known
small class of vulnerabilities -- not applicable to later ver
sions of the exec -- and despite the fact that -- and probably
partly because of it -- the report of the study was classified
for about six months its not-very-favorable conclusions made the

H-4

national press, starting with Jack Anderson~s column, and even
~esulted in congressional and DoD-wide investigations. I under
stand there may have been a few other risk assessments and pene
tration studies of our systems, but we are generally not told of
their happening or of their results.

About the only other "demands" have been in the form of the
"security requirements" of various requests-for-proposals. I
want to give you several examples, all within the last year. For
the most part, these have not clarified customer requirements.

A very large procurement from the Air Force said that the system
"must PFOVide the capability to process personal information
under the •.• Privacy Act of 1974 [and] to process defense clas
sified information ••. "without giving much of any criteria for
what that meant. It said that "An access control mechanism which
denies unauthorized access and allows authorized users to selec
tively share data files without violating established access
authorizations ••• must be provided" without saying what consti
tutes an authorized access. The initial version of the RFP asked
that user identifiers and passwords be up to 10 characters long
and be system-generated, but a later re-issue of the RFP deleted
those requirements.

A Navy RFP specified that the system shall include "functions to
establish relationships between password/identifiers and any data
base or file." Nothing about what that relationship should be~
nothing about security assurance. Another Navy RFP specified
that "It is desired that the system provide multi-level security
operations~ i.e., it shall be possible-- under NSA regulations

to process unclassified and classified jobs concurrently."
Not providing that would entail a penalty of $1,000,000 in the
first month of the life cycle cost estimate of the system. I
don~t know of any regulations even being contemplated by NSA
regarding Navy multi-level security.

Our commercial customers naturally seem to be even less demanding
than our government ones. This includes, for instance, financial
institutions, service bureaus, manufacturing industries, or air
lines. The major requirements we do see here derive from the
various privacy acts of the countries we do business in, and
these are met with slight modifications to existing software.

Now, to summarize what I~ve just said: as far as I know and
I~ve done some careful checking -- we have not lost a procurement

or even declined to bid on one -- because our systems could
not meet the customer~s computer security requirements.

Other Computer Security Developments at Sperry Univac

In addition to this main thread of the security developments con
cerning the series 1100 systems there have been several other
activities throughout Univac related to security. In a sense,

H-5

these parallel my career through the company, but I do not want
to take credit for them.

I started in this computer security business back in about 1972
while I was in our Defense Systems Division. At that time my
main technical expertise was in interactive computing, especially
graphics. For some reason I was visiting in the Boston area and
wanted to stop by AF ESD to see what the latest in computer
graphics was: my contact said, "We aren"'t doing much in computer
graphics anymore, but we have this guy who is really gung-ho to
talk to computer manufacturers about computer security.". That
guy was Roger Schell.

Not long after, we started a small project on company !R&D funds
to learn about computer security. We ran into two problems -- we
never made enough progress that we could interest someone like
ARPA or NSA in giving us real money, and the Navy still seemed
(to us) to be of the view that computers on ships were isolated
out in the middle of the ocean and had no security problems.

Anyway, in mid-1973 I was drafted by headquarters to move from
the Defense division to our commercial division in Roseville to
work on a project that was developing a completely new product
line. The goals were ambitious, but there was excellent manage
ment support. Amongst many other things, the system was to have
all the security architecture ·features anyone would want -
descriptors, virtual-memory, stacks, domain-protection, program
med entirely in a modern high-level language. We managed to get
many people to understand what a security kernel was. We hired
Jim Anderson as a consultant -- a process that required approval
by the President of Univac. But we had to deal with a fundamen
tal fact of life -- the new system would not be compatible with
the existing well-established series -rloo or 90 machines,
although we did intend for it to support multiple virtual
machines, some of which would emulate the old modes. We did know
when we began the project that one over-riding constraint on it
was that of preserving our customers"' software investment. Ulti
mately, we could find no convincing way to overcome that hurdle
on a radically innovative hardware architecture and the project
was cancelled after over five-years of work.

It was shortly after the cancellation of this project and
partly as a consequence of what we learned during it -- that our
management recognized we did indeed need to better focus the
attention paid to computer security issues. It was at this time
that I was appointed to my current position with the responsibil
ity to over-see all computer security activities.

The same recognition that the best way to move forward would be
to have a new architecture surfaced in our newly-acquired mini
computer operations a year or two later. In some ways, that
effort made even more progress: it had as a stated goal the need
to support DoD multi-level security (in the full meaning of
that), had in fact programmed a rough-cut at the security kernel,

H-6

and was starting to inquire about obtaining formal specification
and verification tools or services from outside suppliers.
Things were going well enough that we took DoD up on its offer to
look over our shoulder in an informal security evaluation.
Unfortunately, much the same fate overtook this project: the
need for preservation of the existing customer base, experience,
and software led to its cancellation.

Future Developments

Both of the cancelled projects I~ve just mentioned were not
wasted investments. We learned a lot -- not just about security
-- and the results of that learning are being directly applied to
several future products of a more evolutionary, rather than
revolutionary, nature. Without giving away any company. secrets,
let me tell you some about them.

We are making a number of changes to the series 1100 operating
system and the hardware architecture with security specifically
in mind, although we are doing these things for many other rea
sons as well.

First, we will be enhancing the hardware in an upward
compatible way to add what some of you would understand as a
segmented capability addressing structure, with a domain protec
tion scheme. This will give finer control over accessibility,
allow the more flexible creation of protected subsystems, and
regularize interfaces so that state-switching can be made faster
through specific hardware assists. There will also be a virtual
machine facility that at least gives us the option of doing a KVM
kind of system.

Secondly, we are restructuring the operating system. Although it
already attempts to have as much code outside of privileged mode
as possible, much more will be broken out and placed into sepa
rate domains that have only exactly as much privilege and acces
sibility as required. We are using more rigorous (but not yet
mathematically formal) specification and configuration management
tools.

We are also well-along in creating a massive computer-based model
of the existing software to document its internal and external
interfaces and data structures. This includes not only the exec
utive itself but also the data management system, utilities, com
pilers, etc.

A second development is taking place in our communications proc
essors. The hardware has been modified to explicitly recognize
the kind of job it is doing-- i.e., it has data structures spe
cifically designed to take care of messages and queues of
messages. In particular, coupled in an unaccessible way with a
message are address descriptors that govern exactly what kind of

H-7

access any code processing a given message needs to have; this
includes the micro-processors that are attached to each communi
cations line. The hardware is now designed so that the software
can be structured into many small procedures, each of which can
only access small parts of memory and can only call specific
other procedures. The planning people in Salt Lake City are set
ting their security goals for the software that will use that
hardware; the requirements contain strong words about policy,
mechanism, and assurance that were directly influenced by the
kinds of things being talked about at these seminars.

Our just announced system-80 machines already have a more useful
architecture for protection than that of their ancestors and fut
ure improvements are well underway.

Concluding Remarks

To summarize, Sperry Univac is a large company, with diverse
interests, customers, and products. I hope I have been able to
give you an accurate and instructive picture of how we perceive
the computer security problem and are responding to it.

We are closely following all the research activities discussed at
these seminars, but can't yet commit ourselves to their applica
bility. This is a very expensive business to make experiments in
-- a small kernelized secure text-editor, filing system, and desk
calculator can in no way be viewed as a pilot-plant for a large
centralized corporate database system.

I thank you for this opportunity to share my thoughts on the sub
ject. Notice that we all will have a second chance this after
noon to raise some of these questions in even more detail.

H-8

How Can the Government and the Corrputer Industry
Solve the Corrputer Security Problem?

A Panel Discussion

Ted Lee, Sperry Univac
Jim Anderson, Consultant

Steve Lipner, Mitre
Marvin Schaefer, SOC

Bill Eisner, CIA

[At the Second Seminar on the DoD Corrputer Security Initiative Program,
January 15-17, 1980, Ted Lee - attenpting to speak for the computer indus
try - and Jim Anderson - attenpting to speak for the government -
presented a "dialogue" on the subject· of "What every vendor always wanted
to know about government computer users~ security needs (but was afraid to
ask)" There was considerable audience interest in the dialogue, but little
time for audience participation. In fact, the interest was so strong that
we have invited them back again to pursue the issues in IIK>re detail, with
IIK>re time for audience participation, and we have put three additional peo
ple on the panel to ensure that all viewpoints are heard.]

[At the last seminar Lee and Anderson were guided by a list of questions
and answers that had been prepared in advance - the questions obtained
through an informal canvassing of several vendors, the answers written by
Anderson. For this seminar, the major points of those questions have been
reduced to ten questions, which are printed below. The answers will come
from the panel.]

[All participants are speaking as individuals out of their own experience
and do not necessarily represent the views of their respective organiza
tions.]

1. We are generally talking about the data security needs and desires of
"the government computer user." Is it meaningful to undertake such a dis
cussion - i.e., is there a "typical government computer user"? Does he
care about computer security? How does a vendor discern the computer
security needs of that user? Are those needs unambiguously documented in
accessible forms, consistent throughout the government? And does responding
to them REALLY make a difference (now or ever)?

2. What kinds of applications for computers-- e.g., communications,
transaction processing, data management, process control, general user
programmable data processing- and what kinds of configurations-- e.g.,
networks, centralized, distributed - are going to have the IIK>st severe
computer security requirements? Which are of lesser importance? And 'what
portion of the total usage of computers does each represent?

I-1

3. In various forms and in various places, such as in OODR 5200.28, AR
380-380 or NBS Special Pub 500-57, attempts have beep made to categorize
computer systems into a small number of classes of increasing sensitivity
based on factors like the amount and mix of classified or other sensitive
information involved, how benign the physical and personnel environment is,
and what kinds of interaction with the system are allowed. Without arguing
about the details of any particular categorization scheme, what mixes of
data sensitivity, user trustworthiness, and application environment is it
going to be important or highly desirable to support? {e.g., is it meaning
ful and important to think about handling Tbp Secret information on a sys
tem with same people having only Confidential clearances programming in
assembly language?)

4. In the first question we asked generally about whether the "typical
government crnputer user" knew and could express what he needed or desired
in the way of canputer security. Specifically then, what kind of security
policy OOES that user want his canputer system to support - i.e., what
rules should it enforce? What information is to be used in enforcing the
rules? How is the system to interface with the manual world {e.g., marking
of output)? And what kind of auditing procedures are to be supported? Haw
fine a granularity {e.g., file, record, field within record) are the rules
and other measures to be applied to?

5. How badly does he care that the policy discussed above be applied?
What is the perceived importance of the possible threats to it? {e.g., ex
ternal physical attack, active or passive wiretapping, human error or cul
pability, malicious legitimate user - cleared or not - attempting techni
cal subversion of the operating system, collusion through Trojan Horses and
covert channels, or trap-doors planted at the vendors hardware or software
factory?)

6. We are all generally aware of the efforts being made to establish same
form of government bureaucratic apparatus for certifying the trustworthi
ness of computer systems. Will this really happen? When? Where will it be?
How will it operate? Will the criteria it applies look much like the draft
criteria that now exist? Will it truly be able to make a more standard
approach to canputer security possible throughout the government? What
effect will it really have on future procurements - both inside and out
side the government? {And, how reliable are the answers to those ques
tions?)

7. Same aspects of the technology and the certification criteria being
developed imply radical changes in the way vendors develop their systems
and how they interact with at least their government customers. Tb what
extent is the government going to need closer scrutiny of a vendor's inter
nal develo};Jllent operations? Will it be able to do so in an impartial way
and without directly or indirectly - for instance, by the way it words a
procurement - revealing proprietary information of one vendor to another?
What aspects and physical copies of a highly trustworthy computer system
are going to need to be treated as classified? Who will have the responsi
bility for maintaining the security kernel software? What new export con
trol restrictions will apply to this new technology?

I-2

8. A significant af!K)unt of new software technology is involved in the
current government-fostered development of "secure computer systems. 11 Of
the various options being currently explored -- security kernels on more
or-less conventional architectures, capability architectures, encryption as
a substitute for other forms of security, different specification, verifi
cation, and inplementation tools and languages -- will any particular ones
emerge as "best" (either through natural selection or through government
fiat)? Will computer security technology ever be good enough that less
attention needs to be given to other forms of security?

9. Are the current R&D efforts credible? -- they ignore hardware and
micro-code problems, appear to have grossly unacceptable performance penal
ties, and are perceived to have been done on only limited purpose or "toy"
systems. What about enforcement of "need-to-know" principles and other
rules in addition to the over-sinplified partitioning of the world into a
few security levels and compartments?

10. What is the economic inpact of all these computer security develop
ments - i.e., how nuch are users willing to "pay" for security (including
incompatibility, overhead)? Does it make sense for a vendor to attenpt to
offer security as a (possibly high-priced) option? When will strong
requests for security show up in RFP~s? What kind of market forecast could
one make -i.e., $ value. of systems to be bought in each of the years 1980-
1995 at each of the levels 0-5 of the Mitre TCB evaluation criteria?

I-3

: .. _ ~ - -~-: _-- ~ : . ' : ~-.

OPENING STATEMENT

COMPUTER SECURITY

(S. B. LIPNER)

In late 1970--just about ten years ago--I returned from a field
assignment and was asked by MITRE to look at the computer security
problem. At the time we were looking at needs for a multilevel
secure time-sharing system and a multilevel secure command system-
both at unclassified through secret levels. Neither system has yet
gone operational as required, though in the intervening years we did
achieve some significant things. As far as I'm concerned three of
the most significant (in no special order} were:

(1} The development of the Bell-LaPadula (star-property} model
and a set of formal techniques for proving that system
security complies with the model;

(2) The development of a Multics time-sharing system that
embodies the *-property (but is not proven} and is in
multilevel use today (though all users have some level of
clearance); and

{3) The development of a prototype security kernel for the
PDP-11/45 that was subject to limited proofs of compliance
with the *-property and demonstrated in simulated
multilevel applications.

In the early seventies if we talked to industry about security,
the responses we got were "if you just tell us your requirements,
we'll meet them". I think those responses were oversimplified. If
the requirements are the star-property and proofs nobody in industry
is enthused about meeting them. And I'm not sure whether they
should be or not.

I do think a lot can be done to make systems better for many
requirements. The Multics effort--adding the star-property,
plugging the holes, and limiting the risk--is a neat example. I'm
not sure that industry is really seizing on that example and
emulating it to give customers more choices. I'm also not sure that
the government is emphasizing the utility of such systems.

I also worry about security kernels. The original kernel idea
(from the Anderson Report) was to have a mechanism that was always
invoked, tamperproof and small enough to be subject to complete
analysis and tests. Our prototype for the PDP-11/45 and Jerry
Popek's were about 1000 lines of HOL each. KSOS-11 is around 10,000
lines. Some of that growth is for efficiency and real-world
features. Some is the introduction of neat advanced operating

I-4

system concepts that may not be necessary for a small simple secure
kernel. I wonder if our desire to do things in the neatest, most
advanced way has compromised our at-ility to adhere to the original
Anderson Report principles. I read Lee Schiller's kernel (cover to
cover) one night in a hotel room. A proof has to be awfully good to
be as convincing as reading and comprehending the entire kernel.

Since leaving the security business in 1976, I've been working
on acquisition of fielded systems for the Air Force. Security has
raised its head a few times and I've thought of the option of
building a kernel for the job. I've always avoided that option in
favor of the best off-the-shelf approach available--even if that
approach was less secure than I'd like or operationally painful.
The cost and schedule risk of building a kernel for a real fielded
system has just been too great. But I've been dissatisfied both
with what I've had to do and with the quality of the options
available to me. If there were more products comparable to the
Multics system I mentioned above in level of security (not in
specific features) I'd have been much happier with my options and
results. This represents a reversal from positions I took in
1973-75--but a realistic one. And if there were off-the-shelf
usable kernels that, of course, would be great. The important point
is that off-the-shelf options will get used while development gets
avoided.

I'd like to think that some synthesis would occur merging the
advanced security ideas with the needs of the broader market and the
realities faced by industry. Everybody can compromise some and
still get significant improvements in capability and security. The
important thing is off-the-shelf-capabilities available to a user.
I hope these conferences are a step toward dialogue, compromise and
the delivery of more real systems.

I-5

r

'

Quality Assurance
and Evaluation Criteria

Grace H. Nibaldi

MITRE Corp:>ration

Problem

How does One Baild Quality Trusted Software iD
the Face of:
large, complex operating systems

High-integrity applications

Easily penetrable computer systems

Solution

Integrated Software Engiaeering Approach
lncorporatiag:
Policy·

Mechanism

Assurance

J-1

Po&cy

Security

IDtegrity

Denial of Serwke

Mechanism - Trusted
Computing Base

Complete

Isolated

Verifiable

Assurance

Software Life-Cycle
System requirements

Design

Code and debug
Testing

Operations and. maintenance

J-2

'

. . .

lilt

Assurance

Software Development Approaches

Evaluation Criteria for
Trusted Systems

0
I

2
3
4

5

6

Po&cy

No protection

Umited access control

Extensive mandatory security

Structured protection mechanism
Design verification

Code verification

Hardware specifications

1 Acceu Controls

2 Discretionary Secarity

2 MaDdatory Secarity

2 Denial of Ser\lic:e

J-3

Mechanism

"'--tion Collusion llea,vuy - Huttware

Data protection 5 Tuning & storage channels Software Fault Del.
1 Diagnostics I Access control Detedic.

System integrity

I Isolated OS

I User per process

3 Isolated protet:tion mechanism
3 Complete mediation

Authentication

I login (oser)

2 Special character

Denial of Service ·

2 Tune-slic::ing

2 Masque

5 Space quotas

Audit logging

2 VIOlations

2 Classified output

2 Tune of use
2 LOg;ns
4 Leakage channels

5 Real-time SUI'Willance took

Assurance

Daign T-
Methoclology Production tescing

1 Good engrg procrice 1 Debugging

3 StnactUI'Ed methodology 1 Functional testing

3 Top<lown design 3 Booed .., TIS

Specifications Test case generation

3Top-lewldesign 4Fn>mTLS
4 Fonnal TIS 5 From klw level specs

6 From H/W specs 5 low Jewl specs

611/W _.,ffications -....-....-
I Inspections
2 ModeTn programming techniques

3 Structured programming

5 Verifiable implementation

Assurance

lmplemeutatioa

Testing

Verification

2 P~ration & patch
5 Tuning channels

2 Subverter program

H,!W fault tolerance
4 Umited operation

H/W fault recovery
5 Backup systems

6 Self.diagnosis & conection 1

OpaatiollsfMaiateaaace

I Backup/recovery

2 Output labeling

4 Configuration management
4 Reverification

V...;&ut;oa

Design to model pn>ol

4 Flow analysis

4lnwuiants

5 Code to design proofs

6 Ob;ect code to source proofs

6 WW spec analyzed against TLS

J-4

r

'
r

'

'

Assurance

Methodology
Formal specifications

Assurance

JmpJemeafatioD

Methodology
Verifiable implementation

Assurance

Te&tiDg

Production testing

Test case generation
Penetration analysis

J-5

'

'

Assurance

Verification

Design to model

Code to design

Object code to source code
Hardware

To Come

Specific:ation & Verification Ovet'\liew

Specific:ation & Verification Reaearchers

Software Testing Ovet'\liew

TI'IIStecl System Developers

Goals of This Seminar

Terminology

Role of Verification in Security

T 1'118tecl System Acquisition

J-6

r

'
r

'

Specification and Verification
Overview

William F. Wilson

MITRE Corp::>ration

Questions

What is formal verification?

What properties can be proved about a system
design?

What properties can be proved about an
implementation?

The Problem

ARE THESE CONSISTENT?
~-----------~·· IMPLEMI:NTATION

K-1

r

'

The Problem Dissected

0 ~·=: IFORMALI ~~;,.,, I FORMAL J VERJ~~no• o'::&\'. v MOOEL •lt!SPE~C=IFIC~ATIO::=Nr===o.ILANGUAGE

Software Development Approaches

Types of Models

Access Control
Considers subjects and objects

Requirements:

a) If S has read access to 0, security - level (S) >
security - level (0) -

b) If S has write access to 0, security- level (S)~
security - level (0)

Flow Analysis

Considers system variables

Requirement:

If information can flow from A to B, security - level (A)~
security - level (B)

K-2

./

\.

'

Formal Specifications

State MachiDe

Relates values of variables before and after operations
Example

Exchange (X, Y)

New- value (X)= Y;

New - value (Y) = X;

Algebraic

Relates results of sequences of operations

Example

Exchange (Exchange (Pair)) = Pair;

First (Exchange (Pair)) = Last (Pair);

Last (Exchange (Pair))= First (Pair);

Levels of Specifications

Stepwise Refinement

Lower levels describe the same operations in greater detail

Hierarchical

Lower levels describe operations used to implement
higher levels

Design Verification -
What is Proved?

Proof of Consistency Between Model and
Specification

State invariants

Transition properties

Assnmes:

Model is appropriate

Specification is complete

K-3

'

'

'

Design Verification •
Prac:tical Considerations

u-Dy Dolle with Auto-tic Theorem......._.

EMier tllmt Code Veri&catioll

C.. be u.efaJ witlloat Code Verificatioa

M- be .. Early Put of~ Development

Code Verification

Entry Assertion J;;.O

program

Exit Assertion

exchange

I final = J start

Jfinal = lstart

Pro\le: U the entry assertion is true when the program
begins, the exit assertion will he true when the
program ends.

Inductive Assertion Method

lutroduce lutermediiite Assertions
Assertion 0 (Entry)

CodeO
Assertion 1

Code 1

~rtionN·1
Code N·1
Assertion N (Exit)

Prnve: U Assertion I is True, then Assertion I + 1 will
he True After Code I is Run.

Verific:atioa Couditions

K-4

.

'
r

'

Loops

Entry Assertion

l
G

-l
Loop Assertion

l
~Yes • • •

7
~Exd nssert10n

lNo

G

Code Verification
Practical Considerations

Harder than Design Verification
Many long verification conditions
Need loop assertions

Practical Only for Critical (SmaD) Portious of Code

Requires Automatic Theorem Provers

Part of the Software Development Process

Role of Automatic Theorem Provers

Many Lo119 Theorems to Prove

Repeatable Results

K-5

r

'

Summary

Formal Verification: Proof of Collliistency

Design verification:

Consistency between model and specification

Assumes:

Model is appropriate

Specification is complete

Code verification:

Consistency between specifkation and implementation

Assumes:

Specification is appropriate

Implementation language is correctly defined

K-6

FDM ~ A Specification and Verification Methodology

Richard A. Kemmerer *
System Development Corporation
Santa Monica, California 90406

System Development Corporation's Formal Development
Methodology (FDM) is an integrated methodology for the
design, specification, implementation, and verification of
software. FDM enforces rigorous connections between succes
sive stages of development, The FDM is used as follows:

1. The correctness requirements for the software are
modeled.

2. A top-level design specification is written and ver
ified to be consistent with the model.

3. The design specification is repeatedly refined to
include more detail until a program design specif
ication is derived.

4. The intermediate design specifications and the pro
gram design specification are verified as the
refinement process is carried out,

5. An implementation is coded from the program design
specification and this implementation is verified
to be consistent with the program design specifi
cation.

By verifying that specifications are consistent with the
model, design errors are detected immediately rather than
during implementation verification,

A key point about the FDM is that all theorems to be
proved about specifications and implementation are generated
automatically by the verification system. In addition,
development stages are integrated: the output of one stage
is used as the input to the next; a user need not massage
the data into the format needed for the next stage. Furth
ermore, since all tools run on the same machine, the output
from one tool is written directly on a file used as input to
another tool.

Four basic components comprise the FDM verification
system. These are the Ina Jo specification language, the
Ina Jo processor, the interactive theorem prover (ITP), and
the verification condition generator (VCG). Each component

Richard-Kemmerer-is-a-consultant to System Development
Corporation working on enhancements to the FDM. He is
an Assistant Professor in the Computer Science Depart-
ment at the University of California, Santa Barbara.

L-1

is discussed in detail in the following sections.

The Ina Jo language is a non-procedu~al assertion
language that is an exten~ion of first-order predicat~ cal
culus. The language assumes that the system is modeled as a
state machine. Key elements of the language are types, con
stants, variables, definitions, initial conditions, cri
terion, constraints, transforms, modules, levels, and map
pings. The following paragraphs contain examples of some of
these elements. An Ina Jo Specification that contains these
examples is presented in Appendix A.

Some examples of types are:

type element,
subject(element,
access= (read,write,append,exec),
accesses = set of access

The type element is an unspecified type and subject is an
unspecifie~ subtype of element. The only operation that is
defined on u~specified types is equality. Access is an
enumerated type with four possible values, and accesses is a
set of type access. The only primitive types in Ina Jo are
integer and boolean.

The initial condition is an assertion that must hold
for the initial state of the system. The following initial
condition specifies that initially no subject has access of
any type to any object.

initial Ans:subject,o:object
(accesses_allowed(s,o) empty)

The correctness requirements of the system are modeled
in Ina Jo by the criteria. The criteria was originally a
conjunction of assertions called criterion that specified
what was a good state. These are often referred to as state
invariants since they must hold for all states. In the pro
cess of specifying real systems it was found that it was
often necessary to include restrictions on the relationship
of one state to the next in the model. To meet this demand
a constraint was added to the criteria. The constraint is
an invariant about state transitions that compares the old
and new states. Thus, although it is not in agreement with
the English language an Ina Jo correctness criteria is made
up of the conjunction of the individual criterion and the
constraint. The following example of a criterion specifies
that for all subjects s and objects o if s has write access
to o, then the class of s is equal to the class of o and the
category of s is equal to the category of o.

L-2

An s:subject, o:object(
write(:accesses_allowed(s,o)

-> class(s)=class(o) ~ catg(s)=catg(o))

An Ina Jo transform is a state transition function it
specifies what the values of the state variables will be
after the state transition relative to what their values
were before the transition took place.

Only a subset of the Ina Jo language has been presented
here. A complete description of the language can be found
in the Ina Jo Reference Manual [LSS 80] and in the tutorial
overview [Egg 80].

The Ina Jo processor reads specifications written. in
Ina Jo and produces theorems to be proved by the interactive
theorem prover. Two types of theorems are generated by the
processor: consistency theorems and correctness theorems.
Consistency theorems guarantee that the effect of a
transform is not false, that defined terms are well defined,
that type restrictions are observed, and that mappings are
consistent. These theorems are usually existentializations.
For instance, if the effect part of a transform contains
Nnx=x+l and N"x=x then a theorem is generated stating that
there exists an element of the type of x that satisfies
these two conditions. Since this reduces to false the
specification cannot be proved consistent.

A number of correctness theorems are generated by the
Ina Jo processor. One states that the initial conditions
satisfy all of the criterion. This guarantees that the sys
tem is initially in a good state. In addition, for each
transform in the top-level specification a theorem is gen
erated that guarantees that the transform satisfies the cri
teria. This theorem states that if the old state satisfies
all of the criterion then the new state will also satisfy
all of the criterion, and that the relationship between the
old and new states satisfies the constraint. Since the ini
tial state is shown to satisfy the criteria, and following
any transform that starts in a state that satisfies the cri
teria the new state satisfies the criteria, by induction one
can conclude that all states satisfy the criteria.

In addition to the theorems generated for the top-level
specification, it is necessary to generate correctness
theorems that guarantee that each lower-level specification
correctly implements the corresponding higher-level
transform with respect to the mappings.

Finally, it is possible to introduce transforms at the
lower levels that do not correspond to any transform at the

L-3

-· ·-· ·-· --- .· ..

ltttll

level above; it is necessary to generate correctness
theorems for these transforms that guarantee that they
satisfy a mapping of the criteria.

In addition to generating consistency and correctness
theorems the Ina Jo processor must generate entry and exit
assertions for each of the high order language procedures
that implements a transform in the program design specifica
tion. To do this the Ina Jo processor needs to know how the
objects of the lowest level specification (program design
specification) map on to objects in the high order language
(HOL) implementation. This is provided by the implementa
tion specification which is nothing more than these map
pings. Thus, the Ina Jo processor for this step in the
verification process accepts as input the program design
specification and the implementation specification and out
puts the entry and exit asser~ions for the HOL procedures
that implement transforms of the program design specifica
tion.

!.I. Th~ Interactive lhllll.!! frovll

The interactive theorem prover (ITP) aids the user in
documenting the proofs of long theorems. The ITP uses the
principle of ~~~£tiQ ad ab~urdum (proof by contradiction).
That is, the first step in the proof process is for the ITP
to automatically assume the contrary and the user then
proceeds to show that this assumption reduces to false.

The design of the ITP adheres to the following objec
tives: all proofs must be automatically checked for sound
ness, the user must be in cbmplete control, the output must
be in a format that can be audited, and the user must be
relieved of typing voluminous amounts of information that
can be typed by the theorem prover under user direction.
The following paragraphs discuss how these design objectives
have been met.

Each time the user directs the ITP to perform a
the ITP checks its knowledge base to see if the step is
ically sound. If the step is not logically sound it
not be performed and the user will be notified.

step
log
will

The proofs are written in a human-readable form by
adopting a Dewey Decimal like line numbering scheme that
indicates the step sequence in the proof as well as the
nesting level. That is, each time a new step of the proof
is executed the last part of the line number is incremented
by one. In addition, each time a theorem is needed to com
plete the proof the user states the theorem and the current
line number has a decimal point and a one appended to it to
arrive at the next line number. Thus, each decimal point
indicates the nesting of theorems being proved. When the
proof of a theorem is completed the last decimal point and

L-4

Ill

any numbers following it are removed. The proofs are also
made more readable by appending English justifications to
each proof step. For instance. when the ITP automatically
assumes the contrary this step has "ASSUME" appended to it.
Also. if a result of false is derived from contradicting
statements at steps 11.3 and 11.12. then this step has
•(11.3 11.12)CONTRADICTION" appended to it.

The ITP accomplishes automatic deductions by generating
corollaries to proof steps. These corollaries are numbered
with the proof step number followed by a hyphen and then an
integer value (see example below). An example of when
corollaries are generated is when the proof step is a con
junction of predicates and the ITP automatically and splits
these into the individual conjuncts each as a separate
corollary. Although the ITP performs most deductive steps
automatically, it never enters into lengthy excursions to
heuristically discover deductions. For instance it never
attempts substitutions unless the user requests a particular
substitution.

To give an example of the numbering scheme and the
proof by contradiction approach consider the following
scenario. After executing proof step 99 the user realizes
he would like to have a theorem to use in the proof; there
fore, he state~ this theorem as step 100.

100 H1 ~ H2 ~ H3 -> C1 ~ C2

The theorem consists of three hypothesis H1, H2, and H3 and
two conclusion C1 and C2. Since the ITP uses the method of
proof by contradiction it automatically assumes the con
trary. In addition since the proof of this theorem intro
duces a new level the next line number .is the previous line
number with ".1" appended to it. Thus, the next line is

100.1 H1 ~ H2 ~ H3 ~ (-C1 I -C2)

Next the ITP automatically and splits this conjunction get
ting the following four corollaries.

100.1-1
100.1-2
100.1-3
100.1-4

H1
H2
H3
-C1 I -C2

The user next proceeds to prove that -C1 is false and that
-C2 is false which yields corollary 100.1-4 to be false,
which reduces 100.1 to false, and thus proves the theorem
stated at line 100.

A detailed discussion of the ITP can be found
ITP User's Manual [Sch 80].

L-5

in the

- ... ·- ., - - ~. ~- '. ' - ~

~.!. The Verification Condition Generator

For the verification process to be complete, it is
necessary to perform code level proofs in addition to
specification verifications. To meet this need a verifica
tion condition generator (VCG) for Modula is currently being
built~ The VCG accepts as input the asserted HOL code of
the implementation and the entry and exit assertions output
by the Ina Jo processor. The output of the VCG is the
verification conditions (theorems) that assert that each
subroutine satisfies its exit assertion assuming that its
entry assertion holds at the point 'of invocation. The
verification conditions output by the VCG are used as input
to the ITP which is used to prove them.

I. Applications Q! £~~ EDM

The FDM has been thoroughly tested on a variety of
real-world problems. Most noteworthy of the systems to
which the FDM tools have been applied include:

1. An operating system kernel for KVM/370
2. Three kernels for a secure network system
3. A capability based Secure Transaction Processing

System (STPS)
4. A system for automating the periods processing for a

large scientific processor using a Job Stream
Separator (JSS) approach

5. A secure network front-end

For KVM the kernel as well as four trusted processes
running on the kernel had top-level specifications written
and verified. The top-level specifications are to be
refined to lower level specifications which will also be
verified.

The specifications for the second system were written
by non-SDC personnel. These specifications included top
level specifications for three different kernels of which
each node of the system was comprised. Each of the specifi
cations was verified to be consistent with its correctness
criteria.

For the STPS there were three levels of Ina Jo specifi
cation written of which the top two were verified to be con
sistent with the STPS correctness criteria.

There are presently two levels of specification written
for the JSS. The top-level specification has been verified
and the second level specification is in the process of
being verified. The code for this system is being written
in Modula, and the Modula VCG will be used to perform code
level verification of the system.

The specification and verification of the secure

L-6

network front-end is also currently in process. This system
includes an executive and twenty trusted processes. At the
present time the top-level specification for the executive
has been written and verified and the second level specifi
cation is being written. In addition top-level specifica
tions for two of the trusted processes are being written.
Parts of this system may be verified down to the code level.

The Formal Development Methodology is a specification
and verification methodology that is well integrated and
rigorous. FDM is capable of performing verification against
a variety of correctness criteria without requiring any
changes to the tools. The methodology has been successfully
applied to a number of complex real-world systems. Although
to date none of these verification efforts have been carried
to code level, this will be done in the near future. FDM is
a useful methodology for systems that warrant the cost of
formal verification.

The principal designers and implementors of the FDM and
its tools are John Scheid and Val Schorre. Also currently
active in enhancements to the tools are Sue Landauer and
Paul Eggert.

[Egg 80] Eggert, Paul R., "Overview of the Ina Jo Specifica
tion Language," System Development Corporation
document SP-4082, October 1980.

[LSS 80] Locasso, R., J. Scheid, V. Schorre, and P.
"The Ina Jo Specification Language
Manual," System Develo~ment Corporation
TM-(L)-6021/001/00, June 1980.

Eggert,
Reference

document

[Sch 80] Schorre, V., "The Interactive Theorem Prover (ITP)
User's Manual," System Development Corporation
document (in preparation).

L-7

00010
00020
00030
00040
00050
00060
00070
ooo2o
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520

A2~endix A - A Specification Example

$TITLE EXAMPLE
SPECIFICATION EXAMPLE
LEVEL TOP-LEVEL

TYPE ELEMENTr
SUBJECT < ELEMENTr
OBJECT < ELEMENT

TYPE ACCESS • <READr WRITEr APPENDt EXEC>r
CLASSIFICATION•
CATEGORY

TYPE CATEGORIES • SET OF CATEGORYr
ACCESSES • SET OF ACCESS

CONSTANT
CLASS<ELEMENT>:CLASSIFICATlONr
CATG(ELEMENT>:CATEGORIES

CONSTANT
OK-TO-WRITE<S1SU8JECTrO:OBJECT>:BOOLEAN •

CLASS<S> • CLASS<O)
l CATG<S> • CATG<O>

VARIABLE
ACCESSES-~LLOWED<SU8JECTr08JECT>:ACCESSES

INITIAL
A•S:SU8JECTrO:OBJECT<ACCESSES-ALLOWED<SrO> • EMPTY>

CRITERION
A•s:SUBJECTrO:OBJECT<

< WRITE <: ACCESSES-ALLOWED<SrO>
-> CLASS<S> • CLASS<O> l CATG<S> • CATG<O>>

)

TRANSFORM GET.WRITE-ACCESS<S:SUBJECTrO:OBJECT> EXTERNAL
EFFECT

A•st:SUBJECTrOl:OBJECT<
N•ACCESSES-ALLOWED<S1r01) •

< OK-TO-WRITE<SrO>
l Sl • S
' 01 • 0 •>

ACCESSES-ALLOWED<S1r01> ll s•<WRITE>
<> ACCESSES-ALLOWED<S1r01>>

)

END TOP-LEVEL

L-8

00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770 .
00780
00790
00800
00810
00820
00830
00840
00850
00860
00870
00880
00890
00900
00910
00920
00930
00940
00950
00960
00970
00980
00990
01000
01010
01020
01030
01040
01050
WRITE>
01060
01070
01080

LEVEL SECOND-LEVEL UNDER TOP-LEVEL

TYPE ELEMENTr

TYPE

SUBJECT1 < ELEMENTr
OBJECT < ELEMENTr
SUBJECT2 < OBJECT

ACCESS = <READr WRITEr APPENDr EXEC>r
COM-ACCESS = <READr WRITE>r
CLASSIFICATION = <UNCLASSIFIED, CONFIDENTIAL•

SECRETr TOP-SECRET>•
CATEGORY

TYPE CATEGORIES = SET OF CATEGORY•
FILE-ACCESSES = SET OF ACCESSr
COM-ACCESSES = SET OF COM-ACCESS

CONSTANT
CLASS<ELEMENT>:CLASSIFICATIONr
CATG<ELEMENT>:CATEGORIES

CONSTANT
OK-TO-WRITE<S:SUBJECT1rO:OBJECT>:BOOLEAN =

CLASS<S> = CLASS<O>
& CATG<S> = CATG<O>

VARIABLE
ACCESSES-GRANTED<SUBJECTlrOBJECT>:FILE-ACCESSESr
COMMUNICATION-ACCESSES<SUBJECT1rSUBJECT2>:COM-ACCESSESr
ACTIVE-USERl<SUBJECTl>:BOOLEANr
ACTIVE-USER2<SUBJECT2>lBOOLEAN

INITIAL
A"ElrE2:ELEMENT<

ACCESSES-GRANTED<E1,E2> = EMPTY
& < E"S1:SUBJECT1rS2:SUBJECT2<Sl = E1 & S2 = E2>
. -> COMMUNICATION-ACCESSES<ElrE2> = EMPTY>

)

& A"S1:SUBJECT1(NACTIVE-USER1(S1>>
& A"S2:SUBJECT2(NACTIVE-USER2<S2>>

TRANSFORM GRANT-SEND<Sl:SUBJECT1,S2:SUBJECT2>
EFFECT

A"Tl:SUBJECT1,T2:SUBJECT2<
N"COMMUNICATION-ACCESSES<T1rT2) =

<>

< OK-TO_WRITE<SlrS2>
& ACTIVE-USERl<Sl)
& ACTIVE_USER2<S2>
& Tl = 51
& T2 = 52 =>

COMMUNICATION-ACCESSES<TlrT2>

COMMUNICATION-ACCESSES<TlrT2>>
)

L-9

I I s I (

01090
01100
01110
01120
01130
01140
01150
01160
01170
01180
01190
01200
01210
01220
01230
01240
01250
01260
01270
01280
01290
01300
01310
01320
01330
01340
01350
01360
01370
01380
01'390
01400
01410
01420
01430
01440
01450
01460
01470
01480
01490
01500
01510
01520
01530
01540
01550
01560
01570
01580
01590
01600
01610
01620
01630
01640
01650
01660
01670

TRANSFORM GRANT-WRlTE<S:SUBJECT1•0lOBJECT>
EFFECT .

A'S1:SUBJECT1,01:0BJECT<
N'ACCESSES-GRANTED<S1•01> =

< OK-TO-WRITE<S•O> .
& A'S2:SUBJECT2<S2•=0>
& 51 = s
& 01 • 0 -=>

ACCESSES-GRANTED<S1,01> ll S'<WRITE>
<> ACCESSES-GRANTED<S1,01>>

)

TRANSFORM LOGON<S:SUBJECTl> EXTERNAL
EFFECT

A"S1:SUBJECT1<
N"ACTIVE-USER1(S1>=

< 51 • S => TRUE
<> ACTIVE-USER1(S1>
))

& A"S2:SUBJECT2(
N'ACTIVE-USER2<S2>•

HAP

< 52 = S •> TRUE:
<> ACTIVE-USE~2(S2>
))

ELEMENT =• ELEMENT•
SUBJECT =• SUBJECTl,
OBJECT == OBJECT,
ACCESS == ACCESSr
CLASSIFICATION == CLASSIFICATION•
CATEGORY =• CATEGORYr
CATEGORIES == CATEGORIES•
ACCESSES == FILE-ACCESSES~
READ == READr
WRITE == WRITEr
APPEND == APPEND•
EXEC =• EXECr

CLASS<E> == CLASS<E>r
CATG<E> =• CATG<E>r
DK-TO-WRITE<S•O> == OK-TO-WRITE<S•O>r

ACCESSES-ALLOWED<SrO> =•
<E"S2:SUBJECT2<0 • 52) =>

COMHUNICATION-ACCESSES<S•O>
<> ACCESSES-GRANTED<SrO>>•

GET-WRITE_ACCESS<S•O> ==
(E'S2:SUBJECT2<S2 = O> =>

GRANT-SEND<SrO>
& NC'<~CCESSES-GRANTED>

<> GRANT_WRITE<S•O>
& NC'<COHMUNICATION-ACCESSES>

)

END SECOND-LEVEL

END EXAMPLE
L-10

FDM

A FORMAL METHODOLOGY - -FOR SOFTWARE J;!EVELOPMENT

FDM

• INTEGRATED METHODOLOGY FOR DESIGN, SPECIFICATION,
IMPLEMENTATION AND VERIFICATION OF SOFTWARE

• ENFORCES ESTABLISHMENT OF RIGOROUS CONNECTIONS
BElWEEN SUCCESSIVE STAGES OF DEVELOPMENT

- IDENTIFICATION AND MODELLING OF REQUIREMENTS

- DESIGN SPECIFICATIONS

- VERIFICATION OF SPECIFICATIONS

- PROGRAM DESIGN SPECIFICATIONS

- VERIFICATION OF IMPLEMENTATION

TOOLS OF FDM

• SPECIFICATION LANGUAGE UNA JOI

• LANGUAGE PROCESSOR

• INTERACTIVE THEOREM PROVER (ITPI

• VERI.FICATION CONDITION GENERATOFJ IVCGI

L-11

'

SPECS IN
INAJO

I INAJO I
PROCESSOR

THEOREMS J
I

HINTS

ITP I
PROOF EVIDENCE

IMPLEMENTATION &J.
SPECS IN INA JO ~

ASSERTED
HOL

HINTS

THEOREMS THEOREMS

PROOF EVIDENCE kJ
td

INA JO LANGUAGE

• STATE MACHINE REPRESENTATION

• NON-PROCEDURAL

• ASSERTION LANGUAGE: EXTENSION OF FIRST-ORDER
PREDICATE CALCULUS

• LANGUAGE ELEMENTS
- TYPES
- CONSTANTS
-VARIABLES
- DEFINITIONS
- INITIAL CONDITIONS
-CRITERION
- CONSTRAINTS
- TRANSFORMS
-MODULES
- LEVELS
-MAPPINGS

1-12

'

• TYPE ELEMENT.

SUBJECT < ELEMENT,

OBJECT < ELEMENT

• TYPE ACCESS = (READ, WRITE. APPEND, EXEC),

ACCESSES = SET OF ACCESS

• TYPE TIME = INTEGER

• CONSTANT

CLASS (ELEMENT) : CLASSIFICATION

• VARIABLE

ACCESSES-ALLOWED ISUBJECT,OBJECTI: ACCESSES

• DEFINE

OK._ TO_WRITE (S:SUBJECT. O:OBJECT): BOOLEAN = =

CLASSIS) = CLASSIOI

& CATG(S) = CATG(O)

• INITIAL

A" S: SUBJECT, 0: OBJECT
(ACCESSES-ALLOWED (S,Ol = EMPTY)

• CRITERION

A" S: SUBJECT. 0: OBJECT (

WRITE < : ACCESSES-ALLOWED (S,Ol

-CLASSIS) = CLASSIO) & CATG!Sl = CATG(O))

• CONSTRAINT

N"TIME > TIME I N'TIME = 0 & TIME > 0

L-13

• CRITERIA = CRITERION + CONSTRAINT

• CRITERION IS AN INVARIANT ABOUT STATES

• CONSTRAINT IS AN INVARIANT ABOUT STATE
TRANSITIONS

• TRANSFORM GET_WRITE___ACCESS(S:SUBJECT. O:OBJECTl

EXTERNAL

EFFECT

A" 51: SUBJECT, 01: OBJECT I

N" ACCESSES_ALLOWED lSI. on =

OK_TO_WRITE (5,0)

&51 =S

&01 = 0

=> ACCESSES_ALLOWED cs1. on II S" CWRITEl

<> ACCESSES_ALLOWED (5,0)))

MAPPINGS

• ALL TYPES, CONSTANTS, VARIABLES, AND EXTERNAL
TRANSFORMS ARE MAPPED TO THE NEXT LOWER LEVEL

·• E.G.,

GET_WRITE___ACCESS (5,0) = =

IE" 52: SUBJECT2 (52 = Ol =>
GRANT_SEND (5.0)

& NC" IACCESSES_GRANTEDl

<> GRANT_WRITE (5,0)

& NC" ICOMMUNICATION_ACCESSESl

L-14

r

'

11111

INA JO PROCESSOR

• READS SPECIFICATIONS, INCLUDING CRITERIA AND
MAPPINGS

• GENERATES CONSISTENCY AND CORRECTNESS
THEOREMS

• GENERATES ENTRY AND EXIT ASSERTIONS FOR
PROGRAM MODULES FROM IMPLEMENTATION LEVEL
SPECIFICATION

CONSISTENCY THEOREMS

• EFFECT OF TRANSFORM NOT "FALSE"

• DEFINED TERMS ARE WELL-DEFINED

• TYPE RESTRICTIONS ARE OBSERVED

• MAPPINGS ARE CONSISTENT

CORRECTNESS THEOREMS

• INITIAL CONDITIONS SATISFY CRITERIA

• TLS TRANSFORMS SATISFY CRITERIA

• LOWER-LEVEL TRANSFORMS CORRECTLY IMPLEMENT
CORRESPONDING HIGHER-LEVEL TRANSFORMS WITH
RESPECT TO MAPPINGS

• LOWER-LEVEL TRANSFORMS THAT DO NOT CORRESPOND
TO HIGHER-LEVEL TRANSFORMS SATISFY A MAPPING OF
THE CRITERIA

L-15

/

/

TLS TRANSFORM SATISFIES CRITERIA

• RELATIONSHIP BETWEEN OLD STATE AND NEW STATE
SATISFIES CONSTRAINT

• IF OLD STATE SATISFIES CRITERION THEN SO DO NEW
STATES

INTERACTIVE THEOREM PROVER (ITPl

• AIDS THE USER IN FINDING AND DOCUMENTING PROOFS
OF LONG THEOREMS •

. • USES THE PRINCIPLE OF REDUCTIO AD ABSURDUM.

L-16

OBJECTIVES OF THE ITP

• ALL PROOFS MUST BE AUTOMATICALLY CHECKED FOR
SOUNDNESS.

• THE USER MUST BE IN COMPLETE CONTROL

• THE OUTPUT MUST BE IN A FORMAT THAT CAN BE
AUDITED.

• THE USER MUST BE SAVED FROM VOLUMINOUS TYPING
OF PROOFS.

ITP

• CHECKS ALL PROOF STEPS FOR LOGICAL SOUNDNESS

• WRITES PROOFS IN HUMAN-READABLE FORM

- PROOFS ORGANIZED IN NESTED FASHION

- LINE NUMBERS INDICATE STEP SEQUENCE AND
NESTING LEVEL

- ENGLISH JUSTIFICATION AUTOMATICALLY
APPENDED TO EACH PROOF STEP

• PERFORMS MOST DEDUCTIVE STEPS AUTOMATICALLY.
BUT NEVER ENTERS INTO LENGTHY EXCURSIONS TO
HEURISTICALLY DISCOVER DEDUCTIONS

• ACCOMPLISHES AUTOMATIC. DEDUCTIONS BY GENERATING
COROLLARIES TO PROOF STEPS AS THEY ARE I;'RODUCED. E_G.,

- SIMPLICATION

- INSTANTIATION

- AND SPLITTING

EXAMPLE

USER STATES THEOREM AT STEP 100

100 H1 & H2 & H3 -> c1 & c2

ITP ASSUMES THE CONTRARY

100.1 H1 & H2 & H3 & ("'C1 I "'C2l

ITP AUTOMATICALLY AND SPLITS

100.1-1 H1

100.1-2 H2

100.1-3 H3

100.1-4

L-17

r

ANNOTATION EXAMPLES

ASSUME

(15.1) 'AND SPLIT'

(40.8 40,10) SUBSTITUTION (40.10U

(38.11-3 38.2-2) CONTRADICTION

(23.12.3) 'Q.E.D.'

VERIFICATION CONDITION GENERATOR
(VCG)

• ACCEPTS AS INPUT

- HOLCODE

- ENTRY AND EXIT ASSERTIONS FROM INA JO

- ADDITIONAL ASSERTIONS IMBEDDED .IN HOL CODE

• GENERATES VERIFICATION CONDITIONS THAT ASSERT
THAT EACH SUBROUTINE SATISFIES ITS EXIT ASSERTION
ASSUMING ENTRY ASSERTION HOLDS AT POINT OF
INVOCATION

• VERIFICATION CONDITIONS THEN PROVED TO BE
THEOREMS USING ITP

APPLICATIONS OF FDM

• OPERATING SYSTEM KERNEL FOR KVM/370

• KERNELS FOR A SECURE NETWORK SYSTEM

• CAPABILITY BASED SECURE TRANSACTION PROCESSING
SYSTEM

• JOB STREAM SEPARATOR FOR AUTOMATING THE
PERIODS PROCESSING FOR A LARGE SCIENTIFIC
PROCESSOR

• SECURE NETWORK FRONT-l:ND

L-18

FUTURE DIRECTIONS

• BETTER USER INTERFACE

- CRT WITH EXTENDED SEARCH CAPABIUTY

- PROOF TREES

• DIRECT PROOF OPTION

• AUTOMATING STEPS THAT ARE ALWAYS PERFORMED
BY THE USER OF ITP

PRINCIPAL DESIGNERS

JOHN SCHEID

VALSCHORRE

L-19

BUILDING

VERIFIED SYSTEMS

WITH

GYPSY

DONALD I. GOOD

UNIVERSITY OF TEXAS

GYPSY

WHAT DOES IT DO?

HOW DOES IT WORK?

WHAT HAS BEEN DONE?

WHAT IS THE CURRENT STATUS?

M-1

WHAT DOES GYPSY DO?

PURPOSE

THE PURPOSE OF GYPSY IS THE DEVELOPMENT

OF VERY HIGHLY RELIABLE SOFTWARE SYSTEMS.

APPROACH

GYPSY IS A WELL-INTEGRATED SYSTEM OF.

METHODS• LANGUAGES. AND TOOLS FOR SPECIFYING•

IMPLEMENTING. AND VERIFYING OPERATIONAL

SOFTWARE SYSTEMS.

HOW DOES GYPSY WORK?

LANGl1AGE

THE GYPSY LANGUAGE DESCRIBES ROUTINES

THAT OPERATE ON OBJECTS. THE DESCRIPTION

INCLUDES BOTH IMPLEMENTATION AND

SPECIFICATION.

VERIFICATION ENVIRONMENT

THE VERIFICATION ENVIRONMENT IMPLEMENTS

THE TOOLS NEEDED TO CONSTRUCT AND EXECUTE A

SET OF VERIFIED GYPSY ROUTINES. THE

ENVIRONMENT AMPLIFIES HUMAN CAPABILITY AND

REDUCES PROBABILITY OF HUMAN ERROR.

M-2

RELIABILITY FROH VERIFIABILITY

·~ +-------:::~:i::~:: _______ .
HODEL I

I OF EXPECTATION I
+-------------------------+ .Q

E

I
SPEC VERIFICATION

I
+-------------------------+
I FORMAL SPECIFICATION I

+-------------------------+
I

CODE VERIFICATION
I

+-------------------------+
I HIGH LEVEL LANGUAGE I
I IMPLEMENTATION I
+-------------------------+

~ I
LANGUAGE TRANSLATION

I
-------------------------+

EXECUTABLE CODE I
+-------------------------+

_GYPSY METHODOLOGY STRUCTURE

+---+
I USER SELECTED I
I SYSTEM DEVELOPMENT ST~ATEGY I
+---+
+---+
I I

TOOLS VERIFICATION ENVIRONMENT I
I I
+--------------+---------------+--------------+

·1 I I
LANGUAGES! GYPSY !THEOREM PROVER I GYPSY I

I I INTERACTIONS I I
+·----------- ------·-+----------------+--------------+
I I CONVENTIONAL I I
I ASSERTIONS, I TESTING, I WELL- I

METHODS STATE RUN-TIME STRUCTURED
MACHINES. I VALIDATION, I PROGRAMS
ALGEBRAIC !DEDUCTIVE PROOF!

+---------------+---------------+--------------+
SPECIFICATION VERIFICATION IMPLEMENTATION

M-3

·DESIGN
I
I
v

" I
I

CODING

RELIAFILITY FROM GYPSY

EXPECTATIONS

ARBITRATION
I

+------------------- --- -------·-- +
I HODEL
I GYPSY FORMAL SPEC 1
+-------------------------------+

I
PROOF

I
+---------+---------------------· ·-+
I HIGHEST I GYPSY FORMAL SPEC I

: r·-T------r------- f -f

I LEVEL I TEST RTV PROOF

~---L ______ l _______ _L_+
ROUTINE I GYPSY IHPLEMENTATIONI

+---------+----------------- ---+

* I
GYPSY * STRUCTURING

I

* I +---------+----------------------+
I LOW I GYPSY FORMAL SPEC I
I ' ~--'f-----·y---- -1'-+

LEVEL I TEST RTV PROOF

~---L ______ l ________ L_+
I ROUTINE I GYPSY IHPLEHENTATIONI
+---------+---------------------+

GYPSY COMPILATION
I

+-------------------------------+
I EXECUTABLE CODE
I <PDP 11) I
+------------------------------·-+

GYPSY LOGICAL STRUCTURE

SPECIFICATION

LANGUAGE LANGUAGE

PROGRAM DESCRIPTION LANGUAGE

H-4

GYPSY TEXTUAL STRUCTURE

SCOPE DEMO=
BEGIN

PROCEDURE P<VAR X: IN-BUFF> = ••••

FUNCTION F<N: INTEGER>: INTEGER= ••• ;

TYPE HISTORY = SEQUENCE OF PACKET;

CONST HI = 256;

LEMMA MAKE_SECURE <A• B: HISTORY) = ••• ;

NAME <UNIT> U FROM <SCOPE> s;

END;

ROUTINES

PREDEFINED: FUNCTIONS FOR PREDEFINED
TYPES

ASSIGNMENT

IF~ CASE~ LOOP~ LEAVE~ SIGNAL

MOVE~ REMOVE

SEND~ RECEIVE~ GIVE

COBEGIN~ AWAIT

USER DEFINED: FUNCTIONS~ PROCEDURES

M-5

LOGICAL STRUCTURE OF ALL ROUTINES

+-------------+-----------------+
I I INTERFACE SPEC I

WHAT? EXTERNAL I
I I FUNCTIONAL SPEC I
+-------------+-----------------+

I LOCAL VARIABLES I
+-----------------+

HOW? INTERNAL I OPERATIONS I
AND I

I I SPECS I
+-------------+-----------------+

TEXTUAL STRUCTURE OF PROCEDURES

PROCEDURE DOWNGRADER <VAR H: IN_BUF; ••• > ~INTERFACE J SPEC

BEGIN

BLOCK AUTHORIZED-DOWNGRADING < •••);

VAR MESSAGE: TEXT;

LOOP

J FUNCTIONAL
SPEC

J LOCAL
VARS

OPERATIONS
SPEC [ASSERT OUTTO <L,MYID>

=AUTHORIZED-SEQ <INFROM <H,MYID>1; AND

RECEIVE MESSAGE ••• ; SPECS

END;

END;

M-6

. . ·· . .:: ::.:

TEXTUAL STRUCTURE OF FUNCTIONS

FUNCTION F <N: INTEGER>: INTEGER

BEGIN

ENTRY N>O;

EXIT RESULT= FACTORIAL <N>;

VAR I: INTEGER := 1;

RESULT := 1;

LOOP

END;

END;

]
INTERFACE
SPEC

]

FUNCTIONAL
SPEC .

]LOCAL VARS

OPERATIONS

AND

SPECS

SPECIFICATION FUNCTIONS

FUNCTION FACTORIAL <X! INTEGER>! INTEGER=

BEGIN

ENTRY X GE o;

EXIT <ASSUME RESULT =

IF X = 0 THEN 1

ELSE X * FACTORIAL<X - 1> FI>i

END;

M-7

STATE TRANSITION SPECIFICATIONS

PROCEDURE SYSTEM <VAR S: SYS_OBJECTS> =
BEGIN

EXIT ALLOWED_TRANSITION (S'r S);
PENDING;

END;

FUNCTION ALLOWED-TRANSITION <Pr a: SYS_OBJECTS>
: BOOLEAN =

BEGIN
EXIT <ASSUME RESULT

IFF IF IN_STATE_l <P> THEN AFTER-1 <Pra>
ELSE IF IN_STATE_2 <P> THEN AFTER_2 <P• a>

ELSE FALSE FI ••• FI>;
END;

LEMMA SECURITY_PRESERVED <Pr a: SYS_OBJECTS>
IS_SECURE <P>

AND ALLOWED_TRANSITION (Pr Q)

-> IS_SECURE (Q);

FUNCTION IS_SECURE <P: SYS_OBJECTS>: BOOLEAN = ••••

PROVING ROUTINES

A ROUTINE TOGETHER WITH ITS
SPECIFICATIONS IS A •PROGRAM• THEOREM.

TRANSFORM
+-----------+

PROGRAM J GYPSY I ORDINARY
THEOREM -->1 SEMANTICS 1--> THEOREMS
PT +------~----+ VCl ••••• VCn

SUCH .THAT

I
EXTERNAL SPECS

OF CALLED ROUTINES

VCl AND ••• VCn --> PT

THEN• GIVEN LEMMAS Ll•••••Lm AS A BASIS.

PROVE

Ll AND ••• Lm --> VCk· FOR EACH k.

M-8

PROVING LEMMAS

A GYPSY LEMMA IS AN ORDINARY THEOREM
OF PREDICATE CALCULUS.

EXAMPLE:
LEMMA AUTHORIZED_SUBSEQ <P• G: HISTORY> =

P SUB Q ->·
AUTHORIZED-SEQ <P> SUB AUTHORIZED-SEQ (Q);

PROVE ALEMMAL FROM OTHER LEMMAS Ll••••~Lk

Ll AND ••• Lk -> L

DATA OBJECTS

GLOBAL CONSTANTS:

FORMAL PARAMETERS:

LOCAL VARIABLES:

CONST N = 4

<VAR H: IN-BUFF; N:INTEGER>

VAR M: MESSAGE
CONST P = 7

M-9

TYPES OF OBJECTS

PREDEFINED: INTEGER
BOOLEAN
CHARACTER <ASCII>

RATIONAL

ARRAY
RECORD

SET
SEQUENCE
MAPPING

BUFFER
ACfJVATIONID

USER DEFINED: COMPOSITIONS UF PREDEFINED TYPES.

ABSTRACT TYPE~i VIA ENCAPSULATION

PROVING ABSTRACT TYPES

ALGEBRAIC TYPE AXIOMS ARE EXPRESSED AND PROVED AS

LEMMAS.

EXAMPLE: TYPE STACK <PUSH~ POP~ ••• >=
BEGIN

S! RECORD <A! ARRAY_OBJ; P! INTEGER>;
HOLD S.P > o; <CONCRETE INVARIANT>

END;

LEMMA POP_PUSH <S: STACK~ X! OBJECT> =
POP <PUSH <X~ S>> = s;

THE CONCRETE INVARIANT IS PROVED FROM THE EXTERNAL

SPECS OF EACH ROUTINE <PUSH~ POP~ ••• > THAT HAS CONCRETE

ACCESS TO THE TYPE.

<CONCRETE EXIT OF ROUTINE>
-> <CONCRETE INVARIANT OF TYPE)

M-10

STRUCTURING

•sUMMARIZING: AS A SLOW WITTED HUMAN BEING I

HAVE A VERY SMALL HEAD AND I HAD BETTER LEARN-

TO LIVE WITH IT AND TO RESPECT MY LIMITATIONS

AND GIVE THEM FULL CREDIT• RATHER THAN TRY TO

IGNORE THEM• FOR THE LATTER VAIN EFFORT WILL

BE PUNISHED BY FAILURE.•

[E.W. DIJKSTRAP
NOTES ON STRUCTURED
PROGRAMMING• 1972•
P3J

GYPSY-STRUCTURING

IMPLEMENTATION: ROUTINE A
CALLS

/ ' ROUTINE B ROUTINE C

SPECIFICATION: FUNCTION F
REFERS TO

OBJECTS:

PROOF:
LEMMA L

REFERS TO

/ '

/
FUNCTION G ' FUNCTION H

TYPE T
DEFINED FROM

/
TYPE U ' TYPE V

PROOF OF LEMMA L
ASSUMES
/ ' FUNCTION FL FUNCTION GL LEMMA M LEMMA N

M-11

PROGRAM
THEOREM
PT

PROOF INDEPENDENCE

+-----------+
I GYPSY I

-->1 SEMANTICS 1-->
+-----------+

I
EXTERNAL SPECS OF

CALLED ROUTINES

ORDINARY
THEOREMS
vc1,. ••• vcn

THE PROOF OF PT ASSUMES ONLY THAT CALLED

ROUTINES CAN BE IMPLEMENTED TO MEET THEIR

STATED EXTERNAL SPECS. THE PROOF IS

INDEPENDENT OF ANY PARTICULAR IMPLEMENTATION.

THIS ALLOWS PROOF OF INDIVIDUAL ROUTINES

TO BE DONE IN PARALLEL WITH ANY DESIRABLE

ORDER OF DEVELOPMENT.

PROBLEM DOMAIN THEORIES

VERIFICATION CONDITION -> PROGRAM THEOREM

LEMMA A -> VERIFICATION CONDITION

LEMMA B -> LEMMA A

REUSABLE . . .
THEORY

PROPERTIES OF PREDEFINED
GYPSY FUNCTIONS -> LEMMA Z

M-12

VERIFICATION ENVIRONMENT

+----------+ +--------+
I I I DATA' I

EXEC 1----1
I I I BASE I
+----------+ +------~-+

/ '
/ ' +--------+ +--------+

I TOOL I • • • I TOOL I
+--------+ +--------+

TOOLS AVALIABLE:

GYPSY SYNTAX AND SEMANTIC ANALYZER•
SYNTAX DIRECTED EDITOR. VERIFICATION
CONDITION GENERATOR• INTERACTIVE THEOREM
PROVER• INTERPRETER• COMPILER• DATA BASE
DISPLAY• PROGRAM DEVELOPMENT MANAGER

UNDER DEVELOPMENT:

GYPSY TO BLISS TRANSLATOR. SPECIFICATION
DRIVEN HIGH-LEVEL OPTIMIZER• CONVERSION
TO INTERLISP• EXPANSION OF DATA BASE
CAPACITY

TRIAL

APPLICATIONS

M-13

[WELLS• 76] NETWORK COMMUNICATION SYSTEH

LAYER 1. 4-NODE MESSAGE SWITCHING NETWORK

2. 4-NODE PACKETIZER/ASSEHBLER NETWORK

3. 5-NODE PACKET SWITCHING NETWORK

SPECIFICATION: 1500 LINES

IMPLEMENTATION: 1000 LINES

CONCURRENT PROCESSES: 16

VERIFICATION: MANUAL PROOFS OF CONCURRENCY

EXECUTABLE: NO

EFFORT: 1-2 WORK YEARS

[HORN, 77] SECURE INTERNETWORK

AN N-NODE NETWORK OF ACTUAL HOSTS WITH
SENSITIVE INFORMATION COMMUNICATING VIA END
TO-END ENCRYPTION OVER AN UNSECURED
INTERNETWORK THAT INCLUDES THE ARPANET.

SPECIFICATIONS: 372 LINES

IMPLEMENTATION! 10 LINES

CONCURRENT PROCESSES! UNSPECIFIED N > 0

VERIFICATIONS! MANUAL~

EXEcu·r ABLE;

35 MAJOR OEDUCTIVE STEPS,
20-40 PAGES

MODEL OF ACTUAL NETWORKS

EFFORl! .5~1 WORK YEAR

M-14

l1111

[MORICONIP 77] N X N MESSAGE SWITCHER

N CONCURRENT SWITCHER PROCESSES
MESSAGES AMONG N USERS.

SPECIFICATIONS: 90 LINES

IMPLEMENTATION: SO LINES

ROUTING

CONCURRENT PROCESSES! UNSPECIFIED N > 0

VERIFICATION: FULLY MECHANICAL AND
INCREMENTALP 60 PAGES OF TRANSCRIPT.

EXECUTABLE! NO

EFFORT: 3-6 WORK MONTHS

[HAYNES AND NYBERG~ 78] DISCRETE ADDRESS BEACON SYSTEH

SELECTED COLLISION AVOIDANCE ROUTINES FROH AN AIR
TRAFFIC CONTROL SYSTEM.

SPECIFICATIONS! 844 LINES <105 SPEC FUNCTIONS>

IMPLEMENTATION! 529 LINES <19 ROUTINES>

VERIFICATION! MECHANICALLY PROVED 30-40 OF 50 VCS.

EXECUTABLE! MODEL OF RUNNING FORTRAN IV PROGRAM

EFFORT! 1-2 WORK YEARS BY TEXAS INSTRUMENTS

M-15

~SMITH AND GOODr 79J SIMPLE DISTRIBUTED GUARD

INTERACTIVELY MONITORS MESSAGE TRAFFIC BETWEEN
A HIGH SECURITY SYSTEM AND A LOW SYSTEM.
TERMINAL DRIVERS ARE PROVIDED TO SIMULATE HIGH
AND LOW SYSTEMS.

SPECIFICATIONS: 252 LINES

IMPLEMENTATION: 241 LINES

CONCURRENT PROCESSES! 1S

VERIFICATION: MECHANICAL
32 PAGES OF FINAL PROOF

TRANSCRIPT

EXECUTABLE: ON PDP 11/03s

EFFORT: 2 WORK MONTHS

SPECIFICATION
IMPLEMENTATION
VERIFICATION
METHODS

GYPSY
LANGUAGES

VERIFICATION
ENVIRONMENT

DEVELOPMENT OF
VERIFIED SYSTEM
EXAMF"LES

CURRENT STATUS

STABLE SINCE
JAN 1979

STABLE SINCE
SEPT 1978

IN EXPERIMENTAL USE.
DEVELOPMENT AND MAINTENANCE
IN PROGRESS.

IN PROGRESS

M-16

ACKNOWLEDGMENTS

M-17

HDM

(Hierarchical Development Methodology)

An Approach to Designing Secure Systems and Proving
Them Correct

Karl Levitt
Computer Science Laboratory

SRI International
Menlo Park, CA

OUTLINE

An Overview of HDM

Writing "Good" Specifications in Special

An Example of the Application of HDM -- PSOS (a "provably"
secure operating system)

Formal Requirements for Secure Systems -- and how to prove
them

HDM Tools

Assessment of HDM

Outstanding Problems

N-1

CREDITS

Creation of HDM and syecial
Larry Rob ins on

HDM "Checking" Tools
2

Olivier Roubine

(David Parnas)

Towards a Second Gener~tion HDM
Brad Silverb~rg , David Elliott·, Joe Goguen

Formalization of HDM Subset -- and Theorem Proving
Bob Boyer, J. Moore

Design of PSOS • 4
Peter Neumann, Larry Robinson, Rich Feiertag

Multi-Level Security (MLS) Requirement
and Proof Tool
Rick Feiertag

Program Verification Tools
Dwight Hare, Mark Morkoki, Boyer, Moore

Specification of Concurrency
Les Lamport, Richard Schwartz, P. H. Melliar-Smith

Now at Ford AerOspace

Now at Honeywell

Now at Summit Systems

4 Now at Sytek

HDM is an Integrated Collection Of

* Languages

* Tools

* Concepts

* Guidelines

To Aid In Developing and Verifying Large Real-World Software Systems.

Developed at SRI From 1973 - Present

Distinguishing Characteristics of HDM,

* Oriented Towards Real-World Solutions to Real-World Problems

* Has a Formal Basis"

* Is Comprehensive

* Is a Research Vehicle

* Supports Verification

- of design

- of coqe

N-2

HOM Handles many of the "dirty" aspects of real-world systems, including

* Resource Limitations

* Resource Sharing

* Side-Effects

* Aliasing

Does not yet handle full concurrency

HOM is for use by the general community,
not just a. sophisticated elite.

Still, learning HOM is a non-trivial task

A rigorous approach to software development
is intrinsically difficult

Applications of HDM

*PSOS

designed by SRI

implementation underway at Ford Aerospace

*KSOS (at Ford and Honeywell) --

A Unix-Compatible 0. S. supporting a multi-level
security policy

*SIFT --

A software implementation fault-
tolerant avionics computer. Production
and verification of sift is underway at SRI

N-3

HDM Structures at System Design

Vertical Structure

(Hierarchy of Abstract Machines --Dijkstea)
each level provides a set of facilities
to the next higher level. The facilities
at one level depend for implementation
only on the facilities provided by the next
lower level

The facilities provided by the top level
are those available to the user

Horizontal Structure
(provided by Modules)

Each module encapsulates closely related
concepts, loosely coupled to other modules
in the level

There are many examples of the abstract machine concept, e.g.:

But,

Families of Instruction Set Processors,
e.g., IBM System/370

Hierarchies of Communications Protocols

Operating Systems (e.g., T.H.E., PSOS)

The key is to formalize the concept

N-4

Some "key" levels in
an operating system hierarchy

MS "Interprocess
Communication"

M4 "Files"

M3 "Virtual Memory"

M2 "Pages"

Ml "Physical Storage"

VM Virtual Memory

FD File Directories

IC Interprocess Communications

MP Multiple Processes

PA Pages

PM Page Mapping

MM Main Memory

SS Secondary Storage

MMAP Memory Mapping

N-5

Figure 2: PSOS GENERIC DESIGN HIERARCHY
I ---· LEVELl PSOS ABStRACTION I PSOS LEVEL I

---·
F
E
D
c
B
A

USER ABSTRACTIONS
COMMUNITY ABSTRACTIONS
ABSTRACT OBJECT MANAGER
VIRTUAL RESOURCES
PHYSICAL RESOURCES
CAPABILITIES

14-16
10-13
9
6-8
1-5
0

---· -

Figure 1: PSOS DESIGN HIERARCHY
I I ·---·
I LEVEL I PSOS ABSTRACTION OR FUNCTION
I ·---16

15
14
13
12

_11
10
9
8
7
6
5
4
3
2
1
0

USER REQUEST INTERPRETER *
USER ENVIRONMENTS AND NAME SPACES *
USER INPUT-OUTPUT *
PROCEDURE RECORDS *
USER PROCESSES * AND VISIBLE INPUT-OUTPUT *
CREATION AND DELETION OF USER OBJECTS *
DIRECTORIES (*)[C11]
EXTENDED TYPES (*)[C11]
SEGMENTATION AND WINDOWS (*)[C11]
PAGING [8]
SYSTEM PROCESSES AND INPUT-OUTPUT [12]
PRIMITIVE INPUT/OUTPUT [6]
ARITHMETIC AND OTHER BASIC OPERATIONS *
CLOCKS [6]
INTERRUPTS [6]
REGISTERS (*) AND ADDRESSABLE MEMORY [7]
CAPABILITIES *

---· * : MODULE FUNCTIONS VISIBLE AT USER INTERFACE. I
(*) : MODULE PARTIALLY VISIBLE AT USER INTERFACE. I
[I] : MODULE HIDDEN BY LEVEL I. I
[C 11] : CREATION/DELETION ONLY HIDDEN BY LEVEL 11: I

I ---·

N-6

HDM also structures the development process -- into stages of
development and verification.

The stages are:

* Decomposition

* Module Selection Design

* Module Specification

* Representation
Realization

* Implementation

- Verification can be attempted as system develops

Decisions are recorded as they are made

Often, "important" decisions are made early and, hence, subject
to early review (a system usually goes bad in design)

Motherhood: Recognize that backtracking and "crystal-ball gazing"
are necessary. The "stages of HDM" are guidelines, not hard-and-fast
rules

An abstract machine (or module) in HDM consists of:

1. A set of Internal Data Structures
that defines its state

2. A set of operations that can access and modify
the state

OP
Si __ _,.~Sf

N-7

Realizing an abstract machine in terms of another

1. Data structure representation --

each upper-level state maps to a set
of lower-level states, and distin~
upper states must map to disjoint
sets of lower states, i.e.,

2. Operation Implementation --

Let operation OPu take state Slu to S2u,

OP
Sl ~ S2

u u

An implementation of OP is correct if,
when started from any s~ate in R(Sl),
it terminates in some state in u
R(S2). (The well-known commutativity
diag¥am illustrates this)

N-8

SPECIAL:

Special is HOM's module specification language.
A module specification specifies:

1. State-functions: functions that characterize
the module's data structures, i.e., that
determine its state.

The specification of a state-function
provides its signature and constraints
on its init~al value.

2. Operations: The specification of an operation
describes a state change and a returned value.

A state change is deicribed by a predicate
that nonprocedurally relates.the post-invocation
values of the state-functions to their pre
invocation values.

The returned value is described in terms of
constraints it must satisfy.

1and non-deterministically

SYSTEM DESIGN WITH HOM & SPECIAL:

When given a problem statement, the first step is to
formulate a model of a solution.

Generally, the more abstract the model at this point, the better.
The process of hierarchical decomposition involves the formulating
of successively more concrete models to implement the more
abstract ones.

EXAMPLE:

Consider the problem of keeping word counts. The user is to be
provided with the ability to:

1. Query the count for a given word.

2. Insert a word. If previously inserted, its count is
incremented by one; if not, its count is set to one.

3. Delete a word occurrence.

N-9

Several alternative models are:

a) An infinite mapping from words to integers,
with the mapping initially everywhere undefined.

This can be pictured by an infinite (unordered) table:

a b aa bar foo

The only defined words are "b", "c11
, "bar", & "foo"

with counts 3, 12, 15, 1.

b) An unsorted finite list of word, count pairs
for defined words.

(<.b,3), {bar, 15), <foo, 1), (c, 1?;:>)

c} Two integer-indexed arrays, one for defined words in sorted
order, the other for counts

I fool• .,. El1s l12 1 1·
4 2 4

We'll choose alternative (a), the infinite mapping,
since it is the most abstract.

In Special, it is specified:

VFUN word store (word w) --) INTEGER count;
HIDDEN;
INITIALLY

FORALL word wl: word store (wl) UNDEFINED.

The query operation reads off word_store,
trapping references to undefined words.

OVFUN Get_count (word w) -0 INTEGER i;

EXCEPTIONS
undef: word_store(w)

DERIVATION
word store (w);

N-10

UNDEFINED;

The operation Insert word changes the state and returns as
value the new count.

OVFUN Insert_word (word w) --> INTEGER cnt;
EXCEPTIONS

full: RESOURCE_ERROR;

EFFECTS
IF word store(w) = UNDEFINED

THEN 'word store(w) = 1
ELSE 'word sto~e(w) = word store(w) + 1;
cat= 'word_store(w); -

IMPORTANT NOTE:

The EFFECTS section specifies an unordered conjunction
of effects, and "=" denotes mathematical equality, not
assignment.

The operation Delete_word deletes a word occurrence and returns
the new count.

OVFUN Delete word (word w) -~ INTEGER cnt;

EXCEPTIONS
undef: wor·d_store(w) UNDEFINED;

EFFECTS
IF word store(w)~= 0 THEN

'word store(w) = word_store(w) - 1
ELSE 'wo~d_store(w) 0;

'word_store(w) cnt;

N-11

YPUI HL..ftl(-.t_ruaber 1) -> I~ Uta;
HIDIIBI;
IJ:ITUU.Y

data .. 7;

..... •1•<> -> _"_....
.. na.na.

CUDIII&U.t'Y({ -~ 1 l .._-.1{1) -,. 7)};

ww .. _.. ... u.~ 1-oc> -> ~ ... ,
IIEOPTI ...

•t_ol' _ __..: JDt<a•O > :we>;
.. IIJ.tiO.

....... ftl(loc);

CFw. ..--1\:.e(_\:........., J.ec; -- ..._,,
IUCII'rt ...

out_or_-...: mT<a•O >Joe);
. II'PICTS

·--ftl(loc) ;

UP'UI apptDd(~ •ta>;
IUCDTXC.S

out_or_,--: at•<> • -.._a1•;
. ..._ ... uas.seo> • ~~ata;

CFUI abriak() ;
DCIPTID&'S

•P"J': a1•0 • O;
,..._ftl(ai•O - 1) • 7;

DDJI)DIIL!

MODULE pages

TYPES

nat_n .. ber: { IIITEGER j

PARAMETERS

j >= 0 };

INTEGER aax_pages, page_size;

FUIK:TIOHS

VFUN page_val(nat_n .. ber k, loo) -> INTEGER data;
HIDDEN;
INITIAU..I

data = 0;

VFUN number_of_pages() -> nat_n .. ber n;
HIDDEN;
INITIAU..I

n = 0;

YFUI size_last_page() -> nat_number n;
HIDDEN;
IIITIAU..I

n = 0;

N-12

VFUN pageJUd(aat....D•ber k, loc) -> I- data;
EXCEPTIONS

Do--e: NOT(Diaber_or---ea() > k);
no_loc: IF k < D•ber_or---eaO

TIII!N loc >a -•_ai•
BLSB loc >a aise_lut--•0;

DERIVATION
page_val(k, loc);

OFUN page_vrite(nat_nu.ber k, loc; DtiGIIl data);
EXCEPTIONS

Do--e: NOT(Diaber_or---ea() > k);
Do_loc: IF k < Dlaber_or---ea()

THEM loc)a -~&e ·
BLSE loc >= aize_laat---e();

EFFECTS
'page_val(k, loc) :: data;

OFUN nev_page();
EXCEPTIONS

no_.,re_pages: n.-.ber_ot~ea() • ~ea;
EFFECTS

1DLIIIber_of_pages() = DWiber_ot_pasea() + 1;

CFUN resize_last_page(nat_n•ber nev_leasth);
EXCEPTIONS

no_last_page: D\Bber_ot'_pages() = 0;
full: ne'Llengtb > page_size;

EFFECTS
• size_last_page() = ne'l_l.cmgtb;
FORALL nat_n1Dber n I n

INSET I neiL.leftlltb - 1 • ;
size_last_page() - 1 I:

•pale_val(n•ber_ot_pages(), n) = 0;

OFUN deallocate_last_pqe();
EXCEPTIONS

no_last_page: nlllber_ot'_pagea() = 0;
EFFECTS

•nuaber _ot_pages() = n.aber_ot_pages() - 1;
• size_last_page() = PII&CL.Size;
FORALL nat_n-.ber n: •s-ge_val(m.ber_ot_pases(), n) = 0;

EIDJI)DULE

MAP segaent TO pages;

TYPES

nat_n~aber: { INTEGER n n >= 0 };

EITERNALREFS

FRa4 segment:
INTEGER max_size;
VFUN seg_val(nat_number n) -> INTEGER data;

FR<M pages:
INTEGER max_pages, page_size;
VFUN page_val(nat_n~aber k:, loc) -> INTEGER data;
YFUN n~aber_of_pages() -> nat_n~aber n;
YFUN size_last_page() -> nat_n~aber n;

MAPPINGS

aax_size : max_pages • page_size;

seg_val(nat_number loc):
IF loc

<= page_size •(n~aber_of_pages() - 1) + size_last_page() - 1
THEN page_val(INTPART(loc I page_size),

FRACTPART(loc I page_size))
ELSE ?;

END_MAP

N-13

A REQUIREMENT STATEMENT FOR A SYSTEM

(Not Adequately Expressible in Special)

An abstract statement of what the system does. Generally, a

requirement expresses a subset of the information contained in

the specification and requires

* Expression of "information flow"

* Expression of the effect of sequences of operations

* Second order logic

The top-level specification of a system can

TH principle -- be verified with respect to its requirement

REQUIREMENT STATEMENT FOR MULTI-LEVEL SECURITY

Level = (Classification, Category_se~

Classification is an element of a totally ordered set

For two levels

Ll = (CLl, CAT 1)

L2 = <CL2, CAT 2)

Ll ~ L2

CLl 2:. CL2

and

CAT ~ CAT 2

Classifications:

Unclassified, Confidential, Secret, Top Secret

Categories

Atomic, Nato

N-14

Information can flow from L2 to Ll

If and only if Ll ~ L2

This model is flawed since:

- All information will eventually reach the highest
security level

Information at a high security level can be
"destroyed" by low security level information

Nevert.heless --

This model is widely used as the basis for secure systems, e.g., KSOS

N-15

Au ... gA, ... ,) 1=-r.n

"(c., lA!) •

\.,

Proving that a top-level special specification is multi-level secure
is conceptually very easy

*

*

Write the specifications such that a security level
is associated with each data structure (V. function).

Show that according to the specs, the ~ value of a data
structure at Level L is dependent only on the old
values of data structures at Li, Li SoL.

The identification of dependencies is complicated by the "syntactic
sugar" and "real-world" features of special -- but very doable.

MODULE virtuel_ ... ory

PARAMETERS

INTEGER max_aeg_no, aax_seg_index;

EXTERNALREFS

FROM security:
security level: DESIGNATOR;
BOOLEAN Tteq(securlty_level 11, 12);

FUNCTioNS

VFUN contents(INTEGER segno, index; security_level al)
-> INTEGER c;

BIDDEN;
INITIALLY

e • ?;

VFQH reed(INTEGER segno, index; security_level sl)
[security level pl I
-> INTEG£'!! c;

EXCEPTIONS
segno < 0 OR segno > •ax seq no;
eontenta(segno, index, sT) --?;
-lteq(sl, pl);

DERIVATioN
eontents(segno, index, sl):

OFUN write(INTEGER segno, index, c; security_level sl)
EXCEPT~~:~uri ty_level pl I;

segno < 0 OR segno > max seq no1
index < 0 OR index > max:seg:index;
- lteq(pl, sl);

EFFECTS
•contents(segno, index, sl) • e;
FORALL INTEGER i I i >• 0 AND i < Index

END MODULE

AND contents(segno, i, sl) • ?:
•eontenta(segno, t, al) • 01

N-16

HDM Tools:

1. Specifications checkers (completed)

2. Multilevel security verifier (completed)

3. Modula verification system (completed)

4. Pascal verification system (in progress)

All in Interlisp and available for public use.

1. ~ checkers

* Usual parsers, type checkers, and pretty-printers' for Special,
HSL, & ILPL.

* Various external consistency criteria also checked.

* Limited in scope, but heavily used.

* Support small amount of version control.

2. Multilevel security verifier

Basic multilevel security property: whenever information flows from
one entity to another, the security level of the recipient is at least
as high as the sender.

N-17

Module specs formula formulas
generator

& tp commands

Multilevel Security Verifier
Crich Feiertag -- Now at Sytek)

augmented
Boyer-Moore

theorem-
prover

Validity of generated formulas ~ multilevel security.

Tool is conservative, i.e., may not be able to demonstrate
mls for some secure specs, but never the other way.

::::

Has been used extensively by SRI & non-SRI people, and has exposed many
previously unknown security violations.

Theorem-proving is completely automatic.

Formulas to be proved usually easy but numerous.

3. MODULA VERIFICATION ENVIRONMENT

T

Failed

Developed for verification of Modula code in Ford Aerospace's
KSOS implementation.

Based directly on the Boyer-Moore formalization of HDM.

* Specs are written in Special variant VSSL
(a.k.a. "the formalized subset").

USSL is a cleaned-up, formally-defined version
of Special, Assertion level consists of
expressions in B-M theory. Concrete syntax
is Lisp-like', internal-form like (e.g., more
like a linearized abstract syntax).

* Implementation language supported by the B-M
formalization is the assembly-like language
(CIF (like ILPL)

N-18

u~,. spus
S~_tc.f&l

l··'·'·
Uri'<"~

"$$\.

1/~.t-~U.i\Ot\

C.liffOII
er~"y-.-t.r

4. Pascal Verification System

Currently under development for proof of SIFT.
Deals directly with Special specs and Pascal code
(not USSL & CIF).

A novel component is the meta-verification condition
generator (meta VCG).

The meta VCG processes formal semantic descriptions
along the lines of the way meta-parsers (i.e., parser
generators) process formal syntax descriptions.

N-19

L
__..

.~vc~
L

_Ave3 •'-

~ ,.,_ ~3~?~11 ::;:~~ J SSod..lt .._.." ~ t.11rs

,...vc6

N-20

EXPERIENCE WITH SPECIAL:

While well-conceived, Special has flaws

* The concrete syntax is too often awkward and unpredictable
(the syntax-checker gets used~ lot!)

* The provided language structures CO-, V-, and OV-functions)
do not_ correspond directly with the structures ~f the
underlying model (state-fn's & op's).
A great source of confusion.

* Some constructs contain "dark corners" with semantics not
easily deducible from principles.

* Other constructs not as general as they could (or should) be.

* The type system should be integrated better, with more modern
abstract data type facility.

NEVERTHELESS

* Special has been (and is being) used extensively
and productively in the design of numerous
systems.

* While module specification in Special is harder
than it should be, it's not hard to learn
one's way "around" the problems. Effort is
well worth it.

* The "formalized subset" is extremely clean and
does not suffer from these flaws.

WORK IS IN PROGRESS TO DEVELOP A SUCCESSOR TO SPECIAL.

N-21

AN ASSESSMENT OF HDM:

HDM has been most successful as a design tool.

Most users see HDM as just Special.
That is, they use HDM primarily for Module design & specification.
The specs capture design decisions and serve as a reference for
discussing alternatives.

Users are typically interested in verifying some properties of
the design, so appreciate the rigor Special provides.

Current HDM activity is creating a "second generation" methodology,
taking into consideration user experiences and recent research,
particularly in the area of data type specification.

Our appraisal has affirmed the appropriateness of the state-machine
approach to specification --most often, it is easier to use than the
algebraic approach, especially when:

new concepts are being specified
(i.e., things other than stacks, queues, etc.)

especially if those concepts are more
"process" oriented, as opposed to data
oriented.

difficult "real-world" features must
be specifiea, including side-effects,
aliasing, etc.

People tend to think in models.

N-22

AFFIRM
A Specification and Verification System

Susan L Gerhart
USC Information Sciences Institute

4676 Admiralty Way
Marina del Rey, California, USA

213-822-1511

Project Members

Others

D. Baker
R. Bates
R. Erickson
S. Gerhart
R. London
D. Musser (Now of GE Labs)
D. Taylor
D. Thompson
D. Wile

J. Guttag (now MIT) - algebraic axioms
D. Lankford (now Louisiana) - rewriting rule theory

Support: Defense Advanced Research Projects Agency

Predecessors

XIVUS

DTVS

Stanford

SRI

Texas

IBM

Cornell

Edinburgh

HISTORY

Good.London.Biedsoe 1975

Musser,Guttag, Horowitz 1976-1978

Luckham & Oppen - decision proceckres

Boyer & Moore - automatic induction

Good & Bledsoe - integrated language
(GYPSY)

Carter, et al - simulation. microcode·

Constable - programming logics

Milner, et al. - proof strategies

Successor AFFIRM + POPART (Producer of Parsers and Related

Tools)

Transformation System

Grammar-based

Derivation Histories

0-1

GOALS

1. Routine, production-quality proofs of

a. Program correctness wrt specifications

b. Specification properties

2. Strong alternative & complement to program testing

3. Stimulus to mathematical basis for

a. software reliability

b. programming methodology

4. Ultimately. certification use in highly critical software

a. Nuclear Reactors

b. Avionics Systems

c. Secure Systems

i. Electronic Funds Transfer

ii Operating

iii. Military

d. Protocols in Message/Data Systems

i. Electronic Mail

ii. Electronic Funds Transfer

iii Distributed Systems

AFFIRM's PARADIGM

1. Abstract Data Types

a. Algebraic specification (Guttag)

b. User-defined in programs

2. Inductive Assertion Method for Programs

a. Assertions on Loops, Entry /Exit

b. Turn programs into Verification Conditions

3. Interactive Theorem Prover /Checker

a. User gives strategy and directions

b. System does book-keeping, formula manipulation

0-2

ALGEBRAIC SPECIFICATIONS

1. Abstract Data Types

a. Set

b. Queue

c. Binary Tree

d. Se,quence

2. Parts of a Type

a. interfaces of operations, strongly typed

b. axioms defining operations

c. schema for induction on the type

3. Operations are

a. Constructors - Other operations defined over
constructors

b. Extenders (Modifiers)

c. Selectors

d. Predicates

~ QueueO!ElemType;

declare q. ql, q2. qq: QueueOfEiemType;
declare i. i 1, i2. ii: Elem Type;

interfaces Conmuctors NewQueueOfEiemType. q Add i,
Ertentlers Remove(q), Append(ql. q2), que(i)
: QueueOfEiem Type;

interfaces Selector• Front(q). Back(q): ElemType;

interfaces lnduction(q).
· Predicate i in q: Boolean;

axioms Arioms for Equality
q=q=TRUE.
q Add i = NewQueueOfEiemType = FALSE.
NewQueueOfBemType = q Add i = FALSE.
ql Add i1 = q2 Add i2 = ((ql=q2) and (il=i2));

axioms Remove(NewQueueOfEiemType) = NewQueueOfEiemType.
Remove(q Add i) = if q = NewQueueOfEiemType

then q
else Remove(q) Add i;

axioms Append(q. NewQueueOfEiemType) = q.
Append(q. ql Add il) = Append(q. ql) Add il;

axiom que(i) = NewQueueOfBemType Add i;

axiom Front(q Add i) = if q = NewQueueOfEiemType
then i
else Front(q);

0-3

axiom Back(q Add i) == i;

ax1oms i .in NewQueueOfEiemType == FALSE,
i in (q Add i 1) == (i in q or (i=i 1));

schema Induction(q)
== cases(Prop(NewQueueOfEiemType),

all" qq, ii (IH(qq) imp Prop(qq Add ii)));
end {QucucOfElcmTypcl ;

THEOREM PROVER: MECHANICAL

- Rewrite Rule Orientation

* Axioms lhs = rh.~ become rules lhs -+ rhs

* Properties of good rules:
- Finite Termination
- Unique Termination -- Knuth-Bendix algorithm
- Sufficient completeness

- Natural Logic

* Combine with conditional expressions for logic

b and c .. [b then c else FALSE

[(if b then c else d) then e else f ..
[b then ([c then e else f)

else (if d then e else f)

* Also quantifiers some and forall

- Recursive function definitions (an escape mechanism from
otherwise infinite rewrite rules)

0-4

. _-. ~ ... ·. _· -: ~ · ..

.. · .. · .· ..

I ill

Examples

Notatio1a

define splitat(q,i)== i in q imp
some q l,q2 (q=Append(q 1 Add i, q2));

R ccu.rsi ve F u.ractiora

define MakeQueue(e,n)==
if n<=O then NewQueueOfEiemType
else MakeQueue(e, n-1) Add e;

THEOREM PROVER: HUMAN

Proof Structure

* Nodes: propositions
* Arcs: names of subgoals

* Movement around tree via cursor
up, down - to retrace steps
retry, resume - current theorem
next - to "natural" successor
named node or arc

Name, annotate, print status and theorems

0-5

EXAMPLE PROOF TREE

"QueueSplit is: not (q = NewQueueOfEiemType)
imp Append(que(Front(q)), Remove(q)) = q

proof tree:
4: QueueSplit

6:

8:
10:
10:->

try prop

employ lnduction(q)
NewQueueOfEiem Type:

Immediate
Add:

2
3
4

(proven

cases
invoke
replace
)

first IH
qq'

Proof Commands

sets up a goal

use prop EIS a lemma

invoke de/ invoke a definition

e11tploy ll•duction(v) use a schema

suppose prop divide with prop and "'prop

replace use equalities

0-6

USER HABIT ABILITY

Proving is hard - the system should help, not hinder

User Interface Features

1. Spelli11g correction

2. User profile

3. Command abort, fix, undo, redo

4. Recursive Execs

System Interfaces

1. Transcript of sessions

2. Output through formatter to variable font device

3. Automatic loading of needed types

4. Easy access to editors

Data Types
Queue
Set

EXAMPLES

Sequence ****
Circle
Binary Tree
Array

Small Examples
Interpolation Search
Root Finding (numerical analysis)

Large Examples
Delta - 1 000 line BLISS module for file updating

Fully specified
Partially proved

Communication Protocols
Alternating Bit
3 way handshake (TCP)

Specification
Toy Security Kernel

0-7

EXPERIENCE

Easy to learn, knowing literature and logic
Several "external" users (protocols)

Error-prone users

Proofs are

Using commands
Getting lost
Stating theorems and lemmas wrong

Simple, well-structured at end
Messy, long in middle
Crudely planned at start
Easier to find than theorems ****

Paradigm good
Proving must be interactive

Rewriting rules are effective, natural

Data abstraction methodology
Now widely known
Extendible - transition systems

User interface is critical to productivity

Resource demands are bottle neck -

CURRENT STATE OF AFFIRM

Released for wider use over ArpaNet
December 19 7 9

REFERENCE LIBRARY
Reference Manual
User's guide
Type Library
Annotated Transcripts
Collected Papers

, PROTOTYPE FOR EXPERIMENTATION
Variety of _users
Variety of applications

CONTINUED EVOLUTION
More theory of rewrite rules
Better interface, display capabilities
Integration with testing
Methodology for errors, exceptions
Support for proof persistence
Larger, stable library

0-8

.· . .
... · _ .. · .·

:. : :. ~: ::~- :· ~ >:. _:· ~'

An Ovel'\liew of
Software Testing

Mary Jo Reece

MITRE Corporation

'-

Outline

What is Software Testiag?

Why is Software Testiag Important?

Where does Software Testiag Ht iato the
Software Life Cycle?

How is Software Testing Coaclucted?

Sommal'Y

What is Software Testing?

'
P-1

r

r

'

Why is Software Testing
Important?

Why is Software Testing Important?

Software Effort

Aaalysis Coding
& & Test

Desigu Auditiug

SAGE 39% 14% 47%

GenUni 36% 17% 47%

O/S360 33% 17% 50%

Where does Software Testing
Fit into the Software

Ufe Cycle?

P-2

Software Development Approaches

Where does Software Testing Fit
Into the Software Ufe Cycle?

a~o
GOVERNMENT CODE t.
AUTHENTICATION

--------------------------+- TIME

QUALIFICATION
TESTING

AUTifENTICATION

Relationship of Development to
Test Activities

P-3

r

\.

r

'
r

'

How is Software Testing
Conducted?

How is Software Testing
Conducted?

Overall Software Testing ActMty

Test planning

Test case design

Test execution
Evaluation of test results

How is Software Testing
Conducted?

Test Case Desiga

Test plans
Test procedures
Test reports

P-4

r

How is Software Testing
Conducted1

Software Testing Approaches

Module tests
What are they?

Why start at this level?

Integration tests

What do they do?
HO\II do they differ from module testing?

How is Software Testing
Conducted?

Exp&cit vs. lmp&cit Testing

J How is Software Testing
Conducted?

Exp&cit vs. Imp&cit Testing

P-5

'

'

How is Software Testing
Conducted?

Exp&cit vs. lmp&cit Testing

How is Software Testing
Conducted?

lmp&cit Te&ting

Exercising software without knowledge of structure

Based entirely on external inputs

Cannot control software variables

Difficult to isolate source of any failures

Requires entire software structure

Summary

P-6

Summary

Testing does not introduce quality into the
product per se - it only provides a measure of the
existing quality level aod may identify the extent
aod location of the defects.

P-7

r

r

'

UPDATE ON THE
KERNELIZED SECURE OPERATING SYSTEM .

(KSOS}

John Nagle

UPDATE ON KSOS - OVERVIEW

• Project goals and their realization

• Problems along the way

• Insights into trusted computing

FLASH!

SHIPPED TO ALPHA TEST SITE
ON 11 SEP 80!

. Q-1

PROJECT GOALS

KSOS REQUIREMENTS SUMMARY

• Provable security: based on security Kernel and
trusted processes

• UNIX compatibility

• Efficiency comparable with UNIX

• Administrative support features

• General purpose Kernel

Multiple machines
Emulators for other operating systems -
Non-UNIX applications

KSOS SECURITY ASSURANCE

Q-2

UNIX COMPATIBILITY

• Functional compatability - very close to UNIX

• Performance of Alpha release 4x to Bx UNIX

Costs of security, mostly structural

Overhead of kernel/emulator structure

UNIX maturity

Reduced possibilities for global optimization

BROAD APPLICABILITY

• Support turn-key operation
Need for trusted support tools
Reduce known vulnerabilities requiring a "GURU"
for repair
Eliminate "Super-User" by providing encapsulated
utilities

• Reduce UNIX specific aspects of kernel
Flat file system
Rich inter-process communications
General process creation support

PROBLEMS ALONG THE WAY

Q-3

r

r

'

MAINTAINING CONSISTENCY ,

Problem

• How to maintain consistancy between the multiple
independent representations of a system component

Solution

• Extensive use of on-line configuration management
tools

• Management discipline prudently applied

• lndependenttestteam

• Formal testing

MULTIPLE LANGUAGE SUPPORT

Problem

• Seven different.languages used for
various aspects of the project. All
required modification and support.

Solution

• Hire multi-lingual staff

• Encourge ADA

• Need more research in integrated
software development environments

MODULA

Problem

• Significant re-work of compiler was required .

Solution

• ADA?

Q-4

,
MODULA (Continued)

Problem

• Strongly modular languages discourage
highly efficient structures, or incur
substantial overhead

Solution

• Additional research in compilers

• Better machine support

BENEFITS OF MODULA

• Strong typing

• Language-generic multi-programming

• Enforced modularity

FORMAL TOOLS

Problem

• Limitations of existing formal specification
languages

Solution

• More research, particularly in integrated
environments

Q-5

'

MATHEMATICAL MODEL LIMITATIONS

Problem

• Beii-Lapadula model too restricted

Solution

• Research in models of security

INSIGHTS INTO
TRUSTED COMPUTING

HINDSIGHT- THINGS THAT WORKED

• Success of disciplined methodology

• Value of formal specifications for unexpected purposes

• Integrated development environment worked well

• Personnel accepted formal methods easily

• Although occasionally annoying, MIL-SPEC documentation
was useful

• Having a model to work against very helpful

Q-6

HINDSIGHT - WHAT MIGHT HAVE BEEN DONE BETTER

• Better integration of segment and file systems

• More Insight into consistency between multiple representations

• Better implementation language

• Simpler secure path mechanism

• Alternate Emulator structure

'

INSIGHTS INTO TCB DESIGN AND IMPLEMENTATION

• it can be done!

• Need for consistency between different languages, care
in their use

• Utility and benefits of formal specifications

• Code proofs are not yet practical except for demonstrations.
However, being ready to do them is of great benefit.

• Need for additional tools and concepts

Q-7

r

r

r

ASSURANCE PRACTICES
IN KVM/370

MARVIN SCHAEFER

SYSTEM DEVELOPMENT CORPORATION

SANTA MONICA. CALIFORNIA

ASSURANCES FOR ACCREDITATION

• SECURITY EVIDENCE

- HARDWARE ADEQUACY

- SECURITY ANALYSIS

- FORMAL SPECIFICATIONNERIFICATION

- SOFTWARE ENGINEERING PRACTICES

- TESTING METHODOLOGY

- DOCUMENTATION

- PEER REVIEW

PREHISTORY OF THE CONCEPT

• REFERENCE MONITOR DEFINED

- ANDERSON. ET AL

• VIRTUAL MACHINE MONITOR STUDIES

- POPEK. WEISSMAN. BELADY

• VM/370 IMPLEMENTED

- REFERENCE MONITOR IS EMULATOR

- CP IS CP/67 ON BETTER HARDWARE

- 3 STATES FROM 2

- SEPARATE ADDRESS SPACES

- SMALL SIMPLE. CONSISTENT

- EVEN IMPLEMENTS S/370 SECURITY FLAWS

R-1

r

r

EARLY HISTORY

• PENETRATION STUDY - SOC/IBM

• "HARDENING" EFFORTS

YORKTOWN HEIGHTS

APARS DEMANDED

OTHER PROPOSALS

KVM SECURITY RETROFIT

• MINIMAL REWRITE OF CODE

• VERIFIABILITY ALL THE WAY TO THE CODE

- "PARNAS" SPECIFICATION

- FORMAL VERIFIED SPECIFICATION

- EXTENDED SECURITY ANALYSES

- EUCLID, VERIFIED IMPLEMENTATION

• CONTINUING PEER REVIEW

- ARPA KVM REVIEW COMMITTEE

- ARPA SECURITY WORKING GROUP

-IBM

• PERFORMANCE AND MEASUREMENT GOALS

ARCHITECTURAL INFLUENCES

• KERNELIZED DESIGN

.- UCLA SECURE UNIXTM

- MITRE 11/45 KERNEL

- AFDSC SECURE MULTICS

- MIT PROJECT GUARDIAN

- SRIPSOS

• HIERARCHICAL DATA TYPE MONITORS

- HOARE. BRINCH HANSON

- JANSON. REED

R-2

r

BASIC KVM ARCHITECTURE

KERNEL
(VERIFIED)

REAL ADDRESS
REAL SUPERVISOR STATE

CONTROVERSIES AND CONUNDRUMS

• TRUSTED PROCESS

- POLICY ENFORCEMENT IN KERNEL

- POLICY INTERPRETATION IN TRUSTED PROCESSES

• TRUSTED PROCESSOR AND PERIPHERALS

- CONTROL UNITS

- UNTRUSTED DEVICES

• CONFINEMENT AND SCHEDULERS

- WHAT COUNTS FOR CORRECTNESS?

- WHAT CAN BE VIRTUALIZED?

- SECURITY/PERFORMANCE TRADEOFFS

ABSTRACT SPECIFICATIONS

• IMPRECISE INFORMAL SPECS

- "PARNAS" FORMAT

- ENGLISH AND. PSEUDO CODE STRUCTURE

• IMPRECISE FORMAL SPECIFICATIONS

- TIMELESSNESS

NON-PROCEDURAL PROCEDURALITY

• TIMEOUTS

• CAPABILITY FAULTS

• CONTEXT RESTORATION

• ABEND

R-3

/

'

SEARCH FOR SUITABLE. VERIFIABLE HOL

• EUCUD'S DEMISE

• PASCAL'S INEFACIENCIES AND
DATA-STRUCTURE INADEQUACIES

• PUI'S SUPPORT PACKAGE

• FREGE'S KARMA

• JOVIAL COMPROMISE

CODING FROM FORMAL SPECIFICATIONS

• INANITE SETS BECOME ANITE TABLES

CONSIDERATIONS

- HOW FINITE?

- HOW SPARSE?

- HOW ACCESSED?

- HOW FREQUENTLY?

• FAITHFUL IMPLEMENTATION OF 3, 'II

CONSIDERATION

- IS IT A SPECIACATION "ACTION"

• LEGAUTY-CHECKING

REVISED SPECIFICATIONNERIFICATION
THRUST

• ORIGINAL SPECS

-. COMPLETED 1978

- NEVER VERIAED

• REVISED. VERIAED TOP LEVEL SPECS 119801

- DERIVED FROM CODE. IMPLEMENTORS

- ARCHITECTURAL MODIFICATION/SIMPUFICATION

• SECOND-LEVEL SPECIACATIONS 11980)

- CORRELATION REVIEWED WITH IMPLEMENTORS

- MAPPINGS COMPLETED BETWEEN LEVELS

R-4

r

CODING

• TWO PARALLEL EFFORTS

- NKCP-KERNEL INTERFACE MACROS

- NKCP MODS PERFORMED VIA CMS EXECS

- KERNEL IMPLEMENTED BOTTOM-UP

• SUB KERNEL

• TRUSTED PROCESSES STUBBED

'
r

TESTING

• KVM DEVELOPED & TESTED UNDER VMI3JO

- HEAVY USE OF CMS- AND CP- TEST ENVIRONMENTS

• ADSTOP

• PER TRACE

• MACHINE CONRGURATION

• KERNEL -uNrr~ TESTING

- DRIVER IS PSEUDO NKCP

• GROWN OVER nME

• SELECTABLE KERNEL CALL TEST CASES

• LEGAL AS IU£GAL PARAMETERS USED

• KERNEL ... INTEGRAnON"" TESTING

- DRIVER IS NKCP OR NKCPs

- VMs USED TO DRIVE NKCPs

TESTING SYNCHRONY AND ASYNCHRONY
. ······ .

·.:.; .. ·:~~:~~:·:~-·
• STRICT SYNCHRONY

Ill - KERNEL. 1 KNCP. 1 VM

• A SYNCHRONOUS NKCP

- KERNEL. 1 NKCP. 2 VMs

• ASYNCHRONOUS KERNEL

- KERNEL. 2 NKCPs. 1 VM EACH

• TOTAL ASYNCHRONY

- KERNEL. 2 NKCPs. 2 VMs PER NKCP

R-5

'

1!111

FIELD TEST

• INITIAL TESTS TO BEGIN JANUARY 1981

- SOC IBM 4331

- ARMY ITEL AS/5

- NAVY AMDAHL V/7

- AIR FORCE IBM 3031/4341

• PERFORMANCE MEASUREMENT AND TUNING

• FUNCTIONALITY TESTING

• SECURITY INTERFACE EVALUATION/FEEDBACK

• SECURITY TESTING

IN RETROSPECT

• INSUFFICIENT DETAILED DOCUMENTATION

• JOVIAL WAS NOT OPTIMAL CHOICE

- NOT MAINTAINED VM/370 COMPILER

- ORIGINAL KVM CONVENTIONS EXCEEDED MANY
COMPILER CAPABILITIES

- LACK OF MODERN LANGUAGE FEATURES

• PEER REVIEW SHOULD BE FREQUENT

• WAS RETROFIT SUCH A GOOD IDEA?

• STAFF SIZE SHOULD HAVE BEEN INCREASED EARLIER

• STAFF SHOULD HAVE HAD ACCESS TO A LOCAL
COMPUTER

R-6

KERNELIZED SECURE OPERATHJG SYSTEr1

(KSOS-6)

CHARLES HI BDrHJEAU

HONEYHELL

TOPICS

1 PRO,JECT OBJECTIVES

1 HARDWARE DESIGtJ OVERVIEH

• SOFTWARE DESIGrJ OVERVIEH

1 ASSURANCE TECHIHOUES

S-1

. ·~ __ -- .. -~

PROJECT OBJECTIVES

• DEVELOP ADD-Of~ HARDWARE TO C£11MERCIAL r1ACHHiE WHICU MAKES IT
EASIER TO BUILD SECURE SYSTEf1S

• DEVELOP TCB SOFTWARE
mFORCE DoD SECURITY POLICY

- FORMALLY PROVABLE

- SUPPORT UNIX + OTHER APPLICATIONS

SPM + LEVEL 6 MINICOMPUTER = SCOMP

CENTRAL
PROCESSOR
UNIT

t
VIRTUAL

SECURITY IEIORY
INTERFACE

. PROTECTION
INPUT/
OUTPUT IEIORY

UNIT IODULE CONTROLLER

_!
CENTRAL
PROCESSOR
UNIT
BUS LOGIC

~

BUS l -{

S-2

SECURITY PROlECTIOII mDULE FEATURES

• FA.<;T PROCESS StiiTCHifiG
- PP.OCESS DESCRIPTOR TREE DEFIIIITIOII VIA DESCRIPTOR BASE ROOT

- AUTO LOAD OF DESCRIPTORS

• flO CPU H! MEMORY 11EDIATiotl OVERHEAD AFTER IIIITIAL ACCESS

1 1-3 -LEVEL rtEMORY DESCRIPTOR SYSTEM

- R, w, E COfiTROL AT AJN LEVEL
- SEGMEriTS: 2K WRDS (512)

- PAGES: 128 WORDS

e 110 MEDIATIOH

- CPU TO DEVICE
- DEVICE Ttl I'1EJ'I)RY

e MULTICS-LIKE RIIIG STRUCTURE
- 2 PRIVILEGED, 2 !lOll-PRIVILEGED RIIIGS

- READ, HRilE, EXECUTE, AriD CALL BRACKETS

- RIIIG CROSSHIG SUPPORT IIISTRUCTIOIIS

e PAGE FAULT RECOVERY SUPPORT

KSOS-6 SOFTWARE

1 SECURITY KERt~EL

1 TRUSTED SOFTI~ARE

• urnx Er1ULATOR

S-3

lt1

KERtJEL DESIGN OVERVIEW

t NOI"l-FILESYSTEM 10 OUTSIDE KERNEL

t FILES COUSTRUCTED EXTERrJALLY USIIJG SEGt1EtHS

t DEMAND PAGHJG VIRTUAL t1Et10RY

t NON-DISCRETiotlARY ACCESS CONTROL - BELL AIJD LAPADULA

- PRIVILEGE

- ACCESS ATTRIBUTES tJOT FIXED

t DISCRETiotlARY ACCESS CONTROL

- UtJIX Rl WI E FOR OWrlERI GROUP I OTHER

- RIIJG BRACKETS FOR OWrlER1 GROUP 1 OTHER

- SUBTYPES

t KERNEL OBJECTS

- PROCESSES

- SEGMENTS

- DEVICES

KSOS-6 ARCHITECTURE

1 ADDRESS SPACE PARTITIONWG

- t1Er10RY

1 SEG 0-95: DISTRIBUTED KERNEL

1 SEG 96-127: LOCAL KERNEL

1 SEG 128-511: USER

- DEVICE

1 DEV 0-31: DISTRIBUTED KERIJEL

1 DEV 32-511: USER

1 RltJG STRUCTURE

- RWG 0 KERtJEL

- RING 2 UtliX Er1ULATOR

TRUSTED S/~J

- RING 3 USER APPLICATIONS

S-4

PROCESSES

I CREATE_PROCESS

I INVOKE_PROCESS

I RELEASE_PROCESS

I GET_PROCESS_ACCESS

I SET_PROCESS_ACCESS

I GET_PROCESS_STATUS

I SET_PROCESS_STATUS

I SET_PROCESS~SUBTYPES

I RECEIVEjMESSAGE

I SENDJMESSAG E

I INTERRUPT_RETURN

I GET_SYSTEM_RARAMETERS

I SHUTDOI~N

VISIBLE FUUCT!OflS

SEGMEfiTS

I CREATE_SEGMENT

I . DELETE_SEGMENT

I pET_SEGMENT_ACCESS

I SET_SEGMENT_ACCESS

I GET_SEGMENT_STATUS

I SET_SEGMENT_STATUS

I MAP _SEGMENT

I UNMAP_SEGMENT

I WI RE_SEGMEtn

I UNWIRE_SEGMENT

I SYNC_SEGMENT

DEVICES

I CREATE_DEVICE

I REMOVE_DEVICE

I GET_DEVICE_ACCESS

e· SET_DEVICE_ACCESS

I GET_DEVICE_STATUS

I SET_DEVICE_STATUS

I MAP_DEVICE

I UNMAP_DEVICE

I SECURE_TERMINAL_LOCK

I SECURE_TERMINAL_UNLOCK

I 'MOUNT

I UNMOUNT

I READ_SYSTEM_CLOCK

I SET_SYSTEM_CtOCK

TRUSTED SOFTWARE

t OPERATIONS SERVICES

•

SECURE STARTUP
OPERATOR INTERFACE
SECURE LOADERCS)
SHUTDOUU

USER SERVICES

SECURE INITIATOR
SECURE SERVER
LOGIN
SET USER ACCESS LEVEL
SET FILE ACCESS LEVEL
LOGOUT

S-5

TRUSTED SOFTWARE (CONT>

1 MAINTENANCE SERVICES

• HARDWARE

MAKE FILE SYSTEM
SEGMENT DUMP
SAVE/RESTORE FILESYSTEM
FILESYSTEM CONSISTEf~CY CHECK

ASSURANCE TECHNIQUES

- DESIGN VERIFICATION
• TESTING USED TO VERIFY DESIGN
• Ar~ALYSIS USED TO VERIFY COMP~TENESS OF TESTING

- FAILURE INDUCED SECURITY COMPROMISE
• ESTABLISH PROBABILITIES THAT FAILURE WILL RESULT

W COMPROMISE
• IDEtHIFY FUf4CTIOf~S THAT ·REQUIRE RUfUJWG PERIODIC

•HEALTH CHECKs•
- HARDWARE •GATEs• INCLUDED IN FORMAL TOP-LEVEL SPEC

S-6

ASSURruiCE TECHHIOUES

• SOFTWARE
- SPECIFICATIONS

e FORMAL TOP-LEVEL SPEC

• BS DESIGN SPEC
• C5 DESIGf~ SPEC

- IMPLB£NTATION
e VERIFIABLE LAf~GUAGE - UCLA PASCAL

• lOK SOURCE Llt~ES

- DESIGN REVIEWS
r

• If~F01f·1AL VERIFICATION BY CORRESPOfmENCE

THROUGH IMPLEMEfHATION
- FORMAL VERIFICATION OF SYSTEM DESIGN

e SRI HIERARCHICAL DEVELOPMEfH METHQDOLOGY <HDM>
- ILLUSTRATIVE PROOF OF IMPL.EMEfHATION

- TEST --- TEST

KERNEL VERIFI CATIOf~- STATUS/RESULTS

1 PROOF OF DESIGN ALMOST COMPLETE
- 1 MODULE REMAINS

1 FALSE THEOREMS EXIST
- RESOURCE EXHAUSTION
- TRANQUILITY PRINCIPLE VIOLATIONS
- EXCEPTION REPORTING OH WRITE-UPS

1 DIFFERENCES FROM IMPLEMENTATION
- PRIVILEGE IS REMOVED

• TOOLS
- IMPROVED
- ISOLATING REASONS FOR FAL~E THEOREMS IS TEDIOUS

S-7

SC!J1P TLS

LEVEL ~ 1-10. OF FUNCTIONS

13 PROCESS_VIRTUAL_fROCESSES 11

12 PROCESS_VIRTUAL_DEVICES 15

11 PROCESS_VIRTUAL_SEGMENTS 15

10 INTERPROCESS_COMMUNICATION 3

9 PROCESS_OPERATORS 10
8 SEGMENTS 15

7 MOUNTABLE_f!LESYSTEMS 11

6 DEVICES 26

5 PROCESS_STATES 13

4 SUBTYPE_CONTROL 5

3 OBJECT_ACCESS_CONTROL 16

2 PRIVILEGE_CONTROL 3

1 OBJECT_NAMES 3

0 CLOCK 5

151
- APPROX 4000 LINES OF SPECIAL

- 50 VISIBLE FUNCTIONS - 12 HARDWARE GATES

38 SOFTWARE GATES

1~111

S-8

