
PROCEEDINGS

OF THE

FOURTH SEMINAR

ON THE

DOD COMPUTER SECURITY

INITIATIVE

NATIONAL BUREAU OF STANDARDS

GAITHERSBURG, MARYLAND

AUGUST 10 - 12, 1981

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED

TABLE OF CONTENTS

Table of Contents

About the DoD Computer Security Initiative iii

About the Seminar iii

Acknowledgments iv

Program v

List of Handouts viii

"Welcoming Address," James H. Burrows, Director, Institute
for Computer Sciences and Technology, National Bureau of
Standards A-1

"Keynote Address," Admiral Bobby Inman, Deputy Director of
Central Intelligence, Washington, D.C. B-1

"Introductory Comments," Stephen T. Walker, Director,
Information Systems, Office of Deputy Under Secretary of
Defense (c3I) C-1

"Burroughs' Efforts in Computer Security," Chris Tomlinson D-1

"CR80-A Fault Tolerant Computer for Implementation in Secure
Systems," Asbj¢rn Smitt, Christian-Rovsing A/S, Ballerup,
Denmark E-1

"Computer Security and Control Data," Terry A. Cureton,
Control Data Corporation F-1

"SAC Digital Network Security Methodology," ~1auro Ferdman,
The MITRE Corporation G-1

"COS/NFE Overview," Gary Grossman, Digital Technology,
Incorporated H-1

"WIS Security Strategy," Larry Bernosky, Defense Communications
Agency I-1

"Trusted Computing f\c:search at 8ata General Corporation,"
Leslie Delashmutt and Ooug Wells, Data General Corporation J-1

"The i.I\PX-432 Microcomputer System," George Cox, Intel
Corporation

i

K- 1

"ICL Efforts in Computer Security," Tom Parker, International
Computers. Limited L-1

"GNOSIS: A Progress Report," Bob Colten, TYMSHARE

"Computer Security Evaluation Center," George Cotter,
Acting Director, DoD Computer Security Evaluation Center,

M-1

National Security Agency N-1

"Trusted Compute~ Systems," Rein Turn, The RAND Corporation 0-1

"The SOC Communications Kernel," David L. Golber, System
Development Corporation P-1

"The MITRE Trusted Packet Switch," Chris Hi sgen, The MITRE
Corporation Q-1

"Experience with KVM," Tom Hinke, System Development Corporation R-1

"SCOMP (KSOS-6) Development Experience Update," Lester Friam,
Honeywell S-1

"KSOS-11 Summary and Update," John Woodward, The MITRE
Corporation T-1

"ACCAT and FORSCOM Guard Systems," Mike Soleglad, Logicon U-1

"A Security Model for a Mi 1 itary Message System."
Carl E. Landwehr, Naval Research Laboratory V-1

"EUCLID and Verification", Ian Griggs, I.P. Sharp &
Associates, Ltd. W-1

"The Evaluation of Three Specification and Verification
Methodologies," Richard A. Platek, Digicomp Research Corporation X-1

i i

DOD COMPUTER SECURITY INITIATIVE SEMINAR - IV

August 10-12, 1981

ABOUT THE DOD COMPUTER SECURITY INITIATIVE

The Department of Defense (DoD) Computer Security Initiative was
established in 1978 by the Assistant Security of Defense for Communica­
tions, Command, and Control and Intelligence to achieve the widespread
availability of "trusted" ADP systems for use within the DoD. Widespread
availability implies the use of commercially developed trusted ADP
systems whenever possible. Recent DoD research activities are demonstrating
that trusted ADP systems can be developed and successfully employed in
sensitive information handling environments. In addition to these
demonstration systems, a technically sound and consistent evaluation
procedure must be established for determining the environments for which
a particular trusted system is suitable.

The Computer Security Initiative is attempting to foster the
development of trusted ADP systems through technology transfer efforts
and to define reasonable ADP system evaluation procedures to be applied
to both government and commercially developed trusted ADP systems. This
seminar is the fourth in a series which constitute an essential element
in the Initiative's Technology Transfer Program.

Effective January 1, 1981, the Director of the National Security
Agency was assigned responsibility for computer security evaluation for
the Department of Defense. Plans for the transfer of the Computer
Security Initiative activities to NSA are well underway.

The Institute for Computer Sciences and Technology, through its
Computer Security and Risk Management Standards program, seeks new
technology to satisfy Federal ADP security requirements. The Institute
then promulgates acceptable and cost effective technology in Federal
Information Processing Standards and Guidelines. The Institute is
pleased to assist the Department of Defense in transferring the interim
results of its research being conducted under the Computer Security
Initiative.

ABOUT THE SEMINAR

This is the fourth in a series of seminars to acquaint computer
system developers and users with the status of trusted ADP system
developments plans for the integrity evaluation of trusted systems.
The three previous seminars have stressed user requirements for trusted
systems throughout the government and the private sector, experience
with design of production prototype trusted systems, and industry
progress in computer security. The focus of this seminar is on trusted
system efforts across the board.

i i i

AC KNO\JJL EDGt1ENTS

A number of people in and outside of the DoD Computer Security Technical
Consortium have helped to make this seminar a success. At the MITRE Corporation,
Pete Tasker helped to organize the speakers; Karen Borgeson and Dianne Mazzone
managed registration; Charles McClure pro~ided behind-the-scenes support.
Finally Dr. Billy Claybrook handled the entire job of collecting and organizing
the material for this Proceedings.

Also, we are grateful to Greta Pignone and Sara R. Torrence of NBS for
arranging the splendid facilities.

DISCLAHA.ER

The presentations in this proceedings are provided for your information.
They should not be interpreted as necessarily representing the official view
or carrying any endorsement, either expressed or implied, of the Department
of Defense or the United States Government.

iv

Sf-;.,/y: !JJ.
Steph~~Walker
Chairman
DoD Computer Security Technical

Consortium

DOD COf•lPUTER SECURITY INITIATIVE SHHNAR - IV

August 10-12. 1981

Monday, August 10

9:30 INTRODUCTION

Jim Burrows, Director
Institute for Computer Sciences and Technology
National Bureau of Standards

KEYNOTE SPEAKER

Admiral Bobby Inman
Deputy Director of Central Intelligence

DOD Computer Security Initiative Status

Steve Walker, Chairman

DoD Computer Security Technical Consortium

MANUFACTURERS' EFFORTS IN COMPUTER SECURITY

Chris Tomlinson
Burroughs Corporation

Axel Hvidtfeldt
Christian-Rovsing

Terry Cureton
Control Data Corporation

2:00 ACQUISITION & DEVELOPMENT EXPERIENCE

SAC DIN

Mauro Ferdman
The MITRE Corporation

Communications Operating System/NFE

Gary Grossman
Digital Technology Incorporated

WWMCCS INFORMATION SYSTEM COMPUTER SECURITY

Larry Bernosky
WWMCCS System Engineering Office

v

Tuesday, August 11

9:15 NBS COMPUTER SECURITY EFFORTS

Dennis Branstad
National Bureau of Standards

MANUFACTURERS' EFFORTS IN COMPUTER SECURITY (Continued)

Les DeLashmutt
Data General Corporation

George Cox
· Intel Corporation

Tom Parker
International Computers Limited

Bob Colten & Norm Hardy
Tymshare

2:00 DOD COMPUTER SECURITY EVALUATION CENTER

George Cotter, Acting Director
DOD Computer Security Evaluation Center
National Security Agency

NON-DOD TRUSTED SYSTEM NEEDS

Rein Turn
The Rand Corporation (Consultant)

COMMUNICATIONS EXPERIENCE

The SDC Communications Kernel

David L. Golber
System Development Corporation

The MITRE Trusted Packet Switch

Chris Hisgen
The MITRE Corporation

5:30 Wine & Cheese Reception
Washingtonian Hotel
(until 7:30p.m.)

vi

Wednesday, August 12

9:15 DEVELOPMENT EXPERIENCE UPDATE

KVM/370

Tom Hinke
System Development Corporation

KSOS-6

Les Fraim
Honeywell Information Systems

KSOS-11

John Woodward
The MITRE Corporation

RESEARCH AND DEVELOPMENT UPDATE

ACCAT Guard & FORSCOM Security Monitor

Mike Soleglad
Logic on

Security Model for a Military Message System

Carl Landwehr
Naval Research Lab

2:00 RESEARCH AND DEVELOPMENT UPDATE (continued)

Euclid & Verification

Ian Griggs
I. P. Sharp & Associates, Ltd

Evaluation of Specification & Verification Systems

Richard Platek
Digicomp Research

\liRA P-UP

vii

LIST OF HANDOUTS

REIN TURN

TRUSTED COMPUTER SYSTEMS: NEEDS AND
INCENTIVES FOR USE IN GOVERNMENT AND
THE PRIVATE SECTOR, JUNE 1981

viii

Welcom1ng Address
Fourth Seminar on the DoD Computer Security Initiative

August 10, 1981

James H. Burrows
Director, Institute for Computer

Sciences and Technology

I am pleased to welcome you to the Fourth Seminar on the Department of

Defense Computer Security Initiative Program. As in the past, the National

Bureau of Standards and the Institute for Computer Sciences and Technology

are happy to collaborate with Office of the Secretary of Defense in

bringing information about trusted computer systems to users and system

developers. I am told that there is a plan to hold a fifth seminar in

this series next Spring to continue these valuable information exchanges.

The program announcing this seminar also announced the establishment of

the computer security evaluation center for the defense and intelligence

communities at til~ National Security Agency, a subject to be addressed by

our disti;;:}:Jished keynote speaker this morning. We are glad that this

has come to fruition, and hope that we will be able to continue to work

with the evaluation center through the security initiative in diffusing

trusted system technology to the user community.

Co;;1puter security is no longer an exclusive concern of the defense and

intelligence communities. These agencies, of course, have rigorous

requirements for protecting the secrecy of data. However, as we become

more dependent upon computers for handling financial, health, and other

critical information, techniques for assuring the integrity and reli-

ability of co;nputer systems become essential throughout the goyernrnent

and private sector.

A-1

Not only do the defense agencies in the Federal Government need

off-the-shelf solutions to their security problems, but so do the ADP

users in the civil government agencies and the private sector. NBS can

play a role in getting information about this needed technology to users

through technical interchanges such as this seminar, through the publication

of technical reports, and through the development of computer security

standards and guidelines when the te~hnology is appropriately developed.

The Paperwork Reduction Act of 1980 (P.L. 96-511) passed last year reflects

Congress• concerns that computer security efforts be integrated into the

overall information resources management concept. Among the responsibilities,

centered on the Office of Management and Budget, in implementing the Act

are the functions of developing and implementing policies, principles,

standards, and guidelines on information disclosure and confidentiality,

and on safeguarding the security of information collected and maintained

by the agencies. With its emphasis on planning for information technology

acquisition and use, the Act provides the impetus for including essential

activities such as planning for computer security into agency long-range

planning foi· information management activities.

I believe that computer security is a pervasive problem that needs tor

level attention from managers, as well as from technical staff. It is a

problem that encompasses the entire information processing cycle from

intake of data through the processing of data, the delivery of the

information product, and the storage of data. While the need is pervasive,

it is also clear that achieving a secure system is costly in both time and

money.

A-2

Since the technology of computer security is not available in existing

computer systems, we have tried to attack the problem of com~uter security

through a variety of administrative and management controls which will

continue to be essential elements for achieving secure systems. Trusted

system technology, however, offers promising capabilities for maintaining

the integrity and reliability of critical systems. That assuring integrity

and reliability is important is evident in the estimates that problems

• associated with errors, ommissions, and modifications of data occur ten

times more frequently than intentional disclosures.

I, therefore, stongly support this R&D and technology transfer effort

and hope that this is a successful and fruitful seminar.

I now have the honor of introducing our distinguished keynote speaker,

Admiral Bobby R. Inman, who has broad experience both in the defense and

intelligence communities. Admiral Inman, a graduate of the University of

Texas, Austin, began his career in the U.S. Navy in 1952. Since then, he

has held the positions of Director of Naval Intelligence, Vice Director

of the O~f~~~~ Intelligence Agency for Plans, Operations and Support, and

the Director of the National Security Agency. He is currently the Deputy

Director of Central Intelligence. Let's welcome Admiral Inman to this

seminar.

A-3

KEYNOTE ADDRESS

COMPUTER SECURITY INITIATIVE

Admiral Bobby Inman
Deputy Director of Centra 1 I nte.ll i gence

Washington, n.C.

It is a pleasure to welcome you to this Seminar and to speak briefly with

you about compu~er security, the recent developments within the Department of

Defense and the Intelligence Community and the challenges that lie ahead.

As Dr. Gerald P. Dinneen, former Assistant Secretary of Defense for c3I

defined at the first of these Seminars two years ago, a "trusted" canputer

system is one with sufficient hardware and software integrity to allow its use

for the simultaneous processing of multiple levels of classified or sensitive

infomation.

ih:: need for trusted computer systems is very real and growing rapidly.

Factors influencing this need are:

the gro,.;ing use of automated inforfiiation handling systems throu9hout

the DoD and the Intelligence Co:rrnunity and in particular the linking

of these systems into major net~orks;

increasing requirements for controlling access to compartmented and

sensitive information;

the requirement for broader dissemination of ·information both y,•ithin

and beyond the com~unity;

growing difficulties with obtaining required numbers of cleared

personnel, both military and civilian.

Despite continuing internal efforts to develop special purpose trusted

sys terns for unique needs, we a 1 ready rely very heavily on the products of the

computer industry to m~et our information processing requirements, and this

B-1

dependence will continue to grow significantly in the future. It is therefore

very gratifying to observe the progress being made by the canputer indus try in

applying computer security technology as represented by the industry presenta­

tions at this and the previous Seminars.

It is very important, also, that the Department of Defense and the

Intelligence Corrrnuni ty develop sufficient expertise to be able to evaluate the

integrity of computer software and systems developed by industry and

government, and· that we be able to determine suitable physical and

administrative environments for their application. We have had scattered

efforts over the past several years to evaluate specfic systems for specific

installations. But these efforts have always been more or less ad hoc, and

because of the extensive technical back ground required, expensive to carry out.

I am very pleased therefore to announce today the establishment of a

Computer Security Technical Evaluation Center for the Department of Defense and

.the Intelligence Community at the National Security Agency. Last fall, as

Director of NSA, I enthusiastically endorsed the establishment of this Center

at NSA as a nt>w and separate function. I am very pleased with the progress

being made in setting up the Center and I remain strongly canmitted to its

success.

I would like to make several observations about the Center and some of its

relationships:

Because the private sector computer manufacturing community is the

primary source of ADP systems, the Center's role will be to work

with the manufacturers, deriving as much system integrity as possible

from industry developed systems. This is a rather sharp contrast to

the NSA 's more traditional corrrnunications security role where the

government has the dominant technical role.

B-2

The Center will have a difficult task developing procedures which

assure protection of sensitive portions of a system which the

government does not own. Simply classifying security related

portions of a system built by industry won't work since the govern­

ment represents such a small portion of the overall market that the

manufacturers may well decide not to sell to the government rather

than accepting the limitations imposed by classification. This,

in the end, might lead to a highly undesirable situation where private

sector users (e.g., banks, insurance companies) have higher integrity

systems than the government.

But sensitive portions of systems and the known vulnerabilities

that remain must be protected, in the interests of both the government

and the manufacturers. It is quite likely therefore that the most

sensitive portions of the government's analyses will be both classified

and proprietary to the manufacturer. Careful, reasoned interaction

between the government and industry will be needed to work out

suitable working relationships.

The Center will act in the interests and for the benefit of the

Department of Defense and the Intelligence Community. Its evaluation

will not be intended for use by other than the PoD. It will not make

general product endorsements. But as with the Qualified Products List

procedures (as prescribed in the DoD Defense Acquisition Regulations),

the relative merit of a system in the hierarchy of evaluated products

may be available publicly in order to provide incentive and

encouragement for manufacturers to develop trusted systems and private

sector users to employ them.

B-3

- Because of the wide range of sensitive environments that exist for

information systems (ranging from privacy applications to compartmenta­

tion within the Intelligence Community, and from adjacent security

levels (e.g., Secret and Top Secret) to full multi-level systems

with Intelligence users and uncleared users), it will be vital for

the Evaluated Products List to offer a range of technical categories

and appropriate environments for specific systems. The approach of

establishing levels of technical integrity which has evolved from the

work of the Computer Security Initiative indicates the kinds of

distinctions which will be made in evaluating systems. A range of

suitable environments is possible with trusted systems because the

security accreditation of ADP systems depends upon all of the

aspects of the total system. The accreditation of a system to serve

users cleared at both the Secret and the Top Secret level is not as

difficult a problem as extending the use of such a system to

uncleared users as well. The Department of Defense is now using

Multics in such a limited environment serving both Secret and Top

Secret cleared users. The Evaluated Products List should provide

guidelines for implementing this type of operation where sufficient

technical integrity of software products can be demonstrated.

- Finally, I would like to say that the establishment of an Evaluation

Center, important as it is, must not be viewed as providing by itself

the long sought answer to the computer security problem. Within the

Department of Defense and the Intelligence Community, system builders

will have to become aware of and properly employ the procedures for

development of trusted system applications. The Services and Defense

B~

Agencies are being encouraged to establish or enhance their own

technical security test and evaluation capabilities to ensure

widespread use and availability of trusted computer systems. The

computer manufacturing community must work closely with the Center

and these Service organizations to ensure that reasonable products

are available for use in sensitive applications.

In conclusion, I would like to restate my awareness of the importance of

this ·problem area, my enthusiasm for the establishment of the Evaluation

Center, and my deep and continuing interest in its success. I encourage you

participate fully in this Seminar, ask the tough questions, learn all you can

and then go out and apply what you have learned so that we may all have trust

worthy computers in the very near future.

B-5

HlTRODUCTORY cm1'1S\ITS

DIRECTOR I~FORMA.T[ON SYSTE"1S

OFFICE OF DEPUTY UNDER SECRETA.RY 0? DEFE~SS (C1I)

Good Morning. It is indeed a pleasure to welcome you to the Fourth Seminar on
the DoD Computer Security Initiative.

It was just three years ago that we began the Computer Security Initiative and
just two years ago that we held the First Seminar here at ~BS. We had two
major goals when '"e started this effort and I am proud to announce that as of
today I believe we have accomplished both of them.

~s I described in my opening remarks at the last Seminar, our major external
objective for the Initiative, that of getting the computer manufacturers
involved in the development of trusted systems, had already co~e a long way as
indicated by the five manufacturers who described their efforts at that
seminar. This time, as you glance at your program you will see that we have
eight manufacturers giving presentations; seven new ones including three
European manufacturers and one giving an update from last time.

I must admit that I expected only t~;vo or three manufacturer presentations and
as Pete Tasker and I were working out the program we had the pleasant task of
frequently shuffling t~e program as more manufacturers accepted our invitation
to speak.

I think it is obvious from the number and variety of manufacturers represented
today and at the last Seminar that there is a strong interest in computer
security and in trusted computer systems in the US and international computer
manufacturing community. This external interest is most gratifying.

But just as exciting to me at least is the progress we have made to s~tisfy
the major internal objective of the Initiative. At the last Seminar I hinted
that within a year there would be a technical integrity evaluation process in
being to serve the DoD.

In fact, as ~dmiral Inman has just announced, that goal has been met with the
establishment of the DoD Computer Security Evaluation Senter at NSA.. The
Deputy Secretary of Defense made it official as of January 1, 1981 and ~SA has
been hard at ~•ork pulling all the necessary pieces together to get the Center
functioning. Tomorrow afternoon you will hear a status report on the Senter
from Mr. George Cotter of NSA..

I am personally very excited and pleased with our progress in just three
years. It is clear to file that the time was right for Hhat He have tried to

C-1

do. My personal thanks to everyone who has helped m~ke this possible. I
believe that the combination of rapidly growing interest on the part of the
computer manufacturers and the existence of a ryory evaluation capability will
profoundly influence the integrity of computer systems in the very near term
and from no\v on.

It is vital that v7e start to take advantage of this improvement as soon as
possible. In just a minute, 1 would like to propose a challenge to both the
computer manufacturers and the computer users both in this audience and beyond.

Let me first describe a particular situation as I see it in right now.

Over five years ago the Air Force, after extensive testing and evaluation,
installed a Honeywell MULTICS System at the Data Services Center in the
Pentagon. That syst€m has successfully operated in a Top Secret environment
with some users cleared only for Secret access for several years. It is a
general purpose system being used for all kinds of programming and
administration support to the A~.

I am not recommending that everyone go out and buy a W.JLTICS System to satisfy
all their needs. But as 1 review the efforts of the many manufacturers that I
have talked with lately, 1 realize that there is a real potential for a number
of systems with integrity similar to HlJL TICS to be available in the not so
distant future.

So what, you say~ A Top Secret-Secret environment is not fully multilevel
secure. I can't have the highest levels of sensitive data on my system with
unclassified users so it hasn't solved my problem.

In reality though, not very many applications require a system to operate over
anything like the full range of sensitive information. This afternoon you
will hear about the computer security aspects of the H\f\1CC'3 Information System
~odernization effort, perhaps the largest, highly sensitive computer system
upgrade that the DoD will perform this decade. There are multilevel security
problems throughout ~.JlS but as you will hear, the requirements exist over a
reasonable range of sensitivity levels, not necessarily over the full range of
possible levels.

If one couples the fact that the manufacturers could soon develop trusted
systems with integrity levels similar to WJLTICS and the realization that many
of our security requirements can be met by systems that operate over a limited
range of sensitivity, it is possible to see how solutions to at least these
limited applications may be forthcoming very soon.

You may accuse me of advocating a less then perfect solution by •..rhat I've just
said. Far from that, though, I am advocating seeking a reasonable, useful
solution prior to seeking the perfect solution. Indeed if we do not make
serious attempts to crawl before we run here, we very likely will never get
anywhere near that perfect solution.

C-2

Now back to my challenge. I would like to challenge the users in this
audience to seriously review their needs for trusted computer systems and
determine, as Larry "Bernosky has for the H\·NCCS Information System, which
needs could be met by syste~s able to op~rate over limited sensitivity
ranges. To the extent that you can do this, I strongly urge you to convey
this information to your local computer manufacturers representatives to help
motivate them to develop systems to meet your needs, and then get involved in
the evaluation of potential systems for your application.

I would similarly challenge all the manufacturers in the audience to study
what has been done to date, understand the security design of systems like
rlli~TICS, Kernelized Secure Operating System (KSOS) and Kernelized V~ 370
System (KVH) and incorporate these ideas into your product lines, quickly.
More and more users are beginning to realize not only that they need improved
integrity within their computer systems but also that it is possible to build
systems with these improvements, and that they can begin to demand such
features. As you can tell from the manufacturers participation here, at least
some of your competitors are taking this seriously.

He've come a long way in the last few years. He've completed the first tough
phase of the Initiative, gettin~ the various pieces in place. Now it's time to
move into phase two. This will involve a lot of work by the manufacturers and
you the users have the opportunity and the responsibility to get involved.

I know by your being here that you are interested. I challenge you to get
seriously involved.

I would now like to summarize the activities of the Initiative on the next few
slides.

C-3

DoD

COMPUTER
SECURITY INITIATIVE

oooTO ACHIEVE THE WIDESPREAD
AVAILABILITY OF TRUSTED
COMPUTER SYSTEMS

Stephen T. Walker
Chairman
DoD Computer Security

Technical Consortium

COMPUTER NETWORI< VULNERABILITIES

RADIATION ..
QAOIATIOH

TAPS 4

TAPS ~AOIATIOM QAOIATION , i> f\
RADIATION Ct<OSSTALK + CQ05~TAL~ 4

/'-- w
t I , I~' I •• I Q)-l---,_, _ _:_· _ _.i. _ __, .. W!-'-----;

1
1
""'-- I-- COMMUNICATION ::t;:::j

-+' ~. Pt<OCESSO~ f--: LINES --t-i SWITC>11HG 1 \ •

· --=rtJ CENTER 1 1 •

l ~'------..--.,.---1 I I .

FILES
THEF_T_

.. . w w w \
4 l> I> HARDWARE ~ ... 1\

I IMPROP£~ COHHECTIOftS ,_, w
COP'f1NG
UNAUTHO~IZEO ACCt.SS

HAQOWAQE­

QEVE.U. P~OTI'CTIVE 0\Sh&L!o P~OTECTIVE FEATU~ OHSOLE~
MEI>.$U~ES P~OVIOE "INS"

~EVEAC PllOTECTIVE MEASUIU

2E~~;c~~:~~YISO~ ~YSTEMS ::::~:~~::/!(£MOTE ~

OIS~~NHTA~!~ O~~~S ~ FAILU2E OF P20TECTION CIRCUITS
CONnt6UTE TO SOrTWAIU FAILU2ES

SOFTWAQE-
USE STAKO·ALONE UTILIH p~~~AMS ATT ACHMEKT OF 2ECC20E~S 1

6UGS USER'
FAILU2E Of PJUlTECTIOH FEATURES

ACCESS CO!<T20L
60UHOS CONT201.
HC.

C-4

!OEP'fTlf'iCi'Ti'OH
AUTHENTICATION
SU&TL.E SOFTWARE

MOOIFICATIONS

COMPUTER SECURITY

PHYSICAL SECURITY

ADMINISTRATIVE SECURITY

PERSONNEL SECURITY

COMMUNICATIONS SECURITY

EMANATIONS SECURITY

HARDWARE/SOFTWARE
SECURITY

COIVilPUTER
SECURITY U\~T!ATIVE

TRUSTED: SUFFICIENT HARDWARE AND
SOFTWARE INTEGRITY TO
ALLOW SIMULTANEOUS USE
AT MULTIPLE SECURITY I
SENSITIVITY LEVELS

WIDESPREAD: COMMERCIALLY SUPPORTED

C-5

APPROVAL FOR DoD USE

I DO~D 5200.281

I : \ POLICY

R

E DEVELOPMENT 0 PHYSICAL
Q GROUP / ADMINISTRATIVE
U /'~PERSONNEL
I -SPECIFIC DESIGNATED ' HARDWARE/
R - SYSTEM- APPROVING /"---------; SOFTWARE
E -REQUEST AUTHORITY '\,. ---------.. SECURITY

M 0 ~TEMPEST
E COMSEC
N
T
s

FOR USE OF ADP
PROCESSING
CLASSIFIED

INFORMATION

INDIVIDUAL
INSTALLATION

APPROVAL

APPROVAL FOR DoD USE
INDUSTRY

ll 1 1 l DO~D 5200.281

R ' •
: (POLICY

) EVALUATION

e DEV~~~~ENT 0 -% rn
~ -sPECIFIC DESIGNATED <'L-----, "EVALUATED

-SYSTEM- APPROVING . I PRODUCTS
~ -REQUEST AUTHORITY ~ LIST"

~ 0"
s

FOR USE OF ADP
PROCESSING
CLASSIFIED

INFORMATION

INDIVIDUAL
INSTALLATION

APPROVAL

C-6

EVALUATED PRODUCTS LIST

TECHNICAL POSSIBLE
CLASS FEATURES EXAMPLES ENVIRONMENTS

MOST COMMERCIAL DEDICATED MODE
SYSTEMS

2 FUNCTIONAL SPECIFICATION "MATURE" BENIGN. NEED TO
REASONABLE PENETRATION "ENHANCED" KNOW
RESULTS OPERATING SYSTEM ENVIRONMENTS

3 REASONABLE MODERN MULTICS AF OATA SERVICE
PROGRAMMING TECHNIQUES CENTER TS-S
LIMITED SYSTEM INTEGRITY
MEASURES

4 FORMAL DESIGN NO USER
SPECIFICATIONS SYSTEM PROGRAMMING
INTEGRITY MEASURES TS-S-C

5 PROVEN DESIGN KSOS LIMITED USER
SPECIFICATIONS VERIFIABLE KVM PROGRAMMING
IMPLEMENTATION LIMITED TS-S-C
COVERT PATH PROVISIONS

6 VERIFIED IMPLEMENTATION FULL USER
AUTOMATED TEST PROGRAMMING
GENERATION EXTENDED TS-S-C
COVERT PATH PROVISIONS
REASONABLE DENIAL OF
SERVICE PROVISIONS

COMPUTER SECURITY INITIATIVE

I. EDUCATION PHASE
PUBLIC SEMINARS/WORKSHOPS ~

II. SPECIFICATION PHASE

DRAFT I DoD COORD. I INDUSTRY COORD. ~ REVIEW AND ENHANCEMENT

Ill. EVALUATION PHASE •
INFORMAL FORMAL

KSOS-11 INDUSTRY

KVM SUBMITIED

HONEYWELL SYSTEMS

DIGITAL EQUIPMENT CORP

TYMSHARE

"EVALUATED PRODUCTS LIST"

1978 1980 1982 1984

C-7

COMPUTER SECURITY INITIATIVE

ON JANUARY 1, 1981 THE SECRETARY OF DEFENSE
ASSIGNED RESPONSIBILITY FOR COMPUTER
SECURITY EVALUATION FOR DOD TO THE DIRECTOR,
NATIONAL SECURITY AGENCY.

COMPUTER SECURITY EVALUATION
CENTEEl

o ESTABLISH TECHNICAL EVALUATION CRITERIA
o EVALUATE INDUSTRY AND DOD SYSTEMS

o MAINTAIN EVALUATED PRODUCTS LIST

o SPONSOR R&D IN COMPUTER SECURITY
o ENCOURAGE DEVELOPMENT AND WIDESPREAD

USE OF TRUSTED COMPUTER SYSTEMS

C-8

CURRENT INITIATIVE EVALUATION
EFFORTS

CONTROL DATA
DIGITAL EQUIPMENT CORPORATION

HONEYWELL

INTEL

TYMSHARE

UNIVAC

UNDER DISCUSSION

BURROUGHS

C-9

FEDERAL AND SPECIAL SYSTEMS GROUP

CHRIS TOMLINSON

RESEARCH AND DEVELOPfviENT

lOCAL NETWORK SECURITY

I> POLICY

I> DESIGN

D> ACCEPTANCE

D-1

NEED FOR INTERCONNECTION OF COMPUTERS AND PERIPHERALS

lllo- SYSTEM HIGH

~ PERIODS PROCESSING

1>- MLS HOSTS

USING LOCAL NETWORK TECHNOLOGY

ISO-LEVEL POLICY

COMMUNICATION IS PERMITTED ONLY

AMONG SUBSCRIBERS AT THE IDENTICAL

SECURITY LEVEL (CLASSIFICATION,

CATEGORY)

NO OTHER COMMUNICATION CAN

OCCUR

D-2

I PERIODS PROCESSirJG HOST

EXAMPLE OF !SO LEVEL J\!ET

I ::~l:j
L.;-, I

r'---'-1 ·~

r---1! __ '~---, I
I

1 r,-,~--~----·, . ,. , .
~ I I SYSTEM HIGH ,' I 1 ... - - - - - I ; HOST

- j-- - -'- "'4 ~ \ I ~~~]--<--- I I I : ' I -,s I,

~=========-~-T-~'=.:::_-:::_-~ --y I , 1 ;;:~-J-l=_-::::!----- _____.

l--- - -1 i L ;-r-;.:r)::=.-_~f::==PR=~=CRE=~;=s~r=~G~\
I TS/S

I SYSTEM

I I I -~-Q-- I I I HOST
I \....--~~ - • ./ I S/U I '--------' '-- --,- r~ _____ _)

¥'~ \
,-----P-E-R_.;Id:~1 ~.;.~s-iJf-ST_E_r~---...,,

PRCCESS!ci<? ; i HIGI-i _j'
I SIU l: U
i l ~

HIGH
I

s

NODE ARCHITECTURE

DEVICE
INTERFACE

UNIT

fLP MEMORY

r ---f-- -- -1
I I I I
I I
I I

L_ RING INTERFACE UNIT _j

D-3

SECURITY PROBLEF~.I\S ADDRESSED

• WITHOUT E3

HOST 2

• WITH E
3

HOST 2

PACI{ET CONTENTS CAN BE COPIED DIRECTLY
BETWEEN SECURITY LEVELS

VC-AB

VC-CD

COMMUNICATION NETWORK HOST 1

SECURITY PROBLEMS ADDRESSED

PACKET HEADERS MUST REMAIN IN PLAIN TEXT

UNTRUSTED PROTOCOL PROCESSES CAN DOWNGRADE CLASSIFIED
DATA BY DECODING/ENCODING INFORMATION CONTAINED IN
PACKET HEADERS

VC-AB

VC-CD

' /
/ I

I
I

COMMUNICATiON NETWORK

D-4

HOST 1

POTENTIAL SOLUTIONS

STORAGE CHANNELS

..... ELIMINATE VARIABLES

•. ADDRESSES

• LENGTH

• OTHER HEADER FIELDS

..,.. ENSURE THAT UNTRUSTED NETWORK PROCESSES CANNOT

COMMUNICATE WITH ONE ANOTHER OUTSIDE THE POLICY

TIMING CHANNELS

..... TIME DIVISION MULTIPLEXING

KERNEL SUPPORTS

..,.. MESSAGE BASED IPC

..,.. PROCESS ISOLATION

..,... POLICY PROCESSES

D-5

INTERlEVEL INFORMATION FLOW

L1

L2

HOST 2

MULTILEV~L

SECURE

NOTE: Ll >L2

--- -r--

COMMUNICATION NETWORK

..

LOOP BACK
CLOCK LOSS
DETECTED BREAK =kbk ~r----c -----,~

SWITCH
ACTIVATED

CLOCK LOSS

DETECTED

S'o'ldTCH
ACTIVATED

D-6

L.L-----.......J

HOST 1

MULTILEVEL
SECURE

OR
DEDICATED AT

LEVEL
Ll WITH SNFE

Burrouaha m

- LOOP _WITH FAILURE

I LOOP BACK
HC:.RE

L__j

Burroughs ;])

ADDITIONAL MEASURES

• END-TO-END ENCRYPTION

• TRAFFIC FLOW SECURITY

D-7

SUMMARY

EXPLOIT A SIMPLE AND USEFUL.POLICY

TO REDUCE THE EFFORT OF
CONSTRUCTING A SECURE LOCAL

NETWORK

D-8

CR80-A Fault Tolerant Computer for Implementation in Secure Systems

Asbj~rn Smitt

Head of Research and Development

Christian Rovsing A/S, Ballerup, Denmark

1.1 General

Christian Rovsing A/S with the CR80 MAXIM and F ATOM virtual machines

has introduced a new and powerful architecture for implementing secure

systems on a ultra-reliable, easy to maintain and modular fail safe computer.

The high speed memory mapped multiprocessor computers have been designed

to provide modular growth in processing power and memory requirements to

cope economically with the requirements of:

• General purpose computer systems

• Packet switches

• Message switches

• Control and Command Information

• Concentrators

• On-line systems

• Terminal systems

• Front end processors

The illustration overleaf shows that the CR80 F ATOM computer tightly

couples up to 16 Processing Units (Multiprocessors) together via the S-NET,

and that each peripheral connects through individual channels to two

Processing Units, one channel being the active connection for a connected

peripheral, the other the back-up connection. Also it is seen that the CR80

MAXIM (Memory mapped Maxi-computer) is the single Processor Unit, non­

redundant subset of the CR80 F ATOM (Fault Tolerant multiprocessor)

otherwise they have identical high performance characteristics.

The CR80 F ATOM fault tolerant computer differs from other computers

(large, medium or small) in that it, based on a unique distribution of its

memory providing nearby unlimited processing power, up to 50 Million

instructions per second (MIPS) together with minimum added hardware to

achieve its "self repair" features and 256 Mega word maximum memory size.

E-1

trl
I

N

/
/

1/0

COMMUNI-
CATIONS
LINES

S-NET

Max 16
Processor Un1ts I PUI

= 1:1 ;
0 L1J lill

JJI ,,I:= 1/0

----,_ :=Q -,_
--,_ #2 :: =e ----,_

110
Max 120
Channel Umts I CUI

0 1 2 N
OATACHANNELS

CR80 FATOM
FAult TOlerant Multiprocessor

PU:
max 5 CPU's

Addr. range: 16 MW
116bit)

Data ChanneL 1 MW/S

DATACHAN~EL

CR80 MAXIM

Extensive hardware checks has been incorporated throughout the CR80

architecture, supporting integrity and security in execution of both application

and system programs, ensuring that erroneous interaction among users, and

with the system software, are prohibited. This is extremely important during

software maintenance and development, once a fault tolerant system has been·

brought operational, as well as facilitating the initial software development

and debugging.

The CR80 architecture and DAMOS system software supports modularily the

total spectrum of virtual memory machines, from the 0.7-3.0 MIPS MAXIM

multiprocessor computer with one or more CPUs, up to the 50 MIPS, N+l

redundant FA TOM computer, incorporating the cost effective approach of only

having 1 single spare unit, capable of backing up for any of N working units).

The CR80 can be upgraded in the field, often without stopping operational use,

due to its on-line maintenability and unique galvanic isolation between system

~lements at the card-magazine level.

A CR80 Processor Unit (PU) constitutes either a uni- or multiprocessor

computer with from 1 to 5 CPUs (.7 to 3 MIPS). The CR80 FA TOM connects up

to 16 Processor Units (PUs) together via the extremely fast S-NET (up to 512

Mbit/sec.) into a tightly coupled multicomputer with up to 50 MIPS capability.

In addition all lower levels of input/ output processing is distributed to the I/O

controllers (peripheral processors) in the Channel Units (CU), this further

enhances the CR80 above the simple accumulated processing power of the

CPUs.

The I/O Controllers (peripheral processors) communicates with PUs through

one port of the triple ported controller memory, the two other ports allowing

for this memory being part of the address space of two processing units (PUs),

which ensure an alternative path, in case of a Processing Unit (PU) failure.

E-3

The CR80 computers also gain their strength from very fast intelligent

multiplexed Direct Memory Access (DMA) channels between the distributed

memory in PUs and CUs and that the imbedded channel processors (S-NET &

DATA CHANNEL) with minimum interruption of the CPUs autonomeously

handle and ensure the integrity of hundreds of simultaneous active logical

channels between programs and processes.

The CR80 F ATOM basic system philosophy is to achieve N+l redundancy on all

levels, both processors and I/O controllers. A unified system approach to

software in a redundant system, relieving application software as far as

possible of mechanisms and functions necessary for fault tolerance, moving

these to the system S/W. The CR80 F ATOM Computer thus is designed to have

no single points of failure on a system basis, this includes all parts of the

system: Processors, busses, 1/0 devices, power supply, cooling and software in

order to achieve a continously available no-break computer. The on-line

maintenance features, allows any failed module to be exchanged and tested,

without interrupting system operation.

Also the CR80 modular packaging and integration system, ensures the

capability for expansion of a CR80 FA TOM Computer to virtually any physical

size, using only a few standard types of modules and cables, as well as

achieves the cost efficiency of both the single and fault tolerant CR80

Computers.

E-4

1.2 PU Logical Organisation

As an introduction to the features of the CR80 memory mapped PU a brief

discussion of the CR80 Processor Unit Logi~al Organization, shown overleaf is

given.

Interconnection of the PU modules is performed by means of two parallel

transfer busses, the (Processor Bus) and the (Channel Bus) implemented as two

backplane printed circuit boards. The busses have identical electrical and

timing specifications with the following characteristics: transfer rate up to 4

mega word per second (16 bits + 2 parity bits), addressing of 1 mega word as

word or byte. The Processor Bus performs as transfer bus for the Central

Processor Units (CPUs), while the Channel Bus performs as transfer bus for

the Channel Bus modules (DMAs).

The central processor units, CPUs, are general purpose processor units with a

word length of 16 bits and the ability to address 64K word of instruction and

64K word of data. All data/instruction transfer performed by the CPU are via

the processor bus and the memory MAP to the memory. Physically, the CPUs

and the memory MAP are connected to the same Processor Bus, but logically

the CPUs recognize the MAP as being located between the memory and the

CPU.

The function performed by the memory MAP is to expand the addressable

memory area to 16 mega word of which 1 mega word can be located in the PU

as fast access, local storage, while the remaining 15 mega word can be located

on the data channel. Besides the address translation, the MAP also includes

memory read/write protection, the protection can be performed individually

for each lK page of the memory.

E-5

AOAP TEP E NABLf

--~~----Of
:SJi'I<A BUSSES

CRaO FATOM PU CONFIGURATION

I '------ _J

~~-''"
0: '> C DP 1 'IE S

CR80 FATOM CU CONFIGURATION

E-6

DATA CHANNEL
TO C U S

TO PU

DATA CHANNEL

The functions performed by the MAP on the Processor Bus transfers are also

performed on all Channel Bus transfers, meaning the Channel Bus Modules can

access the complete 16 mega word memory area, but only the areas which are

not protected.

Beside the address translation described above, the MAP module also includes

the Channel direct memory access (DMA) function, interrupt preprocessing

and Data Channel Interface.

The DMA is used for blcok transfer between shared memory with peripheral

Controllers and PU local memory and is under control of the Input/output

system software.

The interrupt preprocessing performed ensures that only interrupts (CPU or

1/0) with sufficient priority will cause a context switch in one of the CPUs,

while all other interrupts will be queued by the MAP, until the CPU status

allows service of them.

Transfer on the Data Channel will be performed by the memory MAP when the

addressed location is not within the PU Local Main Memory addressing space (1

Mw).

Security is supported by means of memory access protection and division of

instructions into three privilege classes.

The CPU has 16 states of which one (state ¢) is a user state and 15 (states 1

through 15) are system states. In user state only not privileged instructions

may be executed. Medium privileged instructions can be executed at all

system states while the most privileged instructions are reserved for execution

at system state 15.

Attempt to illegally execute a privileged instruction in user state or system

states 1 through 14 causes a local interrupt, upon which the CPU

automatically envokes a supervisor routine.

E-7

The CPU state is changed by means of the MON instruction which is used to

activate system procedures.

E-8

1.3. CR80 Security Mechanisms

The inherent logical and physical separation of programs and data in the CR80

architecture is well suited for preventing unauthorized access to data and

programs and for preventing non-intended modification of programs.

The objectives of the protection mechanisms in the CR80 are:

to protect data belonging to a process against unauthorized modification

by other processes and against not intended reading;

to protect programs against modifications, and,

to prevent unauthorized execution of programs and system resources

to prevent processes from monopolizing the processor.

Security is supported by means of memory access protection and division of instructions

into three privilege classes.

The CPU has 16 states of which one(state </>)is a User state and 15(states 1 through

15) are System States.

Higher states have more privileges than lower states. In userstateonlynotprivileged

instructions may be executed. Medium privileged instructions can be executed at

all system states while the most privileged instructions are reserved for execution

at system state 15.

Attempt to illegally execute a privileged instruction in user state or system

states 1 through 14 causes a local interrupt, upon which the CPU

automatically envokes a supervisor routine.

The CPU state is changed by means of the MON _instruction which is used to

activate system procedures.

In addition to the memory protection provided in USER STATE by the

MEMORY MAP, each of the system states has its own memory bound register.

Only data memory locations below or equal to this boundary value may be

modified while all data memory locations available might be read in SYSTEM

STATE.

E-9

The Memory Map protection mechanism which is active in user state is

implemented by means of two access control bits for each 1 Kw page in

memory. The protection values are:

access

control

bits:

00 Page absent

01 Full access

10 Read only

11 No access

As will be seen in the following all non-privileged (USER STATE) memory

accesses (both from CPU's and DMA's) go through the Memory Map, and are

checked by hardware not to violate the protection value. In the system state

full access (read or write) is granted irrespective of the protection value.

If a not allowed access is attempted, the transfer is terminated· without

sending the physical address to the memory, and, a transfer error is signalled

from the Memory Map.

The "Page absent" condition is used to invoke the demand paging feature of

DAMOS. It indicates that the accessed page is not resident in main memory (or

not mapped in), and will lead to suspension of the process until the page has

been loaded into memory or relocated.

E-10

1.4 Security

The CR80 operating system DAMOS offers comprehensive data security

features. A multilevel security system ensures that protected data is not

disclosed to unauthorized users and that protected data is not modified by

unauthorized users.

All memory allocatable for multiple users is erased prior to allocation in case

of reload, change of mode, etc. The erase facility is controlled during system

generation.

DAMOS is specified using the formal notation of the Wienna development

method with the intention of making formal verification possible.

The security system is based on the following facilities:

a. Hardware supported user mode/privileged mode with 16 privilege

levels. Priviliged instructions can be executed only when processing

under DAMOS control.

b. Hardware protected addressing boundaries for each process.

c. Non-assigned instructions will cause a trap.

d. Primary memory is parity protected.

e. Memory bound violation, non-assigned instructions, or illegal use of

privileged instructions cause an interrupt of highest priority.

f. The hierarchical structure of DAMOS ensures a controlled use of

DAMOS functions.

h. A general centralized addressing mechanism is used whenever

objects external to a user process are referred to.

i. A general centralized access authorization mechanism is errl'ployed.

E-ll

Centralized addressing capabilities and access authorization are integral parts

of the security implementation. User processes are capable of addressing

Kernel objects only via the associated object descriptor table. The following

types of DAMOS objects are known only via object descriptors:

a. Processes

b. Synchronization elements

c. _Segments

d. Devices

e. PUs

f. CPUs

g. Ports

The object descriptor forms the user level representation of a DAMOS Kernel

object. It contains the information necessary for the Kernel to locate its low

level representation and to ensure its security and integrity:

a. Host PU

b. Object type

c. Object control block index for use by the Kernel to locate the

corresponding object control block.

d. A sequence number which must match a number in the object

control block (to prevent reallocated blocks from being erroneously

accessed).

e. A capability vector specifying the operations which may be perfor

med on the object by the process which has the object descriptor.

E-12

The access right information concerning the various DAMOS objects is

retained in a PU directory of object control blocks. Each control is associated

with a single object.

When the access right of a process to a segment is verified and the segment is

included in the logical memory space of the process, the contents of that

segment may be accessed on a 16-bit word basis at the hardware level subject

to hardware access checks.

Authorization of access to an object is based on

• a general security policy, and

• a discretionary access checking

The security policy is based on a multilevel -multicompartment security

system.

Objects are associated with a security classification level for each compart­

kent (i.e., set of data with the same kind of information) and subjects

(processes) are associated with a security clearance level for each compart­

ment. Both entities are described in a common type:

• the security profile

Discretionary access checking is based on

• identification of access classes of subjects (processes), and

• statements of access capabilities for explicitly enumerated access

classes of subjects vis a vis a given object.

Access to an object is authorized if the following conditions are both fulfilled:

E-13

• the access operation requested is allowed according to the

capability vector in the object descriptor

• the combination of process security profile, object security profile

and operation (read or write) agrees with the security policy.

The security policy is:

• A process may read from objects with classification not higher

than that of the process. An untrusted process may write to objects

with classification not lower than that of the subject.

• A trusted process may write to objects with any classification.

A process can only obtain access rights (i.e., an object descriptor) to a DAMOS

object in the following ways:

a. By inheritance from a parent process

b. By creating the object.

c. By successful look-up in the PU directory.

Similarly, a process can only distribute access rights to objects registered in

its object descriptor table. This may be done:

a. By inheritance when creating a child process

b. By entering the object into the PU directory by a symbolic name.

When an object is entered into the directory it is specified by whom it may be

looked up and what capabilities they should have vis a vis the object.

The object descriptor table and Security profile of a process is kept in a

memory which is accessible by that process when it is executing in privileged

mode, but protected against modifi4.ttion by the process when executing in

user mode.

E-14

m DAMOS SECURITY

Layered design

m DAMOS SECURITY

Kernel

• Directory functions • Error processing

• CPU management • Real time clock

• Process management • PU management

• Memory management • PU service module

• Inter process communication • Transfer module

• Device management • Basic transport service

• Device handlers

E-15

m DAMOS SECURITY

Objectives:

Data security

• Protection of data against disclosure to
unauthorized users

• Controlled update of data

Availability of service

• Protection against denial of service

Measures:

• Capability based design

• Resource management

m DAMOS SECURITY

HW security features

Memory protection embedded in memory mapping

• 16 Privilege levels
Each with an associated memory boundary

-
• Privileged instructions

• Non-assigned instruction codes trap

• Parity on memory

E-16

~ DAMOS SECURITY

Objects

Security is based on controlled acces to objects

Kernel objects

• PUS

• CPUS

• Processes

• Synchronization elements

• Virtual memory segments

• Devices

• Communication ports

~ DAMOS SECURITY

Objects

File manag.ement objects

• Devices (disk drives)

• Volumes (disk packs)

• Files

• Users

Terminal management objects

Magnetic tape file management system

Devices (tape decks)

Volumes (tapes)

Files

Users

• Devices (communication controllers)

• Lines

• Units (terminal, LP, VC,)

• Users

E-17

m DAMOS SECURITY

Access authorization

• Security check

ACCESS
CONTROL

• Descretionary access right verification

m DAMOS SECURITY

Security check

• A process may read from objects with a classification not

higher than that of the process

eA process may write to objects with a classification not

lower than that of the process

•A trusted process may write to objects with any classification

E-18

m DAMOS SECURITY

Security profile

Defines a classification for each of a set
of compartments

Type profile record

A class min A class .. max A class

•
•
•
•
N class min N class .. max N class

End:

m DAMOS SECURITY

Discretionary acces right

• Subject identified by a user group identifier

• Object has an acess control list

) Object hE::::J--~~~f----+ ..
UGI UGI
right right

E-19

DAMOS SECURITY

Damos processing domains

User wiew

GPS

64 kw
PPS

ppp

~ DAMOS SECURITY

Process parameter segment

Level areas 1-15

Level 15:

• Object descriptor array

Kernel views

GPS

• PMD/PCF
• DF/BTS
•PM
•DVM (3)

KCS

ppp

Process parameter page

• Parameter stack

• Context stack

• Translation table

• Segment table

• Security profile

• Process level

E-20

m DAMOS SECURITY

User process logical memory space

Program Data

PCS USER DATA

USER
PROGRAM

m DAMOS SECURITY

Object descriptor

Information contained in OD:

• Host PU

• Object type and subtype

• Index to object control block

• Object control block sequence number

• Object acces level

• Capability vector

Object descriptors may be obtained via:

• Creation of object

• Inheritance from parent process

• Lookup in PU directory

E-21

Object manager space

OBJECT
CONTROL
BLOCK

m DAMOS SECURITY

Change of execution level Change of view (processing domain)

• MON instruction

• RTM instruction

•Interrupt

•RTI

• CALL instruction }
Only at level 15

• RET instruction

•Interrupt

•RTI

E-22

[SLIDE: CDC Logo]

Computer Security and Control Data

Terry A. Cureton
Program Manager, Security Systems

Control Data Corporation

August 10, 1981

It is a pleasure for me to represent Control Data at this seminar. We
have been observing the activities of the DoD Computer Security
Initiative for som~ time, and are impressed with your progress. Until
recently, our participation in the Initiative has been silent. For
the most part, this has been due to the largely theoretical or
experimental nature of the material presented. However, the
Initiative has given us an opportunity to look at our own experiences
in computP.r security from another viewpoint. We can now see the
parallels1 and principles common to both the theoretical work and our
experience as practitioners of computer security. The message we
would like to share with you today is that we at last see a
convergence between the theory and practice.

[SLIDE: Topics]

To begin, I must start with what Cont•ol Data is, and why we are
involved in computer security. Then, I would like to dispel a myth
about security and performance, by relating that to our unique machine
architecture. Next, I will briefly describe how that architecture is
reflected in our operating system design. A comparison of commercial
versus government security requirements will show how we plan to meet
both. Another comparison of formal and informal design methodologies
will show how we think they are converging. Lastly, I will describe
our involvement with the DoD Initiative and our view of its impact on
the industry as a whole.

[SLIDE; Control Data Reputation]

What kind of company is Control Data?

- Many of you know Control Data is in the large-scale scientific
and engineering computer business.

That is our tradition and our legacy, since the company was
founded in 1957 - since the days of the 1604 and the 6600.

F-1

Computer Security and Control Data
Terry Cureton

[SLIDE: Control Data Today]

August 10, 1981

But you may not be aware of the range of Control Data's business
today. Yes, we still make super-scale comput~rs for our systems
business, but we are also the industry's leading supplier of
peripherals - both OEM and plug-compatibles, in addition to our own
label. The next time you walk into a room full of disks, there's a
good chance (65%) that we made them, since we supply OEM peripherals
to all but one of the major manufacturers. We are also deeply
committed to education with our unique PLATO system. PLATO is winning
acceptance in uses ranging from teaching grade school fundamentals, to
training airline pilots and nuclear safety engineers. But it is in
Data Services that we are the world-wide leader.

[SLIDE: DATA SERVICES]

Our Data Services Company operates both commercial and scientific data
centers around the world, around the clock. Its a more than half
billion dollar business, reaching from Main Street to Wall Street.
And - whether it is a small businessman dealing with our Service
Bureau Company in Cleveland - or an engineering firm dealing with our
CYBERNET Services in Copenhagen - the two questions we always get are:

[SLIDE; DS Customers Ask]

"How much will it cost?" and

"How secure will my data be?".

[SLIDE: Security (1)]

Clearly, security is a customer concern, and for Control Data it is a
hard-nosed, hard-headed business need. It is here that Control Data
learned about conputer security in a day-to-day pragmatic way. We
have been addressing that need for more than 20 years, since the
beginnings of Data Services.

Now, Data Services is a large chunk of our business, in fact they are
our largest Systems "customer". Their needs have a major impact on
system design and development. Simply put - Security has been
essential to our largest systems marketplace for more than 20 years.
That's why Control Data has been involved in computer security. We
will have to look at the data services environment to see how it
relates to computer security.

F-2

Computer Security and Control Data
Terry Cureton

[SLIDE. Timesharing Environment]

August 10, 1981

From a security viewpoint, it is the timesharing environment where the
needs are greatest. The first need of course, is to simply keep it
running, since users have little pati~nce f~r system downtime. That
requires a good deal of system integrity, in the first place. By
definition, timesharing means multiple users sharing system resources.
Those resources and the users' data are real and tangible assets which
must be protected. Then, resources have to be controlled so that all
may share equitably, and if you want to get paid, they have to be
accounted for. Finally, users have to be kept seperate, since they
might be competitors.

Control Data met those needs by developing a system specifically
designed for the timesharing environment. Over time, security flaws
were discovered and corrected, and new security mechanisms evolved
into the system design. We built up a great deal of practical
experience with that system, and that system evolved into our standard
system of today. But it wasn't until the DoD Initiative that we fully
recognized the unique advantages of the CYBER 170 architecture
regarding security.

What is so unique about the CYBER 170 architecture and security? The
answer in a word is - Performance. There seems to be a growing
supposition in the industry, that security can only be obtained at the
expense of performance. We would like to dispel that myth, by showing
how the CYBER architecture and hardware can provide security without
penalizing performance. To understand why, we have to first examine
the relationship between security and performance, and then how that
relates to design.

[SLIDE: Performance]

When considered in a broad sense, performance over the long term
requires both speed and endurance- that's why the Indianapolis 500 is
so tough.--ri isn't worth much to be the fastest in the race, if you
can't keep it running long enough to finish. In computing terms,
endurance is a combination of reliable hardware and software, and the
total system's ability to recover when something does break.

[SLIDE: Security (2)]

In that sense, the concept of ·integrity as a security requirement, is
just another way of describing endurance for performance. Thus the
emphasis on system integrity, as described in these DoD Seminars, is
consonant with our experience in computer security. That's one sign
of a convergence between the theory and practice.

Given that endurance and integrity are just different views of the
same set of requirements, then those hardware and software features
which contribute to the endurance of a system are, in fact,
contributing to both performance and security. Here's another way to
look at it.

F-3

Computer Security and Control Data
Terry Cureton

[SLIDE: Implementation]

August 10, 1981

From this viewpoint, we can see how security and performance should be
mutually benefical - synergistic if you will - rather than conflicting
goals. How these features are implemented, - and which are in
hardware - is where conflicts arise. If security features must be
implemented in software - at the expense of performance, - then the
software designer is forced to make a tradeoff decision.
Historically, the choice has been in favor of performance, simply
because that's what sold computers. But that tradeoff is beginning to
shift the other way now.

[SLIDE: Hardware Security/Performance]

Specifically, there are four key hardware characteristics which are
contribute to both performance and security:

o Machine Architecture,

o Memory Protection,

o Context Switching, and

o Reliability Features.

Let's look at each, beginning with the architecture.

[SLIDE: Architecture]

This is the general architecture of the Control Data Cyber 170 series
computers. What is unique in this block diagram is the Peripheral
Processor Units (PPUs) in the middle. These are up to 20 separate,
independent computers, which operate concurrently with, but
independent of, the Central Processor. Note also that all I/0
operations must be p~rformed by the PPUs. Already we see the
principle of separation of functions implemented in hardware. I'll
come back to the performance aspects of thi~ later. Let's just see
how that architecture is reflected in the system design.

[SLIDE: System Layout]

I must explain that only system software executes in the PPUs. In
fact, most of the operating system consists of modules to be executed
in a peripheral processor. The PPUs also have primary control of the
operating system. The one at the top, labeled MTR (Monitor) is the
real boss of the system. The executive shown in central memory is
just a fast assistant to MTR. User jobs also reside in central memory
and only execute in the CPU. Again, we see a separation of functions.
When a user program requests I/0, or other services, from a PPU, it
validates the request and performs the operation completely·
independent of the CPU. The CPU program is thus isolated from I/O
operations and cannot directly participate in error handling and so

F-4

Computer Security and Control Data
Terry Cureton

on.

August 10, 1981

On performance, it should be noted that concurrent operations in the
PPUs also means that the software designer need not make a tradeoff
between security and performance. While a PPU module is laboriously
checking parameters or validating a user's authority to perform an I/0
function, the CPU can be producing useful computations for another
user. This hardware separation pays off directly in performance, and
at the same time, establishes a solid base for securi~.

Let's move on to memory protection. Actually, memory protection also
starts with the architecture. What better isolation can there be than
between physically separate memories? Each Peripheral Processor has
its own independent memory, separate from the other PPUs, and more
important - from Central Memory where users must reside. Again,
hardware design provides the separation and isolation necessary for
security.

But notice, there are some system tables and software sharing central
memory with the user jobs. Here separation is maintained by the CPU
memory protection scheme.

[SLIDE: Memory Protection]

This scheme is simply a base and bounds hardware register pair. The
Reference Address (RA) is the starting address of memory assigned to
an executing program. The Field Length (FL) is the length of that
area. These hardware registers are part of the CPU, but are not
accessible to the executing program. Their use is completely--­
transparent. To the user, all memory addresses are relative to
assigned memory and the hardware precludes any other access. Thus the
CPU program does not handle real memory addresses, which is one
characteristic in common with virtual memory systems. This eliminates
user participation - or observance - of memory management. Since only
the Reference Address changes when a program is moved or reloaded into
memory, usage can be highly dynamic and efficient. Doing it entirely
in hardware provides even greater efficency, due to the simplicity of
the mechanism. Here we see both security and performance as a result
of how memory protection is implemented.

[SLIDE: User/System Interface]

Another critical security/performance concern is the need for safe and
fast context switching between programs. The actual context switching
mechanism is provided by a hardware feature, which has been
characterized as the "ultimate interrupt" but officially known as the
Exchange Jump operation.

An Exchange Jump can be triggered by either a PPU or a CPU
instruction. This single instruction stores the complete set of CPU
registers, including RA and FL, into memory and reloads .them from the
same memory block. Yes, it sounds like magic, but it does go both
ways in the same operation. The result is a complete two-way swap of

F-5

Computer Security and Control Data
Terry Cureton August 10, 1981

- the execution state of the current CPU program - with the memory
image of the state of another program. The whole thing is transparent
to the program and the hardware insures that nothing is lost - or
gained - in the exchange.

The exchange operation is very fast. For comparison, it is roughly
the same time as a floating point divide operation. In some processor
models it is even faster. In that case, it could be said that "a swap
is faster than a FLOP." Again the intent was performance, but the
result is security since it is implemented in the hardware.

A CPU triggered exchange is part of the normal user/system interface.
In this case the user program merely relinquishes the CPU to the
operating system. On completion of the request, the CPU is returned
in a similar manner.

The system PPU monitor however, can independently trigger a context
switch at any time. This is how a PPU module can both monitor and
control the time-slicing of the CPU among many jobs. It is also the
mechanism for "pulling the plug" on programs consuming too much of a
resource or hung up, and becoming a "denial of service" threat to
others. It effectively eliminates of any form of user lockup, as the
PPUs always have the ultimate control. Thus a hardware context
switching capability can provide not only performance and security but
resource control as well.

[SLIDE: Reliability Features]

Finally, we come to those reliability features usually thought to be
interesting only to engineers. Error detection and correction
features are the most basic elements of hardware integrity. An
adequate set insures that the hardware will yield just two results
either a correct result, or a signal that it cannot perform the
function properly. In addition, the diagnostic data produced by these
and other maintenance controls contribute to long term stability,
reliability and recoverability. My point is that they are not to be
overlooked when considering security. We are all aware that most
system flaws are exposed when operating in crisis mode - usually in
response to an error.

[SLIDE: Hardware Security/Performance (Result)]

In short, there are four key hardware characteristics which contribute
heavily to both performance and security:

o Machine Architecture

o Memory Protection

o Context Switching

o Reliability Features

F-6

Computer Security and Control Data
Terry Cureton August 10, 1981

All of these establish the base on which software must rely, to
provide both security and performance in the broad sense.

[SLIDE~ Network Operating System]

At this point I should introduce you to our Network Operating System,
(N.O.S. or NOS as you will). The name makes it clear that NOS is
network oriented. It not only supports access via communications
networks, but also supports multi computer networks both locally and
remotely. NOS is a multi mode system offering a full range of
processing modes including local and remote batch, database managers
and transaction processing, and a variety of interactive programming
environments. Obviously it is a multi user system as well, and that's
where security becomes a key requirement.

[SLIDE: NOS Characteristics]

One of the outstanding characteristics of NOS is that it is a
capabilities based system. It all begins with the built-in concept of
individual users. Each user must be known to the system, and their
capabilities defined on an individual basis. From this is built an
accounting system where every activity in the system is attributable
and traceable to a user. Users are totally isolated from each other,
and the operating system. NOS relies heavily on the hardware
separation and memory protection features for this isolation. For NOS
users, the only means of sharing data is via the file system. The
file system is built around individual ownership of files, and access
is, - by default - restricted to the owner. If the owner chooses,
other users• access to a file may be specified on the basis of user
identity and mode of access. NOS has file passwords too, but they are
seldom used since they are independent of identification.

Interestingly, the file system carries the memory addressing concept
much further, and exhibits most of the characteristics of a virtual
memory system. Space allocation is dynamic, on an as-needed basis,
and does not require pre-allocation. That makes it very space­
efficient and avoids deadlocks. All I/O references are relative to
the logical file name, and the system (a PPU module) does the mapping
to real device addresses. Thus, NOS can preclude access outside of a
file, and to unwritten space.

Users and their files are also grouped into higher level FAMILYs with
no access to files across FAMILY groups. This is particularily
valuable in a university environment, to separate students from
faculty. Families are then divided into sub-families by storage
device to provide further physical separations. The result is that a
population of NOS users can be easily managed dynamically and without
inconvienence to the user. Both Families and Sub-Families may be
controlled as a group via operator commands.

In summary, NOS benefits from both a solid hardware security base, and
a design intended for commercial timesharing, which has withstood the
test of time and emerged robustly healthy.

F-7

Computer Security and Control Data
Terry Cureton

[SLIDE: Security Requirements (1 of 2)]

August 10, 1981

But what of the DoD's security requirements? Although the words may
differ, there is a strong similiarity between commercial and
government security requirements. When you speak of a kernelized
system, it must be as simple a possible - to allow provability - and
by definition must be modular. It would be interesting to compare
this concept to our system PPU modules. A self-protecting system
doesn't fall apart when a user goofs. Though not permissive, it must
expect and tolerate user errors. We have already discussed how
integrity relates to reliability. User privacy-by-default is a more
precise description of isolation, and provides protection from
accidental access.

[SLIDE: Security Requirements (2 of 2)]

Actually, access controls are a subset of resource controls. Resource
controls also deal with the denial-of-service threat. Controlled
sharing is where security is the name of the game, but need-to-know
access controls are only one form of control. Access based on the
identity of the user, and control based on ownership is another.
Auditability is of course, more narrowly directed toward resource
accountability. But it also provides a very effective user
surveillance capability.

The one listed government security requirement without a commercial
equivalent is the concept of security levels and categories.
Actually, they are just different sets of criteria for the access
controls mentioned above. The unique aspect is that levels and
categories are independent of data ownership and subject to a
mandatory policy. That's the hole we intend to fill.

With all of these similarities, it should not be surprising then, that
a system meeting one set of requirements, should be easily adapted to
the other. In fact, while adapting the NOS design to support levels
and categories - we found that essentially all of the control
mechanisms were already in place. The mechanisms only have to be
extended to consider levels and categories and the mandatory security
policy in the access control decision. It is clear that not only are
the requirements similar, but are convergent on a common set of
mechanisms. Simply put - form follows function. Thus we believe
there is a common, generic set of control mechanisms which can be
adapted to specific security policies. There's a bonus too - With
those generic mechanisms already in place, we are confident that the
Multilevel Security extensions will result in no significant
performance degradation.

F-8

Computer Security and Control Data
Terry Cureton

[SLIDE: NOS Multilevel Security]

August lfil, 1981

With the NOS Multilevel Security extensions, we will have the
functional capability to support Multilevel Mode operations. This
will be a standard, fully equipped operating system, for use with our
large scale, high performance computers. It will be compatible with
the full line of CYBER 17fil computers, and most predecessor machines.
It will offer the full set of standard software products, and will be
software compatible with existing NOS user applications. l JS with MLS
will also be available not only to new customers, but to in~talled
customers as well, which goes a long way toward the goal of
"widespread availability."

That's what we are doing as practitioners of computer security. But
how does that relate to the DoD Initiative and the theoretical work?

[SLIDE: Computer Security Approaches]

As you can see, Control Data has been approaching computer security
from a practitioner's viewpoint. Our first concern has to be
functional requirements, since we are selling not just hardware and
software but capabilities. Design evolution recognizes the fact that
we must maintain compatability with previous systems and the user's
applications. Marketability is, in fact, not the least concern, but
the one driving all other concerns.

From a theoretical approach, it is clear that computer security must
begin with the design methodology, with the objective being
provability. The idea ofa formal evaluation and on-the-shelf
certification is also important, and a pragmatic concern as well. But
what really drives a manufacturer is marketability. In this case, it
seems our concerns are markedly different. But let's look at the
respective methodologies to see if that difference holds up on
examination.

[SLIDE: Development Methodologies]

Here we can compare the formal design methodologies with those used by
informal practitioners like Control Data. Obviously, both processes
begin with some form of requirements. Formally, the security model
serves as a target requirement. But as usual, a manufacturer is
driven by market requirements, which are often conflicting and subject
to internal constraints as well. Eventually, requirements are agreed
upon and functional specifications are created. These are roughly
equivalent to Top Level Specifications and here the two processes are
very similar. In the formal process, the specs are then verified to
the security model, while informally a Design Review occurs. A Design
Review can be just as tough to do as a logical verification, and a lot
more emotional. Where a detailed design is done formally, coding
specs emerge informally. Now formal design correspondence may be
compute-intensive, but peer review of all generated code is people­
intensive. We're not sure which is more expensive, but neither is
cheap! We have been told that complete code verification is beyond the

F--9

Computer Security and Control Data
Terry Cureton August 10, 1981

state-of-the-art, well complete system testing may be also - but we
keep on trying. In penetration analysis we are doing essentially the
same thing. At Control Data, we call it Malicious User Group or MUG
system testing. Its fun, and occasionally very exciting! Finally,
there is an evaluation of the resulting system by someone whose
opinion is important to the developer. For commercial systems, it is
simply market acceptance by the user. It would be nice however, to
have a formal stamp of approval before shipping the system.

The objectives of these methodologies differ markedly however. For
formal methodologies, it is Provability, but for commercial systems it
is Functionality. In most other respects they are not only similar,
but appear to Converge on a common set of developmental functions.

This convergence has encouraged Control Data to look into applying
some of these formal methods to our system. As a first step in that
direction, we have requested a DoD evaluation of our NOS system and
Multilevel Security design. That process is underway, and so far it
looks very promising. On the matter of formal design verification, we
understand the benefits, but will have to develop the means of
applying the theory to our practices. We are currently exploring some
alternatives in that area.

[SLIDE: DoD Initiative Impact]

In conclusion, we at Control Data applaud the progress of the DoD
Computer Security Initiative. We would especially like to
congratulate you -

o On increasing industry awareness of the need for security.
non-DoD people have helped too- by getting caught.)

o We thank you for fostering - and occasionally funding - the
development of computer security technology.

(Some

o Thanks too, for focusing computer security
not so knowlegeable in computer security.
manufacturers by limiting the ingenuity of
technical specifications for procurements.

requirements for those
This directly benefits
those who write

o And finally, we thank you for providing an evaluation framework
which places greater emphasis on functional capabilities than on
technical specifications.

We look forward to a fruitful dialog on our common objectives of
advancing the state-of-the-art, and acheiving the widespread
availability of Trusted Computing Bases.

Thank you for the opportunity to address this forum.

[SLIDE: CDC Logo or DoD slide]

F-10

<S~
CONT~OL DATA
COf\POR<\TION

TOPICS

e CONTROL DATA AND SECURITY

• SECURITY AND PERFORMANCE

• ARCHITECTURE AND SYSTEM DESIGN

e DOD AND DEVELOPMENT METHODS

• DOD INITIATIVE

CONTROL DATA

REPUTATION

• LARGE SCALE COMPUTERS

• SCIENTIFIC/ENGINEERING

• SINCE 1957

F-11

CONTROl DATA TODAY

• SUPER SCALE COMPUTERS

• PERIPHERALS

• EDUCATION - PLATO

• DATA SERVICES

DATA SERVICES .

DATA SERVICES

CUSTOMERS ALWAYS ASK:

"HOW MUCH DOES IT COST?"

"HOW SECURE WILL MY DATA BE?"

F-12

SECURITY

• CUSTOMER CONCERN

• BUSINESS NEED

• 20 YEAR HISTORY

• OUR LARGEST MARKETPLACE

TIMESHARING ENVIRONMENT

• SYSTEM INTEGRITY

• MULTI USER

• ASSETS PROTECTION

• RESOURCE CONTROLS

• ACCOUNTABILITY

• USER ISOLATION

PERFORMANCE

• COMPUTE POWER

• ENDURANCE

- RELIABILITY

- RECOVERABILITY

F-13

CDC CYBER 170 SERIES

CENTRAL
CENTRAL EXTENDED PROCESSOR

UNIT MEMORY MEMORY
(OPTIONAL)

I
PERIPHERAL PROCESSORS

MATRIX ~
~

CONSOLE t>""""" DATA CHANNELS

-y
PERIPHERAL EQUIPMENT I)

SYSTEM LAY-OUT

CENTRAL
MEMORY

PERIPHERAL SYSTEM
PROCESSORS DISK

TABLES I MTR I
EXECUTIVE

SUBSYSTEM 1 0. fSYSTEM
!LIBRARY

SUBSYSTEM 2

SUBSYSTEM 3

SUBSYSTEM N

USER 7 PROGRAMS(
Q
0

MEMORY PROTECTION

REFERENCE I
,_A_D_D_R_Ess __ (R_A~)__: •L-__, 000

USER PROGRAM
AREA

·········'---------'

F-15

FL

FIELD
LENGTH (FL)

USER/SYSTEM INTERFACE

CONTROL

DATA

EXECUTE ·····•

RELIABILITY FEATURES

1/0

• ERROR DETECTION/CORRECTION

-CORRECT RESULT

- ERROR SIGNAL

• MAINTENANCE FEATURES

- HARDWARE CONTROLS

- DIAGNOSTIC DATA

HARDWARE
SECURITY /PERFORMANCE

• MACHINE ARCHITECTURE

• MEMORY PROTECTION

• CONTEXT SWITCHING

• RELIABILITY FEATURES

RESULT: SECURITY WITH
PERFORMANCE

F-16

NETWORK
OPERATING SYSTEM

• NETWORKS

• MUL Tl COMPUTERS

• MULTI MODE

• MULTI USERS

NOS CHARACTERISTICS

• CAPABILITIES BASED

• USER CONCEPT

• ACCOUNTING CONTROLS

• USER ISOLATION

• FILE SYSTEM

• LOGICAL FILE 1/0

• FAMILY OF USERS CONCEPT

SECURITY REQUIREMENTS

COMMERCIAL SYSTEMS GOVERNMENT SYSTEMS

e SIMPLICITY, MODULARITY • KERNELIZED

e FAULT TOLERANT • SELF PROTECTING

e RELIABILITY • INTEGRITY

e USER PRIVACY • ISOLATION

F-17

SECURITY REQUIREMENTS

COMMERCIAL SYSTEMS GOVERNMENT SYSTEMS

• RESOURCE CONTROLS • ACCESS CONTROLS

• CONTROLLED SHARING • NEED-TO-KNOW ACCESS

• AUDITABILITY • SURVEILLANCE

• LEVELS/CATEGORIES

NOS MULTILEVEL SECURITY

• STANDARD SYSTEM
- LARGE SCALE SYSTEMS
- PERFORMANCE

• COMPATIBILITY
-HARDWARE
-SOFTWARE

• AVAILABILITY
- NEW CUSTOMERS
- INSTALLED CUSTOMERS

COMPUTER SECURITY APPROACHES

THEORETICAL PRACTICAL

DESIGN METHODOLOGY FUNCTIONAL REQUIREMENTS

DESIGN VERIFICATION DESIGN EVOLUTION

FORMAL EVALUATION MARKETABILITY

F-18

DEVELOPMENT METHODS

THEORY

SECURITY MODEL

TOP LEVEL SPECIFICATIONS

DESIGN VERIFICATION

DESIGN CORRESPONDENCE

CODE VERIFICATION

PENETRATION ANALYSIS

FORMAL EVALUATION

PRACTICE

MARKET REQUIREMENTS

FUNCTIONAL SPECIFICATIONS

DESIGN REVIEW

PEER REVIEW OF CODE

UNIT/SYSTEM TESTING

IN-HOUSE USE/TESTING

USER ACCEPTANCE

DOD INITIATIVE IMPACT

• AWARENESS

• TECHNOLOGY STIMULUS

• FOCUS FOR REQUIREMENTS

• EVALUATION FRAMEWORK

F-19

Slide 1

Slide 2

Slide 3

Slide 4

Slide 5

Slide 6

Slide 7

Slide 8

SAC Digital Network
(SACDIN)

Security Methodology

Mauro Ferdman
The MITRE Corporation

PRESENTATION OUTLINE

SACDIN will be used to support command and control functions of the
Strategic Air Command.

Present status of the project is full-scale engineering development.
Prime contractor is ITT and the major subcontractors are IBM for
software and BDM for systems.

SACDIN is a large scale network covering all SAC units throughout
the continental U.S. It is a packet-switched network and it uses
AUTODIN II as a backbone. One of the characteristics of SACDIN
that is important for this seminar is that it is designed to be
mutli-level secure.

The security requirements are very strict and as it was mentioned
before, they include requirements for simultaneous transmission of
messages of different classification. It provides protection
against compromise of information, integrity and denial-of-service.

The IACM provides total mediation between subjects, which are the
users of information, and the objects which are the repositories
of information. The IACM mediates every single access of subjects
to objects.

The IACM mediates all accesses so it must be some assurances that
it was designed and implemented correctly. This has required
that a specialized software design methodology be used and it will
be described later. In addition, there must be some ways of
protecting the IACM from being altered by other software.

SACDIN has three tiers of protection provided by the applications
processes which are used for user support, the trusted processes,
which are used for I/O Interfaces and the IACM or Internal Access
Control Mechanism, which also serves as the Operating System. The
next slides will explain in more detail the security enforcement
mechanism of the IACM.

The methodology used for development of the IACM consisted of
creating a mathematical model to formally represent DOD security
policies, followed by a formal description of the IACM design in
a formal language which was formally verified not to violate the
math model. Lower level specifications were only correlated in a
less formal way.

G-1

Slide 9

Slide 10:

Slide 11:

Slide 12:

Slide 13:

Slide 14:

Slide 15:

Slide 16:

Slide 17:

Slide 18:

Slide 19:

Page 2

In a more graphical way, the bottom line shows the standard DOD
Procurement practices for software, from user requirements to code,
with the proper test and evaluations. Our methodology has added
the upper part in parallel to provide a better assurance of a
correct d2sign.

We quickly found that the IACM by itself was not enough to protect
against compromise. There were problems in these cases where
information must be transferred into or out of the Central Processor,
such as network communications, peripheral devices, etc. The
following slides will deal with these problems.

A host or node contains an IACM and it is fully capable of handling
multi-level communications such as from A to B or access to the
Multi-Level Data Base, marked as MLDB in the slide.

If we have a network, and now A attempts to communicate with C or
B with D, we are dealing with multiple IACM's, one in each node,
so it is important that the last software process that handled the
message be trusted.

The situation is more complicated through the use of a back-bone.
See in the slide the path from A to C and B to D.

The solution that we adopted was to create specialized software
that serves to authenticate one node to another and to serve as
I/O transmission control. It earned the name trusted because it
used the same design methodology as the IACM.

The problem with peripheral devices are similar, because the IACM
does not have direct control of the information going outside
the Central Processor. The solutions adopted were similar to the
ones adopted for communications, namely to use trusted software
to handle the printer and user interface.

As far as integrity protection is concerned, it was based on using
good software practices as shown in the slide.

The Central Processor that we used is a modified off-the-shelf
computer, the IBM Series/1, with several security features added.
They consisted of an expanded relocation translator, a security
controller to monitor accesses to core and an expanded instruction
set. The terminal was specially developed and it includes a special
security field.

Summary and conclusions.

Lesson learned.

G-2

SAC Digital Network
(SA CD IN)

Security Methodology

Mauro Ferdman
MITRE Corporation

Purpose

Provide Data Communications Support
for Command and Control of SAC Forces

Status

Presently Under Full-Scale Engineering
Development

Prime Contractor: ITT
Main Subcontractors: IBM, BDM

G-3

Characteristics

Large Scale Network (About 200 Nodes)
Packet-Switched Network
Uses AUTODIN II As Backbone
Multi-Level Secure

Security Requirements

Strict Overall Security Requirements

Multi-Level Capabilities

Compromise, Integrity and Denial of
Service Protection

Security Architecture

SUBJECTS OBJECTS

G-4

Internal Access Control
Mechanism (JACM)·

Mediates All Access

Formally Proven Secure

Protected From Modification

Serves As OS

Software Architecture

APPLICATION
PROCESSES

TRUSTED
PROCESSES

IACM

HARDWARE

INTERNAL ACCESS CONTROL
MECHANISM

PERIPHERAL DEVICES
AND INTERFACES

JACM Development Methodology

Formally Represent Security Policies (Math
Model)

Prepare Formal Top Level Specifications (8-5)
Formally prove specifications

Intermediate Language Representation
Correlations proofs

Stepwise Refinements
Correlation proofs

Implementation Code
Correlations proofs

G-5

JACM Development Methodology

.---,
I REOMTS 1--­lf __ ...J

I t
I I
1 I
I I

FORMAL
VERIFICATION

CORRE­
LATIONS

CORRELATIONS

JACM Not Enough To Protect
Against Compromise

Network Problems

Peripheral Devices Problems

Multi-Level Files

Multi-Level Problems In
Networks Host Problem

A(S) B(TS)

G-6

Multi-Level Problem In Networks
SACDIN Lines

A(S)

A(S)

C(S)

Multi-Level Problems in
Networks

SAC DIN/ AUTO DIN II Links

C(S)
B(TS)

Network Solutions

Trusted Software Required For
Node authentication
Output transmission control
Input transmission control

G-7

D(TS)

Other Trusted Functions

Printer Manager

User Interface

File Manager

Integrity Protection

Single Computer Program Architecture

Top Down Design/Structured
Programming
Strict Accountability and Journaling of
Messages
Error Detection Mechanisms

Hardware Security Features

Node's Central Processor
Modified IBM/Series I processor

Relocation translator
Security controller
Extended instruction set

Specialized Terminal
Special security fields

G-8

Summary

SACDIN Is First Multi-Level Network
With Strict Security Requirements From
Program Inception

Uses Specialized Software Development
Methodology Reaching As Far As the
Practical State-of-the-Art Will Go
Thorough Security Analysis Throughout
Design and Development
Collaborative Effort

Lessons Learned

Large Amount of Trusted Software
Required Over and Above Basic Kernel

Largest Security Problem Is the Handling
of Peripherals and Communications
Lines, Not the Internal Handling of Data
Multi-Level Security Can Be Achieved If
System Is Carefully Planned, Designed
and Developed

G-9

Preview

COS/NFE
OVERVIEW

Gary Grossman

Digital Technology Incorporated

August 10, 1981

e COS/NFE Program

e COS/NFE Technical Description

e HUBTM Executive

e Security Methodology

e Experience

Communication

Operating

System
I
Network

Front

End

H-1

DTI

DTI

DTI

COS/NFE

• Verifiably secure

• Prototype NFE

• For AUTODIN II

CNFE Termmals

'---..----'
Host to Front End Protocols

Loc<d Subscrtber

Lineage

DTI

Remote Subscnber

DTI Secure

HUBn' Executive {1}N~
~

COS/NFE

DTI

H-2

Precursors

ENFE Network UNIX + IIPC ARPANET

IN FE UNIX + Attach 1/0 AUTODIN II

WNFE UNIX + Attach 1/0 WIN

Participants

• DCA -Sponsor

• DTI -Prime
design & implementation

• SDC -Sub
formal specs., verification,
& security analysis

• I SET - Security Watchdog

Goals

• Security
Overt channels

Covert channels

Denial of service

• Performance
"Significantly" better than INFE

H-3

U of I

DTI

DTI

DTI

DTI

DTI

Bases

• Hardware - PDP-11/70 ·

• Software - Secure HUB™ Executive
PASCAL

DTI

Schedule

• Completion - March '83

• Trusted security control - soon

DTI

COS/NFE Functions

• Identical to INFE + security

• Interfaces

• Protocols

DTI

H-4

COS/NFE Interfaces

• AUTODIN II
ACC UMC-ZBO

• WWMCCS H6000
ACC LH/DH-11 - ABSI

• Terminals
DH-11 Asynch

DV-11 Synch VIP

COS/NFE Protocols

• AUTODIN II
THP, TCP, IP, SIP, Mode VI

• WWMCCS H6000
HFP: SAP's, Channel, Link

• Terminals
Asynch

Synch

COS/NFE Modules

Character /Start-stop

Honeywell VIP

• Protocol processing
From INFE

• Admin. & security

Cl - designed, coded

TH - designed, coded

Others - designed, being coded

• HUBrM Executive
Designed, coded, tested to usefulness
for measurements

H-5

DTI

DTI

DTI

Network sso
I I

I I
iUTODIN II

I
- -··. - Security "' HFP 0

J: Control
- ... ···-· -. I

I
J Terminals

I I
• .
Terminals OTI

COS/NFE Security Policy

• Preserves security labelling

• Level (data) s;; level (line)

OTI

COS/NFE Multi-level Users

• AUTODIN II

• Terminals

• (Hosts)
(Modifications to HFP)

OTI

H-6

Secure HUB™ Executive

• Stand-alone

• Verifiably secure

• Communications-oriented

• Portable
PASCAL, 11170, 11/7 80, yP

• Proprietary

DTI

HUB™Security Policy

• Separation of Domains

• Flexibility in supporting more

sophistication

DTI

HUB™ Sizes (PDP-11)

• 2838 lines of PASCAL

• 236 routines

• 32 primitives

• 1200 lines of assembler (bootstrap, dump)

• ?OK bytes on PDP-11 (z 541< code,
"'16K data)

H-7

OTI

Relative Speed of /PC Operations

• Includes all related primitive calls
Buffer allocation

Sending message

Receiving message

• Attach 1/0 6.95ms

• HUBTM 3.9ms

• Ratio 1.75

• Functions may not be comparable DTI

HUB™ Primitives

• Resource management 10

• Process management 3

• Address space management 2

• IPC 7

• Flow control 5

• 1/0 4

• Timing

32 DTI

HUB™ Concepts

• Stages (processes)

• IPC-

• Sessions (domains)

DTI

H-8

TM HUB Stages

• Program - sharable

• Memory
Private - unshared

Buffers - serially shared

• Ports for IPC

HUB™IPC

• Connections between ports

• Via buffers only

HUB™ Sessions

• Execution control

• Connection control

• Resource control

H-9

DTI

DTI

DTI

HUB™ Security

• Overt channels

• Covert channels

• Denial of service

Overt Channels

• Formal control

• Definition of utrusted"

• Communication rule

• Execution rule

Covert Channels

• Engineering

• Few shared resources

• Strict controls on resources

• Only trusted software can move
resources

H-10

DTI

DTI

DTI

Denial of Service

• Engineering

• Similar to covert channels

DTI

Security Methodology

• Verification plan

• ISET evaluation

• Overt channels - formal verification

• Covert channels -- engineering analysis
& solutions

• Denial of service - same

DTI

Overt Channels
DTI soc

• Identify trusted modules X

• Correctness criterion X X

• Write & prove TLS X

• Write & prove 2LS X

• Compare; 2LS & code X

DTI

H-11

Trusted Modules

on

Correctness Criterion

• One for each trusted module

• Relatively simple

• Security-related only

on

H-12

Top-Level Specification

• Correctness criterion

• Initial conditions

• Variables

• Transforms

Second-Level Specification

• Mapping to TLS

• Refinement
Variables

Transforms

Comparison of 2LS & Code

• EG: HUBTM

2LS: 2400 lines of INA JO

Code: 2838 lines of PASCAL

H-13

OTt

OTt

OTt

Covert Channels

• SOC analysis

• Identify channels

• Construct scenarios

• 8/W :5 5000 baud worst case
20 baud typical

• Limited by engineering

DTI

Identify Channels

R~e READ WRITE SEEK CREATE DELETE
Attribute FILE FILE

Existence RW RW

Files
File R w R w length

Current RW w RW w Location

A<m RW RW
Disk

Position

Device
Free

Space RW R W

DTI

Scenario

DTI

H-14

Performance Experiment

• TCP: HUBTM vs. INFE UNIXTM

• Security with HUBTM

•

•

•

Resource allocation: 46% of CPU

More IPC with HUBTM

HUBTM: PASCAL; UNIX: c

HUB"' 17% faster

Security Experience

•

•

•

SDC analysis

ISET evaluation

Proof of HUBTM 2LS, 2000 pages

Things to Come

Verification continuing

INFE protocols to HUBTM

HUBTM to other processors

H-15

DTI

DTI

DTI

Examples from

HUB™ Executive Top Level Specification

in INA-JO™

INA-JO is a Trademark of System Development Corporation

HUB™ Executive Security Criterion
From HUB Executive INA-JOTM Top Level Specification

Criterion

A"B:BUFFER,SESS:SESSION(

B <: BUFFERS_OF(SESS)

-> SLS_OF_BUFFER(B) <<= SLS_OF_SESSION(SESS))

& A"E:BUFFER,DEV:DEVICE(

B <: DEVICE_BUFFERS(DEV)

-> SLS_OF_BUFFER(B) = SLS_QF_DEVICE(DEV))

& A"P:SEPS,SESS:SESSION(

DTI

P <: SELOF_SEPS_QF(SESS) -> DOMINATES(P,SESS))

HUB™ Executive Initial Condition
From HUB Executive INA-JOTM Top Level Specification

Initial

A"SESS:SESSION(

(SESS = ADM & ACTIVE_SESSION(ADM)

~ACTIVE_SESSION(SESS)

& SELOF_SEPS_OF(SESS) = EMPTY)

& BUFFERS_OF(SESS) = EMPTY)

& A"DEV:DEVICE(

DTI

~ACTIVE_DEVICE(DEV) & DEVICE_BUFFERS(DEV) = EMPTY)

& A"P:SEPS, SESS:SESSION(

P <: SELOLSEPS_QF(SESS) -> DOMINATES(P,SESS))

DTI

H-16

HUB™ Executive Transform Communicate
From HUB Executive INA-J01 M TOP LEVEL Specification

TRANSFORM COMMUNICATE(B:BUFFER,SI,SJ:SESSION)·
EXTERNAL EFFECT

5L5_0F_BUFFER(B) <<=
5L5_0F_5E5510N(51) && 5L5_QF_5E5510N(5J)

& B <: BUFFER5_0F(51)

& ACTIVE_5E5510N(5J)

& 51 "= 5J

& A"5E55:5E5510N(

N"BUFFER5_0F(5E55) =
(5E55 ~ 51 => BUFFER5_0F(5E55) "" 5"(8)

<> 5E55 = 5J => BUFFER5_0F(5E55) '' 5"(8)

<> BUFFER5_0F(5E55)))

NC"(BUFFER5_0F)

H-17

OTI

WIS Security
Strategy

Larry Bernosky
Defense Communications Agency

WWMCCS System Engineering

WWMCCS Information
System: Target Architecture

i

Cor,mon I
Network User

Data Base ___/ ___/ ___/ Support I
Functional Funct1onal Command _j

Package Package Umque
A B Support

1-l

DOD
Security Regulations

• DOD Directive 5200.28

• JCS Publication 22

• Army Regulation 380·380

• DIA Manual 50·4
• • • •

Current Security
Control Techniques

• System High

• Dedicated Systems

• Periods · Processing

I-2

Characteristics of
Current Controls

• Static

• Long Lead Time to Implement

• Expensive

• Limited Extensibility

WWMCCS
Environment Trends

• Increasingly Complex Processing Needs

• Exten~ive Internetting and lntranetting

• Evolution Toward Distributed Control

• Temporary Reliance on Monolithic Machines

l-3

WIS Security Goals

Objective: Provide "Adequate" Security for WIS

• Satisfy the Security Policy

• Allow WIS to Perform Its Required Functions.

• Make Controls Transparent to the User

• Allow for Evolutionary Upgrades

(H6000s)

(H6000S)

ARCHITECTURE PHASES

PHASES Ill & IV·
FUNCTIONAL
FAMILY

I-4

;J!Jj

Com on
User

Support

User
Support

(New Processors) (New Processors) (H6000s, New
Processors)

Security Architecture
Overview

• De~elop General Scenarios

• Summarize Requirements for Specific Components

• Derive Security Architecture

• Overlay Scenarios on WIS Architecture

WIS Security Architecture
TS/S TS/S

User
Support

Proc.
A

TS

TS/S

Local Network

NADB

TS

l-5

Security
Monitor

Multilevel

TBD

Proc. ~ Single Level -
B l__j System High

L---s:::----'

Category 1

Security Architecture
Components

• Local Network (Multilevel Mode Essential)
• User Support System (Multilevel Mode Essential)
• Security Monitor (Multilevel Mode Essential)

Category 2

• Automated Message Handler (Multilevel Mode Desirable)
• Long Haul Network (Multilevel Mode Desirable)
• Network Front End (Multilevel Mode Desirable)

Category 3

• Applications Processors (System High/Dedicated)
• Data Base (System High/Dedicated)

General WIS Security
Principles/Assumptions

• Not All WIS Components Need Be Multilevel Secure

• Priority Attention to Multilevel Secure Local Network

• Multilevel Security Required Only Over Limited Range of
Security Levels (Controlled Mode)

I-6

WIS Operational
Scenarios

1) Support for Homogeneous User Access

2) Support for Low to High User Access

3) Support for High to Low User Access

4) Message Receipt and Distribution to WIS Users

5) WIS Multilevel Long-Haul Connections

Description

Support for
Homogeneous User

Access

• Secret Remote User Requires Access to Data on a Secret
Processor

Requirements

• Local Network Needs to Support Remote Terminals

• Local Network Needs to Support Communication Between
Devices at the Same Security Level

• Local Network Needs to Maintain Separation of Data Having
Different Security Classifications

I-7

Support for Homogeneous User Access

r ,... -....._,
r--.. ./

Processor Processor - (TS) (S) f---

I I
........-'

------------------~-----------------------------TS/S

cus
(S)

User)
(S) -

• User (S) Requests Access to Data on a Secret Processor

• CUS (S) Validates User Identity and Access Request

• CUS (S) Forwards Request to Processor (S) via Trusted Multilevel Local Net

• Processor (S) Validates Request and Forwards Data to CUS (S)

• CUS (S) Queues Data for User (S)

Description

Support for Low to High
User Access

• Confidential (or Secret) Remote User Requires Access to
Selected Data from a TS System High Processor

• Access Control Mechanism is Needed to Screen Request and
Validate User Identity

• Information from TS Processor Must be Reviewed/Sanitized
Before Delivery to Low User

Requirements

• Local Support is Needed for Users at Different Classification
Levels

• Local Network Needs to Support Remote Terminals
• Data Base Needs to Contain Material at Different Classification

Levels

• Data Base Needs to be Accessed by Authorized Users Having
Differing Security Clearances

I-8

Support for High to Low
User Access

• User (TS) Initially Connected to Top Secret CUS

Processor~
(S)

~

• User (TS) Disconnects (Physical Switch or Trusted SW) from CUS (TS) After
Storing Working Files in CUS (TS)

• User's Terminal is Sanitized Automatically

• User (TS) Connects to Secret CUS

• Access to Secret Processor is Made via CUS (S)

• User (TS) May Switch Back to Top Secret CUS Without S;:~nitizing Terminal

Description

Support for High to Low
User Access

• Top Secret User Requires Access to Data on a Secret Processor

• Secret Data is Released to Top Secret User

Requirements

• CUS Needs to Provide Multilevel Support for a TS User

• Mechanism is Needed to Prevent Release of TS Data into
an S Environment

• User Performance Must Not be Adversely Affected by Security
Controls

I-9

Support for Low to High -user Access
,.---_

Security Processor
1-- (TS) Monitor

(TS/S)
'- ./

I I
----------------------.------------------------------TS/S

cus
(S)

• User (S) Requests File Controlled by TS System High Processor

• CUS (S) Validates User Identity and Access Request

• CUS (S) Forwards Request to Processor (TS)

• Processor (TS) Validates Request and Forwards File to Security Monitor

• Security Monitor Forwards Reviewed File to CUS (S)

• CUS (S) Queues File for User (S)

•
Message Receipt and Distribution

Description

• AM H Receives Secret Labeled Message Over TS Communication
Line for Distribution to Selected Local TS and S Users

• Message Must Be Reviewed/Sanitized Since TS Data May Hal(l&'
Been Mixed with Message on Long Haul Net

• Message is Queued to Common User Support (CUS) for TS
and S Users

Requirements

• Local Network Needs to Maintain Separation of Classified
Material While on the Net and When Entering or Leaving the Net

• CUS Needs to Support Terminals Operating at Different
Security Levels

• Message Handling and Distribution Functions Need to Support
Different Security Levels

• Selected Classified Information Needs to be Reviewed
or Sanitized

I-10

Message Rec·eipt
and Distribution

+--}--- AMH Security

(TS) Monitor
(TS/S)

I I
TS/S

I I
I

cus

I I
cus

I (TS) (S)

Essential1

• AMH (TS) Receives Message (S)

• Message Queued for TS Users at CUS (TS)

• AMH Forwards Message to Security Monitor With Addresses of S Users

• Security Monitor Queues Reviewed Message at CUS (S)

Message Receipt
and Distribution

+--}--- AMH Security

(TS) Monitor
(TS/S)

I I
TS/S

I I I
I

AMH

I I
cus

I I
cus

I (S) (TS) (S)

Essential 2

• AMH (TS)Receives Message (S)

• Message Queued for TS Users at CUS (TS)

• AMH Forwards Message to Security Monitor

• Security Monitor Sends Reviewed Message to AMH (S)

• AMH (S) Queues Message for S Users at CUS (S)

1-11

Message Receipt
and Distribution

Security

~
AMH
(TS/S) Monitor

(TS/S)

I I
TS/S

I I
I

cus

I I
cus

I (TS) (S)

Desirable

• If Message Could Contain TS Data, the AMH Routes Message to Security
Monitor

• Security Monitor Sends Sanitized Message Back to AMH

• AMH Queues Message (S) to Both TS and S Users via Appropriate CUS

Description

WIS Multilevel
Long-Haul Connections

• Two WIS Sites Operate at Different Maximum Security Levels

• Sites Need to Exchange Information

• TS to S Message Flow Must be Reviewed/Sanitized

Requirements

• Long-Haul Network Needs to Support Local Users Operating at
Different Security Levels

• Long-Haul Network Needs to Connect WIS Nodes Having
Different Ranges of Classified Information

• Material with Different Classification Levels Needs to be
Transmitted Over the Long-Haul Network

I-12

Site A (TS/S)

Essential 1

WIS Multilevel
Long-Haul Connections

(TS Net)

••••

• Site B (S) Requests File from Site A (TS/S) via NFE (TS)

Site B(S)

• II File at A is on TS Processor then File is Passed Through Security Monitor at
A to Verily File Contents Are at S Level

• Security Monitor Forwards File (S) to NFE (TS)

• NFE (TS) at B Receives File Which is Sent to Security Monitor at B to Verily
That No Modifications Occurred on the Long Haul Net (Perhaps by a More
Rigorous CRC Type Authentication)

• Security Monitor Forwards File (S) to Appropriate Locations on Local Net B

Site A (TS/S)

Essential 2

WIS Multilevel
Long-Haul Connections

(TS Net)

••••

• Site B (S) Requests File from Site A (TS/S) via NFE (TS)

• Site A Forwards File to Site B via NFE (TS)

• NFE (TS) at B Forwards File to the Security Monitor at B lor
Review/Sanitization to S Level

Site B(S)

• Security Monitor Forwards File (S) to Appropriate Locations on Local Net B

I-13

Site A (TSJS)

WIS Multilevel
Long-Haul Connections

NFE
(S)

SiteB(S)

(TSISNet~ u
••••------\J l

L---.-----'

Desirable

• Site B (S) Requests File from Site A (TS/S) via MLS Long-Haul Network and
MLS NFE

• If File at A is on TS Processor Then File is Reviewed/Sanitized by Security
Monitor at A

• Security Monitor Forwards File (S) to S Portion of NFE (TS/S)

• Long-Haul Net (TS/S) Guarantees File Received at B is S Level

• NFE (S) at Site B Forwards File (S) to Appropriate Location on Local Net B

Interconnection

Protocols
Long-Hauls
Gateways
Subnetworks

Trusted Software

Verification
- Kernels

Encryption

E3
- Link

Local Net Security in a
Command Center

Recommendations

Assessment
Experiments
Action Items

I-14

Policy

5200.28
- JCS Pub. 22

Security Flexibilities
in the Local Network

• Reduced Need to Share Hardware

• Can Support Several Different (Tailored) Security
Approaches

• Use of Specialized Solution Approaches

• Evolutionary Implementation and Upgrade Possibilities

SAFE Description

Processor [J I Processor [J

Wideband Bu~

(Black) =~==;=======:;:===~===::::=== (Encrypted Datal

I-15

SAFE · WIS Summary

• Similar High Level Design; Many Specifics Differ

• Need to Analyze Traffic Characteristics Impact

• E3 Protocol Analysis and BIU Development Will Benefit
WIS

• SAFE-Type Crypto Modules Can be "Easily" Incorporated
in Reston Testbed

• NSA Will Develop Crypto Devices if WIS Requirements Are
Clearly Specified in Time

• Need to Continue Tracking SAFE Effort

Trusted Interface Unit

Broadband Cable ...

~
1 Link 1

I

CPU Memory
I Security I
Processor

Bus I

1/0 Port

+
+

Terminal/Host

I-16

Progress

• Security Requirements Have Been Refined
- Scenarios Addressing Known Security Problem
- Inputs to WIS Requirements Survey

• Local Net Security Task Force

Evaluate Issues of Encryption, Trusted Software,
Security Protocols
Examine Technologies Within WIS Context

• Security Architecture for WIS Has Been Developed

Operating Mode for Transition Components Defined
Mandatory and Optional Requirements Identified
Technology to Support Security Requirements for
Components Identified

~------~-,------------------------------~
WIS Security

Summary

• More EFFICIENT SECURITY Controls Are VITAL to WIS

• NOT Seeking ABSOLUTE Multilevel Security

• LOCAL NET Architecture Affords More FLEXIBILITY in
Solving Problem

I-17

TRUSTED COMPUTING RESEARCH
AT

OAT A GENERAL CORPORATION

Goal

Leslie Delashmutt
Doug Wells

Research Triangle Park
North Carolina

Controlled sharing of information in a
distributed, multi-user environment

J-l

•

Overview

Access control approaches

· Capabilities

· Access control lists (ACLs)

Confinement approach

·Domains

Extended types

Reliable Software

Flexible
Sharing

Protection Domains

Access Control Lists

UID Addressing of Objects

J-2

Protection Model

· Active subjects

· Passive objects

· Access rights

' 1/ ______________ 1~)1 ________ ~
~~-0-b-j-ec-t-~) ltnvalid Reference

Protection Checking

r Subject) j Valid Reference
L_ ______________ _J~--------yv

Access Matrix

Objects

38846 Proc1 38820 19926

Jones Execute Read Read Read
Execute Write Write

Smith Execute Read Read
Write Write

Read

Lewis Write Read Read
Execute Write Write
Non-Data

J-3

Jones

Smith

Lewis

Design Considerations

• Number of subjects and objects may be
large

• No protection attributes for some
subject/object pairs

• Matrix may be sparse

• Identical protection attributes for subjects
or objects

• Only small part of matrix necessary at any
one time

Capability Systems

Objects

38846 Proc1 38820

Execute Read Read
Execute Write

Execute Read
Write

Read
Write Read
Execute Write
Non-Data

19926

Read
Write

Read
Write

Read
Write

J-4

Jones
38846 E
Proc1 R,E
38820 R,W
19926 R,W

Smith

38846 E
38820 R,W
19926 R,W

Lewis
38846 R,W,E,Non-Data
38820 R,W
19926 R.W

PROTECTION USING CAP ABILITIES

PROTECTED JOB

1975 IEEE. Repnnted by permiSSion Clark. D.D. and Redell. D D ..
Protect1on of Information rn Computer Systems. p.1 5

J-5

Evaluation of Capabilities

Virtues Problems

• Protection • Forgery of keys

• Simplicity • Accountability

• Flexibility • Revoking access

• Efficiency • Controlling propagation

• Access review

Access Control List Systems

Objects 38846
Jones E
Smith E

38846 Proc1 38820 19926 Lewis R,W,E,Non-Data

Proc1

Jones Execute Read Read Read
Execute Write Write

Jones R,E

38820
Jones R,W

Smith Execute Read Read Smith R,W
Write Write Lewis R,W

Read 19926

Lewis Write Read Read
Execute Write Write

Jones R,W
Smith R,W

Non-Data Lewis R,W

J-6

PROTECTION USING ACCESS CONTROL LISTS

OQ
0

------~---
~ PRINCIPAL-ID

1975 IEEE. Reprinted by permiSSion. Clark. D.D., and Redell. D D.
Protectron of Information m Computer Systems. p 1 a

J-7

Positive Features of ACL Systems

• Granting access has known, auditable
consequences

• ACLs directly implement verification of an
access request

• Access revocation is manageable

• Each ACL lists authorized users of an
object

• Break association between data
organization and authorization

• Natural to the user

• Minimal hardware implementation costs

• Readily adapted to heterogeneous networks

• Natural primitive for a high-level security
language

• Provide top-down view of security

J-8

Drawbacks of ACL Systems

• ACL search

• Allocation of space for ACL

• ACL check at access time

The purpose of an ACL is to establish
authorization -not to mediate every detailed
access.

J-9

Memory Addressing in an ACL/Descriptor System

Operand Name I

Name Cache

I Internal Log1Cal Descr1ptor \

UID Ollset 1 Length I Type Al1gn-

ment

~ [
Sub1ect

Protection Cache Protect ton
Fault

~
Address TranslatiOn

Cache

~
PhySICal Descnptor

Page Frame

l Offset l Length Number

~
To Matn Memory

J-10

CAP ABILITY ACQUISITION
IN A HYBRID SYSTEM

1 PRESENT PRINCIPAL-10

2. RECEIVE CAPABILITY

IN RETURN

1975 IEEE Repnnted by permiSSIOn. Clark. D D. and Redell. D.D.
Proter:tion of lnformatton rn Computer Systems. p.21

J-11

Limitations

• Only system-defined access restrictions
enforced

• No protection of user from borrowed
program "trojan horse"

• No protection of borrowed program from
user

Beginning Domain Model

J-12

Opsys

Jones

!!
u
~ Smith

" Ill

Lewis

Access Matrix with Domains

Objects

38846 Proc 1 38820 1 9926

Subject

Definition of Subject

Principal
(UID)

J-13

Domain
(UID)

~<:-..
0~

Q

Opsys

Jones

..
t;
II Smith ']!;
:J

1/)

Lewis

Access Control List with Domains

Objects

38846 Proc1 38820

Gates into Domains

Procedure 2

Procedure 1

Start

Return

......
......

......

Procedure 3

J-14

19926

38846
Jones, Opsys E
Smith, Opsys E
Lewis, Opsys R,W,E,

Non-Data
Proc1

Jones, User R,E

38820
Jones, Opsys R,W
Smith, Opsys R,W
Lewis, Opsys R,W

19926
Jones, Opsys R,W
Smith, Opsys R,W
Lewis, Opsys R,W

ACL
......

'..._ ~o.nes.01 execute.
read

Simplified Cross-Domain Call Example

Process 14

Procedure 0
DOE= User

• Procedure 1
DOE= Opsys

Step 7 l[

Subject

[Jones,Userl • Procedure 2
DOE= User

•
[Jones,Opsys]

Cross-Domain Call

02

Procedure 1

Start = Step2 ..._
-

.....
Return '

1
.....

Procedure 2 Procedure 3

Step 3

SubJect

Step 7 Jones.D1

Step 2 Jones.D2

Step 3 Jones.D1

•

J-15

•
[Jones, User]

ACL

-..... I I
' .., Jones.D1

\execute,

) read

•

Potential Implementation of Domains

• lnterprocedure call and return

• Problem: no architectural assurance that a
procedure can access its arguments when
called in a new domain

• One solution: dynamic access capabilities
on cross-domain calls

J-16

i

Cross-Domain Call Example
Initial SubJect

Bound to Proce .. 1 4

Principal Domain

Jones User

User Domain

Procedure 0
DOE ""User v ----
-Code-

Procedure 1 Procedure 2
DOE =User DOE =User

-Code- -Code-

l ! '"'"" L__ '""=:,:~
Procedure 1

~"' \
Cross-Domain -"
Architectural Check ta,get D'ocedu'"·s DOE I Retum subtects I

Call and Return
Change subject"~ domam value and Or1gmal doma1n

checK subJects access r1ghts component

I
I
i New Subject ..- \Jones.Opsysl

I

I

! vf __ I

\
Operating System t I Domain I

I

Procedure 4 Procedure 3 Procedure 5

!
ACL ACL ACL

l* Opsys][R.W E) [Jones *1 [R El [* *'\RW El
I

DOE = Qpsys DOE ""Opsys DOE ~ Opsys

i ~ i
--Code-- --Code-- -Code--

J-17

Extended-Type Object Example

Extended-Type Objects
of Type "Stack"

UID38820

ETMfor //~
Extended-Type Objects /

of Type" Stack" / Frame 2
/

UID 38846 //
Frame 1

Header

Header
Procedure 1
Create stack ETM = 38846

Procedure 2
Delete stack

Procedure 3 UID 19926

"Push"

~
Procedure 4

"Pop " Frame 2

"
Frame 1

" " Header

" " " ETM = 38846

"

J-18

Extended-Type Manager Example
STEP 1

Extended· Type Manager
Acl for Extended· Type (Stack Manager)

Manager 38846 UID38448

Subjects
Non-Data

Subject R w E Modes Create

I Procedure
Jones . X

Delete

I Sm1th r Procedure • Push
Procedure

~~ ~

Lew" J--f=1ffFl Pop

I.
I Procedure

I DOE = Opsys

I

I"~·
STEP3

Jones' Stack
Extended Access Control Lists UID 38820
for Extended-Type Objects of

tiJ Type "Stack"

i I Subject l Subject RJ wj EJ i Pop Push Create Delete

~ I Jones X X l • Opsys X _l X l J
I

·-·

Lew1s X X X X ACL lor ObJect 38820
M

I '----
I

EACL for ObJect 38820
!Jones stackl

Smith's Stack
UID 19926

~-Pop \Push 6 Create Delete\ I Subject RlwiEI

I
Sm1th \ X I X I • Opsys X I X I p! I ! EOM

~~ X i X X X I ACL for ObJect 19926 38846

EACL lor ObJect 19926
'Sm1th s stack. I

---- ·-· --··---------~ --

J-19

Future Directions

• Military security model

• Flow control

• *-property (prevention of write-down)

• Formal specification of design

• Formal model for security in our
architecture

• Fault tolerance

• Encryption

• Sophisticated authentication mechanisms

Summary of DG/RTP Activities to Date:

• Made critical survey of primitives available
to support a trusted computing base

• Selected the best concepts to support such
a base

• Integrated these concepts into a coherent
architecture

J-20

IEEE Computer Society Fall Compcon '81

"Research in High-Level Computer
Architecture"

John F. Pilat
Data General Corporation/Research Triangle Park

J-21

THE iAPX-432
MICROCOMPUTER SYSTEM

GEORGE COX
INTEL CORPORATION

e VLSI COMPONENTRY

• ARCHITECTURE

e OPERATING SYSTEM

e SYSTEM LANGUAGE

432 MOTIVATIONS

e HIGH PERFORMANCE MOSIVLSI (HMOS)

• RECENT COMPUTER SCIENCE RESEARCH

e ADVANCING MICROCOMPUTER APPLICATIONS

K-1

,.

432 DESIGN OBJECTIVES

e LARGE SCALE COMPUTING POWER

• INCREMENTAL PERFORMANCE CAPACITY

• INCREASED PROGRAMMER PRODUCTIVITY

e DEPENDABLE HARDWARE AND SOFTWARE

KEY CONCEPT: DATA ABSTRACTION

e MODULAR DATA STRUCTURES AND PROCEDURES

e WELL-DEFINED MODULE INTERFACES

e OBJECT-ORIENTED PROGRAMMING METHODOLOGY

K-2

KEY CONCEPT: HIGH LEVEL FUNCTION

e LANGUAGE-ORIENTED RUN-TIME ENVIRONMENTS

e HARDWARE-CONTROLLED RESOURCE MANAGEMENT

e OBJECT-BASED INTERFACES AND SERVICES

KEY CONCEPT:
DOMAIN-BASED PROTECTION

e INDEPENDENT MODULE ADDRESS SPACES

e ADDRESS SPACE SWITCHING ON PROCEDURE CALL

e CAPABILITY ADDRESSING AND ACCESS CONTROL

K-3

KEY CONCEPT: OBJECTS AS

UNIFIED DESIGN FRAMEWORK

• INTEGRATING HARDWARE AND SOFTWARE

e MINIMIZING CONCEPUTAL DIFFERENCES

e CLARIFYING AND SIMPLIFYING OVI::RALL DESIGN

KEY CONCEPT: MULTIPROCESSING

GENERAL
••• DATA

GENERAL
DATA

PROCESSOR

GENERAL
DATA

PROCESSOR PROCESSOR

MAIN
MEMORY

SUBSYSTEM

INTERFACE
PROCESSOR

110
SUBSYSTEM

INTERFACE
PROCESSOR

1/0
SUBSYSTEM

K-4

INTERFACE
PROCESSOR

1/0
SUBSYSTEM

ELEMENTS OF THE ARCHITECTURE

e OBJECT-BASED ADDRESSING AND PROTECTION

e BASIC COMPUTATIONAL FACILITIES

e PROGRAM EXECUTION ENVIRONMENTS

e OBJECT-ORIENTED PROGRAMMING SUPPORT

e INTERPROCESS COMMUNICATION

e SYSTEM RESOURCE MANAGEMENT

A CONCEPTUAL VIEW OF
OBJECT ADDRESSING

ADDRESS
SPACE A

OBJECT
REFERENCES

ADDRESS
SPACE B

OBJECT
TABLE

K-5

\
OBJECT
DESCRIPTOR

OBJECT

432 OBJECT ADDRESSING MECHANISM
PROCEDURE

r--- ADDRESS SPACE
I 232 BYTES I

~ zr2··· ~~·~•ci:!c D~Ec.::JI-KT
31 0 ,....___

ACCESS '--;,;-=~l~~~-t---., LOCAL SEGMENT OBJ. DEC.
~~ ~ ~

NAME L !.-:-63-~0

1 ·.~· 1·· .. 'IJ··
' J>-------1, 0
~~~~~~~H----_j seGMeNr 

ADDRESS CACHE 

432 PROCESSING 
UNIT 

SIMPLE OPERAND ADDRESSING 

OPERAND REFERENCE 

OBJECT DISP 

OBJECT 
'DDRESSING 
IAECHANISM 

I 

OPERAND 

DATA 
OBJECT 

K-6 



COMPILER-ORIENTED INSTRUCTION 
FORMATS 

• ZERO TO THREE OPERANDS PER INSTRUCTION 

• SYMMETRIC OPERAND ADDRESSING MODES FOR: 
- SCALARS (BASE+ DISPLACEMENl) 
- VECTOR (BASE+ INDEX) 
- RECORD ELEMENTS (BASE+ INDEX+ DISPLACEMENl) 

• REGISTER-FREE 
- OPERANDS IN MEMORY 
-OPERANDS ON TOP OF STACK 
-ANY MIXTURE OF MEMORY AND STACK OPERANDS 

• BIT VARIABLE 

PACKAGING PROGRAM MODULES 

DOMAIN 
OBJECT 

DOMAIN 
OBJECT 

PUBLIC PROCEDURES 
AND DATA 

PRIVATE 
PROC'S 
& DATA 

K-7 

DOMAIN 
OBJECT 

TO OTHER 
DOMAINS 



CONTEXTS AS PROCEDURE ACTIVATIONS 

DOMAIN 
OF DEFINITION 

DOMAIN 
OF DEFINITION 

FROM 
CAllED 

CONTEXT 

TO 
CAlliNG 
CONTEXT 

' 

CONTEXT 
OBJECT 

CONTEXT 
OBJECT 

SP 

r 

SP 

[ 

t----

1----J!:,.-
SP 

CONTEXT 
DATA 

OBJECT 

t-----

IP 
SP 

CONTEXT 
DATA 

OBJECT 

I EVAlUATION 
STACK 

CONTEXTS DEFINE THE INSTANTANEOUS 
LOGICAL ADDRESS SPACE 

OBJECT 
SELECTOR 

1 OF 4 
ACCESS 
COMPONENTS 

1 OF 214 
OBJECTS 

l --

CONTEXT 
OBJECT 

K-8 

(-~----, 
I I I 

I I ACCESS COMPONENT 1 

I I 
L ___ .J 

--
ACCESS COMPONENT 2 

I 
. 

+-. 

--
ACCESS COMPONENT 3 

I +--

--
ACCESS COMPONENT 4 



DOMAINS AS USER-DEFINED OBJECT TYPES 

DOMAIN 
OBJECT 

PUBLIC INTERFACE 
PROCEDURES 

PRIVATE DATA 
AND PROCEDURES 

PROCEDURE-FREE REPRESENTATIONS OF 
USER-DEFINED OBJECTS 

USER 
CONTEXT 

y -

CALLS 

,___.. 

·-
PARM 0 

VISIBILITY 
CONTROL 

INTERFACE 
PROCEDURE 

CONTEXT ~ ,.------., 

USER· 
'-' DEFINED 

·-- PROCEDURES TYPE 

1------

1 

t 
DEFINING 
DOMAIN , 

DEFINITION 
OBJECT 

ACCESS RIGHT 
OPENS REPRESENTATION 

K-9 

r----

'-' 
USER·DEFI NED 

PE OBJECT TY 



432 SYSTEM OBJECTS ARE BASIS OF THE 
SILICON OS 

e KEY HARDWARE-DEFINED OBJECTS CONTROL SYSTEM 
FUNCTIONS, e.g.: 

-PROCESS OBJECT 
- STORAGE RESOURCE OBJECT 
- PORT OBJECT 

e HARDWARE PROVIDES THE KEY OPERATIONS 
- TIME CRITICAL 
-SECURITY SENSITIVE 
-COMPLEX 

e SOFTWARE AND HARDWARE COOPERATE TO MANAGE 
THESE OBJECTS 

OBJEC~BASEDINTERPROCESS 
COMMUNICATION 

CONTEXT 
OBJECT 

PROCESS A 

MESSAGE 

PORT 
OBJECT 

MESSAGE 
QUEUE 

PORT 
COMMUNICATION 

CHANNEL 

K-10 

CONTEXT 
OBJECT 

PROCESS B 



CARRIERS ENQUEUE WAITING PROCESSES 
-

'=~~~ EMPTY MESSAGE J: BUFFER 

-n LINKED PROCESS CARRIERS 

PORT I ~~1------~~~4-------~~~ 
OBJECT 

Fl NITE LENGTH { 
MESSAGE BUFFER 

FULL 

WAITING PROCESS OBJECTS 

CARRIER OBJECTS RESOLVE 
MESSAGE QUEUE OVERFLOW 

PORT 
GBJECT 

BLOCKED 
MESSAGES 

ENQUEUED MESSAGES 

0 
BLOCKED PROCESS OBJECTS 

K-11 

1-----



-
-
-

A MESSAGE-PASSING MODEL OF 
PROCESS SCHEDULING 

- r----

C-PORT "-PORT , ____ . J[J----0 CARRIER 

CARRIER MOVES 
AS MESSAGE 

MESSAGE 
PROCESS 

PROCESS 

MESSAGE RECEIVED PROCESS SCHEDULED 

MESSAGE-PASSING MODEL OF 
PROCESSOR DISPATCHING 

ENQUEUED PROCESSOR 
CARRIERS 

IDLE PROCESSOR OBJECTS 

RUNNING 
PROCESS 

CURRENT 
CONTEXT 

SHARED ADDRESS SPACE 

K-12 

r------ '-------.¥ 
' IDLE PHYSICAL 

PROCESSORS 

0 
ACTIVE PH· SICAL 

PROCESSOR 

,, 



,. 

1/0 IS A SPECIAL CASE OF 
INTERPROCESS COMMUNICATION 

INTERRUPT 
LINE 

DEVICE 
INTERRUPTS 

I I PORT u OBJECT 

B 
1/0 

MESSAGE 

SHARED ADDRESS SPACE 

1/0 
PROCESS 
OBJECT 

------1 

INTERRUPT 
SIGNALS 

iMAX 432: MULTIFUNCTION APPLICATIONS 
EXECUTIVE 

e COOPERATES WITH HARDWARE TO MANAGE OBJECTS 
-OBJECT CREATION 
-OBJECT MAINTENANCE 
- OBJECT DISPOSAL 

e PROVIDES A UNIFORM VIEW OF AN OBJECT 
e.g., FOR PORTS: CREATE PORT (SOFTWARE) 

SEND MESSAGE (HARDWARE) 
RECEIVE MESSAGE (HARDWARE) 

K-13 



iMAX 432 AND THE SILICON OS 

---------~----------------------~ 
HIGH LEVEL OS iMAX 432 

KERNEL OS 

432 HARDWARE 
TRADITIONAL HARDWARE 

REBALANCING THE HARDWARE/SOFTWARE INTERFACE 

ADA: THE IDEAL IMPLEMENTATION 
LANGUAGE FOR 432 

• ADA MATCHES THE 432 DESIGN METHODOLOGY 
- BASED ON THE CONCEPT OF OBJECTS 
- SIGNIFICANT SUPPORT FOR MODULARIZATION 
- AIMED AT REDUCING PROGRAMMING COSTS 

e ADA CONSTRUCTS MAP THE ARCHITECTURE AND OS 
OBJECT 
PACKAGE 
ACCESS 
SUBPROGRAM ACTIVATION 

OBJECT 
DOMAIN 
ACCESS DESCRIPTOR 
CONTEXT 

• ADA-432 FEATURES PROVIDE DIRECT ACCESS TO THE 
HARDWARE 

- 432 SPECIFIC OPERATIONS ARE IN ADA's STANDARD MACHINE 
ACCESS PACKAGE 

- SIMPLE 432 EXTENSIONS TO ADA SUPPORT DYNAMIC SYSTEMS 

K-14 



ICL EFFORTS IN COMPUTER SECURITY 

Tom Parker 

International Computers Limited 

This presentation covers a subject which is becoming a bit of a 
Cinderella in the secure computing world. I am talking about the much 
criticized business of making a real life, big machine, practical, 
commercially acceptable operating system as secure as possible. 

I am talking about the kind of system for which the use of formal 
verification technology is beyond the state-of-the-art; for which 
restructuring along the TCB lines proposed by Grace Nibaldi must be very 
expensive, and for which there are no absolute guarantees of security, a 
system for which the attainment of the magic Nibaldi level 6 is a 
fairytale fantasy, but a system which neverth~less occupies an important 
niche in the total spectrum of secure data processing requirements. 

SLIDE 1 

The system I shall be talking about is a large general purpose 
operating system from a European manufacturer. It is called VME/B, and 
it is marketed by ICL on our 2900 range of computer mainframes. 

As some of the audience here today may not know much about ICL, I 
think I'd better start by giving a brief description of who we are, and 
give a bit of background to the development of the 2900 series. I shall 
then go on to describe the hardware architecture of 2900, concentrating 
of course on those features that are most relevant to security. VHE/B is 
the largest of a number of ICL operating systems that run on this 
architecture; it is a system that has received a lot of attention from 
the point of view of security in ICL and I shall be describing some of 
its protection features. It has also been the target for much of the 
security enhancement work that has been undertaken by ICL, mainly with 
the objective of satisfying the needs of customers with especially 
stringent security requirements. I shall outline some of this work at 
the end of the presentation. 

SLIDE 2 

"ICL" stands for International Computers Limited, and not only is 
ICL the only indigenous UK mainframe manufacturer, but also we are one of 
the few to produce computers with an architecture fundamentally different 
from IBM's. To give you some idea of the size of the Company, our 

L-1 



2 

turnover last year exceeded 1.5 billion dollars and we employ over 26,000 
people, about 20,000 of whom are in the UK. 

The value of ICL's world-wide customer base is well over 4.5 billion 
dollars in 86 different countries. Apart from the ubiquitous IBM this is 
the biggest customer base outside America and Japan of any computer 
manufacturer. 

ICL was formed in 1968 as a result of a merger betw~en what was then 
two major, and competing British computer companies: ICT and English 
Electric. At that time it was realized that the new Company would soon 
need a range of new machines to replace the many, varied and incompatible 
ones inherited from the merger. Also of course these inherited machines 
had architectures and a hardware technology dating from the so's and 
early 60's. Both hardware and software technology had moved on a lot 
since then. 

So out of all this after an appropriate gestation period, came the 
first of the 2900 series. This was a revolutionary rather than an 
evolutionary step. A rare thing in the commercial computer world. 

SLIDE 3 

The design was of course influenced by that of existing in-house 
systems and obviously the architectures of other machines in the 
marketplace at the time were also examined, for example a number of 
MULTICS concepts were very influential, particularly in the protection 
sphere, where some aspects still represent state-of-the-art, even 12 
years later. 

For those of you who would like to know more about this history, I 
would recommend John Buckle's book on the subject, which also appears in 
condensed form in the November 78 issue of the ICL Technical Journal. 

SLIDE 4 

2900 ARCHITECTURE 

So what kind of beast did we produce? Let's have a look at some of 
the architectural features of the 2900. This is a list of the ones we 
shall look at. I'll describe each one then bring this slide back and 
collect them altogether at the end. 

Central to the architecture of 2900 are the complementary concepts 
of virtual store and virtual machines, and their common base of virtual 
addressing. 

SLIDE 5 

L-2 



3 

All addressing is in terms of virtual addresses mapped onto real 
addresses by hardware using segment and page table&. The real addresses 
can be in real store or on secondary store on drum or disc. In order 
words, we have a straightforward virtual store implementation. Each 
process runs in its own "virtual machine" in which it has its own unique 
local segment table and shares a public segment table with all other 
virtual machines. It can optionally also have "global" segments which it 
shares with chosen other virtual machines. I think that it is generally 
accepted that this kind of hardware-supported process address-space 
separation is important to good system security. 

SLIDE 6 

The primitive instruction code makes extensive use of 'descriptors' 
for indirect addressing. A descriptor is a 64-bit entity which formally 
describes an item of information in store. One half of the descriptor 
contains the base address of the item being described in terms of segment 
number and displacement. In other words, this half of the descriptor 
contains a 'virtual' address. The other half contains information 
relating to the unit size of the item, the number of units it contains, 
whether modifiers added to the item's address should be appropriately 
scaled or not, and so on. Descriptors are also typed according to what 
kind of information they are addressing. This slide shows a "Descriptor 
Descriptor" pointing to a row of three "Byte-Vector" descriptors, each of 
which is pointing at a bounded area of virtual store. Some other 
examples of descriptor types are Code Descriptors, Semaphore Descriptors 
and System Call Descriptors. One obviously important 'correctness' 
feature present in the 2900 is automatic bound checking on modification. 

SLIDE 7 

Next in the list, are the features needed to control basic 
input/output and other primitive privileged operations. The totality of 
addressable hardware registers is called the "image store". This divides 
into two parts: the visible and invisible registers, and the distinction 
between them is critical to the system's security. 

Visible registers are accessible by normal unprivileged 
instructions, and consist of such things as Program Counter, local 
namebase pointer, Real Time Clock, and so on. Access to the invisible 
registers is by using what is called "image store operand format," and 
this requires privilege. 

Access to the invisible registers is required to perform 
Input/Output operations, to activate a new process and to perform other 
privileged functions. 

Privileged status is obtained only by a hardware interrupt 
mechanism. When the VME/B Operating System is present, such interrupts 
cause entry to the most trusted part of the operating system (the 

L-3 



4 

'Kernel' of VME/B). 

SLIDE 8 

A process's level of trustedness is defined by the contents of an 
'invisible' register: the Access Control Register, called ACR for short. 
The ACR register is actually a part of the Program Status Register shown 
on the previous slide. The level of trustedness is called the ACR level. 
The lower the value of its ACR, the more trusted a process is. 

Segment protection occurs in that on access to store, the ACR level 
of the process and the mode of access are compared with access permission 
fields that are associated with each segment. "Change Access" on the 
slide refers to the ability to change the access permission fields 
themselves. There is also an Execute Permission bit which is used to 
prevent the accidental execution of data. 

Entry to a procedure running at a different ACR level must be via a 
hardware-supported 'system call' mechanism which polices the availability 
of the called procedure from the caller's ACR level. An important 
feature of the mechanism is its enforcement of entry to the procedure at 
the proper entry point. So you can see that what we have here is a ring 
protection system. There are sixteen possible different levels, that is: 
16 ACR levels. 

Critical to the security of the system is the proper validation by a 
trusted procedure of reference parameters passed to it 
by less trusted code. A special primitive instruction 
this purpose which we call the 'Validate' instruction. 
more about parameter validation later. 

when being called 
is provided for 

I shall be saying 

So, let's pause for a minute and look at the major items so far. 

SLIDE 9 

We have: 

virtual addressing, supporting 
virtual store and 
virtual machines - providing protection between processes 
descriptors with automatic bound checking, 
a protected I/0 mechanism; 
and a 16 level ring protection system with an 
associated mechanism for policing the transfer of control 
between the rings - providing protection with a process. 

These are all basic architectural hardware supported features present in 
the raw machine. 

L-4 



5 

I should quickly mention one further architectural feature: the 
"process stack." It has no direct security connotations, but makes such 
an important contribution to the overall flavour of the 2900 architecture 
that it would be misleading to miss it out. 

The instruction code at the primitive level is based on the use of a 
LIFO or "Last In First Out" stack. The stack is used for parameter 
passing and local name space purposes and each Virtual Machine has its 
own stack. Nested procedure calls will cause the usual succession of 
name spaces to be built up on the stack, which are deleted on a "last in, 
first out" basis as the procedures exit. We have found the stack 
mechanism on 2900 to be an elegant and natural aid to the procedure call 
mechanism. Those then are the main architectural features of the 2900 
series machines. When it was introduced it was quite an advanced system 
for its ti~e. In fact many of ICL's early development problems stemmed 
from the fact that we were breaking new ground in so many areas. Even 
today, operating system technology in commercially available systems is 
only just catching up with the 2900 architecture which forms a very 
adequate basis for the development of a secure operating system. 

SLIDE 10 

One such development is VME/B. VME stands for Virtual Machine 
Environment. B stands for B. 

VME/B is a large mixed workload operating system catering for Batch, 
Multi-Access and Transaction Processing applications. 

The smallest machine on the 2900 range on which a full system is at 
present intended to be run is the 2956, though there are subset options 
that can run on a smaller machine. Comparisons are difficult but the 
2956 is very roughly equivalent to an IB~1 4331 Model 2, or somewhere 
between a DEC VAX 11/750 and VAX 11/780. A practical full VME/B system 
including typical user application code needs a real store size of at 
least 2 megabytes, so it's a big operating system. 

The operating system divides into three quite distinct parts, 
separated by error handlers as shown on the slide. At the most trusted 
level is Kernel, which handles real system resources like store and 
devices. It runs mainly 'out of process' on a public stack and helps to 
support the virtual store/virtual machine image of the basic 2900 
architecture. 

Director is responsible for the handling of a more abstract view of 
the system's resources. At this level are the block level file managers, 
and the major security related operating system functions like the 
loader, name handler and privacy controller. Director occupies ACR 
levels 4 and 5. 

uncontrolled communication between virtual machines is prohibited 
above ACR level 5 by disallowing public segments with write access keys 

L-5 



6 

greater than ACR 5 and by controlling the availability of global 
segments. 

Level 7 to 9 contain the Above Director software as shown on the 
slide. From the security point of view it could be considered as a sort 
of "trusted superstructure." Above ACR 9 is the real enemy- the user. 
Facilities are provided for user installations to structure the levels at 
which the various applications run within ACR levels 10 to 15, and these 
can be used by installation management to cut normal unprivileged users 
off either partially or completely from direct use of the facilities of 
the operating system if so required. I shall say a bit more about this 
later. 

Notice that unlike in some contemporary machines, compilers, and 
general utilities are no more trusted by the operating system than user 
code. 

All operating system code segments are established with a write 
access key of zero and so all operating system code is necessarily pure. 

SLIDE 11 

The slide shows a typical selection of operating system procedures 
and VME/B's use of the system call mechanism. The small boxes are the 
procedures. I have drawn them at their execution ACR level. The lines 
with blobs on the end show the highest ACR level from which they can be 
called. 

In the actual system the vast majority cannot be called at all from 
outside their own level, but there still remains a substantial number 
that are directly callable from user ACR levels. 

The proper validation of parameters passed across the user/operating 
system interface is well-known to be critical to the security correctness 
of operating systems, and VHE/B is no exception. A lot of time and 
energy has been spent ensuring that reference parameter validation is 
complete. In particular an object code analysis package has been written 
that searches out discrepancies for manual analysis and correction. It 
examines actual loaded code, and so detects flaws that might be 
introduced by post compilation patches or repairs which at that stage 
have been fully applied. The checking is therefore as near to the 
'engine' as possible. 

Another approach has been to reduce the number of procedures 
available to the user at particular secure installations. A package has 
been produced to monitor usage of system code with a view to making 
unused interfaces unavailable, or restructuring the availability of 
little used interfaces on particular secure sites. 

The package has a very low performance overhead and can be 
permanently left in the system. 

L-6 



7 

Installations have a considerable degree of control over operating 
system called is defined at system load time in a load control file 
interestingly called the 'recipe' file, and this file is amendable by 
installation management. A mechanism also exists whereby trusted users 
can access a smaller number of additional procedures. The availability 
of these more powerful interfaces can be tailored to the specific 
functional requirements of the chosen trusted user classes. Standard 
ones are for example Support Engineers, Operators, or the System Manager. 

There are in fact a number of areas in VME/B into which hooks and 
options have been put. This gives installation security authorities a 
great deal of flexibility in deciding on what they want for their system. 

Indeed, the extent to which particular secure installations can bend 
VME/B to suit their individual security requirements is itself a major 
security feature of VME/B. 

To give a crude example, a class of multi-access user can be defined 
whose only commands are, say, 

INPUT 
EDIT 
COBOL COMPILE 
COBOL RUN, 

with no low level code or direct use of operating system interface being 
allowed at all. 

SLIDE 12 

All major system objects are recorded in a central filestore 
database known as the VME/B Catalogue. It is controlled from ACR 
level 5. The Catalogue is organized in terms of nodes and relationships. 
Entries for named objects are located at nodes which are connected by 
relationships. Objects catalogued include Devices, Volumes, Files and 
other specialized V~1E/B objects. One example of a VME/B object is shown 
on the slide - that of a job profile. A user's access to job profile 
nodes determines the kind of work that he can run on the system. 

Privacy controls can be applied to all of these objects and access 
can be constrained on a general, specific and hierarchic basis. A wide 
variety of success types is supported, distinguishing for example between 
access to a file's contents and access to its name and description. All 
attempted privacy violations are logged to a security journal. An 
installation can arrange that such messages are output immediately to the 
journal, or held in a buffer and then output when the buffer is full. 

Particularly important in the access control features is the 
ability, by means of device access settings, to prevent users other than 
chosen individuals accessing the system using a particular terminal. 

L-7 



8 

Alternatively all users except named iudividuals can be allowed to use a 
particular device. This is useful for example in preventing the system 
manager's username being used at all terminals except a particular one. 
Such protection would of course be additional to the protection provided 
by the System Manger's password. 

SLIDE 13 

Users are identified by a catalogued username which can take one of 
three security levels: low, medium and high. A high security user may 
not submit batch jobs; high and medium security users must submit a 
password when logging in for a multi-access session. 

Multi-access, or MAC passwords can be up to 12 characters long and 
are irreversably encrypted when stored at the catalogue user 'node' for 
login comparison. In this way sight of the stored version is made 
useless to the would-be penetrator. 

The login sequence is very tightly controlled. 

The would-be MAC user once having starte~ the sequence will either 
obtain legitimate access within a certain time or cause the terminal to 
be locked out with an immediate security alarm at the Master Operator's 
terminal. Line breakdowns for example at this stage cause security 
violations. So pulling the plug out won't do him any good. 

A reverse password facility is also available with which the system 
can be made to identify itself to the user. 

Another feature is program controlled access to files using ACR 
levels. By this means, installation management can force access to 
chosen files through installation written software which can perform 
auxiliary protection checks, for example file passwords. 

ICL markets the IDMS Database system (developed from the Cullinane 
Corporation design). By making use of ACR access control, IDMS has 
become one of the few secure databases systems commercially available 
today. 

SLIDE 14 

Well, these are some of the main VME/B security features. Here they 
are, collected together. 

We have: 

full use of the ACR ring protection system both 
by the operating system and potentially by the 
installation security management 

in store code unmodifiable - pure code 

L-8 



9 

extensive installation tailoring facilities and 
hooks 

central access control to all system objects 

... and so on as shown here. 

And, one final thing on VME/B's features: 

We have just started to investigate the possibility of the provision 
of the ability to police a mandatory security policy, and it is looking 
reasonably straightforward to integrate into the existing security 
structure. 

DESIGN AND PRODUCTION METHODOLOGY 

SLIDE 15 

From our experience of producing earlier operating systems we realized 
at the outset that one cannot simply treat an operating system as a 
collection of programs and then farm out the development of these programs 
to separate groups of programmers, hoping that they will all fit nicely 
together when the doomsday of integration approaches. 

So we designed and built a system called CADES. 

SLIDE 16 

CADES is a methodology and a set of mechanisms to support that 
methodology. The VME/B design is top down data driven and hierarchic, and 
the prime objective of CADES was that the product was designed before it 
was implemented. We all know how difficult that is in the pressures of a 
commercial production environment. 

The design methodology is then supported by mechanisms which may 
consist either of well-established rules for human actions and interactions 
(we call them the CADES Design Rules), or software products to be used as 
tools by the designers and implementors. 

The hierarchies of modules and data structures with their attributes 
and relationships are stored in the CADES database, and this forms an 
authorized description of the product as it is being developed. The final 
content of the database is the product itself so there is no break in 
continuity between design and production. The ultimate objective of CADES 
was to support the total software development cycle from initial design 
right through to successive releases of the system with supporting 
documentation. 

L-9 



10 

VME/B is a result extensively documented in a structured manner in a 
microfiched multi-volume library known as the "Project Log." For example, 
systems wide cross reference listings of data object usage and procedure 
calling structure are available, and can be automatically reproduced for 
all new releases using the CADES database. 

A very good description of CADES can be found in the May 1980 edition 
of the ICL Technical Journal. 

It is important to say at this point that CADES does not have the 
richness of design language nor the degree of formalization enjoyed by the 
formal languages that everybody here is familiar with. It was never 
intended to be used as a basis for later design correctness verification. 

Nevertheless, ICL finds CADES an invaluable practical tool, and we are 
continuously developing, enhancing, and, possibly most importantly, using 
it. 

The implementation language of VHE/B is called S3. I haven't the 
faintest idea why. It is a development of ALGOL 68. In other words, it is 
a well-structured high level language with moderately strong typing and a 
block structure very suitable for the 2900 stack architecture. 

The production teams, however, actually Code VME/B in an 
implementation level enhanced System Description Language, or SDL, which is 
automatically converted into S3 source by the CADES system. Niggling 
little things like complex data mode declarations, interfaces parameter 
specifications, constant and failure code values, macro expansions, and so 
on, are thereby automatically looked after by CADES. 

SLIDE 17 

The slide shows an example of some implementation level SDL. It is 
actually some SDL for a module which is part of the CADES system itself. 
We no~ use CADES to design and build CADES! 

I won't describe the slide in detail, it's there just to give you a 
flavour of the language. At the top are the EXT and IO sections which list 
the procedures that this procedure calls, and the external data areas 
referenced. The interface definitions and modes of these items are of 
course all held in the CADES database. The asterisks at the beginning of 
some of the lines in the FU~CTIO~ section trigger off various substitution 
and validation actions that occur when the system is converting this code 
into S3. 

The existence of centrally held definitions of system-wide objects 
like data mode declarations and interface specs and so on automatically 
reduce, of course, the problem of mismatches in all of these areas. 

An important current CADES development is the provision of an enhanced 
SDL/PASCAL back end. ICL holds the view that whenever possible, software 

L-10 



11 

products should be written in high level languages, and PASCAL is one that 
we have chosen to be heavily used, particularly in the production of 
non-mainframe software. The compiler has been structured to enable a 
number of different target object codes to be produced. In developing the 
PASCAL aspect of CADES we have incorporated a number of the good features 
of the ADA development environment, for example the separation of package 
specs from package bodies. 

One final random point of interest, to do with the CADES design there 
are no "GO TO's" in VME/B, well, hardly any! 

SLIDE 18 

I would just like to finish off now with a brief survey of some of the 
additional security work that has been and is being undertaken on VME/B. 

Obviously some of our customers have special security requirements, so 
the first thing to say is that a substantial number of extra security 
features have been developed to satisfy them. Another objective has been 
to 'harden' VME/B not only from the point of view of extra facilities but 
also from the point of view of correctness. 

Of course everybody benefits from correctness improvements, but also 
some of the additional facilities have since become standard product line 
items. 

To further our 'correctness' objective, we have been subjecting the 
primitive architectural features and low level operating system features to 
'theoretical' analysis, backed up where appropriate by actual tests. This 
is a continuous process, since new releases of the operating system are 
continually providing new areas to be examined. For this reason we are 
attempting to automate the analysis as much as possible. 

Most of the tools developed in this work are incorporated into a 
"security test package" which also incorporates tests of the standard user 
visible security facilities. The package is now being applied during the 
acceptance testing phase of each new release of the product. 

~e also maintain a close relationship between ourselves and our major 
secure users and conduct regular meetings devoted to examination and 
discussion of secu~ity issues at both technical and non-technical levels. 

Every so often, we stand back and look at the overall security 
structure of VME/B. One current example is a development of the security 
control object dependency graph idea developed by Linde at SDC, which we 
hope will be found useful in identifying areas requiring most attention. 
Another example is an examination of the feasibility of restructuring th~. 
operating system in minor ways to enable the control of security to be more 
localized (note I might add to the extent of a security kernel's 
localization). 

L-11 



12 

An early hardened version of VME/B was subjected to a 'tiger team' 
attack a few years ago with encouraging results. In that attack, the 
system demonstrated a reasonable degree of security in that the attack team 
failed to achieve their major penetration objectives. 

I should add that at the time there were a small number of known 
defects declared as 'no go'. areas, and others that had to be compensated 
for "by appropriate rather restrictive procedural controls. We have, of 
course, since cleared these defects. 

I would be foolish though to claim that the system is now therefore 
totally secure, but it at least shows that the claim that it is 'easy' to 
penetrate a modern well structured commercial operating system has to be 
examined very carefully. The great majority of successful penetrations 
have been by teams consisting of top class systems penetration specialists. 
It has been said that the ideal qualification for a member of a penetration 
team is that he should be "a negative thinking anarchist with an IQ of 150 
and the patience of Job." Such people are hard to find. What is easy for 
them might well prove impossible for ordinary mortals. 

A system that has been penetrated by specialists, and VME/B might well 
be one day, cannot be dismissed as being inse~ure. Security is not a 
binary property that is either present or not, and this has of course been 
clearly recognized in Grace Nibaldi's valuable work on this subject. 

SLIDE 19 

Well that's about it. As you can see we take a pragmatic approach to 
security; it has to be pragmatic on a system as large as VME/B. We make no 
claims of absolute security. All we can do is fill as many holes in the 
colander as our expertise and the state-of-the-art, allows. 

The architectural bedrock on which VME/B lies is sound. The operating 
system itself has been produced using modern software engineering 
techniques, and the VME/B user has always been considered 'malicious'! We 
know of no comparable but more secure system. 

1-12 



pcLI MENU 

e BACKGROUND AND ORIGINS 

e 2900 ARCHITECTURE -PROTECTION FEATURES 

e VME/B SECURITY FEATURES 

e SECURITY ENHANCEMENT WORK 

,.CLJ ORIGINS AND INFLUENCES 
IN-HOUSE MACHINES ILIFFE'S 

BASIC HONEYWELL 
1900 SYSTEM 4 ELLIOTT LANGUAGE MUL TICS 

4100 MACHINE PROTECTION 

2900 
ARCHITECTURE 

L-13 

MANCHESTER 
UNIVERSITY 
MU5 

BURROUGHS 
B6500/7500 
HLL CONCEPTS 



fiCO FEATURES OF THE 2900 
LJ ARCHITECTURE 

e VIRTUAL ADDRESSING 

e DESCRIPTORS 

e IMAGE STORE AND INPUT/OUTPUT CONTROL 

e ACR LEVELS AND T~.E VALIDATE INSTRUCTION 

e SYSTEM CALL MECHANISM 

e THE STACK 

VIRTUAL ADDRESSING 
VIRTUAL 
ADDRESS 

LOCAL 

0 .... 

PUBLIC 

1 .... 

~ 

GLOBAL 
LOCAL VM1 LOCAL VM2 

0 0 

LOCAL SEGMEN T PUBLIC SEGMEN T LOCAL SEGMENT LOCAL SEGMEN 
TABLE TABLE 

PAGE TABLE PAGE TABLE 

REAL ADDRESS REAL ADDRESS 

TABLE TABLE 

~ 

.. 
PAGE TABLE 

' REAL A~DRESS GLOBAL SEGMENT 
TABLE 

L-14 

T 



DESCRIPTORS 

II ·, I VIRTUAL 
I ADDRESS 1"---

i ! l t -- H-+-~---'1--':-=:7:':'-t 
\:, 

,. _r 
VIRTUAL 
ADDRESS 

VIRTUAL 

-~ 
... 

ADDRESS 

VIRTUAL l ' l NO. OF UNITS 
1 ' L ________ SCALING 

1 l ___________ UNIT SIZE 
L _____________ TYPE 

DESCRIPTOR DESCRIPTOR 

pcLitMAGE STORE 

VISIBLE REGISTERS 

PC PROGRAM COUNTER 

LNB LOCAL NAME BASE 

RTC REAL TIME CLOCK 

DR DESCRIPTOR REGISTER 

ACC ACCUMULATOR 

~ 
ETC 

~ 

ADDRESS 

·•' 

. _,,,. ':'.-··. · .•. :.~·: ··~: 

-· 

EG: 

BYTE VECTOR DESCRIPTOR 

INVISIBLE REGISTERS 

SSR SYSTEM STATUS REGISTER 

PSR PROGRAM STATUS REGISTER 

LSTB LOCAL SEGMENT TABLE BASE 

PSTB PUBLIC SEGMENT TABLE BASE 

~ 
ETC 

~ 
EXTERNAL DEVICE REGISTERS 

~ 
ETC 

~ 

L-15 



pcLI PROTECTION LEVELS 

e ACCESS CONTROL REGISTER (ACR) 

e SEGMENT ACCESS CHECKS 

- READ ACCESS 

- WRITE ACCESS 

- CHANGE ACCESS 

- EXECUTE PERMISSION BIT 

e SYSTEM CALLS 

- CALLING ACR LEVEL CONTROLS 

- ENFORCED ENTRY AT PROPER ENTRYPOINT 

- HARDWARE SUPPORTED PARAMETER VALIDATION 

liCi] FEATURES OF THE 2900 
L._j ARCHITECTURE 
e VIRTUAL ADDRESSING 

e DESCRIPTORS 

e IMAGE STORE AND INPUT/OUTPUT CONTROL 

e ACR LEVELS AND THE VALIDATE INSTRUCTION 

e SYSTEM CALL MECHANISM 

e THE STACK 

L-16 



VME/~ SVRUCYUR~ 

sUPERSTRUCTURE 

RECORD LEVEL FILE HANDLERS 

""""''f .... f--------- ~~G~UEBNL~~ ::~~iA!~~5 

SUPERSTRUCTURE 

ABOVE DIRECTOR 

DIRECTOR 

KERNEL 

L-17 

LOADER, NAME HANDLING & PRIVACY 
CONTROL 
BLOCK LEVEL FILE HANDLERS 

DEVICE HANDLERS, VIRTUAL STORE 
AND VIRTUAL MACHINE MANAGEMENT 



THE CATALOGUE 

fiCL] MORE VME/8 
L.J PROTECTION FEATURES 

e USER AUTHENTICATION 

- 12 CHARACTER PASSWORDS 

-ONE WAY ENCRYPTION 

- SUCCESS OR LOCKOUT WITH ALARMS 

- TIMEOUT DURING LOGIN 

e REVERSE PASSWORDS 

e ACR PROTECTED FILES 

-SECURE IDMS DATABASE SYSTEM 

L-18 



IICLI MAJOR VME/8 SE~URITY FEATURES 

e STRUCTURED USE OF ACR PROTECTION WITH: 

• KERNEL 
• DIRECTOR 
• ABOVE DIRECTOR 
• SUPERSTRUCTURE 

e SUPERSTRUCTURE (USER'S CODE) SUBDIVIDABLE 
BETWEEN 6 ACR LEVELS 

e PURE CODE 

e INSTALLATION ABILITY TO DEFINE WHICH 0/S 
FACILITIES ARE TO BE AVAILABLE TO WHICH 
USERS 

e ADDITIONAL INSTALLATION HOOKS 

e CENTRAL TOTAL ACCESS CONTROL VIA FILESTORE 
CATALOGUE OF SYSTEM OBJECTS 

e LOGGING 

e STRINGENT USER AUTHENTICATION PROCESS 

e REVERSE PASSWORDS 

e INSTALLATION PROGRAMMABLE FILE ACCESS. 
CONTROLS 

COMPUTER 

AIDED 
DEVELOPMENT and 

EVALUATION 

SYSTEM 

L-19 

.., 



pcLI CADES 

CHARACTERISTICS 

e A METHODOLOGY AND A MECHANISM 

e TOP DOWN, DATA DRIVEN, HIERARCHIC DESIGN 

e FORMAL CAPTURE OF DESIGN ON AN I OMS 
DATABASE 

eCOMPLETE DEVELOPMENT CYCLE SUPPORT 

•·SOL LANGUAGE 

L-20 

~· 



CADES CAOES2)0)0L. E) 1110 PAGE 

HOLON EN PARAMETER VAL I OAT OR; 
VERSION OO"f; -
EXT COMMON CHECK, 

10 
11 
12 I 0 

SCLHAC 

MOVE, 
SCANUNQ, 

TRANSLATE_ H l ERA-RCH I C_ NAME, 

EN OUTPUT MESSAGE, 
EN~)XTEN(~HEAP, 

13 EN OUTPUT PHASE, 
il, EN-OUTPUT-LIBRARY OPEN, 
I 5 EN-TRUST([) USERNAME, 
16 EN-TRUSTED-USERNA/'1£ BUFFER, 
17 EN-TRUSTED-USERNAME-CURRENCY, 
18 HO[ON NAMES, -
I'] SELE(fORS, 
20 NON STD PHASES, 
21 GP ,- -

22 ENV DE, 
23 ACTNAME; 
24 FUNCTION 
25 BEGIN 
26 ()2)BYTE ANB ,, 
27 {L) EN ALPHANUMERIC_BREAK, 
28 -AN 

29 (L) EN ALPHANUMERIC, 
30 -NRMC · 

3\ ::_) EN NUMERIC; 
32 RESu:.. T CODE 
JJ Ill SUCCESS; 
34 GNLESS 
35 HOLON NAMES IS NIL 
36 THEN 
3 7 FOR l TO BOUND HOLON NAMES 
JB oo 

)4. 1. 2. 2. E. 311 
PHASE SO 

REF()BYTE HN IS HOLON_NAMES(II; 
UNLESS 

LENGTH HN LE 32 
AND 
CHECK(ANB ,HN ,0 ,N ll) 
AND 
IF 

LtNGTH ..,N 
THEN 

TRUE 
ELSE • A..._PHABETIC 1ST CHAR: 

Fl 

L-21 

HN \0; CiE "A' 
AND 
HN (OJ LE ' z•· 



pcLI FURTHER SECURITY WORK 

e ADDITIONAL SECURITY FEATURES 

e THEORETICAL ATTACK 

e SECURITY TEST PACKAGE 

e REGULAR REVIEWS OF USER REQUIREMENTS 

e SECURITY STRUCTURE APPRAISAL 

e ATTACK EXERCISE 

L-22 



GNOSIS: A PROGRESS REPORT 

BOB COLTEN 
TYMSHARE 

Thank you, Steve. We must have done something right last year to get 

invited again. 

Before my prepared remarks, I'd like to briefly comment on the sub­

jects raised by the preceeding speakers: We fully agree with themes­

sage expressed by Steve, by Terry Cureton, and others. You have to 

walk before you run. We also agree with Axel Vidtheldt that availabil­

ity is a part of security; and with CDC that you can't forget perform­

ance or customer need. With that, let me proceed to this presentation. 

This year it is our intention to bring you up to date on the progress 

we have made since last years presentation. 

For those of you who weren't here last year, we'll briefly review 

Gnosis. 

This will be only the 25¢ tour. Then we'll tell you about the bench­

mark ..... 

Why we selected it 

How it was implemented 

What was the performance 

We'll tell you what we learned and .... 

Where we are going from here and why 

Then Norm Hardy, the Architect of Gnosis will discuss some of our con­

cerns with the mechanisms and approaches of the secure system evalua­

tion effort. 

M-l 



We disclosed Gnosis to this audience at the third DOD 

security initiative seminar. 

Gnosis was started by Tymshare as an in-house research 

program in 1975. , 

It is a capability based operating system designed to 

run on 370 type architecture. It was started by a 

tiny team which has expanded to a small team which 

now consists of six people. 

The Gnosis design objectives were and still are to: 

1. Protect proprietary applications, both programs and 

data. 

2. Provide a high performance environment for transaction 

oriented applications. 

3. Simpl~fy and reduce the cost of maintaining applications. 

4. Provide an operating environment in which applications 

can be easily maintained. 

5. Improving programmer productivity in developing new 

applications. 

6. Provide a facility for developing fault tolerant appli­

cations. 

In summary, we wanted to develop a product to enable us to enter new 

markets. An operating system that is easy to: 

1. Learn 3. Debug 

2. Program 4. and Protect 

M-2 



For those of you who weren't here last year, what follows is the 

25¢ tour. 

First, let me briefly contrast the Gnosis architecture with the 

architectures of systems which we are all familiar with and love 

dearly. 

In most existing systems, applications are located in the same 

·memory space. On the slide that is shown on the left side, stat 

pack are all in the same space. If one part of the application 

has a bug in it, it is not unlikely that it will impact the entire 

application or even other applications. 

This type of breakdown is not only inconsiderate but downright 

rude. It also tends to actively promote paranoia. 

In Gnosis, we keep not only applications but components of appli­

cations separated in separate domains. In Gnosis, each element 

can be totally isolated from every other element. Each of these 

separate elements is a domain. The only way a user or another 

program can access a domain is through an explicitly authorized 

capability. 

If you want to know more about Gnosis you can find more in last 

years proceedings or the Mitre evaluation or write to me or Norm 

at Tyrnshare. 

Let me now briefly contrast our situation today with our situation 

when we last met in 1980. 

Today our development objectives are different from those we had 

1n 1980. 

At that time we were---

Looking for external applications 

Looking for some kind of support 

M-3 



We obtained moral support from the evaluation center team .... and 

this support has been a factor in motivating us to accelerate the 

Gnosis development effort. More about the contribution of the evalu­

ation center team from Norm. 

What we are focusing on now are internal applications. We are not 

looking for external financial support. 

We are now focusing on: 

Developing new tools to facilitate application development 

Producing documentation to help users implement applica­

tions and actually implementing new application, as well as, 

Measuring the performance of the new applications. 

Now I'd like to briefly talk about the benchmark. 

As you probably know, one of the most frequently cited reasons for 

not using capability based systems in the past, was that their per­

formance was rotten. 

We therefore, had to find an application that was both real, as well 

as typical of a class of applications in which many users performed 

a small number of activities simultaneously. 

We wanted the test to be a multi-purpose test. The individual se­

lected to do the evaluation was someone outside the project who works 

for another division. The management of that division wanted to find 

out if Gnosis would run the kinds of applications they wanted to im­

plement. 

Thus we and they both wanted to test the reliability of 

the system under stress. 

We both wanted to know how the system would perform under 

various loads. 

They wanted to know if Gnosis had the functionality to 

run their applications. 

They were concerned that Gnosis was So different that 

normal people couldn't use it. 

M-4 



They wanted to find out how good the documentation 

really was, namely, could their development people 

use it. 

They also wanted to kno~ how much sharing was feasible 

and how easy it was to implement in an application. 

Finally they didn't want to spend a lot of money or time 

to find out if the system was viable and useful on an 

application development environment. 

And, we wanted an application that was fun to implement. 

Because of all these reasons, we selected ''Adventure", a program 

written in PL/1, as the first test program to be implemented in Gnosis. 

"Adventure" is a game similar to ''Dungeons and Dragons" with a spec­

ific cave called the collossal cave. 

Now I'd like to show you what functions were involved in building the 

selected a~2lication and how much code you need to trust. 

This part of the system predates adventure and this is the 

only part needed to implement the adventure application. 

It consists of the kernel and two separate domains, the 

terminal interface and the receptionist. 

The kernal, unlike most familiar operating systems, is small and very 

simple; it functions more as a control program rather than as a con­

ventional operating system. It runs in supervisor mode, it is un­

swappable. The kernel maintains the extended machine architecture, 

provides the basic building blocks and performs operations on them 

on behalf of the user. In Gnosis, capabilities and data are isolated 

from each other so that capabilities which only the kernel can access 

directly cannot be forged or manipulated without authority. We wanted 

to test the kernel under stress. 

The terminal interface system provides the path for a terminal to 

communicate with the adventure game; it converts ASCII code to EBDIC 

and EBDIC to ASCII. 

The receptionist verifies the identity of the caller and the destina-

M-5 



tion on the domain that is being called. 

Next, we built the adventure domain and hooked it to the terminal 

interfact domain. 

The adventure domain contained the same PL/1 program we ran under 

CMS. 

There was an unresolved situation at this point. When the line hung 

up we were left hangins, so we built the line monitor to: 

A) . Recognize the event 

B) . Take the appropriate action 

Well, in the crudest sense, this is all you need to have a single 

adventure. 

But, we assume that like most people, this audience is jaded and having 

developed a taste for adventure you would like to repeat the experience 

and maybe have some friends join you in the game. 

The slide shows that if you want more than one adventure, you need 

to duplicate the adventure and the line monitor domains. 

It is important to point out however, that each line monitor and each 

adventure share most of their code and their data in read.only mode. 

Thus, when more than one player plays simultaneously, it is necessary 

to create multiple instances of adventure. Code is shared in each 

instance of adventure between the terminal interface and the recep­

tionist. 

M-6 



The adventure domains can also share data which is common to all users. 

For example, the description of the cave. 

Thus, the entire amount of storage space required for each instance 

of adventure is only 10 pages of real memory per user, most of it is 

PL/1 variable storage. An interesting note--the adventure program 

was not modified to run on Gnosis even though it was not designed 

"for sharing. 

To build the multiple instances of adventure and the line monitor, and 

to implement policy of what to do when a line disconnects, a new mech­

anism had to be built. This mechanism we called the adventure control­

ler. 

The adventure controller creates more instances of adventure, gives 

them keys, (no one else has keys), namely rights to access. 

The adventure controller also implements the policy for disconnecting 

terminals. When a line is dropped, the line monitor notifies the ad­

venture controller. The adventure controller then destroys the in­

stance of adventure and reclaims all resources owned by that instance. 

In addition to its existing functions, the adventure controller could 

be used to: 

Monitor resource consumption by each user. 

Insert debugging tools. 

Insert auditors for each user. 

As is perhaps more evident in this slide, the entire structure of 

adventure, opera.ting within the Gnosis environment, is very simple. 

A total of only 600 new lines of code had to be written to make it 

work. 500 lines for the adventure controller and 100 lines for the 

line monitor. In this application one must trust the kernel, the 

terminal interface, the receptionist, and the adventure controller 

and nothing else. 

M-7 



There is no operating system as such which needs to be trusted. 

No virtual machine 

No command language 

No loading of programs 

No file system 

No editor 

No system libraries 

Another way of saying this is that when playing adventure in the 

Gnosis environment, "The tail does not wag the dragon." If Marv 

Shaefer were here, he'd say that was a t~oll remark. I would call 

him a bad gnome. 

Now that you know the architecture of the adventure benchntark, let's 

look at how long it took to implement it. 

In reality, the whole thing took a little over one month-, if you 

don't count the first month to get oriented. 

It took 1 man week to do the controller 

the line monitor and 

the linkages 

and two more man weeks to do the multiple version of adventure. Then 

two more man weeks to do the driver and the scripts. 

Now I'd like to share with you some of the comments made by the devel­

oper of the benchmark in his report to his manager. The developer is 

a senior applications programmer. Although he had experience on many 

different operating systems, he had no: 

Capability-based system experience 

Gnosis experience 

Experience with Gnosis debugging tools 

Prior contact with the Gnosis team 

M-8 



* 

GNOSIS FUNCTIONALITY 

"Application programmers can 

learn to use Gnosis in a 

relatively short time" 

* "PL/1 programs can be run 

under Gnosis with very 

little source code modification" 

M-9 



He also noted a few shortcomings: 

Documentation as presently available is unfit 

for man or beast. 

System still needs wprk. 

Now let's look at the results of the benchmark. 

First note the CMS baseline: We used CMS because it was avail­

able. Note: The vertical axis should read cumulative or total 

transaction rate. 

The test was conducted on a 370/158 MOD I with 5 megabytes of 

memory located in Dallas. 

A transaction generator was used to generate one transaction per 

second per user. (That is shown by the 45 degree line.) 

Each CMS transaction needed 77 pages of memory per user and used 

up 150 milliseconds of CPU time allowing a maximum of 6.4 ·trans­

actions per second. 

In this slide, we use the CMS line for comparison. We ran 3 tests 

on subsequent weekends. 

The 1st test labeled 6/1/81 looked pretty bad. 

In the 2nd test on 6/7/81, we reduced resources 

required for each transaction. 

The original Gnosis version used PL/1 refmatted I/0 

to write each line on the terminal. 

PL/1 terminal I/O took up more than half the CPU cycles. We wrote 

a subroutine to replace the PL/1 language call to a subroutine. 

M-10 



Compatable to the one is Cl'1S. 

Test 2 performance dropped off precipitously due to thrashing 

(fixed tables in kernel \vere not balanced) . 

In test 3, on 6/13/81, we understood and partially resolved 

thrashing by better balancing of tables in the kernel. 

While it may appear that Gnosis and CMS performed about equally, 

it is important to note that the CMS tests were running with 100% 

CPU utilization while Gnosis tests ran with much excess CPU capac­

ity. 

The 6/13/81 line in this slide shows what the total transaction 

rate would have been if the transaction driver had been able to 

run fast enough to saturate the CPU. 

At this point, we stopped making changes in the system since we 

had met our objective to beat CMS. 

We are now convinced that we can further improve Gnosis perform­

ance and that Gnosis can be competitive with other I M transaction 

systems. 

vle are aware of many other improvements which could be made by 

reducing system overhead as well as the cost per transaction. 

The top line in this figure could be achieved with 1 man month 

of work to reduce system overhead by removing additional thrashing 

bottlenecks in the kernel. 

In addition, we could increase the transaction rate another 50% 

if we optimized terminal transactions by developing a high perform­

ance terminal interface and by optimizing adventure to allow even 

more sharing. 

M-ll 



These actions would take 2 additional man months and would reduce 

transaction time to 30 MS, reduce memory per transaction to 10 

pages and yield 30 transactions per second on a 370/158 CPU. On 

an IBM 3033 this would mean a potential of between 100 and 150 

transactions per second. 

This is comparable to all, but the fastest IBM transaction process­

ing systems. 

Tyrnshare is increasing the level of support for Gnosis. We have 

been authorized to hire more people immediately. 

The first is: 

* 

Gnosis is moving from R & D to development status. 

We have two applications. 

A switch which is designed to enable users to access 

applications which run on multiple computers without 

effort or a\..rareness on the users part. 

The second is: 

* A transaction processing system for a transportation 

agency which will be continuously updated and accessed 

by many users simultaneously. 

In summary .... what we plan to do during the next year is the 

following: 

* Implement more complex systems. 

* Have a system which is continuously and routinely 

operational. 

* 

* 

Develop tools to facilitate the implementation, 

debugging monitoring and operating the new applica­

tions. 

Insure that the new tools are general purpose and 

that they enhance programmer productivity perform­

ance and the reliability of Gnosis. 

M-12 



Finally, we are now convinced that Gnosis will evolve into a 

system which will be ready for general use in two to three years. 

It is important to note, especially for this audience that: 

* The Gnosis architecture inherently provides a base 

for a trusted environment. 

However, Tymshare's approach to achieve the trusted system object­

ive is different from the traditional approach. And it is not 

clear at this time how the currently accepted trusted system model 

can be mapped into the Gnosis architecture. 

* Norm Hardy, the architect of Gnosis, along with some 

Mitre people perceives a knowledge gap in this area. 

* Norm is going to briefly address our concerns with 

the mechanisms and approaches of the secure system · 

evaluation effort, not as a criticism of the process, 

but rather as a search for a broader set of perspect­

ives. 

Thank you and please help me welcome Norm Hardy to the podium. 

M-13 



G N 0 S I S : 

A P R 0 G R E S S R E P 0 R T 

PREPARED FoR: 

THE FouRTH SEMINAR oN THE DOD 
COMPUTER SECURITY INITIATIVE PROGRAM 

AUGUST 11, 1981 

TYMSHARE INCORPORATED 
CUPERTINO, CALIFORNIA 

P R E S E N I A T I 0 N 0 U I l I N E 

* GNOSIS REVIEW 

* INITIAL BENCHMARK 
-SELECTION 
-ARCHITECTURE 
-PERFORMANCE 

* FUTURE DIRECTIONS 

* CONCLUSIONS AND CONCERNS 

M-14 



I N I R 0 D U C I I 0 N 

* GNOSIS DISCLOSED 1980 

* DESIGN GOALS: 
SECURITY 
PERFORMANCE 

SIMPLICITY 
MAINTAINABILITY 

PRODUCTIVITY 

FAULT TOLERANT 

A P P L I C A I I 0 N A R C H I I E C I U R E 

CoNTEMPORARY GNOSis 

APPLICATION APPLICATION 

ARCHITECTURE ARCHITECTURE 

GRAPHICS 

DATA BASE 

STAT PACK 

APPLICATION 

COMMUNICATIONS 

KERNEL KERNEL 

M-15 



1 9 8 1 S I A I U S 

* CLEAR DEVELOPMENT OBJECTIVES 

* FOCUS ON: 

-DEVELOPMENT TOOLS 

-DOCUMENTATION 

-IMPLEMENTATION OF APPLICATIONS 

-MEASUREMENT 

S E L E C T I N G T H E B E N C H M A R K 

* REPRESENTATIVE 

* ~1ULTIPLE PURPOSE TEST 

-STRESS 

-PERFORMANCE 

-FUNCTIONALITY 

-USABILITY 

- DOCU~1EtiT AT I ON 

* RESOURCE SHARING DH10NSTRATION 

* INEXPENSIVE 

M-16 



KERNEL 

H-17 



KERNEL 

KEP,NEL 

M-18 



KERNEL 

5oo 

100 

2,000 

' 15,000 KERNEL 

M-19 



BENCHMARK It1PLEt1ENIATI ON cP.l ENDAR 

* READING,LEARNING 

* SINGLE ADVENTURE 

* CONTROLLER FOR r1ULTIPLE 
ADVENTURES 

* BENCHMARK DRIVER & 
ScRIPTS 

1 ~10NTH 

1 \VEEK 

2+ '!lEEKS 

2+ HEEKS 

G .. JL.D __ S_L S F U N C T I 0 N A L I T Y 

* "GNOSIS IS ALIVE & WELL AND 
CAN BE USED ft.S A BASE FOR 
MULTIUSER APPL!CJI.TIONS" 

* 11 GNOSIS DOES NOT CONSTRAIN 
APPLICATION DESIGN - HIGHLY 
ADVANTAGEOUS TO THE DEVEI:.OPMENT 
OF COST COMPETITIVE APPLICATIONS, " 

M-20 



GNOSIS FUNCTIONALITY 

* "APPLICATION PROGRAM~1ERS CAN 
LEARN TO USE GNOSJS IN A 
RELATIVELY SHORT TI~1E" 

* "PL/1 PROGRAMS CAN BE RUN 
UNDER GNOSIS WITH VERY 
LITTLE SOURCE CODE MODIFICATION" 

G N 0 S I S S H 0 R I C 0 M I N G S 

* "DOCUMENTATION IS UNSUITP.BLE 
FOR APPLICATION DESIGNERS AND 
PROGRAMMERS." 

* "SYSTEM IS INCOMPLETE AND MORE 
FACILITIES ARE NEEDED TO 
IMPLEr1ENT NEW .~PPLICATIONS. II 

M-21 



lJ.J 
f­
<( 

0::: 

z 
0 

f­
u 
<( 
(/) 

z 
<( 
a: 

1-

CMS PERFORMANCE TEST 

NUMBER OF USERS 

GNOSIS BENCHMARK RESULTS_ 

..r 6/13/81 
~ 

NuMBER oF UsERS 

M-22 



z 
0 

f­
u 
<t 
(f) 

z: 
<t 
IX 
1-

MAXIMUM GNOSIS CAPACITY 

6/13/81 

--[luMBER oF UsERs 

FUTURE PLANS AND DIRECTIONS 

* I NCRE.~SED SUPPORT 

* FROM R & D TO DEVELOPMENT 

* TWO TEST APPLICATIONS 
- SWITCH 
- TRANSACTION PROCESSING SYSTEM 

* CONTINUOUS SYSTEM OPERA II ON 
* NEW GENERAL PURPOSE TOOLS 

M-23 

+ 1 MONTH 

WORK 



George Cotter 

DoD Computer Security Evaluation Center 

c PUTER 

SECURITY 

EVALUATION 

CENTER 

DEPARTMENT OF DEFENSE 
COMPUTER SECURITY EVALUATION CENTER 

@If IC f 01 

stiiNDABDS 
liN II 

PBODLJ<.TS 

''! NIOB 
',t ,f NitS! 

OIREG TOR 

Dlii?W I Y [)IRE!C TOR 

01 f I( I ®I 

IIPPLI! 1\TIC!NS 
SYSTEMS 

E JALWA TIC!NS 

N-1 

POLICY AND 
I!U NAE>EMEN I 

SIAl f 

Off ICE OF 
HESEAR€H 

AND 
DE!:\IEL:OI?MENI 



A LOOK AHEAD ... 
-

e PRODUCT EVALUATIONS 
- CONTRACTUALSUPPORT 
- CDC CYIIHR NOS 
- UNIVAC 1100 OS 

e SYSTEMS EVALUATIONS 
- CONTRACTUALSUPPORT 
- COMMUNICATIONS RELATED 
- D!fiNSISYSTEMS 
- INTIUUGIHCESYSTIMS 

e RESEARCH & DEVELOPMENT 
- C~X INVIRON-NTS 
- NETWORKS 
- UMI!ll 
-DBMS 
- M~OCESSORS 
- TOOLS 

CURRENT ACTIVITIES ... 

• PRODUCT EVALUATION 

e SYSTEMS EVALUATION 

e RESEARCH AND EVALUATION 

N-2 



DOD DIRECTIVE ... 

• RESPONSIBILmES OF DIRECTOR NSA AND OTHERS 

• OTHER APPliCABLE DIRECTIVES 

• COMPUTER SECURITY POLICY 

• CENTER CHARTER 

N-3 



FUNCTIONS ... 

e TICHMCALINTIRFAC! AND SUPPORT 

e CONDUCT IV AlUA noNS Of INDUSTRY, GOVERNMENT PRODUCTS 

• MAMAIN !VAWATID PRODUCT UIT 

• I!STAIIIUIH AND MAMAIN !VAlUAllON STANDARDS AND CRITERIA 

e CONDUCT MLI!CTID COMPUl"ER IECURITY IEVALUA TIONS 

e CONDUCT AND~ .SEARCH AND DEVIELOPHIENT 

e CHAIR DOD COMPU1"ER IECURITY TICHNICAl CONSORTIUM 

e IPONSOR COOHMTWE EFFORTS, UMINARS, WORKSHOPS 

e DEVELOP CONSOUDATID COMPUTER UCURITY PROGRAM 

THOUGHTS EN ROUTE ... 

e COOPERATION II THE KEY INGREDIENT 

N-4 



THOUGHTS EN ROUTE ... 

• COOPERATION IS THE KEY INGREDIENT 

• CENTERS FUNCTIONS .£RE TECHNICAL 

THOUGHTS EN ROUTE ... 

• COOPERATION IS THE KEY INGREDIENT 

• CENTERS FUNCTIONS ARE TECHNICAL 

• CUSTOMER SERVICE MUST DOMINATE ACTIVITIES 

N-5 



THOUGHTS EN ROUTE ... 

e COOPERATION IS THE KEY INGREDIENT 

e CENTERS FUNCTIONS ARE TECHNICAL 

e CUSTOMER SERVICE MUST DOMINATE ACTIVITIES 

e MUST PROVOKE COMMERCIAL DEVELOPMENT 

THOUGHTS EN ROUTE ... 

e COOPERATION IS THE KEY INGREDIENT 

e CENTERS FUNCTIONS ARE TECHNICAL 

e CUSTOMER SERVICE MUST DOMINATE ACTIVITIES 

e MUST PROVOKE COMMERCIAL DEVELOPMENT 

e EPL SHOUlD NOT IE A THREAT 

N-6 



THOUGHTS EN ROUTE ... 

• COOPERATION IS THE KEY INGREDIENT 

• CENTERS FUNCTIONS ARE TECHNICAL 

• CUSTOMER SERVICE MUST DOMINATE ACTIVITIES 

• MUST PROVOKE COMMERCIAL DEVELOPMENT 

• EPL SHOULD NOT BE A THREAT 

• DOD .-ARCH TO PLUG THI GAPI 

THOUGHTS EN ROUTE ... 

e COOPERATION IS THE KEY INGREDIENT 

• CENTERS FUNCTIONS ARE TECHNICAL 

e CUSTOMER SERVICE MUST DOMINATE ACTIVITIES 

• MUST PROVOKE COMMERCIAL DEVELOPMENT 

e EPL SHOULD NOT BE A THREAT 

• DOD RESEARCH TO PLUG THE GAPS 

• PACI AND PMORmll lET CAREFUU..Y 

N-7 



TRUSTED COMPUTER SYSTEMS 

REIN TURN 

THE RAND CORPORATION 

Since June 1978 the DoD Computer Security Consortium has con­
ducted a Computer Security Initiative program, with the goal of 
achieving widespread availability of "trusted ADP systems"* for use 
within the Department of Defense (DoD), in other government agen­
cies, and in the private sector. For the government, "widespread 
availability" means the use of commercially developed trusted sys­
tems whenever possible. Effective January 1, 1981, the Director of 
the National Security Agency (NSA) was assigned responsibility for 
the evaluation of computer security for the DoD and thus will serve 
as Executive Agent for the Computer Security Initiative. One of his 
functions will be the compilation of a DoD Evaluated Products List 
of trusted systems. 

To date, the three major activities of the Initiative have been 
(1) coordination of DoD research and development efforts in computer 
security, (2) identification of efficient evaluation procedures for 
trusted operating systems and their uses, and (3) identification of 
incentives for the computer industry to develop trusted systems as 
part of its standard product lines. This report addresses the third 
task. It analyzes the needs for trusted computer systems in the 
civilian agencies of the federal government, in state and local 
governments, and in the private sector. 

Protection is needed in computer systems to (1) safeguard 
assets or resources, (2) comply with certain laws and regulations, 
(3) enforce management control, and (4) assure the safety and 
integrity of computer-controlled processes or systems. Additional 
incen~ives for implementing trusted systems might be to realize 
opera~ional economies, to achieve marketing advantages, and to 
enhance an organization's public image. 

Protection of programs and data in computer systems involves a 
variety of physical, personnel, and hardware/software security tech­
niques; administrative and operational procedures; and computer­
communication security techniques. The most difficult task to date 
has been the development of trusted operating systems--a necessity 

*A "trusted" ADP (automated data processing) system is one that em­
ploys sufficient hardware and software integrity measures to allow 
its use for simultaneous processing of multiple levels of classified 
and/or sensitive information. See the Glossary of Technical Terms 
in Appendix A for other definitions. 

0-1 



in resource-sharing, multiuser systems to prevent users from 
interfering with each other and to control access to sensitive data 
files or processing operations. The trusted operating systems 
sought by the Computer Security Initiative Program have a high 
potential for providing a solution to many of these problems. 

In general, the use of current computer security techniques 
entails some reduction of system throughput, as well as some modifi­
cation of existing application software or data bases. Some poten­
tial users of trusted systems are concerned about these impacts on 
their existing computer applications. However, there is a clear 
trend in computer hardware architectures and in software development 
toward including features that would be very useful for implementing 
performance-effective trusted systems; thus, performance loss is 
likely to be far less of a problem in the future. Conversion 
requirements for application software can also be reduced by design­
ing trusted systems to be compatible with existing operating systems 
(as has been done, for example, in the KVM and KSOS efforts). A 
data-base conversion may be necessary (e.g., to include 
sensitivity-level information), but this is usually a one-time 
effort. 

Computer security is needed in the civilian agencies of the 
federal government primarily for asset and resource protection and 
for regulatory compliance. Many agencies are responsible for finan­
cial disbursements or collections and thus are subject to attempts 
to perform unauthorized transactions. Trusted systems with 
appropriate operational and administrative controls can protect 
against unauthorized actions, unless these actions are performed by 
malicious or untrustworthy authorized users. Here, additional con­
trols must be designed into the application programs. 

All civilian agencies of the federal government are subject to 
the requirements for data security and integrity of Transmittal 
Memorandum #1 of Office of Management and Budget Circular A-71. 
Personal information on individual citizens that is maintained by 
these agencies is also subject to the confidentiality requirements 
of the Privacy Act of 1974. Trusted operating systems can provide a 
tool for effectively meeting these requirements. 

Protection needs in state and local government computer systems 
are similar to those in federal government systems, although they 
are on a smaller scale and there is considerable variation from 
state to state. Financial disbursements and collections account for 
a large part of state and local governments' computer use, but regu­
latory requirements for security are less stringent; indeed, many 
states have not enacted fair information practices laws, and some do 
not have laws requiring confidentiality of computerized criminal-

0-2 



history or public health information. Although these state agencies 
may have less compelling needs for trusted systems and they may be 
more constrained by economic considerations, trusted operating sys­
tems can greatly enhance the controllability and auditability of 
state and local government computer systems, and as a consequence, 
they would increase public trust in government operations. 

In the private sector, business information that is stored and 
processed in nea~ly all corporate computer systems is, or 
represents, a valuable asset that must be protected. The need for 
effective management control over all operations, particularly those 
that involve computers, is self-evident. Strong accountability 
requirements have been established by the Foreign Corrupt Practices 
Act of 1977, and requirements for ensuring confidentiality of per­
sonal employment, medical, and financial information are included in 
state laws. In addition, federal privacy protection requirements 
are pending that will affect insurance, health care, and financial 
industries in the private sector. Thus there is a strong rationale 
for protection of data and programs in private-sector computer sys­
tems. Trusted operating systems could provide that protection, as 
well as certain collateral benefits in the areas of safety and 
integrity, marketing, and public relations. 

The widespread availability of effective and economical trusted 
operating systems is predicated on computer system vendors' percep­
tions of an adequate market for these systems. The government alone 
cannot provide enough user demand to be attractive; the market must 
also include the private sector. Thus, the situation is somewhat 
circular: A market will develop along with availability, but avai­
lability is influenced by the size of the market. The trusted sys­
tem technology has been developed and is not being demonstrated by 
the Computer Security Initiative, so the technical risk to vendors 
appears relatively small. However, the preceived need to maintain 
compatibility between trusted systems that use new architectural and 
desig~ concepts and the existing equipment and software bases causes 
vendo~s to be cautious about undertaking such development efforts. 

Given the trend in new operating systems and software packages 
toward inclusion of stronger controllability and auditability 
features, it appears that development may evolve naturally toward 
trusted operating systems. A demonstration of a credible rationale 
for acquisition and implementation of trusted systems, as attempted 
in this report, may provide the additional increment of incentive 
for vendors to submit their systems for evaluation and inclusion in 
the Computer Security Initiative's Evaluated Products Lists. 

Trusted systems can contribute effectively to the solution of 
the growing problems of protection of assets and resources, 

0-3 



compliance with laws and regulations, assuran~e of safety and 
integrity, and implementation of full management control. In addi­
tion, trusted systems may provide operational economies, marketing 
advantages, and public-image enhancement. They are needed in a 
variety of applications that constitute a market that should be of 
considerable interest to vendors and that should strongly encourage 
participation in trusted system development efforts. Their use 
could serve the interests of private business and industry, as well 
as public policy, public safety, and national welfare. 

0-4 



NON-DOD TRUSTED SYSTEM 
NEEDS 

R. TURN 

THE RAND CORPORATION, SANTA MONICA, CA. 

AUGUST 1981 

SOURCE DOCUMENT 

R-2811-DR&E 

Trusted Computer Systems: Needs and Incentives for 
Use in Government and the Private Sector 

R. Turn 

The Rand Corporation. Santa Monica. Ca. 90406 

Prepared for The Office of The Undersecretary for 
Defense Research and Engineering 

August 1981 -
OUTliNE 

1. Trusted systems 

2. Generic needs for trusted systems 

3. Civilian agencies of the federal government 

4. State and local governments 

5. Private sector 

6. Concluding remarks 

0-5 



TRUSTED COMPUTER SYSTEMS 

"Systems that have sufficient hardware and soft­

ware integrity to allow their use for simultaneous 

processing of multiple levels of classified and I or 

sensitive information.'' 

DoD Computer Security Initiative Program 

TRUSTED SYSTEM EVAlUATION PROCESS 

System security mechanisms ..... ..:D;:;e;;.:t~er:.,:.m:.:;i.:,:n;;,.e_.,.... level of trustedness 
and their verification 

Mechanisms: 
Prevention 

Detection 

Recovery 

Operations 

Support 

Assurance: 

Specification 

Design 

Implementation 

Verification 

Testing 

TRUSTED SYSTEM SElECTION 

Asset protection 

Rand 

Organization's 
ADP application 
characteristics 

lmply------1 legal requirements 
Control requirements 
Costs or benefits 
Incentives 

Environment considerations: 
Processor coupling 
User capability 
User data classification 

relat1onship 
Developer user trust 

0-6 

I 
Imply 



GENERIC CLASSES OF NEEDS AND 
INCENTIVES 

It Protection of assets and resources 

It Compliance with regulations 

It Management control 

It Systems' safety and integrity 

It Operational economy 

It Marketing advantages 

It Public image 
Rand! 

EFFECTIVE MANAGEMENT CONTROl 

e Important goal in any organization 
e Internal control and auditing in computer 

environment 
It Trusted systems to enhance control 

implementation 
e Tradeoffs 

- Control vs. efficiency and innovation 
- Risk of loss vs. economic pressures 

ASSURANCE OF SAFETY AND INTEGRITY 

e Reliability and integrity of real-time control 

- Hardware reliability 
- Software correctness 
- Resistance to errors and tampering 

e Computer-aided design and modeling 

0-7 



POTENTIAl OPERATIONAl ECONOMY 

e Realization depends on context and situation 

e Elimination of "make-shift" security procedures 

e Reduced duplication, personnel clearances, 
downtime losses 

e Reduced insurance premiums 

OTHER CONSIDERATIONS 

e Cost-effectiveness of trusted systems 

e Impacts on performance 

e lnteroperability and compatibility 

e Security policy versatility 

TRUSTED SYSTEM COST-EFFECTIVENESS 

e Performance losses will be reduced 
Use of hardware features 
New architectures support trusted systems 
Lessons learned are being applied 

e Software conversion can be minimized 
Compatibility will be a design goal 

e Data base conversion may be required 
Additional data fields 
DBMS conversion may be needed 

0-8 

-



TRUSTED SYSTEM NEEDS: 
FEDERAl CIVIliAN AGENCIES- 1 

e Protection of assets and resources 
Massive financial disbursements or 

collections 
- Vulnerable to fraud 
- Trusted systems improve access control, 

audit trails 

e Management control 

e Safety and integrity 

e Operational economy 

TRUSTED SYSTEM NEEDS: 
FEDERAl CIVIliAN AGENCIES- 2 

fl Regulatory compliance 

Transmittal Memo #1, OMS Circular A-71 

Physical, technicaL administrative safeguards required 

GSA regulations 

FPMR 101-35.3 

FPMR 101-36.7 

FPR 1-4.1107-21 

Privacy Act of 1974 

Federal Personnel Manual, Ch. 293, 297 

Freedom of Information Act 

TRUSTED SYSTEM NEEDS: 
FEDERAl CIVILIAN AGENCIES- 3 

e Other considerations 

Funding of security requirements 

Enforcement 

Mission-oriented agencies 

Rand 

Cost-effectiveness of security mechanisms 

Physical and administrative security 

0-9 



TRUSTED SYSTEM NEEDS: 
STATE AND lOCAl GOVERNMENTS- 1 

~ Protection of assets and resources 

~ Regulatory compliance 
Information confidentiality statutes 
Fair information practices laws 
Criminal justice systems 
Pending federal legislation regarding social 

services 

~ Management control 

TRUSTED SYSTEM NEEDS: 
STATE AND LOCAl GOVERNMENTS- 2 

~ Safety and integrity 

~ Operational economy 

~ Other considerations 
Cost is important 
Consolidated systems 
Public perceptions 

TRUSTED SYSTEM NEEDS: 
PRIVATE SECTOR- 1 

e Rationale 

Computers are a necessity 

Concern with interruption and consequences 

Trusted systems needed 

Cost and risk tradeoffs important 

8 Protection of assets and resources 

Business records, accountings of assets and receivables 

Planning, marketing. manufacturing 

Computer-related crime and fraud 

Disgruntled employees 

"Grass-roots" growth of threats -
0-10 



TRUSTED SYSTEM NEEDS: 
PRIVATE SECTOR- 2 

e Regulatory compliance 
Fair Credit Reporting Act ol 1969 

Family Educational Rights and Privacy Act of 1974 

Financial Privacy Act of 1980 

Pending federal laws 

H. R. 1059 Privacy of medical information 

H. R. 1 061 Privacy of public assistance records 

Amendments to Fair Credit Reporting Act 
State laws on personnel records 

TRUSTED SYSTEM NEEDS: 
PRIVATE SECTOR- 3 

Gl Regulatory compliance 
Foreign Corrupt Practices Act of 1977 

Accurate record-keeping 
Management control over access 
Accountability established 

International Data Protection 
National laws: Austria, Canada, Denmark, France, 

Germany. Israel, Luxembourg, Norway, and 
Sweden 

OECD guidelines 
Council of Europe convention 

e Management control 

0 Safety and integrity 
Rea 1- time systems 
Computer-aided design and modeling 

TRUSTED SYSTEM NEEDS: 
PRIVATE SECTOR- 4 

8 Operational economies 
Reduced personnel security costs 
Enhanced auditability 
Reduced security enforcement, training costs 
Savings on insurance. bonding 

4D Marketing advantages 
Security assurance to clients 
Demonstration of concern about confidentiality and privacy 
Reduction of victimization potential 
Enhanced public image 

e Other considerations 
Cost -effectiveness 
Risk tradeoffs 
Management support 

0-11 



CONClUDING REMARKS 

0 Need exists for trusted computer systems 

0 Incentives are there for trusted system use 

0 Potential market is growing 

0 Incentives exist for vendors to produce trusted 
systems 

0 Implementation and operational questions can be 
resolved satisfactorily 

0-12 



DAVID L. GOLBER 

SYSTEM DEVELOPMENT CORPORATION 

THE SOC COMMUNICATIONS KERNEL 

The soc communications Kernel is intended to_support secure 
communications applications, such as secure front ends and 
terminal access systems. It is a minimal operatinq system, 
capability-based, and nas a basic structure that we hope 
will ease the problem of formal specification and 
verification. [1] 

The kernel is oriented towards support ot communications 
systems in that it otters extensive facilities for 
interprocess communications. Because of its restricted aim, 
it does not support dynamic changes, such as creation of 
processes. 

The soc communications kernel has been operational for a 
number ot years in an ARPANET-11Ke DoD system. we feel that 
the capabilities and speed of the Kernel are well-adapted to 
such a system, and are competitive with other systems not 
using a kernelized architecture. 

The Kernel was developed under the primary direction of Dr. 
~!chard ~andell. The design and coding were done by Karl 
Auerbach, David Clemans, and Jay Eaglstun. 

The soc communications Kernel is a descendant of the UCLA 
Data-secure Unix [2] operatinq system. The soc 
communications kernel remains s1mil1ar to the UCLA Kernel in 
the following major areas: 

a. The SOC kernel is a minimalized operating system. 
It is a small areount ot code which exists to 
provide environment and services to processes. The 
processes mav oe regarded as "application" code; 
there is no partitioning of tne ~ernel itself into 
processes. The kernel is the only code in the 
machine which accesses hardware features of the 
machine such as memory protection registers, device 
registers, etc. In a PDP 11/70, the kernel 

[1J Tne question of verification is discussed at 
the end of section 2. 

[2) "Unix" is a trademark of Bell Laboratories. 

P-1 



The soc Communications Kernel August 1981 

consists 
hardware 
machine. 
~ode. 

of exactlY that code which runs in 
"kernel" mode, the privileged mode ot the 
Processes ·run in non•kernel hardware 

b. The soc communications Kernel Is intended to be a 
verifiable operating system. That Is, it should be 
possible to formallY state tne services and 
protections that it supplies and to formallY prove 
that it does what it is intended to do and no more. 

c. It is generally felt that operating system code 
which is interruptable is very hard to verify. 
Therefore it is preferrable for a verifiable 
operating system to run with interrupts completely 
locked out. This is the policy in the case of the 
soc communications kernel. 

d. The soc communications kernel is a capability•based 
operating system. That is, it keeps track of 
processes• allowed accesses to various objects by 
maintaining for each process an array of data 
structures called capabilities, each of which 
describes an object and an allowed access to that 
ooject. 

e. The kernel is entered for one of two reasons: 

An interrupt is received from a device. This 
can only occur while a process is running. or 

A kernel call (request for some kernel action) 
is made bY some process. 

In either case, the Kernel code is entered via a 
trap or interrupt while a process is running, runs 
straight through without interruption and then 
exits. The kernel exits by causing the resumption 
of the execution of the code of some process (which 
may or may not be the process ~hich was running 
when the kernel was entered). 

On the other hand, the soc communications kernel has been 
modified so as to be appropriate for a communications 
environment rather than tor a general user-support 
environment. For this and other reasons, the soc 
communications kernel differs from the UCLA kernel in a 
number of important ways: 

a. The soc communications Kernel does not provide for 
the dynamic creation or destruction of processes. 

P-2 



The soc Communications Kernel August 19tH 

All processes exist fro~ the time that the CPU is 
booted until it is halted. 

b. The SOC communications kernel does not provide for 
swapping of processes in and out of memory. All 
processes are permanently resident in memory. 

c. The 0CLA system runs on a CPU (11/70, 11/45, etc) 
with three hardware modes: Kernel, supervisor and 
user. The kernel runs in kernel mode, while the 
supervisor mode contains code called the "unix 
emulator" which provides an environment very like 
that of standard Unix to "application" code running 
in user mode. In distinction, "application" code 
written for the SOC system runs in supervisor mode 
and makes kernel calls directly. (User mode is 
unused.) soc software thus can run in CPUs with 
only two hardware modes (11/34 and 11/23). (This 
is perhaps more a difference in usage than in the 
kernels themselves. The SDC communicatio~s kernel 
on an 11/70 or 11/45 could support some sort of 
emulator in supervisor mode, which could in turn 
provide some sort of standard environment to code 
in user mode.,) 

d. 

e • 

The SDC communications kernel incorporates very 
extensive provisions for interprocess 
communications. 

In the UCLA system, a "Sch~duler" Process 
responsible for choosing the next process to 
In the soc kernel, processes are not swapped 
so scheduling is much simplified and has been 
part of the kernel. 

is 
run. 
out, 
made 

f. In the UCLA system, a "File ~anager" Process is 
responsible tor giving capabilities to processes. 
In the soc system, most capabilities of processes 
(for instance, the capability to access a certain 
peripheral) are assigned staticallY at the time the 
system is configured, by a proqram c~lled the 
"Superlinker", running under normal Unix. The 
superlinker assembles the CPU memory image and 
gives static capabilities to processes as 
instructed by the "superlinker control file", Which 
is prepared by a human being. It is this human 
being who is ultimately resoonsible for deciding 
what processes are allowed to communicate, etc. 
(Some capabilites are given to and taken away from 
a process dynamicallY as part of the interprocess 
communication facilities; this is discussed in more 

P-3 



The SDC Communications Kernel August 1981 

detail below.) A separate File Manager process is 
not used. 

The SOC communications kernel is written in a version of 
Pascal, augmented to provide certain ~xtensions necessary 
tor the use of P~scal in an operating system. The UCLA 
Pascal-e translator translates this into c, which is then 
compiled norma~ly. The code is written in a top-down, 
highlY modular and methodical method, wnich is intended to 
facilitate verification, altnougn no verification or formal 
specification has been done as yet. 

The SDC kernel does not itself implement a security policy. 
In a typical communications system using the kernel, the 
total security policy would be a result of the properties of 
various parts of the system, of which the kernel is only one 
part. The kernel by itself does not guarantee that the 
security policy is correctly implemented. The kernel is 
only responsible for ~aintaining and separating process 
environments, and providing and regulating interprocess 
communications. Thus, the properties of the kernel are 
related to the total security policy as a lemma is to a 
theorem. 

An example may help to make this clear. 

Consider a CPU which is to act as a sort of terminal 
concentrator. The CPU is to support two terminals, one ot 
which is to carry unclassified traffic only, and the other 
of which is to carry classified tratfic only. The TCP and 
TELNET protocols are to be used to provide services to each 
of these terminals. In order to provide seoaration between 
the classified and unclassified traffic, the TCP and TELNET 
processes are duplicated. The internal situation in the CPU 
can be pictured as followed: 

P-4 



The soc Communications Kernel 

Unclassified I 
Terminal I 

-----------------

Auqust 19131 

Classified 
Terminal 

---------------------------------------·------------------~------IJ v 
-----------------------------------------

Line Driver 
(Part ot the kernel) 

-----------------~-------------·---------I 
v 

Unclassified 
n:LNET 

(A process) 

-----------------A I 
v 

-----------------Unclassified 
TCP 

(A process) 

-----------------
i 

I 
v 

Classified 
TELi~ET 

(A process) 

-----------------I 
v 

-----------------Classified 
TCP 

(A process) 

-----------------... 

' --------------·--... >1 Security , ...... 
I MtiX/Or.MUX 

............ _ i (A process) I<-·-·-

.. 
v 

-----------------i...;et Driver I 
I (Part of the) I 
I (kernel) I 

I .. 
I I 

---------------------------------------------·-------------------

P-5 

I 
v 

To Net 



The SOC Communications Kernel August 1981 

In this figure, the "drivers" are collections of 
subroutines; they are within the kernel, since they must 
manipulate the physical Jevice registers. 

The Security MIJX/DEl·WX process is a process whose 
responsibility it is to separate classified and unclassified 
traffic streams (on reception) and to merge tne streams on 
transmission. We do not speculate here on what basis this 
is done. But it is clear tnat this process is performing a 
highlY security-relevant function. Therefore, the code of 
this process must be appropriately verified. However, it is 
important to point out that the verification of the 
functioning of this process is quite distinct from the 
verification of the kernel. The process is not part of the 
kernel. 

The TELNET and TCP processes are likewise processes, not 
part ot the kernel. because of the scheme diagrammed aoove, 
we can nope to be able to snow that tne malfunctioning of 
any ot these Processes would not be able to violate security 
constraints. (Note that this diagram represents only one 
example of a system which might be build on the kernel.) 

Note that the drivers handle unseparated data; therefore 
they too would need to be verified. However, this is true 
even before we make the observation that they handle 
unseparated data: They must be verified because they are 
part ot the kernel, and all of the kernel must be verified. 

Now we are in a position to discuss the role of the Kernel 
itself. What are the services and protections that the 
kernel provides? 

First of all, the kernel provides and separates the 
environments of the processes. For exa~ple, the kernel sets 
the machine mapping registers when one process runs so that 
the code and data of that process are accessed, and so tnat 
the code and data ot some other process are ~ accessed. 

Second of all, the kernel provides lnterprocess 
communications facilities as specified when the system is 
configured. In the figure aoove, tor example, the various 
arrows represent interprocess communications mechanisms 
called "queues". (These will be discussed in more detail 
below.) 

~hen the system was configured, the responsible person 
specifies what processes are to exist, and what 
communications paths between them are to exist. 

The tool by which this is done is the "superl1nker" 

P-6 



The soc Communications Kernel Auqust 1961 

mentioned above. Tile responsible person oreoares a 
"superlinker control tile". For instance, tor the system 
pictured aoove, the suoerlinKer control file will specify 
that there are to be five Processes. Each of these 
processes has previously been compiled, and its ooject code 
is ready and waiting. the control file specifies where this 
ooject code is to be found. furthermore, the control file 
specifies exactly what queues are to exist in the system, 
what processes are allowed to place information on ~ given 
queue, and What processes are to oe allowed to take 
information ott ot a qiv~n queue. 

This superlinker control file is processed by the 
superlinker proaram, which is running under whatever 
development system is in use. (UQ~ under the kernel.) The 
superlinker prepares the complete memory image ot the CPU. 
In particular, it prepares the kernel tables which establish 
the existence ot the various queues and what processes are 
allowed to enqueue to and dequeue from each one of them. 
(This will be discussed in more detail below.) 

Now we can describe what it is that the kernel is trusted to 
do: the kernel is trusted to correctly implement and 
administer the system described by the suoerlinker control 
file. for example, if the superlinker control file 
describes the system shown in the figure above, then 
verification of the kernel will ensure that the unclassified 
T~LNET process will not be able to dequeue information from 
the queue which is shown as leading from the classified TCP 
to the classified TELNET. 

In order to correctly understand the nature of the security 
policy of the kernel as shown in the example above, it is 
very important to understand: The MUX/DEMUX process may be 
described as "trusted" in that it is trusted by the human 
beings who design, configure and use the system. However, 
it is inappropriate to describea this process as "trusted" 
by the kernel. The kernel does not nave a notion of 
"trusted" process. In particular, there is no "trusted" 
ooolean in the per-process table maintained by the kernel. 
The kernel Knows only what communicatio~s paths each process 
has been autnorized to use. 

In the example, the queue from the net driver to the 
MUX/DEMUX process carries both classified and unclassified 
information, while the queue tram the unclassified TCP to 
the unclassified TELNET carries only unclassified 
information. Thus, trom a security point of view, these 
queues are very different. However, there is nothing in the 
kernel corresponding to this difference in the nature of 
these queues. 

P-7 



The soc Communications Kernel August 19H1 

~e can describe the philosophy here as this: the "real" 
security policy is executed by the person who prepares the 
superlinker control file. The kernel is responsible only 
tor seeing that that person's descisions are enforced. Note 
that this is appropriate for the purpose for which the soc 
kernel has oeen designed. That is, since the system is 
static, there is no need to burden the kernel with code, 
algorithms, etc, tor making security-related descisions. 
Instead, these descisions are made beforehand, and the 
kernel is only responsible for enforcing them. 

Note that in the example, the Line Driver software in the 
kernel handles oath terminals. There is no reason to 
provide two copies of this software; both copies would have 
to reside in the kernel, so as to access the hardware device 
registers, and would have be verified to function Properly, 
as is true for any part of the kernel and the kernel as a 
whole. There would be no hardware separation between the 
two copies. 

Note that as part of its functioning, the driver must take 
data from the queue from the u~a££~~ad TELNET process, 
and place it on the line to the u~~~~~Q terminal. 
Similarly for the classified terminal and tor the other 
oirection of flow. It must be verified that this function 
is performed correctly; but this is covered by the 
requirement that all the kernel functioning must be verified 
to perform correctly. 

If the kernel were to be verified, what is it that would be 
verified? ~hat would be the formal properties that would 
have to be verified to hold? 

The kernel is responsible for 

a. Maintaining and separating process environments. 

b. Providing and regulating interProcess 
communications. 

c. Operating devices. 

Verification of the kernel would require formally stating 
the nature of these responsibilites. (These statements 
would probably include formal statements of the effects of 
the various kernel calls.) Then it would be necessary to 
formally prove that the kernel code.does properly carry out 
these responsiblites. 

As already emphasized, verification of the kernel would be 

P-8 



The soc Communications Kernel August 1981 

only part of what would have to be done to verifY that a 
given system satisfies some security oolicy. various non­
kernel parts of the system, as well as various aspects of 
the total system architecture, would also have to be 
verified. 

Certain parts of the support software used to produce the 
system would also have to be nppropriately verified. 
Clearly, an important part of this software is the 
superlinker. The output of the surerlinker is source code 
versions ot the Kernel tables, which are then compiled, 
linked, and built into a total memory imaqe. These kernel 
tables could be human-inspected, but this would be a very 
difficult task, which itself would use many machine aids. 
If there were any chance of having to do this tedious human 
inspection repeatedly, verification ot the superlinker •ould 
be the proper thing to do instead. 

The Kernel was developed in a context which emphasized the 
production of working code in a relatively short time. for 
this reason, it was decided neither to formallY specify the 
properties of the kernel, nor to attempt to formallY 
demonstrate anything about it. Some such effort may De made 
in the future. 

It is of course the case that code which was not developed 
trom formal specifications may be quite difficult to 
formally verity after the tact, and will almost certainly 
have to be modified in order to be verified. This may be 
true because actual security flaws are found bY the formal 
analysis, or because some aspects of the existing code are 
particularly unamenable to verification. However, there are 
some aspects of the existing kernel the capability 
orientation in particular ... which we hope will ease formal 
verification. 

To begin with, we emphasize that a "process" is not part of 
the kernel, but rather an "application" program for which 
the kernel provides environment and services. No part of 
the kernel is described as a process. 

In a PDP 11/34, the virtual address space of a process 
comprises 64K bytes - each process produces 16•b1t addresses 

P-9 



The SDC Communications Kernel Auqust 19~1 

as it accesses memory. Tnese virtual addresses are 
translated to physical addresses by the memory management 
hardware. This hardware manages the process' virtual memory 
space in eight pieces, each of wnich contains 8K bytes. 
Tnese pieces are the ~pages" of a process' virtual address 
space. 

These pages ar~ used as follows: 

a. one page accesses the "library". This is a 
collection of commonly useful subroutines. A 
typical routine would be a routine for converting 
between a machine clock, which might read in 
seconds past January 1, 1970, to human time (date 
and time). The library is read-only to all 
processes. 

b. One or more pages are used to access the orocess' 
text ••• that is, its executable code. This access 
is read•only. 

c. One or more pages are used to access the process' 
data area ••• that is, the area in which 
initialized variables are kept. This area is 
normallY read-only, but may be made writeable, by 
special instructions to the superlinker. 

d. one or more pages are used to access the process• 
so-called ~bss" area ••• that is, the area in which 
variables which are initiallY zero are kept. This 
area is read·~rlte. 

e. The last page (page seven) accesses 
"communications block". This is an 
snared by the process and the Kernel 
communications between a process and 

the process• 
area of memory 
and used for 
the kernel. 

f. The remaining pages (there are at most three) are 
tree to be used to "map in" blocks of data passed 
from orocess to process using the interprocess 
communications mechanisms described below. These 
are referred to as mappable pages. 

In a11 11/70, the situation is similiar, except that an 11/70 
has "separate I and D space", and so has twice as many pages 
for each process as the 11/34. 

When an event occurs which affects a process, the kernel 
posts a notification of the event in the process• 
communications block, ~hich the process looks at in the 
course of its main loop, which is described below. (Section 

P-10 



The soc Communications Kernel 

4 discusses traps and interruptions in more detail.) 

In tne soc system, programmers write code which makes kernel 
calls directly. There is no "emulator" to provide tne 
running process with an environment like that of some 
familiar operatinq system. (This is in distinction to tne 
UCLA Data secure UNIX system.) Since the Programmer is 
writing code to run in an environment which is unfamiliar to 
him, we have taken the approach of providing a standard 
top-level structure tor every process. (This also makes 
understanding a process written by another programmer 
considerably easier.) 

This standard top-level structure is implemented by 
providing each programmer with tne same "main" routine. 
(Again: we emphasize tnat this "main" is part of the 
process, not part of the kernel.) The entire code of a 
process consists of subprocedures called from this highest 
level procedure "main". (In particular, there are no 
"interrupt handler" or "completion" routines which are 
initiated directly by tne kernel.) The outline of main ls as 
follows: 

procedure main; 
begin 

end; 

initialize; 
while (true) do 
begin 

end: 

set "summary" flag in communications block to false. 
While (some external event remains unprocessed) do 
oegin 

Call procedure to process that external event. 
end; 
K_SLEEP; 

The procedure "main" is caused to begin executing when the 
system is oooted. Main never exits. 

Tne process begins by calling an initialization subroutine, 
and then enters an infinite loop. This loop basically does 
nothing except process external events. ("External" here 
means external to the process.) The process detects that 
there are external events to be processed bY examining its 
communications block. When there are no external events to 
be processed, the process makes the system call K_SLEEP to 
give up the CPU until some external event occurs. When an 
external event does occur, the kernel awakens the process, 
which resumes execution just as though the K_SLEEP call had 
returned immediately. 

P-11 



The soc Communications Kernel 

from the ordinary programmer•s point of 
process to run under the sue kernel 
various procedures which are called· 
procedures which they in turn call, etc. 

August 1981 

view, writing a 
consists in coding 
from main, tne 

1'he "summary" flag in the communications block is used in 
conjunction witn the K_SLEEP call to avoid a possible race 
condition. 

(If tne summary flag were not used, the following miqht be 
possible: 

A process has processed all previously pending external 
events, has decided that there is nothing more to do, 
but has not yet made the K_SLE~P call. Now an external 
event occurs. The kernel posts a notification of the 
event in the process• communication block. However, 
the process has already decided to go to sleep. The 
process now makes tne K-SL~EP call. As far as tne 
kernel can see, the process has disposed of the new 
event. Thus the process goes to sleep without handling 
the event, and might even sleep forever.) 

The summary flag avoias tnis race condition as follows: Any 
time that the kernel posts an external event to a process, 
it sets the summary flag in the process* communications 
block to "true". If the summary flag is true when the 
K_SLEEP call is made, then the process is not put to sleep; 
the K_SLEEP call returns immediately. It is easy to see 
that this mechanism, and its usage as in "main" above, 
avoids the race condition. 

The kernel operates with dll interrupts locked out (PDP-11 
priority 7). Thus, if a device wishes to interrupt while 
the Kernel is executinq, the interrupt will remain pending 
until the kernel exits and a process starts to execute. 
Then that process will be immediately interrupted. 

Suppose that an interrupt occurs while a process is 
executing. The CPU will ce interrupted and the kernel will 
handle the interrupt. When the process resumes executing, 
it w111 resume at exactly the place at which it was when the 
interrupt tooK place. In this sense, the interrupt is 
transparent to the process. 

If the interrupt implies that some process should be 

P-12 



The SDC Co~munications Kernel August 1981 

notified of a certain external event, then the kernel posts 
a notification in the communications olock of that process. 
The process is a~akened if it was previously asleep. If the 
notified process happens also to be the process that was 
running Nhen the interrupt took place, then the process 
finds out aoout the event when it returns to its "main" 
routine and examines its communications block. 

Thus a process runs without interrupts visible to that 
process. The only possible race conditions that miqht 
affect a process are concernerl with the reception ot 
notitications of external events. Tnese problems are 
handled by tne summary flaq and the provision of a standard 
"main". Thus, a programmer can ~~oduce code tor a process 
without considerations of race conditions, critical areas, 
etc. This is clearly of great benefit in a security• 
oriented system ~hict1 is also production-oriented. 

The only trap used in tne system is the so-called "EMT" 
trap, wnich is used by a process to make a Kernel call. The 
occurence of a trap while in kernel mode would indicate a 
bug in the kernel code. In this case the kernel halts the 
machine. A trap other tnan the EMT trap while a process is 
running indicatPs a bug in the code of the process. The 
kernel handles this by causing the process to be re-entered 
and restarted at a low virtual process address. 

The kernel maintains for each process a "capability list". 
This is an array of records, called "capability slots". An 
index into this array is called a "capability index". A 
capability slot, if not empty, contains a "capability". A 
capability names some "object" and describes an allowed 
"access" to that object. Some examples: 

a. A (statically defined) section ot a disk is an 
object. ~eading and writing are the two important 
accesses. 

b. The central clock maintained by the kernel ls an 
ooject. The only access which may be given by a 
capabilitY to the clock is the ability to set the 
clock. (Any process is allowed to read the clock 
without having an explicit capability to do so.) 

c. A block of memory is an object. Readinq and 
writing are the two important accesses. 

P-13 



The soc Communications Kernel August 1981 

The capability 'list for each process is maintained by the 
kernel. some capabilities are placed in the list by tne 
superlinker at the time that the CPU memory image is 
prepared, ~hile other capabilities are placed in or removed 
from the list in response to kernel calls. The process qets 
no access to its capability list, either read or write. 

A capability s~rves not only to define what accesses a 
process has to a given object; it serves to actuallY 
identify that object. For example, suppose that one process 
communicates with another process via a "queue", as 
discussed further below. When enqueueing information to the 
other process, the process names the queue by giving the 
capability index to the capability ~hicn gives the process• 
access to its end of the queue. 

As another example, suppose that a certain process is to be 
allowed to set the system clock. The superlinker control 
file will contain lines instructing the superlinker to set 
into the process• capability list a capability to set the 
clock. The superlinker control file, in the part describing 
tne capabilities Which the process is to have, will contain 
a line such as 

clock capability on 12 

This specifies that the process is to have a 
set the system clock, located at index 12 in 
list. When the process makes the K_SET_TIME 
one of tne parameters will be the number 12. 
call is 

capability to 
its capability 

system call, 
In fact, the 

~hen this call is made, the kernel will check slot number 12 
of the processa capability list to see if it contain a 
capability to set tne clock. Since it does, the kernel will 
do what the call asks it to do, namely to set the clock. 
~ote that the kernel does not search the capability list of 
the process for a capability allowing the process to do what 
it nas asked to do. 

If the process by mistake made the call 
k_SET-TIME(13,new_time), the kernel will look in slot number 
13 of the process• capability list. Since this slot does 
not contain a capability to set the clock, the call will 
tail. That is, the kernel will give tne process a return 
indicating that the call tailed because of a "bad 
capability" - that is, the capabilitY at the indicated 
capability index was not what was required. Also, the clock 
will not be set. 

P-14 



The SDC Communications Kernel August 1981 

Notice tnat although the process cannot either read or write 
its capability list, since that list is maintained entirely 
by the kernel, the process must know what is in each 
capaoility slot. Capabilities are placed in the capability 
list of a process eitner statically oy tne superlinker, liKe 
the capability to set the clocK, or else as a result of 
kernel calls made by tne process, as in the case of qetting 
a data block as described below. Thus the process can keep 
track of the entries of its capability list without in fact 
being able to read it. 

This section describes the major method of interprocess 
communications under the SDC kernel, namely the enqueueing 
and dequeueing of clocks. (Tnere are other methods of 
interprocess communications wt1lch are not described here.) 

The kernel maintains a pool of free memory blocks. These 
are blocks of 128 bytes ot memory (in our current 
implementations). The blocks are clear as kept in the free 
pool. ~hen one process ~ishes to send a messaqe to another 
process, the sequence of events is as follows: 

a. The first process gets a clock, 
information in it. 

and writes 

b. The first process places the block on a queue to 
the second process. 

c. The second process taKes the blocK off the queue 
and reads the information from it. 

d. The second process returns the block to tne kernel, 
which clears it and puts it oack in the free pool. 

In more detail, the steps are as follows: 

The first process makes a K_GET-DATA-BLOCK kernel call. An 
argument to this is a capability index. This Must be the 
index to a currently empty capability slot. The Kernel will 
remove a blocK from the free pool and place a read-write 
capability to the blocK in the specified slot. 

The process then makes a K-MAP call. This specifies the 
capability index where the capability to the blocK is 
located, and one of the process' virtual pages, which must 
be unused. The kernel in res9onse sets the memory 
management hardware to maKe the blocK appear at the 

P-15 



The soc Communications Kernel 

beginning of that oaqe of the process• virtual address 
space, giving the process read and. write access to the 
block. This is called "mapping ·tne clock in". 

The process can now read and write the block, usino 
references to a data structure which is forced to reside at 
the approoriate location in the process' virtual address 
space. 

~ow, tnis sequence ot operations is a natural pair: when a 
process gets a data block, it will al~ost certainly want to 
"map the block in" to access it. Thus, these two calls can 
be comoined for qreater efficency. This is in fact what has 
been done. That is, the K_GfT_nATA block call has 
additional parameters which will allow the calling Process 
to map the block in as part of the call. 

The process then makes a K_ENQU~UE call. The parameters 
here are the capabilitY index naw.ing the block, and the 
capability index naming the enqueue end of the queue. (The 
queue is defined, and the capability to the queue is given, 
by the superlinker.) In response, the kernel removes the 
capability to the block from the first process' capaoility 
list, puts the block on the queue (which is maintained 
entirely by the kernel), and unmaps the block, so that ·the 
process no longer has access to it. It posts a notification 
to the second process that the queue has something on it, 
and wakes the second process if it is asleep. 

The second process makes a K-DEQUEUE call. The parameters 
here are a capability index to the dequeue end of the queue, 
and a capability index to an unused slot in its capability 
list. The kernel removes the block from the queue. and puts 
a capability to that block in the specified slot. The 
normal sequence of events is that a receiving process will 
first dequeue a block and then map it in, similiar to the 
situation in tne case of the K_GET-DATA-BLOCK call. 
Therefore the K_DEQUEUE call has optional parameters by 
which the calling process asks tne kernel to map the 
oequeued olock in to a specified virtual page. 

The second process can n~w read the oata in the block. 

The second process finally makes a K_RELEASE-DATA_BLOCK 
kernel call, specifying the capability index at which the 
capability referring to the block is located. The kernel 
removes the capabilit~, unmaps the block from the process• 
virtual memory space, clears the block and returns it to the 
free pool. 

The aoove descriPtion is one of the simplest of the 

P-16 



The soc Communications Kernel Auqust 1981 

interprocess co~munications mechanisms provided by tne soc 
kernel. One of the more interesting variations js the 
ability of the kernel to regulate write-access by a Process 
to the contents of a block on a basis of a finer granularity 
tnan the wnole olocK itself. 

This facility might be useful if there were a process that 
should be allowed to modify certain fields in a block, but 
not otner fields. It might be the case that some process 
receives a block from another via a queue, and should be 
allowed to modify a "header" field within the block, but no 
other part of the olock. 

This can be achieved in tne soc kernel as follows: Special 
instructions are placed in the superlinKer control file. 
These instructions include a specification (namely, a bit· 
mask) of which bytes of the blocks dequeued from a certain 
queue tne process in question is to be able to alter. The 
superlinKer then configures the kernel's tables in a special 
way. Now when the process dequeues a olock from the queue 
in question, the process gets a read-only capability to the 
block. When the process uses th~ K-MAP call to "map the 
blocK in", the kernel sets the hardware mapping registers so 
that the process gets only read-access to the blocK. The 
process sets the fields it is permitted to set by making a 
K-WRITE-BLOCK call. The parameters to this call are the 
capability index to the blocK, along with (the address of) a 
buffer ot 128 bytes in the process' data space. The kernel 
will then copy from that buffer to the blocK those bytes 
which are indicated by the bit-mask supplied to tne 
superlinKer DY the superlinker control file. 

This Kind of tine-granularity control must be imPlemented bY 
the kernel software, since the 11/70 memory management 
hardware does not have the necessary capabilities. 

The kernel maintains 
incremented every 10 
clock device. This can 
K-GET_TlME kernel call. 

a 48-bit "fast" clock which is 
microseconds, usinq the OEC KW11-P 
be read by a process, using the 

The kernel also maintains for each process a "slow" clock. 
This is a counter in the Process' communications blocK which 
is incremented every half-second. By setting variables in 
its communications block, a process can arrange tor the 
kernel to qive it (the process) an "alarm" notifica~ion 
after a specified number of halt-second ticks. 

P-17 



The soc Communications Kernel Auqust 19~1 

By using the slow clock and the associated alarm mechanism, 
a process can implement any sort of facilities for 
maintaining multiple named timers, as it chooses. ~ote that 
using the slow clock and the alarm mechanism do not require 
system calls. The associated system overhead is thus quite 
low .. 

The kernel allo.cates time among processes by time slicinq at 
one-tenth second intervals. 

The SDC kernel has so far been implemented on the PDP 11/70, 
11/34, 11/23 and 11/03. (The 11/23 and 11/03 
implementations are modifications: the 11/23 version allows 
interrupts, While the 11/03 version is more properlY viewed 
as a kernel emulator.) 

The code is written in a modified version of Pascal, as used 
in the UCLA kernel, with small amounts of assemblY language. 

The 11/70 version of the code comprises approximately 2500 
Pascal statements, including drivers for the DH11, DL11, 
RX01, RP05, TE16, and other devices. This becomes 
approximately 30000 bytes of instructions. (Total kernel 
size, including all tables, is extremely dependent on the 
system being configured: the number of processes, the sizes 
ot their capability lists, the number of queues, etc.) 

The times required tor some kernel calls is shown below. 

P-18 



The soc Communications Kernel 

K_GET-TIME 
(Read tast clock.) 

t\_GET_O~TA-nLOCK 

(Get nlock and 
map it in.) 

K_E!IJQUi£Ur 
(Put bloc!< on 

queue.) 

K_OEQUEUE 
(Get block off 

queue and roap 
it in.) 

K-R~LEASE-DATA-BLOCK 
(Clear block and 

return to pool.) 

11/70 

0.,81 

1. 5 

1.7 

1.9 

2.0 

August 1981 

11/34 

milliseconds 

milliseconds 

3 .. 1 milliseconds 

3 .. 5 milliseconds 

4.4 milliseconds 

The only one of these calls wnich has an equivalent in the 
Unix system is tne K_GET-TIME call. The Unix "time" system 
call takes .31 milliseconds on the 11/70. [3] 

we can use these numbers to get estimates of the bandwidth 
of the enqueue/dequeue in~erprocess communication path under 
several assumptions. 

First ot all, consider the following situation: 

--------- ---------
A 1 ................ >1 B 1------>t c 

-·------- --------- ---------
rlere, we are supposing that the blocKs ~re prepared by A, 
processed by B, and consumed and released oy c. The total 
kernel call overhead associated with B receiving and 
transmitting one 128-byte block is 

---------------[3} All times discussed below will be tor the 
11/70, unless specified otherwise. 

P-19 



The soc Communications Kernel 

time tor K-DEQUEUE 
time for K-~NQUEUE 

total 

1.9 ms 
1.7 ms --------
3.6 !liS 

August 1981 

This corresponds to a throughput of aoout 35K bytes per 
second. 

A secona situation is the following: 

---------
A 

---------
Here, we suppose that A ~ets a block, prepares a messaqe, 
and enqueues the block to B. b dequeues tne messa7e, reads 
it, and then releases the block. The total kernal call time 
per 128-byte block here is 

time tor K-GET-DATA_ciLOCK 1. 5 ms 
time for K-ENVUEUE 1 .. 7 ms 
time tor .K-DEQIJEUE 1 .. 9 ms 
time for K-RELEASE-DATA-BLOCK 2 .. 0 ms --------

total 7.1 ms 

This corresponds to a throughput of aoout lBK bytes per 
second. 

This calculation does not allow for the time necessary to 
switcn processes so as to allow A and 8 to both run, and 
tnus may seem unduly optimistic. However, it is actuallY 
quite realistic. when a system is heavily loaded, as is the 
case of interest for throughput calculations, process A 
would typically have a number of external events to process 
wnen it wakes up. A will then process all of these events, 
producing a number of blocks which it enqueues to B, before 
it (A) ·goes to sleep, letting B run. B then will process all 
these input blocks at one scheduling. Thus the time 
required to switcn from A to B is divided among this number 
of blocks, and so does not·greatly affect the throughput. 

The time required to switch processes is, however, of some 
interest. The experiment 

P-20 



The soc Communications Kernel August 1981 

--~------ ---------
A t------>1 

--------- ---------
was re•run in such a way as to force B to be scheduled every 
time A sent one block. The following figure shows the times 
used to send one block. Note that both processes used the 
standard "main"; the test did not separate out the time in 
main from tne time actually in the kernel. 

<--~-- Process A -----> <----- Process B -----> 
Enqueue Kernel Dequeue 

I I I 
Get I Exit I Enter I Release 

block I main I main I block 
I I I I I I I 
v v v v v v v 

< 1.5 > < 1.7 > <--------- 10 ----------> < 1.9 > < 2.0 ) 

<------------------------- 17 -------------------------·> 
This shows a worst-case time of 17 milliseconds for a 129• 
byte blocK. This corresponds to a throughput of 7.5K bytes 
per second. 

It should be remembered that tnese throughputs are based on 
the use of 128-byte blocks, as in our current 
implementations. The use of larger blocks would be a minor 
cnange, and would result in proportionally larger 
bandwidths, since kernel call times are independent of the 
size of the block. [4) For example, if 256-byte blocks were 
used, the throughputs above would nearly double, giving 
values of 70K, 36K, and 1~K bytes per second. 

In considering these speeds and throuqhputs, it should also 
be pointed out that the soc kernel, although it has been in 
use for some time, has not been extensively worked over to 
increase its speed. Effort in this area would undoubtedly 
pay off. 

[4] with the exception of the K-RELEASE-DATA-BLOCK 
call. 

P-21 



The SDC Communications Kernel August 1981 

In comparison, the throughput of a Unix pipe, on an 
otherwise-idle 11/70, is about 25K bytes per second. This 
is the rate when a sending process sends in units of 129 
bytes. Increasing the send unit to 1280 bytes leaves the 
throughput rate approximately unchanged. 

The SDC kernel does not attempt to deal with denial-of­
service threats. That is, a malicious process could cause 
CPU usefulness to be so degraded that the CPU could perform 
no useful work. For example, a process could (potentiallY 
but improbablY) get and keep a large numoer of blocks. 
(This threat is somewhat limited: a process cannot get more 
olocKs than it has slots in its capability list. This is a 
per-process parameter in the superlinKer control file.) 

Facilities could be added to the SDC kernel to address some 
denial-of•service issues, out it should be pointed out that 
it is consistent with tne objects of the soc kernel not to 
worry about denial-of-service issues. The reason is that 
there are no "optional" processes in a communications 
processor of the kind that the kernel was constructed to 
support. That is, the correct functioning of each process 
is necessary tor the system to provide correct service. It 
any process is not performing its tasks correctly, service 
will be denied, and the kernel cannot do anything about it. 
However, security is preserved regardless of service 
denials. 

10.0 

The soc Kernel was coded several years ago. It is currently 
operational for the Department ot Defense on a number of 
CPUs functioning as special communications controllers and 
network front ends tor ARPANE1-l1ke packet network terminal 
and host interfaces. uur experience so tar snows that the 
resulting syst~m provides throughput ~hicn is competitive 
with otner systems not us1ng a Kernelized architecture. 

P-22 



The SDC Communications Kernel August 1981 

Kampe, M., et al. The UCLA Data Secure Operating System. 
Tech. Rep., UCLA, July 1977. 

Popek,G., and Farber, D. A Model for Verification of Data 
Security in Operating Systems. Comm. ACM, 21 9 (Sept 1978) 
737•749. (Contains other pertinant references.) 

Walton, E. The UCLA Kernel. 
Dept., UCLA, 1975. 

Master's Th., Comptr. Sci. 

P-23 



THE SOC COMMUNICATIONS KERNEL 

e AIMED AT SUPPORTING SECURE COMMUNICATIONS APPLICATIONS: 

- FRONT -ENDS 

- TERMINAl ACCESS SYSTEMS 

- ETC. 

e TYPICAl PROCESSES RUNNING SUPPORTED BY THE KERNEl WOUlD BE 
COMMUNICATIONS PROTOCOlS, ETC: 

- TCP 

- IP 

e SUBJECTS OF THIS TAlK: 

- SECURITY POliCY 

- SOME KERNEl MECHANISMS 

- CURRENT STATUS AND RESUlTS 

SysternOeveloprnent~ 

FEATURES 

GENERAl "KERNEl" FEATURES: 

e MINIMAl OPERATING SYSTEM, PROVIDES 

PROCESS ENVIRONMENT 

SCHEDULING 

HARDWARE OPERATION 

DEVICE DRIVERS 

INTERRUPT HANDLING 

e NON-INTERRUPT ABLE 

e INTENDED TO BE VERIFIABLE 

e CAPABILITY -BASED 

P-24 



FEATURES (Cont'd) 

SPECIALIZED FOR COMMUNICATIONS ENVIRONMENT 

111 NO DYNAMIC CREATION OF PROCESSES 

e NO SWAPPING 

111 EXTENSIVE INTERPROCESS COMMUNICATIONS FACILITIES 

o SECURITY POLICY 

HUMAN DECIDES "NEED TO KNOW" AMONG PROCESSES WHEN LOAD 
IMAGE IS BUll T 

ALLOWABLE INTERPROCESS PATHS SPECIFIED BY HUMAN WHEN 
lOAD IMAGE IS BUll T 

KERNEL SUPPLIES AND REGULATES INTERPROCESS COMMUNICATIONS 
PATHS AS SPECIFIED 

KERNEl DOES NOT DISTINGUISH BETWEEN "TRUSTED" AND 
"UNTRUSTED" PROCESSES. AlTHOUGH HUMAN MAY 

KERNEl DOES NOT KNOW ANYTHING ABOUT SECURITY POliCIES SUCH 
AS THE "STAR PROPERTY" 

A TYPICAL APPLICATION 

--, 
r-~------~----------l-IN_E_O_R_IV_E_R----------~----~~ I 

!PART OF THE KERNEL! 

TO NET 

P-25 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

_______ _j 



HOW THE HUMAN SPECIFIES 
COMMUNICATION PATHS 

(Placing into the kernel his decisions about need-to-communicate 
among the processes) 

• THE SUPERUNKER CONTROl FilE 

SAMPLE SITUATION: 

PROCESSES A, B. C. D 

"QUEUES" X. Y 

L---A--~--------~X~------~·~1 ---B---~ 

L---c--~--------~v--------~·~~---0--~ 

HOW THE HUMAN SPECIFIES 
COMMUNICATION PATHS 

THE SUPERUNKER CONTROl FILE 
system DEMO 
cpu is an 1117 0 with . . . bytes of memory 

process A 
wants 

code 

process 8 
wants 

code 

process C 
wants 

code 

process D 
wants 

code 

enqueue-access to queue X . 

/ .. ./a.obj 

dequeue-access to queue X . 

. . /b.obj 

enqueue-access to queue Y . 

. ./c.obj 

dequeue-access to queue Y . 

! . . .!d.obj 

P-26 



SUPERUNKER FUNCTION 

~ INITIALIZED TABLES TELL THE KERNEL 

WHAT PROCESSES EXIST. 

- WHAT QUEUES EXIST. 

- WHAT PROCESSES HAVE ACCESS TO WHAT QUEUES, 

- ETC .. ETC. 

1 
TOTAL 

SYSTEM BUILD 

j 

~ SUPERLINKER AND OTHER SYSTEM-BUILD UTILITIES TRUSTED IN SAME 
SENSE AS COMPLIER. 

THE BOTTOM liNE 

HUMANS ARE RESPONSIBLE FOR: 

~ DESIGNING SYSTEM 

~ DECIDING WHICH PROCESSES MUST BE TRUSTED 
(i.e. BY THE HUMAN, NOT THE KERNEl) 

~ APPROPRIATELY VERIFYING lOR?) THESE PROCESSES 

~ WRITING THE SUPERLINKER CONTROL FILE 

KERNEl IS RESPONSIBLE FOR 

ALLOWING PRECISELY THE INTERPROCESS COMMUNICATIONS SPECIFIED 
BY THE SUPERUNKER CONTROL FILE 

~ THE KERNEl ODES NOT ITSELF IMPLEMENT ANY PARTICULAR 
SECURITY POLICY ("STAR PROPERTY" OR ... ). 

~ THE KERNEl HAS NO NOTION OF "TRUSTED" OR "NON-TRUSTED" PROCESSES. 

(CERTAIN PROCESSES MAY BE TRUSTED BY THE HUMAN.) 

~ THE KERNEL DOES NOT PROTECT AGAINST "DENIAl-OF-SERVICE" THREATS. 
System Oevelopment Corporation 

P-27 



PROCESS STATES 

ASlEEP: THE PROCESS HAS NOTHING TO DO AND GETS NO 
CPU TIME UNTil SOME EVENT EXTERNAl TO THE 
PROCESS CAUSES THE KERNEl TO AWAKEN THE PROCESS 

AWAKE: THE PROCESS Will GET CPU TIME. 
THE AVAilABlE CPU TIME IS AllOCATED AMONG 
All THE AWAKE PROCESSES IN A ROUND-ROBIN 
FASHION, IN 1/1 0-TH SECOND SliCES 

I ASLEEP I 
PROCESS MAKES 
K-SLEEP SYSTEM 
CALl 

EVENT EXTERNAl TO 
PROCESS ARRIVES TO 
!IE PROCESSED 

I AWAKE I 

PROCESS VIRTUAl ADDRESS SPACE 
UN A PDP 11/34) 

177777(8) 

PAGE 7 

160000(8) 

PAGE 6 

140000(8) 

PAGE 5 

120000(81 

PAGE 4 

100000(8) 

PAGE 3 

60000(8) 

PAGE 2 

40000(8) 

PAGE 1 

20000(8! 

PAGE 0 

00000(8! 

COMMUNICATIONS 
BLOCK 

("COMM BLOCK") 

"MAPPABLE" 

"MAPPABLE" 

"MAPPABLE" 

CODE AND DATA 

CODE AND DATA 

CODE AND DATA 

liBRARY 

PROVIDES COMMUNICA liONS 
BETWEEN THE PROCESS AND THE 
THE KERNEl 

PAGES NOT USED FOR liBRARY. 
PROCESS CODE OR DATA. OR THE 
COMMUNICATIOI\IS BlOCK. ARE 
"MAPPABlE PAGES". THERE ARE AT 
MOST THREE OF THESE 

PROCESS' CODE AND DATA 
OCCUPY AT LEAST THREE 
PAGES - MORE IF THE PROCESS 
IS LARGE 

PROCESS GETS READ-ONLY ACCESS 
TO COMMON liBRARY SUBROUTINES. 
!FOR EXAMPLE. SUBROUTINE TO 
CONVERT MACHINE TIME TO HUMAN 
DATE AND TIME! 

Syatern~~ 

P-28 



KERNEL-TO-PROCESS COMMUNICATIONS 
11) BEFORE EXTERNAl EVENT 

COMM 
BlOCK 

. . . . . . 

COMM.SUMMARY = FALSE 
+-- COMM.TYPE_a_EVENT = FALSE 

+-- PROCESS EXECUTING. PROCESSING 
SOME PREVIOUS EVENT 

(2) EVENT Of TYPE a, EXTERNAl TO THE PROCESS, OCCURS 

K!:RNEL SETS 
VARIABLES. -+ 
IF PROCESS 

COMM 
BLOCK 

COMM.SUMMARY =TRUE 
+-- COMM.TYPE_a_EVENT = TRUE 

WERE ASLEEP. 
KERNEL WOULD 
AWAKEN IT. . . . - PROCESS CONTINUES EXECUTING, 

UNDISTURBED . . . 
(3) PROCESS LOOKS AT ITS COMM BLOCK 

[ 
COMM 
BLOCK 

. . . . . . 

PROCESS FINISHES PROCESSING 
PREVIOUS EVENT, LOOKS AT COMM 
BLOCK, CLEARS VARIABLES: 

COMM.SUMMARY = FALSE 
COMM.TYPE_a_EVEIIIT = FALSE 

AND BEGINS PROCESSING THE 
NEW EVENT 

System Oeveloprnent Corporation 

PROCESS TOP-LEVEL LOOP 
I !N1T!AliZATION 1 

,.------__ _.,J -. 
I COMM SUMMARY I 

" FALSE 

I K SLEEP l 
I 

PROCEDURE MAIN; 
BEGIN 

END; 

INITIALIZE; 
WHILE ITRUEI DO 
BEGIN 

END. 

COMM SUMMARY ~ FALSE; 
WHILE !THERE ARE UNPROCESSED EXTERNAL EVENTS! DO 
BEGIN 

IF ICOMM.TYPE a_ EVENT) PROCESS a: 
IF (COMM.TYPE _b. EVENT! PROCESS _ b; 

END. 
K SLEEP: 

IF COMM SUMMARY IS TRUE WHEN THE K SLEEP CALL IS MADE. THE PROCESS DOES 
NOT ACTUALLY SLEEP; THE K _SLEEP CALL RETURNS IMMEDIATELY 

P-29 



INTERPROCESS COMMUNICATIONS BY QUEUES 

~--A--~----------x~--------~~~~---8--~ 
STEPS: 

1 . PROCESS A MAKES K- GET- OAT A- BlOCK KERNEl CAll TO GET A 
BlOCK FROM THE CPU-WIDE FREE POOl. 

PROCESS A WRITES MESSAGE IN THE BlOCK. 

2. PROCESS A MAKES K-ENQUEUE KERNEl CAll TO PlACE THE 
BlOCK ON THE QUEUE. 

PROCESS A LOOSES All ACCESS TO THE BLOCK. 
THE KERNEL MAINTAINS THE QUEUE. 

3. PROCESS B MAKES K-DEQUEUE KERNEl CAll TO GET THE 
BLOCK FROM THE QUEUE. 

PROCESS B READS THE MESSAGE. 

4. PROCESS B MAKES K-RElEASE-DATA-BLOCK KERNEl CAll. 

PROCESS B LOOSES All ACCESS TO THE BlOCK. THE KERNEL 
ClEARS THE BlOCK AND RETURNS IT TO THE FREE QUEUE. 

Systarn Developrnent Carporaticn 

ACCESSING BLOCK 
SUPPOSE: PROCESS HAS GOTTEN A BLOCK 

CAPABILITY REFERRING TO BLOCK SPECIFIED BY SOME INDEX, 
SAY 17 

PROCESS: K-MAP(17, 140000(8)); 

"1 7" SPECIFIES BLOCK 

"140000(8) SPECIFIES ONE OF THE PAGES OF THE 
PROCESS' VIRTUAl ADDRESS SPACE 

KERNEl: IN RESPONSE TO THE CAll, SETS HARDWARE MAPPING REGISTERS 
OF THE PROCESS SO THAT 

160000(8) 
PAGE 6 

140000(8) ~----------~1·------~·=1 ======== 
128 BYTES OF 
VIRTUAl ADDRESS REFERS TO THE 1 28-BYTE 
SPACE AT 140000(8) BlOCK 

NOTE: SOMEWHAT DEPENDENT ON PDP-11 MEMORY-MANAGEMENT SCHEME 

BUT: HAS BEEN EMULATED ON 11/03! 

System Development Corporation 

P-30 



PROCESS PROGRAMMER'S SETTING 

STANDARD "MAIN" PROVIDED TO EVERY PROGRAMMER 

PROGRAMMER WRITES THE PROGRAM UNITS CAllED FROM MAIN: 

INITIALIZE !INITIAliZE PROCESS) 

PROCESS-a 

PROCESS-b 

(PROCESS EXTERNAl EVENTS OF TYPE al 

(PROCESS EXTERNAl EVENTS OF TYPE b) 

PROGRAMMER'S CODE IS NEVER (lOGICALLY! INTERRUPTED. THE PROGRAMMER 
DOES NOT HAVE TO DEAl WITH RACE CONDITIONS, ETC 

THE PROGRAMMER'S CODE MAKES KERNEl CALLS DIRECTlY. THERE IS NO 
ATTEMPT TO PROVIDE A fAMiliAR PROCESS ENVIRONMENT, SUCH AS A 
"UNIX EMUlATOR" 

THE PROGRAMMER MUST HAVE SOME UNDERSTANDING Of MEMORY 
MANAGEMENT IN ORDER TO USE THE INTERPROCESS COMMUNICATIONS 
MECHANISMS 

STATUS 
WRITTEN IN MODIFIED PASCAL. 

NOT fORMALl V SPECIFIED 

INTENDED TO BE "VERIFIABLE" 

VERSIONS FOR 

SIZE 

PDP 11/70 
PDP 11/34 
PDP 1 1/23 (INTERRUPTABLE) 
PDP 11/03 (KERNEL "EMULATOR") 

11/70 VERSION, INCLUDES DRIVERS FOR 
DH, Dl !SERIAL LINE INTERFACES) 
RP !DISK) 
RX !FLOPPIES) 
TE !TAPE) 
AND MORE 

~2500 PASCAL STATEMENTS 
~30,000 BYTES OF CODE 

DATA SPACE SIZE EXTREMELY DEPENDENT ON THE NATURE OF THE SYSTEM: 
NUMBER OF PROCESSES, QUEUES. ETC. 

iN USE SUPPORTING FRONT-ENDS, ETC, FOR A SPECIAL DoD ARPANET-LIKE SYSTEM 
System Development~ 

P-31 



INDIVIDUAl CAll TIMINGS 
All TIMES IN MilliSECONDS 

K-GET-TIME 
K- GET-DATA- BlOCK 
K-ENQUEUE 
!<-DEQUEUE 
K- RElEASE- DATA- BlOCK 

11/34 

1.8 
2.7 
3.1 
3.5 
4.4 

KERNEl CAll TIME TO "SEND ONE 128-BYTE DATA BlOCK 

11/34 

K-GET -DATA-BlOCK 
K-ENQUEUE 
K-DEQUEUE 
K- RElEASE- DATA- BLOCK 

DEDUCED BANDWIDTH (BYTES/SEC) 

2.7 
3.1 
3.5 
4.4 

13.7 

9.3K 

11/70 

0.81 
1.5 
1.7 
1.9 
2.0 

11/70 

1.5 
1.7 
1.9 
2.0 

7.1 

18K 

KERNEL BANDWIDTH WOULD INCREASE PROPORTIONALLY IF BLOCK SIZE WERE 
INCREASED PAST 128 

UNIX PIPE BANDWIDTH SAME IF READS AND WRITES WERE DONE IN UNITS OF 
1280 BYTES INSTEAD OF 128 

GET 
BlOCK 

.j, 

System Development Corpc::!ration 

SCHEDUliNG SPEED 

~--A--~~---------------~·1~---B--~ 
PROCESS A 

ENQUEUE 

j EXIT 
MAIN 

t 

KERNEL 

j 
--- PROCESS B 

ENTER 
MAIN 

t 

DEQUEUE 

1 

11/70 
UNIX 

0.31 

11/70 
UNIX 

""251< (PIPE) 

RElEASE 
BlOCK 

... 
-1.5- +-1.7-- -----10 -------+ +-1.9-- +-2.0-

-----------------------17-----------------------. 

!All TIMES FOR< 11/70, IN MILliSECONDS) 

System Oevelcprnent Corporatioon 

P-32 



SUMMARY 

• OPERATIONAL FOR A NUMBER OF YEARS 

• HOPEFULLY VERIFIABLE OPERATING SYSTEM KERNEL. 

• REASONABLE SPEED IN CLASSIFIED DoD APPliCATIONS, 
COMPETITIVE WITH NON-KERNEl SYSTEMS. 

• REASONABLY HOSPITABLE ENVIRONMENT FOR A 
COMMUNICATIONS SYSTEM 

P-33 



Motivation 

MITRE IR&D 
Project 95130 

Secure Packet Switch 

Chris Hisgen 
The MITRE Corporation 

• Survey of Commercial Architectures 

• Exploration of Multiprocessor Machines and the Impact of 
Security Kernels on Them 

• Impact of Multiprocessors on Security Kernels 

Problem 

• Verification of Large Amounts of Software 

• Performance Overhead of the Security Kernel 

• Economics of Minicomputer Based Switch 

• Survivability of Few Node Network 

Q-1 



Approach 

• Functional Partitioning of Packet Switching Tasks 

• Assignment of One Processor per Function 

• lnterprocessor Communication Minimized 

• Processors that Handle More Than One Packet 
Simultaneously Will Have Their Code Verified 

• Most Processors Handle One Packet at a Time and Then 
Have Their Memory Scrubbed Before Handling the Next 
Packet 

• The Functional Partitioning and Communication limitations 
Enforce the Security Policy 

• Modular Node with Many Microprocessors Ensures 
Survivability at lower Cost 

Model Switch 

To/From 
Hosts 

~.__ __ _.. ___ ~ __ ___,.__ __ _. ___ _..__Packet 
Data 
Bus 

Q-2 



,,.~ ,, 

~
'""'' Ho" PO<! Pod 

" .. ~ . - - --

---·-·-· "-·~- ·--

Switch 
Control Bus---

Model Switch 

Switch 
Conlrol 

'Bus 

Pactr.al 
Oala ... 

Q-3 

Network Pod 

Switch 
Control 
Bus 
Packet 
Data 
Bus 

Packet 
-- Deta Bus 



Switch 
Control Bus 

i • • • • 

Host Pod 

................. 

~---• • • 
~------------------~ D • =---• : Processor f••• • • L-----~----~ 

~-------------------~ • • • • : ·---·-•ullii"IIIIIUIIII. 

• • __________ L ________ _ 

-----------L----------------------------------~L-----Packel 
Data Bus 

Switch 

Q-4 

.... 
• • • • • • • • .... 
• • • • • • • ...... • 

-------.. 
1: 

l 
Colleclo< 

Bufle_r . r 
• • : . ---· 

Packet 
Data 
Bus 



0 PlA Programmable logic Array 
Packet Header Scan Processor 
Network Pod 

Pod 
Conlroi-­
Bus 

0 PLA-Programmable Logic Array 
Input Buller (Tandem) 
Network Pod 

Q-5 



Microprocessor Usage 

e Microprocessors Per Pod 

Network Pod: 9 
Host Pod: 10 
Control Pod: 15 

e There Are Only Four Classes of Processor 

Packet Processor 

Packet Buffer 

Control Elements 

Fake Hosts 

Microprocessor Usage, Continued 

e Microprocessors for an Arpanet Style Packet Switch 
Node 

4 Trunk lines 

4 Host lines 

Translates To 

6 Network Pods 

6 Host Pods 

2 Control Pods 

6 )( 9 = 
6 )( 10 -

2 )( 15 = 
Total 

Q-6 

54 Microprocessors 

60 Microprocessors 

30 Microprocessors 

144 Microprocessors 



Open Technical Issues 

• Serial Bus or Parallel Bus 

• 16/32 Bit Bus (Motorola VersaBus, Zilog Z·Bus, 
Intel Multibus) 

• Performance as Function of Load for Various Access 
Protocols (e.g., Polling, Contention, TDMA) 

• Bus Choice Must Satisfy Requirements for Control, 
Addressing, and Data Transfer 

Conclusions 

• The Design is Feasible 

• The Design Benefits from AUTODIN II Experience 

• The Design is a Hardware Casting of the Trusted 
Computing Base 

• The Design Has Less Software to Verify than a 
Comparable Switch 

• Special Purpose Multi-Microprocessor Switches Have Been 
Built Commercially 

Q-7 



E X P E R I E N C E W I T H K V M 

TOM HINKE 

S Y S T E M D E V E L 0 P M E N T C 0 R P 0 R A T l 0 N 
S A N T A M 0 N l C A, C A L I F 0 R N I A 

Systarn Davalaprnant Corporation 

OVERVIEW 

8 KVM IS A GENERAL USE SYSTEM 

8 KVM IS DESIGNED FOR LEVEL 4 CERTIFICATION 

8 KVM ARCHITECTURAL STATUS 

8 KVM OPERATIONAL STATUS 

Systarn Davalaprnant Corporation 

R-1 



KVM IS A COMPLETE SYSTEM 

e COMPATIBLE WITH POPULAR UNMODIFIED 

OPERATING SYSTEMS 

0/S DOS 

CMS MVS 

M V T ETC. 

esUPPORTS EXISTING APPLICATIONS 

FORTRAN 

P L /I 
TEXT EDITORS 

JOVIAL 

ASSEMBLER 

DATA MANAGEMENT SYSTEMS 

System Development Corporetion 

KVM IS DESIGNED FOR LEVEL4 CERTIFICATION 

e KERNELIZED ARCHITECTURE 

e ENFORCES DoD SECURITY POLICY 

eFORMAL VERIFIED SPECIFICATIONS 

ecORRESPONDENCE BETWEEN SPECIFICATIONS 

AND CODE 

System Development Corporation 

R-2 



KERNELIZED ARCHITECTURE 

eKERNEL & TRUSTED PROCESSES 

- F 0 R M A L L Y S P E C I F I E D A N D V E R I F I E D 

-INTERPRET & ENFORCE SECURITY POLICY 

.AUDITED GLOBAL PROCESSES 

-CONTROL SHARED SYSTEM RESOURCES 

- C 0 N F I N E D A N D U N P R I V I L E G E D 

eNON KERNEL CONTROL PROGRAM 

-SUPPORTS USER VIRTUAL MACHINES 

Problem 
State 

- R E E N T R A N T , U N P R I V I L E G E D , U N T R U S T E D 

System Oevelopmant Corporation 

Virtual 
Supervisor 
State 

Vf1/ 370 ARCHITECTURE 

R-3 

Real 
Supervisor 
State 

1'---t S/370 



Problem 
State 

KVM/370 ARCHITECTURE 

Virtual Supervisor State Real Supervisor 
State 

System Development Corporation 

KVM DATA VIEW 

KERNEL 

System Oaveloprnent Corporation 

R-4 



KVM ENFORCES DoD SECURITY POLICY 

• MANDATORY 
4 HI·ERARCHICALLEVELS + 62 COMPARTMENTS 

• DISCIHT10NARY 

ACCESS CONTROL LISTS+ PASSWORDS 

• MULTI-LEVEL ACCESS TO MINIDISKS 

System Development Corporetion 

V E R I F I E D F 0 R M A L S P E C I F I C A T I 0 N S 

• SPECIFICATIONS WRITTEN IN INA JO TM FOR 

A.il TRUSTED CODE 

.VERIFIED TOP LEVEL SPECIFICATIONS 
-780 LINES OF SPECIFICATIONS 
- 494 PAGES OF PROOF EVIDENCE 

.VERIFIED SECOND LEVEL SPECIFICATIONS 
-2,910 LINES OF SPECIFICATIONS 
-PROOFS ARE IN PROGRESS 

System Development Corporation 

R-5 



S P E C I F l C A T I 0 N - T 0 - C 0 D E C 0 R R E S P 0 N D E N C E 

1. M A P I N A J 0 C 0 N S T A N T S & V A R l A B L E S T 0 J 0 V I A l D A T A • 

2. M A P I N A J 0 T R A N S F 0 R M S T 0 J 0 V I A L P R 0 C E D U R E S • 

3. M A P I N A J 0 A S S E R T l 0 N S T 0 J 0 V I A L S E C U R l T Y C H E C K S • 

4. M A P I N A J 0 T R A N S I T I 0 N S T 0 J 0 V I A L A S S I G N M E N T 

STATEMENTS. 

5. R E S 0 L V E D I S C R E P A N C I E S • 

6, V E R I F Y A L L S E C U R I T Y C H E C K S A R E P E R F 0 R M E D B E F 0 R E 

ANY ASSIGNMENTS ARE MADE. 

7, AUDIT UNMAPPED S 0 U R C E C 0 DE F 0 R SECURITY- RElEVANT 

CODE. 

System Development Corporl!ltion 

ARCHITECTURAL STATISTICS 

VM/370 REL 3 PLC 15 

134 MODULES 130,000 LINES ASSEMBlER CODE 

FUNCTIONAL AREA MODULES TOTAL Ll NES 

COMPOOLS 4 7 3 ' 1 3 9 JOVIAL 

KERNELS 1 0 7 11,590 JOVIAL/ASMB 

AUTHORIZATION 3 2 3 ' 6 3 7 JOVIAL 

•AcCOUNTING 204 JOVIAL 

•oPERATOR 2 2 2, 01 7 JOV!AL!ASMB 

•uPDATER _l _______liE_ 

--<>TRUSTED 2 1 3 20,821 

N K C P 11 6 129,754 

GLOBAL PROCESSES __1_Q 1 7 2 3 0 

--+ UNTRUSTED 126 146,984 

• UNDER DEVELOPMENT 

System Development Corporation 

R-6 



KVM ARCHITECTURAL STATUS 

KVM IMPLEMENTS 

8 MESSAGE PROTOCOL DRIVEN SYSTEM 

- I N T E R N A L C 0 M M U N I C A T I 0 N 

8 MULTI-LEVEL RELATIONAL DBMS 

- USER,DEVICE,PROFILE DIRECTORIES 

8 CAPABILITY BASED SYSTEM 

- A C C E S S P E R M l T T E D 0 N L Y I F U S E R H A S A " G R A N T " 

8 ABSTRACT DATA TYPE MONITORS 

-NO CENTRAL SYSTEM TABLES· 

System Development Corporation 

KVM OPERATIONAL STATUS 

8 U~DERGOING FORMAL DETAILED SYSTEM TESTING 

- S Y S T E M D E V E L 0 P M E N T C 0 R P 0 R AT I 0 N I B M 4 3 3 1-I I 

-NAVAL AiR TEST CENTER,AMDAHL V7/A 

8 IN PROGRESS & CONTINUING NEXT 12 MONTHS WITH 

NEW FEATURES 

Sy1111tem Development Corporation 

R-7 



OPERATIONAL PERFORMANCE 

8 CONTRACTUAL MEASUREMENT TASK 

8ESTABLISH MEANINGFUL BENCHMARKS 

8CONTRAST THROUGHPUT OF VM vs KVM 

System Development Corporation 

P E R F 0 R M A M C E E X P E R I ~ E N T S 

~· {l ~· {) 

\ I \ I 
NKCP ~ 

~\ 
N K C P 

/ 
K V M 

System Oevelopment Corporation 

R-8 



e KVM IS A COMPLETE GENERAL USE SYSTEM 

e KVM WILL BE A LEVEL-4 SYSTEM 

eWE CAN LEARN ABOUT KVM WHILE USING KVM 

System Development Corporation 

R-9 



SCOMP (KS0$6) 
DEVB..OPMENT EXPERIENCE UPDATE 
LESTER FRAIM 
HONEYWELL 
FEDERAL SYSTEMS OPERATION 
AUGUST 12, 1981 

81351 

TOPICS 
e PROJECT OBJECTIVES 
411 HARDWARE DESIGN OVERVIEW 
e SOFTWARE DESIGN OVERVIEW 
e PERFORMANCE EXPERIENCE 
e VERIFICATION EXPERIENCE 

PROJECT SUPPORT 
NAVELEX 

- KERNEL AND HARDWARE DEVELOPMENT 
- TRUSTED SOFTWARE 
- TCP 

HONEYWELL 
- KERNEL INTERFACE PACKAGE 
- 18221MPLEMENTATION 
- HARDWARE PRODUCT DEVELOPMENT 

S-1 

Honeywell 

Honeywell 

Honeywell 



PROGRAM OBJECTIVES 
e DEVELOP ADD-ON HARDWARE TO COMMERCIAL 

LEVEL 6 WHICH MAKES IT EASIER TO BUILD 
SECURE SYSTEMS 

e DEVELOP TRUSTED COMPUTER BASE 
(TCB) SOFTWARE 
- ENFORCES DOD SECURITY POLICY 
- FORMALLY PROVABLE (TLS ONLY) 
- SUPPORTS VARIOUS APPLICATIONS 

Ill DODCERTIFICATION 
e DEVELOP THE SCOMP PRODUCT 

POTEMlAl APPLICATIONS 
411 FREE.STANDING TIME SHARING SYSTEM 
e "GUARD" BETWEEN TWO NETWORKS AT DIFFERENT 

SECURITY LEVELS 
e SECURE NETWORK FRONT-END 
e SECURE DATA BASE MACHINE 
~ MILITARY MESSAGE SWITCH 
c. SECURE WORD PROCESSOR 

SCOMP HARDWARE BASE 
t~ L.."VEL 6 MINICOMPUTER 
e SECURITY PROTECTION MODULE iSPM) 
o VIRTUAL MEMORY INTERFACE UNIT NMILJ) 
o 18.22 ACLA UNE ADAPTER . 
o STANDARD LEVEL6 PERIPHERALS 

S-2 

Honeywell 



SPM + LEVEL 6 MINICOMPUTER = SCOMP 

'::!::C:.JDITY 
PROTECTION 

MODULE 
MEMOilY 

SECURITY PROTECTION MODULE FEATURES 
e FAST PROCESS SWITCHING 

- PROCESS DESCRIPTOR TREE DEFINITION VIA DESCRIPTOR 
BASE ROOT 

-AUTO LOAD OF DESCRIPTORS 
e 1-3 LEVEL MEMORY DESCRIPTOR SYSTEM 

- R, W. E CONTROL AT ANY LEVEL 
-SEGMENTS 2K WORDS (512) 
-PAGES 128 WORDS 

e 1/0 MEDIATION 
-CPU TO DEVICE 
-DEVICE TO MEMORY 

• MUL TICS-LIKE RING STRUCTURE 
-2 PRIVILEGED, 2 NON-PRIVILEGED RINGS 
-READ. WRITE, EXECUTE. AND CALL BRACKETS 
·RING CROSSING SUPPORT INSTRUCTIONS 

• PAGE FAULT RECOVERY SUPPORT 

KSOS6 SOf1WARE 
Ill SECURITY KERNEL 
Ill TRUSTED SOFTWARE 
o SCOMP KERNEL INTERFACE PACKAGE 
Ill TRANSMISSION CONTROL PROTOCOL (TCP) 

S-3 

Honeywell 



SYSTEM DESIGN 
e NON-FILE SYSTEM l/0 OUTSIDE KERNEL 
e FILES CONSTRUCTED EXTERNALLY USING 

SEGMENTS 
e DEMAND PAGING VIRTUAL MEMORY 
e NON-DISCRETIONARY ACCESS CONTROL · 

BELL AND LaPADULA 
·PRIVILEGE 
- ACCESS ATIRIBUTES NOT FIXED 

8121510 

SYSTEM DESIGN (CON1) 
4D DISCRETIONARY ACCESS CONTROL 

· UNIX R, W, E FOR OWNER, GROUP, OTHER 
· RING BRACKETS FOR OWNER, GROUP, OTHER 
·SUBTYPES 

e KERNEL INTERRUPTIBILITY 
· KERNEL OPERATIONS MAY BLOCK 
· KERNEL OPERATIONS NOT INTERRUPTED 

- NO PROCESS SWITCH 
· SEGMENT ACCESS RECHECK 

SYSTEM DESIGN (CON1) 
e INFORMAnONCHANNELCONTROL 

- UPGRADED ARGUMENT 
- READABILITY DETERMINES RESPONSE 
· SYSTEM HIGH GARBAGE CAN SEGMENT 

· DELAY ON RESOURCE EXHAUSTION 

S-4 

Honeywell 

Honeywell 

Honeywell 



KSO~ 

TRUSTED SOFTWARE 
e USER SERVICES 

- SECURE INITIATOR 
- SECURE SERVERS 
- ACCESS AUTHENTICATION FUNCTIONS 

LOGIN 
CHANGE GROUP 
SET ACCESS LEVEL 
CHANGE DEFAULT ACCESS LEVEL 
LOGOUT 

- FILE DISPLAY AND ACCESS MODIFIER 
- PASSWORD MODIFIER 

81 2613 

KSO~ 
TRUSTED SOFTWARE (CONl) 
o OPERATIONSSERVICES 

- SECURESTARTUP 
- AUDIT COLLECTION 
- SECURE LOADER 
· OPEF:.•<TORCOMMANDS 

SET SYSTEM CLOCK 
SWITCH ACCOUNTING FILES 
CHANGE DEVICE ACCESS 
SET DISK DEVICE STATUS 
SYSTEM SHUTDOWN 

KS0$-6 
TRUSTED SOFTWARE (CONl) 
o MAINTENANCE SERVICES 

- MAKE FILESYSTEM 
-TRUSTED DATABASE EDITORS 

USER ACCESS 
GROUP ACCESS 
TERMINAL ACCESS 
SECURITY MAP 
MOUNTABLE FILESYSTEMS 

- FILESYSTEM DUMP 
- FILESYSTEM RESTORE 
- FILESYSTI&'v1 CONSISTENCY CHECK 

S-5 

Honeywell 

Honeywell 

Honeywell 



SCOMP KERNEL INTERFACE PACKAGE 
(SKIP) 
• PURPOSE 

- PROVIDE AN EFFICIENT LOW LEVEL INTERFACE 
FOR USE BY APPLICATIONS SOFTWARE 

- PROVIDE A HIERARCHICAL FILESYSTEM 
· - PROVIDE PROCESS CONTROL 

e ATTRIBUTES 
- CODE RESIDES IN KERNEL ADDRESS SPACE 

WITH RING 2 EXECUTE PERMISSIONS 
- ACTS AS A FILTER FROM USER RING TO KERNEL 

GATES TO PROVIDE FILESYSTEM AND PROCESS 
CONTROL INTEGRITY 

SKIP 
FILE SYSTEM FEATURES 
e ENTRY NAMING SYSTEM 
e MONOTONICALLY INCREASING SECURITY 
e INCREASE SECURITY LEVEL THROUGH 

UPGRADED DIRECTORY OR FILE 
e MULTICS LIKE LINK SUPPORT 

Honeywell 

e FILESYSTEM INTEGRITY MAINTAINED IN RING 2 
e NO PATHNAME AWARENESS 
e FILE DATA MANIPULATION IN USER RING 

8121617 

SKIP 
PROCESS CONTROL FEATURES 
e PROVIDE CLASSICAL EVENT WAIT/NOTIFY 

SYNCHRONIZATION 
e ALLOW SPAWNING OF CHILD PROCESSES 

Honeywell 

e PROVIDE MECHANISM BY WHICH USER RING 
CODE CAN HANDLE INTERRUPTS AND FAULTS 
81 26 18 

Honeywell 

S-6 



KSO~ 
TRANSMISSION CONTROL PROTOCOL 
(TCP) 
·BASED ON BBN-TCP-4 
· 1822 ASYNCHRONOUS LINE ADAPTER 
• WILL USE THE SKIP 
812619 

KSO~ 
KERNEL PERFORMANCE ENVIRONMENT 

• LEVEL6143 
· HARDWARE MONITOR 

- TOTAL EXECUTION TIME 
-1/0TIME 
- NUMBER OF DMA TRANSFERS 

8126:!) 

SAMPLE KERNEL 
PERFORMANCE RESULTS 

Honeywell 

Honeywell 

GATE 
READ_ SYSTEM_ CLOCK 
GET_SYSTEM_PARAMETER 
GET_PROCESS_ACCESS 
GET_PROCESS_STATUS 
SEND_ MESSAGE 

EXECUllON Trt1E (MS) 
1.00 

RECEIVE_ MESSAGE 
MAP _SEGMENT 
UNMAP _SEGMENT 
CREATE_PAOCESS 
RELEASE_ PROCESS 
CREATE_ SEGMENT 

S-7 

1.46 
2.62 
1.46 
4.35 
1.74 

16.20 
1.70 

468..29 
1:36 

19.79 

Honeywell 



SAMPlE KERNEl 
PERFORMANCE RESUlTS 

TEST EXECUTION TIME 
MISSING SEGMENT FAULT 
RECOVERY 

CONTEXT SWITCHING 
~, 26 

KERNEl VERIFICATION 
STA TUSIRESUl TS 
e PROOF OF DESIGN COMPLETE 

1620 

1.85 

411 TWO MODULES CAUSE STORAGE FAULTS IN 
FORMULA GENERATOR 
- CREATLPROCESS 
- INVOKLPROCESS 

e FALSE THEOREMS CHANNEL MINIMIZED BY 
-DELAY ON RESOURCE EXHAUSTION 
- EXCEPTION REPORTING ON WRITE-UPS 
- PRIVILEGE CHECKS 

81 26 23a 

KERNEL VERIFICATION 
STATUSIRESULTS(CONT) 
e DIFFERENCES FROM IMPLEMENTATION 

- PRIVILEGE IS REMOVED 
1D TOOLS 

- ENHANCEMENT REQUIRED 

Honeywell 

Honeywell 

· ISOLATING REASONS FOR FALSE THEOREMS 
IS TEDIOUS 

812623 B 

Honeywell 

S-8 



SUMMARY 
411 HARDWARE 

· PROTOTYPE DEVELOPMENT COMPLETE 
· PRODUCTION DEVELOPMENT 

e SOFTVVARE 
·KERNEL 
· TRUSTED SOFTVVARE 
·SKIP 

411 TEST SiTE DELIVERY FIRST QUARTER 1982 

S-9 



I'ROTOTYPES 

\1ITRf 

l ( I \ 

-\f 
D-\RP-\ 

... 

"'' 

I 

... ... 
, 
" 

KSOS-11 

Summary And 

Update 

John Woodward 

The MITRE Corporation 

KSOS-11 History 

K 

I~ITI-'.l 

DFSIC;~ 

HCC 

lR\\ 

) 

} DlT.-'.ILLD DESIG~ 

~ 
/ 

D-'.RP\ 
DC\ 
~s.-.. 

T-l 

-'.~[) 

f.\CC 

-\PPliCXTIO~-, 

[)~\ t I ()f'\1F~ 1 

LOC,Il ()~ 



KSOS Summary and Update - Overvie.v 

Project Goals 
Project Status 
Insights Into Trusted Computing 

Kernelized System 

PROCESS BOUNDARY 

OS TRUSTED 
USER SOFTWARE UTILITIES' PROCESSES 

HUMAN 
INTERFACE 

'-~-~-~--------~----~-~-------·~-~---···-·--- OS SVC 

OS SOFTWARE NOT PROTECTION-RELATED INTERFACE 

KERNEL 

1-----·-----------·------------··-·-~ --- ~-~- -~---

HARDWARE 

T-2 

KERNEL SVC 
INTERFACE 



Project Goals - KSOS 
Requirements Summary 

Production .. Quality System 

Provable Security 

UNIX Compatibility 

Efficiency Comparable With· UNIX 

Administrative Support Features 

General-Purpose Kernel 

Broad Applicability 

Project Goals - KSOS Kernel 
Architecture 

Fu11u:tions 

Processes Segments 

fork imoke spa'An build. release 

release remap 

post recei'e message rendezvous 

signal 

interrupt return 

"alk proces~ table 

nap 

hoot 

halt 

get set status get set status 

get set level 

T-3 

1/0 

device function 

mount: unmount 

create file 

open: dose 

link unlink file 

read write block 

get set status 

gel· set level 



Project Goals - KSOS Kernel 
Architecture 

Non-Kernel System-Related Software 

User Services Operations & Maintenance 

secure initiator file sy·stem dump restore 

secure server p~ck initialization 

login logout extent initialization 

file access modifier rnodifv control entr~ 

change access level consistanc~; checkers 

change group boot copy 

le\el preserving cop~ print directory· manager 

secure mail net'-"'ork controllers 

s~,.Istem startup shUtdown 

s~·stem generation 

process bootstrapper 

mount unmount 

assign deassign device 

line printer spooler 

kernel-to-pathname mapper 

Administration 

immigration 

user control 

pri\·ilege control 

securit~· map 

terminal profile 

device profile 

s~stem profile 

audit capture 

Project Goals - KSOS Security 
Assurance 

T-4 



Project Status - Versus Requirements 

Production - Quality System 

Provable Security 

UNIX Compatibility 

Efficiency Comparable With UNIX 

Administrative Support Features 

General-Purpose Kernel 

Broad Applicability 

Project Status - .Provable Security 

Design Proofs 
Spec Checking 
Theorem Proving 
Analysis False Theorems 
flow Analysis 

Code Proofs 
Example module only 

T-5 



Project Status KSOS 
Efficiency 

Performance 

Project Status - KSOS .. 
me 

95% 

TC ? 

-6 



Insights Into Trusted Computing 

ModuJa As the Implementation Language 

Representations 

Methods 

Base 

Security Model 

sights Into Trusted Computing 

Need r More Code 

Need Additional Tools and Concepts 

T-7 



Mike Soleglad 

Lo£icon 

ACCAT AND FORSCOM 

GUARD SYSTEMS 

LOGIC ON 

ACCAT /FORSCOM GUARD 
PRESENTATION 

" THE PROBLEM 

e THE SOLUTION 

ACCAT GUARD 

e HARDWARE CONFIGURATION AND 

FORSCOM GUARD 

e SOFTWARE MECHANISMS 

e STATUS 

U-1 



LUW US!:H~ 

LT-2 

LOW USERS 

C1r~ cow LJ4>SERo 



/~ 

/ ~HuH 

"<\ \WUHK 

MUL Tl LEVEL SECURE GUARD 

~iiGH PAH.llTION 

SANllllER SECURITY WATCH 
OFFICER 

LOW PARTITION 

ACCAT GUARD 
FUNCTIONAl DESCRIPTION - TRANSACTIONS 

e "TRANSACTION" ORIENTED 

All TRANSACTIONS ARE SUBMITTED VIA "NETWORK MAIL" 

ALL RESULTS ARE RETURNED VIA "NETWORK MAIL" 

e SIX TRANSACTION TYPES 

LOW TO·HIGH 

MAIL 

"CANONICAL" QUERY 

"ENGLISH" QUERY 

HiGH TO LOW 

MAIL 

"CANONICAL' QUERY 

''ENGLISH" QUERY 

L'-3 

LOW USERS 



ACCAT.GUARD 

FUNCTIONAL DESCRIPTION - PERSONNEL 

" SECURITY WATCH OFFICER (SWO) 

VIEWS All HIGH-TO-LOW DATA TRANSFERS 

INTERFACES WITH "TRUSTED SOFTWARE" FOR "DOWNGRADING" OF DATA 

" SANITIZATION PERSONNEL (SP) 

SANITIZES LOW-TO-HIGH QUERY RESULTS 

TRANSLATES ENGLISH QUERIES TO "CANONICAL" FORM 

INTERFACES WITH "HIGH SIDE" UNTRUSTED SOFTWARE 

ACCAT GUARD 

SECURITY POLICY 

.. DATA SEPARATION (DoD SECURITY MODEL) 

SIMPLE SECURITY CONDITION ("READ" RUlE) 

•-PROPERTY CONDITION ("WRITE" RULE) 

TRANQUILITY CONDITION I"Al TER" RULE) 
KSOS 
ENFORCED 

.. DATA INTEGRITY ("DUAl" OF DoD SECURITY MODEl) 

• DISCRETIONARY ACCESS lA LA UNIX) 

• MANUAL DOWNGRADE POLICY (VIOLATES •-PROPERTY) 

SECURITY WATCH OFFICER (SWO) VIEWS All DATA 

SWO ACCEPTS DOWNGRADE TRUSTED 
SOFTWARE 

SWO CONFIRMS DECISION 
ENFORCED 

• AUDIT All HIGH-TO-LOW DOWNGRADES 

U-4 



HIG~i 

USEHS 

HIGH 
DATA BASE 

HIGH HOST 

UNSANITlZED 
DATA 

1 
~ANI Tilt 

EDITOR 

SANITIZER 

ACCAT GUARD 

~ 
~ 

SECURITY 
WATCH 

OfFICER 

p 
0 
p ACCA T GUARD SYSTEM 
11 
I 

70 

ACCAT GUARD 
SOFTWARE MECHANISMS 

HIGH LOW 

DOWNGRADE 
TRUSTED SOFTWARE 

LOW 
USERS 

LOW USER 

SANITIZED 
DATA 

(ACCEPTED 

• ACKNOWLEDGED! 

----------------------A-CK_:_:_~_~· __ '.,,][ ____ -+-----------------------

U-5 

SECURITY 
WATCH 
OFFICER 



ACCAT GUARD SOFTWARE CONFIGURATION 

' 
~I 

\. 1.. 

GUARD 

STATUS: PRESENT AND FUTURE 

e HARDWARE INSTALLED AT NAVAL OCEAN SYSTEMS CENTER (NOSC) 

e All SOFTWARE COMPLETED- DEMONSTRATABLE UNDER UNIX 

o TRUSTED SOFTWARE FORMALLY SPECIFIED AND VERIFIED 

o THREAT/VULNERABILITY ANALYSIS COMPLETED 

KSOS 11 INSTALLATION UNDERWAY 

FUTURE 

KSOS 6 INSTALLATION PLANNED 

o AUTOMATED SANITIZATION/TRANSLATION ELIMINATES SANITIZER 

e VERIFICATION OF AUTO SANITIZATION- ELIMINATES SWO 

• OTHER LOW/HIGH HOST SUPPORT PLANNED 

C-6 



<;I,M( ,_·, 

' •, <( ~' (. 1 J ',If' I ) 

FORSCOM GUARD 

lvWMCC:, 
'J()[)£ 

THE PROBLEM 

r11GH ')E'CtJHITY lEVElUSEHS 

S~'SHM HI(,H (JPtRAIION 

U-7 

" 

lOW 
S!:CURITY ltV!" L 

USEKS 



WIN 

FORSCOM GUARD 
THE SOlUTION 

WWMCCS 
NODE 

HIGH SECURITY 
LEVEL USERS 

MUL T1 LEVEL SECURE 
FORSCOM SECURITY MONITOR 

SCREENEAS 

FORSCOM GUARD 

FUNCTIONAl DESCRIPTION 

e "INTERACTIVE" ORIENTED 

MEDIATES BETWEEN All LOW USER AND HIGH SYSTEM DIALOGUES 

LOW 
• SECURITY LEVEL 

USERS 

PROVIDES BOTH "MANUAL" AND "AUTOMATIC" DOWNGRADE MECHANISMS 

PROVIDES LOW USER INPUT "FilTER" MECHANISM 

o SCREENER PERSONNEl 

VIEWS All "MANUAl" HIGH-TO-LOW DATA TRANSFERS 

INTERFACES WITH "TRUSTED SOFTWARE" FOR "DOWNGRADING" OF DATA 

U-8 



• 

.. 

.. 

.. 

.. 

.. 

.. 

FORSCOM GUARD 
SECURITY POl!CY 

DATA SEPARATION (DoD SECURITY MODEL) 

SIMPLE SECURITY CONDITION ("READ" RULE) 

•-PROPERTY CONDITION ("WRITE" RULE) 

TRANQUILITY CONDITION ("AL TEA" RULE) 

DATA INTEGRITY ("DUAL" OF DoD SECURITY MODEL) 

DISCRETIONARY ACCESS (A LA UNIX) 

MANUAL DOWNGRADE POLICY (VIOLATES •-PROPERTY) 

SCREENER VIEWS All DATA 

SCREENER ACCEPTS DOWNGRADE 

SCREENER CONFIRMS DECISION 

AUTOMATIC DOWNGRADE POLICY (VIOLATES •-PROPERTY) 

ALL DATA IS RECOGNIZABLE IN PROPER CONTEXT 

"BANDWIDTH" NOT EXCEEDED 

ACCEPT USER INPUT POLICY (A "FILTER") 

DATA IS RECOGNIZABLE IN PROPER CONTEXT 

AUDIT All HIGH-TO-LOW DOWNGRADES 

FORSCOM GUARD 
HARDWARE CONFIGURATION 

U-9 

MULTI LE.Vtl StCVAE 
f-OASCOM SECUAHY MONIT()R 

SCRt:ENi:AS 

KSOS 
ENFORCED 

TRUSTED 
SOFTWARE 
ENFORCED 

TTY 33 

fTY33 

cow 
StCURll Y 

t ~vu 



LOW SECURITY 

LEVEL USER 

FORSCOM GUARD 
SOFTWARE MECHANISMS 

GUARDIAN/SCREENER 

TRUSTED SOFTWARE AND CONTEXT TABLES 

HIGH SECURITY LEVEL 

WWMCCS NODE 

USER ENTERS INPUT··~::::::::::=~ IF VALID~~~~~~~~~~~~~~~~~~~~~ WWMCCS RE:CEIVES USER INPUT 
USER RE:.CEJVES ERROR· (IF NOH 

IF RECOGNIZABlE, "fiXED"~~~~~~~~~~-~~~~~~~~ WWMCCS OUTPUTS AEPL Y 

USER RECEIVES WWMCCS RESPONSE~~~~~~~~~~~~~ AND "BANDWIDTH" NOT EXCEEDED 

IF RECOGNIZABLE AND "VARIABLE' 

OR "BANDWIDTH" EXCEEDED 

SCREEN 

USER AECEIVCS WWMCCS RESPONSE ... ~~~~~~~~~~~~~~ IF ACCEPT/ACKNOWLEDGE 

-11llllli••····~~ Of NOT RECOGNIZABLE OA"'II~~~~~~~~~~~~~Ili~WWMCCS RECEIVES "BREAK" 
USER RECEIVES ERROR""<~ NOT ACCEPTED! I iO NEXT lEVEL 

• 

WWMCCS 

WWMCCS 
OUTPUT 

DATA 

SCREENER 

FORSCOM GUARD 
SOFTWARE MECHANISMS 

LOW SECURITY lEVEL USERS 

U-10 



iiSf:H,!>YSl~M OIALOGU~ 

i..ONT~)( I TASl~S 

PRESENT 

FORSCOM GUARD 
SOFTWARE MECHANISMS 

POP dP t:ONTlXI PTR 

FORSCOM GUARD 

STATUS: PRESENT AND FUTURE 

e HARDWARE INSTALLED AT FORCES COMMAND, FT. GILLEM 

e SOFTWARE OPERATIONAL DEMONSTRATABLE UNDER UNIX 

" FORMAl SPECIFICATION OF TRUSTED SOFTWARE UNDERWAY 

KSOS·lliNSTALLATION PLANNED 

" VERIFICATION OF TRUSTED SOFTWARE 

" OTHER WWMCCS APPLICATIONS PLANNED 

U-ll 

SU8{.0NTEXTS 



A Security Model for a Military Message System 

Carl E. Landwehr 

Computer Science and Systems Branch, Code 7590 

Information Technology Divison 

Naval Research Laboratory 

Washington, D.C. 20375 

[Portions of this work were sponsored by 
the Naval Electronics Systems Command, 
Code 8144, H. 0. Lubbes.] 

Outline 

What security models are good for 

History of security models 

Experience with Bell and LaPadula model 

An application-based approach 

Security model for a military message system: 
Current version 

Definitions 
Model of operations 
Security Assumptions 
Security Assertions 
Regimes for accessing objects within containers 

Outstanding Issues 

Plans 

V-1 



~\lhat security models are good for 

Define vvhat "security" means in a given system 

Provide basis for understanding system operation 

Provide basis for proofs 

History of security models 

Operating system protection models 

Models incorporating DoD security 

Access Control (Bell and LaPadula) 

Information Flow (Denning) 

Revised Bell and LaPadula 

Experience with Bell and LaPadula model 

MME - trusted job 

KSOS - NKSR 

Guard - trusted processes 

V-2 



An application-based approach 

User's view of the system 

Components of an application-based model 

Definition of terms 

Model of operations 

Assumptions 

Assertions 

How the model can be used 

Current version of the MMS model 

Definitions 

Classification - disclosure and modification levels 

Clearance - user disclosure level 

User ID - one per user 

Role - function performed by user 

Access control list - pairs (UseriD or Role, Access mode) 
access modes include read, write, execute, 
may be attached to objects, containers 

Object 

Container 

Entity 

Program 

Message 

- smallest unit with explicit classification 
(single level) 

- has classification and may contain objects 
or other containers (multi-level) 

-object or container. Each entity can be 
designated by unique ID or pathname 

- sequence of machine-executable instructions 
may have an associated clearance and UseriD 

- a particular type of container 

V-3 



Examples of objects 

Date-time group 
Subject 
Precedence 

Examples of containers: 

Text 
Message 
Message File 

Entities that might be containers in one system and objects in another 

Address list 
Comments 

Some operations applicable to messages 

Compose 
Output 
Send 
Forward 
Coordinate 
Readdress 
Delete 
Destroy 

Edit 
Update 
Release 
Distribute 
Chop 
Reclassify 
Undelete 
Assign-action 

V-4 



Model of operations 

- User gives UseriD and is authenticated by the system 

- User invokes programs to perform the functions of the 
message system 

-The programs a user may invoke depend on the user's role 

- A user with the role of System Security Officer 
controls the clearances and roles assigned to UseriDs 

- Programs a user invokes may read, write, or invoke 
objects or containers 

- The system enforces the security assertions listed below 
(prevents users from performing operations that would 
contradict them) 

Security assumptions 

Al. Security officer assigns clearances and roles properly 
to users. 

A2. User enters appropriate classification when composing, 
editing, or reclassifying text. 

A3. User exercises proper control of access control lists. 

Security assertions 

Disclosure of information 

Dl. A user can only view objects with disclosure level 
less than or equal to glb(UseriD,Role,Output Device). 
For objects within containers, either the container's 
disclosure level or the object's disclosure level 
will be checked, depending on the type of the container 
and the mode of access (by unique ID or pathname) . 

V-5 



Security assertions (cont'd) 

Modification of information 

Ml. Users can only modify objects with modification level 
less than or equal to the glb of User, Role, and 
Input Device modification levels. 

M2. The disclosure level of any container is 
always at least as great as the maximum of 
the disclosure levels of the objects and containers 
within it. 

M3. No classification marking can be downgraded except 
by a user with the role of downgrader. 

M4. The clearance recorded for a UseriD can only be 
set or changed by a user with the role of system 
security officer. 

MS. No message can be released except by a user with 
the role of releaser. 

M6. No user can invoke a program for which his UseriD 
or role is not on the access control list with an 
access mode of execute. 

Noteworthy aspects of the model: 

Multi-level objects (containers) are defined 

Simple security condition is reflected in Dl. 

*-property is not included, but "write-downs" are controlled 
via M2 and M3 

Integrity is included as modification level 

Login level is not included, but I/O device abstractions 
can provide this effect 

Programs, not processes, are included because they are 
more recognizable to users 

Implementation concepts (e.g., capabilities) are 
avoided, but model is designed to be implementable 

V-6 



Example regimes for accessing objects within containers 

1. Access to object is allowed only if the user and 
role clearances equal or exceed the classification of 
the container. If data is copied from the object to 
another entity, that data is treated as though it had 
the same classification as the container. 

[Apply this regime to aggregation-sensitive data.] 

2. Like (1), but data copied from the object is treated 
as though it has the same classification as the object, 
regardless of the container's classification. 

[Apply this regime to extraction of a paragraph of text from 
a message.] 

3. Like (2), but only the user's clearance must equal or 
exceed that of the container. 

[Apply this regime to viewing of messages within a message file.] 

Outstanding issues 

Mathematical properties of the model 
Possible abstraction of model for proofs 

Development of design and implementation from model 

Detailed design questions 

Determine whether each abstraction is 
an object or a container 

Determine appropriate regime for each 
type of container 

Determine mappings between family members 
that make different container/object 
choices for a given entity 

V-7 



Plans 

Refine/revise the security model 

Integrate with MMS Intermediate Command Language 
Specification 

Consider man-machine interface questions 

Design and develop prototype system based on 
this model 

Bibliography 

1. Landwehr, C. E., "Formal Models for Computer 
Security," to appear, ACM Computing Surveys, 
September, 1981. Also available as NRL Report 8489. 

2. 

A comprehensive survey of previous formal models. 

Miller, J.S., and 
Message Systems: 
IEEE Symposium on 
1981. 

Resnick, R.G., "Military 
Applying a Security Model , " 
Security and Privacy, April, 

A discussion of an earlier version of the MMS 
security model, with an application to a message 
system based on an Intermediate Command Language 
specification. Introduces three regimes for 
accessing entities within containers. 

3. Landwehr, C. E., "Assertions for Verification of 
Multilevel Secure Military Message Systems," 
Verification Workshop, SRI, 1980, reprinted in 
ACM SIGSOFT Software Engineering Notes, Vol. 5 
No. 3, July 1980, pp.46-47. 

Presents the motivation for application­
based models and the first version of a 
security model for military message 
systems. Still useful, but somewhat 
dated, as the version of the model 
presented does not include the concept of 
roles and leaves several issues 
unresolved. 

4. Heitmeyer, C.L. and Wilson, S.H., "Military 
Message Systems: Current Status and Future 
Directions," IEEE Trans. on Comm., Vol COM-28, 
No. 9, Sept. 1980, pp.l645-1654. 

Discusses the family of message systems for which 
the security model is defined. Describes the 
application of the program family principle to 
the design of message systems. 

V-8 



EUCLID AND VERIFICATION 
IAN GRIGGS 

I.P. SHARP & ASSOCIATES, LTD. 

THE (ORIGINAL) EUCLID LANGUAGE 

e MAJOR APPLICATION: 
PROVABLY SECURE SOFTWARE 

• SYSTEM IMPLEMENTATION LANGUAGE 

• ALLOWS VERIFIABLE PROGRAMS 
TO BE WRITTEN 

EUCLID AND VERIFICATION 

• THE EUCLID LANGUAGE 

• INTEGRATED VERIFICATION SYSTEM 
(EUC D +VERI ICATION TOOLS) 

• FUTURE DIRECTIONS 

HISTORY 

e DESIGN COMMISSIONED BY DARPA 

e DESIGNED BY EUCLID COMMITTEE 

e PASCA VERIFICATION FEATURES 

e PDP-11 COMPILER FOR TORONTO EUCLID 
SUBSET IMPLEMENTED BY: 
- I.P. SHARP ASSOCIATES 
-UNIVERSITY OF TORONTO C.S.R.G. 

e TORONTO UCLID BOOTSTRAPPED TO VAX 

W-1 



MODULES 

• RECORDS WITH ATTACHED ROUTINES 

• INTERFACE TO R PROGRAM 
EXPLICITLY SPEC I ED 

• SUPPORT INFORMATION HIDING, 
ABSTRACT DATA TYPES 

ISIBILITY AND ACCESS CONTRO 

• MODU S D ROUT! N ES 
I PORT GLOBAL NAMES 

• MODU S RT I RFACE ES 

• R I R R 

A N s 
• ASSE 0 S 
• PRE, POST FOR ROUT IN 
• MODU INVAR 

PDP-11 c 
ECT C E EFFICIENCY: RY GOOD 

• COMPILER SPEED: SLOW 
-STRICT CHECKING TAKES Tl E 

• PROGRAMMER EFFICIENCY: RY GOOD 
-STRICT CHECKING SPEEDS UP PROGRAMMING 

• AVAILAB :NOW, FRO IPSA 

\0-2 



VE lfl ON SYSTE 

OBJECTIVES: 
e EUCLID AS IMPLEMENTATION LANGUAGE 

e INTEGRATE EXISTING VERIFICATION 
TECHNOLOGY 

o USER-FRIENDLY CONSISTENT SYSTEM 

• RE-USABLE VERIFIFIED SOFTWARE MODULES 

• MAJOR APPLICATION: 
PROVABLY SECURE SYSTEMS 

STEPS IN VERIFICATION- SPECIFICATIONS 

REQUIREMENTS 
(INFORMAL) 

! 
FORMAL 
SPECS 

SECURITY 
MODEL 

-
-

ANALYZE 
SPECS 

l 
I THEORIES I 

- MODIFY 
SPECS 

STEPS IN VERIFI ON - IMPLEMENTATI 

l==l~--~-~0-:~-~-.....1 
CHECKED -------JOo- VERIFY 

SPECS IMPLEMENTATION 
vs 

~ SPECS 

~ .-1-M-P-LE_M_E_N_T""", /'---------' 

PROGRAM 

MODIFY 
PROGRAM 



OTTAWA EUCLID 

IMPLEMENTATION EUC D 

SPEC 

EORY 
EXTENSIONS 

TORONTO EUCLID MORE 

~ EXISTING EUC D 

PDP·11 FEATURES 

COMPILER 
SEPARATE 

VERIFICATION 
+ 

COMPILATION 



::<:; 
I 

V1 

'AWA EUCLID 

IMPLEMENTATION EUCLID 

TORONTO UCLID 

• t:XISTING 
PDP .. 11 
COMPILER 

MORE 
EUCLID 

FEATURES 

SPEC 
+ 

THEORY 
EXTENSIONS 

SEPARATE 
VERIFICATION 

+ 
COMPILATION 



TORONTO UCLID 
RESTRICTIONS REMOVED 

~ FUNCTIONS CAN RETURN STRUCTURES 

~ PARAMETERIZED TYPES 

e LEGALITY ASSERTIONS CHECKED 

ENHANCED ASSE ON GUAGE 

~ QUANTIFICATION 

• IF EXPRESSIONS 

• SPECIFICATION FUNCTIONS AND 
VARIABLES 

• MMAS AND AXIOMS 

SEPA 
co 

0 I 

• STUB R R L ODU 
=SPECIFICATION 

• N ME CHECK OF 
STUB VS. I ME ON 

Ill ONE CONSISTENT LANGUAGE 

• TYPE-SAFES IFI ONS 
AND THEORIES 

SE EXI NG COMPI R 
RE FOR CHECKING 

F c s 
• LSI G RD 

• CONCURRENCY 

E LID COMPILER 

-FIRST IMPLEMENTATION: VAX II 
-AVAILABLE: MID 1983 

• ADAPT EXI NG TO 
E LID 

:v-6 



THE EVALUATION 

OF THREE 

SPECIFICATION 

and 

VERIFICATION 

METHODOLOGIES 

by 

Richard A. Platek 

Digicomp Research Corp. Ithaca, N. Y. 

X-1 



Digicomp Research Corp. is presently under contract 

with DoD through the Rome Air Development Center (RADC) to 

study and evaluate three specification and verification 

methodologies. They are HDM (SRI International), FDM (or 

Ina Jo, SDC) and Gypsy (UTexas). This thirty month effort 

which began Sept. 1980 has three main phases: 

a. Impartial, critical analyses of 
the methodologies with special attention 
paid to their present state of usability 
by persons not directly associated with 
the developers and an evaluation of the 
expertise required in such a technology 
transfer. 

b. Recommendations for enhancements 
some of which will be subcontracted 
to the major developers through Digicomp 
(subject to government approval) while 
others will be used to drive further 
funding through other agencies. 

c. The design, implementation and 
verification of a secure data base 
management system using each of the 
methodologies. The mathematical model of 
such a secure DBMS is based on previous 
work by I. P. Sharp. 

The first and most of the second of these phases have 

been completed while the third is underway. In this talk I 

would like to describe some of our findings so far. The 

work has been performed by Tanya Korelsky, Len Silver and 

myself. As an indication of our backgrounds I should state 

that all three of us have Ph.D.s in Mathematics but no prior 

experience in verification. 

X-2 



Like many developing software systems these 

methodologies' documentation sometimes contain features 

which have not yet been implemented. Considering the fact 

that these implementations are ongoing our remarks could 

best be treated as time-stamped snapshots of evolving 

systems. Furthermore, since these tools have not been 

subjected to extensive use outside of their places of origin 

it is important to obtain independent evaluations based on 

sustained hands-on experience. The comparative method that 

has been chosen seems to us and ·our sponsors to be the best 

technique for revealing the strengths and weaknesses of the 

existing methodologies 

could be incorporated 

verification work. 

and for making recommendations that 

in future specification and 

Although we will briefly review the paradigms which 

underlie each of the methodologies our time constraint 

forces us to assume that the hearer has been exposed to more 

detailed descriptions of the methodologies as they have been 

described by their developers at these and similar meetings. 

I. HDM 

The present situation with HDM is quite complicated 

due, in our opinion, to the large turnover in extremely 

talented personnel at SRI who have been involved over the 

years with the HDM project and the absence of a central 

authority who would have had the power to curtail creativity 

in the interests of consistency. While such a production 

X-3 



system orientation is inconsistent with research goals and 

verification as a whole has benefited from SRI's experiments 

it is a fact that HDM presently consists of several well 

thought out and engineered components that lack integration. 

Although SRI is aware of this problem and it is currently 

being addressed by ongoing work it is fair to say that at 

present an outsider can not use HDM to design, implement and 

verify a program from beginning to end. Although our study 

was completed last March and reflects the system as it was 

then we've kept abreast of the more recent changes. 

HDM specifications are written in SPECIAL a 

non-procedural strongly typed assertional language based on 

first-order logic. The unit of specification is the module 

which is an encapsulated abstract data type. Following 

Parnas modules are described as abstract automata defined in 

terms of states and state transforms. (We prefer the terms 

"state" and "transform" to the awkward "V Function" and "0 

Function" terminology; unfortunately SPECIAL maintains the 

original Parnas nomenclature which is confusing to new 

users. Ina Jo uses the terms "variable" and "transform", 

the state being the values of all the variables at any given 

moment.) These modules are grouped together to form virtual 

machines which in turn are levels in a hierarchy. The top 

level of this hierarchy is the user interface while the 

bottom is the "machine" on which the system is to run; the 

latter is not necessarily a physical machine but can be a 

combination of hardware and software, for example a PASCAL 

X-4 



or ADA machine. Adjacent levels are related by mappings 

which are of two kinds. The state or data mappings provide 

an image, Image(S), on the upper level for each lower level 

state s. These are described using SPECIAL expressions. 

The transform or procedure mappings express each higher 

level state transform T as a program P(T) which "runs" on 

the lower level machine and calls lower level state 

transforms. P(T) is correct if whenever it drives the lower 

state Sl to the lower state S2 then T(Image(Sl)) is 

T(Image(S2)). Said simply this means that the program P(T) 

simulates T on the lower machine. The program P is written 

in the target HOL. In the original HD~ conception a new 

programming language, ILPL, was designed for this purpose 

but this approach has been abandoned. When all the P(T) 

have been verified to be correct the transform mappin~s can 

be composed to yield a complete verified implementation of 

the top level virtual machine on the bottom. The 

composition of transform mappings is reflected in the 

resulting program by procedural call nesting; the depth of 

this nesting being essentially the length of the hierarchy. 

Unfortunately the specification langua~e SPECIAL comes 

in several variants. First there is the original version of 

SPECIAL which we will call Yandbook SPECIAL. The publicly 

available HD~ automated tools which check for syntax 

correctness, hierarchical consistency and certain forms of 

completeness are written to this SPECIAL. These tools 

contain bugs which were discovered in the course of our 

X-5 



testing. These bugs have not been corrected for reasons 

outlined below. 

Handbook SPECIAL contains many features which its 

designers thought would be useful in specifying complex 

systems. This compounding of features led to a language 

without a clear semantics (or perhaps a better way to say it 

would be a language susceptible to several overlapping 

semantics). For example, a. First order logic is used to 

express system states before and after transforms are 

called, b. 

kind of type 

A New operator creates new objects of a certain 

when called, c. Exception conditions for 

transforms must be evaluated in a certain order, d. There 

are unusual constructs like "Delay Until". Because of the 

incompatibility of the various semantics of these languages 

it was found to be necessary to subset SPECIAL whenever any 

design or code verification issues arose. For example, SRI 

produced a multilevel security information flow analysis 

tool. This works on the top level SPECIAL spec and uncovers 

information flow. The tool is very conservative and 

considers an information flow to occur between variables 

whenever the former is referenced in any way by the latter 

(e.g., in the assignment statement vl := O*v2 information is 

assumed to have flown from v2 to vl). In order to make this 

analysis it was found necessary to restrict the kind of 

expressions that occur in specs. 

SPECIAL. Every variable at 

This gives rise to MLS 

the top level is assigned a 

security level and the MLS tool checks that information only 

X-6 



flows upward in level. To do this it produces formulas 

which are handed over to the Boyer-Moore theorem prover. 

The latter has its own language designed according to very 

different principles than those that govern SPECIAL. 

HDM's original attempt at code verification involved 

the use of a pseudo-assembly language CIF (Common Internal 

Form) set up within Boyer-Moore theory. A MODUL~ translator 

translated MODULA code into CIF and the latter was proved 

correct within Boyer-Moore theory. In order to do this the 

SPECIAL specs had to also be translated into Boyer-Moore. A 

very impoverished subset of SPECIAL was developed called 

VSSL. No automated tools were provided, the program had to 

be respecified 

between SPECIAL 

in VSSL. 

and VSSL. 

There are many 

VSSL and CIF 

discrepancies 

for example 

understand integer to be non-negative while SPECIAL and 

MODULA understand integer to be positive or negative. VSSL 

does not allow any existential quantifiers in the effects 

section of a transforms spec. Furthermore all the code 

verification required large amounts of manual intervention 

to add statements necessary to achieve a proof. The 

smallest programs took an enormous amount of time to verify 

and when done it was not clear what had been verified since 

VSSL was not SPECIAL and CIF was not MODULA. 

As part of the SIFT project SRI is developing a PASCAL 

verification system for HDM. This has involved a new 

version of SPECIAL, Pascal SPECIAL, and tools to check it~ 

X-7 



It is largely because of this effort to build new tools that 

the above mentioned bugs in the existing SPECIAL tools have 

not been fixed. The concept of CIF has been abandoned. 

Instead a Meta-Vcg has been built which accepts an axiomatic 

definition of a programming language, code in that language 

and specs and then generates VCs directly. Originally the 

VCs were in Boyer-Moore theory. Boyer and Moore have both 

recently left SRI to join the University of Texas. As a 

result SRI has begun adapting HDM to run with the Shostak 

theorem prover. The Meta-Vcg for example will output Vcs in 

either Boyer-Moore or Shostak theory. \1e have not had any 

experience with the latter. Unfortunately Pascal SPECIAL 

does not contain MLS SPECIAL as a subset so that the Pascal 

system as it now stands can not be used for security proofs. 

As a result of 

subcontracted with Sytek 

these 

to do 

uncertainties Digicomp 

a study of the SPECIAL 

dialects and make recommendations for standardization. This 

study is being directed by Rich Feiertag a former SRI member 

and principal designer of the MLS tool. It will be 

completed in Sept. We hope someone will be in a position to 

act on the reco~mendations in the report which from what 

~e've seen is very thoughtful. 

At SRI work is proceeding in matching the HDM tools 

8ore closely with the Shostak theore~ prover, in developing 

oroof rules to deal with full concurrency, and with 

developing a new specification language called ORDINARY. 

X-8 



II. FD~ 

FDM is superficially similar to HD~ although in many 

ways this similarity is misleading. Like HDM, FDM specifies 

a system using a series of levels each described in terms of 

states and transforms with adjacent levels related by 

mappings. But unlike HDM the top level is not the user 

interface. Instead it is to be thought of as either an 

incomplete abstract description of the final system which 

omi~s certain design decisions and contains others or, more 

mathematically, the top level is a specification of a family 

of systems one of which is the intended final system. Each 

subsequent level also defines a family of systems. As in 

HDM the mappings between levels relate the states of the 

lower to the states of the higher and the transforms of the 

higher to the transforms of the lower. They are said to be 

correct for each adjacent pair if the family of systems 

specified by the lower is a subset of the family of systems 

specified by the upper relative to the mappings which act 

like a dictionary enabling one to translate higher level 

expressions into lower. Thus each level can be thought of 

as a refinement of its predecessor. This refinement 

proceeds by adding further detail and concretion. 

Levels are described using Ina Jo, a specification 

language similar to SPECIAL but cleaner in syntax and 

semantics. Unlike SPECIAL only one kind of semantics is 

involved, namely first order logic. This leads to 

X-9 



simplicity in expression and ease of provability. The cost 

is lack of expressiveness but Ina Jo is presently being 

upgraded to include more extended expressiveness. 

Ina Jo provides a means for proving that the top level 

spec satisfies user supplied design criteria. These are 

written in Ina Jo and are syntactically part of the top 

level spec. Only experience will show whether this approach 

is adequate for the expressing of interesting security 

properties. In order to prove th~se design criteria for the 

top level one submits the spec to the language processor 

which produces candidate theorems the truth of which imply 

that the criteria holds of all systems that satisfy the top 

level spec. These theorems are proved using the associated 

ITP (Interactive Theorem Prover). The latter is simple to 

use and well integrated into the system. It is not very 

powerful but is continually being upgraded. It contains, 

for example, very little arithmetic since there has been 

very little need for it in the projects SDC has used Ina Jo 

on. 

State mapping between adjacent levels are essentially 

the same as HDM but the transform mappings are logical 

rather than procedural. It T is an upper level transform 

then the mapping of T, M(T), is essentially 

IF CONDl THEN Dl ELSE 

X-10 



IF COND2 THEN D2 ELSE 

IF COND3 THEN D3 where the COND's are Ina Jo 

Boolean expressions describing subsets of the lower level 

state space and the D's are lower level transforms. With 

respect to these mappings one proves that each subsequent 

level is a refinement of its predecessor. As in the case of 

the proof of the top level design criteria candidate 

theorems are produced by the language processor from each 

pair of adjacent levels and these are proved using the ITP. 

All that we have described so far is implemented but we 

should remark that when all this proving is completed one 

still has not verified any HOL code let alone written it. 

This is not meant to imply that describing, refining, and 

proving the specifications in this way is without value. We 

did not encounter serious difficulty in using the system. 

Since the ITP is weak many "self-evident" axioms had to be 

manually added to finish proofs. This is obviously a 

dangerous procedure in verification since "self-evident" 

sometimes turns out to be false. We have made SDC aware of 

all bugs and unimplemented details we have come across and 

they intend to act on them. FDM was produced primarily with 

internal SDC funds and is a proprietary product. Since it 

is fashionable in Washington nowadays to extol the spiritual 

values of capitalism one should remark here that private 

property tends to be kept up by its owners. 

X-11 



We now describe SOC's intentions with respect to code 

verification. In FOM all code verification will be done 

after all levels have been designed and proved. Beneath the 

bottom level Ina ,Jo spec there w-ill be an implementation 

level which relates the bottom level Ina Jo variables and 

transforms to the names of HOL variables and transforms. An 

extension of the language processor not yet implemented will 

take this level and generate entry and exit conditions for 

the HOL procedures. These together with HOL code will yield 

VCs when passed through a VCG (a MOOULA VCG for Ina Jo entry 

and exit conditions is near completion). In addition in 

order to show that the resulting program is an instance of 

the family of systems specified by the Ina Jo spec it will 

be necessary to check that in the resulting master program 

the entry conditions for each HOL procedure hold whenever it 

is called. The reason the mappings of transforms between 

levels are restricted to the form we described is to make it 

possible to assemble mechanically the entry conditions for 

each HOL procedure. This is a subtle point not mentioned in 

SOC documentation and was the cause of some misunderstanding 

among outside students of Ina Jo. 

~uch work remains to be done to complete the code 

verification aspects of Ina Jo and Oigicomp expects to fund 

some of it. It is premature to make judgements but our 

experience with HO~ leads us to suspect that code 

verification is not as simple as some would maintain. For 

example since the present version of FOM does not admit 

X-12 



modularity the amount of work to be done at code 

verification time may be inordinately large and various 

means to structure it may have to be devised. The theorem 

prover will need to be upgraded to handle the full spectrum 

of mathematics that occurs in program verification. 

III. GYPSY 

Unlike HDM and FDM Gypsy is 

specification language. Gypsy 

program in which specifications 

both a programming and 

text appears like a Pascal 

are interspersed at key 

points. For example, every procedure and function has entry 

and exit assertions and every loop is broken by at least one 

assertion. Verification conditions are generated from these 

specifications and code, and these VCs are submitted to an 

integrated theorem prover. This is the central loop of the 

Gypsy Verification Environment (GVE). This environment is 

quite congenial. It contains a library manager which keeps 

track of the various parts of the verification process and 

their status, an internal structured editor and links to 

external editors like emacs, 

write and prove code, etc. 

facilities to incrementally 

As a result of the integrated language there is no 

strict separation of design and implementation in Gypsy. 

The user can shade a Gypsy source text heavily towards the 

one or the other. It could be pure specification with no 

code or pure code with no specification. The latter is 

compilable with PDP-11 object code. 

X-13 



As mentioned above the Gypsy environment lends itself 

to incremental usage. Pieces of program are written and 

verified. Some of these pieces are high-level routines and 

some low-level. The bodies of the latter may be left 

pending while their entry and exit assertions are used to 

prove the correctness of the high level routines. The 

system could be used as a vehicle for many design strategies 

such as "stepwise refinement", top-down", etc. 

Gypsy also provides a limited form of concurrency 

through the use of buffers that simultaneous running 

processes can send to or get from. Proof techniques have 

been d~veloped to handle the logic of this kind of 

concurrency. 

Gypsy's claim to fame is that one can actually produce 

verified code. The main caveat seems to be that since the 

specification is so close to the implementation level it is 

not simple and abstract enough to get a firm grasp on what 

has been proved about a large system. It lacks for example 

Ina Jo's facility of expressing a design criteria at a high 

level and then using mappings as a dictionary to 

unabbreviate it down to a condition on actual program 

variables. Gypsy does recognizes the need to provide 

mechanisms of abstraction so that the intent of the code 

becomes more transparent. But it seems that this goal was 

given a lower priority than the the admirable one of 

producing a system in which one can develop verifiable and 

X-14 



compilable code. One such abstraction mechanism is a form 

of abstract data types using access lists. It is described 

in the Gypsy language manual but hitherto not implemented. 

This is one of the enhancements currently -being funded by 

Digicomp. 

Although Don Good and his senior assistant Rich Cohen 

have been with the system since its inception many people 

have worked on Gypsy as graduate students at UTexas. This 

is reflected in a certain uneveness in the components. An 

embarrassing example is that although unproved lemmas 

sometimes have to be added to the knowledge base in order to 

complete proofs their status as unproved can be forgotten by 

the system. Digicomp is funding a top level 

reimplementation which will address some of these issues. 

This will be done in a yet to be finalized dialect of LISP 

with portability a major concern in the choice. The present 

version is written in UCI LISP running under Tops-20 and 

runs into space problems when verifying 

programs. 

medium size 

From a logician's point of view the major criticism of 

the system is that it deals only with partial rather than 

total correctness as these terms are used in the field of 

program verification. This means that is no mechanism is 

provided to prove termination of subroutines. All functions 

are dealt with by the theorem prover as if they were total 

and in this way an unsoundness could be introduced. The 

X-15 



MODULA-CIF version of HOM attempted to deal with this 

problem through the use of a user supplied clock function. 

Ina Jo has not faced this issue yet. 

I would now like to mention some areas for possible 

research. 

1. There is a need for an understandable, intelligible 

specification language. The present specification languages 

are like the "machine language" of specification languages. 

They are difficult to read, too homogeneous. It seems the 

proper constructs peculiar to specification remain to be 

discovered. 

2. Theorem proving is the big bottleneck in code 

verification. Proof checkers are too pedestrian and the 

automatic ones run away. The ideal would be a system which 

could take a sketch of a proof and expand it into a real 

proof. I don't believe this is an impossible goal, I do 

believe it is a necessity if large scale code verification 

is to become a reality 

significant breakthrough 

but I also feel it requires a 

in the field of automatic theorem 

proving. The latter is a pure research area involving 

mathematics, logic, and artificial intelligence. 

3. Integration seems to be the key to success in this 

area. Ina Jo is weaker piece by piece than HDM but the 

integration the system has compensates. Gypsy is the most 

satisfying to work with because of its integration. 

X-16 



4. Finally I would like to mention the possibility of 

using approaches to code verification other than VC 

generation. There are several such methods available which 

allow one to use the program text itself in proofs rather 

than translations of it into another language. The 

advantages of the vcg approach is that one can use general 

purpose theorem provers since the 

ordinary mathematical language. 

VCG approach is further integration 

VCs are statements 

The advantage of the 

and unity. The 

in 

non 

less 

translation from one language to another the greater chances 

for success. 

X-17 



COMPUTER SECURITY RELATED PUBLICATIONS 

Listed below are titles and accession numbers of some computer security 
related publications which are now available from the Defense Technical 
Information Center (DTIC), Defense Logistics Agency, Building 5, Cameron 
Station, Alexandria, Virginia 22314 (Phone 202-274-7633, AUTOVON 284-7633). 

Firms or individuals registered with the DTIC may obtain copies for a flat fee 
per document. Those who are not registered with the DTIC may obtain copies 
from the National Technical Information Service, 5285 Port Royal Road, 
Springfield, Virginia 22161 Orders may be placed or price quotations may be 
obtained for each document by calling 703-487-4650. 

AD A101 996 

AD A101 997 

AD A101 998 

AD 076 617 

AD Al03 399 

AD A095 409 

AD Al08 829 

AD A108 827 

AD A108 828 

AD A108 830 

AD Al08 831 

Proceedings of the Third Seminar on the DoD Computer Security 
Initiative 

Proceedings of the Second Seminar on the DoD Computer 
Security Initiative 

Proceedings of the Seminar on the DoD Computer Security 
Initiative - (First Seminar) 

Security Controls for Computer Systems Report of DSB Task 
Force on Computer Security (Rand Ware Report, October 1979) 

TRUSTED COMPUTER SYSTEMS - Needs and Incentives for Use in 
Government and the Private Sector (Rand Turn Report, June 
1981) 

Modernization of the WWMCCS Information System (WIS) (DCA) 
January 1981 

Trusted Computer Systems-Glossary (Huff, MITRE), March 1981 

Computer Security Bibliography (Discepolo, MITRE) November 
1980 

Industry Trusted Computer System Evaluation Process (Trotter 
and Tasker, MITRE) May 1980 

History of Protection in Computer Systems (Tangney, MITRE), 
July 1980 

Specification of a Trusted Computing Base (TCB) (Nibaldi, 
MITRE) November 1979 

y - 1 



AD A108 832 

AD A 109 317 

AD A109 316 

AD A 109 318 

Proposed Technical Evaluation Criteria for Trusted Computer 
Systems (Nibaldi, M~TRE) October 1979 

Formal Specifications of KVM/370 Kernel and Trusted 
Processes (Gold and Thompson, SDC) May 1978 

Final Report VM/370 Security Retrofit Program-Detailed 
Design and Implementation Phase (Gold and others, SDC) 
May 1978) 

Semi-Formal Description of KVM/370 Trusted Processes 
(Thompson, SDC) December 1977 

y - 2 




