
National Bureau of Standards/National Computer Security Center

National Computer Security Conference

~ ~ ~ ::::::::::::::

21-24 September 1987 ~

WELCOME

The National Computer Security Center and the Institute for Computer

Sciences and Technology are pleased to welcome you to the Tenth Annual National

Compu_ter Security Conference. The past nine conferences have stimulated the

sharing of information and the application of this new technology. We are

confident this year's conference will continue this tradition.

This year's conference theme _.:. Computer Security: From Principles to

Practices -- reflects the growth of computer security awareness and a maturation

of the technology of trusted systems. Our next major challenge is to understand

how to build secure applications on these trusted bases. The efforts of the

National Computer Security Center, the Institute for Computer Sciences and

Technology, computer users, and the computer industry have all contributed to the

advances in computer security over the past few years. We are committed to a

vibrant partnership between the Federal Government and private industry in

furthering the state of the art in Computer Security.

The great challenge of the future is for us to build upon the bases we are

now developing so that new applications can emerge. We must understand and

"record" how we build on these foundations in order to secure end products. To

be successful, we need your help as you take back to your places of work an

increased awareness of where we are and where we must go.

_:~,. ,~ ftr7/? /~!/~~ ----~£,~/~~/~
H. BURROWS PATRICK R.-,GALf.AGHEfi(Jh A>---:::~~
irector DireCtor

Institute for Computer Sciences National Computer Sec
and Technology

i

TABLE OF CONTENTS

Network Security

1 Developments in Guidance for Trusted Networks
Alfred W. Arsenault, National Computer Security Center

9 Considerations for Security in the OS/ Architecture
Dennis K. Branstad, National Bureau of Standards

15 A Mission-Critical Approach to Network Security

Howard L. Johnson, Information Intelligence

Sciences, Inc.

J. 	 Daniel Layne, Computer Technology Associates,

Inc.

Network and Distributed Systems

25 A Security Policy and Model for a MLS LAN
Peter Loscocco, National Computer Security Center

38 Security in Open Systems -- A Report on the Standards
Work of ECMA's TC32/TG9

T. A. Parker, ICL Defence Systems, UK

51 Applying the Orange Book to an MLS LAN
Dan Schnackenberg, Boeing Aerospace Company

56 Information Flow Control in a Distributed Object-
Oriented System with Statically Bound Object
Variables

Arthur E. Oldehoeft and Masaaki Mizuno, Iowa State
University

68 The Architecture of a Distributed Trusted Computing
Base

Jon Fellows and Judy Hemenway, Nancy Kelem,
Sandra Romero, UNISYS

78 Specification and Verification Tools for Secure

Distributed Systems

J. Daniel Halpern and Sam Owre, Sytek Inc.

Management Practices

84 Specification for a Canonical Configuration Accounting
Tool

R. Leonard Brown, Aerospace Corporation

ii

91 RACF Implementation at Puget Power
Arturo Maria, Puget Power

98 Management Actions for Improving DoD Computer

Security

William Neugent, MITRE Corporation

Risk Management

103 Risk Analysis and Management in Practice for the UK
Government -- the CCTA Risk Analysis and
Management Methodology: CRAMM

Robin H. Moses, UK CCTA; E. Rodney Clark, BIS
Applied Systems, LTD

108 A Plan for the Future
Sylvan Pinsky, National Computer Security Center

Verification Theory

109 m-EVES
Dan Craigen, I. P. Sharp Associates Limited

118 The Bell-LaPadula Computer Security Model Represented
as a Special Case of the Harrison-Ruzzo-Ullman Model

Paul A. Pittelli, Department of Defense

122 Comparing Specification Paradigms for Secure Systems:
Gypsy and the Boyer-Moore Logic

Matt Kaufmann, William D. Young, University of Texas

Architectural Issues

129 Locking Computers Securely
0. 	Sami Saydjari, Joseph M. Beckman,

Jeffrey R. Leaman, National Computer Security Center

142 UNIX and B2 - Are They Compatible?
W. 	 Olin Sibert, Oxford Systems, Inc.;

Deborah D. Downs, Kenneth B. Elliott III, Aerospace
Corporation; Jeffrey J. Glass, MITRE Corporation;
Holly M. Traxler, Grant M. Wagner, National Computer
Security Center

SONS: A Network on Implementation

150 The Secure Data Network System: An Overview
Gary L. Tater, Edmund G. Kerut

153 SDNS Services and Architecture
Ruth Nelson, GTE Government Systems Corporation

iii

. - - I
-· ·I

158 SP-4: A Transport Encapsulation Security Protocol
Dennis Branstad, National Bureau of Standards
Joy Dorman, Digital Equipment Corporation
Russell Housley, Xerox Corporation
James Randall, International Business Machines

Corporation

162 SDNS Products in the Type II Environment
John Linn, BBN Communications Corporation

165 Access Control Within SDNS
Edward R. Sheehan, Analytics Incorporated

17 2 An Overview of the Caneware Program
Herbert L. Rogers, National Security Agency

Modeling and Verification Tools

175 Ina Flo: The FDM Flow Tool
Steven T. Eckmann, Unisys Corporation

183 A Gypsy Verifier's Assistant
Ben L. Di Vito, Larry A. Johnson, TRW Defense Systems

Group

193 Formal Models, Bell and LaPadula and Gypsy
Tad Taylor, Bret Hartman, Research Triangle Institute

Vendor Activities

201 TRUDATA: The Road to a Trusted DBMS
Ronald B. Knode, ORI/INTERCON Systems Corporation

211 The Sybase Secure Dataserver: A Solution to the

Multilevel Secure DBMS Problems

Patricia A. Rougeau, Edward D. Sturms, TRW
Federal Systems Group

216 Computer Security at Sun Microsystems, Inc.
Katherine Addison, Larry Baron, Don Cragun,

Mark Copple, Keith Hospers,
Patricia Jordan, Mikel Lechner, Michael Manley,
Casey Schaufler, Sun Microsystems Federal, Inc.

Specific Threats

220 Taxonomy of Computer Virus Defense Mechanisms
Catherine L. Young, National Computer Security Center

226 Computer Viruses: Myth or Reality?
Howard Israel, National Computer Security Center

iv

231 What Do You Feed a Trojan Horse?
Dr. Cliff Stoll, Lawrence Berkeley Laboratory

238 Towards the Elimination of the Effects of Malicious
Logic: Fault Tolerance Approaches

Mark K. Joseph, University of California,
Los Angeles

Security in UNIX

245 The Setuid Feature in UNIX and Security
Steve Bunch, Gould Computer Systems Division

254 Networking of Secure Xenix Systems
Wilhelm Burger, IBM Corporation Federal Systems

Division

257 A Least Privilege Mechanixm for UNIX
Frank Knowles, Steve Bunch, Gould Computer

Systems Division

DoD Computer Security R&D Programs

263 An Overview of the DoD Computer Security Research
and Development Program

Larry Castro, National Computer Security Center

Evaluation and Certification

266 Certification: A Risky Business
Martin Ferris, Andrea Cerulli, Department of the

Treasury

27 3 Security Evaluations of Computer Systems
David J. Lanenga, National Computer Security Center

277 An Expert System Approach to Security Inspection of a
VAX/VMS System in a Network Environment

Henry S. Teng, Digital Equipment Corporation
Dr. David C. Brown, Worchester Polytechnic Institute

282 The Application "Orange Book" Standards to Secure
Telephone Switching Systems

Capt. Paul D. Engelman, HQ AFCC/AIZ

288 The National Computer Security Center Technical

Guidelines Program

Phillip H. Taylor, National Computer Security Center

v

Training and Awareness

298 Getting Organizations Involved in Computer Security:

The Role of Security Awareness

Elizabeth Markey, U.S. Department of State

300 The Computer Security Training Base of 1985
Eliot Sohmer, National Computer Security Center

316 Department of the Navy Automated Data Processing

Security Program Training OPNAVINST 5239.1A

Patricia A. Grandy, Navy Regional Data Automation
Center

Social Issues and Ethics

320 Social Aspects of Computer Security
Dorothy E. Denning, Peter G. Neumann, Donn B. Parker

SRI International

326 Security and Privacy: Issues of Professional Ethics
Marlene Campbell, Murray State University

Data Base Management Security

334 Data Integrity vs. Data Security: A Workable

Compromise

Ronda R. Henning, Swen A. Walker, National Computer

Security Center

340 Status of Trusted Database Management System

Interpretations

Michael W. Hale, National Computer Security Center

The Insider Threat

343 Insider Threat Identification Systems
Allan R. Clyde, A. R. Clyde Associates

ADA Verification Issues

357 ADA Technology/COMPUSEC Insertion Status Report
Kenneth E. Rowe, Clarence 0. Ferguson, Jr.,

National Computer Security Center

362 The Use of ADA in Secure and Reliable Software
Mark E. Woodcock, National Computer Security Center

vi

366 An ADA Verification Environment
David Guaspari, C. Douglas Harper,

Norman Ramsey, Odyssey Research Associates

Contingency Planning

37 3 Computer Disaster Recovery Planning: A Fast Track
Approach

0. R. Pardo, Bechtel Eastern Power Corporation

379 Return to Normalcy: Issues in Contingency Processing
Thomas C. Judd, Federal Reserve System Contingency

Processing Center
Howard W. Ward, Germanna Community College

Small Systems Management

384 Advisory Memorandum on Office Automation Security: An
Overview

Alfred W. Arsenault, National Computer Security Center

vii

DEVELOPMENTS IN GUIDANCE FOR TRUSTED COMPUT.ER NETWORKS

Alfred w. Arsenault

National computer security Center

Ft. George G. Meade, MD

Abstract

The Technical Guidelines Division of the NCSC
has been working to produce guidance for
Trusted Computer Networks that would be
analogous to that provided for stand-alone
computer systems by the Trusted Computer
System Evaluation Criteria. This paper
discusses the latest events in that develop
ment: the Trusted Network Interpretation
(TNI), how the TNI came to be, what its
implications are, and what lies ahead.

Introduction

The purpose of this paper is to discuss the
current status and future plans for guidance
in the area of trusted computer networks. The
National Computer Security Center ("the Cen
ter") has been working on this problem since
late 1983; earlier stages in the development
can be seen in the proceedings of the New
Orleans Workshop [1] and in the draft Trusted
Network Evaluation Criteria [2], or "Brown
Book". In April of 1987, the Center distri
buted for review the draft Trusted Network
Interpretation [3], or "TNI".

The New Philosophy

Comments received on the Brown Book led the
Center to believe that it did not reflect the
right approach to network security. There
fore, it was necessary to reexamine some of
the early results, and to take a different
approach to developing network guidance. This
new approach is actually a marriage of some of
the early recommendations. It involves the
realization that, although not all networks
can be evaluated and assigned a single rating,
some can. Specifically, the working group
responsible for producing the TNI believes
that the reference monitor concept1 is
appropriate for certain network systems.
These systems fit what is called the "single
trusted system view" that is, they can
accurately be regarded as an instance of a

single trusted system. Networks of this type
have a single trusted computing base, referred
to as the Network Trusted Computing Base
(NTCB). The NTCB is partitioned among the
network components in a manner that ensures
the overall network security policy is
enforced by the network as a whole.

The implication of this is that these networks
can be evaluated, using the concepts embodied
in the Trusted Computer System Evaluation
Criteria [4] (TCSEC) as the basis for the
evaluation. The words in the TCSEC may not
apply directly; they must be interpreted as
necessary for the network context. Addition
ally, these requirements may need to be
augmented by other requirements, such as those
for "other security services" like Communi
cations Integrity, Authentication, Non
Repudiation, and Assurance of Service. How
ever, it is important to realize that the
fundamental concepts of network evaluations
are those described in the TCSEC; new concepts
are introduced only where essential to
understand the TCSEC in the network context.

Networks for which no meaningful evaluation'is
possible are addressed using the 11 intercon
nected accredited Automated Information System
(AIS) view. n2 The interconnected accredited
AIS view is an operational perspective that
recognizes that parts of the network may be
independently created, managed, and accre
dited. Each AIS is accredited to handle
sensitive information at a single level or
over a range of levels. In this view, the
individual AIS may be thought of as "devices"
with which neighboring components can send and
receive information. An interconnection rule
must be enforced to limit the levels of
information communicated across the network.

The difference between these two views is
simple, and it is a major one. When a "single
trusted system" (or a component, as will be
explained later) is evaluated, the result is a
technical statement about the strength of the
system. This statement is made (usually)
without regard to the specific environment in

lBy "reference monitor concept" we mean strictly the concept
of an abstract machine that mediates all accesses of subjects to
objects. We do not mean to imply "reference validation
mechanism", "security kernel", or even "Bell and LaPadula model".

2For the purposes of this paper, an AIS is any system which
is used to create, prepare, or manipulate information in
electronic form.

1

http:COMPUT.ER

which the system will be operated, and all
systems with the same rating meet the same
criteria. No such statement can be made about
an "interconnected accredited AIS"; all that
can be provided is technical guidance to an
accreditor about certain rules to follow in
hooking up components. The technical state
ment provided by an evaluation is much
stronger than any interconnection rule, and
leads to much more confidence that the system
will behave properly when it is installed.

Why Is It an "Interpretation" ?

It is a simple statement of fact that the
TCSEC actually contains two things. First, it
contains the general requirements for a
trusted system OF ANY TYPE. Second, it
contains an interpretation of those require
ments for general-purpose operating systems.
In some ways, it is unfortunate that these two
things are so tightly interweaved throughout
the document, but that is the way the document
was written. Since the TNI is an interpre
tation of the general requirements for
networks, it is on the same level as the
interpretation for general-purpose operating
systems in the TCSEC. That is, it is much
more than a "Guideline". However, the TNI is
an "Interpretation" rather than a "Criteria"
because it interprets the general require
ments, which have already been stated by the
TCSEC.

structure of the Document

The TNI is divided into two parts, plus three
appendices. Part I of the document contains
the TCSEC interpretations. For each require
ment in each class, the requirement is stated
as it appears in DoD5200.28-STD. Then, the
interpretation of the requirements is stated.
Finally, rationale is provided--an explanation
of why the interpretation is as it is. For
some requirements, examples of acceptable
mechanisms are also provided.

Part II contains the requirements for security
services such as Communications Field
Integrity, Non-Repudiation, Continuity of
Operations, and Network Management. Part· II
includes discussions of general assurance

factors, documentation requirements, and how
to determine which services are needed in a
particular application.

Appendix A discusses the evaluation of
components. Appendix B provides the technical
rationale behind the partitioned NTCB
approach. Appendix C discusses considerations
involved in the Interconnected Accredited AIS
view. There is also a list of acronyms used
in the document, and a glossary of terms.

Relationship to ISO Work

An effort is underway to extend the ISO Open
System Interconnection (OSI) architecture by
defining security-related architectural
elements which can be applied in the
circumstances for which protection of
communications is required [5]. There is
considerable overlap between the OSI Security
Addendum and Part II of the TNI. Since at the
time of this writing both documents are
evolving, it is difficult to exactly define
the relationship. However, some of the
security services identified in the ISO
addendum are addressed in Part I of the TNI,
while others are addressed in Part II. The
principle difference is that the ISO work is
primarily concerned with Functionality,
somewhat concerned with Strength of Mechanism,
and rarely concerned with Assurance. The TNI,
like the TCSEC before it, is very concerned
with Assurance.

Part I: The TCSEC Interpretations

As its name suggests, Part I of the TNI
consists of the interpretations of the TCSEC
requirements. The working group has gone
through the TCSEC, class by class and
requirement by requirement, and asked, "What
does this mean when the context is a network,
rather than a general-purpose operating
system"? Part I first restates the
requirement, as it appears in DoD 5200.28
STD. The interpretation of the requirement is
then stated, followed by the Rationale for the
Interpretation. In certain cases, the
Rationale also includes examples of mechanisms
that may be used to satisfy the requirement.
These examples are meant to be just that; they

2

are not meant to be prescriptive.

This interpretation makes explicit what is
implicit in the TCSEC: that the Criteria can
be applied to mandatory and discretionary
integrity policies, just as it can to
mandatory and discretionary secrecy policies.
That is, it is permissible for a network
system to support a secrecy policy, an
integrity policy, or both.

The evaluation system for Part I of the TNI is
identical to that for the TCSEC. A single,
digraph rating in the range D to Al is
assigned to the system. This rating is a
technical statement of the amount of trust
that can be placed in the network system. It
carries the same meaning as the digraph rating
assigned to a general-purpose operating system
that has been evaluated against the the TCSEC.

Part II: Other Security Services

Why Other security Services?

Part II contains additional network security
concerns that are not reflected in Part I.
These concerns are what differentiate the
network environment from the stand-alone
computer environment. Some concerns take on
increased significance in the network
environment; others do not exist in stand
alone computers. Some of these concerns are
outside the scope of Part I; others lack the
theoretical basis and formal analysis
underlying Part I. Since introducing these
services into Part I would destroy the
cohesiveness of the criteria for a class, they
are treated separately in Part II.

Criteria Form: Functionality, Strength, and
Assurance

Functionality refers to the objective and
approach of a security service; it includes
features, mechanisms, and performance.
strength of mechanism refers to how well a
specific approach may be expected to achieve
its objectives. Assurance refers to a basis
for believing that the functionality will be
achieved; it includes tamper resistance,
correctness, verifiability, and resistance
against circumvention or bypass.

As an example, consider communications
integrity protection against message
modification. A functionality decision is to
select error detection only or detection and
correction. A strength of mechanism decision
would involve how strong an algorithm to use
in implementing whichever were chosen.
Assurance decisions would involve what level
of software engineering would be involved in
building the services, whether or not to use
formal verification, and what level of testing
to use.

For each of the security services described in
Part II, requirements are given for each of
Functionality, Strength of Mechanism, and
Assurance. These requirements are distinct
from one another, and may be met
independently. For example, it may be decided
to implement a very strong mechanism with very
low assurance, or a very weak mechanism with
very high assurance.

The Evaluation system

The security services described in Part II are
not. as strongly intertwined as are those in
Part I. It is not possible to assign one
rating (e.g., 'Zl') that adequately reflects
how well the system provides each service.
Furthermore, the services in Part II are
generally not provided by the NTCB, but are
provided by hardware;software that is external
to the NTCB. To try to assign them a rating
that is one of the digraphs assigned under
Part I of the TNI is not practical, since in
many cases the rating assigned is much more
subjective. Therefore, a qualitative rating
system must be used, instead of a
hierarchically-ordered system. The evaluation·
system used in this document involves a tuple.
A system is assigned three ratings for each
service: one each for Functionality, Strength
of Mechanism, and Assurance. Ratings normally
come from the set of {Not Offered, None,
Minimum, Fair, Good}; however, in specific
cases, ratings such as "present" or "approved
for use with data up to SECRET" may be
assigned.

The difference between "Not Offered" and
"None" is that a rating of None states that
the system sponsor attempted to provide the

3

service (either Functionality, strength of
Mechanism, or Assurance) and failed
completely. A rating of Not Offered merely
implies that the sponsor did not attempt to
provide the service, as (s)he did not consider
it important. Since either rating indicates
that a system does not adequately provide a
service, the only appreciable difference to
the potential customer is that a rating of
None may indicate a poor quality of work in
the system.

Selecting Security services

Not all security services will be equally
important in any specific environment; nor
will their relative importance be the same
among different environments. The system 1 s
accreditor (or the potential customer) must
decide, based on the threats to be encountered
in his/her specific environment, which
security services are important, and which are
not required. (S) He can then decide whether
the rating achieved by a specific product is
adequate for the projected environment.

General Assurance Approaches

There are a number of factors that involve the
Assurance ratings of several security
services. These assurance factors include
such things as service design and
implementation, service testing, design
specification and verification, and
configuration management. When a service is
implemented, the rating for these general
assurance factors is combined with the rating
for the service-specific assurance factors to
produce one overall Assurance rating for the
service.

supportive Primitives

There are two mechanisms/assurance techniques
that apply across a wide range of services.
These are encryption and protocols.
Encryption is a tool for protecting data from
compromise or modification attacks. The
analysis of encryption algorithms and
implementations is quite different from the
analysis of most of the other requirements in

the TNI. The TNI states that assurance of
encryption techniques will be provided by the
National Security Agency.

Protocols are a set of rules and formats which
determine the communication behavior between
entities in a network. Many network security
services are implemented with the help of
protocols. Failure in the protocol therefore
results in failure of the service. Protocols
influence all ratings; there are Functionality
factors, Strength of Mechanism factors, and
Assurance factors involved.

General Documentation Requirements

Documentation is required for security
services, just as it is for the NTCB. In
fact, in many cases, the documentation should
be contained in the same place. For example,
guidance to the system or component
administrator concerning security services
should probably be placed in the Trusted
Facility Manual. If a component supports
users, guidance to those users should be
placed in the Security Features User 1 s Guide
required by Part I. Documentation concerning
the design and testing of a security service
may be placed with the Test Documentation and
Design Documentation required by Part I; if it
is not located there, then it must be provided
separately by the network sponsor.

Specific security services

The three categories of security services
addressed are Communications Integrity, Denial
of Service, and Transmission Security.
Communications Integrity is further broken
down into: Authentication, Communications
Field Integrity, and Non-repudiation. Denial
of Service contains the requirements for
Continuity of Operations, Protocol-based
Protection, and Network Management.
Transmission Security includes Data
Confidentiality, Traffic Confidentiality, and
Selective Routing.

In Part II, Authentication is concerned with
what the ISO work calls Peer Entity
Authentication or Data Origin Authentication,
depending on whether the service is

4

connection-oriented or connectionless. This Taxonomy of Policies and Components
can be contrasted with the Authentication
required in Part I, which is strictly the
Identification and Authentication of human
users.

Communications Field Integrity refers to the
protection from modification of any or all
fields involved in communications. Non-
repudiation provides unforgeable and
undeniable proof of shipment and/or receipt of
data.

It is accepted that one can never completely
protect against denial of service.
Furthermore, the TNI does not attempt to
address protection against such attacks as
cutting a communications cable, or blowing up
one of the components. The TNI does state
requirements for detecting service levels that
have fallen below pre-established thresholds,
and for detecting the fact that access to a
component is unavailable.

Transmission security is a collective term for
a number of security services. These services
are all concerned with the secrecy of
information transfer between peer entities
through the computer communications network.
While physical security can also provide
transmission security, it is not explicitly
addressed in the TNI.

Appendix A: Component Evaluations

The main body of the TNI takes the view of a
network as a single trusted system. This view
can be extended somewhat, and a trusted
network can be regarded as a collection of
trusted components. This is an important
extension, as in the commercial marketplace it
is doubtful that many vendors will provide
complete systems. Thus, we would like to be
able to assess the trust provided by different
types of components. There are two advantages
to being able to do this: first, it allows
for the evaluation of components which in and
of themselves do not support all of the
policies required by the TCSEC; second, it
allows for the reuse of the evaluated
component in different networks without the
need for a re-evaluation of the component.

For our purposes, there are four basic types
of policies that systems or components can
enforce. There are mandatory access control
policies, discretionary access control
policies, supportive policies, and application
policies.

Application policies are those that apply to
specific programs; they provide security in
addition to that provided by the TCB or NTCB
partition. An example of an application
policy would be a database management system
that provided access control to the record or
field level, while the TCB provides access
control only to the granularity of a file.
Application policies are not relevant to the
TNI; thus they will not be addressed.

Supportive policies include identification and
authentication policies as well as audit
policies.

Given this taxonomy of policies, the TNI
breaks the universe of components into four
classes. One class consists of those
components that support mandatory access
control policies 1 the TNI denotes these 'M
components'. A second class consists of those
components that support discretionary access
control policies; the TNI calls these 'D
components 1 • The third class supports
identification and authentication policies,
and these are called 1 I components 1 • The
final class supports audit policies; these are
called 'A components•.

Evaluation system

Whenever a component is to be evaluated, the
component sponsor is responsible for
completely defining a target network
architecture; that is, an architecture in
which the component is expected to be used and
for which its security features will work as
stated. Once this is done, the component can
be evaluated against those requirements that
apply to it, in the context of the stated
target architecture and policy.

A component is evaluated against the

5

requirements in Part II .as stated for any
service it provides. No further
interpretation is necessary.

A component is evaluated against some subset
of the requirements for a given class in Part
I. It is evaluated against all assurance
requirements, plus those feature requirements
that apply directly to the policy it enforces.
In general, the component is evaluated against
the Interpretation as stated in Part I of the
TNI. In some cases, it is necessary to
reinterpret the requirement to place it in the
context of a network component, rather than a
network system.

The range of ratings that can be assigned to a
component depends on the policy(ies) it
enforces. For example, a M component can
receive a rating in the range Bl - Al. A D
component can be rated from Cl to C2+. (C2+
indicates that the component enforces the B3
DAC requirement, and provides C2 assurances.
It is not correct to assign a B3 rating to a D
component, as that connotes a level of
assurance that no D component can provide.)
An A component can receive a rating of C2 or
C2+, and an I component can be rated Cl
through C2+.

composition Rules

Since a component is defined to be any part of
the system, some components are made by
composing other components. ·For example, a
communications subnet is a component of a
larger system; it may be composed of packet
switches, front-end units, and gateways that
are components themselves. (This is an
illustration of the fact that the definition
of component is a recursive one.) In general
it is not possible to guarantee that a
collection of evaluated components will result
in an evaluatable trusted system. However, it
is possible to define a set of composition
ru1es so that the result of composing trusted
components maintains the ratings assigned to
the original components.

An example of the composition rules provided
in the TNI is illustrated as follows. Suppose
that there is a D component that has been
given a C2 rating for D. Suppose that there

is an I component that has been given a C2
rating for I. We wish to compose these two
components to get one DI component that is
rated C2 for D and C2 for I. In order to do
that, we must insure that the DI component
preserves the Network DAC Policy of the D
component. Furthermore, the DI component must
preserve the Audit interface(s) used for
exporting audit information from both the D
component and the I component. If the DI
component provides
Identification/Authentication support services
to other components, the Identification
Interface of the DI component must be defined
and a protocol established for this interface
which is able to support the Network I/A
Policy. If the DI component does not provide
Identification/Authentication support services
to other components, it may only be composed
with other components which are self
sufficient with respect to DAC.

The TNI gives composition rules for
interconnecting all possible combinations of
component types, most of which are similar to
the one above.

Appendix B: Rationale for the Partitioned
NTCB Approach

Implicit in the partitioned NTCB approach is
the view that a network, including the
interconnected hosts, is analogous to a single
trusted system, and can thus . be evaluated
using an interpretation of the TCSEC. Put
another way, networks form an important and
recognizable subclass of ADP systems with
distinctive technical characteristics which
allow tailored interpretations of the criteria
to be formulated for them. Appendix B
provides the background and rationale for the
partitioned NTCB approach.

Appendix c: The "Interconnected Accredited
AIS11 View

The interconnected accredited Automated
Information System (AIS) view is an
operational perspective that recognizes ·that
parts of the network may be independently
created, managed, and accredited. Each AIS is
accredited to handle sensitive information at

6

a single level or over a range of levels. In
this view, the individual AIS may be thought
of as "devices" with which neighboring
components can send and receive information.

The interconnected accredited AIS view differs
from the single trusted system view in that,
here, one does not regard a network as a
single trusted system, and therefore one does
not assign a single rating to the network. An
example of where the interconnected accredited
AIS view is necessary is a network consisting
of two Al systems and two B2 systems, all of
which are interconnected and all of which may
be accessed locally by some users. It is easy
to see that, if we regard this as a single
trusted system, it would be impossible for it
to achieve a rating against Part I of this
document higher than B2. This might not be an
accurate reflection of the trust that could be
placed in the two Al systems and
interconnections between them. Any single
rating assigned to this network would be
misleadin9".

Component Connections and the
Interconnection Rule

Networks like the one described above can only
be addressed in terms of whether or not they
obey an interconnection rule. Each component
that is connected to other AIS communicates by
means of a particular I/O device, which has a
device range associated with it. The
interconnection rule involved is one that says
simply, for two way communication, the device
ranges of the two I/O devices must be
identical. For one-way communication (i.e. ,
with no acknowledgement whatsoever) , the
device range of the receiving I/O device must
dominate the device range of the sending I/O
device.

This interconnection rule must be enforced
locally by each component of the network.
Decisions on whether to send or receive
information can be made by a component based
only on its accreditation range and those of
its immediate neighbors. In many cases, it is
not necessary for a sending component to know
the accreditation range of the component that
is the ultimate destination of the message.
If the interconnection rule is enforced by

each component, the overall network will
prevent information from being sent where it
shouldn't go.

The Global Network View

In many cases, networks can enforce the
interconnection rule and still expose
information to an excessive risk of disclosure
or modification. There are considerations
other than the interconnection rule that the
accreditor may wish to take into account when
deciding whether or not to permit
interconnection of components. Most of these
considerations are based on a knowledge of all
the components in the network. As one
particular example of these considerations,
let us consider something called the
"cascading problem". Cascading occurs when a
penetrator can take advantage of network
connections to compromise information across a
range of security levels that is greater than
the accreditation range of any of the
component systems he must defeat to do so.

Consider the following example: there are two
class B2 systems, one (System A) processing
SECRET and TOP SECRET information, the other
(System B) processing CONFIDENTIAL and SECRET
information. A penetrator is assumed to be
able to overcome the protection mechanisms in
System A, causing TOP SECRET information to be
downgraded to SECRET; have it sent across to
System B at the SECRET level; and then
overcome the protection mechanisms in System B
to downgrade it to the CONFIDENTIAL level.
TOP SECRET information has thus been
downgraded to the CONFIDENTIAL level;
According to the environments guidelines [6],
the risk of this requires at least a class B3
system; however, the penetrator has only had
to defeat two class B2 systems.

The TNI describes two heuristic algorithms for
determining the presence of cascading
conditions. One, which is very simple, is
fairly conservative, and sometimes indicates
the presence of a cascading condition when in
fact none exists. The second is much more
complex, but it tends to be more accurate in
determining cascading conditions.

There are several ways of remedying potential

7

cascading conditions. In most cases, using a
higher level of trusted system will suffice.
In other situations, mechanisms such as end
to-end encryption will solve the problem. In
extreme cases, the accreditor may wish to
actually disallow the connection.

Acknowledgements

The author would like to thank the members
of the TNI working group, without whose
efforts the TNI would not have been possible.
They are: Marshall Abrams and Jon Millen, of
MITRE; Roger Schell, of Gemini Computers,
Inc.; Stephen Walker, of Trusted Information
Systems, Inc.; Robert Morris, Chief Scientist
of the NCSC; Irv Chatlin, NCSC; Jack
Moskowitz, NCSC; and Brian Snow, Department of
Defense. Acknowledgement is also due to
Leonard LaPadula, Bill Shockley, Steve
Padilla, and Jim Anderson, for their many and
valuable inputs; and to Patrick Mallett,
Albert Jeng, and Sam Schaen for review and
comments. Thanks are also due to all of those
who read and commented on various drafts of
this document.

References

1. DoD Computer Security Center, Proceedings
of the Department of Defense Computer Security
Center Invitational Workshop on Network
Security. New Orleans, LA 19-22 March 1985.

2. DoD Computer Security Center, Draft
Trusted Network Evaluation Criteria, 25 July
1985.

3. National Computer Security Center, Draft
Trusted Network Interpretation, 8 April 1987.

4. DoD Standard 5200.28-STD, Department of
Defense Trusted Computer System Evaluation
Criteria, December 1985.

5. "ISO 7498/Part 2 - Security Architecture,"
ISO/TC97/SC21/N1528/WG1 Ad hoc group on
Security, Project 97.21.18, September 1986.

6. DoD Computer Security Center, Computer
Securitv Requirements--Guidance for Applying
the Department of Defense Trusted Computer

System Evaluation Criteria in Specific
Environments, CSC-STD-003-85, 25 June 1985.

For More Information:

The author can be contacted at the following
address:

Alfred Arsenault
National Computer Security Center
ATTN: C11
9800 Savage Road
Ft. George G. Meade, MD 20755-6000

8

http:97.21.18

CONSIDERATIONS FOR SECURITY

IN THE OSI ARCHITECTURE

Dennis K. Branstad

Institute for Computer Sciences

and Technology

National Bureau of Standards

Gaithersburg, Maryland, 20899, USA

I. Introduction to OSI Security

The Open systems Interconnection (OSI)
computer network architecture has given
computer network designers and implementors
a common vocabulary and structure for
building future networks. It has also
given network security designers a
foundation upon which desired security
services can be defined and built. This
paper discusses several goals of security
in the OSI architecture as well as where
and how the security services that satisfy
them could be implemented.

A. Need for a Security Architecture

A standard security architecture is
needed in OSI in order to begin the task of
implementing security services in
commercial products so that not only can
one OSI system communicate with another,
but also it can do the communication with
the desired security. The security goals
and services discussed in this paper are
predicated on the assumptions that
sensitive or valuable data are being
transmitted between systems in the OSI
network, that changes in the network
between the systems could be made by an
unauthorized person or persons in order to
obtain or modify the data, and that
security services are to be available in
the network to prevent the unauthorized
disclosure of sensitive data and to detect
(and report) the unauthorized modification
of data.

For this paper, security is defined to
be the protection of the confidentiality
and integrity of data. Privacy, often
combined with security or confused with
security, is a social issue regarding
protection of personal information from
undesirable use and is not discussed in
this paper. Security is often defined as
including protecting the availability of
data but is not included in the scope of
this paper.

B. Requirements for Security

A large number of potentially
desirable security goals in computer
networks have been identified in the
literature. The OSI Implementors Workshop
Special Interest Group in security (OSI
SIG-SEC) is establishing a desirable set of
security goals for implementors of OSI and
the resulting list of desirable services to
implement. This SIG is sponsored by the u.
s. National Bureau of Standards and is open
to anyone interested in OSI security.

NOTE: CONTRIBUTION OF THE NATIONAL

BUREAU OF STANDARDS •.

NOT SUBJECT TO COPYRIGHT.

9

A minimum set of desirable security
goals in OSI identified by the author is:

1. 	 Protection of data against

unauthorized modification.

2. 	 Protection of data against

undetected loss/repetition.

3. 	 Protection of data against

unauthorized disclosure.

4. 	 Assurance of the correct identity
of the sender of data.

5. 	 Assurance of the correct receiver
of the data.

As a memory aid for these five basic
security goals, the following five terms

11 S11starting with the letter have been
selected to represent the security achieved
by satisfying these goals. They are,
respectively:

1. Sealed
2. Sequenced
3. Secret
4. Signed
5. Stamped

Achieving these security goals in the
OSI architecture will assure that data
being transmitted from one OSI system to
another will not have been modified,
disclosed, replayed, or lost in the network
without the sender andjor the intended
receiver being notified and that the
participating parties in the communication
have been correctly identified.

Other security goals that have been
identified [11] as being desirable include:
labeling of data according to its
sensitivity, source, etc.; not disclosing
the identities of the sender and recipient
of data, and the quantity of data
exchanged, except to each other; providing
security audit trails of network
communications; assuring the availability
of communications under adverse conditions;
assuring that data inside an OSI system
cannot be transmitted using covert
information channels, even of very low
bandwidth; proving to an independent third
party that a communication did occur and
the correct contents were received;
obtaining explicit authorization for access
to a system before making a connection to
the system.

C. National Bureau of Standard's Role

The National Bureau of Standards (NBS)
has fostered the development of the OSI
architecture and the implementation of
commercial products implementing the
standard protocols defined for the
architecture. NBS has had a program in

computer security since 1973 and has
fostered the development of numerous
security standards [7, 8, 9, 10] since that
time. It has assisted in the development
of several security standards in the
banking community [4, 5, 6] and the
information processing community [1, 2, 3]
through the American National Standards
Institute. It is now supporting the
development of an OSI security architecture
[11] via the ISO/ TC97/ SC21/ WG1 and the
OSI SIG-SEC.

II. OSI Network Security Perimeters

A useful notion in the development,
implementation and use of security in a
computer network is that of a security
perimeter. This logical structure in a
computer network is the equivalent to a
physical structure in a secure facility
such as a bank vault. In actuality there
are multiple security perimeters around
highly secure facilities where a principal
of "security in depth" is practiced.
Similar analogies can be drawn in computer
networks. For simplicity in this
discussion, a single security perimeter
concept will be used in which each OSI
system will have a security perimeter. The
overall goal of OSI security is to
communicate data from within one security
perimeter to another. Loss of security
within a perimeter is beyond the scope of
this paper.

A. One Security Perimeter around Network

If a security perimeter is drawn
around the entire network (Figure 1),
either because no sensitive or valuable
data are ever communicated in the network,
because no threats are believed to exist in
the network, or because security it
provided through non-OSI methods, then no
OSI security services are needed. Many
networks are presently being_operated in
this manner. This is acceptable as long as
everyone and everything inside the
perimeter is "trusted." Trust implies that
no intentional or accidental event will
occur which will result in an undesirable
disclosure, modification or loss of data.
A simplified definition of trust is used in
this paper with trust being a binary valued
parameter (i.e., multi-level security is
not considered) • Trust can also be assured
within the system through the use of a
"Trusted Operating System." This system
assures that adequate security is provided
within the security perimeter.

p User Processes p

7
6
5
4
3
2
1

Application Layer
Presentation Layer
Session Layer
Transport Layer
Network Layer
Link Layer
Physical Layer

7
6
5
4
3
2
1

Figure 1: One Security Perimeter around
network

B. 	 Security Perimeter around each User
Process

A security perimeter could be drawn
around each user process which provides
high granularity security (Figure 2) since
each user process provides its own
protection and nothing within the OSI
architecture needs to be trusted. However,
this requires that all desired security
services be implemented in every user
process or program. While possible, this
approach is contrary to the goal of OSI for
performing services in the layers of OSI
rather than in each user process.

p p

7 7
6 6
5 5
4 4
3 3
2 2
1 1

Figure 2: security Perimeter around each
User Process

c. 	 Security Perimeter around Upper
Layers

A security perimeter can be drawn
between these two extremes around the upper
layers of the OSI architecture. Different
granularities of security result from
selecting different placement of the
security perimeter. In actuality, a
hierarchy of security perimeters will be
implemented, each providing security
against a different perceived threat. A
security perimeter has been drawn at the
transport layer (layer,4) of the OSI
architecture (Figure 3) for subsequent
discussion in this paper

pp

77
66
55
44
33
22
11

Figure 3: Security Perimeter around
Upper Layers

D. Negotiated Security

one goal of OSI implementors should be
to provide maximum flex~bility for.users of
an implementation. An ~mplementat~on
should provide for negotiation between
users in selecting an optimum set.of OSI
services, including security serv~ce~. .
However, security may be somew~at ~n~que ~n
this regard in that some orga~~zat~on~ may
not desire to negotiate certa~n s7cu:~ty
services especially if the negot~at~on
could re~ult in security less than ~ome.
predetermined minimum. Other organ~z~t~ons
may accept negotiating away all secur~t¥
services if those services are temporar~ly
causing functionality or throughput to drop

10

below a minimum. Some organizations may
add to the basic security services provided
in standard implementations and not desire
other organizations to use or know about
the additional services.

An extensible security architecture is
desired which will provide for these
special services without causing an
unacceptable overhead on those not
requiring these services.

III. 	 Placement of Security services in

the OSI Architecture

A. 	 Security Addendum to the OSI

Architecture

A draft security addendum to the OSI
architecture [11] has been developed by Ad
Hoc groups of the American National
Standards Institute (ANSI) and the
International Standards Organization (ISO)
TC97/ SC21/ WGl. The draft security
addendum presents a glossary of computer
security terms, describes a number of
security services for OSI, and presents a
matrix of where in the seven layer OSI
architecture the security services may be
located (See Below) • It then presents the
rationale for why the security services are
placed in those layers. Recent work [12]
defines an authentication framework for the
layer 7 directory service for which User
Agents are authenticated before they are
granted access to sensitive information in
the Directory.

While the draft addendum satisfies the
goals of defining a number of security
services and discussing where they could be
placed, the addendum is not adequate for an
implementor desiring to implement security
in the OSI architecture. First, it would
be too expensive to provide all security
services at all possible layers allowed in
the addendum. Second, if one implementor
chose to implement a service at one layer
and another implementor chose to implement
the same service at a different layer, the
goal of compatability between peer layers
of OSI would not be achieved. Finally,
standards for implementing the services are
not currently specified.

B. OSI 	Security Categories and Services

The following security categories and
services are defined in the draft security
addendum to the OSI architecture. The OSI
layers in which the services could be
implemented are shown in the matrix next to
the services. The services need not be
implemented in all of the layers that are
specified.

OSI SECURITY SERVICE PLACEMENT PRIORITIES

High (H); Medium (M); Low (L)

OSI LAYER CATEGORY OF SERVICE

1 2 3 4 5 6 7 SERVICE

1. IDENTIFICATION/AUTHENTICATION

I_I_IMILI_I_IHI A. Data Origin

I_I_ILIMI_I_IHI B. Peer Entity

2. ACCESS CONTROL

I_I_IMILI_I_IHI A. originator
Authorization

I_I_ILIMI_I_IHI B. Peer Entity
Authorization

3. INTEGRITY

I_I_I_IHI_I_I_I A. Connection (wjwo
error 	recovery)

I_I_IHIMI_I_I_I B. Connectionless (wo
error 	recovery)

I_I_I_I_I_I_IHI c. Selective Field
Integrity

4. CONFIDENTIALITY

I_I_I_IHI_I_I_I A. Connection

I_I_IHIMI_I_I_I B. Connectionless

I_I_I_I_I_IHI_I c. Selective Field

IHI_I_I_I_I_I_I D. Traffic Flow

5. NON-REPUDIATION

I_I_I_I_I_I_IHI A. Originator

I_I_I_I_I_I_IHI B. Recipient

c. Factors in Placing Security Services

Many factors must be considered in
selecting the layer(s) for implementing
selected security services. First, a basic
set of security services to be implemented
must be chosen. Second, a minimum number
of layers should be chosen in which to
implement the services to minimize the
number of layers affected by security.
Third, use of existing services of a layer
may be utilized by the security service if
a proper layer is chosen. Fourth, the
overall cost of providing the selected
security services will be minimized if the
layer is properly selected.
Fifth, a set of primitive security
functions need to be defined and
implemented (hardware, software, firmware)
in such a way that they can be performed at
one or more layers of the architecture in
providing the desired security service.

D. Primitive Security Functions

OSI security services could be
implemented utilizing a set of primitive
functions similar to the ones below. The
primitive functions would be called with a
set of parameters enclosed in [)
and return the results enclosed in {}
following execution.

11

I. AUTHENTICATE [ID; AUTHENTICATOR] E. Initial Recommendations for
{RESULT; STATUS} Placement

This primitive verifies that the
AUTHENTICATOR does correspond with the
claimed ID by searching the local Secure
Management Information Base and responding
with the correct RESULT and STATUS.

II. 	 AUTHORIZE [ID; TYPE; RESOURCE]

{RESULT; STATUS}

This primitive verifies the
authorization of ID with the indicated TYPE
for access to the requested RESOURCE and
sets the correct RESULT and STATUS.

III. 	 ENCIPHER [PT; LENGTH; KEYNAME] {CT;
LENGTH; STATUS}

This primitive enciphers plaintext
beginning at PT for the indicated LENGTH
into ciphertext beginning at CT for the
indicated LENGTH and sets the resulting
STATUS using the KEY associated with
KEYNAME.

IV. 	 DECIPHER [CT; LENGTH; KEYNAME] {PT;
LENGTH; STATUS}

This primitive deciphers ciphertext
beginning at CT for the indicated LENGTH
into plaintext beginning at PT for the
indicated LENGTH and sets the resulting
STATUS using the KEY associated with
KEYNAME.

v. 	 COMPUTEMAC [DATA; LENGTH; KEYNAME]
{MAC; STATUS}

This primitive computes a Message
Authentication Code (MAC) on the DATA of
indicated LENGTH using the KEY associat~d
with KEYNAME and sets the resulting STATUS.

VI. 	 VERIFYMAC [DATA; LENGTH; KEYNAME;
MAC] {RESULT}

This primitive computes a Test Message
Authentication Code (TMAC) on the DATA of
indicated LENGTH using the KEY associated
with KEYNAME and sets the correct RESULT to
indicate if TMAC is identical with the
input MAC.

VII. 	 SIGN [DATA; LENGTH; USERID;

KEYNAME] {SIGNATURE; STATUS}

This primitive computes a SIGNATURE on
the DATA of indicated LENGTH for the user
indicated by USERID using the KEY
associated with KEYNAME and sets the
resulting STATUS.

VIII. 	 VERIFYSIGNATURE [DATA; LENGTH;
USERID; KEYNAME] {SIGNATURE;
{RESULT;STATUS}

This primitive computes a Test
Signature (TSIGNATURE) on the DATA of
indicated LENGTH for the user indicated by
USERID using the KEY associated with
KEYNAME, compares it with SIGNATURE, and
sets the correct RESULT and STATUS.

Based on the simplifying assumptions
stated at the beginning of this paper, the
transport layer (4) of the OSI architecture
was chosen by NBS for initial
implementation of a selected subset of
security services. This layer was chosen
after several years of participating in the
development of standards for security at
layers 1/2 [2], layer 4 [13] and layer 6 of
the OSI architecture by the accredited ANSI
Technical Committee X3Tl. The layer 1/2
standard was developed for protecting data
in each link of a network. However, it
does not provide security from one OSI
end-system computer to another through a
general network. A layer 4 standard was
drafted to provide security for all data in
a layer 4, class 4 connection. A layer 6
standard was drafted to provide security
for selected fields of data specified by an
application in such a way that it need not
be unprotected even at the intended
destination.

Early development of the layer 4
standard was facilitated by an early
definition of services at layer 4 and the
existence of standard protocols and
implementations of layer 4. It was also
facilitated by using existing services of
layer 4 for security purposes.

IV. 	 Protocols for Transport Layer

Security Services

A. Integrity Service

A connection integrity service
protocol has been defined for class 4 of
the transport layer (4) of the OSI
architecture. The integrity service can
achieve two security goals, sealing and
sequencing, and assures that all data in a
connection are transferred from one OSI
security perimeter to another without being
intentionally or accidentally modified,
lost or repeated. Such security is
especially important in Electronic Funds
Transfer (EFT) transactions. EFT messages
are vulnerable to modification; deposit and
withdrawal messages are vulnerable to loss
or repetition. While present EFT security
standards specify security services at
layer 7 of the OSI architecture, a wide
variety of other applications could utilize
similar security services if they are
implemented at layer 4.

The integrity service protocol
utilizes the sequence number provided by
layer 4, class 4 service. This is a 31-bit
number defined as 4 octets in the header of
each layer 4 Protocol Data Unit (PDU). The
sequence number is provided by layer 4 for
resequencing the PDUs if they arrive out of
order and for flow control on a connection.
The integrity service also utilizes the
existing layer 4, class 4 mechanisms for
recovery from errors (i.e., lost or
modified data) . Connectionless network
layer (3) services can then be used if a
class 4 integrity service is provided and
used at layer 4.

12

The PDU integrity protocol specifies
how an electronic data integrity seal,
?alled a Message Authentication Code (MAC),
~s computed for each PDU. The seal covers
both the user data and the header
(including sequence numbers) for data
stream integrity. The seal is typically a
32-bit number that is computed using
cryptographic functions on the PDU to be
sealed so that its integrity can be
verified when it is received at the
corresponding security perimeter (layer 4
peer entity) • If any part of the PDU has
been accidentally or intentionally
modified, including the address and
sequence number, the test value computed on
the received PDU will not match with the
seal computed by the transmitter on the
transmitted PDU and transmitted with the
sealed PDU. If the value is not correct,
the suspected PDU is discarded and a
retransmission is requested. If the value
is correct, the PDU is accepted. Sequence
numbers are also verified to assure data
stream integrity.

B. Confidentiality Service

Data can be protected against
unauthorized disclosure in a network with
encipherment (encryption). The ISO/OSI
security addendum calls this a
confidentiality service. Enciphering is a
transformation of data into a form that is
not usable or readable while preserving the
information content. The resulting
ciphertext is transmitted. The authorized
receiver must perform the correct inverse
operation, called deciphering (decryption),
in order to obtain the original, usable,
readable form of the data. Typically, a
cryptographic algorithm, implemented in a
computer with either hardware, software or
both, and a cryptographic variable called a
key are used to perform the two required
transformations. A requirement of this
service is that something be kept secret or
available only to authorized communicating
parties. Details of this service are
beyond the scope of this paper.

The confidentiality service requires
that the user data of a PDU be enciphered
before leaving the security perimeter of
the transmitter and be deciphered only
after entering the security perimeter of
the intended receiver. Other portions of
the PDU need not be enciphered since they
contain no user data. If enciphering is
performed only on the user data, the
addresses or identities of the
communicating parties are not enciphered
and hence a monitor in the network can
determine who is communicating and how much
data in being communicated, even though the
contents of the data cannot be determined.

The OSI security architecture
specifies a traffic flow confidentiality
service at layer 1 to protect against
traffic analysis if this protection is
desired. Encipherment at this layer would
protect all data on a communication link,
including the addresses of the
communicating entities. However, it would
be unprotected in all intervening gateways.

c. Peer Authentication Service

The two communicating transport layers
are called peer entities and must perform
equivalent services in order to
communicate. Simplistically, what one does
the other must check andjor undo. The
security protocols that have been defined
to date at layer 4 will assure that the
peer layers are mutually identified and
that a connection between them is a current
connection and not a replay of a previous
connection. This protocol relies on
cryptographic procedures during the
establishment of a connection. Once a
connection is established, data intended
for the peer layer 4 can only be used by
that peer entity. It can be accidentally
or intentionally destroyed, delayed or
misrouted, but it cannot be used by the
unauthorized receiver if encrypted.

Peer authentication is performed by a
connection procedure often called a
three-way handshake. Using proper
cryptographic procedures, a
challenge-response-verification is
performed by both peer entities of a
connection. Random numbers are used in a
standard procedure to assure that both peer
entities have the correct key and that a
replay of a previous connection is not
being attempted. The user data is not
signed with this technique. The personal
identities of the users of a connection or
the applications using a connection are not
involved in this service. It merely
assures that an entire stream of data is
not replayed to an unsuspecting recipient.

V. NBS Laboratory Implementation

A. Local Area Network Environment

The National Bureau of Standards
initiated an experiment in implementing
these security protocols in the transport
layer of several computer systems in a
local area network environment. The
experiment was to determine the adequacy of
a proposed ANSI standard for the security
protocols, the ease of implementation and
impact on the operation of the network.

The network was based on one of the
IEEE 802 standards often called Ethernet.
Six personal computers were used for the
experiment. Ethernet circuit boards were
added to the computers and connected
together using coaxial cable. Software
supplied with each Ethernet board.was ~sed
to provide layer 1, 2 and 3 funct~onal~ty.
A transport layer protocol that was
implemented on a time-shared mini-computer
was used as the basis of the experiment.
Null layers 5 and 6 were used. A simple
layer 7 application was used to demonstrate
connections and data transfers among the
computers.

The National Bureau of Standards Data
Encryption standard. (DES) w~s u~ed ~or the
cryptographic funct~ons. s~x c~rcu~t
boards each containing DES devices were
obtained from two companies and plugged
into the six personal computers. The~e
boards were used by the layer 4 secur~ty
services. Cryptographic keys fo~ each of
the six computers were manually ~nstalled
in the computers for demonstrations. No
automated key management was performed
during the experiment.13

B. Lessons Learned

The difficulty of converting a
protocol designed for a time-shared,
interrupt driven mini-computer to a
single-user, event driven personal computer
was not anticipated. Even though the
programming language was the same ~n ~oth
systems, it was found to be very d~ff~cult
to convert the program from one system to
another. A completely new system interface
had to be developed in order to use the
services of the transport protocol.

It was found to be easy to integrate
the security services into the transport
protocol once the protocol was working •.
The confidentiality service was the eas~est
to implement. The integrity service was
the most difficult as it required more
modifications of existing layer 4
functions. The peer authentication service
was trivial after implementing the
integrity service. Since the system was
designed only for demonstration, there was
no attempt to verify the correctness and
trust of the implementing code itself which
would be necessary for operational systems.

It was difficult to effectively
demonstrate security of the network. Good
security implementations should have
minimal effects on the user and the
network. It was often impossible to tell
if the security services were being
performed since they caused negligible
overhead on the network. A network monitor
was finally designed to observe the data on
the network so that security services, or
lack thereof, could be observed.

It was acceptable to have special
applications to demonstrate the security
services and the transport services but it
was apparent that original equipment and
software implementors and vendors have to
support the enhanced security functions as
a basic feature of their product in future
products in order to gain the desired
security and user support. The interface
to security enhancements has to be trusted
and integrated into the product or security
will often be bypassed.

VI. summary and Conclusions

A security architecture is needed as a
fundamental part of the OSI architecture.
Standard security services must be defined,
standard security protocols must be
developed and standard security interfaces
for applications programs must be
specified. Optional security services must
be defined and standard implementations
must be available to be used on an optional
basis. All security services need to be
negotiated but with provisions for default
services and enhanced, user defined
services. The user should not be aware of
the operation of security services other
than the need for providing initial
information for the service (e.g., the set
of. services required, specific parameters
for the service if default parameters are
not acceptable) .

While only a small subset of the
possible desirable security services were
selected for discussion in this paper,
there is a need for research in providing
additional services and for standards
activities for specifying implementations
of them. The National Bureau of Standards
is seeking interest and assis~a~c~ in
providing these necessary act~v~t~es.

VII. References

[1) ANSI X3.92, American National
standard for Information systems - Data
Encryption Algorithm, American National
standards Institute, New York, NY, 1981.

r2J ANSI X3.105, American National
standard for Information Systems - Data
Link Encryption, American National
Standards Institute, New York, NY, 1983.

[3) ANSI X3.106, American National
standard for Information Systems - Data
Encryption Algorithm Modes of Operation,
American National Standards Institute, New
York, NY, 1983.

[4] ANSI X9.8, American National
standard for PIN Management and Security,
American National Standards Institute, New
York, NY, 1982.

[5) ANSI X9.9, American National
standard for Financial Institution Message
Authentication - Wholesale, American
National Standards Institute, New York, NY,
1986.

[6] ANSI X9.17, American National
standard for Financial Institution Key
Management - Wholesale, American National
standards Institute, New York, NY, 1985.

[7] Federal Information Processing
standard 46: Data Encryption Standard
(DES), National Bureau of Standards,
Gaithersburg, MD, 1977.

[8] Federal Information Processing
standard 74: Guidelines for Implementing
and Using the Data Encryption Standard,
National Bureau of Standards, Gaithersburg,
MD, 1980.

[9] Federal Information Proces~ing
standard 81: DES Modes of Operat~on,
National Bureau of Standards, Gaithersburg,
MD, 1980.

[10] Federal Information Processing
standard 113: Computer Data
Authentication, National Bureau of
Standards, Gaithersburg, MD, 1985.

[11] ISO 7498: Proposed Draft Addendum
Number 2 - Security Architecture, ISO/
TC97/ SC21/ WGl, 1986.

[12] The Directory - Authentication
Framework, ISO/CCITT Directory Convergence
Document #3, ISO/ TC97/ SC21/ WG4, 1986.

[13] Transport Layer Protocol Definition
for Providing Connection Oriented .
End-to-End cryptographic Data Protect~on
Using a 64-Bit Block Cipher, X3Tl Draft
Document forwarded to ISO TC97/ SC20/ WG3,
1986.

14

A Mission-Critical Approach to Network Security

Howard L. Johnson
Information Intelligence Sciences,

15694 E. Chenango
Aurora, CO 80015

Inc.

J. Daniel Layne
Computer Technology Associates,

7150 Campus Drive, Suite 100
Colorado Springs, CO 80918

Inc.

ABSTRACT

Computer networks supporting command and
control missions interconnect sensors,
operations centers, forces and other
heterogeneous systems. Such "systems of
systems" must protect sensitive data from the
threat of compromise and must, in addition,
provide protection to mission critical data
and resources against loss-of-integrity and
denial-of-service. This paper presents an
approach to network security that treats
sensitivity (classified data protection)
issues independent of criticality (integrity
and availability) issues to gain archi
tectural and economic advantage. Decompo
sition of large systems into components is
reviewed. We discuss protection mechanisms to
counter sensitivity and criticality threats
and also address security interface policy
requirements between components and systems.
Finally, a network security architecture
concept is suggested.

INTRODUCTION

Networks and more specifically
distributed systems present a more difficult
security problem than monolithic computer
systems due to lack of central control and a
heightened security exposure that is geo
graphically dispersed and over a broader
range of levels. Communicating components
compound the problems with different security
policies and interfaces, incompatible
security architectures, and composite risks.
There is a lack of strong technology history
in network security and external exposure of
communications media and facilities provides
greater opportunity for integrity and denial
of service attacks.

In communications systems we protect
data content exposure with cryptography, but
without additional protection (not presently
provided in computer security), false
,messages can be initiated, important messages
can be deleted, and communications resources
·could be made unavailable. To make matters
more difficult, a probable profile of today's
enemy is someone who has a security
clearance, has dedicated many years service
to the Government, and possesses detailed
technical knowledge of computer hardware and
.software.

We examined DoD's derived security
policy and found that it primarily addresses
monolithic computer systems in a protected
environment. It is not definitive where

compiexity exists and deals principally with
information protection issues (not mission
protection issues). Further, connecting
equipment in DoD installations appears to be
leading to the requirement for all highly
critical/highly classified systems to be
certified/accredited at least to the A1
(Orange Book [1]) level. This is a
technologically difficult goal that magnifies
development cost and can impose in its
solution unacceptable operational constraints
and risks.

This paper separates sensitivity
(protection of classified information) from
criticality (integrity of operations and
protection against denial of services). This
decision results in the ability to use
encryption and covert channel protection
mechanisms to solve the sensitivity problem
in host communications and data storage,
leaving the criticality problem to be
addressed. Criticality can generally be
solved in networks with detection and
recovery approaches, existing primarily in
the host protected domain; which is far less
costly than resistive (formal model)
mechanisms. We believe this solution will
not only reduce operational constraints, but
will also provide a less expensive approach
to even a higher level of security.

SENSITIVITY AND CRITICALITY

The separation of network security into
sensitivity and criticality follows the
partial lead of Air Force Regulation (AFR)
205-16 [2]. Figure 1 illustrates the key
elements of sensitivity and criticality.
Sensitivity is generally well understood
while criticality has two defining aspects,

o 	 maintaining the integrity of the system
to ensure that senders and receivers are
as perceived, that processes (e.g.,
protection, communications, and resource
control) are as intended, and that data
(mission or control) have not been
altered; and

This work was sponsored in part by the USAF
Space Command, under contract number F05604
85-C-0019 awarded to CTA. However, the
statements herein reflect the opinions of the
authors, and do not necessarily represent the
views or policy of the Air Force.

15

~ c

Sensitivity
(Existing Basis)

Criticality
(Proposed Enhancements)

Protect Classified data
Mission Data

Control Data, Processes

Threat Disclosure
Loss of Integrity
Denial of Service

Levels Unclassified
Confidential

Secret
Top Secret

(Compartments)

Noncritical
Critical

Highly-Critical
(Compartments

possible)

Control Goal Need-to-Know Need-to-Modify/Execute

Protection
Mechanisms

Resistance Resistance
Detection/Recovery

: Figure 1. System Security Elements

o 	 protectiori· a~ainst denial of service
that occurs when unauthorized ac~lon
prevents the system from providing
normal and intended services for the
mission.

Criticality and sensitivity are duals in
at least one sense. A mission can be
extremely critical and have no classified
data (an i:rnpqrt,ant uncolassified sensor), or a
mission can deal with great amounts of
classified data and not be nationally
critical (such as a classifi~d library).

In the history of formal computer
security, integrity has only applied to the
trusted computer base and denial of service
was not seriously addressed. In networks,
integrity and availability concepts apply to
communication control (e.g., key distri
bution, protocols), control processes, and
mechanisms (in a manner similar to · the
trusted computer base) . Network require
ments further pertain to distribution paths
and options.

The entire control mechanism must be
trusted to some degree. The concepts of
detection and recovery apply to data and data
path alteration, as well as to inappropriate
or unauthorized resource use. The integrity
of protection mechanisms, concerned with
compromise of classified information, is a
sensitivity issue, whereas the integrity of
mechanisms that ensure authentication,
trusted communications processes, and
accuracy of control data is a criticality
issue.

Criticality is defined in AFR 205-16 as
"the required level of protection of
resources, whose compromise, alteration,
destruction, loss, or failure to meet

---.: 	 objectives will jeopardize mission
accomplishment." When we speak of
criticality of a local mission, it must be
taken in the context of DoD overall
objectives.

Level of protection against compromise
is commensurate with the information
sensitivity (generally having global and long
term mission implications) . The value of
protection against loss of integrity or
den'ial of service threat is commensurate with

16

the mission that might not be accomplished
and has current, short term, local
implications (where local pertains, for
example, to two parties attempting to
communicate or to operations affected by
resource unavailability) .

The Trusted Base (system or component
where a computer is usually a component) may
consist of mechanisms for both sensitivity
protection and criticality protection,
however the degree of protection of the two
might differ. In certain cases, the same
mechanism can be used for both objectives
while in other cases distinct mechanisms must
be incorporated.

In criticality protection mechanisms,
detection and recovery become more applicable
than they are in sensitivity protection. In
fact, these may be more important (and
certainly more practical) than resistance.
When a crisis occurs, there may be a tendency
to treat sensitivity more lightly to enhance
operational knowlege and flexibility (e.g.,
releasing data from normally protected
intelligence sources for operational
decisions). However, in general, during a
crisis, criticality becomes increasingly
important.

In AFR 205-16 the levels of criticality
are dealt with more subjectively than
the levels of sensitivity. If we follow the
lead of Biba [4), specific graduated levels
are identified and dealt with in the system
with security mechanisms to protect the
levels according to a set of rules~ similar
to the mandatory and discretionary policy in
sensitivity protection. The levels identified
in AFR 205-16 are: HIGHLY-CRITICAL, CRITICAL,
and NONCRITICAL. If an element or a piece
of data is necessary to a critical mission,
then it also is critical.

Criticality levels can be assigned to
external subjects, data, processes, and
devices. Security mechanisms must be put in
place to ensure that, commensurate with the
criticality level, there is a corresponding
confidence that threats against the integrity
of the system or its availability cannot
succeed (i.e., they are resisted), or if they
do succeed, they can be detected; and, if
required, lead to a complete and successful
recovery of adverse effects. We must protect
against deception of mission commanders or
users, disruption of mission execution, and·
usurpation of mission resources. The
principal concern in networks is that data
arrive accurately, timely, completely and in
the same order as transmitted.

Criticality levels are assigned to data,
processes or system elements based on a
criticality analysis that identifies perils
that might befall the mission, taking into
account required operational capability and
potential threat. Specific operations and
operationally critical assets must be
identified. Their importance to the mission

.and their necessity in mission accomplishment
are factors. It has been suggested at tqe
New Orleans Workshop [3) that informal models
be used to accomplish this, namely mission
model, threat model, resources model, and
life cycle model.

In a formal integrity model (from Biba
[4]), protection level differs from
sensitivity as follows: Where the object is
data, there is no read access restriction to
individuals at lower levels. However, a
subject must dominate · the object's
criticality level in order to originate or
modify the data. In the case of processes,
the invoking subject must dominate the
criticality level of the process. Biba
proposed that users and data originating from
them carry a set of criticality attributes
such that data may be moved only to subjects
(humans or processes) bearing an equal or
lower level. ·

APPLICABILITY OF THE ORANGE BOOK

The DoD Trusted Computer System
Evaluation Criteria (Orange Book) was
developed for use in evaluating trusted
commercial components and as guidance for the
development and evaluation of trusted
computer systems. These criteria are
necessary in application to networks and
distributed systems, but are not sufficient.
Certain terms and concepts (e.g., user and
system) must be reinterpretted to adapt to
the changing technologies. Other issues
include:

0 	 The interconnected multi-system problem
is not adequately addressed in the
Orange Book

0 	 A logical way to deal with the
complexity of distributed systems is to
divide them into manageable pieces,
address security for each of the pieces,
and then address the security issues
involved in connecting trusted pieces

0 	 The importance of integrity and denial
of service threats to networks

o 	 By treating sensitivity and criticality
as two separate issues we believe that
over a range of system implementations,
a far more cost effective approach to
network security can be achieved.

We see much commonality between the
protection criteria for an A division for
both criticality and sensitivity, since
vulnerabilities and mechanisms have been
previously encountered by developers through
Orange Book adherence. Many systems have
'been developed with some criticality
protection mechanisms beyond that required by
the Orange Book. Off-the-shelf components
have not been evaluated against a criticality
criteria, but they may still be valuable in a
criticality role.

To assist in architectural definitions,
we developed a strawman Trusted System
Evaluation Criteria (an augmented Orange
Book), where the sensitivity level can be
specified as before, implying specific
mechanisms and levels of assurance (Figure 2,
from [5]). Our approach allows independently

:determining the criticality level required
(Figure 3) where the C level concentrates on
attack detection, B deals with detection and
recovery, and A specifies mechanisms and
assurance for resistance, detection, and
recovery.

Figure 2.

Trusted System Evaluation Criteria: Sensitivity

Figure 3.

Trusted System Evaluation Criteria: Criticality

The idea of complete and formal
criticality protection is new and untried, at
least in the command and control environment.
We suspect that due to the opposing nature of
the criticality/sensitivity duality, Al/A
certifications, for example, will be
technologically challenging. By way of an
example, in the sensitivity policy we do
not want data flowing from a higher level
to a lower level. In a criticality policy,
flow is allowed, but modification is not.

DECOMPOSITION

Evaluation of systems that include
networks has three equally important parts:
evaluation of externally visible interfaces,
evaluation of the internal components, and
evaluation of the way in which the components
have been interconnected. The Trusted System
Base must be well defined and have well
specified interfaces. It must include (depend
on) the Trusted Base of the components and
the Trusted Base previously established for
.network host systems. Note that this
approach has made it unnecessary to precisely
define either processor or networks in
general.

The Orange Book assumes the system is
monolithic, with a single security policy.
What is required in a distributed system (the
system equivalent to the Trusted Computing

17

Base) is the assumption that a system is
composed of components; in fact there is no
part of the system that is not part of a.
component. The reason for this important
deviation from the previous approach is that
networked systems may be made up of systems
that are either trusted (accredited to handle
specific levels of sensitive (or critical)
information, where the level of trust is
according to some division/class of the
trusted system criteria) or untrusted.
Different components may have been accredited
to deal with different levels and under
different trust criteria.

A system is defined by the Designated
Approving Authority (DAA) as those physical
elements to be accredited as a system (see
Figure 4). That decision will be made based
on engineering judgement, the scope of
authority, and the desire and ability to
bring subsystems under a single "umbrella of
trust." The system may be geographically
isolated or it may be geographically
extended. It may be within a physically
protected environment or extend through
physically unprotected and untrusted areas.
The elements may tend to operate autonomously
or as a single unit.

Elementary Component (Build)
(No Externally Visible Internal
Interfaces or Paths)

Steps:

- Define System Boundaries
- Decompose to Elementary Components
- Determine Interconnection Policy
- Show Components Secure
- Show Aggregate System Secure

Figure 4. System Decomposition

Once the system is defined by the DAA,
we can identify what is internal to the
system and what is external and interfaces
with it. The system security policy must
cover all of what is internal, plus the
external interfaces. This concept is similar
to the Orange Book's use of primary external
interface as a human "user." In our Trusted
System approach we deal with "external
subjects" that may be humans, computers
(e.g., hosts), networks, or other systems.

The security policy must identify each
of these external subjects. Access control
lists may be used to determine what
controlled information can be received from
them and what controlled information can be
sent to them. There must be label
consistency or a mapping technique must be
defined that ensures proper and complete
communication of policy. In some systems it
will be necessary to maintain accountability
to the user level, even though the user
interface is with an external system that
interfaces with our system. Sometimes the

policy will require accountability only at
the interfacing system level.

For the purpose of illustration, assume
that "we" have a system. Sometimes data are
passed from one external system through our
system to another external systems. Our
policy must ensure protection for us and for
the external system at the interface.
Further, protection may be required by the
two external systems to ensure policy
compatibility between them, and that is not
our reponsibility. (An example is when our
system is a network that receives encrypted
data and delivers encrypted data. If there
is a mandatory sensitivity or criticality
level separation or a discretionary "need-to
know" or "need-to-modify" exists, appropriate
labels and access control lists must be
shared between the two external systems
communicating data; our network need not
necessarily be aware of these requirements or
require any action.)

After dealing with external subjects and
interfaces we turn our attention inside the
system. Our system can probably be
decomposed into subsystems and those can in
turn be further decomposed. Our goal is to
decompose (exactly) to the level at which we
have elementary components, where these
elementary components in aggregate comprise
our entire system. Elementary components may
be of three types: 1) Components that are
themselves systems and are considered a
trusted entity under a single policy (this
includes the case where they are untrusted
with no policy), 2) components that are off
the-shelf components that have been
accredited at some level of trust, and 3)
subsystems of the system to be built in which
there are no externally visible interfaces or
paths and for which a single policy can be
determined. Because (at least at the higher
divisions) of the required mapping of formal
specifications onto an elementary component,
it is important that the definition be simple
from a security standpoint.

We can now, for security purposes, treat
the elementary .components as separate systems
and, given the security policy of each
internally, consider the interconnection
policy between these elementary components at
their physical interface with each other, at
their informational (logical) interface with
each other, and with the outside world. We
must demonstrate that each of these
components is itself a "trusted component" in
the sense that its individual security policy
is supported, but that it also does not
violate system policy. In some cases this
demonstration will already have been
accomplished through a previous accredi
tation. For elementary components that must
be accredited or reaccredited, this exercise
is identical to the process required by the
Trusted Computer System (Orange Book)
Evaluation. Interfacing components or users
are treated as "external subjects."

Now we look at security policy from the
system level. At this level it must be
assured that all component policies are
supported throughout the system (including
data that eventually are passed between

18

components that do not interface directly) .
Further, there may be policy dictated at the
system level that is over-and-above the
policy that exists at the individual
component level and it must be ensured that
policy is supported. Finally, there exists a
policy at the system level as to its
interface with the outside world, and it must
be ensured that this system level policy is
supported by the components that interface
with the outside world (e.g., external
subjects) .

When a component is upgraded,
decomposition can be used to reduce network
reaccreditation costs. Decomposition can
also be used when subsequent expansion
(components), concatenation (two or more
systems plus a gateway), and extension
(addition of protocol layers beyond those
presently implemented) of the system occur.

SENSITIVITY AND CRITICALITY THREAT

An excellent discussion of sensitivity
threat and mechanisms can be found in Voydock
and Kent [6]. In studying sensitivity and
criticality threats, it is discovered that
they differ significantly (see Figures 5, 6,
and 7). Treating sensitivity and criticality
separately may have an economic advantage in
that when data are stored and being
communicated, their sensitivity can be
protected with encryption. Once that is
accomplished, we can address criticality.

PROTECTION MECHANISMS

The mechanisms employed against
sensitivity and criticality attacks depend to
a great degree on the protection environment
afforded by physical protection, and the
clearance and access controls in place
(Figure 8). If encoding is used as a

mechanism, the distance (link or node) must
be determined, or that part of the total
system over which it is employed. Finally,
although resistance is the primary choice for
sensitivity protection, detection, as well as
recovery must also be considered for
criticality or for the protection of the
integrity of sensitivity mechanisms.

Sensitivity mechanisms are generally
known so are not itemized here. For this
paper, it is important to identify mechanisms
employed against the criticality threat.
These are presented in Figure 9, itemized
according to whether detection, recovery, or
resistance is the objective.

SECURITY CONSIDERATIONS

Traditional security factors considered
in monolithic computer systems also apply
when developing a distributed security
architecture. In addition, researchers and
practitioners in network security have
identified several factors that must be
addressed if we are to achieve an acceptable
solution to the network security problem.
This section reviews those factors.

The N-Sguared Problem

Release of Message Contents

-Leaking
-Inference
-Browsing
-Crosstalk

Protection Mechanism Integrity

- Modify Data
- Overwriting

Spurious Association Initiation

- Masquerading

Figure 5. Sensitivity Attacks

Sensitivity:

- Continuous window

Traffic Analysis

- Message Lengths
- Transmission Frequencies
- Source and Destination

Message Stream Modification

- Authenticity
(Misrouting, Inserting, Replaying)

-Integrity
(Modifying Data, Overwriting)

-Ordering
(Deleting, Duplicating,

Altering order of data or block)

Denial of Message Service

- Discarding Messages
- Delaying Messages
-External Physical Attack

Spurious Association

- Masquerading

Figure 6. Criticality Attacks

- Information stolen for enemy exploitation

- Detection difficult, no recovery once gone

- Sophisticated agent data processing/communications atiack

Criticality:

- Malicious (up to creating an incident) continuous window
- Nullifying crisis response has a smaller window during crisis
- Sophisticated agent for integrity attack
- Nonsophisticated agent for denial of service threat
- Chance to recover exists, based on detection mechanisms

and availability/survivability design

Figure 7. Attack Characteristics

Physical Security Affects Choices

Mechanism Application Point

-Link Level
-End-to-End
- Association Level

(Mechanism Approaches)

Resistance

- Trusted Functionality

Detection

- Automated Auditing
- Local and/or Remote Reporting

Recovery

- Unilateral Disconnection
- Repeat Action
- Alternate Action

Detection Mechanisms

- Modification Detection Codes

(Message Integrity Codes,

Message Authentication Codes)

- Critical Mission Model
- Utilization Statistics Model
- System Failure Model
- Security Feature Denial of Service

Recovery Mechanisms

-Isolation

- Repeating Process

- Changing Process

- Survivability

(Adaption, Self Healing,
Backup and Fault Tolerant)

Resistance Mechanisms

- Reference Monitor

- Traffic Analysis Prevention

(Spurious Traffic, Message and

Traffic Padding)

- Survivability Strategies

Figure 8. Mechanisms in General
Figure 9. Criticality MechanismsThe N-squared problem refers to the

19

complexity that must be considered in access
control. In the extreme, each individual
user must know the identity and access
characteristics of each of the other users
(including himself), hence the name.

We have historically performed document
access control based on a so called
hierarchical N-squared system. At an office
level each person must know the authorization
of each person in that office because they
are in close proximity. Documents are passed
between offices through a local security
officer. At higher or-ganizational levels,
documents are again passed between organiza
tional security offices. At an agency,
corporate, or service level, both documents
and security clearances/authorizations are
passed. At a national level, clearing
agencies exchange information. That is, an
N-squared problem is addressed at each level
of the hierarchy, but only with the elements
at that level.

Bridges and gateways can link networks.
Networks or linked internets can connect
individuals, organizations, or agencies. As
a starting point, information can be
controlled in the historical way. However,
the power of data processing allows the
number of hierarchical levels to be reduced
and perhaps eliminated completely, thereby
dealing with the N-squared problem.

The Cascading Problem

The networking of systems introduces the
cascading problem (see [7]), which is the
increase in exposure (the range between the
highest classification of data and the lowest
user clearance) in interconnected systems.
For example, if a TOP SECRET/SECRET system
passes only SECRET data to a SECRET/
CONFIDENTIAL system, the TOP SECRET data has
now been exposed or contaminated at the
CONFIDENTIAL level instead of just the SECRET
level. As more and more interconnections are_
made, in general, the highest level will be
exposed at the lowest level. Therefore,
either all high level data must be protected
at a high (Al or B3) protection level or more
secure (but less flexible) modes of operation
(e.g., dedicated or system high) must be
used.

The Security Policy Problem

For each of the entities at each of the
.sensitivity and criticality levels in the
hierarchy, different policies might exist
(primarily because of different threat,
mechanisms, and objectives). For a trusted
base (or the untrusted protection
equivalent), policy is a statement
(mathematical or formally written) of
security motivated constraints (such as
discretionary and mandatory access controls) .
These are the constraints to be placed on
the modification and/or dissemination of data
(including control data); the initiation,
control, or termination of processes; and/or
the assignment or use of system resources.
Policy mapping (see [8] for examples of
policy mapping) is the establishment of a
common interconnection policy between two
communicating entities, each with inherently
different policies. It identifies legal
communications, communications constraints,

required labels, required transformation of
labels from the form used by the sending
system to that used by the receiving system,
and an agreement as to mechanisms to be used
and their placement in the the communicating
systems.

Security Models

As discussed by Crosland and
Schnackenberg [9], the distribution of'
security functions and features across a
network complicates the system design and
formal specification. In centralized
systems, TCB requests are mediated by a
single component, and thus can reasonably be
represented by a single state transition.
However, for a network the trusted base is
distributed and disjoint, so that actions at
one trusted base interface affect remote
trusted base state and remote trusted base
interfaces. For example, when a host or
terminal user requests a connection for a
session, the local trusted base software
coordinates with the remote trusted base
supporting the destination device, and
possibly with network management to determine
if the session is authorized. The states of
two or three trusted bases are changed as a
result of a new session being created and the
session creation event is visible at the
external interfaces of two trusted bases.
Thus, a single TCB request can cause the
distributed Trusted System Base (TSB) to
undergo multiple state transitions. There
are two approaches that can be used: a)
ignore the concurrency and distribution of
functions, and treat state transitions as if
they all occurred atomically or b) describe
the interaction between the remote TCBs.

We have taken the latter approach with a
hierarchical modeling methodology. First,
model each elementary component using the
techniques developed for centralized
systems. Then model a system composed of
components dealing with only the subjects and
objects visible in the external communica
tions. Reducing the complexity allows
modeling state transitions. When the system
itself becomes an elementary component, this
process is repeated. Mechanisms similar to
deadlock avoidance in "association"
mechanisms assure the absence of mutually
conflicting security state transitions.

Covert Channels

The covert channel analysis problem is
also discussed in Crosland and Schnackenberg
[9]. In a stand-alone system the covert
channels tend to be between processes under
the control of an operating system. In a
network, however, there may be few
interprocess covert channels. This is due to
the limited resources available to processes
that reside within the network servers. The
major covert channels are between processes
that reside in attached hosts and
workstations, and signal each other using
network resources. Although the network can
detect possible usage of this covert channel,
the network is not able to reasonably
eliminate it. The host along with the host
front end has the responsibility to restrict
access to (or close) the covert channel.

20

Protocol Issues

The International Standards Organization
Open System Interconnection (ISO/OSI) seven
layer protocol reference model [10] has
gained wide acceptance, unfortunately
however, not before the Government had
already drawn up some very firm procedures
for handling data in communications and
networks. The DoD has made a commitment to
move in the direction of the seven layered
approach in its future planning and
development, while at the same time ISO has
begun to deal with some of the sticky
problems that are typical to the DoD
applications (e.g., security)

Figure 10 illustrates the functions
present at various layers and how
intercommunication of these functions
actually takes place at the next lower
layer. The higher level protocols are
present at the communicating nodes where the
applications reside. The communicating nodes
and devices within the network itself
communicate to one another through the first
three layers.

Peer Entities Peer Entity
1. Physical Layer

2. Data Link Layer

3. Network Layer

4. Transport Layer

5. Session Layer

6. Presentation
Layer

7. Application
Layer

1'-
TRANSMISSION/RECEPTION DEVICES v

(E.G. MODEMS)

PROCESSES SEE NETWORK AS A v

TWO-ENDED MODEM ""

NODE PROCESSES SEE NETWORK v

AS NETWORK COMM PROCESSES "" v
PROCESS REPRESENTING

HOSTS """ v
PROCESS WHOSE USERS ARE
APPLICATIONS PROGRAMS "" 1'-TRANSLATION OF REQUESTS v
THAT REQUIRE REMOTE RESOURCES

INTO SESSION LAYER SERVICES
 r-I-

Figure 10. The ISO/OS! Protocol Reference Model

Figure 11 illustrates the potential
security implementations as proposed by the
ISO Draft Security Model [11]. End-to-end
encryption can be accomplished in the network
layer (3), the transport layer (4), or the
presentation layer (6). If there is a
choice, the higher the layer, the greater the
protection. In the protocol traffic analysis
problem, if no mechanisms were employed, it
would be desirable to do the end-to-end
encryption at the network layer (3) first,
the transport layer (4) second, and finally
the presentation layer (6). (Note that the
session layer (5) as defined by the ISO
Reference model will not support encryption.)

Network service requests might very well
be covert channels and therefore one would
want to minimize network services by
interconnecting trusted bases where only
routing was required or enforce a limited
bandwidth in the use of those services. The
Draft OSI Reference Model on Security
proposes the availability of many network
servlces by which a user can employ security
or ignore it. This is contrary to the DoD
idea of having continuous security protection
mechanisms in force that have minimum

interference with mission operations.

Figure 12 depicts an approximate
relationship between the ISO model and the
commonly accepted protocols inherent to DoD
communications. The lack of strict
compatibility of layers at level 3 and above
is illustrated here, but in fact varies, not
only in people's minds, but from application
to application. Summarizing the primary
differences, DoD has historically divided the
network layer into sublayers and in addition,
there have not been well defined layers above
the host-to-host interface.

Layer

Mechanism 2 3 4 5 6n
Confidentiality X X X X *
Access Control X X *
Peer Entity Authentication X X *
Origin Authentication X X *
Nomepudiation (Origin/Delivery) *
Criticality X X *
Traffic Flow Security * * *

(x and * =ISO possible implementations,
*=Ideal from our perspective)

Figure 11.

Security Implementation by Protocol Layer

ISO Model Corr DoD Function DoD Protocols ISO Equivalent

7. APPLICATION

Process/Applications

FTP,SMTP
TELNET

(Native Mode)

FTAM,X.400
VfP Terminal

TP

ISO-IT

6. PRESENTATION

5.SESSION
Host/Host TCP, TACACS, UDP

4. TRANSPORT

Internet IP,ICMPHMP

3.NETWORK
Network

X.25 Long Haul
Arpanet

IEEE 802

2.DATALINK Data Link Control
ADCCP

HDLC, X.25, BBNI822

!.PHYSICAL Physical
RS232C, MILSTD I88C

MILSTD 188-114
RS422A, 423A, 449

Figure 12. DoD Protocols

The specific standards written for
military use are addressed in the third
column of Figure 12. This is a mixture of
civil standards and military specifications.
The military is migrating to the civilian
X.25 and IEEE 802 standards, while at the
same time commercial versions of TCP and IP
exist in the marketplace. ISO equivalent
standards (illustrated by the far right ·
column) are striving to encompass the
features and characteristics of the
equivalent military protocols while main
taining a strict adherence to their model.
The DoD has said that if the ISO efforts are
successful, DoD will eventually adopt the ISO
models.

ARCHITECTURAL APPROACH

Based on the sensitivity and criticality
requirements in mission-critical networks,

21

_and considering the above discussions of
threats, mechanisms and protocols we have
developed a functional description for secure
networks. The
this section.

functions are highlighted in

The protocol
committed to in
presented in Figure

layer
our

13.

choices we
architecture

have
are

Function Peer Entity

~ 1. Physical Layer
_

Traffic Padding

l.i . •••··· .·.,· , ...•' • ... 2. Data LinkLay!!r ...!------1
r-1'___;;· ·.·.•.. -'---····"-'-"-··········-'--'_;_··_;_·---'~-··--l·._··__..,.....

Node Disconnect .--- 3. Network Layer ._

Encryption
Component Authentication .---- 4. Transport Layer ..._
Modification Detection 1 -

Message Padding/Spurious Initiation :: . :.. :· ···:·· :<·::::

nos Model 5. SessjonLayer >

Utilization Model , ' ·.·. ::. · ':.<.:}

1

bR;:ec-:::"o7v7er7y77..,._-,--,---,--,....-..,..j • • • 6. Presentation '1----1
1-1·•{...:..::_\:•••::-"-'--.:.:: '_;_•··'-"...:...·•--'-'• •~····:21······/ Layer•• •'-"...:...~·:_;_'-'-'.:...

User Authentication
Critical Mission Model 7. Application

Session Encryption ~ Layer

Figure 13. Protocol Layer Choices in this Architecture

Encoding Replaces Physical Protection

Cryptography has long been a major
COMSEC protection mechanism where it is known
that physical protection cannot be provided.
Today's VLSI circuitry can provide encryption
protection that is potentially transparent to
the transmission and storage processes, and
does not impact performance.

Further, application of encoding
encompasses much more than simple encryption.
With cryptographic checksums (seals) and
other mechanisms, modification and replay can
be detected. With public key approaches,
senders and receivers can be authenticated,
and even the precise source of a message can
be guaranteed days or years later.

Even within physically protected areas,
a strong mechanism against internal attack is
use of encoding for both sensitivity and
criticality protection. Crypto checksums for
criticality can be used for all data at all
times. Encryption of sensitive data can be
employed at all times except during
computation on the data or its human
input/output.

Such emphasis focuses the burden on
covert channel elimination and/or protection
and detection mechanisms, since such an
encoding approach for sensitivity requires
that certain levels of protocol remain in the
clear.

Figure 14 shows our architectural
approach to networks, using these concepts.
To solve the sensitivity problem, mission
data are encrypted. To solve the criticality
problem, all data are encoded using
cryptographi~ checksum and authentication.
The covert channel problem of data leakage
through header information is addressed· in
the host systems rather than in networks.

Multi Level Host Network TS Host System
System (Trusted) (Trusted)

Confidential Host
System (Untrusted)

* Covert channel problem must be addressed in host systems

Figure 14. System Security Strategy

Start/Restart
Module

Other Hosts on Network,
Gateway, or Bridge

Figure 15. Distributed Security

Distributed Security Mechanisms

Figure 15 illustrates an extension to an
important concept developed for the Blacker
program in which elements of the security
systems are themselves nodes on the network.
In the Blacker approach [12] there is a
front-end node for each of the system hosts
and internetwork gateways, and in addition
there are nodes for a security monitor
position, a centralized key distribution
function, and a central identification/
authentication database.

We have added additional functions
including an upgrade/downgrade position to
deal with high risk communications and to act
as a resource for use between nodes of
differing security policies. Also, a network
control function establishes secure
communication through gateways and across
network bridges. Although shown in the
'figure with the secure front-end, all
elements depend on a hand-held start/restart
module when first coming up on the network or
when being removed, so security is not
violated. This was another important concept
implemented by the Blacker program.

Distributing these capabilities allows
expansion of the network at minimal security
cost and impact. Backup security functions
are facilitated, since each capability can
exist redundantly on the network. It also
allows adaptation to the load, for example,
where several upgrade/downgrade monitor

22

Two-Way Communications

Controller

Security
Monitor

·Medium Risk
· ... Domain.··

Manually Authenticated Exchange

···i.~~R.i~i(··.
'· .. _I?omai~... ··

positions can exist to keep up with the
traffic in a high risk environment.

Multi-Risk Internet Communication

In our proposed architecture we needed
to reduce the risk of interdomain
communications where high exposure and/or
high-risk connectivity potentially exists. A.
concept was proposed in which three modes of
connectivity are established and supported by
the access control function (see Figure 16):

o 	 A direct trusted exchange to low risk
domains controlled only by the access
control rules

o 	 An exchange where extra-domain authen
tication must be performed manually by
the security monitor prior to allowing
an association in medium risk
connections

o 	 A monitored and verified exchange ~y a
manual (human) guard in an
upgrade/downgrade monitor position for
high risk connections

• Assign Domain Vulnerability
• Adaptive Mechanism Based on Trust
• Depends on One-Way vs

Network

Access

Control

·
1

Figure 16. Multi-Risk Internet Communication

Association Level Services

In Blacker, once data are delivered to
the host, protection ceases to exist unless
provided by the host. We have proposed an
approach in our architecture that has, at a
minimum, the Blacker level of protection, and
for sensitivity and/or criticality,
protection all the way to the device
interfacing with the user. This association
level protection (Figure 17) provides key
distribution for sensitivity encryption,
criticality encoding, identification, and
authentication right up to the microprocessor
that interfaces with the user, assuming the
appropriate enciphering hardware is present.
A communication, though initiated through a
host, can be protected from that host and its
other users. Associated chips and/or
algorithms must be contained in the
microprocessor. All security services
(security monitor, identificatio~ authenti
cation, key distribution, etc.1 within the
network become part of this association level
protection.

Node Level Protection

Association Level Protection

o End to End Encryption by Classification Level and Node Pair

o Association/Session Level Encryption available as a service
Must provide Classification Level and Node Pair in Clear Form
Labels and Headers Protected by Cryptographic Checksum

Figure 17. Association Level Services

SUMMARY

The proposed approach to network
security outlined in this paper separates the
sensitivity requirement (protection of
classified information) from the criticality
requirement (integrity of operations and
protection against denial of services) . This
decision has resulted in the ability to use
encryption and covert channel protection
mechanisms to solve the sensitivity problem
in host communications and data storage
problems, leaving only the criticality
problem to be addressed. However, the
criticality problem can generally be solved
in networks with detection and recovery
approaches (existing primarily in the host
protected domain) which are far less costly
than resistive (formal model) mechanisms.

For interconnected hosts/networks, we
have found that differences in security
policy and different levels of risk may be
confronted head-on by means of
decomposition. Increased exposure must be
considered in assessing and determining
required protection levels. Interface policy
must be established and supported both from a
mandatory and a discretionary perspective.
The reference monitor concept must be used to
control access at the network, component, and
individual user levels.

We have proposed architectural concepts
for computer networks that emphasize
standardization, shared functions, and
operation with planned networks. Our
solution uses end-to-end protection for
criticality and sensitivity with association
level protection as an added service. The
proposed functions to be performed (a
superset of Blacker functionality) include
security monitor, identification authenti
cation, key distribution, network control,
upgrade/ downgrade, and start/restart.

ACKNOWLEDGEMENTS

This effort began with a complete survey
of the literature on network security,
especially the results of the New Orleans
Conference [3] Most of the concepts
presented here are a result of choosing a
compatible set of the the ideas resulting
from that conference, in combination with

23

much of the work that was done associated
with Blacker as well as the model of Biba.
In addition to papers referenced in the text,
we have borrowed ideas from C. Meyer and
S. Matyas [14], G. Popek and C. Kline [15],
M. Schaefer and D. Bell [16], D. Denning [17
& 18], and S. Walker [19]. We wish to thank
D. Branstad for review and assistance.

REFERENCES

1. DoD 5200.28-STD, "Trusted Computer
System Evaluation Criteria," December, 1985

2. AFR 205-16, Automatic Data Processing
(ADP) Security Policy, Procedures and
Responsibilities, Department of the Air
Force, August 1, 1984

3. Brand, S.L., ed., "Proceedings of the
Department of Defense Computer Security
~enter Invitational Workshop on Network
Security," New Orleans, LA, March 19-22, 1985

4. Biba, K.J., "Integrity Considerations
for Secure Computer Systems," ESD-TR-76-372,
USAF Electronic Systems Division, Bedford,
MA, April 1977

5. Kaiser, W.G., "The Making of a B2
System," Proceedings, 1986 AFCEA Symposium on
Physical/Electronic Security, pp. 21-1

6. Voydock, V.L.,. and S.T. Kent, "Security
Mechanisms in High-Level Network Protocols,"
ACM Computing Surveys, Vol. 15, No.2, June
1983, pp. 135-171.

7. Millen, J.K., "A Network Security
Perspective," Proceedings, 9th National
Computer Security Conference, NBS/NCSC, 15
September, 1986, pp. 7-16

8. La Padula, L., "Some Thoughts on Network
Security: A Working Paper," Proc. DoD
Computer Security Center Invitational
Workshop on Network Security, DoD Computer
Security Evaluation Center, Ft. Meade, MD,
March 19-21, 1985, pp. 2-49, 2-60

9. Crosland, M. and D. Schnackenberg,
"Application of Formal Techniques to a
Multilevel Secure Local Area Network,"
Proceedings, Symposium on Physical/Electronic
Security, August 1986, Philadelphia Chapter
AFCEA, pp. 2-1 thru 2-5

10. International Standards Organization,
Draft International Standard 7948: Data
Processing Open System Interconnection
Basic Reference Model, 1983 ·

11. Nl925, International Standards Organi
zation, Working Draft Addendum to ISO 7948 to
Cover Security Architecture, ISO/TC 97/SC
Copenhagen, June 19-28, 1984

12. USG Memo, "Computer Security Certifi..!
cation Plan for BLACKER Phase 1," Appendix D
to Purchase Description C5-001, Blacker
COMSEC Development, Computer Security
Certification Requirements, October 18, 1984

13. "Department of Defense Trusted Network
Evaluation Criteria, DRAFT," July 29, 1985

14. Meyer, C.H., and S.M. Matyas, Crypto
graphy: A New Dimension in Computer Data
Security, John Wiley and Sons, New York, 1982

15. Popek, G.J., and C.S. Kline, "Encryption
Protocols, Public Key Algorithms, and Digital
Signatures in Computer Networks," in
Foundations of Secure Communication, ed. by
R. A. DeMille, et al, Orlando, FL: Academic
Press, 1978, pp. 133-154.

16. Schaefer, M., D.E. Bell, "Network
Security Assurance," Proceedings of the 8th

,National 	 Computer Security Conference,
Gaithersburg, MD., September 30, 1985, pp.
64-69

17. Denning, D.E., "A Position Statement on
Network Security," Proc. DoD Computer
Security Center Invitational Workshop on
Network Security, DoD Computer Security
Evaluation Center, Ft. Meade, MD, March 19
'21, 1985, p4-47,4-56

18. Denning, D.E., Cryptography and Data
System Security, Addison-Wesley, 1982

19. Walker, S.T., "Network Security
Overview," Proceedings 1985 Symposium on
Security and Privacy, IEEE Computer Society,
April 1985, pp. 62-66

20. CTA, "Draft AFSPACECOM Trusted System
Evaluation Criteria," NCCS-86-03-383, March
1987

24

A SECURITY MODEL AND POLICY FOR A MLS LAN

Peter Loscocco

Office of Research and Development

National Computer Security Center

I. BACKGROUND

'fhe ~ultileve! secu~e local area network (MLS LAN)
to wluch thiS secunty policy and model apply is a broadband
cable bus LAN that uses Transmission Control
Protocol/Internet Protocol (TCP/IP) and Carrier Sense
Multiple Access (CSMA/CD). The LAN is capable of
having hosts that range from single-level, untrusted machines
to MLS systems with classified and compartmented data.
Every host on the LAN will be connected to the bus via a
Bus Interface Unit (BIU).

The LAN is still only in the design stage. As the
design changes, the security policy or model may also require
changes. Both were written with this in mind and should
be flexible enough for most situations. As it stands now,
the model does not totally describe some aspects of
communications on the LAN. These shortcomings have been
noted and will be corrected in future versions.

II. SECURITY POLICY

The MLS LAN will implement a security policy based
on the ?epartment of Defense (DoD) Security Policy [1].
That policy states that a person, or machine, may not be
grant7d access to classified data unless that person, or
machme, has the proper security clearance and has a need to
know that data. There are also provisions for special
handling restrictions (or caveats) to be added to data these
restrictions must be obeyed whenever the data is acces~ed.

In the context of the MLS LAN, this policy pertains
to the BIU sending and receiving a packet. All data on the
LAN is transmitted in the form of a packet. A packet
contains the data to be communicated as well as that data
needed to deliver it. This includes everything from addresses
and other header information to the security label. There
are five basic rules the LAN must enforce to assure the
DoD policy is followed.

Rule 1: 	 Packets on the LAN must be properly labeled
to reflect their security level.

Rule 2: 	 A BIU may not transmit a packet unless it
is authorized to do so.

Rule 3: 	 A BIU may not deliver a packet to a host
unless it is authorized to do so.

Rule 4: 	 Packets delivereded to a host must not have
been altered.

Rule 5: 	 All security-related events must be logged to
provide an audit trail of any security
violations that might occur.

Rule 1 states that all packets must have a security
label while they are within the security perimeter of the
LAN. Within this perimeter are the BIU's, the cable bus
itself, and a special host called the access controller (AC)
whose function will be explained below (see Figure 1). The
security label must correctly reflect the packet's classification
and any compartments or handling restrictions that might
apply. Clearly, many of the BIU and AC functions must
contain a high level of trust.

It is the j:>b of the BIU to enforce Rule I. The BIU
must always know the certified level of trust of the hosts to
which it is attached It must also know the ~ecurity level

of its current connections. When the BIU receives a packet
from a host, it will first check the level of trust of the
host. If the host's level of trust checks, the BIU will use
the security label provided by the host. If not the BIU
will assign a label that reflects the level of ti1e current
connection.

Rules 2 and 3 together state that all communication
wit~ the LAN will be in accordance with the DoD security
pohcy. Rule 2 prevents a BIU from transmitting data from
a host whose security level is either too high or too low.
It also assures that a packet from a host only gets sent to
hosts who are cleared and have a need to receive it. Rule
3 prevents a BIU from delivering packets to an attached
host who has neither the required clearance or need to
know. Furthermore, this rule allows hosts to have a
minimum security level placed on them for incoming packets
and guarantees that packets are only delivered to the hosts
to whom they are sent.

A BIU can only enforce Rules 2 and 3 if it is able to
mak~ decisions on whether or not to send a packet to, or
receiVe a packet from, another BTU based on the address of
that packet, its security level, and the clearance and need to
know of each of the BIU's. The security label of a packet
identifies its security level and must correctly reflect the
packet's classification and any applicable compartments or
handling restrictions that might apply. A BIU's clearance
and need to know are determined from access control tables.

. 'fhe access control tables contain the mandatory and
diScretionary access control (MAC/DAC) [2] information for
each BIU and BIU pair. They reside on the AC and are
set up and maintained by the Network Security Officer
(NSO), the only user permitted to actually sign onto the
AC. The NSO is responsible for ensuring that each host's
entries in the tables properly reflect the security levels,
compartments, and handling restrictions of data that reside on
that host. He is also responsible for ensuring that the
tables properly reflect which hosts can communicate at what
levels to provide which services.

To start communicating, one host (HI) would send a
request addressed to another host (H2) specifying the security
level and type of connection wanted HI's BIU will
recognize this as a connection request and reroute it to the
AC. Based on the access control tables, the AC will
determine whether the connection should be approved. HI

FIGURE 1: SECURITY PERIMETER

25

is notified if the connection is not in accordance with the
MAC/DAC policy, and H2 is not contacted If the
connection is in accordance with the policy, however, the AC
sends the request to H2 for approval or disapproval. H2
then sends either a connection acceptance or rejection
addressed to HI. However, H2's BIU reroutes this back to
the AC. If the connection is to be opened, the AC logs
the opening in a table, notifies HI, and instructs the two
involved BIU's to set their current connection status to
reflect the proper hosts and levels.

The security of the connection now rests with the BIU.
The AC is not contacted again until the connection is closed
or a security-relevant event occurs. A packet reaching a
BIU, either from one of the hosts or the LAN, is accepted
or rejected according to the levels of the connection as set
by the AC. In this way, the LAN guarantees that only
authorized packets enter and leave the security perimeter.

Rules 2 and 3 cannot be properly enforced without
Rule 4, and both depend on communications with the AC.
It is imperative that these packets not be tampered with
because unauthorized connections could otherwise occur.
Fortunately, Rule 4 can be enforced using the proper
authentication and encryption techniques.

Rule 5, strictly speaking, will not increase the security
of the LAN. Rather, it is included to increase the
confidence that the LAN is secure and the probability that a
security breach will be detected and the responsible party(ies)
identified.

The auditing capabilities of the LAN will be in the
BIU and the AC. The BIU will report to the AC and the
information will be stored there for later revie,; by the
NSO.

Ill. SECURITY MODEL

This model is a mathematical description of the secure
operation of the MLS LAN. A model of the LAN must
include three separate things: a BIU, the AC, and the
communications between a collection of BIU's and the AC.
The operation of the LAN is said to be secure if the five
rules given above are being enforced at all times.

The model is in two parts. The first part introduces
some concepts and functions needed to mathematically restate
the rules given above and ultimately does so. Some of the
concepts were borrowed from the model specified by the
Worldwide Military Command and Control System
(WWMCCS) in "l11e Formal Model for Secure Data
Distribution in the WWMCCS Information System (W IS)."[3]
These concepts have been modified to reflect the actual
differences between the operations of a system-high network,
such as WIS, and a truly multilevel network with hosts of
varying security levels. l11e second part of the model
describes the BIU's and the AC with a system of
intercommunicating state machines.

A. Mathematical Restatement of Security Rules

Before the rules can be stated mathematically:
some definitions need to be introduced. The security label~
of ~ule 1 have to be formally defined. Four functions are
requued to desc~ibe Rules 2 and 3. These functions are:
send-packet, receive-packet, connect-open, and connect-close.
To be co~plete, one must postulate the existence of two
more funct10ns, unaltered and audited, that guarantee the
enforcement of Rules 4 and 5, respectively.

. Assume there is a set, P, of packets which
c?ntams all the potential packets on the LAN. Rule 1
dictates that a classification level must be assigned to each
p, an eleme~t of P, to identify its security level. This label
can be descnbed as a 3-tuple as follows:

Level = (S,C,H)

where

S = sensitivity level,
C = compartmented information set, and
H = handling restriction set.

It is the sensitivity level, S, which indicates the
data's classification. The range of possible values for S
come from a set, ES. l11ere exists a ranking function R,
which places a definite ordering on the elements of' ES.
The possible sensitivities, as ordered from lowest to highest
by R, are: Unclassified (U), Encrypted For Transmission
Only (EFTO), Restricted (R), Confidential (C), Secret (S),
Top Secret (TS), and Program and Control (FROG). '

It is the compartment set, C, that contains the
need-to-know access control information. All possible

elements of C are drawn from a set, EC. Unlike ES, this
set is not hierarchical. Each element, Ci, represents a
compartment into which a given data unit can to be placed
A null C represents data which is not compartmented.

The handling restrictions set, H, also draws its
elements from a nonhierarchical set, EH As its name
implies, this set contains a set of restrictions which must be
adhered to when handling a given data unit. As with C, a
null H represents no handling restrictions.

All possible data security levels come from what
is
Space
is

called
is

defined

the
derived

as

Classification Set
from the three

the Cartesian product:

Space,
sets:

denoted
ES, EC,

C-Space.
and EH.

C
It

C-Space = ES X P(EC) X P(EH)

where P() represents the power set or set of all possible
subsets of the respective sets.

A partial ordering of C-Space can be achieved by
introducing the concept of security dominance. Given any
two security labels, Lx and Ly, such that

Lx = (Sx,Cx,Hx) and Ly = (Sy,Cy,Hy),

Lx is said to be dominated by Ly if and only if

R(Sx) is less than or equal to R(Sy),
Cx is a subset of Cy, and
Hx is a subset of Hy.

Let there be a function, dominate(Lx, Ly) where
Lx and Ly are elements of C-space, which returns true if
and only if Lx dominates Ly.

Let there be two functions, label(p) and s
label(p,l) where p is an element of P and I is an element
of C-space, that read a label from, or set the label of, a
packet.

Several concepts and functions need to be
introduced before send-packet, receive-packet, connect-open,
and connect-close can be defined.

l11ere exists a set, B, defined as:

B = { b I b is a BIU on the LAN }.

B is necessarily nonempty. It must at least contain an
element, B-AC, which represents the AC's BIU.

Let there be a function, id(), that returns a b,
an element of B, which is the BIU that executed the
function. This function allows a BIU to determine its own
identity.

Two functions exist, mode and s-mode, which are
defined as follows:

mode(b) - returns current operating mode of b, an
element of B

0 if packet labels from the attached host can
be trusted
if packet labels from the attached host
cannot be trusted

26

s-mode(b, m) - sets current BIU operating mode
b = BIU to be set - an element of B
m = 0 or I

0 if labels from host are to be trusted
I if labels from host are not to be trusted

A BIU's operating mode must be either zero or one.

Authorization for s-mode to be executed may only come

from the AC.

For each b, an element of B, there is an access

control set (ACS). ACS's reside on the AC and are

uniquely identifiable by b. The ACS contains all of the

MAC information that the AC will need to determine if b's

- participation in a given connection will violate the MAC
policy. Mathematically, an ACS is a subset of ACS-space
defined as the Cartesian product:

ACS-space = (T X AI X AI)

where T is the set of all connection types and AI is the

set of all access intervals. T and AI are defined as follows:

T = { t I t is a connection type) and
AI = { (al,a2) 1 {al,a2} is a subset of
c-space and dominate(a2, a!)}.

At present there are only four elements in T.

They are remote access, R; file transfer, F; mail, M; and

control, C. Type C is reserved for communication with the

AC. As the need arises, more elements may be added

without effecting the model.

1l1e components of each access interval are the
mm1m~m and m~imum security levels that a packet
belongmg to a particular connection may be and still pass
through the BIU. The second and third components of each
element of the ACS represent the two directions going out
of and coming into the host, that packets may flow through
a BIU. Each element of an ACS represents a different
;ange of sec~rity levels .at which a given host may participate
m a connectiOn of a given type. In practice the minimum
level of all incoming packets will usually be (U,{},{}).

-!wo functions exist, min() and max(), which take
an access mterval as an argument and return its respective
minimum and maximum security levels. They are defined as
follows:

if (al,a2) is an element of AI
then min((al,a2)) = al and m'ax((al,a2)) = a2.

For each b, an element of B, there is also a
discretionary access set (DAS). DAS's also reside on the
AC and are uniquely identifiable by b. The DAS contains
all of the DAC information that the AC will need to
determine if b's participation in a given connection will
violate the DAC policy. Mathematically, a DAS is a subset
of DAS-space defined as the Cartesian product

DAS-space = (B X T),

where B and T are as above. If a BIU, bl, has a DAS
that contains an element (b2,t), discretionary access of type,
t, to BIU, b2, could be granted to bl.

With the ACS's and DAS's, the AC has all of
the necessary access control information to ensure that the
securi~y poli~y . is not violated The NSO must take great
care m spec1fymg the ACS's and DAS's to insure that the
MAC/DAC policies are properly enforced.

Two functions are defined to describe the access
checking done by the AC for one BIU. These functions
mandatory-access and discretionary-access, are as follow.>: '

mandatory-access(bl, type, aio, aii) and
discretionary-access(bl, b2, type),

where

'27

bl = the BIU for which the checking is being
done - an element of B,

type = the type of connection in question
an element of T,

aio = the outbound access interval of the
connection in question - an element of
AI, and

aii the inbound access interval of the
connection in question - an element of
AI.

Mandatory-access(b, type, aio, aii) returns true if and only if
there exists an element of b's ACS,

a = (t, (mini, maxi), (min2, max2)),

such that

t = type,
dom!nate(min(aio), mini),
dommate(maxl, max(aio)),
dom!nate(min(aii), min2),
dommate(max2, max(aii)).

Discretionary-access(bl, b2 type) returns true if and only if
there exists an element i~ bl's DAS,

a = (b, t),

such that

b = b2 and

t = type.

. . Using mandatory-access and discretionary-access, it
IS pos~Ible to mor~ completely describe what is meant by an
authonzed. connectiOn. A connection of a given type may
be authonzed between two BIU's at given access intervals if
the mandatory and discretionary access checks succeed for
each ~os~. A .new function, open-ok, returns a true value
when It IS possible to authorize a connection. It is defined
as follow.;:

open-ok(bl, b2, t, ail, ai2),

where

{bl, b2} is a subset of B,
t is an element of T, and
(ail, ai2} is a subset of AI,

returns true if and only if

mandatory-access(bl, t, ail, ai2)
discretionary-access(b I, b2, t), '
mandatory-access(b2, t, ai2, ail) and
discretionary-access(b2, bl, t). '

It is important to note that a return value of true here
does not mean that a connection has been established
between bl and b2 but only that such a connection would
not violate the MAC/DAC policy.

A packet may exist on the LAN only if it was
transmitted through an authorized connection. In managing
all of its host's connections, a BIU assigns a currently
unassigned connection number to each connection it
establishes for its host. It is important to note that the two
BIU's involved in a connection may refer to that connection
with a different connection number. These connection
numbers are elements of a set, Connections, denoted by CN.
Each of a BIU's connections may be uniquely identified by
an ordered pair, (b, en), where b is an element of B and
en is an element of CN.

Let mere oe a 1uncnon new-cnl OJ, wllere D IS an
element of B, that assigns an unused connection number to
the BIU, b. This function is used in the opening of
connections.

There is certain information kept at every BIU for
each possible connection. This includes the connection type,

the other BIU involved, and the access intervals. The
following functions exist to retrieve this information:

ct(b, en) - returns the current connection type
t : an element of T if the connection exists
NULL : if there is no connection

cb(b, en) - returns the current BIU connected to
bl : an element of B if the connection exists
NULL : ·if there is no connection

ccn(c, en) - returns the connection number used by
the other BIU

en! : an element of CN if .the connection
exists

NULL : if there is no connection

caio(b, en) - returns current outbound access
interval

ai : an element of AI if the connection exists
NULL : if there is no connection

caii(b, en) - returns current inbound access
interval

ai : an element of AI if the connection exists
NULL : if there is no connection

where

b = the BIU in question - an element of B and
en the connection number in question

an element of CN.

Five functions exist to set this connection status

information in a BIU. Each of these functions has three

arguments: the BIU, the connection number, and the

information to be set. They are executed exclusively at the

request of the AC and return true if and only if the

information is properly stored The five functions are

defined as follows:

s-et(b, en, t) - sets the current connection type
b = BIU to be set - an element of B
en = connection number on the BIU to

be set - an element of CN
t = new connection type - an element

ofT or NULL

s-cb(bl, en, b2) - sets the current BIU
connected to

b = BIU to be set - an element of B
en connection number on the BIU to be set

an element of CN
b2 other BIU - an element of B or NULL

s-ccn(b, en!, cn2) - sets the connection number
of the other BIU

b = BIU to be set - an element of B
en! connection number on the BIU to be set

an element of CN
cn2 = connection number on the other BIU - an

element of CN or NULL

s-caio(b, en, ai) - sets the current outbound
access interval

b = BIU to be set - an element of B
en = connection number on the BIU to be set

an element of CN
ai = new outbound access interval - an element

of AI or NULL

s-caii(b, en, ai) - sets the current inbound
access interval

b = BIU to be set - an element of B
en = connection number on the BIU to be set

an element of CN
ai = new inbound access interval - an element

of AI or NULL

NULL values indicate that the connection is being
terminated.

Let there be. a function, set-state-info(), that is to
be used as a convement way to set and reset the state
information described above. It is defined in terms of the
last four functions defined above and is executed exclusively
at the request of the AC.

Set-state-info(bl, en!, b2, cn2, t, ail, ai2) ->
true if and only if

s-ct(bl, en, t), s-cb(bl, en!, b2),

s-ccn(bl, en!, cn2), s-caio(bl, en, ail), and

s-caii(bl, en, ai2)

and if

t = NULL, b2 = NULL, cn2 = NULL, ail
= NULL, or ai2 = NULL then t NULL,
b2 = NULL, cn2 = NULL, ail = NULL,
and ai2 = NULL.

The second condition exists so that all of the status
information is reset whenever any part of the status
information is reset.

The AC must keep track of all open connections.
When a connection is opened, the AC records the event by
entering all of the pertinent information in the connection
table (CT). The CT is defined as a subset of Connection
space which is the Cartesian Product:

Connection-space=(B X CN X B X CN X T X AI X AI).

The AC uses the function add-connection to
record the opening of a connection in the CT. This
function makes two entries into the table, one for each BIU
involved. Both entries contain the same information but
rearranged so that each BIU's status information is reflected
The definition is as follows:

add-connection(bl, en!, b2, cn2, t, ail, ai2)
returns true if

(bl, en!, b2, cn2, t, ail, ai2) and
(b2, cn2, bl, en!, t, ai2, ail)

have been added to the CT. The reason that the access
intervals are reversed in the two tuples is that if two BTU's
are communicating; one's outgoing traffic will be the other's
incoming.

The AC uses the function del-connection to delete
entries in the CT. Unlike add-connection, this function only
effects one entry in the CT. When a BIU notifies the AC
that it is through with a connection, the AC calls this
function to remove that BTU's entry. This function must be
called twice to completely close a connection. del
connection(b I, en I) returns true if a tuple in the form of
(bl,cnl,b,cn,t,ail,ai2) is removed from the CT, where b, en,
t, ail, ai2 need not be specified. Since the ordered pair
(bl, en!) uniquely determines one of bl's connections, it is
unnecessary to completely specify the tuple.

It is now possible to define send-packet() and
receive-packet(). Both of these functions return true only
when their respective tasks have successfully been completed
Each takes five arguments defined as follows:

sb = source DIU - an element of B
sen = source BTU's connection number - an

element of CN
db = destination DIU - an element of B
den = destination BTU's connection number

an element of CN
packet the entire packet being sent ora

received - an element
of P

It is implicit in the definition of both functions that sb, sen,
db, and den properly reflect the source and destination
address of the packet. They are passed as seoarate

28

arguments for easier reference and understanding.

Definition of send-packet(sb, sen, db, den, packet):

If [
[mode(sb) = 0 and

cb(sb, sen) = db and

ccn(sb, sen) = den and

dominate(label(packet), min(caio(sb, sen)))
and dominate(max(caio(sb, sen)),
label(packet))]

or [mode(sb) = 1 and

cb(sb, sen) = db and

ccn(sb, sen) = den and

s-label(packet, max(caio(sb)))]

or db 'B-AC'

or sb 'B-AC'
]

Then send-packet(sb, sen, db, den, packet) -> True

Else send-packet(sb, sen, db, den, packet) -> False

Definition of receive-packet(sb, sen, db, den, packet):

If [id() = dh and

unaltered(packet) and

[(cb(db, den) = sb and

ccn(db, den) = sen and
· dominate(label(packet), min(caii(db, den))) and
dominate(max(caii(db, den)), label(packet))]

or
sb = 'B-AC'

or
db = 'B-AC']],

then receive-packet(sb, sen, db, den, packet) -> True

else receive-packet(sb, sen, db, den, packet) -> False

where 'B-AC' is the AC's BTU and unaltered is the function
which returns true if and only if the packet arrived
unaltered.

Finally, it is possible to define connect-open and
connect-close. Each returns true when a connection has
actually been opened or closed. Both functions are defined
recursively in terms of each other.

When opening a connection between two BTU's,
what actually happens depends on which BTU's are involved
When the B-AC is the requesting BTU, it generates a new
connection number and informs the other BIU that a
connection is being opened. The other BTU generates its
own new connection number, sets its state information, and
transmits its connection number in the process of notifying
the B-AC that it is ready. The B-AC now has the
necessary information to set its own state information.
When finished, the B-AC notifies the AC that the
connection has been opened so that the AC may add it to
the connection table. Any BTU wishing to open a
connection with the B-AC sends an open request to the B
AC, and the B-AC then proceeds as if it initiated the open
request, following the steps given above.

No BIU can go directly to another BTU to request
an open connection. The AC, through the B-AC, must be
consulted for all such requests. The requesting BIU (bl)
must open a connection with the B-AC to ask the AC for
permission to open a connection to another BIU (b2) (for
which bl has already assigned a connection number). If the
AC denies the request, then B-AC closes the connection. If
the AC approves the request, then B-AC opens a separate
connection with b2 who is informed of the bl request. If
b2 rejects the request, the B-AC notifies bl and both
connections are closed If the request is accepted, however,
b2 is instructed to generate a connection number, set its
status information, and report back to the B-AC. B-AC
sends the b2 connection number to bl with instructions to
set its status information and report back to the B-AC.
Since they now consider the connection between them open,
bl and b2 both close their connection with the B-AC. and

the AC adds the connection to the CT.

In closing a connection, the action taken also
depends on which BTU's are involved. A BIU considers a
connection closed when its half is closed. The B-AC closes
its connections by resettling its status information and
notifying the AC to delete the connection from the CT. It
has been assumed that the other BIU would initiate the
close of all connections involving the B-AC.

A BIU closing a connection with the B-AC must
notify the B-AC so that instructions may be issued to reset
the BTU's status. When confirmation has arrived that the
other BIU has been reset, the B-AC resets its status
information and notifies the AC to delete the connection
from the CT. A BTU closing connections that do not
involve the B-AC must open a connection with the B-AC to
notify the AC that the connection is closing, reset its status
information when instructed to do so, and close the
connection with the B-AC. The AC deletes each half of
the connection as it is closed.

The following constants are used in connect-open
and connect-close:

B-AC The AC's BTU.

C A type of connection used for control
information.

Control-A! = The access interval used in a
connection of type C.

SET-STATE-INFO = Packet instructing a BTU
to set its state information. The state
information is contained in the packet.

OPEN-REQ = Packet requesting the opening
of a connection. The necessary
information is contained in the packet.

OPEN-ACK = Packet notifying receiver that
the proposed connection has been accepted.

OPEN-NAK = Packet notifying receiver that
the proposed connection has been refused.

OPENED = Packet notifying receiver that a
connection has been opened

CLOSED Packet notifying receiver that
current connection is closing.

The parameters of connect-open are:

bl = biu requesting connect-open - element of
B.

en! = parameter in which connection number
for bl is to be returned - element of CN.

b2 = biu connect-open requested of - element
of B.

cn2 = parameter in which connection number
for b2 is to be returned - element of CN.

t = type of connection - element of T.
aio = outbound AI for bl (inbound for b2)

element of AI
aii = inbound AI for bl (outbound for b2)

element of AI

The definition of connect-open follows:

connect-open(bl, cnl, b2, cn2, t, aio, aii)

!* Connection from the B-AC to any BIU */
IF (bl = 'B-AC')

THEN
en! = new-cn(bl)
send-packet(bl, en!, b2, cn2, 'SET-STATE-INFO')
receive-packet(bl, en!, b2, cn2, 'SET-STATE-INFO')
cn2 = new-cn(b2)
set-state-info(b2, cn2, bl, en!, 'C',

'CONTROL-AI', 'CONTROL-AI')

29

send-packet(b2, cn2, bl, en!, 'OPENED')

receive-packet(b2, cn2, bl, en!, 'OPENED')

set-state-info(bl, en!, b2, cn2, 'C',

'CON1ROL-Al', 'CONTROL-AI')

add-connection(b I, en I, b2, cn2, 'C',

'CON1ROL-Al', 'CON1ROL-AI')

I* Connection from any BIU to the B-AC *I
ELSE IF (b2 = 'B-AC')

THEN

send-packet(bl, 'NULL', b2, 'NULL', 'OPEN-REQ')

receive-packet(bl, 'NULL', b2, 'NULL', 'OPEN-REQ')

connect-open(b2, bl, 'C', 'CONTROL-AI', 'CON1ROL-Al')

ELSE I* Connection for any other two BHJ's *I
connect-open(bl, cn3, 'B-AC', cn4, 'C',

'CON1ROL-Al', 'CON1ROL-Al')
send-packet(bl, cn3, 'B-AC', cn4, 'OPEN-REQ')
receive-packet(bl, cn3, 'B-AC', cn4, 'OPEN-REQ')
IF (open-ok(b I, b2, t, ai I, ai2))

THEN
connect-open('B-AC', enS, b2, cn6, 'C',

'CONTROL-AI', 'CONTROL-AI')
send-packet('B-AC', enS, b2, cn6, 'OPEN-REQ')

receive-packet('B-AC', enS, b2, cn6, 'OPEN-REQ')
send-packet(b2, cn6, 'B-AC', enS, RESPONSE)
receive-packet(b2, cn6, 'B-AC', enS, RESPONSE)

IF (RESPONSE = 'OPEN-ACK')

THEN

en! = new-cn(bl); cn2 = new-cn(b2)
send-packet('B-AC', enS, b2, cn6, 'SET-STATE-INFO')
receive-packet('B-AC', enS, b2, cn6,

'SET-STATE-INFO')
set-state-info(b2, cn2, bl, en!, t, ai~ aio)
send-packet(b2, cn6, 'B-AC', enS, 'OPENED')
receive-packet(b2, cn6, 'B-AC', enS, 'OPENED')
send-packet('B-AC', cn4, bl, cn3, 'SET-STATE-INFO''
receive-packet('B-AC', cn4, bl, cn3,

'SET-STATE-INFO')
set-state-info(bl, en!, b2, cn2, t, aio, aii)
send-packet(bl, cn3, 'B-AC', cn4, 'OPENED')
receive-packet(bl, cn3, 'B-AC', cn4, 'OPENED')
add-connection(bl, en!, b2, cn2, t, aio, aii)
connect-close(bl, cn3, 'B-AC', cn4)
connect-close(b2, cn6, 'B-AC', enS)

ELSE
connect-close(b2, cn6, 'B-AC', enS)
send-packet('B-AC', cn4, bl, ·cn3, 'OPEN-NAK')
receive-packet('B-AC', cn4, bl, cn3, 'OPEN-NAK')
connect-close(bl. cn3. 'B-AC'. cn4)

l::.L:::i.E
sen~-packet('B-AC', cn4, bl, cn3, 'OPEN-NAK')
receive-packet('B-AC', cn4, bl, cn3, 'OPEN-NAK')
connect-close(bl, cn3, 'B-AC', cn4)

The parameters of connect-close are:

bl = BIU wishing to close its portion of a connection
en! = bl's connection number to be closed
b2 = Other BIU involved in connection
cn2 = b2's connection number

The definition of connect-close follow.;:

connect-close(bl, en!, b2, cn2)

IF (bl = 'B-AC')
THEN

set-state-info(bl, en!, 'NULL', 'NULL', 'NULL',
'NULL', 'NULL')

del-connection(bl, en!)

ELSE IF (b2 = 'B-AC')
THEN

send-packet(bl, en!, b2, cn2, 'CLOSED')
receive-packet(bl, en!, b2, cn2, 'CLOSED')
send-packet(b2, cn2, bl, en!, 'SET-STATE-INFO')
receive-packet(b2, cn2, bl, en!, 'SET-STATE-INFO')
send-packet(bl, en!, b2, cn2, 'CLOSED')
receive-packet(bl, en!, b2, cn2, 'CLOSED')

set-state--info(bl, en!, 'NULL, 'NULL, 'NULL,
'NULL, 'NULL')

del-connection(b I, en I)
connect-close(b2, cn2, bl, en!)

ELSE
send-packet(bl, en!, b2, cn2, 'CLOSED')
receive-packet(bl, en!, b2, cn2, 'CLOSED')
connect-open(bl, cn3, 'B-AC', cn4, 'C',

'CONTROL-AI', 'CONTROL-AI')
connect-open(b2, enS, 'B-AC', cn6, 'C',

'CONTROL-AI', 'CONTROL-AI')
send-packet(bl, cn3, 'B-AC', cn4, 'CLOSED')
send-packet(b2, enS, 'B-AC', cn6, 'CLOSED')
receive-packet(bl, cn3, 'B-AC', cn4, 'CLOSED')
receive-packet(b2, enS, 'B-AC', cn6, 'CLOSED')
send-packet('B-AC', cn4, bl, cn3, 'SET-STATE-INFO')
send-packet('B-AC', cn6, b2, enS, 'SET-STATE-INFO')
receive-packet('B-AC', cn4, bl, cn3, 'SET-STATE-INFO'
receive-packet('B-AC', cn6, b2, enS, 'SET-STATE-INFO'

set-state-info(bl, en!, 'NULL', 'NULL', 'NULL',
'NULL', 'NULL')

set-state-info(b2, cn2, 'NULL', 'NULL', 'NULL',
'NULL', 'NULL')

send-packet(bl, cn3, 'B-AC', cn4, 'CLOSED')
send-packet(b2, enS, 'B-AC', cn6, 'CLOSED')
receive-packet(bl, cn3, 'B-AC', cn4, 'CLOSED')
receive-packet(b2, enS, 'B-AC', cn6, 'CLOSED')
del-connection(bl, en I)
del-connection(b2, cn2)
connect-close(bl, cn3, 'B-AC', cn4)
connect-close(b2, cn6, 'B-AC', cn6)

Let there be a set, E, which is the set of all
possible events that occur on the network Some elements
of E would be things such as opening a connection,
delivering a packet, or a new host added to the LAN.
Some of these events are security related and, as such need
to be audited These might occur at the BIU (an
improperly labeled packet arrives at the BIU) or at the AC
(a connection request is denied).

. Let there exist a function, security-relevant(e),
where e IS an element of E that determines if an event is
security relevant . Let there also be a function, audit(e),
that causes the time, place, and involved parties of that
event to be logged in audit files located on the AC.

It is now possible to present mathematical
conditions that must hold true if the five security rules are
being enforced Strictly speaking, Rule 4 is unnecessary
because it can be implied from Rule 3. It has been
incl_uded t? ~mphasize the importance of packets arriving at
their destmatton unaltered The five security rules are as
follow.;:

Rule 1: For all p, an
I, an element
= I.

element of
of C-space,

P, there exists an
such that label(p)

Rule 2: For any b, an element of B; en, an element
of C~; and p, an element of P; b may
transmit p on en if and only if send
packet(b, en, cb(b, en), ccn(b, en), p) ->
True.

Rule 3: For any b, an element of B; en, an
of CN; and p, an element of P;
deliver a p received on en if and
receive-packet(cb(b, en), ccn(b, en),
p) -> True.

element
b may
only if
b, en,

Rule 4: For any bl and b2, elements of B; en! and
cn2, elements of CN; and p, an element of
P; if receive-packet(bl, en!, b2, cn2, p) ->
True, then unaltered(p) -> True.

Rule 5: For all
relevant(e)

e,
->

elements of E, if security-
True, then audit(e) -> True.

30

B. The LAN Model

In modeling the secure operation of the LAN, the
secure operation of the BIU and the AC needs to be
described. Each will be described as a collection of state
machines. The states and the events that cause transitions
between them will be · described. The communications
between these devices will then be modeled to complete the
description of the total operation of the LAN. At that
point, there should be a model from which the security
relevant points can be proven.

I. The BIU

The first device to be described is the BIU.
The main function of the BTU is to send and receive
packets for the attached host. To do this, the BIU must be
able to establish, maintain, and close connections. It must
be able to distinguish to which connection a packet belongs
as well as whether that packet is permitted to be sent or
received. The BIU must be able to do this for any number
of connections, limited only by its own physical resources of
those of the attached host. It must be able to communicate
with the AC through the B-AC and respond to NSO
commands issued through the AC. Finally the BIU must
realize when a security-relevant event h;s occurred and
record that event in an audit log.

The behavior of a BIU is modeled by
describing the life of each connection, from birth until
death, that a BIU manages with a separate state machine.
Each of these state machines, called Connection State
Machines (CSM's), models those functions in the BIU that
establish, maintain, and then close a particular connection.
Included in this functionality is all of the security checking
that is done for that connection.

These CSM's, however, do not model the
entire operation of the BIU. Some functionalities not
modeled are the BTU's ability to communicate with the
network or attached hosts and its audit capability. A
separate state machine, called the BIU State Machine (BSM)
does this for each of the CSM's. T11e BSM takes the input
to the BIU and decides to which connection it belongs and
then passes it to the CSM handling that connection. If a
CSM is not currently active to handle the input the DSM
initiates one that can. '

The real purpose of the BSM is to model
the physical operations of the BIU. When input comes into
the BIU, the BSM checks that input, sends it to a CSM for
a decision on what action to take, waits for a response, and
takes action appropriate to that response (see Figure 2).

a Tl1e states for the BSM are as follows:

(I) mit - The BSM mits for input
to the BIU from the network, the attached host, or one of
the CSM's.

(2) check-external-input The BIU
examines input from the network or the host. It rej:cts the
input if it is not addressed for the BIU or has been
damaged in some way. It is here that the BIU, if operating
in mode one, inserts security labels into the packet headers.

(3) pass-to-CSM - The input is passed
to the appropriate CSM. If there is no CSM available to
handle the input, a state is entered that will spawn one.

(4) spawn-CSM - A new instantiation
of a CSM is created to which the input is passed.

(5) audit - Security-relevant events are
logged in the BIU.

(6) deliver - Packets are delivered to
the attached host.

(7) send - Packets are transmitted out
on the bus.

(8) change-mode The operating
mode of the BIU is changed.

(9) report-failure An attempt is
made to report any BID-detected failure to the AC. This
attempt may or may not succeed depending on the nature of
the failure.

(10) disconnect The BIU is
electrically disconnected from the bus. This should happen
after any failure is detected regardless of whether or not it
has been successfully reported to the AC.

b. Most of the events that cause BSM
state transitions are the result of some output from one of
the CSM's. The events are as follows:

(I) external-input A packet has
arrived from the host or network.

(2) new-CSM - The packet that just
arrived requires a new CSM to handle it.

(3) audit-req - A CSM has signaled
that some event needs auditing.

(4) audit-full - The event just audited
caused the audit files to be larger than some threshold
value.

(5) deliver-req - A CSM has signaled
that a packet is ready to be delivered to the host.

(6) send-req - A CSM has signaled
that a packet is ready to be sent out on the network.

(7) change-mode-req - A CSM has
signaled that the AC has requested a mode change for the
BIU.

(8) disconnect-req A CSM has
signaled that the AC has requested that the BIU electrically
disconnect itself from the bus.

(9) done - The action of the current
state has been successfully completed.

(10) rej:ct - The packet that just
arrived from the host or net\vork was damaged or not
intended for the BIU.

(II) failure The action of the
current state has not been successfully completed, or the
BIU has detected some hardmre failure. This may happen
in any state.

(12) reset - The BIU has just been
connected to the network and begun operation.

(See Figure 3 for a BSM state diagram and Figure 4 for a
BSM state transition table.)

c. T11ere are three possible mys for a BIU
to be involved in a connection. It can be attached to a
host that is initiating a connection, attached to a host that is
the recipient of a connection, or attached to the AC. The
CSM manages individual connections and must therefore be
able to handle all three cases. As a result,' the CSM is
considerably more complicated than the BSM. Its states are
as follows:

(I) birth - This is the initial state of
the CSM. What role the BIU is to play in the connection

31

FIGURE 3: BSM STATE DIAGRAM

EN AAD s c DD R F R
X E U U E E H I 0 E A E
TW D D L NA S N J I s
E I I I DN C E E L E

E R C T TV G 0 c UT

v N S E R E N T R
AMR F R E N E

E L E u QME
N Q L R 0 c
T I L E D T

N Q E
p R

u R E
T E Q

Q

STATE 1"" 1 2 3 4 5 6 7 8 9 10 11 12

WAIT 1 2 5 6 7 8 10 9

CHECK EXTERNAL INPU 2 3 1 9

PASS TO CSM 3 4 1 9

SPAWN CSM 4 1 9

AUDIT 5 4 1 9

DELIVER 6 1 9

SEND 7 1 9

CHANGE MODE 8 1 9

REPORT FAILURE 9 10 10

DISCONNECT 10 1

FJDURE 4: BSM STATE TRANSITION TABLE

determines the next state of the CSM.

(2) send-open-req The BTU just
received a connection open request from its attached host
The BSM is signaled to forward this request to the AC for
approval.

(3) deliver-open-req - The BTU just
received a connection open request that the AC has
approved. The BSM is signaled to deliver this request to
the attached host.

(4) wait-open - Either the originating
BTU is waiting for a response from the AC, or the receiving
BTU is waiting for a response from the attached host.

(5) notify-AC-open-ack - The receiving
BTU has just received approval from the attached host that
the connection may be opened. The BSM is signaled to
notify the AC.

(6) notify-host-open ack The
originating BTU has just received approval from the AC that
the requested connection may be opened. TI1e BSM is
signaled to notify the attached host.

(7) notify-AC-open-nak The
receiving BTU has just received word that its attached host
has refused the proposed connection. The BSM is signaled
to notify the AC.

(8) notify-host-open-nak The
originating BTU has just received word that the proposed
connection, for some unknown reason, has been refused
The BSM is signaled to notify its attached host

(9) wait-set-status-req - A host-to-host
.nection is about to be opened or closed. The CSM is

waiting for the AC to instruct it to set or reset the
connection status information.

(10) set-status The AC has
instructed that the connection status be set, and this is
done.

(11) notify-AC-status-set The
.nection status of the CSM has been successfully set

The BSM is signaled to notify the AC.

(12) audit - One of four auditable
events has just occurred in the CSM: a packet has arrived
that cannot be delivered, a packet has arrived that cannot be
sent, a connection has been opened, or one has been closed
All four events must be audited, and the BSM is signaled
to do so.

(13) wait-input A connection is

presently in progress. The CSM is waiting from input from

the network or the host.

(14) check-net-send - A packet has

arrived at the BTU from the attached host. The packet is

checked with respect to security to determine if it may be

sent out in this connection.

(15) send A packet has been
determined fit to send in this connection. The BSM is
signaled to send it out on the network.

(16) check-host-delivery - A packet
has arrived at the BTU from the network. In this state, the
packet is checked with respect to security to determine if it
may be delivered in this connection. The packet is also
checked to see if it is a close connection request.

(17) deliver - A packet has been
determined fit to deliver in this connection. The BSM is
signaled to deliver it to the attached host

(18) notify-host-closed - The BTU has
received notice, either from a host or the AC, that the
current connection has been closed. The BSM is signaled to
notify the attached host

(19) notify-AC-closed - The current
connection has been closed. The AC is notified so that the
BTU status may be reset.

(20) notify-host-not-authorized - The
host has attempted to send unauthorized information out on
the network. The BSM is signaled to notify the host of
the error.

(21) send-audit The BIU has
received a request from the AC to begin sending its locally
stored audit data. The BSM is signaled to send a packet of
audit data

(22) wait-ok-to-send-audit - The BTU
is ready to send the AC audit data. The CSM is waiting
for confirmation that the AC is ready to receive it.

(23) notify-AC-audit-full - The BSM
has realized that its audit files are nearly full. The CSM
signals the BSM to notify the AC.

(24) notify-AC-audit-sent - The audit
files have been completely sent to the AC. The BSM is
signaled to notify the AC.

(25) ehmod - The BTU has received
a request from the AC to change its operating mode. The
BSM is signaled to do so.

(26) notify-AC-mode-changed The
operating mode of the BTU has just been changed. The
BSM is signaled to notify the AC.

32

(27) disconnect - A disconnect request
has arrived at the BIU from the AC. The BSM is signaled
to electrically disconnect the BIU from the network

(28) death - The connection has been
completely closed and the CSM is no longer needed. 1l1e
CSM is terminated

d. The events that cause CSM state
transitions are as follows:

(I) host-AC-open The BIU has
received a message from its host requesting a connection to
be opened. This is one of the entry events to the CSM.

(2) AC-host-open The BIU has
received a packet from the AC informing it that another
host wishes to open a connection to it. This is one of the
entry events to the CSM.

(3) host-AC-open-ack - The BIU has
been notified that its host has accepted the proposed
connection.

(4) host-AC-open-nak - The BTU has

been notified that its host has not accepted the proposed

connection.

(5) AC-host-open-ack - The BIU has

been notified that its host's connection request has been

approved and will be opened.

(6) AC:-host-opcn-nak - The BIU has

been notified that its host's connection request has not been

approved and will not be opened.

(7) set-stat-req - A packet has arrived
at the BTU from the AC requesting that the BIU's
connection status information be changed.

(8) from-host - While involved in a
connection, the BIU has received a message from its host
addressed to that connection.

(9) from-net - While involved in a
connection, the BTU has received a packet from the network
addressed to that connection.

(10) not-authorized - Either a packet
from the network or a message from the host arrived at the

mu and cannot be passed through it.

(II) closed - Three things can cause
this event a host notifies its BTU that the current
connection is over, a packet arrives at the BTU signifying the
end of the connection, or the closing of the connection was
just audited by the BIU.

(12) kill-con-req - A packet from the
AC just arrived at the BIU instructing it to close that
connection.

(13) BIU-AC-start - A packet just
arrived at the B-AC from some other BTU reques.ting a
dialogue with the AC, usually regarding the openmg or
closing of a connection. This is one of the entry events to
the CSM.

(14) AC-BIU-start - A message just
arrived at the B-AC from the AC initiating a dialogue with
some other BIU, usually regarding the opening or closing of
a connection. This is one of the entry events to the CSM.

(15) BIU-AC-end - The BIU-to-AC
communication has ended.

(16) AC-BIU-end The AC-to-BIU
communication has ended.

(17) done - The action in the current

state has been successfully completed.

(18) audit-full The BSM has
realized that the audit files are nearing capacity and is
requesting that they be sent to the AC. This is one of the
entry events to the CSM.

(19) audit-req - A packet has arrived
at the BIU from the AC requesting the BIU's audit
information be sent to the AC. This is one of the entry
events to the CSM.

(20) more-audit - Audit information
has been sent from the BIU to the AC, but there is still
more to send.

(21) chmod-req A packet has
arrived at the BIU from the AC requesting that BIU to
change its operating mode. This is one of the entry events
to the CSM.

(22) disconnect-req - A packet has
arrived at the BIU from the AC instructing it to disconnect
itself from the bus. This is one of the entry events to the
CSM.

(See Figure 5 for a CSM state diagram and Figure 6 for a
CSM state transition table.)

NOTE: There is a significant deficiency in the CSM as it
has been described. It has been assumed that a connection
already exists when communications occur between the B-AC
and another BTU, but in reality, a connection would actually
have to be opened and then closed for such a
communication to take place. This is, however, reflected in
the definitions of connect-open and connect-close and docs
not cause any of the total LAN functionality to be lost.

2. The Access Controller

The second device to be described is the
AC. The AC has the primary responsibility to ensure the
secure operation of the LAN. Since the BIU's turn to the
AC for decisions regarding the permissibility of host-to-host
connections, the AC must be capable of making those
decisions. The AC must, therefore, know what is happening
on the LAN at all times.

The AC maintains the MAC, DAC, and
connection tables and is responsible for setting and resetting
the connection status in the BIU's. It handles the LAN
audit files. The AC is also the machine through which the
NSO issues commands such as instructing a BIU to change
operating modes, send audit data, break connections, and
actually disconnect itself from the bus.

The AC is modeled similar to the BIU.
There will be a state machine, called the Access Controller
State Machine (ACSM), that describes the actual operations
of the AC (Figure 7). These generic operations (such as
sending and receiving data from the network, auditing, and
accessing tables) are described independent of any particular
network connection or NSO command.

There will also be instantiations of another
state machine, the Connection State Machine Access
Controller (CSM-AC), to manage specific individual
communications with a BIU or the NSO. These CSM-AC's
signal the ACSM when they need some action performed.

a 1l1e states for the ACSM are as follows:

(I) wait - The AC waits for input
from the network, the NSO, or one of the CSM-AC's.

(2) pass-to-CSM-AC Input is
checked for proper format. The data is then passed to the
appropriate CSM-AC. If there is no CSM-AC available to
handle the input, a state is entered that will spawn one.

33

FIGURE 5: CSM STATE DIAGRAM

H A H HA ~ ~ F F N C K B A B AD AA MCD
0 c 0 oc R R 0 L I I C I c 0 u u ~ ~ ts - s s - - T ~~~ T 0 L u- u - N D D
T H T TH ~ s

S L - B - B E I I E 0 C
E - 0 - - 0 HN

A E ~L~ I T T D 0
VA S A A S S T u D C u A N

c T C C T T ~ 0 E T 0 S S E E
F R U R N

E 0 0 0 0 0 oT ~ T H· N
TTN N

U ED E E
N p p p p p p R 0

AAD D
L ,Q I Q c

T E E E E E E E R R R R L T T

N N N N N N Q I E TT R
A N A

~
z Q E
E Qc AC D

K K K K

STATE 1 2 3 4 5 6 7 8 9 1 11 1 13 14 15 16 17 18 19 20 21 22

BIRTH 1 2 3 16 14 23 21 25 27
SEND OPEN REQ 2 4
DELIVER OPEN REQ 3 4
WAIT OPEN 4 5 7 6 8
NOT. AC OPEN ACK 5 9
NOT HOST OPEN ACK 6 9
NOT. AC OPEN NAK 7 28
NOT. HOST OPEN NAK 8 28

WAIT SET STATUS RE 9 10
SET STATUS 10 11
NOT. AC STATUS SET 11 12

AUDIT 12 28 13

WAIT INPUT 13 I4 16
CHECK NET SEND 14 20 15
SEND 15 19 28 13
CHECK HOST DELIVER I6 12 18 18 17
DELIVER 17 28 13
NOT. HOST CLOSED 18 19
NOT. AC CLOSED 19 9
NOT. HOST NOT AUTH 20 12
SEND AUDIT 21 24 22
WAIT OK SEND AUDIT 22 21
NOT. AC AUDIT FULL 23 22
NOT. AC AUDIT SENT 24 2
CHMOD 25 ~ 26
NOT. AC MODE CHG 26 28
DISCONNECT 27 28
DEATH 28

FIGUE 6: CSM STATE TRANSITION TABLE

~WORK COMMUNICATION
NSO COMMUNICATION

FIGURE 7: ACSM COMMUNICATIONS

(3) spawn-CSM-AC A new '
instantiation of a CSM-AC is created, and the input is
passed to it

(4) audit Security-relevant events
occurring in the AC are logged in audit files. This includes
entering audit data received from individual BIU's.

(5) access-tables Either the MAC,
DAC, or connection tables are read from or written to.

(6) net-output - Data is sent to the
B-AC for transmission.

(7) NSO-output The NSO is
notified of some event, either the completion of one of his
requests or some problem with the LAN.

(8) disconnect - The AC is no longer
in control of the network. Either the LAN continues
operating as it was when the state was entered with no
further opens or closes, or an alternate AC is notified to
assume the AC's responsibilities in the case of a redundant
AC. In the second case, the assumption has been made
that the two, or maybe more, AC's have been kept
identical.

b. The events that cause ACSM state
transitions are as follows:

(I) input A message has just
arrived at the AC from either the AC or the NSO.

(2) new-CSM-AC There is no
CSM-AC currently expecting the last received message;
therefore, a state must be entered to spawn one.

(3) access-req A CSM-AC has
signaled a requirement to access one of the tables kept by
the AC.

(4) audit-req A CSM-AC has
signaled that some event needs to be audited or that a
BltJ's audit information ·needs to be saved.

(5) audit-full - The last event audited
caused the audit files to be larger than some threshold
value.

(6) net-output-req - A CSM-AC has

signaled that some message needs to be sent to a BIU.

(7) NSO-output-req - A CSM-AC has

signaled that some message needs to be sent to the NSO.

(8) done - The action of the current

state has been successfully completed.

(9) reject - The input to the ACSM

was unreadable.

(10) AC-disconnect The AC has

instructed the B- AC to disconnect itself from the network.

(II) failure A mapr failure ha~

occurred in the AC.

(12) reset - The AC has just beer
activated and is assuming control of the LAN.

(See Figure 8 for an ACSM state diagram and Figure 9 for

an ACSM state transition table.)

34

FIGURE 8: ACSM STATE DIAGRAM

I N AA A N N D R A F R
NE c u u E s 0 E c A E
pW CD D T 0 N J I s
u E I I E E D L E

E TC S T T 0 0 c I u T

v s s u u T s R
M R F T T c E

E - R E u p p 0
N A E Q L u u N
T c Q L T T N

E
R R c
E E T
Q Q

STATE I" 1 2 3 4 5 6 7 8 9 10 11 12

WAIT 1 2 5 4 6 7 8

PASS TO CSM-AC 2 3 1 1 8

SPAWN CSM-AC 3 1 8

AUDIT 4 3 1 8

ACCESS TABLES 5 1 8

NET OUTPUT 6 1 8 8

NSO OUTPUT 7 1 8

DISCONNECT 8 8 1

FIGURE 9: ACSM STATE TRANSITION TABLE

c. The states for the CSM-AC are as
follow.;:

(I) birth - This is the initial state of
the CSM-AC. What action the AC takes on entry into the
CSM-AC is determined by the reason it was spawnd.

(2) get-MAC/DAC-info The AC
needs to make a decision about a connection open request
and must consider the pertinent MAC and DAC information.
In this state, the ACSM is signaled to retrieve this
information.

(3) check-open-req The open
request just received is checked against the MAC and DAC
information just retrieved

(4) forward-open req The open
request has been approved by the AC, and the ACSM in
signaled to forward the request to the recipient host.

(5) wait-open - The AC is waiting
for a response to the forwarded open request from the
recipient host.

(6) notify-host-open-nak - The open
request in question has been denied either by the AC or by
the recipient host, and the ACSM is signaled to notify the
requesting host.

(7) send-status-info A connection
between two hosts is about to be opened or closed, and the
BIU's need to be instructed to change their connection status
information. The ACSM is signaled to instruct each one of
the BIU's to change this information. This state will be
entered twice during a connection opening; the first to set
the recipient host's BIU and the second for the requesting
host's BIU. During a close, each BIU will notify the AC it

is closing. Therefore, two separate CSM-AC's will be
spawnd, each entering this state only once.

(8) wait-status-set - After instructing
the BIU to change its status information, the CSM-AC waits
for confirmation that the information has been changed

(9) notify-host-open-ack The AC
and the recipient host have approved a host's open request,
and the status information in the recipient ho~t's. BIU has
also been set for the connection. The ACSM 1S. Signaled to
notify the requesting host of this and to expect Jts status to
be set for the connection.

(10) update-connection-table A
connection has just been opened or closed, and the AC's
connection tables are updated to reflect this.

(1 I) audit - The action performed
during a CSM-AC's life must be audited before its death.
The ACSM is signaled to record some auditable event in the
AC's audit files.

(12) notify-BIU-send-audit A
condition has arisen, either a BIU message ·or an NSO
request, that requires a BIU to send its audit data to the
AC. The ACSM is signaled to notify the BIU that the AC
is ready to receive the audit data.

(13) wait-audit-data - The CSM-AC is
waiting for a BIU to transmit some audit data.

(14) store-audit-data - The ACSM is

signaled to store a BIU'S audit data in the AC'S audit files.

(15) notify-BIU-change-mode A
request has come from the NSO to change the operating
mode of a BTU. The ACSM is signaled to instruct the BIU
to change its operating mode.

(16) wait-mode-changed - The CSM
AC is waiting for confirmation that the BIU changed its
operating mode.

(17) notify-DIU-disconnected A
request has come from the NSO to disconnect a BIU from
the LAN. The ACSM is signaled to instruct the BIU to
disconnect itself.

(18) notify-NSO-BIU-disconnected - The
ACSM is signaled to notify the NSO that the BIU has been
instructed to disconnect itself from the LAN. There is no
actual confirmation from the LAN that the disconnect
actually happened; therefore, the NSO should probably verify
the disconnect for himself.

(19) notify-NSO-AC-audit-full The
ACSM has noticed that the last piece of audit data caused
the AC'S audit storage area to grow larger than some
threshold value. The ACSM is signaled to notify the NSO
of this fact.

(20) update-DAC-table The NSO
has instructed the AC that a host's DAC table is to be
updated, and the ACSM is signaled to make the changes.

(21) update-MAC-table The NSO
has instructed the AC that a host's MAC table is to
updated, and the ACSM is signaled to make the changes.

(22) notify-NSO-table updated - The
ACSM is signaled to notify the NSO that the requested
changes have been made.

(23) notify-I3TU-connection-killed - The
NSO has instructed that a connection be terminated. The
ACSM is signaled to notify one of the BTU's to kill the
connection at its end. To completely kill an active
connection, two separate CSM-AC's need to be spawnd - one
for each BIU.

35

(24) wait-closed l11e CSM-AC
realizes that a connection was just killed and is waiting for a
BIU to send the connection closed response to the AC.

(25) death - The task that the
CSM-AC was spawned to perform has been completed and
audited, and the life of the CSM-AC is terminated.

d. The events that cause CSM-AC state
transitions are as follows:

(I) host-AC-open-req A host is
requesting permission to open a connection with another
host.

(2) host-AC-open-ack - A host has
just accepted a connection open request that had been
forwarded by the B-AC.

(3) host-AC-open-nak - A host has
just refused a connection open request that had been
forwarded by the AC.

(4) not-authorized A connection
open request failed to pass the MAC and DAC checks.

(5) stat-set-# I - The AC has received
confirmation that the status information of a BIU was
successfully set. This event occurs when the BIU in
question was the recipient of the open request.

(6) stat-set-#2 - The AC has received
confirmation that the status information of a BIU was
successfully set. This event occurs when the BIU in
question was the originator of an open request or is in the
process of closing its end of a connection.

(7) closed - A BIU has notified the
AC that its end of a connection has been closed. This
could happen as the result of a normal close or from the
request of the NSO.

(8) NSO-kill-connection l11e NSO
has requested that a BIU close its end of a connection.

(9) BIU-AC-audit-full A BIU . has
notified the AC that its audit files are full and need to be
sent to the AC.

(10) NSO-audit-req - The NSO has
requested that a BIU send its audit files to the AC.

(I 1) audit-data The input just
received was BIU audit data.

(12) audit-sent l11e BIU has
informed the AC that all of its audit data has been sent.

(13) NSO-disconnect-BIU - The NSO
has requested that a BIU be disconnected from the LAN.

(14) NSO-update-MAC-table The
NSO has requested that a change be made to a host's MAC
tables.

(15) NSO-update-DAC-table The
NSO has requested that a change be made to a host's DAC
tables.

(16) NSO-change-BIU-mode The
NSO has requested that a BIU's operating mode be changed.

(17) BIU-mode-changed - The AC has
received confirmation that a BIU's operating mode has been
changed.

(18) AC-audit-full - The ACSM has
just signaled that the AC's audit data storage area is nearing
capacity and that the NSO needs to be notified.

(19) done - The action in the current
state has been successfully completed.

(See Figure 10 for a CSM-AC state diagram and Figure 11
for a CSM- AC state transition table.)

FIGURE 10 CSM-AC STATE MACHINE

H H t ~ s s c N B N A AN N N N B AD
0 0 E E L S I S u u s s s s I C 0
s s S T T T 0 0 1 l o D D 0 0 0 0 UAN
T T ::> S K - A I I D U uc I~ u E

E - s s E I I~ g T T I p PH 0 D
VA A A U T T D L

~I ?IP D I
c c

clr ~~~ L A I D S E TE UT A E 0 T TG
N 0 0 0 0 # # c D TN

Nl;
E E C F

T p p p R I 2
0 I R AT D B Hu

E E E I N TE B A A I A L
N N N Z N F Q I C c u N L
R E E

UT T~
G

AN c u E
E C A D

T L A AD D
Q K K L B B;;

STATE ~ I 2 3 4 s 6 7 8 9 I Ill 13 14 IS 16 17 18 19

BIRTH I 2 7 23 12 12 17 2 20 IS 19

GET ' ACIDAC INFO 2 3

CHECK OPEN REQ 3 6 4
FORWARD OPEN REQ 4 s

WAIT OPEN s 7 6
NOTIFY HOST OPEN NAK 6 II

SEND STATUS INFO 7 8

WAIT STATUS SET 8 9 10
NOTIFY HOST OPEN ACK 9 7

UPDATE CON. TABLE 10 II

AUDIT II 25

NOTIFY BIU SEND AUDIT 12 13

WAIT AUDIT DATA 13 14 II

STORE AUDIT DATA 14 12

NOT. BIU CHANGE MODE IS 16

WAIT MODE CHANGED 16 II

NOT. BIU DISCONNECTED 17 18

NOT. NSO BIU DISCON. 18 II

NOT. NSO AC AUDIT FULL 19 II

UPDATE DAC TABLE 20 2

UPDATE MAC TABLE 21 2

NOT. !'SO TABLE UPDATED 22 II

NOT. BJU CON. KILLED 23 24

WAIT CLOSED 24 7
DEATH 2S

FIGURE II: CSM-AC STATE TRANSITION TABLE

'
36

NOTE: The same deficiency exists in the description of the
CSM-AC as that in the CSM. The CSM-AC does not
account for the opening of connections with BHJs with
which it communicates.

3. The Bus

The bus is the last part of the LAN that
needs to be modeled. The bus is the cable that connects
all of the BHJ's on the LAN. When a BIU wishes to
transmit a packet, it broadcasts it on the bus. If all goes
well, it arrives at every BIU on the bus, including the
sender. The destination BIU accepts the packet, and the
rest ignore it. The bus never guarantees that the packet
sent is the one received. That is the BIU's problem.

The bus is modeled with the assumption
that there is a buffer at each interface to the bus. When a
BIU wishes to send a packet, it writes that packet into the
buffer at its bus interface. The property of the bus is to
copy the contents, not necessarily correctly, to every other
buffer. When something is written into one of those
buffers, the BIU at that interface treats that as a received
packet. It is up to that BIU to determine if that packet is
correct or even addressed to it (see Figure 12).

FIGURE 12' THE BUS

IV. 	 SUMMARY

This paper is a first attempt at specifying and then
modeling a security policy for an MLS LAN. It describes a
policy that gives the reader an intuitive feeling of what it
means for a LAN to operate securely by putting forth a list
of rules that must be obeyed along with motivation for each
rule. It then tries to formalize these rules. Finally, a
fairly lengthy description of the LAN was presented by
describing each device on the LAN with intercommunicating
state machines.

Since this a first attempt at the model, there are
naturally some aspects of the LAN that have not been fully
specified in the model. Also no formal proofs have been
attempted. What is hoped, however, is that there is now a
foundation which will evolve into a fully-specified MLS LAN
model that is provably secure.

REFERENCES

[I] 	 DoD 5200.1R, The Department of Defense Information
Security Program Regulation, July 1982.

[2] 	 De[Xlrtment of Dejmse Tn1sted Comp1ter Security
Evaluation Criteria, CSC-SID-001-83, 15 August 1983.

[3] 	 CDRL 145, "Formal Draft Subsystem Design Analysis
Report - Engineering Report LAN Interfaces." GTE
Contract No. Fl9628-84-C-0052, 10 August 1982,
Volume 4, Appendix C.

37

SECURITY IN OPEN SYSTEMS

A REPORT ON THE

STANDARDS WORK OF ECMA 1 S

TC32/TG9

T A Parker

ICL Defence Systems UK

ABSTRACT

TC32/TG9 is a recently formed Task
Group within the European Computer
Manufacturers Association standards
body (ECMA) • It has been tasked
with defining an application-layer
framework for Security in Open
Systems, a framework which will
ultimately lead to the definition
of standard security support
applications that communicate in
the OSI environment using standard
application-layer protocols.

This paper reports on some of the
early work of TG9 completed mainly
during 1986. It describes an
informal secure systems model or
framework, in which security is
supported by a number of discrete
security "facilities". .The paper
then goes on to report on some of
the detailed work that has been
started on analyzing requirements
for the passing of security data
around a distributed system. It
addresses the topic of access
authorization and offers a uniform
approach which caters for a
spectrum of access control schemes
ranging from capability systems to
access control lists.

ACKNOWLEDGEMENTS

The other major contributors to the
work of TG9, of which this paper is
only a part, have been J Kruys
(NCS, Netherlands, and TG9
convenor), D Roberts (British
Telecom, UK), N Pope (GEC, UK), D
Pinkas (Bull, France), and A c Gale
(ICL< UK).

0. CONTENTS

1. INTRODUCTION

2. 	 THE SECURE SYSTEMS
MODEL

3. SECURITY FACILITIES

4. WALKTHROUGH

5. 	 THE AUTHORIZATION
MODEL

6. 	 RELATIONSHIP TO THE
DoD EVALUATION
CRITERIA

7. CONCLUSION

8. REFERENCES

1. INTRODUCTION

TG9 is a Task Group of Technical
Committee 32 (TC32) of the European
Computer Manufacturers Association
(ECMA) . Its responsibility is to
develop a framework for the
provision of logical security in an
Open systems environment and to
develop standards for security
related services and protocols, or
protocol elements, as required for
this environment.

The work of the TG9 group addresses
the ISO application-layer view of a
distributed system. It is aimed at
developing standard security
applications and standard
communications protocols both
between the applications themselves
and between them and the productive
applications with which they share
the system. In some cases it is
envisaged that standard protocol
elements will be developed with
which existing application-layer
protocols can be extended.

The world of the TG9 framework is
one of end users in control of
entities that communicate via
Application Service elements (Ref
1). The generic term application
is used in the text that follows,
to denote one of these entities; so
in TG9 terms a file service, an

38

office mailbox, a print spooler, or
a UNIX operating system offering
general purpose computing
facilities to its users are all
examples of applications.

The TG9 group is primarily
concerned with the ways in which
applications interwork rather than
how they are constructed
internally. TG9 therefore
concentrates its efforts on
network-wide aspects of security,
only looking inside applications in
order to establish what externally
communicated security data they may
need (or at least benefit from) in
order to do their own job. This
split between views of security
external to and internal to
applications is fundamental to the
approach and is further discussed
in Section 2.

In either view, security is
obtainable only via the
implementation of a variety of
control and monitoring functions,
the requirements for which are
determined according to whatever
security policy is defined for the
view. TG9's secure systems
framework identifies a general set
of these functions and divides them
into elements, each one having a
single coherent role to play in the
provision of the total security
picture.

These elements are referred to as
Security Facilities and they are
described in Section 3. The
framework must also show how these
elements interact with each other
and consequently which combinations
of elements are appropriate to form
standard security support
applications; this is a major area
of current activity for TG9. A
walkthrough of interactions that
could occur when a user logs on to
a system and attempts access to an
application is given in Section 4.
The walkthrough should be taken as

illustrative rather than
definitive; it leads naturally into
the second part of this paper
(Section 5) which covers one major
aspect of the detailed work being
done within TG9. The topic is that
of access authorization.

Whereas authentication relates to
the process of proving claims of
identity, authorization relates to
the process of controlling access
by already identified subjects to
already identified protected
objects*. The paper aims to show
that existing ad hoc authorization
methodologies can be fitted into a
unifying framework in which
apparently quite different
techniques appear as different
parts of a continuously varying
spectrum. In particular the two
authorization approaches
characterized by capabilities and
access control lists are shown to
be extremes of this spectrum, each
of which has its advantages and
disadvantages. See also References
3 and 6.

*Following normal security
conventions, active entities
requesting access to other,
protected entities in the system
are referred to in this paper as
subjects and the protected entities
as objects.

2. THE SECURE SYSTEMS MODEL

2.1 overview

In terms of the Open systems
Interconnection (OSI) model, the
level of view addressed here is
application layer. The security
entities described communicate
using OSI services of sufficient
security to satisfy their needs
(Ref. 2). These needs take the
form of guarantees, to some
acceptable level, that
communications between them and
with their peers are confidential

39

and unmodified, and that each
communication is with a known and
identified peer entity.

Section 2.1.1 introduces the two
level view of security necessary to
distinguish properly between the
network-wide security policy for a
distributed system and the
individual security policies
support by the applications
residing in the nodes of the
network. Section 2.1.2 shows how
the concept of a "subject" can
change according to the nature of
the accesses that are taking place.

2.1.1 	Internal and External

Application Views

There are two fundamentally
different levels at which the
security requirements of a
distributed application network can
be addressed:

- at the application access

level, concerned with

access to protected network

objects like productive and

supportive applications;

- at the application

specific level, concerned

with access to objects

supported by network

applications, like files

or documents.

These two levels of view have quite
different requirements, reflected
in different security policies
tailored to the different kinds of
protected objects involved and the
different components of the network
that are responsible for their
support. Indeed entities that are
considered protected objects at one
level can become accessing subjects
at another. This is illustrated in
figure 1.

Figure 1 Network and Application
Security Policies

Figure 1 shows a number of end
users wishing to access a number of
network applications, policed by an
Application Access Security Policy
(AASP in the Figure). One of the
applications is shown with its
internal details revealed; it is
supporting a number of protected
Application-specific Objects (ASOl
to AS03 in the Figure) being
accessed both by .end-users directly
and by other applications in their
own right, (viz: User 3 and
Application 2) both being
constrained by the same
Application-Specific Security
Policy (AASP in the Figure).

It is the support of the AASP that
is the prime concern of TG9, since
it is in this area that the
distributed nature of a system is
most apparent, and standard
protocols are required to
communicate security related
information (e.g. the subject
identity and access privileges
discussed in Section 5) between
applications running on end systems
of different kinds and origins.

2.1.2 	 Indirect Access and
Proxy

In some cases an application may be
accessed by another application
(for example Application 2 in
Figure 1) rather than directly by a
user. There are two possible
extremes:

- the initiating application is
acting on its own behalf;

- the application is acting
on behalf of another subject

(e.g. 	a human user).

I\ ·.. - - - - - I

B~~-a

40

The first situation may be used for
example to restrict access to
objects held on one application
(say a File Service application) to
requests coming via another (say a
Database Service application). It
is entirely appropriate for the
Database service to act with
respect to the File Service as a
subject with its own identity and
access privileges. In this way
end-user access to a protected
object (in this case the database
files) can be controlled in terms
of the route and method used to
access it. This kind of control is
important to commercial
organizations (Ref 9).

The second situation might occur
for example when a user wishes to
transfer a file directly from one
application to another. The user
requests one of the applications to
initiate the transfer on his or her
behalf. This application is acting
as the user's proxy and must
convince the other application that
it is legitimately so doing before
the transfer will succeed.

Hybrid cases can also exist in
which the initiating application
uses its own privileges in
combination with those given to it
by the calling user.

References 6 and 7 discuss proxy in
more detail. Reference 7 examines
the protocols involved in such
situations.

3. SECURITY FACILITIES

At this stage no assumptions should
be made about the degree of
distribution of the facilities;
this might vary from being a single
central network application to
being an aspect of every
distributed supportive or
productive application. Neither is
it suggested that all of these
facilities need be available on

every secure network. They should
be viewed as a shopping list of
items from which a choice can be
made appropriate to the security
policy and level of security
quality required for the network.
However, by identifying the full
list, the framework causes
omissions to be made evident and
any resulting security weaknesses
intentional rather than accidental.

The following security facilities
have been identified:

3.1 User Sponsor

When a human user logs on to a
distributed computer system using a
(possibly remote) authentication
facility (see 3.2) there is a
requirement for local functionality
that sponsors that user to the
system, which controis the user's
access to local applications and
which monitors subsequent activity.
The User Sponsor is the entity that
provides these services.

There are two major security
responsibilities that fall outside
the ambit of particular productive
applications. Firstly the User
Sponsor is responsible for the
monitoring of a user's access to
local applications and which
monitors subsequent activity. The
User Sponsor is the entity that
provides these services.

There are two major security
responsibilities that fall outside
the ambit of particular productive
applications. Firstly the User
Sponsor is responsible for the
monitoring of a user's continued
presence: no single application is
in a position to time-out a user
after a period of prolonged
inactivity since the user may well
have been fully active in other
areas.

Secondly, the User Sponsor also

41

serves the user: it organizes the
user's relationships with the
various security facilities that
come into play before, between and
after his direct use of individual
productive network applications.
There is one instance of a User
Sponsor for each active end-user.

User sponsors are further discussed
in Reference 8.

3.2 Authentication

The Authentication Facility accepts
and checks subject credentials,
communicating its conclusions to
other interested security
facilities. The subject involved
will either be an end-user via his
or her user sponsor, a non-security
application acting as a subject, or
a non-security application coming
on-line and making itself available
as an accessible network object.

Notice that the authentication
result is a proof of identity at an
instant in time. Assurance of the
continued validity of the mapping
of this identity must be provided
either by other means (e.g. time
out by the user Sponsor), or by
continued reauthentication in each
subsequent data transfer.

3.3 Association Management

When a subject accesses an object
a data exchange takes place. To
provide the means by which this can
happen, an association is
established between them, and this
must be established and maintained
in a secure way. There are three
aspects to this:

Association management is
responsible for ensuring
that the underlying
communications are as
secure as is required by
the communicating

entities, including assurance of
their identities.

- The subject must have been
authorized to communicate
with the object. Association
management must be sure either by
the context within which the
request was made, or by
explicitly involving appropriate
authorization facilities (see
3.6), that this is the case.

- Any security weaknesses
inherent in the communications
route chosen must be reflected in
the access privileges of the
subject. For example links on
which there is no cryptographic
protection should not be used for
highly confidential data traffic,
even though the accessing subject
may be cleared to access such
data.

3.4 Security State

The security state of a distributed
system represents the current
condition of the subjects and
objects in it.

If a user is successfully
authenticated then his or her
condition, as recorded in the
security state, changes; the same
happens when a current file access
is authorized or revoked or when a
user logs off. The Security State
Facility (SSF) is a passive
facility that serves to hold a
record of the current security
state.

The SSF should not be confused with
audit trail collection: SSF keeps
the current state, not a record of
state changes; however changes of
security state will often be also
recorded in an audit trail using an
Audit Facility (see 3.8).

42

The SSF is an abstraction
representing the state information
of all of the elemental security
facilities. It is therefore
clearly likely to be highly
distributed, with components in
every node of the distributed
system.

3.5 Security Attributes

The Security Attribute Facility
provides appropriate subject
related access privilege data (such
as a user's security clearances and
group memberships) for already
authenticated subjects, an object
related access control data (such
as
its classification and access
control-list entries) for protected
objects. A close relationship
between the authentication facility
and the security attribute facility
is envisaged, particularly with
respect to subject related
privilege attributes. The data
structures needed for both
facilities are very similar, both
being related to the structures
defined by CCITT and ISO for
Directories (Ref 10). TG9 has
provided input to this work in
connection with its proposals for
security controls (Ref 11).

3.6 Authorization

The Authorization Facility uses
access context, subject access
privilege attributes and object
access control attributes to
authorize or deny requested
accesses by subject to objects.
The concept of authorization using
privilege and control attributes is
further discussed in Section 5.

3.7 Inter-Domain

If a security domain is defined as
that part of a distributed system
to which a single security policy
applies under the responsibility of

a single security management
entity, then special requirements
arise when communication takes
place between two security domains.
In particular if a subject in one
domain wishes to access a protected
object in a second domain,
additional rules are required which
reflect the complex and varied
trusted relationships that may
exist between the different
security domains. Domain A may or
may not trust Domain B to
authenticate its subjects, or may
do so only to a limited degree.
Some objects protected by Domain A
may be so sensitive that no extra
domain access is permitted under
any circumstances (Ref 4). Also
Domain A's view of the meanings of
particular security attributes may
differ from that of Domain B, and
finally, there may be a need to
change cryptolographic keys at the
border between the domains. All of
these matters require the support
of an Inter-domain facility.

3.8 Security Audit

This facility provides security
administrators with a record of the
use of the security facilities of
the system. It is the
responsibility of other active
security facilities to transmit
audit information to the security
Audit Facility according to the
audit policy for the system.

3.9 Recovery

This facility is available to a
system administrator to take
immediate corrective actions.
These actions may come from a
specific demand from the system
administrator himself, or may be
the result of events coming from
the audit facility (alarms or
security violations) or from other
security facilities.

43

3.10 Cyptographic Support

Provides application layer
cryptographic functions used both
by other security support
facilities and by productive
applications to secure data in
storage and transit in the
following specific ways (see Ref
2):

- communications confiden
tiality

- communications integrity
- data origin authentication
- non-repudiation of origin
- non-repudiation of receipt

4 . WALKTHROUGH

The following gives an example
walkthrough of a user approaching
the system and accessing an object
controlled and supported by a
productive application. The
walkthrough is provided for
illustrative rather than definitive
purposes and not all the facilities
are involved.

At the beginning of this
walkthrough it is assumed that the
system's security facilities are up
and running with secure links
established between them. The
productive application of the
example is already in service and
authenticated as an accessible
application object. The terminal's
User Sponsor is also authenticated
as legitimate (but no user is yet
present) . This implies that
identities and addresses of these
entities are now known to the
Security State Facility.

A human user sees that there is a
computer system in front of him or
her. No other information is
available (in this example). The
user depresses a terminal key, puts
in a magnetic badge or otherwise
stimulates the system.

1. The User Sponsor is activated
which connects the user to an
Authentication Facility and
mediates the authentication
dialogue between them. The choice
of Authentication Facility may or
may not be made by the user. The
user authenticates himself or
herself and the Authentication
Facility notifies this to the
Security Audit Facility.

Similar notification actions
occur also at other points in this
walkthrough but are, from here on,
omitted for reasons of clarity.

2. The Authentication Facility
informs the Security State Facility
of the successful Log-on, naming
the User Sponsor involved. The
Sponsor's identity is sufficient
information to locate it.

J. The Authentication Facility
asks the Attribute Facility for the
authenticated user's access
privilege attributes (possibly
tempered by the authentication
method used) and passes them to the
Security State Facility to be
remembered.

4. The user selects the required
application.

s. The Association Management
Facility is prompted by the User
Sponsor to set up an association
between the local and remote
application entities on behalf of
the user.

6. To do this, Association
Management refers to the Security
State and the Attribute Facility to
obtain privilege and control
attributes relating to the user,
the service and the quality of
association.

7. Association Management calls
an Authorization Facility to check
the user's right to access the

44

remote service. Association
Management then sets up the
association with the required
quality of underlying security.

8. Having set up the
association, appropriate changes
are made by Association Management
to the Security State. These
changes may include further
tempering of the user's privilege
attributes based on the security
quality of the association.

9. The User Sponsor informs the
user that the connection to the
application has been made.

10. The user uses the newly
established association to transmit
a first request to the application
~o access an object supported by
l.t.

11. An Authorization Facility in
the productive application refers
to Security State, specifying the
association, so as to obtain both
identity and access privilege
attributes.

12. It then obtains the access
control attributes associated with
the object in question using an
Attribute Facility within the
application and uses them, in
conjunction with the accessing
user's privilege attributes to
check the legitimacy of the access.
The access is shown to be
legitimate.

13. The user accesses the object!

Figure 2 shows the conversations,
between the security facilities
numbered using the numbering of the
walkthrough description. The
arrows point from initiator to
responder in each case. All
facilities may converse with an

Figure 2 Conversations between Security Facilities

Audit Facility or Recovery
Facility.

45

5. THE AUTHORIZATION MODEL

5.1 Fundamentals

In the real world, authorization
rulings are made in the context of
characteristics possessed by the
parties involved, the state of the
world at the time, and the kind of
access requested.

In the computer world we use
similar concepts. The
characteristics of the parties
involved are represented by data
which can be categorized as
follows:

5.1.1 Authorization attributes

associated with the subject

(privilege attributes)

For example the subject's name(s),
its role in the system and its
trustworthiness. Indeed any
attribute is a candidate for this
category, provided that it is
associated with the subject; in
particular a name of an accessible
object can be an attribute
associated with a subject.

5.1.2 Authorization attributes
associated with the object (control
attributes)
For example the object's name(s),
its role in the system and its
degree of sensitivity or required
integrity. Once again any
attribute is a candidate for this
category, provided that it is
associated with the object. In
particular a name of an accessing
subject can be an attribute
associated with an object. ·

5. l. 3 The context within which the
request is being made

For example the time of day, the
communications route involved, or

the accesses currently being made
to other objects by this and other
subjects.

Access contexts are not further
considered in this paper, but are
under study within the TG9 group.

5.1.4 The kind of access being
requested

For example: read, modify, use,
know-about.

The rules of the authorization
policy are applied to values from
these four categories and the
result is essentially either
"access permitted" or "access
denied". The algorithm
representing the rules is typically
complex, involving complex
combinations of multiple elements
from each category. One of the
tasks of the standardization
process is to bring some structure
to this complexity in a way that
preserves as far as possible its
general applicability.
Notice that authorization
attributes can be long lived or
short lived. For example
clearances and classifications tend
to be static in nature, and
therefore long lived. A capability
on the other hand may be granted to
a subject for the duration of a
session, part of a session or for a
single access.

Typically, authorization ~ttributes
are held as tuples, of wh~ch one
part is the attribute's value and
the other is one or more access
types associated with that value.
For example, if an object has
associated with it an attribute
containing the name of a particular
subject, paired with an access-type
value of "read", there is an
obvious authorization rule that
could be chosen to apply, under
which presence of the attribute
grants the subject read access to

the object. Such an attribute
would look remarkably like an
access control list entry.

Not all attributes require this
treatment however; for example a
subject may have an attribute which
defines its security clearance.
Such an attribute will under many
policies automatically be
associated with read access since
this is fundamental to the concept
of security clearance. Such an
association could therefore be made
implicit.

5.2 Illustrative examples

5.2.1 If we imagine an object
name/access-type tuple as a
privilege attribute (i.e.
associated with a subject), with
object-names also being associated
with objects as control attributes,
and couple these with an
appropriate and obvious
authorization rule we obtain what
is essentially a capability.

46

5.2.2 If we imagine a "clearance"

privilege attribute and a

"classification" control attribute,

and couple these with an

appropriate authorization rule we

have a label-based scheme which is

appropriate for supporting a real

world National Security Policy.

5.2.3 If we imagine subject name

as a privilege attribute and a

subject-name;access-type tuple as a

control-attribute and couple this

with an appropriate authorization

rule we obtain what is essentially

access via an Access Control List

entry.

5.2.4 It is easy to devise more

sophisticated variants of example

5.2.1 in which the object-name

becomes an object type with more

than one object possessing a given

'type' attribute, giving the
capability a wider applicability.
It is a small step further to
consider this •type' attribute as
becoming a security label, and so
arrive at example 5.2.2. A similar
bridge could clearly be made
between 5.2.2 and 5.2.3.

Thus clearances are revealed as
generalizations of capabilities and
classifications as generalizations
of access control list entries.

Figure 3 illustrates this gradual
merging of one concept into
another. It includes also a bridge
between 5.2.2 and 5.2.3.

OBJECT CONTROL AT'I'RIBUTE NORMALEXAMPLE SUBJECT PRIVILEGE ATTRIBUTE
~ REF

Capability
5.2.1 1OBJ NAME I Access I

Generalised
5.2.4 I OBJ TXPE ! Access I capability

Security LabelI CLASS • N I ~s~ugE£ ~E¥']5. 2. 2 I CLEARANCE I ~[uEE~ !E~J
1SUBJ GROUP \ ACCESS I Generalised

ACL entry(5.2.4) I SUBJ GROUP I

\ SUBJ NAME ACCESS I ACL entry5.2.3 ! SUBJ NAME I

Figure 3 : 'fhe Authorisation Attributes Spectrum

5.3 	 Observations on the

examples

5.3.1 The ease with which a

capability mechanism can be

transmuted into a

clearance/classification mechanism

and then into a conventional access

control list mechanism argues for

the usefulness and appropriateness

of the underlying attribute

framework.

5.3.2 When subject names are held
at objects for use as control
attributes (e.g. in ACL entries)
day to day maintenance of the '
authorization policy is made
difficult for systems with a
volatile population of subjects.
Conversely, when object names are
held as privilege attributes
associated with subjects (e.g. as
Capabilities) maintenance is
difficult for systems with volatile
object populations.

Maintenance is therefore clearly a
factor which should influence
choice of expression of policy and
to define a standard for all '
systems based on one or other
~pproach ~s consequently
~nappropr~ate.

Furthermore, a practical system is
likely to require an authorization
policy which uses multiple
positions on the attribute
spectrum. Figure 4 illustrates the
point

PolicY Check Final
Subject Attribute Object Attribute ~ Result

Subject-name ----------------ACL------------->Yes/No ~===~

Pr i vi le9e-attribute ----cont rol-Attr ibu te---->Yes /No --> Yes/No

Capability ---------------Object-Name-------->Yes/No '---"==~

Figure 4 ; Attribute Co111bination

Typically, high security systems
might use an ACL approach for their
discretionary authorization policy
and a clearance/classification
attribute approach for the
mandatory policy. A subject
passing these tests can then (for
performance reasons) be given a
temporary capability which

subsequently independently grants

the requested access.

5.3.3 In a large distributed
system, responsibility for control
of an authorization policy might be
devolved to a number of different
centers. In particular, it will
often be the case that control over
the introduction of users to the
network will be exercised by a
different authority from those that
administer the individual services
on the network. The former could
be considered to be the subject
administrator of the network, and
the latter the object
administrators. On system with
multiple cooperation authentication
services there may be more than one
subject administration authority.

47

It is useful to examine the
authorization attributes that ea~~
authority controls. I~ general
seems obvious that subJect
administrators should be
responsible for privilege
attributes, with tempo~ary .
attributes of either k~nd be~ng
allocated by object ~ccess co~trol
logic as implementat~on exped~7nts.
This fits in reasonably well w~th
the real world perceptions of these
attributes. It is entirely
appropriate for a subject
administrator to allocate user
clearances, define which roles a
user 	may assume and specify which
department he or she belongs to.
It is also appropriate for an
object administrator to determine
an object's ACL entries and
security classification.

5.3.4 There are three levels at
which standardization might be
appropriate:

Level 1 - Define standard protocols
for the passing of subject-related
privilege attributes, confirming
the definition to include only the
means of protection and
certification, the occasions when
attributes are trans~itted, and how
they are obtained.

Level 2 - The definition of a set
of standard attribute types within
which the values used in real
systems will fit (Ref 5).

Level 3 - A set of standard
attribute values common to all
conformant systems.

Level 1 standards would seem to be
generally useful. There are
parallels for Level 2 standards
within the Directory proposals of
OSI and CCITT (Ref 10), and a
degree of commonality with these
would be of value. Level 3
standards may be appropriate for a
few widely used attribute types,
particularly as used in protocol
interactions with and between
security support services.

5.4 	 Mandatory versus
Discretionary
authorization policies

A mandatory authorization policy is
often defined as a policy based on
security labels, with users
possessing clearances like SECRET,
and protected objects possessing
similarly named classifications
(e.g. Ref 13).

A discretionary authorization
policy is in contrast thought of as
a policy based on individual user
identity, with users being ~ranted
or denied access on the bas~s of
who they are rather than what
clearance attributes are associated
with them.

Under the authorization framework
of this paper these differences are
revealed as superficial; the labels
of the mandatory policy and the
subject-user identity attributes
associated with capability or ACL
approaches are merely variations on
the same theme. Indeed, if under a
mandatory policy users possessed
unique non-hierarchic individual
caveat clearances, the clearances
become equivalent to user-id's and
the corresponding classifications
simplified ACL list entries.

Another distinction drawn between
mandatory policies are centrally
controlled, in contrast to the
discretionary policy approach of
control by ownership. In terms of
the concepts of this paper, the
difference lies in the allocation
of access to the privilege and
control attributes treated as
projected objects. Looked at in
this way, it becomes apparent that
a variety of choices of
devolution/centralization of
control is possible, depending on
the authorization policy associated
with the attributes. This reflects
the real world requirements
exemplified by security manager,
sub-manager, department manager,
team leader, or individually based
control policies.

A third difference drawn between
mandatory and discretionary
policies is that of rigor. In
general, mandatory policies are
expected to provide stronger
protection for two main reasons:

- mandatory policies are usually
implemented within an architecture
which makes a clear distinction
between trusted code and untrusted
code. Policy control is ensured to
be exercised only via trusted code,
making evaluation easier and the
level of assurance consequently
higher.

mandatory policies incorporate
the concept of flow control
(exemplified by the *-property of
Ref 14, but more generally treated
in Ref 15). This protects the
system from malicious leakage of
sensitive data to less sensitive
environments by untrusted 'Trojan
Horse' code.

48

In principle however there is no
reason why a discretionary policy
should not incorporate such
features; in practice it is
operational flexibility that
determines the acceptability of
constraining the software contexts
within which control over the
policy is exercised, and it is the
granularity of the authorization
policy that determines the ease or
difficulty of policing information
flows in a way which retains an
acceptable degree of usability.

6. 	 RELATIONSHIP TO THE DoD
EVALUATION CRITERIA
(Ref 13)

It is not the task of the ECMA
group to lay down criteria for
assessing the strength of security
in a distributed system, but the
framework does provide a basis upon
which such standards could be
constructed. The major aim of the
work however, is the definition of
standards which will make
independently designed network
components able to work together in
a secure manner.

The 	authorization model shows that
the 	concept of mandatory versus
discretionary control is an
oversimplification; there is a
complete spectrum of approaches of
which the policies described in the
DoD criteria are only two examples.
Reference 9 lends further weight to
this point.

In other respects, the framework
and the detailed standards that
grow from it will where relevant be
developed to be compatible with the
DoD criteria. The ECMA group
regards the DoD criteria's
requirement to separate trusted
code from untrusted code as being a
fundamental one, and the framework
helps to define this separation by
enabling trusted'code functions to
be identified and categorized.

7. 	 CONCLUSIONS

The paper has described an
application layer security
framework which enables a
distinction to be drawn between
network-wide and local application
security policies. A set of
elemental security facilities has
been defined and an example given
of how these can work together.

Reference 12 includes a section by
TG9 which sows some of these
facilities combined into possible
standard security applications.
This work is continuing within TG9,
and the group is looking towards
the definition of standard
communications protocols to and
between standard security
applications.

The paper has also described an
authorization data structure which
supports a variety of authorization
mechanisms ranging from
capabilities through label-based
schemes to ACLs. It forms a basis
for moving forward to develop
standards relating to the kind of
authorization data that is required
to be passed between application
entities in order to support their
access control policies.

49

6. REFERENCES

1. 	 "Application Integration:
The Nature and Organization
of Application Layer
Standards" B. Wood,
Proceedings of ONLINE 1 86
(Sept-Oct 1986).

2. "ISO 7498 Addendum-security
Architecture" ISO/DP 7498/2
(31 Oct 86).

3. 	 "Issues in Discretionary
Access Control" D. Downs et
al., Proceedings of the 1985
IEEE Symposium on Security
and Privacy.

4. 	 "Non-Discretionary Controls
for Inter-Organization
Networks" D. Estrin,
Proceedings of the 1985
IEEE Symposium on Security
and Privacy.

5. 	 "Attribute Transfer" T. A.
Parker, ECMA/TC32-TG9/87/8
(Jan 1987) •

6. 	 "Authentication and Discre
tionary Access Controls in
Computer Networks" P.
Karger, Computers and_
Security 5. Pages 314-324
(1986).

7. 	 "Third Party Transfer

Security" T. A. Parker,.

ECMA/TC32-TG9/87/7.

8. 	 "User Sponsors in A Secure
System" A. C. Gale, ICL
submission to ECMA TG9,
(March 1987).

9. 	 "A Comparision of Commercial
and Military Security
Policies" D D Clark and
D R Wilson, Proceedings of
the 1987 IEEE Symposium on
Security and Privacy.

10. 	 "Information Processing
systems - OSI - The
Directory" ISO/DP9594/l-9
(23rd 	Oct 1986).

11. 	 "Security of Directories"
ECMA/TC32-TG9/87/12
(February).

12. 	 "Framework for Distributed
Office Applications"
Final Draft ECMA/TC32
TG5/86 (December 1986).

13. 	 "Department of Defense
Trusted Computer System
Evaluation Criteria" DoD
5200-28-STD (December 85).

14. 	 "Secure Computer Systems:
Unified Exposition and
Multics Interpretation"
D E Bell and L J LaPadula,
ESD-TR-75-306, Mitre
Corporation (March 1976).

15. 	 "Cryptography and Data
Security" D E Denning,
Addison Wesley (1982).

50

APPLYING THE ORANGE BOOK TO AN MLS LAN

Dan Schnackenberg

Boeing Aerospace Company

Mail Stop 87-06

P.O. Box 3999

Seattle, WA 98124

This paper presents an overview of Boeing's multilevel

secure (MLS) local area network (LAN) and a discussion of the

issues that have arisen from applying the DOD Trusted

Computer System Evaluation Criteria1 (commonly called the

"Orange Book") to this MLS LAN. Our MLS LAN has been

designed and developed to meet the Al criteria of the Orange

Book, interpreted for a local area network, and is currently under

developmental product evaluation with the National Computer

Security Center (NCSC). A three node system is operating in

our development laboratory to support integration, testing, and

addition of new capabilities. This three node system utilizes

prototype hardware, however, the initial product package is

currently under development.

Our developmental product evaluation with NCSC began

in late 1985 using the Orange Book as guidance in lieu of a

network criteria. The current evaluation approach is to use the

draft Trusted Network Interpretations (TNI) 2 . In applying these

interpretations, ensuring data integrity and preventing denial of

service become issues.

Terminals

Phones

Host

computers

Video
monitors

Cameras

Phones

Printer

Tape

Data base

system

MLS LAN OVERVIEW

Our MLS LAN is unique because of the number of

services provided within the LAN. Figure I illustrates the

objectives of the MLS LAN program. The MLS LAN provides

both a back-end (host-to-host) network and a front-end

(terminal-to-host) network, as well as interfaces to analog video

and high bandwidth digital stream (e.g., digital sensors) devices.

Wavelength division multiplexing is used on the fiber optic trunk

to support simultaneous transmission of digital, analog video, and

stream data.

The current capabilities include

• 	 Interterminal communication

• 	 Terminal-to-host communication

• 	 Reliable host-to-host communication

• 	 Host-to-host datagram service

• 	 Control of the physical circuit switching for analog

video and high speed digital devices

• 	 Comprehensive network management

Phones

Video
monitors

Figure 1: MLS LAN System Diagram

51

Future products are in varying stages of development. devices meets the Al criteria by itself, however, the MLS LAN

They include- as a whole provides the features necessary to meet the Al

• File transfer support 	 criteria. Most of the Al criteria apply directly, without

• Simple Mail Transfer Protocol 	 significant interpretation, to our MLS LAN. The following

• End-to-end encryption 	 paragraphs discuss issues arising from the application of those

• Gateway to the Defense Data Network 	 criteria requiring interpretation .

• MLS LAN bridge

• Alternate media access methods 	 Discretionary Access Control

• Extensive voice services

• Network mail 	 In formally mapping the features of a packet-oriented

• File server 	 network to a Bell-LaPadula-like model4 , discretionary access

• Database server 	 control maps nicely to the requirement for correct addressing and

• 	 Printer server delivery: only the sender of a packet and his protocol processes

are permitted to write the packet, and only the addressee
The system is based on the DOD protocol suite, with full

designated by the sender and his protocol processes are permitted
protocol support within the LAN for TELNET, Transmission

to read the packet. The packet source and destination map to the
Control Protocol (TCP), User Datagram Protocol, and Internet

discretionary access control matrix of the model for the packet
Protocol (IP). The IEEE standard 802.4 token bus protocol is

object. In a connection-oriented system, the connection can be
used at the link layer.

viewed as the object. For duplex communication, both

The MLS LAN provides controlled access to the network participants in a TCP connection or TELNET session (and their

medium by a variety of devices, including terminals, hosts, protocol processes) are permitted read and write permission to

workstations, and video and stream devices (and eventually voice the connection object. One-way communication is achieved by

devices, printers, tapes, and disks) all within a multilevel providing one of the participants with read-only access to the

environment. Our network management workstation provides connection. This approach is used in our network to provide

centralized management of the network, while the Secure data transfer from lower security levels to higher security levels.

Network Servers (SNS) provide protocol processing and access
TCP's fully specified passive open provides an additional

control for the attached subscriber devices. Each device can be
discretionary access control mechanism. The process requesting

configured to operate within a range of sensitivity levels; and
a passively opened socket may specify a remote socket,

terminal, workstation, and host interfaces can be configured to
indicating that the requesting process wishes to only

support multiple concurrent sessions each operating at a different
communicate with the remote process connected to the specified

sensitivity level.
remote socket. Our network supports this feature and also

Within each SNS, a significant amount of software is permits the requesting process to specify the remote host without

required to support the range of user and security services. One specifying the full remote socket. This is an extension to the

of the Al design objectives is to minimize the size and TCP upper layer protocol interface supporting a capability

complexity of the network trusted computing base (NTCB). To similar to the specification of user groups for discretionary access

meet this objective, the software within the SNSs is partitioned control in operating systems. The NTCB services passive and

into both NTCB and non-NTCB components. Non-NTCB active open requests, and provides the addressing and delivery

software provides protocol services, including TELNET, most of functions at the link, network, and transport layers, which meets
•« ••• ,.'

TCP, and most of the host-to-SNS protocol. Non-NTCB the interpreted requirements for discretionary access control.

protocol functions provide many of the data integrity features
For our physically circuit-switched services, we provide

addressed in the TNI. The NTCB functions ensure that nonIill standard discretionary access control mechanisms. Users control
NTCB processes supporting different user sessions cannot

circuit-switched devices and channels through the network's
interfere with each other. Reference 3 provides a more detailed

terminal interface. Users may request ownership of devices and
description of the software security architecture.

channels, and may request that devices be connected to channels.

When a channel is allocated to a user, the user is given the
APPLYING THE TNI

opportunity to specify a discretionary access control list for the

channel. This list identifies the set of users permitted to connect
In applying the criteria, our MLS LAN is evaluated as a

receiving devices to the channel. This mechanism is similar to
single component. The MLS LAN comprises multiple devices:

providing an access control list for files in an operating system,
one or more SNS and a network management workstation. Each

except that the only right that can be passed to other users is the
SNS contains one or more microprocessor. None of these

right to receive.

52

Object Reuse Trusted Path

Within our LAN, we meet the standard requirements for

object reuse: each storage object is set to a predetermined initial

state before allocation to a non-NTCB process. The more

difficult aspect of object reuse in our ~ystem is controlling reuse

of distributed objects. One of the objects supported by our MLS

LAN is the TCP connection. A connection is necessarily

distributed between the two SNSs providing the connection

object. From one connection to the next, the connection name is

reused. For example, if a connection between sockets A and B

is closed, and a new connection between the same sockets is

opened, the new connection will have the same connection name

as the old connection. The problem is ensuring that prior to

reuse of the connection name, all remnants of the old connection

are removed from the system ensuring that old connection data

does not enter the new connection. This problem has led to the

development of a session management protocol for initiating and

terminating connections. This protocol is used between session

managers at the two SNSs involved in the connection. Session

managers are NTCB processes that control access to the

connection objects. The major complicating factors in

supporting this type of distributed object are (1) bit errors cause

lost packets between the session managers; and (2) remote SNSs

may have been shut down or reinitialized during the execution of

the protocol, causing the session managers to lose

synchronization. Our session management protocol addresses

these problems.

Identification and Authentication

Identification and authentication of network users are

required at the terminal interfaces to the LAN, however, users

gaining access to the LAN through host computers are assumed

authenticated by the hosts. Identification and authentication of

hosts was determined to be not essential in the LAN

environment. An SNS attached to a host will likely be

collocated with the host, so that physical security for this

interface can be assumed. Host identification can provide some

protection against cabling errors, however, authenticating the host

provides little assurance that the host is the expected host and

has neither been penetrated, nor replaced.

A more reasonable requirement is for the network to detect

disconnection of hosts and SNSs, and to forward this information

to the network management workstation for display to

operational personnel. Our network meets this requirement,

providing network operational personnel assurance that they will

be notified if the network configuration changes. This capability,

plus physical security measures, provide reasonable assurance of

the authenticity of a host's identity.

The draft TNI requires a trusted path only from users to

the NTCB. This is supported at our terminal user interface,

ensuring that users are not spoofed by an application program

masquerading as the NTCB. For host interfaces, there is a

similar problem: the host needs mechanisms ensuring

communication with the NTCB. This mechanism must support

communication of labels, user identity, and addressing data

between the host and SNS. Initialization and closing of the

interface ana user sessions are communicated using this "trusted

path." The NTCB software that demultiplexes packets from the

host implements this trusted path by scanning the protocol header

to determine if the packet should be sent to a NTCB or a non

NTCB process. By sending packets with appropriate headers,

the host is assured that the packet is received by the NTCB.

These headers are also used by the SNS to mark packets from

the SNS's NTCB. The SNS NTCB fills the headers preventing

non-NTCB software in the SNS or a remote host from spoofing

the host.

Audit requirements in a network differ significantly from

those in hosts. The Orange Book requirement that "introduction

of objects into a user's address space" be audited must be

liberally interpreted to make sense in networks. For our

connection-oriented services, the user's address space could be

interpreted as including the address space of processes supporting

the user connection in the SNSs. This would imply that all

packet deliveries would have to be audited, creating significant

audit overhead for the network. A more reasonable approach has

been taken,. requiring that connection events (creation and

termination) must be audited, but not individual packet delivery.

System Integrity

For operating systems, off-line diagnostics are sufficient to

meet the Orange Book system integrity requirements. System

integrity requirements have been extended in the draft TNI to

include mechanisms detecting loss of components. The 802.4

token bus protocol used in our MLS LAN provides the capability

for SNSs to detect loss of a neighboring SNS. This information

is forwarded to the network management workstation and

displayed to network operational personnel. Each SNS is

responsible for detecting loss of subscriber devices. These

capabilities support both the system integrity requirements and

the communications integrity requirements of the draft TNI.

Communications Integrity

Our MLS LAN provides several communications integrity

53

features to protect against transmission errors. Each SNS

incorporates mechanisms providing assurance that (1) the remote

session manager initiating the session is valid, (2) delivered

packets do not contain errors, (3) packets for connections are

delivered in order, and (4) packets are not lost.

Remote session manager authentication is implicit.

Because the network can detect loss or addition of an SNS in the

link layer protocol, each SNS that is currently on-line can be

presumed valid. The security and network administrators are

notified when SNSs enter and leave the token bus. An SNS

must be on the token bus to transmit data intelligibly. This

mechanism provides network administrators the capability to

monitor the network configuration and identify the introduction

of bogus SNSs. If network operational personnel adequately

control the addition of SNSs to the token bus and physically

validate the authenticity of SNSs when they are brought on-line,

then the risk of a bogus SNS (and session manager) is minimal.

Protection of user data against modification is provided

partially within the NTCB and partially in non-NTCB

communication software. Our implementation of TCP places the

communication integrity features outside the NTCB, including

checksum, timeouts, retransmission, and packet sequencing.

These features provide high assurance that the user data

delivered is the same as the data transmitted, assuming that

active wire-tapping is not present. Additional features are

provided by NTCB hardware and software, including a 32-bit

cyclic redundancy check at the link layer, the IP header

checksum, and error-detecting memory in the SNSs, as well as

features in the NTCB-to-NTCB protocol to ensure that NTCB

data is delivered with high integrity.

Currently no protection is provided against active wire

tapping threats (e.g., playback and message modification) within

our MLS LAN. The SNSs and transmission medium are

assumed to be physically protected. V(e plan to address wire

tapping threats in future products through involvement in NSA's

Commercial COMSEC Endorsement Program (CCEP).

Denial of Service

Denial of service protection within our MLS LAN includes

mechanisms for (1) identification of the loss of components,

(2) continued operation in the presence of component failures,

(3) notification of network operational _, personnel when

component failures are detected, (4) on-line reconfiguration of

the network, and (5) network management controlled limitations

of resource utilization to ensure that one user does not consume

excessive amounts of critical resources denying service to other

users.

Detection of the loss of components was discussed in the

system integrity paragraph. Loss of a component affects only

the users of that component. The remainder of the network

recovers automatically and continues operation. The exception is

loss of the network management workstation. When SNSs

cannot communicate with the network management workstation,

they are designed to automatically shut down, which is required

to meet the A1 criteria. The security administrator is provided

the capability to override this feature and permit the network to

continue in degraded mode when the network management node

fails. This can be used in environments where continued

operation is more critical than loss of audit data. Audit, terminal

user login, circuit-switched services, and name service are lost

when operating in degraded mode, however, terminal and host

users can still communicate over existing sessions and can

initiate new sessions provided the user does not require the name

service feature. Design of a hot spare approach for network

management, with automatic switch-over is in progress, but is

not planned to be part of the initial product.

Several mechanisms are used to ensure that no user, or

group of users, consumes an inappropriate share of the network's

critical resources. At the lowest levels, within our MLS LAN' s

executive, a time-sliced scheduling discipline is enforced for

non-NTCB processes. This ensures that each process has

sufficient access to the CPU. NTCB processes are given as

much time in the CPU as they need, while non-NTCB processes

(i.e., those supporting user connections) are provided an equal

share of the CPU. Each memory manager within an SNS uses

memory quotas to prevent processes from using memory

exhaustion to deny access to other users. Because multiple

subscriber devices can be connected to a single SNS and the

SNS has a maximum number of concurrent sessions that it can

support, each subscriber device is allocated a maximum number

of sessions that can be used by that device. Terminal users also

have quotas limiting the number of concurrent sessions they are

permitted. Finally, each SNS is provided a limit on how long it

can transmit when it has the token, ensuring that no SNS

transmits continually, denying access to the trunk to other SNSs.

This "token hold time" can be used to allocate priorities to SNSs.

An SNS is given access to a higher percentage of the trunk by

being assigned a larger token hold time. The token bus protocol

ensures that each SNS is provided an opportunity to transmit.

Each of the quotas (memory, sessions, and token hold time) are

set by the network administrator and can be modified on-line to

reflect changes in priorities. Loss of service (denied access)

because of resource exhaustion is an auditable event, which can

be monitored by administrative personnel. These mechanisms do

not prevent denial of service, but they do alert administrative

personnel to denied access and provide administrative personnel

the capability to prevent resource exhaustion by single users.

Network performance data is also accumulated and

displayed to the network administrator. This provides the

capability to determine when components of the system are

54

becoming overloaded causing degraded service to users. The

network administrator can resolve the problem through

reconfiguration of the network or modification of quotas to

provide the affected users a larger share of the network

resources.

STATUS

The developmental product evaluation of our MLS LAN is

nearing completion. Most of the required documentation has

been delivered to the NCSC, and with the release of the draft

TNl, many of the uncertainties in the evaluation have been

eliminated. The major issue remaining for the evaluation is to

determine the impact of the latest TNI version.

The product development is also nearing completion. The

major remaining tasks are (1) completion of the product from the

existing advanced development models; and (2) completion of

product testing. Produet!on prototypes are expected to be

completed during the first quarter of 1988. The product testing

effort is underway.

REFERENCES

[1] 	 "DOD Trusted Computer System Evaluation Criteria,"

DOD 5200.28-STD. National Computer Security Center,

Ft. George G. Meade, Maryland. December 1985. pp. 41

50.

[2] 	 "Draft Trusted Network Interpretations," National

Computer Security Center, Ft. George G. Meade,

Maryland. April 1987.

[3] 	 D. D. Schnackenberg, "Development of a Multilevel

Secure Local Area Network," Proceedings of the 8th

National Computer Security Conference, September 1985.

[4] 	 D. Bell and L. LaPadula, "Secure Computer Systems:

Unified Exposition and Multics Interpretation," MTR-2997,

The MITRE Corporation, Bedford, MA, July 1975.

55

INFOR::\1ATION FLOW CONTROL

IN A DISTRIBUTED OBJECT-ORIENTED SYSTEM

WITH STATICALLY BOUND OBJECT VARIABLES

Masaaki Mizuno and Arthur E. OlciPhoeft

DepartmE>nt of ComputE>r Sci(•nce

Iowa State Pniversity

AmPs. low;~ 50011

A. INTRODUCTION

The modular approach to the design of computer systems has
been the subject of considerable at tent ion in the study of operat
ing systems and programming languages. Fundamental charac
teristics to be enforced by modularization include encapsulation,
data abstraction, synchronization of concurrent access. protec
tion and reliability. Such characteristics are of special interest
in an distributed network efl\·ironment since access to common
control data is not generally feasible.

For our work on protection. we haw adopted a general ob
ject-oriented model. An object is an instance of an abstract data
type in that it encapsulates object variables and operations on
these variables. The object variables have an indefinite lifetime
and may be shared by a community of users. Operations on
these object variables are performed through the invocation of
procedures which are exported by an object. This is the only
means of inter-objPct communication. For purposes of this dis
cussion. a und<'rling rPiiable multilevel security message passing
system is assumed to Pxist.

Two typps of securities are commonly considered: acc<·ss con

trol and information flow control. An access control policy spPc
ifies authorization for access to objects based on the idPntity of
subjects. Information flow policy regulates the flow of informa
tion betWPPn classifit>d objPcts. While a significant amount of n•

sParch has bePJJ done on information flow control ;2,8'. tht> focus
of attention in this paper is on the manner in which information
flow policies can be enforced in an object-oriented distributPd
environment.

Since the various objects of program may be gpographically
distributPd or constructed at different points in time. it may
not be feasible for one object to access protection information of
other objects. Instead, it is desirable to establish the "internal"
information flow security of each procedure in an objPd inde
pendent of other procedures and other objects. Since this does
not account for inter-object flow of information, the security of
a program must be partially certifiPd at run tirnP. To be usefuL
this rertificat ion must bP also pfficient.

The rnPthod presented in this paper i« a combin<·d approach
of cornpiiP-t im<' and run-t irn<' in format ion flm, q•rt ificat ion. Th<·
rornpiiP-time rnPdranisrn Pstahli~hes 1IH· ir11ernal 'f'curit~ of in
di\·idual procedures and rr<'ates tlw nf'c<·s~ary information ~true
turps to allow for efficient run-timP «·rtification of intN-ohj1•ct
comrnunicat ion. The run-t inw nwcha1ri~m compl<'t <'s t h<' rn1 iii
cation ofthP entire program at me~sagP pas«ing time b~· H·rif~ ing
thP information flow caused by proc1•durf' inH>cat ions.

B. A DEFINITION OF FLOW CONTROL

The underlying theory of information flow control is based on thP
lattice model (SC, <;.e. 0) introduced by Denning 3. wh<·rt>

1. 	 SC is a finite st>t of security classes;

2. 	 :.: is a binary relation which induces a partial ordering on
the st>curity classes in SC;

3. 	 (; is an associ at ivf' and commutative binary operator on
SC, denoting the least upper bound, e.g. A ED 13 is the
least upper bound of security classes A and 8; and

4. 	 () is an associative and commutative binary operator on
SC. denoting t hP greatest lower bound, e.g. A 0 8 is the
greate~t lowt·r bound of security classes A and B.

5. 	SC has the greatest lower bound LOW and the least upper
bound HIGH such that LOW <. A and A < lliGH for all
A in SC.

For notational convenience, if x is a variable, then the security
class of x will be denoted by ~

An examplP of the use of such a security lattice occurs in
military organizations where a security class is commonly desig
nated as an ordered pair (classification, department). If a and b
are classifications of information (e.g. li:'\CLASSJFJED. CO:'\
FIDE:\TIAL, SECRET. TOPSECRET) and x and~· an· com
partments (represPnting nPed-to-know). then 1lw partial ordt>r
of the spcurity classes is defined by

(a.x) - (b.y) if and only if a h and x <:;, v.

The polk~· governing spcurP infonrli11 ion flow is ddermirwd by
the security Iattin·. For sirnplicit~. t h<' <'xamples in this pap<'r
assume a linear lattice of s<·curity classes consisting of l. :'\CLAS
SIFIED(= LOW), CO~FIDE;'i/TIAL, SECf{ET. TOI'SIIRET

(= HIGH).
A program variable may be Pither statical]~· or dynamically

bound to a security class. A "statically hound \·ariahle" is as
signPd a fixPd security class at the tinw of its definition. The
~<·curity class of a '·dynamically hound variable" changes with
t h<• r lass of its associat.ed in format ion. :\ n in format ion flow frorn
\·arial,Je :\ to variable B is d!'nott>d by A -> B. If H is a ~'lat

icall~ hound variable, tiH·n «lJ("h a flow is spcur<' if and only if
tiH· r<'lation A -::: I} is implied from th<· lattice. Otherwis<'. a
securit~· violation o<-curs. Note that if B is a dynamic all~ bound

56

http:associat.ed

variable, B beromes A.
Flows can be classified as explicit or implicit. An explirit flow

from variables a 1 , ••• , an to variablE' x occurs wh<'n an <'Xf'rut ion
directly assigns information dHived from a 1 , ... , an to x. An
implicit flow from variables a 1 , .•. , an to variable x occurs when
an execution of a statement which assigns some information to x
is conditioned upon values derived from a 1 , ••.• an. For example,
the statement

if a > 0 then x := y else y := z

causes an explicit flow from y to x only when a > 0, and from z
toy only when a ::; 0. The statement also causes an implicit flow
from a to both x and y regardless of the value of a. :\ote that
implicit flows occur even in absence of execution of statements.
This will be illustrated in section D.

C. A REVIEW OF PREVIOUS I::\'FORMATION

FLOW MODELS

Information flow models can be chararteriz('d by

1. 	 their ability to handle stati<ally h01md or dynamirally
bound variables, and

2. 	 whether or not security is verified at compiiP-time or run
time.

Denning developed a rompile-time cntification proredure
for programs with statirally bound variables :4,5j. Certifica
tion rules are given for each statement type (e.g. assignment,
if statement, while statement. etc.). One major difficulty of
this approach, however, lies in handling of proredures. Since
the class of all parameters must be statically dedared, a differ
ent version of a procedure is required for each different security
class of a parameter. This may not only be inconwnient but also
severely impairs the flexibility of resource sharing. One possib]('
solution for this problem is to disallow access to global variables.
Vnder these restrictions, the output parameters are functions of
the input parameters and the security of a procedure can be
established by verifying

where a1, ···,am are actual IN parameters and b1 , • · ·, bn are
actual OUT parameters of the call. The inability to effectively
handle object variables is considered to be a major restriction.

In another model for dynamically bound variables, Denning
extended Fenton's run-time approach]6,7] to account for im
plicit flows occurring even in the absence of the execution of
statements]4]. The certification procedure relies on a hardware
support mechanism which includes a tag field in each memory
cell and a stack HS which contains the security class on which
the currently executing statement is conditioned (to account for
implicit flows). The class on the top of HS is denoted by HS.

The operation "push(e)" places '"!:IS.$ t>" at the top of HS and
the operation "pop" removes the dass from top of HS. When an
assignment statement

is executed. the hardware automaticall~ updates x to

In order to account for implicit flows VI hich orcur in the abs('nce

of th(' execution of stat<'TJJ<'nts. th<' compiiP tim<' m<>chanisrn
must also ins<>rt into t h<' soutT<' program '"updat<' b .. operations.
which update liS to .. b 'r.IIS··. For Pxampl<•, th(' statPmPnt

is transfornwd to the cod<·

push(e):
if<• then Sl els(' S2:
for x in ((VI U \'2) (\'J \'2)) do updat(' x:

pop:

where \'1 and V2 are sets of variables to which values are as
signed in Sl and S2, respectively. The model rf'lies on a compile
time analysis to insert push, pop and update operations and on
run-time hardware to maintain the stack liS and tag fields in the
memory cells. The drawback to this approach is that it requires
special architecture and incurs significant run-tim<> overhead.

Andrews and Reitman's developed a compile-time certifica
tion technique based on program verification] 1]. Implicit flows
are classified into two types: local flow and global flow. A lo
cal flow is an implicit flow within a statement. A global flow
includes an implicit flow from the conditional variables of an it
eration statement to all subsequent statements and also a flow
caused by process s:vnchronization. For <'Xample, the sequence
of statements

X:~ 0:

while y > 0 do:

X:-~]:

caus<•s a gl(lbal flow from y to x sine<' the last stat<'rrwnt is con

ditionally PXPcuted, depending on the value of~-
In ordPr to handle these two t~·pes of flmv5. SJH'Cial certifira

tion variables, lgcal and glob_al, are introduced. :\value in local
becomes

within a conditional statement, where exp rl<'notes the class
of the conditional expression. Upon completion of thP condi
tional statement, the value in lgcal reverts to its previous value.
_Global, on the other hand. represents an accumulation of rlasses
of the conditions which would be in effPct upon completion of
the execution of body of a while statement or wait statl'ment.
For example, globiJ.I bemmes

exp + IQ~.iiJ IT ~lobal

immediately after a while statement. :\'ote that glo~al accu
mulates not only exp but. also local in order to account for the
case in which the while statement itself is nested within other
conditional statements.

By using these certification variables. proof rules are pre
sented for various types of statements, including synchroniza
tion statements (e.g. wait and signal). Variables may be Pither
statically or dynamically bound. The verification of a procedure
invocation requires previous verification of the body of the called
procedure and previous establishment of the pre,-postconditions.

Andrews and Reitman's model seems too restrictive for gen
eral distributed object-oriented systems in whi<h dynamic link
ing is allowed. Also, the manner in which self 1mutual recursive
calls are verified is not clear. For our model, we need a certifi
cation mechanism which can verify the "internal" security of an
object independent of other called objects, some of which may

57

not yet be rf'ftified or for which s<•curity information i~ not yet
available.

D. THE INFORMATION FLOW MECHANISM

1. 	OvPrviPw

Th,, rrl('thod presented in this papN assumes dynamic run-time
linking of int<'r-ohject procedure calls. Object variables are as
sumed to be statically bound while other variables may be Pither
statically or dynamically bound. For most practical applica
tions, this is a reasonable restriction. In addition. we seek an
efficient method that performs as much of the certification work
a~ possible at compile time and one which does not rely on ~pe
cial architectural features.

\Ye assume th<' follo\\ing syntax for a pron•dun' im·ocation
statement:

procNlurP PHOC (IN I 1•.. .• I 1: (HiT y 1•...• y,)

whE'r<' the IN paramet12rs are '"call hy Yalta··· and thP OllT
parameters are ··call by n•strlt".

Our method incorporatE's and extends ideas from both Den
ning's and Andrews and Reitman's approaches. Its saliE'nt fE'a
t ures are:

1. 	 Object variables are statically bound. The classPs of other
program variables can either be dynamically or statically
bound in order to eliminate thE' need for morE' _than one
VNsion of an exported procedur12.

2. 	 Each procedurE'. exported by an object. can hP compiled
and its "'internal"" sE'curity establishE'd independE'nt of othN
procedures.

3. 	 For efficiency, run-time information flow serurity cherks
are performed only at message passing time.

-1. 	 Since object variables of an object have a lif<'time which
may exceed that of individual programs that call a proce
dure exported by the object, information flow control takes
into account the security classes of these object variables.

5. 	 OUT parameters of an exportE'd procedure are not as
sumed to b!.' a function of only IN param!.'t.!.'rs. that is each
OUT parameter might actually be a function of somE' sub
set of the IN parameters and the object variables of this
and other objects which are subsequently called.

In order to achieve these objectives. we use a combined compile
time and run-time method. At compile time, thE' intE'rnal se
curity of individual procedures are established and the data
structures usE'd for efficient run-time certification of inter-object
communication are generated. The certification of the entire
program is completed at message passing time by H'rif~·ing the
informal ion flow caused by procedure invocations.

Prior to explaining the method. we fin;t identify all possi
ble input and output values to/from a procedure in an object.
\\'e define the term "input variables'" and "output variables" to
stand for variables which carry input values to thf' procedure
and output values from the procedure. respectively.

Possible input variables of a procedure PROC are:

(1) formal IN parameters of PROC.

(2) the object variables read by PROC. that is the values of the

object variables when the call is instantiated. and

(3) 	actual OUT parameters return<'d from external procedurE's
that are called by PROC.

Possible output variables of PHOC are:

(4) formal OUT parameters of PROC,

(5) 	the object variables writt.en by PROC, that is the values of
the object variables when the call terminates, and

(6) 	actual IN parameters to exported procedures in other ob
jPcts that are railed by PROC.

The purpose of the compile-time algorithm is to gE'nerate
equations that express the potential run-time information flow in
symbolic form. In order to do this. "symbolic class expressions•·
are generat<'d for variables in terms of the classes of the input
variab]('S (I) (:1). A symbolic class expression represents th!.'
class of information in t(•rms of the classes of variables from
which it is compm;Pd. For examplE'. the class of information in
the expression

A+B;C-D E

is symbolically denoted by

The classes of dynamically bound input variables cannot be de
termined until run t irn<'. During compilation. t tw classes of these
input variab!f's arC' C'stahlishf'd as ··serurit.\ \'<Hiabl<>s"". ~('CtHity

varia.bles are sy·mholically df'noted by

1. 	 J:>I:OCPdUf('-n<llJl('.Vari<l:b]C'-n<lfll('
(for formal IN parametns of t tw procf'dure being com
piled), or

2. 	 object-name.procedure-name.variable-name
"(r~~-;;:~tual-OUT p~rameters of PXt('Tllal procedures).

For example, if the procedure being rompi]('(l is F(IN a, b). then
the classes of "a"' and "b" are symbolically denoted by F,a and
F.b, respectively. Also, if this procedure invokes a procedure G
of an object 0 as O.G(IN x, OUT y, z). the classes of y and z
are symbolically denoted by O.G.y and Q_.G.z, respectively.

Based on these symbolic Cfass expressions. the compile-time
algorithm generates two types of symbolic equal ions: a "sym
bolic class equation" and a "symbolic flow Pquation''. A sym
bolic class equation is used t.o calculate the outgoing security
classes of an output variable. One such equal ion is created for
each actual parameter in (4) and (6). regardless of whether it is
dynamically or statically bound. Th<' equation has the form

variabk = "symbolic class expression"

which states that the information in '·variable" has a security
class given by the "symbolic class expression··. A symbolic flow
equation is used to check flow Yiolations. One such equation
is created for each statically bound variable (including object
variables). The equation has the form

variable =security class +- '"symbolic class expression"

which states that the class of "variable" is statically bound to
"security class" and the information whose class is given by
"symbolic class expression" flows to "variable" during the ex
ecution. Both types of symbolic equations are stored in an "in

58

http:writt.en

formation flow template" in the object.
The distinct parts of an information flow template are:

EXPORT : This consists of symbolic class equations for the
formal OUT parameters of the procedure.

IMPORT : This consists of symbolic class equations for the ac
tual IN paramC'ters of external procedures called by thi'
procedure. Since there may be more than one external!~
invokPd procedure. this part of the template consists of
a list of all such procedure names, each of which is fol
lowed by equations for associated actual IN paramPters.
If the same procedure is invoked from ~ different places
in the text, then N distinct procedures are assumPd since
the same procedure from different places could carry dif
ferPnt sets of IN pararnd.ers, and consequently different
security classes of the actual paramPter values. (The for
mat ion of N distinct names could simply be carried out by

a prPprocessor prior to compilation.)

STATIC : This consists of symbolic How equations for stati
call~· bound variabl<•s.

A sPcurity class is not ass~ciatpd with an objPct itself since
flows are checked at the tirr)('S that its exported procedures are
invoked. Therefore, if an object is passed as a parameter or
its identifier is stored in an object variable. tiH' compile-time
mechanism does not need to gPnPrate as) mbolic class equation
or a symbolic flow equation associated with the object. Flow
control is carried out when exported procedun•s of the object

are called.
An "information flow instance'', based on the information

flow template, is created at run time for each procedure invoca
tion. The run-time certification mechanism completes the verifi
cation work when procedure invocation takes place. It is done by
replacing the security variables in the information flow instance
with actual security classes of the corresponding parameters car
ried by the message. If a procedure F calls another procedure G
in another object, part of the verification of F may have to be

deferred until G completes.

2. 	ThE.' C'ornpilE>- Time Algorithm

a. Compi]E.'-Time Data Structures. The purp<N' of
the compile-time algorithm is to gC'nerate information fl<)\\ t<·m
plat<'s for exported procedures and the in it ializat ion proc<·dures

of objects, At the outset, the symbolic class expr<'"i"n for <'ach
program variable is initialized as follows:

1. 	 For a statically bound variable (including a prtrameter),
the class expression is defined to be its fixed S<'<•Irity class.

2. 	 For a dynamically bound local variabiP or fonnal OUT
parameter, the class expression is defined to be '\t'LL.

3. 	For a dynamically bound formal IN parameter. the class
expres:--ion is symbolically represented by th<' <orrespond
ing security variable.

For efficiency purpos<'s. reduct ions arP perfornwd on each sym
bolic class <'Xpres:-;ion in order to yil'ld a minimal form. Such
a minimal form is eitll(•r \l-LL or consist only of a fixPd secu

rity class and Z<'ro or more security variabl<'s connPct<'d by "(]-,''
operators. Three reduction rules are involved:

1. 	 Replace a symbolic class for a local or output variable
in a symbolic class expression with the <lass expre;sion
representing the class of the variable.

2. 	 Delete all duplicate security variables. For exarnpl<'.

3. 	Delete a fixed security class if a higher or equal class exists
in the expression. For example,

~TLL EB g = 9,
LOW Efl HIGH EB LOW = HIGH
SECRET ttl TOPSECRET = TOPSECRET.

The following example illustrates the reduction to minimal
form for two successive assignment statements:

statem<'nt symbolic class equation

~=9,EBb'Ba

=gffii?

d c 	 <! ffi <:

<!EB!l,!Tb

<!8h

The algorithm requires two special compile-time \·ariables:
a stack type variabk STACK and a simple \·ariable GLOBAL.
ST.\CK contains the security classes of the expressions on which
the statPment rurn•ntl~· being anal:.·zed is conditioned. Thus,
STACK accounts for implicit flows (local flows. in Andrew and
Heitman's model) . .\sin DPnning's notation. STACK denotes
the rlass 011 the top of ST:\CK. and the '"STACI\.push(e)" op
eration adds

to the top of STACK. The "STACK.pop'" operation H'rnoves the
rlass on the top of STACK. GLODAL holds a class of conditional
expressions to reflect

1. 	 implicit flows which will be in effect after completion of
execution of "while" statements in thP same manner as
Andrew and Reitman's g_l_()_baL and

2. 	 the implicit intE'r-object flow which will be flowing from a
caller of a procedur<' PROC being cNtified
(this implicit. inter-object flow is denoted by security vari
able PROC.i12:1Piicit and is explained in ~ubsection D.2.c).

The class contained in c;LOllAL is denoted by GLOBAL and is

initialized to P~g~.Jmpli~it.

The algorithm also uses compile-time array variables S(' and
EXP to form symbolic equations. The domain of SCi' the set of
all the variahks which an• used in a pro<<'dlln' h<'ing certified.
Th<• domain of EXP <"Onsists of all th<· statical!~ hound \ari
abl<os used in thE' procedun•. For ad~ nomicnll~ IH>IIJHI ,·aria hie
X. sex: is the "~ mholic class (':\jJJ"('ssion for X. Th<· algor it hill

constructs t hP sy m holic class <'<Jll at ion

X S(, " .

If x is a formal 01. J T para met <'r oft hr procNlme lwi ng com pi i<'d.
thE• equation is plan'd in the E,Xi'OHT category. If xis an actual

59

IN parameter of a procedure to be invok!c'd in anoth!c'r objlc'fl. the

equation is placed in the IMPORT category of th!c' information

flow template. If a variable is statically bound, SC!xJ contains

its fixed security class and EXP[x] contains the corresponding

symbolic class expression. The algorithm combines these two to

construct the symbolic flow equation

;.; =. SC x +--- EXP[x:

and places it in the STATIC category of the information flow

template.

The compile-time algorithm is given in the Appendix. Sub

sequent subsections discuss some special semantic details.

b. Information Flow Semantics of Assignment. As

sume an assignment statement of the general form

If x is a dynamically bound variable, the algorithm generates

If xis a statically bound variable, the algorithm updates EXP[x]

as

EXP[x] = EXP[x) 8 SC[a 1 ' e--·ED SC[ami t.V STACK
EB GLOBAL.

The following example explains why updating (instead of re

placing) of class expressions is necessar~- for statical!~· bound

variables. Suppose.\ is a 'taticall~- bound Yariablc and initially

SC A . CO:\FIDE\TJAL and EXP A \l.'LL..\ssume statlc'

ment .'-;, assigns thP \aim· of variab!P X to A and. latt>r in th<>

tlc'xt. stat<'Jrwnt .')1 assigns trw valu<' of Y to A. l.'sing simpl!c' re

placem<>nt. the symbolic class expr••ssions generat('d for S, and

S 1 would lw

EXP:A[X. 8 ~TAC!5 .j- GLOBA_L. and

EXPiA] -- Y E.· STACK il· QLQB,\1~. rcspectively.

If "~_IA_(;_!5: <r GL.OJ.HV is PJ3-0_C.implicit for both S; and Si
and there are no oth('r statements that assign values to A after

S1 , the flow equation

b. CO\FIDEJ\'TIAL -- Y ti• LOW ·I PRO(;Jmpl~~t

would lw constructed and placcd in thc ~TATIC cat<•gor:-.· of

th<• tcmplate. Assume. at run tim<'. th<> classes of X .Y and

th<• implicit intcr-objcct flow arc :-'I•;CHET. CO\'FIDE'iTI.\L

and LO\\'. respect.iYely. The run-tinw certification algorithm

would replacp Y and PROC.implicit in tlw symbolic flov. Pqua

tion for A with CO:'IiFlDE'iTIAL and LOW, resp<·ctiv<>ly and

would c!'rtify the flow. Even though A holds CONFIDENTIAL

informal ion at t h!' cnd of the cx<>cut ion. t hc program violates

th<> flow policy by storing SECRET information (class of X) in

variable A during the time period betwc<>n the executions of S;

and 81 • Therefore, instead of replacement, the class expressions

for statirally bound variables must be accumulated using the EB
operator in ordf'r to acrount for all possible information flows.

The correct symbolic flow equal ion for A in the above example

is

A CO;";FJDENTlAL • :X G> X r}; LOW 1}1 PROC.in1_plicit.

c. Information Flow Semantics of Conditional. For

selection statements, the cornpilc-t ime algorithm accounts for

thc possibility of executing cithcr altPrnativc. F'or example, in

the statement

if a > 0 then x := b else x : ~ c.

the algorithm constructs the symbolic class E'Xpression ":x b.-,,

c 8:' 1!,.• accounting for the implicit flm, from "a.. and the PXplicit

flows from both "b'' and .. c". If a procPdure call to anoth<·r

object "Rl" is conditioned upon some variable(s). thf'n thPre is

an ''implicit inter-object'' inform at ion flow. For example. in the

statement '

if a> 0 then h: Rl.f(x),

there is a flow from ''a'' to thc local variables and object. vari

ables encapsulated by Rl (and objects called by procedures in

RJ, etc.). Since information flows ac:ross objPct boundaries are

certified at run time, special treatment of these implicit flows is

required.

To handlc this implicit flow. the compile-time algorithm con

structs a sp<?cial symbolic class expression, denotcd by implirit.

which rq>res<·nts thc accumulation of classes on which the pro

ccdun· invocation is conditioned. ITT1p_licit is actuall_1 th<' class

of outgoing implicit inter-object flow and it has the form

whPn' SV; denotes the ith variable on which th<> invocation is

locally condition!'d and l~J-!()C.implicit denotes th<' class for the

implicit int.<·r-object flow incoming to proc('(lure PROC from the

pn'vious calling object. l~plic_0 is stored with the correspond

ing procedure name in the IMPORT catcgory of the templatc.

(Thus, an entry in the templat!' for each external proc!'dure has

a symbolic class equation for ~1plicit, as well as a symbolic class

equation for pach of its actual IN parameters.) At run time,

a request for a procedure invocation causes the run-time algo

rithm to evaluate the corresponding ~mpJ_~i! as the class of the
outgoing implicit flow. This value, as well as the security class

of each parameter, is attached to the messag<'. lipon receipt of a

messag!' by a rE'reiving obj<>ct Rl for the proc<>dur!' call r<'quest

f, an information flow instance is created and the security class
in the message for the implicit inter-object flow (now denotes in

coming implirit flow) replares sH·urity ,·arial.>le f.implicit in sym

bolic r lass expressions in the informal ion flow in't ancc. ~ince

implicit of each pron·dur!' ent r_1· in 1IH• 1\11'0 HT 'a1 <'gor_l wn

t ai~~- f.implicit, su bsPquPnt procPd un· invocation rt'<JIH''1-' from

this obj;~tt.o~yet other objects carr~· an accumulated class of

the irnplirit flow in implirit.
Implicit flows arross objcr1 bourrdarics occur PH'n when pro

cedure invocations are skipped. Failure to check for such im

plicit flows can]pad to undctl'Ct<'d security violation. This can

hc clearly illustratf'd in a program with dynamically bound ob

ject variables. The example program in Figure J is adapted

frorn 2·. Assume that actual IN paramE'ter x to proc!'dure

h is hound to SECRET and takes a value eith<>r one or zero.

d:-.·namically hound formal OUT pararncter y of h io initially

bound to l'\'CL.-\~SIFJED. and dynamically hound object \'ari

ahll' Z in Hand\\' in Q are initially hound to l'\'CL:\~~IFIED.

First. a"urrw x takes \'aluf' thc one. Since the invocation R.f() is

-kipped.1h<· ,-aln<' and the class of Z in B n•rnain zero and l'\'

CL.\~~IFII·:D. The• invocation H.g(OUT a) from h returns true

and l :\('L.\~~IFJE]) for a. Therefore, Q.k() is invoked and \V

in Q h<·comf's orH' and C\'CLASSJFIED. Then. Q.rn(OUT Y)
rct urns one and 1.·:\CLASSFIED for y. !'\ow assume thP vain!' of

x i.' Z<'ro. ~inn• ILf() is invoked, th!' value and t.hP class of Z in

60

http:kipped.1h
http:GL.OJ.HV

object P
procedure h (IN x:integer.

OUT y:integer):
begin

var a : boolean;

y:=O;

ifx = Othen R.f():

R.g(OUT a):

if a then Q.k();

Q.m(OUT y);

end;
end P;

obj<"ct R
stat<"

Z:integer:
procedurP f()
lwgiu
z: 1:

end:
proC<•dun• g(OUT y : boolean)
begin

if Z = 0 then y := true

<'lse y : -- false:

end:

initialize

begin

z := 0:

end;
end R.

obj~ct Q
state

W:int.<•ger:
procPdure k();
begin
w := 1;

end;
procedure m(OUT x : integer);
begin
x:= W;

end;
initialize
begin

\;>.,' := 0;

end;
end Q.

Figure 1. Implicit Flows Across Object Boundaries

R become one and SECRET. Thus. the invocation R.g(OUT a)
returns false and SECRET for a. Since Q.k() is skipped. W in
Q remains zero and UNCLASSIFIED. Therefore, Q.m(OUT y)
returns zero and UNCLASSIFIED for y. Note that after execu
tion of h, y becomes equal to x. However, y erroneously remains
UNCLASSIFIED.

In our model, the errors described in the previous paragraph
can be prevented since all the object variables are statically
bound to security classes. However, when procedures are in
voked, the run-time algorithm must perform the following when
an information flow violation is detected:

1. 	The violating procedure invocation is skipped,

2. 	 The execution continue' as if no flow violation \\ere de
tPcted. and

3. 	 The flow Yiolation is not reported to thP us(•r. In this way.
the user cannot discern between a skippPd invocation and
one that is in violation.

Suppose that in the above example. Z in object R and \'\' in
object Q are statically bound to class LOW. Then. the STATIC
categories of the information flow templates for R.f() and Q.k()
have the symbolic flow equations

Z 	-= LOW +- LOW t±e f:iJirplic_lt. and
'yy 	 -~ LOW ·- LO\V tt' k_:i_mpJi~~, respectively.

Let x have class HIGH and value one, and let y have class LO\\'.
Then, R.f() is not called. and the invalid flow of x => Z is 110t
detected. Thus. R.g(OlTT a) returns true and LOW for a. and
Q.k() is invoked with implicit = LOW. Since no flow violation
is detected when Q.k() is invoked, \~' in object Q becomes one
and consequently, Q.m(OUT y) returns one in y. If x has value
one, then R.f() is invoked with implicit co HIGH. This invoca
tion causes a flow violation. The i~~~~~tion to R.f() is skipped,
but the execution continues without reporting the violation to
the user. As a result, Z in R remains zero and LOW, and con
sequently, y has value one. Tht•refore, the value of x cannot be
deduced from the value of y. In general, Fenton proves that if

all variables are statically bound, security can be guaranteed by
verifying only flows caused by execution of explicit assignments.
However, the run-time algorithm must do the following when a
flow violation is detected [7]:

1. 	 The violating statement is skipped

2. 	 Execution continues as if no flow violation were detected.

3. 	The flow violation is not reported to the user.

d. Information Flow Semantics of Iteration. Itera
tive com;tructs also require special consideration. Consider the
example

a :. x:

whilE' a 0 do
begin

R l.fi(IN a. 01JT b):
R2.f2(IN b, OUT a):

end;

The first time the body of the loop is executed, the <;ecurity
class of actual IN parameter "a" for R 1.fl is :-.;. Howrver. in
subsequent iterations, thf' class of "a'" is the securit:-· class of
the OUT paramC'ter value from R2.f2 detnminPd in thf' prrvi
ous iteration. Since the numbPr of tim<"' the loop body v,ill he
executed is unknown at compile time. the compi]P-t ime mecha
nism must provide for verification of worst case inforrnat ion flow.
This requires the simulation of iterations until t h<• s:- mbolic class
expressions stabilize.

Without special provisions, the symbolic class equation for
''a" would be

and the run-time mechanism would simply replace]{;?.[~_.~with
the class of the OUT parameter value when the objt>'ct receives a
rrturn mt>ssage from the first invocation of R2.f2. But this would
be incorrect since the securit:-· variable R~.f2,9, would then disap

61

pear from tlw ') mbolir rlass <'quat ion for ··a .. and the equation
would not reflect the actual information flows from suhsequ<•nt
invocations of H2.f2. In ordt•r to correctly account for flows
from procedure ralls across all iterations, th<· run-time mecha
nism must add the classes of the return values to the symbolic
class expression instead of replacing tlw s<•rurity variables. In
order to identify the procedures invoked within loops. the rom
pile time mechanism attaches an accumulation flag (denoted by
(')) to the security variables for such procedures. Thus, the
symbolic class equation for "a" in the above example is

3. 	The Run-Time Algorithm

The run-timt• algorithm is invoked \\·henever an object sends or
rerei\·es a lll<'o.sage. \lessages which arerereived by an object 0
are:

1. 	 requests to im·oke procedures \\·hirh are export<'d by 0
and

2. 	 return messages from the external procedures invoked by
0.

\1essages which are sent by an object 0 are:

I. 	requests to invoke external procedure m anoth<er objert
and

2. 	 return messages from exported pr<Kedures which tPrrni
nate in 0.

'vYh<en object 0 receives a request to in Yoke an exportt•d pro
cedure PROC, th<e run-time algorithm crPates an information
flow instance, which is a copy of the information flow tPmplate
for PROC, and replaces security variables for the inter-object
flow and all formal IN parameters with the corresponding ac
tual security classes carried by the messag.e. Note that· if the
security variable is marked with (t), the algorithm adds the ac
tual security class to the class expression containing the security
variable (rather than replacing it). The algorithm then checks
for a flow violation in each flow equation in the STATIC cate
gory. If all the equations are certified to be secure, the request
is accepted and a new process for PROC is initiated.

If PROC invokes an external procedure, say "Ol.funcl", ex
ecution of PROC is suspended, The run-time algorithm then
looks up the entry corresponding to Ol.funcl in the IMPORT
category of the information flow instance and plac<es the security
classes of the corresponding actual IN parameters and implicit
in the outgoing message.

In general, the symbolic class equation in the information
flow instance corresponding to parameter x of Ol.fund has th<e
form

where Sl' (1 <:"., i :S: m) stands for the ith :;erurity Yariable and
SC stands for a fixed s<ecurity class. The security variable~ are
ignor<ed since they denote the security classes of variables which,
at. this point. are not yet flowing into x. Therf'fore, the algorithm
only uses SC to determine the security class of actual parameter
x .. The assignments to x from the input variables corresponding
to the security variables may occur latN (in the ca.~e of loops)

or t h<•y haw already been skipped and will n<'ver ouur in this
particular <'xecution (in th<e rase of if stat<•nH·nt'i or already ter
minated loops).

\\"hen object 0 receives a return messag<' from a not her (pr<'
Yiously invoked) object, the algorithm r<eplaces (in the informa
tion flow instanr<') every occurrence of tlw security \ariabl<'s for
the actual OUT parameters with the corresponding secmity
classes carrit•d by the message. Then it checks for flow viola
tions in each symbolic flow equation in the STATIC category. If '
no flow violation is detected, the message is accepted and the
(suspended) calling process is resumed.

Cpon normal termination of PROC, the algorithm looks up
the EXPORT category of the information flow instance and at
taches the s<ecurity classes to the corresponding formal OUT
parameters. After sending the return message to the calling
object, the algorithm erases the information flow instance.

E. A PROGRAM EXAMPLE

A program. consisting of classes CL C2 and C3, and the cor
responding information flow templates are shown in Figure 2,
Objects 01, 02 and 03 are instances of Cl, C2 and C3, re
spectively. Class Cl defines a general program in the form of
an initialization procedure. The object. variable Sl is statically
bound to the security class CONFIDENTIAL. The initialization
procedure invokes f and g in objects 02 and 03. respectively.
Since the initialization procedure is automatically invoked ~t
object instantiation time, it does not have a formal caller and
const>quently the information flow template has no entry in the
EXPORT category. Note that the symbolic class expressions in
both the I\fPORT and STATIC cat<egories contain a term for
accumulating th<e implicit inter-object flow from the object that
instantiates 01. For this example, we will assume that thP class
of this implicit. flow is LO\\'. Since 02.f is raiiPd within a loop.
the security Yariabl<e Q2Jj corresponding to OllT pararrl<'ter i.
is marked with an (;).

Class C2 defines exported procedure f and object Yariable S2
which is bound to CO:\FIDE~TIAL. f replaces the Yalu<' in S2
with IN parameter x and returns the old Yalue of S2 for OUT
parameter y, Class C3 defines exported procedure g and object
Yariable S3 which is bound to SECRET. g adds the square of IN
parameter a to S3 and returns this valu<e for OUT parameter b.

Assume that Sl and S2 have initial values 70 and 0. respec
tively. When OJ is instantiated, the information flow instance
for the initialization procedure is created which is a copy of the
information flow template for the procedure and the initializa
tion procedure -is automatically inYoked. 02.f is called in the
body of the while loop with actual IN parameter a (· 140).
The run-time algorithm determines the classes for the implicit.
inter-object flow and actual IN parameter a from the informa
tion flow instance (in this case, both are CONFIDENTIAL) and
then attach these classes to the message. The underlying mes
sage passing system sends the message to object 02.

When 02 receives the message, the algorithm instantiates
a new information flow instance based on· the information flow
template and replaces all the occurrences of f.implicit and f,l(
in the instance with CONFIDENTIAL. The informat.ion flow
instance at this point is as follows:

62

II

CLASS Cl
state

Sl : intPger of security class CO:\FIDE.\TIAL;
initialize

var i , a : inU·ger;

begin

i := Sl;

while i < 100 do

begin

a : ~, i ; 2;

02.f (IN a, OUT i)
end:

if i > 150 then 03.g (IN i, OUT Sl);
end initialize;

end Cl;

CLASS C2
state

S2 : integer of security class COI\FIDE:'-JTIAL;
procedure f (IN x : integer; OUT y : integer);

begin

y :~c S2;

S2 :=X

end f;
end C2;

CLASS C3
state

S3 : integer of security class SECRET;
procedure g (IN a: integer; OUT b: integer);

begin

S3 := S3 + a * a;

b :=53;

end g;

end C3;

The information flow template for Cl.initialize
EXPORT
IMPORT

02.f (IN a, OUT i)
~J'!l.plicit 	 =: COlWIDENTIAL '1- 02.f.1.'1

e init.implicit

~ =co:NFID~ENTIAL e ()2_.G_i~ E8 L~i~.iJ!lE!i~J~
03.g (IN i, OUT Sl)

~l!~~rlicit =:CONFIDENTIAL EB _S)2.f.i(*)
EB init.implicit

j ,~ CONFIDEN~TIAL 8 02.f.i(*) EEl ini~.implicit
STATIC

Sl 	~- COl'iFIDENTIAL <- CONFIDENTIAL
E8 02.f.i(*) EB ()_:~.g.Sl

E8 ~it.impJicit

The information flow template for C2.f
EXPORT

f (II\ x: OUT y)
y =: CONFIDENTIAL EEl !JI!lplicit

IMPORT

STATIC

~~2 = CONFIDENTIAL <- CONFIDENTIAL
EI:J f.x EB f.implicit

The information flow template for C3.g
EXPORT

g (IN a; OUT b)
]? =: SECRET 8 g.implicl.!

IMPORT

STATIC

S3 =: SECRET ,_ SECRET EB g.a EEl g.impli<:i.!

FigurE' 2. An Example Program

EXPORT
f(IN x; OUT y)

y ' CO:\FIDE:\TIAL
IMPORT
STATIC

~2 •.• CONFJDE:\TIAL • 	 CO:\FIDENTIAL

Since the flow Pquation for S2 in the STATIC category guaran
tees this to be a securE' invocation, the exPcution off is initiat('d.
The value of S2 becomes 140 and OUT pararnetn y b('comes 0.
Also, the class of y (= CONFIDENTIAL) is d<>tPrmined from
the information flow instance. l'pon the termination of th<' <'X
ecution. thE' algorithm erases the information flow instann~ and
the message passing system sends the ret urn messag<' 1o 01.

'A'hPn 0 I receives the return m<'ssag<'. t hP algorithm adds
CO::'<IFIDEl'\TIAL (the class of th<· rf'turn valu<' i) to all th<'

symbolic class expressions which contain 02.f.i(·) in t h<· infor
mation flow instanc(' forming

EXPORT

IMPORT

02.f(IN a, OUT i)
il!lpli~~~ := CONFIDE\"Tl A L 'J' OH.i(;)
a=:. CONFIDENTIAL 1J1 02.f.i(;)

03.g(IN i. OUT 51)
irnyli~c~ =: CONFIDEl'\TIAL G; 02.f.i(')
i .c. CONFIDENTIAL E8 02.f.i(*)

STATIC

Sl 	 CONFIDENTIAL • CO\"FIDENTIAL

ffi 02.f.i(<) EP 03.g.SJ

and th<• information flow is certifkd. (NotE' that if th<' class of

63

OUT parameter y of the return message had been SECRET,
the flow equation for S1 would have become

S1 == CONFIDENTIAL <-- SECRET ffi ()!.f.i(*) ffi 03.g.S1

and the run-time algorithm would have detected the flow viola
tion.)

After the resumption of the execution in 01, i becomes 0 and
the body of the while loop is again executed. This time, 02J is
called with actual IN parameter a (co. 0). The message carries
the value of a, the class of a (= CO~FIDENTIAL) and the class
for the implicit inter-object flow(= CONFIDENTIAL).

The algorithm certifies the information flow to procedure f
of 02 and upon completion of execution. f ret urns y (= 140)
and its security class (= CO:\FIDE'\TIAL) to the initializa
tion procedure of 01. Since the conditional expression of the
while statement is false. the loop terminates. Finally, since thl?
conditional expression of thl? if statement is false, the execution
terminates normally.

As a second example, suppose the initial value of S1 is 80.
Again, the while statement terminates normally after the second
iteration. However, i has the value 160 in the if statement and
03.g is invoked. The algorithm places the class of i (-~ CO\
FIDE\TIAL) and the class of the implicit. inter-object flow (=

CO:'\FJDE\TIAL) in the message. Cpon a receipt of the mes
sage at 03, the algorithm instantiates the information flow tem
plate for g and replaces all the oC\urrences of ~.a and ~_i_ll'_!pli<:it
with CO:\FIDE:\TIAL forming

EXPORT
g(IN a: OUT h)

!J ::- SECRET
IMPORT
STATIC

S3 =SECRET ,_ SECRET.

Since the flow to S3 is certified. the execution is carried out.
After g terminates normally. the ret urn message is construct<:>d
which contains the value of OUT parameter b and its security
class SECRET and the message is sent to 61.

In 01. the algorithm replaces Ql·~·SJ with SECRET and
the information flow instance becomes

EXPORT
IMPORT

02J(IN a, OUT i)
impJicit := CO\FIDE'\TIAL G~ 02J.i(;)

<1 =:: CONFIDEI\TIAL •i• 02J.iC')
03.g(IN i, OUT SI)

in1plicit = CO'\FIJ)E'\TIAL S:- 02J.i(;:)

i c 	 CO'\FIDE:\TL\L + 02.f.i(•)
STATIC

SJ CO'iFIDI~'\TL\L · SECRET ·c'
02.f.i(·) (•; ·flow Yiolation •; •)

The algorithm detects a flow Yiolation. Howen'r, as mentioned
in section D. the sy,;tem cannot report the nror to the user and,
since thE' inHKation causing the error is the la.<.;t statement of th('
in it ializat ion prOC('dur(' of 0 I, the eX('Cut ion must bP \('rminated
as if nothing has happened. Otherwise, onf? bit of information
(thl? truth or falsity of the conditional) is sent to the user tf?r
minal (output fil('). This could h(' an undetectl?d flow violation
depending on the class of i and the clearance of the user.

F. CONCLUSION

This paper has presented an informal ion How rert.ification mech
anism for an distributed object-oriented s~·stem. ThP mPchanism
is a combination of compile-time analysis and run-time certifi
cation with the following sali(•nt. featur('s:

1. 	 Information flow security checks ar(' donP only at m('ssage
passing time.

2. 	 Object variables encapsulated by an object ar<:> statically
bound to security classes. Other program variables can be
either dynamically or statically bound to sPcurity classes.

3. 	Each exported procedure in an object can be compiled
and its "internal" security established totally independent
of other exported procedures.

Information flow semantics were presented for selected pro
gramming constructs. Work in progress consists of extending
the algorithm to allow for dynamically bound object variables.
We are also investigating different ways to cope with the prob
lem of illegal information flow from variables in a conditional
expression to the user, caused by system generated error mf?s
sages.

References

, I: 	 G. R. Andrews and R. P. Reitman. An axiomatir approach
to information flow in programs. AC.\1 Transatlions on Pro

gramming Languages and Systems. 2(I):56- 76. I9~0.

'2' 	D. E. Denning. Cryptography and Data Securdy. Addison
\Vesley. I9R2.

,3] 	 D. E. DPnning. A lattice rnod(•] of securP information How.
Communications of the AC:A1. 19(5):236 243, I976.

/4] 	 D. E. Denning. Secure Information Flou: in Computer Sys
tems. PhD thesis, Purdue l'niwrsity, I975.

[5] 	 D. E. D('nning and 1'. J. D<·nning. Certification of programs
for secure information flow. Cormnuniwtirms of the A CAl.
20(7):50·1 512. I97i.

'6: 	 J. S. Fenton. information l'rutution Sy.,fents. J'h]) thesis.
Cniversity of Cambridge. 197:l.

[7] 	 J. S. Fenton. ~-1ernoryless suosyst.c·llb. Cu111puter Journal,

I7(2), I974.

:sJ 	 C. E. Landw('hr. Formal models for comput('r S('curity·. Com

puting Surveys, 13(3):247- 278, I9RJ.

64

The algorithm is stated below.
APPENDIX: The Compile-Time Algorithm

This section describes the compile-time algorithm

form ..information _flow_ template

which generates an information flow template for ex!Jorted !Jro
cedures of an object. The following programming construct~ are
a.ssurned:

1. 	 declaration statement (the declaration of ex!Jorted proce
dures and local variables),

2. 	 assignment statement,

3. 	compound statement,

4. 	 if statement,

5. 	while statement

6. 	 procedure invocation ~~ at(•ment, and

7. 	 end statement of the procedure d<'rlarat ion.

This algorithm is applied to each statement of a procedure be
ing compiled. STACK. CLOl:L\L. ~TATJC and TEMPLATE
are global compile-time varia.bles. The following initialization
is done prior to its application to an exported procedure in an
object:

I. 	The entries in SC and EXP for each object variable y are
created and initialized as

SC[y] = security class of the object variable
EXP[y] = N.ULL
STATICfy] = true.

2. 	 The preprocessor renames invocations of the same exter
nal procedure from different places in the text in order
to rnakC' all calls distinct. Then entries corresponding to
all the external]~- invoked procedures are crf'at<'d in tlw
l\1PORT category of TEMPLATE. For f'xamplf'. if t IH'
procedure being compiled is PROC and an e:-.temal pro
cedure O.g(IN x 1 , ... , x m. OUT Xm- h xn) is invoked
m PROC, then these entries are

O.g(IN X], •.• ,Xm, OUT Xm+J, •.• ,xn)

implicit-:= !';tTLL

~ =: l\ULL

Xm -:= NULL.

3. 	 GL013_AL and STACJ5 are initialized to PRs>_g_.inpllc_i!
and LO\\". respectively.

procedure form informal ion flow. tC'mplate
(S: 	statf'mPnt:
var ~C. EX!' :array of s~ mbolic class <':xpn·,~ion:
varY : sf't of v;uiabiPs: LOOP: booiPan):

var
VJ, V2 : set of variables:
SCJ. :-;c2. EXP l : arra_;· of sy rnbolic class e:xprPssion:
CHA.\GED : bQolean:
CE, temp : security variable:

lH'gin
cas(• S of

S c "procedure PROC
(IN x 1 : var. typf' of security class C:, 1

Xk: \ar typ<' of S('CUrity class (',k

OlTT y1 : Yar t_\ pe of S('curity class Cy 1

Ym : var t_;]W of security class C'ym r
begin

for i := J to k do
if x; has a "G'n ·· declaration part

then
begin

SC[x;! := Cx;;
EXPix,] := PROC.x,;
STAT1CI

1
x;J := true

end
else

begin
SC[x;l :-= }JJ:l:_QQ.,.r;;
STATIC[x,; := false

end;
for i := I to m do

ify, has a "Cy;' declaration part
then

begin
SC,Y; > Cy,:
EXP:y,; :~- :\l"LL:
STATIC:y, true

end
else

begin
SCiy, :\!eLL;
ST.-\TJCiy;j :cc false

end:
end;

65

S "var a 1 : var type of S('fUrity dass ('<~ : S = "ifE then 5 1 {else 5 2}''

begin

a, : var type of S('('Urity dass (', :" STACK.push{E:);

b('giu SCI :co SC:

for i : I tor do form information_flow _template

if a, has a ··c"," declaration part (.s·J, SCI, EXP, VI, LOOP);

thPn if S2 <> 0

bPgin tlwn

SC a;,:= C,,;; begin

SC2 > SC;
EXP:ai] := :\'l'LL:
form information Jlow templateSTATJC[ai] :=true

(S~. SC2, EXP. \'2. LOOP):end

else
 Plld

('lSPbegin

\''). 0:
SC[a;; := 1\TLL:

if x is in (VI Y2)STATJC[a;j := false:
then sex :~ SCI:x cj- SC2 Xend;

Plse
end;

ifx is in (VI- (VI:- \'2)

then sc:xl :~ SC(x ~- :'IC.x1 s 0= "b := f(al' ... 'am):"
Plse SC xj :- SC2\x: E-SC x:/* Assignment Statement ·•·'

STACK.pop
begin

Pnd;
if STATIC b

thPn

S "while E do S;"
bPgin

bPgin
\' :~ 0:

CE:- :\CLL:
EXp;bj :~ EXP;b' 3 SCa 1 .:t-c. ~Ca,

n•ppat
~ ST,\CJ\ -T· GLOB.\ L

CHAl\GED :c.c false:end

if CE < -. (CE EB 1;:)
else

thPn
bPgin

begin
v := {b}:

CE :- CE ffi E;SCbl :~ SC[a1• '!· ... S:- sc;amj
CHANGED := true@ S_TAC]\ &- GJ.,OB.<\J.,

Pnd;f'nd;

STACK.push(CE);
Pnd:
SCI := SC;
EXPI :~ EXP;

S ~ "lwgin 8 1: • · ·; Sm end" form_information_flow _template

lH'gin
 (S, SCI, EXP, V, true);

v : ~ 0: ifSC <> (SC EB SCI)

for i := I tom do
 then

begin
 begin

form .information Jlow _template
 SC := SC IT SCI;

(S;, SC, EXP, VI, LOOP); CH.\XGED :~ true
V :-- \' J VI; end:

f'nd:
 STACK.pop:

end;
 until EXP ' EXPI and not CH.\\C~:D:

~~LOJ;l1lo:' GL_QB_._U -2:- j..,OCA_L ~- CE:
end:

66

S "O.g(IN :rJ, xbOUTyl·····Ymf
bPgin

On O.g entry in the L\1PORT catE'gory
bPgin

add "EB hl_'ACK 1'1:< Gk_OBAL'' to implicit;

for all x in IN parameters of O.g do
if not STATIC[x;

then
add "•j, SC:x

1
to the symbolic"

class expression for x:

els<•
if the entry for x is "~ =Nl'LL"

thPn replace that with "x : SC[x]";

end;
v :-= 0;
for all y in OUT parameters of O.g do

b<•gin
if not STATICiy] then V := V u {y};
if LOOP

then temp :.c ?~!'1~
else temp := ().g.y;

if STATICiyj
then EXP[y] := EXP[y] ill temp ffi ~TACK

6:7 (;LOBAJ"
else SC[y] := t<'mp ffi STA~J5 6' GLQBAL;

end;

Pnd;

S ~ "end PROC"

bPgin
for all x ~uch that ''STATIC:x· tru<'.. do

if EXP:x~ · :\l"LL then
plar<' ··x SC:x · EXP x'"

in the STATIC catPgory
of TE\1PL.\TF::

for all x in OllT paramPtPrs of PBOC do
place "x o· sqx" in the EXPORT catt>gory

of TE\1PLATE:

end:
end case:

end form .information .flow t.E'mplate.

67

THE ARCHITECTURE OF A DISTRIBUTED TRUSTED COMPUTING BASE

Jon Fellows, Judy Hemenway, Nancy Kelem, and Sandra Romero*

Unisys **

2525 Colorado Blvd.

Santa Monica, CA 90405

ABSTRACT

This paper explores the differences between
monolithic and distributed Trusted Computing
Bases, using as an example an actual system
now in the final stages of development. For
each of the differences discussed, the
approach taken in the system is briefly
described and motivated. The paper includes
a description of the security policy of the
system and its correspondence to the Bell and
LaPadula model.

1. 	 BACKGROUND

The need for trusted computing systems
which process data at multiple security lev
els is widespread in defense related pro
grams. Such systems have been an active
research area for over ten years, with the
result that worked examples of tightly cou
pled*** multi-level secure systems have been
demonstrated [Fra83, Whit74). A set of cri
teria for the architecture of multi-level
systems has been established by the DoD Com
puter Security Center [DoD85]. These cri
teria, known popularly as the "Orange Book",
a~so address the assurance that must be pro
Vlded that the architectural criteria have
been met. At the highest Orange Book
category, Al, formal specification and verif
ication are required at the design and policy
levels.

The requirement for handling data at
~ultiple levels goes beyond the usual operat
lng system concern of local users sharing
local resources; it is also being imposed on
a current generation of embedded distributed
systems. Even though no worked examples of
secure distributed systems exist, the same
criteria are being applied in the belief that
such systems are a natural extension of the
previous work on tightly coupled operating
syst7ms. This paper reports on the security
archltecture of one of the first secure dis
tributed systems to be attempted: the issues
raised, the approaches taken, and the lessons
learned.

1.1 Terminology and Basic Concepts

A Multi-Level-Secure (MLS) computer sys
tem protects information on the basis of
security labels which are attached to the

* 	This paper presents the opinion of its
authors, which is not necessarily that of
Unisys or of the Department of Defense.

** Formerly system Development Corporation

*** 	Tightly coupled is used here in the sense
that the system can be modelled as a
single state machine.

components of the system. System components
include both data objects and active com
ponents of the system; but a given component
may play both roles at different times in its
lifetime. For the purposes of this discus
sion labels are assumed to be associated with
a component at the time it is created and to
retain their initial values for the life of
the component. As is usual, components them
selves have components, leading to a
hierarchical structure that spans 'system' to
individual variables and program statements.
The granularity with which a system protects
information is determined by the level(s) of
components· that carry labels. All current
MLS systems cease explicit labelling at some
point in the component hierarchy, with the
result that lower level components inherit
implied labels.

Each active component of the system,
e.g. a process, a service, a subsystem, has a
domain of execution which defines the set of
data objects to which it may potentially be
gran~ed access. "Access" has system-specific
meanlng, but current systems focus on "read
access" and/or "write access". Read access
describes any system defined interaction
between components in which information flows
fr~m a d~ta component to an active component,
Whlle wrlte access describes the converse.
The domain of an active component can be
further broken down into read and write
domains, which will normally be expected to
overlap. Active components interact either
by sharing data objects across domains (e.g.
a shared file), or by exchange of data
objects between domains (e.g. a message sys
tem or input;output).

A system is MLS if all interaction
between components preserves, with some level
of assurance, the confinement of data objects
to the read and write domains of active com
ponents with compatible labels. A confine
ment failure is known as a compromise. The
compatibility of active component labels and
data component labels is determined by the
following domain confinement rule:

A component (either active or data) may
potentially receive information from
another component marked at any level
"dominated by" its own label, where
"dominates" is a system specific partial
ordering of labels. This implies that
the label of an active component must
dominate the labels of each data com
ponent in its read domain; and also that
the label of an active component must be
dominated by the label of each data com
ponent in its write domain.

The domain confinement rule restates the
basic properties of the well-known Bell and
LaPadula model [BLP76): the simple security
property and the *-property.

(,8

It is important to note that the domain such as trusted paths between TCB components,
confinement rule constrains the domains of
active components from containing data com
ponents with the potential for compromise,
regardless of the actual compromise that the
component might cause in a less constrained
domain. The actual behaviour of the com
ponent could be compromise free in the less
constrained domain, depending on it's inter
nal logic and its actual (as opposed to
potential) pattern of references to other
components. It would even be possible for a
component to be compromise-free with respect
to its domain in one given state, while caus
ing compromise in domains with other states.
An active .. component is called compromise
correct if it is compromise free in all pos
sible domains in which it can function as
part of the overall system. Compromise
correct components can be exempt from the
domain confinement rule without changing the
MLS-ness of the system.

A Trusted Computing Base (TCB) is the
set of system components which, in order for
the system to be MLS, must function correctly
in the roles they play in the system archi
tecture. In principle the TCB can encompass
all of a system's components, but it is very
costly to provide assurance of confinement
using this approach; since each component,
and each interaction between components, must
be examined. In other words, each component
must be compromise-correct. In practice,
this approach is limited to small dedicated
systems with a static set of components. For
larger systems, particularly those which are
open to the introduction of new components by
untrusted users, a better approach isolates a
small subset of components into a Reference
Monitor [And72] which enforces the domain
confinement rule. The TCB then becomes the
reference monitor components and a small set
of trusted components which are ~ompromise
correct.

In order to prevent untrusted components
from interfering in the correct execution of
reference monitor code, it is customary for a
reference monitor to have a privileged
domain of execution which includes not only
the domains of all subjects but additionally
contains objects not in the domain of any
subject in the system. These reference moni
tor private objects normally contain signifi
cant portions of the system security state
such as labels, clearances and passwords. In
some implementations, reference monitor
private objects are not themselves labelled.

2. 	 WHY DISTRIBUTED TCBS ARE DIFFERENT

This section discusses the difference
between a traditional monolithic TCB, where
all TCB components share a domain and commun
icate by shared variables and procedure
calls; and a distributed TCB, where TCB com
ponents are distributed over a network and
communicate by exchanging messages. All of
the classical TCB security issues must be
addressed by a distributed TCB; but some
issues, such as formal verification of
correctness, are made more difficult by dis
tribution of TCB components. Other issues,

are new to distributed TCBs (or at least have
been implicit in previous models).

The increase in complexity that results
from distributing a TCB forces increased
reliance on architectural arguments for secu
rity assurance, due to the weaker assurance
possible from formal arguments. Perhaps this
is only more evident for the distributed TCB
case than has been the case for single domain
TCBs. We have always relied on architectural
arguments for hardware assurance of domain
separation, and for locally reliable storage
and transmission of data. Analagous func
tions in a distributed TCB may be implemented
in software, but they are no less complex nor
easier to verify.

The following subsections explore the
five primary differences that we have been
able to identify as requiring extra attention
when building a distributed TCB. Briefly,
they are fragmentation of the TCB domain,
trusted paths, trusted protocols, hierarchi
cal TCBs, and fault tolerance.

2.1 Fragmented TCB Domain

In a monolithic TCB the concept of a
secure state can be expressed by an
integrity constraint on the values held by
security relevant data objects within the
TCB's domain, for example that current
accesses of subjects to objects are con
sistent with a security policy based on the
security labels associated with those sub
jects and objects. All components of the
security state are immediately available and
stable in their values. It is possible for
the monolithic TCB to guarantee that the
security state changes one well defined
step at a time and that after each change the
security state meets it's integrity con
straints.

In a distributed TCB the security state
of the system, rather than being collected
into a single protected domain, is distri
buted across various devices of the system.
Maintaining integrity constraints on a dis
tributed security state is complicated in the
following ways:

a. 	 It is difficult to check the sys~em
security integrity constraints at a s~n
gle device, since remote components of
the system security state are not
obtainable without delay and are not
guaranteed stable. It may still be pos
sible to assert meaningful integrity
constraints, but this situation causes
an overall weakening of the constraints
that can be asserted.

b. 	 Instead of a totally ordered sequence of
state transitions, a distributed TCB's
state history is only partially ordered
due to the possibility of concurrent
transitions at different devices.
Again, it is still possible to state
meaningful integrity constraints, but a
careful analysis of potential interfer
ence between concurrent transitions is
needed.

69

c. 	 Parts of the security state may be
replicated at several devices in order
to increase system availability. The
system security constraints must then
assert consistency of values for all
replicated components of the security
state regardless of where they are
stored.

Although not normally viewed as part of
a system's security state, the types and
operations defined within the TCB can be
viewed as data values of a distributed TCB
which are replicated everywhere they are
used. The best example of this is the type
that defines the values held by security
labels; if this definition varies from site
to site within the TCB then a meaningful
definition of policy enforcement is not pos
sible. Likewise the operation that computes
the partially ordered comparisons between
labels must be implemented with the same
semantics at each site. This view of types
and operations as data is derived from an
object oriented [Gold83] model of computation
and it reduces the distributed TCB concern
that similar things be accomplished in simi
lar ways to yet another data consistency con
straint. This data changes so slowly that an
automated protocol is not usually used to
guarantee consistency, but rather consistency
is addressed by trusted distribution of
software.

2.2 Trusted Paths between TCB Components

Within a single domain TCB, it can
always be assumed that TCB local data have
been defined by trusted code and that parame
ters passed in a procedure call have been
sent by trusted code. When reasoning about
the correctness of a single domain TCB, one
need not question whether internal communica
tions is being spoofed.

A distributed TCB must provide trusted
paths between its distributed domains in
order to achieve similar assurance. This
usage of the term "trusted path" is a
strengthening and generalization of its usage
in [DoD85]. As used here, a trusted path
offers the following guarantees:

a. 	 A message received from a trusted path
originates from a trusted source. This
property can be supported in stronger
form by authentication of the exact
identity and security attributes of the
originating component.

b. 	 A message received from a trusted path
contains the same value that was sent.
This guarantees that message data have
not been modified by untrusted entities.

c. 	 If messages have security labels, then
the label on a received message has the
same value that was sent. This guaran
tees that message labels have not been
modified by untrusted entities.

d. 	 An optional property is the preservation
of message order on pairwise trusted
paths. (This property also prevents
replay of messages.) It is optional

because it may be expensive to implement
and difficult to verify. Further, it
may not be required to support TCB
correctness.

2.3 Trusted Protocols

A distributed TCB will need to trust
some of its protocol interpeters, possibly at
several different ISO levels, for any of the
following reasons:

a. 	 To implement the trusted path concept of
the previous section. Trusted path
could be incorporated into the services
offered by interpreters of standard pro
tocols at the transport level and below.
In the absepce of such a standard, a
system. specific end-to-end protocol
layer can be inserted at the transport
level using cryptographic authentication
techniques. An example of the latter
approach is given later. The design
verification costs for these two
approaches vary considerably: verifica
tion of standard protocols is quite dif
ficult, but given an acceptable formal
model of encryption, end-to-end imple
mentations of trusted path that do not
guarantee delivery are substantially
easier to verify.

b. 	 To implement system level atomic state
transitions. If the system's security
relevant integrity constraints are not
very strong, this may not pose a prob
lem. Otherwise it may be necessary to
design application level protocols with
the goal of taking the entire system
from one consistent state to another.
We will see examples of both cases later
in this paper. Application level proto
cols defined for this purpose can be
exceedingly difficult to verify.

c. 	 To provide system level concurrency con
trol. Protocols such as the two phase
commit can be viewed as implementing a
distributed lock mechanism. For the
most part, concurrency controls are use
ful to help in achieving security
relevant atomic state transitions, but
they are frequently also useful in con
trolling non-security relevant transis
tions in the system. (Recall that our
definition of security does not address
denial of service.)

2.4 Hierarchical Trusted Computing Bases

Distributed TCB components may be imple
mented as applications software on devices
which also support untrusted applications, in
which case a local reference monitor is
required to prevent interference with trusted
operations. . In addition, if the distributed
TCB components handle multi-level data, the
local reference monitor must provide a
multi-level-secure environment. So a distri
buted TCB may be implemented as a hierarchy
of TCBs in which the system level TCB relies
upon correct policy enforcement of local TCBs
for its own correct policy enforcement.

70

The relationship between the system
reference monitor and the reference monitors
of individual devices can be subtle. The
local TCB's interpretation of subjects and
objects bears no necessary relationship to
the distributed TCB's interpretation. This
is particularly true if the system TCB does
not view reference monitor data structures as
as objects which are labelled and subject to
access controls. In a distributed TCB, sys
tem level reference monitor data is likely to
be application level data to the local refer
ence monitor. Another example of the cogni
tive gap between local and system TCBs is
that active components viewed as untrusted
with respect to local policy may well be
trusted with respect to the system policy,
e.g. system level access control decision
making and system level audit data recording.

Clearly there is a need for some "glue"
to tie the various components of a distri
buted TCB into a consistent system level
reference monitor. One of the most important
such adhesives is the globally consistent
representation of security labels and their
comparisons. This was identified earlier as
a form of integrity constraint over repli
cated data. Consistent labelling need not
mean identical ·labelling, except for the
external representation of labels that are
exchanged over a network. Labels internal to
a device may have increased granularity as
long as homomorphism is maintained between
internal and external forms; i.e. a well
defined mapping between labels exists that
preserves the dominance relation. This free
dom to increase label granularity can be
quite useful, particularly in the area of
added compartments and subcompartments.

2.5 Fault Tolerance

Unlike a monolithic TCB, which is either
in service or out of service, a distributed
TCB continues to enforce a security policy
when some of its components are not in ser
vice. The normal case for a distributed sys
tem is that something is broken somewhere.
In consequence, a distributed TCB must sup
port "fail-secure" properties in its design,
verification, and architecture. Fail secure
properties assert that no compromise occurs
even when some components are unavailable.

Desirable security properties are fre
quently "safety" properties; i.e. properties
that assert the preservation of a secure sys
tem state. As long as the failure states of
the computation are secure, one need not show
that a computation makes progress in order to
show that it is secure. This observation
allows the sidestepping of a number of known
difficult verification problems, such as ter
mination. In a distributed TCB, the granting
of an access request may involve a chain of
actions by different components. If the
chain is broken by component failure or com
munication failure the result is denial of
service, not compromise. End-to-end checks
which do not require reasoning about the con
current interaction of components may suffice
to demonstrate fail-secureness without
guaranteeing actual delivery of a service.

Although not required by the security
policy presented in this paper, denial of
service is of serious concern to many end
users of trusted systems, in some cases of
higher concern than security policy enforce
ment. A trusted distributed system cannot be
allowed to shut down when one of its com
ponents fails. The system must continue to
provide at least partial policy enforcement
for as long as possible.

The classical reliability technique of
replicating data and processing can be
applied to distributed TCBs. As mentioned
previously, one result of such replication is
the necessity for synchronizing protocols to
manage updates to replicated security
relevant data. Another complication is that
device level secure initialization and/or
recovery becomes complicated by the necessity
to synchronize the state of the local TCB
data with the system TCB state.

3. 	 A REAL EXAMPLE OF A DISTRIBUTED TCB

Each of the issues raised in the previ
ous section has been addressed in the design
for a classified system now in the final
stages of development. For the purposes of
this paper we will call this system NRM,
which stands for Network Reference Monitor.
The following description is greatly simpli
fied in order to focus attention only upon
the security architecture of the NRM.

NRM consists of a family of devices
which, when added to a packet switched net
work, collectively enforce a security policy
on the exchange of messages between hosts on
the network. Encryption is the basic domain
separation mechanism of NRM. The device
types in this family consist of the follow
ing:

a. 	 Secure Network Interface (SNI): One of
these devices interfaces each network
host to the network. It is transparent
because it presents a host interface to
the network and a network interface to
the host. This device only passes mes
sages to or from a host after a NRM
security policy check described below.
A SNI encrypts a message before sending
it to the network or decrypts a message
delivered from the network using a key
that is shared only by the source and
destination hosts of the message. This
key, in association with other security
related data, establishes a bidirec
tional cryptographic connection between
the two hosts. A SNI can manage a large
set of cryptographic connections.

b. 	 Key Control Center (KCC): This device
generates a new key to be used for each
new cryptographic connection and
securely distributes a copy of this key
to the source and destination hosts
associated with the connection.

c. 	 Security Control Center (SCC): When a
host sends a message through a SNI, and
the SNI does not currently manage a
cryptographic connection between the

71

source and destinaton hosts of the mes Finally, the ~-component states:
sage, the SNI requests the establishment
of a new cryptographic connection by
sending a request message to an sec.
The sec mediates this request by check
ing for inclusion of the candidate
message's security level in the security
ranges of both the source and destina
tion hosts. sec mediation also includes
a check that the message's source and
destination hosts are included in each
others discretionary access control
lists. If both of the above checks are
passed then the SCC directs the KCC to
establish a cryptographic connection
between the two hosts.

3.1 NRM SYSTEM SECURITY POLICY

The NRM system Security Policy has com
ponents that jointly control the establish
ment and use of crypto connections between
pairs of hosts. For the NRM system, the
range of security levels associated with each
host indicates the range within which that
host can communicate (i.e., send or receive
messages) . Each crypto connection esta
blished by the NRM System has associated with
it a single security level. Thus, a connec
tion must be established for each level at
which a pair of hosts wishes to communicate.

By first controlling access of hosts to
connections, and then controlling the use of
those connections by the hosts, the NRM Sys
tem effectively controls the flow of classi
fied information between hosts. To accom
plish this, a security policy has been
defined with mandatory and discretionary com
ponents to control the access of hosts to
connections, and an entelechy* component to
control the use of those connections. A
fourth component, the delta component, writ
ten ~-component, limits changes to the SCC's
security relevant databases.

The mandatory component of the NRM sys
tem Security Policy states that:

A host may have current access to a
crypto connection only if the security
level of that connection falls within
the security-level range of that host.

The discretionary component of the security
policy states that:

A host may have current access to a
crypto connection only if that host had
discretionary permission for that con
nection when the access was first
approved.

The entelechy component of the security pol
icy states that:

A host may send or receive messages over
a crypto connection only if it has
current access to that crypto connec
tion.

* 	 Entelechy: the realization of form-giving
cause as contrasted with potential
existence. (Webster's New Collegiate
Dictionary)

Only the system security Officer can
change the security relevant data in the
SCC's databases.

3.2 MODEL AND CORRESPONDENCE

In order to meet the Orange Book
requirements for an A1 class of certifica
tion, it is necessary to demonstrate that the
design of the system ,as expressed in both
the Formal Top Level Specification and the
Descriptive Top Level Specification, is con
sistent with a formal mathematical· model of
security. For the NRM system, the model that
was chosen is the Bell-LaPadula model, modi
fied where necessary to more precisely
express the NRM security policy. This sec
tion describes the correspondence between the
model and the NRM system design.

3.2.1 Subjects and Objects

The subjects in the NRM System are
hosts. A host is defined to include sub
scriber hosts which are directly attached to
SNis, NRM control nodes (i.e., sees and
KCCs), or the internal host within each SNI
whose function is to coordinate with the con
trol nodes.

The NRM Sys~em objects are the connections
between pa~rs of hosts. A connection indi
cates the potential for two hosts to communi
cate with each other by sending and receiving
messages via their SNis. Each connection is
uniquely identified by a host-pair and a
security label, e.g.

({hostl,host2},label)

3.2.2 Security Level

In the NRM system, security level is
defined exactly as it is in the Bell LaPadula
model. That is, a security level is a pair

(classification, set-of-categories)

where classification is totally ordered, and
categories are not ordered. security levels
are partially ordered by the 'dominates'
relation.

3.2.3 Access Modes

The Bell-LaPadula model identifies four
types of access which a subject may have to
an object: read, append, write, and execute.*
In the NRM system, sending a message via a
connection is viewed as an append to the
connection-object, while receiving a message
via a connection is viewed as a read from the
connection-object. Since all connections in
NRM are two-way (send and receive), write
access, which includes both 'read' and
'append' capabilities, is the only mode of
access applicable to NRM connections.

* 	 Note that 'read' means read-only,
'append' means write-only, and •write'
means read-and-write. This awkward usage
has historical origins.

72

Consequently, write access is the only access
mode implied in the NRM system's current
accesses and discretionary permissions.

3.2.4 Current Access Set

Rather than being stored in one central
location, the NRM System Current Access Set
is distributed among the SNis, and is imple
mented as connection state records stored at
each SNI.

3.2.5 Access Permission Matrix

In the NRM system, discretionary permis
sion is defined for pairs of hosts, e.g.

(hostl, host2)
This represents discretionary permission for
hostl to have write access to any connection
object which has hostl as one end point and
host2 as the other endpoint. This form is
equivalent to a set of discretionary permis
sions as represented in the Bell-LaPadula
model: for a permission, (hostl, host2), the
equivalent entries in the Bell LaPadula
model's Access Permission Matrix would be all
entries

(hastl, ({hostl,host2},label), write)
where label is any security level defined in
the system.

The Access Permission Matrix is
represented in a sec data base as a set of
Access Control Lists which represent inclu
sion or exclusion by host name and inclusion
or exclusion by named group. For a NRM system
which consists of a single domain, the Access
Permission Matrix is centralized, since each
sec in the domain has a complete copy of the
discretionary permission databases. However,
in multi-domain systems, the matrix is dis
tributed across domains, with each domain
having only those entries of concern to the
hosts in that domain.

3.2.6 Level Function

The Level Function (f) of the Bell-
LaPadula model is a triple of functions:

fS = Maximum security level of a subject
fC = Current security level of a subject
fO = Security level of an object

Two of these functions are meaningful in the
NRM System: the fS function and the fO func
tion. Rather than store only a maximum level
for a host, and then also store an attribute
which indicates if the host is trusted, the
sec data base contains a range of levels for
each host. Untrusted hosts have single level
ranges and trusted hosts have multi-level
ranges. There is no concept of hosts chang
ing their "current" level, so the fC function
is defined to be the same as the fS function.
For objects, the fO function indicates the
level of a connection, i.e., the label com
ponent of a connection identifier

({hostl,host2},label).

3.2.7 Security Policy

discretionary components satisfy the Bell
LaPadula security properties, while the ~
component and the entelechy components have
no direct counterparts in the Bell-LaPadula
model.

Simple Security Property
Since the mandatory component requires that
the connection-object label must be within
the range of the host, the maximum level of
the host's range (i.e., fS for that host)
dominates the level 'of the connection-object,
thus satisfying the simple security property.

*-Property
By the mandatory component, subjects which
have single-level ranges can only have
current access to connection-objects at that
level. This is sufficiently restrictive to
satisfy the Bell-LaPadula *-property. How
ever, note that subjects which have multi
level ranges can have current access to
connection-objects at any level within their
range, which is a violation of *-property.
In other words, multi-level hosts are trusted
subjects. The NRM mandatory component is
somewhat more restrictive than the *-property
in that the *-property allows trusted sub
jects to have write access at any level dom
inated by the subject's level, whereas the
NRM mandatory component limits such access to
only those levels which are in the subject's
range.

Discretionary Policy
This component of the NRM security policy is
expressed in such a way that it is only at
the time the access is granted by the sec
that the system ensures the existence of dis
cretionary permission. After this point it
is possible that the discretionary permission
can be invalidated in the sec, while the
current access is still active (i.e., a per
mission still exists in the SNI's table).*
Other than the revocation issue, this com
ponent of the NRM policy is identical to the
Bell-LaPadula discretionary property.

/\-Property
Although the Tranquility Principle focused
solely on changes to an object's security
level, a more general statement of the prin
ciple would be that changes to the security
relevant data of the TCB cannot be made
except by agents which are trusted to violate
tranquility.** This is in fact what the ~
component addresses. In the NRM system, the
only agent trusted to change the security
relevant data is the System Security Officer.

* 	 Note that this is very similar to the
situation which exists in some operating
systems, where a user's current access to
a file is not revoked when and if the
discretionary matrix entry is deleted.
Instead, the user will not be aware that
discretionary permission has been revoked
until he tries to access the file at a
later time after giving up his current
access.

As described above, the NRM security ** Note that inclusion of such a principle
policy has a mandatory component, a discre as a required property of the model would
tionary component, a ~-component, and an address the problems pointed out by
entelechy component. The mandatory and McLean in System-z.

73

Entelechy
The entelechy property was added to the NRM
security policy primarily because of the dis
tributed nature of the system, because the
decision-making described in the property is
implemented in software, and because this
decision-making is crucial to the enforcement
of security in the system. In an Al operat
ing system, the analogous mechanism would be
the memory-mapping hardware, which is usually
considered to be outside the scope of the
Bell-LaPadula model and formal specifications
thereof. In the NRM system, the enforcement
of entelechy is the primary charter of the
trusted software within the SNis, and without
the correct enforcement of this property, the
decision-making of the sees would be of lit
tle, if any, value.

3.2.8 	 Rules of Operation

In the Bell-LaPadula model, the possible
state changes of a system are described by
'rules' which correspond to specific actions
which are performed by the NRM system. This
section identifies and briefly describes
those actions.

3.2.8.1 	 Modifications of the current Access
Set

In the NRM system, modifications to the
current access set are accomplished by each
SNI as updates to its connection table.
Adding a connection to the table is
equivalent to adding an access to the Current
Access Set. Removing a connection from the
table is equivalent to removing an access.
The SNI adds connections to its table only if
they have arrived via a trusted path from the
sec via the KCC. Removal of permissions is
done either in response to a command received
from the sec (again, on a trusted path), or
as part of an LRU replacement mechanism when
the table is full.

3.2.8.2 	 Modifications of Subjects, Objects,
and Levels

In the SCC, two of the transactions
which the Security Officer may perform are
Create-Site and Delete-Site. Create-Site
accomplishes the addition of a subject host.
The addition of a new subject to the system
implicitly adds to the system all connection
objects which have that subject as one of the
endpoints. Conversely, the transaction
Delete-Site involves the removal of subject
hosts (and implicitly their associated
objects) from the SCC's database. The secu
rity range of a subject is established when
the subject is added to the system, and can
not be modified once it is established. The
only way that a subject's range can be
changed is to delete the subject, and then
add the subject with a different range speci
fied.

The level of a connection is an integral
part of the identity of the connection, and
all possible connections between subjects are
viewed as existing as long as both subjects
exist. Thus, it makes no sense to change the
level of an object, and no provision is made
in the system for accomplishing this.

3.2.8.3 	 Modifications of the Discretionary
Matrix

In the SCC, transactions have been
defined for adding or removing entries from a
set of relations which implement discretion
ary Access Control Lists: Include-Host,
Exclude-Host, Group, Include-Group, and
Exclude-Group. From the point of view of
modifying the discretionary matrix, these '
transactions are somewhat obscure in their
results. For example, adding a host pair to
the Include-Host relation will result in that
host pair being added to the (abstract) dis
cretionary matrix only if the same host pair
is NOT an entry in the Exclude-Host relation.
Identifying a host as a member of a group may
add or delete entries from the (abstract)
discretionary matrix, depending on what
entries are currently present in the
Include-Group and Exclude-Group relations.

3.2.9 	 The Basic Security Theorem and Induc
tion Hypothesis

The formal specification methodology
being used for the NRM system is the Formal
Development Methodology (FDM) , developed by
System Development Corporation [Sch85). The
FDM specification language, Ina Jo, permits
the description of a system as a state
machine. The theorems generated by FDM
demonstrate that the system starts in a
secure state, and that each state transforma
tion preserves security, as defined in the
criteria and constraints of the specifica
tion. This is very similar to the approach
described by Bell and LaPadula in their dis
cussion of the basic security theorem. In
[BLP76], Bell and LaPadula state that " .•. the
basic security theorem establishes the
'inductive nature' of security in that it
shows that the preservation of security from
one state to the next guarantees total system
security." (p. 20) Based on this, it can be
argued that verification of the NRM specifi
cations demonstrates that the NRM system
design is secure, as defined in the Bell
LaPadula model.

3.3 FAULT TOLERANCE

The NRM system has several strategies
for continuing to provide service to applica
tion components when a NRM component has
failed. These strategies include load shar
ing, redundant security data bases, the con
tinuation of existing service in the absence
of a control center, and secure recovery of
failed components.

NRM is organized into control domains
which partition the SNis of the system; i.e.
each SNI belongs to a control domain and no
SNI is in more than one control domain. Each
control domain has several redundant sees and
several redundant KCCs. The sees of a domain
share the domain workload according to a
static assignment of sees to SNis as a pri
mary server. In the event of an sec failure,
the SNis which view the failed sec as their
primary server will redirect their service
requests to an alternate sec, again according
to a static assignment of secondary servers.

74

Since domains are disjoint, minimal data
base information is shared across domains
(primarily the identities of other domains
and their control centers). Inconsistency of
this small amount of data across domains
results in denial of service, not compromise.
Within a domain, sees maintain identical data
bases which must be updated concurrently. In
order to assure data base consistency across
sees, a two phase commit protocol [Gray78] is
used for data base updates which synchronizes
update requests. No updates are allowed
unless all sees are available. This pro
cedure prevents most possible causes of data
base inconsistency, but is not proof against
awkwardly timed failures during the execution
of the data base update protocol. We assume
that such failures are disabling, and that
the potential inconsistency will be identi
fied during a secure recovery procedure which
compares data bases with other sees. A much
more detailed discussion of the sec design to
assure data base consistency is in prepara
tion.

In the case where all sees of a control
domain have failed, the NRM system continues
to serve application hosts using in place
crypto connections, but no new connections
can be established*. For important or fre
quently used connections, the sec keeps a
list for each SNI of a set of connections to
be established at the time the SNI is ini
tialized.

Perhaps more difficult than continuing
to serve in a degraded configuration is the
problem of recovering a failed component
without disturbing the system. NRM has been
designed so that each control center estab
lishes consistency with the other control
centers in its domain before beginning to
honor service requests.

3.4 CONCURRENCY ISSUES

A NRM domain can be viewed as having
several critical regions with respect to con
current activities in the domain. This means
that the NRM system operations must not over
lap each other in time when they involve the
same critical region. Actually, in the
interest of improving system ef£iciency, the
NRM design allows certain race conditions in
regions that are fail-secure.

The most common critical region in a
domain is a crypto connection: SNis at each
end can concurrently request establishment
from different sees. The resulting race has
four cases, two of which permit communication
over the connection and two of which do not.
It was decided that synchronization of SNis
to prevent this race had too high a cost in
network traffic and reduced domain workload
capacity. Instead the broken connection is
repaired in the same way as any other: by
repeating the connection request.

* 	 The actual system upon which NRM is

modelled has an alternate service

capability in this situation. This

capability is not described here.

The more critical region is the sec data
base, in which only a single data base update
is permitted at a time. A two phase commit
protocol serves as a distributed lock to
assure this. It would have been possible to
define finer granularity regions in the sec
data base, say at a file or record level. We
decided not to do this because the sec update
rate is very low and there is little to be
gained from increased concurrency in the
region.

Beyond the synchronization concerns of a
domain, there remains the difficulty of
assuring the correctness of a domain level
operation that is distributed over several
devices. Crypto connection establishment is
the most important of these, and the NRM
design relies upon control over cryptographic
variables as an end-to-end check upon connec
tion establishment in which all known failure
cases are compromise free.

Revocation of existing connections is a
different matter. For the reasons given in
Section 2, it is not possible to verify revo
cation in the presence of all network
failures. Instead a number of increasingly
painful heuristic procedures are employed.

3.5 Fragmented TCB Domains

The NRM depends for its correctness on a
consistent interpetation of security relevant
types, operations, and data across all dis
tributed components. The NRM method for
assuring this consistency begins with the
controlled distribution of software releases.
Each software release has a cryptographically
derived checksum which is checked when it is
installed at a NRM site. Operational
software has access to the version number of
the release currently in execution, and
release numbers are compared between sibling
sees when an sec is initialized.

3.6 LOCAL TCBs

One of the most subtle issues in the NRM
design revolved around the decomposition of
the system TCB into sets of trusted com
ponents that execute on different NRM proces
sors. Each such processor needs a local TCB
to provide isolation between the trusted and
untrusted functions that it supports and to
provide controlled sharing of data between
trusted components.

One of the earliest NRM design decisions
was that communications between distributed
NRM components would take place over NRM
crypto connections. One of the consequences
of this decision is that message traffic
between NRM components carries security
labels just like those carried by subscriber
host messages. All dialog between a sec and
a SNI is conducted at the highest level
authorized for the subscriber host attached
to the SNI. This convention requires that
the local TCB be able to send and receive
messages at multiple security levels, and to
keep message data separated by level within
the local processor.

75

The security kernel for the sec and KCC
processors has a traditional security archi
tecture based upon a secure MULTICS model.
In addition, this kernel defines and enforces
an integrity policy [Biba77] which is iso
morphic to a dual of the traditional comprom
ise policy, i.e. the integrity labels are
drawn from a completely disjoint set of
labels. The ordered part of the integrity
label is used to support internal trusted
path arguments which assert that high
integrity trusted components can receive data
only from other high integrity trusted com
ponents. The SCC/KCC kernel does not define
a discretionary policy, but the unordered
integrity compartments are assigned in such a
way as to create incomparable integrity
domains for different TCB subsystems. This
convention enforces a least privilege discip
line on the application design.

3.7 TRUSTED PATH PROTOCOL

Originally, the NRM design was based on
the use of TCP for transport of messages
between distributed trusted components. We
found TCP lacking for a number of security
related reasons which are described in this
section.

TCP is not a message stream, but a byte
stream which may deliver bytes in different
blocks than those that were sent. The NRM
design adds another transport layer called
Network Support Protocol (NSP) whose purpose
is to bl-ock and unblock messages. NSP imple
ments a message stream.

TCP connections are single level. The
NRM design adds a security label to all out
bound messages which is bound to the message
text by a cryptographic checksum. Upon
receipt of a message, the checksum is recom
puted and, if it compares with the transmit
ted value, the message is assigned the
transmitted label. The processing to accom
plish this is organized into yet another
transport layer protocol called the Trusted
Path Protocol (TPP). TPP transforms NSF's
single level message stream into a multi
level message stream.

The security label added to messages by
TPP includes an integrity component so that a
high integrity receiver of a TPP message can
know with high confidence that the sender of
the message was labelled high in int7gri~y.
This satisfies the source authent~cat~on
requirement for trusted paths.

The cryptographic checksum applied to
messages by TPP is computed using a variable
which is protected in a local TCB kernel
domain. This variable is shared by all NSP
hosts which communicate using TPP, and is
initialized and updated by trusted manual
distribution. The check made upon receipt of
a TPP message detects, with a high degree of
confidence, unintentional or malicious modif
ications to message data*.

* 	 Since TPP is at a higher level than TCP,
which computes its own untrusted
checksum, detection of unintentional
modification should be quite rare.

4. FUTURE ISSUES

The NRM system design surfaced and dealt
with a number of important issues that dis
tinguish distributed from monolithic TCBs.
There are a number of issues that were not
dealt with in the NRM design, either because
they do not arise in the NRM application
domain, or because the NRM design sidestepped
the issue. The following sections provide a
brief overview of some of these issues.

4.1 Alternate Connection Models

The NRM model has been influenced by
current communication protocols which rely
upon positive acknowledgement and retransmis
sion as the fundamental mechanism for assur
ing reliable delivery of messages. This
mechanism requires data flow in both direc
tions between the hosts involved in the
exchange of a message. This is the fundamen
tal motivation for the NRM convention that
read/write is the only mode of access of a
host to a crypto connection.

In anticipation of applications which
use a different set of protocols, such as a
trusted reliable network layer, it would be
possible to define read-only and write-only
access modes to a crypto connection in direct
support of one-way connections.

4.2 Globally Shared Local Resources

The NRM design considers subscriber
hosts to be the subjects of its policy. If a
host is multi-level, it is responsible for
the separation and labelling of its internal
storage objects. NRM will assume that mes
sages from such a host are correctly
labelled. When a distributed system is con
sidered in which the subjects are local sub
jects executing on a given host, such as a
user or a process, and the objects are local
resources on a possibly different host, such
as a file or memory segment, a new set of
issues arise. Foremost among these issues is
the requirement for local TCBs at each of the
distributed hosts which must coordinate pol
icy decisions with each other. A trusted
multi-level network such as NRM must be
assumed to connect the local TCBs. Correct
policy enforcement must rely on end to end
arguments involving both the local policies
and the network policy.

In this environment, a number of tradi
tional issues become more difficult:

a. Subject naming conventions.

b. Object naming conventions.

c. Identification and authentication.

d. Audit.

4.3 Multiple TCB Interaction

In a distributed world, it is possible
to view the world as a partially ordered set
of abstract services, which is exactly what
has been done for communication protocols in
the ISO model. For each abstract service a

76

set of data objects and end-point entities
cau be defined for which it might be reason
able to define a security policy. NRM, for
example, is essentially a security policy for
ISO Level 3 network service (as closely as
one can map IP into the ISO model). It would
be absurd to define a security policy for
each abstract service, but it is probably not
possible to adequately address the security
needs of distributed applications at the
level of a single abstract service.

In the end, the security architecture of
a distributed application will require both
vertical integration of TCBs that are nested
and rely on the policies of lower level TCBS,
and horizontal integration of TCBs that
interact with each other as peers in provid
ing true end-to-end enforcement of an appli
cation level policy.

5. ACKNOWLEDGEMENTS

Unfortunately it is not possible to
recognize each individual contribution to the
NRM program. over its long lifetime, NRM has
been influenced by a unique team of individu
als from both private and public organiza
tions. Key contributions were made by the
following. Clark Weissman of SDC has been
the overall manager and technical inspiration
of the NRM security team. Dan Edwards,
recently of the DoDCSC, provided guidance for
many of the NRM security features. The sys
tem level NRM security design was influenced
by Jon Fellows, David Golber, Tom Tahan, Bob
McGarity, Doug Paul, Francis Pawl, Doug Roth
nie, Mark Biggar, Mary Smyrk, and Dan Faigin.
The contributors to the system level NRM for
mal modelling and verification were Judy
Hemenway, Nancy Kelem, Sandy Romero, Peter
Montgomery, and Mary Smyrk.

REFERENCES

[And72] 	 Anderson, J. P., "Computer Security
Technology Planning Study," ESD
TR-73-51, ESD/AFSC, October 1972.

[BLP76] 	 Bell, D. E. and LaPadula, L. J.,
"Secure Computer System: Unified
Exposition and Multics Interpreta
tion," ESD-TR-75-306, Mitre Cor
poration, March 1976.

[Biba77] 	 Biba, K. J., "Integrity Considera
tions for Secure Computer Systems,"
Mitre TR-3153, Mitre Corporation,
April 1977.

[DoD85] 	 "Department of Defense Trusted Com
puter System Evaluation Criteria,"
DOD 5200.28-STD, December 1985.

[Fra83] 	 Fraim, L.J., 11 SCOMP: A Solution to
the Multilevel Security Problem,"
IEEE Computer, July 1983.

[Gold83] 	 Goldberg, A. and Robson, D.,
"Smalltalk-80: The Language and Its
Implementation," Addison Wesley,
1983.

[Gray78] 	 Gray, J. N., "Notes on Database
Operating systems," in "Operating
Systems: an Advanced Course,"
edited by Bayer, R., Lecture Notes
in Computer Science, Vol. 60,
Springer Verlag, 1978.

[McL87] 	 McLean, J., "Reasoning About Secu
rity Models," Proc. IEEE Symposium
on Security and Privacy, IEEE Com
puter Society Press, 1987.

[Sch85] 	 Scheid, J. and Anderson, s., "The
Ina Jo Specification Language
Reference Manual," TM-(L)
6021/001/01, System Develoment Cor
poration, March 1985.

[Whit74] 	 Whitmore, J.C. et. al., "Design for
Multics Security Enhancements,"
ESD-TR-74-176, Honeywell Informa
tion Systems, 1974.

77

~~.JJ.;ication £!ill.! _veriticali..QD •rool_s for
~ec~~ Distributed ~stems

.J:. JJ.ani~ Ha.lper_n

~am _Qu_g

~ek, ..!.D.£:.

1225 Charleston RQ.

HoUntai n Vi.§;' , .Q. ~.iQ..U

Introduction

This paper reports on a three year project
which at the time of this conference will be
precisely one year old. 'l'he project is an
ambitious effort in the fieleis of formal
specification and verification, software
engineering support, ond security. There
are 	two primary goals 01: the project. 'l'he
first is to build a shore term workbench to
support formal specification and verifica
tion of secure aistributea systems in a
software engineering environment, drawing on
existing tools and techniques wherever pos
sible. 'l'he second goal is to design a long
term workbench which significantly advances
the state-of-the-art in providing integrated
support for the design of secure distributed
systems. The project is structured in three
phases: studies, short-term workbench and
long-term design.

Background

.fu-J)C motivation

The 	project is meant to fill a gap in the
develor1~ent of formal systems that was per
ceived by the RADC secure systems community
in early .l~Jd6. At that time there was ongo
ing 	work devoted to the design of secure
distributed databases and secure distributed
operating systems but there were no projects
devoted to the development of formal specif
ication and verification tools to facilitate
the 	building of such systems.

State of verification technoloEY

Existing formal tools were deficient in a
number of ways:

1. 	 E'or the most part, the paradigms for
formal specification and verification
were divorced from other aspects of the
software development process. HD!'<I [1
3] is a notable exception. It tries to
match the needs of software development
in a number of ways. lVJost importantly
it has a concept of hierarchical
development that matches the software
engineering layering approach to com
puter and network architecture. But

thlS concept was not fully developed,
let alone integrated, into conventional
software aevelopment processes such as
testing and configuration management.

2. 	 The limitations of existina tools was
especially unacceptable in-the context
of the oevelopment of large distributed
systems.

3. 	 Paul t tolerance and real time perfor

mance are issues which were not

addressed in existing systems.

'l'eam assembl§.Q

The 	 project is a joint effort of four com
panies which bring an interesting mix of
talents and experience:

Sytek - specification and verification
of secure systems such as the
NASA RAP [4,5]

- Nuse tool enhancements to clas
sical HDM [6,7]

- mathematical talent

ORA - experimental Ulysses verifica
tion system

- Ada verification contributions
SDOS specification and verifica
tion [8]

- extraordinary depth of mathemat
ical talent

CCA - distributed database work (SDD
1, NULTIBASE, LDM/DDH)

- design support and software
development tools (DDEW, PV)

RCA-ATL - Verl angen verification system
[9 ,10]

- software development experience

Organization of the project by 'l'ask

'l'he project is divided into tasks as fol
lows:

1. 	 'l'emporal properties study
2. 	 Database consistency study
3. 	 Paul t tolerance study
4. 	 survey of existing tools and metho

dologies and exploration of enhance
ments

s. 	 Short term workbench
6. 	 Long term tools design
7. 	 Adaptive policy specification

'l'his work was supported by Air Force systems
Command, Rome Air Development Center (RADC)
under Contract F30602-86-C-0263.

78

Developments to date

As of this writing, June 1!:1&7, study tasks
1, 2, c:md 3 are completed and work under
Task 4 is in progress.

Task 1~1 ~rope~ies Study

Task 1 was led by Edward Schneider of ORA.
'i'anj a de Groot and Dianne Britton of RCA ~'l'L
Labs contributed to the. study. we summar1z·e
below some of the highlights of the report,
"'remporal Properties of Distributed Systems"
(ll].

Our model of computation consists of a col
lection of processes that interact only by
passing messages. The only state shared
between any two processes is the communica
tion channel between them. A process is a
sequence of actions consisting of a mixture
of communications and internal computing.
The model presumes that the communication is
synchronous. A process will be described as
a set of traces, where each trace is a pos
sible behavior of the process a.s observed
over a finite period of time. Thus a trace
of a process in an environment is a finite
sequence of input and output actions.

'rhe various kinds of temporal properties
have been grouped into 5 categories:

e Security
e Progress (deadlock, livelock, starva

tion, liveness, fairness)
e Determinism (Concurrency control and

race conditions)
e Real-time performance (resource allo

cation and scheduling)
$ Fault-tolerance (restart, recovery,

reconfigura tion)

~JJ.r_it,y We have developed a non
interference model of security in the con
text of a Rated Event System (kES). An RES
has as its ingredients a set E of events, a
set '1' of traces, a partially ordered set L
of security levels, and a function lvl which
maps E to L. Basically the model says that
for an arbitrary trace t and level 1 the
events in the trace of level 1 or less are
not affected by other events in the trace.

verification of security is complex in a
system with many processes. This complexity
is managed by inferring noninterference for
the entire system from proofs about each of
its constituent processes. In order to make
this inference from constituent processes to
the whole system, each process must satisfy,
in addition to noninterference, two addi
tional properties: Determinism and Univer
sality. Determinism asserts that the output
of a process is uniquely determined by _the
state at the time of its invocation and
Universality asserts that for any state
either all inputs are accepted or none are
accepted.

both the near-term and the long-term tools
should be able to handle security proofs.
'1'he major requirements._for these proofs is
to identify the sets of events ana traces
for each process. The set of events should
include error messages, such as the failure
to meet a real-time requirement.

Any scheaulers that arbitrate a.mong non
deterministic choices must be trusted. Nor
mally these schedulers should not receive
any classified information on which to base
their scheduling decisions. However the use
of schedulina priorities and time
reouirements~in a real-time system will
sometimes use such information. Such
schedulers must be shown not to leak this
i nf ormation.

~es§ We've been successful in specify
ing liveness in the context of Verlangen._
'J.'he resulting constructs are simple and tne
theorems are as amenable to proof as are the
theorems we've encountered in formal specif
ication of security. ·rhus both the near
term and lona term tools can be expected to
deal with this aspect of progress at the
hiahest level of specification. Other
aspects of progress such as fairness ~~e
greater problems. we expect the specltlca
tion language for the short term tools to
support specification of fairne::os but sup
port for verifying such propert1es may have
to await the 1 ona term tools. Such support
will probably involve enhancement of the
underlying logic with temporal constructs.

biondeterminism Requirements tend to be
deterministic and a nondeterministic pro
perty can usually be trar:sformed to-.~ ?eter
ministic property by add1ng the cona1t1ons
under which the property is to hold. The
biqgest challenge presented by nondetermin
ism is in specifying and verify ir;g det~r-:
ministic transactions in the nonaetermlnls
tic environment of a system of concurrent
processes. !1echanisms of serial izab~l i ty _
from the database worl a seem appropr 1ate tor
dealino with this problem ana we expect the
paradigm and tools of the short term work
bench to support these mechanisms. ·rhe long
term design may go further in supporting the
model of serializability as well as particu
1 ar mechanisms.

'1'o the extent that race conditions might
lead to unpredictability where predictabil
ity is needed, they need to be avoic..ed by
use of appropriate concurrency control
mechanisms. At the design level, it would
be useful to have support for identifying
potential race conditions.

Real-'1'i~ ~.l.liuments Real time require
ments of distributed systems can be oeal t
with only minimally at the specification
level. One can introduce constructs to
express the time requirements. Verification
that these requirements will be met c~n only
be determined at a very low level of lmple
mentation. 'i.'hus if these requirements, are

79

taken into account in the theory of the
specification they have the effect of intro
ducing more nondeterminism and thus nega
tively impacting the v er if i cation of secu
rity.

i'..9..1.!l..t-'l'olerance Requirements Fault toler
ance can be designed into a system. The
issues that need to be considered in such a
design are:

1. 	 The failure model - the type ana amount
of failures that the design is to
tolerate.

2. 	 Failure detection- schemes to detect

failures

3. 	 Fault confinement - limitation of the

effect of a fault

4. 	 verification - the correctness of the
scheme, consistency with the specifica-·
tion model, a.ssurance that the imple- ·
mentation meets the reliability
requirements of the failure model.

~ask 2: Datauase Consistency Stuay

This stuay was led by Alejandro Buchmann of
CCA. Barbara Blaustein and Uspen Chakra
varthy of CCA contributed to the study as
did Dan Halpern and Sam cwre of Sytek. A
few highlights of the report, "Database Con
sistency and Security" [12] follow.

'.i.'he study involved interaction between secu
rity and verification at Sytek and database
design at CCA. vfe discovered that at the
specification level consistency, integrity,
and security can be expressed using the
specification analog of aatabase con
straints. In another respect the require
ments of specifying database concerns such
as serial izability has led to a productive
aevelopment in our adaptation of hDH. Seri
al izability is a property involving the
order of executing transactions and is thus
intrinsically procedural.

l,lultileve.l J;i~.fjcaJ;J,ons In the HDl"l para
aigm, the place for dealing with procedural
constructs is in the mappings between levels
of a multilevel specification. Unfor
tunately, although HU.i has an interesting
idea of multilevel specification, the con
cept has not been worked out in sufficient
detail to support the aevelopment of such
specifications. There are two important
issues in a multilevel specification where
the lower level implements the upper level.

1. 	 'i'he procedural aspects of the implemen
tation mappings need to be expressible
in the (declarative) language of the
lower level specification ana

2. 	 'l'he presumption of atomicity as regards
the upper level state-changing opera
tions needs to be justified in light of
its violation in the lower level
specification.

As part of our work in this study we experi;_
mented with constructs to specify database
serializability using a two level specifi
cation. We introduced the concept of a
state machine trace or history to solve 1.
we found that the required justification in
2 was similar to database serializability.

Consistency and Security As mentioned ear
lier, a unified approach to database con
sistency and security was established. Both
can be expressed in terms of database con
straints. Thus security requirements can be
specified and evaluated with constraint
mechanisms already avail a.ble in some data
base management systems.

we explored various issues involved in the
maintenance of consistency of a distributed
database in a perilous environment and the
conflicts between concerns for consistency
and concerns for security. He proposed the
concept of flexible evaluation of database
constraints as a means of addressing both
problems. ~fe suggest three kinds of flexi
bility: deferred evaluation of constraints,
alternative actions in response to a viola
tion, and a more general notion of a con
straint - one which allows for exceptions.

In the case of deferred evaluation of con
straints some updates are allowed without
consistency checking. The new data is
marked as unreliable. At some later time a
process checks for consistency and restores
it if necessary by deleting some or all of
the marked data. This approach could be use
ful in resolving conflict between the needs
of security and consistency when consistency
constraints span security levels. The
potential flow of information between secu
rity levels would be avoided or reduced by
aeferring evaluation from update time to
say the end of the day. '.i.'he same mechanism
could be useful in battle situations where
security leaks are of secondary concern corn
pared with real time requirements. In this
case the checking of security constraints
would be deferred.

'rhis task was led by Douglas vl·eber of ORA.

A few highlights of the report, "Verif ica

tion of Fault Tolerance" [131, follow.

In this stuay we were concerned with a
declarative, rather than procedural, defini
tion of fault tolerance and what steps must
be taken to prove that a system design in
fact has such fault tolerant properties.
Nean time to feilure, a common measure of
fault tole~:ance, was not appropriate in this
context since it depends on the operating
environment of the system, not the design.
He dealt instead with the concept of "fault
scenario." A fault scenario is a history of
a system's interaction with its environment
whicn includes not only its inputs and out

. puts, but also a aescription of failures. A
system's environment will determine whether

80

or not a particular fault scenario occurs,
usually in a random way. 'l'herefore, a
system's environment "assigns" probabilities
to each fault scenario. Nean time to
failure is determined by the probabilities
of fault scenarios for which the system is
not 	"tolerant."

Our treatment of fault tolerance in this
study was only minimally concerned with
strategies, designs, and alogorithms used to.
implement fault tolerant systems, and only
then as examples to show why a particular
definition of fault-tolerance is relevant.
He considered verification of fault toler
ance to be a proof that a system design sup
ports a given set of fault scenarios. We
have not dealt with the problems of insuring
that a system meets the requirements of its
design.

Our definition of fault tolerance is similar
to the noninterference aef ini tion of secu
rity. In essence it says that the system
behavior in the presence of a given fault
scenario is the same as the behavior in the
absence of the faults of that scenario,
where behavior is defined in terms of inputs
and outputs.

Hethods for implementing fault tolerant sys
tems are different from the access control
methods for implementing security because
faults are not external events and therefore
it is not possible for a system to decide
immediately whether they are fault events or
not.

E'aul t tolerance is usually implemented by
redundancy. 'fher.efore one simple way to
specify fault tolerance is to specify the
redundancy of state information in the
design. A design is fault tolerant if it
correctly maintains the redundancy as an
invariant even in the presence of the speci
fied faults.

our 	 approach to specifying fault tolerance
involves specifying a set C of fault
scenarios. With this approach it would be
useful to have a way of specifying a grace
ful 	degradation property to the effect that
fault scenetrios only slightly worse than
those specified will not reduce the system
to chaos. Graceful degradation can be
defined in terms of limited interference.
Then we can use the same approach to speci
fying graceful degradation as t_o fault
tolerance. A set of faults C' that includes
the 	faults close to those in c is defined.
An appropriate invariant for C' will result
from a weakening of the invariant for c.

He experimented with modeling an example
using HIM. It was possible to specify a
pa.rticular redundancy design but it was also
clear that more support for the concept of
history or trace was called for.

81

This task is led by Dan Halpern of bytek.
All members of the team are contributors to
the study. We report here mainly on work
done at Sytek.

]}. .r'orm£.1,_ Specif.iQst.iQn Language for .D.istri
~ ~~.&; For the short term tools we
expect to develop a distributed system
specification language (DSLJ to deal with
the issues which confront us: object
oriented design, concurrency, and hierarchi
cal design. We are familiar with HDN as
enhanced by the Nuse tools [7] ana with Ver
langen [10] and these will serve as a basis
for our development of DoL.

Aspects of object-oriented design and
specification of concurrency have been
worked out in Verlangen. We have thought
about how to modify the concept of an HDN
module to be compatible with Verlangen' s
class and process concepts. Such an evol u
tion of HDN seems natura~ and nonprob
lematic.

We are experimenting with the HDN concept of
specification levels. HDM envisages a
hierarchical development where each level of
the hierarchy represents a state machine.
In the HDl'l concept a lower level machine
implements the next higher level. 'I·he con
cept is similar to what is used in computer
and network architecture. Levels a.re to be
tied together by implementation mappings.
These mappings preserve the specification
constructs, i.e. types are mapped to types,
state-variables to state variables, opera
tions to operations, etc. Mappings for
operations involve procedural constructs;
all the other mappings are expressed in a
declarative language. Typically the mapping
images of the nonprocedural parts of the
specification will be characterized by
decreasing levels of abstraction. Theoreti
cally, the lowest level of specification
will involve types and other constructs
which correspond directly to the ingredients
of the target higher-order language (HOLJ.
If the mappings are also expressible in the
Ha., the multilevel specification could be
converted directly into code in such a way
that the layers of the specification become
layers of the implementation. In practice,
this perfect mapping from specification to
code is unlikely for at least three.reasons:

1. 	 Restricting the specification of map
pings to implementable constructs may
be too constricting.

2. 	 The specification is likely to follow
the imperatives of formal specification
and verification and these are not the
same as the imperatives of efficient
code construction.

3. 	 t'urthermore, the Hll<l concept that the
specification is composed of levels
which are complete machines seems to be
unnecessarily rigid.

Nevertheless, the intro·duction of procedural
constructs into the specification should reusability feature - namely it can be
allow the specification to get closer to the
code level than it coula without such con
structs. 'rhus some implementation issues
can be addressed with such specifications.

we understand and subscribe to the widely
helct belief that the economical development
of reliable software aepends on a aevelop
ment process which pays attention to mainte
nance, reusability, and extendibility. We
believe that object-oriented design is
currently the best design paradigm for sup
porting these goals directly. A persuasive
case is made by Bertrand Neyer [14] •

We also subscribe to the belief that reusa
bility of code implies specification
reusability ana in turn, that this requires
formal specification of interfaces. 'rhus we

. see two somewhat different requirements for
formality: those of formal verification and
those of formal specification of interfaces
to support evolution of software. vie also
believe that formal verification plays only
a small part in the development of reliable
systems. Certainly, given the current state
of formal verification, the other- parts of
the development process are more important
in the sense that if these are faulty the
verification can be rendered usetess, but if
these are done well, a. faulty veJ>ification
will not degrade their impact. ';[he result
of these beliefs is a commitment to pay much
attention to software engineering not only
for the usual reasons but also as an
integral adjunct of formal verification and
as a process that can benefit directly from
for mal methods.

'l'herefore, in this task, besides reviewing
existing verification systems such as Gypsy
[l~l, hDN-Huse, FDN [16], and verlangen and
specification paradigms such as CSP [17] we
are exploring different aspects of software
engineering. ORA is looking at Ada support
environments. CCA is investigating DBI>1S
design systems. RCA is looking at conf i
guration management.

Sytek is involved in a survey of software
engineering environments. /!iiany of the tools
we have investigated concentrate on direct
support for the development of code. 'i'he
production of specification is only inciden
tal to coae development. vie need a paradigm
which emphasizes the specification as an end
product and preferably one that permits a
gradual hierarchical development from
specification to code. Eiffel [18]
developed by Interactive Software Engineer
ing of Santa Barbara appears to be an ideal
choice. It achieves the desired development
goals by supporting a rich version of object
oriented design and programming. Further
more, it achieves a crucial form of flexi
bility in that it has a form of target
language independence. 'l'he system can
accommodate any programming language that
can be called from C. Thus ari Eiffel
specification/program has an interesting

reuse a with aifferent degrees of complete
ness. If one needs or wants to use a dif
ferent programming language but likes the
specification and structure of an Eiffel
program, it is only necessary to rewrite the
low level code in the new language. '1'he new
implementation will have the same runtime
and testing support from Eiffel as did the
original. ':f'hus Eiffel can be used as a PDL
for Acta programs.

This kind of partial reusability appears to
offer greater promise than a more rigid form
of reusability. One obvious limitation on
reusability of code is the multitude of pro
gramming languages. Although this proli
feration is decried by some and attempts
have been made to enforce a standard such as
Ada, there is good reason to believe that
programming languages, like natural
languages, are destined to be with us in
abundance. The Eiffel paradigm attempts to
live with this reality and in so doing
offers possibilities of more success than
paraaigms which assume that reality will
change to accommodate them.

For us, Eiffel suggests an intriguing direc
tion for the scenario outlined above. Our
development of DSL will involve numerous
design choices concerning such things as
multiple inheritance, generic types,
polymorphic types, and static type checking.
'l'hese choices have already been resolved in
the design of Eiffel. Furthermore, Eiffel
contains the rudiments of formal specifica
tion and a paradigm that uses inheritance to
support hierarchical development from
specification to code. •ro the extent that
we can abide by the decisions made in Eif
fel, our language could eventually be incor
porated into Eiffel as an enhancement. Of
course, things are not likely to go so
smoothly so a combined system, DSL and Eif
fel, is likely to involve changes to Eiffel
as well. Nevertheless, if the marriage goes
well, we will have a short term workbench
and perhaps a long term design far more
valuable than we had a right to expect when
we wrote our proposal in April of l~b6.

Conclusion

Underlying this project is the belief that
an environment for developing secure distri
buted systems which includes both formal
methods and traditional software engineering
can be developed. Although the belief is
still far from vindicated, our initial work
supports optimism in this regard. Further
more, it appears that the attempt at this
type of development in the context of
addressing the needs of secure distributed
systems can have a beneficial impact on the

. state-of-the-art in formal specification.

82

RE}'ERENCE..S

[ll 	 L. Robinson, K.N. Levitt, and B.A.

Silverberg. "HUv! Hanabook," volumes

I-III, SRI Computer Science Labora

tory, June 1~7!1.

[2] 	 B.A. Silverberg. "An Ollerview of the
SRI Hierarchical Development .tv!ethodol
ogy," SRI Computer Science Laboratory,
July 1980.

(3] 	 B.A. Silverberg, w.D. Elliot, and D.r'.
Hare. "Revisions to HDI-1 and its
'l'ools," SRI Computer Science Labora
tory, October 1981.

[4] 	 N. Proctor, "The l<estricted Access
Processor, An Example of Formal Verif
ication," IEEE 1!185 Symposium on Secu
rity & Privacy, April 19 85.

[5] 	 N. Proctor and ~::>. ONre, "Restricted
Access Processor Verification Results
l<eport," 1'R-84002, 5ytek Inc., July,
1985.

[6] 	 S. ONre and J. D. Ra~pern, "Jvluse: 'l'he
Sytek Proof Processing System," •rR
ti5007, Sytek Inc., July 1!:185.

[7] 	 J.D. Halpern, S. ONre, N. Proctor and
w. }'. Wilson, ".tvluse: A Computer
Assisted verification System," IEEE
1!186 Symposium on Security & Privacy,
April 1986.

[8] 	 BBN Laboratories and udyssey Research
Associates, "'l'he Secure Distributed
Operating System Project," BBN La.bora
tories Incorporated, July l89ti.

[9] 	 D.E. Britton, "Verlangen: A verifica
tion Language for Designs of secure
Systems," Proceedings of the 8th
DOD/NBS Computer Security Conference,
September 1!:185.

[10] 	 RCA, "Verlangen Language Guide," RCA
Aerospace and Defense Advanced 'l'ech
nology Laboratories, October 1986.

[11] 	 ORA and RCA, "'.l.'empor al l:'roperties of
Distributed Systems," 'l'echnical Report
TR87003 DS, Sytek, Inc. April, 1!187.

[12] 	 CCA, "Database Consistency and Secu
rity," Technical Report 'l'R87004 DS,
Sytek, Inc. May, 1987.

[13] 	 ORA, "Verification of Fault
•rolerance," Technical Report 'l'Rb7002
DS, Sytek, Inc. April, 1!:187.

[14] 	 Bertrand Jlleyer, "Reusability: 'l'he case
tor Object Oriented Design," IEEE
Sof tw are, Narc:t1 19 87.

[15] 	 D. Good, "Revised Report on Gypsy
2.1," Institute for Computing Science,
the University of ~exas at Austin,
1984.

[16] 	 R. Kemmerer, "F'Dh - A Specification
and verification Jviethodology," System
Development Corp., November, 1!180.

[17] 	 C.A.l<. Hoare, "CommunicatingSequen
tial l:'rocesses," Prentice-Hall Inter
national, UK 1985.

[18] 	 B. !'!eyer, "Eiffel: Programming for
Reusability and Extendibility,"
Interactive Software Engineering,
Inc., January, 1987.

83

,'·~"l¢'"

SPECIFICATION FOR A CANONICAL CONFIGURATION ACCOUNTING TOOL

R. Leonard Brown

Computer Security Office, Ml/055

The Aerospace Corporation

P.O. Box 92957

Los Angeles, CA 90009

The Trusted Computer System Evaluation Criteria 1 includes the requirement that

design documentation and source code of a B2 or higher class computer system be

kept under configuration management during development and maintenance of the

system. Furthermore, new releases of evaluated systems that are submitted to the

National Computer Security Center (NCSC) for re-evaluation as the same class

(maintenance of ratings evaluation) must have been kept under configuration

control since the previous evaluation. As an aid to evaluation of other

configuration accounting systems for use in development of a secure system, a

canonical Text and Code Control System (TCCS) has been defined. This paper

describes the system. This system is not intended to be built, since it is not fully

defined here or in the draft guideline, nor does it have all the functionality of some

existing systems. Rather, the TCCS is presented as a reference standard that a

product that is under consideration for development or purchase can be compared

against. The use of TCCS, or a similar tool, as an integral part of the software

development cycle is described.

1. Introduction

The Aerospace Corporation has prepared a draft guideline2 on configuration

management for operating system software and computer hardware that describes

the minimum configuration management effort required at the B2, B3 and A1

classes of the Trusted Computer System Evaluation Criteria 1. This guideline also

recommends higher levels of effort for all systems submitted to the NCSC for

evaluation. As part of the research conducted during preparation of the draft

guideline, several existing automated configuration accounting systems were

examined. Two were found to be in common use and also sufficient for the

recommended level of configuration accounting. These were the Source Code

Control System (SCCS) which runs under the Unix • operating system, and the

VAX DEC/CMS (Code Management System) ••online library system, which runs

under the Digital Equipment Corporation VMS operating system. Both require

the use of additional programs, make in tfle case of SCCS and VAX DEOMMS

(Module Management System) in the case of CMS.

Major features of these utilities are incorporated into the specification of TCCS.

TCCS is intended as a reference standard against which one can compare

prospective configuration accounting tools. If one can perform the same

operations as are performed by a function in TCCS by using at most a few basic

functions of the proposed system, and if the database entries contain

approximately the same information that a TCCS directory and its files contain,

then that system would allow an appropriate level of configuration management to

be applied to development of a secure computer system.

1.1 Organization of Paper

The paper consists of the following sections. Section 2 describes the functionality

of SCCS with make, and then that of VAX DEOCMS with DEOMMS. A

recommended feature that neither system includes is described at the end of

section 2. Section 3 has two subsections. The first describes the syntax and

functionality of the basic calls of TCCS. The second gives implementation notes

for the system. Again, this is not because it is intended that TCCS be

implemented, but if a product is being evaluated for use with a particular

development machine and its operating system, one would have to hypothesize
·how TCCS would be implemented on that machine and operating system in order

to compare it to the product being evaluated. Section 4 describes

•unix is a Trademark of Bell Laboratories

..,.VAX is a trademark of Digital Equipment Corporation

how TCCS would be used during the development of a project which was subject

to the requirements of DOD-STD-21673 , Defense System Software Development. '

This does not mean that the NCSC will require that secure computer systems be

developed to this government standard, but this standard is well known and is

similar to the software development cycle used by many vendors. The Appendix

contains the Backus Naur Form for the simple grammar of TCCS; these calls

would typically invoke a particular interactive function which would then prompt

the user for the information required to complete the 9peration. On some systems,

a command processor would have to be invoked first; on other systems, the

functions could be called from the top level command interpreter. The intent of

including the syntax specification is to show what parts of an instance of TCCS

are dependent on its implementation and which depend on the operating system.

2. Existing systems

A number of software developers have created the kind of automated document

control facility that proper configuration accounting requires. Text, both from

source code and from the other documents involved in the development of

software and hardware, can be entered and modified only through use of the

automated system, although any programmer can get a working copy of the

current developmental configuration for purposes of modifying the source code or

documentation, or testing the latest version of the software. Updating the source

code or document must be done only by personnel with permission to make such

updates. The examples discussed below are partially dependent on the
discretionary access control mechanisms of their existing system, but each system

records who made each update; in addition, a reason for update may be asked for.

In addition to the existing systems described here, most commercial database

management systems (DBMS) can be used for configuration accounting by

creating a front end processor that interfaces to the query language processor of

the DBMS. If a DBMS is used, then it must have only read or write access to the

records, and all updates must be made through its query language.

To motivate the list of general functions given below in section 3.1, a description

of two similar systems is given here. Under the Unix 1M system, the make utility,

and the elements admin, get, prs and delta which comprise the Source Code

Control System provide a basic configuration accounting system. The Module

Management System (VAX DEC/MMS) and Code Management System (VAX

DEOCMS) which run under the DEC VMS operating system provides similar

facilities. In fact, MMS is modeled after make and has an almost identical syntax.

2.1 Unix1M SCCS

The SCCS system runs under the Unix 1M operating system. There are several

good references on it, including an overview4 and a manua15 . The steps of

configuration accounting corresponding to the life cycle steps described in DOD

STD-2167 require a series of function calls from the operating system shell.

Initially a directory is created using the mkdir function. At this point, it is possible

to use the owner, group, world protection scheme provided by Unix 1M to protect

the directory. In addition, a list of login identifiers is created to specify who may

update each element to be processed by SCCS. Some protection strategies are

discussed below.

For notational purposes, each entry in the directory is referred to as an element.

Following directory initiation, each document is entered initially using the

function admin -n (the-n modifier specifies this is a new element). As each

update is made to an element, a new generation of that element is created. SCCS

84

calls each new generation a delta. Each element is stored in a file by SCCS, and

the filename is prefixed by s.; any files added to the directory that do not meet this

requirement are ignored by ihe SCCS function calls. A number of arguments may

be specified when admin is called. These arguments specify parameters that

affect the file, and may be changed by a subsequent call to admin. For example,

one such parameter indicates whether branches may be created for an element.

The alogin argument is used to create the equivalent of an access control list by

listing login names of users who can apply the delta function to the element, thus

creating either a new generation (delta) or a variant branch. Setting the v flag

causes a prompt for MR (Modification Request) numbers to be issued on any

update. The admin function is also used to change any flags or parameters.

During the initial writing of source code, the programmer keeps the code in his

own directory until it will compile and pass a few simple unit tests. The initial

release, or initial delta, of each code module is inserted into the sees directory by

means of the admin -n function. The programmer may update each such module

by using the get -e function which indicates that the module will be edited, and

then the completed document will be reentered into the directory using the delta

function. As long as the module being edited was extracted from the SCCS

directory using get -e, it can be returned to the library using delta, and all

necessary update information will be entered with it, including the MR number if

admin {v has been called to set the v flag. The get function can be used to extract

a copy of any document, but after it is edited it cannot be reentered into the

directory. Get is useful for printing out copies of documents, running test

compilations when some other module is being modified, or to allow more than

one team member to work on the same document since the project manager can

then use get -e and delta to enter the final, approved changes.

When the code is to be tested, make can be used to generate a test build. This

function looks for a file named makefile in the current directory and tries to create

a new version of the file named on the first line. Since this is usually an

executable file, it checks to see whether all the object files needed by the loader to

create this executable file are up to date, which is only true if the source files are

up to date. In other words, the makefile gives the dependencies of an executable

file, and makes sure the last moclified date of any file is the same or earlier than

that of any file that depends on it. When such is not the case, the contents of

makefile specifies what action to take, or if no action is listed, searches a list of

default actions. For example, ifkernel.o, an object file, must be updated because

kernel.c is newer, then make will automatically run the C language compiler on

kernel. c. If the source files are kept in the SCCS directory, then make must get

the needed source files from there. A .DEFAULT entry in the make file ·can be

used to apply get to all needed source files if any of the object files require

updating.

Another concept that is useful in integrating and testing software is that of the

software build. During the testing phase of software development, a subsystem of

modules can be integrated into a single executable load module and tested.

However, while this testing goes on some of the source files may still be under

development. Testing a software build requires a stable set of files. SCCS and Ill make can handle this in one of two ways: cutoff specification and branching. If no

source files will be modified during the testing, even to correct minor syntactic

errors, then the makefile that creates the build can specify on the get function that

only deltas made by the testing start date are to be included. Thus, the same

versions of the source code are always retrieved. Alternatively, if some minor

debugging will be allowed during the testing, while the development team

continues to work on the source code so it will interact correctly with a later test

build, then each element of the source code can be split into two or more

branches. One branch will only contain the minor debugging changes made by

the testing team, while the other branch will contain changes made by the

development team. When testing is finished, all changes made during testing

must be incorporated with the current development team code.

sees provides the capability to specify a software build by the way it assigns an

SCCS Identification number (SID) to each output of the delta function. Then one

can get any version of a text or source code file by specifying the appropriate SID.

The form of the identifier is R.L[.B[.SJ] where each of R, L, B and S is an integer.

R stands for the Release number, which is initially 1 and must be forced to

increment by a specific user action. L stands for Release Level. The project

manager may decide to allow several branches to be created within the same file,

either with the intent of later incorporating these branches into the same

document, or of having a different branch for each possible hardware

configuration, or each possible subset of peripheral devices, or for some other

reason. In that case, the optional B stands for the branch designator and, for each

branch, the S stands for the se~uence number. Straightforward rules define how

to specify the particular SID desired when get is called. If no SID is specified

then the latest release and level is provided. A branch must be explicitly named as

an argument to get for it to be retrieved. The SID of the resulting call to delta is

also affected by the SID used when get -e is called. A table showing these rules is

provided in the description of the get function in the Unix™ Programmer's

Manual5 .

Two versions may be incorporated using the get -i list function, specifying the

most recent sequence number of each branch. The user who executes this will be

notified of any conflicting modifications and must handle these interactively.

The function prs allows for configuration auclit, since it extracts information from

the s. files in the SCCS directory and prints them. Prs can be used to quickly

create reports which list one or two important values, such as last modified date,

for many SCCS files, or many values for one or two files. Larger reports can also

be created and processed using an editor.

2.2 VAX DEC/CMS and DEC/MMS

The confi.e.uration accounting system called VAX DEC/CMS6 is also used to track

a history of each text file stored in a CMS directory, but CMS does significantly

more auditing and cross checking than SCCS does. For example, if an editor is

used directly to modify a file in a CMS directory, any further use of that file by

CMS generates a warning message. Any files entered into a CMS directory by

other than the CMS utility will cause CMS itself to issue a warning message when

it is invoked for that directory. Otherwise, the process of configuration

accounting is similar to that used with sees.

The CMS CREATE LIBRARY function causes a directory to be set up, and initial

logging to start. The project manager enters each element into the directory by

using the CMS CREATE ELEMENT function. One must RESERVE an element

of a library to modify it, and it can be put back into the library only by using the

REPLACE function. If someone else has RESERVEd an element between the

original programmer's RESERVE and REPLACE calls, a warning is issued to

both programmers and the occurrence is logged. To get a sample copy of text,

such as a program source, the FETCH function will generate the latest generation,

or any specified generation, of an element, but will not allow a modified copy to

be reinserted into the library. The SHOW function can be used to audit the

information about each element in the library.

MMS7 is almost identical to make, even down to using the default name makefile

if its first default description file DESCRIP.MMS is not in the current directory.

Differences between SCCS and DEC/CMS appear concerning software builds. In

Unix 1M a build must be either described in a makefile, or else each element to be

used in a build must be retrieved from the sees directory using get, placed in

another directory, and the makefile then may refer to these source files to create

the executable build. In CMS, the process of selecting only a subset of source

files, including some which are not the most current, is automated by the use of

the class and group mechanisms. To see how this works, one must understand the

CMS concepts of generations and variants. Each generation of a file corresponds

85

http:R.L[.B[.SJ

to a Unix TM delta. Generations are normally numbered in ascending order. CMS

also has the capability of creating a variant development line to any generation by

specifying in the REPLACE function a variant name. For example, if one

RESERVEs generation 3 of an element, then performs a

REPLACE!V ARIANT = T, this will create generation 3Tl which may then be

developed separately from generation 3. The first time this is used, the equivalent

of an SCCS branch delta is created. Branches themselves can have branches, a

capability that sees does not have.

A group can be defined within a CMS directory, using the CMS CREATE

GROUP and CMS INSERT ELEMENT functions. A group is composed of all

generations, including variant generations, of all elements inserted into the group.

Groups can be included within other groups. Groups can be defined with a

non-empty intersection so that they have overlapping membership. The

DESCRIPTION file used by MMS can specify the groupname in a CMS FETCH

function on the action line of a dependency rule. This would then fetch the most

recent generation of each member of the group, including all variants. This is not

all that useful during development since, as was mentioned above, the most recent

generation may be changed by the development team during the course of testing

a build. However, once all variants are removed and the CMS library has

stabilized, a CMS FETCH function on a group name might be useful.

A more interesting case is the CMS class, which consists of specified generations

of some subset of elements. The CMS CREATE CLASS function, together with

the CMS INSERT GENERATION function can be used to specify the exact

elements of a software build, and the DESCRIPTION file can then refer to the

entire class by using the /GENERATION=[classname] qualifier on either the

source or action line of a dependency rule. This makes the dependency

description files quite simple when using MMS with CMS since the build can be

defined within the CMS directory and controlled by the program manager or

quality assurance team. The makefile required by Unix SCCS can be much more

complex when it is required to describe a software build for intermediate testing.

2.3 The Bind Concept

One thing that SCCS and DEC/CMS lack is a way to enforce that a change to one

part of the library requires a change to other elements. For example, if approval is

received to change the algorithm which implements ~particular function,

including a change in the code, more than just the code element itself must be

changed. Since no change has been made in the functional requirements of the

system, the top level documents need not be changed. But the code element, the

Top Level Design entries, any intermediate entries involving a description of how

the system functional specifications are met by software, any documents that

address how the system functions internally, and especially the test documentation

and test code itself must be changed. In existing software lifecycle models this

requirement is met by mapping each major function of the system down to each

lower level in the top down development of the system. This can be done

manually, but could be incorporated into the configuration accounting system as a

series of links between elements; change in one element would not only prompt

for the change authorization number that required the change, but would then lead

the manager or librarian who is making the changes to update every higher and

lower level document, prompting for the authorization number any time the

element is accessed until a response is incorporated into the element Current

system can do this only by adding comments to elements that are intended to

remind the manager or librarian to make the responses.

3. A Canonical System

The TCSEC requirements and the standard texts in software configuration

management8•9 describe the functions that an automated configuration accounting

system should provide. Inspection of the two popular systems described in the

previous section suggests a workable syntax for an interactive system. These

features could be implemented as part of a new operating system under

development, or through macros in a DBMS running on the development system.

If the development staff is considering buying a system for configuration

accounting, this provides a checklist of functions to look for.

3.1 TCCS Functional Specification

The functions of the Text and Code Control System (TCCS), and their SCCS and

CMS equivalents, are summarized in Table 1. A more complete description of

each function is given below. The function name is in bold type, and arguments

are in italics. No control arguments are specified, both because different systems'

implement these using different syntax styles, and because the basic TCCS system

described here is a minimal system, sufficient for configuration accounting but

with no added functionality. However, if TCCS were actually implemented,

considerations of efficiency and portability might require additional arguments.

• setup directory_ name -Create a directory, or its equivalent in the

current operating system environment, including access control

information. The initial access control should be set with only read

access to the project manager, or the entire group if the operating

system allows for the group concept. Only the TCCS kernel should

have direct write access to the files. The creator of the directory, and

those team members whose names appear on the access control list

within each element, should be allowed to use the save function.

• enter element filename - Move an existing file into the configuration

accounting directory as the initial text of a document, source code, or

binary data element. Initially only the program manager would have

save capability to the file. The enter function should prompt for the

user identification of all team members who will also have save

capability. If the operating system does not have a group mechanism,

then enter should also prompt for all users who have read (actually

copy) access. The enter function may be reused without the filename

argument to update this information.

• edit element specifier filename - Retrieve a copy of the specified
version of the element, and place it in a file of the same name in the

user's current directory for editing. The default when only the

element name is specified is the latest version of an element. One

may also specify an earlier version or a branch version. The syntax of

an earlier or branch version depends on the naming convention used

by the save function. If more than one editor is available on the

system, this should act as a sort of preprocessor which reconstructs

the desired version without any of the TCCS header material

normally stored with it.

• save list_o!_elements- save the file that was extracted with the edit

function back into the TCCS directory. If list_of_elements is a single

element name, then save should inform the user of the version

number to be given to the new version and then prompt for any

modification to that default. This is how a new branch would be

initiated. If list _of_ elements is a particular version specifier, save

will determine that it does not already exist, and that it is a valid

descendant of the element named in the corresponding edit function,

and assign that version specifier to the new version. If two or more

branches are to be merged, then all versions of element are specified

in list_o!_elements, all changes from the latest common root version

are applied, and any contradictions are signaled to the user. If the list

contains version specifiers that do not arise from the same element,

then an error condition is signalled and no other action is taken.

• copy element_specifier- create a printable or compilable file, based

on the specified version of element, which does not have sufficient

information to be edited and reentered into the library.

• audit element_list- The project manager, or anyone with read
privilege to the TCCS directory, can direct information about the

elements specified to be written as a report to the terminal, a standard

output device, or a file. The element_list can be a buildname or
bindname. The audit function prompts the user for the information

required and uses a default format for the output. One useful report

86

would be the list of elements specified in the buildname or bindname.

The format can be dependent on the output device. If sent to a file,

the report can be processed with a word processor or formatter.

There should be a default format, easily specified by the user, which

will produce a report in the same form as that produced by generate

(see below). This will allow the system to meet the TCSEC

requirement for an automated tool for comparing a newly generated

version with a previous version of the system.

• build buildname - specify a subset of versions of elements that can

then be named with a single buildname. The descriptive information

is kept within the TCCS directory, rather than externally.

• link bindname - create a list of elements which all must be changed,

or at least annotated, whenever one element is changed. In a top

down, tree structured development, this is the equivalent of a subtree

of the code structure. This is in contrast to a build, which is a

snapshot of a subset of nodes, none of which is a descendant of any

other, at a particular point in the development cycle. Also, a bind

includes the corresponding subtree of the documentation tree: design

documents, any related CM plan document(s), user or maintenance

manual entries, test documents such as functional and acceptance test

plans. It should also include the test code itself. At a minimum, one

bindname the designates the entire development tree should be

identified. Subsidiary binds could be identified for various subgroups

of the development team, or for test builds, or for variant versions that

are dependent on different hardware configurations.

• generate makefile - create a new load module using the precedence

information in makefile. This file could specify a buildname as the

source for a target executable module, indicating any versions of

source files within the build that are newer than the target must be

recompiled. If no makefile is specified, then all source language files

within the TCCS directory would be used to create a default

executable file, if that is possible. As a side effect, a report of which

source modules were recompiled, and which library or object

modules had been modified since last generation, is produced.

3.2 Implementation Details

3.2.1 File Structure The implementation of TCCS depends on the underlying

operating system and its file structure. If the file system allows for creation of a

subdirectory, then each TCCS database would be in its own subdirectory. If

access control can be applied at the directory level, then the TCCS directory

should have read permission granted to anyone who needs access to the data, but

write permission denied to everyone. Files within the TCCS directory should only

be modified by the TCCS functions. Some systems allow this by giving the

TCCS functions special privilege, similar to superuser privilege on Unix. Other

systems may not allow this, so the write permission would have to be placed on

the individual files.

Since the TCCS is meant for storing both source code and documentation, the files

should be able to handle all ASCII characters. Although it is intended that object

modules be kept outside the TCCS directory, using the generate function to

retrieve the source from the directory before compilation, there should still be a

way to store binary data. This would allow for documentation that includes the

output of graphic systems, such as files for a laser printer or output from a

graphics workstation or CAD system. If the filing system does not have a feature

that handles binary data other than object files, the TCCS should include this

functionality. Several techniques are available for this.

What flles are stored in the TCCS directory also depends on what the operating

system allows. A suggested set would include exactly one file for each named

element. Information on how the various generations and updates might be

handled in given below. Each buildname would be stored in a separate file which

would include the element name and specific information on which generation of

which branch is to be included in that build. This would be created by the call to

build, and processed by generate. Since the concept of a build is new, possible

implementations for the build descriptor are given below. If the operating system

directory block does not contain sufficient information about files to mai11tain the

full functionality of TCCS, then 11 directory data file would be maintained \'lith~

the the TCCS directory. Intermediate files created while elements are being

processed would also be kept within the TCCS directory, and deleted after use.

Journaling, or audit, data could also be kept in a file. To minimize problems due

to system crashes, whenever an element file is being processed the actual

processing should be done to a temporary copy of the file, then the name changed

at completion of processing. This would also allow any function to be aborted

before completion.

3.2.2 Element File Contents The actual contents of each element file must allow

the recreation of all versions of an element, including earlier ones. If the system is

used only when a major, and approved, change need be recorded, then the

inefficiency that results from this requirement is not important since TCCS would

use only a small percentage of total development resources. The element file

requires some kind of delimiting character to differentiate the required variable

length fields. Using a single non-printing character, such as octal 001 (SOH), at

the beginning of each new section rather than different characters for each section

will minimize problems caused by having multiple reserved characters.

A number of fields are required. The original text, as entered by enter, should be

delimited. A field containing a list of users who are allowed to save this file

should be included unless the operating system access control is sufficient for this.

For each call to save, the information required to create the new variation from a

base text is required. This has been commonly implemented by specifying which

lines are to be deleted, and where to add lines that have been added i.e.

instructions for a line editor to change the base text to the current text. If the way

that build numbers variations makes it obvious which was the base text, then it is

assumed that this field describes changes to that text. If it is not so obvious what

the base text is, which might occur if users are allowed to create names for

variations, then the branch and generation that this new generation is based on

should be named. When the edit or copy function is used, each delta is applied in

order to the original text to create the new text, and when save is used the new flle

should be compared to the base text and a new delta field created. A checksum

field can be used for data integrity.

3.2.3 Bind Specification Two methods of specifying the bind are possible: the list

method and the dependency method. In the list method, a list of all documents

related to a particular element is created. When the manager invokes the link

command with a new bindname, it prompts for the contents of the bind. If the

bindname already exists, it prompts for additions. An appropriate format would

be

namel :: name2,name3,name4,name5;

where the right hand side lists all elements that might have to be changed if a

change is made in the element on the left hand side.

In the dependency method, a notation similar to that of the makejile syntax is used

to show that a change in an element may be propagated. Unlike a makefile,

however, such propagation may occur in both directions. For notational purposes,

define up to be towards the root System Requirements Specification, and down

toward code, then sideways can be considered an element at the same level on

another branch of the tree. Consider the example of a change in the algorithm

described or listed in a Top Level Software design document. A change in it

would propagate up to the Software Requirements Document, and down the tree

to the code document. However, a change in the test code would only propagate

sideways to the test documentation, and a change in the test documentation would

propagate sideways to the test code, and also up to the software test plan. An

appropriate format for the dependency in a bind would be

87

Figure 1 - Sample Document Dependency Graph
namel<->name2

namel->name3

namel<-name4
where each actual inter-element dependency requires only one entry. In the first

example entry, a change in either element may require a change in the other; in the

second entry a change in name1 may require a change in element name2 but not

the reverse; the third entry shows that order can be reversed by using a different

symbol. See figure 1 for the partial graph of a simple project involving CPCI 1.1.

Table 2 shows both the list method and dependency method entries in a bind

description for CPCI 1.1.

Thereafter, whenever an element of the bind is modified, all related elements are

marked with the MR number and any invocation of that element will result in a

message that MR number has not been incorporated into the element yet. If an

element is a member of multiple binds, the person modifying the element is

queried to see which ones are appropriate to activate. For example, if t11e MR that

led to a CCB approved change is known to affect only the subsystem of which the

element is a part, and a bind has been defined for that subsystem, then that bind

and not the total system bind can be named.

4. Use of Automated Tools in the Software Development Cycle

DOD-STD-21673 describes a standard reference software development cycle

which a software developer should strive to emulate. This process can be assisted

by the use of a tool which implements the functions of the canonical TCCS

described above. The following sections describe how such a tool would be used

during software development of a secure computer operating system. Document

names in italics are documents specified in the standard, and described in related

Data Item Descriptions. Hardware documentation and any drawings generated by

CAD equipment could also be included in the configuration accounting, but for

reasons of brevity, and because the example DOD-STD-2167 is a software

standard, their use is not described here.

4.1 Requirements Development Phase

The system project manager initially sets up accounts for each programmer or

analyst involved in the project, and each programmer or analyst is given access to

a directory of text flies, an editor and word processor/formatter. Sharing of work

among team members should be easy to accomplish. During requirements

development, each team member writes specific sections of the requirements

document, following the format shown in the Standards and Procedures Manual.

If such a manual does not already exist, a draft version of it should be written by a

small committee of experienced team members. If it addresses only code and not

the format of other documents, then the team leader should develop a format

consistent with the way the configuration accounting tool will store the eventual

text flies. The Standards and Procedures Manual is the only document that need

not be entered into the TCCS database, although having an online copy, complete

with blank format examples, is desirable.

For B3 and AI systems, the formal security policy model and the consistency

proof are among the requirements documents generated at this phase. If an

existing model is being used, then this can be replaced by a reference to the

existing description.

Once the project manager sees that each section of the document has been

completed by the assigned analyst, although still subject to change by the manager

or as the result of interaction with other team members, the manager uses the

setup function to create a database. Each element of the requirements

documentation is placed in the database using the enter function. Documents that

depend on one another should be represented as a bind suing the link function.

Once this database has been created, the manager and team revise the documents,

a b
v v v

Top Leve~ Software System
Software QuaHty <- QuaHty
Design Eva~uati.on Assurance
Specif' tion Pl.an Plan

I
v v v

c
v v v v

<-> d>~ ~ e>~ ~·.··

v v v v

d> e>
v v

f>

Table 1 - Equivalent TCCS, CMS, and SCCS functions

TCCS CMS sees

setup CREATE LIBRARY mkdir

enter CREATE ELEMENT admin -n

edit RESERVE get-e

save REPLACE delta

copy FETCH get

audit CMSSHOW prs

build CREATE CLASS delta -rsid

generate MMS make

link N/A n/a

Table 2 - Bind Specification for CPCI 1.1 in a Simple System

List Method:

CPCJ: 1.1 .. CPCJ: 1.2, Unit Test 1.1

CPCJ: 1.2 .. CPCJ: 1.1, Unit Test 1.2

Unit Test 1.1 .. Test Description 1

Unit Test 1.2 .. Test Description 1

Detail.ed Design 1 .. CPCJ: 1.1, CPCJ: 1.2

Dependency Method:

CPCJ: 1.1 <-> CPCJ: 1.2

CPCJ: 1.1 <- Detailed Design 1

CPCJ: 1.1 -> Unit Test 1.1

88

http:Detail.ed
http:Eva~uati.on

possibly by letting other team members revise portions of each document. The ·

process involved in doing this is straightforward. The manager allows all team

members who will revise a section to have read access to the appropriate

elements. Then the team member uses copy to get a copy of the element, an

editor to do the rewrite, and gets approval of the manager to reinsert the

document The project manager uses edit to retrieve the document, uses the editor

to replace the changed sections with the approved files from his directory, then

Quality Evaluation Plan will include some intermediate testable builds. The

Quality Assurance team members create makefiles that describe these builds, and

write the required tests using a procedure similar to that de~cribed above. The

generate function is used to create these intermediate builds. The build function

can be used to simplify the makefiles by creating buildnames for the test builds.

Once the whole build compiles and loads, the tests are run and any errors or

inconsistencies are noted.

saves the modified document. During the edit/save operation the database is

locked so that no one else can execute an edit function on that element If every

team member were allowed to use edit then each document would have to be

broken into many smaller documents so that several team members could each

work on one section at a time. This is feasible for source code, but not desirable

for documentation. When the new section is saved, the automated tool

automatically notes what changes were made and who made the changes.

Once the documents are ready, the Configuration Control Board (CCB) reviews

the requirements documents. Any changes they require can be entered by the

team manager by using edit and save, giving the minutes of the CCB meeting as

the reason for the change.

4.2 Functional Specification

At the next phase of development, several documents are created~ In each case,

the same procedure may be used for text documents as was used for the

requirements document Thus, new database elements are placed in the system for

the Software Requirements Specification, the Interface Requirements

Specification, the Software Configuration Management Plan, and the Software

Quality Evaluation Plan. At the AI level, the Verification Plan is included. Each

element should be linked to its appropriate binds by the project manager. In each

case, enter, copy, edit, and save are used as above. Every use of save prompts

for a MR number if the document has previously been approved by the CCB.

4.3 Developmental Phase

During the developmental phase, the modules identified during the functional

specification phase are filled out, first with either graphical representations of the

algorithms to be used eg. flow charts, or textual representations such as

Progranuning Design Language (PDL). In the case of textual representations, the

same techniques may be used as for other documents. For graphical

representations, especially those produced on a separate device such as a CAD

workstation, the copy, edit, and save functions can be used over a

communications line connecting the workstation with the main computer. If such

a communications line is not feasible, then some kind of common medium such as

a floppy disk or tape will be used. In either case, the graphical representations

may still be kept under configuration control by the automated tool.

When coding starts, Configuration Identification comes into play with the naming

and numbering of modules. This can easily be enforced by the project manager

using the enter function. Each new element should also be linked into its

appropriate binds. Test modules are also generated for the simple tests used by

the progranuners to unit test these modules. A typical sequence of interactions

with the TCCS database would proceed as follows. The manager enters a code

segment, giving the first line of the module including the module name and calling

sequence as described in the interface document. The manager also enters a blank

unit test module. He links them together, and links the code module to its

description. The programmer creates a copy of the document, fills out the code

with reference to a copy of the flow chart or PDL representation of the module.

He writes a unit test procedure that calls the module. He compiles both pieces of

code, executes the simple test, and continues the familiar debugging cycle. Once

the code passes the programmer's unit tests, the project manager calls edit to

place the initial version of the module and unit test code into the database, or else

gives the programmer temporary permission to perform the same operation.

Once sufficient code has been generated, the test plan included in the Software

Erroneous test results require debugging and modification. Since all the modules

are under configuration control, debugging is not as simple at this stage as at

earlier stages. Each programmer must make sure that any changes made do not

affect other modules. Again, copy, edit and save are used to reprogram, unit test,

and replace modules. Once a build has successfully met its tests, the CCB meets

and approves all modules involved. Any further changes to a module requires

CCB approval and a MR number as justification.

4.4 System Integration and Testing

Once all intermediate builds are finished, the entire system may be tested. If the

system is to run on the development system, this is fairly easy. It is slightly more

difficult if the system is being cross compiled to another computer. The Quality

Assurance team uses build or generate to create a test system, including

compiling the test routines. The tests are run, any anomalies are noted, and the

reports are sent back to the manager for disposition. This should be the first time

that requirements and functional specifications are considered for modification.

Some major requirement, such as timing or capacity, may not be met by the

system. In such a case, either the requirement must be loosened, or a major

redesign may be required for the system. Any change to requirements, design or

code must be approved by the CCB. Any change to requirements or specification

must be propagated through the design and code; any change to the specification

or design must be propagated through the code. The TCCS makes this propagation

easy since requirements can be traced up and down the chain of documentation by

cross references to other documents and code segments within each database

element.

4.5 Production Phase

Once the fmal build passes all tests, and after the NCSC team completes testing

and approves the design and implementation the configuration accounting

database is archived for reference purposes. A clean copy, without any historical

data, is made of all relevant documents. All design documents, such as flowcharts

and PDL descriptions, and all source code modules are also copied in a form

stripped of all historical data. Generate is used to produce production copies of

the system from this. However, Configuration Control does not end here; it

continues from this checkpoint. The clean copies of all code and documentation

are stored in a new database kept by the configuration accounting tool, and during

the maintenance phase any changes to code, specifications, design, or possibly

even requirements, if approved by the CCB, are entered into the database using

edit. The link function is used to describe the relationships between the user

manuals and maintenance manuals, the operational test suite, and the code source.

The functions audit and generate can be used to provide the facility to ascertain

that only intended changes were made to the system version being produced. The

audit function can be invoked to list all elements that have been added to the cOde

since the last version. All of these changes must have been controlled by the CCB

and only entered by appropriate personnel. Then when generate is used to create

an object tape of the system, it will create a report of which source modules had to

be recompiled due to changes since the last version. A comparison of these

reports would show any discrepancies if either the makefile had been tampered

with, or an unauthorized change had been made to a source file after

circumventing the TCCS system.

89

References

1. 	 National Computer Security Center, "Trusted Computer System
Evaluation Criteria'', Tech. report DoD 5200.28-STD, United States
Department of Defense, December 1985.

2. 	 R. L. Brown, ''Configuration Management for Development of a Secure
Computer System'', Tech. report in preparation, The Aerospace
Corporation, 1986.

3. 	 Department of Defense, "Defense System Software Development'', Tech.
report DOD-STD-2167, United States Department of Defense, 1984.

4. 	 Kaare Christian, The Unix Operating System, John Wiley & Sons, 1983.

5. 	 Computer Science Department, "Unix Programmer's Manual", Tech.
report 4.2 bsd virtual V AX-11 version, University of California at
Berkeley, 1983.

6. 	 Digital Equipment Corporation, "VAX DEC/CMS Reference Manual",
Tech. report AA-L372B-TE, Digital Equipment Corporation, 1984.

7. 	 Digital Equipment Corporation, "VAX DEC/MMS User's Guide", Tech.
report AA-Pl19B-TE, Digital Equipment Corporation, 1984.

8. 	 Bersoff, Edward H, Vilas D. Henderson, Stanley G. Siegel, Software
Configuration Management, Prentice-Hall, Inc., 1980.

9. 	 J. K. Buckle, Software Configuration Management, MacMillan Press Ltd.,
1982.

APPENDIX- Backus-Naur Syntax ofTCCS

Implementation Independent Definitions

<session> <session body> end
<session body> <empty>

I <session body> <function invocation>

<function invocation> 	 .. <setup invocation>

!<enter invocation>

!<edit invocation>

!<save invocation>

!<copy invocation>

!<audit invocation>

!<build invocation>

!<generate invocation>

!<link invocation>

<setup invocation> 	 ::= setup <directory name>

<enter invocation> enter <element> [<filename>]

<edit invocation> edit <element specifier> [<filename>]

<Save invocation> save <list of elements>

<element> <name>

<element list> 	 .. - <list of elements>

I <buildname>

I <bindname>

<list of elements> 	 .. - <element specifier>

I<list of elements> <element specifier>

<copy invocation> 	 .. copy <element specifier>

<audit invocation> 	 ..- audit <element list>

<build invocation> 	 ..- build <buildname>

<buildname> 	 ..- <name>

<generate invocation> 	 .. generate <makefile>

<makefile> 	 ::= <filename>

<link invocation> 	 .. link <bindname>

<bindname> 	 .. <name>

Implementation Dependent Identifiers

<directory name> is a single identifier that satisfies the local operating system

syntax for naming a common group of files. In a tree style directory filing system,

this would be the name of a subdirectory. In a flat file system, this would be the

common prefix that all files in the group use.

<filename> is a single identifier capable of specifying a contiguous text or binary

me. In a tree structured directory filing system, this would be a (possibly

abbreviated) pathname. In a flat filing system, it would be the full name of the me

unless the operating system allowed part of the prefix to be assumed.

<name> is a default text string that the operating system command processor

would recognize as a valid argument to a function call. The name should be

passed intac.,, as a text string identifying the TCCS element or buildname to be

processed.

<element specifier> is a valid name, as above, plus whatever additional text is

required to specify a particular release or level of a main or side branch of an

element.

90

RACF IMPLEMENTATION AT PUGET POWER

Arturo Maria, PhD

Information Systems Consultant

Abstract

This document describes the approach
taken at Puget Sound Power and Light
Company to implement IBM's Resource
Access Control Facility.

Introduction

During the past ten years, a very signif
icant shift of focus has occurred in the
information processing industry. This
shift of focus has emphasized not only
output and information dcliverablcs, but
internal controls as well. Several forces
have contributed to this shifi of focus
including federal statutory requirements,
state and local government regulations,
accounting and audit firms interpreta
tions of data security/internal control
regulations and the micro-computer rev
olution which has brought tremendous
computer power at a relatively low c?~t
-- power which can be used for legiti
mate and illegitimate purposes.

To illustrate this shift of focus, the im
pact of the Foreign Corrupt Practices
Act (or FCPA) should be highlighted.
This important Federal legislation en
acted in the late 1970's attempted to
bring accountability for un-ethical busi
ness practices to corporate directors and
officers. However, amendments to this
act and interpretations by legal and au
diting national firms extended this act to
cover not only un-ethical business prac
tices but crimes involving computer re
sources when these resources are not
properly protected. Thus, the impor
tance of internal computer controls was
brought out of the technical realms and
into the boardroom where it became a
legitimate business concern -- the proper
place for this issue.

Data security and internal controls have
become corporate business problems and
not technical problems. Thus, our im

plementation of information resources
controls had to be addressed first at a
corporate level and secondarily at a
technical level.

In our company, the need for a security
package was highlighted by our external
and internal auditors who commented
on the need to install security packages
and improve controls. This need was
further highlighted by federal and state
legislation such as the Privacy Act and
the Washington Computer Trasspass
laws (RCW 9A.52.110) which further
define Corporate responsibility and
computer crimes.

These combined factors and cost/benefit
opportunities prompted management _to
authorize the purchase of a data secunty
package and the creation of.a~ In\or
mation Systems Access Admmistratwn
group to manage the implementation of
the package and the daily management
of access requests and profiles.

This document describes the approach
taken at Puget in installing our data se
curity package and the
problems/solutions associated with such
an implementation. A special note of
appreciation is extended to our Manager
of Information Systems Quality Assur
ance, Jim Hall, for his support during
the early stages of this project. In addi
tion, Roger Deitz of Technical Support
significantly and enthusiastically con
tributed to the success of this project by
developing/installing systems interfaces
and providing valuable input where
philosophical decisions were required.

Defining Corporate Policy and
Procedures

Since internal controls and data security
issues arc management issues, it was
imperative that our corporate manage
ment clearly stated official corporate

91

policy on these issues. Our corporate
policy on these issues is stated in our
Corporate Policy Guide Section 34
"Information/Data Security'' which
states:

"All employees are responsible for
protecting, utilizing, and releasing
information resources of the Com
pany in a manner consistent with the
direction and standards set by the
Internal Control Review Commit
tee".

In addition, CPG-34 further clarifies the
intent of this policy by stating that:

"Information Resources within any
company organization are property
of the company. The Company,
through its employees, has a respon
sibility to balance the requirements
for information with the need to se
cure its information resources from
the threat of willful or accidental
destruction, modification and unau
thorized disclosure. Responsibility
for the security of information rests
with the individuals having pos
session or knowledge of the infor
mation".

A major/key concept in this policy sec
tion is the definition of Information Re
source Administrators (IRAs) who are
directors and managers who have au
thorized the creation and maintenance
of corporate data. These IRAs deter
mine who can and can not access their
data. Therefore, Corporate Information
Systems became a custodian (and not
owner/administrator) of the data. If a
corporate employee needs access to a
specific resource, Access Administration
coordinates the signature approval proc
ess and forwards these requests to the
proper IRAs who subsequently approve
and/or deny these requests. Thus, Cor
porate Information Systems became a
coordinator of access and not a decision
maker.

It should be noted that improper handling
and/or disclosure of information is sub
ject to disciplinary action as outlined in
our Corporate Policy Guide section II
Ethics.

Access Request Procedures

Procedures delineating steps required to
request/grant access are described in our
Standards and Procedures manual: In
formation Systems Guide section 102.

ISG-102 was created in order to docu
ment procedures to be followed when
requesting access to online systems-- i.e.
TSO, ROSCOE, CICS, VM/CMS,
Model 204, etc. -- or other Information
Systems resources under the
custodianship of the Corporate Infor
mation Systems department.

As discussed in CPG-34, the Company,
through its employees, has a responsi
bility to balance the requirements for
information with the need to secure its
information resources from the threat of
willful or accidental destruction, modifi
cation and unauthorized disclosures.
Central access controls are therefore re
quired to secure these information re
sources and protect them.

It should be noted that responsibility for
the security of information rests with the
individuals having possession or know
ledge of the information. Therefore, ac
cess control services are provided in
order to minimize improper handling or
disclosure of information.

Selection of a Package

A technical task force was formed in the
Summer of 1985 to evaluate access con
trol software systems generally available
in the market. This task force was
composed of Quality Assurance, Data
Administration, Computer Operations,

92

Financial Systems, Applications Devel
opment, Customer Services, Client Ser
vices, Internal Audit and Technical
Services. The mission of this task force
was to develop a criteria which would
be used to evaluate access control soft
ware packages that are currently avail
able that would run in the VM
environment and the MVS/XA environ
ment.

The overall strategy called for each re
source manager/technical task force
member to provide a set of issues and
requirements for their specific area of
responsibility. These requirements
would then be used in order to evaluate
access control packages and make a re
commendation to management.

The task force defined the original crite
ria for selection based on requirements
that the selected software package must
have sufficient market share in order to
ensure that the vendor selected would
be able to support a multiple vendor
software environment. In addition, the
selected software package must run in
the MVS/XA environment and in the
VM/SP environment in order to ensure
protection for our overall environment,
restrict access to systems interfaces and
ensure that physical modifications to
shared resources would be recognized
across operating environments.

Based on these initial requirements, the
task force reduced the number of pack
ages to three. They were ACF2, RACF
and TOPSECRET.

During the task force evaluation ses
sions, it was noted that at the time
TOPSECRET was running in the VM
environment only in selected beta sites
environments and that the VM compo
nent was not scheduled for general re
lease availability until late 1985/early
1986. In addition, our external auditors
suggested that our environment should
not consider access control software
packages that are running in production
environments for less that one year.

Based on this criteria, the packages un
der consideration were reduced to two:
ACF2 and RACF.

The task force developed a set of re
quirements which were used to evaluate
both packages. It was found that both
ACF2 and RACF met all the technical
and end-user requirements formulated
by the task force. Several changes had
occured in the last 18 months
(1984/1985) which made RACF and
ACF2 very similar in ease-of-use char
acteristics and flexibility.

In addition, IBM had changed the
source code distribution policy for cer
tain products under MVS/XA where the
source for operating systems modules
and other selected products is not re
leased. Since ACF2 relies on non
standard interfaces and front-end
modules, several ACF2 users speculated
that this change in IBM policy had
caused a problem for current and up
coming releases. In addition, some
ACF2 customers and other industry
specialists implied that products such as
ACF2 are in a period of transition since
most of their interfaces to the operating
system would have to be rewritten
and/or modified in order to accomodate
changes in MVS/XA.

With Release l.7 of RACF, the differ
ences in product philosophy and capa
bilities are almost non-existent. This
was not the case in previous releases.
The net effect is that today, there is very
little difference between the products.
In addition, IBM declared RACF as a
strategic product and as such, an inte
gration of the data managment, operat
ing system capabilities and access
control facilities, we felt, is inevitable.

Therefore, the technical task force
unanimously recommended that RACF
should be selected as our access control
software package. A summary of re
quirements developed by the task force
are included in the document entitled
"Access Control Software Technical

93

Evaluation" (August 22, 1985) available
upon request.

SYSTEMS IMPLEMENTATION

SYSTEMS SOFTWARE
INSTALLATION

Installation of the Operating Systems
components for both environments
(VM/SP and MVS/XA) is, in general
terms, a 'by-the-book' process. Essen
tially, IBM's SMP procedures and VM
installation procedures are followed and
the components are properly installed.

It should be noted that we we elected
not to implement a shared database en
vironment, since the VM/SP and
MVS/XA environments are are not
totally integrated. In addition, we felt
that the risks associated with installing
a shared environment outweighted the
possible benefits associated with such an
implementation.

USER IDENTIFICATION

Once the operating system components
are installed, the next logical step is to
identify all system users. This procedure
necessitates a common method of iden
tification. We elected to use a Zxxxxx
standard where xxxxx = employee num
ber. By using the employee number,
RACF identification would remain con
stant even if the employee changed
names, working locations or job titles.
By being unique, the employee number
also provided an excellent identifier that
could be used in tandem with Human
Resources supporting systems.

Once this standard was adopted, non
standard userids had to be converted to
meet the Zxxxxx syntax. The first set of

systems users to be defined were our
TSO clients. TSO users were chosen
because the vast majority of them are
data processing professionals and the
TSO environment is supported by
RACF with minimal modifications.
This implementation was conducted in
a smooth and professional manner.

The second online system to be imple
mented was the ROSCOE development
environment. Since ADR (ROSCOE's
supplier) does not provide a RACF
interface, one had to be developed
internally to RACHECK userids re
questing access. This ROSCOE signon
interface had to be
designed/implemented so it would work
with additional ROSCOE interfaces
which would perform submission of jobs
and data-set-access validation services.

Again, the implementation of this major
development sub-system was conducted
in a very smooth and professional man
ner.

In conjunction with the implementation
of the ROSCOE/RACF environment, a
forced-signon policy was enacted. In es
sence, our Company uses the NET
WORK DIRECTOR product from
Northridge Software which manages
VTAM network access. This product
provides the capability to require a user
to logon to the system prior to being
presented an applications menu which
contains the major subsystems to be se
lected-- i.e. ROSCOE, TSO, etc.

The NETWORK DIRECTOR performs
RACF validation and properly inter
faces with all other online subsystems.
By requiring users to logon to the sys
tems prior to being able to make a sub
system selection, Access Administration
achieved a single systems image view of
online access requests -- a good place to
be.

The last two major subsystems provided
interesting challenges. IBM's CICS has
a RACF interface. However, since the

94

NETWORK DIRECTOR performs
RACF validation for all CICS users,
CICS essentially relies on this validation
if a signon-table defined user requests
access.

Initially, Model 204 did not have a
RACF interface. Therefore, Model 204
users were required to change their
Model 204 passwords when a RACF
password change was performed. We
expect this requirement to be eliminated
with the installation of the CCA/RACF
interface by Falll987.

SYSTEMS INTERFACES AND
EXITS

Once all online system users are identi
fied, then all batch jobs can/should be
properly identified. TSO users are au
tomatically supplied appropriate
useridjpassword parameters at submit
time via address-space authorization
propagation facilities in Release 1.7.
However, a need existed to insert these
parameters in the job card of ROSCOE
submitted jobs. This insertion was per
formed by a locally developed interface
which provides
identification/notification services for
ROSCOE users submitting jobs.

In essence, all jobs submitted to the sys
tem via TSO and/or ROSCOE are
properly identified with a valid RACF
userid and password. However, this was
not true of production jobs submitted by
Computer Operations/Operations Sup
port. An interface had to be locally de
veloped which would supply valid
production userids and passwords to
production jobs submitted. This inter
face was locally developed and supplies
these parameters to production jobs
based on a batch control interface table
which has these parameters encrypted.
Since these parameters are supplied dy
namically and available to the system
only, the need is satisfied and at the
same time the parameters are not uni
versally readable.

An additional interface was developed
which provides RACF validation ser
vices to ROSCOE users
importing/exporting datasets. In es
sence, all dataset access requests are
properly RACHECKed prior to being
performed.

Other system interfaces, such as the
OMS/OS RACF interface, were
purchased/installed in order to provide
appropriate backup/recovery validation.

PROTECTION OF OPERATING
SYSTEM RESOURCES

Operating System libraries (SYS I,
SYS2, PUG) were subsequently RACF
defined and protected. These libraries
are universally readable but a RACF
exception occurs when someone outside
of Tech Support attempts to update
these resources.

As part of this implementation phase,
our Change Control environment and
Operations Support environment were
subsequently RACF protected in order
to prevent unauthorized access to these
resources.

PROTECTION OF PRODUCTION
APPLICATION SYSTEMS

Protection of the Personnel System

Our Personnel System was the first ap
plication system whose access was con
trolled in background and foreground
mode by our RACF profiles. As such,
this system served as a pilot project
which applied access control policy con
cepts contained in our then recently ap
proved CPG-34 Information/Data
Security.

In order to facilitate the protection of
these resources and minimize impact,
RACF profiles were defined in WARN

95

mode and monitored for approximately
one month. During this period, access
attempts were reviewed and researched.
Valid access requests were subsequently
granted and RACF profiles were modi
fied. Subsequently, these profiles were
implemented in FAIL mode which de
nied access to entities not defined in the
profiles access list. The result of this
implementation was a protected envi
ronment for the Personnel System
($PER) which allowed Human Re
sources Department personnel appropri
ate access to systems resources while at
the same time excluding non-authorized
users. This access management struc
ture protects our company from unau
thorized penetrations and willful and/or
accidental destruction of sensitive cor
porate records.

In accordance with CPG-34, Vice Presi
dent Human Resources, acting as the
Information Resource Administrator for
this system, was the approving entity
for access definition profiles.

Protection of the Payroll System

Our Payroll System was the second ap
plication system whose access was con
trolled in background and foreground
mode by our RACF controls. As such,
this system incorporated policy concepts
contained in our then recently approved
CPG-34 Information/Data Security.

Again, in order to facilitate the pro
tection of these resources and minimize
impact, RACF profiles were defined in
WARN mode and monitored for ap
proximately one month. During this
period, access attempts were reviewed
and researched. Valid access requests
were subsequently granted and RACF
profiles were modified. Subsequently,
these profiles were implemented in
FAIL mode which denied access to en
tities not defined in the profiles access
list. The result of this implementation
was a protected environment for the

Payroll System which allows
Accounting/Payroll Department person
nel appropriate access to systems re
sources while at the same time excluding
non-authorized users. This access man"
agement structure protects the Company
from unauthorized penetrations and
willful and/or accidental destruction of
sensitive corporate records.

In accordance with CPG-34, Manager
General Accounting, acting as the In
formation Resource Administrator for
this system, was the approving entitity
for access definition profiles.

Protection of the Customer Environment

Our Customer Services System (CSSR)
supports the Customer Services and Ac
counting Departments. Information
provided by this system is vital to the
business functions of our company. En
suring the integrity and control of this
data therefore is vital to day-to-day
Company operations.

In order to facilitate the protection of
customer services resources and mini
mize impact, RACF profiles were de
fined in WARN mode and monitored
for approximately one month. During
this period, access attempts were re
viewed and researched. Valid access re
quests were subsequently granted and
RACF profiles were modified. Subse
quently, these profiles were implemented
in FAIL mode which denied access to
entities not defined in the profiles access
list. The result of this implementation
was a protected environment for the
Customer Services and Accounting de
partments.

In accordance with CPG-34, Director
Customer Services and Manager Gen
eral Accounting acting as the Informa
tion Resource Administrators for these
systems, were the approving entitity for
access definition rules.

96

GENERIC PROFILES

All RACF profiles defined during this
implementation were GENERIC in or
der to minimize resource consumption.

EXCEPTION REPORTING
SYSTEMS

Our Exception Reporting System (ERS)
reports violations and access to RACF
defined resources. These reports are es
sential to Information Systems Access
Administration since they constitute our
primary source of access information
and provide information on the effec
tiveness of RACF protection of Corpo
rate Information Systems resources.
Daily Exception Reporting System
(ERS) runstreams execute SAS pro
grams which scan SMF Data produced
in the MVS/XA system. These pro
grams report RACF SMF records ac
tivity and summarize information
provided by th RACF Report Write
(~ACFRW). The consolidated excep
tiOn reports detail access exceptions and
security violations which are reviewed
daily and microfiched.

Daily Exception Reporting System
(ERS) runstream in the VM/SP envi
ronment perform a similar function by
scanning VM data produced by the
VM/SP accounting system, and produc
ing reports which highlight VM/SP re
cords activity. These reports are
reviewed daily and microfiched.

Our weekly synchronization runstream
read the M204 personnel database and
compare its contents with the RACF
database profiles. Differences are re
ported for further action by Information
Systems Access Administration.

Profile Synchronization

Procedures used to request/grant access
to Information Resources (see CPG-34)
require maintenance and update to a

variety of systems. Most, but not all of
these systems, are managed by our Ac
cess Control Facility (IBM'S RACF).
However, a repository of information
indicating all access including
non-RACF such as Walker Interactive
access, M204 access etc. -- is required.
As a result, a RACF Users Database
System (RUDS) was developed. RUDS
is a SAS/FULL SCREEN PRODUCT
application which is used by Informa
tion Systems Access Administrator to
track levels of access granted to all
RACF defined users. Levels of access
granted include CICS security keys,
ROSCOE, TSO, and M204 capabilities
and other access authorities. RUDS re
cords are updated by the RACF Ad
ministrator as access authorization
forms are processed. The main objective
of RUDS is to have a central repository
that can be used as a reference point by
Information Systems Access Adminis
tration and Internal Audit.

Summary

We believe the implementation of our
data security package (RACF) has been
a success because it addressed access
controls at a corporate level first and
secondarily at a technical level. As a
result, we have today a Corporate Policy
on Information/Data Security, request
procedures, and technical capabilities
which direct and control the company's
information resources and manage ac
cess requests and profiles modifications.
These achievements are highlighted by
RACF protected systems and applica
tion environments, such as Payroll, Hu
man Resources, and Customer Services
where appropriate access to systems re
sources is granted to legitimate users
while at the same time excluding non
authorized users. This access manage
ment structure protects our company
from unauthorized penetrations and
willful and/or accidental destruction of
sensitive corporate records.

97

MANAGEMENT ACTIONS FOR IMPROVING DoD COMPUTER SECURITY

William Neugent
The MITRE Corporation

HQ USAREUR, ODCSOPS
APO New York 09063

Tel. 011-49-6221-372710

Abstract: More attention should be
focused on current computer security prac
tice in the field. Environmental factors
underlying current practice are (1) a
dedicated mode philosophy and (2) occa
sional ineffective use of computer
security safeguards. To offset these fac
tors, improvements are needed in both
training and field support. Technological
improvements can be harmful if they result
in a false sense of security.

INTRODUCTION*

During the last five years the focus
of attention in Department of Defense
(DoD) computer security activities has
been on redefining and expanding policy
and on encouraging the advancement of
technology. This is important work, and
it has greatly improved understanding of
computer security. The resulting improved
foundation of policy and technology should
lead to continued improvement of our com
puter security defenses.

Now that we have a better under
standing of where we want to be, it is
time to look more closely at where we
are. Only by doing so can we best plot
our course. Furthermore, the bottom line
is not policy or technology, but practice.
In order to better improve current prac
tice, we must first scrutinize it.

REPORT FROM THE FIELD

A common perception in the DoD is
that system high operation is the normal
current security mode of operation. Much
attention is now focused on ways to
advance beyond system high operation into
multilevel secure (MLS) operation. From
the field, however, comes a different
view. In fact, the vast majority of
systems still operate in the dedicated
security mode of operation. This does not
necessarily reflect negatively on DoD
security. Rather, it is an important
aspect of DoD computer security that needs
to be understood.

A second aspect of current practice
is occasional ineffective use of computer
security safeguards. While there has been
no recent definitive review of DoD com
puter security practice, there are cases
of systems in which:

*This-paper is derived from work per
formed under contract F19628-86-C-0001
for the United States Army, Europe
(USAREUR), Office of the Deputy Chief
of Staff, Operations (ODCSOPS).

Group passwords are used.

Passwords are not often changed and
are not well protected.

Audit trails are not checked or
even kept.

File protection features are used
haphazardly or not at all.

Copy commands are trusted to copy
unclassified files from classified
disks to unclassified disks.

Some systems are operating without having
been accredited. One report addressing
computer use by Defense contractors
lists operation without accreditation as
the most common deficiency, and notes that
the finding is probably equally applicable
to government computers1. Some systems
have not been certified by any systematic
process, other than the implicit certifi
cation that comes from operational use.

Occasional cases are not sufficient
cause for alarm, and do not imply inade
quate protection of classified infor
mation. Nevertheless, prudence suggests
the need for closer examination of the
current situation.

It is important to recognize that MLS
technology does not address these matters.
Indeed, the insertion of MLS technology
into this environment could create a
problem. In a dedicated mode system,
whatever human errors are made, the person
who ends up seeing the data is still fully
cleared and authorized. This is true
because, by definition, all users of a
dedicated mode system must be cleared and
authorized for all data in the system. In
an MLS system, often there is no longer
such protection against human error. If a
user accidentally labels Secret data as
unclassified, uncleared users might be
able to access the data. Furthermore,
some users tend to view MLS products as
magic, plug-in solutions. They are some
times surprised to learn that these pro
ducts need to be adapted for their
specific applications. If users do this
adaptation themselves, it is possible that
in doing so they will unwittingly subvert
some of the protective features of the
product.

Technology alone cannot be relied on
to satisfy the security needs of most DoD
users. Technology is merely one element
in a set of safeguards, of which the most
important element continues to be user

98

•

practice. Before technological safeguards
can be inserted into an environment, their
impacts must be examined in the context of
past and anticipated user needs and prac
tices.

So, both to better understand our
current requirements and to better employ
technological improvements, it is
desirable to conduct a closer examination
of current practice. The next section
provides the first step towards such an
examination.

THE WORLD ACCORDING TO USERS

As noted above, two key factors
characterize the environment of many DoD
computer users:

Dedicated mode philosophy

Occasional ineffective use of com
puter security safeguards

Probably the main reason so many DoD
computer systems operate in the dedicated
mode is that that is how the manual system
operated before the computer was intro
duced. Much of the DoD has a dedicated
mode philosophy. In financial systems,
separation of duties and knowledge are
usually considered to be the most impor
tant security principles, and the compart
mentation of knowledge practiced by
terrorist cells is well known. The DoD
does follow this principle, but the cells
sometimes tend to be large. DoD security
policy strongly advocates the importance
of need-to-know separation. For example,
Army Regulation (AR) 380-380 states that
"a serious violation potential exists if
all users are authorized access to all
data"2. Sometimes this emphasis is not
well reflected in the way mission re
sponsibilities and knowledge are parti
tioned and assigned, hovever.

This lack of mission-driven emphasis
on separation of duties and knowledge is
unfortunate, because computers change the
mission. equation and can increase the
risks involved:

An office of 20 people might
reasonably employ a dedicated
mode philosophy for most of its
work. A computer network of 500
people cannot.

It takes awhile and might appear
suspicious to reproduce a large
classified document on a copying
machine. Disks can be copied
quickly and without attracting
undue attention. Disk contents
can be quickly and easily trans
mitted anywhere in the world
using equipment commonly found in
homes.

Often dedicated mode is unquestion
ably the correct operating mode. This is
the case for many personal computers and

for systems that truly have no require
ments for need-to-know separation. Where
dedicated mode is appropriate, it can
offer advantages. For example, in a de
dicated mode system there is no need to
manage security access tables that, if
improperly managed, can deny access to
authorized users.

On the other hand, with the
increasing amount of information being
stored in computers and the increasing
number of users being granted access
through networks, dedicated mode operation
is becoming more risky. The management
challenge is to recognize when dedicated
mode is appropriate and when it is not.
The point of this paper is not that dedi
cated mode operation is inherently
desirable or undesirable, but that the
decision must be made wisely.

The second factor characterizing the
environment of many DoD computer users is
occasional ineffective use of computer
security safeguards. Perhaps th~ one
thing worse than inadequate security is to
have inadequate security and not realize
it. Computers can contribute to this
misapprehension, because it is easy to
forget that computer security is dependent
on the people who use and administer the
computer. The discussion earlier in this
paper notes the existence of cases in
which safeguards are not used or are used
improperly. This is an aspect of DoD com
puter misuse that cannot be ignored or '
assumed away.

Where safeguards are not effectively
used, reasons include the following: (1)
people make errors and take shortcuts, (2)
people have not been adequately trained to
use the safeguards, (3) people do not
appreciate the importance of computer
security safeguards, (4) security resour
ces are insufficient, and (5) tephnical
computer security safeguards can be
penetrated. Several words of explanation
are warranted to illustrate why insuf
ficient security resources can lead to
ineffective use of safeguards.

Whereas industry is free to grow, the
DoD is not. In the DoD, it is easier to
buy an additional computer than it is to
hire an additional person. One argument
for buying computers has been that they
reduce the number of people needed.
Unfortunately, some DoD offices purchase
computers only to discover that the oppo
site is often true. In the security area,
policy (e.g., AR 380-380, 1985) states the
need for additional security resources by
mandating the creation of new roles such
as:

Network Security Officer (NSO)

Automatic Data Processing Syste~
Security Officer (ADPSSO)

Terminal Area Security Officer
(TASO)

99

People assigned these roles are respon
sible for such tasks as establishing and
maintaining security databases (e.g., user
clearances, passwords, and access capabi
lities; facility security profiles) and
maintaining and reviewing system audit
information. The problem is that these
roles are almost always assigned as addi
tional duties and that the people assigned
the roles sometimes have insufficient
incentives, time, and training to fulfill
them. The impact is that computer
security safeguards can become ineffec
tive.

Where the use of internal computer
security safeguards is ineffective, the
options are either to use the safeguards
more effectively or to place less reliance
on them. The management challenge is to
decide which option is appropriate. In
many cases, the latter approach is chosen
and the system is operated in dedicated
mode. There are many cases, however, when
dedicated mode operation will not suffice.
Furthermore, even with dedicated mode
operation, many information, personnel,
physical, communications, and emanations
security safeguards are needed. The
remainder of this paper presents manage
ment actions for improving DoD security in
light of the user environment described
above.

The management actions for improving
DoD computer security are fundamental and
can be simply stated: improve both
training and field support. Improved
training will help DoD personnel to better
manage and use systems. Improved field
support will enable improved independent
checks of field practices, and thereby
should also improve system management and
use. These actions are not a complete
management program - that is beyond the
scope of this paper. Nevertheless, the
actions are key steps that should be
taken.

Training improvements are needed both
in computer security training and in
overall security training. The need for
improved overall security training is fun
damental. DoD mission training should
provide more emphasis and guidance on
separation of duties and knowledge. As
more people recognize the importance of
need-to-know separation, it will become
easier to justify the acquisition and use
of need-to-know controls (e.g., discre
tionary access control mechanisms).
Meanwhile, some shared computers offer no
more protection than the shared safes of
the paper world.

The need for improved computer
security training in the DoD is pervasive.
It applies equally both to young enlisted
personnel (who are often the users, opera
tors, and maintainers) and to senior offi
cers (who are often the planners and

accreditors, and sometimes the users as
well). Some DoD personnel still do not
know that there is more to computer
security than TEMPEST. They do not
understand the difference between dedi
cated and system high mode. Some who know
a little about security think that the
problems will be solved by end-to-end
encryption. Others who have heard about
the Orange Book know nothing about the
advantages of volatile memory or remova
ble hard disks3.

This lack of knowledge could give
rise to problems. For example, volatile
memory and removable hard disks can pro
vide a periods processing capability (to
alternate operation between multiple
security levels) and can simplify physical
security requirements for the data (since
the disks can be locked in safes). I?
procurements ignore these features, some
users might find it difficult to satisfy
their security requirements.

The key to a successful computer
security training program is to include
computer security training as an integral
part of both mission and system training.
This training will have to overcome the
skepticism that some people feel towards
computer security requirements, which
defend against threats that the people do
not consider significant. To overcome
this skepticism, training should present
convincing examples of why computer
security safeguards are needed. These
examples should involve easily understood
threats such as human error, rather than
arcane threats such as Trojan horses or
confinement channels.

Personnel turnover in the DoD is
high, due to frequent relocations. There
is a continuing need to quickly train new
users. To accomplish this, computer
security fundamentals should be stressed
during system familiarization and opera
tion. For example, before being granted
initial access to a system, new users
should receive a computer security
briefing from the ADPSSO. As part of the
briefing, users should study and sign a
one or two-page statement summarizing the
major computer security rules for that
specific system, such as the following:

• 	 I understand that the system is
authorized to process only data
classified Secret or below, and
that no Proprietary or Contractor
Excluded data may be processed.

I understand the need to protect my
password and agree (1) not to write
it down and (2) to change it at
least every three months.

I understand that all output must
be treated as Secret, until an
approved review procedure deter
mines otherwise.

100

I.understand that floppy disks may
not be removed from the secure
area.

I understand the Red/Black separa
tion requirements for the system.
(Simple Red/Black separation guide
lines were recently declassified,
and should be posted near the
system.)

More widespread emphasis on such simple
rules would improve computer security
practice in the DoD, especially in those
situations where users must begin using a
system without first having had any formal
training. Users cannot be expected to
know the prodigous number of rules that
constitute DoD computer security policy.
Therefore, emphasis should be placed on
those few rules that counter the major
risks.

The second management action fun
damental to improving DoD computer
security is improved field support. The
day-to-day computer security war is being
fought in the field. Yet, with the
increasing number of computers being
introduced into the DoD, the people in the
field are fighting a difficult battle and
need reinforcements.

The key people in the field are the
computer security managers assigned
throughout the DoD. Their role is to
oversee the implementation of policy.
Unfortunately, the staffing of these offi
ces has not increased commensurate with
the increased numbei of computers being
used for classified processing. Some
Major Commands with thousands of
classified systems have only one person
assigned to oversee computer security.

An important part of a computer
security manager's job is to coordinate
system accreditations. Their review of
accreditation packages is often the only
independent examination of a system's
security. Yet some computer security
managers do not have the training or
resources to do their job. Since these
people could not begin to do the larger
job of system certification, typically
system buyers, developers, and integrators
are relied upon to evaluate their own
work.

The result is that every year some
DoD computers are placed into operation
without adequate security oversight. Some
systems are operating with no accredita
tion at all. The accreditation process is
definitely not a meaningless paper pro
cess. Computer security managers often
find problems during their accreditation
review, and system security is usually im
proved through preparation of an accredi
tation request. The accreditation process
might benefit from some streamlining, but
it is an essential process nonetheless.

Several steps can be taken to improve
the plight of computer security managers:

Ensure that all system planners
are trained in compute~security
and that they know t~consult with
computer security personnel early
in the system planning process.
If more systems follow the rules,
the job of enforcing the rules
becomes easier.

Increase the staffing of field com
puter security offices. This will
be a difficult step, but it is a
necessary one.

Ensure that computer security
managers are adequately trained,
and give them frequent oppor
tunities to update their training.

Give computer security managers
the rank and recognition their
position warrants. Support them
in taking punitive action against
systems that operate without
accreditation or that do not com
ply with approved approaches.

Some of these improvements in
training and field support will be dif
ficult to implement, but efforts must
begin. There is a final recommendation
that is easier to implement and that
should produce near-term improvements:
the National Computer Security Center
(NCSC) should expand upon its continuing
assistance to field support personnel.
The NCSC is already providing substantial
assistance to the field via such means as
travelling training teams. The NCSC could
provide further assistance, however, by:

Conducting a six-month study of
field computer security management
offices to determine (1) the state
of computer security in the field,
and (2) what field computer
security managers believe is
needed (by both themselves in
particular and the DoD in general)
to improve DoD computer security.

Sponsoring the development of
additional simple management and
training tools to improve computer
security practice. (The NCSC has
already made some useful contri
butions in this area, such as a
one-page summary of personal com
puter security rules.)

Encouraging field computer
security management people to
attend annual NCSC conferences in
order to meet each other and to
present their views and exper
iences.

Just as field personnel can benefit from
NCSC knowledge, so can NCSC personnel
benefit from field experience.

101

A brief examination of user environ
ments in the field shows that:

Dedicated mode operation is the
most common mode.

There is occasional ineffective
use of computer security safe
guards.

These findings suggest the need for a more
thorough study of the state of computer
security in the field. Furthermore, the
findings must be taken into consideration
before new policies or technologies are
applied in the field. In some cases the
findings represent problems that can
readily be solved, but in other cases they
might represent fundamental environmental
limitations on what is achievable. System
managers must be able to distinguish these
cases. Technological improvements can be
harmful if they result in a false sense of
security.

DoD computer security can benefit
greatly from improvements in training and
field support, which would help us to
better manage and use systems. DoD per
sonnel at all levels should be made more
informed about computer security, and com
puter security managers in the field
should be given the resources they need to
do their job. Now that an improved foun
dation of computer security policy and
technology has been established in the
DoD, more attention should be placed on
ways to improve practices in the field.

ACKNOWLEDGMENT

The author is grateful for the review
and comments provided by LTC L. Steffensen
of Headquarters, USAREUR.

REFERENCES

[1] 	 DoDSI No. 5-86 (September 1986),
"ADP Security Deficiencies,"
Security Awareness Bulletin, DoD
Security Institute.

[2] 	 AR 380-380 (8 March 1985), Automa
tion Securi~.

[3] 	 DoD 5200.28-STD (December 1985),
~artment of Defense Trusted Com
puter System Evaluation Criteria.

102

RISK ANALYSIS AND MANAGEMENT

IN PRACTICE FOR THE UK GOVERNMENT

THE CCTA RISK ANALYSIS AND MANAGEMENT METHODOLOGY: CRAMM

Mr Robin H Moses - UK Central Computer
and Telecommunications Agency (CCTA)
Riverwalk House, 157-161 Millbank
London, SW1P 4RT, England '

Mr Rodney Clark
20 Upper Ground,

INTRODUCTION

1. The paper describes a risk (analysis and)
management methodology for Information Technology
(IT) Security developed by the UK Government
Central Computer and Telecommun-ications Agency
(CCTA) of Her Majesty's Treasury, with the
assistance of BIS Applied Systems Limited. The IT
Security and Privacy Group of CCTA is the National
Authority for advising British Government
Departments on all aspects of the protection of IT
Systems handling unclassified but sensitive data.
The methodology, designed for the identification
of justified security measures for both current and
future IT systems processing Government sensitive
data, has - as of May 1987 - successfully been the
subject of five separate trials with systems of
different environments. An automated support tool
is now being produced, and comprehensive training
in use of the methodology by non experts is being
prepared.

EXTENT OF THE PROBLEM

2. Her Majesty's Government (HMG) Departments
have recognised the general concepts of risk
management for some time and implemented them in a
pragmatic and relatively subjective manner.
However, by mid 1985 both Departments and the
Government Security Authorities identified the need
to develop a unified approach to risk management
which was threat rather than vulnerability driven
and which could be applied across the wide range
of HMG system types to identify more accurately
necessary countermeasures, provide justification
for spend and be understandable to non-technically
expert general managers. With the rapid expansion
of IT and the high cost of development of some
secure systems it was not considered to be viable
to continue with a significant probability of
unju~tified spend on security and/or without high
conf~dence that all justified countermeasures had
been identified. It was also recognised that the
approach would need to cope with the complex
situations where many threats could impact more
than one asset, many countermeasures could counter
more than one threat, and many countermeasures could
protect more than one asset. It was agreed that
risk management should be put on a much more formal
and structured basis to deal with these problems
using as a basepoint the main components of risk'
analysis and management as shown on the traditional
simple model:

BIS Applied Systems Ltd,
London, SE1 9PN, England

THREA~ERiBILI~SETS

RISKS

I

COUNTERMEASURES

T

ANALYSIS

+
MANAGEMENT

and incorporating related 'sub-components' such as
frequency and severity of threats, impacts and
countermeasure costs.

HMG APPROACH

3. As a National IT Security Authority for
Government Departments, CCTA was invited to mount
and manage a project to identify or develop a risk
management methodology which would meet thirteen
mandatory requirements. These included:

'able to deal with HMG Operational and
Administrative systems of all sizes';

'able to encompass all technical (eg Hardware,
Software, Communications) and non-technical
(eg Physical, Personnel) aspects of IT
security';

'compatible with existing Government IT
Security guidance';

'suitable for use during the development of
a system, ie for projects as well as
existing installations';

'easy to use, after training, by staff with
IT but not necessarily IT security experience';

'able to be used such that reviews can be
carried out quickly enough to ensure that
result3 are not overtaken by changes in the
system';

'able to be used with an automated support tool'.

4. The first task was to examine existing
methodologies to determine if any met the HMG
requirements. Several methodologies were identified,
but none met all the mandatory requirements. Whilst
at first glance Annual Loss Expectancy (ALE) based

103

quantitative approaches seemed attractive, it
became evident that the inevitably subjective way
in which figures are attributed, particularly costs
for data assets, could produce an unsound base and
inconsistencies between similar reviews. Also
these methodologies typically did not offer much
support for countermeasure selection with a
consequential need for the reviewer to have IT
security knowledge, coupled with the fact that
analysis could be lengthy. Existing qualitative
methodologies were insufficiently rigorous, did
not cover all main components of risk management
or were not sufficiently far enough advanced to be
of use. Therefore it was decided to devise a new
methodology following a qualitative approach, but
wherever possible taking quantitative input, and
containing no 'hidden' logic.

5- Accordingly, a "manual" version of the
methodology has been produced and as of May 1987
has successfully undergone five separate trials
encompassing both administrative and operational,
and existing and planned, systems. Comprehensive
documentation - including management guidelines,
the logical design specification for an automated
support tool, and an outline of the training
course required for its use, have already been
produced. Detailed amendments are being
incorporated in the documentation, further 'beta'
site trials to 'fine tune' the methodology are in
progress, and work has started on the production
of an automated support tool and a comprehensive
training course. CRAMM is now the 'Preferred'
methodology for the British Government
Unclassified but Sensitive 'area'.

OVERVIEW OF THE METHODOLOGY

6. The methodology comprises a staged, or modular,
approach. The first two stages address analysis
of the risk and the third and final one addresses
management of risk through the implementation of
countermeasures. Each stage is supported by
questionnaires and guidelines and sets out to
answer one major question. Simply stated these
are:

Stage 1: is there a security need above
a certain baseline level?

Stage 2: where and what is the extent of
the security need?

Stage 3: how can this need be met?

At the completion of each stage there is a
formal management review.

Stage 1

7. The first part of Stage 1 is the important

task of precisely determining the nature and

boundaries of the system under review, and its

various components. This is accomplished by the

acquisition of information on the user community

and the manner in which they use, or will use, the

system - together with an outline system

configuration diagram. This information is

obtained from interviews with senior installation

or project managers, and user managers and their

staff, and is essential in providing the reviewer

with the understanding necessary for the specific

boundaries of the review to be agreed and later
for the questionnaires and guidelinesho be put into
perspective. It also provides sufficient detail,
for instance on the number of 'data owners', for
the review to be scheduled. Stage 1 then continues
with its major function - the determination of
qualitative values for assets, both physical and
data. The CRAMM documentation provides detailed
advice on how the reviewer should schedule, conduct
and record interviews with data owners and
personnel responsible for physical assets, and to
review results with system or project management.
A carefully structured questionnaire enables the
reviewer to establish the selection of qualitative
values, without 'user bias', for the four possible
impacts- disclosure (of data assets), modification
(both accidental and deliberate), unavailability
(of data assets) and destruction (of physical or
data assets). This selection is aided by detailed
'common metric' guidance for data valuation
covering such issues as political embarrassment,
coremercial confidentiality, personal privacy,
financial and legal. Physical assets such as
hardware and air conditioning plant are first
valued on the basis of replacement or reconstructi.on
costs - which are then converted onto the same
qualitative scale as that used for data assets.
An advantage of the methodology is that time and
resource wastage can be avoided where all values are
low. In these circumstances what is in effect a
shortened version of Stage 2 would be used to check
whether there are any threats, vulnerabilities,
or combinations thereof, which are of sufficient
level to justify greater than baseline protection
for low value assets. If the value of all assets
is low and only baseline protection is justified,
then a review will move directly to Stage 3
0nly where asset values are medium or high is
Stage 2 recommended. At the end of Stage 1, as
with the subsequent two stages, there is a
comprehensive management review.

Stage 2

8. The extent of the security needed by a system
relates not just to values of assets but also to
the levels and nature of threats to which the
system could be subjected and the likely
vulnerabilities of the system assets to those
threats. The first part of Stage 2 is concerned
with evaluating the dependency of a system or
potential system on certain groups of assets, not
all of which are vulnerable to the same potential
threats. Then twenty-two generic threat types,
for example fire, water damage, system infiltration
and misuse of resources, are used as the basis to
assess the qualitative threat and vulnerability
levels per relevant asset group, using pairs of
structured questionnaires incorporating the
knowledge of HMG Security experts. As far as
possible questions are framed so as to prompt a
'yes' or 'no' answer to avoid 'bias', with each
answer afforded a particular score; total scores
per questionnaire indicate a high, medium, or
low threat or vulnerability. For each relevant
asset group, the combination of asset value and
assessments of the levels of vulnerabilities and
threats are used to calculate a security
requirement (ie risk) number on a scale of one
(baseline) to five, for each of the four possible
impacts, (ie disclosure, modification, unavail
ability and destruction). At the end of Stage 2,

104

http:reconstructi.on

management has a clear view of the levels of
threats to, vulnerabilities of, and thus risks
to, particular asset groups. The expression of
risks in a numerical form enables direct matching
to countermeasures in Stage 3- The completed
analysis of risks, ie at end pf Stage 2, is
reviewed in detail with management before moving
to Stage 3.

Stage 	3

9. Stage 3 determines how the identifiedsecurity
need can be met, ie countermeasure selection.
Taking the determined levels of risk, ie the
security requirement numbers, for each asset
grouping, countermeasures (covering all aspects
of security) are selected from a large 'library'
which is referenced by, among other things,
security aspect (physical, software, etc) and is
further annotated by type, eg reduce risk, reduce
impact, detect. If the review is of a current
installation, details of existing countermeasures
are now recorded. (This activity is deliberately
kept until the end of the review to avoid
prejudging the effectiveness and/or justification
for existing countermeasures). A comparison is
conducted to ascertain which additional
countermeasures are to be recommended, and which
existing ones are not justified. As the list of
countermeasures is produced, it is annotated with
likely levels of cost (from information held in
the 'library'). Then costs specific to the actual
or likely equipment types can be added, and a
further management review is held.

10. If management is unhappy about some aspect,
eg the likely overall cost is outside the budget,
"what if" questions can be dealt with (for example,
what would be the effect of removing one very
sensitive file?). In other words a parameter can
be changed and the methodology "re-run". The
final step is to determine when a further review
should be carried out. Much of the information
gathered during the first review can be used in,
and thus greatly speed up, subsequent reviews.

PRINCIPAL CRAMM CONCEPTS

Stage

11. Stage 1 introduces the first of several
concepts used in CRAMM, that of a baseline level
of countermeasures which would always be applied
to any system. You may think of them if you wish
as a 'code of good practice'. For example, for
other than truly single user systems the
requirement for a user to identify himself to the
system during log-on might be defined as a
baseline countermeasure. The need for such simple
countermeasures is based on the premise that any
system must be of some value to the organisation
(or why have it?), and therefore needs a certain
level of control.

12. Further protection will only be required
if the importance of the data to the user or the
value of, say, the hardware merits this addition.
The principal function of Stage 1 is therefore to
establish these values. As mentioned however,
Stage 1 initially establishes the scope of the
review, and details the system configuration and the
manner in which the system is used. Only when a
clear picture of the total system has emerged is

the first real risk management task tackled - that
of establishing the boundaries of the system under
review. Experience has shown this to be an
important task and guidelines are given to aid the
process. The typical modern system frequently
interconnects with other systems which themselves
are connected again to further systems. It is
important to establish therefore up to which point
one is aiming to provide a secure system.

13. The importance of the data can now be assessed
by detailed questionnaires directed at the owners
and users of data. They are asked to state what
the effect on the organisation would be if the data
were to be disclosed, modified, made unavailable
(loss of service), or destroyed. The reviewer is
aided in recording the results of this process by
a series of guidelines which enable him to place a
value on the data appropriate to the manner in
which it is used. For example, if the data
contains details of legal contracts, he will ask
what the effect would be of the organisation being
in breach of contract. Would it be sued? For
how much? What would the effect of the publicity
be? The guidelines will relate this to a scale
of 1 to 10.

14. This approach to establishing the importance
of the data to the organisation has been found to
have three important advantages:

(a) 	 users can much more readily associate
with values appropriate to the system;
they are not forced to use financial
values;

(b) 	 the relative values that have been
established could, if justified, be
easily adjusted to an organisation's
own perception, without in any way
affecting the working of the
methodology;

(c) 	 the use of common guidelines helps
to prevent user bias.

15. Asset valuation is completed by listing the
replacement or reconstruction costs for hardware,
software and environmental facilities. This
enables complete understanding of the importance
of the system to be obtained and a decision can
now be made as to whether it justifies a full
scale review, or whether an abbreviated approach
could be used. This facility (which is incorporated
within the methodology) avoids creating situations
in which a great deal of time and money is spent
investigating the risks to a system which contains
nothing of great value.

16. Stage 1 is completed by a comprehensive
review with management to agree the information
collected. At this stage discussion usually centres
on the extent of the configuration and the user's
perception of the importance of the system. These
are unemotive topics and consequently agreement
can usually be easily reached.

Stage 	2

17. The primary function of Stage 2 is to
evaluate the level of threats to, and extent of the
vulnerabilities of, the system assets. However,
another important concept of the methodology is the

105

recognition that different threats may apply to
different parts of the same system. Similarly,
vulnerability may not be the same at all points.
In practical terms though it would be prohibitively
expensive in time and effort and indeed
unnecessary to explore the level of threat against
every individual asset. Therefore, using CRAMM,
assets are grouped in a manner appropriate to the
threat. The threat of fire, for example, is
likely to vary by physical location and it is
therefore appropriate to evaluate this threat
against all the assets in one room or small
building. However, by comparison, if system
infiltration is being considered then the total
system could be regarded as the appropriate group
of assets since it is normally not practical to
separately protect different parts of the same
system against this particular threat type.

18. The second part of Stage 2 establishes the
security requirement (measure of risk) of each
group of assets by relating together the value of
the assets (including data), the level of threats
to which it is likely to be exposed and the
degree of vulnerability. The first of these has
been expressed on a scale of 1 to 10 and the
other two on a high, medium or low basis. A
matrix is used to link the three factors together
and express the result on a scale of 1 to 5.

19. The significance of dividing the system into
assets or groups of assets becomes.more apparent
when it is appreciated that the security
requirement figure will be used to determine the
level of countermeasures. Hence an asset with a
high value associated with it may have a higher
security requirement than an asset of lower value
but the same threat and vulnerability rating. The
correct level of protection is therefore
established for all parts of the system. Blanket
coverage, which frequently results in under or
over protection for particular assets, is avoided.

Stage 3

20. Stage 3 is concerned with establishing the
countermeasures necessary to meet the security
requirement calculated from the analytical work
of the first two stages. It therefore moves
positively from risk analysis to risk management.
This is an area which appears to have received
relatively little attention in other
methodologies, yet the task of selecting
countermeasures is a formidable one. For example,
a major installation or network may require several
hundred countermeasures to be implemented. These
could range from procedures for assigning passwords,
to check controls over input data, to encryption,
to fire extinguishers in the general office. The
range is enormous, making selection extremely
difficult.

21. Stage 3 tackles this problem by grouping
countermeasures together (countermeasure groups)
and relating these to threats. For example,
procedural controls over system programmers will
relate to the threat of systems infiltration
(unauthorised access). The first step, therefore,
is to select the appropriate countermeasure groups
for each threat. At this stage a considerable
degree of overlap is likely to be observed.

Physical access countermeasures, for example,

address several threats, (wilful damage, theft,

etc). This overlap indicates that these types of

countermeasure are likely to be essential.

22. Having selected the countermeasure groups,

the reviewer then has access to an extensive list

of several hundr·ed countermeasures (arranged under

these groups) each of which has been assigned a

rating of between 1 (.very low, or baseline) and

5 (very high). These ratings correspond to the

score calculated when deriving the security

requirement, and thus the reviewer can easily

select the appropriate countermeasures.

23. For an existing installation, the same list
can now be used to examine the previously
implemented countermeasures. These are then
compared against those identified as necessary by
CRAMM and recommendations made where there are
discrepancies. While normally the recommendations
will address the requirement for additional
countermeasures, this is by no means always the
case. In some instances in our '.beta' trials,
recommendations have been made to consider
removing countermeasures which did not seem to be
justified.

CONCLUSION

24. Thus to conclude, the main CRAMM concepts
are:

baseline level of countermeasures;

- •common metric' guidance for qualitative
valuation of data assets for the four
major impacts;

no presumptions made as to the need for
previously implemented countermeasures;

qualitative assessment of threat types
against specific groups of assets;

qualitative assessment of the vulnerabilities
of these specific groups of assets;

combination of qualitative values for
assets and threat and vulnerability ratings
to form numeric indications of risks;

matching numeric indications of risks to
specific countermeasures;

for an existing installation identifying
not only justified but also unjustified
countermeasures.

We feel that these were needed to meet the originally
specified criteria for a methodology for the UK
Government.

25. Indeed, the 'manual' methodology has been
produced and tested and it is evident that, with the
use of the automated support tool to considerably
reduce review time, it fulfils the specified
requirements. Particularly popular with trial site
staff has been the 'common metric' guidance for
establishing qualitative data values, and the
production of lists of specific countermeasures.

106

26. It is now clear that information collected
during a review could be used to identify
particular evaluation needs and to construct
security policy and requirement documents. Indeed,
the methodology will be invaluable to management
in presenting easily understandable results in
the form of countermeasure lists justified in
accordance with the real security need (and for
existing installations identifying countermeasures
which may not be justified and could be removed
probably with cost saving and easing of
operational constraint). Management will thus
be able to consider submissions for money spend
on security supported by a logical, properly
constructed and justified case.

ROBIN MOSES
CCTA
20 May 1987

It should be noted that the CCTA methodology,
CRAMM, is Crown Copyright.

107

A PANEL DISCUSSION ON

RISK MANAGEMENT: A PLAN FOR THE FUTURE

Dr. Sylvan Pinsky

Senior Scientist

Office of Research and Development
National Computer Security Center

9800 Savage Road
Fort George G. Meade, Maryland 20755-6000

(301)859)4485

•

ABSTRACT

The federal government and private
industry have a long-standing interest in
conducting computer security risk analyses.
Analysis is part of the larger, more
comprehensive "risk management" process which
describes the types of approaches and methods
that address all activities leading to cost
effective safeguards for automated information
systems. Numerous computerized tools have
emerged over the last 3 years to assist
analysts in completing the risk management
process. Each of these models deals with only
one aspect of the total process, such as
vulnerability assessment, threat assessment,
or annual loss expectancy calculation.

There is a significant interest and need
in the computer security community to have
effective tools, techniques, and guidance for
completing the risk management process. The
National Computer Security Center and the
National Bureau of Standards have jointly
sponsored forums for exchanging ideas and
presenting approaches to risk analysis. These
two organizations have identified the major
issues in risk management and have embarked on
a plan that describes the steps necessary to
resolve the problems, lays the foundation for
developing a comprehensive model for risk
management, and provides guidelines for
conducting the process and selecting effective
safeguards for computer systems. The
cornerstone of the plan resides with the
construction of the conceptual model of the
risk management process. This model will
describe the interrelationships of the
components of risk management (e.g., threats,
threat frequencies, vulnerabilities,
safeguards, risk, outcomes) in a formal way so
that we all have a common understanding of the
risk management process. This conceptualiza
tion will help explain where alternative
methods or approaches fit into the overall
process.

The panel activity will begin with a
presentation of the elements of the road map
for the future of risk management. This
discussion will include the conceptual
framework, the creation of a risk management
laboratory and testbed, case studies, data
acquisition, model development, and related
topics. Panelists will have an opportunity to
critique the plan and present alternative
recommendations. The panel will conclude with
a 15- to 20-minute question and answer
session. Panel membership will consist of
Stuart Katzke of NBS, Sylvan Pinsky of NCSC,

Robin Moses and Roger Clark from the United
Kingdom, Gene Troy of Martin Marietta, and
Kurt Schmucker of Productivity Products,
International.

108

1

m-EVES

Dan Craigen

Research and Technology

I. P. Sharp Associates Limited

265 Carling A venue, Suite 600

Ottawa, Ontario K1S 2E1

CANADA

Telephone: (613) 236-9942

(IPSA Conference Paper CP-87-5402-21)

Abstract

This paper reports briefly upon the progress of the
m-EVES research and development project. m-EVES

is a prototype verification system being developed,
under contract, by I.P. Sharp Associates Limited.

Introduction

. The major goal of them-EVES research and development project
•is to design and to implement a program verification system 1

which satisfies the following requirements:

• 	The system is to be based upon sound mathematics.

• 	The system is to include state-of-the-art techniqu,es in the
orem proving, workstations, compilers, and existing math
ematics.

• 	The system may be used to develop programs required to
satisfy NCSC A1+ and UK/Canadian equivalents.

Our project is divided into two distinct phases. In the first
phase, we are to develop them-EVES environment; in the sec
ond phase, we are to develop EVES.

m-EVES is to be a research and pedagogical environment
that emphasizes program verification concepts. The system will
handle a new programming and specification language (called
m-Verdi), a new prototype theorem prover (called m-NEVER),
sundry workstation ideas, and will have a production quality
compiler form-Verdi.

The essential roles of them-EVES environment are as follows:

• 	To be used for instructing our clients about program veri
fication techniques;

• 	To allow us to test various unproven ideas before commit
ting to a design for the EVES environment; and

• 	To obtain feedback from the various decisions we have al
ready made. This includes decisions respecting mathemat
ics, language and prover capabilities.

EVES is to be the production quality verification environ
ment. EVES will handle a dialect of m-Verdi (called Verdi),
which will have significantly stronger specification and program
ming structures; and will include a state-of-the-art theorem
prover (called NEVER), a collection of specification and pro
gram analysis tools, and, of course, various compilers for Verdi.

1 In this paper, I do not want to spend time discussing the rather lengthy
history of the EVES project. Another paper [Cra 86a) discusses the history
of the project and the evolution of our thoughts.

One immutable requirement of our project is that both m
EVES and EVES must have a sound mathematical basis. We
maintain that every verification system should be able to ex
hibit such a basis; otherwise, one must question the mathemat
ical proofs arising from the system. For example, many of the
current (North American) systems do not check whether de
clared functions are well-defined. An elementary example of an
ill-defined function is the following Boolean function:

Russell(x) is defined as not(Russell(x))

Such an ill-defined recursion allows one to prove the theo
rem "FALSE" which then throws into doubt any pretensions of

verified software. While such pathological examples are easy to
recognize, we have to be concerned about the subtle occurrences
of such events. Another paper [Cra 86b] discusses in more detail
some of the generic strengths and weaknesses of current verifi
cation systelllS.

Of course, even with such a mathematical basis, there may
be unsoundness. As an example of a different kind of unsound
ness, consider the incorrect (or incomplete) implementation of
the verification system itself. Note, however, that the presence
of the mathematical basis opens the door to the possible verifi
cation of components of the verification system itself; its absence
completely negates such a possibility.

Currently, our project is focussing upon the m-EVES envi
ronment. It is expected that the system will be completed by
November 1987.

Them-EVES development has generally followed two streams:

• 	The design of m-Verdi and its underlying mathematics.

• 	The development of the m-NEVER theorem prover.

In the remainder of this paper, I will discuss briefly each of
these strealllS.

2 m-Verdi Development

The major requirement of them-Verdi language design is that
m-Verdi support the development of verifiable software. By
verifiable it is meant that rigorous, mathematically sound proofs
(that a program is in consonance with its specifications) are
possible. To attain the goal of verifiability, the requirements
were refined to include the following:

• A formal 	semantic description of m-Verdi must be pre
sented, and

• A sound logic, for reasoning about m-Verdi programs, must
be developed.

109

Them-Verdi language was designed basically as a "proof of
concept" language. We wanted to show that rigorous mathe
matics could be developed to support the verification process
and the languages used as a part of that process. As noted
ab.ove, when we move onto the second stage of the project, the
development of EVES, we will enhance the language with more
powerful specification and programming facilities-resulting in
Verdi.

The design of m-Verdi has led to a language which is quite
different from its Pascal-based forbears, even though many of the
same concepts are found; it was a matter of different packaging
and appropriate simplification.

I have included, at the end of the paper, an example m-Verdi
program. This program has been verified using them-EVES en
vironment as it existed in early 19872

• Since that environment
was incomplete (for example, the well-formedness of procedures
was not yet implemented), it is possible that an error may have
slipped through. I remind the reader about my previous com
ments relating to unsoundness. (However, this example has also
been processed by an m-Verdi compiler and no well-formedness
errors were uncovered.)

An m-Verdi compiler has been implemented on a VAX/750
running VMS3

. To enhance the retargetability of the compiler,
the Code Generator Synthesis System (CGSS) of Karlsruhe Uni
versity is being used. As a result, we are now one of the (few)
sites that is in the position of being able to execute verified code.
As a case in point, a simplified version of the Flow Modulator
was verified, compiled and then executed on the VAX.

In the following subsection, I have included an edited section
of them-Verdi reference manual [Cra 87] which presents a brief
·overview of the language.

2.1 m-Verdi Overview

A declaration is used to introduce a set of new symbols to a vo
cabulary and to prescribe properties to these symbols. m-Verdi
requires declaration before use and disallows the redeclaration
of symbols. There are five different kinds of symbols: Constant
symbols, Variable symbols, Type symbols, Function symbols,
and Procedure symbols.

A Type symbol denotes a set of values. A Constant symbol
denotes a fixed value of a fixed type. A Variable symbol may be
used in valuations. A Function symbol denotes a function. A
function is a mapping from an n-tuple of values to values of a
fixed type. A Procedure symbol denotes a procedure.

An axiom restricts the possible interpretations for the sym
bols in a vocabulary.

The Bool, Int, Char and Ordinal types belong to the ini
tial vocabulary (i.e., the predefined m-Verdi symbols). With
each type, a set of literals, and constant, variable and function
symbols are defined. The Bool type denotes the logical truth
values. The Int type denotes the set of unbounded mathemat
ical integers. The Char type denotes a finite set of graphic
symbols. The Ordinal type denotes an initial segment of the
mathematical ordinals (up to ww). Other types are introduced
through an Enumeration type declaration, a Restriction
type declaration (which defines a set of values using an ex
plicit Bool predicate), an Array type declaration or a Record
type declaration.

An Expression is an m-Verdi sentence which may be eval
uated (using a vocabulary and valuation4) to produce a value

2The system has been significantly modified, since I proved the example,
as a result of decisions made during the spring of 1987. We have modified
the m-EVES interface so that interaction now occurs through a command
language. This point is discussed further in §4.

3VAX and VMS are trademarks of Digital Equipment Corporation.
4 A valuation is a pairing of variable symbols with values.

of a fixed type. The Expressions are equality, inequality, eval
uation of a constant, evaluation of a variable, evaluation of a
parenthesized expression, evaluation of a function application,
evaluation of a constructor, and evaluation of conditional and
quantification expressions. '~·

A Command is an m-Verdi sentence which denotes one or
more execution steps and determines, in part, the ordering of
the execution steps. It is through the execution of commands
that the values associated with a program's observables5-and,
valuati.ons-are modified. The m-Verdi commands are exit
(from a loop), return· (from a procedure), abort (the program),
Assignment command,Annotation,Procedure call command,
Conditional command,Loop command,andtheBlock command.

Certain m-Verdi constructs are used solely for specifying func
tional relationships. These are the Initial clause, Pre con
dition, Post condition, Measure condition(usedinproofs
of termination and well-definedness of recursive functions), In
variant (of a loop) and Annotation (m-Verdi's equivalent• of
the assert command). [Saa 87] discusses in detail the proof the
oretic issues arising from the language.

A Package collects together a sequence of declarations and
restricts the availability of certain symbols in the sequence. A
Package may be used to support information hiding and ab
straction.

An Environment is used to introduce symbols which will form
a link between them-Verdi program and the program's observ
ables. Symbols may also be introduced to support the expression
of specifications. The Environment acts as part of the axiomatic
basis to an m-Verdi program. The Environment will include the
specification of routines which cannot be implemented in m
Verdi but are crucial to its execution and its ability to modify
the observables.

2.2 Mathematics and Extensions

The semantic basis of the language is described using a form of
Denotational Semantics. There are no real surprises in this part
of the work.

Much more interesting problems arose with the development
of a logical system for reasoning about m-Verdi programs. In
fact, this area required the development a new logical system
(by my colleague Mark Saaltink) [Saa 87]. It is worthwhile not
ing that Predicate Calculus systems are inadequate for reasoning
about and specifying programs. For example, the Predicate Cal
culus does not handle recursive functions nor the introduction of
new symbols to the vocabulary of the logic. The logic is based
upon Gentzen-style deduction.

Each declaration in an m-Verdi program requires an accep
tance proof. For example, recursive functions must be well de
fined and verification conditions (the acceptance criteria) for
procedures, which are generated using a Verification Condition
Generator (VCG), must also be proven. The logic has been
shown to be sound relative to the Denotational Semantic model
and readers should note that, since the VCG is a part of the
logic, we have proved that the VCG performs the correct anal
ysis of procedures. The mathematics is completely described in
Mark Saaltink's paper [Saa 87].

Some of the intended additions tom-Verdi include polymor
phism and higher-order functions. Other additions are rather
basic (e.g., for loops and case commands); such facilities were
not included in m-Verdi since they were only "quantitatively"
interesting, not "qualitatively" interesting. All of these addi
tions will materially improve the expressibility of the specifica
tion and programming facilities of the language and will more
usefully support the development of reusable mathematical the
ories.

5 The visible effect of a program's execution is completely ascertained from ·
the set of observables.

110

3 m-NEVER

The second major research stream of the project is the devel
opment of a new theorem prover. This prover incorporates a
number of techniques that are under investigation by the theo
rem proving community.

The prototype prover, called m-NEVER (Not the EVEs Re
writer), consists of six components: a simplifier (a tautology
checker augmented with Nelson-Oppen congruence closure and
linear programming techniques); a rewriter (that handles condi
tional rewriting with backchaining, forward rules, and allows for
rules whichpermute parameters); an invoker (that heuristically
expands function definitions); a reducer (that reduces a formulo

by an innermost-leftmost application of simplification, rewriting
and invoking to each of the subexpressions of a formula; the
reducer uses a cache to maintain valid reductions and thereby
significantly improve its performance); user commands (exam
ples include split, invoke, prove, undo, and try); and the
required support for I/0 and database management. An in
duction mechanism, which is modelled on the approach used by
Beyer-Moore, is also included.

The theorem prover supports the interactive development of
proofs, but also has powerful automatic tools. For example,
there is a command which instructs the prover to bring all of its
heuristics to bear (including conditional rewriting and proof by
induction) on a proposition. Other commands are much more
selective in choosing portions of the prover's capabilities to be
applied to a proposition. Users of the prover may instruct the
prover whether facts are to be used as lemmata or as forward
or backward chaining rewrite rules. The capability for defining
rewrite rules can greatly decrease the amount of manual inter
action required. The decision to support powerful automatic
features and, yet, to allow for selective user control is a funda
mental design decision. As the developers of n-NEVER have
stated elsewhere [PK 87]:

" Although NEVER provides powerful deductive tech
niques for the automatic proof of theorems, it also
includes simple user steps which permit its use as a
system more akin to a proof checker than a theorem
prover.... It represents a tacit admission that we do
not intend to develop a deductive system which is fully
automatic; rather, for some proofs, it may be essential
for the user to resort to hand steps, since the automatic
capabilities may be inadequate.

The result of combining the manual and automatic
functions within a single system creates the possibility
of a synergy between abilities of the system (fast and
accurate) and the user (the necessary insight)."

One of the major goals of this effort is to develop a prover
which allows for journal-level inference steps, thereby addressing
one of the problems with previous verification systems. A more
complete description of the prover may be found in [PK 87].

As an indication of the theorem prover's power, it has been
used to successfully prove many of the problems from the Kem
merer Assessment Study of verification systems [Kern 86], Kem
merer's Library Specification [Kern 85], David Gries' Tsquare
[Gri 82] and the consistency of theories describing a sequence
theory and a theory of sets.

4 m-EVES Interface

The verification system runs upon Symbolics hardware and, con
sequently, makes use of the windowing software and graphics
packages. It is expected that these facilities will greatly increase
the utility of the system. (Either J Strother Moore or Bol;!-13-oyer

once told us that the power of the Beyer-Moore prover could
be increased by an order of magnitude solely by increasing the
bandwidth of information between the prover and the individual
using the prover.)

The interaction with m-EVES occurs using a "prover com
mand language" (pel) and may occur using either an EMACS
buffer or a Lisp Listener. There are six classes of commands:

• 	Goal Commands -The three commands retry, try and try
next untried are used to select a proposition for proof.

• 	Proof Steps -These commands are the basic theorem prover
commands for modifying a proposition. Examples have
been enumerated previously.

• 	Package Commands - The major unit of abstraction and
encapsulation in m-Verdi is the package construct. There
are six commands for identifying the beginning and end of
a package, the beginning and end of an environment, and
the beginning and end of a package model.

• 	Database Commands - These commands elicit information
about proof status, information pertaining to various proof
events, the undoing of prover events, and the freezing and
thawing of the database.

• 	Declarations - These commands are essentially m-Verdi
declarations. However, the pel has generalized them-Verdi
axiom declaration to include further information pertinent
to the proof process (e.g., trigger expressions for forward
rules) and packages are handled differently (as noted above).

• Miscellany -	 These commands are used to reset the prover
to its initial state, to begin and end scripting, to quit the
prover, and to read in a file of prover commands.

The pel interface is now in place (as of May 1987) but some
of the commands are not supported. The commands of partic
ular note are those dealing with the environment and packages.
While the environment commands will be easy to handle, some
rather significant modifications to the prover must be made to
properly handle packages.

The environment will fully support the prover's capabilities
for interactive proving. As a result, when one is trying to prove
a proposition and notes that some subsidiary facts are necessary,
it is possible to introduce the new facts and either prove them
immediately, or temporarily assume them. (This facility will no
longer be available after changes are made during the summer of
1987. In particular, to simplify the checking for non-circularity
of proofs, each declaration must be proven as it is added to the
system. The only instance where proofs may be deferred will
occur when package headers may be added and the correspond
ing package body deferred. However, when it is time to add the
package body, the prover state will have to be returned to the
state occurring after the procedure header was added; subse
quently, the package body may be added and the various proof
obligations satisfied. The approach of forcing proof when a dec
laration is being added is similar to the approach used by Boyer
and Moore.)

For now, if the program is to be compiled, it has to be trans
mitted to a VAX (see §2). It is still unclear whether an m-Verdi
compiler will ultimately reside on the Symbolics machine and
we have yet to consider the issues of incremental compilation.

111

5 Conclusion

The project will result in four major advances:

• 	The design and implementation of a programming and spec
ification language which has a complete, formal mathemat
ical basis and supporting logic.

• 	The design of a sound and complete logical system which is
sufficiently powerful to handle constructs used in the veri
fication process.

• A new theorem prover which incorporates many of the state
of-the-art concepts currently under investigation in the the
orem proving community.

• 	The use of workstation technology to enhance the interac
tion. between programmer and verification system.

We have tried to learn from the experiences of the existing
verification system efforts (e.g., [Kern 86] [Cra 85] [Cra 86b]).
Our development of a solid mathematical foundation allows us to
present some strong statements about our efforts and opens the
door to verifying components of the verification system. Further,
we attempt to decrease the cost of the verification effort, by
increasing the power of the theorem prover, environment, and,
ultimately, when m-Verdi is strengthened, the specification and
programming language.

6 Acknowledgements

The following individuals have been involved in either the tech
nical or support staff p.spects of the project: David Bonyun,
Brenda Brown, Sentoti Kromodimoeljo, Irwin Meisels, Anders
Neilson, Bill Pase, Mark Saaltink, Karen Summerskill and my
self, Dan Craigen.

The language was developed by Craigen and Saaltink. The
mathematics is due primarily to Saaltink. m-NEVER is being
developed by Pase and Kromodimoeljo. Meisels and Neilson are
implementing them-Verdi compiler.

7 Micro Flow Modulator

The rather simple example described here is derived from an
Affirm description of a flow modulator which I specified during
the Kemmerer Assessment Study [Kern 86](Cra 85].

Suppose we have two computer systems, Public and Private.
It is intended that messages will be allowed to flow from the
Private system to the Public system if the messages satisfy a
particular Boolean predicate defined over messages. (Such a
predicate may, for example, check that no sensitive information
is being publically disseminated.)

Public Private
System 1---- released messages -----1 System

The program described herein, specifies and implements a
Flow Modulator. The Flow Modulator will sequentially
read a message from the Private System, determine whether that
message satisfies an appropriate Boolean predicate, and based
upon the result, will either release the message to the Public
System or will log the rejected message. So, the above diagram
may be modified slightly to the following:

Low
Modulator

High
System System

Audit
Mechanism

For the purposes of this exposition, details respecting the for
mat of messages and the definition of the Boolean predicate are
ignored. Further, it is specified that the Modulator will process
exactly "number_of_messages" messages and then terminate. It
is assumed that the 1/0 channel types are of the same kind.

The following example has been processed by an m-Verdi
compiler and has also been verified using an earlier prototype m
EVES verification system. The comments of the form ~{! ... }
enclose commands which are recognized by the verification sys
tem and are used to prove the proof obligations arising from the
associated declarations.

· The program is liberally sprinkled with remarks which, hope
fully, clarify aspects of the problem being solved and of m-Verdi.
Only that text which is printed in typewriter font was pre
sented to the verification system. (Actually, the sequence of
declarations was presented-! did not use the program and
environment clauses. The entire program has been processed
by them-Verdi compiler.)

The program is called "microJl.ow_modulator." This name
has no effect on the vocabulary.

program micro_flow_modulator

The environment is used to introduce names which will form
a link between them-Verdi program and the observables being
modified. It also forms the axiomatic basis for the program.
There are no (direct) proof obligations involved for the declara
tions occurring within the environment.

environment

An unspecified executable type, called "message", is declared.
In this instance, a pragma is used to indicate, to the compiler,
that a message will require 1024 bytes and requires a particular
word orientation.

prog type message
pragma (alignment 1, size 1024)

The following sequence of declarations introduce a theory of
sequences of messages. A complete theory of sequences can be
quite rich; what we have here, however, is a basic kernel of
sequence theory concepts. An algebraic datatype style of pre
sentation has been used to describe the theory.

The theory of sequences is used to specify (and annotate) our
program. Only one declaration, that for eO_message, is required
to be an executable declaration. ·

type sequence_message

The reader should be aware that the following variable decla
ration, and all subsequent variable declarations, introduce vari
able symbols to the vocabulary; a program's state is not modified
by such declarations.

112

The reader should be aware that the following variable declaration, and all subsequent
variable declarations, introduce variable symbols to the vocabulary; a program's state is
not modified by such declarations.

var iO_message, il_message, i2_message: int

prog var eO_message: message
var el_message, e2_message: message

var sO_message, sl_message, s2_message: sequence_message

const empty_message: sequence_message

function tack_message (eO_message, sO_message): sequence_message

function head_message (sO_message): message

function tail-_message (sO_message): sequence_message

axiom pragma (rule, name = "head_tack_message")
all sO_message, eO_message:

head_message (tack_message (eO_message, sO_message)) eO_message

axiom pragma (rule, name = "tail_tack_message")
all sO_message, eO_message:

tail_message (tack_message (eO_message, sO_message)) sO_message

axiom pragma (rule, name = "sequence_equality_message")
all sO_message, sl_message:

implies (and (sO_message <> empty_message,
sl_message <> empty_message),

(sO_message = sl_message) =
and (head_message (sO_message) head_message (sl_message),

tail_message (sO_message) tail_message (sl_message)))

axiom pragma (rule, name = "tack_equal_empty_message")

all sO_message, eO_message:

not (tack_message (eO_message, sO_message) empty_message)

function size_message (sO_message): ordinal

axiom pragma (rule, name "size_tail_message")

all sO_message:

implies (sO_message <> empty_message,

ordinal'lt (size_message (tail_message (sO_message)),

size_message (sO_message)))

function length_message (sO_message): int
measure size_message (sO_message)
begin

if sO_message = empty_message
then 0
else plus (1, length_message (tail_message (sO_message)))

end if
end length_message

axiom pragma (name = "length_is_non_negative_message")

all sO_message: int'ge (length_message (sO_message), 0)

113

axiom pragma (rule, name = "length_test_message")
all sO_message, s1_message:

implies (length_message (sO_message) <> length_message (s1_message),
not (sO_message = s1_message))

This brings us to the end of the sequence theory kernel.To show that the aforementioned

theory is consistent is a task that the specifier of the problem should tackle, not the person
who has been presented with the specification and told to implement a program (whose
specification is presented in terms of sequence theory). For completeness, I should note
that a model for the kernel has been developed (using m-EVES) and, as a result, the
kernel theory is consistent.

The unspecified function "ok" will be the function used to check that messages may be
released to the Public system. In this case, there are no axioms restricting the possible
implementations of "ok". As a consequence, in the extreme cases, "ok" could always return
true or always return false and still satisfy the intent of the specification.

prog function ok (eO_message): bool

"number_of..messages" is to be used as the constant which restricts the number of mes
sages that can be analyzed by the program. The axiom specifies that the value must be
positive and bounded by maxint. Consequently, any implementation of the environment
must satisfy this requirement.

prog const number_of~messages: int

axiom pragma (name = "about_number_of_messages")
and (int'gt (number_of_messages, 0),

int'gt (maxint, number_of_messages))

The following sequence of declarations, through to the end of the environment, relate to
the observables of the program and how they may be modified. In this instance, we have
two procedures which are used, respectively, to output a message to some particular port
(which will be either a port linked to the Public system or to a port linked to the audit
mechanism) or to input a message from the Private system.

With each port we associate a history of the messages that have flowed through the
port. An abstraction function, "port.b.istory", is used to capture this intent. From the
specifications of the procedures, the reader should be able to conclude that each invocation
of the procedures results in the processing of a single message.

prog type a_port pragma (alignment 1, size 1024)

prog var port: a_port

function port_history (port): sequence_message

prog procedure output_port (mvar port, lvar eO_message)
initial (port'O = port)
pre true
post port_history (port) = tack_message (eO_message, port_history (port'O))

prog procedure input_port (mvar port, pvar eO_message)
initial (port'O = port)
pre true
post port_history (port) tack_message (eO_message, port_history (port'O))

end environment

Many of the declarations that follow could just have easily been included in the envi
ronment.

The following sequence of declarations are rather specific to the concept of modulator.
These declarations make use of the sequence theory abstraction to capture modulator
concepts.

114

"accepted..m.essages" determines the subsequence of sO..m.essage, preserving order, of el
ements that satisfy the "ok" predicate. "rejected..m.essages" is essentially the same function
except that it extracts the elements which do not satisfy the "ok" predicate.

Since both these functions are defined recursively, we must show that they do, in fact,
describe some function. See [Saa 87] for the proof obligations arising from recursive func
tion definitions. Further, in both instances, a lemma was required. The first step in each
proof, introduces the lemma "lengthjs_non..negative..m.essage". The second step, prove,
results in m-Never applying its rewriting and simplification techniques to reduce the for
mula to true.

function accepted_messages (sO_message): sequence_message
measure ordinal'val (length_message (sO_message))
begin if sO_message = empty_message

then empty_message
elseif ok (head_message (sO_message))

then tack_message (head_message (sO_message),

accepted_messages (tail_message (sO_message)))
else accepted_messages (tail_message (sO_message)) end if

end accepted_messages

{! use "length_is_non_negative_message" }

{! prove }

function rejected_messages (sO_message): sequence_message
measure ordinal'val (length_message (sO_message))
begin if sO_message = empty_message

then empty_message
elseif not (ok (head_message (sO_message)))

then tack_message (head_message (sO_message),
rejected_messages (tail_message (sO_message)))

else rejected_messages (tail_message (sO_message)) end if

end rejected_messages

{! use "length_is_non_negative_message" }

{! prove }

The following function is a bool predicate which specifies that every element of a se
quence must satisfy the "ok" predicate. The axiom that follows then states that secu
rity_property holds over the sequence returned by accepted..m.essages. This is a rather
trivial example of a proof of a specification property. Observe that the proof of "ac
cepted..m.essage..sequencejs_secure" uses automatic induction.

function security_property (sO_message): bool =
measure ordinal'val (length_message (sO_message))
begin if sO_message = empty_message ·

then true

else and (security_property (tail_message (sO_message)),

ok (head_message (sO_message))) end if

end security_property

{! use "length_is_non_negative_message" }

{! prove }

axiom pragma (name = "accepted_message_sequence_is_secure")
all sO_message: security_property (accepted_messages (sO_message))
{! prove_by_induction }

The following three variable names will be used as formal parameters to the mam
program and will be directly related to ports over which messages flow to the Pub
lic system, to the audit mechanism, and from the Private system, respectively. "num
ber_of..m.essages_read" will be used within the main program to define a component of the
program's state and will be used as a counter for the number of messages read to some
point in time.

prog var down, reject, input: a_port

prog var number_of_messages_read: int

115

The following three functions are used to specify and annotate the main program.

function pre_condition (down, reject, input): bool =
begin and (port_history (down) = empty_message,

port_history (reject) = empty_message,

port_history (input) = empty_message)

end pre_condition

function post_condition (down, reject, input): bool =
begin and (port_history (down) =

accepted_messages (port_history (input)),
port_history (reject) =

rejected_messages (port_history (input)),
length_message (port_history (input)) =

number_of_messages)
end post_condition

function loop_invariant
(down, reject, input, number_of_messages_read): bool

begin and (port_history (down) =
accepted_messages (port_history (input)),

port_history (reject) =
rejected_messages (port_history (input)),

length_message (port_history (input)) =
number_of_messages_read,

int'ge (number_of_messages, number_of_messages_read),
int'ge (number_of_messages_read, 0))

end loop_invariant

Finally, the main procedure. The implementation is fairly straightforward. The proof
of the procedure required two lemmas, including one referring to minint and maxint, viz.
"MININT-AND-MAXINT-REQUIREMENTS". The "equality....substitute" step results in
the replacement of "porLhistory(input'l)" by an expression it is equated with. As a point
of interest, in a later version of the system, when the prover had been augmented with
forward rules, the proof of the main procedure was reduced to three steps since the lemmas
did not have to be explicitly assumed.

main prog procedure flow_modulator (mvar down, mvar reject, mvar input)

pre pre_condition (down, reject, input)

post post_condition (down, reject, input)

begin

pvar eO_message

pvar number_of_messages_read := 0

loop

invariant loop_invariant (down,

reject,

input,

number_of_messages_read)

measure ordinal'val (minus (number_of_messages,
number_of_messages_read))

exit when number_of_messages_read = number_of_messages
input_port (input, eO_message)
number_of_messages_read := eplus (number_of_messages_read, 1)
if ok (eO_message)

then output_port (down, eO_message)

else output_port (reject, eO_message)

end if

end loop

end flow_modulator

{! use "about_number_of_messages" }

{! use "MININT-AND-MAXINT-REQUIREMENTS"}

{! prove }

{! equality_substitute port_history (input'1) }

{! prove }

end micro_flow_modulator

116

References

[Cra 85] 	 Dan Craigen. A Technical Review of Four Verifica
tion Systems: Gypsy, Affirm, FDM and Revised Spe
cial. I.P. Sharp Associates Final Report FR-85-5401
01, August 1985.

[Cra 86a] 	Dan Craigen. Program Verification at J.P. Sharp As
sociates. I.P. Sharp Associates Technical Report TR
86-5420-04, September 1986.

[Cra 86b] 	Dan Craigen. Some Comments on Program Verifica
tion Systems. To appear in the proceedings of the
"Symposium on Safety and Security", (October 20
October 24, 1986), Glasgow, Scotland. Proceedings to
be published by Blackwells. Also I.P. Sharp Associates
Technical Report TR-86-5420-05, December 1986.

[Cra 87] 	 Dan Craigen. A Description of m- Verdi. I.P. Sharp
Associates Technical Report TR-87-5420-02, June
1987.

[Gri 82] 	 David Gries. A Note on the Standard Strategy for De
veloping Loop Invariants and Loops. Cornell U niver
sity Technical Report TR-82-531, October 1982.

[Kern 85] 	 R. Kemmerer. Testing Formal Specifications to Detect
Design Errors. IEEE Transactions on Software Engi
neering 21(1), January 1985.

[Kern 86] R. Kemmerer, eta!. Verification Assessmen,t Study Fi
nal Report, Volumes I-V. National Computer Security
Center C3-CR01-86, March 1986.

[PK 87] 	 Bill Pase, Sentot Kromodimoeljo. NEVER: An Inter
active Theorem Prover. I.P. Sharp Associates Confer
ence Paper CP-87-5402-20, January 1987.

[Saa 87] 	 Mark Saaltink. The Mathematics of m- Verdi. I.P.
Sharp Associates Technical Report FR-87-5420-03,
June 1987.

117

The Bell-LaPadula Computer Security Model

Represented as a Special Case of the

Harrison-Ruzzo-Ullman Model

Paul A. Pittelli

ABSTRACT Specifically, suppose we have a BLP model which consists

Currently most computer security models are classified
among the tl:l~ types; access control, information flow, and
non-interference. Within the realm of access control lies the
classical Bell-LaPadula model. A BLP model consists of a set of
subjects and objects, thr~e security level functions, and a
discretionary access matrix together with a set of rules used to
manipulate the current state of the model. Security in this
model is dependent upon the satisfaction of the three
properties: simple security, discretionary access, and the *
property. An HRU model consists of an access matrix and a
finite set of commands which act as matrix transformations.
Here security is determined by looking for the existence of an
access right in a specific cell of the matrix. We define a specific
HRU model (called the Bobo model) and establish a
correspondence between the Bobo commands and BLP rules,
also between the Bobo and BLP states. Furthermore we
observe that this correspondence is security preserving in the
fact that a BLP access triple is secure if and only if that access
is contained in a specific cell of the Bobo access matrix.

Introduction

The purpose of this note is to show that the Bell-LaPadula
model for access control is simply a special case of the not so
well known Harrison-Ruzzo-Ullman model. The HRU model
consists of an access matrix together with a finite set of
commands that are used to manipulate the matrix. In order to
develop a model equivalent to BLP's, we need to exhibit
commands that are "identical" to the BLP rules.

Before we begin defining the commands, we must first
exhibit a correspondence between the "subjects" and "objects"
in the BLP model and the "subjects" and "objects" in the HRU
environment. The reason for the above quotes is that subjects
and objects are disjoint sets in BLP, whereas the set of subjects
is contained in the set of objects under HRU. This distinction,
though seemingly small, is well worth remembering. However,
a key factor of the BLP model is the use of the functions
fs,fc,and fo. These functions associate a security value to a
subject or object, which allows one to compare subjects to
objects.

The preceeding paragraph indicates some of the differences
we need to consider when relating BLP to HRU. The major
concept in this new model is the notion of a subject(object)
represented by a set of entities. Defining a subject as a set of
sub-subjects allows us to implement the multilevel capabilities
ofa BLP subject in an access matrix. Likewise an object viewed
as a set permits the use of an upgrade command.

of the following entities;

E = {s;: i = 1,2, ... ,k} -- set of subjects

0 = {or j = 1,2, ... ,n} -- set of objects; recall~ n 0 = 0

L = {It: t=O,l, ... ,T} --set of security values forming a
lattice under the partial ordering !!> referred to as the
dominance relation. Without loss of generality let lo and
IT denote the least upper bound of L and the greastest
lower bound of L respectively.

fs:E ~ L -- function yielding the maximum security
level for a subject.

fc:E ~ L -- function yielding the current security level
for a subject.

fo:O ~ L -- function yielding the security value of an
object.

R = {append,write,read,execute} --set ofaccess rights.

M = k x n matrix with m;i ~ R representing the set of
discretionary access rights that subjects; has to object <>.i·

We now begin showing how to incorporate the BLP
model into an HRU environment. First we define the following
components of an HRU model:

S = {s;lt: s; e E and t e STJ U {solT}.Corresponding to each
BLP subject Si is a subsetS; ofS, where S, = {s;lt: t e STJ,
which represents s; together with all of s;'s allowable
security values. That is {It: t e STJ = {It e L: fs(s;) !!> !J.
Formally the elements of S; come from the cross product
space E x 0, but for ease of notation we will write the
elements as s;lt. Thus Silt will denote an HRU subject.
Furthermore we reserve the subject solT to be a system
subject. Thus So = {solT} and STo = {T}. The purpose of
solT is to let the system know at what level an object is
currently classified as will be formalized later.

0 = S U 0 where 0 = {<>jlu: Oj e 0 and u e OTj}.We relate
to each object Oj a set of values {lu: u e OTj} whic'1
represents all the security values that Oj could assume.
That is {lu: u e OTj} = {lu e L: lu !!> fo(<>j)}.

A = {active,own,r,a, w,e}set of generic access rights.

P = (P[s,o]), p x (p+q) matrix where P[s,o] ~ A for s e S
and o e 0. Here

p = ±I STi I andq = i I OT1 I
•=0 J=l

Pis simply referred to as the access matrix.

118

Primitive Operations:

In the BLP model the rules allow for the creation and
deletion of objects as well as the insertion and removal of an
access right from a cell in the access matrix M. In the HRU
model there are counterparts of these actions which are termed
primitive operations. Because ofour particular example there
is an additional operation: delete a proper subset of the set Oj =
{ojlu: u e OTj}. This last primitive operation will provide the
means to implement an upgrade command.

Given system state (S,O,P) we define a primitive operation op
as a function op:(S,O,P) ~ (S*,0*,P*) where:

(1) op = create object Ojlu,

whereOifO. Wehaveforalll :I> lu;

s• =s, o• =o u {Ojl},

P*[s,o] =P[s,o] for all (s,o) e S x 0

P*[s,Ojl] =0 for all s e S.

(2) op = delete object Oj,

where Oj!:;; 0\ S. We have for alii e L;

s• =s,o• = O\{ojl},

P*[s,o] =P[s,o] for all (s,o) e S x 0*.

(3) op = delete objects Ojlu,

where Ojlu e 0\ S. We have for alll '/> lu,

s• =s,o• = O\{ojl},

P*[s,o] = P[s,o] for all (s,o) e S x 0*.

(4) op = enter x into P[Sj,Ojlul,

where x e A,~ !:;; S, and Ojlu e 0 \ S. We have for all l,lt
with

lt :I> l if x=r

lt = l if x= w

l :I> land l :I> lt if x=au

lt = lT if x =active

0 if x =e or own
s• = s,o• = o,
P*[s,o] =P[s,o] for all (s,o) * (silt,Ojl)

P*[silt,Ojll =P[silt,Ojll U {x}.

(5) op = delete x from P[Si>Ojlul,

where x eA. We have for alll,lt with lu :I> l,

s• =s,o• =o,
P*[s,o] = P[s,o} for all (s,o) * (silt,Ojl)

P*[silt,Ojll = P[silt,Ojl] \ {x}.

As an aid to understanding the effects of the primitive
operations on the matrix P, it is helpful to consider that there
corresponds to each subject,object pair (sj,Oj) a submatrix Pij
whose rows are indexed by STi and whose columns are indexed
by OTj. The consequences of applying the primitive operations
can be summarized as follows:

(1) op = create object Ojlu

This operation creates a set of matrices {Pij: o " i " n},
where P;j has rows corresponding to elements in ST; and

columns corresponding to the members of OTj. The cells
of each submatrix are all empty.

(2) op =delete object Oj

This operation removes from the matrix P all those
submatrices P;j for 0 s i s k. Recall that k is the
cardinality ofS, the set ofBLP subjects.

(3) op =delete objects Ojlu

This operation removes a subset of columns from each
matrix P;j, 0 s i s k, specifically all those columns
corresponding to oil where l f lu.

(4) op = enter x into P[Sj,Ojlul

This operation inserts x into a subset of positions of the
matrix Pij defined by the various values ofx.

(5) op = delete x from P[~,Ojlul

This operation deletes x from all entries in those columns
ofPij corresponding to l where lu :I> l.

Commands:

An HRU command is simply a conditional IF (expression
1) THEN (expression 2) where expression 1 is a boolean
function and expression 2 is a sequence of primitive operations.
To implement the BLP model in an HRU environment we will
use the following commands. For ease of notation let Sr
requesting subject and x a member ofthe set {r,a,w,e}.

(1) Command GIVE(Sr,Si>x,ojlu)

IF own e P[srlt,Ojlul for any lt, and
active e P[solT,Ojlul

THEN enter x into P[Sj,OjlTI·

(2) Command RESCIND(Sr,~,x,oilu)

IF own e P[srlt,O}ul for any lt

THEN delete x from P[Si,Ojlul·

(3) Command GENERATE(Sr,ojlu)

IF TRUE

THEN 	 create object Ojlu,

enter active into P[So,Ojlul,

enter own into P[Sr,OjlTI·

(4) Command DESTROY(Sr,ojlu)

IF own e P[srlt,Ojlul for some lt

THEN delete object Oj

(5) Command UPGRADE(Sr,Oj,llJo,lu,)

IF 	 own e P[srlt,Ojlllo] for some lt, and

active e P[solT,oilllo]

THEN 	 delete objects Ojlu,,

enter active into P[So,Ojlu

1
l.

Note: For the rest of this paper the sets S, 0, access matrix P.
and th!l five commands defined above will comprise that which
will be called the Bobo model.

Equivalence to BLP:

The method that we will use to exhibit an equivalenc,o
between the BLP and Bobo models is a two-fold process Fir,.;t
we will prove a theorem that will show every state of a BJ.I'

119

model is achievable by the Bobo model. Secondly a
correspondence between the state transitions of the two models
will be drawn by simply listing each BLP state transition
together with its counterpart Bobo state transition.

Besides showing that every BLP state is achievable by
the Bobo model, the theorem below illustrates how to identify
the BLP set of secure access triples in the HRU environment.
One of the hypotheses of the theorem is an assumption on the
initial access matrix po. We assume that for 0 s i s k;
1 s j s n; t e ST;; u e OTi;

{active} ifs. = s
0

and l = {.
0

(o .)

r 0 ' u J

P'1s.l
1
,o .l] = {own} ifs. createdo.

' J u ' J

{} othelUI ise
In order to see that this is not an unreasonable assumption,
consider what happens when we generate an object Oj· Suppose
in the BLP model subjects; created object Oj at level fo(Oj) = lu.
In the Bobo model this is accomplished by issuing the command
GENERATE(S;,ojlul. Upon execution of the command we see
that the sul;lmatrices P aj are all empty except when a = i in
which the matrix P;j contains {own} in every cell. Also there is
only one entry in Poj which is nonempty and that is
PO[solT,ojf0 (ojll = {active}. Thus we see that if the system
knows who created each object then we can generate the initial
matrix po by a sequence of GENERATE commands. Hence our
assumption on the matrix PO can be made without loss of
generality.

Theorem: Let M,f be a state of a BLP model with subjects
{st,S2, ... ,sm} and objects {ot.02, ... ,on}. Let jJ be the set of all
possible secure triples (s,o,x) completely determined by M and f.
Define a Bobo access matrix PO to be, for 0 s i s k;l s j s n;
teST;; u e OTi;

{active} ifs, = s0 andl,. ={0 <o)

P0[s.l ,o .l] = {own} ifs created o 1' J u ' J{
{} othe1Uiise

Then there exists a sequence of commands ct,c2, ... ,ck such that
(SO,OO,po)=>(Sl,Ol,Pl)=> ... =>(Sk,Ok,Pk) and (s,o,x) e jJ ~ x e
Pk[sfc(s),ofo(o)].

Pf: 	 For every object Oj we perform the following:
Suppose sd is the creator ofOj.
then for all x e m;j issue the command
GIVE(Sd,S;,x.Ojfo(Oj)), fori= 1,2, ... ,m.
Since the set of subjects, objects, and access rights are
finite sets then we have generated a finite sequence of
commands say Ct.C2,...C][which transforms (SO,OO,PO) =>
(Sk,Ok,Pk).
Claim: (s,o,x) e jJ ~ x e Pk[sfc(s),ofo(o)].
ff: Suppose(S;,Oj,x) e jJ ~

s<si) ~ {0(o) and fc<s;) ~ {0(o) : .x = r

s<s.) ~ f (o .) and fc(s.) ={0(o .) if .x =w~ 1 0.xem .. and J ' J ~
'J f0 <o)~fc<s;lif .x=a

GIVE(Sd,S;,x,ojfo(oj)l is executed, wheife ~d=i~ the
creator of Oj ~
x e Pk[s;fc(s;),ojfo(oj)]. •

Now we need to show that all the possible state
transitions in the BLP model are attainable in this new setting.
Referring to [1) we find that there are 11 state
transitions(rules). For each rule we will establish an
equivalent command and/or a reason why the rule is satisfied.

Rules 1-5: get,release read/append/write/execute

It is unnecessary to implement a get or release command
in our Bobo model. In BLP, a subject has to request get access
to an object so that the * property is never violated. However in
the Bobo model the enter access primitive operation assures
that the * property will not be violated. Thus a subject in the
Bobo model obtains access to an object whenever the owner of
the object has given him the desired access by executing a
GIVE command.

Rule 6: give- read/append/write/execute

This rule corresponds to the command GIVE. The rule
checks to see if the requesting (giving) subject has the
authority· to -"give" another subject access to a specific object.
This is accomplished by the command via the condition that the
requesting subject have"ownership" of the object in question.
Furthermore upon a true condition, the given access right is
granted so that the BLP * property is not violated. (e.g. If s; is
granted w access to Oj, then w is only added to the set in
positions (s;lt,Ojltl for all t e OTj.)

Rule 7: rescind- read/append/write/execute

The command RESCIND performs the inverse of GIVE
as does the rule rescind in the BLP sense. Again the condition
tests the authority of the requesting subject via "ownership"
and upon valid authority removes the specified access from the
subject's access columns.

Rule 8,9 create,delete object

Commands GENERATE and DESTROY correspond to
the rules create and delete respectively. GENERATE creates
an object and defines the initial "owner" of the object to be its
creator. DESTROY checks for"ownership" for authority to
delete the object from the system.

Rule 10: change-subject-current-security-level

There is no need for a command which changes a
subject's current security level. The reason is that the Bobo
model defines a subjectS; to be the set {s;lf t e STJ. This allows
a subject to work on an object Ojlu in mode x if and only if there
is some t e ST; such that x e P[s;lt,Ojlul· Thus the command
automatically changes a subjects current security level to
accomodate the desired access to an object.

Rule 11: change-object-security-level

The command UPGRADE performs the function of
changing the security level of an object. In BLP the reference
monitor needs to verify that the new level is a valid one and
that the requesting subject has the authority to change the
function fo. This is accomplished by the "own" access right and
the delete objects primitive operation. Furthermore suppose
that object Oj gets upgraded from level lu to lv. Notice that
because of the primitive operation enter, if subjects; had access
x to Ojlu then s; will still have access x to Ojlv provided that the *
property is not violated. This implies that the UPGRADE
command automatically cancels all current accesses that
violate the *property at an objects new security level.

Remarks:

Even though the Bobo model can simulate the BLP
model, there are several characteristics that have been created
to accomplish this. The .first and most important is the ne"
idea of an access right called "own". The BLP model contains a
tree structure for the objects called a hierarchy. However the
hierarchy of objects is not related to the security of the model

120

but exists merely because of the application of BLP to the
Multics system. Thus we see that the only concept of ownership
of an object in BLP lies in the Give f!,lnction for rule 6. In order
to implement this Give function it is necessary to use an "own"
access right. The Bobo model is conservative in the fact that
the only subject who can have "own" access to an object is that
object's creator. However ifthere is need for group ownership of
an object the conditions of the GIVE command can be changed
to accommodate this feature.

The other new access right in the Bobo model is "active".
The purpose of "active" is simply to let the reference monitor
know the current level ofan object. This feature then allows for
the upgrading ofan objects security level.

The use of sets for representing subjects and objects
creates more responsibilities for the reference monitor in the
Bobo model. In particular, since a subject can work at any level
he dominates and an object can assume various security values,
then it should be the job of the reference monitor to inform the
subject at what level he is working and the value of the object
that he is accessing.

The last remark that we want to make concerns the form
of the access matrix P. The easiest observation to make is that
the submatrix whose rows and columns are indexed by the
s·ubjects is completely empty. This reflects the fact that
subjects are not allowed to access other subjects in the BLP
model. Also the method of giving subjects access rights creates
alot of redundant information. That is, if the reference monitor
wants to check to see if subject s; has access x to object Ojlu then
the only cell necessary to examine is P[s;lu,Ojlul-

Safety:

This section discusses the concept of safety as introduced
by Harrison, Ruzzo and Ullman. Intuitively a "safe" security
model (i.e. protection system in HRU terminology) is one which
will not allow unauthorized access to objects. The following
two definitions formally state the idea of safety.

Def: Given a protection system, we say a command ex
leaks generic right r from configuration Q = (S, 0, P)
if ex, when run on Q, can execute a primitive
operation which enters r into a cell of the access
matrix which did not previously contain r.

Def: Given a particular protection system and
generic right r, we say that the initial configuration
Q0 is unsafe for r (or leaks r) if there is a
configuration Q and a command ex such that

(1) ~ => Qby a sequence ofprimitive operations,

(2) ex leaks r from Q.

The first observation one can make is that any system
which utilizes the primitive operation enter will most likely be
deemed unsafe. Harrison et a!. make the convention that to
check for unauthorized leakage, we need to eliminate from
testing those subjects who are actually authorized to give (leak)
rights. They use the term "reliable" subjects to mean the set of
subjects who are authorized to grant the generic right r of an
object to another subject.

The general question of whether or not an arbitrary
protection system is safe was shown to be undecidable by HRU.
However ifa specific model consists ofcommands which involve
only one primitive operation (mono-operational in HRU
terminology) then the question of safety is decidable Our Bobo
model happens to live in the middle ground of the previous

sentences. That is, the Bobo model is not a mono-operation
system but we will show that the model is "safe".

Its not too hard to see that every command except the
GENERATE command contains a check for ownership in the
condition. Since a subject who owns an object is deemed
reliable then the only command in question is the GENERATE
command. However, anyone who creates an object is by nature
reliable with respect to that object. So we can view the entering
of the own access right by the creator of the object giving
himself access. Therefore, all the commands in the Bobo model
preserve safety which implies the Bobo model is itself"safe".

Conclusions:

Besides an attempt at unifying some of the existing
access control models, the Bobo model reveals an interestins
point. This is we see that the HRU model is a very general
access control model. Moreover one can appreciate the elegance
of the model by the fact that the complex BLP model can be
defined by an access matrix together with a set of five
commands. Being able to incorporate the three functions f8 , fc,
f0 , the BLP discretionary access matrix M, and the set of all
current accesses b into the matrix P, allows one to see the
interplay between the different security levels and the *
property. Also note that we have only dealt with the rules
defined by volume 4 of the Bell-LaPadula model. A current
topic of discussion is whether or not the rules constitute a part
of a BLP model. This is no concern of this paper so we do not
attempt to imply either case. However what we show is how
the rules ofany BLP model correspond to commands in an HRU
model. Thus if any more rules are added to the existing BLP
model then a new command can be added to the Bobo model
accordingly in order to preserve the equivalence. Even though
implementation of the BLP model might be simplified by using
the Bobo model, the intent of this paper and follow-ons is to try
to unite all the existing access control models in one
framework; maybe that of the Harrison, Ruzzo, Ullman Model.

References:

(1) 	 Bell, D.E. and LaPadula, L. J. Secure Computer
Systems, Vol. IV: Unified Exposition and Multics
Interpretation. MITRE Corp. Tech. Rep. MTH
2997, 1975.

(2) 	 Harrison, M. A., Ruzzo, W.L. and Ullman, J. D.
Protection in Operating Systems.
Communications of the ACM, V<>l. 19, No. 8,
August 1975 ·

121

COMPARING SPECIFICATION PARADIGMS FOR SECURE SYSTEMS:

GYPSY AND THE BOYER-MOORE LOGIC

Matt Kaufmann*

William D. Young

The Institute For Computing Science and Computer Applications

The University of Texas at Austin

Austin, Texas 78712

The Gypsy Verification Environment (GVE)1·2 is one of two
systems endorsed by the National Computer Security Center for use in
meeting the verification requirements for an A1 level evaluation as
outlined in the Trusted Computer Systems Evaluation Criterici3:· Gypsy
has been used extensively in secure systems specification and
verification projects including the Enc~pted Packet lnterface4 , Message
Flow ModulatorS, Honeywell SCOMP , Honeywell SAT7 , and ACCAT
Guard8 . The Beyer-Moore theorem prover has also seen extensive use
in the security arena. It has been used as a component of the HOM
verification system9 on KSOS10 , SCOMP, and SACDIN11 .

Yet the ways in which these two systems are currently used in
secure system development efforts are quite different. The GVE is
utilized as a fully integrated verification environment. The Gypsy
language is used for constructing code and specification; verification
conditions are generated and proved in the GVE proof checker; and, in
some cases, the Gypsy code is compiled and run. The Beyer-Moore
system, on the other hand, is used only as the proof checker for
verification conditions generated from specifications written in some high
level language such as Special. This is true despite the fact that the
Beyer-Moore logic contains a fully executable functional programming
language. The Beyer-Moore system has been used not only to state and
prove theorems in traditional mathematical domains such as number
theory and recursive function thee~, but also to specify and prove the
correctness of a microprocessor1 , and is bein~ used to prove the
correctness of an operating system and a compiler 3 . A main contention
of this paper is that the Beyer-Moore logic can also be used effectively
as a specification language for secure systems, particularly at the model
level.

This paper investigates the viability of the Beyer-Moore logic as a
specification language for secure system modeling efforts by comparing
it to Gypsy on a significant example. The example we chose was the
Low Water Mark problem, a simple secure system which has been used
in two different studies 14• 15 for comparing verification systems. At least
three different Gypsy specifications for this problem have been
published14• 16• 17; our specification differs from each of these. Using a
non-interference style characterization of security, we specified the Low
Water Mark system in Gypsy and in the Boyer-Moore logic. The key
security theorem was proved in each system using the associated proof-
checker. We compare the specifications and proofs in the two ·
languages, point out the advantages and disadvantages of each system,
and investigate the possibility of defining a hybrid language which
combines most of the advantages of each.

THE TWO LANGUAGES

Gypsy is a descendent of Pascal. It is a unified programming and
specification language with facilities for exception handling, data
abstraction, and concurrency. The specification component of the
language contains the full expressive power of the predicate calculus.
Specifications may be written as Floyd-Hoare style program annotations,
algebraic-style axioms, or state machine descriptions.

Gypsy is a procedural language but contains a sizable functional
component. The specification described in this paper is written entirely
within the functional subset of the language. This is typical for abstract
specifications. Implementations are usually given in a procedural style.

"supported by ONR Contract N00014-81-K-0634 and Department of the Navy Contract
N00039-85-K-0085

""The other is FDM, which will not be discussed further in this paper.

The following is a fully specified Gypsy implementation of a
factorial routine. The entry and exit assertions in the definition of F give
its specification. Notice that the function fact is a specification function
against which the code is verified.

scope factorial_example =
begin

function F (n: integer): integer
begin

entry N ge 0;
exit result= fact (N);
var 	i: integer := 1;
result := 1;
loop

result := result * i;
if i = n

then leave
else i := i + 1

end 	{if}
end 	{loop}

end; {function F)

function fact (n: integer): integer =
begin

exit result =
if n le 0

then 1
else n * fact (n-1)

fi;
end; {function fact}

end; {scope}

Gypsy is fully described in1 and a methodology for using the language
effectively is documented in 2 .

The Boyer-Moore Logic

The Beyer-Moore logic is a quantifier-free constructive first-order
logic with equality and rules for defining recursive functions. The
language is a minor variant of Pure Lisp18 and consists of variables and
function names combined in a prefix notation. Predicates are
represented as boolean-valued functions. Though untyped, the logic
supports a restricted version of user-defined recursive data types (the
"shell principle"). Despite the absence of quantifiers in the logic, the
system allows one to prove lemmas that are, in effect, treated as
universally quantified statements.

A Beyer-Moore specification of the factorial function has the form

Definition
(ZEROP N)

(OR 	 (EQUAL N 0)

(NOT (NUMBERP N)))

Definition
(FACTORIAL N)

(IF 	 (ZEROP N)
1
(TIMES N (FACTORIAL (SUBl N))))

122

The Beyer-Moore definition principle guarantees that functions accepted
by the Beyer-Moore system are total. Thus, (FACTORIAL N) is defined
even if N is not a numeric argument. This contributes to a specification
style which is auite different than that used in Gypsy. The logic is fully
described in 19· :!o.

The Main Differences

The primary differences in the two languages are summarized
below.

1. Syntactically the two languages are quite different. Gypsy syntax
is Pascal-like mixed infix/prefix notation; the Beyer-Moore logic
uses a LISP-like prefix syntax.

2. Gypsy provides procedures, including concurrent procedures. The
Beyer-Moore logic is purely functional.

3. Because of the procedural aspects of the language, the semantics
of Gypsy21 is significantly more complex than that of the Beyer
Moore logic. The Beyer-Moore logic has a simple applicative
semantics; in a certain sense, an interpreter for the logic can be
defined fairly easily within the logic.

4. Gypsy encourages a top-down development style by allowing the
programmer to leave implementations pending. This permits
references to and proofs about routines which are not fully

elaborated. In the proof domain, there is no enforced constraint
that lemmas be proved before they are used. The Beyer-Moore
logic encourages a bottom-up development style since functions
must be accepted before they can be referenced. Top-down
development of proofs can be accomplished in the Beyer-Moore
framework by adding lemmas as axioms and then later redoing the
proof. However, this is counter to the paradigm of proof
development in the Beyer-Moore system; it is assumed that
lemmas will be proved before they are used.

5. Gypsy data typing restricts syntactically the passing of arguments
to routines. However, there is at present no guarantee that
routines will be defined even for arguments of permissible type.
The Gypsy Verification Environment supports partial correctness
proofs; that is, proofs of termination must be performed outside the
system. The Beyer-Moore definition principle guarantees that all
functions are total. Arguments which are not of the expected type
are usually treated as if they were. Thus the Beyer-Moore function
FACTORIAL above treats a non-numeric argument as if it were
zero.

6. The Gypsy specification language contains the universal and
existential quantifiers. The Beyer-Moore logic is constructive and
quantifier free. Lemmas involving variables are regarded as
implicitly universally quantified. To obtain the effect of an
existential quantifier it is necessary to provide a "witness function"
which computes the required value.

THE LOW WATER MARK PROBLEM

The Low Water Mark problem was introduced in14 and used there
for a comparison of four verification systems. It was recently revived as
one benchmark problem for a more extensive comparison of verification
systems reported in15 . In the context of that study, two distinct solutions

17to the problem were coded in Gypsy16· . We describe a third solution,
coded in Gypsy and in the BOyer-Moore logic and fully verified in each of
the two systems. The method of specification follows the
non-interference approach described in the following section.

Cheheyl, eta/. describe the Low Water Mark problem as follows:

The example system has at least one data object and three operations:
READ, WRITE, and RESET. The operations are used by several
processes having various fixed security levels. The system is required
to satisfy the simple secur~y and *-property. For simplicity the security
levels are assumed to be linearly ordered.

...The low water mark idea is that the data object has a security level
that can decrease but not increase except via RESET. A decrease in
level occurs when the object is (totally) rewr~ten by a lower level
process. The new level of the object is the level of the calling process.

The Bell and LaPadula simple security and *-properties22 are following
requirements: for a process to read an object the process level must
dominate that of the object; to write, the object level must dominate that

of the process. A read involves no change of levels for the object; a
write causes the object level to drop to that of the process. Reset

causes the object security level to become system high and the value of
the object to become undefined.

Cheheyl, et a/. require that the dominates relation on levels be a
total ordering ''for simplicity." However, Rushby23 has shown that the
system described is insecure if the levels are only partially ordered.

NON-INTERFERENCE

The security model for our solution to the low water mark problem
is a non-interference model. The notion of non-interference assertions
was developed by Goguen and Meseguer24· 25 and elaborated upon by
Rushby26 . It provides a powerful and quite general mechanism for
describing security policies. Non-interference has been applied
successfully in the proof of certain security properties of the Honeywell
Secure Ada Target machine27.

Process p 1 is said to be non-interfering with process p2 (denoted
p 1 4 p~ if no instruction issued by p 1 can influence the future output of
the system to p2 A non-interference security policy is simply a set of
assertions which characterize which interferences between processes in
a system are prohibited (alternatively a binary relation on processs). This
notion can be rendered more amenable to formal treatment by the
following observation: for any sequence of operations seq,

p14 p2 = Viewp (seq) =Viewp (seq/p1)2 2

where Viewp(seq) is the complete picture that process p has of the state
of the system, and seqlp is the subsequence of seq obtained by deleting
those instructions executed by p.

Our non-interference policy is a simplification of the DoD MLS
policy. Processes have associated levels which are related by a total
order. Process may interfere with process only ifp1 p2
level(p1) ~ level(pz). That is, the security policy is characterized by the
following set of non-interference assertions:

{p1 4 p2 : -, level(p1) s level(p2)}.

We notice that it is only the levels of individual processes that are
relevant to security. Consequently, to demonstrate that security is
maintained in the system it suffices to show, for an arbitrary process p,
that no instruction executed on behalf of any process at a higher level
can affect {is view. That is,

Viewp(seq) = Viewp(seqllevel(p)),

where seqllevel(p) is the instruction sequence purged of all instructions
executed on behalf of processes at levels not dominated by level(p). It is
proved in27 that this policy implies both simple security and the *
property. Thus, it satisfies the constraints of the low water mark
problem.

THE SPECIFICATIONS

In this section we give the Gypsy and Beyer-Moore specifications
of the non-interference policy described in the preceding paragraph. For
readability we write all Gypsy code in lower case and all Beyer-Moore
code in upper case. Enough elaboration is given here (we hope) to give
a clear idea of the nature and details of each of the two specifications.
The reader interested in the complete set of definitions and lemmas is
referred to2B. The Gypsy version is described in detail in29 .

The notions (data types) of process, object, state, and instruction
appear in each specification. To avoid entanglement in syntactic details,
we give only an outline of the main data types here, namely state, level,
and instruction sequence (and relevant auxiliary types). We refer the
reader to 28 if more details are desired.

Security States. Let us begin with Gypsy. In the Gypsy spec, an
object is arbitrary; the object type is declared to be pending. Similarly,
the process type is pending. However, the types object_!eveLmap,
object_value_map, and process_values_map are declared in order to
specify a security state with the following (Pascal-like) type declaration:

123

type 	security state =
record (vaiues read: process va1ues map;

object-1eve1: object-1eve1 ;ap;
object=va1ue: object=va1ue=map);

The three types referred to in this record are declared as mappings: for
example, one such declaration is

type process va1ues map =

mapping f;om pro~ess to va1ue_sequence;

where one declares

type 	va1ue_sequence = sequence of va1ue_type;

Thus, the values read by process p are obtained by taking the
va1ues_read component of the state and then applying the resulting
mapping to the process p:

state.va1ues_read[p]

The Boyer-Moore type declarations are quite similar, except that
there are no "mapping types". Let us begin with processes. Thus, for
example, the values read by a process are a component of the process
rather than the result of applying a function to the process. The following
syntax is simply a declaration of a process as a record type with two
fields. Thus if (PROCESSP X) is true, then (PROC-NAME X) equals the
value of the first field and (VALUES-READ X) equals the value of the
second field. Conversely, if ProcName and va1Read are these two
respective values, then x = (PROCESS ProcName Va1Read) , i.e.
PROCESS is actually a function which constructs a process from a name
and some values-read.

Shell Definition
Add the she11 PROCESS of two arguments
with 	recognizer PROCESSP
and accessors PROC-NAME and VALUES-READ

(Remark for readers familiar with the Boyer-Moore logic. The reader
may notice that we have omitted declarations of the type restrictions,
default values, and bottom object from the following shell definition. In
fact these are none, ZERO, and none, respectively. Similar
simplifications will be made in the other shell definitions presented
below.)

In the Boyer-Moore specification, it was convenient to choose to access
the values-read as a function of the name of a process rather than of the
process itself. An advantage to this approach is that it is absolutely clear
that the level of a process does not change during the execution of
instructions; however, this is also a disadvantage since the model is less
general. At any rate, in the Boyer-Moore case, one reads the values
from a process name as follows:

(VALUES-READ (GET-PROCESS P-NAME STATE))

where VALUES-READ (defined above) is an accessor for processes and
GET-PROCESS is a recursively defined function:

(DEFN GET-PROCESS (P-NAME PROCESSES)

(IF (NOT (LISTP PROCESSES))

F
(IF (EQUAL P-NAME

(PROC-NAME (CAR PROCESSES)))
(CAR PROCESSES)
(GET-PROCESS P-NAME

(CDR PROCESSES)))))

Notice that this function is necessary in the Boyer-Moore version
because the Boyer-Moore logic does not support mapping types. That
is, functions must be defined in the logic rather than being data objects
(such as the object state.values_readin Gypsy).

So, we have defined the notion of process for the Boyer-Moore
version. The notion of object is similar, and we omit details:

Shell Definition
Add the she11 OBJECT of three arguments
with 	recognizer OBJECTP
and accessors OBJ-NAME, VALUE, and OLEVEL

We may now define a state to be simply a record consisting of a
list of processes and a list of objects.

Shell Definition
Add the she11 STATE of two arguments
with 	recognizer STATEP
and accessors PROCESSES and OBJECTS

Actually no restriction is made on the components of a state, because of
the weakness of the Boyer-Moore type (shell) mechanism. Instead, a
predicate PROPER-STATEP is defined which restricts the class of "states"
for the theorem ultimately proved. Thus the following function (predicate)
returns T (true) exactly when its argument is a state whose components
are respectivly a list of processes and a list of states. (Thus the
functions PROCESS-LISTP and OBJECT-LISTP are defined first;
however, we omit their straightforward definitions here.)

Definition
(PROPER-STATEP STATE)

(AND 	 (STATEP STATE)
(PROCESS-LISTP (PROCESSES STATE))
(OBJECT-LISTP (OBJECTS STATE)))

This kind of treatment of states is necessary because the sequence of
type constructor of Gypsy (used above in the declaration of
value_sequence) has no real analogue in the Boyer-Moore logic.

Levels. The notion of level is specified in each language as a
function (which is left undefined). However, as mentioned above, we
chose to have the function depend on the process in the Gypsy version
but on the process name in the Boyer-Moore version.

function process 1eve1 (p: process):
=- 1eve1_type pending;

Declaration
(PLEVEL PROC-NAME) = {unspecified}

There is one other difference in the handling of levels by the two
versions. The Gypsy version (which was done first) used the integer
ordering functions in order to order the levels, thus treating 1eve1 type
(see above) as though it were the type of integers. This had the
advantage of allowing the Gypsy simplifier to contribute its built-in
knowledge of integers (and their ordering) to the proof. However, the
Boyer-Moore version was undertaken with the goal of allowing an
arbitrary total order, DOMINATES, with the axioms for a total order
included. This was indeed accomplished, and no other axioms were
needed except that the "system high" level is the greatest level:
(DOMINATES (SYSTEM-HIGH) L). (A similar axiom was added for the
Gypsy proof as well.)

Instruction Sequences. The notion of instruction is defined as a
record in each language, with fields corresponding roughly to the type
(i.e. read, write, or reset), process, object, and value. (Of course, the
value field is not necessary for a read instruction; it is simply ignored.)

type 	instruction_c1ass = (rd, wrt, rst);

type instruction =
record (c1ass: instruction_c1ass;

p: process;
o: object;
v: va1ue_type)

Shell Definition
Add the she11 MAKE-INSTRUCTION of four arguments
with 	recognizer INSTRUCTIONP
and accessors TYPE, I-PROC-NAME,

I-OBJ-NAME, and I-VALUE

The notion of instruction sequence is declared as a type in Gypsy
but is defined by a recursive function in the Boyer-Moore logic (again,
because there is no sequence type constructor in that logic):

type instruction sequence =
sequence of instruction;

Definition
(INSTRUCTION-LISTP LST)

(IF (NOT .(LISTP LST))
T
.(AND 	 (INSTRUCTIONP (CAR LST))

(INSTRUCTION-LISTP (CDR LST))))

124

The Main Theorem

Following the simple security and *-properties mentioned earlier,
we imagine executing instructions which request reads, writes, and
resets, where "illegal" requests are ignored. Thus a process may not
read an object at a strictly higher level or write--to (or reset) an object at a
strictly lower level. Let us begin by stating the main security theorem in
each of the two languages. We will then give definitions of functions
used in these statements, including interpret, which runs the given
instruction sequence on the given state (to return a new state), and
purge, which removes all instructions whose level exceeds the level of
the given process. In the Gypsy version, one considers the equality of
the values read by a given process in the following two states: the state
obtained after running the original instructions, and the state obtained
after running the purged instructions. In the Boyer-Moore version, we
have chosen to consider these two processes rather than just the values
that they have read, since a process is merely a name together with
those values. Either way, the definitions of the purge function guarantee
security of the system because the purged instructions have no effect on
the process's vieW of the system.

1emma system is secure

(inseq: inst~ction_sequence;

state: security state;

p: process) =

[interpret (inseq, state) .va1ues_read[p)

interpret 	(purge (inseq, process 1eve1 (p)),

state) .va1ues_read[p]J;

Lemma 	(SYSTEM-IS-SECURE).
(IMPLIES

(AND (PROPER-STATEP ST)
(INSTRUCTION-LISTP INSTLIST))

(EQUAL (GET-PROCESS
P-NAME
(PROCESSES (INTERPRET INSTLIST ST)))

(GET-PROCESS
P-NAME
(PROCESSES

(INTERPRET (PURGE INSTLIST
(PLEVEL P-NAME))

ST)))))

The function interpret takes a sequence of instructions and an
initial state and returns a new state. It is in turn defined in terms of a
"single stepper'' which interprets a single instruction. Notice that the
Gypsy definition of interpret recursively decomposes the instruction
sequence from the right while the Boyar-Moore definition works from the
left. Gypsy syntax supports accessing sequences from either end;
Beyer-Moore's LISP-like style strongly favors recursively decomposing
lists from the left. The Boyar-Moore version of interpret "runs" the given
instructions in the reverse of the order in which the Gypsy version "runs"
the instructions.

function sing1e step (i: instruction;
-	 state: security state)
:security_state

begin
exit resu1t =

if i.c1ass 	= rd
then read (i.p, i.o, state)
e1se

if i.c1ass 	= wrt
then write 	(i.p, i.o, i.v, state)
e1se reset 	(i.p, i.o, state)

fi
fi;

pending
end;

function interpret

(inseq: instruction_sequence;

state: security state): security state

begin -
exit resu1t =

if 	inseq = nu11 (instruction_sequence)
then state
e1se sing1e_step

(1ast (inseq),

interpret (non1ast (inseq),

state))

fi;

pending

end;

Definition
(SINGLE-STEP INST ST)

(IF (GET-OBJECT (I-OBJ-NAME INST)

(OBJECTS ST))

(IF (EQUAL (TYPE INST) 'READ)

(READ (I-PROC-NAME INST)

(I-OBJ INST ST) ST)

(IF (EQUAL (TYPE INST) 'WRITE)

(WRITE 	 (PLEVEL (I-PROC-NAME INST))
(I-OBJ INST ST)
(I-VALUE INST)
ST)

(RESET (PLEVEL (I-PROC-NAME INST))
(I-OBJ INST ST) ST)))

ST)

Definition
(INTERPRET 	 INSTLIST ST)

(IF (NOT (LISTP INSTLIST))

ST

(SINGLE-STEP

(CAR INSTLIST)

(INTERPRET (CDR INSTLIST) ST)))

The auxiliary read, write, and reset functions take a security state
together with other appropriate arguments (such as process or its level,
object, and value), and return a new state. However, the state is
unchanged if the relevant levels are inappropriate. For example, here
are the two definitions of write. Notice that the Gypsy syntax is richer in
that its with construct allows a convenient notation for updating
specified fields of a record.

function write (p: process; o: object;
v: va1ue type;

state: security_state)

: security state

begin

exit resu1t =

if process_1eve1 (p) 1e

state.object_1eve1[o]

then state

with (.object va1ue[o] := v;

.object-1eve1[o] :=

process_1eve1 (p))

e1se state

fi;

pending

end; {write}

Recall below that PROCESSES picks out the PROCESSES field Of
the given state, and similarly for OBJECTS.

125

Definition
(WlUTE LEVEL 0 V ST)

(IF (DOMINATES (OLEVEL 0) LEVEL)

(STATE (PROCESSES ST)

(REWRITE-OBJECT

(OBJ-NAME 0)

V LEVEL (OBJECTS !T)))

ST)

where (REWIUTE-OBJECT O-NAME v L OBJECTS) returns the result
of replacing the value of the object named o-NAME with v and the level
with L, in the given list of OBJECTS. (We omit the recursive definition of
REWlUTE-OBJECT.)

It remains to define purge. The "values read" component of the
new state contains, for each process P, the sequence of values received
by P as a result of the READ instructions executed on its behalf. In our
model, this is the only information that a process can obtain about the
system. Thus, the following are the definitions of purge. Notice that the
Beyer-Moore function is defined for a much broader collection of
arguments. The type-free nature of the logic and the requirement that all
functions be total requires that PURGE be defined on arguments which
are intuitively quite different than the intended "argument types."

function purge

(inseq: instruction sequence;

~= ~eve~_type): instruction_sequence

begin

exit resu~t =

if 	inseq = nu~~ (instruction_sequence)
then nu~~ (instruction sequence)
e~se if ~ ge

process_~eve~ (~ast (inseq) .p)
then purge (non~ast (inseq), ~)

<: ~ast (inseq)
e~se purge (non~ast (inseq), ~)

fi
fi;

end; {purge}

Definition
(PURGE INSTLIST LEVEL)

(IF (NOT (LISTP INSTLIST))

INSTLIST
(IF (DOMINATES

LEVEL

(PLEVEL

(I-PROC-NAME (CAR INSTLIST))))

(CONS (CAR INSTLIST)

(PURGE (CDR INSTLIST) LEVEL))

(PURGE (CDR INSTLIST) LEVEL)))

OUTLINES OF THE PROOFS

The main lemmas for the proofs are similar. In each case, the
idea is to proceed by some kind of induction on the length of the
instruction list. However, in order to obtain a sufficiently strong inductive
hypothesis it is desirable to prove a somewhat stronger result than the
main theorem (which was called "System Is Secure" above), from which
the main theorem follows immediately. The stronger result says that the
given process has the same view of the two relevant states, namely the
ones obtained with and without running the purged instructions.

function process view identica~
(p: 	process;-
statel, state2: aecurity_state)

: 	 boo~ean =
begin

exit resu~t =

(statel.va~ues read[p] =

state2.va~ues-read[p]
& (a~~ ol: object,

ol in cou~d read (p, statel)
iff olin cou~d-read (p, state2))

& (a~~ o2: object,
o2 in cou~d_read (p, statel)

-> statel.object_~eve~[o2]

= state2.object_~eve~[o2]

& statel.object_va~ue[o2]

state2.object_va~ue[o2]));
end; {process_view_identical)

where the function cou~d read returns the set of objects that can be
read by the given process:

function cou~d read
(p: 	process7
state: security state): object_set

begin 	
exit (a~~ o: object,

o in resu~t
iff process ~eve~ (p) ge

state.object ~eve~[o]);

end; {cou~d_read}

~emma purge_preserves_process_view

(inseq: instruction_sequence;

state: security_state;

p: process) =

process view identica~

(p, i~terp~et (inseq, state),

interpret

·(purge 	(inseq, process ~eve~ (p)),
state));

And now the Beyer-Moore version:

Definition
(PROCESS-VIEW-IDENTICAL P-NAME STl ST2)

(AND (EQUAL
(GET-PROCESS P-NAME (PROCESSES STl))
(GET-PROCESS P-NAME (PROCESSES ST2)))

(OBJECT-NAMES-AGREE 	 (OBJECTS STl)
(OBJECTS ST2))

(OBJECTS-MATCH-BELOW-LEVEL
(PLEVEL P-NAME)
(OBJECTS STl)
(OBJECTS ST2)))

where OBJECT-NAMES-AGREE returns T (true) when the two object lists
have the same names (in the same order) and
OBJECTS-MATCH-BELOW-LEVEL implies that the given object lists
agree when restricted to objects below the given level:

Definition
(OBJECTS-MATCH-BELOW-LEVEL LEVEL OBJSl OBJS2)

(IF (AND (LISTP OBJSl) (LISTP OBJS2))
(IF (OR (DOMINATES LEVEL

(OLEVEL (CAR OBJSl)))
(DOMINATES LEVEL

(OLEVEL (CAR OBJS2))))
(AND (EQUAL (CAR OBJSl) (CAR OBJS2))

(OBJECTS-MATCH-BELOW-LEVEL
LEVEL (CDR OBJSl) (CDR OBJS2)))

(OBJECTS-MATCH-BELOW-LEVEL
LEVEL (CDR OBJSl) (CDR OBJS2)))

(AND (NOT (LISTP OBJSl))
(NOT (LISTP OBJS2))))

Thus we are brought to the Boyer-Moore version of the main lemma:

Lemma (PURGE-PRESERVES-PROCESS- VIEW).
(IMPLIES

(AND (PROPER-STATEP ST)

(INSTRUCTION-LISTP INSTLIST))

(PROCESS-VIEW-IDENTICAL

P-NAME

(INTERPRET INSTLIST ST)

(INTERPRET (PURGE INSTLIST

(PLEVEL P-NAME))
ST)))

In both versions, there are two main sublemmas used for proving
the inductive step of this lemma, i.e. for proving (roughly) that the lemma
remains true when one considers one more instruction on the given list
of instructions. The first lemma treats the case that the added instruction
has a level which is higher than that of the given process (and may
therefore be purged):

126

lemma
purgeable_instruction_preserves_process_view

(a: 	 instruction;

p: process;

statel, state2: security state)

not process level (a.p) Te

process-level (p)
& process vie; identical

(p, statel~ state2)
-> process view identical

(p, single=step (a, statel), state2);

Lemma
(PURGEABLE-INSTR-PRESERVES-PROCESS-VIEW).
(IMPLIES

(AND 	 (PROPER-STATEP STl)
(PROPER-STATEP ST2)
(INSTRUCTIONP INST)
(PROCESS-VIEW-IDENTICAL P-NAME STl ST2)
(NOT (DOMINATES

(PLEVEL P-NAME)
(PLEVEL (I-PROC-NAME INST)))))

(PROCESS-VIEW-IDENTICAL
P-NAME

(SINGLE-STEP INST STl)

ST2))

The other lemma treats the other case, i.e. where the added instruction
is not purged:

lemma
nonpurgeable_single_step_preserves_process_view

(p: 	process;
a: instruction;
statel, state2: security state) =

process level (a.p) le process level (p)
& process-view identical (p, statel, state2)

-> process view identical
(p, 	 single-step (a, statel),

single=step (a, state2));

Lemma
(NONPURGEABLE-INSTRUCTION-PRESERVES

PROCESS-VIEW)

(IMPLIES

(AND 	 (PROPER-STATEP STl)
(PROPER-STATEP ST2)
(PROCESS-VIEW-IDENTICAL P-NAME STl ST2)
(DOMINATES

(PLEVEL P-NAME)

(PLEVEL (I-PROC-NAME INST))))

(PROCESS-VIEW-IDENTICAL

P-NAME

(SINGLE-STEP INST STl)

(SINGLE-STEP INST ST2)))

Both proofs use a number of additional subsidiary definitions and
lemmas. However, the Boyer-Moore system certainly provides a much
more powerful level of automatic support.

COMPARING THE TWO METHODOLOGIES

We compare the following aspects of the Gypsy and Boyer-Moore
methodologies:

• Specification style

• Proof management

• Style of interaction with the prover

• Soundness

Specification Style

Gypsy is a rich language in that it has sets and functions as first
class data objects, first-order quantifiers, and an expressive typing
discipline for user-defined types. The Boyer-Moore logic does not have
these features, but its solid treatment of recursion and lists, along with its
capability for introducing data types with the so-called shell principle,
allows one sufficient specification power. Gypsy also is richer in that it
has procedural constructs, though for high-level specs (such as the Low
Water Mark example) users of Gypsy have found it advantageous to use
a functional style. In spite of the different notions of data type and the

greater expressive power of the Gypsy language, the specs are clearly
quite similar for the two versions of the Low Water Mark example that are
presented here.

The issue of types deserves further comment. Consider the
following (incorrect) statement of the main theorem in the Boyer-Moore
logic. Sadly, an earlier version of our specification contained this
misstatement. The reader is invited to find the error before reading
further.

Lemma (SYSTEM-IS-SECURE).
(IMPLIES

(AND (PROPER-STATEP ST)

(INSTRUCTION-LISTP INSTLIST))

(EQUAL

(GET-PROCESS P-NAME

(INTERPRET INSTLIST ST))

(GET-PROCESS P-NAME

(INTERPRET

(PURGE INSTLIST

(PLEVEL P-NAME))

ST))))

The problem with this statement is that GET-PROCESS is defined so that
its second argument is (expected to be) a list of processes, not a state.
In fact, the two sides of the equality above are actually both provably
equal to F (false), under the given hypotheses! An analogous error in the
Gypsy text would have been caught by the type-checker. However, the
problem of matching formal specifications to intuitive requirements
remains a central issue in program verification research.

Proof Management

The Gypsy system allows one to defer the proofs of lemmas

during a proof session. This capability is amenable to a top-down proof
style which is quite natural. The Boyer-Moore system allows one to add
axioms, which enables one to have the same top-down capability to
some extent; one simply assumes seemingly necessary lemmas before
proving the main result, and then one goes back and proves those
supporting facts. However, that strategy is awkward with the Beyer
Moore system since event histories are totally ordered.

Style Q! Interaction with the Prover

The Boyer-Moore prover is much more powerful than is the Gypsy
prover, and thus allows much larger proof steps and is significantly less
tedious to operate. Even though the two verifications discussed here
each contain about thirty lemmas, the Boyer-Moore prover proved each
of those lemmas automatically (occasionally with some simple hints
supplied with the statements of the lemmas), while the Gypsy prover
required considerable tedious interaction in order to prove many of the
lemmas. However, the powerful heuristics and rule-based rewriting
capabilities of the Boyer-Moore prover also make its behavior somewhat
unpredictable and also quite difficult and frustrating to control at times,
though it prints out useful information to help discover what additional
lemmas are needed. The level of interaction is not the only significant
difference in the style of interaction. It is much easier with the Beyer
Moore system to modify an existing proof and replay the resulting
definition and proof commands. But as mentioned above, the Gypsy
system is much more flexible about the order in which one gives proofs.

Soundness

The Boyer-Moore logic, as described completely in20 and Chapter
3 of 19 , has simple and well-understood operational and denotational
semantics in which every proved theorem is in fact true. Unfortunately,
the same cannot be said of Gypsy. Moreover, the Gypsy system does
not have a mechanism for ensuring that all lemmas have been proved,
nor does it guarantee that circular arguments (in which lemmas use each
other for their proofs) are not constructed. Finally, there is empirical
evidence over 15 years for virtually bug-free performance of the Beyer
Moore implementation that has not been matched by the Gypsy
implementation.

CONCLUSIONS

Despite certain shortcomings, we believe that the Boyer-Moore
logic provides a reasonable specification alternative for secure systems,
particularly at the model level. Soundness of the logic and the care with

127

which it is implemented in the theorem prover are strong advantages of
the Boyar-Moore system over Gypsy or other currently available
verification systems. Gypsy, on the other hand, is an expressive and
versatile language which provides the benefits of data types, data
abstraction, concurrency, conditional handling, procedural semantics,
etc.

We believe that the relative strengths of the Gypsy and Boyar
Moore systems are in fact quite compatible. Work is already underway

to remedy some of the soundness deficiencies of Gypsy, and a
~reliminary system for the Boyar-Moore logic has been constructed

0 that uses the Boyar-Moore prover as a component but also allows
more user control. Moreover, a form of quantification has already been
added to the Boyar-Moore logic and prover3 1 and plans are under way to
add sets, full first-order quantification, and more flexible structuring of
proofs. Preliminary investigation has also begun into developing a
Gypsy-like syntax for the Boyar-Moore logic. This "merger" of Gypsy and
the Boyer-Moore systems is the subject of an active research effort at
Computational Logic, Inc., with the intended result to be called Rose.
The primary component omitted from Rose is expected to be the
procedural part of Gypsy. The hope is that technology will continue to be
developed toward obtaining efficient implementations of functional
languages, particularly with respect to seeming opportunities for
concurrent evaluation.

Our experiences to date suggest that a fundamental requirement
for any successful verification is that the person(s) doing the verification
understand the theorems to be proved. A system with Gypsy's flexibility
of language and use and with the Beyer-Moore system's proof power
and clear semantics would be a great aid in this respect.

ACKNOWLEDGEMENTS

We thank Dave Plummer of the University of Texas for helpful
comments. We also thank Tom Haigh of Honeywell Secure Computing
Technology Center for co-development of some of the ideas on non
interference (cf. 27). Finally, we thank our colleagues at the Institute for
Computing Science at UT and Computational Logic Inc. for a stimulating
environment.

References

1. 	 D.l. Good, R.L. Akers, L.M. Smith, "Report on Gypsy 2.05",
Tech. report ICSCA-CMP-48, Institute for Computer Science and
Computing Applications, The University of Texas at Austin,
February 1986.

2. 	 D.l. Good, B.L. Divito, M.K. Smith, "Using The Gypsy
Methodology", Tech. report, Institute for Computing Science,
University of Texas at Austin, June 1984.

3. 	 Department of Defense, "Trusted Computer Systems Evaluation
Criteria", DOD 5200.28-STD, December, 1985.

4. 	 M.K. Smith, A. Siebert, B. Divito, and D. Good, "A Verified
Encrypted Packet Interface", Software Engineering Notes, Vol. 6,
No.3, ~ly 1981.

5. 	 D.l. Good, A.E. Siebert, L.M. Smith, "Message Flow Modulator
Final Report", Tech. report ICSCA-CMP-34, Institute for
Computing Science, University of Texas at Austin, December
1982.

6. 	 D.l. Good, "SCOMP Trusted Processes", ICSCA Internal Note
138, The University of Texas at Austin.

7. 	 W.E. Boebert, W.O. Young, R.Y. Kain, S.A. Hansohn, "Secure
ADA Target: Issues, System Design, and Verification", Proc.
Symposium on Security and Privacy, IEEE, 1985.

8. 	 J. Keaton-Williams, S.R. Ames, B.A. Hartman, and R.C. Tyle_r,
"Verification of the ACCAT-Guard Downgrade Trusted Process'';
Tech. report NTR-8463, The Mitre Corporation, 1982.

9. 	 K.N. Levitt, L. Robinson, B.A. Silverberg, "The HOM Handbook,"
vols. 1-3", Tech. report, SRI International, June 1979.

10. 	 E.J. McCauley and P.J. Drongowski, "KSOS: The Design of a
Secure Operating System", Proceedings of the AFIPS Cont., Vol.
48, AFIPS Press, Arlington, VA., 1979.

11. 	 "System Specification for SAC Digital Network", ESD-MCV-1A,
ITT Defense Communications Division, Nutley, N.J ..

12. 	 Warren A. Hunt, "FM8501: A Verified Microprocessor", Tech.
report ICSCA-CMP-47, Institute for Computing Science
University of Texas at Austin, December 1985. '

13. 	 W.R. Bevier, W.A. Hunt, W.O. Young, "Toward Verified
Execution Environments", Proceedings of the 1987 Symposium
on Security and Privacy, IEEE, 1987.

14. 	 M. Cheheyl, M. Gasser, G. Huff, J. Millen, "Verifying Security",
ACM Computing Surveys, Vol. 13, No. 3, September 1981, pp.
279-340.

15. 	 Richard Kemmerer, "Verification Assessment Study Final
Report", In 5 volumes, unpublished.

16. 	 Michael K. Smith, "Low-Water-Mark, Gypsy Style", Internal Note
159, Institute for Computing Science, The University of Texas at
Austin, February, 1985.

Michael K. Smith, "Low-Water-Mark Using Abstract Types",
Internal Note 158, Institute for Computing Science, The
University of Texas at Austin, February, 1985.

18. 	 J. McCarthy, et. at., LISP 1.5 Programmer's Manual, MIT Press,
Cambridge, MA., 1965.

19. 	 Robert S. Boyer and J Strother Moore, A Computational Logic,
Academic Press, New York, 1979.

20. 	 R.S. Boyer and J S. Moore, Metafunctions: Proving Them Correct
and Using Them Efficiently as New Proof Procedures, Academic
Press, 1981, pp. 103-185.

21. 	 Richard Cohen, "Proving Gypsy Programs", Tech. report ICSCA
CMP-51, Institute for Computing Science, University of Texas at
Austin, 1986.

22. 	 D. E. Bell and L.J. LaPadula, ""Secure Computer System: Unified
Exposition and Multics Interpretation"'', Tech. report MTR-2997,
MITRE Corp., July 1975.

23. 	 John Rushby, ""The Low-Water Mark Example"", in Richard
Kemmerer, editor, Verification Assessment Study Final Report,
Vol. 5, unpublished.

24. 	 J.A. Goguen and J. Meseguer, "Security Policy and Security
Models", Proc. Symposium on Security and Privacy, IEEE, 1982,
pp. 11-20.

25. 	 J.A. Goguen and J. Meseguer, "Unwinding and Inference
Control", Proc. Symposium on Security and Privacy, IEEE, 1984,
pp. 75-86.

26. 	 John Rushby, "Mathematical Foundations of the MLS Tool for
Revised Special", Draft internal note, Computer Science
Laboratory, SRI International, Menlo Park, California.

27. 	 J.T. Haigh, W.O. Young, "Extending the Non-Interference
Version of MLS for SAT", Proceedings of the 1986 Symposium
on Security and Privacy, IEEE, 1986, pp. 232-239.

28. 	 Matt Kaufmann and William D. Young, "Comparing Gypsy and
the Beyer-Moore Logic for Specifying Secure Systems", Tech.
report, Institute for Computer Science and Computing
Applications, The University of Texas at Austin, 1987.

29. 	 William D. Young, ''The Low-Water-Mark Problem Using Non
Interference", Internal note, Honeywell Secure Computing
Technology Center, April, 1986.

30. 	 Matt Kaufmann, "A Primitive User's Manual for an Interactive
Version of the Beyer-Moore Theorem-Prover (Draft)'', ICSCA
Internal Notes 234 (Part 1) and 235 (Part 2), The University of
Texas at Austin.

31. 	 R.S. Boyer and J S. Moore, "The Addition of Bounded
Quantification and Partial Functions to the Beyer-Moore Logic
and Theorem Prover", Tech. report ICSCA-CMP-52, Institute for
Computer Science and Computing Applications, The University of
Texas at Austin, January 1987.

128

LOCKING COMPUTERS SECURELY

o. Sami Saydjari, Joseph M. Beckman, Jeffrey R. Leaman

Office of Research and Development

National Computer Security Center

ABSTRACT

Progress has been slow over the last 15 years in the
relatively new field of computer security. Every initiative
started from scratch to develop a secure computer. First
prototypes, built in software, were slow and difficult to use.
LOCK is a technology research and development project to build a
hardware-based Reference Monitor module. This module will be
generic and thus reusable on many different computers. Full
advantage will be taken of inexpensive generic cryptographic
modules currently in development.

I . HISTORY AND SUMMARY

There is an immediate need for computing
facilities to handle data at different
security levels for users possessing
different levels of clearance. These
multilevel secure computers will fulfill
three major requirements.

First, secure computers must
meet the need for inherently multilevel
applications processing different levels of
classified information and reporting to users
cleared to different levels. For example,
Military Air Command maintains flight
schedule information. Most of the
information is unclassified except for parts
having to do with covert missions. The
intelligence community's solution of clearing
everyone to the highest level is impractical
given the number of personnel requiring
access to this database. This problem will
only get worse as the information age forces
us to integrate more and more information
processing systems.

Second, enabling computers to
serve users with different clearances avoids
the need to maintain duplicate computers for
different classification levels. The
potential money savings is significant. The
alternative of clearing all users to the
highest level is too expensive, impractical,
and unacceptable from a security standpoint.

Finally, secure computers are
extremely important even for those systems
not requiring multilevel applications. For
example, there is a significant threat from
malicious software introduced onto the system
from a multitude of possible routes.[MYERSO]
Such malicious software could destroy
invaluable information, spoof users into
taking inappropriate action, or prevent
computers from operating at critical times.

The need for secure computing
in both defense and industry is reaching
critical proportions and will only grow. The
LOgical Coprocessing Kernel (LOCK) project
promises to solve a substantial part of this
problem.

Current systems, and most of those under
development, attempt to provide multilevel
security in software by redesigning the
operating system. The purely software
approach has four serious disadvantages
compared to the primarily hardware approach
used in LOCK:

1. DECREASED ASSURANCE
since software malfunction could cause total
security failure,

2. DECREASED PERFORMANCE
to usually unacceptable levels because of the
high overhead from the security access checks
done in software,

3 . LOSS OF EXISTING
APPLICATION SOFTWARE because of the extensive
redesign of the operating system, and

4. INABILITY TO
FUNCTIONALLY ENHANCE the operating system
without requiring expensive and time
consuming re-verification and reevaluation.

The LOCK hardware-oriented approach
promises high assurance and reasonable
performance derived from the implementation
of a physically separate and parallel
security-enforcing module called the system
independent, domain-enforcing, assured,
reference monitor (SIDEARM). Furthermore,
because the security-related functionality is
in the SIDEARM, the software operating system
is not security-relevant and, therefore,
requires no reverification when the operating
system software is updated. This approach
will allow the preservation of most of the
application software programs written for
that operating system and its subsequent
releases.

The LOCK program has at least a
12-year history. The project sprung out of
the Provably Secure Operating System [NEUM77]
study, begun in 1975 at the Stanford Research
Institute. An implementation of the study's
recommendations by Ford Aerospace [FORD81]
began in 1980. The project goals proved to
be too ambitious and the resources allocated
to reach those goals were too limited. The
hardware part of the Trusted computing Base
(TCB) under this project was continued under
the new name Secure Ada Target (SAT) in 1982 ..

~ 129

by Honeywell. This marked the beginning of
the current three phase development described
below.

LOCK is the third phase of a continuing
project previously called SAT. The SAT
project, begun in 1982, was a research effort
to design secure computers. Phase one (SAT
0) yielded the high level requirements
specification in 1983.[HONE83] Phase two
(SAT-I) yielded the intermediate design
specification in 1986. [HONE86] Phase three
(SAT-II), later renamed LOCK, will yield a
detailed design specification and a secure
microcomputer prototype by 1990.

II. TECHNICAL APPROACH

The LOCK project goal is to
develop a hardware-oriented solution to the
computer security problem of providing
multilevel security (MLS) for general
computers. (MLS provides the ability to
process different levels of classified
information so that only properly-cleared
users may access it.) The heart of the
solution is the separate security-enforcing
module called SIDEARM. The SIDEARM will be
designed, built, and then integrated into an
existing microcomputer. The security
enforcement will be highly assured to allow
certification at the highest level (Al)
defined by the Department of Defense Trusted
Computer System Evaluation Criteria.[TCSE85]

A. Proiect Goals

LOCK is a very ambitious
information security technology development
project. We wish to provide a foundation for
current and future secure information
systems. This paper establishes the goals of
both the base technology and its extensions
to address a myriad of computer and
communications security problems. LOCK
provides the basis for the solutions. We
count on industry and other projects to
extend and apply this base to reap the full
benefit of this technology.

The ultimate goal is to
produce the SIDEARM as a standard product to
retrofit into most existing computers and
included or offered as an option in new
computers, like a coprocessor.

LOCK strives to produce
very secure computers without severely
impacting performance. This work should set
standards for a new rating, possibly A2;
however, the minimum acceptable level will be
Al. While meeting the requirements for at
least Al, the functionality of the LOCK is
desired to be equal to that of the unmodified
base. computer. ~lthough this is very
feas1ble, certa1n security-related
limitations may be necessary to meet the
assurance requirements.

Preserving performance of
the machine is another major concern. The
design team is striving to achieve 90% of the
speed . of specified benchmarks when compared
to the unmodified computer. The performance
area is one that has severely affected
previous computer security projects. With
the hardware approach of the security module,

che minimum acceptable level is 80%.

B. Reference Monitor

The reference monitor model
(see Figure a) is inherent to the design of
secure computers. In the model, the
reference monitor acts as a guard between
people and information. There are three
properties the reference monitor must
possess. The ideal "guard at a key desk"
analogy best explains how this model works.
The first property is that the reference
monitor must always be invoked; (1) the guard
must always be on duty, and there must be no
way to obtain a key without being confronted
by him. Second, the reference monitor must
be verified to operate correctly; (2) the
guard must be responsible for doing his job
correctly. He knows that one has to have an
identification badge and must be on the key
access list. Finally, the reference monitor
must be tamperproof; (3) there must be no way
to hinder or affect the proper operation of
the guard. One cannot get the guard confused
or substitute a guard of one's own choosing.

REFERENCE MONITOR CONCEPT

A REFERENCE MONITOR MUST BE

1. ALWAYS INVOKED
2. VERIFIED CORRECT
3. TAMPERPROOF

Figure a

c. Alternative Solutions

There are essentially two
ways to implement the reference monitor
model. Previously, the method of choice was
to implement in software, thereby attacking
the computer security problem at the
operating system level. This approach has
met with four serious problems. LOCK is a
hardware-based approach that attacks the
security problem at the machine level. Both
implementation methods are described below.

1. Software

The traditional
approach implements the security kernel in
software, resulting in a poor instantiation
of the reference monitor model. At system
boot-up, all of the security-relevant
information, tables, etc., need to be loaded
from memory into the reference monitor. To
do this, the reference monitor has to be
bypassed, thereby violating one of the
reference monitor properties.

130

To verify that this
type of system is correct, one must
explicitly show that there is no way for the
user to hack up the security tables or
interfere with the security mechanisms that
are in place. It becomes a significant task
to show that of all possible programs, no
program surreptitiously modifies any of t~is
information. Since the Central Processl.ng
Unit (CPU) and memory resources are shared
between the user and TCB, there is ample
opportunity for tampering to take place due
to the lack of physical separation.

Performance has been
the high price paid for software security
kernels. The cause of performance
degradation is the multiplexing of resources
between the operating system and the
reference monitor and increased overhead
associated with frequent context switching.
The same CPU handles all of the security
related processing in addition to the normal
processing of the system in a software
implementation. Memory resources are also
shared in a software implementation. A
portion is allocated for security-relevant
information, and the rest is used in the
normal course of processing. This
dramatically increases the load placed on a
single set of resources and decreases the
assurance because of the intermixing of
computational and security-related
information. A context switch, the complete
replacement of processed information in the
CPU required by a change in subjects, is also
a tremendous drain on the processing
capability of the computer. These factors
have degraded the performance of secure
software implementations to as low as 10\ of
the unmodified operating system.[GOLD84]
Additionally, there is some question about
the level of assurance gained since some
applications, like database management
systems (DBMS), need to reach directly into
the machine level -- completely bypassing the
security mechanisms.

As mentioned earlier,
the software approach involves a major
redesign or restructuring of the operating
system kernel. Many existing application
programs require certain services from the
operating system. The entry points for these
services often must be redefined when the
kernel undergoes such significant
modification. The loss of these entry points
severely limits the compatibility of the
operating system with existing applications.

Enhancing an operating
system's functionality usually involves
making changes to the kernel. Even if the
changes are not ostensibly security-relevant,
it must be explicitly shown through
verification (or revalidation at lower levels
of security) that the security of the system
has not been affected as a result of subtle
interactions between the software modules.
Currently, verification of computer systems
is expensive and time-consuming.
Additionally, no claims about the security of
the new operating system may be made until
that version of the operating system has been
evaluated, a time-consuming procedure. The
decision that must be made is whether to
undergo another verification and evaluation

or to continue with the existing, outdated
operating system.

2. Hardware

The hardware-based
approach taken by the LOCK project is a much
closer match to the reference monitor model
(see Figure b). The problem that. aro~e
concerning bypassing the referen?e mon1.tor l.s
eliminated because the SIDEARM l.S a separa~e
processor, with its own memory, that l.S
running before the user's processor boots up.
In addition the security mechanisms and
tables are s~lf-contained within the.s~DE~,
thereby making the syste~ verl.fl.catl.on
easier. Because SIDEARM l.S a separate
resource, there is no physic?-1 way .f~r the
user to access this memory; l.t 1 s trl.Vl.al to
verify that the . user 7an' t a~ter the
security-relevant 1.nformat1.on. Fl.nally,. a
user cannot initiate a process that Wl.ll
tamper with the security-relevant operati~ns
because none of SIDEARM's processl.ng
resources are under control of the user.

SECURITY PROCESSOR COMPONENT APPROACH

REFERENCE MONITOR CRITERIA

1. ALWAYS INVOKED-- NO WAY TO BYPASS
2. VERIFIED CORRECT -- SIMPLER; MACHINE INDEPENDENT
3. 	TAMPERPROOF --NO WAY TO ATTACK SECURITY

PROCESSOR COMPONENT

Figure b

The design approach
taken by the LOCK project is rigid resource
separation (see Figure c). The computational
and security resources are ~egregated ~t t~e
system design level, and.thl.s .segregatl.o~ l.S
carried down to the phys1.cal l.mplementatl.on.
This approach yields two .s~g~ifica~t
benefits. First, unbypassl.bl.ll.ty l.S
guaranteed by SIDEARM ha~ing . exclus~ve
possession of object-addressl.ng 1.nformat1.on
and exclusive control over the memory
management unit (MMU) (see paragraph E.4.) ·
second, the physical separation prevents any
tampering on the part of the user.

LOCK will initially be
a set of boards, but our goal i.s to red~ce
this down to a chip or set of ch1.ps by us1.ng
either very large scale integration (VLSI) or
very high speed integrated circuitry (VHSIC)
technology.

D. System-Independent. Domain
Enforcing. Assured Reference Monitor
(SIDEARM)

SIDEARM is the hardware
instantiation of the reference monitor and is

131

http:1.nformat1.on
http:object-addressl.ng
http:unbypassl.bl.ll.ty
http:l.mplementatl.on
http:processl.ng
http:1.nformat1.on
http:verl.fl.catl.on
http:Processl.ng

the heart of the LOCK technology development
effort. SIDEARM is a separate embedded
computer, with its own processors and memory,
that controls the resources of the host
computer by mediating all accesses to those
resources by users operating on the host CPU
(see Figure d) .

DESIGN APPROACH

SEPARATION OF RESOURCES

TRADITIONAL APPROACH LOCK APPROACH

SECURITY AND COMPUTATIONAL SECURITY AND COMPUTATIONAL
RESOURCES SHARED RESOURCES SEPARATE

SEGREGATION OF SECURITY-RELATED RESOURCES IS KEY

• SIMPLIFIES VERIFICATION
e PHYSICALLY ENFORCED SEPARATION PREVENTS TAMPERING
e REFERENCE MONITOR INVOKED ON EVERY PROCESSOR ACCESS

Figure c

REFERENCE MONITOR IN LOCK

....
___REFERENCE

MONITOR

BUS

______ DATAL
HARDWARE ADVANTAGES

1. HIGH ASSURANCE

2. REASONABLE PERFORMANCE

3. APPLICATION PORTABILITY

3. FUNCTIONALLY

Figured

our goal is to develop a
generic SIDEARM module that is independent of
the computer system it monitors. This does
not mean that it will be a black box that one
magically affixes to the cabinet of the host
computer, making it automatically secure.
Rather, the intent is to minimize the
replication of work when securing different
computers and operating systems by capturing
the essence of the TCB the reference
monitor - in a generic module. The machine
specific requirements involving the
connection of the SIDEARM module to a
particular computer are reasonably small and
modularized to interfaces that can be
customized.

SIDEARM has three important
properties making it generic: (1) it manages
the identification and security labeling of
all objects and subjects: (2) it implements
the mandatory security policy based on these

identifications and security attributes: and
(3) it is guaranteed not to be bypassed
because it will be physically impossible for
the CPU to address its own memory without
going through the SIDEARM to get the object's
address. These databases and operations are
all independent of the host system.

The security databases and
operations are not only generic, but they
allow for a very flexible and powerful
security policy. For example, the dominance
relationship which determines access between
subjects and objects [BELL75] will be
implemented as an explicit, partial ordering
data structure. This means that the security
lattice (actually, Partially Ordered Set or
POSet) can be dynamic, limited to points in
the lattice that are truly needed, and have
multiple roots, thereby getting rid of the
dangerous concept of "system high."[FERG86]

The purpose of developing
the SIDEARM module is to provide vendors with
a foundation for computer security that they
can use to minimize the cost and time
required to secure their own computers. No
longer will the vendors have to become
Criteria lawyers to interpret each and every
Criteria requirement for their system.
SIDEARM will be precertified to meet a base
percentage of the information security
requirements. It only remains to demonstrate
that the module has been hooked into their
computer system correctly and that the
remainder of the requirements not met by the
SIDEARM module are implemented by the host
system.

Providing seed money for the
initial development is our way of encouraging
industry to both produce these devices and
use them in securing their own products .
Within LOCK, a SIDEARM module will be
retrofitted to an existing computer as a
proof-of-principle of the generic nature of
the module and as a worked example of how a
retrofit is done. This information will be
made available to vendors wishing to retrofit
their own computers using SIDEARM modules.

Finally, we will publish the
documentation on the interface to the SIDEARM
module, and vendors designing their next
generation computers can incorporate the
capability to insert the SIDEARM module into
their new systems without the expense of
retrofit changes. In summary, SIDEARM is
intended to secure the nation's computer
systems cheaply and efficiently at a very
high level of assurance.

E. The Architecture

Honeywell's XPS 100/20
computer will be the platform for the LOCK.
The XPS 100/20 is an MC68020 microprocessor
based computer with a VME bus architecture,
running UNIX System v.

The XPS 100/20 was chosen
for two reasons. A study of three different,
popular, 32-bit microprocessors [HONE86]
found that the MC68020 has a flexible
coprocessor interface that makes it easy to
adapt to the requirements of LOCK technology.

132

Furthermore, propri~tary data necessary to
integrate SIDEARM is readily available since The last VP is the
it is a Honeywell machine. Although one of
the goals of the LOCK program is to produce a
generic computer security module that may be
used on many different machines with a
m1n1mum of modification, the interface is
built for a particular system and requires
low-level implementation detail.

1. SIDEARM

SIDEARM looks like a
coprocessor or I/O device (depending on how
it's retrofitted) to the host system. It
contains its own processor (actually between
one and four MC68020 1 s), its own VME bus, and
its own primary and secondary memory. More
processors were added in an effort to lessen
the chance that SIDEARM, with its system
enforced access checks, will be the
performance bottleneck that has plagued other
computers with added security functionality.

Each of the major
subsystems in SIDEARM has its own processor,
which may be real or virtual. Virtual
processors (VP's) communicate by way of a
message passing system. The format is the
same whether or not the VP is on the same
physical processor. This makes it easier to
add more physical processors if necessary and
to move VP's to different physical processors
for performance reasons.

The first major
subsystem is a front-end filter which screens
out illegal requests from the host. Since
this is the only point where the host can
communicate with SIDEARM, this subsystem is
host specific. Legal host requests are
queued until they can be serviced. A
complementary VP allows SIDEARM to access the
host's resources such as host memory. These
requests
manager (

are
detail

coordinated
ed below) •

by a resource
·

The main VP is the
instruction processor. Its job is to take a
host-initiated request, give the appropriate
part to the other VP's, and execute the
corresponding high-level algorithm.

A resource manager
provides the other VP's with access to system
resources, including host primary and
secondary memory, SIDEARM shared memory, host
devices, and host real-time clock. A media
manager is responsible for operations
affecting the Global Object Table (the data
structure that contains all the security
related information needed for access
control, resident only in SIDEARM's internal
memory) or SIDEARM Resident Objects (other
data objects used in security-relevant
processing) •

The Audit Processor has
its own media, a laser disk. If this disk
becomes full, the operator will be notified,
and audit blocks will be stored directly on
SIDEARM's hard disk. If this last disk
becomes full, the system will lockup in the
interest of security. This two-tier backup of
audit data is not called out in the Criteria
but represents one area of increased
assurance for LOCK.

unique identification (UID) generator. It
will produce a unique identifier that is
encrypted. Encryption renders the urn
"opaque," in the sense that the user-visible
urn can not then be used to convey any
information.

SIDEARM, as the
instantiation of the reference monitor, is
responsible for checking access rights and
type enforcement controls. Final access
rights are the "AND"ed rights from the
mandatory access controls (MAC's), the
discretionary access controls (DAC's) and the
type enforcement controls [SAYD86].

2. SIDEARM Encryption
Device (SED)

The SED is a TEPACHE
based [KIBA86] cryptographic module used for
three purposes in LOCK. First, it is used to
encrypt SIDEARM media. This complements the
bulk encryption device (BED) which encrypts
the host's secondary memory.

Second, the SED
encrypts the UID attribute of objects to
close a covert channel. This covert channel
rested on a subject 1 s ability to determine
how many objects had been created. By one
subject creating either a large or a small
number of objects, another subject could
monitor that number by creating an object of
its own and looking at the UID (assuming
UID' s are monotonically increasing) and
decode information over time. By encrypting
the UID's, a subject cannot determine the
absolute or relative number of objects
created.

Third, the SED is used
to manage the cryptographic keys for the BED.
The System Security Officer will insert his
crypto-ignition key (CIK) into this module to
turn on the LOCK. When the CIK is inserted
(during normal operation), the host's primary
memory has unencrypted information that is
potentially sensitive (classified). When the
CIK is removed, all memory is nonsensitive
(primary has no information and secondary is
encrypted) and can be treated as any other
high-value piece of office equipment.
Cryptographic keys will, themselves, be
encrypted within the encryption devices and
stored on SIDEARM 1 s secondary memory. The
owning cryptographic module will retrieve,
decrypt, use, and then reencrypt keys
whenever required by the SED or the BED.
Neither the host system nor SIDEARM
(exclusive of the SED) will ever access or
store unencrypted keys.

At some future time,
the SED may be used as part of a trusted path
between the TCB and the user's terminal.
Information could be encrypted at the
terminal and sent to SIDEARM. Since only
SIDEARM would be able to decrypt and the
user's terminal encryption device able to
encrypt it, untrusted software would not be
able to generate or observe this information.

3. Bulk Encryption Device

133

The bulk encryptor also
contains the TEPACHE which is used to encrypt
all data stored on the host system disks,
tapes, and floppy disks. Furthermore, it
will be used to encrypt communications on the
network interface port. All of the
nonprimary memory devices and the
communications port are located on their own
bus, separated from the CPU/main
memory/SIDEARM bus by the bulk encryptor (see
Figure f). Secondary memory may be treated
as nonsensitive (unclassified) and no longer
must be physically secured when unattended.

appropriate information (the global object
table, kept on SIDEARM's hard disk) is
checked and access is permitted or denied
based on DAC, MAC, and type enforcement
constraints. SIDEARM then loads the
information into the MMU. The MMU caches the
access rights returned until a context switch
forces the flushing of the cache. This
context switch happens when there is a
subject change on the system or when a user
effects
processing.

a change in the level he is '

. To increase security,
custom~zed enhancements to the MMU are being
included in the design. Certain master mode
code (also called supervisor state or ring-0
code) will be kept in protected PROM's on the
MMU, addressable only when the machine is in
master mode. Examples include portions of
the interrupt handler, fault handler, and the
subject manager.

5. Host-SIDEARM Interface

The host and SIDEARM
communicate through a custom interface device
called the host interface controller (see
paragraph E.l., also called the VP front-end
filter). This device encapsulates the
specific electrical and protocol requirements
of the host computer bus and acts as a driver
to relay CPU requests to SIDEARM and to
receive the responses. The SIDEARM interface
controller is SIDEARM's equivalent mechanism
for receiving the requests and then sending
signals back to the host.

Turning secondary
memory nonsensitive (unclassified) has
another important result. Previously, the
device controllers either had to be verified
tru~ted, or front-ended with antilistening
~og~c to.prevent ~he reception of unencrypted
~nf~rmat~on not ~~tended for that particular
dev~ce. Now th~s, too, is no longer
necessary. Commercial, off-the-shelf products
can be used on this bus, and there is no need
to verify their trustworthiness.

Two factors argue
against designing the LOCK with a single
encryption device. The first is performance.
Splitting the functionality between two
encrypti~n devices minimizes performance
deg:r;adat~on. The second reason is that by
hav~ng a separate bulk encryptor with minimal
logic surrounding it, the
~ensiti~ejnonsensitive (red/black) interface
~s phys~cal. If the SED were used to encrypt
the host's secondary memory of communications
port! one would have to rely on the system
work~ng correctly (and prove this) to ensure
that n~ sensitive (unencrypted) data were
ever wr~tten to the nonsensitive bus. Placing
an encryption device in-line allows us
assurance (without incurring the cost of
verifying the device controller 1 s software)
.that sensitive data will never be mishandled.

4. Memory Management Unit

The MMU for the LOCK is
the commodity :Motorola 68851 MMU. The host
CPU queries SIDEARM when a subject first
makes a request for an object. The

F. Interdependence of COMPUSEC
and COMSEC

LOCK contains a
cryptographic subsystem composed of two
dis~inct devices: (1) the SIDEARM encryption
dev~ce (SED) and (2) the bulk encryption
device (BED). This subsystem is also called
the communications security (COMSEC)
subsys~em,. but in actuality, secure
commun~cat~on outside the system is only one
of its functions.

The embedding of COMSEC
into LOCK was made possible by a major
advance by the Development Center for
Embedded Cryptographic Products in the
development of generic low-cost COMSEC
modules. The purpose and benefit of these
modules for COMSEC is the same as those the
SIDEARM module will have for computer
security (COMPUSEC).

The COMSEC and COMPUSEC are
interdependent in LOCK. This means that a
subset of the security requirements for each
is attained by the use of the other. In the
lingo, this makes LOCK an information
security (INFOSEC COMSEC + COMPUSEC)
development .
The COMPUSEC depends on the COMSEC for memory
encryption to increase assurance, UID
encryption to close a covert channel (see
paragraph E.2.), and external network
encryption to secure information leaving the
computer system. The COMSEC depends on
the COMPUSEC to meet certain re.quirements
involving the control of the COMSEC and to

134

provide a secure environment within which the
COMSEC can operate. Both the COMPUSEC and
COMSEC systems in LOCK are critical to
meeting the complete security requirements of
information in a general system of computing
devices.

G. Software

Although essentially a
hardware-based approach, LOCK is not without
software. The software is required for two
reasons: (1) to allow flexibility during
prototyping and (2) to accommodate mutable
and system-specific security requirements for
a particular computer type and at particular
computer sites. The first requirement is
reduced for final production machines, but
maintainability will require that some
portions remain in firmware (e.g. physically
protected ROM) . Much of the generic
functions can be implemented in hardware.

There are four major blocks
of software in LOCK: SIDEARM, kernel
interface software (KIS), kernel extensions
(KE's), and the host operating system (UNIX)
(see Figure g). Each block is discussed in
detail below in terms of function, content,
interfaces to other blocks, and verification
considerations.

Figure g

1. SIDEARM

The SIDEARM software
implements the LOCK reference monitor. The
SIDEARM has a set of externally-visible
operations plus internal software and
databases necessary to perform its task. The
exact specification of the visible operations
and their parameters will be specified in an
Interface Control Document to be released
toward the end of 1988.

SIDEARM will contain
several thousand lines of high order language
software. The reference monitor function of
SIDEARM is implemented by several major
software subsystems managing the resources of
SIDEARM and implementing the instruction
requests from the host (see paragraph E.l.).

The host CPU interfaces to
the SIDEARM software via the KIS. The
security-relevant operations executed by the

host are passed through the KIS, over the
host bus to SIDEARM. The SIDEARM then queues
and fulfills the request if it is allowed by
the security policy.

The verification of the
SIDEARM software must be extremely rigorous.
SIDEARM is intended to be a generic device
that is designed once. All properties
required of the reference monitor (including
simple-security, the *-property, type
enforcement [see paragraph I.] , and
conditional-non-interference [see paragraph
H.2.]) must be shown to hold for all SIDEARM
software. This is a very expensive and time
consuming process, but it is worthwhile for
Al assurance and the cost and time impact is
minimized since SIDEARM is only designed and
verified once.

2. Kernel Interface
Software CKISl

The KIS is essentially
the driver software for the SIDEARM device on
the bus. The host CPU makes security-related
requests of the SIDEARM device via the KIS.
Normally, device 'drivers are implemented
directly by the host operating system.
Because this software must operate correctly
for the TCB to function properly, this
particular device driver must be segregated
from the operating system and verified to
function correctly and be unbypassable. In
simple terms, the KIS is the connective
software that allows the host CPU to
communicate with the SIDEARM.

The KIS is intended to
be small and minimally privileged. Some of
the functions will have to operate in master
mode, but they will only have restricted
access to the TCB. Innate security-relevant
operations designed into the host CPU, such
as interrupt handling, will have to be
performed by the KIS.

The KIS is an
intermediary between the host operating
system running on a particular host CPU and
the generic SIDEARM. As such, the part of
the KIS interfacing with SIDEARM will be
highly machine-dependent and will have to be
customized when the SIDEARM is ported to
different machines. The resource management
portion of the KIS, on the other hand, should
be fairly general and should require minimum
rework when ported. Furthermore, the
interface to the KIS should remain stable
across different computers and within the
same computer when porting to a different
operating system.

The verification of the
KIS should be somewhat simpler than that of
the SIDEARM. The verification is
functionally-oriented as opposed to property
oriented, as in the case of SIDEARM. one
only needs to verify that the KIS adheres to
some low-level properties. For example, the
KIS must be shown to totally clear the CPU
registers during a context switch to ensure
the removal of all residue information.

3. Kernel Extension CKEl

KE's implement

135

application-specific an~ machine-specific
portions of the secur~ty policy. For
example, labelling output for peripherals
such as printers and terminals is highly
dependent on the type of d~vice.. Yet proper
labelling is absolutely ~mperat~ve to ~LS
(see paragraph I. 2.) . All of the expens~':e
controls within the system are for naught ~f
someone can determine or alter the label of
data output. If that occurred, a process
could then wantonly downgrade information to
unclassified by improper output labelling.
In this capacity, the KE implements the
nongeneric portion of the TCB so that the
SIDEARM can be architecture-independent.

KE 1 s are also used to
implement application-specific security
policy. For example, a computer may have a
MLS DBMS. A DBMS requires extra controls
over and above the controls imposed by the
operating system to restric~ in.ference .a~d
aggregation. All appl~cat~on-spec~f~c
extensions to the security model cannot be
included in the reference monitor simply
because the reference monitor would become
too large. Further, we can not predict all
the possible policy extension required for
applications as yet un-built.

The KE 1 s provide
appl~cation-specific, security-related
serv~ces as needed. The KE 1 s, therefore,
interface to potentially hostile applications
and implement their special services at the
control of SIDEARM via calls through the KIS.
since KE 1 s capture machine-specific and
application-specific portions of the TCB,
they will be minimally portable between
different types of LOCK computer systems.

These KE 1 s may have
some privileges not associated with normal
programs. For example, a downgrader KE has
the privilege to violate the *-property. The
KE 1 s, however, are only given the priv~17ge
required to do their task and are ver~f~ed
not to abuse that privilege. In short, KE 1 s
are the flexible part of the TCB, under
strict control by the hardware reference
monitor - the SIDEARM.

4. UNIX

The operating system in
LOCK is considered hostile code. This means
that the operating system will not have to be
reverified and recertified after updates and
changes as is the case with traditional
software kernel approaches to computer
security.

Does this mean you can
take an existing operating system on a
machine, retrofit it with a SIDEARM, and
simply run the operating system unaltered?
No! Operating systems typically perform
security-related functions rooted in resource
(CPU time, memory) management. These parts
of the operating system will now have to be
performed by the SIDE~. Theref~re, some of
the operating system ~nternals w~ll have to
be removed and replaced by calls into the KIS
which, in turn, calls the SIDEARM.

UNIX was chosen to
demonstrate the principles of LOCK because it
is relatively small and because it is a

popular operating system. Since the
operating system is treated as a hostile
application and the interface to the KIS
should be fairly stable, the implementation
of a different operating system on the LOCK
base should not prove difficult.
Furthermore, once the KIS is developed for a
different computer system, the modified UNIX
should easily port to the new computer
system.

What about applications
software portability? Since LOCK is intended
to be an Al certifiable computer, the
question of necessary changes to the UNIX·
System v interface definition arises. It is
pretty clear that it will not be possible to
leave the interface completely unaffected and
have Al security. We do not yet know what
the full impact to the operating system and
applications will be. It is ou:r; go~l to
minimize the impact and to local~ze ~t so
that any changes necessary in porting an
application from an unmodified UNIX to our
Secure UNIX will be reasonably small and
perhaps automatable.

H. Verification

LOCK is using the Gypsy
verification environment [GOOD78] to prove
its security properties. The general
approach that has been taken is to prove the
system top-down in conjunction with the
system design.[BOEB85a, BOEB85d] As the
design is refined from the prelimin~ry,
highly abstract level to the more prec~se,
detailed level, the verification proofs are
proceeding at the same pace (or even slightly
ahead of the design) and are used to feedback
critical design issues. These issues arise
in places where the verification team is
having difficulty proving security. Feedback
will show where the team can simplify the
design, making the proofs easier and
conceptually cleaner.

The use of type enforcement
(see paragraph I.) makes the proof of the
system security much easier. The type
enforcement mechanism allows us to prove the
unbypassability and tamper resistance of
process modules. By proving this once, we
can carry the lemmas over to other sections.
This allows us to focus on the correctness of
the next piece we must prove. It also
permits a much greater assurance in trusted
processes, as their privileges may be
precisely given, and thus, restricted.

There are three established
levels of proof. The abstract model, which
is very general; the interpretation level,
somewhat more detailed; and the formal top
level specification (FTLS), the most detailed
yet (see Figure h). [HONE86] The FTLS is
complete except for some modifications, . and
the addition of most of the kernel extens~ons
are still to be done. Along with these
formal proofs is a Descriptive Top Level
Specification -- a document that .explains ~he
security-relevant features ~n Engl~sh
narrative statements.

1. Formal Implementation
Level Specification CFILSl

136

TOP-DOWN SPECIFICATION AND PROOF

A 1 STOPS HERE -)

• REPROOF OF SPECIFICATION AT EACH LEVEL
• MAPPING BETWEEN EACH LEVEL
• CRITERIA REQUIREMENTS STOP AT THE FTLS LEVEL OF DETAIL

Figure h

Although the Criteria
calls for the FTLS to be the lowest level of
proof, the LOCK team will probe to a deeper
level. This next level we call the Formal
Implementation Level Specification (FILS).
Whereas the FTLS presents the TCB-user
interface without the details of how that
interface is implemented, the FILS delves
into the implementation detail or the
internal workings of the TCB. The FILS will
essentially be a very detailed specification
for the TCB and related code. This level of
detail will also facilitate the required
specification-to-code mappings.

2. Noninterference

The proofs of security
are based on Goguen and Meseguer•s notion of
noninterference.[GOGU84] The noninterference
model is an information-based model as
opposed to an access control based
model.[BELL75] Simply stated,
noninterference requires proof that a subject
cannot interfere with anything a lower-level
subject can view in the system. This
prevents any flow of information (assuming
the security system is modeled correctly and
completely) from a high to a low level and
thus closes many covert channels that would
exist in access control based models.[HAIG86]

The proof of
noninterference is based on a recently
developed unwinding theorem. The verifier
must prove that the low-level subj.ect 1 s
output from his instructions are not affected
if the corresponding instructions from a
high-level subject are deleted from the
instruction stream being input to the
reference monitor. Since strict
noninterference would severely inhibit system
operability, the LOCK verifiers will be using
a modified form of noninterference called
conditional noninterference. This states
that the low-level subject's output is not
affected except in specific instances. These
instances will be the only place where covert
channels may occur, assuming perfectly
faithfUl implementation of design.

The LOCK effort will
also produce a covert channel analysis tool
using the shared resource matrix methodology
in conjunction with a Gypsy flow analyzer.
This tool will be used on those sections
where the noninterference proofs cannot be

proved easily and will identify the covert
channel involved. While it will fail where a
covert channel exists, noninterference does
not identify the channel - hence the need for
this tool.

Noninterference is
applied both in the multilevel security sense
and in the multidomain (see paragraph I. 1.)
security sense. A noninterference proof is
sufficient to assure proper access control
and the absence of covert channels between
classification· levels and between different
domains. This allows the type enforcement to
be just as "tight" security-wise, as MAC.

An auxiliary step in
the verification process will be for the LOCK
verifiers to couch selected Gypsy proofs in
mathematical journal level language and
submit them to a social review
process.[BOEB85d] This allows the proofs to
be looked at by someone not necessarily
familiar with the intricacies and
peculiarities of automated theorem provers,
as well as forcing us to give a less abstruse
or esoteric proof.

I. Type Enforcement

Type Enforcement is LOCK's
way of providing mandatory, configurable
integrity. Both DAC and MAC may be thought
of as mechanisms that restrict access to
information. Type enforcement is just
another restriction placed upon the results
of the first two. Access rights are whatever
passes the three "filters." Type enforcement
relies on the use of levels and labels on
subjects and objects and has rules to permit
access. This information is encoded within a
matrix similar to the normal MAC
matrix.[BOEB85b]

1. Domain Definition
Table/Domain Transition Table DDT/OTT

Type enforcement relies
on two data structures: the DDT and the OTT.
The DDT is a matrix with "types" on one axis
and "domains" on the other. The intersection
is the set of privileges (possibly null) a
subject within a particular domain has to an
object of a particular type. The OTT is a
matrix with "subject" labeled on both axes;
11 subject, 11 in LOCK terminology, is a user
domain pair. The intersection is a simple
"yes" or "no," indicating whether a
particular user in a particular domain may
transition to a different domain.

2. Assured Pipelines

The DDT/OTT may be
configured such that an "assured pipeline" is
created. This is a control structure wherein
an object is input to the lead control
process, undergoes some intermediate
processing, and is finally output in a
"refined" form. The LOCK has the ability to
insure that no unauthorized process may
contaminate the object as it moves through
this pipeline.

An example of such a
construct would be a system where all the
output from a printer is labeled with the
proper classification label (as required by

137

the Criteria). One desires a system where it
is easy to prove that text to be printed is
labeled before being printed. Also, one has
to prove that no information may be printed
without being labeled, and that no process
can change the label on a labeled file before
it is printed.

The setup for the DDT
is shown in Figure i. Any normal user may
read and write to something called "raw
text." When he wishes to print this, the
labeler may read from this object (type: raw
text) and write to an intermediate object
(type: labeled-for-printer text). The
printer may read only from objects of type
labeled-for-printer text. No other rights
for the two types are given to any other
domain. This forces objects to be labeled
before being printed and assures us that only
the labeler has touched the label. A
graphical representation appears in Figure j.

LABELED-FOR-PRINTER
DDT RAW TEXT TEXT PRINTER

USER
DOMAIN

L.ABELER
DOMAIN

PRINT
SPOOLER
DOMAIN

THE IMPLEMENTATION OF THE ASSURED PIPELINE
MERELY REQUIRES AN APPROPRIATE CONFIGURATION

Figure I OF THE DOMAIN DEFINITION TABLE.

LABELED· FOR· PRINTER

RAW TEXT TEXT
 PRINTER

w~..A;~i;.,IPRINT SPOOLER~ ·. ;;;, ;/~
.~·,

Figure j

Another pipeline that
illustrates the utility of the assured
pipeline is the downgrader example (see
Figures k & 1). This can be viewed as a
triple turn-key operation. If the
downgrader, the reviewer, and the
instantiater are all different users, it
requires that all three take some positive,
specified action to allow the object to be
downgraded.

DOWNGRADER

TO·BE·DOWNGAADED DELTA-FILE NEW-VERSION FINAL

• 	DOWNGRADER •• CREATES FIRST DRAFT OF CHANGES REQUIRED
FOR DOWNGRADING

• 	REVIEWER •• COMPOSES DRAFT WITH ORIGINAL AND OPTIONALLY
CREATES A REVISION

• 	INSTANTIATER •• REVIEWS DRAFT 2 AND PERFORMS THE ACTUAL
DOWNGRADE

Figure k

DELTA FILE FINAL

TO-BE
flDT DOWNGRADED NEW-VERSION

DOWNGRADER
DOMAIN

REVIEWER
DOMAIN

INSTANTIATER
DOMAIN

Figure I

3. v e r i f i c a t i o n
Encapsulation

Type enforcement and
the ability to construct an assured pipeline
leads to an important encapsulation for
verification purposes. Once the type
enforcement is proved to work correctly,
other proofs may use type enforcement to
satisfy some security properties. Type
enforcement may be used to satisfy the
nonbypassability requirement as well as the
tamper-proof requirement. Since subjects are
restricted from accessing certain objects by
the DDT and this concept can be extended to
provide the pipeline effect, it can be shown
which processes will have what access to what
information in a very precise manner. It is
possible to have a single program occupy a
domain. This level of granularity is
unmatched by MAC and is unmatched by DAC in
assurance. [BOEB85c) A proof of the type
enforcement mechanism, then, leads to a
simplified proof of two of the three
properties for modules in a reference
monitor.

J. LOCK Applications

As mentioned earlier, LOCK
will be useful for different applications.
In some cases, it will be necessary to
provide more than the generic portion,
SIDEARM, to suit the needs of the user

138

completely. KE's will be the mechanism
employed to extend the generic portion to
handle the specific applications. This
allows the computer system designer to
incorporate only the functionality that is
required by the users. For example, if the
system will not be connected to a computer
network in its life cycle, it would be
unnecessary to incorporate secure networking
functionality. The KE mechanism is a cost
effective solution in addition to being an
efficient means for implementing security
functionality. Providing only the necessary
security functionality eliminates the cost of
additional bells and whistles not needed in
particular implementation. Similarly, the
addition of only the necessary KE's does not
trigger exponential cost increases. Such is
not the case for systems that incorporate
mechanisms to handle all possible
application-specific security. Another cost
reduction factor is that the KE' s are
verified and certified to the extent that
they perform their job correctly an? are
dynamic entities that can be added w~thout
causing the entire system to undergo
reverification and reevaluation.

The type enforcement
mechanism allows the encapsulation of
subsystems and the implementation of assured
pipelines. This makes the development of
multilevel applications much easier in
addition to providing a higher degree of
assurance. currently, three ongoing efforts
demonstrate LOCK's- applicability and are
described below.

1. BLACKER

The BLACKER project
provides multilevel security for packet
switched computer communication networks
through the use of a front-end interface
between the host computer and the network.
BLACKER achieves network security by
maintaining secure electronic key
distribution as well as end-to-end
encryption. While BLACKER provides security
between computers, LOCK provides security
within the computer. The KE mechanism within
LOCK can be used to emulate the BLACKER
functionality to allow secure computers to
communicate securely. The specifics required
by BLACKER can be incorporated into a KE
designed to provide the necessary
functionality for communication on a BLACKER
network if desired.

2. Secure Data Network
System (SDNSl

The SDNS project is a
strategy for securing communications over
public data networks through end-to-end
encryption. The manner in which this is done
is vastly different than that employed by the
BLACKER project. SDNS utilizes a different
form of key management and distribution than
the one implemented by BLACKER.

A major contribution of
the SDNS project is a user-friendly, user
transparent key management technology. This
key management strategy does not employ any
access control functionality. SIDEARM, the
foundation of LOCK, provides a very rich

access control facility capable of handling
this task without the addition of an access
control module. An SDNS KE would have to be
specified, verified, and implemented to allow
communication on an SDNS network. Transition
between the two forms of secure networks
discussed above becomes a matter of using the
BLACKER KE set or the SDNS KE set.

Eventually, the
technology produced in this effort will
undergo a Commercial COMSEC Endorsement
Program (CCEP) security product development
[BARK86] to provide the opportunity for
industry and government to develop a security

chitecture compatible with the Open Systems
Interconnection network model [ZIMMSO]
developed by the International Standards
Organization.

Views (SDDVl
3. Secure Distributed Data

project is a
The

multilevel
Honeywell SDDV

secure relational
database management system (MLS/DBMS)
designed to run on the LOCK TCB. secure
database systems are application software
that manage large amounts of information at
different classification levels. The
MLS/DBMS security policy is developed as an
extension to the LOCK base policy and will be
implemented via the KE mechanism. SDDV will
demonstrate the advantages of LOCK for
developing MLS applications as it is the
first application built upon the LOCK
foundation. The type enforcement mechanism
isolates the components of the DBMS, making
the operations fairly simple extensions.
SDDV takes advantage of the assured pipelines
and the modular structure that LOCK provides
to implement the kernel extensions in a
secure, flexible, and functional manner (see
Figure m) • SDDV is contracted by the Air
Force Rome Air Development Center (RADC) to
the Honeywell Secure computing Technology
Center and Stanford Research Institute.
success of the Honeywell effort depends upon
the LOCK technology being fully developed.

ASSURED PIPELINES

NON-DBMS

DOMAINS

DBMS
DOMAINS Fi!iJure m

139

BIBLIOGRAPHY
III. PLANS

The LOCK program strives to lay
down a foundation in computer security that
all others may stand on. We are
concentrating substantial tame and money to
develop a generic, reusable module that will
meet a significant percentage of the
Criteria's requirements. Implementors using
this module would then only need to fulfill
the remaining requirements in their system.

By the end of 1988, an
Interface Control Document (ICD) for the
SIDEARM will be published to allow major DoD
and civil agency programs as well as the
private sector to incorporate the requirement
of connection to SIDEARM in their future
systems. It will also allow computer vendors
to initiate retrofits of current computer
systems if it proves cost beneficial.

The National Computer Security
center's (NCSC' s) sponsorship of LOCK is to
provide risk subsidization for the research
and development required for the first design
and implementation of the secure modular
technology. The intent is that private
industry will pick up the gauntlet and fund
development for retrofits and future-fits on
their own systems to enhance the security
and, thus, marketability of their computers.
The standard NCSC and Commercial COMSEC
endorsement processes will be followed in
certification of such products.

Development on both sides of
the ICD boundary is envisioned.
Incorporation of the generic modules into a
given system involves development on the host
computer side of the boundary. Application
of VLSI and VHSIC technologies to the
implementation of the reference monitor
module involves development on the SIDEARM
side of the boundary. There are vendors who
are capable and interested in both types of
development work.

Even before first prototypes
have been designed and implemented, secure
applications targeted for LOCK computers are
being developed for securing databases. The
RADC-sponsored SDDV project is designed to
tie-in to the LOCK module base. The
estimated cost savings of using an existing
TCB versus a ground-up design is significant.

Even after there are hundreds
of different computer systems that have
successfully integrated the embedded SIDEARM
module and they are placed on the NCSC
Evaluated Products List (EPL), the work is
not done. The LOCK technology provides the
mechanisms required to implement integrated
secure applications on top of the TCB
provided by the modules. LOCK will form the
foundation for computer security for many
requirements for many years to come.

BARK86

BELL75

BOEB85a

BOEB85b

BOEB85c

BOEB85d

FERG86

FORD81

GOGU84

GOLD84

GOOD78

Barker, William Curtis. "An
Industry Perspective of the
CCEP. 11 AIAA/ASIS/DODCI Second
Aerospace Computer Security
Conference, Dec. 2-4, 1986.

Bell, David E., and L. J.
LaPadula. "Secure Computer
systems: Unified Exposition and ,
Multics Interpretations."
Technical Report MTR-2997,
Mitre Corp., July 1975

Boebert, w. E., et al. "Secure
Ada Target: Issues, System
Design, and Verification. 11

Proceedings of the 1985
Symposium on Security and
Privacy. IEEE, 1985.

Boebert, w. E., and R. Y. Kain.
"A Practical Alternative to
Hierarchical Integrity
Policies." Proceedings of the
8th National Computer Security
Conference. Oct. 1985.

Boebert, w. E., and c. T.
Ferguson. "A Partial Solution
to the Discretionary Trojan
Horse Problem." Proceedings of
the 8th National Computer
Security Conference:oct. 1985.

Boebert, w. E., et al. "Secure
Computing: The Secure Ada
Target Approach. " Scientific
Honeyweller. June 1985.

Ferguson, Chuck, and C. B.
Murphy. "A Proposed Policy for
Dynamic Security Lattice
Management." Proceedings of
the 9th National Computer

____ Security Conference. Sep 1986.

Ford Aerospace and
communications Corporation.
"Provably Secure operating
System (PSOS) Final Report."
contract MDA 904-80-C-0470.
June 1981.

Goguen, Joseph, and Jose
Meseguer. "Unwinding and
Inference Control."
Proceedings of the 1984
Symposium on Security and
Privacy. IEEE, 1984.

Gold, B. D., et al. "KVM/370
in Retrospect." Proceedings of
the 1984 Symposium on Security
and Privacy. IEEE, 1984.

Good, D. I., et al. "Report on
the Language Gypsy, Version
2. 0. " Technical Report ICSCA
CMP 10. Institute for
Computing Science, Univ. of
Texas at Austin, Sep. 1978.

140

HAIG86

HONE83

HONE86

KIBA86

MCHU85

MYER80

NEUM77

SAYD86

TCSE85

YOUN85

YOUN86

ZIMM80

Haigh, Tom, and w. D. Young.
"Extending the Non
interference Version of MLS for
SAT." Proceedings of the 1986
Symposium
Privacy.

on Security and

Honeywell.
Specification,
904-82-C-0444.

SCTC A-
Contract MDA

April 1983.

Honeywell.
Specification,
904-84-C-6011.

SCTC B-
Contract MDA

March 1986.

Kibalo, Thomas, and W. E.
Boebert. "Using Embedded
COMSEC: an Integrator's
Viewpoint." Proceedings of the
2nd Annual Symposium on
Physical/Electronic Security.
August 1986.

John McHugh, "An Emacs-Based
Downgrader for the SAT,"
Proceedings of the 8th National
Computer Security Conference,
Oct. 1985.

Myers, Phillip A. "Subversion:
The Neglected Aspect of
Computer Security." Thesis,
Naval Postgraduate School. June
1980.

Neumann, P. G., et al. "A
Provably Secure Operating
System: The System, its
Applications, and Proofs."
Final Report, Project 4332.
SRI, Feb. 1977.

Saydjari, 0. Sami, and Tim w.
Kremann. "A Standard Notation
in Computer Security Models."
Proceedings of the 9th National
Computer Security Conference.

Sep. 1986.

Department of Defense Trusted
Computer System Evaluation
Criteria. DOD 5200.28.STD.
Dec. 1985.

William D. Young et al. ,
"Proving a Computer System
Secure," Scientific
Honeyweller, Vol. 6, No. 2,
July 1985.

William D. Young et al., "A
Verified Labeler for the Secure
Ada Target," Proceedings of the
9th National Computer Security
Conference, Sep. 1986.

Zimmermann, H. "OSI Reference
Model The ISO Model of
Architecture for Open Systems
Interconnection." Transactions
on Communications, IEEE, April
1980 1 Vol. COM-28, pp. 425-432.

141

UNIXandB2: Are They Compatible?

W. Olin Sibert Dr. Deborah D. Downs
Oxford Systems, Inc. Kenneth B. Elliott, III
Arlington, Massachusetts The Aerospace Corporation
617 646 8619 Los Angeles, California '

213 3364365
Holly M. Traxler
Grant M. Wagner Jeffrey J. Glass
National Computer Security Center The MITRE Corporation
Fort George G. Meade, Maryland Bedford, Massachusetts

ABSTRACT

As an emerging operating system standard, UNIX is being used more and more as a basis for building secure systems.
In late 1986, the National Computer Security Center (NCSC) studied a prototype secure system derived from AT&T's
System V, Release 2 version of UNIX. The study assessed that system's compatibility with the B2 assurance
requirements defined in the Trusted Computer System Evaluation Criteria (TCSEC). The study also gave increased
insight into the meaning of and relationships among those requirements. This paper presents the results of the study
and some advice for builders of systems intended to meet the B2 requirements.

The views and opinions expressed in this paper are solely those of the authors and do not necessarily reflect official
National Computer Security Center positions. In particular, this paper should not be considered as an official Criterion
Interpretation for any TCSEC requirements.

INTRODUCTION

Last year, the NCSC performed an extensive study of the implementation
of a prototype secure system based on AT&T's System V, Release 2 ver
sion of UNIX. The study was performed by a five-person team, including
experts in UNIX, operating system design, and security evaluation, dur
ing eight weeks in the fall of 1986. The purpose of this study was to
evaluate the suitability of the generic UNIX system architecture as a base
for building secure systems. Although the study was primarily concerned
with a single example system, the team attempted wherever possible to
generalize the results to other versions of UNIX.

This paper discusses why the study was conducted, why the B2 level of
the TCSEC [DoD85] was chosen and what requirements of the TCSEC
were considered. It then presents a definition of modularity that was used
in the analysis of UNIX and reports the results of applying that definition,
including several specific examples common to most UNIX systems. The
paper concludes with recommendations on how to approach development
of B2-elass systems.

Outline of the Study

The NCSC is evaluating several UNIX-based or UNIX-like systems at
various TCSEC levels and expects to be evaluating more in the future.
This study was undertaken in the interest of ensuring that similar systems
be evaluated consistently. The NCSC formed the study team to evaluate
the internals of one of these candidate systems in depth. The purpose of
the study was not to examine the particular system's security features for
sufficient implementation, but rather to evaluate how well the candidate
system and generic UNIX systems meet the architecture requirement and
provide assurance of secure operation.

This work was supported in part by the National Computer Security Center
under Task Order Number MDA903 84 C 003l:T-J5-XXX issued to the Institute
for Defense :Analysis.

UNIX is a registered trademark of AT&T.

While the study focused on a specific system, the results do appear appli
cable to most security-enhanced UNIX-based systems, and, in a larger
sense, are applicable to all systems targeted for the B2 level or higher.
The results specific to UNIX are applicable to any system built by modi
fying a standard release of UNIX to add security features without a com
plete internal restructuring both within the kernel and without.

The study team concluded that it is possible to build a B2, B3, or A1 sys
tem with an interface very much like that of UNIX. However, it also con
cluded that major problems exist with today's common UNIX implemen
tations. The study also provided valuable insights into the meaning of the
B2 architecture and other assurance requirements, which are applicable
for any candidate B2 (or above) system, not just UNIX-based systems.

Why the B2 Requirements

The choice of B2 as a target level for the analysis was not arbitrary.
Building a Bl system is, in principle, straightforward, since Bl primarily
requires features, not assurances. The intent of the B 1 rating is to estab
lish a target that can be reached by modifications to many existing sys
tems, while still providing mandatory access control features.

A B3 level analysis was not considered because of the stringent require
ments for system structure and minimal TCB complexity. It seemed
unlikely that a UNIX-based system would even approach this level of
layering and minimization except through complete reimplementation.

It seemed possible, however, that the B2 level could be achieved in a
UNIX-based system without wholesale reimplementation. Although B2
is intended as an evaluation class for systems designed from the begin
ning with security assurances in mind, UNIX is among the few existing
systems that could possibly be adapted to include those assurances
without a complete reimplementation of its Trusted Computing Base
(TCB). UNIX systems have already served as an implementation base or
interface standard for many computer security research projects (UCLA
Data Secure UNIX, KSOS, SCOMP UNIX emulator).

142

The study team's primary focus was on System Architecture, and modu
larity in particular, where the System Architecture requirement calls for
"well-defined, largely independent modules." The modularity of a sys
tem is fundamental, and carmot be improved simply by adding features.
Modularity is also relatively independent of the hardware base and even,
for the most part, of the strategy for adding security features. The modu
larity analysis represented the bulk of the team's effort, and its results are
presented in the next section(' 'UNIX MODULARITY'').

All of the B2 functional requirements, and to a large degree even the
other assurance requirements (besides System Architecture), are con
cerned with aspects of the system which are likely to differ substantially
in different implementations. Since the team's charter was limited to
studying aspects of the system which could be considered "generic", and
common to most UNIX-based secure systems, no consideration was
given to specific security features of the examined system or to
implementation-dependent assurances. Only those aspects which are
largely independent of any one implementation were examined; this
included several assurance areas in addition to architecture, and these are
discussed in the "Additional Assurance Areas" section below. The
remaining assurance areas (such as covert charmel analysis, formal
model, testing, and configuration management) were found to be too
specific to a particular system's design and implementation for a generic
analysis to have much meaning.

UNIX MODULARITY

Most of the study team's analysis reviewed modularity and independence
of the components of the UNIX kernel, along with some of the trusted
processes (e.g., mkdir, printer spooler). A definition of modularity had to
be chosen and a determination made on how it could be applied to the
UNIX system. That definition was used to evaluate TCB components.
The study team conducted a detailed analysis of nearly one third of the
UNIX TCB, and examined most of the rest.

The first part of the assessment required choosing a definition for ''modu
larity" and applying it to the system. Modularity can be present at many
levels. At a very low level, the instruction opcodes of a processor could
be considered "modules." At a very high level of abstraction, the entire
kernel could be considered a "module" whose interface and parameters
are described by the DTLS. To understand a system, an appropriate level
of abstraction must be chosen, and this proved rather difficult. The team
wanted to look at an abstract level of "major subsystems" in the kernel
(such as file 1/0, directory management, memory management [Bach86])
but found this to be impractical. Although the existence of such subsys
tems can be argued from a functional standpoint, no such clean boun
daries exist within the kernel. Instead, many individual functions directly
manipulate whatever data structures they must to ''get the job done.'' In
the absence of more abstract modules, the team was forced to use a lower
level of abstraction. This less abstract view required treating individual
C-language functions (and occasional assembler-coded functions) as
modules and evaluating them against their definition. This choice was
made largely because the functions were readily identifiable in the source
code.

The study team also started with a definition of "modularity" that
claimed modularity is independent of packaging. In theory, this is rea
sonable, but the originally poor packaging of the system and of the code
added to support security features made this claim unsupportable. The
packaging problems make the system more difficult to maintain, thus
resulting in potentially lower security. The packaging also made it very
difficult to identify modules at a higher level of abstraction than a single
function, since it was almost impossible to find all of the components of
the more abstract module.

Ultimately, the team concluded that modularity must not only be present,
but must also be readily apparent to a skilled observer. Hidden modular
ity is of no value; for instance, an uncommented disassembly listing of a

system which is fully modular in its high-level language form could not
be considered modular even though the two forms are completely
equivalent from the machine's point of view. Modularity carmot be just
an artifact; it must be an expressed and evident intention. It must be
present in the implementation, supported by the design documentation,
ana maintained· through the configuration management system.

Definition of Modularity

The team's original working definition of "module" was:

''	... a conceptual building block that corresponds to the work
assignment of a programmer or programming team ... a group
of closely related programs.''

As described above, however, this definition proved very difficult to use.
The "work assignment" model is too vague. Because of the extensive
use of global variables in the kernel, very large parts of the kernel
become closely related. The "modules" that result from this definition
were too large and too diverse functionally to be considered modular.

Therefore, in the basic analysis of the system, the team used a module
definition similar to Stevens, Myers and Constantine[Stevens74], in
which a module is:

"a set of one or more contiguous program statements having a
name by which other parts of the system can invoke it and
preferably having its own distinct set of variable names.''

The basic assumption of the analysis was that if all the modules in an
operating system met the following criteria, the system could be con
sidered fully modular. A module:

• performs exactly one well-defined function;

• has well-defined parameters, interface and environment;

• interacts with other modules only in well-defined ways; and

• is called upon to perform its function whenever that function is
required.

The first criterion means that a module should not combine multiple func
tions, particularly if they are unrelated or are also performed in other
modules, and also that the results of a module should be predictable,
based solely on the values of its input parameters. In [Stevens74], under
the heading "Functional binding", is an interesting first cut methodology
which can be used as an aid in determining if a module meets the first cri
terion. It is based on evaluating a one sentence description of the
module. Although the study team did not use this technique, it appears
very useful, as an aid to building or restructuring a secure system.

The second criterion means that the interface to a module should clearly
reflect its implementation. There should be no hidden dependencies on or
assumptions about other parts of the system (e.g., arrangement of data in
memory, internal operation of unrelated modules, details of hardware,
etc.). The module name and its parameters should give a fair guess about
its function. As Britton and Pamas wrote in [Britton81],

"A software engineer should be able to understand the responsi
bility of a module without understanding the module's internal
design."

The third criterion is related to the second in that parameters passed to
and returned from a module should be clearly identified and have well
defined consistent meanings. Parameters, formal and informal (e.g. glo
bal variables or environment), are an important part of the connections
between modules. From [Stevens74],

"Minimizing connections between modules also minimizes the
paths along which changes and errors can propagate into other
parts of the system, thus eliminating disastrous 'ripple' effects
where changes in one part cause errors in another, necessitating
additional changes elsewhere, giving rise to new errors, etc.''

143

~inally, B2 is a popular target. The NCSC currently is experiencing con
Siderable demand for B2-level developmental evaluations of many types
of systems. Because the B2 assurance requirements in the TCSEC are
vague and difficult to interpret, one of the goals of the study was to define
them more clearly in support of those evaluations. Honeywell's Multics,
as the prototypical B2 system, is considered to.llave met the B2 require
ments, but it is just a single sample point and cannot provide all the
needed guidance. As hoped, the UNIX study has provided additional gui
dance on how to interpret the B2 requirements and apply them to systems
under evaluation.

REVIEW OF THE B2 REQUIREMENTS

Having chosen the B2 requirements as the target level for the analysis,
the study team's first task was to decide how to assess compliance with
those requirements. This was done in two stages: first understanding the
important distinctions between B 1 and B2 then identifying the essence of
the B2 requirements,

The Difference Between Bl and B2

From reading the TCSEC, it appears that the chief distinction between B 1
and B2 is one of assurances, and of the comprehensiveness of those
assurances. · The step from B 1 to B2 is regarded as the single most
difficult transition in the Criteria, principally because of these assurance
requirements.

The intent of these assurances is to eliminate vulnerabilities to attack, real
or potential, that do exist or that might come into existence during the
entire life-cycle of the system -or, at least, minimize the likelihood of
such vulnerabilities. In the early 1970's, in [Anderson72] and other
worlc, it was observed that the mere appearance of correct functioning, or
even of correct implementation, was not sufficient to ensure that a system
would operate securely under attack; nor was that appearance sufficient to
ensure that a once-secure system would remain secure after additional
development. From this worlc, the overall goal of an inherently secure,
understandable, and maintainable system emerged: the Reference Moni
tor.

When examined in this light, the Reference Monitor was seen as the fun
damental assurance of a B2 system. In effect, all the other assurance
requirements exist to define, support, maintain, and protect the reference
monitor: specification, testing, maintenance, and architecture.

Furthermore, although not explicitly stated in the TCSEC, it became clear
that not only must the system meet the assurance requirements, but that it
must be evident that it does so.

Critical B2 Requirements

Five of the B2 requirements appear to constitute the essence of the B2
assurances. Although several requirements differ between B 1 and B2,
and others are differently interpreted because of the B2 assurances, these
differences are either direct and obvious consequences of the B2
assurances or requirements for features that have no direct relationship to
those assurances. The primary functional difference, covered by the Sys
tem Architecture requirement, is the need to apply the TCB's security
policy to all subjects and objects, rather than just a chosen subset.

The five critical B2 requirements are:

• System Architecture
• Design Documentation
• Design Specification and Verification
• Covert Channel Analysis
• Configuration Management

These five requirements are (at best) vaguely written and all closely
related. This makes them difficult to consider individually. Therefore,
for this study, they were instead considered as a whole and their contents
reorganized into twelve areas; some of the areas also incorporate small
extracts from other requirements. Each of these twelve areas represents a
well-defined goal to follow when when planning the development of a
secure system, unlike the original five requirements. The appendix at the
end of this paper contains the complete set of extracts for each of the
areas, and a brief summary of each.

The twelve assurance areas identified by the study team are:

• Reference Monitor Requirements
• TCB Functional Requirements
• TCB Isolation Requirements
• Process Isolation Requirements
• Modularity Requirements
• Least Privilege Requirements
• Hardware Requirements
• Descriptive Top-Level Specification Requirements
• Configuration Management Requirements
• Covert Channel Requirements
• Formal Model Requirements
• Testing Requirements

SCOPE OF STUDY TEAM'S ANALYSIS

The object of the team's analysis was the Trusted Computing Base (TCB)
software of a UNIX implementation. The generic UNIX TCB consists of
two, major software components, the kernel and the trusted processes. An
actual product evaluation of a real UNIX system would also consider the
hardware and firmware components of the TCB, but since the study was
concerned only with the generic UNIX software architecture, those com
ponents were not considered. The UNIX TCB software is written pri
marily in the C programming language, although there is some amount of
implementation-dependent assembler code in most UNIX systems.

The first software component is the kernel, which runs in the hardware's
privileged state. Its services are requested by "system calls", which
switch the process to run in the privileged state and transfer to the kernel
code. Its data structures are shared by all processes, but accessible only
when the process is running in the kernel. The kernel implements most
of the basic operating system functions that control sharing of and access
to resources.

The second software component is the set of trusted processes. The
trusted processes are simply all those UNIX processes which run with a
distinguished (privileged) user ID. One such user ID is zero, the root user
ID, or the "super user", which can execute all privileged ·system calls
and is not subject to access control. Other distinguished user IDs are used
to grant access to certain shared TCB files and directories, such as the
printer spooler's directory (though in standard UNIX, most such access is
granted only to root and not more tightly controlled). All other processes
(belonging to unprivileged users) are outside the TCB, although an
unprivileged process may dynamically invoke a privileged (trusted) pro
cess to request some service from the TCB.

When· considering the actual UNIX implementation, the study team
quickly realized that the primary question was not whether the system
included a reference monitor, whether it isolated the TCB, whether it was
composed of well-defined modules, and so forth, but rather, how to make
that determination. It was simply not evident that any of these require
ments were met, and difficult to see how one could make that determina
tion, or ensure that the requirements would still be met after maintenance
in the future. Although a UNIX expert might argue that all these archi
tecture requirements are met, had one but the wit to see it, this merely
reinforces the conclusion that the system's architecture is not manifest in
its implementation, but instead exists primarily in the minds of its
designers.

144

Good modularity minimizes coupling. Coupling [Stevens74] is:

"a measure of the strength of association established by a con
nection from one module to another. . . Coupling increases with
increasing complexity or obscurity of interface.''

Extensive use of global variables causes every module sharing them to be
coupled to every other such module "without regard to their functional
relationship or its absence."[Stevens74] Belady and Lehman[Belady71]
observed that:

"a well-structured system, one in which communication is via
passed parameters through defined interfaces, is likely to be
more growable and require less effort to maintain than one mak
ing extensive use of global or shared variables.''

Britton and Parnas [Britton81] also expressed their views of global vari
ables. This definition is much closer to the original working definition,
but is also at a lower level of abstraction than simply considering the
entire TCB as a single module.

"Every data structure is private to one module; it may be directly
accessed by one or more programs within the module but not by
programs outside the module."

Of course, an operating system may require some use of global variables.
But as [Stevens74] observes,

"it is possible to minimize the disadvantages of common
environments by limiting access to the smallest possible subset
of modules.''

The fourth criterion means that the function perfonned by a module
should always be perfonned by calling that module, rather than being
implemented in multiple locations. Note that this does not preclude
inline macro expansions of code inserted from include files; rather, the
goal is simply to ensure that the actual programmer-created definition of
a function appears in only one place.

The desire that multiple uses of a function share one definition should not
be taken to mean that a function required only once ought not to be
defined independently. Rather, wherever possible, independent functions
should be implemented as separate modules, even if they are only used
once. This criterion, along with the use of consistent programming style
among developers, should result in a similar control structure and call
sequence in modules performing similar functions.

UNIX System Modularity

The study team's examination of the UNIX TCB covered approximately
60 percent of the kernel and 35 percent of the trusted (privileged)
processes. For every function examined in the TCB, the team produced
an analysis report describing the function's apparent oontract (as best as
could be detennined from reading the code), its parameters, its use of glo
bal variables, its calls to other functions, and its confonnance with the
definition of modularity given above.

At higher levels of abstraction, the team looked for object or resource
managers acting as the interface to TCB data structures wherever the
packaging and structure supported such analysis. Although packages (C
language source files) also represent a readily identifiable group of code,
the generic UNIX packaging of functions into source files is haphazard
and uninfonnative (Berkeley UNIX has made some improvement in this
area). The conclusion, however, was that while source file packages
could fonn the basis for a more abstract view of kernel modularity, most
of the basic UNIX TCB still would not exhibit a high-level modularity
even if entirely reorganized and repackaged. The lack of clear divisions
between major subsystems appears to be an inherent system characteris
tic, not merely an artifact of poor packaging. There were some notable
exceptions to this observation, such as the file system's buffer manager
[Bach86].

After this detailed examination of the UNIX TCB, the study team con
cluded that generic UNIX does not meet the B2 requirements for modu
larity (in addition to problems with some other B2 requirements, dis
cussed below). This conclusion was based on the following observations:

• The 	 kernel includes pervasive misuse of global variables. It
modifies supposedly constant values to take advantage of their
side-effects, it shares global variables among wholly unrelated
modules, it uses global variables in many cases where fonnal
parameters should be used, and it uses global variables for tem
porary storage of purely local infonnation. This is the single largest
problem area, and the first one that should be corrected in any B2
UNIX implementation. A prime example of this was the global
temporary values used by namei (the multi-purpose pathname reso
lution function). Global variables, as such, are much less of a prob
lem for the trusted processes, since they primarily share data in files.

• The 	 UNIX TCB contains numerous examples of duplicated
functions- very similar, or in some cases identical- functions.
Thse duplicated functions were sometimes syntactically identical,
sometimes subtly different. These examples were often the result of
using in-line operations rather than function calls to perfonn well
defined operations, such as searching for entries in the mount and
proc tables. This was also a problem in the trusted processes, where
a group of related trusted processes (such as components of the
printer spooler) contained wholly duplicated code, rather than calls
to library routines.

• The packaging of the kernel is very poor. Functions are scattered
among different source files even though their purposes are closely
related. This in itself does not prevent high-level modularity, but if
not corrected would make the modularity invisible even if theoreti
cally present. For example, functions for perfonning directory
management are scattered among several different source files, as
are the functions which perfonn access checks. Packaging of the
trusted processes is much better, since each trusted process must
have its own source file.

• Related to the above problem is the organization of external data
structure definitions (" .h") files. Practically every function in the
kernel includes all the major ".h" files; detennining whether a
function actually references one of those data structures is therefore
very difficult. This is an artifact of the C-language data definitions,
but one which could be avoided by better structure and some help
from the compilers. Here again, what data structures are actually
referenced is not as important as ensuring that those patterns are
readily apparent. Another aspect of this problem is that it is very
difficult to detennine (from name or usage) what modules "own" a
particular structure element (or even the whole structure). This was
much less of a problem for the trusted processes, since they share
little (if any) data except by common file fonnats.

• Many TCB 	 functions are complex and ill-defined. Rather than
calling on another appropriate function to manipulate a data struc
ture, the manipulations are done directly, with no assurance that
they confonn to the rules of the data structure's managing functions.
Other functions' contracts are ill-defined, sometimes returning
values or setting global values and other times not. Examples of
this include the multi-purpose contract of namei and the complex
series of operations perfonned by the exec system call or the login
trusted process.

ADDITIONAL ASSURANCE REQUIREMENTS

Although UNIX was not specifically assessed in the assurance areas other
than modularity (because of their implementation-dependent nature), the
team concluded that UNIX-based systems were likely to require consider
able work in other areas before approaching compliance with the B2
requirements. These are strictly assurance requirements, not functional

145

requirements for features such as auditing and mandatory access control.
They represent additional work required beyond simply implementing the
B2 security features. Work is needed in the following areas:

• Reference Monitor -	 The existing UNIX reference monitor is dis
tributed among many programs, some in the kernel and many others
outside. While a single ''reference monitor'' controlling all forms of
access to all types of objects may be impractical, the UNIX "refer
ence monitors" are far more distributed than necessary. Access
checks are made in-line throughout the TCB rather than by calls to
any common access policy routine.

• Effective Use of Protection Hardware- The base UNIX system is
inherently a two-state system. The original implementation, plus
years of portability, have left UNIX strongly mired in a hardware
world with two protection states and an unsophisticated addressing
architecture. Considerable worlc appears necessary to build a
UNIX-based system that can take proper advantage of the more
sophisticated hardware available in today's systems.

• Least Privilege -	 Standard UNIX systems completely fail the least
privilege requirement. Within the TCB, the only mechanism for res
tricting the privilege of TCB components is process isolation, and
that only affects TCB components outside the kernel (the trusted
processes). Within the kernel, all programs are equally privileged,
and, since all trusted processes in a standard UNIX run as root, they
are all also equally privileged. At the user and administrator inter
face level only vestigial forms of least privilege exist: an adminis
trative user possesses all privileges, by virtue of running as root. To
satisfy the B2 requirements, some form of least privilege is required

-for trusted programs, and a mechanism is required to separate
administrator and ooerator roles.

• Descriptive Top-Level Specification (D1LS) - The UNIX D1LS
takes the form of manual pages for system calls and administrative
commands. Although the existing standard UNIX documentation is
a good start, it is somewhat incomplete for system calls and seri
ously incomplete for administrative interfaces. For a secure UNIX
system, new documentation must be provided to include new
security-related system calls and administrator interfaces, but the
existing documentation must be improved as well to give more
complete functional descriptions, lists of effects and error returns,
etc.

ADVICE FOR B2 SYSTEM BUILDERS

The study team's main conclusion- and this is just restating what has
been said many times before- is that building a B2 system is a hard job.
It is certainly possible, but remember:

Bringing an existing system to the B2 level is likely to
be at least as difficult as building a brand new system.

It is not clear whether it is possible to retrofit the B2 assurances into a
generic UNIX system. Doing so appears to require major reorganization
of code and data structures, if not outright reimplementation of many
parts of the TCB. This is even more true for non-UNIX-based operating
systems: UNIX does appear to be better structured internally than most of
today's existing systems. The UNIX system interface, being relatively
simple, is also much better suited to a highly secure system than the com
plex interfaces of some other operating systems.

One of the goals of this study was to define the architecture requirement
for a B2 system in a language that vendors and evaluators could under
stand. That goal was not achieved: no cookbook-like set of guidelines for
building a B2 system is available. As with most software engineering
topics, precise measures simply do not exist. As Supreme Court Justice
Potter Stewart once said, "I may not be able to define obscenity, but I
know it when I see it.'' The same applies to B2 architecture.

This study did, however, produce some good analysis techniques for gen
erating the necessary supporting evidence and for guiding system
development in the right directions. The recommended techniques
include:

• Eliminate global variables whenever possible. 	 When they must he
used, assign them precisely defined semantics. Enforce those
semantics, perliaps by coding standards and code review guidelines,
perhaps by automated source or cross-reference analysis, perliaps by
using segmentation hardware to enforce the semantics at run-time, '
too. All of this adds greatly to internal assurance, and proper treat
ment of globals also seems to encourage other practices for good
modularity.

• Use packaging to illustrate levels 	of abstraction, not to obscure
them. Make certain that the system's structure and modularity are
evident, and consistent, throughout.

• Develop and follow, 	throughout the system, naming conventions
that make the purpose of functions and variables readily apparent.
Remember that a naming convention that isn't universally followed
is in many ways worse than none at all. Pay as careful attention to
this aspect of the design as to any other.

• Use the hardware to its best advantage. If the system does not use a
hardware protection feature, it is probably not as secure as it ought
to be. These features are supposed to reduce the cost of security, not
increase it.

• Write everything down. Document the coding practices, the packag
ing rules, the data structure design principles, the module hierarchy.
Make each module's contract explicit, each data structure's purpose
clear, and honor those contracts when making changes. One of the
biggest problems with analyzing UNIX is that none of those hidden
assumptions were documented. While the original implementor of
a function may have known just what it was supposed to do and
why, the programmers who modified it afterward usually lacked
access to that knowledge - as did the study team.

• Treat the assurance requirements for B2 as a whole. As the study
team learned at the very beginning, assessing compliance with just
one of the assurance requirements is pointless, because the security
of the system depends intimately on all of them. The five critical
assurance requirements are all equally important, and slighting any
one of them will lead to serious problems.

APPENDIX: SUMMARY OF B2 REQUffiEMENTS

This section divides the B2 requirements into 12 logical groups, each of
which consists of sentences or extracts from some of the B2 TCSEC
[DoDS5] requirements (some extracts may appear more than once, in dif
ferent groups). Each group begins with the relevant sentence(s) quoted
from the various requirement(s), and follows with a brief explanation of
the grouping's intent.

Each extract is identified with the requirement from which it comes, by
one of the following abbreviations (in brackets) at the end of the extract.
The first five requirements are the critical requirements for architectural
assurance, and are quoted in their entirety among the 12 groupings. The
other six requirements do not specifically require architectural assurances,
but imply certain architectural characteristics.

SA System Architecture
DD Design Documentation
DS&V Design Specification and Verification
CM Configuration Management
CCA Covert Channel Analysis

146

AUDIT Audit

LABELS Labels

MAC Mandatory Access Control

TFM Trusted Facility Manual

ST Security Testing

TD Test Documentation

The other sixteen B2 requirements have no specific bearing on architec
tural assurances, and are not considered in this analysis. Except for audit,
labels, and mandatory access control (which differ at B2 in requiring
comprehensive coverage of all TCB-provided objects), the remaining six
teen include all the feature requirements, the system integrity require
ment, and the security features user's guide requirement. All but four of
these other requirements are unchanged in wording from the equivalent at
Bl.

REFERENCE MONITOR REQUIREMENTS

"Documentation shall describe how the TCB implements the
reference monitor concept and give an explanation why it is
tamper resistant, cannot be bypassed, and is correctly
implemented." [DDJ

"The TCB modules that contain the reference validation mechan
ism shall be identified." [1FMJ

''The TCB shall enforce a mandatory access control policy over
all resources (i.e., subjects, storage objects, and 1/0 devices)
that are directly or indirectly accessible to the TCB.'' [MAC]

''The following requirements shall hold for all accesses between
all subjects external to the TCB and all objects directly or
indirectly accessible by these subjects: ..." [MAC]

"Sensitivity labels associated with each ADP system resource
(e.g., subject, storage object, ROM) that is directly or indirectly
accessible by subjects external to the TCB shall be maintained
by the TCB.'' [LABELS]

These requirements address the implementation of the Reference Monitor
[Anderson72] principle. The first two extracts quoted above address the
reference monitor principles; the latter three address the completeness of
its coverage. The Reference Validation Mechanism is an implementation
(of a reference monitor) "that validates each reference to data or pro
grams by any user (program) against a list of authorized types of refer
ence for that user." The Reference Validation Mechanism must satisfy
the following requirements:

1) The Reference Validation Mechanism must be tamper resistant

2) The Reference Validation Mechanism must always be invoked

3) 	The Reference Validation Mechanism must be small enough to be
subject to analysis and tests, the completeness of which can be
assured.

Although not explicitly stated, it is clear from these requirements that the
Trusted Computing Base in a B2 system may contain more than just the
reference monitor. It may also contain other components that are not
directly involved with mediation of user access to data, but which
nonetheless must function correctly for the TCB to satisfy the other
requirements. To provide the necessary assurance, however, all com
ponents of the TCB must be guaranteed not to interfere with operation of
the reference monitor proper, and this means that the entire TCB must be
sufficiently well-structured and well-defined to be analyzed and tested.

There is no requirement for a single identifiable hardware or software
component that is the reference monitor. Rather, the reference monitor is
the collection of reference validation mechanisms used for different types
of objects. This includes both hardware validation of direct access to
memory and software validation of access to TCB-defined objects by
invoking the TCB. Higher levels of abstraction in the reference monitor
can and should be built to depend on lower levels. For instance, TCB
calls to manipulate higher-level (software) objects should be able to rely

on the lower-level hardware mechanisms to validate accesses to user
memory (containing parameters, for instance).

TCB FUNCTIONAL REQUIREMENTS

"Documentation shall be available that provides a description of
the manufacturer's philosophy of protection and an explanation
of how this philosophy is translated into the TCB." [DDJ

This requirement addresses the high-level structure of the TCB and the
TCB interface; in effect, how the mechanisms required by the "feature"
requirements are collected into a TCB that implements them.

The "philosophy of protection" must map to the other Criteria require
ments, but there are many possible mappings. It must cover both the
security features and the mechanisms for TCB protection and isolation.

TCB ISOLATION REQUIREMENTS

"The TCB shall maintain a domain for its own execution that
protects it from external interference or tampering (e.g., by
modification of its code or data structures)." [SAl

" ... all elements of the TCB [shall be] identified." [SAl

This requires that the TCB be isolated in at least one domain inaccessible
to users. It does not require precisely one TCB domain; rather, the isola
tion of TCB components into individual protection domains is a decision
made to satisfy the requirements for structure and independence of TCB
mdules.

The TCB isolation may be provided by different mechanisms for dif
ferent TCB domains. How this relates to use of hardware is discussed
below (see Hardware Requirements). Since the TCB consists of all code
with the potential to violate the system security policy (that is, both code
that is intentionally granted the privilege and code that inherits it from the
invoking environment), all such code must be isolated from tampering. If
a variety of mechanisms is used to provide this isolation (for example,
hardware privilege, process privileges, access to special files and/or dev
ices, special user identity), the TCB boundary is much more difficult to
analyze (or even describe).

PROCESS ISOLATION REQUIREMENTS

''The TCB shall maintain process isolation through the provision
of distinct address spaces under its [the TCB 's] control.'' [SAl

The term "address space" here refers not only to the addressable main
storage accessible to a process, but also to the addressability of other
TCB-provided resources (objects). This does not require that the system
function without ever sharing objects between processes, but simply that
the TCB's mediation and control mechanisms always come in to play for
all objects; that is, that all sharing must be intentional.

MODULARITY REQUIREMENTS

"The TCB shall be internally structured into well-defined largely
independent modules.'' [SAl

"The interfaces between the TCB modules shall be
described." [DDJ

"During development and maintenance of the TCB, a
configuration management system shall be in place that main
tains control of changes to ..., other design data, implementa
tion documentation, source code ... '' [CMJ

This is a complex topic, and is addressed only vaguely by the TCSEC
requirements. The requirements are deliberately vague, to avoid dictating
implementation technique, but the basic emphasis is one of good struc

147

ture and program desigri. It is not the intent of the B2 requirements to
demand that the entire TCB follow a uniform standard of perfection, but
rather to ensure that the TCB is largely in compliance with the require
ments, and that there are no major violations of modularity and indepen
dence.

The configuration management requirements for maintenance of docu
mentation are particularly important to modularity. Design documenta
tion must be kept up to date with the code, and therefore must be updated
whenever the code is updated. To make this updating easier, external
design documentation should provide a view of the code that focuses on
the overall purpose of modules and the interactions between modules,
rather than the details of internal structure. When arranged this way,
external documentation should be supplemented by internal documenta
tion (e.g., comments) in the modules themselves to cover internal details
(though still at a higher level of abstraction than the code itself).

It is not sufficient simply to assert that "the code is the documentation."

LEAST PRIVILEGE REQUIREMENTS

"The TCB modules shall be designed such that the principle of
least privilege is enforced. •' [SAl

"Documentation shall describe how the TCB is structured ... to
enforce least privilege." [DDJ

These requirements refer to the principle of least privilege within the
TCB; that is, the means by which one is assured that a part of the TCB
cannot exercise privileges beyond those required for its specific function.
It is important that some specific meeh3illsm -be used tOprovide this
assurance. It is not sufficient simply to assert that no part of the TCB
uses its privileges inappropriately. It must also be possible to demon
strate the validity of the assertion by analyzing the mechanism that
enforces it Enforcement of the least-privilege principle is an important
reason to use multiple domains for TCB execution.

HARDWARE REQUIREMENTS

"It [the TCB) shall make effective use of available hardware to
separate those elements [of the TCB] that are protection-critical
from those that are not'' [SAl

"Features in hardware, such as segmentation, shall be used to
support logically distinct storage objects with separate attributes
(namely: readable, writeable)." [SAl

This is another appearance of the distinction between more and less criti
cal components of the TCB; clearly, those components that make up the
reference monitor are more protection-critical, but there may be other
protection-critical components as well.

Using hardware mechanisms to separate TCB components is one part of
implementating the least-privilege principle. Not all TCB "domains"
need be established by the same hardware mechanism. For example, part
of a TCB might be defined as the code that executes with hardware
defined privilege (the "kernel," usually), and other parts of the TCB
might be otherwise ordinary processes that are distinguished only by
software-defined privilege (the "trusted processes"). Even though the
process isolation used for the latter part of the TCB is not a hardware pro
tection mechanism as such, it still represents use of hardware features to
isolate parts of the TCB.

DESCRIPTIVE TOP-LEVEL SPECIFICATION REQUIREMENTS

"The user interface to the TCB shall be completely defined and
all elements of the TCB identified." [SAl

"A descriptive top-level specification (DTLS) of the TCB shall
be maintained that completely and accurately describes the TCB
in terms of exceptions, error messages, and effects.'' [DS&VJ

"It [the DTLS] shall be shown to be an accurate description of
the TCB interface." [DS&Vl

"The descriptive top-level specification (DTLS) shall be shown
to be an accurate description of the TCB interface." [DD]

''Testing shall demonstrate that the TCB is consistent with the
descriptive top-level specification." [ST)

"The procedures for examining and maintaining the audit files as
well as detailed audit record structure for each type of audit
event shall be given." [1FM)

"During development and maintenance of the TCB, a
configuration management system shall be in place that main
tains control of changes to the descriptive top-level
specification, ... " [CMJ

The DTLS deals with the interface presented by the TCB to ordinary
users, operators, and administrators. It must be a complete description of
the interface (or interfaces), and must include all ways in which a user
can interact with the TCB. This may actually be easier to define than the
TCB boundary (see TCB Isolation, above), since it deals only with
correct, expected TCB operations, rather than all potential actions. The
DTLS need not be packaged as a single document, but all its components
should be readily identifiable.

One of the "effects" of the TCB interface is the generation of audit mes
sages. This is part of the DTLS, and as such must be documented and
tested; in this case, however, it is acceptable to consider that portion of
the TFM documentation as also a part of the DTLS (or vice-versa).

CONFIGURATION MANAGEMENT REQUIREMENTS

"During development and maintenance of the TCB, a
configuration management system shall be in place that main
tains control of changes to the descriptive top-level
specification, other design data, implementation documentation,
source code, the running version of the object code, and test
fixtures and documentation." [CMJ

"The configuration management system shall assure a consistent
mapping among all documentation and code associated with the
current version of the TCB." [CM)

''Tools shall be provided for generation of a new version of the
TCB from source code.'' [CMJ

"Also available shall be tools for comparing a newly generated
version with the previous TCB version in order to ascertain that
only the intended changes have been made in the code that will
actually be used as the new version of the TCB." [CMJ

"The procedures for secure generation of a new version of the
TCB from source after modification of any modules in the TCB
shall be described.'' [1FMJ

The object of the configuration management requirements is the continual
assurance of correct system design and implementation. Although these
are not directly related to system architecture per se, they do have strong
bearing on the maintanence of that architecture and the preservation of its
"inherent" security properties.

Configuration management requires both a mechanism for maintaining
the TCB and all TCB-related material (first excerpt) and a set of pro
cedures (second excerpt) for guaranteeing proper correspondence among
these materials. Tools and procedures for modification and validation of
the TCB are required. It is not necessary for the TCB to be customer
modifiable, though appropriate tools must be available if it is. It is satis
factory for the "procedure" for securely generating a new TCB to be
purchasing another version from the manufacturer.

148

COVERT CHANNEL REQUIREMENTS

''The system developer shall conduct a thorough search for
covert storage channels and make a determination (either by
actual measurement or by engineering estimation) of the max
imum bandwidth of each identified channel.'' [CCA]

''The TCB shall be able to audit the identified events that may be
used in the exploitation of covert storage channels.'' [AUDIT]

"All auditable events that may be used in the exploitation of
known covert storage channels shall be identified.'' [DD1

''The bandwidths of known covert storage channels, the use of
which is not detectable by the auditing mechanism, shall be
provided." [DD]

"This [design] documentation shall also present the results of the
covert channels analysis and the tradeoffs involved in restricting
the channels." [DD]

"It [the test documentation] shall include results of testing the
effectiveness of the methods used to reduce covert channel
bandwidths." [TD]

The covert channel requirements address the identification, suppression,
and documentation of all covert channels. In order to perform an analysis
at all, however, it is necessary for the TCB to be sufficiently well
structured that all shared resources can be identified and considered as
potential information flow paths.

FORMAL MODEL REQUIREMENTS

''A formal model of the security policy supported by the TCB
shall be maintained over the life cycle of the ADP system that is
proven consistent with its axioms.'' [DS&Vl

''A formal description of the security model enforced by the TCB
shall be available and proven that it is sufficient to enforce the
security policy." [DD]

''The specific TCB protection mechanisms shall be identified and
an explanation given to show that they satisfy the
model." [DD]

"During development and maintenance of the TCB, a
configuration management system shall be in place that main
tains control of changes to the [DTLS], other design
data, ..." [CM]

This requires first that a formal security model (such as Bell and
La Padula) be identified and accepted. The model must then be inter
preted, identifying all the subjects, objects, operations, permissions, and
mechanisms in the TCB, and showing how they correspond to the terms
of the model. Unlike the model itself, which (being abstract) will usually
remain unchanged during the life of the system, this interpretation must
be maintained and updated as changes are made to the TCB interface.

TESTING REQUIREMENTS

"Documentation shall describe how the TCB is structured to
facilitate testing ..." [DD]

''The security mechanisms of the ADP system shall be tested and
found to work as claimed in the system documentation.'' [ST]

''Testing shall demonstrate that the TCB is consistent with the
descriptive top-level specification.'' [ST]

''The TCB shall be found [by the NCSC evaluation team] rela
tively resistant to penetration." [ST]

Testing is intended to show that the TCB functions correctly, is described
completely and correctly by its DTLS, and is resistant to attack. Addi
tionally, the TCB must be structured so that test cases can be constructed
easily and to allow straightforward arguments for the completeness of the

test suite. All TCB functions described in the DTLS (both user interfaces
and administrative or operator interfaces) must be tested by the test suite.
It is important for the test suite to be internally consistent; that is, for
similar functions to be tested in similar ways. It is also important for the
test suite to be well-structured; as much as possible, its organization
should follow that of the TCB itself, and test execution should be as
automatic as possible. The assurance provided by a test suite depends
entirely on how easily one can determine that the tests are complete and
correct

REFERENCES

[Anderson72]
Anderson, J. P. Computer Security Technology Planning Study,
ESD-TR-73-51, vol. I, AD-758 206, ESD/AFSC, Hanscom AFB,
Bedford, Massachusetts., October 1972.

[ATT86]
System V Interface Definition, Volumes I and II, 307-127, AT&T,
lndianappolis, Indiana, 1986.

[Bach86]
Bach, Maurice J. The Design of the UNIX Operating System,
Prentice Hall, Englewood Cliffs, New Jersey, 1986.

[Belady71]
Belady, L.A. and Lehman, M.M. Programming System
Dynamics or the Metadynamics of Systems in Maintenance and
Growth, IBM Report No. RC 3546, 1971.

[Britton81]
Britton, K.H. and Parnas, D.L. A-7E Software Module Guide,
NRL Memorandum Report 4702, Naval Research Laboratory,
Washington, D.C., 1981.

[DOD85]
Department of Difense Trusted Computer System Evaluation
Criteria, DOD 5200.28-STD, Department of Defense,
Washington, D.C., December 1985.

[Stevens74]
Stevens, W., Myers, G. and Constantine, L. Structured Design,
IBM Systems Journal, Vol. 13, No.2, May 1974, pp. 115-139.

149

THE SECURE DATA NETWORK SYSTEM:
AN OVERVIEW

BY: 	 Gary L. Tater
Edmund G. Kerut

BACKGROUND

In August 1986, the National Security
Agency, the National Bureau of Standards, the
Defense Communications Agency, and twelve
communications and computer corporations
initiated a special project called the Secure
Data Network System (SDNS). This innovative
research program focuses on designing the
next generation of secure computer
communications network and product
specifications to be implemented for
applications with public and private data
networks. This paper will address the
rationale and programmatic decisions for the
SDNS project. The next four papers cover
details of the actual architecture, services,
protocols, and products.

INTRODUCTION

The explosive and unprecedented growth
of computer-generated information in the free
world, accompanied by rapid advances in
telecommunications and data processing
technology, has ushered in the Information
Age in our society. The 1980s have seen this
virtual explosion in the volume of
information processed through public and
government communications and computer
systems. Unfortunately, this growth has not
been met with a commensurate increase in the
application of Information Security (INFOSEC)
countermeasures to protect data
communications. The Soviets and other
nations, as well as terrorist and criminal
elements have the capability to exploit this
lack of security to the detriment of u.s.
national interests. Exploitation of our
communications by other countries may
threaten the advantage of a u.s. industrial
high technology base which has traditionally
given us the competitive edge needed to
succeed in international world markets. In a
free society, it is impossible to control the
flow of information -- even information which
individually or collectively could have an
adverse impact on the national interest.

There has been a long standing and
effective partnership between the Government
and private industry in meeting the national
security needs of the United States. To
implement its national security-related
policies, the Government relies on industry
for research and development, design,
testing, manufacturing, installation, and
often operation or maintenance of
communications systems. Within the framework
of the SDNS Program, Government and industry
are joining resources and expertise to make
available in the marketplace a large
selection of INFOSEC products for protecting
both classified and unclassified information
for the DoD, civil, and private sector. The
program goal is to make INFOSEC, by virtue of
economics and transparency, attractive to a

large potential user base. With the
proliferation of information security, it
may be possible to successfully deprive our
adversaries and unauthorized entities of our
valuable information resources.

PROGRAM GOALS

As a result, the basic problem becomes
one of finding cost-effective approaches to
adding security to existing communications
systems and networks. The major thrust of
our SDNS strategy is to assist and encourage
industry in developing a wide variety of
INFOSEC products and systems to be made
available in the marketplace at a cost and
level of user friendliness to equally
encourage widespread use of these products.
To implement this general strategy, we agreed
on four specific objectives. The first was
that the companies involved early in the
program would be creating specifications that
could be used eventually by all companies
developing products in NSA's Commercial
COMSEC Endorsement Program (CCEP). A second
decision was to make use of the International
Standard Organization's Open Systems
Interconnection (OS!) model and to
concentrate our efforts on the emerging OS!
protocols. Since one of the objectives of
the OS! reference model is to permit the
interconnection of heterogeneous computer
communications systems, it is a natural
choice for our selection to permit secure
interconnection of communication systems that
already have achieved communications
interoperability. The third goal was to
develop a complete security architecture for
the link, network, transport, and application
layers of the OS! reference model. The
fourth goal was to demonstrate the
feasibility of the technology and the cost
effectiveness of the concepts.

SYSTEM CAPABILITY

SDNS describes the environment within
which designers may provide users with the
capability of transmitting data securely over
a variety of communications networks. A
user, in conjunction with a cognizant
security administrator, can specify
requirements from a range of security
services and levels of assurance. Security
policies are enforced by the system
components and along with doctrine provide
the level of assurance required for the
specific environment.

Confidentiality of communications is
assured by the use of government provided,
high-grade, cryptographic algorithms for data
encryption and traffic key generation.
Adherence to applicable INFOSEC doctrine,
criteria, guidelines, and good engineering
practices in the design and implementation of
the secure communication components will

150

assure a successful security evaluation and
subsequent endorsement of the products.
State-of-the-art key management techniques
will minimize the burden associated with
generation, distribution, accounting, and
control of classified key in physical form.
Key material required for initializing SDNS
products will be centrally generated and
distributed to users. Once initialized,
secure communications components will
independently establish traffic encryption
keys over the network. The key management
components will also support electronic
rekeying of the secure communications
components and the process of compromise
reporting, evaluation, and recovery.

The SDNS concept requires inter
operability of secure communications
components supplied by multiple vendors if
the same services are implemented at the same
protocol layer. Protocol specifications will
ensure that interoperability of supplied SDNS
services exists.

Each vendor can provide security
features beyond the minimum required set to
be incorporated in an SDNS product. Secure
communications components may exist as stand
~lone interface devices or may be embedded
1nt~ communications or information processing
equ1pments or systems by vendors based on
their perception of user needs. SDNS will
not preclude the users selecting various
hosts, communications networks, and
~ommunicati~ns services for security
1mple~entat1on. This permits a wide range of
secur1ty products certified under the
auspices of SDNS, but otherwise tightly
coupled t~ and integrated with a particular
host arch1tecture, communications network or
communications service if they conform to the
OS! architectu~e.

Two types of SDNS equipment will be
d~signed: the first type (Type I) will be
a1med at Government classified and sensitive
unclassified national security information,
and the second type (Type II) will be used
for unclassified applications in the
Government as well as in the private sector.
Users and system managers will be able to
specify their communications and security
needs. It will be possible for users to
sele~t s~curity services dependent upon the
appl1cat1on, communications services that are
nee~ed, and the degree of interoperability
des1red. We expect that there will be a
number.of ~DNS products tailored to specific
comm~n1cat1ons and security service
requ1rements. Components providing a common
set of services will interoperate when SDNS
protocols, requirements, and specifications
are satisfied.

There will also be an SDNS
infrastructure that contains a documented
body of knowledge that will be needed by the
people who design, build, operate, and use
SDNS. Doctrine, procedures, guidelines and
specifications that document security '
management functions and activities are
included in the infrastructure.

PROGRAM IMPLEMENTATION

Since August 1986, the SDNS Program has
been progressing under a three-phase
approach. The first phase included the
development of the overall concepts,
services, architecture, and key management
techniques. Because of the large number of
Government and industry participants, several
working groups were formed to concentrate
expertise on specific problems. The Protocol
Working Group focused on defining the
services and the protocols. The Access
Control Working Group developed a methodology
for distributing access control approval at
the communication end points. Using the DoD
Trusted Computer System Evaluation Criteria
known as the "Orange Book", the INFOSEC
Working Group studied the SDNS concepts and
protocols to develop the appropriate criteria
for which the SDNS devices will be evaluated
against. The Key Management Working Group
defined the requirements for the public key
based system that SDNS will use.

For this first phase, in addition to the
participants from NBS and DCA, NSA awarded
contracts to Analytics; AT&T; Bolt Beranek
and Newman (BBN); Digital Equipment
Corporation (DEC); GTE; Honeywell; Hughes;
IBM; Motorola; Unisys; Wang; and Xerox. In
Phase I, the first task was the development
of a broad communications security
archite~ture, i.e., the set of guidelines,
constra1nts, and rules to implement secure
communications over public and private data
communications networks. A range of threats
to data communications, a range of
environments that the architecture will be
applied, and a general communications
architecture were all factors in the
development of the security architecture.
The OS! reference model is the communications
model used to establish a framework for
coordinating the development of the security
architecture services and related elements
w~ich would be applied appropriately in th~
c1rcumstances for which protection is
required.

After definition of the architecture and
services, the Protocol Working Group
emphasized the development of end-to-end
encryption protocols at layers 3 and 4 as
well as electronic mail services compatible
with X.400 at layer 7. Because a market
exists for SDNS products at layers 2 3 and
4, we decided that a key management ~ro~ocol
that could ~ervice these three layers was
needed. Th1s led to the definition of a key
management protocol as an applications entity
existing at layer 7 in the OS! model.

As of August 1987, the first phase of
the SDNS program has been completed. The
architecture and protocol specifications have
been drafted as have been the key management
and access control planning documents. The
pro~ram.is now in a development, testing, and
val1dat1on phase and is beginning to focus on
writing the protocols and developing the
INFOSEC products that will merge COMPUSEC and
COMSEC technology.

151

http:pro~ram.is
http:number.of

Since the protocol specifi~ations will
eventua1ly be ·made available to vendors
developing INFOSEC products under NSA's CCEP,
this phase will serve to test both the
specifications themselves and the operational
.characteristics of the security protocols on
communications networks. The original
concept of combining security protocols with
off-the-shelf network and transport protocols
will be proven. An added benefit to be
gained from this phase is the demonstration
to·both potential vendors and users that
interoperability of multi-sourced INFOSEC
products is possible.

During the communications testing and
interoperability testing to be conducted next
year, we expect to add substantial deta-il to
the protocol· and interoperability
specifications. This is expected to make it
easier £or companies that follow to build
interoperable hardware.

CONCLUSION

While tbe SDNS Program has recently
completed its first phase, it is still a
research project several years from providing
actual hardware capable of protecting our
nation's data information. It has, however,
offered twelve companies an opportunity to
work together, and with DCA, NBS, and NSA, to
influence the next generation of INFOSEC
products. With the rapid proliferation of
data communications and the ease of access
into networks that are growing daily, we must
preserve our military, scientific, and
~~chnological edge•.We must take whatever
~teps are necessary -- bef.ore a system
~ecomes opera~ional -- to provide the United
itates the means for ubiquitous data security
;that i.s s.o badly needed.

152

SONS SERVICES AND ARCHITECTURE

Ruth Nelson
Electronic Defense Communications Directorate

GTE Government Systems Corporation
77 A Street

Needham, MA 02194

ABSTRACT

The Secure Data Network System (SONS) in
cludes both support for secure communica
'tions between users and a key management
capability. The major elements in the
system are the Key Management center (KMC)
and the SONS terminals, which can.be intel
ligent terminals, workstations or host com
puters. The SONS architecture is consis
tent with the ISO OSI communications
architecture and protocols as well as with
the DoD protocol suite. As presently de
fined, it provides security services at
four layers of the OSI architecture -- link
layer, network layer, transport layer, and
application layer (for electronic mail).
.The SONS program has developed standards
·for network, transport and electronic mail
protection; link layer standards have been
deferred as not critical for
interoperability across the network. In
addition, protocols have been defined for
key management, including communication of
access control information and negotiation
of communications protocol parameters.

INTRODUCTION

The Secure Data Network System (SONS) is
intended to provide secure data communica
tions services to a variety of DoD and com
mercial users. These services include key
management and system management capability
as well as the encryption, authentication,
and access control of user data. During
the concept definition phase personnel from
eleven contractors, NSA, NBS, an~ other
government agencies participated in
determining the security services to be of
fered, the system architecture, system man
agement and access control reqqirements and
mechanisms, and the key management and se
cure communications protocols. This paper
will focus on the protocols and system ar
chitecture.

SDNS provides security compatible with the
International Standards Organization (ISO)
Reference Model for Open Systems Intercon
nection (OSI) • Figure 1 shows the OSI
protocol architecture. SONS terminals and
the SONS Key Management System (KMS) com
municate using OSI protocols. Terminals
may be connected to each other and to the
KMS through local area networks, public or
private data networks or telephone links,
as shown in Figure 2. The secure communi
cations protocols offer encryption services
at application, transport, network or link
layers; the key management and system man
agement· protocols utilize the OSI manage
ment approach and are application layer
protocols between management application

entities. Figure 3 shows the placement of
the SONS protocols within the OSI frame
work. The security services at each layer
are a subset of the services described in
the s~curity Addendum to the OSI Reference
Model •

7

6

5

4

3

2

1

Application

Presentation

Session

Transport

Network

DataUnk

Physical

The OSI Protocol Architecture

Figure 1

SONS Connectiviity

Figure 2

153

7

6

5

4

3

2

Key Management Protocol
Electronic Mail Protocol

Transport Comm Protocols
········sfi4.Eii·i:i~to~Eni:i..EiiciY"Ptioii········

Network Comm Protocols
........~~~..~~.?.~~?~~~.?...~.~~.'Y.P.!.i?.~........

Link Comm Protocols
············soi\isT.iiik.E:iiciYi>iion...............

Placement of SONS Protocols

Figure 3

KEY MANAGEMENT

The heart of SOSN is the Firefly keying
system. Each terminal has a unique J:<·lre
fly key which is bound together with a
non-forgeable certificate. The certificate
identifies the terminal and specifies its
security-relevent characteristics. Two
SONS terminals desiring to communicate ex
change certificates and keying information
(the Firefly exchange) and make access con
trol decisions based on the identifying in
formation. The exchange generates a traf
fic key which is unique to the two
terminals and which is new for that key ex
change. If communication is permissible,
the terminals then negotiate the communica
tions parameters for use of the traffic
key.

The Firefly keys and certificates are is
sued by the Key Management Center, which
receives key orders and maintains account
ing information, but is involved in neither
the terminal to terminal communication nor
formation of traffic keys. Initial deliv
ery of Firefly keying material from the KMC
is physical and consists of either op
erational key or seed key. These are
similar except that seed key can only be
used for connecting to the KMC for conver
sion to operational key. Operational keys
are classified at the level of the traffic
which they protect; seed keys are always
unclassified. The KMC also provides an
electronic rekey service for terminal op
erational keys.

Besides the real-time Firefly exchange be
tween the terminals, the system also pro
vides a mechanism whereby a terminal can
provide Firefly keying information ahead of

time (for example, by posting its cer
tificate and keying information on a bul
letin board) . This can be used by a second
terminal to generate a traffic key for se
cure electronic mail.

The protocol working group for SONS has de
fined a Key Management Protocol (KMP) which
is used for seed key conversion, electronic
rekey, real-time Firefly exchange, and up
date of terminal traffic keys. This is an
application-layer protocol, designed to be
compatible with the ISO OSI Man~gem~nt Ser
vices architecture. The commun1cat1ons are
between Key Management Application Entities
(KMAE) in the terminals and in the KMC.
Each KMP transaction includes a Firefly ex
change between the KMAEs to establish a
traffic key and then a secure exchange of
security-services data using that traffic
key. The successful use of the traffic key
validates the identities of the communicat
ing devices and tests the key. The ex
change of security services data in the
real-time key-exchange transaction is used
to convey additional access control-related
information and to determine the parameters
for use of the traffic key in encrypting
user data. The same KMP exchange is used
for generating and validating traffic keys
for the network layer and transport layer
encryption protocols currently defined for
SDNS; it will also be used for link encryp
tion and other real-time encryption proto
cols when they are defined. The KMP proto
col does not support secure electronic mail
keys; these are generated by a different,
non-real-time Firefly exchange, described
in the section of this paper on electronic
mail.

Application layer key management protocols
allow use of a common set of management
protocols across all SDNS devices, indepen
dent of which user services the devices
provide. They also allow the system to
evolve and device manufacturers to add new
user services without impacting their
interoperability with the key management
system.

END-TO-END ENCRYPTION

In packet networks and internets, the term
end-to-end encryption has been used to re
fer to an encryption scheme that encrypts
user data but provides unencrypted network
headers so that the data can be delivered
through the packet network. This type of
encryption must be above the network proto
col in the hierarchy, since the network
headers are not encrypted. In order to
provide encryption service in a uniform
manner to a variety of applications, it
should be as low as possible in the proto
col hierarchy. This kind of argument has
led to encryption protocols at the top of
the network layer (at the internet layer
in the DoD architecture) and at the trans
port layer of protocol. There is not yet
agreement among network security expert~ as
to which of these is the more appropr1ate
choice. DoD projects have primarily
focused on the internet layer; ISO and com
mercial efforts have been at the transport
layer. The Security Addendum to the OSI
Reference Model allows either choice.

154

---SONS has defined network and transport en
cryption protocols which are consistent
with each other in format and in basic ser
vices. This consistency will allow SONS
system developers to implement one or both
of these protocols in an efficient manner.
It will promote greater interoperability of
SONS systems and will also simplify the
task of security evaluation of these sys
tems. The SONS transport protocol, SP4, is
defined jS an addendum to the ISO Transport
Protocol . The SONS network protocol, SP3,
is defined as a sublayer of the network
protocol which resides directly below the
transport layer.

The SP3 and SP4 protocols have been devel
oped as part of an ISO protocol suite.
However, the layer interface between the
ISO transport protocol TP4 a~d4connectionless network protocol CLNP 1s
similar to the interface between the DoD
protocols TCP and IP, and the se:vice
definitions of CLNP and IP are almost 1den
tical. This leads to the possibility of
SP3 and SP4 implementations which work with
the DoD protocols. These implementations
will be useful in securing the. many exist
ing systems now using TCP and IP.

SP3 and SP4 Services

The services provided by SP (a short term
for either SP3 or SP4) are negotiated by
the KMP protocol before the key is put into
use. Both services and format are fixed
for each traffic key, although SP3 and SP4
each support several options. The basic
services provided by SP are confidentiality
and connectionless integrity, as defined in
the OSI security Addendum; either or both
services can be negotiated. In addition,
because the SONS key exchange provides
pairwise keys, SP also provides source au
thentication of the protected data units.
SP is an encapsulating protocol; it oper
ates on a unit of data, and either encrypts
it, provides an integrity check o~ it, .or
both. SP allows the option of 1nclud1ng
additional information with the data in an
SP header, such as. for example, security
labels or network service access point
(NSAP) addresses. All such optional infor
mation is bound to the data and protected
by the encryption and/or the integrity
check. Figure 4 shows the SP header for
mat.

SP operation is intended to be very simple,
so as to facilitate any necessary certifi
cation. SP operates independently on each
unit of data that is encrypted or de
crypted. It does not include capabilities
for sequencing, acknowledging or
retransmitting data units, although the
transport protocol associated with SP4 or
above SP3 may have this capability. SP re
lies on the network protocol below it to
provide communications service. If SP op
erates over a connection-oriented network
protocol, it will provide the same quality
of service as the network protocol, but
will not guarantee the sequence integrity,
since it does not protect network layer se
quencing information.

Encrypted and'<rMAC'd

,- A .A

LI SE KEY MI LI
HEADER MAC

ID OPTIONS DATA (if present)

u-~ lnclcalor. Contains leglh ofClear Healer in octels.

SE-POUTweCode.
Ml- Message lnclcalor
U-~ lndic:ala"fa Encrypted Header i1 oclels

Healer~-Ea:h cx:ntai1s lergth a1d valle

~i"d.Jde: Security Label

NSAP Address

CLNP Header (SP3 only)

Padding

Final Sequence Number (SP4 only)

Etc.

SP Header Format

Figure 4

SP3 and SP4 provide the same basic security
services with the same encryption
mechanisms, they operate on the same user
data and they use the same format. They
can interoperate with each other if compat
ibleoptions are chosen. Each protocol has
been defined to include a set of compatible
options, and each also includes some addi
tional capabilities appropriate to the
layer in which it operates.

SP3 Optional Services

In the OSI architecture, the transport
layer is the lowest layer which is strictly
end-to-end; the network layer can operate
through relays (packet switches or gate
ways). When end-to-end encryption is done
at the network layer, as in SP3, there is
an option of terminating the encryption at
a gateway, allowing users of a loca~ area
network to share the cost of encrypt1on de
vices. Gateway encryption devices also al
low interoperation through the gateway of
users with different encryption systems if
they use the same communications protocols
(see Figure 5).

PROTECTED lAN

H

ACCESS
CONTROllER

H

KEY DISTRIBUTlON
CENTERr..EMCA<

Secure Interconnection of Differing Protection Schemes

Figure 5

155

In order to support gateway encryption,
there must be a means of routing the en
crypted data through the non-secure network
to the gateway which has the encryption
key, as well as a means of routing
unencrypted data to the co~ect gateway for
encryption. In an internetwork with few
gateways, the routing may be implicit in
the host address, but in general, there can
be several gateways into the same network.
In addition, since the key at a gateway au
thenticates the gateway but not each host
computer on the network behind the gateway,
there must be some means other than the
Firefly exchange to provide source authen
tication.

SP3 has the capability, if this service is
negotiated by KMP, of including source and
destination address information in its pro
tected header. If the destination host is
on a network behind an SP3 gateway, the
unencrypted (black) network header indi
cates the destination address of the
decryption gateway, and the destination
host address in the SP3 header allows the
gateway to forward the data correctly after
decryption. Similarly, the protected ad
dress allows an encrypting gateway to indi
cate the actual source of the data in the
SP3 header and its own address in the black
network header. SP3 gateways can convert
between SP3 with a black network protocol
and a local protocol without encryption, as
shown in Figure 6.

HIGHER
LEVEL

TRANSPORT

IP

NETA

LINK A

PHYS. A

L

ELAY SP3~~
NETA NETB

LINK A LINKB

PHYS. A PHYS. B

I 1

HIGHER
LEVEL

TRANSPORT

SP3

NETB

LINKB

PHYS. B

I

HOST A GATEWAY HOSTB

NO SP3 WITHSP3 WITHSP3

Notes: Other Network Relays May Be Present.
Net B May Actually Be An Internet.

SP3 and IP

Figure 6

If it is necessary to carry more network
protocol information across a black network
for use in a destination red network, SP3
offers the option of protecting an entire
Connectionless Network Protocol (CLNP)
header. This option simplifies the op
eration of the SP3 _gateways, but requires
SP3 protocols at both gateways and hosts to
include the CLNP functionality.

SP4 Optional Services

SP4 is a part of the transport protocol,
TP. Because of this, it has access to
transport protocol information, such as se
quence numbers and connection open re
quests. SP4 has defined some optional ser
vices which take advantage of its position
in the transport layer. Both SP3 and SP4
allow various keying granularities, includ
ing per pair of SDNS entities and per NSAP '
pair. SP4 also allows a key per transport
connection, which ties the protocol data
units to a specific connection identifier.
When used with the TP4 protocol, SP4 can
provide data stream integrity. The integ
rity service uses the transport sequence
numbers, which are protected by SP4 and an
added mechanism for gracefully closing the
connection.

ELECTRONIC MAIL ENCRYPTION

The SDNS protocol for secure electronic
mail is an extension of CCITT recommenda5tion X.400 . This standard defines the
electronic mail service provided by two en
tities: a mail user agent (UA) and a mail
transfer agent (MTA) . The user agent acts
on behalf of a particular user and allows
him or her to generate and receive mail.
The mail transfer agent is responsible for
getting the mail through the network from
user agent to user agent. MTAs can reside
in the same computer systems as UAs or they
can reside in mail relays. Their function
is analogous to the post office. The SDNS
protocol is at the UA sublayer and assumes
that MTAs may be untrusted. Mail remains
encrypted from user agent to user agent,
through any relays.

The real-time Firefly exchange is not used
for electronic mail. The SDNS mail proto
col uses a staged Firefly exchange in which
a user who wishes to receive secure mail
posts his certificate and some public key
ing information on a bulletin board or
gives it to a sender in some other way.
The sender uses the posted information
along with his own private information to
construct a traffic key, which is unique to
the sender-receiver pair.

The protocol accomodates multiple address

ees by using a single message key to en

crypt the message and then using a pairwise

key for each addressee to encrypt both the

message key and an integrity function of

the message. The message header includes

the sender's certificate. It also in

cludes, for each addressee, the public key

ing information needed to construct his

pairwise key, and the encrypted key and in

tegrity check word. Privacy of the message

is protected because only the correct re

cipients can construct the pairwise keys

and decrypt the message key. The source of

the message is authenticated by the binding

between the sender's certificate and each

pairwise key.

156

The electronic mail protocol includes an
optional electronic•signature. This will
provide the additional service of
non-repudiation, as distinct from source
authentication, allowing the receiver to
prove the identity of a sender to a third
party.

FUTURE SERVICES

The concept definition phase of SDNS has
concentrated on defining interoperability
requirements for the key management ser
vices, for end-to-end encryption and for.
electronic mail. Once the protocols for
these functions are implemented and tested,
it is likely that additional functionality
will be standardized and provided. Link
encryption is the most often used encryp
tion method and can be included within SDNS
in a reasonably straightforward manner.
Initial standardization was deferred prima
rily because of the multiplicity of commu
nications protocols at the link and
physical layers, but also because link en
cryption is better understood than either
end-to-end or electronic mail encryption.
Applicatiop or presentation layer encryp
tion for real-time data transfer is another
likely development. The encapsulation
techniques already designed for mail,
end-to-end-encryption and the KMP service
exchanges can be a useful model for file
encryption. SDNS already allows connection
over a variety of public data networks, lo
cal area networks and the telephone net
work; this variety is likely to increase
and perhaps to include ISDN. All of these
expanded capabilities are consistent with
the current SDNS architecture and the lay
ered OSI protocol approach.

ACKNOWLEDGEMENTS

The architecture and protocols described in
this paper were developed by the SDNS Pro
tocols and Signalling Working Group during
the Concept Definition Phase of the pro
gram. The members of this group repre
sented the ten SDNS terminal contractors,
GTE (the key management contractor),
Analyt-ics, the National Computer Security
Center (NCSC) and various otfter government
organizations. It was my privilege to
chair this group. Some of the concepts for
the security architecture, and particularly
for end-to-end encryption, were developed
by GTE under a NCSC research program on
Internet Security Architecture and Proto
cols, whose participants included GTE,
Unisys, NCSC and DCA.

REFERENCES

1. ISO 7498 Information Processing Sys
tems - Open Systems Interconnection - Basic
Reference Model.

2. ISO DP 7498/2 Information Processing
Systems - Open Systems Interconnection
Security Architecture.

3. ISO DIS 8073 Information Processing
Systems - Open Systems Interconnection
Transport Protocol Definition.

4. ISO DIS 8473 Information Processing
Systems - Open Systems Interconnection
Protocol for Providing the Connectionless
Mode Network Service.

5. CCITT Fascicle VIII.7 Data Communica
tions Networks. Message Handling systems
Recommendations X.400-X.430.

157

SP4: A TRANSPORT ENCAPSULATION SECURITY PROTOCOL

Dennis Branstad, National Bureau of Standards

Joy Dorman, Digital Equipment Corporation

Russell Housley, Xerox Corporation

James Randall, International Business Machines Corporation

INTRODUCTION

The Secure Data Network System (SDNS) project is
developing a security architecture within the
Organization of International Standardization's (ISO)
Open Systems Interconnection (OSI) computer network
model [ll. The security architecture is designed to
provide several security services to the user of an OSI
network[2l. The architecture includes security protocols
between peer entities of the OSI architecture. The SDNS
architecture is designed to satisfy the security
requirements of both classified and unclassified
applications. The cryptographic algorithms used for
data confidentiality, integrity and key distribution have
been defined but are not discussed in this paper.

·The SDNS project began during the summer of 1986,
Phase I, completed in mid-1987, specified the security
architecture. The SDNS architecture concentrates on the
confidentiality, integrity, identification I authentication,
and access control security services. Non-repudiation is
of secondary interest. SDNS provides security services in
four of the seven layers in the ISO model.

The application layer (layer 7) provides for application
specific access to network services. SDNS examined the
X.400 message handling system (electronic mail). SDNS
secure electronic mail provides all four of the major
security services and sender non-repudiation.

The physical layer (layer 1) provides a physical
connection for the transmission of data by electrically
encoding the data for a specific medium. The SDNS
architecture provides for confidentiality at this layer. It
is the only layer in the SDNS architecture which provides
traffic flow confidentiality.

The network layer (layer 3) provides message routing
and relaying between interconnected networks and end
systems on the same network. The SDNS architecture
provides all four of the major security services at this
layer. Connection less confidentiality and integrity are
provided. Identification I authentication and access
control are of the end systems. It is the only layer in the
SDNS architecture which provides for encipherment at
gateways to support "red" networks.

The transport layer (layer 4) provides reliable,
transparent transfer of data between end systems.
Again, SDNS provides all four of the major security
services at this layer. This paper discusses these security
services and protocol that implements them. The paper
also outlines the requirements for key management.

The Security Protocol at Layer 4 (SP4) was developed by
the SDNS Protocol Working Group. SP4 provides either
connection less or connection-oriented confidentiality
depending on the cryptographic key granularity.
Likewise, either connection less or connection-oriented
integrity may be selected. Peer entity authentication
and access control are provided in conjunction with the
key manager.

The following objectives were established in designing
SP4:

• 	 provide secure end-to-end reliable service

independent of network technology

• 	 provide confidentiality and integrity
cryptographic protection continuously from one
end system to another

• 	 provide ease of implementation when red/black
separation is required

• 	 support both host-to-host keying and transport
connection keying

• 	 support many cryptographic algorithms

• 	 support many different generic transport
protocols

• 	 minimize changes to existing transport services
and protocols

• 	 minimize the effort, cost and time required to
achieve security certification for classified
applications

• 	 minimize the bandwidth of covert channels (i e,
information paths that would allow unprotected
data to exit from an end system)

• 	 allow implementation within end systems with
varying levels of trust

In order to satisfy the selected set of objectives, an
encapsulation approach was taken . Transport
encapsulation security was coined to denote that
whatever the transport entity produced to send to a
peer transport entity was encapsulated in a security
envelope. This new envelope, called a Secure
Encapsulated Transport Protocol Data Unit, could then
be sent through any network. A simple format was
defined and the required security transformations were
specified.

KEY MANAGEMENT SUPPORT

The keys provided by the key manager are used by SP4
to provide confidentiality and integrity. Access control
and authentication decisions are made before the key
identifier is delivered to SP4. SP4 enforces these access
control decisions by checking the labels on individual
protocol data units (PDU).

Key Generation

SP4 was designed to be independent of encryption
algorithm and method of key distribution. Either
symmetric or asymmetric algorithms can be used.

SDNS uses SP4 with a symmetric key algorithm. SP4
depends on the key manager to establish and update
traffic keys. The SDNS key manager uses public key
cryptography to generate these traffic keys.

158

Key Granularity

One ofthree key granularities is selected when the key is
established:

• 	 Key per end system NSAP pair. One key protects
all transport connections established between a
pair of transport entities in two end systems.

• 	 Key per end system NSAP pair and security label.
As above with the addition that the protection
extends to a single security level or range.

• 	 Key per transport connection. One key will be
used to protect each transport connection
independently from all others. Transport
connections are assumed to be single-level.
Transport connection keying is required for
connection-oriented integrity.

A SP4 transport entity may simultaneously support any
or all of these key granularities. Security options are
associated with each key identifier; this technique
permits traffic to be protected to varying levels.

Security Option Association

When one of the transport entity pair keying
alternatives is selected, the following attributes may be
associated a key identifier:

• 	 Encryption algorithm

• 	 Confidentiality (encrypt or not)

• 	 Message Authentication Code (MAC) length
(including none)

• 	 Security label in each protocol data unit (or not)

• 	 Set or range of security levels which may be
transmitted under the key

If transport connection keying is selected, the following
attributes may be associated with a key identifier:

• 	 Encryption algorithm

• 	 Confidentiality (encrypt or not)

• 	 Message Authentication Code (MAC) length
(including none)

• 	 Security label in each protocol data unit (or not)

• 	 Connection truncation protection (or not)

PROTOCOL AND DATA FORMAT

SP4 povides many security services. This section further
defines these services and discusses how each is
provided. SP4 relies on the key manager and generic
transport services; the dependencies will be highlighted.

Protocol Data Unit Format

Figure 1 illustrates the format of the protocol data unit
(PDU) used in SP4. TheSE PDU is formed br computing
the message authentication code (MAC)[3 and then
performing encryption.

Four heading fields are transmitted in the clear. The
first field is the Length Indicator (LI); it simply points to
the beginning of the encrypted information. Second is
the type field; SP4 PDUs always have SE for their type.
Next is the key Identifier (KEY-ID). The key identifier
names the key; including a name permits different
connections to be cryptographically separated on the
network. Finally, the Initial Vector (sometimes called
the Ml) appears. The recipient uses the Initial Vector to
initialize the decryptor; this value permits the PDUs to
be decrypted even if they arrive out of order

The encrypted header also contains four fileds The
Security label, Final Sequence Numbers (FSN), and Pad
are optional; only those which are needed are included.
The Ll points to the beginning of the user data. The
security label indicates the sensitivity of the data
contained in the PDU. The FSN gives the final transport
sequence number sent and the final transport sequence
number received. The FSN is included in the closing
PDUs of the transport connection. Pad is used when the
encryption algorithm requires the PDU to be a specific
length.

Confidentiality

Confidentiality is the protection of information from
disclosure to unauthorized individuals, entities, or
processes. Connection less confidentiality is the

,-------------MACed-------------.

Clear Header Encrypted Header User Data

t._________ Encrypted ---------'

Clear Header =

Encrypted Header =

Ll

Ll

Ml

Pad

I 	SE I Key ID I

I
Security I FSN

. Label .

Figure 1. SE PDU Format

159

protection of a individual PDUs. Connection-oriented
confidentiality is the protection of all PDUs in a
transport connection.

SP4 supplies connection-oriented confidentiality when
transport connection keying is used. Otherwise,
connection less confidentiality is provided.

Connection less Integrity

Data integrity is the protection of data from alteration
or destruction. Connection less integrity provides
protection against the modification of a individual
PDUs.

SP4 provides connection less integrity by appending a
MAC to the PDU. The MAC algorithm uses the same key
as the encryptor I decryptor, so an additional KEY-ID
field is not required to support the MAC. The MAC is
computed on the entire PDU, including the plaintext
header. The MAC is computed before encryption and
checked following decryption.

Connection-oriented Integrity

Connection-oriented integrity includes protection
a_gainst modification, deletion, insertion, replay (of
smgle PDUs and entire connections) and reflection.

Protection against modification is is provided as in
connection less integrity; the MAC provides this
protection.

Protection against insertion is provided by the MAC and
the sequence numbers of the generic transport layer.
These sequence numbers are part of the encapsulated
"user data".

Protection against deletion is provided by the same two
facilities (MAC and transport layer sequence numbers)
plus the final sequence numbers fields on the closing
PDUs. The MAC and transport layer sequence numbers
are sufficient to detect PDU deletions in the middle of
connections. The ISO OSI Transport Protocol (TP)[4,5] is
vulnerable to deletion of the end of a connection. SP4
includes the final sequence number received and sent on

the closing PDUs to detect this truncation. Truncation is
not prevented; it is detected.

Protection against PDU replay is obtained if the
sequence numbers do not wrap around under the
connection key. SP4 must obtain a new key from the key
manager shouls the sequence number space be
exhauseted.

SP4 must ensure that each transport connection is
separately keyed. The key manager is responsible for
performing aliveness check as part of key
establishemnt. At connection release, SP4 must also
notify the key manager to destroy the key.

Protection against reflection is provided if the KEY-ID
for transmit and receipt are different. This is
accomplished either by the use of different keys for the
sender and the recipient or by different names for the
same key.

Table 1 summarizes the division of responsibilities
between generic transport, SP4 and the key manager to
achieve connection-oriented integrity.

Access Control

Access control provides protection against unauthorized
use of the resources accessible via OSI. Access control is
p•ovided by the key manager. In addition, SP4 provides
support for access control via security label checking.
SP4 discards any PDUs that arrive and decrypt but
contain labels outside the range specified for use with
the key identifier.

Peer Entity Authentication

Peer entity authentication is the verification that a peer
entity in an association is the one claimed. This service
can be provided both during the establishment of a
connection and during the data transfer phase of a
connection. SP4 does not provide peer entity
authentication at connection establishment. This service
is provided by the key manager.

Protection
Against

Generic
Transport SP4 Key Manager

Modification - MAC -
Deletion Sequence

numbers
MAC -

Insertion Sequence
numbers

MAC & Final
sequence
numbers

-

PDU Replay Sequence
numbers

MAC & No
wrap in

sequence
numbers

-

Connection
Replay

- - Liveness test
& Key per

connection

Reflection - - Different Key
IDs in each
direction

Table 1. Connection-orineted Integrity Division of Responsibilities

160

CONCLUSION

SP4 conforms to the OSI philosophy of putting desirable
services in the lowest layer possible that can achieve the
goals. The host-to-host nature of the transport layer,
the encapsulation strategy, and the separation of the
key management give SP4 security and flexibility. SP4
meets all of it's design objectives.

Since the transport layer is above the network layer, SP4
passes through routers and relays untouched. This host
to-host quality, along with encryption, fulfills the
following design objectives:

• 	 provide secure end-to-end reliable service
independent of network technology

• 	 provide confidentiality and integrity
cryptographic protection continuously from one
end system to another

The encapsulation strategy used in SP4 permits it to use
any generic transport protocol including DOD's TCP and
ISO's TP. Since the encapsulation is done as the last step
i"n the transport layer, SP4 can be implemented within
the host or within the network front end processor.
When SP4 is implemented in a front end processor, the
security boundary becomes obvious. The encapsulation
technique reduces the covert channel bandwidth by
filling all of the plaintext SP4 heading fields without
influence from the user. Encapsulation fulfills the
following design objectives:

• 	 provide ease of implementation when red/black
separation is required

• 	 support many different generic transport
protocols

• 	 minimize changes to existing transport services
and protocols

• 	 minimize the effort, cost and time required to
achieve security certification for classified
applications

• 	 minimize the bandwidth of covert channels (i.e.,
information paths that would allow unprotected
data to exit from an end system)

• 	 allow implementation within end systems with
varying levels of trust

Separating the key management from the SP4 protocol
fulfills the remaining two objectives:

• 	 support both host-to-host keying and transport
connection keying

• 	 support many cryptographic algorithms

REFERENCES

[1] 	 ISO 7498, Information Processing Systems- Open
Systems Interconnection -Basic Reference Model.

[2] 	 ISO 7498/2, Proposed Draft Addendum to ISO 7498
on Security Architecture.

[3] 	 National Bureau of Standards, Data Encryption
Standard, Federal Information Processing
Standards Publication 46, 1977.

[4] 	 ISO 8072, Information Processing Systems- Open
Systems Interconnection- Transport Service
Definition.

[5] 	 ISO 8073, Information Processing Systems- Open
Systems Interconnection- Transport Protocol
Specification.

161

SDNS PRODUCTS IN THE TYPE II ENVIRONMENT

John Linn

BBN Communications Corporation

Cambridge, Massachusetts

ABSTRACT

This paper explores issues which arise in
applying SDNS security technology to answer the
Type II market's need to secure commercial and
Government unclassified sensitive information
transmitted across data networks. The Type II
environment has a number of fundamental
characteristics and requirements which
differentiate it from the Type I (Government
classified) environment. Some of these
characteristics simplify issues which arise in the
Type I environment, or allow enhanced
functionality to be offered, but others introduce
new and difficult challenges which must be
addressed. This paper examines the ramifications
of communications security for the Type II
environment and considers the role that SDNS can
play in satisfying that environment's needs.

CHARACTERIZING THE ENVIRONMENT

The potential market for Type II SDNS
components can be divided into several categories:
DoD unclassified users, civilian Government
agencies and departments, Government contractors,
and the broader private sector. In general, the
non-DoD community is in a learning phase,
determining needs for information security,
determining communication security's role in the
overall information security picture, and
identifying appropriate mechanisms to answer those
needs. The requirements of this emerging
marketplace are still evolving.

Organizational characteristics of the Type II
environment introduce new challenges for component
producers. The Type II user community,
particularly in the commercial sector, is not
oriented to accepting security practices which
interfere with operational flexibility. This
places a premium on user-friendly key management.
Potential customers for Type II SDNS technology
use computers with a broad range of vendor
specific communications protocols. These
protocols are not easily modified to satisfy a
security system's needs. This suggests that
security technology needs to be transparent to
vendor protocol characteristics. Customers
evaluate security requirements against stringent
cost/benefit tradeoffs, and adoption of security
mechanisms must be justified financially based on
risk assessment. The use of embedded
communications security (COMSEC) technology offers
a significant potential to provide the cost
effective security solutions which this
marketplace requires.

ISSUES AND CUSTOMER CONCERNS

Many of the basic tenets of communications
security, its goals, and the context in which it
operates, differ between the classified and
unclassified environments. To cite a few
examples:

l. 	 Relative to the Type I environment, Type II
environment definitions for clearances,
sensitivity levels, sensitivity categories,
and data labeling are less formalized and are

fragmented among larger numbers of
administrations. Clearances assigned by one
organization are not generally transferable '
to, or interchangeable with, those of other
organizations. Similarly, sensitivity levels
and category definitions are not generally
interchangeable across organizational
boundaries.

2. 	 The rule-based, administratively-directed
access control policy associated with the DoD
clearance lattice and enforced by Orange Book
A and B level hosts (mandatory access control,
in TCSEC parlance) is alien to the present
Type II marketplace. In particular, the
commercial market's security policy needs
differ significantly from classified military
needs, as [Clark] has noted. No analog to the
TCSEC hierarchic security levels exists across
the Type II environment. In principle, the
TCSEC non-hierarchic access category concept
could be applied to Type II needs to segregate
trade secret information, proprietary
information, and the like, but even this
application is complicated by the issues noted
in l. above. Therefore, it appears that most
Type II access control will be identity-based,
that is, making decisions as a function of the
authenticated identities of would-be
accessors, rather than being based on rules
granting access as a function of attributes
(e.g., labels) of data.

3. 	 Data integrity is emphasized in the Type II
environment, even in those contexts (such as
portions of the financial community) which do
not impose data confidentiality requirements.
In those Type II contexts where data
confidentiality is required, traffic flow
confidentiality is not generally a concern.

4. 	 In the Type II arena, administrators are not
commonly concerned with the prospect that
Trojan horses might leak data out of their
systems into less secure environments. The
absence of this concern facilitates
integration of SDNS functions within host
computers.

Other issues are common between the Type I
and Type II environments, for example, the
recognized need for authentication, data
integrity, and identity-based access control
services. Authentication is important not only as
a prerequisite to access control, but also as a
service in its own right, providing trustworthy
identification data for use by host computers and
users. In the financial community, in particular,
there is precedent for an authentication service
requiremen~ even in the absence of a
confidentiality requirement; authentication and
data integrity services in this community have
traditionally been provided at the application
layer, independent of any confidentiality services
which may be provided at lower protocol layers.

In the SDNS architecture, peer component
authentication depends on attributes bound into
the cryptographic keying material which is
distributed to a component in order to make it

]62

operational. The decentralized nature of
authority in the Type II environment strongly
suggests that the generation and dissemination of
keying material be decentralized, so that users'
changing attributes can be reflected in a timely
fashion. It is also critical that keying material
be available to Type II customers in a cost
effective manner. These issues suggest important
technological and policy tradeoffs with regard to
key management services for Type II customers.
Acceptance of SONS security in this marketplace is
likely to depend on the successful resolution of
these tradeoffs.

Two Type II environment attributes appear
contradictory and this apparent contradiction
deserves examination. On one hand, some Type II
customers identify internal threats to their
computing installations (e.g., authorized users
exceeding their authorization and performing
inappropriate actions within a system) as a major
security concern. Despite this fact, trusted
computer system technology has not received major
emphasis in the Type II environment. There are
several possible explanations for this apparent
dichotomy. In general, the internal trust level
of current commercial products is limited and has
not been a selection criterion driving users to
choose one product instead of another. When
security features are considered, it is often on
the simple basis of their presence or absence,
rather than on their evaluated quality. If a
facility is incorporated into a component, it is
expected to operate correctly and perform its
designed functions. For example, the simple
presence of an access control mechanism might
suffice to satisfy procurement goals, even if the
mechanism's design or implementation were
susceptible to malicious subversion. The TCSEC
emphasizes DoD mandatory controls which lack clear
applicability in the unclassified environment.
This may contribute to user perceptions that
internal computer system trustworthiness is an
issue primarily relevant to the classified arena.
Further, the TCSEC emphasizes disclosure concerns
over data integrity concerns, and the latter are
of primary importance to many Type II customers.

Mechanisms to protect host computers and
their sensitive data from unauthorized access via
network communications channels are rapidly
becoming important to Type II customers,
independent of the internal security level of the
hosts being protected. This is especially true
when easily-accessed public or shared networks are
used, but the same mechanisms are often needed for
private networks which carry sensitive data. SDNS
COMSEC components can add security value to public
or private networks, offering protection against
active wiretapping (ensuring integrity of
sensitive data) and passive wiretapping (ensuring
confidentiality where required) . Moreover, SDNS
components can satisfy network-oriented access
control concerns in a very strong fashion. This
enforcement vehicle for a local administration's
policies is particularly useful in establishing
protective boundaries around hosts with limited
internal COMPUSEC assurance.

Covert channel bandwidth restriction is not
an important responsibility for Type II SDNS
components. Attempts by authorized host users to
leak information into unsecured communications
facilities do not appear to be a major concern.

Provision of security services on behalf of hosts,
rather than enforcement of isolation between hosts
and networks, is the principal emphasis. As a
specific example, it will be common for SONS
secured Type II hosts to communicate not only with
other SONS-secured hosts, but also with unsecured
hosts. This implies that Type II SDNS components
must accommodate selective application of
encryption, either on an address-driven basis or
on request from an associated host.

DESIGN APPROACHES

Potential customers for Type II SDNS
technology use a broad range of host computers,
which are supplied by a large number of vendors.
In many cases these computers communicate using
vendor-specific protocols at upper protocol
layers, rather than ISO or DoD standards. It does
not appear feasible to standardize means for
integrating SDNS security measures within large
numbers of upper-layer protocols specific to
individual vendors. Fortunately, many of these
protocols share a common denominator: they operate
atop one of two standard protocols, X.25 (for long
haul networks) and IEEE-802 (for local area
networks). Transparent security mechanisms
designed for use with these standard protocols can
provide security services for a wide range of
hosts, independent of the protocols employed above
the layer where protection is provided.
Transparency issues include performance and
operational support as well as protocol
compatibility. For minimal performance impact,
flow control information must be reflected across
SDNS components. For minimal operational impact,
status information must also be reflected across
SDNS components. Since covert channel bandwidth
restriction is not an important concern for Type
II SDNS components, it is relatively
straightforward for Type II components to reflect
such information and provide highly transparent
service.

Security functions can be offered in the near
term, using transparent security mechanisms
implemented in standalone SDNS components for
connection between a host computer and its network
interface. An add-on SDNS end-to-end security
"overlay" for a network can be offered in a non
invasive fashion, imposing minimal disruption on
existing hosts' operations, as Figure 1
illustrates. Figure l(a) shows a group of hosts,
attached to a pair of packet networks which are
linked by a gateway. In Figure l(b), SDNS
components are added to secure traffic among hosts
A, B, and C; each of these hosts can continue
unsecured communications with host D.

As the Type II marketplace's security
requirements mature, it will become more likely
for computer system and network component vendors
to offer SDNS-based security provisions, either as
optional features or standard facilities within
commercially marketed systems. The use of
embedded COMSEC components and modules can reduce
the incremental cost of procuring security
features within a computer system, assuming that
cost-effective Type II CCEP components become
available. The Type II environment's limited
concern about Trojan horses facilitates
integration of embedded COMSEC, and also
facilitates the use of SONS facilities to protect
communications services at upper protocol layers.

163

(a} Before SONS Security Overlay

(b) After SONS Security Overlay

Figure 1

SONS SECURITY OVERLAY FOR NETWORKS

Upper-layer services are difficult or impossible
to protect with outboard COMSEC components
interposed on interfaces between host computers
and their network ports, as illustrated in Figure
2(a). Instead, it is generally necessary to
integrate the COMSEC functions used to protect
upper-layer traffic within a peripheral operating
under host software control, as illustrated in
Figure 2 (b) .

(a) COMSEC Interposed on Communication Interface

.___Ho_sT-H~-......c.....oM_sP_ooNN_sE_N_T_.~Two3>
(b) COMSEC Integrated as Peripheral

Figure 2

COMSEC INTEGRATION APPROACHES

Electronic mail is an example of an upper
layer communications service of major interest to
both Type I and Type II customers. SDNS
protection for electronic mail is implemented
within an application layer user agent (UA)
process, which corresponds to an individual human
user wishing to send or receive secure mail.
Electronic mail is transferred on a store-and
forward basis in which the originator's and
recipient's computers need not communica~e

directly in real time. As a result, true end-to
end protection for this traffic cannot be achieved
below the application layer. Application layer
encryption implies that a large amount of control
information, which is present in the headers of
all seven OSI protocol layers, must be transmitted
as plaintext. Type I environment concerns may
dictate that measures be taken to reduce this
channel's bandwidth (perhaps through use of lower
layer SDNS mechanisms, in addition to application
layer mechanisms). As hosts with enhanced trust
levels become available, the need for such
measures may diminish. In the Type II
environment, however, it is reasonable to offer
SDNS electronic mail security in the near term,
without need for bandwidth restriction measures.

THE PATH AHEAD

SDNS technology has significant potential to
provide high quality, cost-effective security for
the Type II environment. To realize this
potential, several important prerequisites must be
satisfied, complementing the standardization
activities carried out in SDNS Phase 1. Vendors
and evaluators alike must focus on Type II
requirements and environmental characteristics,
which differ significantly from those seen in the
classified arena. Inexpensive Type II CCEP
modules and components, the essential building
blocks for cost-effective Type II SDNS equipment,
must become available. Keying material must be
available to users in a cost-effective fashion.
Its procedural aspects must not impose
unacceptable burdens on network operations or
administrative structures. If these conditions
are satisfied, SDNS Type II products can offer
valuable protection for unclassified sensitive and
commercial data network traffic at a wide range of
protocol layers. The market appears poised to
grow rapidly if the right products become
available. If the conditions are not satisfied,
it is less likely that Type II SDNS products can
be produced and marketed effectively, and hence
less likely that a qualitative improvement in the
security of a broad range of data network traffic
will take place .

ACKNOWLEDGMENTS

I would like to thank Pat Cain, Miles
Fidelman, Stephen T. Kent, and Ellen McDermott for
reviewing this paper and providing helpful
comments on its content. I would also like to
thank Julie Moore and Pam Saia for their
invaluable editorial assistance.

REFERENCE

[Clark] 	 Clark, D. D. and Wilson, D. R., "A
Comparison of Commercial and Military
Security Policies," Proceedings of the
1987 IEEE Symposium on security and
Privacy, Oakland, CA, April 1987.

164

ACCESS CONTROL WITHIN SONS

by

Edward R. Sheehan

Analytics Incorporated

9821 Broken Land Parkway

Columbia, Maryland 21046

ABSTRACT

This paper addresses the subject of Access
Control within the Secure Data Network System (SONS).
The fundamental elements of the Secure Data
Network System are nonforgeable authentication
information and unique pairwise key. Using these
elements, the system provides five security
services; confidentiality, data integrity, non
repudiation, authentication and access control.
It is the prerogative of those who establish and
implement a system's security policy to choose
the granularity of access control they wish to
enforce. The enforcement should be consistent
with both the national and local policies governing
a particular environment.

In this paper we discuss access control in the
framework of the International Standards Organiza
tion's (!SO's) seven layer protocol model. Access
control can occur only between corresponding peers
at different endpoints. An access control model and
its set of corresponding rules are discussed in the
contexts of initial access authorization and con
tinuous enforcement. Initial access authorization
is accomplished through the process of Peer Access
Authorization while continuous enforcement takes place
by means of the Peer Access Enforcement process.
Both of these processes are discussed in detail.

Security services may be provided in Layers 2,
3, 4 and 7 of the ISO protocol model. In separate
sections we discuss the access control concerns at
each of these layers. These discussions include the
definition of requisite FIREFLY certificate and
Protocol Data Unit information for access control.

1. 	 INTRODUCTION: SONS AUTHENTICATION· AND ACCESS
CONTROL

1.1 OVERVIEW
This paper, along with others published here, is

based upon the developmental work accomplished within
the Secure Data Network System (SONS) program under
the auspicies of the C65 Special Projects Office.
This paper addresses access control within SONS
and, as such, represents a consensus arrived at
within the Access Control Working Group (ACWG).
Other SONS working groups, such as Key Management,
Protocol and Systems Management address other major
components of SONS. These all have had a direct
influence on the design features of the preliminary
SONS access control concepts that are presented here.

A variety of security services will be available
through SONS components, which will allow end-users
to specify the "amount" of protection required
for their sensitive classified or unclassified data.
The SONS will include mechanisms to support security
policies which require a high level of assurance for
mandatory and discretionary access control. Authen
tication and access control decisions will differ
from domain to domain, based upon the security
policy for a particular domain. SONS allows for and
supports this requirement. The system will be as
transparent as possible, and have minimum impact on
the reliability of the network.

Access Control decisions in SONS are made by
the end-users attempting to communicate. These
decisions are made in the context of each end-user's
own security policy. The FlREFLY mechanism is an
intrinsic part of key management and distribution
in SONS and is the means by which an end-user
receives information to make access control decisions.
FIREFLY provides the fundamental elements of non
forgeable authentication information and pairwise
unique key generation for SONS. The SONS Key Manage
ment System will accommodate provision for a
combination of centralized and decentralized
functions to provide the best security with
minimum impact on user flexibility. Once initialized,
the secure components autonomously can establish
traffic encryption keys without further intervention.
FIREFLY certificates are mutually exchangerl by
peer entities. Access control is enforced using
the information contained in the FIREFLY certificate.

The ACWG has developed an Access Control model
to provide a framework for the coordination of a
standard set of authentication data and access
control checks which will allow for the inter
communication between different SONS users/systems
when their national and local policies allow it.
The model, described in subsequent sections of this
paper, includes a mechanism for continuous access
control enforcement and a four tiered mechanism for
determining initial access authorization.

2. 	 THE MODEL, PAA/PAE AND HOW IT ALL WORKS

2.1 INTRODUCTION
In this section we describe a four tiered model

developed by the SONS Access Control Working Group
and the processes of Peer Access Approval (PAA)
and Peer Access Enforcement (PAE). This descriptive
model and its set of supporting PAA/PAE rules
provide a decision process for determining access to
information. The FIREFLY certificate defines inputs
to the decision process. Other inputs to the
decision process (e.g., tables specifying identity
lists to support IBAC) are not contained in the
FIREFLY certificate. The construction of the
model in no way implies that all instantiations of
SONS should support it in its entirety.

The SONS provides two processes for determining
first time or continued access control. Figure 1
is a top level diagram of these two processes.
The first provides access control during the
opening of a cryptographic association between
two peers, called Peer Access Approval (PAA). The
second procedure provides for the enforcement of the
cryptographic association while it is active. This
process is called Peer Access Enforcement (PAE).
Results obtained from the PAA process are passed to
the PAE process through the Enforcement Vector (EV).
The PAA and PAE processes are performed at each end
of the association with each peer enforcing their
respective local security policies.

165

PDU
PAE

ENFORCEMENT

EXCHANGE
CERTIFICATES

NEGOTIATE

CREATE
E. V.

YES

>---:...:NO=---. ABORT

>-__;,;,NO=--_. ABORT

Figure 1. GENERAL MODEL

166

2.2 DESCRIPTION OF PAE, PAA, AND THE ACCESS CONTROL
MODEL

2.2.1~r Access Enforcement (PAE). The Peer
Access Enforcement (PAE) process is the mechanism
which enforces the access control decision. The
enforcement mechanism comes into play when data is
sent between peer entities. The PAE is by necessity
a high integrity mechanism, and is always involved
in any secure exchange by virtue of acting as a
permission monitor. If the PDU is an initiator for
the PAA process (and the creator of an EV) then the
monitor makes some preliminary checks (see Section
2.2.3) prior to starting PAA. If.an association
already exists then the monitor determines whether
or not the labeled PDU falls within the set of
permissions represented by the EV (generated by
the PAA process). The PDU is either permitted
to pass or not. If an association does not
exist, the monitor will immediately drop into the
PAA process. The PAE is not a negotiation mechanism
but does perform two basic management roles;
association and traffic encryption key (TEK)
management.

Once an association is opened and bound by the
set of permissions represented by the EV, the
PAE monitors the exchanges of data to validate the
access control decision parameters with each
PDU. The PAE process will maintain control over the
TEK for the full extent of its use, and will ensure
destruction of the TEK upon the end of the crypto
period. In the event of a recovery procedure, the
PAE process will control the TEK reuse after
repeating the PAA processes for the association.

2.2.2 Peer Access Approval (PAA). Peer Access
Approval is the process by which a sender/recipient
uses a particular implementation of the Access
Control model and its rules to determine if an
association should be established.

Figure 2 is a top level diagram of the PAA
process. The PAA is divided into four basic tier
processes or decision making steps: global/
partition, national RBAC (Rule-Based Access Control),
local RBAC, and local IBAC {Identity-Based Access
Control or "need to know" access control). The
PAA tier processes are independent of each other
and decisions to allow or disallow the association
are determined and summed {logical AND) for the final
PAA decision.

The PAA tier processes evaluate the elements of
both peers' identity and access attributes (as
presented in the FIREFLY certificate) against the
local authority's security policy requirements.
The PAA process also permits a security option
negotiation prior to establishing an EV for an
association. This negotiation could be between
peer entities or through a third party. Figure 3
introduces the PAA process relative to the FIREFLY
exchange and generation of the IV.

There is no predetermined order for evaluating
the lower three tiers of the process. In fact,
each is independent and can occur first or be omitted
if security policy dictates. Tier one information
is required for interpretation of some tier two
and three data. The format of the data, for each
tier, contained in the FIREFLY certificate will be
specified. How the data is used or interpreted is
left to the local authorities and their specified
security policy.

NATIONAL
RBAC

MAY NOT BE
.,._____,! SAME

GLOBAL/PARTITION
PROCESS

NATIONAL RBAC

PROCESS

LOCAL RBAC

PROCESS

LOCAL IBAC

PROCESS

EXTERNAL
AUTHORITY •

""' ""
~LTS

""
RESULTS

PAA
RESULTS

RESULTS

RESULTS,/

//

Figure 2. PAA GENERAL MODEL

Figure 3. PAA EVALUATION

167

The PAA process commences with the FIREFLY
exchange and ends with an access control decision to
either allow the association (with the appropriate EV)
or disallow the association. The resultant EV on
each end is used to filter data (PAE) on a per
Protocol Data Unit (PDU) basis. 1he results at
either end could be different based upon the
security policy of the local end. A simple example
is one where one end employs L-RBAC while the other
does not. In this case the resulting EVs may be
dissimilar.

2.2.3 Access Control Model and Rules. Before the
rules of the model are invoked (PAA) preliminary
originator checks must be made in the context of
PAE. For E-Mail first there is a check to see if
the intended recipient has posted public information.
In this case the PAA process (application of the
rules) begins once the sender has retrieved the
recipient's public data. In other cases a connection
is established with the intended recipient in order
to transfer FIREFLY certificates and start the PAA
process. The preliminary originator checks, in
non-E-Mail cases, begin when a PDU is recognized
by the SONS component. As an example, a check
is made to see if an EV exists between this host
pair (select key against destination address plus
PAE rules). Other checks include some universal,
Type I or Type II and Compromise Key List (CKL)
inspection.

If it has been determined that a new key is
needed for an allowable host pair the PAA process
must then be initiated. Again for E-Mail the PAA
process scenario is somewhat different. The sender
will perform the PAA process first and the recipient
will not be involved until he/she receives their mail.

The model is valid for ISO Layer 2, Layer 3/4
boundary, and Layer 7 (E-Mail), in addition to
being appropriate in both the Type I and Type II
worlds. An important point regarding the model is
that it is not intended to dictate order. There
are disjoint administrations which control the access
information for their own domain. When entities
wish to talk across these administrations they need
to do so in accordance with some defined IBAC
procedure.

2.3 INDIVIDUAL TIER DESCRIPTIONS
There are four tiers to the Access Control

Model. They are briefly described in the sections
which follow.

2.3.1 Global/Partition. At tier one, SONS access
control defines a mechanism which divides the
population into disjoint partitions. Any SONS
device with an "active" partition cannot talk to
any SONS device with a "different" active partition
number. A person/host can be a member of only one
global partition per each individual FIREFLY
certificate.

Once the association has been determined to
have the same universal, a check at this tier will
need to be made against the intersection of active
partition "numbers". The results are recorded in
the EV along with an approval for the association
from this tier. If the partition numbers do not
have a match then the process is aborted.

168

2.3.2 National Rule Based Access Control (N-RBAC).
SONS tier two access control is dependent upon the
Global/Partition specified at tier one and is
uniquely defined for that given partition.
Mechanisms for separating information at this
tier may or may not be hierarchical. An example
of a hierarchical structure at this tier is the
DoD mandatory security policy of Top Secret,
Secret, Confidential, etc. Along with each of the
partitions is a supporting national RBAC interconnect ,
rule structure. (For example, permission to
communicate may depend merely on the existence of a
non-null intersection between the two peers.)
Within a partition is a single interpretation of
the national policy. Application of tier two for
the Type II world is left open for further study.

The national RBAC evaluation for the hierarchi
cal levels and/or the non-hierarchical categories
results in the recording of the intersection in
the EV for use in the PAE process. If a peer
chooses not to enforce N-RBAC then a "don't care" is
indicated by nulling out all N-RBAC fields in that
peer entity's FIREFLY certificate. If a peer
chooses to enforce N-RBAC and the intersection is
null then communication is prohibited.

2.3.3 Local Rule Based Access Control (L-RBAC).
SONS tier three Access Control supports a mechanism
to allow communities within a partition to enforce
local rule-based security policies, in addition
to a National RBAC. Local authorities establish
the policy for the use and interpretation of
local RBAC.

Compartments partition those accessing data at
the local-RBAC level. These compartments may be
combined with the nationally defined hierarchical
security levels to determine access. As in all
cases where a particular tier of the model is
implemented, there must be a non-null intersection
of local-RBAC compartments and appropriate security
levels. If the intersection is null then the
association is disallowed.

Should an intersection between peer entities
exist then the information is placed in the EV for
enforcement during PAE. The per-PDU information
(security label) is then compared with the infor
mation in the EV.

2.3.3.1 Labeling. Since compartments (L-RBAC) as
well as categories (N-RBAC) could apply across all
hierarchical levels a potential ambiguity exists
representing this information directly in the
FIREFLY certificate. If more than one hierarchical
bit is turned on it is not known whether all or
some of the compartments pertain to each level.
For example, Secret AB with just Top Secret is a
possibility but, what could have been meant is
Secret A and Top Secret B. We are currently
working on understanding and documenting the
labeling system in use today. Simultaneously
we are trying to devise a way of representing
this information in the certificate and EV
without any ambiguity.

2.3.4 Local Identity Based Access Control. Tier
four of SONS Access Control allows a local
authority to specify identity based controls.
The FIREFLY certificate is the only source of
information for SONS IBAC decisions. Some
communities may want more IBAC information than
is contained in the certificate. If this is the
case, there are at least two additional methods
of data exchange. The first approach requires

going to a third party in realtime by one or both of
the parties in the association. An example of this
is using a database external to the SONS component
to determine whether the SONS association should be
allowed. The second approach is to negotiate the
IBAC between the parties making the association.
This approach recognizes that it may be necessary
to base access control decisions on information not
available within the FIREFLY certificate and, as
such, may not have the same level of integrity.

3. LAYER 3/4

3.1 INTRODUCTION
At the network layer, hosts (which may, as a

special case, be gateways to other networks rather
than endpoints for traffic) are the peers between
which SONS access control services are applied;
in other words, the subjects and objects distinguished
with regard to differing access rights are hosts,
not processes or individual users within hosts.
The information contained in the version of FIREFLY ID
defined to identify a host is appropriate as an
input to this granularity of access control decision,
along with layer 3 per-PDU message header information
and control data structures (access control tables).
Subsequent subsections will define the fields within
a host FIREFLY ID, and specify relevant Layer 3
per-PDU information. Once these prerequisites are
defined, the final subsections will discuss how
SDNS components implement administration-imposed
rule-based and identity-based access control as
functions of these inputs.

3.2 ACCESS CONTROL GRANULARITY FOR LAYER 3/4
3.2.1 Secure Protocol 4 (SP4). SP4 provides
communication between Transport Service Access
Points (TSAPs); however, the protocol group has
stated that they believe that the access control
decisions would be the same in Layer 4 as in Layer 3-
they would just be performed on different objects.

SP4 is a proposed addendum to the connection
.and connectionless ISO Transport Protocols, DIS8073
and DIS8602. As an addendum, SP4 is not an integral
part of ISO TP, but is an optional extension that
provides security services. The SP4 addendum
proposes a new TPDU, called Security Encapsulation
or SE-TPDU, that encapsulates all other TPDUs
subsequent to protocol processing functions. The
SE-TPDU conforms to the structure of TPDUs specified
in ISO TP DIS8073. The heading of the SE-TPDU
includes a variable length label field that can
be used for Access Control decisions.

3.2.2 Secure Protocol 3 (SP3). The SP3 proposal
provides authentication of NSAPs instead of TSAPs.
SP3 supports both RBAC and IBAC decisions. SP3
is not expected to have an impact on the surrounding
protocols, so limitations of the labeling by the
other protocols is not a factor. SP3 provides a
security label that is independent of the underlying
network protocol. The TPDU security label may be
mapped into the SP3 security label if access is
authorized.

3.3 ID FIELD: DEFINITION AND USAGE
The FIREFLY ID MUST provide the following

information:
o 	 The security levels and fields to support

the model in Section 2 of this document.

o 	 Environmental and certification information
for RBAC {if enforced).

o 	 A unique identity for authentication.

3.4 PER-PDU INFORMATION: DEFINITION AND USAGE
Each SP3 and SP4 PDU includes a security label

field and information that identifies the
cryptographic association. An integrity mechanism
protects all the Access Control information. The
label is used to enforce a check of the security
level of the data against the security range
of the cryptographic association.

3.5 RULE BASED ACCESS CONTROL
When National RBAC is enforced, the intersection

of the allowable security levels for non-hierarchical
compartments for the connection must not be null.
For L-RBAC there must be a release category in
common between the two peer entities {if release
categories are used).

The following rules must be followed to allow
connection of hosts with different levels of
certification and different classes of users and
to prevent the cascading problem.

o 	 Hosts can be interconnected as long as the
environment of the host with the highest
level of trust is maintained. (It is
a superset of the other host's level of
trust.)

o 	 If the two hosts are not accredited at
at the same level, the higher level
host must treat all data transmitted
as the highest level of data that the
lower level host can contain, or associate
a level of trust with each packet of
data. Note that this requires a trusted
guard (probably human) to verify and
perform the write-down back to the
correct level.

3.6 IDENTITY BASED ACCESS CONTROL (IBAC)
Access Control consists of two distinct

steps: 1) authentication, and 2) authorization.
The FIREFLY ID and the PAA protocol provide
authentication. The PAE ensures that the
authentication is maintained for the entire
association. The Source Address/Destination
Address in the Protocol Data Unit (PDU) and the
cryptographic separation provided by the algorithms
are sufficient to maintain authentication at this
level. Authorization can be done in many different
ways in SONS. Once the identity is provided by
the PAA exchange, this identity can be used to
grant rights or privileges to the host. All
rights granted at this stage must be subject to the
constraints of the RBAC or National Policies as
mentioned.

4. LAYER 7 ELECTRONIC MAIL

4.1 INTRODUCTION
As a result of the overall scope of SONS Phase I,

the Access Control issues and mechanisms discussed
in this section relate to electronic mail and are
not necessarily applicable to protection of other
application layer services (e.g., FTAM). Different
application layer services may require different
Access Control services and mechanisms. In
particular, the store and forward delivery character
istic of electronic mail introduces a number of
special issues which do not apply to an environment
in which peer entities communicate directly in real
time. On the other hand, certain characteristics and
issues discussed here are likely to be relevant to
other application layer SONS services addressed in
the future: the placement of application layer
peers at the top of the layered protocol hierarchy

169

virtually dictates that application layer SONS
functions will be integrated within a host computer
or within a peripheral associated with a host
computer, not in a device interposed on the
computer's network interface connection. In order
to support application layer SONS functions, users
must rely on processing performed within hosts.

section.) Originator and recipient UAs do not, in
general, communicate in realtime; as a result, the
information contained in a recipient's certificate
(as posted on a server or bulletin board system) must
be sufficient to allow an originator to perform any
desired access control checks.

4.3 ID FIELD: DEFINITION AND USAGE
The access control services discussed here are

relevant only to the protection of electronic mail
traffic between user entities. They are not
applicable to the protection of control traffic
passed between the internal application layer peer
entities which exchange control traffic among SONS
components, or to the control traffic passed between
SONS component internal application layer entities
and the Key Management System (KMS). Moreover,
they are not applicable to control of access from
an originator SONS component to an intermediate
black network component such as a mail or directory
server. Since such controls would not involve
peer SONS components at both ends of a path, they
are outside the SONS purview.

4.2 ACCESS CONTROL AND ELECTRONIC MAIL
At the application layer, the peers between

which SONS access control services are applied are
User Agent (UA) processes, corresponding to
individual users, within end system hosts. SONS
functions will be integrated within the UAs, which
are instantiated to support identified individual
users. It is reasonable and consistent, therefore,
to provide security services at per-user granularity.
The information contained in the version of FIREFLY
ID defined to identify a user/entity within a host
is appropriate as an input to this granularity of
access control decision, along with Layer 7 per-PDU
message header information and control data
structures (access control tables, possibly
supported by servers). A subsequent subsection will
specify relevant Layer 7 per-PDU information, and
will discuss how control data structures are used.
In composition, these mechanisms allow SONS
components to implement administration-imposed
rule-based access control (RBAC) and identity-based
access control (IBAC).

4.2.1 T~pes of Access Control Policies. Identity
based, a ministration-imposed E-Mail access controls
incorporated in application layers SONS modules can
constrain mail dataflows in accordance with
locally-defined policies (e.g., "who is user A
allowed to send mail to?") Rule-based policies can
also be appropriate at the E-Mail application layer.
In a multi-level host with appropriate inter-user
segregation mechanisms, the differing access
rights of users with different clearances (as
defined by the users' FIREFLY IDs) can be distin
guished by application layer SONS modules. A
particular SONS instantiation may perform neither,
either, or both types of controls; where identity
based and rule-based controls are active, both
sets of checks must succeed before access is granted.

4.2.2 Impact of Store-and-Forward Delivery. The
store-and-forward delivery mode characteristic of
E-Mail is incompatible with access control
mechanisms which depend on a second exchange
after the initial peer-peer exchange of FIREFLY
quantities. (When network or transport layer
SONS services are employed in addition to application
layer E-Mail services, post-FIREFLY exchanges may
occur between the lower layer peers protecting
segments of the store-and-forward path supporting
E-Mail transfer, but this is independent of the
application layer mechanisms discussed in this

It is appropriate to consider the means by
which users are identified within X.400 mail, as
identifying fields in X.400 message headings must
be associated with FIREFLY ID fields. X.420 notes
that E-Mail users may be identified in two ways:
with an Originator/Recipient (0/R) name (a construct
formally defined in X.411) or with a free-form
name; for universal applicability in SONS, use
of the 0/R name is assumed. Three variant forms
of 0/R names are defined, but the latter two are
intended for special purposes (support for X.121
addressing or Telex interoperability), and the
first variant is clearly the appropriate choice for
consideration by SONS.

For SONS purposes, it is proposed that a
user's ID as represented in a certificate contain
the following 0/R name components: Country Name,
Administration Domain Name, Organization Name,
Organizational Unit Names (this component may be
null if Organizational Unit Names are not used
within the particular Organization), and Personal
Name. Note that this identifies a user in terms
of organizational affiliation, not mailbox address,
and hence does not preclude user mobility.

4.4 PER-PDU INFORMATION: DEFINITION AND USAGE
The value of the CCITT-specified Sensitivity

Indication heading field is restricted to one of
three possibilities (Personal, Private, and
Company Confidential). This set of options
does not correspond appropriately to the hierarchic
levels enforced by SONS RBAC in a Type I environment.
Therefore the SONS proposed changes to X.420 include
an additional security label field.

4.5 RULE BASED ACCESS CONTROL
4.5.1 Inter-User RBAC Issues. On initial consider
ation, RBAC enforcement for E-Mail appears simpler
than RBAC enforcement for host-level peers at the
network or transport layers, since no interconnect
rules are needed to constrain communications between
pairs of human users. Each user is "trusted" to
process and correctly segregate information at any
level up to and including his/her highest clearance.
The absence of interconnect rules between human
users does not imply that no RBAC mecnanisms are
appropriate. While it is legitimate for a TS
cleared user to send a message to a Secret-cleared
user, such a message should not contain any
information designated with sensitivity higher than
Secret. A sending SONS UA can collect clearance
information from certificates of a message's
designated recipients, can compute the intersection
with the sender's privileges, and can display
that information to a sending user. (Note, however,
if implemented this way, this function requires
that recipient's certificates be cached or collected
in realtime.)

Further, the UA can verify the relation between
the level provided in the certificate and the
level at which the UA process is executing. For
example, a single-level UA running at the TS level
should not transmit mail to a recipient whose
certificate indicates Secret or lower clearance,
although a multi-level UA spanning the TS and
Secret levels could transmit Secret mail to such

170

a recipient. If SONS uses X.420 message body part
definitions incorporating security labeling
provisions, SONS E-Mail components can check this
intra-PDU information against the clearances of
intended recipient as indicated in their certificates.

4.6 IDENTITY BASED ACCESS CONTROL
E-Mail IBAC determinations will be based on a

process involving X.400 0/R names and certificate
ID fields identifying users. Orange Book require
ments for individual accountability (imposed at C2
levels and above) underscore the need for user
identification at the granularity of named
users or groups of named users.

User identification quantities can be checked
against data structures constraining the set of
users to, whom a given user is authorized to send
secure mail. It would be convenient for IBAC
checking purposes if the 0/R name format is used
for user identification within certificates as
well; if the formats are different, an endpoint UA
must be able to translate between 0/R name format and
the form used in certificates. An originator
must be able to select an appropriate recipient
certificate based on the recipient 0/R name in an
outbound message, and a recipient must be able to
select an appropriate originator certificate based
on the originator 0/R name in an inbound message.

As 0/R names are hierarchically qualified, it
seems useful to provide analogous hierarchic qualifi
cation for IBAC features. For example, it could be
appropriate to grant a particular user the right to
send mail to anyone in organization A {without
needing to exhaustively enumerate all members of
organization A), as well as to user C (and user C
alone) within organization B.

5. LAYER 2

5.1 INTRODUCTION
The SONS access control provides for automatic

PAA which authorizes the association and therefore
communications between peers to exist. The SONS
also provides for PAE while the connection exists.
SONS security services at OSI Layer 2 can employ
these procedures to allow unattended information
processing equipment to establish a communications
channel and communicate according to locally
accredited security policies.

The data link layer uses the raw transmission
facilities provided by the physical layer and
transforms it into a communications circuit that
appears to be error free to the layers above.
Layer 2 functions include error detection, error
correction, retransmission and flow control. The
data link layer may offer several different classes
or qualities of service to the network layer
depending on different performance and cost
parameters.

5.2 ACCESS CONTROL SERVICES AT LAYER 2
The SONS provides a wide variety of security

services, at Layer 2 the SONS can provide access
control, authentication and confidentiality to the
entities represented by the PLSDU. Therefore, a
Layer 2 SONS security component can deliver security
services to data communications equipment at a
level of granularity associated to the PLSDU.
The data link layer is highly dependent on the media
or physical layer, requiring differing PLSDU coding
techniques and frame definitions in order to provide
the Layer 2 services mentioned above. Therefore,
the confidentiality services and implementations

provided by the SONS security component must vary
with the differing medias being serviced. In
addition, the SONS defines the protocols necessary
to support the higher layers in order to perform the
PAA process; however, the Layer 2 protocols must
be media dependent and in many cases remain outside
the SONS standard.

5.2.1 Layer 2 PAA. The Peer Access Approval process
binds the peers at each end of the data link with
Enforcement Vectors (EV) which contain the allow
able range of security attributes and identities
with which each peer is allowed to communicate. The
PAA also binds the TEK and the maximum allowable
association lifetime into the EV. The PAA
process is similar to PAA process at higher OSI
layers with differences associated predominantly
with what the peer entities represent. The Layer 2
PAA uses the following tier processes:

o Global/Partition
o National RBAC
o Local RBAC
o Local IBAC

As with access control security policies at
other layers, the local administrations use the
SONS security mechanisms to define the policy for
secure information transfer at Layer 2 as well.

The PAA process results in an EV that contains
the following SONS security attributes and
identities for Layer 2.

o Global/Partition identifier
o Local Authority Name
o Compartment or Levels
o IBAC {Address or Name)

5.2.2 Layer 2 PAE. The Peer Access Enforcement is
limited to the level of granularity determined by
the PLSDU and will not monitor security labels
at this layer. However, the PAE process must
control the following functions within the security
component:

o Valid EV
o TEK Selection
o Cryptographic Resync
o Cryptographic Integrity
o TEK Timeout
o EV Destruction

The security component for a Layer 2 device
normally allows a single data link to exist and
therefore a single association to exist for
the PAE process to maintain. However, this
restriction is unnecessary and a single SONS
security component could support link layer
multiplexing.

171

AN OVERVIEW OF THE CANEWARE PROGRAM

Herbert L. Rogers

National Security Agency - C6

Ft. Meade, MD. 20755

l.O INTRODUCTION
The National Security Agency is currently
involved in several programs to hasten the
day when high-quality communications
security can be effectively and efficiently
provided for computer networking
applications. A very promising development
in this arena is a program called CANEWARE.
It is the purpose of this paper to present
an overview of CANEWARE functionality. The
paper looks at CANEWARE from the point-of
view of its system capabilities; it does not
probe the internals of its hardware and
software . The CANEWARE program is being
performed on contract with Motorola Inc . ,
Government Electronics Group . Operational
equipment will be available in 1990.

2.0 WHAT IS CANEWARE
CANEWARE is a development program to provide
high performance security services for host
computers on long haul packet switched
networks. CANEWARE will facilitate military
grade information security (INFOSEC) by
performing host-to-host encryption of
packets and by enforcing both mandatory and
discretionary access control policies. The
principal equipment elements are the
CANEWARE Front End (CFE) and the CANEWARE
Control Processor (CCP) . The CFE protects
host data on the network by encryption,
ensures that hosts send and receive data
only at authorized security levels, and
enforces "need-to-know" security policies on
all data exchanges between hosts . The
CANEWARE Control Processor maintains the
"need-to-know" data base and distributes
those permissions to the CFE's, performs
network security audit functions, and
provides centralized administrative control
and monitoring . CANEWARE is targeting
compatibility with the family of
systems/equipment that implement the
standards of the Secure Data Network system
(SONS) . SDNS is a separate NSA program to
specify an Open System Interface (OSI)
standard architecture for a wide variety of
data networks including Packet switched
Networks (PSN's) and Local Area Networks
(LAN's). In an SONS related program, NSA is
developing a Key Management center (KMC)
that will generate and distribute FIREFLY
based key material . CANEWARE will utilize
this facility as its source of key material
and authenticated privileges.

3.0 THE APPLICATION -
CANEWARE's primary application is X .25
PSN 1 s . The DDN standard Service X . 25 is
being implemented . A modular software and
hardware design allows modification to
accommodate other protocols. The full range
of security services can be provided for a
single PSN or across a concatenation of
PSN's (a catanet). DOD's Internet Protocol
(IP) is fully supported . The serviced
networksjcatanets may be either Red or

Black. For example, the "host" may be a
gateway to a Red LAN. CANEWARE will support
network applications with up to 16 Domains
per system; where a Domain is a community of
users that is served by a single CCP (or a
redundant pair) . Each CFE can retain a data
base on up to 1000 crypto connections (i.e
keys, address information, security levels,
etc.).

4.0 FUNCTIONALITY
The principal security services that
CANEWARE provides are:

* 	Encryption/decryption of all

user data

* 	Mandatory/Discretionary Access

Control

* Authentication of all hosts
* FIREFLY key management
* Multi-level security

These, and other functions, are summarized
in the following paragraphs:

Host-To-Host Encryption-CFE's provide host
to-host encryption of data between
authorized host pairs . Traffic encryption
keys are generated via a FIREFLY exchange
and shared only by a pair of communicating
hosts . Encryption is by an approved
algorithm implemented in compliance with the
requirements of NSA's Functional Security
Requirements Specification Tempest,
security Fault Analysis (SFA), and Anti
Tamper specifications are satisfied.
CANEWARE is being designed to be COMPUSEC
certified at the B2 level of the "Orange
Book" . This requires a Formal Security
Policy Model and the development of a
Trusted Computing Base (TCB) .
Key 	 Management - An outstanding feature
of 	 the CANEWARE approach is that it is
offering the first implementation of FIREFLY
key 	management techniques for data networks.
This is the approach being promoted by the
SONS initiatives . FIREFLY evolved from
public key technology and is used to
establish pair-wise traffic encryption keys
for the subsequent encryption of data .
FIREFLY key material will be obtained from
an 	 external Key Management Center (KMC) ,
which NSA will establish to provide keying
material for future secure data networks .
The FIREFLY material obtained from the KMC
will contain the identification of the CFE
and 	that of its attached host. It will also
include a listing of security levels,
compartments, and other privileges
authorized for the host . The CFE-to-CFE
FIREFLY exchange will provide a mutually
unforgeable identification and an
enumeration of security clearances between
communicating CFE' s FIREFLY keying .
material will be ordered ___"f:hrough controlled ·

172

official channels and will be delivered to a
CFE either electronically, over the network,
or physically in a Data Key device. This
CFE-to-CFE FIREFLY exchange accomplishes
decentralized traffic key generation and
access authorization; allowing continued
secure operation of the network during the
contingency mode when a central
administrative/control node is out-of
service or is unreachable. Each individual
CFE in the system will "keep book" on up to
1000 permitted crypto-connections so that it
need not go to the CCP for permission, or it
need no.t execute a CFE-CFE FIREFLY exchange,
for connections previously authorized during
the same crypto period.

Access Control- CANEWARE's Trusted Computing
Base rigorously enforces Mandatory Access
Control (MAC) to ensure that data passed
from host-to-host will be within the
security range, and compliant to the
compartmentalization permitted, for that
particular host-pair communication . MAC
credentials will be included in each CFE' s
FIREFLY vector set and will be reciprocally
transferred during the CFE-to-CFE FIREFLY
exchange . MAC will support 8 security
levels and over 100 compartments. The MAC's
will be enforced by the CFE's, be operative
in both the normal and contingency modes,
and can not be overridden . Discretionary
Access Control (DAC) privileges will be
managed and distributed by the CCP. DAC may
further constrain MAC but may not upgrade
the mandatory limits. DAC will specify which
CFE pairs can intercommunicate and which
pairs cannot . Again enforcement is a CFE
responsibility. Each CFE will maintain an
includejexclude list of possible
connections. The CCP will update the list
when appropriate. Only when an addressee is
not on either list will a CFE need to
request permission to open a·connection. In
a contingency situation (when the CCP or its·
alternate is unreachable) the CFE will
comply with the resident includejexclude
list; new connections (those with no list
entry) will be permitted but tagged for
later reporting to the CCP which might
explicitly revoke intercommunication
(contingency behavior is also a MAC
parameter) . CANEWARE will authenticate the
CFE-to-CFE transfer of security labels and
the associated source addresses.

Monitoring and Control- The CFE's and CCP's
cooperatively capture an extensive log of
security events (security range violations,
illegal connection attempts, alarm
occurrences, etc .) . CCP' s maintain a
comprehensive data base of these system
events to provide an audit trail of
attempted or inadvertent security
violations. For CFE's within its domain,
the CCP can request health/status infor
mation and can initiate various security and
communications tests (alarm tests, loop-back
tests, etc .) The CCP operator establishes
thresholds for reporting system and security
event audit data . The CCP operator can
assign configuration parameters (data rates,
protocol options, RS-449 options, etc.) and
cause them to be downline loaded to its
community of CFE 's . Fully secure inter
domain communications are managed by
CCP-to-CCP coordination A major
responsibility of the CCP is the maintenance

(establishment, updating) and distribut~on
of its CFE • s network address; translatlon
database.

Communications Interfaces- The CFE is
normally installed in a network access
communications link between a host computer
and a packet switch (also known as an
Interface Message Processor, or simply I~P) ·
The host is characterized as a data te:mln~l
equipment (DTE), the IMP as a data clrcu7t
terminating equipment (DCE) . The CFE s
physical interfaces conform to RS-449 and
M1L-STD-188-114A. The link protocol (level
2) is LAPB . The network access protocol
(level 3) is the DON "Standard Servi<?e"
version of X. 25 . over X . 25 the CFE Wlll
support Internet Protocol (IP, MIL STD
1777). The above "external" protocol suite
is implemented on both the Red and Black
sides of the CFE . In addition, CANEWARE
executes other "internal" protocols to
accommodate its own Host -CFE, CFE-CFE, and
CFE-CCP transactions. These include end-to
end encryption protocols, status messages,
configuration data, etc.

SONS Relationsh~ps- Secure Data Network
system (SONS) ls a current NSA sponsored
program with the objective of developing and
promoting security architecture standards
for a wide variety of data communications,
particularly packet switched networks
(PSN's) and local area networks (LAN's). It
is expected that the resulting standards and
technology will dominate future secure data
network systems and equipment . SONS
compatibility/ interoperability is a program
objective. It is a design goal of CANEWARE
to comply with the evolving standards of
SONS . If CANEWARE's leading schedule
disallows SONS interoperability for the
initial CFE equipment the design will
provide for later accommodation via software
update . An SONS related effort is the
development of a Key Management Center
(KMC) . The KMC will be established and
operated by NSA to provide FIREFLY key~ng
material for the data world. CANEWARE Wlll
use this facility to obtain its FIREFLY key
vectors. This will exploit the economies
of-scale achievable by such a "public
u~ility" approach to key management vis-a
Vls the establishment of key distribution
centers dedicated to individual communities
of CANEWARE users.

5.0 PERFORMANCE
CANEWARE will provide "high perform-ance"
security services to eliminate encryption
choke points in the network . The basic
performance determining parameters for
X.25 operations are:

Input/Output Rate - to 1.544 Mbs

Data Throughput >750 Kbs

Packet Rate -130 Packetsjsec

Processing Delay <15 ms

Note that the above parameters are for full
duplex operation; the equipment can sustain
these rates while simultaneously processing
traffic in both directions Processing

173

fllONT
PANELI I

FILL
INTERCONNECT

PROCESSOR/

~
PROCESSOR 1+-~FAND

PROTOCOL CLOCK PROTOCOL

PROCESSOR PROCESSOR

(RED) (BLACK)
PROCESSOR

PROCESSOR .._ ~ INTERCONNECT

INTERCONNECT (BLACK)

(RED)
CRYPTO

PROCESSOR NCM
INTERCONNECTNETWORK!

HOSTVO

(RED) NC~~
NETWORK!

(BLACK) HOST VO

(BLACK)

j
INTERCONNECT

AJRM.
POWER

INTERCONNECT

NETWORK ~NTERCONNECTHOST
.._.

INTERCONNECT

(RED)
SUPPLY

FIG 1. CANEWARE Front End Block Diagram

techniques are designed to enhance perfor
mance. For example, permanent network and
cryptographic connections are supported for
critical and frequent addressees to reduce
set-up time.

6 .0 IMPLEMENTATION and OPERATION -FIGURE 1 -rs-a block diagram---of the CFE hardware .
Identical RED and BLACK side Protocol
Processors each incorporate an MC68020 32
bit microprocessor and supporting
electronics . The Crypto-Processor's main
functions are encryption, decryption, key
variable storage, FIREFLY operations, and
alarms. The Crypto-Processor uses several
custom VLSI chips . The Network/Host I/O
hardware is also identical on both the RED
and BLACK sides (software is different) .
The principal I/O tasks are data flow
control at the external interfaces and
to/from the crypto-processor These
functions are performed by a custom VLSI
multi-channel DMA controller, specialized
physical and link level I/O chips, and
support electronics. The equipment includes
a front panel key pad and an SO-character
display, to facilitate a menu-driven
operator interface . CANEWARE 's custom
software includes approximately 45K lines of
code for the CFE and 20K lines of code for
the CCP . The CCP also incorporates
commercial operating system and data base
management software . Subscriber hosts are
"trusted" to properly label all outgoing
data with its security classification. This
implies hosts have a COMPUSEC rating
commensurate with the range of data that
they are handling. This label is placed in
the Internet Protocol Security Option (~PSO)
field of the datagram. The host is expected
to provide a reliable transport protocol
above IP to assure that host-to-host data is
reliably delivered.

~ SUMMARY OF CANEWARE FEATURES -The
following is a summary listing of the of the
principal features of the CANEWARE system:

*Packet Switched Network Security

*High Speed Architecture

-Throughput >750 Kbs, F/D

-130 packetsjsec, F/D

*DOD IP/X.25 Protocol Suite

*Access Control

*Extensive Built-In Test

*Configurable I/O, Communications,

and Security options

*Cryptographic Data Protection

*Multi-Level Security (B2 COMPUSEC)

*State-of-the-Art FIREFLY Key

Management

8.0 PROGRAM STATUS/FUTURE
The CANEWARE program is targeted at 1990
production of operational equipment . The
development schedule is:

CFE

Prototype Available -May 1988

First E-model CFE -July 1988

-Hardware/Software

Integration -August 1988

CCP

Hardware/Software

Integration -August 1988

SYSTEM

- CFE/CCP Integration -oct. 1988

- system!Verification -March 1989

FUTURE
- In the future it is expected that the
CANEWARE "product line" will be expanded
to include; GATEWAYS, LAN ENCRYPTORS, and
TERMINAL ACCESS EQUIPMENT.

174

Ina Flo: The FDM Flow Tool

Steven T. Eckmann

West Coast Research Center

System Development Group

Unisys Corporation

Abstract

A new information flow tool for the Ina Jo specification
language is described. The flow tool is built into the Ina
Jo language processor, and generates flow conjectures
that are proven with the Interactive Theorem Prover.
The flow tool is being used for covert channel analysis in
ongoing Al development projects.

1. Introduction and Overview

The Formal Development Method (FDM) includes the Ina

JoTM formal specification language, a processor for the Ina Jo
language, and the Interactive. Theorem Prover (ITP), for prov
ing theorems generated by the Ina Jo language processor. For
more information about FDM see [6], [11], [12], and [13].

Ina Flo, an information flow tool for the Ina Jo
specification language, aids covert channel analysis of mul
tilevel secure (MLS) systems. Ina Flo is built into the Ina Jo
language processor, and is invoked either with a command-line
flag to the Ina Jo processor, or by including a flag in the
specification. Ina Flo accepts the entire Ina Jo language,
although certain features of the Ina Jo language are not amen
able to automated flow analysis. These features are discussed
in section 2.1.

Ina Flo actually includes two flow tools. One, henceforth
called MLS, is similar to those described in [5] and [10], and
also has similarities to Mitre's Flow Table Generator [8]. The
other implements the Shared Resource Matrix approach [7].
Only the MLS tool is discussed in this paper.

We believe Ina Flo is unique among automated flow tools
for its scope: it accepts the entire Ina Jo language, including
nondeterministic specifications; it accepts arbitrary (lattice
based) security policies, including variable labels; it provides
varying levels of support, depending on completeness of the
security policy specification.

Information flow in Ina Jo specifications is discussed in
section 2. Section 3 presents requirements and guidelines for
the use of MLS. Section 4 describes a preprocessor for Ina Flo
that helps in writing deterministic specifications. The Appendix
summarizes the parts of the Ina Jo language used in this paper,

The work reported on here was supported by the NCSC.

N Ina Jo is a trademark of Unisys Corporation.

and contains an example demonstrating MLS.

2. Information Flow in Ina Jo Specifications

The term "information flow" applied to a state machine
model refers to flow of information from one entity in some
state to another (possibly the same) entity in a subsequent state.
In the Ina Jo language the entities from which information may
flow are variables and formal parameters of transforms. The
entities to which information may flow are variables. State
transitions are modeled by transforms.

An imprecise statement of the definition of information
flow used in MLS is as follows:

(*) 	 If the new value of y depends on the old value of x then
information flows from x to y (written x ~ y).

It is assumed that y is a declared variable. Its new value is the
value it has after the effect of a transform. It is further assumed
that x is either a variable or a transform formal parameter
(transform formal parameters are treated as read-only vari
ables). The old value of x is the value it had before the
transform. The meaning of the phrase "depends on" is deter
mined by the semantics of the specification language.

The lattice model [2] is built into MLS, to the extent that
MLS assumes (and forces the user to prove) that the security
policy included in a specification is a lattice. Therefore, the fol
lowing rule may be used for determining security:

(**) 	A flow x ~ y is secure if and only if MLS_Label(y)
dominates MLS_Label(x).

In other words, information may securely flow to entities at the
same or higher levels, but not to entities at lower (or incompar
able) levels. This rule introduces the MLS_Label of a vari
able, which represents the variable's sensitivity label, and the
relation dominates, which represents an arbitrary user
specified partial order relation on sensitivity labels. A more
rigorous statement of the flow model in Ina Flo is in prepara
tion.

175

2.1. Nondeterminism and Incompleteness 	 and that the set SC must contain a least upper bound and a

It is not always possible to determine precise dependencies
between old and new values of variables, because Ina Jo
specifications may be nondeterministic. For example, if the
effect of a transform is N "A = N "B then A and B have the
same new value, but nothing is known about this value, other
than its type. Every state variable might be referenced in deriv
ing this new value. Therefore, it may be possible to infer some
thing about the old value of any variable from the new value of
A (or B), and thus there are potential flows from every variable
to A and to B.

Another example of a nondeterministic effect is: N "X =

1 I N "X = 2. Here the new value of X is certainly 1 or
2, but the specification does not tell us which, nor how the
choice is made. Again any state variable may be referenced in
deciding whether the new value of X is 1 or 2, so there are
potential flows from every variable to x.

In. our limited experience with the flow tool to date we
have not found it useful to generate flow conjectures for
transforms with nondeterministic flows. Therefore, MLS pro
duces a false conjecture for transforms that contain nondeter
ministic flows, along with a list of the nondeterministic flows.
We plan to make this behavior optional, since there may be
cases in which nondeterministic flows can be proven secure,
e.g., when all nondeterministic flows are to System High. In
general, the flow tool user will likely find it more useful to defer
covert channel analysis to a lower (deterministic) level of
specification. Nondeterminism is discussed further in section 4.

Another difficulty in trying to do information flow analysis
of Ina Jo specifications is that they need not be functionally
complete. That is, an Ina Jo specification need not represent
every operation that may be performed by an implementation.
See part IV(C) of [1] for a discussion of this point. Ina Flo
obviously cannot find flows in operations that are not specified
as transforms, so use of Ina Flo on incomplete specifications is
not advisable.

3. The MLS Flow Tool

MLS generates conjectures (one for each transform) that, if
true, guarantee that no storage channels are in the specified sys
tem. Realistically, some flow conjectures will usually not be
provable; these represent potential covert channels for which
manual analysis will be necessary. Even if all the conjectures
are true, there is no assurance that an implementation will not
have storage channels, unless the code is formally shown to
perform all and only the actions specified as Ina Jo transforms.

3.1. Specifying a Security Policy

Following Denning [2], an information flow policy is
defined by a lattice (SC, dominates), where SC is a set of secu
rity classes, and dominates is a binary relation partially ordering
the classes of SC. From this definition it follows immediately
that dominates must be reflexive, transitive and anti-symmetric,

greatest lower bound.

To make this definition practical, users must be provided
the means to specify security policies. For MLS this is done by
building into the specification language the capability to
specify:

(1) a set of sensitivity labels (security classes),

(2) an ordering relation for these labels,

(3) a label associated with each variable and transform.

The mechanisms for doing these things are described in the fol
lowing subsections. See [4] for details.

3.1.1. Declaring Labels

Any declared constant or variable may be used as a label,
with the restriction that each label must have type
MLS_Label. This type name is built into MLS, but it is not
built into the Ina Jo processor. Therefore the user must declare
MLS_Label explicitly. MLS Label may be any
unspecified or specified type. Examples of valid declarations of
MLS Label are

TYPE 	 MLS_Label

TYPE 	 MLS_Label (U, C, S, TS)

TYPE 	 Class= (U, C, S, TS),
Category,
Categories = Set of Category,
MLS_Label = Class >< Categories.

The first example leaves MLS_Label completely unspecified;
it will presumably be specified more fully either with axioms or
at a lower level of specification. The second example declares
MLS_Label to be an enumerated type with four values. The
third example matches the usual notion of security labels in the
paper world.

3.1.2. Ordering the Labels

The user must specify the relation dominates if MLS is
to generate flow conjectures; otherwise MLS generates lists of
flows, as in [8]. Dominates may be specified partially or
fully with axioms. However, the specification must include
enough information to prove the following conjectures, which
ensure that the specification's security policy is a lattice:

(1) A"lev: MLS Label dominates(SysHi,lev)
(2) A"lev: MLS_Label dominates(lev,SysLo)
(3) A" lev: MLS Label dominates (lev, lev))
(4) 	 A"levl,lev2: MLS_Label (

dominates(levl,lev2)
& dominates(lev2,levl)

-> levl = lev2)
(5) 	 A"lev1,lev2,lev3: MLS_Label (

dominates(levl,lev2)
& dominates(lev2,lev3)

-> dominates(levl,lev3)

176

(1) asserts that SysHi is the least upper bound of the set
defined by the type MLS_Label, and (2) asserts that SysLo
is the corresponding greatest lower bound. The labels SysHi
and SysLo are built into MLS, but are not built into the Ina Jo
processor, so they must be explicitly declared as constants (or
zero-state definitions) of type MLS_Label. (3) asserts that
dominates is reflexive, (4) that it is anti-symmetric, and (5)
that it is transitive. The five conjectures are built into MLS as

assumptions1 , but they are not built into the ITP. Examples fol
low:

TYPE MLS_Label
CONSTANT SysHi, SysLo: MLS_Label,

dominates(MLS_Label,MLS_Label) :boolean

This is the minimum that must be specified if you want MLS to
produce flow conjectures. The type MLS_Label is
unspecified, as are labels SysHi and SysLo and the relation
dominates. The conjectures (1)-(5) will usually not be
provable unless they are included as axioms in the specification.

TYPE MLS_Label = (U, C, S, TS)
DEFINE SysHi == TS,

SysLo == tJ,
dominates(ll,l2:MLS_Label) == 11 >= 12

SysHi and SysLo are defined to be the greatest and least ele
ment, respectively, of type MLS_Label, and dominates is
defined by the ">=" operator. Since the ITP knows that ">="
is a partial order, conjectures (1)-(5) will be provable from this
type declaration and the three definitions.

3.1.3. Associating Labels with Variables and
Transforms

To permit the association of security la,bels with variables
and transforms, it was necessary to extend the syntax of the Ina
Jo language. In the following example, SysLo is a constant,
p is a formal parameter, and each of the other identifiers is a
variable.

CLEARANCE 	 Object @ Object_Level,
Object_Level @ SysLo,
Buffer(p) @ Proc_Level(p)

This declares Object to have (variable) security class
Object_Level, Object_Level to have (constant) secu
rity class SysLo, and Buffer (p) to have (variable) secu
rity class Proc_Level (p) (for all pin the proper domain).
Each of the expressions on the right side of the '@' must be a
Clearance_Expression, defined in [4].

3.2. Conjectures Generated

MLS generates a single flow conjecture for each transform
in a level. This conjecture is of the form

Criteria & Invariants & Effect
->

Secure(Flow1) & ... & Secure(Flown)

1 MLS does not presently make use of the transitive or anti-symmetric proper
ties of dominates.

If Flow. is the flow from Source. to Target. under con-
J 	 J . J

dition Cond ., then Secure (Flow.) is defined as
J 	 J

Condj -> 	 New_of(MLS_Label(Targetj))
dominates MLS_Label(Sourcej)

The MLS Label function takes a (variable or transform
parameter) name and returns a Clearance_Expression.
The New_of function takes a Clearance_Expression
and returns the same Clearance_Expression, with all
variable references replaced with N" variable references. If
any Target. or Source. does not have an associated label,

J J
then the conjecture generated for that transform will be
False, and all the flows for that transform will be listed, as in
[8].

In addition to the flow conjectures, MLS forces the user to
prove the assumptions (1)- (5) listed in section 3.1.2, to ensure
that the information built into MLS follows from the
specification_

4. The MLS Preprocessor

The Ina Jo language allows many forms of nondetermin
ism. We pointed out earlier (section 2.1) that whenever a state
transition is nondetemJinistic, the flow tool makes the conserva
tive (i.e., secure) assumption that an implementation may refer
ence (the image of) every state variable. Therefore, it is impor
tant that a specification intended for flow analysis be as deter
ministic as possible.

We have developed a preprocessor, henceforth called
PREMLS, which can be used to ensure that some forms of non
detemJinism do not appear in the specification seen by the Ina
Jo processor. PREMLS is invoked via a command-line flag to
the inajo command, and acts as a filter: it reads an Ina Jo
specification and produces a new, presumably more determinis
tic, specification. In the remainder of this section we discuss
PREMLS, and present guidelines for writing deterministic
specifications.

PREMLS makes deterministic specifications easier to write
(and read) by providing short-hand notation for certain expres

sion forms required by the Ina Jo semantics of No-change.2 The
user writes a nondeterministic Ina Jo specification, and
PREMLS tries to make the specification deterministic by aug
menting transform effects with No-change clauses, which assert
that some variables do not change under some conditions.
PREMLS performs two kinds of No-change augmentation often
regarded by Ina Jo users as tedious to do manually and unneces
sarily difficult to read. This augmentation occurs only in
transform effects. The rest of a specification will be unchanged.

Use of PREMLS is not required; PREMLS is merely a con
venience for specification writers unaccustomed to the Ina Jo

2 [6] and [9] both include discussions of Ina Jo No-change semantics, and ex
plain why the Ina Jo convention is preferable for formal specification to the "no
primed occurrence" convention of SPECIAL, even though the latter is more con
venient.

177

language. Any specification that could be presented to MLS via
PREMLS could also be presented to MLS directly, by writing a
deterministic specification in the first place.

4.1. Augmentation of Array Updates

Consider the effect

(1) N"A(x) = y

This is a nondeterministic specification of the new value of
state variable A. The above expression means:

(2) 	 A"i:Type-of-x (

N"A(i) = (i = x => y <> N"A(i)))

In English this says that, in the new state, the xth element of
variable A has a known value (namely, the old value of y), but
every other element of A has an unknown value. (N "A (i I =

N"A (i) is a standard Ina Jo way of indicating an unknown
value; all we know about N "A (i) is that it is equal to itself.)

It is often the case that a specification writer wishes to
indicate that a finite number of elements of a parameterized
variable may change, with all other elements unchanged. One
way of doing this is:

(3) 	 A"i:Type-of-x (

N"A(i) = (i = x => y <> A(i)))

The difference between (2) and (3) is that (3) specifies
N "A (i) = A (i) for all but the single element that is expli
citly changed. Therefore, (3) is entirely deterministic.

PREMLS expands expressions like (1) to the deterministic
form exemplified by (3). However, to avoid any confusion
about which semantics are expected by the specification writer,
PREMLS will perform this expansion only if the expression in
(1) is enclosed in brackets:

(4) [N"A(x) = y]

A specification could thus include both kinds of no-change
semantics. Expression (1) will not be expanded, and will be
interpreted by the flow tool as (2). Expression (4) will be
expanded to the deterministic expression (3).

We call these bracketed expressions array updates. Note
that the brackets are not part of the Ina Jo language, so a
specification that contains array updates must go through the
preprocessor before it can be submitted to the Ina Jo processor.
The general form of an array update and further examples are
presented in [4].

4.2. Augmentation of Conditionals

the state. The problem here is again that the semantics of no
change do not agree with this interpretation. Making the Ina Jo
meaning of this example explicit, we have

(10) 	 Exception_! => N"Error = El

& N"State = N"State

<> Exception_2 => N"Error = E2

& N"State = N"State

<>
<> N"State Some_expression

& N"Error 	= N"Error)

from which one can see that every case leaves some part of the
new state undefined. This may be the intention of the
specification writer, but giving such a specification to Ina Flo
would probably be a waste of time, because MLS would assume
that information flows from every state variable to State in
the Exception cases, and from every state variable to Error
in the final case.

The intent of (9) is more commonly

(11) 	 Exception_! => N"Error = El

& NC"(State)

<> Exception_2 => N"Error = E2

& NC" (State)

<>
<> N"State Some_expression

& NC" (Error))

PREMLS augments conditionals as necessary to change expres
sions like (9) into expressions like (11). In general, PREMLS
ensures that each branch of a particular conditional modifies the
same variables as every other branch of that conditional. This
is true for every conditional in every transform effect (but not
for conditionals in maps or constraints). PREMLS does not
ensure that every branch modifies the same elements of the
same variables; that is an unsolvable problem, so PREMLS
ignores parameters when augmenting conditional expressions.
For example, given the expression

(12) 	 Bl => N"W(a) 32

<> B2 => N"X(b) 33

<> N"V = 0)

PREMLS would produce

(13) 	 (Bl => N"W(a) = 32 & NC"(X,V)

<> B2 => N"X(b) = 33 & NC"(W,V)

<> N"V = 0 & NC"(W,X))

which is still nondeterministic. If the specification were instead

(14) 	 Bl => [N"W(a) 32]

<> B2 => [N"X(b) = 33]

<> N"V = 0)

then PREMLS would produce the deterministic specification An Ina Jo transform typically represents some system
(15) 	 Bl => A"i:Type_of_a (N"W(i) =function 	 that either performs a state changing action, or

(i =a=> 	32 <> W(i)))''returns'' an error code. For example, consider the effect
& NC" (X, V)

(9) 	 Exception_! => N"Error El <> B2 => 	 A"i:Type_of_b (N"X(i) =
<> Exception_2 => N"Error = 	E2 (i = b => 	 33 <> X(i)))
<> & NC" (W, V)
<> N"State 	= Some_expression) <> N"V = 0 & NC"(W,X))

We would like to be able to interpret this as saying that if any
error condition occurs, then signal the error, otherwise update

178

5. Summary

The Ina Flo flow tool is currently being used on at least
one internal and one external A1 [3] development project. We
expect the internal project to suggest improvements in the SRM
tool; one external project has already suggested numerous
improvements in the MLS tool, and we expect to continue
refining the MLS tool to make it more useful for A1 covert
channel analysis.

One area where improvements will be made is in handling
variable security labels. We believe MLS is now secure, but it
is too conservative, in that the conjectures it generates for vari
able labels are often much stronger than necessary to ensure
security. The appendix includes an example of this.

Acknowledgements

I am grateful to Deborah Cooper and Paul Eggert for
reviewing numerous drafts of this report, and to David Ellis,
Morrie Gasser, Sue Landauer and Roger Schell for helpful dis
cussions and comments about the MLS part of the flow tool.

References

[1] 	 Berry, D.M., "Towards a Formal Basis for the Formal
Development Method and the Ina Jo Specification
Language", IEEE Transactions on Software Engineer
ing, 13(2),February 1987.

[2] 	 Denning, D., "Cryptography and Data Security", pp.
265-278, Addison-Wesley, 1982.

[3] 	 Department of Defense, "Trusted Computer System
Evaluation Criteria", DoD 5200.28-SID, December
1985.

[4] 	 Eckmann, S., "Ina Flo User's Guide", TM
8416/000/00, Unisys Corporation, June 1987.

[5] 	 Feiertag, R.J., ''A Technique for Proving Specifications
are Multilevel Secure", Technical Report CSL109,
Computer Science Laboratory, SRI International, Janu
ary 1980.

[6] 	 Guttman, J.D., "The Ina Jo Specification Language: A
Critical Study", RADC-TR-86-47, Rome Air Develop
ment Center and the Mitre Corporation, July 1986.

[7] 	 Kemmerer, R., "Shared Resource Matrix Methodology:
An Approach to Identifying Storage and Timing Chan
nels", ACM Transactions on Computer Systems, 1(3),
August 1983, Pages 256-277.

[8] 	 Kramer, S., ''The MITRE Flow Table Generator
Volume 1", M83-31 Volume 1, The MITRE Corpora
tion, January 1983.

[9] 	 Platek, R. and D. Sutherland, "The Semantics of the
Feiertag MLS Information Flow Tool and its Impact on

Design Verification: Some SCOMP Examples", Odys
sey Research Associates, 1984.

[10] 	 Rushby, J., "The Security Model of Enhanced HDM",
Computer Science Laboratory, SRI International,
August 1984.

[11] 	 Scheid, J., S. Anderson, R. Martin, S. Holtsberg, "The
Ina Jo Specification Language Reference Manual
Release 1", TM 6021/001/02, System Development
Corporation, January 1986.

[12] 	 Scheid, J. and S. Holtsberg, "Ina Jo Definition", TM
7527/016/00, System Development Corporation, March
1986.

[13] 	 Smith, G. and D.V. Schorre, "The Interactive Theorem
Prover (ITP) User's Manual", TM 6889/000/06, System
Development Corporation, December 1986.

Appendix

The following table contains a summary of the less obvi
ous Ina Jo syntax used in the paper.

the notation ... means ...

A" for all
N" new value of

NC" (v) N"v=v
-> implies

(b=>s<>t) if b then s else t

The following example demonstrates input to and output
from the Ina Jo processor when the MLS option is selected. The
example specification (shown in figure 1) is written for
PREMLS - note the '[' and ']' brackets in some of the
transforms. Also note that the INHIBIT flag is used to
suppress the correctness and consistency conjectures ordinarily
produced by the Ina Jo processor.

Figure 1 is a specification of a simple resource manager
that uses the low water mark security policy.

Figure 1 - Example specification Iwm.ina

$TITLE Low Water Mark example for Ina Flo
SPECIFICATION Low_Water_Mark
LEVEL Top_Level MLS Inhibit

TYPE
t, /* this is the object type */
Process,
MLS Label

CONSTANT
dominates(MLS_Label, MLS_Label): Boolean,
SysLo, SysHi: MLS_Label,
Proc_Level(Process): MLS Label

179

VARIABLE
Object, Buffer(Process): t~
Curr_Proc: Process,
Object_Level: MLS_Label

CLEARANCE
Object @ Object_Level,
Buffer(p) @ Proc_Level(p),
Curr Proc @ SysLo,
Object_Level @ SysLo

AXIOM
A"lev: MLS Label (Dominates(lev,lev))

& A"lev: MLS Label (Dominates(SysHi,lev)
& A"lev: MLS Label (Dominates(lev,SysLo)
& A"ll,l2:MLS_Label (Dominates(ll,l2)

& Dominates(l2,11)
-> 11 = 12)

& A"ll,l2,13:MLS_Label (Dominates(ll,l2)

& Dominates(l2,13)

-> Dominates(ll,l3)

INITIAL
A"p: Process (Dominates(Object_Level,

Proc_Level (p))

CRITERION True

TRANSFORM Read
EFFECT

(Dominates(Proc_Level(Curr_Proc),
Object_Level)

=> [N"Buffer(Curr_Proc) =Object]
<> NC" (Buffer))

TRANSFORM Write
EFFECT

(Dominates(Object_Level,
Proc_Level(Curr_Proc))

=> N"Object_Level =
Proc_Level(Curr_Proc)

& N"Object = Buffer(Curr_Proc)
<> NC" (Object, Object_Level))

TRANSFORM Reset
EFFECT

(Dominates(Proc_Level(Curr_Proc),
Object_Level)

=> N"Object_Level = SysHi
<> NC" (Object_Level))

CLEARANCE
Read@ Proc_Level(Curr_Proc),
Write@ Proc_Level(Curr_Proc),
Reset @ Proc_Level(Curr_Proc)

END Top_Level
END Low Water Mark

The features of the specification in Figure 1 that we wish to
point out are

(1) 	 The flag MLS appears on the Level line. This causes
the Ina Jo processor to invoke MLS on level
Top_Level.

(2) 	 There are declarations for MLS_Label, Dominates, ,
SysHi and SysLo. Each of these names is built into
MLS, but not into the Ina Jo processor itself, so they must
be declared in the specification if they are to be used.

(3) 	 The label assigned to Buffer is a variable,
Proc Level. The implications of this are discussed
after figure 2.

(4) 	 The three assumptions built into MLS are explicitly
specified. If they were not, the corresponding conjectures
generated by MLS would (probably) not be provable. This
is a consistency check between MLS and the specification.

(5) 	 The clearance declarations for the three transforms are
superfluous, because none of the transforms has parame
ters. In general, a transform requires a clearance
specification only if it has parameters, because it is
through these parameters that information may flow from
the transform invoker to modified variables.

The next figure contains an abridged listing produced by

the command inajo -p lwm.3 The listing is unmodified, except
as noted.

Figure 2 - Listing of Iwm.ina

2-SPECIFICATION Low_Water_Mark

3-LEVEL Top_Level MLS Inhibit

4

many lines deleted

56
57-TRANSFORM Write
58
59-Effect
60- (Dominates(Object_Level,
61- Proc_Level(Curr_Proc))
62- => N" Object_Level
63- Proc_Level(Curr_Proc)
64- & N" Object Buffer (Curr_Proc)
65
66- <> NC"(Object,Object_Level)
67
68

3 The '-p' flag causes the Ina Jo processor to invoke the preptocessor on
lwm.ina, then use the output of the pteptOCessor as its input.

180

- -

many lines deleted

THEOREM FOR SysHi:

A" lev:MLS_Label(Dominates(SysHi, lev))

THEOREM FOR SysLo:

A" lev:MLS_Label(Dominates(lev, SysLo))

THEOREM FOR Dominates - reflexive:

A" lev:MLS_Label(Dominates(lev, lev))

THEOREM FOR Dominates - Antisymmetric:

A" levl, lev2:MLS_Label(
Dominates(levl, lev2)

& Dominates(lev2, levl)
-> levl lev2)

THEOREM FOR Dominates - Transitive:

A" levl, lev2, lev3:MLS_Label(
Dominates(levl, lev2)

& Dominates(lev2, lev3)
-> Dominates(levl, lev3))

Flow conjecture for Transform Read deleted

Flow Conjecture for Transform Write
C&I True
E & Dominates(Object_Level

Proc_Level(Curr_Proc))
=> N" Object_Level

Proc_Level(Curr_Proc)
& N" Object

Buffer(Curr_Proc)
<> N" Object Object

& N" Object_Level
Object_Level)

& N" Curr Proc Curr Proc
& A" #O:Process(

N" Buffer(#O) Buffer(#O))
Fl -> Dominates(Object_Level

Proc_Level(Curr_Proc))
& True

-> Dominates(N" Object_Level
Object_Level))

F2 & Dominates(Object_Level
Proc_Level(Curr_Proc))

& True
-> Dominates(N" Object_Level

Proc_Level(Curr_Proc)))

Flow Conjecture for Transform Reset
True

& Dominates(Proc_Level(Curr_Proc)
Object_Level)

=> N" Object_Level SysHi
<> N" Object_Level Object_Level)

& N" Curr Proc Curr Proc
& A" #O:Process(

N" Buffer (10) Buffer (#0))
& N" Object Object

-> Dominates(Proc_Level(Curr_Proc)
Object_Level)

& True
-> Dominates(N" Object_Level

Object_Level))

85-END Low Water Mark

The first five conjectures (called THEOREMS), for SysHi,
SysLo and Dominates, will be included in the listing and
itp file whenever MLS is invoked. In this case each of them is
proved either automatically by the ITP, or with a single instan
tiation command by the user. This is expected, since the con
jectures are stated in the specification as axioms.

The conjecture for transform Read is also proved
automatically, and is not shown in the Figure. The conjecture
for transform Reset is not proved automatically, but is easy
to prove with the ITP. Transform Write is troublesome,
because it downgrades Object (by changing
Object_Level). Recall the general form of a flow conjec
ture:

Criteria & Invariants & Effect

->

Secure(Flow
1

) & ... & Secure(Flown)

In the flow conjecture for transform Write in Figure 2, the
first line, marked C&I, is the conjunction of the criterion and
the (implicitly true) invariant. Beginning on the second line,
and marked E, is the augmented effect of transform Write.
Beginning on the line marked Fl is the security condition for
the first potential flow, and beginning on the line marked F2 is

that for the second potential flow.4

MLS ensures that no downgrades are allowed by requiring
proof that the new value of the (variable) label of the potentially
downgraded variable dominates the old value of that label.
This requirement is the source of Fl. Unfortunately, we can
not prove

dominates(N"Object_Level, Object_Level)

(unless Object_Leve1 = Proc_Leve1 (Curr_Proc)).

We can argue informally that the transform is secure, because

4 The markings associated with the flow conjecture for transform Write were
not generated by the flow tool; they were added for this paper.

181

the information in Object in the old state, at level
Object_Level, has been replaced in the new state with
information at level Proc_Level (Curr_Proc) (in the old
state), which is N"Object_Level.

This example points out that, although it is possible to use
variables as labels, MLS is overly conservative about them, in
the sense that some secure flows will not be provably secure
from the conjectures generated by MLS. We are working on
this problem.

182

A GYPSY VERIFIER'S ASSISTANT

Ben L. DiVito and Larry A. Johnson

TRW Defense Systems Group

One Space Park

Redondo Beach, CA 90278

Abstract

Current generation tools and techniques for formal
verification have inherent limitations that prevent
them from being applied on a larger scale. We de
scribe an IR&D effort underway at TRW to augment
the Gypsy Verification Environment (GVE) with a
knowledge-based "verifier's assistant." The result
ing methods and tools will support the construction
of deductive theories to extend the practical range
of today's formal verification tools. A prototype De
ductive Theory Manager (DTM) is being developed
to maintain appropriate knowledge bases and in
teract semi-automatically with the GVE. Candidate
knowledge bases are simultaneously under develop
ment.

Introduction

Formal verification is the primary distinguishing fea
ture of Division A requirements in the 'frusted Com
puter System Evaluation Criteria [1]. Obviously,
the National Computer Security Center (NCSC) at
taches considerable importance to formal methods
and the Al level of assurance. Al currently repre
sents the highest degree of trust recognized by NCSC
for multilevel modes of operation.

Substantial progress has been made in applying
formal methods to computer security over the last
fifteen years. A fair amount of success has been
achieved in developing secure operating systems and
verifying them to the Al level. To developers of
large scale, mission-oriented systems, however, in
formation security technology in general, and formal
verification technology in particular, is still lacking
in important areas. For systems designed to meet
the C2/Bl level of the Criteria, it can be argued
that sufficient technology exists for designing cost
effective systems. Nevertheless, it is clear that such
an argument cannot be made for systems designed

to operate in multilevel mode, that is, requiring a
'!rusted Computing Base (TCB) certified in the B2
Al range.

Formal specification and verification, whether to
meet computer security or any other requirements, is
one of the most challenging problems facing defense
system developers. Whereas verification of operat
ing system kernels has received widespread atten
tion, comparatively little work has gone into other
aspects of trusted system verification. Formal verifi
cation of trusted applications software, for instance,
is largely an unexplored area. It differs considerably
from operating system verification efforts where the
goal is usually to prove that some well defined se
curity model properties hold. In contrast, verifica
tion of applications software involves proving that
derived security properties hold. These properties
tend to be complex statements of functional behav
ior and involve much more effort to synthesize and
prove than, for example, an information flow prop
erty. Current generation verification methods and
tools are ill-equipped to cope with the volume and
complexity of proofs that are likely to result from a
large mass of trusted applications software.

The Gypsy Verification Environment (GVE) [2]
is the most commonly used of the NCSC-endorsed
formal verification tools for computer or network se
curity. A prime attraction of GVE and the Gypsy
language are their applicability to a broad range of
tasks:

• 	 Formal statement of security models

• 	 Representation offormal top-level specifications
for TCBs

• 	 Formal description of system designs (i.e., a pro
gram design language) ·

• 	 Proof of the preservation of a secure state in
security models

183

• 	 Proof that an FTLS comp1ies with security
model requirements

• 	 Proof that the high-level language implementa
tion code satisfies an FTLS

We consider GVE to be the best available method
ology of its kind. Nevertheless, in spite of GVE's
strengths, the practice of formal verification remains
a very demanding engineering discipline. Limita
tions of even the best available tools and techniques
render their application to real system designs ar
duous. Chief among the current GVE limitations is
that proofs require too much user interaction and
direction, especially for proofs of concurrent sys
tems. As a result, considerable GVE experience and
theorem proving knowledge is required to carry out
proofs effectively. Such weaknesses tend to become
magnified by the scale factor; as problem complexity
grows, using the GVE prover successfully becomes
much more difficult.

TRW is addressing these problems as part of
our Multilevel Applications Security Technology
{MAST) !R&D project. A major portion of this
project is devoted to the problems of formal verifica
tion for systems of nontrivial size. The remainder of
the paper introduces our overall approach to solving
these problems. This work is still in its preliminary
stages and we anticipate its continuation through
1988.

Objective

Our goal is to advance formal verification technol
ogy to better support large scale verification efforts.
We have devised a technique to enable verifiers to
build deductive theories for particular domains of
interest. The objective is to be able to manage effi
ciently the complexity of large scale proofs through
knowledge-based augmentations of existing verifica
tion systems, GVE in partiCular. Our ultimate goal
is to be able to support the design proof {Al level
of assurance) required for lOOK lines of trusted ap
plications software.

More specifically, our objective is to develop a tool
that can be used in conjunction with GVE to push
the practical limits of formal verification technology.
The tool and its associated knowledge bases will sup
port model verification required at the B levels of
assurance, and formal demonstration of the corre
spondence of the formal top-level specification to the
model at the Allevel.

Achieving efficient proofs requires structuring
them into subproofs and handling each one inde
pendently. Lemmas are the mechanism to achieve
this structuring; their use is an application of the
classical divide-and-conquer technique for problem •
solving. Lemmas are already supported by the GVE
in a rudimentary fashion. In addition, other types
of user-directed theorem proving operations are pro
vided by the GVE to control proof complexity, in
cluding expansion of function definitions, equality
substitutions, and instantiation of variables.

While use of these basic features within GVE is
simple and straight forward, it is overly burden
some for a user to keep track of all definitions and
lemmas, and to know when to make use of them
during a proof. Having additional automated sup
port for GVE proofs would greatly extend the range
of formal verification technology. It would permit
more realistic secure system formal top level speci
fications and would improve the practicality of code
level proofs.

With the capability described herein, applications
verifiers could easily build up bodies of deductive
knowledge specific to their particular domains of dis
course. This would be of value during both the speci
fication and verification phases. Domains relevant to
TRW's Al-level specification and verification work
are being investigated for their applicability to this
approach.

To summarize our overall objective for this effort,
we list the following major goals of our proposed
tools and techniques:

• 	 Extend basic formal verification technology

• 	 Enable verification of large amounts of trusted
software

• 	 Promote reusable verification concepts and re
sults

• 	 Make verification technology more accessible to
less sophisticated users

Accomplishing these goals will lead to a significant
advance in the technology for developing Al sys
tems.

Approach Overview

Our approach is based on the introduction of an
automated tool that can be thought of as a veri
fier's assistant. Its purpose is to augment the theo
rem proving capabilities of the GVE with problem
oriented proof heuristics. We refer to this tool as a

184

Deductive
User Theory

Manager

Gypsy Verification Environment

Figure 1: The verifier's assistant.

Deductive Theory Manager (DTM). Figure 1 depicts
the high level architecture of the composite verifica
tion environment that results.

In this architecture, the DTM plays the concep
tual role of a smart user that draws upon a copious
body of theorem proving knowledge. This knowl
edge and associated heuristics are used to supple
ment the user's own knowledge of the problem and
skills at proving theorems. It is important to em
phasize that the DTM does not replace the user;
the user is still ultimately responsible for directing
and understanding the proof process. What we ex
pect, however, is that the combined team of user,
DTM, and GVE will be much more effective at ver
ification than a user and GVE alon~. The DTM is
designed to operate at an intermediate level of detail
with respect to verification problem solving. Thus,
the GVE continues to be concerned with low level
details as the "verification engine," but now we are
able to raise the user to a higher level of abstraction,
freeing him to worry about more global issues in the
overall verification problem.

The DTM itself relies on knowledge-based tech
niques for its implementation. In particular, we
are basing our effort on the ~nowledge Engineering
Environment (KEE) tools developed by IntelliCorp
[3]. KEE is a commercially available software prod
uct for implementing expert systems and knowledge
based components. We will use KEE to realize our
DTM concept and maintain the various knowledge
bases needed to support formal verification activi
ties.

In Figure 1, we show three separate interfaces be
tween the various entities. The user-GVE interface
is the same as it normally is, except for a slight ex
tension of the user commands to support user-to
DTM requests. In the normal "on-line" use of our

configuration, the user carries out proofs via com
mands to the GVE. When requested to get help
from the DTM, the GVE will interact with it via the
GVE-DTM interface. The user only communicates
directly with the DTM in an "off-line" mode for the
purpose of building and maintaining the knowledge
bases.

To illustrate the type of interaction proposed for
the user-DTM-GVE team, consider the following
scenario for conducting a proof.

• 	 Suppose a user is trying to prove a theorem of
the form

H1 1\ ... 1\ Hn =>C.

• 	 Assume a knowledge base has been built (pre
viously proven lemmas and heuristics for GVE
theorem proving) and that information about
the theorem has been supplied by GVE (cur
rent goal, types, function definitions, lemmas,
etc.).

• 	 The user issues a command to the GVE to
request assistance from the DTM (through a
Deduce command). A typical DTM response
would be to return a set of actions resulting
from matching a particular ·set of rule condi
tions in the knowledge bases.

• 	 The GVE performs the indicated actions by ma
nipulating the Hi or C as appropriate.

The actions that can be prescribed by the DTM in
clude all the inference rules normally available to an
ordinary user through prover commands.

The .work to be completed in 1987 is as follows:

• 	 Development of the theoretical methods re
quired to support a deductive theory manager.

• 	 Implementation of an interface from the GVE
to the DTM package using KEE to allow them
to execute cooperatively on the Symbolics Lisp
Machines.

• 	 Development of several preliminary knowledge
bases.

• 	 Construction of a prototype of the DTM soft-.
ware.

• 	 Evaluation of the effectiveness of the DTM
on proofs developed on other TRW projects.
Specifically, the number of interactive user steps
will be compared with and without the DTM.

185

Methodology

The following sections summarize the essential con
cepts of our composite verification methodology.

Deductive Theories

Formal verification is an application of mathematical
logic. A logician's concept of theory is a set of valid
formulas, that is, formulas that are either axioms
or can be proved from the axioms and previously
proved theorems. In the jargon of ordinary mathe
matics, a theory would include axioms, definitions,
and theorems. Our concept of deductive theory in
cludes the conventional logical concept of theory, in
the context of the Gypsy language, but also extends
it by including heuristics for GVE theorem proving.
Thus, a deductive theory contains axioms, theorems,
and meta-information for proving new theorems.

The importance of deductive theories is that by
gradually developing a theory and storing it in a
knowledge-base, an increasingly more powerful set
of facts is available for constructing new proofs in
the future. The effort to prove complex theorems
is greatly reduced in the presence of a rich body of
previously proven theorems. In the absence of such
knowledge, proofs must be derived from first prin
ciples, which will undoubtedly require much more
work to complete. A well organized theory, on
the other hand, allows for reuse of previous effort
and provides the obvious economies. Good [4] has
claimed that the development of reusable theories is
a vital part of making formal verification practical
for realistic applications.

Our approach recognizes the importance of build
ing, maintaining, and using deductive theories in the
verification process. We are pursuing a knowledge
based implementation to capture deductive theo
ries and organize the knowledge in maximally use
ful ways. Emphasis will be placed on organizations
for efficient search and retrieval of relevant informa
tion at suitable points in a proof. We see the use of
deductive theories as one of the few practical, near
term ways to make verification technology "scale up"
to the level of realistic system sizes.

It is useful to think of deductive theories as being
organized into natural hierarchies. We see the need
to support four distinct layers of theories and their
corresponding knowledge bases.

1. 	The lowest level theory contains general knowl
edge relevant to virtually all G VE proofs. Typ
ically this would involve properties of the pre

defined Gypsy types and operators (those prop
erties not already provided by GVE itself).

2. 	 Domain specific theories include special infor
mation related to broad classes of applica
tions (e.g., operating systems, database man
agement).

3. 	 The next layer is project specific. It contains
information related to the particular approach
and architecture of a single application.

4. 	 A fourth theory is strictly personal. It enables
a user to define rules that are helpful to him,
but may not be useful to another person's style
of specification and proof.

Verification Strategy

The introduction of deductive theories and their au
tomated support permits new ways of organizing
effort on large projects. In particular, deductive
theories allow for a very effective division of labor
based on the relative verification skills of project
members. We can draw an analogy between veri
fication and software development. It is customary
to divide software development efforts into two ma
jor types: systems software and applications soft
ware. The systems programmers build a base for
the applications programmers to utilize. Likewise,
verification effort could be divided into two types:
the development of common-use deductive theories
by one group, and the verification of applications by
another, which makes use of the theories developed
by the first group.

Thi~ division of labor allows us to take maximum
advantage of those with the better verification skills.
In general, it takes more skill to "design and imple
ment" a deductive theory than it does to make use of
one to prove properties of an application. Therefore,
by dedicating the more experienced verification tal
ent to theory development efforts, we can maximize
the utilization of scarce human resources.

Proof Tactics

The GVE theorem prover accommodates several dif
ferent tactics for carrying out proofs. There are ap
proximately 20 major inference rules that can be in
voked by a user; the DTM will likewise be able to
invoke these same inference rules. It is up to the the
ory developer and knowledge-base designer to define
the KEE rules so that these commands will be in
voked at the appropriate times.

186

Two of the GVE commands and associated proof
tactics are especially important and worthy of men
tion. Assume we are trying to prove a theorem of
the form

H1!1. ... II.Hn =>G.

The use and claim inference rules together with
other information allow the prover's attention to be
directed to very specific goals.

Use

This command takes an instance of a Gypsy lemma
L and adds it to the current goal as an extra hy
pothesis:

LII.H1!1. •.. 11.Hn => 0

The DTM would use a lemma drawn from one of
its knowledge bases. The lemma would be a pre
viously proven fact that had been duly recorded in
the GVE's database. Typically, the prover would
be directed to Proceed after this point to continue
with the GVE's own proof heuristics. Alternatively,
additional DTM-supplied commands might form the
proof continuation. ·

Claim

This command introduces a new boolean-valued ex
pression Q as a formula that is claimed to follow from
the hypotheses. Two new cases must be proved as a
result:

H111. ... 11.Hn => Q

H111. •.. II. Hn II. Q => 0

The first shows that the claim Q is valid and the
second that Q can be used to prove the original con
clusion. A useful special case occurs when Q has
the form P => 0 and P follows automatically from
the hypotheses. This makes the proof of the original
conclusion from the claim trivial and leaves the real
work in trying to establish the validity of the claim.
It is thus a convenient way for the DTM to derive
lemmas "on-the-fly" when a suitable one does not
already exist. Note that this technique constitutes a
form of backward chaining, although claim could be
used to achieve forward chaining as well. Similarly,
the use command could be used to achieve either
forward or backward chaining.

Specification Style

In order to make the DTM approach more tractable,
we should refrain from allowing just any syntacti
cally and semantically correct piece of Gypsy specifi
cation to be used. Instead, theory developers should

!unction secure_state
(s: protection_state): boolean=

begin
exit (assume result i!!

simple_security_property(s)

t star_property(s)

t discretionary_security_property(s));

end;

Figure 2: Sample security model definition.

adopt and prescribe a style for writing specifications
that facilitates subsequent analysis by the DTM us
ing their theories. The specific style chosen is not
nearly as important as the fact that one is adopted.
This permits the DTM to make simplifying assump
tions concerning the form of expressions, bodies of
function definitions, etc. Coordinating the specifica
tion writing conventions with the proof strategy will
yield significantly better results in the long run.

Examples of styles we are adopting are illustrated
in Figures 2 and 3. These are based on a Gypsy
rendition of the Bell-LaPadula security model [5].
Key features of the get-read specification style are
its state parameter, exception condition parameter,
conditional exit assertion, and encapsulation of con
ditions in the function valid.get-read. Figure 4 ab
stracts the general form of this specification style.
If the DTM and its knowledge bases can assume a
similar structure in all associated operations, they
can make use of more efficient rules tailored to the
general style.

Verification Condition Schemas

In the same interest of tractability, we will also make
the DTM cognizant of the forms that verification
conditions (VCs) will take. For many computer se
curity applications, such as proving that operations
are security preserving, the VCs will occur in a small
number of special forms. For example, the case of
proving that an operation is security preserving has
the following general form:

Figure 5 shows this form in an actual VC. By insist
ing that specifications for each operation be written
in the same way, the VCs for all the operations will
have the same form. This greatly facilitates the work
of knowledge-base designers.

187

procedure get_read
(a: 	subject; o: object;
var pa: protection_atate;
var dec: rule_deciaion)

begin
exit it valid_get_read(a, o, pa')

then dec ~ granted
~ pa = pa' with

(. b : "' pa • . b < :
acceaa(a, o, read))

alae dec= denied~ pa = pa'
ti;

end;

function valid_get_read
(a: 	subject; o: object;
pa: protection_atate): boolean=

begin
exit (assume result itt

(privileged(a,
diacretionary_exemption)

or pa . m [a , o, r·ead])
~ dominates (pa .fa [a] ..sec,

pa.to[o].aec)
~ (privileged(&,

aecurity_atar_exemption)
or dominatea(pa.tc[a] .sec,

pa.to[o] .sec)));
end;

Figure 3: Sample Gypsy specification.

procedure P (. . .
var a: state;
var e: exception)

begin
exit it valid_P(...)

then e = OK
~a z a' with .)

elSe e • error t a = s'
ti;

end;

function valid_P (.
a: state): boolean=

begin
exit (assume result itt

<boolean expression>);
end;

Figure 4: General specification form.

Verification condition RULE_MACHINE_B#4
H1: RULE (NS) = R1
H2: SECURE_STATE (PS)
H3: VALID_GET_READ (SUBJ (NS),

OBJ (NS),
PS)

-> PS with (
.B := PS.B

C [seq: ACCESS (SUBJ (NS),
OBJ (NS),
READ)])

= PS#1 ~ D#1 = GRANTED
H4: not VALID_GET_READ (SUBJ (NS),

OBJ (NS),
PS)

-> D#1 = DENIED ~ PS = PS#1
-->

C1: SECURE_STATE (PS#1)

Figure 5: Sample verification condition (VC).

Generics

Some of the key advantages of the DTM are that
it will enable the user to develop more generic the
orems or rules than possible within GVE. For ex
ample, in GVE a lemma about some property of
sequences must state the specific type of element in
the sequence. If the theorem is to hold for fifteen
types of elements, fifteen lemmas are required. In
DTM, a single rule using a generic type will provide
an expression of the concept in terms of all possible
element types. When used in a specific proof, the
DTM can instantiate a generic lemma to provide
GVE with the specific lemma name for the appro
priate' element type.

Similar generic capabilities are being investigated
for functions as well as types. Such capabilities
would enable the expression of lemmas in which
functions referenced within the lemmas are parame
ters that get instantiated with actual function names
when invoked. This would allow expressions of,
for example, transitivity for sets of functions rather
than requiring individual rules or lemmas for each
case. There are significant theoretical issues, how
ever, to be resolved before this concept can be :rn
ployed. This is an area undergoing further study.

Relation to Automated Theorem
Proving

Part of the motivation for introducing the DTM con
cept is to provide an automated lemma search capa

188

bility. There are other mechanical theorem prov
ing systems that provide such features. The Royer
Moore theorem prover [6], for example, has a very
useful facility for storing and retrieving previously
proven lemmas. Lemmas in this system have the
form of conditional rewrite rules:

C1 1\ .•• 1\ Cn => LHS = RHS

Automatic application of the rules proceeds by first
attempting to unify the left-hand-side (LHS) with a
term in the formula. After successful unification, the
conditions (C1 , •.• ,Cn) are established in backward
chaining fashion to determine whether the rewrite
should take place. There is no way to be any more
selective than this in the application of lemmas.

The AFFIRM system [7] also has a very elegant
method of automatically applying rewrite rules to
a formula. In AFFIRM, however, rewrite rules are
unconditional. Hence, there is even less control over
the application of rules. This has significant limi
tations when trying to solve more general problems
than operations on abstractdata types, which is AF
FIRM's primary domain.

Both of these examples represent systems that do
an admirable job of supporting reusable deductive .
theories. However, a good deal more control over
the application of lemmas is required when dealing
with deep and complex proofs. The widespread cov
erage attempted by term rewriting systems is effec
tive when proofs are shallow, but they tend to be
come overwhelmed when attempting proofs requir
ing deeper penetration.

In this area, we feel the DTM approach offers an
advantage for complex proofs. Using DTM, it is pos
sible to define very selective conditions on lemma
invocation and thereby channel proofs using highly
directed forms of heuristic knowledge. Rather that
attempting broad coverage through rewriting, for
which GVE would be inappropriate anyway, the
DTM concept allows .proof guidance that is much
more context sensitive. This will lead to fewer
lemma invocations, at the. expense of more compu
tation to determine what to apply. Nevertheless, we
feel this is the correct tradeoff to be making with a
system of the sort that GVE represents. It allows
more of the verification analyst's skill to be encoded
into the knowledge bases and relies less on brute
force coverage principles.

Prototype Implementation

TRW is currently engaged in developing a prototype
of the DTM concept to assess and demonstrate its
feasibility. Following is a description of the imple
mentation features.

DTM Design

TRW's DTM prototype is hosted on Symbolics Lisp
Machines. The DTM acts as an advisor and helper
for the user doing proofs. Figure 6 shows the re
lationship of the user to both the GVE and the
DTM. We expect that there will be multiple knowl
edge bases used simultaneously. In fact, the proto
type supports the simultaneous use of four knowl
edge bases in keeping with the previous description
of four layers of deductive theories.

TRW's DTM design enables the user to perform
proofs in any manner he desires with or without its
help. If a user wishes the help of the DTM, he makes
his request through the following added GVE prover
commands:

• 	Advise. The user is provided with a list of
recommended steps to be requested of GVE.

• 	 Deduce. The DTM determines the same set of
recommended steps as with the Advise option
and proceeds to feed the requests automatically
to the GVE.

In the Advise option, no actual steps are taken
in the proof of the verification condition or lemma.
In the Deduce option~ however, the proof steps are
performed. It may turn out that the user does not
want the particular steps taken by the DTM. In this
case, the user still has all of the standard GVE re
covery options available, including the capability to
back up (erase) one or more proof steps.

For the prototype DTM, TRW is combining GVE
with one of the commercially available expert sys
tem tools: KEE by IntelliCorp. KEE will enable
us to establish a prototype within a short period of
time without spending time building inference en
gines and knowledge maintenance capabilities. Fur
thermore, KEE offers sophisticated front-end graph
ics to provide a very efficient user interface to the
DTM knowledge bases.

For this application, the GVE has to be extended
only to request the DTM to provide advice or de
duction. The information provided by GVE to the.
DTM is only theorem status information (e.g., cur
rent theorem, data types, function definitions, and

189

User r User
(on-line) (off-line)

GVE Commands, Proof Heuristics,
Responses Theory Organization

Proof Status, Gypsy Units

Gypsy Deductive
Verification Theory

Environment GVE Commands Manager

GVE DTM t-
Knowledge t-

Database f-
Base

Figure 6: Deductive Theory Manager Architecture.

lemmas). The DTM only reads this information; it
does not directly modify it or add to it. A set of
Lisp interface functions has been introduced to re
trieve information from GVE's internal database for
use by the KEE rules.

Similarity Function

One of the central features required to make the
DTM work is the ability to determine the similar
ity between expressions. A similarity function has
been defined which computes the similarity between
two predicates. It can be used, for example, to com
pare a hypothesis to the conclusion or to compare
the consequent of an implication type of hypothesis
with the conclusion.

The function works on expressions represented in
Gypsy internal format; all symbolic operations are
represented in prefix format. The function returns
the number of similarities and the number of dif~
ferences. All differences are returned in the form
of pairs indicating the symbolic differences. By re
turning the actual differences, the differences can be
further reduced by utilizing additional information
contained in other hypotheses or by use of instanti
ations if Gypsy Skolem variables are present.

Knowledge Base Design

A KEE knowledge base contains a set of rules that
constitute rules-of-thumb or heuristics for guiding
the GVE theorem proving process. The actions of a
rule form a set of GVE user level commands to be
performed. A few of the simpler rules we envision for
the DTM are shown in Figure 7 using the syntax of
KEE. The actions are either displayed for the user as
advice or sent automatically to the GVE, depending
on the user's command choice.

The first rule in the figure states that if there is
an equality in one of the hypotheses, it will be used
to make a substitution. For example, consider the
following theorem:

P(x, /(y)) /\ y = z => P(x, f(z))

By making the substitution of z for y, it is clear that
the first hypothesis will unify with the conclusion to
complete the proof. A more selective version of this
rule having additional conditions for triggering the
substitutions would be more desirable in practice.

The second rule states that if the conclusion of the
theorem refers to a function that is not mentioned in
any of the hypotheses, the definition of the function
is necessary to continue the proof. In GVE terms
this generally means the function must be expanded.
The case of nonexpandable Gypsy functions will also
be considered.

The third rule provides a simple mechanism for

190

(IF 	(the hypothesis of DTM is ?Hyp)
(Lisp (Equality ?Hyp))
(?H-Num = (Get-Num ?Hyp))
THEN DO
(GVE EqSub ?H-Num))

(IF 	(the conclusion of DTM is ?Cncl)
(?Hyps = (Get-Hyps))
(?Func = (Find-Ftinc ?Cncl))
(Lisp (Not-In ?Func ?Hyps))
(Lisp (Find-Func ?Func))
THEN DO
(GVE Expand ?Func))

(IF (?Hyps = (Get-Hyps))
(the conclusion of DTM is ?Cncl)
(the lemma of DTM is ?Lemma)
(?LCncl = (Get-Cncl ?Lemma))
(?LHyps = (Get-Hyps ?Lemma))
(?Diff = (Similar ?Cncl ?LCncl))
(Lisp (Make-Equal ?Cncl ?LCncl))
THEN DO
(GVE Use ?Lemma))

(IF 	(the conclusion of DTM is ?Cncl)
(Lisp (Buf-Sequence ?Cncl))
(?Hyps (Get-Hyps))
(?OBuf = (GOBuf ?Cncl))
(?IBuf = (GIBuf ?Cncl))
(?TOBuf (GBuf ?IBuf ?Hyps))
(?TIBuf = (GBuf ?OBuf ?Hyps))
THEN DO
(GVE Claim

?TOBuf sub ?IBuf and
?OBuf sub ?TIBuf

-> ?OBuf sub ?IBuf))

Figure 7: Example theorem proving rules.

applying lemmas that have been defined in the
Gypsy application. Even though the lemmas are
within the Gypsy database, the GVE theorem prover
is not aware of their existence until the theorem
prover user identifies the applicability of a lemma.
The user introduces a lemma into the current proof
by the command use lemma-name. DTM rules can
help automate the process of identifying applicable
lemmas as is shown by the third example rule. The
use of the SIMILAR function during a search will lo
cate a lemma with a conclusion similar to the current
goal. Once found, the MAKE-EQUAL function at

tempts to make the two expressions equal by making
appropriate instantiations of any Skolem variables.

The fourth rule is much more complex. It ad
dresses a common type of problem encountered in
proving properties of concurrent systems. If, for ex
ample, one wishes to show that security is main
tained as a message flows through a system con
sisting of multiple processes, it must be shown that
security is maintained as it flows through each of
the individual processes. This fourth rule accom
modates such a proof by setting up the steps for a
transitivity argument. '

The DTM rules will be designed to complement
GVE's capabilities. GVE already has some built-in
heuristics, the effects of which can be seen when the
user issues the Proceed or QED prover commands.
The DTM will synthesize higher level proof heuris
tics by combining sequences of ordinary GVE prover
commands.

Tool Endorsement Issues

One of the key features of the TRW approach is the
use of a technique that will provide the functional
ity of proof heuristics while, at the same time, not
affect the soundness of proofs. The DTM is only
useful if the final proofs are performed with tools
endorsed by the NCSC. Recall that the DTM inter
face to GVE is logically equivalent to that of a smart
user. Consequently, the only information fed to the
GVE are standard GVE theorem proving commands
that the real user could have typed if he were able
to think of them. There is no direct modification of
the proof tree, or any other internal GVE data struc
tures, by the DTM. Therefore, the GVE remains to
tally r~sponsible for ensuring soundness, just as it
does when an ordinary user is entering commands.

Due to this partitioning of GVE and DTM en
vironments, we claim that the DTM should not be
subject to NCSC endorsement. The NCSC or any
other certification authority could validate proofs
performed under a GVE-DTM configuration quite
easily. All that is required is to capture the DTM
generated prover commands and merge them with
the user-generated commands. Then a replay of the
proofs on a conventional G VE system that has not
been outfitted with a DTM should suffice to estab
lish the validity of the proofs. Our DTM design will
contain the features necessary to support such a val
idation activity.

A further advantage of our DTM approach with
respect to GVE integrity is that its knowledge base
is extensible by the user. Thus, automating new

191

proof heuristics does not require modifications to the
GVE itself, with all the attendant ramifications on
NCSC tool endorsement. One need only add the
appropriate rules to the DTM knowledge bases.

Development Status

The GVE and KEE systems have been integrated
under the Symbolics 6.1 operating system version.
The GVE uses Zetalisp and the Lisp functions called
directly by the DTM rules are in Common Lisp (sup
ported by KEE). The design places GVE in control
with the DTM as a supporting function. The user
invokes DTM to provide advice or automatic proof
support. The only required change to GVE was to
extend the GVE theorem prover grammar to sup
port the two new commands. The DTM function
calls provide a copy of the current goal by copying
the expression from a local GVE variable to a global
variable accessible by KEE. Several functions had
to be written to extract the type definitions, func
tion definitions, and lemmas contained in the GVE
database.

The major effort in the DTM implementation is
found in the development of a set of primitive func
tions that facilitate manipulation of the GVE sym
bolic expressions. KEE is best suited for reasoning
about objects which either have no internal struc
ture or are readily represented as structures of fixed
composition (e.g., an object has weight, size, color).
While KEE poses some difficulties in the manipula
tion of symbolic expressions, it offers some advan
tages in terms of tracing the reasoning process. It
has a full set of tools that allow the tracing of both
the forward and backward chaining process.

Most of the early work has been in the develop
. ment of rules that can be applied whenever the nec
essary preconditions of the rules are satisfied. The
focus of the future work is on extending DTM to
be more of a planning process. Our objective is
to have DTM determine a series of GVE theorem
prover steps that will complete the proof for a theo
rem. The DTM will proceed forward as long as it can
make progress. It will backup whenever progress is
not possible and consider alternative strategies. One
of the difficulties is that the DTM must be able to
compute the effect of the application of each of the
Gypsy theorem prover commands. For commands
like BACKCHAIN, it is fairly simple. For commands
like SIMPLIFY, it is much more difficult. One of the
possibilities being explored is to use the GVE Sim
plifier..

Conclusion

TRW has developed a novel concept to enhance for
mal verification technology. We expect that the full
elaboration of the DTM approach will lead to a sub
stantial advance in verification capability. The pri
mary benefit of this work is an increase in the effec
tive range of applicability of Gypsy-based verifica
tion efforts. This should make feasible A1 develop
ment efforts that currently are considered impracti
cal due to the potentially large amount of trusted
software required.

Our plans are to continue developing and evalu
ating our DTM prototype during 1987. An official
GVE-to-DTM interface is planned by employing the
services of Computational Logic, Inc. In 1988, we
expect to refine our DTM design based on what
is learned in 1987. In addition, we will focus on
the serious development of knowledge bases for var
ious problem· domains and assess the gains realized
through the addition of a DTM capabilitY.

References

1. 	 National Computer Security Center, "Depart
ment of Defense 'frusted Computer System
Evaluation Criteria," DoD 5200.28-STD, De
cember 1985.

2. 	 D. I. Good, B. L. DiVito, and M. K. Smith,
"Using the Gypsy Methodology," Institute for
Computing Science, University of Texas at
Austin, June 1984.

3. 	 IntelliCorp, "KEE, Software Development Sys
tem. User's Manual," Version 3.0, 1986.

4. 	 D. I. Good, "Reusable Problem Domain Theo
ries," Technical Report 31, Institute for Com
puting Science, University of Texas at Austin,
September 1982.

5. 	 D. E. Bell and L. J. LaPadula, "Secure Com
puter System: Unified Exposition and Multics
Interpretation," Technical Report ESD-TR-75
306, Mitre Corporation, Bedford, Mass., March
1976.

6. 	 R. S. Boyer and J S. Moore, A Computational
Logic, Academic Press, New York, 1979.

7. 	 S. L. Gerhart, et al, "An Overview of AFFIRM:
A Specification and Verification System," Pro
ceedings IFIP 80, October 1980.

192

Formal Models, Bell and LaPadula, and Gypsy

Tad Taylor

Bret Hartman

Research Triangle Institute
P.O. Box 12194
RTP, NO 27709

ABSTRACT

An approach for developing formal security models is presented. It is
accompani:d by a technique for expressing and proving models in Gypsy. The
appwach IS adapted and generalized from the Bell and LaPadula model as
pre~ented in Secure Computer System: Unified Exposition and Multics Inter~re
tatzon.

1. INTRODUCTION

The Trusted Computer System Evaluation Criteria [Criteria]
requires class B2 or higher systems to have "A formal model of
the security policy supported by the TCB... " There has been
uncertainty concerning how efforts to meet this requirement
could be meaningfully and productively incorporated into a sys
tem development effort, and little has been said about the practi
cal application of existing modeling concepts. Furthermore,
minimal guidance exists for integrating existing formal specifica
tion and verification technology with the task of developing these
formal models. It is our hope that this paper will shed some light
on these issues.

For those who would rather apply existing formal verifica
tion technology than develop it, a technique for expressing and
proving models in Gypsy and an approach for developing a gen
eral class of formal models is presented. The approach is derived
and adapted from [Bell76] and involves expressing a system's
functionality and desired security properties in a state machine
format. By adapting the existing Bell and LaPadula format, we
inherit the concept of a secure system being a sequence of secure
states (with important caveats to be mentioned later), the basic
security theorem, and the concept of rules of operation (but not
the particular rules described in [Bell76]).

Bell and LaPadula has been subjected to the "social pro
cess" within the formal verification community for many years.
Although this scrutiny has identified shortcomings (e.g. - see
[McLean87]), much of the basic framework of the model is still
attractive. By adapting Bell and LaPadula, our approach has the
important advantage of being expressed in terms already familiar
to our audience.

Experience has also shown that Bell and LaPadula is not
appropriate for all formal security modeling efforts. Likewise, we
are not claiming that our adaptation is universal or is the final
word. in formal modeling. However, we have attempted to gen
eralize our approach so that a larger class of systems can be
modeled.

Section 2 of this paper describes the goals f~r our approach.
Section 3 presents a high level view of the modeling techniques.
Finally, Section 4 gives a detailed example of a Gypsy model in
the context of a message filter application. The discussions
assume that the reader has a general familiarity with the Bell and
LaPadula model as described in [Bell76] and, to a lesser extent,

with the Gypsy language [Good84].

2. MODEL FEATURES

To fully appreciate this approach, it is necessary to under
stand what we hope to accomplish by developing a model and
what benefits we think the process can provide. The model
should not be thought of as a more abstract FTLS (Formal Top
Level Specification). The model is more than that and we feel
there is an advantage in treating the development of the model
separately from the development of the FTLS. Formal modeling
can be an effective method for developing the formalisms that will
be used to prove the FTLS.

The clear and accurate presentation of system properties is
a model's most important objective. Unfortunately, no approach
can directly aid the model developer in this process. However,
our approach has many of the details worked out for the basic
framework and allows a group to concentrate on the issues
related to their specific problem.

The modeling process should accomplish more than this
basic requirement. A point often overlooked is that the process of
developing and writing a model should provide insight into how
security requirements integrate with system functionality.
Understanding this relationship is imperative. This is especially
useful (if not critical) when the requirements and functionality
have been defined by a group separate from the system develop
ers.

In the "best of all possible worlds", models are written in
the initial stages of a system's development, when design or archi
tecture decisions are not yet made or are very, very tentative. To
avoid changing and reproving the model to accommodate fluid
designs, the model should be isolated from the architecture and
specifics of the implementation. This practice can represent a
substantial reduction in modeling effort. A second reason for iso
lating the model is to avoid placing unnecessary constraints on
the eventual implementation. The notion of "unnecessary con
straints" is somewhat nebulous, but in general, the model should
deal with requirements, not. design. A state machine approach
satisfies this need quite naturally.

193

3. A TECHNIQUE AND APPROACH FOR MODELING

This section presents a high level description of an approach
for developing formal models. Because of the approach's general
ity and the variety of situations for which it is applicable, it is
not possible to present a detailed series of steps to tell the
developer how to build a formal model. An example is more
appropriate, since it can give further insight into our approach.
Section 4 presents an explanation of how this technique is applied
to develop a model for a simple message filter.

An explicit goal of the approach is to maintain a strong
correlation with the Bell and LaPadula model, as expressed in
[Bell76]. We feel that our ideas and techniques are faithful
enough to these concepts to develop a model exactly as it
appears in [Bell76] and adaptable enough to apply the concepts of
the model to a wider range of situations, such as having different
security properties, modeling systems other than general purpose
operating systems, or capturing more complete notions of secu
rity.

The approach, in the spirit of [Bell76], consists of three
steps:

[1] 	 Defining a "framework"; a framework is analogous to the
descriptive capability and general mechanisms referred to in
[Bell76].

[2] 	 Defining system functionality which is analogous to the
specific solutions facet.

[3] 	 Proving system security, which is the process of proving that
the functionality specified in [2] obeys the constraints
defined in [1].

3.1. 	Defining a Framework

By "framework," we mean the foundation upon which the
model is based. A framework provides an arena for describing a
system of a particular class but does not delve into the intended
functionality of the system being modeled. For example, in
[Bell76], the framework represents a security kernel for a general
purpose operating system. The specific system that this is
applied to is Multics.

Two issues addressed in the framework are the mechanics of
the model itself and tailoring the approach to a certain class of
systems. Bell and LaPadula referred to these two issues as their
model's descriptive capability and general mechanisms, by which
they attempt to capture the basic elements of a computer system
and the limitations to be placed on such a system's effects to
maintain the defined notion of security. "Mechanics of the
model" refers to the state machine architecture and the style in
which a system is defined to be secure (not the actual security
properties). Tailoring the system deals with the selection of secu
rity properties for a particular class of system application and
identifying the class of system to be modeled.

3.1.1. Mechanics of the Model

The mechanics of the model describe how the state machine
view operates and the mechanisms used to reason about the state
machine. If a state machine model is desired, our approach takes
care of several fundamental issues. The approach addresses
issues such as how to represent the state machine, how to
represent the security requirements, how to relate them to the
state machine, and how to express the state transitions. We are

not claiming that using the approach allows these issues to be
ignored completely. They must be addressed, but only in terms
of how they need to be adapted for a specific application- a much
easier topic to deal with than starting from scratch.

We present details of how the mechanics are established in
section 4, but in short, the notions of subject, object, and security
level track rather straightforwardly from [Bell76]. An "action" is
a 4-tuple of (R,D, "new state," "old state") and the term "wset"
is the action set, W, from Bell and LaPadula. The representation
in Gypsy of security level and its associated concepts of classifica
tion, category, etc. is also very similar.

3.1.2. Tailoring the Framework

The largest differences in defining the framework between
this approach and [Bell76] are the notions of state and security
properties. A class of system is defined by the state components,
as these are the only things upon which rules can act. In [Bell76],
a state is a 4-tuple of (b,H,M,f), representing the current access
set, the hierarchy, the access permission matrix, and the security
function, respectively. This notion of state allows rules to deal
with the functionality of a security kernel. However, this is too
limited for many security applications. To expand or redefine the
potential functionality of the system, it is necessary to change the
state components of [Bell76]. Our approach supports this by not
having any prescribed set of state components, allowing whatever
is relevant for a particular system.

As for security properties, many people consider the sole sig
nificance of the Bell and LaPadula model to be the "simple secu
rity property" and "*-property". We definitely do not feel this is
the case. The model is much more complex than this belief indi
cates, establishing a view of system interaction with .its environ
ment. The concepts of actions, rules, and the definition of what
makes a system secure are fundamental to the model. The simple
security and *-properties are only used to define the secure state
predicate. We allow a different security predicate to be defined,
while maintaining the same conceptual framework. In this
manner, our approach can be tailored to applications where some
variant of the simple security and *-properties, or perhaps a com
pletely different definition of secure state, is more appropriate.

However, defining security strictly as a state invariant is
inadequate to capture our intuitive notion of security. It is neces
sary to place restrictions on state transitions as well. To provide
this capability, we augment the model's concept of security with
a set of rule properties- conditions that must be met by all rules.
The "tranquility" property is a typical example of such a condi
tion.

3.2. 	Defining System Functionality

When the state is defined, the limits of what a system may
do are defined, but nothing is said about what the system will
actually do. A framework only provides a potential for certain
forms of action; it does not guarantee what will happen. For
example, the framework defined in Section 4 provides a capability
to read in, process, and send out messages, but it does not
guarantee that anything will happen. The framework only
requires that whatever does happen obeys the security require
ments set forth.

The functionality of a specific system is defined by a set of
rules of operation. Rules of operation are state transitions

194

describing under what conditions changes can be made to the
state. The rules must completely capture all possible effects on
the state of which the system is capable.

3.3. 	Proving System Security

Once the actual operation of the system is defined by the
rules of operation, it is necessary to ensure that the system is
secure. In our approach, two conditions must be satisfied before
a system can be said to have met its requirements. The first con
dition is that the system defined must meet the constraints
defined in the predicate "secure_system" and the second is that
the system specific rules of operation meet all of the rule security
properties. Both are vital to capturing a complete notion of secu
rity. Satisfaction of the first condition is shown by proving a
theorem st<J,ting that if a rule set is composed of the defined rules,
and if the action set is defined from those rules, and if the initial
state is valid, then the system defined by the action set must be
secure. The second condition is met if every rule defined has the
specified property.

3.4. 	Caveat

This approach has been presented in a very linear fashion.
This will not be the case in practice. There is iteration among all
three steps until a complete model is produced. Then, if either
the system's requirements or functionality is redefined during the
development process, the model should be modified to reflect
those. changes and reproved.

4. 	AN EXAMPLE OF THE APPROACH IN GYPSY

The idea of representing abstract model concepts in Gypsy
is still new to many people's minds. They are used to thinking of
Gypsy as dealing in more concrete terms, as is the case in per
forming code verification. However, the Gypsy specification
language, being a form of typed first order logic, is sufficiently
powerful to represent modeling concepts. This section describes
the techniques used m our approach in the context of a Gypsy
example.

The example we use is a simple message filter. Messages
arrive at the filter on various incoming lines, and if they pass the
security checks, the messages get routed to outgoing lines.

We chose a message filter as an example for our modeling
approach because it is very different from the traditional use of
Bell & LaPadula as a secure operating system model. The exam
ple illustrates that state machine modeling in the Bell & LaPa
dula framework is applicable to a wide array of security applica
tions and not simply secure operating systems.

The formal model for the message filter consists of four
Gypsy scopes. The FILTER_Global_Definitions scope
defines the types and functions used as a basis for the framework.
Each of the remaining three scopes corresponds to a step of our
approach, as described in Section 3: the framework is defined in
the FILTER_Security_Policy; the system functionality is
defined in the FILTER_Rules_of_Operation scope; and the
steps to prove that the system functionality obeys the constraints
of the framework are defined in the
FILTER_Rules_Model_Proof scope.

The remainder of this section contains the Gypsy formal
specifications for each of these scopes. English text is inter
spersed with the Gypsy to help the reader understand its general

organization as well as the more subtle specification techniques.
Name importations between scopes have been omitted from the
Gypsy for the sake of brevity. Other than the omission of name
importations, the sections contain a complete listing of the Gypsy
scopes, which have been parsed and proved using the Gypsy
Verification Environment.

4.1. 	Defining the Framework

The definition of the framework for the FILTER model
begins in the FILTER_GLOBAL_Definitions scope. This
scope contains definitions of the primitive components. The
FILTER_Security_Policy completes the framework by defin
ing the descriptive capability and the general mechanisms of the

model.

4.1.1. Primitive Components

This scope. begins by defining all of the necessary model
primitives such. as subjects, objects, and the state. Similar ele
ments of Bell & LaPadula appear as comments on the right mar

gin.

scope FILTER_Giobal_Definitions

begin

{ Elements of the FILTER } { B & L similar elements }

For the model of a message filter, subjects are considered to
be lines which receive messages into the filter and send mes
sages out. The objects are the messages. Each message
contains its security_level, sender, receiver, and

contents.

type subject line; { s }
type line pending;

type 	object =message; { 0 }
type 	message= record(sl: security_level;

sender: line;
dest: line;
contents: contents);

type 	contents = pending.

Security Attributes are defined as in Bell & LaPadula.

type 	classification = pending; { c }

type category_set = set of category; { K }
type category = pending;

type security_level = { L }

record (classification. classification;
category_set. category_set);

function dominates (s1. s2. security_level) boolean
begin exit (assume result =

(s2.classification le s1.classification
& s2.category_set sub s1.category_set));

end;

Request and decision are used as in Bell & LaPadula to indi
cate a rule invocation request and the corresponding indication of
success or failure. The security levels of subjects and objects are
defined as in Bell & LaPadula with one exception: the security
level of a given subject has the potential to change, while the
security level of a given object cannot. This view is consistent
with message processing, where changing the security level of a
message changes the message itself, and creates a distinctly new

message.

195

type request = pendi·ng; { R }

type decision = (yes, no. audit); { D }

type subject_security_level = { Fs }
mapping from subject to security_l~vel;

function object sl(o: object): security level { Fe }
begin exit (assume result= o.sl);
end;

Gypsy buffer histories are used to describe the incoming and out
going objects that each subject can access. A buffer history
maintains a copy of all traffic over a given buffer. The informa
tion is represented as a sequence of objects, the order of the
sequence representing the order of processing. The buffer his
tories replace the (subject, object, access) triple of Bell & LaPa
dula. Histories are a more appropriate means of describing the
security properties of a message application than access triples,
which work better in the secure operating system domain. While
we have chosen to use the concept of buffer histories in the
model, we do not wish to use the Gypsy IPC (interprocess com
munication) mechanism. The complexity of the Gypsy send and
receive mechanisms are unnecessary for the model.

{Buffers}
type buffer_histories mapping from subject

buffer_his
to
tory;

{ B }

type buffer_history = sequence of object;

A state is a record structure of the state variables. It includes
the buffer histories associated with the incoming and outgoing
lines, as well as the security levels of the subjects. In order to
keep the security policy independent of the concrete representa
tion of the state, several extraction functions are defined to
retrieve items from the state.

type FILTER_state = { v }
record(incoming: buffer_histories;

outgoing: buffer histories;
subject_sl: subject_security_level);

{ State Extraction Functions }

function incoming_history(s: subject; v: filter_state):

buffer history
begin exit (assume result= v.incoming[s]);
end;

function outgoing_history(s: subject; v: filter_state):
buffer history

begin exit (assume result = v.outgoing[s]);
end;

function subject_sl(s: subject; v: filter_state):
security_level

begin exit (assume result= v.subject_sl[s]);
end;

Actions characterize the effects that may take place in the sys
tem. An action consists of four components: a request, a decision,
a starting state and a resulting state. A collection of actions is
called an Action Set and is intended to include all combina
tions of requests, decisions, new states, and old states. The term
wset in the security policy scope refers to an action set analo
gous to "W" in Bell and LaPadula.

type action_set = set of action, { w }
type action = pending.

function action request(a action): request = pending;
function action=decision(a. action): decision

pending,
function action_old_state(a: action): filter_state =

pending.
function action_new_state(a: action). filter_state =

pending;

Rules, as defined by Bell and LaPadula, are a function from a
(request, state) pair to a (decision, state) pair. Since properties
must be proved about sets of rules, it is difficult to represent
rules as Gypsy functions, because Gypsy does not provide a capa
bility to reason about sets of arbitrary functions. Instead, we
define rules as a Gypsy mapping from a rule_input to a
rule_output. Rule inputs represent a request and an input
state. Rule outputs represent a decision and an output (resul
tant) state. In Gypsy, this means that when a rule is supplied a
rule_input it returns a rule_output.

type rule = mapping from rule_input to rule output;
Crho in BltL }

type rule_input = record (request: request.
state· filter state);

function input_request(ri: rule_input): request
begin exit (assume result= ri.request);
end;

function input state(ri: rule input)· filter state
begin exit (assume result =-ri.state);
end.

type rule_output = record (decision decision;
state: filter state).

function output_decision(ro: rule_output): decision
begin exit (assume result= ro.decision);
end;

function output_state(ro: rule_output): filter state
begin exit (assume result= ro.state);
end;

end; { scope FILTER_Global_Definitions }

4.1.2. Definitions and Relationships

The role of the security policy scope is to finish the task of estab
lishing the model's framework, begun by the global definitions
scope. This is done by defining basic system concepts, such as
what it means for a system to be secure, and defining a view of
how components work together.

scope FILTER_Security_Policy

begin

{ name declarations omitted }

In [Bell76J, a system's operation is defined by its action set, W.
The action set is a complete representation of all possible
actions for the system. Similarly, the concept of a system, in our
model, is captured by an action set, called wset. In Bell and
LaPadula, a system is secure iff (if and only if) all possible state
sequences are secure. A state sequence is secure iff every state in
the sequence is a secure state. Thus, a system is secure iff every
reachable state is secure. Our definition of secure_system
captures the same concept by stating that for any state that is a
valid_state, that state must be secure.

196

function secure system(wset: action set;
- zO. filter state): boolean

begin exit (assume result iff
all v filter state,

valid_state(v, wset, zo)
->
secure_state(v)),

end;

Secure_State defines what it means for a state to be secure.
In this case, for all objects and subjects, if an object is in the
outgoing history of some subject in the state, then the properties
expressed by security_checks_made must hold. These pro
perties are that the object must be in some subject's incoming
buffer history and that the security level of the object must dom
inate the security level of the receiving subject. Furthermore, the
security level of the exporting subject must dominate that of the
object.

function secure_state(v filter_state):
boolean

begin exit (assume result iff

all obj: object,

all sending_subj: subject,

obj in outgoing_history(sending_subj, v)
->

security_checks_made(obj, sending_subj, v));
end;

function security_checks_made(obj: object;
sending_subj: subject;
v: filter_state): boolean

begin exit (assume result iff
some receiving_subj · subject,

obj in incoming_history(receiving_subj,v)
& dominates(subject_sl(sending_subj, v),

object sl(obj))
& dominates(object-sl(obj),

subject_sl(receiving_subj, v)));
end;

Valid_state defines the valid states of the system. A valid
state is any state which is either the initial state, or the new stat~
in some action in the action set.

function valid_state(n: filter_state;
wset: action set;
zo: filter_state):

boolean
begin exit (assume result iff

(n = zo

or

(some a: action,

a in wset

& n = action new_state(a))));

end;

The basic_security_theorem states that a system is secure
iff the action_set is secure and the initial state is secure. This
demonstrates that the system can be proved secure by proving
that all actions are secure.

lemma basic_security_theorem (wset: action_set;
zO: filter_state)

secure_system(wset, zO)
iff
(secure state(zo)
& secure=action_set(wset));

ItI
function secure_action_set (wset: action_set):

boolean
begin exit (assume result iff

all a: action,
a in wset
->
secure_state(action_new_state(a)));

end;

Rule security properties are a mechanism for filling in the gaps
that a secure state invariant cannot address. These properties
are expressed by a pair of functions. The first function defines a
constraint on a rule set, namely that each rule in the set possess
some property. The second function defines this property for an
individual rule. In the case of FILTER, there are three rule secu
rity properties.

Secure_state_preserving_rule_set is used to prove
secure_system. A rule set is security preserving if and only if
every rule is security preserving. A rule is security preserving
when, for every input/output pair, the output state is secure
whenever the input state is secure.

type rule_set = set of rule;

function secure_state_preserving_rule_set(rs:rule_set).
boolean =

begin exit (assume result iff
all r: rule.

r in rs
->
secure_state_preserving_rule(r));

end;

function secure_state_preserving_rule (r: rule):
boolean

begin exit (assume result iff
all ri: rule_input.
all ro: rule output,

r[ri]=-ro
& secure_state(input_state(ri)))

->
·secure_state(output_state(ro)));

end;

The tranquility property is a classic example of the problems with
relying completely on state invariants to preserve a desired con
cept of security. Without this a requirement, the security levels
of subjects can be manipulated to "satisfy" the secure state
requirements, without conforming to the intended behavior. In
this system, a rule set is tranquility preserving iff no rules change
a subject's security level.

function tranquility_preserving_rule_set (rs· rule_set):
boolean

begin exit (assume result iff
all r: rule.

r in rs
->
tranquility_preserving_rule(r));

end;

function tranquility_preserving_rule (r: rule):
boolean

begin exit (assume result iff
all ri: rule_input,
all ro: rule_output,
all subj: subject,

r[ri] = ro
->
subject_sl(subj, input_state(ri)) =
subject_sl(subj, output_state(ro)));

end;

A rule set is buffer history preserving if and only if none of the
rules are able to remove objects from any buffer histories. This is
necessary to ensure that the buffer histories we have defined con
form to the semantics of Gypsy buffer histories. Without such a
requirement, a rule could "satisfy" the conditions of secure state
by simply rewriting the buffer history.

197

function buffer_history_preserving_rule_set (rs:
rule_set): boolean

begin exit (assume result iff
all r: rule,

r in rs

->

buffer_history_preserving_rule(r));

end;

function buffer_history_preserving_rule (r: rule):
boolean

begin exit (assume result iff
all ri: rule_input.
all ro: rule_output.
all subj: subject.
all o: object.

r[ri] = ro

->

incoming_history(subj. input_state(ri))

incoming_history(subj. output_state(ro))
~ (o in outgoing_history(subj. input_state(ri))

->
o in outgoing_history(subj, output_state(ro))));

end;

The theorem secure_rules_form_secure_system
corresponds to the Bell and LaPadula corollary A2. This demon
strates that a system can be proved secure by proving that all its
corresponding rules are secure. It serves as a link between the
concept of defining a system in terms of an action set and defin
ing the functionality of a particular system in terms of rules of
operation.

lemma secure_rules_form_secure_system 	(rs: rule_set;
wset: action set.
zO: filter state)

action set derived from rules(rs. wset, zo)

~secure-state preserving-rule set(rs)

~ secure=state(zo)) -

->

secure_system(wset. zo);

Aii action_sequence is a sequence of actions produced by consecu
tive applications of rules. This type is not directly required in the
model, but serv-es to provide a link between an action_set and a
rule_set. A particular action_sequence describes one path
through the action set, chosen by the selection of rules and
requests, and resulting in a sequence of (decision, new state)
pairs.

type action_sequence = sequence of action;

An action set is derived from a .rule _set iff every action in the
action_set is in an action sequence which starts with the initial
state and has been derived from the rule set.

function action_set_derived_from_rules (rs: rule_set.
wset: action set;
zO: filter_state):

boolean =
begin exit (assume result iff

all a: action.

a in wset

iff

some aseq: action_sequence.

a in aseq
~ aseq ne null(action_sequence)
~ action old state(first(aseq)) = zo
~ action=se~derived_from_rules(rs.

nonlast(aseq).
last(aseq)));

end;

An action_sequence is derived from a rule_set iff the last action is
derived from the rule set, its old state is the same as the new
state of the previous action, and the rest of the action _sequence is

derived from the rule set. This recursive definition links each
action in the sequence together.

function action_seq_derived_from_rules (rs: rule_set;
~seq. action_sequence;

a: action): boolean =
begin exit (assume result iff

(action derived from rules(rs. a)
~ (aseq ne null(action_sequence)

->

action new state(last(aseq))

action-old-state(a)

~ action=se~derived_from_rules(rs.
nonlast (aseq).
last (aseq)))))) ;

end;

An action is derived from a rule_set iff there is a rule which, when
supplied a rule input corresponding to the action's request and
old state, returns a rule output that corresponds with the action's
decision and new state.

function action_derived_from_rules (rs rule set;
a: 	 action):

boolean
begin exit (assume result ·iff

some r: rule.
some ri: rule_input.
some ro: rule_output.

r in rs
~ r[ri] = ro
~ input state(ri) = action old state(a)
~ input=request(ri) = action_request(a)
~ output_decision(ro) = action_decision(a)
~ output_state(ro) = action_new_state(a));

end;

This lemma IS quite similar to
secure_rules_form_secure_system, but deals with action
sequences instead of action sets. This lemma serves to aid the
proof of the other lemma. This is an example of proof modularity
in Gypsy.

lemma secure rules form secure action seq
- - - - (rs:-rule_set;

aseq: action_sequence;
zo. filter_state)

aseq ne null(action_sequence)

~ action old state(first(aseq)) = zo

~ action-seq-derived from rules(rs.

- - - - nonlast(aseq).

last (aseq))

~ secure state preserving rule set(rs)

~ secure=state(zo)) -

->

secure_action_sequence(aseq);

An action_seq is secure iff the new_state of every action is secure.

function secure_action_sequence (aseq:
action_sequence):

boolean =
begin exit (assume result iff

all a. action.

a in aseq

->

secure_state(action_new_state(a))).

end;

The remaining lemmas are to prove that the definition of dom
inates in the mo<:l_el satisfies the partial ordering requirements
of being reflexive, antisymmetric, and transitive.

198

lemma dominates is reflexive (s: .security_level) =
dominates (s~ s);

lemma dominates is antisymmetric (s1.s2: security_level)
(dominates(st~ s2)
& dominates(s2. s1))

->

st = s2;

lemma dominates_is_transitive (st.
s2. s3: security_level)

dominates(s1. s2)
& dominates(s2. s3))

->
dominates(s1. s3);

End; {Filter_Security_Policy}

4.2. System Functionality

The Rules of Operation scope defines the functional
ity of the system by stating properties of a valid initial state and
enumerating all state transitions. These properties must then be
proved to be secure with respect to the security policy described
in section 4.3. This example makes some simplifications to
minimize the size of the specification. First, there is only one rule
of operation, called process_message. For other applications,
our approach can be generalized easily to a larger number of
rules. Second, the specification assumes that the incoming buffer
history is pre-established at the initial state, and remains fixed
for the duration of the execution of the filter. This assumption
allows us to avoid creating a rule to describe how a message
arrives at the filter. Despite the assumption, the specification is
still completely general, since we prove the security of the filter
for any arbitrary incoming buffer history.

scope FILTER_Rules_of_Operation =

begin

{ name declarations omitted }

A valid initial state for the message filter is defined by
initial filter_state. A state ZO is a valid initial filter
state iff no messages have been sent out on any outgoing lines,
and the internal mappings are defined for all lines. No restric
tions are placed on the incoming buffer histories at initialization.

function initial filter state(zO: filter_state) boolean=
begin exit (assume result iff

all outgoing line: line.
all 1 : line.

zo.outgoing[outgoing_line] null(buffer_history)
& 1 in domain(zO.incoming)
& 1 in domain(zO.outgoing)
& in domain(zO.subject_sl));

end.

In this simple example, we have only a single rule of operation. A
complex system would have many more, all written in a similar
style. Process_message_rule is defined as a constant (a
function with no arguments) of type rule. The rule is defined
by comparing it with a corresponding specification function called
process_message. The definition of the rule says that the
mapping returned by process_message_rule matches
process_Jilessage for every input/output pair. This approach
allows us to make the connection between an arbitrary set of
rules, as the policy uses, and an instantiation of a particular set
of rules for the system being specified.

function process_message_rule: rule
begin exit (assume

all ri: rule_input.
all ro: rule_output.

result[ri] = ro
iff
process_message(ri) ro);

end;

The function process_message describes the functionality of
the system at an abstract level. The function describes the
rule_output (filter_state, decision) that it will return
given any rule_input (filter_state, request). The
function must be well-defined to prevent unsoundness.
Process message says that if there is a message which is an
element cl some incoming line's buffer history, if the security
level of some outgoing line dominates the the security level of the
message, and if the security level of the message dominates the
security level of the incoming line, then a new filter_state is
created by adding the message onto the outgoing line's buffer his
tory of the old filter_state, and the decision is yes. If any
of these checks are not met, then the decision is no and the
resulting filter_state is unchanged. This specification
makes no attempt to describe how the next message to process is
determined, or how the message is routed to a proper outgoing
line. In this specification, request is never used. It is assumed
that the rule is activated upon arrival of a message.

function process_message (ri: rule_input): rule_output =
begin
exit (assume

some m: message.
some old state: filter state.
some incoming_line. outgoing_line: line.

old state= ri.state
& if -m in old state.incoming[incoming line]

& dominates(old state.subject sl[outgoing line].
m.sl) -

& dominates(m.sl.
old state.subject sl[incoming line])

then result.state = old state with
(.outgoing [outgoing_line] .

old state.outgoing[outgoing line] <: m)
& result. dec.ision = yes

else result.state = old_state
& result.decision = no

fi);

end; { FILTER_Rules_of_Dperation }

4.3. Proving the System Secure

The object of the scope Filter_Rules_Model_Proof is to
establish that the rules of operation in the
Filter_Rules_of_Operation and the system that they
define are secure. It brings the pieces defined in various scopes
together.

scope FILTER_Rules_Model_Proof

begin

{ name declarations omitted }

The lemma secure FILTER is the main theorem to establish.
It demonstrates that the system defined by the set of
FILTER_operation_rules is secure, as defined by
secure system. This is done by showing that if an action_set
is created out of the rules and the initial state is valid as specified
in the rules, then the resulting system is secure.

199

http:dominates(m.sl

lemma secure_FILTER (zo: FILTER_state)
all wset: 	 action_set,
all rs: rule set,

FILTER_operation_rules(rs)
& action set derived from rules(rs, wset, zO)
& initial_FILTER_state(zo) '

->
secure_system(wset. zO);

The remaining theorems deal with the "auxiliary" security pro
perties defined by the rule security properties. These must hold
as well for the system's behavior to be truly restricted in the
desired manner. The theorem
tranqu111ty_preserving_FILTER demonstrates that the
FILTER Rules obey the model's tranquility property.

lemma tranquility preserving FILTER
all rs: rule set,

FILTER_operation_rules(rs)
->
tranquility_preserving_rule_set(rs);

This theorem demonstrates that the FILTER Rules obey the
model's buffer history preserving property. The rules specified
obey constraints on how the buffer histories are changed

lemma buffer_history_preserving_FILTER
all rs: rule set.

FILTER_operation_rules(rs)
->
buffer_history_preserving_rule_set(rs);

A rule set is the set of FILTER_operation _rules iff every rule in
the rule set is one of the enumerated rules. Writing this theorem
involves enumerating every rule of operation defined. FILTER
has only one rule, so in this specific case there is no need to use a
set of rules. We do so here in order to make this specification
easy to generalize for an arbitrary number of rules.

function FILTER operation rules(rs: rule_set): boolean=
begin exit (assume.result-iff

all r: rule.
r in rs
iff
r = process_message_rule);

end;

end; { FILTER_Rules_Model_Proof }

5. SUMMARY

We have presented an approach for developing formal secu
rity models. The approach is in the style of Bell and LaPadula,
to take advantage of user familiarity, but it is flexible enough to
be adapted to a wide variety of state machine models. As in Bell
and LaPadula, our approach consists of three steps: a frame
work, which defines the security policy; an abstract view of sys
tem functionality, which defines the rules of operation; and a
system security proof, which proves that the rules of operation
are consistent with respect to the security policy. Several exam
ples of this approach have been written and proved completely
within the Gypsy Verification Environment. As far as we know,
these are some of the only examples of complete automated
proofs faithful to the Bell and LaPadula style.

The insufficiency of a state invariant approach has been dis
cussed by McLean[McLean87] and others. Our approach allows
one to write further restrictions on state transitions to ensure a
sound approach. The Gypsy specification in the last section con
tained lemmas called tranqu111ty_preserving_FILTER
and buffer_history_preserving_FILTER, which are

examples of such restrictions.

We hope that others will be interested in adapting this
approach for their own use. The general Gypsy framework that
we have provided will allow others to concentrate on the develop
ment of the specific security properties and rules of operation for
their own system.

REFERENCES

[Bell76] D.E. Bell, L.J. LaPadula, Secure Computer Systems:
Unified Exposition and Multics Interpretation,
MTR-2997 Rev. 1, MITRE Corp., Bedford, MA,
March 1976.

[Cohen86] R.M. Cohen, Proving Gypsy Programs, Institute for
Computing Science, University of Texas at Austin,
May 1986.

[Criteria] Department of Defense Trusted Computer System
Evaluation Criteria, 15 August 1983.

[Good84] D.l. Good, Revised Report on Gypsy 2.1, Institute
for Computing Science, University of Texas at
Austin, March 1984.

[McLean87] John McLean, Reasoning About Security Models,
Proceedings of the 1987 IEEE Symposium on
Security and Privacy.

[Smith83J 	 M.K. Smith, Model and Design Proofs in Gypsy:
An Example Using Bell and LaPadula, Institute for
Computing Science, University of Texas at Austin,
February 1983.

200

TRUDATA: THE ROAD TO A TRUSTED DBMS

Ronald B. Knode

ORI/INTERCON S¥stems Corporation
9710 Patuxent Woods Drive

Columbia, Mar¥land 21046
(301) 381-9740

ABSTRACT

ORI/INTERCON S¥stems Corporation has
encountered numerous mission needs for
secure database management services
offered in a practical, deplo¥able,
supportable S¥stem configuration. Our
response has been to design a multi-level
secure S¥stem that combines the
contemporar¥ architectural notions of
securit¥ kernel, integrit¥ lock, and
trusted filtering and embark on an
implementation program using existing
products, technologies, and techniques.
The INTERCON Trusted Database Management
S¥stem (TRUDATA) project is targeted at
an initial B1-level S¥Stem with an
ultimate B2 version as the eventual
goal. This paper describes the "journe¥"
that represents the TRUDATA project,
including summaries of its development
guidelines, S¥stem architecture, securit¥
polic¥, and implementation status.

WHY 	 THE JOURNEY IS NECESSARY

Nearl¥ every intelligence data
processing and C3 system depends on the
ready availability of accurate and timely
data. Moreover, for "production C¥Cle"
intelligence environments, the qualit¥ of
the product is typically fostered by the
comprehensiveness of the data from which
it was generated. The consequences are
twofold:

1) 	 Data must be accepted from a
broad variet¥ of sources.

2) 	 Data must be retained and
information captured over long
periods of time.

The combination of these consequences
results in collections of data of var¥ing
sensitivit¥. To date, the only way to
provide a satisfactor¥ data processing
mechanism for such collections of data
having multiple levels of security
classifications is to dedicate a
processing resource to the highest
sensitivity of an¥ data which might be in
the collection. and then isolate that
processing resource from all users who
themselves do not have clearances to
access all data potentiall¥ in the data
reservoir. (The so-called "system high"

mode of operation.) As processing and
reporting needs multiplv, this technique
forces duplication of processing power
and data (to handle var¥ing combinations
of data sensitivit¥ and user clearances)
and prevents an effective flow of derived
intelligence data to those users who have
a subset of the clearances and accesses
involved in the data pool. The net
results are:

1) 	 Expensive dedicated and
duplicated intelligence data
processing environments.

2) 	 An inabilit¥ to deliver or make
available all the relevant
intelligence and C3 product and
data to all the users who
legitimatel¥ need such data and
are authorized to receive it.

WHY 	 WE'RE MAKING THIS JOURNEY NOW

ORI/INTERCON has a long histor¥ of
secure S¥Stem development within the
intelligence and C3 communit¥. Pursuit
of natural opportunities within those
communities brought us face to face with
several programs and procurements which
had compelling requirements for MLS DBMS
services. As we researched ways to solve
these requirements, we found ver¥ little
in the W&¥ of practical, existing
foundations upon which to base a
solution. After surve¥ing the
contemporar¥ technological terrain, we
decided that conditions were now right
tor our own expedition. Right from the
start we determined that our destination
was the deliver¥ of trusted DBMS services
in a trul¥ useful implementation. In
effect, we have three "passengers" on· our
journe¥, all ot whom must reach the
destination together in order for our
trip to be successful. Our "passengers"
are:

1) 	 Doctrinal Securit¥, i.e., TRUDATA
must be secure in accordance with
DOD pol.ic¥ and regulations.

2) 	 Capabilit¥, i.e., TRUDATA must be
capable ot servicing real.
operational. missions in a manner
much l.ike a conventional DBMS.

201

3) 	 Achievabi~it;v, i.e., TRUDATA must
be doab~e using present-da;v
products, techno~ogies, and
techniques.

Four conditions convinced us that the
road to that destination cou~d be
trave~ed:

1) 	 The Le$ac;v of Previous Exp~orers

For over a decade now, researchers
have been serious~;v exp~oring what it
means to be a "secure DBMS". The
~andmark Air Force Summer Study at
Woods Ho~e in 1982 ([3], [5))
summarized the "state of the prob~em"

and projected three architectures
that offered near term potentia~ for
supporting trusted DBMS services.
Much additiona~ work has been done
since then to find productive paths
to trusted database services (e.g.,
[2]. [9]. [17]. [18]. [19]. [20]).

2) 	 The New Traveling Vehicles

Computer s;vstem product advances that
have occurred since the Summer Stud;v
make toda;v the right time to move
trusted DBMS technology be;vond
theoretic&~ exp~orations to pragmatic
implementations. These product
advances represent new modes of
transportation, i.e., new "vehicles",
in which to travel the road toward
trusted database management s;vstem
development. Of particu~ar

importance are the "near"
avai~abi~it;v of certified secure
versions of we~l known operating
s;vstems and the maturity of the
database machine.

3) 	 The Reward at Journe;v's End

Perhaps the most difficu~t traveling
condition to gauge is the market for
a trusted database management
s;vstem. Whi~e we believe that such a
product is not the next "Mustang" or
"Taurus". we ~ikewise be~ieve that it
is also not the next "Edse~" or
"Corvair". However measured, our
market surve;vs give us reason enough
to fo~low this road to s;vstem

,development.

4) 	 Good Trave~ing Companions

To succeed as a rea~ so~ution to
mu~ti-level DBMS problems. a s;vstem
must be deployable and supportable as
well as offer secure DBMS services in
convenient and efficient wa;vs.
Spurred on b;v this recognition,
ORI/INTERCON Systems Corporation
(INTERCON) has formed a ~sted

Database Managment S;vstem (TRUDATA)
development alliance with
Britton Lee, Inc. and AT&T to build
and support a practical, deployable,
functional Multi-Level Secure DBMS
targeted ultimately at the B2-~evel

of certification. This combination
of talent, products, and services
gives us a read;v-made support
organization for the TRUDATA MLS
DBMS.

TRAVEL PREPARATIONS

As for an;v journe;v, good preparations
are crucial to reaching ;vour destination
on time and safel;v. Six main "trave~ing"
guidelines have controlled our TRUDATA
development project. In keeping with our
journe;ving motif, we have paraphrased
these guidelines as road-wise
preparations:

1) 	 Know what the end of the road
should look like before ;vou
arrive; have good scouts to
anticipate ;vour arrival.

Interpretation

Have an implementation approach
in mind from the ver;v beginning.
Make sure that imp~ementation

questions are resolved as
security policy, s;vstem
architecture, and assurance
techniques evolve.

2) 	 Use a good compass to sta;v aimed
in the right direction.

Interpretation

Use a real operational mission
archetype as a constant backdrop
for development of architecture,
polic;v, and actual
imp~ementation. Reconcile all
design decisions to the
fundamental question "Can the
mission be fulfilled under this
design?"

3) 	 Watch out for "ambushes" from
ever;v direction.

Interpretation

Balance· "theoretical"
requirements against practical
operational requirements and
standard operational protections
as a tradeoff mechanism in
security policy development.
Keep the polic;v from becoming so
trivia~ that it is meaningless or
so exotic that it is not
implementab~e in some practical
sense.

4) 	 Don't stra;v too far from the
beaten path.

Interpretation

Base the architecture on
general~;v recognized and accepted
techniques for achieving trusted
DBMS services. Combine
techniques to reduce or e~iminate

known vulnerabilities.

202

5) 	 Start with a reliable mode
transportation.

Interpretation

Start with an already trusted
product (operating system) as the
basis for extending an existing
TCB to support trusted DBMS
services.

6) 	 Stay in contact with your base
camp and mark the trail well as
you go.

Interpretation

Invoke the "social process" right
from the start. Inform and
involve the cognizant Government
agencies and technical partners
at every step. Document both the
milestones (e. g.' system

architecture, security policy)
and the process used to reach
those milestones.

THE 	 ROAD SO FAR

We've followed our own six "traveling
tips" as we've moved down the road to
TRUDATA implementation. For example:

1) 	 Market surveys and our .own secure
systems development experience
provided implementation
characteristics (e.g.,
functionality, performance, size,
cost) for TRUDATA from the very
beginning.

2) 	 We adopted the .Naval Surveillance
System (NSS) operational model
aescribed in [1] and broadened
in [4] as our mission archetype.

3) 	 We have invoked a process of
constant self-examination to make
sure that our security ~olicy

supports the mission archetype
and abides by reasonable
interpretations of [6] as
amplified by the most recent
successful research resul_ts.

4) 	 We've constrained ourselves to
generallY accepted (though not
yet officially sanctioned)
trusted DBMS techniques and
practices in design and
development while still allowing
ourselves the necessary freedom
to innovate wherever creative
compromises must be made.

5) 	 From among a number of
architecturally possible
candidates, we have chosen AT&T's
System V/MLS secure UNIX as the
basis for the initial TRUDATA TFE
and the Britton Lee IDM .as the
initial TRUDATA DBMS component.
Crucial to these choices was an

acknowledged TCB foundation for
TRUDATA TFE functions, and the
intuitively appealing capability
for physical as well as logical
encapsulation of the DBMS.

6) 	 Major TRUDATA project milestones
([7] • [8]. [22]) have been
produced, reviewed, and presented
to industry and Government from
the very outset. These papers
describe not only the "product"
but also the continuing "process"
used to take the next development
steps.

Progress along the road to a TRUDATA
implementation has occurred in short
bursts of "breakthrough" speed
interspersed with periods of "idling in
place". The major milestones of
architecture specification [7]. security
policy description [8], and
implementation planning [22] have each
been followed with a period of technical
reflection and review, market
reaffirmation, and project consolidation
to march forward to the next milestone.
As we proceed through our implementation
plan, we anticipate a continuation of the
"speed up-then-slow down" (and maybe even
backup!) cycle as we attempt to navigate
the specifics of an implementation
without the benefit of an "official
roadmap", i.e., Trusted DBMS Evaluation
Criteria. Summaries of each of the major
milestones leading up to actual
implementation are provided in this
survey of our journey to date. Full
descriptions may be found in the
references.

TRUDATA ARCHITECTURE SUMMARY

TRUDATA combines the classical
"Integrity Lock" and "Kernelized"
architectures from the Summer Study with
an addi.tional "Trusted Filtering" notion
described in (9] to form the basis for
the TRUDATA System Architecture [7] as
shown in Figure 1. Two main
architectural components provide the
necessary functionality:

1) 	 The TRUDATA architecture
concentrates all "trust" for data
and process security in a Trusted
Front End (TFE) component.

2) 	 The DBMS component (DBM) is
completely enc~psulated, making

the only avenue of access to data
management services through the
TFE.

While we allow the DBM component to
maintain data integrity and perform
typical DBMS services (e.g., query
resolution, data update), we do not trust
it to do so in accordance with the
TRUDATA security policy. The integrity
locking technique, performed entirely in

203

th~ TFE, imparts that "trust" to the DBM
by "checking up" on the integrity and
accuracy of all data entering and leaving
the TFE. A trusted filter, also in the
TFE, either eliminates fundamentally
non-secure DBM function requests before
they are sent to the DBM or exchanges
them for equivalent secure function
requests ("commutative filtering").
Finally, additional trusted user
interface software in the TFE provides
for the secure administration and
operation of TRUDATA. The TRUDATA system
interface is SQL.

a priori, no system-driven
classification attempts need be
made. By making mviews
"read-only", difficult update
classification decisions can be
avoided without sacrificing the
real utility of data fusion iff! a
database application.

3) 	 A clearance vector for users
(subjects) which can be used to
enforce data classification
control without constraining
operational personnel to an
unworkable disjointed scenario of
partial data construction and
review.

TRUDATA

ARCHITECTURE

ENCAPSULATEDTRUSTED FRONT END
DBMS

USERS.. .. *TRUSTED * AUTHENTICATORUSER.. .. USERINTERFACE *FILTER.. .. LAYER DBMS
Component

OTHER APPLICATIONS

DATA and PROCESS SECURITY

**REFERENCE MONITOR

DATA INTEGRITY

Trusted Software (New)

•• Existing Trusted Sofiware

Figure 1

TRUDATA SECURITY POLICY SUMMARY

The TRUDATA Security Policy Model [8)
is a derivative of the Naval Surveillance
System (NSS) Security Model described by
Graubart and Woodward in [1). While we
have adopted many of the same definitions
and subpolicies espoused in the NSS
model, the TRUDATA . policy is
distin~uished by sever~l new and
different concepts, each of which helps
to maintain a theoretically consistent.
model while at the same time supporting a
practical concept of operations. Among
the more important features of the model
are:

1) 	 Adjustable view level security.
By making data access possible
only through pre-defined views,
TRUDATA permits the Data Base
Administrator (DBA) to supply
variations of security protection
granularity extending from record
level security (wherein the only
defined view is that for the
entire record) to field level
security (in which single field
views are defined).

2) 	 The introduction of specially
C:c'-'o"-'n=s'-'t'-'r'-'a=:i"-n,_,e:<:d,.___,.,..v.:...:oi"'e'-'w"----:-:-t"'y><...~<P:::e=s called
"pviews" and "mviews" as vehicles
to control the inferencing and
aggregation problem both within
and across records. By forcing
all views to be defined and
assigned a default security level

204

Entities. The TRUDATA security model
consists of five types of entities:

1) 	 subjects

2) 	 objects

3) 	 security levels

4) 	 operators

5) 	 security policies

Subjects. The subjects in this model are
the users. Each user is assigned a
clearance vector <d,u> which establishes
clearance level boundaries. The ~

component is the maximum clearance level
of the user and the ~ component is the
minimum clearance level of the user.
Each user of the system is also assigned
an access level <a>. This level is the
current security level of the user and
must always satisfy

d <= a <= u

Operator Authorization List. In addition
to clearance levels, there is also an
operator authorization list (OAL)
associated with each user. Only
operators on this list can be invoked by

the user. Consequently, OAL's are used
to help define the role within which each
type 	of user must behave.

Objects. The objects in this model are:

1) data bases

2) relations

3) records (also called tuples)

4) views

5) fields (also called attributes)

Databases contain relations, which
contain records, whose contents (i.e.,
field values) are available only through
views.

Views. Views are named collections of
fields within one or more relations.
There are two kinds of views. Primitive
views, called pviews, consist only of
fields from a single relation, i.e.,
pviews are a projection from within a
relation. Multiviews, called mviews,
consist of a join of pviews within a
database. To illustrate, consider two
relations in a HOSPITAL database, one for
PATIENTS and one for LABWORK. These
relations are shown pictorially in
Figure 2.

PATIENT

Likewise, an mview could be defined as:

3) 	 create mview diagnosis
as select ptag from
patients,
xray from labwork
where
patient_num = patient_num

All pviews for a relation must be
defined at the time the relation itself
is defined. Every relation has at least
one pview, called the baseview. The
baseview of a relation is the universal
projection of all fields defined for the
relation and is, therefore, equivalent to
the relation itself in content
definition. There is, however, one
significant distinction. Namely, the
baseview can behave as a container within
a relation, providing a vehicle to
control the view aggregation problem in
much the same way as relation containers
control the record (baseview) aggregation
problem and database containers control
the relation aggregation problem.

Protection Granularity. With our
definition of views, we can now catalogue
TRUDATA objects as either containers or
atoms. TRUDATA containers are databases,
relations, and baseviews/records. Views
(including baseviews) are TRUDATA atoms
because they are the smallest unit of
information in the system to which

Relation

Last name Firstname Patient_Num

LABWORK Relation

Lab_Date Patient_Num Filmid Technician

Figure 2

explicit classifications are attached.From the relations in Figure 2 pviews
Two i~teresting and helpful results occurwould be defined as:
naturallY under this definition:

create pview ~
1) 	 Baseviews behave as both as select lastname,

containers and atoms, dependingfirstname,
on their use/purpose within anpatient_num
application. Whenever wholefrom 	patients
records (with their field
values) are legitimately2) 	 create pview xray
accessed via the baseview, theas select filmid,
baseview operates as an atom bytechnician,
providing an explicitlY labeledpatient_num,
collection of data. Likewise,lab_date
whenever subcollections of datafrom 	labwork
within a record are

205

1egitimate1¥ accessed via other
views, the baseview operates as
a container by providing the
superimposed mandatory access
contro1 service (the container
c1earance requirement) in the
same way that database and
re1ation containers perform.

2) Atomic 1eve1 protection
granu1arit¥ is configurab1e by
the DBA a11 the way from
"record 1eve1" security (with
on1¥ a baseview defined) to
"fie1d 1eve1" security (with
sing1e fie1d pviews defined).
Note that fie1ds are in some
sense "sub-atomic" units of
information because they are
on1¥ accessib1e through a
view. Note further that fie1d
and view 1eve1 security
co11apse into the same thing
(an "atomic fusiqn" of sorts)

whenever sing1e fie1d views are
defined.

Security Leve1s.

Labe1s. TRUDATA security 1abe1s consist
of both a hierarchica1 component and a
set (possib1¥ empty) of non-hierarchica1
categories. Subjects and data access
objects (i.e., views, baseviews/records,
re1ations, and databases) are 1abe1ed.
For subjects, 1abe1s represent the
c1earances he1d b¥ the subject. For data
access objects, 1abe1s represent the
c1assification of the object. Each
coordinate of the subject c1earance
vector consists of a TRUDATA 1abe1.

A11 data access objects are 1abe1ed
with an actua1 security 1eve1 (ASL). A
defau1t ASL must be provided when data
access objects are defined.
Subsequent1y, the ASL is either
exp1icit1¥ provided when an instance of a
data object is created (e.g., a record is
created) or the defined defau1t ASL
becomes the ASL for the instance, i •.e.,
the defined defau1t ASL is inherited by
the actua1 instance of the data access
object.

Except for pviews, the defau1t ASL
of a data access object can be 1ess than,
greater than, or equa1 to that of its
container. The ASL of a pview must
a1ways be 1ess than or equa1 to that of
its baseview container (since, in fact,
such a restricted view a1ways provides
1ess data access than that of its
baseview container). Such a restriction
e1iminates possib1e conf1icts between
data access to a baseview and to some
pview within that baseview container.

Container Protection. The TRUDATA mode1
enforces a container c1earance
requirement (CCR) for a11 data access.
[Note: This is a uniform app1ication of
th·e Container C1earance Required notion
from' Landwehr's MMS mode1 described
in [17].] In addition to a defau1t ASL,

each container is 1abe1ed with a
Container C1earance Requirement (CCR)
1abe1 and access to any data within a
container is on1y a11owed if t·he access
leve1 of the subject sati~fies the
non-discretionary access po1icies as
app1ied to the CCR labe1. Thus, the CCR

represents a "minimum" cl.earance l.evel. to
be satisfied before access to anv data in
the container is al1owed. For examp1e,
the CCR can be used on a baseview to
insist that users have a Secret c1earance
before seeing any data via otherwise
authorized pview(s), even though a11
pviews may on1v be 1abe1ed as
Confidential. Such a capabi1ity supports
control. over "horizontal. aggregation"
(mu1tip1e views within a record) as we11
as "ve~tica1 aggregation" (a sing1e view
across many records).

The CCR 1abel. has no rel.ationship
with the defau1t ASL of a container. The
CCR may be l.ess than, greater than, or
equa1 to the defau1t ASL. Furthermore,
in recognition of the exceptional.1¥
strong tie between the definition of the
re1ation and the automatica1l.¥ associated
baseview container, the CCR of the
re1ation is al.so defined to be the CCR of
the baseview.

Access Contro1 Lists. The security
1evel.s and l.abe1s described above form
the basis for mandatory data protection
within the TRUDATA security model..
Discretionary security is represented via
the concept of access control. l.ists for
each data access object. Access Contro1
Lists (ACL's) can be associated with each
data access object, and then can be used
to determine what kind of access each
subject can have to that data access
object. Each entry on an ACL consists of
the subject (or group} identifier and the
access permissions authorized. ACL's
control. five types of access:

1.) Access to Containers

2) Access to Rel.ations

3) Access to Databases

U) Access to Non-Containers

5) Access to Pviews

ACLs list the exact access
authorizations permitted to each
individua1/group specified on the 1ist
itse1f. Objects a1so have Exception
Lists (EXL), which perform the opposite

function. I.e., EXL's l.ist a1l. subjects
for whom specific access authorizations
are denied.

Operators. Users act upon data with
operators. There are three cl.asses of
operators in the TRUDATA security mode1:

1) Those that access data.

2) Those that define data.

206

3) 	 Those that manipulate the
mandator;v and discretionar;v
•ccess attributes of data.

Subjects _can onl;v use those operators
that are listed in their OAL. The range
of applicabilt;v of each class of operator
is shown in Figure 3.

Operator Classes and

3) Discretionary Access Control

Discretionar;v access control is
enforced using ACLs and EXLs.
The ACL/EXL of the object, as
well as the ACL/EXL of the
object's container(s) if
necessar;v, must authorize (and
not exclude) the subject's
requested operator access to
the object.

The securit;v policies define the
relationships among users, operators, and
objects. Consequentl;v, the policies are
described in [8] as the;v appl;v to each
class of operator, i.e., data access,
data definition, and attribute changing.

Applicabilit;v

Operator Operator Operator
Class Name Applicabilit;v

Data Read All data access objects
Access Write All data access objects

except mviews
Delete Containers onl;v

Data Define-db Databases onl;v
Definition Define-rel Relations onl;v

Define-view Relations onl;v

Attribute Change-level/Read All data access objects
Changing except mviews

Change-access All data access objects

Figure

Policies. Subject to object access is
controlled under a combination of three
sub-policies. The requirements of all
three sub-policies must be met before an;v
specific access operation is allowed!,.

1) 	 Operator Authorization.

Subjects access objects with
operators. A subject can
invoke an operator onl;v if that
operator is on the subject's
OAL.

2) 	 Mandator;v Access Control

Mandator;v (non-discretionar;v)
access control involves the
subject's securit;v level, the
ASL of the object, and the CCR
of the object's container(s).
The subject's securit;v level
must be sufficient to satisf;v
the mandator;v access policies

applied to the object for the
given operator.

3

Added DBA Responsibilities. The TRUDATA
securit;v polic;v adds responsibilties to
the role of the DBA and the s;vstem
operator, primaril;v to inspect and
maintain data integrit;v.

A Word About Integrit;v and Inference

Conflict Between Secrec;v and Integrit;v.
Much recent research [8,18,19.20] has led
time and again to the frustrating
realization that an inherent conflict
exists between data secrec;v and data
integrit;v in database management
s;vstems. Data secrec;v policies and data
integrit;v policies are fundamental!¥
orthogonal in motivation and practice.
Inclusion of broad integrit;v subpolicies
inevitabl;v leads to a spiral of
unacceptable covert and inference
channels.

Current TRUDATA Approach. We, too, have
confronted this situation in our effort
to move generall;v accepted notions of
trusted DBMS service from theor;v to
realit;v with the application of careful

207

http:8,18,19.20

engineering judgment to a sound S¥stem
architecture against a backdrop of rea1
operationa1 needs. We ar~concerned with
data integrit¥ issues as we11 as data
securit¥ issues. The se1ection of a
proven DBMS component with an extensive
histor¥ of performance and an impressive
capabilit¥ for preserving data
consistenc¥ reassures us that TRUDATA
wi11 be ab1e to maintain database
service. The available consistenc¥ too1s
and mechanisms for recover¥ bode well for
TRUDATA as a re1iab1e as we11 as trusted
DBMS. In addition, the hea1th¥ set of
access contro1s inc1uded in the TRUDATA
securit¥ po1icies represents a strong
contemporar¥ approach to contro11ing
inference.

Basis for Imp1ementation Decisions. Yet,
1ike [18], we continue to base our
imp1ementation decisions on the premise
that "the securit¥ po1ic¥ has precedence
over, and a prior existence to, the
int!'!grit¥ po1ic¥"· Therefore, wherever
the introduction of "supporting" po1icies
such as integrit¥ po1icies wou1d reduce
the abi1it¥ of TRUDATA to enforce its
securit¥ po1ic¥, we have ru1ed in favor
of securit¥ po1ic¥ enforcement as 1ong as
the operationa1 prob1em archet¥Pe does
not suffer. We expect that we wi11
u1timate1¥ be ab1e to reconci1e
additiona1 integrit¥ po1icies (e.g.,
constraints, ru1es) to our securit¥
policies. Through our own discoveries,
as we11 as other ongoing research such as
that reported in [20], we anticipate that
some reasonab1e, imp1ementab1e mechanisms
wi11 be identified. We have a11owed for
their eventua1 inc1usion be¥ond our
Phase I imp1ementation program.
Initia11¥, however, database integrit¥
wi11 be a 1arge responsibi1it¥ of the
SDBA. The SDBA must recognize when
integrit¥ considerations (constraints)
impact ·data or&::anization and
c1assification, and then manifest that
recognition with the ri&::ht Container·
Clearance Requirement (CCR) and defau1t
Actua1 Securit¥ Leve1 (ASL) se1ections
(so that there is no new1¥ introduced
inference channe1).

Sufficiency of Current Po1icy. We a&::ree
with [19] that it is unc1ear whether any
integrity policy for DBMS's must be
mandated at all. In view of the evolving
consensus that a DBMS interpretation
of [6] shou1d not include requirements
for controlling inference (ref [21]), we
believe that our current polic¥ direction
satisfies the needs for an MLS DBMS
implementation ultimately targeted at the
B2 level, while at the same time
providing for supporting policy growth as
new practical possibilities emerge.

TRUDATA IMPLEMENTATION SUMMARY

Initial Configuration

Based on our TRUDATA operational
requirements for a dep1o¥able,
supportab1e system, an already trusted

operating system foundation, and a
readily encapsulated DBMS capability, we
have chosen to configure our initial
TRUDATA system with an AT&T 3B2 Model 400
running System V/MLS as the TFE component
and a Britton Lee IDM as the DBMS
component. We are following our B2 level
system target implementation plan, even
though the current version of
System V/MLS is in evaluation for
B1 level certification. Our instant
target is for an initial MLS TRUDATA at
the B1 level, with an ultimate version
(using even more secure versions of our
baseline TFE operating system) targeted
for B2. Britton Lee database machines
provide the added reassurance of Ph¥sical
as well as logical encapsulation, plus
high performance, a re1ational data
model, and an existing support
organization.

Implementation Issues

No Official Criteria. The absence of an
"official" set of securit¥ criteria for
trusted database management systems
introduces an extra element of ambiguity
into certain implementation choices.
Much effort is currently being directed
at discovering exactly what it means to
be a "secure DBMS" certifiable to any
specific leve1 of trust. We, too, are
participating in that effort as we
prepare a TRUDATA which balances
mission-based functional and performance
imperatives with security policies that
abide by generallY accepted (if not
formallY sanctioned) DBMS
interpretations.

Making and Tracking Implementation
Choices. The National Computer Security
Center (NCSC) is currently attempting to
coalesce a set of criteria for trusted
DBMSs. However, even if such a set of
criteria were extant, the nature of a
secure system implementation would still
leave some of the thornier implementation

choices unresolvable without experimental
data and/or extensive collaborative
deliberation. Certain semantic choices
and covert channel bandwidth control
choices are especiallY appropriate to
this category.

In response to this situation, we
have chosen to institute a "living"
document, our TRUDATA Implementation
Issues (TISSUES) List, around which we
focus specific decision making efforts as
we attempt to resolve (and document)
every judgment issue discovered during
implementation. We expect the TISSUES
List to grow and shrink over time as
implementation choices are made. Our
first version of the TISSUES List had
14 different TISSUES to resolve.

Implementation Schedule

TRUDATA implementation is proceeding
according to the TRUDATA Imp1ementation
Plan. The first phase of implementation
is scheduled to occur in two stages.

208

Stage 1 is scheduled to end in the winter
of 1987 with a prototvpe. Stage 2
finishes with our initial B1 target
version in mid 1988. Subsequent phases
are anticipated to move to a B2 targeted
level and to install more user support
tools, on-line expert Secure Data Base
Administration (SDBA) guidance, and more
refined supporting policies.

Implementation Procedure

TRUDATA is being implemented in a
"closed securitv environment" according
to National Computer Securitv Center
guidance in [16]. After establishing the
TRUDATA development facilit¥ and TRUDATA
Configuration Management Plan and
procedures, implementation is proceeding
according to the following pattern:

1) 	 "Absorb" the Britton Lee Portable
Host Interface (PHI) source code
and place under TRUDATA CM.
"Absorption" in~ludes a
line-b¥-line inspection of all
existing code to check for Trojan
Horses and trapdoors.

2) Activation of the TRUDATA
Assurance Program (TAP)
consisting initiall¥ of rigorous

configuration management, a
continuous test program, and
formal model interpretation. The
TAP will be supplemented with
covert channel analvsis after
Stage 1 is complete.

3) Confirmation of the standard
Britton Lee UNIX PHI software in
the Svstem V/MLS vers·ion.

4) Insertion of the new "trusted
authenticator" software at the
svstem interface level of the PHI
software. Careful examination of
references [10] through [15] and
analvsis of PHI architecture as
documented in [22] has isolated
the points of protection to just
a handful of routines (which must
now be trusted).

5) Addition of Trusted User Services
and Trusted Filter software.

6) 	 Completion of data deliverv
services software.

7) 	 Completion of Securitv Features
User's Guide and Trusted Facilitv
Manual.

Stage 1 is complete after step 4.
The remaining steps complete Stage 2.
Superimposed over the entire pattern is:

1) 	 A program of periodic reporting
and review with development
partners and involved Government
agencies.

2) 	 The maintenance of a "living"
document (the TISSUES List) which
tracks implementation issues and
their resolution throughout the
implementation process.

3) 	 Concurrent development of an
application scenario as a wav of
confirming our implementation
decisions and demonstrating
trusted DBMS services.

REFERENCES

[1] 	 A Preliminar¥ Naval Surveillance
DBMS Securitv Model, Graubart,
R.D., Woodward, J.P. L., Mitre,
1982.

[2) 	 Integritv Lock Designs Document,
MTR9505, Duffv, K.J. Graubart,
R.D., August 1985

[3] 	 Multilevel Data Management
Securitv, Committee on Multilevel
Data Management Securitv, Air
Force Studies Board, Commission
on Engineering and Technical
svstems, National Research
Council, National Acaderov Press,
1983.

(4] 	 Securitv Requirements of Navv
Embedded Computers, NRL
Memorandum Report 5425. Carroll,
J.M. • Froscher, J. N.,
28 Sept 1984.

[5] 	 Survev of Technologv Applicable
to the Design of Multilevel
Secure Databse Management
Svstems, Svstem Development
Corporation (for RADC), November
1983.

[6] 	 Trusted Computer Svstem
Evaluation Criteria,
NCSC-STD-001-83, 15 August 1983.

[7] 	 TRUDATA: ORI/INTERCON TRUSTED
DATABASE MANAGEMENT SYSTEM,
Svstem Development Plan, Svstem
Architecture, Knode, R. B.,
ORI/INTERCON, 3 October 1986.

(8] 	 TRUDATA SECURITY POLICY MODEL, A
Descriptive Top Level
Specification, Knode, R. B.,
ORI/INTERCON, 26 November 1986.

[9] 	 Commutative Filters for Reducing
Inference Threats in Multilevel
Database Svstems, Denning, D. E.,
SRI International, Proceedings of
the Svroposium on Securitv and
Privacv, 1985.

[10] 	 IDM Software Reference Manual,
Britton Lee, Inc., Part
Number 202-0500-019, June 1986.

[11] 	 Portable Host Interface Software

209

[12)

[13]

[141

[15)

[16)

[17]

[18]

[19]

[20)

[21]
Part Number 205-1190-007,
January 1986.

Spec~f~cat~on, Br~tton Lee, Inc.,

IDMLIB User's Gu~de, Br~tton Lee,
Inc., Part Number 205-1681-000,
July 1986. [22)

IDM 500 Operat~on Manual,
Br~tton Lee, Inc., Part
Number 201-1078-006, June 1986.

IDM 500 Ma~ntenance Manual,
Br~tton Lee, Inc., Part
Number 201-1210-002, June 1986.

Predef~ned Stored commands,

Br~tton Lee, Inc., Part

Number 205-1607-000,

February 1986.

Computer Secur~ty Requ~rements.

Gu~dance for Apply~ng the
Department of Defense Trusted
Computer System Evaluat~on

Cr~ter~a ~n Spec~f~c

Env~ronments. CSC-STD-003-85.
Nat~onal Computer Secur~ty

Center, 25 June 1985.

A Secur~ty Model for M~l~tary

Message Systems, ACM Transact~ons

on Computer Systems, Vol. 2,

No. 3, pp.198-222,

Landwehr, C. E. ,

He~tmeyer, C. L., and McLean, J.,

August 1984.

A New Look at Intea:r~ty Pol~cy

for Database Management Systems,

Proceed~ngs of the Nat~onal

Computer Secur~ty Center

Inv~tat~onal Workshop on Database

Secur~ty (17-20 June 1986).

Bonyun, D., I.P. Sharp Assoc~ates

L~m~ted, June 1986.

Integr~ty ~n Trusted Database
Systems, Proceed~ngs of the
Nat~onal Computer Secur~ty Center
Inv~tat~onal Workshop on Database
Secur~ty (17-20 June 1986),
Schell, Roger R. (Gem~n~

Computers), Denn~ng, Dorothy E.
(SRI Internat~onal), June 1986.

Secure D~str~buted Data V~ews,

Secur~ty Pol~cy and
Interpretat~on for a Class A1
Mult~level Secure Relat~onal

Database System, Denn~ng, D. E.,
at al~a (SRI Internat~onal),

Schell, Roger. R., et al~a

(Gem~n~ Computers),
November 1986.

Integr~ty and Inference Group
Report, Proceed~ngs of the
Nat~onal Computer Secur~ty Center
Inv~tat~onal Workshop on Database
Secur~ty (17-20 June 1986).

TRUDATA IMPLEMENTATION PLAN,
Knode, R. B., ORI/INTERCON,
27 February 1987.

210

THE SYBASE SECURE DATASERVER:
A SOLUTION TO THE MULTILEVEL SECURE DBMS PROBLEM

Patricia A. Rougeau

Edward D. Sturms

TRW Federal Systems Group

2751 Prosperity Avenue

P .0. Box 10440

Fairfax, VA 22031

INTRODUCTION

Today's database management system (DBMS) technology is
severely limited in its ability to protect sensitive information and
meet the increasingly demanding performance requirements of
many government, military, and private sector data processing
systems. Current high performance DBMSs do not offer data
security, and previous secure DBMS prototypes suffered in their
performance, flexibility, and maintainability. The Sybase
Secure DataServer (SYSDS) effort intends to solve both the
security and performance problems associated with modern,
relational DBMSs.

This paper presents the SYSDS approach to solving the secure
DBMS problem. The SYSDS is a multilevel secure relational
DBMS, based on the Sybase relational DBMS known as the
DataServer*. The SYSDS is currently under development. The
original SYSDS approach took advantage of the fact that the
DataServer was in an early development stage. The current
DataServer represents a state-of-the-art relational data manage
ment system which when modified, yields a cost-effective,
reliable multilevel secure DBMS that does not sacrifice essential
performance characteristics.

THE TRUSTED DBMS PROBLEM

In 1982, the Air Force Studies Board stated that computer security
technology had advanced to the point where certifiable multilevel
secure DBMSs could be built in the near term [AFSB83]. However,
this technology has not materialized in the commercial marketplace.

The SYSDS addresses several problems confronted by designers of
multilevel secure database management systems. These include:

• Storage of multilevel data

• Data and system integrity

• Performance

• Design Criteria

• Technological Obsolescence.

Storage of Multilevel Data

Most commercial operating systems that attempt to provide
mandatory and discretionary security controls do so at the file
level. This is insufficient for many applications, particularly in a

*DataServer is a trademark of Sybase, Inc.

military command and control environment where the
granularity of access protection must be very fine. The SYSDS
design provides mandatory protection at the row level, with up
to 16 hierarchical classifications and 64 non-hierarchial
categories.

Data and System Integrity

The DoD Trusted Computer System Evaluation Criteria (the
Criteria), the governing document behind computer security,
does not address the problem of data integrity, a problem partic
ularly applicable to database management systems [DODT83].
The SYSDS approach addresses this problem in three ways.
First, protection against inadvertent errors, such as hardware
problems, is provided by the use of an integrity field covering
every data page. This integrity field contains an error detection
code called a cydic redundancy check (CRC). The CRC is used
for integrity purposes, not for security purposes, since the
SYSDS is a: reference monitor approach. Second, the SYSDS
interfaces with network encryption devices on output for secure
end-to-end transmission of data over untrusted networks. These
two methods provide data integrity both within the SYSDS and
between cooperating hosts. Third, the SYSDS introduces the
concept of Trusted Computing Base (TCB) integrity by
separating trusted code into two hardware supported execution
domains to help limit the amount of trust afforded to each
domain. This unique approach provides system integrity.

The SYSDS offers other DBMS integrity features not included
in the TCB. For example, the SYSDS enforces range checks and
triggers, but these mechanisms are not enforced via trusted
code. They were intentionally left out of trusted code to help
reduce the size of the TCB. Placing them in trusted code would
have meant including a substantial portion of the SQL Compiler
in the TCB, making the TCB significantly larger. In essence, this
corrupts the purpose of a reference monitor approach since the
reference monitor would no longer be small enough to verify.

Performance

One of the largest problems in the construction of secure
systems is that, whether the system is an operating system or a
secure DBMS, security controls often degrade system perfor
mance to the point that the system no longer meets operational
requirements. This renders the system secure but impractical for
the mission or application. The result is that security controls
are turned off or compromises are made and organizations are
forced to purchase unsecure systems that better meet the perfor
mance requirements of the application. System users will
tolerate some performance degradation due to security, but it
must be minimal.

211

The SYSDS, as noted, is based on an entirely re-architected
DataServer. This approach is unique in that the DataServer was
designed with performance in mind, yielding an advantage in

--modifying the system to-meet Clas~2 requlrementsas-spedfied .
in the Criteria. The SYSDS was designed without introducing
excessive risk and performance penalties. At the time of the
original SYSDS design, the DataServer itself was in an early
development stage making it is amendable to the type of changes
needed for security - changes that have proven very difficult to
implement in existing commercial DBMS products.

The SYSDS design takes full advantage of high performance
features found in the Sybase DataServer. A primary goal of the
SYSDS effort was to modify the DataServer design, adding
security mechanisms while preserving the features which provide
high performance. To help meet this goal, the SYSDS will run
on a bare machine, making it a secure, high performance
database machine.

Design Criteria

The DoD Trusted Computer Systems Evaluation Criteria is the
guiding document governing the design and development of
secure systems. Unfortunately, this document was originally in
tended to serve the needs of operating system designers, and in
some cases, cannot readily be extended to govern the construc
tion of database management systems. To correct this situation,
the National Computer Security Center is developing a set of
Trusted DBMS Guidelines. In the absence of Trusted DBMS
Guidelines, the Criteria must be applied.

According to the Criteria, applications which use labeled data
must address the B Division requirements. Specifically, the
SYSDS intends to meet the Class B2level requirements, with the
addition of special integrity mechanisms.

Current thinking in the security community indicates that a
database management system must be evaluated together with
the operating system on which it resides. The SYSDS approach
allevi~tes this problem - there are very few B2-level secure
operating systems - by residing on bare hardware without the
support of a commercial operating system. All operating system
functions are part of the DBMS kernel.

Technological Obsolescence

Because of the delays inherent in secure system development,
many secure systems fall behind the state-of-the-art by the time
they reach the prototype phase. In other words, they are obso
lete shortly after proof of concept. The SYSDS approach has no
definitive answer to this problem, but a growth-path has been
designed. The SYSDS will be based on the commercial Sybase
DataServer, allowing enhancements made to the non-secure
system to be applied to the secure version on a case by case basis.
Of course, the SYSDS will have to be re-certified after every
major update, but there are plans for revisions in order to keep
the SYSDS current with the state-of-the-art in database manage
ment systems.

THE SYSDS SOLUTION

Designers of trusted DBMSs have difficulty in establishing what
software needs to be trusted and what. can remain untrusted. In
addition to the mandatory and discretionary policies addressed

in the Criteria, secure database designers must address special
integrity issues, including domain integrity (e.g. range of values)
and relational integrity (e.g. referential integrity). Security con
siderations are further complicated by the wide range of archi
tectures available to the DBMS designer, from database systems
executing on top of a target operating system to back-end
database machines using no commercial operating system at all
[HENN86].

' In addressing the security and integrity concerns that necessitate
the TCB, there is a tendency to allow the TCB perimeter to grow
until it encompasses the majority of the DBMS code. If this hap
pens, the DBMS TCB no longer satisfies the reference mointor
concept stated in the Criteria since it will not be small enough to
verify. Schell and Denning addressed this problem by defining
two TCB perimeters, one for mandatory security and integrity,
and the other for discretionary security, recovery, etc.
[SCHL86]. This enabled them to keep the mandatory security
kernel small, but, since their primary security object was the
data view, all of the semantic-related tools in the DBMS had to
reside in the second perimeter. This, coupled with recovery code
and other trusted mechanisms, could potentially make the
second perimeter large.

In defining the perimeter of the SYSDS TCB, the following con
siderations were made. Since the SYSDS runs on a bare
machine, the interrelations and dependencies between the
DBMS and the target operating system did not have to be con
sidered. Since the design of the commercial DataServer includes
many integrity and discretionary control features, a decision had
to be made as to which features to keep in the TCB and which
features to remove so that the TCB would not be too large.
Table 1 summarizes DBMS features inside and outside the TCB.

Design Feature SYSDSTCB
Implemented

Outside
TCB

login •
Auditing •
Trusted Recovery •
Mandatory Access At Record Level •
Discretiona'LAccess AI Table Level for the
Operations lee~ lnse~ Delete, Upgrade •
Integrity CRC Checks •
Trusted Operations •
Range Checks •
Triggers •
View Protection •
Deadlock Detection •
Uvelock Detection •
ConcuiTI!ncy Control •

Table 1. Perimeter of the TCB

One option considered was to add mandatory security
mechanisms to the original DataServer design and to have the
entire DBMS become the TCB. Using version 2.0 of the non
secure Sybase DataServer as the basis of estimate, with 39,000
lines of code, this option was within the feasible verification
range. SCOMP, certified as an AI system, has approximately
35,000 lines of code, about 10,000 lines of Pascal code in the
security kernel and another 25,000 lines of C code in the trusted
software. Although it would have been easier to designate the
entire DBMS trusted, this approach was rejected because it

212

meant that the TCB would contain considerable code not rele
vant to security and would be larger than necessary.

A second option, separating mandatory and discretionary
security into two perimeters, was also rejected. Although the
mandatory and discretionary mechanisms could be separated,
retaining views as objects would have made the two domains, in
cluding both mandatory and discretionary controls, almost the
same size as the first option - nearly the whole DBMS.

The approach chosen for the SYSDS was to define only one
TCB perimeter to include mandatory security, discretionary
security, integrity, recovery, auditing, and trusted operations.
Most of the complex semantic-related code in the SQ~_c~mpiler,
was placed outside of the TCB. With this approach, the integrity
features, such as triggers, are not included in the TCB. Instead,
these features are available outside the TCB and can be used to
augment or enhance the SYSDS security policy. The secure
operation of the SYSDS does not depend on the correct use of
these mechanisms. In this way, a single TCB embodies the essen
tial features of the security approach, while remaining as small
as technically possible.

THE SYSDS SECURITY MODEL

Subjects

In the SYSDS, subjects are active entities. A subject is defined as
a process running on behalf of a user. A key aspect of the
SYSDS design is that the database will be a stand-alone,
dedicated back-end processor. Trusted software in the DBMS
will create a user process in the machine for the duration of a
user session. The user process is assigned the security level of the
user at the time the process is created. Users are allowed to
designate the security level of a session as long as the level does
not exceed the maximum clearance of the user. The maximum
clearance of the user is stored in the DBMS.

Objects

One of the major difficulties associated with applying the
Criteria to database systems has been effectively defining the
varying granularity of system objects. In the SYSDS model, an
object is defined as one of two types of objects:

• Primary Object (PO)

• Secondary Object (SO).

A PO is defined as a data row (i.e., record or tuple) in a table .
. All POs are governed by the mandatory access policy and the
CRC integrity control mechanism but not discretionary access
policy. SOs are defined as databases and tables. All SOs are sub
ject to discretionary access policy only; no mandatory access or
integrity policy is directly applied to SOs.

The definition of PO and SO holds for all SYSDS objects,
including system objects in the data dictionary. Since every row
in the data dictionary is considered a PO, the SYSDS model
adds the benefit of implementing a minimum security level on
accesses to databases, tables, or even columns, regardless of the
information contained in them. For example, a database may be
designed to contain rows varying in classification from

UNCLASSIFIED to TOP SECRET. However, if the row in the
data dictionary, which refers to the name of a database, is
classified CONFIDENTIAL, then all users who reference that
database must have a login-level of at least CONFIDENTIAL in
order to gain access to that database. The same holds true for
access to other system objects such as tables and columns. This
SYSDS design feature can be used at the discretion of the
database designer. If this feature is not necessary for a given
application, the database designer can create all system objects
at a system-low or UNCLASSIFIED level, meaning that each
database user will at least gain access to the system object names
subject to discretionary access checks, and mandatory access
will then be checked at the row level of the base tables.

Defining two levels of system objects addresses both implemen
tation efficiency and Criteria requirements. First, to ensure
accurate security of system data, mandatory access protection
must be applied to every data row accessed in the DBMS. This
prevents a disclosure of data. However, it would be time con
suming to also check discretionary access rules on a per-row
basis. In most DBMSs, such checks are done at a higher level,
usually the database and table level. The SYSDS maintains this
traditional approach since it provides efficient and accurate
discretionary protection of the data.

Second, the Criteria requirements state that all accesses to
named objects in the system must be audited. Even with the
number of rows in a small database and the potential accesses
generated by a few users, this requirement could easily produce
a voluminous and useless audit trail. In an effort to control this
problem and still meet the Criteria, it is expected that only SO
accesses will normally be audited in the SYSDS although the
capability will exist to audit all successful accesses on a per table
or per user basis. The SYSDS also allows actions to be audited
on a per command basis. For example, it is possible to audit
only UPDATE and DELETE operations on a specific table.
Thus, the SYSDS can audit all accesses to SOs (i.e., down to the
table level) and check mandatory access and integrity of all
requested POs. Although the capability will exist to audit every
access to each record, it is expected that only anomalies will be
audited at the PO level. This approach controls access to multi
level data while meeting certain Criteria and application
requirements.

Database Operations

As with any DBMS, the SYSDS has a set of common operations
known as primary operations. Primary operations are per
formed directly against POs, although in the execution of each
primary operation there is discretionary access validation for
each operation for all SOs referenced in the operation. Only
four of these operations are discussed here. The following
paragraphs present an overview of these primary operations.

Select. The Select operation retrieves rows, or combinations of
rows, from one or more tables in the database. Prior to selecting
rows, the TCB validates discretionary access on all SOs (i.e., the
database and the table) referenced in the selection criteria.
Again, discretionary access is based on a per-command basis so
it is possible to not have SELECT access to a particular table.
The TCB also validates the security label of each row satisfying
the selection criteria and retrieves only those rows dominated by
the login-level of the subject.

Update. The update operation modifies one or more columns
within an existing row. Prior to performing the update, the TCB
validates discretionary access on the SOs referenced in the up

213

date criteria. The TCB performs mandatory access validation on
the row to be updated. For an update, the subject's login
clearance must dominate the security label of the row to be
modified. After the update, the row inherits the login level of
the subject which performed the modification, and the TCB
recalculates the CRC of the data page on which the row resides.

Insert. The insert operation places new rows into one or more
tables. Prior to performing the insert, the TCB validates discre
tionary access to the SOs under consideration. Each new row in
serted into the table inherits the login-level of the subject.

Delete. The delete operation removes existing rows from the
table. The TCB validates discretionary access to the SOs
referenced in the operations. The TCB also performs mandatory
access validation on the rows to be deleted. Prior to the delete,
the TCB will ensure that the security label of each row to be
deleted is dominated by the login-level of the subject. Subjects
are not allowed to delete rows to which they do not have access.

Integrity

As already mentioned, integrity is of primary concern to
database management system designers. However, the Criteria
does not present specific integrity guidelines. The.SYSDS model
addresses the problems of data corruption, i.e., the problem of
data modification rather than data access. The SYSDS policy
encompasses accidental modification, unauthorized modifica
tion, as well as integrity checking for the correctness of database
data.

Biba has proposed several solutions to the integrity problem
including his strict integrity policy, the low-water mark policy,
and the ring policy [BIBA77]. Unfortunately, many other
researchers have found these theoretical policies overly restric
tive. For example, the strict integrity policy restrictions are
unwieldy in application. If a program reads data of low integ
rity, it cannot write data of high integrity. This led Schell to pro
pose a special case of the strict integrity policy in which read
access and execute access are distinguished [SCHL86]. Boebert
and Kain found that hierarchical integrity policies, which bind
integrity levels to subjects as well as objects, are difficult to
apply in application in that they have excessive reliance on
"trusted" subjects [BOEB85]. Finally, Landwehr omitted integ
rity levels from the Military Message System security model
because there is no mechanism in the government for accounta
bility with regard to the protection of data against modification
[LAND82, LAND84].

The SYSDS does not implement a hierarchy of integrity levels
but rather addresses the concept of TCB integrity and correct
ness of data pages and security-relevant objects. The TCB is
divided into two hardware domains, forcing an overlay of least
privilege on the code. The 1/0 Domain deals directly with all
hardware elements in the system and is the only domain capable
of altering the data base. The Policy Domain is the data base
management engine.

Other DBMSs do not emphasize the correctness of data and the
criticality of well-formed tables. The SYSDS uses the CRC to
detect unintentional (or intentional) errors in data correctness.
The. CRC is calculated on a page basis. In addition to this in
ternal CRC check, the system will return to the host a CRC
calculated over the data row to assure the correctness of the row
while in transmission.

Finally, the SYSDS uses trusted code to build security-relevant

table~ ~uch as th~J9ginac~()_l:lnt~t~_!Jle, the user clearance table,
and the discretionary access authorization table. No commercial
system today can guarantee that data will not be inserted into or
removed from an incorrect row. By using trusted code, the
SYSDS makes it possible to make assertions as to the correctness
of security-relevant tables, assertions which cannot be made if
the tables are constructed by an untrusted SQL compiler.

THE SYSDS ARCHITECTURE

Hardware Architecture

The Digital Equipment Corporation (DEC*) VAX product line
is the target hardware environment for SYSDS. It provides a
compatible family of price/performance machines from a major
manufacturer. Any machine with at least three hardware do
mains could have been chosen. In fact, if the internal division of
the TCB into two parts had not been a goal, any machine with
two domains could have been used.

All VAXs, from the MicroVAX through the 8850, have a
memory architecture with four access modes or domains. The
access modes are organized in a strict hierarchy which DEC calls
User, Supervisor, Executive, and Kernel, going from least to
most privileged (Supervisor mode is not used in the SYSDS
architecture). To go from a lower privilege to higher privilege
requires a system call. In this way, the TCB can control the call
and all data accesses in the call. To go from a higher to a lower
privilege domain can be done by a return from a system call.

Each page of memory in the VAX can be marked with the least
privileged domain that can read it and the least privileged
domain that can write it. For example, a page can be marked as
read by User mode and write by Kernel mode, meaning that all
four modes can read the page but only the Kernel mode can
write the page. This mechanism is used extensively in the
SYSDS. It is not possible, for example, to allow read access by
Executive mode but not by Kernel mode since this breaks the
strict hierarchy. The modes are used to provide separation of
trusted and untrusted processes, as well as provide separation of
functions within the TCB.

Software Architecture

The SYSDS software architecture is divided into three code
bodies, each of which runs in its own hardware access mode of
the VAX. The software is divided into one untrusted domain
and two trusted domains comprising the TCB. The SYSDS soft
ware architecture maps directly into the four VAX access
modes. Figure 1, SYSDS Software Architecture, illustrates the
different domains.

The I/0 Domain. The I/0 Domain, executing in the most
privileged Kernel access mode, is reserved for software that
manages the hardware and directly manipulates the data on the
disk, in cache, or on the network. Software in the I/0 Domain is
responsible for:

• Process Control

• Hardware Control

• Page Integrity.

*DEC, VAX, Micro VAX, VMS, and UL TRIX are trade
marks of Digital Equipment Corporation.

214

DBAISSO

Console

(T....- Opnliano)

User Domain

•Complier
• Sequencer
•Decision
• Stored Procedure•
•Trlggera

Untrusted
Code

Polley Domain

•Logln/-....uon
• Query Execution
• Acceaa Methode
• Data Dictionary Raquoata
• Procedure ValidaUon
• Diocretlonory Contra!
• Mandatary Control
·Loggilg
• kldex Man_.,ent
•Lock Management
• Page Management
• Search Management

~ODomaln

Trusted
Computing

Base

Figure 1. SYSDS Software Architecture

The 110 Domain replaces the traditional operating system.
Since its only function is to provide a run-time environment for
the database, its size is very small. Excluding device drivers, it is
its size will be approximately 2,600 C statements. All estimates
are based on Sybase DataServer 2.0 line counts of comparable
code. The device drivers will be adapted from UL TRIX.

The 110 Domain is the only domain which has write access to
the database cache. When a page is needed from the database
(i.e., disk), it is read by the 1/0 Domain into a cache buffer in
main memory. Each page has an ID and CRC on it used to con
firm that the disk controller read the correct page and verify the
correctness or integrity of the page itself.

The Policy Domain. The Policy Domain contains the entire
security policy for the SYSDS and is the primary execution
engine for the database. The Policy Domain also includes a
library of subroutine services used mainly by code in the same
domain. This library supports the management of indices, locks,
pages, and searches. The Policy Domain runs in the Executive
mode of the VAX and is the next highest privileged access mode
after the Kernel. Code in the Policy Domain implements the
following functional units:

• Authentication

• Query Execution

• Access Methods

• Data Dictionary Requests

• Procedure Validation

• Discretionary Access Control

• Mandatory Access Control

• Logging

• Index Management

• Lock Management

• Page Management

• Search Management.

User Domain. The User Domain translates and compiles SQL
(the query language) statements into procedures which can be
executed by the Policy Domain. All User Domain code runs in
User mode on the VAX and is considered untrusted. User Do
main code calls the Policy Domain via a system call and cannot
call the 110 Domain directly. This code is nearly identical to the
existing Sybase DataServer code that performs the same func
tions. The functional units in the User Domain include:

• The Compiler

• The Sequencer

• Decision

• Stored Procedures

• Triggers.

THE SYSDS IN OPERATION

Figure 2 illustrates a scenario tying all of this information
together. After the Policy Domain has received a User ID,
Password, and Login-level Clearance, and the user is logged in,
an untrusted process is created by the Policy and 110 Domains
on behalf of the user. From that point on, processing requests
are received in the TCB and passed to the untrusted user process
in the User Domain for parsing and compilation. For example,
commands in the form of SQL statements are received from the
host via a network. The 110 Domain is responsible for decoding
the statements and passing them to the Policy Domain for
dissemination. The Policy Domain in turn distributes the com
mand to the correct user process executing in the untrusted User
Domain.

Figure 2. SYSDS Operations

After the untrusted user process receives the command, it first
compiles the SQL statement(s) into a binary internal format
called a Procedure, to be passed to the TCB for execution. The
compilation step requires a great deal of code, and, in the
SYSDS, it was determined that all of this code could remain un
trusted, thus reducing the size of the TCB. The TCB handles all
aspects of the execution of the Procedure after it has been com
piled, including the retransmission of the results to the host.

215

Computer Security

at Sun Microsystems, Inc.

Katherine Addison, Larry Baron, Mark Copple,

Don Cragun, Keith Hospers, Patricia Jordan,

Mikel Lechner, Michael Manley, Casey Schaufler

Sun Microsystems, Inc.

Mountain View, California

ABSTRACT

Sun Microsystems is currently developing enhancements to its Sun Workstation and SunOS products to
create .a Trusted Computing Base to be evaluated at the Bl level. In this paper, that product is referred to
as "Secure SunOS". This paper describes the project's history, status, and goals, as well as discussing the
more interesting aspects of the Secure SunOS product. This paper also describes some of Sun's future
directions in the secure systems marketplace.

IN'IRODUCTION

In late 1985, Sun Microsystems established the Sun Federal Sys
tems Division to do business in government marketplaces. It
soon became apparent that computer security would play an
important role in these markets, and that Sun would have to
develop a Trusted Computing Base (TCB}, based on its Sun
Workstation and SunOS products, to be evaluated according to
the requirements of the Trusted Computer System Evaluation
Criteria [DoD85]. This work has been going on in earnest for a
about one year, and the purpose of this paper is to describe what
Sun has been doing and where Sun is going in the computer
security marketplace.

The first half of this paper begins by describing the history of the
Secure SunOS project, the near-term product plans for secure
computing, development directions and goals, and Sun's work in
UNIX system security standards. The second half of the paper
describes the more interesting features of this initial version of
Secure SunOS, which is targeted for the Bl TCSEC level. The
description of Secure SunOS does not attempt to explain the
underlying SunOS system (Sun's enhanced version of the UNIX
system), the basic concepts of mandatory security, or the
requirements of the TQSEC, because these topics have been
covered well by other papers in the past.

CURRENT STATUS

Sun got started in the computer security business only about a
year ago. The initial impetus was provided by government pro
curements with requirements for the C2 and Bl security levels
defined in the TCSEC. It also became clear that it would be
increasingly important to have an evaluated secure product, and
moreover, security features that were flexible enough to apply in
commercial environments as well as for government customers.

UNIX is a registered trademark of AT&T.

NFS and SunOS are registered trademarks of Sun Microsystems, Inc.

Xenix is a registered trademark of Microsoft.

Because Bl is the highest level readily achievable by commercial
systems, it is most common in current government procure
ments. Although some procurements specify C2, a Bl system
will satisfy any C2 (or Cl) requirement, as well as all Bl require
ments. Since the NCSC evaluation process is expensive and
time-consuming, Sun decided to forego a C2 evaluation and
have Secure SunOS initially evaluated for Bl. The main conse
quence of this decision is that an evaluated version of SunOS
will be delivered somewhat later than might have been possible
had only the C2 features been added, but this additional delay is
relatively small. Even though Secure SunOS will not be delivered
this year, all major C2 features will be present (though
unevaluated} in the next release of standard SunOS.

In keeping with Sun's commitment to develop and support stan
dards for UNIX systems, Sun is working with several standards
groups, and some other vendors, to settle on common
definitions for security labels, password protection, auditing,
access control lists, and so forth.

Adding basic C2/Bl security features to a UNIX system such as
SunOS is straightforward. The challenge lies in making those
features both powerful and sufficiently easy to use that they can
be applied in many environments, not just that of federal
government classified information processing. The system must
also be designed in a way that does not conflict with user's
expectations for a standards-conforming UNIX system. Sun is
committed to producing technically advanced secure systems,
with features beyond the relatively simple requirements of the
Criteria. This is particularly important for the commercial and
educational marketplaces, where mandatory access control
mechanisms may not fit an organization's needs, but where
increased security and administrative control are very important.

CURRENT PRODUCT PLANS

The primary focus of Sun's effort is the Secure SunOS product.
This is a system intended to meet the Bl requirements of the
TCSEC, and is currently nearing the end of its initial develop
ment cycle. The first result of this work is the package of "C2
Features" to be delivered in SunOS Release 4.0.

216

The C2 Features Package

The "C2 Features" package is primarily intended to give custo
mers an early chance to experiment with the Auditing mechan
ism that will be fully implemented in Secure SunOS. The pack
age also includes protection for user passwords, additional docu
mentation, and some initial support for the labeling features in
Secure SunOS. With the "C2 Features" package fully installed,
SunOS Release 4.0 will satisfy all the major C2 requirements of
the TCSEC. It was not submitted for evaluation primarily to
save the effort of a full-scale security evaluation for the SunBI
product, and also because it is incomplete in minor areas.

This proved to be a wise decision, because it allowed us to put
many of the underpinnings of Secure SunOS into place much
earlier than would otherwise have been possible. It also allows
us a good chance to tune the audit mechanism and make it
easier to use; since the "feel" of an audit facility is very difficult
to evaluate without experience using it, this is very important.

The Secure SunOS Product

Secure SunOS is an independent product, derived from the
current version of SunOS, but developed and tested separately.
Eventually, the security features in each Secure SunOS release
are expected to become part of standard SunOS. Initially, how
ever, it is a separate product to ensure that the NCSC evaluation
process runs as smoothly as possible: since the main goal for
Secure SunOS is Bl security, it can be changed during the
evaluation process much more easily than SunOS, which must
respond to a wide variety of requirements. Having ·a separate
Secure SunOS product also allows us to coordinate product
release with the formal evaluation, rather than being tied to the
regular release schedule. Nonetheless, it is really just a version
of SunOS, and the two products are kept closely tied.

The goals of Secure Sun OS are:

• Conformance with NCSC Bl criteria

• Keeping the UNIX "feel" in a secure system

• Useful in commercial as well as government applications

• Compatibility with the standard SunOS specification

• Minimal change to standard SunOS interfaces

• Operation in standard Sun network environment

• Extensibility to support additional security features

The Bl level was chosen to meet the dual goals of satisfying a
large number of procurements and providing a product in a rea
sonable timeframe. Although Sun is considering higher TCSEC
levels, the initial emphasis is on security features rather than
internal assurances, on the assumption that the customers need
to gain experience with those features before they will know
what they really want in a more secure system. Secure SunOS
therefore includes some of the security features required at B2
and B3: device labels, realtime audit alarms, etc., even though it
is only being evaluated for Bl. The security policy and descrip
tive top-level specification are also written to satisfy the B2
requirements.

FUTURE DIRECTIONS

In general terms, Sun will enhance Secure SunOS in response to
customer requirements, but there are some specific plans for
work in the areas described below.

Standards

Sun is working with other vendors and the NCSC towards a
Secure UNIX system standard. The standards work is being done
under the auspices of the Pl003.1 Portable Operating System for
Computer Environments working group of the IEEE Computer
Society Technical Committee on Operating Systems and the
/usr/group Technical Committee Subcommittee on Security.
The latter group is responsible for preparing all security-related
inputs to the IEEE POSIX committee.

Network Security

Because the Sun system is a distributed collection of worksta
tions and servers connected by a network, Sun has a more press
ing interest in network security than many other vendors. The
basic SunOS architecture allows a collection of workstations to
appear as a single, distributed, TCB. Therefore, for evaluation
purposes, an entire Secure SunOS configuration is considered as
a single "system", all of whose hardware must be physically
secure. Even in environments where hardware is not wholly
secure, the "secure booting" mechanism described below will
provide sufficient protection in many environments.

In addition, although the NCSC evaluation will not cover such
configurations, Sun plans for Secure SunOS to operate compati
bly when connected to networks containing non-Secure SunOS
machines (either Sun machines or others). Non-Secure SunOS
machines will be treated as single-level systems. Finally, all
Secure SunOS systems will be able to use the "secure network
ing" mechanisms in Sun OS, which use public-key encryption to
ensure secure authentication even if the network contains
untrusted hardware. Again, in the NCSC-evaluated Bl environ
ment,' this will be unnecessary because the hardware itself must
be secured, these features will be useful in other environments.

Compartmented Mode Workstation

For workstations, in addition to the NCSC Bl requirements,
there is an additional set ofsecu~ItY· requirem~~~-defined by
MITRE for the Defense Intelligence Agency [Woodward86].
The primary additional feature specified in that document is
"floating" labels, which provide a mechanism for tracking the
sensitivity label of all data which served as input to an object,
such as all the processes which wrote into a file, or all the data
written to a window. Sun is planning to build extensions into l'.

future release of Secure SunOS to satisfy these requirements.
These features will be provided on top of, not instead of, the
basic Bl functions.

Administrative Interfaces

Closely related to the inherent presence of a network in the
Secure SunOS configuration are the attendant problems of
administering a widely distributed collection of individual
machines. Sun will be developing administrative tools and inter
faces to make this simpler, and also to allow subdivision of
administrative roles and responsibilities.

Higher Criteria Levels

. Sun has not yet decided how to approach the higher TCSEC lev
els, but will certainly do so as market requirements demand.
Thus far, the focus of Secure SunOS has been on security
features: mechanisms customers can actually use and experiment
with, and incorporate into their own applications. Although Sun

217

considers the Secure Sun OS TCB to have a sound internal archi
tecture, it is quite large, and was not engineered to meet the B2
(or B3) requirements. Rather than building a brand new B2/B3
system now, however, Sun plans to wait and gain more experi
ence with the new features provided by Secure SunOS, to know
what to keep and what to leave out.

MAJOR FEATURES OF Secure SunOS

All UNIX system-derived secure systems face a similar set of
design decisions for implementing security in the kernel: how to
label files, how to handle directories, what to do about interpro
cess communication, etc. For the most part, these issues are
addressed in Secure SunOS the same way they have been in
other "secure UNIX" systems, such as IBM's Secure Xenix, the
LINUS IV prototype developed at MITRE, etc. Like those sys
tems, Secure SunOS follows the same basic model as Multics in
applying mandatory security:

• 	 Processes, files, directories, and all other objects have
labels, and in the initial release, labels support 256 hierarch
ical mandatory security levels and 64 non-hierarchical man
datory security categories.

• 	 The formal security model for the system is the Unified
Multics version of the Bell and La Padula model described
in [Bell76].

• 	 For most objects, the model is restrictively interpreted to
allow read-downs (reading data with a lower label than the
process), but not write-ups (modifying data with a higher
label than the process). This is done to simplify the imple
mentation and eliminate a variety of covert channels at the
design stage.

• 	 Labels in the file system hierarchy are monotonically non
decreasing; all objects in a directory have the same label as
the directory itself, except for directories, which may be
"upgraded" (have a higher label than their containing
directory).

• 	 The initial version of Secure SunOS does not include any
"least privilege" mechanism to replace use of root as the
only form of privilege. Sun is, however, working with the
jusr/group standards committee to define such a mechan
ism for eventual inclusion in the POSIX standard and
future versions of Secure SunOS.

• 	 The initial version of Secure SunOS also does not include
any form of Access Control Lists (ACLs), and again, Sun is
working with the standards committee to define an ACL
interface for POSIX and future Secure SunOS systems.

The remainder of this paper describes some of the Secure
SunOS features that are unusual and how they are different from
other "secure UNIX" systems.

Labeled Windows

Probably the most important feature of Secure SunOS is that the
on-screen windows are considered objects by the TCB, and have
labels. This allows a user at a workstation to view, simultane
ously, activity of processes with several different labels. The
user can interact with these processes simply by moving the
mouse from one window to another, unlike conventional man
datory access control systems, where often a logout/login

sequence is required every time labels are changed .. Data can
even be moved between windows of differing security labels,
provided that the mandatory access control rules are followed.

A user interacts with the system by logging in at some level and
creating windows of that level and below.

Auditing

Auditing in Secure SunOS is done on the basis of event classes.
Each process has an audit state, specifying which event classes
are audited for that process. The audit state specifies separately
whether to audit a particular class for successful operations or
failed attempts, so that, for instance, all access denials will be
audited, but only successful write accesses (not reads) will be.

There is a system default set of audit classes, and each user has
two sets that modify the system default. The administrator may
specify, on a per-user basis, which event classes are always
audited for the user, regardless of system defaults, and which
event classes are never audited.

At present, Secure SunOS defines 13 audit classes, which include
operations such as data-read (open for read, file status inquiry,
etc.), data-write (open for write, etc.), data-access-change (change
file permissions, change owner, etc.), data-create (create, delete,
link, etc.), login (interactive login, logout, use of su, process
created by at, etc.), and others. Audit messages are also gen
erated for all administrative and privileged activity, identifying
the specific operation performed as far as possible. Administra
tive events are audited specifically, not just as the administrator's
acce::,s to a file; for instance, use of vipw to change the passwd file
(where user registrations are kept) audits the change between
the original passwd file and the modified version.

Auditing in a Network Environment

Because many of the machines in a Secure SunOS configuration
are typically diskless workstations, audit messages are written
across the network. Each machine has its own audit daemon,
which collects the audit messages generated locally and writes
them out to an audit file. The audit file is written using normal
file 1/0, but by using the Network File System (NFS) it is possi
ble for the audit file to be located on an arbitrary machine

~where in the network.

If an audit file fills up, or if the machine contammg it goes
down, each local audit daemon that was using that file detects
the error and tries to create another audit file in a different direc
tory. Because each local audit daemon has a list of directories to
try when creating audit files, this is a very robust system: it is
very likely that audit messages will find a home, even though
they may be scattered among many machines.

Each machine in the system is responsible for auditing its own
activity. This is safe because the machines are required to be
physically secure, and because the non-privileged users do not
have the capability of logging in as root or bringing the machines
up in single-user mode. Thus, access to a machine does not
present the opportunity to breach even that machine's own secu
rity.

Audit Reduction and Display

Because multiple audit files are an inherent feature of auditing in
a distributed environment, Secure Sun OS treats this as a feature,

218

rather than an inconvenience. The administrator wishing to
view the audit trail uses the NFS to access all the audit files that
are scattered among directories on machines all over the system,
and the audit tool puts those records back in order.

The audit display tool is normally used to display the output of
another program, auditreduce, which combines the audit records
from many audit files and writes them out in time-sorted order
for printing or report generation. Selection of audit messages
(by type, string match, time of day, user name, security level,
etc.) is performed in auditreduce, so that a report generation pro
gram need not have any selection options of its own. These
tools also make it easy for the administrator to gather multiple
audit files back into one place, keep old audit files on tape, and
even keep selections from audit files online (such as a file con
taining only login records, but from the last six months).

Hidden Subdirectories

Every "Secure UNIX system" faces the problem of dealing with
shared directories for temporary files. In Secure SunOS, as in
IBM's Workstation Xenix, the temporary directories are special
in that normal references to them actually translate to references
to a subdirectory, of which there is one for each different label.
x· directory which causes this indirection (such as jtmp) is known
as a "hiding" directory, and its subdirectories (one for each
security label) are known as "hidden subdirectories". These
hidden subdirectories are created dynamically the first time a
process tries to reference one that doesn't exist. Because they
are created automatically, it is safe to delete them (as long as
they are empty) at any time. Because use of hidden subdirec
tories in Secure SunOS is controlled on a per-directory basis, this
facility is used not only for jtmp, but also for /usrjtmp, some of
the directories in jusr/spool, etc.

Physical Security

Every machine in a Secure SunOS configuration must be physi
cally secure. What this means varies from customer to custo
mer, but Sun can provide a variety of protective packagings that
can make it arbitrarily difficult for an unauthorized user to
breach the hardware integrity of a machine. Modified PROMs
prevent the machines from being booted in single-user mode or
from other than the default version of the kernel without a spe
cial (per-machine) password. The per-machine password may be
changed by a system administrator.

REFERENCES

[ATI86J
System V Interface Definition, Volumes I and II, 307-127,
AT&T, Indianappolis, Indiana, 1986.

[Bell76]
Bell, D. E., and La Padula, L. J., Secure Computer Sys
tems: Unified Exposition and Multics Interpretation, MTR
2997 Rev. 1, MITRE Corporation, Bedford, Mas
sachusetts, March 1976.

[DOD85]
Department of Defense Trusted Computer System Evaluation
Criteria, DOD 5200.28-STD, Department of Defense,
Washington, D.C., December 1985.

[Woodward86J
Woodward, John P. 1., Security Requirements for System
High and Compartmented Mode Workstations, MTR 9992,
MITRE Corporation, Bedford, Massachusetts, May 1986

219

TAXONOMY OF COMPUTER VIRUS DEFENSE MECHANISMS

Catherine L. Young

Office of Research and Development

National Computer Security Center

9800 savage Road

Fort George G. Meade, Maryland 20755-6000

ABSTRACT

Computer virus defenses can be
categorized using the following six grouping
schemes:

Appearance versus Behavior,

Prevention versus Detection,

Executable versus source,

Required Protection,

Performance, and

Ease to Implement.

Each scheme is explained, and examples are
used to clarify each scheme. This taxonomy
will aid in evaluating virus defenses and
provide a foundation for designing new virus
defenses.

INTRODUCTION

A computer virus is a piece of harmful
code that is hidden in an otherwise normal
program. A virus is also able to write a
copy of itself to (or "infect") other
programs.[5] This capability makes a virus
especially dangerous to computer systems
because a virus is likely to be harder to
remove and is likely to have access to more
computer resoures than malicious code that
does not have this capabilty. A virus could
propagate for a certain period of time until
some event triggers it to perform its harmful
action. Because of the danger that viruses
pose to computer systems, it is important to
develop defenses against them.

. The purpose of this paper is to .
categorize computer virus defense mechan~sms.
By presenting virus defenses in an organized
manner, this paper should help virus
researchers find defense categories that
might be missing and to formulate more
defenses for some of the categories. Six
different schemes are described for
classifying computer virus defenses and
examples are given to clarify each scheme:

Appearance versus Behavior,

Prevention versus Detection,

Executable versus Source,

Required Protection,

Performance, and

Ease to Implement.

The first part of this paper describes
four defense measures that will be used as
examples. The bulk of this paper is the
taxonomy which looks at the six
categorization schemes. The paper explains
each scheme and describes how and why each
example fits into the various categories.
Appendix A contains a matrix that shows a
wide range of defense measures and how they
are cataloged. Also included in Appendix A
is a list of short descriptions of the
defense measures. Appendix B consists of
definitions.

EXAMPLE VIRUS DEFENSES

The following are four examples of virus
defenses that will be used to clarify the
taxonomy. These examples are a subset of the
virus defenses described in Appendix A.

1. Coding style Analyzer

A coding style analyzer uses the
structure and content of a program to
determine how many different programmers
contributed to the program and what sections
of code were written by each. A coding style
analysis is related to the analysis of such
things as handwriting and structure of
sentences to authenticate the author of a
book. An example of some coding style
indicators at the source code level might be
the number of spaces used to indent a While
Loop, the frequency of comments, and the
kinds of instructions used. Such an analyzer
can be used to detect the presence of a virus
because most virus code will have a different
coding style than the host program, and the
virus programmer's style is likely to be
present in all the infected programs.

2. Prefix and Postfix Checker

Primitive viruses will probably
reside in the beginning or end of host
programs and will infect host programs with
exact replicas of themselves. A prefix and
postfix checker compares the beginning and
end of files to see if a group of files have
the same beginning or the same end. A group
of files with identical prefixes or postfixes
are likely to contain a virus.

3. ROM Devices

Programs may be put into read
only memory (ROM) devices to prevent viruses
from infecting critical programs. Programs
stored in such devices cannot be modified.
Adequate measures must be taken to make sure
that only uninfected programs are stored in
the ROM.

220

4. Intrusion Detector

An intrusion detector is a
defense measure that monitors the activities
in a system to determine if it is under
attack. The detector does this by comparing
current actions with past actions to see if
something out of the ordinary is occurring.
This defense can be used to detect many
different types of intrusion, including
viruses. Some distinguishing actions that
would indicate a possible virus attack would
be accessing many files, searching
directories, and writing to executable
files. [4]

TAXONOMY

A. Appearance Versus Behavior

The appearance-versus-behavior
categorization distinguishes between virus
defenses that detect or prevent infection by
program appearance and those that detect or
prevent infection by program behavior. An
appearance defense considers the contents of
a program, whereas a behavior defense
considers the actions of a program.
Appearance defenses work before the host
program is executed, and behavior defenses
work during execution.

Both kinds of defenses have· their
limitations. For a given program it may not
be possible to absolutely determine by its
appearance if that program contains a virus.
These defenses make an educated guess as to
whether a program contains a virus. For every
defense, however, a clever virus can probably
be written to outsmart that defense. The
behavior defenses in many cases can be
thwarted. A clever virus would behave in a
subtle way so that its actions· will not seem
out of the ordinary for the host in which it
resides.

The coding style analyzer is an
example of an appearance defense because it
looks at the contents and structure of a
program to determine the author(s) of the
program. The prefix and postfix
checker also fits in the appearance category.
This checker looks at the beginning and end
contents of files to find identical prefixes
and postfixes.

ROM devices qualify for the behavior
category since they prevent viruses from
performing the action of writing to the files
stored in ROM. The intrusion detector is
another behavior defense because it monitors
actions.

B. Prevention Versus Detection

All virus defense measures fall into
one of two categories: prevention or
detection. Prevention defenses are those
that stop virus propagation. Some of the
actions involved in propagation that can be
prevented are writing to executable files and
accessing a file that has been touched by too
many processes. Prevention defenses will
control and limit access to files. Detection
defenses recognize virus attacks but do not

have the power to stop a virus. Detection
measures could be considered a type of
prevention, however, because the system
security officer can shut down the system to
prevent further damage once the virus has
been detected.

Prevention defenses, by definition,
involve restricting an action and will only
involve behavior measures. ROM devices will
prevent virus spread because they are
designed such that the information stored on
them cannot be altered.

Detection defenses are usually
appearance measures. A coding style analyzer
detects the presence of a virus after the
host program has been infected. It will
indicate an additional programmer than the
one (s) who wrote the host program. The
prefix and postfix checker will detect a
virus that resides in the beginning or end of
files after it has spread to several files.
The intrusion detector watches for telltale
actions.

c. Source and Executable

Virus defenses can be partitioned
based upon whether they monitor source code_
or executable code. Many of the proposed
defenses listed in Appendix A are effective
for both source and executable code. Since
viruses can reside and propagate to either
kinds of code, it is important to defend
against viruses in both kinds of code.

A coding style analyzer works best
on source code because source code will bear
all the marks of its author. Executable
code, on the other hand, is the result of a
compiler converting source code into a
standard form that a machine can understand.
The resulting executable code will_ not have
all of the marks found in source code such as
indentations and comments. The more
transformation processes that a program goes
through, the less marks it will have of the
author.

The prefix and postfix checker will
work well with source and executable code.
If a virus propagates by writing exact copies
of itself to the beginning or end of
programs, making the bytes exactly alike, the
prefix and postfix checker will detect this
reguardless of the type of code.

Since the information in a ROM
device cannot be changed, a ROM is used to
store the final executable version of
programs. For the most part, source code
only needs to reside in the development
system, and not in the target system. It
would usually not make sense to store source
code on a ROM device. A ROM device is,
therefore, considered a defense for
executable code.

The intrusion detector concerns
itself with the actions. This defense falls
under the executable category because source
code does not act but executable code does.

D. Required Protection

Virus defense mechanisms must be

221

protected. The protection needed for each
defense gives another way to classify virus
defenses. The categories are based on what
needs protection, and what type of protection
is needed. The number of different
protections and the kind of protection needed
will have an impact on the vulnerability of a
defense measure. Except for the ROM devices,
all the measures included in this paper must
be read-, write-, and execute-protected.

Each defense must be read-protected
so that viruses cannot learn the threshold
values and other information that would help
them evade the defense. Write-protection is
necessary so that the defense cannot be
modified to ignore or help a virus. Each
defense must be execute-protected to insure
that it is called when it is supposed to be
called and that the virus does not execute
the defense in order to see if it would pass
or fail. These three protection needs will
not be enumerated for each defense.

The coding style analyzer requires
protection of data that it stores temporarily
while it is running. The file attributes
that the defense analyzes must be read
protected so that a virus will not know what
attributes are being analyzed.

The prefix and postfix checker also
needs read-protection of the size and extent
of its search and comparisons.

A ROM requires the physical
protection of the computer to prevent an
attacker from replacing the ROM with a virus
infected ROM. Once a program has been
written to a ROM device, it cannot become
infected.

The intrusion detector requires
read- and write- protection of long-term and
temporary data. The long-term data that
needs protection is the audit records that it
uses to determine the expected behavior of
the system. The temporary data that must be
protected is the expected behavior patterns
which frequently change.

E. Performance

The effect that a defense measure
has on the performance of a system gives
another grouping of the defenses. This paper
considers the following aspects of
performance: the time it takes for the
defense to execute, the amount of primary
memory required by the defense program, the
frequency of use, and the affect of the
defense on the throughput of individual
programs. The affect on throughput is a
function of the other aspects of performance.

The coding style analyzer will be
complex and will, therefore, take a
relatively long time to execute. The coding
style analyzer will take longer to run than
the prefix and postfix checker because of its
complexity. The difference in run time
because of complexity will be multiplied by
the number of files that need to be checked.
This analyzer will require a moderate amount
of memory for its code and the file
attributes it must analyze. After it checks
one file, the coding style analyzer will not

need the data generated for that file, so the
corresponding memory can be reused. The
coding style analyzer can be a background
process that is executed on demand. If
executed in the background, it should have
small impact on the throughput of individual
programs.

The prefix and postfix checker will
be a simple defense that takes a relatively
short time to execute. It will also take a
small amount of memory for its code and data.
The prefix and postfix checker may need to
retain information from the files it checks,
such as all the prefixes that are contained
in more than one file (or some threshold
number of files) and lists of which files
contain each prefix. Even so, the amount of
information to be stored will be small. The
prefix and postfix checker can also be a
background process which is executed on
demand. Because of its simplicity, this
defense will have a very small impact on the
throughput of individual programs.

Time of execution, amount of memory
required, and frequency of use do not apply
when considering ROM devices because they are
not software defenses. The main
consideration is the affect that ROM's have
on the execution of individual programs. The
affect of using ROMs will vary depending on
the system and the devices used. Some ROM's
will be slower than the corresponding random
access memory (RAM) and some will be faster.
In the case of an IBM PC or XT, a ROM would
improve performance because its programs do
not need to be loaded off of a disk as do
programs using RAM.

The intrusion detector will be a
complex defense that will run continuously in
the background, keeping track of what is
going on in the system to determine if the
system is under attack. The amount of memory
required will be rather large, but it will
vary depending on the sophistication of the
detector. This defense will increase the
execution time of individual programs more
than the other examples due to its complexity
and because it will be continually monitoring
the system.

F. Ease To Implement

When evaluating virus defenses, one
must consider how easy it will be to
implement each virus defense measure with
respect to current technology. We can
classify defenses as being (1) easy to
implement with current technology, (2)
possible with current technology, (3)
requiring much work to implement, and (4)
requiring innovative ideas.

ROM devices are easy to implement
and are widely used already. The prefix and
postfix checker would also be easy to
implement with current technology, using a
simple comparison program. While it is
possible to implement the coding style
analyzer with current technology, it is not a
trivial task. The intrusion detector,
however, will require innovative ideas
because it is not well defined which actions
indicate that a system is under a virus
attack.

222

CONCLUSION
Legend For Matrix

This taxonomy should help those who are
researching and developing virus defenses.
They can use this tool in choosing and Appearance/Behavior
evaluating existing virus defenses. A
systematic approach should help prevent a Appearance
researchers from overlooking significant b Behavior
characteristics of virus defenses. This
organization of virus defense measures Prevention/Detection
provides a foundation for designing new virus
defenses. 	 p Prevention

d Detection

APPENDIX A 	 Source/Executable

VIRUS DEFENSE MATRIX 	 s Source
e Executable

This appendix shows a wide range of Required Protection
defense measures and how they would fit into
the taxonomy. The coding style analyzer, the This column will include pairs, with
prefix and postfix checker, ROM devices, and one item from each of these two groups:
the intrusion detector defenses were chosen
as examples for this paper. The column Item:
headings are the categories of the taxonomy
and the row headings are the defense m Machine
measures. The values in each column are d Data objects (long-term)
explained in the legend that immediately t Temporary working
follows the defense matrix. storage

Type of Protection:

r Read
Virus Defense Matrix 	 w Write

lA BIP DIS El R P I P IE II p Physical
IP elr elo xl e r I e Ia ml
IP hie tlu el q o I r Is PI
1e a1v elr cl u t I f le 11 Performance
Ia vie clc u1 i e I o I el
lr iln tie tl r c I r It ml
Ia olt 1/ al e t I m lo el This column rates four areas that
In rl/ I bl d i I a I nl affect performance. The first element of
lc I I 11 o I n I tl
le I I el n I c I 	 I each item is a letter representing one of

I. Attribute of Change I/ I I I· I e I 	 I these areas as follows:l_l_l_l__l__l_l
A. 	 Message of Modification I b I d I e&s I Itl ml I 1 I

l_l_l_l__lfi il 1_1
 t Time required to execute theB. 	 Second copy & Compare I a I d I e&s Idw tw It2 ml I 1 1
I I I I I fd il I I defense program once.

c. Selected Portions of 	 laldle&sldr dw ltl m2 Ill m Amount of primary memoryPrograms l_l_l_l:!;x__lfd il 1_1
D. 	 Length of Program I a I d I e&s Idr dw It1 m1 I 1 I used for defense program

l_l_l_l__l fd il 1_1
E. 	 Date/Time Stamp I a I d I e&s Idw I t1 m1 I 1 1 code and data.

l_l_l_l__lfd il l_l f Frequency of execution of
F. 	Checksum I a I d I e&s Idr dw It3 m2 I 1 1

l_l_l_ltr tw lfd i2 1_1
 the defense.
G. Encryption I a I d I e&s Idr dw I t3 m2 I 1 I 	 i Affect on throughput of

l_l_l_l__lfc i3 1_1 individual program
II. Virus finders execution.

A. 	 Prefix & Postfix Checker I a I d I e&s Itw It2 m2 I 1 I

l_l_l_l__lfd il 1_1

B. 	 Pattern Matcher I a I d I e&s Itw I t3 m2 I 2 I Numbers are associated with the
l_l_l_l__l fd i2 l_l letters t, s, and i in this column, and they

c. Coding style Analyzer 	 I a I d I s Itr tw I t3 m3 I 3 I
l_l_l_l__lfd i2 1_1 give a relative measure of the affect each

D. 	 "Antibiotic" Program I a I d I e&s Itr tw I t3 m3 1 4 1 defense will have on each aspect of
I_I_I_I__I!!Li...LI_I performance of the 	system, on a scale of o to

III. Execution L1m1-cat:~on::; 5. The larger the 	number in the column the
A. Access Control Mechanisms 	 lblpleldw lt2m3111 greater the impact on that aspect of

l_l_l_l__lll......i..LI_I performance.B. Limited Domains I b I p I e I I I 	 I
l_l_l_l__l__l_l

1.. User-definable Domains I b I p I e Idw I t2 m3 1 4 1

l_l_l_l__lfe i2 1_1 	 The frequency of execution is

2. Type/Domain I b I p I e Idw I t2 m3 I 3. I handled separately. The letters paired with
l_l_l_l__lfe i2 1_1

lblpleldw lt2m3121
c. Low-level Minus One 	 the f for frequency are as follows:
l_l_l_l__l fe i2 1_1

D. ROM Devices 	 I b I p I e Imp ItO me I 1 I
l_l_l_l__lfc io 1_1 	 i = Interrupt driven; only

E. Flow Distance 	 I b I p I e ldr dw 1t2 m4 1 3 1 called when a suspiciousl_l_l_l__lfe i4 l_l
F. 	Flow Lists I b I p I e ldr dw lt2 m4 I 3 1 event occurs.

l_l_l_l__lfe i4 l_l

G. Intrusion Detector 	 d On Demand; done in theI b I d I e ldr dw Its m4 I 4 1

l_l_l_ltr tw lfc i3 l_l background.
c Continuously in the

background.
e When protected programs are

executed.

223

Ease to Implement

The numbers in this column specify how
easy it will be to implement each virus
defense measure with respect to current
technology.

1 Easy to implement with current
technology.

2 Possible with current
technology.

3 Requiring much work to
implement.

4 Requiring innovative ideas.

Brief Description of Virus Defenses

I. ATTRIBUTES OF CHANGE

These defense measures monitor programs
to see if they have been modified. The
appropriate authority should designate which
files to monitor.

1. Message of Modification - This
defense is a modification to an operating
system that sends a message to the System
Security Officer's screen, or to an audit
file, whenever a protected file is modified.

2. Second Copy & Compare This
defense can be divided into two parts:
installation and comparison. The
installation involves storing the second copy
of all the files that are to be monitored.
The comparison compares the current copy and
the stored second copy to see if any files
have been modified. The comparison can be
done as a background process on demand.

3. Selected Portions of Programs
This defense is similar to the second copy
and compare defense and can be divided into
installation and comparison. This defense
installs files to be monitored by using an
algorithm to select portions of these
programs and then storing these selected
portions. To check to see if the programs
have been modified, the defense will apply
the algorithm again and make sure that it
gives the same selected portions that it
stored earlier. This comparison can be done
as a background process on demand.

4. Length of Program - This defense
computes and stores the length of the files
to be monitored. It checks for modification
by recomputing the length and comparing it to
the stored length.

5. Date/Time Stamp - This defense
stores the date and time that each monitored
file was last officially modified. Each
monitored file will have a date/time stamp in
its header that indicates the last time it
was modified. The defense mechanism will
check to make sure the stored time and date
match the stamp in the header of each file.
This defense measure assumes that the system
will protect the headers of files from being
modified by any program that is not
authorized to do so. The virus may have
access that allows it to modify a program,

but most systems put a greater restriction on
who is allowed to modify a header to a
program.

6. Checksum - This defense computes
and stores a checksum for each file that is
monitored. To check to see if the files have
been modified, the defense will recompute the
checksum for each file and compare it with
the stored checksum.

7. Encryption This defense
encrypts the files that are to be protected.
Prior to execution these files will be
decrypted. If a virus tries to write to an
encrypted file, the result will be garbage.

II. VIRUS FINDERS

These defenses can recognize a virus by
its appearance.

1. Prefix and Postfix Checker
This defense compares the beginning and end
of files to see if a group of files have the
same beginning or the same end. A group of
files with identical prefixes or postfixes
are likely to contain a virus.

2. Pattern Matcher The pattern
matcher will look for matching byte patterns
in groups of files. Since viruses are likely
to propagate by writing copies of themselves,
identical byte patterns may indicate the
presence of a virus.

3. Coding style Analyzer - A coding
style analyzer determines the distinctive
techniques used by each person who
contributed to a program. If the analyzer
indicates that a given program has more
programmers that it should have, this may be
the result of a virus. If several otherwise
unrelated programs have the same programmer
for part of their code, this could also
indicate the presence of a virus.

4. "Antibiotic" Program This
defense will recognize a virus based on the
types of instructions it will need for
propagation, triggering, and performing its
mission.

III. EXECUTION LIMITATIONS

These defenses will prevent or detect
viruses during program execution.

1. Access Control Mechanisms-
Access control mechanisms allow users to
decide who is allowed to access each of their
files and what kind of access they will allow
to others. A virus can only use the accesses
of its host program. Access control
mechanisms can slow viruses but will not stop
most viruses.[3]

2 . Limited Domains - This type of
defense limits the objects that each user has
access to.

a. User-definable Domains-
With this measure, each user decides what
objects he will need to access. He will
restrict himself to only that set of objects
(called a domain) which he will need.[6]

224

b. Type/Domain For this
defense, a domain is a group of programs. To
access a given type of object, a subject must
be part of a domain that is allowed access to
that type of object.[2)

3. Low-level Minus One This
defense uses the Bell and LaPadula model.[1]
To protect a set of executable programs,
assign them to a level that is below the
lowest level of all the other objects in the
system. If the simple security property and
the
*-property are enforced, these low-level
minus one programs could be read by all
subjects, but they could not be written to by
any subjects at the higher levels.

4. ROM Devices Another way to
protect programs from infection is to store
them in ROM's.

5. Flow Distance The flow
distance defense will limit how far
information can flow in a system. Each file
in the system is assigned a flow distance
based on how far the data in that file has
travelled. For example, if a user writes a
program that does not accept any input data,
then that program has flow distance of zero
while it is in the originator's possession.
If the programmer gives this program to
someone else, then its flow distance is
increased by 1. The flow distance of a
program that accepts input data will be
increased by the flow distance of the input
data. The system can limit the spread of
viruses by restricting the flow distance of
data. If a file receives a flow distance
that exceeds the maximum, then that file can
no longer be used.[3]

6. Flow List The flow list
defense maintains a list of each object that
indicates which users have · accessed that
object. The system can then prevent an
object from being accessed if too many users
have accessed the object or if some
undesirable combination of users have
accessed the object. This defense could also
be used on the individual level so that a
user would only accept objects whose flow
list contains only users that he trusts.[3]

7. Intrusion Detector This
defense looks for suspicious behavior that
might be indicative of a virus or some other
intrusion.

APPENDIX B

DEFINITIONS

computer 	Virus - A computer virus is code
that resides in a program that can
copy itself onto other programs.
Computer viruses have the potential
to do great damage to computer
systems by propagating and later
performing devious acts such as
deleting files.[3, 5]

Host Program - A program that contains a
virus. [5]

Propagation - A computer virus propagates or
infects by writing a copy of itself
in another program when the virus is
executed. [5]

BIBLIOGRAPHY

[1) 	 Bell, D. E., and L. J. LaPadula.
"Secure Computer Systems: Unified
Exposition and Multics Interpretations."
Technical Report MTR-2997, MITRE Corp.
Bedford, MA. July 1975.

[2] 	 Boebert, W. E. , and R. Y. Kain. "A
Practical Alternative to Integrity
Policies." Proceedings of the 8th
National Computer Security Conference.
Sep 1985.

[3) 	 Cohen, Fred. "Computer Viruses: Theory
and Experiments." Proceedings of the 7th
DoD/NBS Computer Security Conference.
Sep 1984.

[4] 	 Denning, Dorothy. "An Intrusion
Detection Model." Proceedings of the
1986 IEEE Symposium on Security and
Privacy. Apr 7-9, 1986.

[5) 	 Discussions with and reading of informal
papers by Joseph Beckman, 0. Sami
Saydjari, and Timothy Kremann of the
National Computer Security Center.

[6] 	 Smith, Terry A. "User Definable Domains
as a Mechanism for Implementing the
Least Privilege Principle." Proceedinas
of the 9th National computer Security
Conference, Sep 1986.

225

Computer Viruses: Myth or Reality?

Howard Israel
National Computer Security Center

9800 Savage Rd.
Fort George G. Meade, MD 20755-6000

Abstract

This paper wi I I show that a computer
virus [COHEN) may be no more a threat to
computer systems than a Trojan Horse and any
protection mechanism that wi I I work against
a Trojan Horse wi I I also work against a
computer virus, specifically a mandatory
policy (e.g., [BELL/LAP) [BIBA]). In
addition, it will discuss two possible
protection mechanisms that address the
Trojan Horse threat.

Background

A computer virus is a program that
propagates itself [COHEN). Depending upon
its design, a virus may propagate itself on
a I imited basis or more extensively through
the file system. That is, it may
selectively propagate itself so that only
one copy exists at any one time in the
system [THOMPSON), it may slowly spread
through the system, or it may propagate as
fast and as often as possible in the system.

A virus may act as a Trojan Horse
[ANDERSON) (hereafter referred to as a
'viritic Trojan Horse') by performing an
overt action (the advertised purpose of the
code that the executor expects to occur), a
covert action (typically benefiting the
author and harming the executor of the
Trojan Horse, which the executor does not
expect to occur) and then propagate itself
to other areas in the file system taking
advantage of the executor's privileges and
rights. Because a viritic Trojan Horse can
'flow through' the system (via the viritic
feature) it may increase the likelihood of
execution and number of executions.

D. J. Edwards identified the Trojan
Horse attack in [ANDERSON). In [KARGER),
the concept of a Trojan Horse propagating
itself was discussed, although there was no
distinction made between a Trojan Horse that
was viritic or not. The ARPANET col lapse on
October 27, 1980 was attributed to the
accidental propagation of a virus [NEUMANN).
There are even references to viruses in
modern science-fiction novels [BRUNNER).

Part I: Corrments on Recent Research

1. Measuring Infection Times

To show that a viritic Trojan Horse was a
significant threat beyond a non-viritic
Trojan Horse, it would be necessary to
compare the infection time [COHEN) of a
viritic Trojan Horse against a comparable

non-viritic Trojan Horse. The use of a
control group should adaquately show if the
viritic attribute wi I I have an additional
significant affect on the Trojan Horse
threat.

This author welcomes any research in this
area. For, if done properly, it wi II show a
viritic Trojan Horse to be either a more
serious threat than a non-viritic Trojan
Horse or of no greater consequence.
However, highly variable factors that wi I I
change over the I i fe of the experiment
include "the enticement" (this includes the
advertised overt capabi I ity of the program
as well as the methods used to "sell" it to
the target user corrmunity) to execute the
Trojan Horse and the knowledge of the user
corrmunity, as well as other sorted variables
such as: user activity level, time of day,
etc. Researchers doing work in this area
should be scrutinized fully when presenting
results because of these "field" variables.
Therefore, experiments must be designed and
executed very carefu I I y before any results
should be considered credible.

2. Virus Affects on Systems with
Fundamental Flaws in Security Policies

[COHEN) discusses the virus experiments
that show "fundamental flaws in security
policies". Any fundamental flaw found in a
security pol icy need not necessarily use a
virus to display the weakness. A
non-viritic Trojan Horse should succeed in
demonstrating any weakness sufficiently.
There is no perceived advantage in using a
viritic Trojan Horse (as opposed to a
non-viritic Trojan Horse) to demonstrate a
flaw in a security pol icy.

Although it may be easier, in some cases,
to achieve a particular objective by using a
viritic Trojan Horse, it has not been shown,
nor does this author believe that it can be
shown, that there is an objective a viritic
Trojan Horse can achieve that a non-viritic
Trojan Horse can not achieve on currently
used computer systems.

It is also interesting to note that the
experiments performed [COHEN) were executed
on systems that either did not have an
enforced mandatory "security poI icy" at a I I
(i.e., UNIX, VM/370, VMS. Tops-20) or had
only a partial implementation of a mandatory
security pol icy (i.e., OS/1100 on the Un1vac
1108) [LEE), thereby, proving the obviOUS.
The following discussion wi II describe the
affects a Trojan Horse can have on a system

226

that enforces a mandatory pol icy.

Trojan Horse vs. a Mandatory Pol icy

The model described by [BELL/LAP]
protects systems against unauthorized
disclosure as defined in a specific pol icy.
A Trojan Horse would have to take advantage
of a covert channel to disclose information
(in a properly implemented [BELL/LAP]
system). The same holds true for a viritic
Trojan Horse. Ear I ier work [COHEN] made the
implication that the Univac 1108 fully
implements the [BELL/LAP] model. This is
not the case. OS/1100, as delivered by the
vendor, has the concept of "security levels"
and enforces the simple-security condition,
but it does not enforce the *-property
[LEE].

Note: a Trojan Horse whose purpose is to
violate the integrity of a system [BIBA]
could easily succeed in a system that only
enforces the [BELL/LAP] model. Thus, it is
always true that a system can only protect
what it is designed to protect and not
necessar i I y more.

A system that enforces an integrity model
[BIBA] would protect against a Trojan Horse
(viritic or not) that attempts to violate
the integrity policy. In [COHEN] an
erroneous conclusion that a system with both
an integrity pol icy [BIBA] and security
pol icy [BELL/LAP] must provide isolation was
arrived. This would be true only if a
single label were used for both the security
and integrity pol icy enforcement (see Table
0, below) [SCHELL]. One must consider the
case described in Table C (i.e., that both
policies may exist concurrently in a system
without forming an isolation, or complete
partition, between security levels
[SCHELL]). The following simplified example
i I lustrates this:

Assume:

"TS" and ·u· are both clearances (on
users) and labels (on objects) that enforce
the security policy (i.e .. read policy).

"H" and "L" are both clearances (on users)
and labels (on objects) that enforce the
integrity policy (i.e., write policy).

A "TS" labeled object is more sensitive to
disclosure than a ·u· labeled object. A
"TS" cleared user (subject) is not permitted
to write "TS" objects to a ·u· cleared user
(subject). A ·u· cleared user (subject) is
not permitted to read a "TS" object.

An "H" labeled object is more sensitive to
modification and creation than an "L"
labeled object. An "L" cleared user
(subject) is not permitted to write an "H"
object. An "H" c I eared user (subject) is
not permitted to read an "L" object.

Access modes:

R = Read
W = Write
Nu I I = None

Permissable actions:

Object

TS U

Subject TS R

u w

Table A: Security pol icy (simplified).

As shown in Table A, the basic concern is
to prevent an untrusted subject from reading
sensitive objects. The flow of information
tends to be from least sensitive to most
sensitive ("U" to "TS").

Permissable actions:

Object

H L

Subject H w

L R

Table B: Integrity Pol icy (simplified).

In table B, the basic concern is to
prevent an untrusted subject from writing
(or creating) a high integrity object. The
flow of information is from high integrity
to low integrity ("H" to "L").

Permi ssab I e actions:

Object

TS/H TS/L U/H U/L

Subject TS/H R# w R Null

TS/L R R# R R

U/H w w R# w

U/L Null w R R#

Table C: Intersection of both a security and
integrity pol icy.

Table C shows the relationship between
security and integrity. It represents the
intersection of the security and integrity
policies defined above. A "U/L" subject can
neither Read nor Write on a "TS/H" object.
A "TS/H" subject can neither Read nor Write
on a "U/L" object. These are desirable
features, for they wi II stop the flow of a
viritic Trojan Horse from one partition to
the next, while still permitting the
controlled sharing of information.

227

Permissable actions:

Object

TS u

Subject TS Null

U Nul I Rill

Table D: Subject/object relationship when
the same label is used for both "security"
decisions and "integrity" decisions.

Table D shows the permissable actions
that can occur on a system where the same
label is used for both security and
integrity decisions. The result is
isolation between the two classes of users.

Sunmary

An enforced disclosure and integrity
pol icy can provide an effective means of
stopping several classes of Trojan Horse
(both viritic and non-viritic) attacks,
provided the mechanisms are defined in
consideration of each other. These policies
wi I I not have an affect on attacks that
invoke Denial-of-Service problems on a
system, as the disclosure and integrity
policies mentioned do not address
Denial-of-Service issues.

VVhile the ·above simplified example
demonstrates the correctness of the
approach, by allowing one catagory to be
added to both the security and integrity
labels each, the complexity of the access
matrix increases to 256 different access
cases (16x16). Although this may appear
overwhelming, the defined policies can sti I I
be easily enforced, no matter how many
levels and how large the catagory sets are
defined for both the security and integrity
poI i c i es.

There are systems avai Iable today that
enforce a mandatory pol icy [MULTICS)
[SCOMP). These systems wi I I be able to
provide protection against ·Trojan Horse
(viritic or not) attacks that attempt to
violate the enforced mandatory pol icy.

Part I I: Possible Methods to Defeat Viritic
Trojan Horses

1. Comparison Uti I ity

VVithout considering the objective of the
Trojan Horse, it appears much easier to
detect the presence of a viritic Troj2n
Horse that has successfully propagated
itself (i.e., more than one copy of the
virus exists in the system), than it would a
non-viritic Trojan Horse. This proposed
detection method would use a comparsion
uti I ity to show the use of simi I iar code in
different files. Any similiar code
discovered may or may not be for legitimate
reasons.

Consider a file system that has "n"
files. It would require:

n (n + 1)

2

comparisons on the files to completely
detect a successfully propagated Trojan
Horse (i.e .. viritic Trojan Horse). If
during the comparison process, code is found
corrmon to two programs, they would then be
considered suspec.t. It would be necessary
to "review by hand" to confirm or deny the
presence of the viritic Trojan Horse. The
code review would point out whether the
"corrmon code" has a va I i d purpose. VVha t is
being detected are similarities in code
that, in principle, should not exist. This
method is independent of the function of the
(viritic) Trojan Horse. That is, it does
not matter what the purpose of the viritic
Trojan Horse would be to detect its
existence.

This method could not be used to detect a
non-viritic Trojan Horse for obvious reasons
(i.e., only one copy of the Trojan Horse may
exist, not several, as is likely, but not
necessary [THOMPSON) with a viritic Trojan
Horse).

Given the above possible solution to
detecting a viritic Trojan Horse, several
detai Is remain. Detection depends upon how
good the comparison uti I ity is. It also
depends upon how wei I the viritic Trojan
Horse succeeds in implanting its 'child'
into innocuous programs.

For a viritic Trojan Horse to implant
itself successfully, it would have to be
implanted in such a way as to guarantee:

a) that the target program would remain
operative, and

b) that the virus would be put into a
location such that the (entire) viritic
aspect would be guaranteed to be executed.

If either of the two preceeding
conditions were not met, the success of the
viritic Trojan Horse would be jeopardized.

One way to defeat the above detection
would be for the viritic Trojan Horse to
propagate itself such that the child's
"I i keness" was not the same as the parent· s
"I i keness" (i.e.. the code appeared
different enough such that the comparision
utility could not detect the similarity).
This is perceived as a difficult, although
not impossible, problem.

2. Spawning an Untrusted Process

By enforcing the least-privileged concept
on a process by process basis, it is
possible to provide a safe environment to
execute untrusted code (which may contain a
Trojan Horse) (t:x}MIJS).

228

~en a process wants to execute
"untrusted" code (which the executor
suspects contains either a viritic or
non-viritic Trojan Horse), the process could
then spawn a child process, which would
include any necessary data. As long as the
child's process access rights are limited
with respect to the parent's process access
rights, the parent process (and a I I
associated data files) would be safe. Of
course, anything in the system that the
child process can access is a potential
victim to the Trojan Horse, including other
information located in the child's process
(e.g., data deemed necessary to execute the
untrusted code) and the results of the
executed program.

If one considers the child process to be
temporary (i.e., for the I i fe of execution
of the untrusted program) and the user can
terminate the program at wi I I, then the user
wi I I be able to protect the information
managed by the parent process, which is the
goal of this exercise.

This can be considered analogous to what
a system administrator can do today. If an
administrator (with the appropriate system
privileges) wanted to execute untrusted code
(e.g., a game program) he could perform the
following:

a) set up an account, such that the new
account had no access to the administrator's
privileged account or access to anything but
pub! icly readable files,

b) Iog in to the new unpr i vi Ieged account,

c) execute the game program

d) delete the unprivileged account.

Of course, if the unprivi·leged account
had write access to any file in the system,
the untrusted code (e.g., game program)
could propagate a viritic Trojan Horse into
the unprotected file, and thus be subject to
further execution.

This is in addition to the obvious risk
of unintentional disclosure, modification,
or deletion of any data given to the game
program to accomplish its task. (This risk
would be nonexistent if the untrusted code
did not need any user supplied data.)

The remaining problem with this scenerio,
then, is that the untrusted code could
invoke a Denial-of-Service attack on both
the user's process and the system. Since a
well accepted model is lacking in this area,
no solution is proposed.

Conclusion

A viritic Trojan Horse (i.e .. computer
virus) presents no new threat to computer
systems. If the Trojan Horse problem were
solved (for any class of Trojan Horse
problems), the viritic Trojan Horse problem
would also be solved (for that same class).
Any solution to the Trojan Horse problem
would also be a solution to the viritic
Trojan Horse problem.

A security pol icy and an integrity pol icy
(used in conjunction, in an intelligent
manner) provide a reasonable protection
scheme against Trojan Horse (either viritic
or not) attacks. A Trojan Horse (viritic or
not) may sti II invoke a Denial-of-Service
problem, unless a model addressing this
issue can be stated and enforced in a
system.

~ile a viritic Trojan Horse is
interesting, in the fact that it presents

many novel attacks, it is no more dangerous
than a non-viritic Trojan Horse attack. The
viritic aspect of a Trojan Horse appears to
be more of a red-herring, in the sense that
it has taken attention from the basic
problem.

Two partial solutions have been
discussed. Each must be explored and
experimented with in more detai I. Better
solutions for more classes of Trojan Horse
attacks need to be advanced.

Acknowledgments

would I ike to thank A. Arsenault, S.
LaFountain, R. Morris, and G. ~gner for
their insightful comments on early drafts of
this paper. I would also I ike to thank J.
Beckman and 0. Saydjari for participating
in interesting conversations on this topic.
Thanks also go to S. O'Brien, C. Schiffman
and R. Winder for their careful review of
this paper and A. Arsenault, D. Gary and
M. Tinto for their continuous
encouragement.

References

[ANDERSON] Anderson, J.P. (Ed.), "Computer
Security Technology Planning Study, James P.
Anderson Co., ESD-TR-73-51, Vols. I and I I,
HQ Electronic Systems Division, Hanscom AFB,
MA, October 1972.

[BELL/LAP] Bel I, David, and LaPadula,
Leonard, "Secure Computer Systems:
Mathematical Foundations", 1 March 1973, MTR
2547, Vol. I, The MITRE Corp., 1973.

[BIBA] Bi.-ba, Ken, "Integrity Considerations
for Secure Computer Systems", USAF
Electronic Systems Division, ESD-TR-76-372,
1977.

[BRUNNER] Brunner, John, "The Shockwave
Rider", Harper & Row, Pub! ishers, Inc.,
1975.

[COHEN] Cohen, Fred, "Computer Viruses:
Theory and Experiments", 31 August 1984, 7th
DOD/NBS Computer Security Conference,
Gaithersburg MD, September 24-26, 1984.

[DOWNS] Downs, Deborah D., Rub, Jerzy R.,
Kung, Kenneth C., Jordan, Carole S., "Issues
in Discretionary Access Control",
Proceedings of the 1985 Symposuim on
Security and Privacy, Apri I 22-24, 1985,
IEEE Computer Society Press.

229

[LEE) Lee, T. M. P .. "Future Directions of
Security for Sperry Series 1100 COI"l'l>uters".
7th DOD/NBS COI"l'l>uter Security Conference.
Gaithersburg MD, September 24-26, 1984.

[KARGER) Karger, Paul. and Schel I. Roger,
"MULTICS Security Evaluation: Vulnerabi I ity
Analysis". Electronic Systems Division, June
1974, AD/A-001 120.

[MULTICS] "Final Evaluation Report of
Honeywe I I Multics MR11.0". National CQ111:>uter
Security Center, CSC-EPL-85/003, 1 June
1986.

[NEUMANN] Neumann, Peter G.. (Ed.), "Forum
Risks to the Public in CQ111:>uter Systems". 17
August 1986, Vol 3, Issue 38.

[SCHELL] Schell, Roger, "Biba's Integrity
levels and viruses". CQ111:>uter Security
Forum, Vo I 3. Issue 12. 29 May 1984.

[SCOMP] "Final Evaluation Report of SCOMP.
Secure Communications Processor. STOP
Release 2.1". National CQ111:>uter Security
Center. CSC-EPL-85/001. 23 September 1985.

[THOMPSON] Thompson. Ken. "Reflections on
Trusting Trust". Communications of the ACM,
Vol 27. No. 8, August 1984.

230

What do you Feed a Trojan Horse?

Techniques to Solve Hacking Problems

Cliff Stoll

Lawrence Berkeley Laboratory

Berkeley, CA 94720

Revised 29 May 1987

Abstract:

Computer security is sometimes best served by
corking up known holes in a system, and sometimes
by tracking an intruder to the source. Techniques
used to pursue the latter course include high speed
network traces, operating system alarms, off~line
monitoring, and traffic analysis. But technical
methods are not enough. It's just as important to
coordinate efforts with law enforcement agencies
and other professional organizations, and to
understand the constraints set on each
organization. Persistent sleuthing can ultimately
locate the source, but it may require considerable
time and effort.

Introduction:

When you know a computer system is under attack,
you're presented with a choice: should the draw
bridge be raised and outside access cut off, or
should the source of the attacks be determined?

This paper addresses what to do when you choose
to track the penetration. Related topics, such as
how to detect an attack, or how to protect a system,
are largely ignored here, although all of these top
ics are intimately intertwined.

Once you decide to find the origin of the attacks,
you must start a traceback effort. Occasionally, this
will be easy, and the suspected intruder collared
. quickly. Usually, the intruder will have taken steps
to conceal the pathway into your system (often us
ing stolen resources to do so), and unwinding the
connections may challenge your best efforts.

Tracebacks through digital and analog networks
are theoretically straightforward -- after all, an
outside attacker made a physical connection into
your computer. In practice, however, unwinding a
complex connection can be quite daunting, espe
cially in a short time.

Making a traceback is essential for the prosecution
of an attacker; it also teaches lessons in network
connectivity, coordination between law-enforce
.ment agencies, and the strengths and weaknesses
of our interlinked digital networks.

Our problem, then, is to unwind the connections
made by an unknown intruder, and ultimately de
termine who's in the system. This effort requires a
thorough understanding of operating systems,
networks, telephony, and digital communications.
Familiarity with legal issues and law enforcement
protocols will be helpful. Fitting together diverse
clues, some of which are misleading, eventually
may lead to an answer, although a prosecution may
not necessarily follow.

Should you ignore the attack?

There are good reasons not to try to catch an at
tacker. You may subject your system to danger-
the intruder may gain sufficient privileges to delete
or modify important files*. You risk the disclosure
of sensitive information. It may prove to be a wild
goose chase. The attacker might be illusory -- a
figment of your operating system. As we shall see,
unwinding a complex connectivity can become ex
pensive, requiring coordinated efforts of several
technicians. Prosecution may prove impossible, due
to legal problems, or infeasible, due to political or
economic factors. You may embarrass your
organization by admitting that an outsider has ac
cess to your computers.

If you decide not to trace the source of an attack,
there are several alternatives available. You may
ignore the intrusion completely. You may close
your doors to the attack, by changing passwords,
tightening modem access, or strengthening your
operating system. Or you may simply legitimize the
activity·

* Perhaps more damaging than a massive deletion of files
is the slight modification of files -- this may go undetected.

231

There are also many valid reasons to chase down
·an attacker. The intruder may be out to injure your
organization, possibly for personal benefit. Lost
resources can be recovered' only by locating
whoever took them. A criminal may be caught and
prosecuted by means of a traceback. As a commu
nity service, tracebacks of illegal activities help
make networks safer for everyone.

Network tracebacks can be a rewarding area of
academic research. Tryingto catch someone within
a computer can lead you through problems in oper
ating systems, networking and network topology,
as well as digital and analog telecommunications.
Such work also touches on technology law and the
ways in which various organizations respond to
novel problems.

Organizing your efforts

Once you've decided to trace an attacker, you'll
need to organize your efforts. Early on, designate
one person to serve as a single point of contact until
the problem is solved. Since your staff will want to
know what's happened, stop rumors by holding a
meeting.

You'll need to warn staff members to be quiet about
the investigation. If the word leaks out, not only
will your work have been wasted, but a malicious
intruder might damage your system. Law enforce
ment organizations won't help you if they believe
you may leak investigative information. Unless
your staff realizes the sensitivity of this matter,
they may mention it on electronic bulletin boards, at
conferences, or to colleagues.

Start a logbook, collecting and analyzing your evi
dence within it. Record all suspicious activities,
along with their dates and times. Maintain a clear
distinction between conclusions based on firm evi
dence and suspicions based on indirect evidence or
assumptions. Summarize telephone calls and mes
sages from other sites. Keep your logbook out of
any computer accessible from the system under at
tack - assume that the intruder is searching for it.

You will repeatedly explain what happened to a
variety of people, many of whom won't understand
computer jargon. For this purpose, prepare a
summary of what happened, using layman's terms.
Describe exactly what damage has been done; in
clude loss of services, disclosure of information,.
and the ·costs to rebuild lost files; quantify this
damage in dollars, if you can.

Keep records of the costs of the break-in, and your
expenses in repairing it. This is needed to deter
mine the level of the offense (felony vs. misde
meanor); it also indicates which agency will have
jurisdiction over the case (local/state/federal).
Since some expenses in tracking and solving the
problem can be recovered through lawsuit, these
records can be essential should the case go to trial.

Many legal issues come up in trying to track and
prosecute a computer intruder. What privacy rights
exist? Can you bring suit for damages against
someone breaking into your computer? Can you
recover for the costs of tracking? What constitutes
a breakin? The laws and interpretations have
changed in the past year, so visit a law library t~
learn about current statutes involving computer
crime. This is especially helpful in communicating
with law-enforcement people, who may not be
aware of recent codest.

Early on, determine how deeply you are threat
ened. Does the attacker have system privileges2?
Have Trojan horses, logic bombs, or virus pro
grams been created? Is there a danger to your sys
tem if you try to catch the attacker? Have you the
resources to chase down the attacker? Set limits on
how much time and effort you will commit to the
task.

Who should you tell?

Soon after detecting an attack, you should spread
the news to people who can help solve the problem
and to people running other systems at risk. But
limit the spread of this news! Certainly, inform
your management and your funding agency .. If you
have evidence of attacks via other systems, inform
trusted system managers of those sites by telephone
(never send computer security messages by elec
tronic mail!).

Several external organizations may be able to help
you. Your local police are charged with the en
forcement of local and state laws -- you should be
in dose contact with them. Federal investigation
and enforcement efforts are coordinated through
the FBI and the Secret Service; the US Department
of Justice will handle the prosecution in these cases.
Problems which involve the Milnet, Arpanet, or
military computers can be referred to the Defense
Communications Agency and the Air Force Office
of Special Investigations.

232

You should contact the National Computer
Security Center in Ft. Meade; while they perform
the difficult task of trying to prevent these
problems, they also keep track of attacks, and can
coordinate efforts to understand and solve such
problems. Additionally, be aware of the Institute
for Computer Sciences within the National Bureau
of Standards. Both of these agencies can advise
you on security holes which your intruder has used.

When traces must be performed over digital net
works, it's important to be in close touch with the
appropriate network operations center. It's im
portant to know beforehand whom to call: when
confronted with an attack, it's difficult to reach the
correct person quickly.

Throughout your contacts with these organiza
tions, keep records of who you've spoken to, and
what response you've received. In addition tore
inforcing your own memory, these records are.
helpful in prodding agencies to take appropriate
action.

Operating System Accounting

Fundamental to the detection and tracking of any
unauthorized computer user is adequate resource
accounting. Modern operating systems typically
record resource usage, task names, times of login,
and connection port. Often, this is the only infor
mation available to determine the· extent of an in
trusion3.

The quality of auditing data varies with operating
system, and with the system manager's needs. With
good accounting data, and reasonable summaries
of activity, audit trails are easily constructed.
Spotty accounting, with inaccurate clock times and
missing records, prevent the detection of even the
most gross violations.

Even if a computer does not recharge for usage,
accounting records should be kept. Without these
audit records, it's impossible to reconstruct what
has happened in the past -- an essential part of
tracing an attacker. From this, it follows that no
individual should be able to disable accounting. The
accounting records should, at minimum, include
port number used to access the computer, task
name executed, flags for attempted access to pro
tected files, and start/end times.

Accounting records can also be used to identify the
incoming port and speed. If network connection

(e.g. Milnet or Arpanet) is indicated, the originating
.host name may be included in the accounting
records. If the accounting records show a serial
port, then determine the baud rate of this port:
generally, high speed connections are from on-site,
and low speed connections are from off-site, usu
ally through modems.

The login/logout times are used as timestamps to
control searches into other accounting records.
These times are compared to local area network

. connection times or compared with telephone com
pany billing records. To simplify record keeping,
save these dates and times in GMT, and keep your
clocks accurate to a second (non-synchronized
clocks confuse traces across several systems).

If no obvious damage is done, (perhaps only files
have been read), a successful invasion of a comput
er may go undetected for a long time. Thus, de
tailed accounting records should be saved for at
least a year. These records can be used to show
how an invader succeeded in entering your system,
and can point out accounts which have been poi
soned by the attacker.

In some circumstances, standard accounting
records may not be trustworthy. An invader may
have disabled accounting or modified accounting
records. Accounting may be incomplete for some
nodes on your network. In any case, ambiguous
clocks and sloppy record keeping will confuse the
interpretation of audit trails.

Local Area Nets

Almost every large computer system, and many
smaller ones, use local area networks to intercon
nect terminals, modems, computers, and other
networkS. Often these are referred to by the man
ufacturer's name (Micom, Develcon, Sytek, etc.).
They usually introduce significant holes into the se
curity of a system -- an ideal place to plant Trojan
horses. Seldom are these LANs programmed by the
systems staff, or considered as security problems4;
they are usually set up by a communications group,
and then little more than routine maintenance is
performed. Few systems people pay attention to
the connectivity they provide... A connection
through a LAN may be impressively difficult to
trace.

•• For example, some local atea networks allow outside
dial-in users to immediately dial out from a common
modem pool, forcing the host to pay for long distance
calls, and providing an excellent hiding place for hackers.

233

When an attack originates from the LAN, it's
necessary to find the originating port. Usually, ac
counting data from the operating system will tell
which computer port the activity came in from.
Historical accounting data from the LAN controller
is needed to determine from which port or network
the attack originated. Some LAN controllers simply
cannot provide this information -- avoid using such
systems! When this audit information is available,
it's important to collect and save the data for later
analysis. Make certain that the connections are
recorded along with related housekeeping in
formation, such as baud rates, dates, and times.
Since there will likely be hundreds or thousands of
connections recorded every hour, an accurate time
stamp is essential -- periodically calibrate this clock.

When a local ethernet is suspected of being in the
line of the problem, it may be necessary to audit all
of the connections on the ethernet. Likely, this will
require time-domain reflectometry to physically lo
cate all of the drops on the cable. Because of the
potential of promiscuous-mode listening, ethernet ·
problems must be taken seriouslys.

Telephone Traces

Eventually, a telephone trace may be needed. For
many reasons, telephone companies may appear to
drag their heels before tracing a call. It's often
technically difficult, requiring skilled technicians,
and phone companies may say that they are wor
ried about the risk of lawsuits. Such statements
appear unfounded+; there is no liability when acting
under a search warrant. Most telephone compa
nies have departments which are expert in tracing
telephone lines, and telephone traces are common
procedures.

A telephone trace can be obtained through the ap
propriate police agency, who will contact the Dis
trict Attorney for a search warrant. Affidavits and
relevant evidence will be reviewed before the
courts, and a warrant issued. The telephone com
pany will probably need some advance warning
before installing the necessary equipment, or plac
ing technicians on standby. This calls for advance
coordination between the computer site, the police,
and the telephone tedmicians. Advance dry-runs
will help iron out problems6.

+ Such a backward telephone trace, (called a "trap and
trace") has been held not to violate privacy rights, and
does not require a court order when performed on your
own telephone line. See 18 U.S.C.A 3121 (b) (1) and (b) (3).
Indeed, some telephone companies are now offering resi
dential service that displays the originating telephone
number while the dialed phone is ringing.

Depending on the mechanism used, telephone
traces may take place in real-time or after the fact.
In either case, it may be necessary to know the exact
start time of the incoming call to the second. When
tracing a call thro~gh .~~ltipl~_ ~xch~!lges or

·through long distance exchang~s, simultaneous co
ordination by several groups may be required, since
traceback equipment is seldom integrated with the '
long distance billing system. For real-time traces,
telephone technicians can recognize digital traffic
carried by its characteristic sound on a line, and it's
usually straightforward to be certain that a partic
ular connection is the valid one.

Because of deregulation, interstate and cross
carrier telephone traces can be difficult. Despite
this, many complex telephone traces can be done
within a matter of minutes, provided that all orga
nizations along the line are forewarned. Local and
long distance telephone systems need automatic
traces to pinpoint troubles in lines and switching
gear, so the equipment and techniques exist.

After a successful telephone trace, a law-enforce
ment agency may set a pen-register on the tele
phone line. Such a device records the phone num
bers of all out-dialed calls++, and helps determine
the extent of an individual's telephone contacts.

Digital Network Traces

Packet switched networks, such as the Internet,
have information on the originating node written
within the packet header block7. When the network
links directly to the host computer, packet informa
tion may be recorded by the accounting program.
Some networks convert the packets into serial data
streams (such as RS-232), and send this stream to
the host; in such cases the packet header informa
tion is unavailable to the host, but may be available
at the X.25 interface.

Packet header information may be counterfeit,
garbled, or missing. When this is suspected, a call
should immediately be made to the network opera
tions center. Such organizations can quickly un
wind the linkages within their systems and trace the
path of a connection. Such unwinding can only be
done while the connection is active; Internet does
not record connections for later analysis. Other
networks, such as Telenet, Datapac, and Tymnet,
do save records for billing purposes, and historical
connections can be reconstructed, provided that
accurate times are available for comparison.

++ The installation of a pen-register and related recorders
requires a court-order.

234

Digital networks are worldwide, and some infor
mation may be hidden when network boundaries.
are crossed. For this reason, international trace.s
require close cooperation between the network
operations people. Find out in advance who is re
sponsible for these traces, and exchange telephone
numbers. Know your network location and port
number as referenced by the network -- it can save
several minutes in performing a real-time network
trace.

Digital networks which use datagram ack/nak flow
control can be timed to determine round trip travel
time. On the Milnet/Arpanet, many seconds may
elapse before a datagram is acknowledged on a
coast to coast connection. After accurately timing
these packet receipts, a statistical average will
indicate a nominal distance to the originating site.
A similar method can be used when Kermit or
Xmodem protocols are used over serial lines.

Some intruders will use each successive computer
as a jumping off point to get into another system.
After stringing together several computers,
modems, and a variety of networks, such connec
tions may become frustratingly complex.
Leapfrogging between computers and networks
can allow an intruder essentially toll-free access to
many systems, with intermediate sites paying for
the connections. Fortunately, interactive response
time suffers, and these users eventually simplify
their connectivity.

Alarms and Monitors

When an attack is suspected, it's important to de
termine exactly what information is being sent out
of the system, and what files are being accessed by
the intruder. Accounting information provides a
pointer, but there is no substitute for a complete
printout of the bidirectional chatter. This can be
recorded by the operating system, but off-line
monitoring is easier, better hidden and entails less
overhead. Recording equipment (such as a PC with
serial lines and a hard disk) can easily be daisy
chainedt to modems, providing continual monitor
ing of all serial traffic. Network software (such as
the TCP /IP daemons) are easily modified to save
traffic, as well; this can be done on-line or off-line.

t RS-232 data lines can be multi-dropped to drive several
receivers.

The monitoring software and equipment can be
programmed to alarm whenever particular char
acter sequences are detected. Thus, an alarm can be
set off whenever a particular account is accessed or
whenever a certain password is entered. You may
wish to build more sophisticated alarms, using ex
pert-systems techniques.

When immediate response is needed, alarms can be
connected to an auto-dialertt, to ring a telephone or
pocket pager. Since many intrusions last for only a
few minutes and may occur at any hour, a pocket
pager is essential. to quick tracing of these calls.

Operating system alarms usually warn the system
manager when false logins have been detected, or
when protected files have been read. These are
very useful for the detection of intruders, but can
not be fully trusted. When an invader acquires sys
tem privileges, it's likely that he will disable ac
counting, tum off the alarms, and modify any files
that record his presence. These on-line alarms,
then, aren't very dependable once an attack has
succeeded.

Traffic analysis

After monitors have recorded the intruder's traffic,
analyze what has happened. Annotate and save all
printouts; keep a detailed record of what happened
in your logbook. Using the printouts, try to deter
mine what the intruder was looking for, what he
tried to access, and what keywords were impor
tant. Did he try to link to another computer? What
passwords did he try? Did he modify any of your
files? How long did each session last? What at
tracted his interest?

Of course, each intrusion will be different; detailed
traffic analysis is crucial to the solution of the
problem, partly because it describes the intruder's
interests, and in part because it provides law-en
forcement agencies with evidence useful in the
prosecution of the intruder. Keep all of these
records off line -- never allow your security related
records to be readable from any computer network
or dial-up line .

tt Hayes-compatible modems make excellent auto-dialers,
and can be programmed to send information to pocket
pagers.

235

Communications with other sites

When an attack on your site has been detected, ev
eryone wants to know about it. It's necessary to
strictly limit the spread of this information if you
wish to trace the problem. To prevent rumors from
spreading, hold meetings to discuss progress,
warning all members that the information should
not be spread. Talk openly with trusted site man
agers, but do not leak information to the press, or
to various bulletin boards.

It's essential that all communications be kept out of
electronic mail, and no files be kept anywhere of
this activity. Intruders will naturally scan file sys
tems, searching for keywords that might indicate
that they have been detected. Electronic mail is an
especially fruitful section to search.

When coordinating work with another site, com

municate by telephone. Keep any files related to

· this activity encrypted. Assume that all of your files

-'are regularly read by the intruders. Do not keep

files with obvious names like "security" or

:'hacking". When building monitoring programs, do

give away their function with titles like "monitor"

or "watchdog".

Relationships with Law Enforcement Agencies

Presently, the federal government and several
states have tight computer security laws. These are
enforced through the FBI, the Secret Service, and
various state and local police agencies. Police
training and awareness has been recently in
creased, although most of it seems to be directed
towards computer crimes with direct, measurable
economic implications (e.g. theft via computer, ac
cessing bank records).

For a poorly researched case, there isn't much hope
for enforcement due to the novelty of the laws, the
lack of judicial caselaw, and the need for highly
trained specialists. A well documented case, in
cluding a detailed analysis of the losses, will in
crease the chances of police support.

Close cooperation with all levels of law enforce
ment agencies is essential. You'll need to carefully
explain the nature of the problem, what your losses
have been, and how your problem relates to exist
ing laws. Policies by law enforcement agencies
aren't established for these offenses and the police.
likely will be hesitant to commit the resources to
open a full investigation. This can sometimes be
overcome by persistently explaining the need for
support, and by doing as much of the work as
possible yourself. ·

It's important to communicate with the law en
forcement community early. Determining what
agency to contact may be difficult; within any
organization, probably only one or tw~ people can
appreciate the nature of the crime being corrimitted.
For this reason, you may find it fruitful to explain
your problem to all possible agencies, and allow
them to refer you to the correct organization. Each
law enforcement organization has its own special
ties; don't assume that you'll necessarily get more
support from a national agency -- indeed, you may
find that your local police are far more interested
and supportive.

When telephone traces are needed, advance ar-
-

rangements with your police contacts will prove
invaluable: the telephone companies generally re
quire court-orders, and the police know how to
work with the appropriate district attorney to ob
tain these. The phone companies, in turn, are
comfortable reporting to the police, but do not wish
to report to injured parties, for fear of lawsuits.

Conclusion: Locking the Barn Door

You can trace connections back to the source in
most circumstances. You'll need to keep detailed
records, analyze audit trails, set monitors, traps,
and alarms, and closely watch your operating sys
tem. Actual line traces may be in real-time or his
torical. Ironically, there are relatively few technical
challenges; the main problems are in coordinating
the efforts of many organizations.

Once you've tracked the rascal, finding out just
who's been giving you such grief, you'll still have to
close all the doors, whether or not he's been prose
cuted (or even arrested). You'll need to simultane
ously delete the accounts which have been com
promised, eliminate the security holes, and change
all passwords on your systemttt. Pulling the plug
may be quite involved, and calls for advance
preparation

Our networks provide rich connectivity; alas, but
few people are paying attention to the risks which
are created. When confronted with attacks and
intrusions, system managers often talk about trac
ing the connections, but seldom actually initiate
traces. With a little perseverance, it's possible to
unwind connections, and find out who's at the oth
er end. After tracing an intruder, tell your tale to
others -- let the rest of the world learn from your
sorrows.
ttt With hundreds of users, a complete password change
is distasteful. Alas, but no other method (password aging,
account expiration, account requalification) can assure you
of a clean system, without compromised accounts.

236

Acknowledgements:

I am grateful to the U.S. Dept. of Energy for supporting
this work through contract DE-AC03-76SF00098. ~or
suggestions, comments, and critical reviews, I am m
debted to Marv Atchley, Bruce Bauer, Rick Carr, Dave
Farnham Mike Gibbons, Roy Kerth, Steve Kougoures,
Dave Jon~s, Martha Matthews, Sandy Merola, Bob Mo~ris,
Ken Sebrell, Phil Sibert, Dave Stevens, Steve Wh1 t~,
Regina Wiggins, and Hellmuth Wolf. ~o; the best en~
lada in the West, I'm grateful to Garc1a s Restaurant m
Alburquerque.

References:

1 Relevant codes include 18 U.S.C.A. 1030 (The
Federal Computer Crime Statute); 18 U.S.C.A.
1343 (Wirefraud Codes); 18 U.S.C.A. 2518
(Interception of Electronic Communications). For

:an example of a modem state statute, see CA Penal
CodeS. 502 (1986)

2 Anecdotal stories abound of intruders obtaining
system privileges. See, for example, 2600 Maga
zine Vol4, January 1987, page 6-7.

3 More complete auditing tools are being proposed,
especially for Unix. viz: J. Picciotto, The Design of
an Effective Auditing Subsystem, 1987 IEEE
Symposium on Security and Privacy, April, 1987.

4 Secure networks are receiving increasing atten
tion, and a lively debate has grown as to how to
address these knotty problems. See D. Nessett,
Adding Central Authentication to DECNET, DOE
lOth Computer Security Group Conference, May
1987, page 56.

5 For a general review of Local Area Networks, see
R. Stallings, Editor: IEEE Tutorial, Local Network
Technology, 1985.

6 The need to prepare in advance for computer
break-ins, and to create routine responses to them
is noted by B. Reid, Reflections on Some Recent
Widespread Computer Breakins, Comm. ACM,
Feb. 1987.

Milnet protocols are amply documented in the
DDN Protocol Handbook series, NIC-50004, 50005,
and 50006, available from the DDN Network In
formation Center, SRI International, 333
Ravenswood Ave, Menlo Park, CA 94025.

!

237

TOWARDS THE ELIMINATION OF THE EFFECTS OF

MALICIOUS LOGIC: FAULT TOLERANCE APPROACHES

MARK K. JOSEPH

Computer Science Department

University of California, Los Angeles

ABSTRACT-Malicious logic can be placed into a

computer system's software in order to deliberately disrupt

normal operation. Of particular concern is its potential

effect on military systems. Two possible effects of

malicious logic, which are addressed in this paper, are

denial-of-service and compromising data integrity.

Presented are several ad hoc, admittedly imperfect,

techniques that are designed to reduce the risk posed by

malicious logic. These techniques can be used now, while

more complete solutions are sought.

1. INTRODUCTION

Recently, several authors have observed many similarities

and interrelationships between fault tolerance and computer

security [6,19]. In fact, in [6], denial-of-service is viewed

as the classical unreliability problem. The main goal of this

paper is to explore the application of several fault tolerance

techniques to the elimination of the effects of malicious

logic. Additionally, for a more complete discussion, a few

techniques from computer security are also included.

As presented in [3], a few definitions are essential. A

fault is a hypothesized cause of an incorrect state of some

system resource. An error is the erroneous state of that

resource. A failure occurs when the user of a computing

system observes the system not performing as was specified.

The application of fault tolerance techniques to the

problem of malicious logic is derived from the observation

that its effects can be classified under the fault class of "by

intent". This class of faults includes both accidental and

deliberate faults. Here, malicious logic are deliberate

design faults (in software or hardware) that cause errors in a

computing system which may lead to improper service.

The techniques presented in this paper are only for highly

critical systems. They address the threat of a trusted

engineer inserting malicious logic into the computing system

he or she is developing or maintaining.

Other recent work addressing protection techniques

against malicious logic appears in [5, 13, 17]. These

techniques could be used in conjunction with those presented

here. Definitions, examples, and derivation of fundamental

principles of denial-of-service in operating systems and

computer networks appears in [7,8].

2. MULTI-PRONGED DEFENSE

Malicious logic can disrupt a computer system's normal

operation from many locations in its software (e.g.,

application and operating system code). This large search

space provides many opportunities and makes it difficult to

prevent or detect malicious logic insertion into software. A

multi-pronged defense, composed of off-line and on-line

techniques, is proposed to reduce the risk posed by malicious

logic. Off-line techniques (e.g., verification) are directed

at preventing the insertion of malicious logic for the entire

life-cycle of software. On-line techniques (e.g., execution

monitoring) attempt to counter the effects of malicious

logic that has successfully made its way into a deployed

computer system.

All the on-line techniques presented are completely

application dependent, whereas the off-line techniques can

be more general. The reason for this lies in the fact that

the on-line techniques are used in single threat counter

measure pairs, whereas each off-line technique can cover

many threats.

Tradeoffs of performance versus the degree of risk are

essential and should be carried out from the onset of a

project. Additionally, to determine the effectiveness of a

chosen collection of ad hoc techniques, an error seeding

approach directed by penetration teams could be used. Each

of these topics is examined in detail below.

3. PROPERTIES OF MALICIOUS LOGIC

Malicious logic is defined as deliberate design faults

with the intent to commit an unlawful act or cause harm

238

without legal justification or excuse. Two possible effects

of malicious logic, which are addressed in this paper, are

denial-of-service and compromising data integrity.

Malicious logic is designed to avoid detection by both

off-line and on-line techniques. To escape detection by

off-line techniques, malicious logic is hidden in the

complexity of the system's software or hardware. For

example, in software this can be done by the use of multiple

levels of macro calls, and deliberate use of complex and

tricky coding practices. To hide from on-line techniques,

malicious logic could try to create errors which appear to be

results of naturally occurring faults.

4. ON-LINE TECHNIQUES

On-line techniques include additional software, hardware,

and partitioning methods aimed at preventing the effects of

existing malicious logic in a deployed computer system. It

would be useful if, during execution, these techniques could

also explicitly determine the location of such logic. Once

located, it could then be targeted for removal as soon as

possible.

A. N-Version Programming

N-Version Programming (NVP) can be used to provide

reliable software [1]. N-versions of one program are

independently designed and implemented from a common

specification (or possibly from several independently written

specifications). All N-versions are executed concurrently,

typically on an N-processor computer system. During

execution, the versions periodically vote on intermediate

results and on the final result. As long as a majority of

versions produce correct results, design faults in one or

more version will be masked out. The strength of this

approach is that reliable computing does not depend on the

total absence of design faults.

Thus, NVP can be used to maintain the integrity of func

tion and data by masking out the incorrect outputs of delib

erate design faults. The probability of identical copies of

malicious logic appearing in a majority of the N-versions is

diminished due to the independent design and implemen

tation of multiple versions.

A topic of further research is whether NVP is effective

against denial-of-service threats. At this time, the

following observations can be made. Instances of

denial-of-service threats which involve the hoarding of

system resources (e.g., CPU time, disk space) may be

prevented by NVP. The specification(s) of the N-versions

must clearly state a set of restrictions that all versions

must adhere to. For example, it can be specified that a

version can have only a limited number of open files and/or

child (forked as in UNIX) processes. (Each child consumes

CPU time, main memory, and disk space.) Now, the voting

mechanism used in NVP can be applied to a version's

actions, such as system calls made, rather than to generated

data values only. Thus, if less than a majority of versions

try to obtain excess resources, the remaining versions will

prevent such hoarding by masking out the resource

requesting system calls.

A new instance of the denial-of-service threat may be

possible for 2VP systems. Malicious logic need only be

placed in one version, and would be designed to deliberately

cause the two versions to disagree. Typically, a majority of

versions is needed in order to produce a result. Thus,

continued disagreement could cause some degree of

denial-of-service.

At least two solutions exist for this new problem. The

above example emphasizes an important feature of most

NVP systems, Jhat of masking. Only when N is greater than

or equal to three can incorrect actions be masked out.

Thus, one solution is to prohibit the use of 2VP systems.

Another solution is to use a hybrid form of NVP and

Recovery Blocks [1 ,3] to prevent the malicious version from

voting and forcing a disagreement. This is done by adding

trusted self-checking code (i.e., the acceptance tests used

in Recovery Blocks [15]) to both versions. Acceptance tests

are additional program statements which are used to test

whether a section of code performs as it was specified.

Each time the malicious version failed an internal

acceptance test its outputs would be ignored, thus

preventing the denial-of-service. Such a hybrid form has

already been shown to be effective for handling accidental

design faults in NVP systems [3].

It is noteworthy that NVP .a1.sQ addresses completeness

which is part of integrity, and timeliness of action. Several

versions ensure through voting that all specified actions are

performed. A timeout mechanism on a voting point

prevents prolonged periods without action. Timeliness of

access to some specified computing system service is an

important capability in combating denial-of-service threats

[8].

Additionally, the acceptance tests in the hybrid form of

NVP and Recovery Blocks could attempt to distinguish

deliberate and accidental design faults. Thus, detection of

239

deliberate design faults could be used to trigger an alarm

notifying the appropriate authorities. It appears that more

than just masking out design faults is needed if locating

deliberate design faults is also desired. It should be made

clear that in general all design faults are important.

However, this discussion concentrates only on deliberate

ones.

NVP is application dependent in two ways. First,

determining how much, and which parts, of a software

system .will be built using NVP may be different for each

application. Second, if used against denial-of-service

threats, then restrictions placed in the specification(s) will

likely be different for many applications.

B. Software Safety

Software safety techniques [10,11] have been applied to

safety critical systems. An entire system view is taken in

applying these techniques (i.e., both computer and non

computer hardware). System conditions which could lead to

unsafe failures, called hazards, are hypothesized. Fault

tree analysis is used to locate where, if at all, in the

system's software these series of conditions could occur.

Safety assertions are used to detect hazards and are a

form of the acceptance test used in Recovery Blocks.

Safety assertions are placed in the software along with

recovery routines which are used to restore a system to a

safe operating or fail-safe state. The strength of this

method is in the total system view taken.

These techniques are also applicable to prevent the

effects of malicious logic. A typical example of denial

of-service is an overloaded use of a system's processing

resources (e.g., CPU time). Here the unsafe failure state is

denial-of-service, while the hazard is the overloaded

processing.

Assume (for this example) that fault-tree analysis

determines that in the executive's scheduler this hazardous

state could be observed. To counter this threat, the

following safety assertion would be placed there:

assert underload: if utilization<= max_Iimit
on failure do

assert diagnosis!: [condition]
assert diagnosis2: [condition] od

When the "underload" assertion becomes false, special

recovery routines will be invoked via the "on failure do"

clause. These routines are application dependent and can be

grouped in a safety executive as described in [11].

To handle this possibly intentional overload condition the

recovery routines would preempt running tasks. This should

continue until the load on the system's computing power

decreases to a point where real work can progress.

C. Monitors

Let us consider a large banking institution's transaction

processing system as a target of malicious logic. In the

peak of business activity, the bank's computer network of

automated teller machines and mainframes is forced into a

self-test operational mode. These tests could require such a

significant amount of computing power that the bank's

computers are unable to process any significant number of

incoming transactions.

This situation could result in a large financial 1oss to the

bank in question. In fact, the bank could be held for ransom,

such that its computers would occasionally be rendered

inoperative unless a sum of money were paid. To counter

this particular threat and, possibly, others like it, a trusted

computing base (TCB) can be defined that mediates actions

which are meaningful at the application level [4, p.67].

Access to objects involves not only reads and writes, but

how and when application and operating system functions

are invoked. Here, programs are the objects, and access to

them is equated to their execution.

Now, invocation of the self-test function can be

accomplished only after the TCB scrutinizes the request.

All such potentially damaging use of basic system functions

can be placed behind this defined security perimeter. All

requests which are disallowed can then be viewed as audit

able events. This technique requires defining a different

security perimeter for each application. The potential for

misuse of system functions is typically different for each

application.

The concept of program flow monitors (PFM) [18l can be

extended in order to prevent incorrect actions of a program

on data items. To do this, each of the defined data manipu

lation functions (e.g., remove network packet header) is

given a unique signature; for example, a sequence of bits in

a bit vector. Also, each data item is initially given an

empty signature. The result of a sequence of data manipu

lations is a combination of all the performed functions'

signatures stored in the data item's signature.

For each sequence of acceptable data manipulations, an

associated sequence of acceptable signatures exists and is

stored in the PFM. That is, one signature exits for the

240

result of each data manipulation. At the application of a

data manipulation function, the PFM precomputes what the

resultant signature will be if the operation is performed.

This precomputed, dynamically generated signature is tested

by the PFM to see if it represents a valid signature. If the

signature is not acceptable, then the data manipulation is

not performed and some response depending on the partic

ular application is necessary (e.g., auditable event, drop

packet).

To strengthen this approach, the number of times that the

same function is applied to a data item can also be encoded

in the signatures [12]. An example of where this can be used

is a network protocol function that removes a packet

header. Correctly functioning protocol software should

remove the header only once. However, malicious logic may

try repeatedly to remove the header in order to obtain a

packet's data. Assuming that the protocol software is not

authorized for access to the packet's data, such access

would generate an invalid signature.

Thus, program flow monitors can be used to ensure the

integrity of function and data. This could also be viewed as

just another example of part of a TCB, as mentioned above.

S. OFF-LINE TECHNIQUES

Off-line techniques are used to remove malicious logic

throughout the entire software life-cycle (e.g., the devel

opment, testing and maintenance stages of a project).

Removal of malicious logic follows its explicit detection in

a software system.

These techniques are applied to rul types of software in a

computer system (e.g., both operating system and appli

cation code). In particular, the on-line security mechanisms

chosen to protect a system from attacks are themselves

targets for malicious logic insertion. The trust placed in

these mechanisms must be validated. This can be done by

one or some combination of the following methods: fault

tree analysis as mentioned above, formal verification, test

ing and code reviews.

A. The Use of Formal Verification

Current formal verification techniques and tools can

effectively examine only small pieces of software (e.g., a

security kernel in an AI certified computer system [4]). If

the security mechanisms used are too large, then formal

verification can be done on selected pieces.

For NVP, formal verification or any validation method

should be concentrated on the support software, since this is

where malicious logic could have its effects. For example,

parts of the DEDIX [1,2] (DEsign Diversity eXperiment)

system developed at the UCLA Center for Experimental

Computer Science should be formally verified (e.g., the

voter logic). If each version of the support software was

itself from a diverse design, then the importance of

verification could be reduced.

For software safety techniques, the safety assertions and

recovery routines are candidates for formal verification.

Finally, the same extensive methods used for TCBs seem to

apply to all types of monitors.

B. Testing

Malicious logic could be designed to trigger on particular

state conditions (e.g., the date, or by command). The

trigger could also be disabled until a command was sent

enabling it. This enabling command could simply be a

sequence of legal but odd system requests (e.g., one hundred

health status system requests in a five-minute time

interval).

Standard testing methods would likely be ineffective in

locating such malicious logic, since they would probably

miss enabling the triggers. Therefore, new testing

approaches aimed at detecting possible enabling command

sequences (i.e., channels) and trigger devices should be

used. This requires a separate test plan from the normal

functional testing.

In addition, the use of independent testing teams from

alternate contractors has been shown to increase testing

effectiveness. Component testing, at the module level by

the independent teams, also seems necessary, since testing

at only the device level is of insufficient depth for our

purposes.

C. Configuration Control

Very strict configuration control software and procedures

are essential. This will help to ensure that malicious logic is

not added after all tests are made to ensure its absence. To

guarantee that proper procedures are followed, surprise

inspections could be used in order to monitor the developer.

D. Code Reviews for Malicious Logic

It is a straightforward extension to perform code reviews

241

specifically to discover malicious logic. This review process

should be done by teams in order to ensure its validity.

Reviews are conducted during the development process

rather than afterwards by penetration teams.

These last two techniques (i.e., configuration control and

code reviews) can go a long way to prevent insertion of

malicious logic into a software system. It is this author's

opinion that they should always be a part of the selected

off-line techniques.

6. TRADEOFFS

It is frequently difficult to satisfy all the desired

objectives of a system (e.g., performance, security, fault

tolerance, compactness, etc.). Since resources are always

limited, it is essential to decide from the onset of a project

the amount to dedicate to security concerns. Resources are

both computer resources, such as millions of instructions per

second, and project resources, such as a budget to perform

verification.

To determine the all?-ount of resources to dedicate, an

acceptable degree of risk from the threats posed by

malicious logic must be defined. Tradeoffs should be

performed between security and other desired system

objectives using the acceptable degree of risk as a control

on the investment in security mechanisms. Of course, in

order to perform these tradeoffs, some idea of the costs and

effectiveness of the proposed security mechanisms must

exist.

Additionally, an analysis of the proportion of off-line

versus on-line techniques to be used in the total security

budget should be performed. Decisions of this type can be

made based on the cost, effectiveness, and performance

impact of each approach. For example, NVP can be very

expensive in development and maintenance. Therefore,

widespread use of this technique in certain software systems

may be unlikely. Instead, it could be used selectively, as

determined from a tradeoff study.

Obviously, off-line techniques have the advantages of not

affecting performance, weight, or power (i.e., attributes of

the physical computer system). However, on large software

programs, their effectiveness may be too limited. This is

evident from experiences with current formal verification

technology.

7. MEASURE OF EFFECTIVENESS

Effectiveness measurements of the collection of ad hoc

approaches chosen can be used in design refinement. If

serious protection problems are discovered during measure

ment, steps can be made to compensate.

To obtain this measure, deliberate insertion of malicious

logic similar to the technique of fault injection used in fault

tolerance to determine fault coverage [18}, and error

seeding techniques used in software testing [14}, can be

employed. The determinations of what malicious logic and

where to implant it can be made in several ways. First, use

a penetration team whose experience in security concerns

helps them devise implants. Second, test specific conditions

addressed by existing on-line security mechanisms. And

last, use analysis techniques such as fault-tree analysis as

employed in software safety [10,11}.

Deliberate insertion of malicious logic for testing

purposes obviously must be done with great care. The

process of implanting must be well documented and

performed by a team. Implants should be placed only in

experimental versions used solely for testing. These

versions should never be placed in the same configuration

library where the real operational software is stored.

Measurements of effectiveness of both on-line and

off-line techniques can be performed. For on-line tech

niques, malicious logic is placed in operating software

during normal system testing. For off-line techniques, such

as formal verification, malicious logic is deliberately placed

in preverified code during early design stages.

Performing such measurements requires defining what is

to be measured (the metric) and how the results are to be

evaluated (the criterion). The metric is the percentage of

instances, where implanted malicious logic goes undetected

out of the entire body of tests [18}. The criterion is

composed of two parts. First, it must take into account the

coverage, or quality of the error seeding cases [14}. Second,

the calculated percentage is interpreted relative to the

acceptable degree of risk defined in the design phase. Two

results should be generated: one for all on-line, and one for

all off-line techniques used. This way, the return on

investment of each approach can be compared.

8. CONCLUSIONS

The multi-pronged defense presented is meant to be a

practical and immediately usable approach to decrease the

242

risk of malicious logic in critical computer systems. All the

techniques presented appear to be used in specific threat

countermeasure pairs. It may be possible to strengthen

these techniques by changing this one-to-one relationship to

a many-to-one relationship (i.e., one countermeasure

covering many forms of malicious logic).

In approaching the difficult problem of preventing

denial-of-service and ensuring integrity, new ad hoc

techniques should be devised. These new techniques should

be encouraged but still must follow good security common

sense. For example, new techniques should not depend on

trusting large portions of software. It is beyond the current

state-of-the-art to formally verify and validate trust in

large pieces of software. Also, such obvious weaknesses will

turn into the target of the malicious logic it was meant to

prevent.

It is important to recognize that several of the ideas

presented in [7] support a fault tolerance approach to the

denial-of-service threat. These ideas include the detection

of, and recovery from, denial-of-service. Recovery may

require the use of redundant services in order to maintain

proper service. These ideas are straight-out of accepted

fault tolerance concepts.

Current research is directed towards extending the

schemes presented, determining their effectiveness,

devising additional extensions of fault tolerance techniques,

and analyzing the similarities between fault tolerance and

computer security. One example of an application domain

which must be addressed are Database systems. These

present many additional opportunities (e.g., via locking) to

cause denial-of-service [9].

The connection between fault tolerance and computer

security has been made by the observation, that the effects

of malicious logic can be classified under the fault class of

"by intent". The use of design fault tolerance and NVP is

alluded to in [6], however, the possibility of the deliberate

nature of the faults is not mentioned. This paper has taken

a first look at how design diversity could be used against

malicious logic.

APPENDIX

Background Devious Actions

Can a Trojan Horse, inadvertently used by an NVP system,

perform devious actions in the ·background while producing

valid results to be voted on? This question certainly needs

much more attention, but initially the following points are

made.

1) The whole idea of NVP is that many of a version's actions

(e.g., calls made as well .as data generated) are voted on.

Thus, these background devious actions will either be

masked out entirely or severely limited. An obvious trade

off between degree of risk and performance exists here.

2) Input to each version of an NVP system needs to be

obtained from different sources. If each version obtains the

same bad data, then the masking capability of NVP could be

defeated. By analogy, if each version of an NVP system

calls one version of a common program that contains a

Trojan Horse, then masking out its devious actio~ will not

be possible.

3) A multi-pronged defense is advocated. Thus, a collection

of on-line and off-line techniques should be used. If one

technique fails to detect and prevent a devious action then

it is hoped that others will catch it. This concept is very

similar to the idea of hierarchical fault recovery in fault

tolerance [16].

ACKNOWLEDGMENTS

Special thanks to S.Glaseman and G.Gilley of The
Aerospace Corporation for their many helpful comments on
this paper.

REFERENCES

[1] A.Avizienis, "The N-Version Approach To Fault-Tolerant
Software," IEEE Trans. on Soft. Eng., Vol. SE-11, No. 12,
Dec. 1985, pp. 1491 -1501.

[2] A.Avizienis et al., "The UCLA DEDIX System: A
Distributed Testbed For Multiple - Version Software," 15th
Annual Int'l. Symp. on Fault-Tolerant Computing Systems,
Ann Arbor, MI, June 1985, pp.l26-134.

[3] A.Avizienis, and J.P.J.Kelly, "Fault Tolerance By Design
Diversity: Concepts And Experiments," Computer, Vol. 17,
No.8, August 1984, pp.67-80.

[4] Department of Defense. Trusted Computer System
Evaluation Criteria, DoD 5200:28- STD, Dec. 1985.

[5] D.E.Denning, "An Intrusion - Detection Model," 1986
IEEE Symp. on Security and Privacy, April1986, pp.l18-131.

[6] J.E.Dobson, and B.Randell, "Building Reliable Secure
Computing Systems From Unreliable Insecure Components,"
1986 IEEE Symp. on Security and Privacy, April 1986,
pp.l87-193.

[7] V.D.Gligor,"Denial-of-Service Implications for Computer
Networks," Proc. DoD Computer Security Center
Invitational Workshop on Network Security, March 1985,
pp.9-33- 9-48.

[8] V.D.Gligor, "A Note On The Denial-of-Service Problem,"
1983 IEEE Symp. on Security and Privacy," April 1983,
pp.l39-149.

[9] R.R.Henning, and S.A.Walker, "Computer Architectt~re
And DataBase Security", 9th National Computer Secunty
Conf., National Computer Security Center, Sept. 1986, PP·
216-230.

243

[10] N.Leveson, "Software Safety: Why, What, and How,"
ACM Computing Surveys, Vol. 18, No. 2, June 1986,
pp.l25-163.

[11] N.Leveson, "Software Safety",' Chapter 7, Resilient
Computing Systems Volume 1, Editor: T.Anderson, New
York: John Wiley & Sons, 1985.

[12] S.Osder, "The DC-9-80 Digital Flight Guidance
System's Monitoring Techniques," AIAA Guidance and
Control Conf., August 1979, pp.64-79.

[13] M.M.Pozzo, and T.E.Gray, "A Model For The
Containment Of Computer Viruses," AIAA I ASIS I DODCI
2nd Aerospace Computer Security Conf., Dec. 1986,
pp.ll-18.

[14] C.V.Ramamoorthy, and F.B.Bastani, "Software
Reliability: Status and Perspectives, IEEE TSE, July 1981,
pp.354-371.

[15] B.Randell, "System Structure For Fault Tolerance,"
IEEE Trans. on Soft. Eng., Vol. SE-1, No. 2, March 1975,
pp.220-232.

[16] D.A.Rennels, "Fault-Tolerant Computing - Concepts
And Examples," IEEE Trans. on Comput., Vol. C-33, No. 12,
Dec. 1984, pp.lll6-1129.

[17] R.R.Schell, and D.E.Denning, "Integrity In Trusted
Database Systems," 9th National Computer Security Conf.,
National Computer Security Center, Sept. 1986, pp.30-36.

[18] M.A.Schuette, and J.P.Shen, "Processor Control Flow
Monitoring Using Signatured Instruction Streams," IEEE
Trans. on Comput., Vol. C-36, No. 3, March 1987,
pp.264-276.

[19] R.Turn, and J .Habibi, "On the Interactions of Security
and Fault Tolerance," 9th National Computer Security
Conf., National Computer Security Center, Sept. 1986,
pp.l38-142.

244

THE SETUID FEATURE IN UNIX® AND SECURITY

Steve Bunch

Gould Computer Systems Division

1101 E. University

Urbana, Ill. 61801

217-384-8515

srb@gswd-vms. arpa

ihnp4!uiucdcs!ccvaxa!srb

1 INTRODUCTION

The UNIX® system1'3'11 contains a simple, elegant, and powerful
feature called SETUID [U.S. Pat.# 4,135,240]. This feature
allows a user to temporarily assume the identity of another user
and obtain the discretionary access rights, and the privileges, of
that user. This feature is used to control privileged operations
and to build protected subsystems. It is invoked by giving a
program the SETUID property. Upon execution of such a
program, any user executing the program acquires the access
rights and privileges of the owner of the program. It is the
responsibility of the setuid program to prevent abuse of the
additional access rights it grants. This paper informally describes
some of the security implications of this facility, and describes
several alternatives which can provide similar functionality with
better security.

The first section of the paper defines some important terms. (We
assume basic familiarity with UNIX, but not with the
SETUID/SETGID concepts.) Next, the paper examines some of
the properties and uses of this mechanism, examines some of the
security implications of it, and finally discusses alternative
methods of providing similar or equivalent functionality.

2 DEFINITIONS .

In this section, we define some of the important terms and
concepts used in the remainder of the paper. There are several
slightly different implementations of the system calls and
semantics of SETUID/SETGID in different flavors of the UNIX
system; we have tried to keep the points made in this paper
generic and applicable to virtually all of them. We will ignore
some details and complications which are of limited interest in
order to keep the discussion simpler.

In UNIX systems, user names are mapped onto integers known as
user IDs during the login process. This mapping can be assumed
to be one-to-one for this discussion. One distinguished user, the
root or superuser, possesses all privileges to perform sensitive
operations in UNIX.

Largely as a convenience in managing access to files, and in some
systems for accounting purposes, users belong to one or more
groups. A group is simply an arbitra_ry list of users who are
treated together for access control purposes. A user is associated
with a default group upon login, and can change that association
during his login session. (There are several variations of this in
different UNIX systems, including simultaneous membership in

multiple groups. We will follow the original UNIX convention of
single group membership.)

Processes in the UNIX system follow the intuitive definition of a
process. A process possesses many properties, but there are a few
which are especially important to this paper:

Real User ID (RUID). This is the user who is the actual
owner of the process, i.e., the user from whose login
process the process is descended.

Effective User-ID (EUID). This is the user whose
discretionary access privileges are currently available
to the process. It is normally the same as the RUID.

Real Group-ID (RGID). This is originally the default
group associated with the real user id. It can be
changed explicitly by the user to any of the groups to
which the user is authorized (this is done differently in
different versions of UNIX - the distinction is
unimportant here).

Effective Group-ID (EGID). This is a group whose
discretionary access privileges are currently available
to the process. It is normally the same as the RGID.

We will use the notation

RUID(process)

EUID(process)

RGID(process)

EGID(process)

to indicate the UIDs or GIDs of a particular process.

The discretionary access control (DAC) mechanism of UNIX is
implemented by associating three sets of mode bits with an object
being controlled. (When discussing objects in this paper, we will
generally refer only to files; the conclusions generally apply to
other objects protected by owner/group/other mode bits.) All
such objects have an owner and owning group, which generally
describe the user id and group the owner belonged to when the
object was created. Each set of mode bits consists of three
yes/no permission bits which ·if set allow read, write, and execute
access (other permissions, such as directory search, are overloaded
onto the same three bits). The three sets of mode bits describe
the access permitted to owner (the file owner), group (users in the
same group as the file owning group), and other (all other users
and groups). If the owner is attempting access, only the owner
bits are checked. If someone in the owning group other than the

245

owner is attempting access, only the group bits are checked. If
the attempt is by neither, the other bits are checked. ,The EUID
of a process attempting to access an object is used in determining
if a requested access is being made by the owner of the file; the
EGID is used in determining if the attempt is being made by
someone in the owning group of the file.

The SETUID mechanism is invoked by setting the SETUID
property on a file. This property is externally applied, like mode
bits. Upon executing a program file with the SETUID bit set, the
EUID of the resulting process is set to the owner of the program
file. The SETGID mechanism works similarly, but the EGID of
the process is affected. SETUID and SETGID can be used
separately or together on an executable file.

It is useful to be able to talk succinctly about the set of files to
which a user, group, or process has access. We describe these sets
with the following notation:

FILES(mode, user)

FILES(mode, group)

FILES(mode, process)

This construct represents the enumeration of the entire set of
files in the system which can be directly accessed in the way
described by mode (e.g., read, write, execute, search) by that user,
group, or process. The definition of "accessible" must be m.ade
very carefully, as we describe in the later "Security ImplicatiOns
of SETUID" section. We will use the operator "+" to represent
the set union operation when discussing operations on these sets.

3 PURPOSE OF THE SETUID/SETGID MECHANISM

The SETUID/SETGID mechanism is used in practice for two
functions, which are quite distinct and separable but are often
confused:

1. SETUID/SETGID is used as the privilege-granting
mechanism in UNIX.

There are many "privileged" operations in UNIX.
Control of these is coarse-grained: one specific user, the
"superuser", has all privileges. In addition, control over
certain very special system files (e.g., /dev/kmem, the
pseudo-file representing the memory image of the
kernel) is often invested in SETGID programs, which
may perform sensitive operations on those files. (Some
of these operations are privileged because of the
damage they can do if misused, not because of the
inherent sensitivity of the operation. For example, for
a user to simply list his own active processes requires
accessing the kernel memory image in a standard UNIX
system.)

2. SETUID 	 and SETGID are used to build protected
subsystems.

A protected subsystem in UNIX is implemented as a
SETUID/SETGID program (or family of programs)
which control access to a file or files owned by the same
user/group as the program(s). Any user executing such
a program temporarily acquires access to the files, but
all his accesses are mediated by the program.
Examples of such subsystems include mail systems
(which protect the mail data base), data base systems,
bulletin board systems such as notes and news, games
(which protect scoring information), other software
packages which want to keep statistics or other side

information which they do not want users to be able to
access except from inside· the package, and programs
which wish to implement their own discretionary access
policy.

The operating system kernel itself provides no finer control over
its privileged operations than the superuser privilege, which is,
all-powerful. All processes with an EUID or RUID equal to that
of the superuser (for example, a process generated by executing a
SETUID program which is owned by the superuser) possess all
possible kernel privileges and can use them or abuse them as they
wish. It is the program itself which must correctly do only those
privileged operations that are consistent with the security of the
system. For example, it is the responsibility of the login
program, a SETUID program owned by the superuser, to verify
that a user presents the correct password for a specific UID
before it grants the user access to the system as that user.

Some privileged operations are implemented in user-level
processes by SETUID/SETGID programs. These programs are
sometimes superuser programs, but need not always be. For
example, some set the EUID to a special non-superuser UID or set
EGID to a special GID, where the UID/GID is the owner of some
special privileged object. Used in conjunction with the UNIX
discretionary access mechanism, this provides a quite distinct
mechanism from the kernel-arbitrated privileged operations
mentioned above. This type of privilege typically involves the
manipulation of the special file system objects like the
/dev/kmem or /dev/mem pseudo-files, which permit access to all
internal data structures of the operating system kernel. (For
example, the UNIX ps command, which obtains the current state
of all processes in the system regardless of owner, obtains its
information in this way.)

SETUID/SETGID is a very powerful but coarse-grained privilege
mechanism. In building a secure version of UNIX, it is necessary
to minimize the potential for abuse of privilege. The potential for
abuse of SETUID/SETGID mainly comes from the first point
above, the acquisition of privileges with SETUID/SETGID. (A
companion paper discusses a privilege mechanism to help
control the granularity problem.) Abuse or incorrect usage of the
mechanism to implement trusted or protected subsystems is also
possible, as we discuss below.

4 SECURITY IMPLICATIONS OF SETUID

4.1 Interaction with Directory Search Rules

The general accessibility of files to a process in UNIX can be
described as the union of files accessible to its user and to its
group. Since there are potentially two different user id's and two
different group id's, however, the details of this become
complicated. Let us assume for a moment that the meaning of
FILES(mode,process) is defined as the set of files which the open
system call can successfully open with the specified mode. The
basic rule for some specific mode mode in the set (read, write,
execute] would appear to be

FILES(mode, process) =
FILES(mode,EUID(process)) +
FILES(mode,EGID(process))

(We assume that files available via "other" access permission are
included in one or more of the component sets). There are two
non-intuitive points that we would like to make about the above
description.

246

1. The access rules for UNIX open specify that the access
checks are done using effective user and group id's.
However, by using an unprivileged system call
(setuid/setgirf) to set its EUID/EGID to its
RUID/RGID, a process can in fact often access both
sets of files. The extent to which this is possible is
highly dependent on the mode settings on directories
and on the nuances of the particular UID/GID
manipulation primitives provided on the particular
UNIX version being used. (It may in some cases require
spawning sub-processes and other trickery.)
Consequently, the real user and group entries must be
included in this computation to cover this case. To
take this into account, the corrected formula should
include the terms

+ FILES(mode,RUID(process))
+ FILES(mode,RGID(process))

2. 	Under our working assumption that we define the
semantics of FILES using UNIX's open system call,
even the corrected definition above is incomplete. In
fact, FILES(mode,process) can be a superset of the
union shown above due to the interaction of directory
search access rules, access modes, and the RUID jEUID
and RGID/EGID. Because of the directory search rules
in UNIX, it is possible to have otherwise accessible files
that cannot be found because they are located in an
unsearchable subtree of the file system. A different
user may be able to find them, but be unable to access
them. The combination of accesses provided by
different effective and real id's can be used to locate
then access, such files. An example is shown below. '

A curious feature of the use of mode bits to deny access can show
up in computing the FILES relation. Files belonging to a user
may be inaccessible to the user because of the way mode bits are
c~ecked. Th_is intentionally permits an owner to explicitly deny
hims~lf.or his group access to an object. If the other or group
permissiOns allow access to the EUID/EGID of an object, then a
SETUID/SETGID process could access files belonging to the user
himself which he could not access otherwise.

In order to illustrate the second point above, we can create an
example in which a SETUID process (running with non-equal
EUID and RUID) can access files which a process owned and
operated by either UID alone could not access (Figure 1). First,
we create a directory dir which allows search access only to
EUID. Within dir, we next place a directory subdir, which
allows search access to both the EUID and RUID. Within
di.rect~ry ~ir/subdir, we place subdirectories and files (file1 and
dir2 m Figure 1) to which only the RUID has access. The
SETUID process first changes to directory dir /subdir as its
working directory. Then, it uses the setuid system call to set its
EUID to the old RUID. The files and directories in dir /subdir
are now available to the process. A process belonging to the
o_riginal EUID could not have accessed the files, though it could
fmd them. A process belonging to RUID could not have found
them.

.../

file 1 dir2

Fig. 1 -Gateway Directory Example

We refer to dir as a "gateway directory" later in this paper.
(There are contexts in which this could actually be useful. For
example, a mail directory could contain mail files owned by
individual users, but be inaccessible except through a
SETUID/SETGID program and a gateway directory owned by its
owner/group. This minimizes the amount of privileged work that
must be done by the SETUID/SETGID program, as it can simply
change directories to the mail directory hidden beneath the
gateway directory, reset its EUID/EGID to the RUID/RGID, and
then proceed with its work using only the access permissions of
the executor.)

These non-intuitive aspects of SETUID/SETGID appear to be
potential security problems in practice only if administrators or
users incorrectly try to isolate a subtree of the file system by a
change in discretionary access permissions at its root. They also
cause some problems with formal models, as discussed later.

4.2 Unexpectedly Granting Access to Files

In a SETUID/SETGID protected subsystem which obtains
parameters such as file or object names from a user, the
application must be extremely careful to insure that the
operations performed by the subsystem correctly avoid violating
the protection which the application is supposed to provide. This
points out the general problem of unintended grant of access to
the files of the owner (or owning group) of the SETUID (SETGID)
program. Any files belonging to the owning user (owning group)
must be protected by the application in addition to the file(s) that
it is designed to protect. This means that a lot of care must be
taken in the design of SETUID/SETGID programs; inexperienced
programmers in particular should beware of using the SETUID
property on programs which they allow others to use.

A classic example of this problem is the UNIX mail program of
early Version 6 UNIX. The program ran SETUID to superuser in
order to be able to write mail into a user's privately-owned
mailbox. When an option was added to the mail program to
allow a user to make it take its input from a file, a corresponding
check to see if the user was supposed to be able to access that file
was not added. Since the superuser can read any file, a user
could obtain a copy of any file in the system by mailing it to
himself. To make it easier to avoid this problem when writing a
privileged program, UNIX System V now incorporates the notion
of a saved uid, which allows a superuser process to set its EUID to
its (probably non-superuser) RUID and later set it back. Using
this capability, a program can temporarily suspend its privileges
while performing commands requested by a user (and thus allow
the kernel to perform its normal checks), and restore them later.

247

4.3 Trojan Horses

It is clearly possible for any program provided by another user to
contain a Trojan horse. The program can access the files of the
user who executes it, and can siphon off data and save it for the
the provider of the Trojan horse to peruse later. This is a generic
problem with trusting any program written by another user, and
is not specific to SETUID/SETGID programs. SETUID/SETGID
does open the possibility of a new kind of Trojan Horse, however,
as described below.

One method for a user to attempt to encapsulate a
SETUID/SETGID process is to insure that the user's files are not
accessible to the EUID/EGID under which the process operates,
and therefore cannot exceed the bounds of the user's intent.
However, one SETUID/SETGID program can execute another
using the fork and exec system calls. Thus, unless the access of
one SETUID /SETGID program to all other such programs can be
totally denied, the user must protect against all possible ,
EUIDs/EGIDs which the program might be able to assume. It is
straightforward to plug this hole. For example, one can forbid an
uprivileged SETUID/SETGID process to have a
SETUID/SETGID process with a different
EUID/EGID/RUID/RGID as a descendent (in any generation).
(It is necessary to restrict this to unprivileged processes to permit
programs like login to work as they ~o now.) Another approach
was taken by IBM's Secure XENIX® , which solves this problem
by allowing SETUID processes to be executed only by a direct
user command. (In that system, SETUID functionality still
implements the privilege mechanism.) Either approach makes it
impossible to accumulate access.

Few UNIX machines in environments with skillful system
programmers and without routine housecleaning are free of
hidden SETUID pr~wams which make their owner the superuser
or some other user . . (The names of such programs often start
with a '.' so that they don't normally show up on directory
listings, or use the same name as a valid SETUID program in the
hopes of tricking a casual observer into thinking that they are
simply copies of that program.) A useful feature added to
Berkeley's version 4.3 UNIX system is the ability to disable
SETUID/SETGID for specific mounted file systems. This makes
it easier to insure that only authorized programs can perform this
function, and makes importing foreign file systems much less
dangerous.

Trojan horse code which a malicious user can arrange to have
executed by a user whom he is trying to subvert can normally
execute any SETUID/SETGID program available ~o that user,
with arbitrary (presumabJr malicious) parameters. (This is one
reason that a trusted path must be provided to all TCB services
in a B3/Al system.) The IBM Secure XENIX approach of
allowing SETUID commands to be executed only by direct user
command prevents this.

4.4 Modeling Issues

There are some security modeling issues which arise because of
SETUID/SETGID; These issues may or may not present
problems in: practice, but they cannot be ignored.

A process with the EUID of a user who isn't even logged
in can get access to files. This is somewhat peculiar, as
the effective user will not have passed the
authentication procedures, agd may not even be a valid
user at the time of access . It is possible that this
could result in a violation of certain security policies,
e.g., policies which limit the times of day during which
specific users are allowed to use the system. (Such a

limitation might be due to sensitive data being present
on the system only during specific periods; the intent of
such a policy could clearly be violated by a SETUID
program.) It is non-trivial to validate the user
represented by the new EUID at the time of execution
of the SETUID program, as that would require the
kernel to perform the revalidation and that function is'
now performed by user-level processes in UNIX. (One
solution to this problem is discussed in section 5.2.)

Accurately modeling discretionary access in an
unmodified UNIX is inextricably related to the file
system contents and the properties of all
SETUID/SETGID programs in the system.
Discretionary security models of UNIX can be simplified
if they model the "maximum case" of access, classifying
as accessible those objects whose access modes would
allow access, should the object ever be reachable. (This
leads to an overstatement of access in the security
model.) However, this simplification does make
modeling unusual encapsulation methods based on DAC
(like the earlier example of "gateway directories")
difficult or impossible.

There is no obvious simple way to accurately model the effects of
all the SETUID/SETGID programs in a system on the
discretionary security policy unless all possible inputs and effects
of those programs are characterized. It will be interesting to see
how implementors of B3 and AI systems with SETUID/SETGID
model it.

4.5 Integrity of SETUID/SETGID Programs

In order to prevent the subversion of a SETUID/SETGID
program, UNIX systems must clear the SETUID/SETGID bits on
program files any time a change is made to (at least) the file
contents, owner, group, or permissions. This would appear to be
a "given" in any UNIX system, but errors allowing
SETUID/SETGID programs to be subverted have existed in many
implementations in the past.

A popular way of influencing any trusted program is to provide it
a false environment. Any trusted program which obtains
information about its operating environment from the user
executing it, either directly (e.g., names and parameters entered
by the user), or indirectly (e.g., though the UNIX environment
variables), must be careful what it believes. Subversion of
programs by influencing their environment is a source of a large
number of errors which have been found in SETUID/SETGID
programs, especially large and complicated programs. One
example of such a subversion occurs in programs which blindly
execute a program name passed to them in an environment
variable. For example, by changing the default name of a
normally-trusted sub-command before executing such a program,
a user can get a trusted program to supply data it should not, or
even to execute a Trojan horse. Some of the subversions which
are possible with existing programs in wide use are best left
unpublished (especially those involving SETUID/SETGID shell
scripts; some of these bugs are hard to fix). The only real cure for
this problem is for trusted programs to operate in an environment
which the user cannot influence, or for such programs to
disbelieve their environment completely (or to verify it, where
possible).

248

4.6 Interaction with Extensions to UNIX

It is non-trivial to foresee all the ramifications of
SETUID/SETGID when extending UNIX. For example, Berkeley
UNIX introduced the concept of allowing a process to operate
with multiple groups simultaneously active. That is, a process in
Berkeley UNIX has associated with it a list of GIDs, and access
to an object is allowed if any of those groups is permitted that
access. This is very convenient operationally, and facilitates
sharing among groups. In this model, it is not obvious which
group to associate with a newly-created file or directory. The
approach taken by Berkeley is to use the owning group of the
directory in which the object was created, even if the process (and
its user) are not members of that group. The rules for setting the
SETGID bit on a file allow the owner of a file to set it. If the
owner sets the SETGID bit on a newly-created file to whose
owning group he does not belong, the resulting SETGID program
would allow the user access to files using the access rights of a
group to which he does not belong. This bug was present in
earlier releases (e.g., 4.1) of Berkeley UNIX, but the system now
prevents this by insuring that the owning group on a file is
contained in the set of groups of the process before the SETGID
bit is allowed to be set. This cautionary tale indicates that the
security ramifications of any change to the discretionary access
mechanisms of UNIX should be examined carefully.

5 REPLACEMENTS FOR SETUID/SETGID

The remainder of this paper discusses three different methods to
provide the functions performed by SETUIP,/SETGID on UNIX.
These methods display decreasing degrees of modification to
UNIX and display various degrees of cqmplj.tibility with existing
programs which use SETUID/SETGID (including essentially full
compatibility). The third method presented is a part of a
general-purpose privilege mechanism which we believe is superior
in controllability and security to SETUID/SETGID while
remaining compatible for most SETUID/SETGID programs. All
three offer more secure control over the pJiivileges in UNIX than
unmodified SETUID/SETGID mechanisms, and all three allow
the creation of protected subsystems.

5.1 Restricted Environments

Gould used a different approach from SETUID/SETGID for
kernel integrity and control of ~;>rivilege in its 02-rate.d UTX/328
UNIX system. When Gould began work on its system in 1985,
there was considerl!-ble debate in the security community
concerning the inherent security of systems which use the
SETUID/SETGID concept. This debate is still not totally
resolved today. While quite interested in its outcome, we were
unwilling to wait until the debate was finished to implement our
02 UNIX system. So, in order to fl!-cilitate the formal evaluation
of our system, we removed the SETUID/SETGIP facility
completely. This was a controversial decision. The lost
functionality was implemented using trusted server processes,
originally introduced as part of the integrity mgchanism of the
system, operating outside restricted environments.

The restricted environment is !!- concept based on the UNIX
chroot system call, which restJ;"icts fill) system access of !!- process
to a subtree of the UNIX file system. In Figure 2, we show a
subset of a UNIX file system. The directory /unprivJe forms
the root of the unprivileged enviroiu;nent which is encircled in the
figure. Users operating inside the environment ha,ve no way to
locate files outside it. From the standpoint of a process operating
inside the restricted environment, funprivJe is the root of its
file system, and the directory /unprivJe/mnt is addressed by
the path name /mnt. Processes with this limited visibility of the
entire system's file tree have no direct access to system-critical

I

etc

Fig. 2 - A UNIX File System with a Restricted Environment

files (e.g., the password file) or to privileged programs and their
directories, all of which are outside the restricted environments.
This makes it much harder for a user process in a restricted
environment to affect the Trusted Computing Base (TCB) of the
system in any way.

Protected subsystems can be implemented in at least two ways in
this model.

1. Make the subsystem a server process, operating outside
the restricted environment (Figure 3).

The server process need not be privileged in general,
though the details of implementation in our system
interfere with this (as an unprivileged process, it cannot
use the trusted interprocess communication
mechanism).

In Figure 3, we show a client program inside the
restricted environment communicating with the
subsystem, which operates outside it. They
communicate via an interprocgss communication
mechanism known as secure sockets .

2. A second 	method is to run a trusted subsystem in a
restricted environment of its own, with no users, along
with all the files to which it is to control access (Figure
4).

Clients communicate with the subsystem via a server
which arbitrates references and performs
communications between server and client. We did not
support multiple restricted environments on the first
system release, so we have no field experience with this
approach. Multiple environments will be a feature in
future releases, so this method will be ava.ilable.

This approach is caBable of implementing mutually
suspiciqus subsystems , and requires minimal or no
change to application programs. It is a very strong
method for isolating subsystems, and is probably the
method of choice for operating large existing
SETUID/SETGID applications such as databases where
the extra isolation does not interfere with functionality.
Figure 4 shows this case.

The privilege control mechanism we used with restricted
environments is a simple one: processes must be born privileged,
i.e., they must be designated by a privileged parent as inheriting
the privileges of the parent when created. (The one initial

249

Fig. 3 -An Application Implemented as a Server

Fig. 4 - A Server Mediating between Client and Application !

process is privileged.) All privileged operations are executed by
privileged server processes which are created to serve that
function and that function alone. Privileged servers operate
outside the restricted environment subset of the file system, and
therefore system files are visible to them. Because the original
UTX/328 is a 02 system, it was not deemed necessary to
subdivide the system privileges (i.e., implement a least-privilege
TOB). So most privileged processes still run with essentially
superuser privileges in this model.

When using server processes to perform functions formerly
performed directly by a privileged system call, a set of
subroutines can be provided to make some of the communications
invisible to clients. The subroutines establish communication
with appropriate privileged processes, pass parameters to it, and
generally behave as if they perform the service directly. If such
subroutines are substituted for a few key system calls and service
subroutines (e.g., the password validation function), many
programs need only be recompiled in order to run.

One of the first questions people ask about the use of server
processes is its performance. It turns out that a few operations
actually go faster, since the server process already exists and a
connection to it is very cheap to make. Other operations must
still create an additional process, so they are somewhat slower.
Overall, there is usually little difference in performance between

this system and the non-secure UTX system used as its base. (A
more important performance drain comes from auditing - a
function that all secure systems have to implement.)

5.2 Restricted SETUID/SETGID

An extension to the concept of restricted environments is to allow
the limited use of SETUID/SETGID within a restricted
environment. This SETUID/SETGID with modified semantics
would not permit a process to acquire any system privileges, but
would allow the controlled access to data files as
SETUID/SETGID does now. In other words, it would be used
only for implementing the protected subsystem component of the
SETUID/SETGID functionality described in the early sections.
This would allow the vast majority of SETUID/SETGID
application programs to work. (Those which also perform
privileged operations reserved for the superuser would not be able
to execute the privileged system calls required, and would need to
be modified).

One of the weaknesses of SETUID/SETGID, even in this limited
form, is the transititive acquisition of discretionary access by
executing a chain of SETUID/SETGID processes, as described in
section 4.3. It can be limited as described there.

As described earlier, another weakness of SETUID/SETGID is
that such programs can provide accidental access to files owned
by the EUID/EGID other than those it is supposed to. Three
ways of avoiding this problem come to mind:

1. Careful programming. (This can also be described as
"wishful thinking".)
Programmers must keep a long list of cauti8ns in mind

1when building SETUID/SETGID programs . Knowing
as many case histories as possible of errors that have
been made in the past is helpful, but keeping the
functionality of such programs minimal is really the
best protection available. Many existing applications
have been heavily examined and tested, and many are
undoubtedly trustworthy.

2. 	Operate the subsystem inside a restricted environment
which contains the client as described in section 5.1,
but leave all other files owned by the EUID/EGID
outside it. This eliminates any possible accesses to
those files.

3. 	Generate a pseudo user name which will own the
program and its minimum necessary files.
This name would not correspond to any valid login
account, which would help insure that the user id would
not be used for anything but its intended purpose, and
would be used only by the subsystem and its files. This
fixes the modeling problem with a non-logged-in user
being able to access files, and reduces the management
overhead of insuring that no files are accidentally
accessible via this program. A version of this could be
used now in the administration of some of the protected
subsystems of UNIX, such as notes and uucp, but
generally is not (the special pseudo-users are in fact
allowed logins, which makes auditing of the actions of
users impossible if more than one user possesses the
ability to login as a particular pseudo-user).

Several problems could arise with a naive implementation of this
limited SETUID/SETGID in a secure system. For example, audit
trail information must still log the actual user identity, not the
one assumed by the SETUID program. There seem to be ·no
significant problems implementing this and the other minor
changes that are needed, and the functionality is fully compatible
with the majority of applications.

250

5.3 Use of a General Privilege Mechanism

At the TCSEC7 B2 and higher levels of security, it is necessary to
limit the privileges that even a privileged program can exercise.
That is, even a privileged program has to operate in a m~de such
that it can execute only privileged operations whiCh are
mandatory for it to perform its intended function. This is to
reduce the damage that a Trojan horse or an error could cause.
There are several possible models and implementations which can
fulfill this requirement. These include capability-base~ methods

4privilege-set methods, and probably others. A compamon paper
describes a privilege-set based mechanism which eliminates the
need for SETUID programs as a privilege-control mechanism.
That paper concentrates on the privilege aspects of the
mechanism. This section describes the use of that mechanism for
implementing protected subsystems. A basic premise of the
mechanism is that it should be possible to fully enumerate and
control all privileged operations in a secure system, but the bulk
of this discussion is oriented toward its use as a
SETUID/SETGID replacement. The mechanism would be used in
similar ways to help construct the TCB of a least-privilege B2
system, but we will defer that discussion.

For our purposes, all privileged operations in the system can be
described by tuples of the form (subject, operation, object). The
subject is the user, the operation is the operation that the user
wants to perform, and the object is the system object on which
the operation is being performed. (The object is sometimes
obscure when discussing a privilege like "DAC exempt". In .such
cases the object is generally "all objects of a given class", or the
kern:! itself.) A (somewhat simplified) description of how this
scheme can be used to control access to files in a manner similar
to SETUID/SETGID follows.

We permit the dynamic creation of privileges by designating any
file system object as a privileged object. We then create at least
three privileges associated with that file, corresponding to the

Privileged Privileged

Objects Programs

/dev/kmem /bin/ps
(*,R,/etc/passwd)
(*,R,/dev/kmem)

UNIX mode bits, read, write, and execute. (As before, other
operations such as searching can be overloaded ont~ these.) The
privilege (user,operation,file) would have to exist, and be
available to a user's process, in order for the process to perform
the corresponding operation. The details of how privileges are
controlled and distributed to processes are important, but are
discussed in the companion paper and so will not be reintroduced
here. Two important points that are important for an
understanding of this approach need to be emphasized: In
general, only a program which has been examined an~ found
trustable for a specific privilege will be able to acqUire and
exercise the privilege, and only users who are deemed trustworthy
to exercise a privilege will be able to do so - regardless of what
programs they execute and the privileges those programs are
trusted to use. Both these limitations take the form of
enumerating the privileges available to all users and to all
programs, and placing their distribution completely under
adminstrator control.

The function of SETUID /SETGID when used to build protected
subsystems is to insure that only a specific set of users (those
with access to the SETUID/SETGID programs) can execute the
subsystem, and through it access the data files it prote~ts. In our
model the data files protected by a subsystem are designated as
privil:ged objects, and any operation on the files require the
corresponding privilege. For example, the UNIX_ ~assword _and
authentication file /etcfpasswd would be a pnvJleged object.
The operations of reading the password file and writing the
password file would then be privileged operations, and o~ly
processes able to exercise those privileges could read or wnte,
respectively, the password file. So, the UNIX login process could
possess the privilege to read the password file, but not the
privilege to write it, whereas a password updating program would
possess both.

Figure 5 shows an example of two privileged files (/etcfpasswd
and /dev/kmem) which are accessed by two privileged programs

Users and Their Privileges

(Ul,R,/etc/passwd)
(Ul.read,/dev/kmem)

(U2 ,R,/ etc/passwd)
(U2 ,W,/etc/passwd)

•no privileges•

U3

Fig. s - An Example of Privileged Objects and Programs (see text)

251

:jetc/add_user and /bin/ps. Three users, Ul, U2, and U3,
possess various privileges. The figure s.Rows that Ul possesses the
necessary privileges for /bin/ps, but not for /etc/add_user. An
attempt by Ul to execute the /etc/add_user program itself
might be successful, depending on access controls on the program
file, but the program would be unable to modify the password file.
U2 possesses sufficient privilege for /etc/add_user to operate,
but not for /bin/ps. U3 possesses no privileges and cannot
successfully execute either program. Note that the ability to
execute either program is totally independent of the the ability of
that program to affect the corresponding privileged object(s).
Administrators need not worry about the discretionary access
permissions on any of the files or programs in his system in order
to control the upper bound of privileged operations which users
can do. Similarly, the administrator need not worry about any
program which does not possess the necessary privileges being
able to access the privileged objects.

One significant difference between this method and
SETUID/SETGID is the ownership and privileges attached to
files created by the privileged programs. In our privilege model,
programs run with UIDs equal to the executing user, so any files
created belong to the executing user. With SETUID/SETGID
programs, the program owner is the owner of any files created by
the program. This is an important difference for programs which
create files which they wish to exclusively control. (In our model,
the files would be owned by the RUID, and thus the program
would be unable to protect them from the user with discretionary
permissions.) Further, since privileges are tightly controlled, we
would not want such applications to be able to create new
privileged objects lightly, so new files created by the program
would not normally be privileged and would therefore not be
under the control of the privilege mechanism. To solve this
problem, one simply makes the directory containing the protected
files the privileged object, rather than attaching privileges to
each protected file, and creates new files within that directory.

The above solution makes it possible for the subsystem to create
new files which are also protected by .the privilege mechanism,
without needing the ability to create privileged objects itself.
This is a potentially visible difference for existing
SETUID/SETGID applications, since some may require the
ability to create new privileged objects; however, those
applications which already create their new files in a private
directory can remain unchanged. Because most subsystems want
to control the ability of users to delete files, such private
directories are frequently the case now. A private directory is
made necessary by' UNIX's discretionary access mechanism in
order to guarantee that the controlled files are controlled solely
by the application. Consequently, the set of unchanged programs
includes most data base programs, mail programs, bulletin board
systems, and games. It appears that this will present a small
incompatibility in practice.

The privilege mechanism we have described is separate from any
other discretionary or mandatory access control mechanism, and,
like SETUID/SETGID, is externally applied to programs and files.
If access to any object in the system needs to be controlled, and
the other access control mechanisms are too general or otherwise
inappropriate, this mechanism can provide the fine-grained
control needed. This mechanism also reduces the ability of DAC
exempt privileged users or programs to violate the integrity of
privileged objects. If a privileged user needs the ability to
override the privilege mechanism for a particular privileged
object, he can be given the appropriate privilege without
compromising any other privileged objects.

Interactions with the other access control mechanisms are

straightforward to analyze, as this mechanism used in this way
simply provides a restriction of access, and cannot allow access to
take place when it could not have before. (Though the privilege
mechanism in general will not have that property, as it will be
used to control kernel privileges such as "DAC exempt"). Because
it does not change the effective user /group of a process like
SETUID/SETGID, the DAC implications are simple: the program ,
has exactly those discretionary access rights of its executor, plus
the additional capability to access appropriate privileged objects.

6 CONCLUSIONS

This paper has discussed a number of properties of the UNIX
SETUID/SETGID mechanism, concentrating on security
implications. Though the SETUID/SETGID mechanism is simple
and powerful, it is easily misused and abused, and appears to be
inadequate to alone provide the fine degree of control over
privileges and protected subsystems that is required in a highly
secure system.

This paper has discussed three mechanisms which replace the
UNIX SETUID/SETGID with more controllable mechanisms.
The first was used in Gould's original secure UNIX product,
UTX/32S 1.0; it is highly secure, but is non-transparent to
applications. The second is an augmentation of the first, in which
a limited SETUID/SETGID facility is provided for trusted
subsystems. This limited use of SETUID /SETGID fppears to be
compatible with the requirements of the TCSEC , at least at
levels of Bl and below, and will appear in future Gould systems
at C2 and Bl if our implementation is successfully evaluated by
the NCSC at those levels. The third mechanism, a privilege
based model, represents an approach which we believe to be new.

We believe that the privilege-based mechanism we have described
is a candidate for replacement of the SETUID/SETGID concepts
in a secure UNIX system. It allows user-supplied privileged
subsystems and applications to be created, without interacting
with its protection of the TCB. We have not yet studied all the
implications of this scheme on existing applications, but it
appears that most SETUID/SETGID programs will work
correctly witho"ut modification. We also believe that it is far
superior to SETUID/SETGID for new applications. The
mechanism is not incompatible with SETUID/SETGID, so
technically, the two features could coexist; this may be reasonable
in a less-secure environment or one with only a few key
SETUID/SETGID programs which are known to be well-behaved.
Gould developed this mechanism to satisfy the least-privilege
requirements of the TCSEC at levels B2 and above, a goal which
it appears to fulfill.

7 ACKNOWLEDGEMENTS

We would like to express our appreciation to the people who have
participated in discussions about SETUID/SETGID and the other
mechanisms presented in this paper and have assisted in its
preparation. These include (in alphabetical order) Phil Brewer,
Bill Caudle, David Fields, John Gertwagen, David Healy, Frank
Knowles, Greta Miller, Tim Thomas, and Joanna Yip from Gould,
and our NCSC developmental and formal evaluation team
members. We would especially like to thank the members of the
NCSC team for bringing the modeling issues with
SETUID/SETGID to our attention.

252

8 	 REFERENCES

1. AT&T, 3B2 Computer UNIX System V Release 2.0
User's Reference Manual. (1985)

2. 	Gligor, V., et. a!., On the Design and Implementation of
Secure XENIX Workstations, Proceedings of the 1986
IEEE Symposium on Security and Privacy, Oakland,
Ca. (April1986)

3. IEEE, 	Trial-Use Standard Portable Operating System for
Computer Environments. Institute of Electrical and
Electronic Engineers, Inc. (April1986)

4. 	Knowles, Frank; Bunch, Steve, A Least-Privilege
Mechanism for UNIX, Proceedings of the lOth National
Computer Security Conference, Baltimore, MD. (Sep
1987)

5. McCauley, E.J.; Drongowski, P.J., KSOS -- The Design
of a Secure Operating System, National Computer
Conference. (1979)

6. 	Miller, Greta, et. a!. Integrity Mechanisms in a Secure
Unix: Gould's UTX/32S. AAIA/ASIS/DODCI 2nd
Aerospace Computer Security Conference, A Collection
of Technical Papers. (Dec 1986)

7. 	National Computer Security Center, Office of
Standards and Products. Department of Defense
Trusted Computer System Evaluation Criteria, DoD
5200.28-STD, National Computer Security Center, Fort
Meade, MD. (Dec 1985)

8. NCSC Developmental Team, Verbal Communication.

9. Schroeder, M. D. Cooperation of Mutually Suspicious
Subsystems in a Computer Utility, Report #MAC TR
104, Project MAC, MIT. (1972)

10. Wood, 	 Patrick; Kochan, Stephen, UNIX System
Security, Hayden Press. (1985)

11. University 	 of California at Berkeley, UNIX User's
Reference Manual, .f.3 Berkeley Software Distribution.
(April 1 986)

253

Networking of Secure Xenixt Systems

Wilhelm Burger

IBM Corporation Federal Systems Division

708 Quince Orchard Road

Gaithersburg, MD 20878

Abstract

This paper describes design and implementation aspects of a
network of Secure Xenix systems. With the advent of secure
systems the need arises to inter-connect these systems in a secure
manner. An immediate goal is the interconnection of Secure
Xenix systems with a local area net. The Trusted Computer
System Evaluation Criteria [1] and the DNSIX secure network
architecture [2] are used for deriving additional security require
ments in the areas of security policy and accountability to extend
B2 functionality to a network of Secure Xenix systems [3]. Part
1 of the paper extends the security requirements to the network
environment, part 2 describes the network security design, and
part 3 addresses some implementation issues.

1. Network Security

The security mechanism of one system must be extensible to
another system on the network with which it communicates. This
results in a network of systems which are governed by a single
security policy. In addition to mandatory and discretionary
access rules, the relations between systems, their security level,
the security level of their interconnection, and the authorization
level of remote users and applications must be taken into
consideration when objects are accessed.

The interaction between two systems is organized into sessions.
Sessions are used to mediate all network access. A session
consists of a set of related communications. For the duration of a
session, subjects and objects on both systems are covered by the
same security access rules. A session is, therefore, associated
with a security level to accomplish this. The session security level
is derived from the security level with which the user logged in.
A session is further associated with an identification which is
used for auditing security relevant network events.

All packets sent between systems are further associated with a

. security label. The security label is derived from the security level

of the session. In a network of systems with different security

levels this label is also used to route packets according to the

security level of intermediate systems and links.

In the area of accountability additional network related iden
tification and authorization data must be maintained. These
'network profiles' are used to identify and authenticate remote
users; they are further used to authorize the establishment of
sessions.

· t Xenix is a trademark of Microsoft Corporation.

It is assumed that the local area network under consideration is
physically secure. Otherwise additional measures are needed to
deal with data compromise and data integrity. The risk of data
compromise can be reduced through link encryption. Data
integrity can be improved through additional encrypted check
fields in data packets. In a very hostile environment stronger
measures such as application level end-to-end encryption and
notarization of packets will be required.

Another threat to be considered is denial of service. Denial of
service is security relevant if, for example, audit service or
authentication service is affected. Unfortunately, it is rather
difficult to specify general criteria what constitutes denial of
service. The risk of denial of service due to excessive traffic on
other sessions can be minimized by giving each session a fair
share of the network resource.

2. Network Security Design

The system architecture of Secure Xenix serves as the basis of the
secure network extensions. The trusted computing base of Secure
Xenix is enhanced with a session mechanism and with trusted
agents which handle all security related communication between
systems. The network security facilities rely upon fundamental
features of Secure Xenix: access mediation to protected resources
by the kernel, enforcement of mandatory and discretionary
security policy, and the protection of authentication and audit
data. Additionally, the trusted facility management of Secure
Xenix is augmented with network security management func
tions.

All communications ongmating outside the trusted computing
base require the establishment of sessions in order to mediate
access to the network. Security related communication is handled
by trusted agents. An agent usually has a counterpart on the
machine it communicates with, and a client/server relationship
exists between the two. A simple datagram based request
response protocol is sufficient for the communication between
trusted agents. A minimal set of trusted agents consists of a
session setup service, an audit service, and a network manage
ment service.

Before a user (or program on his behalf) can communicate with
another system on the network a session must be established.
This requires that the user is allowed to establish a session to the
desired system, and that the user can be identified and authenti
cated at that system with his current security level. Ignoring
authentication issues for the moment a session is established as

254

follows. The session setup service communicates the identity and
security level of the user from the source system to the target
system. At the target system a session server process is created.
This process acts as proxy for the user; it has the user's identity
and security level. Additionally, session control structures are
created; they are needed for relating connections to sessions.
Session creation can be combined with the invocation of a server
process for an application, such as is needed for a file transfer
program.

Network access can be controlled in a centralized or in a
distributed fashion. When control is centralized then all network
access profiles are stored at one place on the network. When
control is distributed then each system of the network has its own
network access profile. For the centralized case an authentica
tion service comes into play which authorizes a session creation.
In the distributed case session setup can be combined with
network authentication, and no authentication service is needed.
Network access profiles which are maintained locally have the

The secure network administrator function further has to interact
with the secure administrator function of Secure Xenix to handle
the registration of remote users and the mapping of their user
and group identifications from one system to another.

Additional security support services can be combined with the
session mechanism such as an encryption key service. If applica
tion-to-application encryption is desired then encryption keys
would be obtained at session setup. All packets communicated
by that session would then be encrypted and decrypted using
these keys.

3. Implementation Aspects

The implementation of the secure network facilities for Secure
Xenix is guided by these objectives: (l) no modifications to
Secure Xenix proper are permitted, (2) the network software
must be structured according to B2 requirements, and (3) the
software interfaces should be adaptable to support different
protocols and network interface requirements.

~---------------------; ,------------------

User
Inter
face

Protocol
Handling

Address
Mapping

Audit
Service

Audit
Service .1

I I

L------------------~
Trusted Computing Base

L------------------~
Trusted Computing Base

Figure 1. Secure Network Facilities

advantage that each system administrator has control over who
can access the system from a remote location.

For audit purposes a session is associated with a unique
identification. Audit records are generated, for example, for
session establishment and session termination. Audit records are
first collected at the site where they are created, and then they are
sent to the audit site. This mechanism deals with the potential
failure of the audit site. An audit service transfers periodically,
or at the request of the auditor, audit information to the audit
site. The audit collection site may be changed from one system to
another by the network auditor.

The network auditor is one example of the enhanced functions
of the trusted facility management of Secure Xenix for a secure
network. Trusted programs and services are also required for a
secure network operator and for a secure network administrator.

The first objective is needed to prevent network changes from
invalidating the security rating of Secure Xenix. This objective is
met by placing all security-relevant network code into device
drivers and trusted processes. It allows also assurance and
documentation for the network security features to be provided in
an incremental fashion.

Software which belongs to the trusted computing base must be
organized and structured in such a way that it cannot be
by-passed or modified in any unauthorized manner. Network
interfaces which would provide security relevant functions with
user libraries, therefore, cannot be used as no guarantee can he
given that an application uses the proper library or does not
modify the code. It is also not feasible to include applications
with network needs into the trusted computing base as this would
substantially increase the assurance burden. Thus, the network
interfaces must be protected by the Secure Xenix kernel. As the

255

,,·-·.'

addition of system calls to the kernel is not permitted, all network
interfaces must be implemented with pseudo device drivers.

The network interface of Secure Xenix should also be adaptable
to different network requirements. Protocol independence of the
user visible interface is achieved with the socket mechanism [4].
Sockets provide stream or datagram services between applica
tions, independent of the underlying protocols used. A more
difficult problem is to also support network interconnections
where the protocols are handled in a front-end processor. The
best achievable here is the placement of all protocol processing
functions into a network daemon. That way appropriate inter
faces and software structures are provided which can be re-used
for a host/front-end protocol.

The extensions of the trusted computing base of Secure Xenix
and the structure of the secure network facilities arc shown in
Figure 1. All protocol handling is done by the network daemon:
this daemon also manages the address mapping between network
addresses and Ethernet addresses. Packets received from the user
interface are wrapped with the appropriate protocol headers,
affixed with a security label, and sent to the network. Packets
received ·from the network are unwrapped of their protocol
headers, checked for their destination's security label, and
moved to the destination's user interface.

Session management and audit service are also implemented as
daemons. Session management handles session setup, network
access authentication, and session termination. Connection es
tablishment is also under the control of the session mechanism.
The audit service audits session and connection setup and
termination. It also handles the transfer of audit information to a
location of the network auditor's choosing. Not shown is the
network management daemon. It allows for the inspection of the
session and socket control structures, and for the termination of
connections and sessions.

The session mechanism requires that all related connections arc
under the control of a session. Only processes within the same
process group which created the session, therefore, arc allowed
to establish connections belonging to that session. To enforce this
a file handle associated with the open session is used as key
when creating the endpoint of a connection belonging to that
session. The file handle is inherited by all children of the process
group thus allowing the establishment of additional connections.
As a session can be opened only once this assures that no process
outside the process group can create a connection.

The actual implementation of the secure network features is
carried out for an Ethernet based network using the TCP/TP
protocol suite [5]. Basic mechanisms such as sessions, sockets,
and the network daemon are in place, though at present only the
UDP protocol is supported. A major effort is still required to
provide assurance for the network security features.

References

[1] 	 Department of Defense- Computer Security Center, Trusted
Computer Systems Evaluation Criteria, CSC-STD-00 1-83,
August 1983.

[2] 	 Defense Intelligence Agency, DODIIS Network Security
Architecture and DOD/lS Network Security for Information
Exchange (DNS!X), DRS-2600-5466-86, May 1986

(3] 	 Gligor, V. eta!., On the Design and Implementation of Secure
Xenix Workstations, IEEE Transactions of Software En
gineering, Vol SE-13, 2, February 1987

(4] 	 Leffler, S. eta!., 4.2BSD Networking Implementation Notes,
Computer Systems Research Group, U.C. Berkeley, July
1983

(5] 	 SRI International, Internet Protocol Transition Workbook,
March 1982

Disclaimer: The work described herein is part of a research
project. No IBM product commitment is made or implied.

256

A LEAST PRIVILEGE MECHANISM FOR UNIX®

Frank Knowles

Steve Bunch

Gould Computer Systems Division

1101 East University Avenue

Urbana, IL 61801

217-384-8500

know les@gswd-vms. arpa

ihnp4!uiucdcs!ccvaxa!knowles

srb@gswd-vms.arpa

ihnp4!uiucdcs!ccvaxa!srb

INTRODl JCTION

This paper describes a privilege control mechanism for the
UNIX® operating system. The mecganism is intended to satisfy
the B2 requirement of least privilege , and to provide fine-grained
control over access by users to services and objects. The
mechanism is largely independent of other security-related
features and is useful as an incremental addition to a less-secure
UNIX.

The principal features of this mechanism are:

Separate privilege sets to manage the inheritance of
privilege as distinct from the exercise of privilege.

Decomposition of the UNIX super-user privilege into
distinct privileges.

Discretionary privileges that can be assigned at the
command level.

A replacement for the UNIX setuid feature which is
compatible with it and can exist side-by-side with it.

Extensible set of privileges. Users can create trusted
applications which use new privileges (However, we
don't discuss this aspect in this paper.).

Compatibility with standard UNIX. The mechanism is
externally applied, so applications from a non-secure
UNIX, including most setuid applications, can run
without being recompiled.

Privilege sets assigned to users, or program files, or both is not a
new idea. It is derived from the capability research of the 1970's.
For instance, file privilege sets were used in KSOS-ll4 , and both
kinds of sets are used in Digital Equipment Corporation's VMS®.
Also, assigning privileges by command (discretionary privileges) is
a feature (wheel and operator concepts) of BBN's TENEX system.

The novel feature of our privilege mechanism is the first item in
the bullet list above. We will define several privilege sets which
will interact to do two things: impose a strict inheritance of
possible privileges on a process hierarchy, and allow selective
activation of those privileges when a program file is executed or a
privilege is assigned at command level.

The paper is organized as follows. The following section is an
overview of the privilege mechanism. The remaining sections
provide details, examples, and implementation notes. The
sections describing the privilege sets themselves are the heart of
the paper. There is a section summarizing the privilege set
recomputations as done by key system calls such as fork and
exec, and a section with security policy statements regarding
privilege sets.

OYERVIEW

The privilege control mechanisms .of standard UNIX are thr
setuid/setgid and super-user features. A companion paper
discusses the security aspegts of setuid and setgid. The B2
requirement of least-privilege demands a granularity of privilege
finer than no privilege and all privilege. Though the UNIX super
user privilege could be represented in a B2-rated system as a
single privilege implying all other privileges, a range of privileges
is also required.

Common methods for conferring privilege are: associating
privilege sets with users, associating privilege sets with program
files, and doing both. Associating privileges with program files is
done in standard UNIX (with set[ugjid bits on a Jile) and in a
number of other systems including KSOS-11 and VMS.
Associating a privilege with an executable file allows a user
access to privileged operations in a restricted way -- the program
that uses the privileges is distributed with the system and cannot
be controlled by the user. Other protectiol); mechanisms such as
file protection modes or login environments are used to restrict
access to the privileged executable programs. (A disadvantage,
often seen in practice, is that the other mechanisms (file modes or
access lists) are relied upon for the integrity of the executable
files, rendering the privilege mechanism an extension rather than
an independent addition to the overall protection scheme. Our
privilege mechanism is easily implemented with a enough
privileges to protect the privilege database -- for instance, it
would be a privilege to execute a file with a non-empty privilege
set.)

A central problem with associating privileges with program files
is the problem of controlling propagation of privileges. In
standard Unix, it is possible for a non-privileged user to acquire
privilege by executing a setuid file. In UNIX and other systems
which associate privileges with users as well as with files, a user
may acquire a privilege not in the user privilege set by executing
a file with that privilege. Our mechanism controls the
propagation of privilege in two ways: strict inheritance of
possible privileges, and dynamic recomputation of usable
privileges. At login time, the login process for a user is given a
set of privileges (a bounding set) associated with the user that
contains all privileges that could possibly be exercised by
processes in the process hierarchy determined by this process.
However, if these privileges were also enabled at the time they
were conferred, the initial process (and possibly many others)
would be greatly over-privileged. This would not satisfy the B2
requirement of least-privilege. We solve this problem by
interpreting this bounding set as the set held "in trust" for
descendents. The privileges cannot be executed just because they
are in the bounding set -- something not completely under the
control of the process must enable them. Privileges are enabled
when a program file is executed. A particular privilege becomes
available to a process when the privilege is in both the bounding

257

mailto:srb@gswd-vms.arpa

set o~ the pr_ocess th~t executed the file and in the privilege set
associated w1th the file. Thus, a program file enables a privilege
already known to the user rather than granting a privilege new to
the user.

The connect.ion just described between a bounding set that limits
a p~ocess hierarch_y (desc~nded from a login process) and a file
pnvilege set associated With a program file is the novel feature
(and . the _most_ important feature) of the privilege mechanism
descnbed_ 1~ this paper. As will be seen, this mechanism requires
several d1s_tm~t process privilege sets (recomputed by exec when a
program ~Iie IS e~ecuted) in addition to relatively static privilege
sets associated With users and program files.

An additic:>nal feature is the ability of a user to assign a privilege
to a particular process executing a program file rather than to
t~e fil~ itself. ~~rivileges that can be assigned in this way -
dJscretiO~ary privileges -- must also be in the process bounding
set.) .This feat_ure is similar to the wheel and operator concepts
mentlon~d earlier. This concept is useful for security testing, or
for use m a less-secure environment, or for use where the UNIX
super-user _feature is desired. Discretionary privileges were added
to the basic model ~t. the request of our Real-Time UNIX group.
They wanted the pnvilege mechanism to control access to certain
real-time services which can take over or even crash a system and
p~eferred to trust ~he system programmers to use the privileges
With prudence durmg development. This attitude is typical in
development environments.

The remainder of this paper describes our proposed
implementation of this scheme in detail.

PREI.TMINARY DEFINITIONS

Po~u~~r us_age of the term privilege is sometimes confusing. One
defm1tion Is that a privilege is an operation which if misused
could viola.te .~?e sec~ri.ty policy of the system. Thus,' "writing th~
~assword fil~ . IS a pnvilege. Another definition is that a privilege
IS the capab1laty to perform an operation which could violate the
security pol~cy ~f a ~ystem. Either notion will work. We adopt
the latter view m this paper and define a privilege as a relation
whose memb_e~s are t_uples of the form: (subject, mode, object).
Thus one. pnv~lege _might be (jones, write, /etcfpasswd). We
say _v~ry little m thiS paper about the encoding of privileges. It is
~ufficient to assume that privileges are mapped in some way onto
mtegers. It n;tay eve_n be advisable in an implementation to map
mo?e and object pairs separately onto integers to facilitate the
assignment of subjects to mode-object pairs. Another concern is
that the con_cept. of mode is not a simple one. Some privileges
cause the disabling of particular security or integrity checks
r~ther . than enabling a particular action. Overriding of
discret_Ionary. a?cess controls is an example of this. Privileged
operatiOns Willmclude operations such as:

override mandatory access checks (security labels6)

overrride discretionary access checks (file modes or
access lists)

use a particular system call

connect to a particular port

execute a particular file

write a particular file

execute 1/0 instructions directly (a real-time extension
to UTX/32)

The list above is meant to be representative rather than
exhaustive.

There is an increasingly well-known jargon associated with secure
computing systems. We will use the terms, trusted software, and
security policy, as defined in the Departrgent of Defense Trusted
Computer System Evaluation Criteria . For the reader's
convenience, we define them again here (though somewhat re
phrased). The security policy of a system is a statement of the
rules which the system enforces in order to both protect sensitive
information stored in the system and to protect the system itself
from penetration or unauthorized modification. Trusted software
is software that is relied upon to enforce the security policy.

One concept from standard UNIX is closely connected with
privilege-granting. In UNIX, there is a real user id associated
with each process. It is an identifier that denotes the user on
whose behalf the process in operating. How closely this is really
the case varies with the version of UNIX being used. In Gould's
secure UNIX, UTX/328®, an extra id, the log id is used to
unequivocably identify the user responsible for a process.
However, in this paper, we wish to avoid using concepts specific
to UTX/328, so we will be content with the real user id.

THE BOUNDING SET DATA BASE

In this section we introduce the terminology of pri-vilege sets and
briefly indicate their interconnections. There are two kinds of
privilege sets: those associated with relatively static system
objects and those associated with processes. We mention both
kinds, however, those associated with solely with processes will be
explained in later sections.

A user bounding set is a set of privileges associated with a user
entry in the system password file. At login time, this set is
associated with the user's login process as the process bounding
set of the process. The process bounding set of a process contains
all of the privileges that can possibly be exercised by that process
or any descendent of that process. Having a privilege in the
process bounding set does not mean that the privilege can, in
fact, be used. This will be explained in detail later. Another set
associated with a user entry in the password file is the
discretionary set. At login time, a copy of the user's discretionary
set becomes the discretionary set of the process. The
discretionary set is a subset of the user bounding set and contains
those privileges that can be assigned to a particular invocation of
a program file, as distinguished from being assigned to the file
itself.

Each program file has a file bounding set consisting of those
privileges that the program is trusted to exercise. (In practice,
most program files will have empty file bounding sets.) When a
program file is executed, those privileges in the process bounding
set that are also in the file bounding set (or the discretionary set)
are made active and thus capable of being used. This activation
is done by using two other privilege sets that will be defined later
-- potential sets, and active sets. We will refer to sets that contain
privileges, both those defined in this section and those defined
later, as privilege sets.

PROCESS BOUNDING SETS

A process bounding set is associated with each process. The
process bounding set contains all of the privileges that a process
and its descendents may ever use. It is computed when the
process is created and is recomputed if the real user id of the
process is changed. The process bounding set of a parentless
process (e.g., the init process) is set by the system initialization
code. After system initialization, no process may add a privilege
to its own process bounding set or that of any other process, but
any process may delete a privilege from its own process bounding
set. A login process takes as its process bounding set the user
bounding set of the user. A child process created by fork inherits
its process bounding set from its parent. A new process image

258

http:sec~ri.ty
http:viola.te

formed by exec inherits its process bounding set from the calling
process. If a process has deleted members from its process
bounding set, any descendent of that process inherits the
diminished set, not the original set. Consequently, as one
descends the process hierarchy, the process bounding set may get
smaller but cannot get larger.

Any system call that changes the real user id of a process causes
a recomputation of the process bounding set. The new process
bounding set is the intersection of the old process bounding set
and the user bounding set of the new real user. A (trusted)
system call that changes the real user id of a process must pass
tl\.e the user bounding set of the new user to the kernel so that
privilege set recomputation can take place. Note that even
though user bounding sets can change during the lifetime of a
process, a process cannot gain privileges from a recomputation of
its process bounding set because the new set is always a subset of
the previous set.

DISCRETIONARY SETS

The reason for having discretionary privileges is to designate
those privileges that can be assigned to a process when it
executes a program file -- as distinguished from assigning the
privilege to the file itself. Though the program file can be given
privileges directly by writing its file bounding set, some privileges
are so awesome -- or must be turned off and turned on so often-
that it is best to require their attachment only at the moment of
use. Also, in some environments, system programmers are trusted
to use prudence in their use of privileges and generally suffer the
consequences themselves if they make a mistake. This is the case,
for instance, when debugging a program that exercises direct I/0
(a real-time extension to Gould's standard UTX/32).)

Each user entry in the system password file has associated with it
a discretionary set of privileges. It is a subset of the user
bounding set in the same entry. A new login process inherits a
copy of this set as its own discretionary set. Each privilege in the
process' copy of the discretionary set has a flag that indicates if
the privilege is turned on or turned off A process may turn on or
turn off any of its discretionary privileges at any time. A process
with a full set of privileges in its bounding and discretionary sets
and all discretionary privileges turned on, could bestow the UNIX
super-user privilege to its children.

The discretionary set of a parentless process is set by the
initialization code. When a process is created by fork it inherits
its discretionary set from its parent process. The new process
image formed by exec has the same discretionary set as that of
the calling process, however, exec turns off all discretionary
privileges in the new discretionary set. (This is to avoid
accidentally passing turned-on privileges to second-generation
descendents. First-generation descendents can be passed
immediately usable discretionary privileges, as described later.) If
the real user id of a process is changed, the discretionary set is
set to the intersection of the process bounding set and the
discretionary set associated with the new user id (again with all
privileges turned off).

We will illustrate this mechanism with an example. In this
example, priv is a (new) command internal to the shell that
exists just for the purpose of processing discretionary privileges.
A program mass_write does a massive rewrite of a disk volume
and for increased performance executes hardware 1/0
instructions directly. Any process which does this must have the
privilege, direct_io. A user that has direct_io in his or her
bounding set could, by typing the following command, execute
mass_write and temporarily give it the direct_io privilege:

priv direct_io mass_write

Priv executes a system call that turns on the discretionary
privilege direct_io. Direct_io must, of course, already be a
member of the discretionary set of the shell process that the user
is communicating with, and this implies that direct_io is in the
discretionary set of the user. When exec is called,. it does two
things with regard to the discretionary set. It adds each turned
on discretionary privilege to the potential set (defined later) of the
new process, and it passes the discretionary set of the calling
process to the new process image after turning off each privilege.
That the new process has the direct_io privilege available to it
when it begins execution and need not enable it explicitly follows
from the discussion in the next two sections on potential sets and
active sets.

POTENTIAL SETS

Each process has associated with it a potential set derived from
its process bounding set, its discretionary set, and the file
bounding set of the program being executed. The potential set
contains the privileges that can be exercised by the process, as
distinct from the privileges that can be passed on by the process
-- the latter are defined by the process bounding set. The
potential set represents the combination of the user and program
file privileges that the executing process may actually use. A
process may delete a member from its potential set, but may not
add a member. The usefulness of the potential set is apparent
when subprocesses with few or no privileges (such as a login shell)
are interposed between processes that can exercise privileges.

The potential set of a parentless process is specified by the
system initialization code. The potential set of a new process
created by fork is the same as the potential set of the parent
process. A new login process takes as its potential set the file
bounding set of the login program -- this will be illustrated later
in an example. When the real user id of a process is changed,
potential set is recomputed as the the intersection of the old
potential set and the recomputed process bounding set. Thus, the
potential set is always a subset of the process bounding set.

The potential set of a new process image created by exec is the
intersection of the process bounding set of the process calling
exec (which is the same as the new process image's bounding set)
and the set formed by the union of the file bounding set of the file
to be executed and that subset of the discretionary set consisting
of those privileges that are turned-on. Note that the new
potential set is a subset of the new process bounding set. This
recomputation does three things: brings in the privileges of the
file to be executed, allows discretionary privileges to be added,
and keeps the potential privileges within the bounding privileges.
This computation is an extremely important part of the privilege
mechanism because it makes it possible for the privileges kept in
trust in the process bounding set to become available for use.

ACTIVE SETS

The privilege sets discussed up to this point manage the
propagation of privilege to new processes. The process bounding
set is an absolute bound for a process and all its descendents; the
potential set bounds only the process itself; and discretionary
privileges are sweeteners that can be added along the way. At
any point in time, the active set, described in this section,
contains precisely those privileges that are active, i.e., can be
exercised. It is always a subset of the potential set. It is this set
that trusted code uses to decide what privileges are available
when a privileged operation is requested.

The active set facilitates the localization of privilege usage in
trusted code. Specifically, a process may eliminate all privileges
from its active set before performing a series of unprivileged
actions, then re-insert privileges from its potential set into its
active set as they are needed. This feature reduces the effort of

259

code inspection for trusted processes, and Jtelps satisfy the least
privilege requirement in a B2-rated system .

The active set of a parentless process is specified by the system
initialization code. When a new process is formed by a fork, the
active set is inherited from the parent process, but any process
may change its active set, subject to the general rule that the
active set is always a subset of the potential set. When the real
user id of a process is changed, the active set of the process must
be recomputed since the potential set is recomputed. The new
active set is the intersection of the previous active set and the
new potential set. When a new process image is created by exec,
the active set is initialized to the new potential set as recomputed
by exec. (Thus we see that when a discretionary privilege is
added to a new potential set by exec (as described in the section
on discretionary privileges), it is also added to the new active set,
and thereby becomes a privilege that can be exercised.

PRIVILEGE COMPUTATION SUMMARY

In the previous sections, each privilege set was discussed
individually. In this section, we summarize how these sets are
computed.

The process bounding set of a new login process is set equal to the
user's bounding set in the password file: The discretionary set of
the process is a copy of the user's discretionary set (also in the
password file). The potential set and the active set are set equal
to the file bounding set of the program file login. The potential
and active sets will be recomputed when the login shell is exec-ed.
This will be clarified later by an example.

Fork doesn't change any process privilege set. The process
bounding set, the discretionary set (and their on/off state), the
potential set, and the. active set of the new process are identical
to those of the parent process.

CHANGE REAL USER ID

There may be several system calls that change the real user id of
a process. The rule, stated below, applies when any of these
system calls is used.

The new process bounding set is the intersection of the old
process bounding set and the user bounding set associated with
the new real user id.

The new discretionary set is the intersection of the new process
bounding set and the discretionary set associated with the new
real user id. All discrl!tionary privileges in the new discretionary
set are turned off

The new potential set is the intersection of the old potential set
and the new process bounding set.

The new active set is the intersection of the old active set and
the new potential set.

The new process bounding set is the same as that of the calling
process.

The new discretionary set is the same as that of the calling
process except that all privileges are turned off

The new potential set is the intersection of the new (same as old)
process bounding set and the set formed by the union of the file
bounding set and the set of discretionary privileges turned on in
the discretionary set of .the calling process.

The new active set is the same as the new potential set.

SECURITY POJ.JCY

This section summarizes the security policy as it applies to the
acquisition and exercise of privilege. The policy has several
aspects each of which is encapsulated in a separate statement:

The kernel as well as other trusted code is trusted to
deny a request by a process if the requesting process
does not have the appropriate privilege.

After system initialization is completed, no process may
change a privilege set associated with another process;
no process may add privileges to its own process
bounding set or to its own potential set.

If process A is a descendent of process B, then the
process bounding set of A is a subset of the process
bounding set of B.

For each process, its active set is a subset of its
potential set, and its potential set is a subset of its
process bounding set.

During the lifetime of a process, the only privileges that
is may use are those in its potential set -- as initialized
at the creation of the process.

At any point in time, the privileges that can be
exercised by a process are precisely those in the active
set of the process.

When a new process image is formed in order to
execute a program file, its active set is contained in the
union of the file bounding set of the file being executed
and the discretionary set of the user.

If any file is modified, its file bounding set is made
empty.

EXTENDED EXAMPLE

In this section we work through the recomputations of process
privilege sets that occur as a user logs onto the system and types
a couple of commands. Each creation of a new process or of a
new process image, each changing of the real user id, is indicated
below as a separate, numbered action:

(1) init --fork--> processl

(2) processl --exec--> getty

(3) getty --exec--> login

(4) login -setreuid-> process2

(5) process2 --exec--> csh

(6) csh --fork--> process3

(7) process3 -exec--> chmod

(8) csh -priv(S)-fork-> process4

(9) process4 --exec--> mass_write

For each numbered action, we will show the privilege sets of the
resulting process. The reader should be able to check the
recalculation for a particular step by starting with the previous
privilege sets and applying the rule for the action taken.

260

Instead of defining realistic sets of privileges (and explaining
them}, we merely indicate a set of privileges as a set of integers,
each integer being assumed to stand for some privilege, i.e., [1,2,3]
is a privilege set with privileges: 1, 2, and 3. In one case, privilege
8 (see below), we do specify that it stands for the direct_io
privilege just to be consistent with the example presented earlier
in the section on discretionary sets. When a privilege in a
discretionary set is turned on, it will have an "*" beside it.

We now state the assumptions that hold before the first action
takes place. We assume that the process. init has the following
privilege sets: process bounding set = potential set = active set
= [1,2,3,4,5,6,7,8], and an empty discretionary set (remember,
each number corresponds to a privilege, and privilege 8 is
direct_io). We assume that the program file getty has file
bounding set = [2,3,7], and the program file login has file
bounding set = [2,3,5,7]. We assume that the setreuid system
call changes the real user to that of a user whose bounding set =
[3,4,7,8] and whose discretionary set = [7,8]. We assume that the
program file csh has an empty file bounding set. Finally, we
assume that the chmod program file and the mass_write
program file each have a file bounding set = [3,4,5].

The recomputed privilege sets after each action are shown below.

(1}

process bounding set = [1,2,3,4,5,6,7,8]

discretionary set = [empty]

potential set = [1,2,3,4,5,6,7,8]

active set = [1,2,3,4,5,6,7,8]

(2)

process bounding set = [1,2,3,4,5,6,7,8]

discretionary set = [empty]

potential set = [2,3,7]

active set = [2,3,7]

(3}

process bounding set = [1,2,~,4,5,6,7,8]

discretionary set = [empty]

potential set = [2,3,5,7]

active set = [2,3,5,7]

(4}

process bounding set = [3,4,7,8]

discretionary set = [7,8]

potential set = [3,7]

active set = [3,7]

(5}

process bounding set = [3,4,7,8]

discretionary set = [7,8]

potential set = [empty]

active set = [empty]

(6}

process bounding set = [3,4,7,8]

discretionary set = [7,8]

potential set = [empty]

active set = [empty]

(7}

process bounding set = [3,4,7,8]

discretionary set = [7 ,8]

potential set = [3,4]

active set = [3,4]

(8}

process bounding set = [3,4,7,8]

discretionary set = [7,8*]

potential set = [empty]

active set = [empty]

(9}

process bounding set = [3,4,7,8]

discretionary set = [7,8]

potential set = [3,4,8]

active set = [3,4,8]

When mass_write exits, the parent shell process (csh} has
privilege sets as indicated in step (5}.

ADD l!SER EXAMPLE

In this section we will consider a simpler scenario than that of the
preceding section. Our concern is not with how privileges are
computed but rather with how they can be assigned. The
application we are interested in is the administrative chore of
adding a new user to the system. This example is taken
UTX/328, but this interface to the authentication database could
easily be implemented in any standard Unix. An administrator
executes a program file add_user which is a client for a trusted
server. That is, the client process connects to a known socket
where a server daemon is listening for requests. The daemon
authenticates the user and forks a process that execs a program
file au_back_end that is not directly accessible to users. The
new process image is the dedicated server that actually carries
out the user request. The administrator communicates directly
with the dedicated server and using a menu-like interface requests
certain changes to the password file. In this example, a new user
entry would be added to /etcfpasswd.

Notice that each separate action -- execute a client, connect to a
socket, execute a back-end program file, request a specific change
in the password file -- are candidates for separate privileges that
can be assigned to different user bounding sets or file bounding
sets in a way deemed the best compromise between providing
security and being user-friendly. Only those administrators
trusted to add new users would have the privilege in their user
bounding set to execute the client add_user. Only the file
add_user would have the privilege in its file bounding set to
connect to the applicable socket. The server daemon would need
no privilege beyond that of binding to the right socket. The file
au_back_end would have the privilege in its file bounding set to
modify the password file. The various tasks involved in
maintaining the password file could be separate privileges in
order to enforce the two-person rule. For instance, there could be
a privilege for entering a new user entry and a privilege for
activating a user entry. No administrator would possess both
privileges.

It is interesting to note that a malicious user not privileged to
write privilege sets would be unable to write a Trojan-horse
version of add_user capable of affecting the password file. Such
a program -- even if executed by an administrator authorized to
add users - would not be able to connect to the right server
socket or be able to write the password file directly because the
needed privilege would not be in the file bounding set of the
program file!

IMPI.EMENTATION NOTES

In this section we discuss some implementation issues.

261

A surprisingly small number of system calls is needed to
implement the privilege mechanism. These calls are described
below. Access checks are not fully delineated, so keep in mind the
restrictions as set forth in previous sections. The system call
arguments used below -- b, d, p, a, f -- represent the the process
bounding set, the discretionary set, the potential set, the active
set, and the file bounding set, respectively. Also, the structure
<priv> is a privilege set with an on/off flag for each of its
members.

There are two system calls for manipulating the privilege sets
associated with a process or program file.

<priv> = read_pset([b d p a f] l [file])

Read one of the privilege sets of this process (file).

write_pset(<priv>, [b d p a f] l [file])

Sets one of the privilege sets of this process (file). This call can
be used to delete members from the process bounding set, the
discretionary set, the potential set, and the active set. It can
turn a discretionary privilege on or off It can add members to
the active set as long as the active set remains a subset of the
potential set. These are all unprivileged operations. Modifying a
file bounding set, however, is a privileged operation.

Inside the operating system kernel, many operations may become
privileged operations in a secure system. In order for the kernel
to determine if an operation is privileged and, if so, if the caller is
privileged to perform that operation, an additional system call is
needed:

<true/false> has_priv(<subject id>, <access mode>,
<priv-id>)

Determine if this subject may access this object in this mode.
The call fails if a privilege is needed and the subject doesn't have
it.

System calls that change the real user id of a process must pass
the applicable user bounding set to the kernel so that privilege
recomputation can be done. The reason for this is that user
bounding sets will likely be stored in a file instead of in a kernel
table. Of course, the system calls in question are privileged, and
the calling processes are trusted to pass the correct information.

As described in the section on discretionary sets, a command
internal to the shell (priv) is desirable in order to enable a
discretionary privilege for a new process.

Implementing privilege sets as bit vectors is straightforward
except perhaps for the question of where file bounding sets are to
be stored. Assume for the moment, that file bounding sets are
attached to inodes in the file system. It would be desirable at
system startup to verify that the file bounding sets on the disks
are set correctly (e.g., that there are no new or modified
privileged programs). This can be done by shell scripts which
verify the contents of bounding sets for specific files, check for the
existence of unauthorized non-empty bounding sets, and compute
a cryptographic checksum on files with non-empty bounding sets.
On a small system, this could be done by an exhaustive search of
the file system. On a large system, this could be an intolerably
slow process. An alternative method is needed. For example, one
could store the names of all the privileged processes, their file
bounding sets, and their file checksums in a startup file. At
start-up time, a program using the start-up file would install the
file bounding sets by attaching them to file inodes locked in
memory. The file bounding sets would never be attached to disk

262

inodes. An inode not in this memory-resident cache would have
an empty file bounding set.

FURTHER ISSUES

The discussion of a number of issues has been deferred to other
papers. Some of these will not be fully resolved until we have
experience with this mechanism in a variety of situations. These ,
include:

The optimal encoding of privilege vectors. This is an
important aspect, affecting both performance and
extensibility of the mechanism.

The enumeration of specific privileges appropriate to
UNIX.

Extensibility to user-assigned privileges.

Use of this mechanism in implementing security policies
requiring fine-grained integrity models in addition to
data security.

AOKNOWJ,EDGEMENTS

The ideas in this paper were developed out in a series of
discussions with different people in attendance at different times.
The discussions included Dave Healy, Greta Miller, Tim Thomas,
and the Real-Time UNIX contingent, John Gertwagen and Scott
Preece.

REFERENCES

1. Bunch, Steve. The Setuid Feature in Unix and Security.
Proceedings of the lOth National Computer Security
Conference. (Sep 1987) Baltimore, MD.

2. Hecht M. S., et. a!. UNIX Without the Superuser.
Summer USENIX Technical Conference and Exhibition.
Phoenix, AZ. (Jun 87)

3. Lampson, B. W. Protection. Proc. Fifth Princeton
Symposium on Information Sciences and Systems. (Mar
1971).

4. McCauley E. J., Drongowski P. J. KSOS -- The Design
of a Secure Operating System. National Computer
Conference. (1979).

5. Miller, Greta, et. a!. Integrity Mechanisms in a Secure
Unix: Gould's UTX/92S. AAIA/ASIS/DODCI 2nd
Aerospace Computer Security Conference, A Collection
of Technical Papers. (Dec 1986).

6. 	National Computer Security Center, Office of
Standards and Products. Department of Defense
Trusted Computer System Evaluation Criteria. DoD
5200.28-STD. (Dec 1985) Fort Meade, MD.

7. Schroeder, M. D. Cooperation of Mutually Suspicious
Subsystems in a Computer Utility. Report #MAC TR
104, Project MAC. MIT.

AN OVERVIEW OF THE DoD COMPUTER SECURITY RDT&E PROGRAM

Panel Chairman, Mr. Lawrence Castro
Chief of the Office of Research and Development

National Computer Security Center

The purpose of this panel is to inform
the audience of the progress of and plans for
the Research, Development, Testing, and
Evaluation (RDT&E) efforts sponsored by the
Department of Defense (DoD) Computer Security
Program (CSP).

The presentation is organized according to
the five distinct areas of the R&D Program:
Secure Architecture, Secure Database
Management Systems (DBMS's), Network Security,
Modeling and Verification, and Aids to
Evaluation.

The first part of the presentation will
allow each panel member to describe the status
of his area's current programs and new
initiatives for FY88. In addition, we will
include a progress report of the multilevel
secure workstation program. Among the new
initiatives to be described are those related
to support of the Strategic Defense Initiative
(SDI). The participating panel members from
the three military service labs ~ill describe
the support they are providing to the CSP.
Following this, the panel will entertain
questions from the floor.

Panel Members:

CDR David Vaurio, Deputy Chief,
Office of Research and Development
(R&D), National Computer Security
Center (NCSC)

Mr. Wayne Weingaertner, Office of
R&D, NCSC, Secure Architectures

Dr. John Campbell, Office of R&D,
NCSC, Secure DBMS

Mr. George Stephens, Office of R&D,
NCSC, Network Security

Mr. Rob Johnson, Office of R&D, NCSC,
Modeling and Verification and
Aids to Evaluation

Mr. H. Lubbes, Space and Naval
Warfare Systems Command

Mr. John Faust, Rome Air Development
Center (RADC)

Mr. John Preusse, Army Communica
tions and Electronic Command
(CECOM)

THE STRATEGY

The DoD's CSP is aimed at a quantum
increase in the security of America's
automated information systems. Toward this,
the National Computer Security Center (NCSC)
has begun an aggressive, three-pronged R&D
strategy. Its first major goal is to improve
the security of current systems. Secondly,

the Center will encourage the development of
new products using known technologies and
finally will encourage new technology R&D.

The Computer Security RDT&E Program
addresses the first priority by providing the
means to test various security options or
features, such as authentication, labeling, or
auditing. For the second part of the strategy,
the RDT&E program provides the technological
support needed to achieve an "Al" class
system, as defined in the DoD Trusted Computer
Systems Evaluation Criteria. This includes
stabilizing and improving verification
environments, providing background material
for refining security models used in the
development of Al systems, and finally,
developing Al demonstration systems
themselves. The third phase of the strategy,
i.e. going beyond Al and transferring research
breakthroughs into marketable products,
depends entirely on the RDT&E Program.

RESOURCES

The Computer Security RDT&E Program is a
cooperative undertaking led by the NCSC with
the participation of the Army, Navy, Air
Force, Defense Communications Agency, and
Defense Intelligence Agency. Beginning with
the FY84 budget, DoD RDT&E funds for computer
security were consolidated, centralizing the
program but permitting decentralized
execution.

The FY88 program, as in the previous
years, provides specific funds to be spent by
the several DoD components. Consolidation, as
prescribed in DoD Directive 5215.1 (the
Computer Security Evaluation Center, October
25, 1982), avoids unnecessary duplication
among DoD components; while decentralized
execution takes advantage of the scarce
expertise needed to provide technical
oversight of contracts dealing with the highly
technical field of computer security.

PROGRAM

To meet the challenge of transferring
research breakthroughs into marketable
products most effectively, we have channeled
our efforts into five distinct areas: secure
architectures, secure database management
systems (DBMS's), network security, modeling
and verification, and aids to evaluation.
These five subprograms explore particular
aspects of computer security research and
development and, when combined, provide a
solid program spiraling past the state of the
art and into new technological frontiers.

Secure Architecture

Secure architecture addresses the design
and implementation of trusted computing bases
(TCB's). A TCB is the hardware and software

263

mechanism in a computer system that enforces
security. Our current thrust is to push the
edge of technology for TCB's by investigating
kernel-based systems. Security kernels are
the classical means of providing security in a
TCB. They are a portion of the operating
system that run in their own domain, separate
from the normal operating system code,
intercepting any operation that has security
relevance.

The prolific growth of office automation
and personal computer (PC) equipment and
software within the Federal Government is
another area of research concern. Little
consideration has been given to the security
aspects of these stand-alone and netted office
automation systems. Nonsecure PC's, for
example, negate the security provided by even
the highest rated host because labels used
within secure computers that indicate the
security level of the data be lost once data
is transferred to a PC. Security enhancement
will be targeted at next-generation PC's since

- many of the current generation systems are
single~ state machines and cannot support
security.

Security enhancement of existing
commercial systems is a near-term solution.
Under this task, we are incorporating security
into the UNIX System v.

Advanced security architecture work
provides new and different architectures for
secure computers. The current effort in this
area is the Logical Coprocessing Kernel
(LOCK).

The LOCK takes a novel approach towards
providing security in that it incorporates a
separate security processor. (The LOCK effort
is the subject of a separate paper of this
conference.)

Placing the security mechanism in a
separate processor has notable advantages over
the kernel-based approach. The kernel is open
to attack because its architecture shares
security-related portions of the system with
non-security-related parts. A separate
security processor, however, prevents a user
process from accessing the security-relevant
portions of the system.

A by-product of security processors is
improved performance, because they remove the
security processing load from the main
processor. The initial design phase of the
computer should be available in 1988.

Secure Database Management

Multilevel database management security

R&D has received far less attention than

secure operating systems. In the summer of

1982, the Air Force and the National Science

Foundation cohosted a workshop of experts in

DBMS to examine the security problem. Three

recommendations resulted:

*provide near-term relief, which is

desperately needed and is achievable;

*for the mid-term, develop working
demonstration of high-leverage applications;
and

*conduct long-term research in the
theoretical and practical foundations of
secure multilevel DBMSs.

Although current and planned programs have
made some progress towards achieving these
goals, there has been no breakthrough that
substantially improves DBMS security.

The Secure DBMS subprogram focuses on
protecting databases and their related
components. It is comprised of three research
areas: trusted prototypes, studies and
analyses, and advanced DBMS architectures. An
effort to secure an existing DBMS entitled
MISTRESS is now under way. Researchers are
conducting various DBMS studies and analyses
with the following objectives:

*data dependencies -- to achieve a family
of multilevel secure DBMSs;

*evaluation -- to investigate the
evaluation ramifications of DBMS's;

*sanitization -- to examine the downgrading
and upgrading of multilevel data in database
systems.

Another study is being conducted of the
integrity lock technique. This crypto
graphically seals information stored in an
automated system, with the objective of
incorporating this technique directly into
computer architectures supporting multilevel
secure DBMS operations. Finally, the LOCK
will be used to develop a trusted DBMS
application.

Network Security

Network security focuses on the protection
of data while it is being transmitted between
host computers and users. A data
communications environment has been created
between geographically dispersed computers
that includes networks of computers, terminals
attached to computers that are attached to
networks, and the internetting of multiple and
various combinations of these systems.

Current computer networking technology has
concentrated on providing services in a benign
environment, and the security threats to these
networks have been largely ignored. While
literature abounds with examples of hackers
wreaking havoc through access to public
networks and the computers connected to them,
hackers have exploited only a fraction of the
vulnerabilities that exist. Techniques need
to be developed that will prevent both passive
exploitation (eavesdropping) and active
exploitation (alteration of messages or
message routing) •

To reduce these vulnerabilities, we have
initiated research in the development of
components, high-level applications such as
distributed processing, multilevel mail and
file transfer, modeling, and advanced
architectures. Within the area of advanced

264

architectures, we are conducting internet·
research, device authentication studies, and
architectural simulation. The challenges
facing us in the network security field are
boundless. (The results of our network
modeling work will be presented at another
session of this conference.)

The NCSC hopes that coordination within
the Federal Government and a sound R&D program
will enable it to work with industry to create
a line of network security systems that meet
the needs of the Federal Government.

The problems of introducing computer
security into the Ada programming language are
being investigated. Ada is the DoD-mandated
programming language for mission-critical
systems. We are developing verification
environments to be integrated into Ada
software development systems as well as a
suite of secure protocols in Ada to
demonstrate how to marry these two
technologies. (A special session devoted to
these developments is a part of this
conference.)

Evaluation Aids

Our Aids to Evaluation subprogram
addresses the need to streamline and improve
the system evaluation process. We believe we
can make the evaluation process more
responsive to our national demand for computer
security requirements throughout the system's
life cycle, identifying bottlenecks,
automating tools to simplify the evaluation
process, evaluating the effectiveness of
safeguards, and reducing subjectivity in risk
assessment. We are involved in research on
intrusion detection evaluation tools and·
techniques, erasure and emergency destruction,
risk management and generic product
evaluation.

Modeling and Verification

Modeling and Verification explore
conceptual solutions to computer security
problems (modeling) and provide assurance that
system specifications or implementations are
consistent with the model (verification). R&D
in modeling and verification addresses a
critical need for trusted software and
hardware systems of high reliability. To
extend the state of the art in security
modeling and verification approaches, we have
embarked on five research endeavors: Ada
verification, integrated design and
verification environment, security modeling,
software verification, and hardware and
firmware verification. Our ultimate research
goal is to verify systems at all levels of
design and implementation.

265

CERTIFICATION: A RISKY BUSINESS

Martin Ferris
U.S. 	Department of the Treasury

washington, DC 20220

Andrea Cerulli
National Security Agency

Fort George G. Meade, Maryland 207 55

ABSTRACT

The Federal Government is the largest single producer, consumer,
and disseminator of information in the United States[!]. Since
government information is itself a commodity often with economic
value in the marketplace, Federal departments and agencies are
required to certify the protection of their automated information
systems (AIS) that house sensitive information. Various
government regulations and standards have only minimally
described the certification process. Also, the manpower and
money needed to make certification meaningful are scarce and
reside primarily in special technical organizations.

This paper addresses certification in management terms, provides
examples of certification in everyday life, and examines ways to
maximize the use of national resources and policies to achieve a
certified AIS application.

CERTIFICATION IN EVERYDAY LIFE

Life is full of risks. Most of us enjoy
taking a risk every once in a while, whether
that means a career change, a stock
investment, or a bet on the Daily Double.
Many risks, though, are transparent to us.
To illustrate this transparency let's examine
a typical weekday morning for most Americans.
To get us through the day some of us will
take vitamins, others valium, some both. A
cup of coffee often is next for most "red
blooded" Americans. And half of the
population dabbles in the fine art of make-up
application before leaving the house. Now,
we don't stop to think about whether the
vitamins or valium are safe to swallow, the
coffee grounds are pure, and the cosmetics
are safe to apply. Instead, we disregard
such thoughts because we entrust the quality
of consumer goods to those whose
responsibility it is to ensure the safety of
~uch products. The mission of the U.S. Food
and Drug Administration (FDA) is to enforce
laws and regulations that protect the
consumer's health, safety, and pocketbook[2].
The "Federal Food, Drug, and Cosmetic Act" is
the basic food and drug law of the United
States to assure the consumer that food is
wholesome and safe to eat; that drugs are
safe and effective for their intended use;
and that cosmetics are safe and made from
appropriate ingredients. We trust the FDA to
certify that products are safe. For instance,
coffee imported into the United States is
inspected for infestation, mold, and
contamination, and if found objectional, the
cargo is refused entry. Vitamins, valium,
and cosmetics are also protected under the
Act against misbranding or aduiteration.
Because the FDA enforces rigorous regulations
to protect consumers, the FDA's approval of a
product assures us of its safety.

Like the FDA, the Public Health
Department enforces regulations to ensure a
clean and healthy environment in public
places. Before facing the work day, some
of us might stop at a diner or fast food
restaurant for breakfast. Most restaurants
today maintain high standards of
cleanliness not only due to Health
Department regulations, but also because
the public will not tolerate dirty, insect
infested eateries. The procedures to
maintain a healthy, pleasant atmosphere
remain transparent to the customer since
much of the maintenance is performed after
hours or behind-the-scenes. The restaurant
owner relies on the Health Department's
certification to assure the public of a
healthy, safe environment and also to
continue business.

Although we will probably not
jeopardize our lives by drinking coffee,
wearing lipstick, or eating an "Egg
MacMuffin," we do risk adverse reqctions if
any of these products are not inspected or
prepared properly. They are all vulnerable
to either accidental or malicious
tampering, whether performed by people,
insects, or machines. Automated
information systems (AIS) are also
vulnerable to accidental or malicious
tampering which could cause unsafe
operations. The vulnerabilities could
present unacceptable risks to computer
applications which require protection of
its sensitive information. Just like
vulnerabilities in consumer goods, AIS
vulnerabilities must also be managed.

CERTIFICATION OF AN AIS

Now the AIS is becoming a part of

266

everyday life and of course bringing along
with it associated vulnerabilities and risks.
Managers of AIS resources must be prepared to
face risks of disclosure, modification, and
non-availability of their information. Files
that were once kept private within the
confines of a physical office space are now
vulnerable to uncontrolled access. Managers
responsible for AIS resources need confidence
that reasonable assurances (or acceptable
levels of risk) are applied to AIS resources.
And, if and when a vulnerability is exploited
maliciously or accidently, the manager wants
to turn to someone who can explain why it
happened. Just as in everyday life, managers
need the best information available to
establish confidence and accountability in
business operations.

For federal AIS managers, providing
reasonable assurances for the protection of
AIS resources is essential to assuring the
integrity of federal operations. Federal
managers are required by law, the Federal
Managers' Financial Integrity Act[3), to
provide reasonable assurances for federal
resources. Confidence and accountability are
required for the protection of federal
resources from fraud, waste, and abuse. Not
arbitrary, this policy is looking out for the
true owners of federal resources - the
public. The Office of Management and Budget
(OMB) Circular A-123, "Internal Control
Systems [4)," implements this law. A-123 is
an internal controls regulation that sets in
motion a process to establish confidence and
accountability in the protection of federal
operations from fraud, waste, and abuse. To
achieve this process, A-123 requires
management control plans based upon such
actions as vulnerability assessments,
personnel performance agreements, and annual
letters to Congress stating whether
reasonable assurances are being applied.

OMB Circular A-130, "Management of
Federal Information Resources[S) ," is a
separate regulation that establishes
requirements for the effective and efficient
management of federal information resources.
This regulation is the Executive Branch's
response to several information-related laws
including the Paperwork Reduction Act, the
Privacy Act, and the Freedom of Information
Act.

A-130 also requires that all agency
information systems possess a level of
security commensurate with the sensitivity of
the information and also commensurate with
the risk and harm that could result from
improper operation. Furthermore, the manager
whose program an information system supports
is responsible and accountable for the
products of that system.

More specifically, Appendix III of A-130
requires that Federal agencies establish AIS
security programs to safeguard sensitive
information processed by their AIS. This
appendix requires an AIS security program to
consist of four parts: applications security,
personnel security, information technology
security, and a security training and
awareness .program. As part of applications
security, an appropriate "agency official"
shall certify all sensitive AIS safeguards

based upon the appropriateness determined
by risk analysis, a design review, and
system testing. Periodic reviews are
required to preserve the integrity of
previous AIS certification decisions. The
periodic reviews not only serve as a
security requirement, but also as a
necessary way of preserving the investment
of previous certification decisions.

The relationship among the OMB
Circulars is sometimes overlapping.
Assuring effective and efficient
information resources management is a
requirement that supports the reduction of
waste and abuse. However, pursuing
effective and efficient AIS operations can
produce high risk to the AIS resources.
For instance, organizing all files into a
common AIS data base may be more effective
and efficient, but the risks to privacy,
fraud, and abuse may be significantly
higher. Consequently, continuous
coordination is required among those
responsible for implementing the Circulars.

Fundamental to both effective and
efficient operations and secure operations
is the security program outlined in
Appendix III of A-130. Appendix III serves
as a security requirements tool for the
rest of A-130 and A-123. It also serves
the internal control needs of OMB Circular
A-127, "Financial Management Systems[S),"
which establishes a program to assure the
integrity of federal financial management
systems. Consequently, a credible
certification statement is fundamental to
responding to federal regulations.
Certifying the confidence and
accountability of the protection provided
to AIS resources is a basis for many
management-approval processes.
Certification is also a fundamental tool
for the managing of federal operations
where sensitive information is processed by
an AIS. This management view demonstrates
the growing dependency of implementing
various internal control laws and
regulations on AIS security certification.
It also shows that a meaningful
certification decision requires
coordination between management and
technical communities within a Federal
agency.

Viewing AIS certification as a
fundamental management tool also shows how
important the completeness and integrity of
technical information supporting
certification decisions must be. Gathering
complete and consistent information for
certification decisions is difficult work
and often requires the services of
technical specialists. Gathering both
technical and business-oriented information
involves much analysis to identify,
understand, and control the vulnerabilities
and threats to the AIS and its
application(s) in question. With the
mandate to federal information resources
managers to make information systems more
efficient, reliance on complex technical
AIS controls make simple AIS certification
decisions unlikely. A fully documented and
informed certification decision would
include analyzing and controlling the AIS

267

II

from applications software and operating
systems, to microcode and hardware throughout
the AIS development and life cycle. Lesser
documented and informed certification
decisions increase the risk of insecurity
while at the same time fhreatening the
investment made to reach the certification
decision.

The ongoing system development and life
cycle of the AIS and AIS applications
provides the best opportunity to acquire the
best AIS technical information. This
information is needed for consideration of
technical decisions whether they are
security- or operational-related. Ideally,
the AIS should be built to specific security
requirements. Independently developed
security features added on to an AIS present
the potential for additional vulnerabilities
and risks if such features are not consistent
with the objectives of the system being
augmented (see reference 6). The
relationship between the AIS and add-on
features is easier to understand and control
when adding some features such as
cryptographic processes to the AIS
communication subsystem. Other times it is
harder to understand and to assure control as
when adding an access control package to a
particular operating system. Since most
federal managers have no control over the
development and life cycle of commercial AIS
resources, they can only accept what the
commercial market can provide, often times
adding on security features.

Specifying appropriate security
safeguardi, assuring that they are properly
designed, assuring that their implementations
are adequately tested to meet their design,
and assuring that they make sense in the
context of the entire AIS is a critical
process. If qualified and experienced
personnel are not involved with such
undertakings and a comprehensive approach to
safeguards is not taken, then the resources
spent on acquiring the safeguards may have
been wasted.

Given all the technical and management
complexities in acquiring the bes.t
information for a certification judgment,
there should be a number of thoughts that run
through a senior information resources
manager's mind when planning a certification
program for his or her AIS resources. Some
thoughts to consider if you are a manager
follow:

How much resources should I commit to
this problem? A National Bureau of Standards
(NBS) Publication, Overview of Computer
Security Certification and Accreditation,
notes that full organizational commitment
must exist for the training and support of a
security program to perform credible
certification analysis. Unfortunately,
budgeting for an activity that doesn't show a
tangible return is hard to justify. After
all, even if it were certified based upon the
best inf~rmation, that wouldn't necessarily
prevent something "bad" from happening. And
even if you do budget for a certification
analysis, there is no guarantee that it will
survive the various levels of a federal
budget process.

How many technical security experts
and AIS resources does my organization need
to implement a meaningful AIS security
program based upon credible certification
decisions?

How much continuous security education
and what types of security education do my
personnel need to make my AIS security
program credible? Do I have to support a
crew of cryptographers and secure operating
system engineers?

How often must I exert the necessary
resources to make my AIS security program
credible?

Does my organization have the
resources to repeat a certification process
for 600 computers scattered across the
country that have similar but different
applications?

And, if I can't make my AIS security
program credible do I stop pushing the
efficiency of my AIS resources? Or do I
push forward and accept more risk?

The federal AIS manager who must think
about these questions must also have the
best information available to make
intelligent decisions. This information is
hard and expensive to get without help. In
fact, it may be impossible to get
without help.

So, an AIS manager's level of maturity
is tested. The renowned behaviorist David
McClelland claims in his book, Power: the
Inner Experience, that managers are
motivated by the need to influence and that
a mature manager can apply influence in
both personal and social ways[7] with
social influences being the most effective.
This requires the AIS manager to articulate
common objectives and recognize her or his
limitations in fulfilling those common
objectives.

This means becoming a team player.
AIS managers must look for teammates that
complement each other in pursuit of group
objectives. Together the teammates will
provide the means to an end. How does a

·AIS manager find her or his teammates?

First, knowing your strengths and
weaknesses is a start. By dividing AIS
security problems into manageable portions,
an AIS can be viewed as a collection of
various components, some of which may be
overlapping. The AIS components could
include technical components (computers),
terminals, modems, communications systems)
as wel.l as non-technical components
(operator, security manager, procedures,
applications, and user). The components may
be described as application types of
components (parts ordering systems,
financial systems, law enforcement systems,
data base systems). Also, an AIS security
program can be divided into various
components. Appendix III of A-130 states·
certification consists of risk analysis,
security specifications, design reviews and
testing. When considering the various AIS
and AIS security components, a manager can

268

view what can be affordably and directly
controlled under a AIS security program and
what can not.

Expressing these components in a common
language is another important step. It is
becoming increasingly important for AIS
managers to be familiar and active with the
various standards communities, especially the
industrial standards community since they
potentially have the greatest commercial
effect. Even though standards tend to allow
for some broad interpretations, often to
accommodate existing investments, and even
though they take a long time to mature, they
nevertheless provide a means of communicating
applications as well as technical details in
a common language. various American National
Standards Institute (ANSI) and Institute of
Electrical and Electronics Engineers (IEEE)
standards are helping AIS managers describe
the technical functioning of various AIS
components in a language that promotes
consistency of those functions. Various
standards, including ANSI X9 financial
service standards and ANSI Xl2 business data
interchange standards, are providing a. common
way to describe or specify security features
as a part of everyday business transactions.

By surveying the standards market the
manager can tell which standards apply to his
or her components. Consideration of a
standard's relevance to an AIS application(s)
is important. So is consideration of the
means to validate compliance with the
standard. Although validation of security
standards is not enough to claim that the
standards implementation is secure, it is a
useful step in screening implementations that
claim to meet the standards that may not.

Standards and standards validation are
different from evaluations. Standards are
broad requirement statemen~s of security
features, sometimes with enough options to
make validation feasible only if a subset of
options are validated. Evaluations are more
implementation specific. The Federal
Communications Commission provides evaluation
support for some communications components.
Underwriters Laboratories provides evaluation
support for some non-technical components
such as fire extinguishers. The manager
should consider the national evaluation
programs as the team player who assures
implementation details are consistent.

HOW NATIONAL RESOURCES CAN HELP THE MANAGER

Just as managers should use standards to
help define their security requirements, they
should also make use of the national
resources which evaluate various subsystems'
compliance with particular standards. There
are three national resources addressed below;
two of the resources evaluate and endorse or
certify subsystems, while the other only
evaluates subsystems. The difference between
evaluated and endorsed/certified products is
subtle to the manager certifying the
applications. AIS subsystems that are
evaluated, but not certified place more
accountability on the user of the product and
the management of the product's vendor.

The manager should recognize that the
certification of her or his AIS application
may rely upon similar but isolated
certifications of the AIS' subsystems or
shared systems. For example, the AIS may
include an operating system, a data base
system, an access control system, an
encryption or authentication system, an
entire computer system or networks. These
national-level programs will evaluate or
certify various subsystems that the manager
might want to consider as part of his or
her AIS application. But these various
subsystems supporting an AIS application
must have common security objectives.
Consequently, managers must ensure that
common security requirements and standards
are required for each subsystem. The
evaluation, endorsement, and certification
programs described below are available to
the manager and are sponsored by the
National Computer Security Center (NCSC),
the National Security Agency (NSA), and the
u.s. Department of the Treasury.

Under the Commercial Products
Evaluation Program, the NCSC performs
computer security software and hardware
product evaluations on commercial security
products. The NCSC does not certify these
products, but does place those products
that meet evaluation requirements on the
NCSC' s "Evaluated Products List (EPL) ."
Managers can "shop" off the EPL and be
assured that these products have been
extensively evaluated. The standard the
NCSC uses is the Trusted Computer System
Evaluation Criteria (also known as and
referred to hereon as the "Orange
Book") [8]. Vendors can opt to have their
products evaluated at different levels of
security such as discretionary access
protection, controlled access protection,
mandatory protection, structured
protection, and verified protection. Each
level of security guarantees certain
protection features. For example, if the
NCSC evaluates an access control system and
it meets the Orange Book requirements at
the level of controlled access protection,
the manager can be assured that the system
will include the following features: audit
trail capabilities, object reuse, user
identification and authentication, and
discretionary access control. The types of
subsystems that the NCSC has evaluated so
far under this program include operating
systems and add-on packages such as access
control systems. The NCSC estimates that
to evaluate a product at the controlled
access protection level of security
requires four people working a quarter of
their time for one year or one-man-year.
The man years increase as does the level of
security in the product. Two man-years is
the estimated time required for structured
protection, which includes all security
features in the lower levels and also
mandatory access control, labeling, and the
reference monitor concept in the operating
system.

For those vendors who would rather not
commit to a full-scale evaluation, the NCSC
sponsors a Subsystem Evaluation Program in
which the vendor selects the security
features it wants evaluated. For example,

269

a vendor can request a product evaluation of
access control or object reuse capabilities
instead of committing to a full-scale
evaluation. Products that have been
evaluated under the Subsystem Evaluation
Program are special purpose products such as
usar identification and authentication
devices. Products from both of these
evaluation programs provide a cost-effective
way for managers to choose their subsystems
according to their security needs. Another
program that not only evaluates but also
endorses devices is sponsored by the NSA.

NSA sponsors the Data Encryption Standard
(DES) Endorsement Program, also known as the
Federal Standard 1027 Program. Over the past
ten years NSA has endorsed over 35 DES
products for both voice and data
applications. Managers who require such
devices can choose from a variety of
manufacturers to suit their needs. NSA has
decided to phase out the DES Endorsement
Program and will no longer accept new
products for evaluation and certification
after January 1988. In replacement of the
DES Endorsement Program and also to foster
new business relationships with the U.S.
telecommunications industry, NSA began its
Commercial COMSEC Endorsement Program (CCEP)
in 1985. The objective of the 'CCEP is to
provide a widespread availability of quality,
inexpensive, secure telecommunications
systems for use by both the U.S. Government
and the private sector. The products
developed through the program will employ
NSA-proprietary, classified cryptography.
The implementation of this cryptography,
however, will result in unclassified
products. Vendors can design products for
use to secure classified information or for
use to secure unclassified only information.
So far, various large and small corporations
have signed 37 contracts with NSA to design
secure products. Four products have
undergone endorsement, which is the final
phase of the CCEP b~fore production.

NSA has given one exception pertaining
to the DES Endorsement Program; NSA will
continue to support DES devices for financial
applications under the U.S. Department of the
Treasury's Electronic Funds Transfer (EFT)
Certification Program for Authentication
Devices. NSA stated in a memorandum to
Treasury, "We agree with continued
Treasury certification of DES equipment until
transition to new cryptographic technology is
possible." NSA also stated it will continue
to support Treasury's program with technical
guidance and assistance. In addition to the
technical expertise NSA provides to the
program, the National Bureau of Standards
(NBS) also plays a role. A more detailed
description of how Treasury's program can
benefit the manager follows.

TREASURY INITIATIVES TO IMPROVE THE
CERTIFICATION PROCESS

The u.s. Department of the Treasury has
revised its AIS security program to make AIS
security more affordable, simple and
meaningful for all of Treasury's twelve
bureaus. Treasury has made certification the
end that risk analysis and security

specification's design reviews and system
testing serve. At the same time it has
begun a management study to determine how
AIS certifications can best serve the other
management control processes .. Treasury's
strategy for improving the AIS security
program is to use existing industry
standards and evaluation programs to
maximize the cost-benefits to Treasury's
AIS security program, while acquiring cost
effective AIS security. Treasury's
continuing involvement and commitment to
the ANSI and federal standards processes
represents an investment in. the future
development of standards that satisfy
Treasury's operational and security AIS
needs.

Treasury's initiatives begin with
departmental policy. Several policy
decisions have partitioned the AIS security
program resource problem into manageable
parts. The first policy is Treasury
Directive 85-01, entitled, "Information
Systems Security[9] ," which simply defines
three categories of information
classified, sensitive unclassified, and
public that can be processed by a
Treasury AIS. This break-out provides a
high-level framework to determine minimum
levels and types of safeguards needed for
each category of Treasury information.

The second Treasury Directive, TD 85
02 [lfiJ], deals specifically with sensitive
unclassified AIS information. TD 85-02
defines Treasury's Automated Information
System Security and Risk Management Program
as required by OMB A-130, Appendix III.
This directive establishes acceptable risk
for the department in terms of the
implementation of minimum security
requirements. The policy and its
associated handbook is a product based upon
the coordinated input of all twelve
Treasury bureaus and the advice and
guidance of the NCSC. The bureaus will
base their AIS security programs on these
minimums. Because of the varying
sensitivity of AIS resources and the
availability of AIS security program
resources, some of Treasury's bureaus will
choose to do more than the minimum.
Meanwhile, the baselines provide a focus
for the AIS security program; a basis for
AIS security education, risk analysis,
security specifications, design reviews,
and security testing.

The minimum security requirements are
based upon existing standards. The
standards chosen include controlled access
protection (the "C2" level of security as
defined in the Orange Book) for computer
security; and NSA-approved cryptography for
data communications, whether DES-based or
CCEP-based cryptographic products. Besides
making technical security sense, these
standards were chosen because they also
provide a management tool to reduce the AIS
security program costs to obtain a
meaningful certification. This is due to
the fact that, as mentioned earlier, NSA
and NCSC experts have evaluated the AIS
subsystems by reviewing the design and
testing the implementations of the
respective standards. Moreover from an AIS

270

security program perspective, these
evaluations make up a continuing program of
configuration control assuring that
participants in the evaluation programs
maintain the security for the life-cycle of
the product. Although there are never any
guarantees that careful design and
evaluations will fully remove the
vulnerabilities or that the commercial
participants will fully comply with the NSA
or NCSC programs, if there is a problem,
there are national resources and national
programs to help.

A third policy position applies to a
specific AIS application - Electronic Funds
Transfers (EFT). In 1984 Treasury began
developing a policy on EFT Security. It was
determined that the best existing
countermeasure was authentication in lieu of
encryption due to the international scope of
the requirement. ANSI X9.9, "Financial
Institution Message Authentication," was
selected as the standard. Treasury's EFT
policy, entitled, "Electronic Funds and
Securities Transfer Policy -- Message
Authentication and Enhanced Security[ll] ,"
requires that all Federal Government EFT
transactions be protected using message
authentication by June 1988.

The Department established an EFT Task
Force composed of representatives from
diverse government agencies to develop
criteria for certification of authentication
devices. The criteria is based upon industry
standards including ANSI X9.9, ANSI X9.17 on
key management, Federal Standard 1027 (DES),
and ANSI/IEEE 829 Standard for Software Test
Documentation. The criteria were published
in May 1985 and have been sent to over 250
interested parties and corporations. Since
then, through Treasury's EFT Certification
Program for Authentication Devices, the
Department has been working with various
vendors to guide them through the development
of devices to meet the certification
criteria.

Treasury certified its first device in
June 1986 and is currently working with
several more vendors who are developing
authentication devices. The Department is in
the process of expediting implementation of
EFT authentication on its financial systems.
Treasury received national resource
assistance in this certification program by
signing a Memorandum of Understanding with
NSA and NBS. NBS agreed to provide support
in validating compliance with various
security-related standards. This has
included ANSI X9.9, ANSI X9.17, the Data
Encryption Standard, and software engineering
standards. Of course, NSA security
evaluation support is mandatory because no
one else in the Government has their
expertise.

Treasury has reimbursed NBS for
developing automated validation systems to
validate vendor compliance with ANSI X9.9 and
ANSI X9.17. At this time, NBS has completed
the ANSI X9.9 automated validation systems
for Treasury and is expected to complete
portions of the ANSI X9.17 automated
validation. systems by the end of the year.
Thus far, eight vendors have completed the

automated validation of their products'
compliance with ANSI X9.9, one vendor
product has been certified for Federal use,
and three others have entered Treasury's
program for certification.

So, Treasury will make certification
decisions on EFT authentication devices
based upon the best information available
from the results of standards evaluations
and implementation evaluations. These
certified products will be a basis for
certifying the EFT applications implemented
on federal AI S. Federal managers of EFT
functions will have a tool that will reduce
their security program expenses of
complying with A-130, Appendix III. Moving
up the federal internal controls ladder,
these certified AIS applications will
provide Federal agencies a basis for
assurance that their financial systems
comply with the objectives of A-123 and A
127 as well as will provide the basis for
more effective and efficient processing of
financial information by removing much of
the current paper flow. Of course, this
doesn't totally remove federal agency AIS
internal controls responsibilities where
EFT is processed. Proper administrative
internal controls such as separation of
duties must be factored into those systems.

If other AIS applications exist on
those systems that have sensitive
information to be processed, a certified
AIS subsystem exists on the system that can
used to assure data integrity and possibly
confidentiality as well as user
accountability. The Consolidated Data
Network (CON) is Treasury's effort to
provide effective AIS services to its
bureaus throughout the country. The CON
will be a totally encrypted DES network,
which will make it the largest encrypted
data system in the civil Federal
Government. It will grow to be the
Department's secure data communications
utility.

The network is currently being link
encrypted using NSA-endorsed DES devices.
As end-to-end types of protection become
available, they will reduce much of the
security product needs. As enhanced key
management technologies become available
and are implemented, whether ANSI X9.17 or
other techniques, Treasury's security and
operational costs will improve.

But, again, there is good news for the
various AIS applications such as tax
processing, revenue collection, law
enforcement, payroll, personnel and many
other Treasury AIS applications. They have
another certified AIS component at their
service and another tool to base AIS
certification decisions on without spending
a lot of resources designing, and testing
cryptographic safeguards. Although CON
will not provide all the protection that
some users might need in the near term, a
focus for their AIS planning to address
those other security needs is provided for
them.

271

CONCLUSION

To make an intelligent certification
decision the AIS manager needs the best
information available., That involves
gathering both technical and business
oriented information to make a cost
effective decision. The resources for this
information are scarce or out of the direct
control of most AIS managers. On the
surface, the problem appears ridiculously
difficult. But, a smart manager will see the
problem as similar to everyday life and
should try to create a similar environment.
Managers must know their strengths and
weaknesses; what they can directly control
and what they have to rely upon others for
help. They must also become a member of a
larger standards community. All managers
should be strong 1n knowing what their
information resource requirements are. They
can help the community by expressing these
requirements in the form of community
st~ndards. For significant portions of their
AIS security requirements, services offered
by national resources can help the manager in
areas of technical expertise.

REFERENCES

1. OMB Circular No. A-130, "Management of
Federal Information Resources," December 12,
1985.

2. U.S. Department of Health and Human
Services, Public Health Service, Food and
Drug Administration, Requirements of Laws and
Regulations Enforced by the u.s. Food and
Drug Administration, Washington, D.C.:
Government Printing Office, 1985.

3. Federal Managers' Financial Integrity Act
of 1982, Public Law 97-255, September 8,
1982, 97th Congress.

4. OMB Circular No. A-123 (Revised),
"Internal Control Systems," August 4, 1986.

5. OMB Circular A-127, "Financial Management
Systems," December 19, 1984.

6. u.s. Department of Commerce, National
Bureau of Stqndards, Overview of Computer
Security Certification and Accreditation, NBS
Special Publication 500-109, Washington,
D.C.: Government Printing Office, 1984.

7. David C. McClelland, Power: the Inner
Experience, New York: Irvington Publishers~
1975.

8. u.s. Department of Defense, Department of
Defense Trusted Computer System Evaluation
Criteria, December 1985.

9. u.s. Department of the Treasury Directive
85-01, "Information Systems Security," April
2, 1985.

10. U.S. Department of the Treasury Directive
85-02, "Automated Information Systems
Security and Risk Management program," April
24, 1987.

11. U.S. Department of the Treasury Directive
16-02, "Electronic Funds and securities

Transfer Policy -- Message Authentication
.and Enhanced Security," October 3, 1986.

272

SECURITY EVALUATIONS OF COMPUTER SYSTEMS

David J. Lanenga

National Computer Security center

9800 Savage Rd.

Ft. George Meade, MD 20755-6000

INTRODUCTION

This paper describes the process of
computer security evaluations as presently
performed by the National Computer Security
Center (the Center). This subject is
important for a number of reasons. The
first is that, because the Center has
organized the evaluation process, there are
many others who may benefit from sharing
this information. There are many
organizations that evaluate or certify
system security, or that are involved in
planning for a certification. What the
center's evaluators do is not significantly
different from what these groups do, and
the process used by the Center's evaluators
is something that can be adapted for use by
others. The Center has organized the
process so that it can be controlled and
managed. This paper describes how this was
accomplished, what the Management Plan
consists of, and some of the details of the
evaluation process.

A second reason for this subject·is
that so many vendors and developers have
asked questions such as, "What do you do in
an evaluation?" and "What does an
evaluation of a computer product consist
of?" I hope to answer those kinds of
questions and hope to provide an
understanding of what happens during an ·
evaluation.

INITIAL PROCESS'

In the beginning, computer security was
something of a void. The Center's purpose
was to provide a list of evaluated products
that the Federal agencies could purchase
off-the-shelf, with the knowledge that the
product met a certain standard of security.

The Center was formed in mid-1981, and
the first secure product evaluations began
late in 1982. Evaluations really picked up
in the following year when the Criteria was
published. At that time, the evaluation
staff consisted of only five evaluators
from the Center, augmented by additional
evaluators from the MITRE Corporation and
the Aerospace Corporation.

At that time, the evaluation process
didn't really exist, because nobody had
ever tried to do an evaluation like this
before. It was a totally new procedure.
The evaluators didn't even have a final
version of the Criteria at the start. In
addition, a strong concern for quality
hampered the development of evaluation
procedures. Center management closely
reviewed the evaluation work and draft
evaluation reports to ensure the level of
quality in an evaluation because they felt
that acceptance of the Center by the

computer industry depended heavily on the
first evaluation efforts.

THE MANAGEMENT PLAN

During the first evaluations, it
appeared that the evaluators weren't doing
evaluations very efficiently, and that it
took too long to complete an evaluation.
Because no planning and management tools
were in place, it was not possible to
measure efficiency, effective use of
resources, or adherence to schedules.

In order to improve the evaluation
effort, the Center's Evaluation Division
has sponsored seven semi-annual Evaluators'
Workshops since September 1983. The
Workshops are held to discuss
interpretations of the Criteria, to share
experiences in evaluations, and to resolve
evaluation issues faced by the evaluators.

In october 1984, following one of
these workshops, the Aerospace Corporation
was commissioned to develop a Management
Plan for the evaluation effort. This
document was developed through an analysis
of past evaluations. Every evaluator
associated with the Center participated in
developing the plan, and the plan was
issued in October 1985. It included all
the things that had been done correctly,
omitted the things done incorrectly, and
was general enough to leave room for all
the things the evaluators have learned
since then. The Management Plan turned out
to be a real success. It made an
evaluation a much more orderly process.

One purpose in developing the
Management Plan was to help the evaluators
PLAN evaluations, something that had not
been done very well at all. This was to be
expected. The evaluators were skilled in
areas such as security, computer
technology, and operating systems. Most of
them had very little exposure to formal
planning and didn't really want to know any
more about it either. The Management Plan
solved this problem. It detailed all the
tasks that are a part of an evaluation. It.
also provided a list of tools and reference
material available for each task, and
enumerated factors which should be taken
into consideration·when calculating the
dUration of each task. The Management:Plan
is not merely a checklist. It is a
resource used by the evaluators to help
them decide which tasks are appropriate,
how they relate to each other, in what
order, and how long they can be expected to
take.

Another purpose of the Management Plan
is to provide a measure of control to the

273

process. The earlier evaluations were
driven by the system developer's schedule,
which obviously includes many
considerations other than security. The
developer is in business to make a profit,
and must use his resources efficiently in
order to do so. Without a plan, the
evaluation process was geared to the
vendor's schedule, and the center had no
control over the schedule. Because the
Center is spending taxpayers• money, it
must also use its resources efficiently.
By presenting the system developer with a
plan for an evaluation, and by showing that
it is a reasonable plan, it is possible to
prepare a mutually agreeable schedule and
adhere to .it. As a result, everybody
involved in the evaluation process
including Center management, the vendor,
and the evaluator - is happier~

When things somehow fail to go
according to the plan, as they seem to do
in any endeavor, tools provided under the
Management Plan alert Center management to
assist the team and the vendor to ~et
things back on track. The Center managers
need and use inputs from both the team and
the vendor. Just as the team may have
problems with the vendor's ability ~o meet
their needs, the vendor may disagree with
the team's interpretation of the Criteria,
the speed at which it appears to be
working, or perhaps its ability to
understand the vendor's point of view. The
Management Plan has built-in feedback loops
through successively higher management
levels to resolve team;vendor issues and
bring the evaluation to a successful end.

EVALUATION PHASES

In organizing the evaluation effort,
the Center first divided the evaluation
effort into two distinct parts. The two
parts have been known as the Developmental
Phase and the Formal Phase of an
evaluation. The first part is currently
called a design analysis, and the second is
called an implementation analysis.

The two phases of an evaluation are
substantially different. The Center wants
to be involved with a developer at the
beginning of the design -stages of a new
system, when there is the greatest
opportunity to influence the design, or at
least the security aspects of the design.
It's to the advantage of the vendor, too,
because correcting design flaws is
increasingly more expensive as one proceeds
with the design process. The problem at
this stage is that there is usually little
or nothing to evaluate. It's difficult to
do a rigorous, technical evaluation of
something that doesn't yet exist. The
second part of an evaluation, the
implementation analysis phase, is something
that should be completed as expeditiously
as possible. This is to the advantage of
both the Center and the vendor. When the
vendor HAS a final product, and is fully
prepared to provide ALL the evidence
necessary to show that it is a secure
product, then the evaluators want to
examine _that evidence to the best of their

274

ability and bestow a rating as quickly as
possible.

DESIGN ANALYSIS PHASE

The design analysis phase of an
evaluation is a consulting relationship.
The members of a design analysis team are
the most experienced evaluators. They are
able to assess the consistency of the
design against the requirements of the
Criteria. The design gives the team a solid
assurance as to how well the requirements
will be satisfied. The team members can
answer the questions such as "Is this good
enough?" or "On a scale of 1 to 10, where
do I stand?"

· The central task in a design analysis
is called Systems Analysis and Technical
support, and is performed through technical
interchange meetings with the vendor. The
level and nature of support vary widely.
critical factors in determining the level
of support are the vendor's experience,
candidate level of the Criteria, and
whether the product is an existing product
or a totally new design.

The Management Plan provides very
detailed guidance to both the evaluator and
to management, while still allowing for
judgement by the team leader. A small
sample of tasks that make up the design
analysis phase of an evaluation are the
following:

o 	 Develop Verification Plan (B2 +)
o 	 Develop Training Plan (for formal

team)
o 	 Determine Configuration Range
o 	 Analyze Documentation (draft ok)

as it is developed
o 	 Educate the vendor's technical

staff
o 	 Determine when ready to prepare

the Initial Product Assessment
Report (IPAR)

o 	 Determine Candidate Evaluation
Class

Each task in the Management Plan is
subdivided into a set of subtasks whenever
possible. For example, the task labelled
~nalysis of system documentation is
subdivided by the individual requirements
for documentation:

o 	 Formal Top Level Specifications
(FTLS)

o 	 Descriptive Top Level
Specifications (DTLS)

o 	 Formal Security Policy Model
(e.g. Bell/LaPadula)

o 	 Security Features User's Guide
(SFUG)

o 	 Trusted Facility Manual (TFM)
o 	 covert Channel Analysis
o 	 Test Plan

In order to document the first phase
of the evaluation, the evaluation team
writes an Initial Product Assessment Report
(!PAR). This document assures that all
Criteria requirements have been addressed,

and that the IPAR contains sufficient
product information to form a basis for the
decision regarding whether to proceed to a
Formal Evaluation, or Implementation
Analysis. It documents the justification
for the candidate rating, the team's
understanding of the product, and the
vendor's understanding of the Criteria.

This completes the first phase of an
eval~ation - the design analysis phase.
Port~ons of the evaluation dealing with
administration and management review of the
process have been omitted in order to focus
on the technical areas, but they are
definitely a part of the Management Plan.

IMPLEMENTATION ANALYSIS

The second phase of an evaluation is
called the implementation analysis phase.
It was formerly known as the formal
evaluation, and it is what most people
think of when they think of an evaluation.

The description that appears below is
common to all the evaluation.work performed
by the Center and applies equally to
sub-systems evaluations, operating system
evaluations, network evaluations and
evaluations of database manageme~t systems.
The guiding principle is that the vendor
provides all the evidence needed to judge
the quality of security in a given product
and the evaluation team analyzes that '
evidence.

The distinct elements of the

implementation analysis are:

o Planning
o Education
o Analysis
o Draft Final Report
o Test Plan
o Testing
o Configuration Management Review
o Final Report and Rating

Planning: The very first thing that
happens in an evaluation is the development
of a work plan for the evaluation. This
plan is developed by the evaluation team,
agreed to by the vendor, and approved by
~enter management. Adherence to the plan
~s enforced through regularly scheduled
reviews by Center management. This is done
through informal reviews and briefings
meeting reports, trip reports, and monthly
status reports submitted by both the team
and the vendor.

Education: It's important that the
evaluation team fully understand the
functionality and interfaces of the product
to be examined. Although the original team
helped the vendor define and schedule the
training plan, the training doesn't occur
until the second phase of the evaluation.
Education is important in this phase
because the analysis occurs on a much
greater level of detail.

Analysis: The team analyzes the
documentation that was reviewed during the
first phase of the evaluation, but at a

much greater depth. The documentation
analysis is followed by an analysis of
source code because, after all, this IS an
implementation analysis. The team must be
certain that the design has been
implemented, and implemented correctly.
They need assurance that the system
actually works as advertised. The
Management Plan is still incomplete in this
area, and there is an on-going effort to
define this process more rigorously and in
greater detail. In general, individual
team members pursue areas of documentation
and code that correspond to the various
sections of the Criteria. The approach
varies, depending on the target rating. At
the lower levels of the Criteria,
evaluators are primarily concerned with
functional mechanisms, such as
discretionary access controls, auditing,
and identification and authentication. At
the higher levels, the assurances provided
through system architecture, configuration
management, and formal verification are
more important.

Draft Final Report: Throughout the
previous steps, beginning in the education
phase, team members take notes and mentally
organize the sections of the final report
for which they are responsible. As their
understanding of the system grows, the
first draft of the final report is written.

Test Plan: The test plan is the work plan
for the system testing phase of the
evaluation. It describes the functional
tests to be conducted and specifies test
procedures. As in all the sections of the
Management Plan, this section incorporates
the flexibility to deal with evaluations at
any candidate class of the Criteria. For
example, for B2 level systems and above,
the test plan includes the penetration
testing methodology and any testing related
to the vendor's covert channel analysis.
The plan provides a schedule for testing,
identifies the test site, and describes the
system configuration to be tested.

Testing: In order to support the assurance
obtained through analysis of documentation
and code, a certain amount of testing must
be done. The objective is to execute
security-relat-ed functional tests for the
candidate system. The team examines the
vendor's functional tests and evaluates the
results. Where necessary, the team
develops additional tests to ensure that
all of the features are adequately tested.
w~en errors are found, the .vendor is
expected to correct them. The team
documents its findings in the final report.

Configuration Management Review: The
Center •.s purpose in configuration
management is to ensure that changes to the
system can be traced from beginning to end,
and vice versa. The evaluators should be
able to trace a trouble report all the way
down to the exact location of code changes.
They should also be able to trace code
changes back to the reasons for the
changes. If it is known what changes have
taken place, their effect on the security .
of a system can be assessed. Although the
Criteria doesn't require configuration

275

management untii the B2 level, th.e Center
now looks for it on all systems as a
practical matter. The Center is very
reluctant to consider maintenance of an
initial rating over subsequent releases of
a product unless an approved configuration
management system has been implemented.

Final Report and Rating: When the testing
has been completed, the team knows the
product as well as it is ever going to, and
is ready to complete the evaluation. The
draft final report is modified based on the
recommendations of the Technical Review
Board (TRB) and the additional information
learned during system testing. The
evaluation is complete when the Center's
rating is awarded, the product is entered
on the Evaluated Products List, and the
Final Report is published.

Throughout the course of an evaluation
the team has ready access to technical
specialists within the Center. These
people are the Chief Evaluator, Senior
Scientist, and Chief Scientist. These
people are involved daily with the
twenty-five evaluations currently in
progress. In addition to providing
technical expertise, they are also able to
help the team separate technical issues
from administrative and management issues.
All this helps to keep an evaluation on
course.

The quality control function mandated
by the Management Plan is the Technical
Review Board, or TRB. The primary purpose
of this board is to verify the team's depth
of understanding of the product under
evaluation and to assure consistency with
other evaluations. The TRB may approve the
team's progress, or it may recommend that

the team investigate some areas more
thoroughly before proceeding to the next
phase.

The TRB reviews the work of the
evaluation team at least three times during
an evaluation. One review takes place at
the end of the first phase of an
evaluation, when the team presents its
Initial Product Assessment Report. The
second is a review of a draft of the final
report and the team's test plan. The third
review is at the end of an evaluation, when
the final report is reviewed. At each of
these reviews, the team provides the TRB
with a document that represents a great
deal of work. The TRB members review the
information provided, provide comments,
and ask questions about the conclusions the
team has formed. The team responds to
these comments and questions in a formal
presentation. The TRB judges the
presentation of the team in the light of
previous evaluations, and makes
recommendations to the Chief of the Product
Evaluations and Technical Guidelines
Office, who makes final decisions
regarding the future of an evaluation and
the course to be taken by the evaluation
team.

Conclusion

Through its development and
implementation of the Management Plan, the
Center has demonstrated that evaluation
activities can be planned, scheduled, and
managed. The Center's activities closely
mirror normal contractual and especially
certification/accreditation activities.
With minor changes to particularize this
plan to other organizations, it can serve a
wide variety of similar functions.

27E

AN EXPERT SYSTEM APPROACH TO SECURITY INSPECTION OF A VAX/VMS SYSTEM IN A NETWORK ENVIRONMENT

Henry S. Teng and Dr. David C. Brown
Digital Equipment Corporation Artificial Intelligence Research Group

77 Reed Road, HL02-3/Cl3 Computer Science Department
Hudson, MA 01749~2895 Worcester Polytechnic Institute

ABSTRACT

We have developed a prototype expert system,
named XSAFE, for computer security inspection of a
VAX/VMS system in a network environment. XSAFE
attempts to explore the vulnerabilities of a given
VAX/VMS system using a remote diagnosis mechanism.
The inspection results provide valuable information to
system management about further security improvements.

The computer security inspection is performed by
four security inspectors: the Password Inspector, the
DECnet Default Account Inspector, the System File
Protection Inspector and the User Application
Inspector.

User application security is the focus of the
development of XSAFE, since it is the weakest
component of a VAX/VMS system from a security point of
view.

XSAFE has been field-tested on Digital's internal
network and has produced some very encouraging
results. The field test results have clearly shown
the potential of XSAFE as a centralized security
auditing system in a distributed network environment.

1 INTRODUCTION

XSAFE* is a prototype expert system that can
assist a system manager or network manager in the
inspection of the security of a VAX/VMS** system in a
network environment (Teng 1986a). XSAFE inspects the
soundness of the protection mechanism of a given system
by launching an intrusion against the system.

Computer security is defined as the protection
from misuse of a computer system, its applications and
its shared resources (Neumann 1987) • This includes
the notions of preventing unauthorized acquisition and
modification of information, thus assuring
confidentiality and integrity.

Two approaches to attaining better security have
been developed over the past decade. One is remedial
and the other is preventative (Neumann 1978) • The
first approach involves evaluating the security flaws
uncovered. The second approach involves designing new
systems that are secure and whose security can in some
way be convincingly verified.

In the last decade a few preventative models have
been proposed to build "secure" computer systems.
These models include the lattice model, the access
matrix model, the Bell and LaPadula model, and the
security kernal mechanism (Landwehr 1981).

The preventative approach is very attractive when
a computer application environment requires a very
high level of security since the approach designs
security into the computer system. However, this
approach includes the following disadvantages
(Denning 1985):

It is very expensive to develop, purchase or
maintain a highly secure operating system

*This research was supported by Digital Equipment
Corporation's Graduate Engineering Education Program.

**The following are trademarks of the Digital Equipment
Corporation: VAX, VMS, VAX/VMS and DECnet.

Worcester, MA 01609

- A model for a secure operating system in a
network environment is not yet well defined.

Developing systems that are absolutely secure is
extremely difficult, if not impossible.

Thus the remedial approach is very desirable and
and affordable for computer systems and applications
that require a relatively high level of security but at
a lower cost.

XSAFE applies this remedial approach and inspects
the security aspect of VAX/VMS system in a network
environment.

VAX/VMS security has been greatly enhanced since
the release of version V4.0 (Digital 1984). XSAFE
assures that a given system is maintained at a
relatively high level of security. Furthermore,
VAX/VMS is only as secure as the user-written
application programs that are layered on top of VMS.
Therefore, there is a need to develop a method to
detect violations of a site-dependent security policy
for a given system. The method developed by XSAFE is
to apply expert system technology to the domain of
computer security.

An expert system approach to the security

inspection of a given VAX/VMS system is strongly

motivated by the following factors:

- Security experts are rare.

A very special type of knowledge is required to
discover the vulnerabilities of a computer
system. An expert system, by nature, is capable
of capturing and applying the expertise in a
very narrow domain.

The analysis of system security requires much
knowledge of, and experience with, the VAX/VMS
operating system. It is possible to express
this knowledge and use it in an expert system.

- The task of adequately exploring the
vulnerabilities of a VAX/VMS system would become
intractable without heuristic methods for
probing a computer system.

- An expert system has the potential to provide
some explanation of how the security violations
were discovered.

- An expert system is capable of interacting
actively with a user to gather site-dependent
VAX/VMS parameters.

In the computer security domain there exist very
few expert systems. The proposed IDES model by SRI is
implemented as a real-time Intrusion-Detection Expert
System (Denning 1985). However, IDES differs from
XSAFE as follows:

IDES's approach is to detect an intrusion
whereas XSAFE's approach is to launch the
intrusion thus testing the soundness of the
protection mechanism of a given system.

To improve performance IDES requires a separate
processor, perhaps a personal computer, to

\277

process system audits as they are recorded.

XSAFE runs only when needed and remotely in a

distributed network environment.

<___..____________:

<:----------------

<:--------

Password DECnet Default
Inspector Account

Inspector

System File User
Protection Application
Inspector Inspector

v v v v

X S A F E C 0 M M 0 N W 0 R K I N G M E M 0 R Y

Figure 1: The Architecture of XSAFE

- IDES uses statistical knowledge whereas XSAFE
uses heuristics.

2 ARCHITECTURE OF XSAFE

The architecture of XSAFE is a hierarchy of active
inspection agents. XSAFE consists of a set of Security
Inspectors, that contain the security-specific
knowledge in the system, and a common·working memory
which serves as the blackboard to which all the
security inspectors have access. Figure 1 shows the
architecture of XSAFE.

The lines with arrows in the figure indicate
read/write access to the working memory. The lines
without arrows in the figure indicate control
relationships among the security inspectors. Each
Security Inspector consists of a set of security
subinspectors with a local working memory shared among
the subinspectors. Some subinspectors are further ·
subdivided into specialists.

The architecture of XSAFE establishes a multi-level
inspection structure: the XSAFE Analyst level, the
Inspector level, the Subinspector level and the
Specialist level. This inspection structure resembles
the Blackboard architecture somewhat. However, the .
difference between the two architectures is that there
is no direct control of the activation of each KS in
the Blackboard architecture, whereas in the XSAFE
architecture security inspectors are activated in a
predefined sequence by the XSAFE Controller.

XSAFE uses this type of architecture for the
following reasons:

- It provides a uniform structure of the common
working memory. This makes it possible to
integrate new security inspectors into the
system easily and to develop a set of utilities
applicable to all security inspectors.

- It provides a shared database where evidence of
suspected weaknesses and identified security
weaknesses of a VAX/VMS system are recorded,

- It allows security inspectors to use different
knowledge representations and different
problem-solving methods, but allows
communication via the common working memory.

-It al~ows_securi~y inspectors to perform their
secur1ty 1nspect1on independently.

- It allows higher-level security inspectors to
draw_conclusions·from conclusions and evidence
prov1ded by lower~level security inspectors.

. The XSAFE Analyst provides an integrated security
v1ew of the system under inspection. The Security
Inspectors w~rk independently of each other. The XSAFE
~nalyst exam1nes those situations which the security
1nspectors are not able to examine due to possible
int~ractions among inspectors. The XSAFE Analyst is
act~va~ed whe~ all security inspectors have completed
the1r 1nspect1ons. This makes the XSAFE Analyst
capable of drawing conclusions from evidence and
conclusions already obtained by the security inspectors.

_XSAFE ~as the following security inspectors to
exam1ne var1ous components of a VAX/VMS system.

USER APPLICATION INSPECTOR. Checks if a
user-written application installed on a VAX/VMS
system has imposed a security threat to the
underlying system.

- PASSWORD INSPECTOR. Checks if commonly known
passwords can be used to log into
security-critical accounts on a VAX/VMS system.

- SYSTEM FILE PROTECTION INSPECTOR. Checks if
security-critical system files are properly
protected.

- DECNET DEFAULT ACCOUNT INSPECTOR. Checks if the
DECnet default account is set up securely.

XSAFE has been implemented in Knowledge Craft***
(Carnegie 1985), mainly because security inspection of
a VAX/VMS system cannot be accomplished by any one
problem solving approach. Knowledge Craft allows
flexible knowledge representations, and alternative
problem~solving and control strategies.

!
3;1

3 THE SECURITY INSPECTORS

The User Application Inspector

There has been little research and development
done in the area of user-written application security
in the past decade. Most research in computer
security has been conducted in areas such as formal
models for computer security, verification of security
and computer network security. The complexity of user
application security has also made it difficult to
perform research in this area.

As research in formal models and verification of
computer security has gradually become reality,
operating systems are designed and implemented more
securely. Therefore, there is a need to develop a
methodology to ensure that user applications do not
compromise the underlying secure operating system.

The exploration of AI techniques such as expert
systems in the computer security domain provides a
possible solution to the problem of user application
security. This is because expert systems are capable
of capturing human heuristics which are used in the
security inspection of a user application.

An example of a user application could be an auto
parts inventory ordering system where customers can log
into the system remotely and make orders of auto parts
through the application software. Another example of a
user application could be a stock purchasing system
where investors can look up information and prices of
various stocks and make orders to buy or sell stocks.

***Knowledge Craft is a trademark of Carnegie Group Inc.

278

If the stock purchasing system mentioned above was not
set up securely, a stock holder might gain access to
the master database and change it to his advantage.

The "User Control Hypothesis" (Anderson 1972) says
that security vulnerability is a function of
user-controlled shared resources. In other words the
less resource a user has access to, the fewer security
weaknesses he will be able to discover. Hence, the
major task of the User Application Inspector is to
reveal those security weaknesses which are caused by
inadequate control over the use of resources.

Another task of the User Application Inspector is.
to reveal system integrity flaws explorable in a
user-written application. A user application is a
piece of software developed to meet some needs of a
group or groups of people.

There are four subtasks in the security inspection
of a user-written application. The subtasks are
carried out by the following four subinspectors and
their specialists:

- The Network Communication Subinspector

- The Captive Account Subinspector

- The Login Procedure Subinspector

- The Application Program Subinspector which has
an Executable Image Specialist and a Program
Code Specialist

The structure of the User Application Inspector is
shown in Figure 2. The lines with arrows in the figure
indicate working memory accesses. The lines without
arrows in the figure indicate relationships among the
inspector, subinspectors and specialists.

<--->I USER APPLICATION INSPECTOR I
I II

CAPTIVE NETWORK APPLICATION LOGIN
ACCOUNT COMMUNICA- PROGRAM PROCEDURE
SUBINSPECTOR TION SUB INSPECTOR SUB INSPECTOR

SUBINSPECTOR

-- - I - I
EXECUTABLE PROGRAM
IMAGE CODE
SPECIALIST SPECIALIST

- -
I I

v v v v v v

X S A F E C 0 M M 0 N W 0 R K I N G M E M 0 R Y

Figure 2: The Structure of the User Application

Inspector

3.1.1 The Network Communication Subinspector The major
task of the Network Communication Subinspector is to
check for possible security problems with an
application that can be used over a network. An
example could be an application accessing a database on
another node.

The following aspects are inspected:

- Information communicated in plain text

Passwords being transferred over the network

A rule-based knowledge representation is

appropriate here, since the inspection is done by
recognizing a situation where there is a security
violation.

3.1.2 The Captive Account Subinspector The major tas~
of the Captive Account Subinspector is to inspect an
application's record in the User Authorization File
(UAF) and to ensure that the setup of the account
complies with the requirements for the application.
Any violation of the requirements constitutes a
security weakness. I~ an application requires that a
user can not get to the supervisor level, the Captive
Account Subinspector checks for certain qualifiers in
the account's UAF record to ensure this requirement.

Most often a perpetrator finds his first
opportunity to break out of the control of a user
application by locating insecure setup of a user
account.

There are two types of login restrictions that can
be assigned to an account via the AUTHORIZE****Utility
in VAX/VMS:

- LOGIN MODE RESTICTIONS. Limit logins to
specific types of login

- FUNCTION RESTRICTIONS. Limit types of
activities of the user account

The Captive Account Subinspector gathers
information about an account set-up, and about the
requirements of the application via sessions of
questions. Next the Captive Account Subinspector
inspects the account by running rules against the
gathered information. These rules detect situations
where the Login mode and Function restrictions are
insufficient to comply with the requirements of the
applications.

3.1.3 The Login Procedure Subinspector The maj'or task
of the Login Procedure Subinspector is to discover
paths that allow escape to the supervisor level ("$"
level in VMS) and those that break the control of a
login procedure. The login procedures include both the
user login command procedure and the system login
command procedure.

There are various aspects of a login procedure
that a perpetrator may examine to escape to the
supervisor level. Some of the potential paths involve
error and program abortion handling within the command
procedure and the use of the DCL command INQUIRE which
takes input from a user.

A procedural knowledge representation is
appropriate for the Login Procedure Subinspector, since
the inspection is accomplished by parsing the command
procedures and searching for the presence of certain
DCL commands.

3.1.4 The Application Program Subinspector A user
application may compromise security because there are
errors or flaws in the design, implementation,
operation and maintenance of the application. Some
applications may have the image of the application
installed with privileges for various reasons, or the
application may be running under a privileged account.
These privileged applications could substantially
damage a VAX/VMS system. when misused by a perpetrator.

The major task of the Application Program
Subinspector is to detect abuse of user functions
provided by the application. For instance, a user
could modify the User Authorization File if the
application provides the user an editor function and is
installed with SYSPRV privilege. The Application
Program Subinspector inspects an application with two

****The AUTHORIZE Utility is used to maintain user
accounts defined by records in a file (SYS~SYSTEM:
SYSUAF.DAT) called the User Authorizat1on File (UAF)

279

security specialists: the Executable Image Specialist
and the Program Code Specialist.

The Executable Image Specialist examines an
application at a more conceptual level without concern
about the actual coding. It reveals malicious use of
functions and privileges provided ~irectly to users and
draws its conclusions based on what the functions can
accomplish. Possible scenarios of abuse have been
presented in (Teng 1986b).

. A rule-based knowledge representation is used here.
F1gure 3 shows a rule in CRL-OPS for the Executable
Image Specialist. The rule,·here written in more
natural language, records a situation where the
following security violation has been discovered:

IF
Installed privileges
= (BYPASS/SYSPRV/READALL)
AND functions of the application = (READ/MAIL/COPY)
AND file names·are specified by users or modifiable

logical names
THEN
Security violation "any file including SYSUAF.DAT
can be accessed"

The Program Code Specialist is activated only if
the application program source code is available. It
examines the coding of the application for security
violations. The Program Code Specialist has not been
implemented. However, it is proposed that the "Flaw
Hypothesis Methodology" (Attanasio 1976) be used to
detec~ security weaknesses in the coding of a user
applic~tion program. The improvement to that
methodology is the introduction of AI techniques
allowing hum~n heuristics to be captured.

3.2 The srs:em File Protection Inspector

VAX/VMS maintains many system files that
participate ;n various activities that keep the
opera.tin~ sy~tem functioning properly. These system
files are critical to the security of a VAX/VMS system.
The major task of the System File Protection Inspector
is to check if these system files such as the User
Authorization File and system startup files are
properly protected. The System File Protection
Inspector'perfo~s a sequence of probes to detect
improperly protected system files. Hence, a procedural
k~owledge re~resentation is appropriate for the System
F1le Protect1on Inspector. A remote inspection of
system files is accomplished by specifying the remote
node name with the system file specification,

;-----------------------------~--------

·(P image_read_wi th_installed_privileges

i-------------------------------------

(control 	"inspector user_application

"subinspector application_program

"section executable_image)

(account_inspected

"username_field <username>)

(application_installed_privileges

"username_field <username>

"installed_privileges << BYPASS SYSPRV READALL >>)

(application_functions

"username_field <username>

"functions_provided << FILE_SPECIFICATION_BY_USER

FILE_SPECIFICATION_BY_MODIFIABLE_LOGICAL_NAME ~>)

(application_functions

"username_field <username>

"functions_provided « VAXMAIL COPY READ »

-->

(Add-value xsafe_results

'results_from_executable_image_specialist

'image_read_with_installed_privileges)

; End of 	image_read_with_installed_privileges.

Figure 3: A Rule from the Executable Image Specialist

3.3 The Password Inspector

The major task of the Password Inspector is to
detect the use of commonly known passwords. There are
two types of commonly known passwords: a distributed
password, which is a password that comes with the
initial VAX/VMS system and is documented in the
installation guide; and a guessable password WPich is
easily obtained by some simple scheme~ · · ·

The Password Inspector inspects passwords to the
SYSTEM account, the FIELD account, the SYSTEST account,
and any computer operational account such as the
BACKUP account, as well as accounts required by the
installation of software layer products such as the
MRMANAGER account for the Message Router software.

The Password Inspector performs a sequence of
probes to detect commonly known passwords.
Consequently, a procedural knowledge representation
using LISP, is appropriate for the Password Inspect~r.

3.4 The DECnet Default Account Insrector

The DECnet default account is ari account that is
used for activating network processes on a local node.
The account is like any user account on the system and
has an entry in the User Autho.rization File.

The major task of the OJ;:Cnet Default Account
Inspector is to check whether it is· pos.sible ·to execute
a program or to submit a remote b~tch job unc~er the
DECnet default account, to check the authorized and
default privileges of the DECnet default account and
to check if the DECnet default account is grouped with
other SYSTEM accounts.

The DECnet Default Account Inspec;tor performs a
sequence of probes to detect insecure setups of the
DECnet default account on a given no.de, Hence, a
procedural knowledge representation, using the DCL
Command Language, is appropriate for the DECnet Default
Account Inspector.

4 EVALUATION OF XSAFE

The Password Inspector, the DECnet Default Account
280

Inspector, 	the System File Protection Inspector, the
User Application Inspector, the Login Procedure
Subinspector, the Network Communication Subinspector,
the Captive Account Subinspector, and the Application
Program Subinspector 	with its Executable Image
Specialist 	have been implemented, They have been
running on 	a VAX/11 785 with 32 megabytes of primary
memory. The development of the Program Code Specialist
has been left for future work on XSAFE.

About 44 VAX/VMS systems on Digital's internal
network were inspected by XSAFE. About half a dozen
VAX/VMS system managers and VAX/VMS application
developers 	within Digital Equipment Corporation
participated in the field test process. The overall
result was 	 impressive. Some problems with XSAFE were
also discovered.

Each system was tested by running the System File
Protection Inspector, the DECnet Default Account
Inspector, and the Password Inspector. The User
Application Inspector was run when there was suitable
application on the system and if the developers or the
maintainers of the application permitted the inspection.

There were 153 security violations discovered by
XSAFE among the 44 systems. These violations included
having the User Authorization File and the Network
Authorization File readable or modifiable by any user
on Digital's internal network.

Compared to a ·security expert, the System File
Protection Inspector, the Password Inspectpr, and the
DECnet Default Account Inspector detected the kinds of
security weaknesses that a security expert would find.
The User Application Inspector showed that it is quite
capable of handling the complexity of the security
aspects of an application. In several cases, the User
Application Inspector detected s~curity violations
that were missed by a security expert.

Site: 	 XXX
Inspector Name: 	 System File Protection

Inspector
Number of Nodes Inspected: 44
Files Inspected per Node: 62
Average CPU Time per Node: 3,2 seconds
Average Elapsed Time per Node: 107.1 seconds

Figure 4: 	 Performance Statistics for the System File
Protection Inspector

Figure 4 shows some performance statistics for the
System File Protection Inspector.

Figure 5 shows some performance statistics for the
DECnet Default Account Inspector.

5 FUTURE RESEARCH AND CONCLUSION

Further investigation is necessary to gather more
heuristic rule for the Executable Image Specialist.
Primarily these rules should recognize a situation
where a combination of certain privileges and user
functions of a application constitute a security threat
to the underlying VMS operating system. In addition
the Program Code Specialist needs to be implemented and
tested.

Site: XXX
Inspector Name: The DECnet Default

Account_ Inspector
Number of Nodes Inspected: 44
Average CPU Time_per Node: 6,5 seconds
Average Elapsed Time per Node: 81 seconds

Figure 5: 	 Performance Statistics for the DECnet Default
Account Inspector

We have presented an expert system approach to
computer security for a VAX/VMS system. Much work
remains to be done to improve and complete various

components 	of XSAFE. However, we feel that the expert
system approach has provided a feasible solution to
the problem of obtaining low-cost medium-level security
for a VAX/VMS system 	in a network environment. The
performance of the prototype expert system is very
encouraging. We expect that the VAX/VMS user community
will benefit from the continued development of XSAFE.

6 ACKNOWLEDGMENT

We wish to thank Steve Lipner, Secure Systems
Group 'of Digital Equipment Corporation, for his
guidance and support, and both Mitch Tseng and Tom
Cerva, Applied Intelligence Systems Group of Digital
Equipment Corporation, for their continued support of
XSAFE.

REFERENCES

(Anderson 1972) 	 Anderson, J.P., Comput~ Sec~y
Technology Planning Study,
ESD-TR-73-51, Vol II, pp. 89-94,
ESD/AFSC, Hanscom Field, Bedford,
MA, Oct. 1972.

(Attanasio 1976) 	 Attanasio, C.R., Markstein, P.W.,
and Phillips, R,J. "Penetrating an
Operating System: A Study of
VM/370 Integrity," IBM Sy.6tem
Jo~nal, Vol. 15, No. 1, pp. 102
116, 1976.

(Carnegie 1985) 	 Carnegie Group Inc., Knowledge
CJta.M 3. 0 Re6~ence Manual, Vol.
1, Dec. 1985.

(Denning 1985) 	 Denning, D.E. and Neumann, P.G.
Requinement-6 and Model 6o~ IVES
A Real-T-Une I~-ion-Vetec..tion
Exp~ Sy.6tem, SRI International,
Final Report, Contract No.
83F83-01-00, SRI Project 6169,
Aug. 1985.

(Digital 1984) 	 Digital Equipment Corporation

VAX/VMS V4.0 Relea.6e Note.6, Sep.

1984.

(Landwehr 1981) 	 Landwehr, C.E. "Formal Models for
Computer Security", ACM Compu.:Ung
S~vey.6, Vol. 13, No. 3, pp. 247
278, Sep. 1981.

(Neumann 1978) 	 Neumann, P.G., "Computer System

Security Evaluation", P~oc,

National Comput~ Con6~ence, pp.

1087-1095, 1978.

(Teng 1986a) 	 Teng, H.S. "XSAFE: A Prototype

Expert System for Security

Inspection of a VAX/VMS System",

M.S. The-6-i-6, Computer Science
Dept., Worcester Polytechnic
Institute, MA, 1986.

(Teng 1986b) 	 Teng, H.S. "XSAFE: A Prototype

Expert System for Security

Inspection o£ a VAX/VMS System",

M.S. The-6-i-6, pp. 126-130, Computer
Science Dept., Worcester
Polytechnic Institute, MA, 1986.

281

http:Relea.6e

The Appl lcetlon of "Orenge Book" Stenderds
to Secure Telephone Switching Systems

Capt Paul D Engelman
HQ AFCC/AIZ

Scott AFB, IL 62225

A mathematical formulation describing a
telephone switching system Is required to
val ldate Its operation In a multilevel
communications environment. A brief
description of the two maJor components of a
telephone switch are presented, and three
systems are described- two are in use and the
third Is postulated. A mathematical
description of a security pol icy for each of
these systems is stated. This security pol icy
validates telephone cal Is between system
users. A discussion of the reference monitor
concept follows and provides the motivation
for applying "Orange Book" standards to
telephone systems. The formal I ties appl led to
computer systems are shown to apply to
telephone systems, the obvious advantage is
that system capabilities can be increased
because of the increased trust that can be
placed in the system.

Introduction

Para I lei ing th~ combination of the
computer and communications fields is the
merger of COMPUSEC and COMSEC into a broader
discipline - INFOSEC. The ADP community
quickly embraced the broader implications of
INFOSEC, however, the application of computer
related INFOSEC principles to classical
communication domains is sti II I imlted.
Within these domains, the unspoken component
of INFOSEC, OPSEC, Is considered a physical
security Issue. The application of COMPUSEC
formalities and requirements to communications
systems transfers many OPSEC concerns to the
system hardware and software, allowing them to
arbitrate system use in a mathematically
consistent and verifiable domain.

Telephone Switching

General Description

This paper discusses secure telephone
systems limited to single switches within a
closed environment, i.e., a command post. The
system is a single computer-control led device
rather than a network of devices. This
restriction simpl lfies the treatment and
allows a focus on the key point; that
telephone switching systems are amenable to a
mathematical formalization identical to that
performed within the COMPUSEC arena.

Within this system, the maJor components
are:

Station Equipment (Telephone): A
transmitter/receiver which converts an
accoustic signal to/from an electrical
signal and provides and responds to
control signal I lng;

Transmission Medium: The electrical
~ath that signals traverse; a channel or

circuit denotes an end-to-end pat~ and
the path between station equipment and
the switch is a subscriber loop (or
I I ne) : and a

Switching Device: An electrical or
electronic device which physically
connects pairs of subscriber loops.

Overal I, two distinct but interrelated
modules, the switching network and the network
controller, perform the telephone switching
function. A set of switching devices (see
above) comprises the switching network, and
the network controller. provides the
Intel I igence to operate the individual
switching devices.

Signa I I I ng

The sequence of events that transpires
during a normal telephone conversation
I I lustrates the relationship between accoustic
and control signal I lng. Fol.lowing is a
slmpl If led description of the control
signal I lng necessary to support a ~elephone
connection and the Interaction between the
network controller and the switching network.

1. The caller requests service from the
switch by removing the telephone handset
from Its cradle or switch hook.

2. The network controller recognizes the
"off hook" condition and sends a dial
tone to the caller.

3. The caller dials the telephone which
transmits the cal led station's address to
the network controller.

4. If the ca I I ed stat Ion is not busy,
the network controller alerts It by
sending a ringing signal.

5. The network controller provides
feedback, i.e., a ringing tone or a busy
signal depending on the status of the
cal led station, to the cal I lng station.

6. The cal led party accepts the cal I by
I lfting the handset.

7. The network controller recognizes the
cal I acceptance, terminates the ringing
signal and sends the cal I ing/cal led party
address-pair to the network controller
which the creates an accoustic signal
path (circuIt) .

B. The network controller monitors the
connection, releasing It when. either
party "hangs up."

Between steps #1 and #7, alI
communications between the switch and either
party is control signal I ing. Only after step
#7, when the connection is established, can
accoustic signal I ing take place. There are
different techniques for separating control

282

and accoustic signal I ing; among them, in-band
signal I lng and above-band signal I ing.
(Control signal I ing can be heard during the
set-up time, the time between dialing and
ringing, for a long-distance telephone cal I or
during a conversation If the touch tone pad Is
lnadvertentJy depressed.) Control and
accoustlcal signal I lng use the same
transmission medium, but control signals are
used by the network controller and accoustic
signals are routed through the switch network.

Switch Networks

Although the network controller Is
central to this paper, Its discussion Is
deferred to a description of the switch
network to provide a more complete description
of the entl're switch system. Virtually all
telephone switching Is circuit switching, that
Is, the dedicatibn of a connection between a
pair of subscriber I ines for the duration of
the cal I. The switch network Is comprised of
switching devices arranged to support the
simultaneous connection of multiple pairs of
communications channels. Modern switch
matrices are broadly classified as space
division or time-division switches.

Within a space-division network, a
physical I ink Is establ lshed through the
network to connect Individual subscriber
I lnes. The network appears as a matrix with
each Individual subscriber I lne connected to a
single row and column of the matrix.
""Shorting"" the rows and columns at their
Intersection creates the physical connections
within the network.

Figure I represents a conceptual space
division network with switching devices at
each row and column Intersection. In this
conceptual representation, each switching
device corresponds to a memory location In the
network controller's memory space. To connect
subscriber loops, the controller uses the
originating and destination addresses to
algorithmlcal ly determine the memory address
of the switching device that must be ""set.""
In the simple network in Figure I, to connect
subscriber loops A and B requires the network
controller to write to memory location 05.

A Igor I thm Ica I I y,

M = I + N * (0 - 1) where

M: 	 Memory location of the sw1tchlng
device,

1: 	 Address of the Incoming I Ina,
0: 	Address of the output I Ina, and
N: 	 Number of subscriber I lnes

connected to the matrix.

Writing a ""1"" toM wl I I set the fl lp-flop and
complete a connection between the two parties.
After the call Is completed, a ""0"" will reset
the fl 1~-flo~ and disconnect the I lnes.

Within a time-division matrix, the
accoustlc signals being transmitted between
subscriber loops are periodically broadcast on
a common bus. Each active cal I has an
assigned ""time-slot,"" and the subscriber loops
are-con~ected by energizing the appropr~ate
gates when the time-slot is broadcast on the
bus. The periodicity of the time-slot

sequence is dependent on the number of cal Is
In progress.

Subscriber
A 8 C D

01
02
03
04

05
06
07
08

09

--{ J-

l l l
--{)-

- ""1.fl

:J-
l I l

--{

I n
. I l I

r

I I n
I

10

11

12

Legend13

1"'1
 IIUblc:rlber A -> line •1
15 8-> •2
16 C-> •J

0-> ...

Switching Matrix

Fig.

Figure I I portrays a conceptual design of
a t lme·-d IvIs Ion swItch. The network
controller places the cal I lng/cal led address
pair In a circular queue, and circuitry within
the network matrix cycles through the queue,
using the addresses to control the opening and
c I os I ng sequence of the gates. In the sImp I e
network of Figure I I, as time progress:

At T1, queue entry #1 Is accessed and
gates 01 and 04 are opened, connecting
telephones A and 0,

At T2, queue entry #2 Is accessed and
gates 03 and 02 are opened, connecting
telephones C and B,

At T3, queue entry #3 Is accessed and
recognized as an lnval ld address. The
network circuitry accesses queue entry
#1, beginning the cycle again.

There are many different algorithms to
maintain this queue, each with advantages and
disadvantages. However, regardless of the
algorithm, their functional behavior is
identical and easily verified.

Subscriber
A 8 C 0 Legend

subscriber A-> line •1
8-> •2
C-> •3
0-> ...

I 01 0"'1
2 03 02
3 00 00 ..

Que

Fig. II

UnlIke the time-division network, whose
.data stream length Is directly proportional to
the number of connections being supported, the
.t lme-s Iot Interchange network has a fIxed
length data stream with a time-slot for each
subscriber I lne connected to the switch. At
any time, the contents of a subsc~iber I lne's

283

time-slot depend~ on the presence of accoustic
signal I ing on that loop. The physical
ordering of the cal I ing and cal led parties'
time-slots are Interchanged when they are
transferred from the input to the output data
streams.

Figure I I I portrays a conceptual design
of a time-slot Interchange switch network.
The input stream time-slots are "fi I led" and
written In the same order to scratch pad
memory. Input time-slot #1 Is placed In
memory 01, Input time-slot #2 into memory 02,
Input time-slot #S into memory OS, etc.
Control circuitry computes the offset between
the pair of time-slot positions for each
connection and this dictates the access order
of the scratch pad memory. A connection
between subscribers A and C has an offset of
2. The network switch circuitry would copy
memory 03 Into output time-slot #1, memory 02
Into output time-slot #2, memory 01 into
output time-slot #3, etc.

Input Data Output Data

Stream Stream

"
2 Legend3

!Subscriber A-> tlme-!llot•t
2 8-> "'2

C-> "'3
D-> "'4

Note: Content! or Input stream
"'I llld 2 are lnterch21l!J!d" without output stre11m

3 •t and 2

2

2

3

4

Fig. Ill

Although of Increasing complexity, the
hardware descriptions of space-divlsion and
time-division networks is relatively
straightforward, as are the algorithms to
translate address-pairs Into control signals.
Their behavior Is predictable and easily
verified using Boolean algebra. The concepts
of a reference monitor and security kernal do
not apply to the switch network because the
network controller does not arbitrate circuit
connections.

Network Controller

Current generation electronic switches
replace wired-logic with software to provide
network control functions. Referring to
Figure IV, the central processor makes
decisions concerning the val ldlty of address
pairs. The controller transmits the address
pair to the Internal switch network control
circuitry If It determines that the address
pair Is val ld. The Input signal device
(scanner) Is the device through which the
network controller receives control signal I lng
on the Input side. The memory Is used for
program storage, and the scratch-pad memory Is
used for cal I progress Information. The
signal distributor on the output side serves
the same function as the scanner.

Because the network controller makes alI
decisions concerning address-pair validity, a
formal analysis of a switch network Is

284

excluded from the following description.
However, it is lmpor tant to understand the
relationship between the switch network, the
network controller and control and accoustic
signal I lng to fully appreciate the
appl lcabll lty of COMPUSEC formal lties to
secure switching systems.

-l
subscriber

lines

rc~.ddress -~
~~~-· ~ 

NetworkController 

Fig. IV 

Secur I ty Po I I oy 

Prel lminary Discussion 

The conventional COMPUSEC object, i.e., a 
fl le, does not exist within a telephone 
switching system. It Is redefined as a 
subscriber I ine, either inactive or active in 
a completed circuit, that is a target for an 
incoming request. Similarly, In a telephone 
system, "read" access corresponds to 
monitoring an existing conversation and 
"write" corresponds to a broadcast message, 
e.g., simi Jar to a publ io address system. 

The Improper accessing of a file or 
process in a computer system has its paral lei 
in a telephone system as a misconnection. A 
misconnection is the connection of two 
subscriber loops (or a loop and a circuit for 
monitoring or broadcast) whose relative 
security levels do not meet the security 
pol icy or that violate the rules for 
precedence and preemption (an in-progress cal I 
can be preempted by a cal I of higher 
precedence.) 

There are two sources for mlsconnectlons, 
an error In the algorithmic processing within 
the switch matrix, or a logic error In the 
network controller softwa-re. An example of an 
algorithmic error would be an unexpected 
overflow computing an address offset; although 
the network controller val ldated the 
connection, the incorrect offset wil I connect 
different loops then Intended. Algorithmic 
errors are prlmari ly engineering problems and 
are not considered In the following treatment, 
although, they must be considered during a 
system evaluation. A logic error In the 
controller software results In a mlsconnectlon 
by providing an lnval ld address-pair to the 
switch network. The source could be an error 
in the database that describes individual 
subscriber loop characteristics, or an 
Improperly expressed condition (I.e., "(A or 
B) and C" vice "A or (B and C)"). 



The original system descriptions were 
prepared with an emphasis on expressing state 
equations. Unlike computer systems, a user 
can not change the security levels of a 
subscriber loop, so a detal led analysis of 
state-changes Is not II lumlnatlng. As a 
result, only the security pol Icy wl I I be 
described, the state-change equations are very 
similar to those described by Bel I and 
LaPadula. 

The following models portray three 
generations of switching systems. The first 
and second are now In use; the first Is simply 
a TEMPESTed box and the second enforces a 
multi Ievei-I Ike security pol Icy. The third 
generatIon is postu I a ted. In the thIrd 
generation switch, overal I system security 
is enhanced and the system Includes features 
not currently aval I able because of system 
I imitations and the I lmlted scope of security 
evaluations. 

First Generation 

The first generation of secure switching 
systems can be described as a TEMPESTed box. 
The network controller does not enforce 
security. In other words, access to a 
telephone lmpl les authorization to connect 
with any other subscriber I lne. Control I ing 
system access and cal led party .verification is 
an OPSEC problem. The switch supports cal I 
precedence and preemption. 

Expressed In conventional set notation, 

U 	 {ulal I subscriber I lnes connected to 
the switch network} 

S 	 {slsubscrlber I lnes originating 
cal lsi These are the active 
entitles In the system. After the 
circuit Is establ lshed, both I lnes 
(the circuit) are potential targets 
for preemption and are again treated 
as obJects. 

0 {olsubscriber I ines receiving cal lsi 
These are the passive entitles In 
the system. 

C £ P(O x 0) : Set of active circuits 
(ongoing conversations). 

L {I :set of security and 
classification level~; S, TS and TSC 
(compartmented TS)} 

P {plset of precedence and preemption 
levels; None, Interrupt, Priority, 
Flash, Flash Override} A circuit 
created without a preemption level 
maps to a P (precedence) of "None." 
A cal I placed without a preemption 
level maps to a P (preemption) of 
"None." 
Both L and P are connected. 

A 	 {alaccess attributes; connect- £1 
< 	 An irreflexlve, antlsymetric, 

transitive relation "less then," 
A refLexive, symetrlc, transitive 
relation "equivalent to." 

§1 : S, 0 -> L, a function mapping 
subJects and obJects to their 
security level. 

£l : S -> P, a function mapping subJects 
to their preemption level. 

~ : C -> P, a function mapping circuits 
to their precedence level. 

and : Logical AND. 

Any c€C that does not meet the following 
condition Is a mlsconnectlon: 

Vs€S,o€0, 

s,£,0 => §l(s) ~ §l(o) ~~(c) < £l(s) 

First generation systems can not enter a 
non-secure state. The preemption of an 
existing connection by a cal I with a lower 
precede.nce Is the only possible misco·nnectlon. 

Second Generation 

The second generation system has the 
added capabl I lty of classmarklng Individual 
subscriber I ines with a security level and 
enforcing a securIty poI Icy. (Note, thIs 
security classmarklng seems to be enforced as 
discretionary access rather then as mandatory 
access.) Access types are expanded to Include 
a two-way connection, £; and one-way 
connections, broadcast, b and monitor, m. The 
switch supports precedence and preemption. 
The difference between this security pol Icy 
and the first generation switch's Is that the 
ordering relation on L Is now "less then or 
equal to" rather then an equivalence. In 
conventional set notation, 

U, S, 0, C, L, and P: As described 
above. 

A {alaccess attributes; connect-£, 
broadcast - ,2, monitor - !!!1 

< : 	 As described above. 
~ 	 A reflexive, antlsymetrlc, 

transitive relation "less then or 
aqua I to'' 

~. 	£!, and~ : As described above. 
£! : C -> L, a function mapping circuits 

to their classification level, the 
Min (~(o ) .~Co2 >).1 

Any c€C that does not meet the following 
condltlon(s) Is a mlsconnectlon: 

Vs€,o€0, 

S,2_,0 => ~(o) ~ ~(s) ~ ~(c) < £l(s) 
s,,2, o => sl(s) < ((sl<o),cl(c)) and 

- ~(c) <£l(s) - 
s,.m,o => (~(o),£!(c)) ~ ~(s) 

The rational lzatlon for this pol Icy Is as 
follows. A subscriber receiving a cal I does 
not receive an Indication-of the originating 
I ine, only the Incoming I lne. The called 
party must Insure that the classification 
level of the conversation does not exceed the 
security level of his circuit. The cal I 
originator Is responslbll lty for knowing the 
security level of the cal led party's I lne and 
to restrict the conversation appropriately. 

A security pol Icy allowing the connection 
of a higher to a lower security level may seem 
contrary to "normal" computer operations, and 
obviously provides a covert channel. The 
nature of a telephone system Is two-way 
communications; If this two-way connection 
between security levels Is considered from an 
integrity viewpoint rather then a strictly 
security viewpoint, It Is more palatable. The 
alternative Is a rigid enforcement of security 
levels, which at this point, seems extreme. 

285 



Third Generation 

The third generation secure switches have 
expanded capabl I I ties and features and can 
reduce the OPSEC problem. However, there Is 
an Increased demand on the system users. In 
this system, subscriber I lnes are not passive 
entitles, but active elements; at any time, 
specific users are associated with specific 
I lnes. Essentially, each user must log-In 
before using the system, and the switch, 
through access control I lsts CACLs), can 
enforce both system and specific circuit use. 

A circuit request Is redefined as an 
lnterprocess lnvokatlon, ~. to emphasize that 
telephone cal Is are now between user/circuit 
combinations rather then simply between 
circuits. Conventional objects now exist, 
these are user voice mailboxes. The 
voice mailbox Is used If a cal led party Is 
busy, and the cal I lng party can not, or 
~hooses not, to Interfere with the cal I. 
Security control of mal lboxes Is Identical to 
that of any object In a secure computer 
system, the contents are digitized voice 
messages rather then ASCI I strings. 

The pol Icy for voice communications Is 
similar to the above, with the additional 
requirement that an Individual must have 
specific access (discretionary access) to 
specific circuits. 

U, C, L, and P : As described above. 
S = {s!subjects; system users} 
0 = {o!obJects; user voice mailboxes} 

~- P(S x S) : Set of possible 
lnterprocess connection. 

A {a:access attributes; lnterprocess 
communication- I (slml'lar to 
c above) , broadcist - £, 
monitor - ~. read- L• write-~} 

<, < : As.descrlbed above. 
~.-£!, £2, £!:As described above. 
user : S -> U; a function mapping 
----subjects to users. 
acl : S, 0 -> P(U x A); a function 

mapping subjects and objects to 
<user,A> pairs. 

name : U x A -> U; a function selecting 
----the user component of an ACL entry. 
mode : U x A ->A; a function selecting 
----the access component of an ACL entry. 

As above, any lSI that does not meet the 

following condition Is a mlsconnectlon: 


·vs ,s es,
1 2

s ,~,s2 => ~(s2 > ~ ~(s 1 > and1 
£2(C) < £!Cs 1 ) .!.!!2. 

t ac I e e .!£!. <s 2 >. 
where 

~ =~(s > and mode(acle) = ~1 
The conditions for broadcast and monitor 

follow logically, as do the conditions for 
reading and writing to mailboxes. The use of 
ACLs allows the network controller to 
arbItrate 'access to a finer granu Iar I ty then 
within the second generation switch, a 
capabl I lty particularly desirable for 
compartmented Information. Because access 

control is I lmlted and only authorized users 
(val ldated by the switch) can make and receive 
cal Is on specific circuits, the need for 
OPSEC-orlented authentication proceedures 
(I.e., voice recognition) is eliminated. 
Voice mailboxes areal lowed, because they are 
simply files on a computer and easl ly proven 
secure. 

APPLICATION OF THE "ORANGE BOOK" STANDARDS 

Reference Monitor 

The concept of a reference monitor is 
equally applIcable In a secure computer system 
and a secure telephone switch. Admittedly, 
there Is a distinct difference between a one
direction computer message and a telephone 
conversation, but the reference monitor's 
function Is to enforce a formal lzed security 
pol icy, not monitor Information flow. Neither 
Is a specific security pol Icy lmpl led, nor Is 
the Implementation mechanism relevant. 

The reference monitor for a telephone 
.swItchIng system must sat Isty three Iogl ca I 
properties: 1) all connection requests must 
be monitored and the security pol Icy 
(reflected In the switch database) enforced, 
2) the reference monl.tor Is unmodlflable by 
common users, and 3) It has provab I e behavIor. 

From the above discussion of telephone 
switches, It Is obvious that the network 
controller displays the first two properties, 
and state-change functions have been derived 
elsewhere that demonstrate a technique for 
verifying network controller behavior. The 
behavior of the switch network can also be 
verLfled. Unfortunately, there appears to be 
little on-going effort to formally prove 
consistent, secure behavior within the current 
secure switching systems- the purpose of this 
paper Is to motivate a detal led Investigation 
into that area. 

Orange Book Standards 

The fundamental computer security 

requirements described In the Orange Book are 

1) an expl Jolt and wei !-defined security 

pol Icy, 2) access control markings associated 

with system objects, 3) identification of 

individual subjects, 4) system auditing 
and protection of Information on security 
related actions, 6) a system security 
enforcement mechanism capable of being 
analyzed, and 6) a continually protected 
security enforcement mechanism. The reference 
monitor concept Is Inherent In these 
requirements. The security kernel Is the 
hardware and software real Jzatlon of the 
reference monitor concept. 

The switch architecture meets alI the 
above criteria. A security pol Icy has been 
stated, and Is reflected In the switch 
database. Switch operation requires control 
markings of system objects (subscriber I lnes). 
Although lacking In the first and second 
generation switches, the third generation 
switch has provisions for uniquely Identifying 
Individual subjects. Current generation 
switches audit alI connections and alI 
.maintenance actions. Using the methodology 
out I lned In Bel I and LaPadula and elaborated 

286 



on above, the switch enforcement mechanism can 
be analyzed. And finally, the average user 
can not directly access the network controller 
software, which continually protects and 
Isolates the security enforcement mechanism. 

CONCLUSION 

The Initial motivation for applying the 
Orange Book standards to secure telephone 
systems was an analogy between the telephone 
system's physical components and a simple, 
multi-user computer system. The network 
controller Is analogous to the computer (CPU, 
memory, etc.), the switch network Is analogous 
to the front-end processor and the telephone 
Instruments are analogous to the terminals. 
Further lnvest.lgation Into switching systems 
reinforced the analogy; current time-slot 
interchange switches even packetlze the voice 
traffic. 

The primary difference between telephone 
systems and computer systems Is that 
telephones transmit voice traffic (either as 
analog or digital signals) and computers 
transmit ASCI I characters. Also, the voice 
signals never enter the network controller (or 
computer). However, If the telephone system 
Is viewed as a "black box," Information 
enters, Is rerouted and exits, Just as In a 
computer system. The same basic mathematlcl 
formal Isms and evaluation criteria apply. 

The advantages of using the Orange Book 
evaluation criteria are manyfold. The most 
obvious are the abl I lty to increase the 
capabl I I ties and services Df the telephone 
system with a significant measure of 
confidence, and the use of a consistent, wei 1
deflned and understood evaluation criteria for 
system certification. 

ACKNOWLEDGEMENTS 

The author gratefully acknowledges the 
patience and assistance of Russ Housley, 
Senior Systems Engineer, Xerox Special 
Information Systems, In the review and editing 
of this paper. 

Bib I lography 

1. 	 R. F. Rey, Technical Editor Engineering 
and Operations In the Bel I System, AT&T 
Be II Labs, 1973 

2. 	 D. E. Bel I and L. J. LaPadula, "Secure 
Computer Systems: Mathematical 
Foundations," MITR 2547 Vol 1, Nov 1973. 

3. 	 K. J. Blba, "Integrity Considerations 
for Secure Compute Systems," MITR 3153, 
Apr 1977. 

4. 	 R. A. Gove, "Modeling of Computer 
Network," In Proceedings of the 8th 
National Computer Security Conference, 
1985 

5. 	 DoD 5200.28-STD, DoD Trusted Computer 
System Evaluation Criteria, Dec. 1986. 

287 



THE NATIONAL COMPUTER SECURITY. CENTER 
TECHNICAL GUIDELINES PROGRAM 


Phillip H. Taylor 

Chief 


Technical Guidelines Division 

National computer Security Center 


9800 Savage Road 

Ft. George G. Meade, MD 20755-6000 


(301) 859-4452 


Introduction 

Background 

The Technical Guidelines Division 
of the National Computer Security 
Center produces, and supports others 
who produce, . Computer Security 
technical guidelines publications.
The purpose is to provide a national 
computer security literature base that 
distributes computer security 
knowledge and techniques, instills an 
accepted computer security 
terminology, and applies research to 
practical problems of computer
security. 

The National Computer Security 
Center (NCSC) has working 
relationships with many other 
organizations. Their support and 
assistance is critical to the overall 
success of the technical guidelines 
program. The Technical Guidelines 
Division is a service bureau in many 
ways. We produce work required by our 
customers, prioritized according to 
our customers needs. We bring 
together the wisest people we can 
find, whether from the private sector, 
from a university, or from another 
government agency. Our coordination 
efforts are wide and constant. The 
goal is to produce the best and most 
usable technical guideline possible. 
We want to produce guidelines that are 
easy to read and understand, 
unambiguous, representative of all 
sectors, and helpful. 

Pumose 

The purpose of this article is to 
provide an update on the status of 
computer security technical 
guidelines. Also included is an 
explanation of the levels of 
guidelines that exist and how they 
interrelate, how the requirements 
process works that kicks off new 
computer security technical guidelines 
projects, how the projects are done, 
who is involved, and what the future 
looks like for Computer security
technical guidelines. 

The scope of this article 
includes the technical guidelines work 
done at the NCSC and its contributors 
in the private and civil sectors and 
the academic community. The project 
status summary (given as of the date 
of the presentation) includes the 
purpose of the individual projects 
such as the Trusted Network 
Interpretation, the Trusted Database 
Interpretation, the Trusted UNIX 
Design effort, and "How To" 
guidelines. 

The NCSC and the Technical 
Guidelines Division 

Why Guidelines? 

Guidelines are not the dictates 
of a government agency! They are not 
intended to limit, control, or in any 
way constrict thinking to preset hard 
ideas. They exist to document a 
common set of fundamental principles 
of computer security. They also are 
intended to serve as a source of 
common language and approaches to help 
communicate about 
computer security. 

and implement 

Specifically, the guidelines 
support education for vendors, users, 
and evaluators. They greatly reduce 
the start-up time needed when 
beginning work on computer security. 
The guidelines serve as tools 
themselves, and suggest other tools 
for the evaluation and implementation
of computer security. Certainly one 
of their most valuable uses is that 
they spread the gospel of computer 
security and expand the cadre of 
experts. The National Computer 
Security Conference and its growth 
document the rapid expansion of folks 
who take computer security seriously. 
The guidelines are focal points of 
knowledge concerning computer security 
on specific architectures such as 
trusted networks and subsystems. 

288 



What Has Been Happening? 

The Technical Guidelines Division 
at the NCSC might be more recognizable 
as the old Standards Division. Since 
our brothers at. the National Bureau 
are tasked with writing standards and 
the NCSC writes technical guidelines 
we have changed the organization 
title. 

As of June 1987 the NCSC had 
produced 12 guidelines, was working on 
nearly 30 additional guidelines, and 
had identified and prioritized more 
than 20 additional. 

Note that the large "IDENTIFIED" 
area in Illustration 1 is 
disproportionately larger than the 
number in it when compared with the 
other slices of the pie. This is 
because there are many more 
publications that are yet to be 
identified. Illustration 2 lists 
those projects that have been 
published by the NCSC as of June 1987. 

Program Specifics 

Program Structure 

The technical guidelines created 
at the NCSC are part of an overall 
national framework for computer 
security technical documentation. 
This national framework has been 
devised to assure that the many people 
and organizations interested in 
computer security are represented, the 
required technical publications are 
produced, and duplication of e·ffort is 
minimized. 

The technical guidelines ~rogram 
has two levels. They are the 
Evaluation and Design Level and the 
Support Level. The Evaluation and 
Design Level is a level of high 
abstraction and truly represents the 
cutting edge of computer security 
technology. In Illustration 1 the top 
level represents the fundamental 
principles of computer security. 
These fundamental principles are 
derived from the requirements of 
computer security policy. The second 
level is the criteria and 
interpretations level. These two top 
levels are the Orange Book level in 
that the original Orange Book was made 
up of the fundamental principles of 
computer security and the criteria for 

is 

the evaluation of a stand-alone 
operating system. 

Now the technical guidelines 
program creating new criteria and 
interpretations for the evaluation and 
design of trusted networks, 
subsystems, database management 
systems, distributed systems, and 
tactical and embedded systems. The 
criteria and interpretation 
publications detail the features 

required 
for it 

in 
to 

a 
be 

specific architecture 
trusted at defined 

levels. The criteria and 
interpretations also contain metrics 
that designers, evaluators, and users 
can apply to the features in an 
architecture or system to gauge if the 
required computer security features 
are indeed included and work as 
intended. 

There are technical "How To" 
books and administrative "How To" 
books. The technical "How To" books 
are intended to flesh out how to use 
the metrics and features discussed in 
the criteria and interpretation level 
guidelines for the different 
architectures. For example, how does 
one do configuration management for a 
trusted network? The administrative 
"How To" books will look at non
technical assistance such as "How to 
Begin an Evaluation with the National 
Computer Security Center". 

The most important project
recently underway at the NCSC is the 
Trusted Network Interpretation. This 
guideline is essential in that the 
nation is building systems based on 
network architectures and will expand 
these efforts in the future. There is 
a large effort now towards building 
secure networks. The trend towards 
building architectures with widely 
distributed workstations, servers, and 
users creates special needs for 
increased security. In fact, we 
compare working on the Trusted Network 
Interpretation with a mini manned 
space shot -- the work is very complex 
and terribly difficult, every step is 
completely new ground, and there is 
absolutely no room for error. 

At the Support Level of the 
technical guidelines program there are 
many players. For example the 
National Bureau of Standards 
contributes much of its Federal 
Information Processing System 
Standards to this level. The NCSC 1 s 
project on a Trusted UNIX Design is 
also at this level. 

The Requirements Process 

The requirements process that 
establishes a technical guideline as a 
project is not complex. Initially the 
project planning process was driven by 
the needs of the evaluators as defined 
in the Management Plan that governs 
all evaluations at the NCSC. The 
Management Plan specified guidelines 
to compliment the work of the 
evaluators and system designers. When 
the Orange Book was the sole criteria 
and stand-alone systems were the only 
systems being evaluated this was 
simple enough. But the complexity 
introduced by beginning evaluations on 
trusted networks 1 subsystems, and in 
the future a broad range of system 

289 



architectures mandated more structure. 
As discussed earlier the different 
levels of technical guidelines have 
evolved and now each level of that 
structure has requirements. 

Now, too, there are new people 
and organizations involved in computer 
security and they have their own 
special needs. The "How To" books 
become increasingly important as more 
interested persons get involved - many 
of whom have limited experience with 
Computer security and evaluations. 
The expanding number of architectures 
being evaluated requires more criteria 
and interpretations to be written. 

Now we must insure that all have 
a chance to participate in the 
requirements process. We have begun 
writing articles for publication that 
will reach the new and old players and 
invite their suggestions for new 
guidelines or recommend changes to old 
ones. This paper is part of that 
process. I invite you to forward your 
ideas and suggestions to the Technical 
Guidelines Division at the NCSC. 
Suggestions will go to the Technical 
Guidelines Review Board which has been 
established for this purpose. All 
suggestions will get responses. 

Setting Priorities 

Obviously a problem is evolving. 
Where are the resources to produce all 
of the technical guidelines? Which 
guideline is most urgently needed? 
Who has the most critical need for a 
technical guideline to address their 
problem? Certainly there are few 
experts around to lead these efforts. 
The growing number of technical 
guidelines requirements, the success 
of computer security as reflected by 
the awakening of a national will for 
computer security, and the staggering 
increase in the number of systems 
being built with computer security in 
mind tax the previously serial 
production of guidelines. 

Now clearly we must carefully 
assign priorities to projects based on 
national need and the greatest impact. 
The priority list is developed by the 
Technical Guidelines Division after 
gathering inputs from many sources. 
At the end of this talk we will give 
you a survey to fill out that will 
help us in our priority planning as 
well as in our quality assurance 
program. This is one of a number of 
efforts we have underway to determine 
what our priorities should be. 

How Projects are Done 

The development process that 
results in a guideline can be quite 
varied depending on the technology 
being documented. Some of the factors 
that determine the process are who is 

going to lead the work, who is going 
to do the work, when is the guideline 
needed, 
available? 

and how much money is 

In general the development 
process begins with a search of the 
existing literature and an exploration 
into who knows the most about the 
subject. The issues that must be 
addresed and solved are determined and 
solidified. Then a dialogue is 
initiated, usually in person, by phone 
and through DOCKMASTER. All of this 
interaction results in an issues paper 
that is intended to serve as the basis 
for a guideline. The issue paper is 
also the strawman that generates 
comments from interested parties. 
From the comments the scope and 
specific intent of the future 
guideline can be determined. The 
project manager can generate a tasking 
plan·that will assign a whole document 
or parts of a document to those who 
will be the authors. Then the authors 
synthesize the total research to that 
point into a draft guideline. The 
drafts are published for review and 
comment: first to a small group of 
very knowledgeable reviewers, and then 
later to a more general audience. At 
last, the guideline will be published. 

Project status 

Illustration 5 shows the 
technical guidelines program timelines 
as of June 1987 for the projects 
coordinated by the NCSC. The project 
is listed in the year that it will be 
completed. Note that some projects 
are underway now even though they are 
not scheduled for completion until 
FY90. Clearly these projects are 
tough and require long lead times for 
research and maturation. The 
asterisks indicate that the project is 
underway. 

Future Projects 

The guidelines requirements 
through the year 1990 are pretty 
clear. Obviously, some guidelines are 
much more difficult than others. 
Among the most difficult are the 
tactical systems guidelines and the 
embedded systems guidelines. While 
they are not scheduled for publication 
until the 1990 period we have begun 
our investment in them and we are in 
the literature research phase of the 
preparation cycle. 

Illustration 6 shows that the 
greatest number of publications 
underway in the 1988 through 1990 time 
period are in the "How To" series. 
These are the guidelines that the 
evaluators, designers, and users will 
use most in their daily work. The 
numbers of "How To" books will grow 
significantly as the criteria and 
interpretation level guidelines are 
produced. 

290 



conclusions 

The technical guidelines program 
has a key role in the development of 
computer security. It provides the 
library for computer security work. 
It gives us a common language and a 
common view of the computer security 
world. Even if we disagree, it 
provides us something to disagree 
about with reference points and 
metrics for discussion. It is in the 
technical guidelines that we codify 
our understandings of the science and 
it is here that we merge our ideas 
about how to secure new architectures. 
This is where we look ahead. 

291 



TECHNICAL GUIDELINES 

AS OF 15 APR 87 

ILLUSTRATION 1 


292 




cc 

WHAT HAS BEEN WRITTEN? 

• TRUSTED COMPUTER SYSTEM EVALUATIONIII.III-1983 

• TRUSTED COMPUTER SYSTEM EVALUATION lllillliiJII))- 1985 {DoD-STD) 

• COMPUTER SECURITY!IIIIIIIIIIII1- 1985 

•11111111\ll BEHIND THE COMPUTER SECURITY REQUIREMENTS - 1985 

•!111111111'1'; MANAGEMENT GUIDELINE - 1985 

•1iii&IIIJI, WORKSHOP PROCEEDINGS - 1985 


.;lll'llll,l:,llllllllllj- 1985 


• TRUSTED~II.IIIl EVALUATION CRITERIA - 1985 {DRAFT) 

• "COMPUSECese" COMPUTER SECURITY:I~IIIIIII, - 1985 (EDITION 1) 

•iiiiiiiii!IJ[IJJ;JIItSECURITY CONSIDERATIONS- 1985 

•!IIIIIIII!MANAGEMENT SYSTEMS SECURITY WORKSHOP PROCEEDINGS- 1986 

• A GUIDELINE TO~IIIlllfii;IIIIIJJII~SECURITY- 1987 

XLLUSTRATXON 2 

293 



DESIGN AND EVALUATION LEVEL 


NCSC 

DEVELOP 

SUPPORT LEVEL 

ENCOURAGE 
COORDINATE 

DEVELOP 
EMBRACE 

CONTRIBUTE 

DEVELOP 
EMBRACE 

ILLUSTRATION 3 


294 




DEVELOPMENT PROCESS 


• LITERATURE RESEARCH 

• DETERMINE ISSUES 

• INITIATE DIALOG 

• DEVELOP ISSUE PAPER 

• SOLICIT COMMENTS 

• DEFINE SCOPE 

• TASK FCRCs/CONSULTANTS 

• SYNTHESIZE 

• REVIEW/COMMENT 

• TECHNICAL REVIEW BOARD 

• PUBLISH 

ILLUSTRATION 4 

295 



TECHNICAL GUIDELINES PROGRAM 
DEVELOPMENT SCHEDULE 

FY87 FY88 FY89 FY90 

*TRUSTED NETWORK INTERP 
*NCSC ORANGE BOOK 
*CONFIGURATION MGNT 
"CIVIL SeCTOR E!NVIRON 
*WORKING WITH THE NCSC 
*DAC 
*AUDIT 
*REVISED MAGNETIC REM 
*QUALIFIED PRODUCTS LIST 
*GLOSSARY 
CRITERIA REVIEW BOARD-CTD 
OFFICE AUTOMATION-CTD 

•SUBSYSTI!!MSINTI!!RPRI!!T 
*TRUSTED UNIX DESIGN 
*SYSTEM ARCHITECTURE 
*DESIGN DOCUMENTATION 
*LABELING 
*COVERT CHANNEL ANALYSIS 
*TRUSTED FACILITIES MANUAL 
*DAA ACCREDITATION GUIDE 
*MAC 
*NETWORK TESTING GDLN 
SSO GUIDELINES 
SYSTEM INTEGRITY 
SECURITY TESTING 
PRODUCT DISTRIBUTION 
SECURITY FEATURES GUIDE 
TRUSTED PATH . 
PRIVATE SECTOR'ENVIRON 

*DBMS INTERPRETATION 
TEST PLANS 8t DOCUMEN 
DESIGN SPECS & VERIF 
HDW/FMW VERIFICATION 
SOFlWARE VERIFICATION 
SECURITY MODELS 
AIS INSPeCTION GUIDE! 
AIS STANDARD PRACTICE 
OBJECT REUSE 
TRUSTED FACILITY MGNT 
TRUSTED RECOVERY 
ELECTRONIC MAIL P.RIVACY 

DISTRIBUTED PROCESSING 
IDENT. & AUTHENTICATION 
*TACTICAL SYSTEMS 
*EMBEDDED SYSTEMS 
INSIDER THREAT 
SECURITY MODEL INTERPRET 

*DECLASSIFICATION SOFTWARE 
*PRODUCT ACQUISITION GUIDE 

" INDICATES PROJECT UNDERWAY 

AS OF 15 APR 87 

ILLUSTRATION 5 

·, ~
296 



SUPPORT TECHNICAL 
DOCUMENTATION HOW TO BOOKS CRITERIA REPORTS 

TRUSTED UNIX DESIGN SYSTEM ARCHITECTURE TRUSTED NETWORK INTERPRET. 
CIVIL SECTOR ENVIRONMENTS DESIGN DOCUMENTATION NCSC ORANGE BOOK 
WORKING WITH THE NCSC CONFIGURATION MANAGEMENT SUBSYSTEMS INTERPRETATIONS 
DAA ACCREDITATION GUIDE TEST PLANS & DOCUMENTATION DBMS INTERPRETATION 
OFFICE AUTOMATION LABELING DISTRIBUTED PROCESSING 
SSO GUIDELINES COVERT CHANNEL ANALYSIS TACTICAL SYSTEMS 
PRIVATE SECTOR ENVIRON. TRUSTED FACILITIES MANUAL E!\IIBEDDED SYSTEMS 
DECLASSIFICATION SOFTWARE DAC INSIDER THREAT 
REVISE MAGNETIC REMANENCE MAC 
QUALIFIED PRODUCTS LIST NETWORK TESTING GUIDELINES 

CRITERIA REVIEW BOARD DESIGN SPECSNERIFICATION 

GLOSSARY AUDIT 

PRODUCT ACQUISITION GUIDE SYSTEM INTEGRITY 

AIS INSPECTION GUIDE SECURITY TESTING 

AIS STANDARD PRACTICE 
ELECTRONIC MAIL PRIVACY 

PRODUCT DISTRIBUTION 
SECURITY VERIFICATION 
SECURITY MODELS 
IDENT AND AUTHENTICATION 
OBJECT REUSE 
TRUSTED FACILITY MANAGEMENT 
TRUSTED RECOVERY 
SECURITY MODEL INTERPRETATIONS 

AS OF 15 APR 87 

ILLUSTRATION 6 

297 



Gm'I'lNG ORGANIZATIONS INVLOVED IN CCMPUI'ER SECURITY: 


THE ROLE OF SECURITY AWARENESS 


by Elizabeth Markey 


Chief 1 Policy and Awareness Division 

Office of Infonna.tion Systems Security 

Bureau of Diplanatic Security 

U.s. Depart:Jrent of State 

Objectives of Presentation 

To learn how to get organizations aware and 

invl?l;rerl in carputer security through on-going 

traJ.nl.llg and awareness programs allred at enployees 

at all levels. 


Background 

U.S. Depart:Jrent of State autanated infonna.tion 
systems are used at over 150 diplanatic and 
consular posts worldwide for wo:rd processing 
finan<:=ial ~sburserrents and controls 1 perso~ 
functions 1 ~ssuance of passports and visas 1 and 
other .inportant managerrent functions. BeCause of 
the sensitivity of many of these systems their 
security is being given increasing enpruis'is by 
State Depart:Jrent managerrent. Responsibility for 
a~ted infonna.tion systems security has been 
ass~gi_Jed to the Office of Infonna.tion Systems 
Secur~ty (ISS) of the ~ureau of Diplanatic Security 1 

but ISS cannot do the JOb alone. The effectiveness 
of the systems security program depends to a great 
extent on the participation of other elerrents of 
the S~te Depart:Jrent 1 particularly managers 1 line 
secur~ty personnel 1 and users. · 

Currently ISS is conducting a series of 
seminars c_md J;>riefings aimed at enployees at all 
levels which ~elude the following: 

1) A 2-hour briefing for Executive Directors 
of our regional and functional bureaus in 
the Depart:Jrent~ 

2) ~ 4-day seminar for Regional Security 
Off~cers (RSOs) 1 who are responsible for 
security at our overseas embassies~ and 

3) A 1-2 hour briefing for all new enployees 
with the Depart:Jrent. 

The objective is to ensure that all enployees 
are up-to-date on canputer technologies used 
throughout the Department 1 and have the infonna.tion 
needed to participate effectively in the Depart:Jrent 
of State canputer security program. 

Basic Messages Conveyed 

These systems security seminars and briefings 
are tailored to meet the varying levels of 
knowledge 1 experience 1 and responsibilities of all 
enployees. 

The briefings for Executive Directors stress 
the potential consequences arising fran the lack 
of adequate protection of the organization1 s 
teleccmnunications and autanated information systems 
resources 1 and the ccmnitnent of the organization 
to protect autanated systems resources. Executive 

Directors are briefed on current National and State 
Department system. security policies and standards 1 

as well as potential threats ·and vulnerabilities · · 
Cf our systems. The main objective here is to 
~ure that canputer security in the Department 
f~rst and forenost receives support fran top 
managerrent. 

. The 4-day. seminars for Regional Security 
Off~cers contain much nore in-depth information. 
For exanple 1 officers learn enough about how 
Department of State canputer ·systems function to be 
able to ZAP a password file 1 browse a user 1 s 
directory of files 1 and IIDnitor the activities of 
the System Administrator. The goal is to give the 
officer a good understanding of the technical 
aspects of autanated infonnation systems to know 
where and why security vulnerabilities occur 1 and 
how to detect and correct them. Second this 
seminar includeS four II handS 0IT1 lab Ses'siOns USing 
a Wang VS canputer system. These sessions enable 
e.;tch officer to try out the ideas presented in the 
hrst part of the seminar at a canputer tenninal. 
The officers learn wo:rd and data processing 
capabilities 1 passwo:rd administration 1 and how to 
spot potential weaknesses in the system. In the 
thi:rd part of the seminar 1 the officers are briefed 
on current State Department autanated infonna.tion 
systems 1 security policies and standards and 
poten?-al threats to the systems. The enPhasis 
here ~s on the practical application of the first 
two parts of the seminar to the actual conditions 
which security officers will encounter at overseas 
State Department posts. 

Briefings are also held for all new enployees 
before they begin their enployment with the 
~part:ment. Virtually all of these new enployees 
~11 becane users of our autanated information 
~ystems. Fo7 the IIDst part 1 these briefings stress 1 

~ non-technical tenns , the threats and vulnerabili 
ties of departmental systems and how canputer 

security :impacts them directly. We also give users 
instructions on how to protect the integrity of the 
canputer and the infonnation that goes into and 
out of it. The focus here is On II do I S1 and II don I eo 0 

Finally 1 we stress why the user should be concerned 
with good security practices and how they should 
react to potential problem situations. 

Each seminar and briefing has been carefully 
stru~ured to support our overall objective: 
continued effective participation by all enployees 
in the systems security program. Evaluations by 
participants 1 and later feedback confinn that these 
briefings and seminars are meeting this objective. 

Lessons learned 

In 1987 1 autanated infonna.tion systems security 

298 



nrust be part of every errployee's job. The canputer 
security unit in a large organization cannot hope 
to cover all bases by itself. The experience with 
the State Departrrent systems security saninars 
and briefings has shown that atployees at all 
levels can participate actively in supporting 
systems security goals. But there are two inportant 
prerequisites. Systems security policy and · 
procedures nrust be carefully delineated. It is 
essential that basic policy objectives 1 and specific 
security procedures be constructed to ·support the 
mission of the organization 1 and that the policy 
has the support of line organizations. This 
requires all concerned parties to have a. hand in the 
policy review and approval cycle. Likewise , the 
responsibilities of each unit of the organization 
nrust be v;ell defined. The Office of Infonnation 
Systems Security has followed this path in the 
publication of four detailed autanated infonnation 
systan security standards which have been adopted 
by the Depart::Irent of State. 

Although these points are generally understood, 
training and awareness activities may not always · 
receive the attention they deserve. Crnputer 
operators and technicians may feel that systems 
concepts are teo ccmplex to be grasped by "non
technical" people. The State Depart::Irent experience 
has shown that this is not so. Of course , training 
goals nrust be set realistically. An anaiysis of 
the published security responsibility assigrments 
will shcM exactly what each atployee needs to know 
to do the job assigned to them. If the content 
of the training is sharply focused on these needs , 
it will be apparent to the audience , and they will 
be notivated to apply themselves arid absorb the 
material. Once they gain confidence in their 
ability to deal with crnputer security matters , 
they will beca!e active participants in the · 
autanated infonnation systems security program. 

The devel0fi!e11.t and conduct. of canputer 
security training and awareness activities is not 
a s:il!ple task. A substantial i.rivestment in tiine 
by the systems security unit is required. Haolever, 
the resulting contributions by the organization's 
atployees will repay the effort many times .over. 
Managers , line security people , and end users with 
the proJ?er ·training and support can augment the 
eyes and ears of the systems security unit, 
contribute expertise in physical security ·and 
investigation of security incidents; in smrt help 
to build a team effort to strengthen autanated 
systems security. · 

299 



The Computer security Training 
Base of 1985 

Eliot Sohmer 

National computer Security 


Center 


In August 1985 the 
Director of the National 
Computer Security Center (NCSC)
established a special task 
force consisting of six senior 
Center personnel. The task 
force was the result of the 
Director's recognition that 
there was no established 
curriculum of computer security
(COMPUSEC) courses and that 
Center personnel possessed a 
wide range of capabilities and 
vastly different knowledge 
bases. The task force's job 
was to assess the situation and 
make recommendations to the 
Director for corrective action. 

The task force, led by 
Eliot Sohmer, Chief of the 
Office of Product Evaluations 
and Technical Guidelines within 
the NCSC, issued its final 
report and recommendations on 
24 October 1985. The 
recommendations of the report 
were accepted and are now being 
implemented by the Center. 

Ultimately, the training 
laid out in the plan will be 
made available to anyone 
interested in receiving it. We 
will start by training center 
personnel. our plan is to fit 
the courses together into a 
coherent whole so that the 
material "flows" from concept 
to concept. We will then video 
tape the training and make the 
tapes available to other 
government agencies, 
universities, and vendors. 

The task force's final 
report identified nine 
categories of Center personnel 
ranging from product evaluators 
to research and development 
specialists to clericals (see 
enclosure 1). We included 
clericals and administrative 
assistants to increase their 
awareness of COMPUSEC issues so 
all Center personnel could work 
as a team in this adventure 
called the 11 COMPUSEC 
revolution." 

The task force identified 
eighteen courses we believed 
were needed. Of these, twelve 
were non-technical and six were 

technical (see enclosure 2). 
We then built a matrix that 
enabled us to recommend to the 
Director which of the nine 
categories of employees should 
take which of the eighteen 
training modules (see enclosure 
3) • 

The task force also 
produced a summary of what we 
thought would be appropriate
information to include in each 
module (see enclosure 4). In 
so doing, we gave a curriculum 
committee a head start in 
putting together the courses. 

Since the final report was 
issued, the Office of Technical 
Support within the NCSC has 
taken the initiative and 
developed or supervised the 
development of most of the non
technical courses. The Center 
is now in the process of 
developing all of the technical 
courses. A seventh course, one 
on penetration, has since been 
added to the technical 
offerings. 

Finally, the task force 
also developed a suggested 
"road map" detailing a logical 
sequence in which personnel 
could be guided through various 
parts of this program (see 
enclosure 5). 

I believe the task force's 
work and the subsequent effort 
within the Center to implement 
its recommendations will have 
long-term, significant effects 
on the National Computer 
Security program. The training 
material developed will help 
many sources such as 
universities, government 
agencies, computer 
manufacturers, and the 
evaluation community to develop 
consistency in their approaches 
to COMPUSEC. 

THE NINE CATEGORIES OF CENTER 
PERSONNEL: (Enclosure 1) 

I. Product evaluator 

II. System evaluator 

III. R&D specialist 

IV. Technical implementation 
specialist - an engineer 
working on implementing 
computer security, such as 
BLACKER personel 

300 



V. M~nager - some individuals 
~ay b7 7equired to take modules 
1dent1f1ed for this category 
as well as for another categ~ry
(example: a supervisor who is 
also a systems evaluator) 

VI. Tr~iner - individual who 
works w1th Center education and 
awareness programs 

VII. Support - basically 
non-technical personnel who do 
not fal~ into one of the other 
categor1es (e.g., Cl3 and C23 
personnel) 

VIII. Administrator 
individuals in personnel 

administra.tion and other 

primarily staff functions 


IX. Clerical 

LIST OF TRAINING TOPICS 
(Enclosure 2) 

Non-Technical Courses: 

1. Orientation to Computer
Security Issues: 
Standard terminology and basic 
concepts, Lines of Defense 
Threat and Vulnerability ' 

2: ?enter Organization and 
M1ss1on: . 

Center Organization and Major 

Activities, The Center Within 

NSA, Within DoD and Within 

the Federal Government 


3. Our Fundamental Beliefs and 
Policy••• The Catechism 

4. Policy. Directives, 

Regulations, and Legalities:

NTISSC, SAISS roles• 

Other directives and 

regulations as appropriate 


5. Fundamentals of 

Classification: 

Covernames, codewords 

compartmentation, etc: 


6. Ethics and Responsibility
of Center Personnel: 
Computer Usage (in general and 

as an indi~idual) 

Government employees'

responsibilities 


7. Measuring Computer
Security: 

Introduction to Criteria 

Standards, and Guideline~ 


8. Criteria Part II: 
Cl-Bl; B2; B3-Al 

301 

9. Evaluating the Environment
An overview 

10. Risk Management 

11. Administration of Computer 
Security in an Organization: 

12. COMSEC overview 

Technical Topics 

13. Architectures: 
Implementation issues, 
Technical credibility of an 
Implementation, Show how 
specific architectures either 
support criteria or not 

14. The criteria (Technical 
Version): 
Philosophical/policy 
underpinnings; 
Derivation of requirements from 
"first principles"; 
Structure of Criteria; 
Main elements of each 
division/class (object reuse, 
mandatory controls and 
labeling, formal methods); 
Inter-dependence of 
requirements; 
Relationship of documentation 
required for above 

15. Theoretical Foundations 
Introduction to Logic Security 
Policy Modeling: 
Basic concepts - modeling, 
access control mechanisms, 
etc.; 
Bell-La Padula, information 
flow, non-inference, multilevel 
objects; Finite state machines 

16. Model Interpretation: 
Translation of higher levels of 
abstraction into 
hardwarejsoftware design; 
Assurance that implementation 
enforces rules of policy model 

17. Correctness: 
Specifications 
Metatheorems 
Implementation Correctness 
Formal Semantics of Programming 
Languages · 
Predicate Transformation 
Correspondence mapping
Issue of formal, unambiguous 
specification languages; 
Issue of information flow 
(covert channel analysis) 
and invariant analysis; 
Implementation Capabilities and 
limitations of technology; 
Tools developed to apply 



theory: fundamentals of Hoare 
logic 

18. Evaluation Theory and 
Practices: 
Examination of theoretical 
underpinnings of the three 
major classes of the criteria 
and how modeling and assurance 
concepts are embodied in each. 

TRAINING TOPICS/PERSONNEL
CATEGORIES 
(Enclosure 3) 

1. 	 Orientation to cs Issues 
Student hours: 10 
Personnel Categories:
All 

2. 	 Center Organization/Mission
student hours: 1 
Personnel categories: 
All 

3. 	 Fundamental Beliefs 
student hours: 2.5 
Personnel Categories: 
I, II, III, IV, V, VI, 
VII 

4. 	 Policy, Dir, Regs, 
Legalities 
Student hours: 3 
Personnel Categories: 
II, V, VI, VII(l) 

5. 	 Classification 
student hours: 1 
Personnel Categories: 
I(2), II(2), III(2), 
IV(2), V(2), VI(2), 
VII(2), VIII(2), IX(2) 

6. 	 Ethics/Responsibility 
student hours: 4 
Personnel Categories: 
All 

7. 	 Measuring computer Security 
student hours: 1.5 
Personnel Categories: 
I, II, III, IV, V, VI, VII, 
VIII 

8. 	 Criteria II 
student hours: 3 
Personnel Categories: 
I, II, III, IV, V, VI, VII 

9. 	 Evaluating the Environment 
student hours: 1 
Personnel Categories: 
II, V, VI, VII(l) 

10. 	Risk Management 
student hours: 1 
Personnel Categories: 
II, V, VI, VII(1) 

11. 	Administration of Computer 

Science 
student hours: 1 
Personnel Categories:
II, 	VI 

12. 	COMSEC Overview 
Student hours: 2 
Personnel categories: 
I, II, III, IV, V(1~, 
VI, VII, VIII(1), IX(1) 

13. 	Architectures 
Student hours: 20 
Personnel categories: 
I, II, III, IV, V(1), 
VII(l) 

14. 	The Criteria (tech version)
Student hours: 20 
Personnel Categories: 
I, II, III, IV, V(1), 
VII(1) 

15. 	Theoretical Foundations 
Student hours: 60 
Personnel Categories: 
I, II, III, IV, V(1), 
VII (1) 

16. 	Model Interpretation 
Student hours: 16 
Personnel Categories: 
I, II, III, IV, V(1), 
VII(1) 

17. 	Correctness 
Student hours: 60 
Personnel Categories: 
I, II, III, IV, V(1); 
VII (1) 

18. 	Evaluation Theory and 
Practices 
Student hours: 40 
Personnel Categories: 
I, II, III, IV, V(l) 

(1) job-specific: may be 
required 
(2) required only for new 
hirees or others with 
insufficient experience in 
dealing with classified 
materials 

TOTALS: 

I=l3, II=l7, III=13, IV=l3, 

V=9, VI=ll, VII=7, VIII=4, IX=3 


PERSONNEL CATEGORIES: 

I = 	product evaluator 

II = 	system evaluator 

III 	= R&D specialist 

IV = 	technical implementation 

specialist (BLACKER) 
V = 	manager 
VI = 	trainer 
VII 	= support 
VIII = administrator 
IX = clerical 

302 



DESCRIPTION OF TRAINING 
MODULUES 
(Enclosure 4) 

TOPIC: 1. Orientation to 
Computer Security Issues 

TIME FOR STUDENT TO COMPLETE: 
10 hours 

SUMMARY OF MODULE: Basic 
Theme: What is really going on 
when a computer works; break 
the "hallucination" syndrome 

1. standard Terminology and 
Basic Concepts 

A. How a Computer Works 

B. Computer Subversions 

Trojan Horse 
Trap Door 
Time Bomb (Logic Bomb) 
Data Diddling 
Salami Technique 
superzapping 
Virus 

The results of these 
subversions: 

Destruction (Denial of 
service) 


Alteration of Data 

Disclosure of Data 

Delay (Down Time) 


c. Definitions 

Access Control 
controlled Sharing (not in 

COMPUSECese) 
Reference Monitor 
Security Kernel 
Trusted Computing Base 
system High Operations 
Dedicated Operations 
Controlled Operations 
Multilevel Operations 

2. r,ines of Defense 

A. Physical 

various devices to prevent 
theft damage, or destruction 
to a ~omputer facility or its 
components. 

List devices 
Give major problems and 
examples 

B. Personnel 

Measures taken by 
management to ensure that 
employees in ADP-related 
positions are both 

knowledgeable and trustworthy 
in matters of computer
security. 

List measures 
Give major problems and 

examples 

c. Communications 

The means of ensuring that 
information passing through
communications channels is 
protected from unauthorized 
access and interpretation. 

Describe areas of concern; 
Explain method of protection
(cryptography) 

D. Emanations 

Way of ensuring that our 

electronic equipment does not 

radiate signals that can be 

collected by an adversary. 


Describe problem 
Explain method of protection 

E. Operational Procedures 

Policies and rules that 
ensure that actual practices in 
the computer facility or area 
adhere to principles of 
security. 

Automated audit and 

individual accountability 


List recommended procedures 

Describe operational
environments using secure 
procedures. 

F. Trusted Computer Systems

(TCS) 


components of a TCS 
namely, hardware, software, and 
configuration control - provide 
enough protection to ensure 
that a range of classified and 
sensitive information can be 
processed simultaneously . 
without danger of comprom~se. 

Define hardware, software, 
and configuration control. 
Describe briefly how these 
areas can be protected or are 
evaluated. 

3. Threat and Vulnerability 

A. Threat - external and 
internal 

B. Vulnerability 

303 



(1) Mainframe Vulnerabilities 

The vulnerabilities we are most 
concerned about, those that may 
occur quite frequently. Most 
of these frequently occurring
vulnerabilities are present 
because security was not a 
design issue. We can group 
these recurrent vulnerabilities 
into three categories. The 
first category is the improper 
use of technology; this 
category includes: 
insufficiently trained 
operators, poor applications, 
data entry errors, and 
improperly designed multiuser 
connections. The second 
category encompasses
vulnerabilities generated by
weak or non-secure operating 
systems. These include trap
doors left by system 
developers, easily gained 
super-user (super-zapper) 
status, and microcodejassembly 
language manipulation of . 
operating system controls. The 
third category of 
vulnerabilities are improper 
access controls such as poor 
log-on procedures, weak 
password management, and 
trivial audit procedures. 
Through the use of a trusted 
computer system many of these 
vulnerabilities can be 
alleviated. 

(2) Personal Computers 

Hardware Security Concerns 

A. Theft and Damage 
B. Equipment Aids 
c. Environmental Controls 
D. Magnetic Media 

- information Security Concerns 

A. Theft and Damage of Data 
B. Contamination of Data 

Software Security Concerns 

A. Piracy 
B. Risks of borrowed software: 
viruses and integrity issues 

Communications Concerns 

TOPIC: 2. center Organization 
and Mission 

TIME FOR STUDENT TO COMPLETE: 
1 hour 

SUMMARY OF MODULE: 

This module will contain a 

review of the Center 
organization to division-level 
and a brief description of the 
activities in each entity. The 
discussion will also show how 
the center fits within NSA, 
DoD, and the Intelligence 
Community. our special
national mission will also be 
explained, and,how.th7 Center 
carries out th1s m1ss1on 
through the NTISSIC structure 
will be addressed. 

(Must be taken before Module 
#3) 

TOPIC: 3. our Fundamental 
Beliefs and Policy••• The 
Catechism 

TIME FOR STUDENT TO COMPLETE: 
2.5 hours 

SUMMARY OF MODULE: 

The employee will first 
read the Catechism and then 
participate in a discussion of 
these issues, which will be led 
by a senior center policy 
maker. 

The catechism discussion 

forum will be held 

approximately once a quarter. 


(Module #2 is pre-requisite) 

TOPIC: 4. Policy. Directives, 
Regulations. and Legalities 

TIME FOR STUDENT TO COMPLETE: 
3 hours 

SUMMARY OF MODULE: 

An hour lecture will 
highlight the significant
features of those directives, 
regulations, and other 
documents which govern security 
in the Federal Government. 
Appropriate DoD and OMB policy 
and implementation documents 
will be examined in detail. 
After the lecture, copies of 
the referenced documents will 
be made available for the 
students' study, with guidance 
from the supervisor on which 
documents are most germane to 
the students' work. 

TOPIC: 5. Fundamentals of 
Classification 

TIME FOR STUDENT TO COMPLETE: 
1 hour 

304 



SUMMARY OF MODULE: 

The briefer will review the 
fundamentals of the DoD 
classification system. 
specifically, the briefing will 
include the NSA Act of 1959 and 
a review of Public Law 86-36. 
The four types of protected 
information, need-to-know, and 
the classification categories 
will be discussed. covernames 
and codewords will be defined 
and the reason for them will be 
explained. 

TOPIC: 6. Ethics and 
Responsibilities of Center 
Personnel 

TIME FOR STUDENT TO COMPLETE: 
4 hours 
(2 hours of reading, 1 hour of 
videotapes, 1 hour of 
discussion) 

SUMMARY OF MODULE: 

I. Computer Usage (in general 
and as an individual) 

A. Responsibility Defined 
legal and security requirements 

B. Issues In a computer 
Information Society 

Unauthorized access 
Ownership of Information 
Giving one's password to an 
unauthorized user 
Privacy 
Copywrite violation or piracy 

c. The Center as a Showcase 

II. Government Employees' 
Responsibilities 

A. NSA, DoD, and Government 
standards of conduct and 
related rules and regulations 

B. Our Relationship with 
Non-Government Organizations 

1. 	 DoD community Relations 
Program 

a. 	 Objectives 
b. 	 Policies 

2. 	 Participation in 
commercially sponsored 
conferences/symposia 

3. 	 Participation in activities 
of private 
organizations 

4. 	 Providing information to 

non-Government 
organizations 

5. 	 Dealing with contractors 

- gifts 

- unfair advantage 


c. Handling of Sensitive 

(Unclassified) Information 


1. Sensitive Information 

Defined 


a. Unclassified info which 
may be protected by P.L. 86-36 

b. Information protected by
PL 93-579, the Privacy Act 

2. Responsibilities for 

protecting sensitive 

information 


a. Physical Protection 
b. Need to know 
c. Privacy Act Restrictions 

1. 	 The Law 
2. 	 Internal Rules 

D. Handling Proprietary

Information 


III. The Media; Publication 

Procedures 


A. Release of Unclassified 

Information 


1. 	 Written information: 
a. 	 presentations 
b. 	 school Papers 
c. 	 books 
d. 	 personal records 
e. 	 logos 
f. 	 business cards 

2. Central point of control 
necessary to: 

a. oversee cumulative 
effect of information leaving
Agency 

b. Coordinate with SECDEF, 
DoD, and others, as appropriate 

c. Serve best interests of 
Agency 

3. Procedures for requesting
release 

B. 	 Media inquiries 

1. Central point of control 
necessary as in (A) above 

2. 	 Procedures for handling 

a. 	 Verbal inquiries 
1. 	 telephone inquiries 
2. inquiries received 

during conferences, symposia, 

305 



etc ••• 

b. 	 Written inquiries 
IV. Behavior of a Center 

Representative 


A. Code of Ethics for 

Government Service 


1. 	 Matters of ethical conduct 
include: 

a. 	 Business and 

Professional 

Activities 


b. 	 Bribery and Graft 
c. 	 Gratuities 
d. 	 Contributions or 


Presents to Superiors 

e. 	 Use of Government 


Facilities, Property

and Manpower 


f. 	 Use of Civilian and 

Military Titles in 

Connection with 

Commercial Enterprises 


g. 	 Outside Employment 
h. 	 Gambling, Betting and 


Lotteries 

i. 	 Personal Indebtedness 

2. 	 Responsibilities of 
Employees 

3. 	 Responsibilities of 
Managers 

B. 	 Conflicts of Interest 

1. 	 Major Prohibitions 

2. Non-Disqualifying 

Financial Interest 


3. 	 Procedural Requirements 

TOPIC: 7. Measuring Computer
Security 

TIME FOR STUDENT TO COMPLETE: 

1 1/2 hours 


SUMMARY OF MODULE: 

The purpose of this module 
is to acquaint new employees 
with the purpose and thrust of 
the Criteria, how it fits into 
the Center's mission, and its 
utility as an instrument of 
policy. This module is 
basically intended for 
non-technical staff, and thus 
will not delve into the details 
of Criteria requirements. 
Although some of the material 
will parallel that given in the 
Criteria module for technical 
personnel, it will generally be 
presented in considerably less 
depth. The student should be 

left with an understanding of 
what the Criteria is about, its 
uses, and its importance to the 
Center and Center policy and 
technical directions. 

a. Develop the Need for 
a Criteria: This section is 
designed to lead the student to 
an appreciation of the 
experiences, problems, and 
solutions that led to the 
attempt to write the Criteria, 
and thus lead the student to an 
appreciation of the value of 
the Criteria. Basically, the 
discussion should proceed as 
follows: 

- DoD experience with 
"custom-built" systems; the 
problems of non-common 
terminology, non-common 
perception and articulation of 
requirements, all of which 
leads to expensive systems 
which still may not provide the 
level of security desired. 

- Utility/purpose of 
the Criteria; provide common 
understanding of the 
fundamental security issues, 
provide a common terminology, 
and provide a common yardstick 
for measuring and comparing 
security "goodness." 

b. Derivation From 
Policy: This section is 
designed to lead the student to 
an understanding of the issues 
the Criteria addresses, and why 
it addresses those issues. It 
should be approached from the 
direction of "Let's design 
computer security criteria." 
Selections from relevant 
national policy should be 
presented. This should be in 
"plain English" as opposed to 
DoD jargon. The idea is to 
demonstrate the need to derive 
requirements from basic policy 
statements, and to develop the 
Criteria control objectives. 
The student will be introduced 
to the basic concepts 
underlying the Criteria, such 
as policy enforcement (to 
include DAC and MAC), 
individual accountability, and 
auditing. The student should 
be led to an appreciation of 
the place of each control 
objective in overall security 
fabric. 

c. Structure of the 
Criteria: The purpose of this 
section is to develop a 
familiarity with the D through 

306 



Al terminology, where it comes 
from, and what it means. The 
structure of the Criteria will 
be presented as a scale for 
measuring, with essentially no 
details. Major distinctions 
between the Criteria divisions 
will be characterized. 

d. uses of the criteria: 
Re-emphasize the two basic uses 
to which the Criteria are put,
basically; 

- As a tool for determining 
system security requirements. 

- As a yardstick for 
measuring security "goodness"
of products. 

Each of these should be 
discussed in the context of the 
Center missions they support. 

e. The Criteria in Detail: 
In this section the student 
will be taken on a detailed 
tour of each Criteria division 
and class. Each division will 
be characterized, and then the 
specific requirements of each 
class will be discussed. 
Because this section is 
specifically intended for those 
who require extensive knowledge 
and deeper appreciation of the 
criteria, observations relevant 
to implementation 
choices/difficulties are 
appropriate. The results of 
Criteria interpretation, as 
well as any insights gained 
from the interpretation process 
(i.e., difficulty of applying
the Criteria to some 
situations, e.g., VMM) will 
also be presented. The 
"breakpoints" (i.e., Bl/B2, 
B2/B3) will be studied. Also, 
evaluation issues and 
implications will be 
incorporated into the 
presentation (e.g., what is 
sufficient evidence to support 
the requirements for formal 
specification and 
verification?). 

TOPIC: 8. Criteria Part II 
The Requirements of Each Class 

TIME FOR STUDENT TO COMPLETE: 
3 hours 

SUMMARY OF MODULE: 

This sub-module is designed 
for the person who needs or 
desires more detail on the 
technical content of the 
criteria. It is expected that 

this material will be presented
primarily to educators and 
managers. The material is a 
prerequisite for this 
sub-module. The student should 
be left with an understanding 
of how the Criteria move from 
an emphasis on features to an 
emphasis on assurance, some 
understanding of the details of 
the various classes and 
divisions of the Criteria, and 
an appreciation of how the 
Criteria also serve as an 
instrument of Center policy. 

a. Structure of the 
Criteria: Should start with a 
somewhat more thorough tracing 
of the Criteria from rationale, 
basic principles, and the 
reference monitor concept, all 
of which are derived from basic 
policy statements. Here it is 
desirable to show which 
documents state which 
requirements. Some of the 
basic concepts can be expanded 
upon, notably MAC and DAC 
mechanisms, getting into more. 
detail as to the policy 
requirement and implementation 
implications. Additionally, 
other concepts, such as Trojan 
horse and covert channels, can 
be introduced. The details of 
the Criteria will b~ presented 
as follows: 

- Cl through Bl will be 
addressed as a group, noting 
that the architectural/ 
assurance requirements are 
similar across these classes. 
Discussion of each of these 
classes in detail, showing the 
progress from one class to the 
next higher one. Distinguish 
between mechanisms (e.g., DAC) 
and assurance items (e.g., 
object reuse). Note that the 
emphasis is largely upon the 
addition of mechanism, thus the 
Center view that it is possible 
to "grow" a Bl system from a D 
system merely by adding 
features. 

- B2 Systems: will be 
presented as a separate 
subject, noting the 
distinguishing characteristics 
of this class. The student 
should be left with an 
understanding of the 
requirements for basic system 
structure and architectural 
support for security that 
underlie this class. The 
student should understand these 
aspects of the requirements as 
the beginnings of real 

307 



assurance, noting that at this 
juncture in the Criteria the 
emphasis changes from adding 
mechanism to adding the 
assurance. B2 is the first 
level in which we are assured 
that a reference monitor 
function is credibly 
implemented. 

- B3 and A1; also to be 
presented as a unit, noting 
that A1 is architecturally 
equivalent to B3 (i.e., no new 
features are added). The 
strengthening of the top-down 
design requirements and demand 
for more thorough architectural 
support should be explored, and 
examples from the criteria 
presented. 

b. Relation to Policy and 
strategy: Here we state the 
center position that we will 
always specify ADP system 
security requirements in terms 
of Criteria ratings (vice the 
"Chinese menu" approach). 
Discuss how this is consistent 
with, and in fact follows from, 
the Center mission to make 
improved products widely 
available in the marketplace. 
Discuss the "chicken and egg 
dilemma," and what is being 
done to address it (e.g., the 
EPL, influencing the RFP 
process, national-level policy, 
environments document, etc). 
Discuss the export control 
issues, noting the Center 
position as well as the current 
status of the u.s. export 
control policy. Explore what 
steps the Center is taking to 
continue to encourage vendors 
to cooperate. Can also discuss 
here how the Criteria is a tool 
in determining the R&D 
directions. The basic thrust of 
this section is to leave the 
student with an understanding 
of the Criteria as a document 
which, derived from basic 
policy statements, articulates 
fundamental security 
requirements. Thus it also 
serves as an instrument of 
center policy and a guiding 
tool for charting future 
directions. 

TOPIC: 9. Evaluating the 
Environment 

TIME FOR STUDENT TO COMPLETE: 
1 hour 

SUMMARY OF MODQLE: 

The rationale behind the 

Center Environments document 
will be discussed, especially 
the development of the Risk 
Index. Then some real-world 
examples of how to apply the 
recommendations in the document 
will be discussed. 

TOPIC: 10. Risk Management 

TIME FOR STUDENT TO COMPLETE: 
1 hour 

SUMMARY OF MODULE: 

Risk management is the 
identification of risks to an 
organization's information , 
resources through an analys~s 
of information assets, threats, 
and vulnerabilities. 
Key terms which must be 
understood are: 

asset 
threat 
vulnerability 
risk 
loss 
safeguard 

The module will cover the 
purpose of risk management and 
the methods involved in 
conducting a risk analysis 
project. An example will be 
presented which will illustrate 
this process. 

TOPIC: 11. Administration of 
a computer Security Program in 
an Organization 

TIME FOR STUDENT TO COMPLETE: 
1 hour 

SUMMARY OF MODULE: 

This module describes 
security program management 
considerations. It consists of 
basic guidelines for 
establishing and managing a 
computer security program. 
Specifically, these topics are 
covered: 

1. Elements of a good 

computer security program 


2. Pitfalls to Avoid 

for Managers


3. Senior Management 

Duties in a Computer Security 

Program


4. Internal Control 

considerations for Managers 


s. Audit Function 

Considerations 


6. Making Deliberate 

Business Decisions 


7. Balancing Technology 

308 



and Human Issues 
8. setting and 

Implementing Goals - Managerial
Considerations 

9. Managing Computer 
Employees 

10. Making Computer 
Security Work 

TOPIC: 12. COMSEC Overview 

TIME FOR STUDENT TO COMPLETE: 
2 hours 

SUMMARY OF MODULE: 

This topic is meant to give
the student an appreciation of. 
the COMSEC threat and some 
countermeasures that can be 
used. Some basic concepts of 
encryption, including the DES, 
will be covered. 

A variety of videos and 
readings will be available. The 
exact videos to be viewed will 
be determined by the employee's 
supervisor, selecting those 
most germane to the employee's 
job. 

For example, clerical 
personnel may benefit most from 
material emphasizing the 
vulnerabilities of telephones 
and other office systems. 

TOPIC: 13. Architectures 

TIME FOR STUDENT TO COMPLETE: 
20 hours 

SUMMARY OF MODULE: 

The purpose of this module 
is to provide the student with 
an understanding of the major 
computing architectures, and 
especially how protection 
mechanisms are incorporated 
into hardware and software 
systems. It will provide the 
basis upon which to build an 
understanding of the 
architectural and design 
implications of the Criteria, 
and to explore how specific 
architectures (e.g., stack, 
descriptor, capabilities) 
support (or do not support) the 
Criteria. Liberal use should 
be made of case studies; the 
idea is to use real systems to 
illustrate the points under 
consideration. 

a. Basics: This section 

will introduce the student to 

.fundamental concepts, 


terminology, and mechanisms. 
Various architectures will be 
described, such as 
descriptor-based, stack, and 
object-oriented systems. 
Additionally, memory management 
and process management 
strategies will be explored. 

b. Models of Protection 
Mechanisms: Lampson's Access 
Matrix model will be 
presented. The notion of 
domains, objects, access 
privileges, and rules for their 
manipulation will be presented 
as examples of operational 
models of the Access Matrix 
model. The student should be 
left with an understanding of 
the issues of domain isolation 
authorization of domain access' 
to objects, the transfer, 
revocation, and review of 
access privileges between 
domains, as well as the 
creation and destruction rules 
for both domains and objects. 

c. Architectural 
Support for Domains of 
Protection: Various 
interpretations of the domain 
model are considered, which 
lead to descriptor and 
ring-based protection 
mechanisms, capability-based 
systems, storage-key and 
privileged-mode protection 
mechanisms, domain call-return 
mechanisms, and stack frame 
protection. Each of these will 
be related to the issues 
identified above (i.e., domain 
isolation, etc.) 

d. Implementation of 
Protection Mechanisms: Here we 
discuss the implementation 
issues of protection 
mechanisms. The relationship 
between protection mechanisms 
and the addressing and virtual 
memory mechanisms will be 
discussed. The impact of 
various implementation choices 
(e.g., multiprocessors, 
pipelining, caches, address 
translation buffers, and I/0 
architectures) will be 
examined. Explore trade-offs 
between hardware and software 
implementation. 

e. Case studies: 
Specific architectures are 
studied in the light of 
protection requirements and, 
specifically, the above 
material. The pros and cons of 
each architecture are 
discussed. Performance aspects 

309 



may be brought in here. 
candidate architectures to be 
studied include: 

MULTICS 
SCOMP 
INTEL 432 
BURROUGHS 5500 
IBM 370 

TOPIC: 14. The Criteria 
(Technical Version) 

TIME FOR STUDENT TO COMPLETE: 
20 hours 

SUMMARY OF MODULE: 

The purpose of this module 
is to acquaint new employees in 
technical fields with the 
purpose, thrust, and structure 
of the Criteria, and to present
the justification for its 
essential elements and 
characteristics. Although the 
material will go into 
considerable depth on the 
details of the Criteria 
requirements, it is not 
intended as "the last word" on 
Criteria tutorials; it will 
leave sufficient room for 
further study into the Criteria 
itself, as well as related 
areas. The student should be 
left with an understanding of 
the scope of the Criteria, the 
fundamental issues with which 
it deals, the ways in which it 
deals with them, and the 
utility of the Criteria. The 
module should provide the basis 
for studying the criteria in 
greater depth, and in fact will 
provide the student the base 
upon which the final module 
("Evaluation Theory and 
Practice") builds to develop a 
much deeper appreciation of the 
implications of the various 
criteria requirements. This 
module will also discuss the 
role of the Criteria as an 
instrument of Center policy. 

a. Purpose of the 
Criteria: This section should 
set the stage by demonstrating
the need for a common knowledge
base from which requirements 
can be stated in a consistent 
manner. The primary purposes
of the Criteria to be discussed 
will be: 

- articulate fundamental 

issues, requirements. It 

should be noted here that the 

Criteria is presented in terms 

of requirements, and does not 


mandate implementation; it 
purposely leaves room for the 
vendor to make implementation
choices. 

- provide the basis 
for an objective and consistent 
metric of "security goodness." 

This section will also discuss 
the difference between internal 
controls and external controls 
(e.g., procedures, physical
security, personnel security),
making it clear to the student 
that the Criteria focuses only 
upon internal control 
mechanisms. 

b. Derivation From 
Policy: Discuss the 
philosophical underpinnings of 
the Criteria. Show that it is 
not merely an arbitrary
collection of good ideas but 
rather it is derived form basic 
national policy requirements
and well understood security
and scientific principles.
Show how the "control 
objectives" are derived. At 
this point several fundamental 
concepts will be introduced and 
studied in some detail, such as 
MAC and the lattice model, DAC 
(need-to-know mechanisms),
individual accountability, and 
labeling. 

c. structure of the 
Criteria: Start off with the 
basic elements of the Criteria, 
tying them back to the control 
objectives, and distinguish
between features/mechanism and 
assurance elements. The 
structure should be presented
in overview (i.e., D to A)
first. This will give a global
perspective before delving into 
detail, and allow a chance for 
presenting the justification
for choosing a linear (vice 
multi-dimension) rating
scheme. Next, each Division 
and Class will be studied in 
some more detail, touching only 
upon the main elements of each 
division and class. What is 
important here is to discuss 
the essential characteristics 
of each class, and to show how 
the Criteria progresses from an 
emphasis on mechanism, at the 
lower levels, to an emphasis on 
assurance at the higher levels. 

- Optional - discuss 
the question of "beyond Al"; 
prognostications. can be used 
to show how the basic 
technological and policy 

310 



thrusts of the Criteria can be 
extended, as well as to show 
the Criteria is limited by the 
state-of-technology and at the 
same time provides the base 
from which technical direction 
can be mapped. 

d. Related Topics: Prior 
to getting into the fine-grain
detail of each class of the 
Criteria, some attention should 
be given to aspects of the 
Criteria that are not apparent 
from.a superficial reading. In 
part~cular, the topics to be 
covered will include: 

- What is not included 
and why; denial of service, 
reliability, and integrity 

- Rating scale; examine 
the choices of one-dimensional 
rat~ng vs. a multi-dimensional 
rat~ng. What considerations 
led us to the choice we made. 

- Relation to policy; 
strategy. Here we will note 
the Center position that we 
will always specify ADP system
requirements in terms of 
Criteria ratings (vice using
the Criteria in a 
"cut-and-paste" mode). This 
position will be shown to be 
consistent with the Center's 
mission to make improved 
products available in the 
marketplace. It should also be 
shown to be supportable on the 
technical grounds, that each 
Criteria class is essentially 
defined by its characteristic 
~ssurance elements (i.e., a B2 
~s a B2 regardless of how much 
chrome trim is added or left 
off). 

TOPIC: 15. Theoretical 
Foundations 

TIME FOR STUDENT TO COMPLETE: 
60 hours (2 hours daily for 6 
weeks) 

SUMMARY OF MODULE: 

1. In any security 
evaluation it seems reasonable 
to begin by establishing the 
security policy which guided 
the designers of the entity. 
New technical colleagues need 
to be acquainted with the · 
concept of the security policy 
followed by the various methods 
by which it has been 
expressed. This leads, 
naturally, to the notion of the 

model as the tool for 
describing in precise language 
the elements of the security 
policy. In order to make a 
meaning presentation of the 
models it is necessary that the 
students ha'i.-e a minimal set of 
logical and mathematical 
notions at hand. For example, 
they need to know a few notions 
in set theory and modern 
algebra (partially ordered sets 
and lattices.) Consequentlyi a 
minimal presentation would 
proceed along the following 
lines: 

a. A heuristic 
exposition on the notion of 
security policy with emphasis 
on defining security in the 
context of a computer system. 

b. Basic notion of a 
model as a device for defining 
precisely informally expressed 
concepts. 

c. Basic mathematical 
concepts needed to understand 
existing models for secure 
computer systems. (If one 
objects to the use of the word 
"mathematical," it can be 
replaced with "logical.") 

d. Basic notions of 
access control. A good survey 
is found in Chapter 4 of 
Denning's book. (It is not 
intended that the entire 
chapter be covered.) 

2. When topics a., b., c., 
and d. above have been covered, 
the students are ready to look 
at the models themselves. one 
would then proceed to present: 

a. Bell LaPadula Model 
b. Information Flow Model 
c. Non-Interference Model 
d. 	 Multi-level objects (NRL 


MMS model; SYTEK model) 


3, It would be helpful, if 
time permits, to give examples 
of existing systems, or those 
in the design process, which 
incorporate the models 
described in 2., or variations 
thereof. 

TOPIC: 16.. Model 
Interpretations 

TIME FOR STUDENT TO COMPLETE:. 
16 hours 

SUMMARY OF MODULE: 

The purpose of this module 
is to demonstrate how the 
formal policy model and the 

311 



reference monitor concept is 
actually embodied in lower 
levels of abstraction (i.e., 
implementation detail). The 
main thrust will be to show how 
step-wise decomposition (i.e., 
top-down design, development) 
of the design provides the 
basis for the convincing 
argument that the ultimate 
hardware/software system in 
fact enforces the rules of the 
policy model, and also provides 
the necessary reference monitor 
qualities (i. e. , 
self-protecting, always 
necessary to be invoked, small 
enough to be analyzed). The 
detailed module would proceed 
as follows: 

a. Interpretation of the 
model: Note the intellectual 
gap between the different 
levels of abstraction 
represented by the formal 
policy model and the FTLS 
(which begins to include 
significant implementation 
detail). Show how that 
intellectual gap is addressed 
through the arguments that map 
the state transition rules of 
the ·formal policy model to 
functions of the particular 
architecture (e.·g. , 
descriptor-based, stack) to be 
implemented. case studies 
which can be used to support 
this section include the 
"Unified Exposition and Multics 
Interpretation" (Bell and 
LaPadula), Scomp 
Interpretation, and Multics 
Interpretation (Multics B2 
evaluation) • 

. b. Formal Top-Level 
Specifications (FTLS): 
Introduce the basic principles 
of formal, top-level 
specifications and 
proof-of-correctness (or 
verification) techniques. 
Discuss .the correct level of 
abstraction of the FTLS, 
principles of FTLS design, what 
defines the user/TCB 
interface. Introduce the 
concept of "trusted subjects"; 
what constitutes 11 trustedness," 
what is the role of a trusted 
subject (i.e., why is this 
construct needed?) Explore the 
relation of the FTLS to the 
Reference Monitor concept; 
which aspects of a reference 
monitor are addressed by the 
FTLS, which a:t:e not. Explore 
the distinction between 
functional correctness and 
proper security behavior, and 

that the verification 
technology addresses the latter 
issue. 

Optional - Discuss 
covert channels; what are the 
issues, where do they come 
from, what are the design 
considerations if they are to 
be eliminated? 

c. Spec-to-Code 
Mapping: How the FTLS are 
carried into lower levels of 
implementation detail and, 
eventually, into source and 
object code. Presented as the 
continuation of the argument
that the rules of the formal 
policy model are enforced at 
each level of design, as more 
and more detail is introduced. 
Discuss this set of steps as a 
consequence of the limits of 
the state-of-technology in 
verification (i.e., will not be 
necessary at such time as 
verification of source/object
code is a reality). Demonstrate 
the necessity for showing that 
the following conditions are · 
both true: 

- all the code that 
appears in the TCB is directly 
derivable from the FTLS; no 
additional functionality is 
introduced. All that is added 
is implementation detail. 

- implementation detail 
which is not described at the 
FTLS level represents only non
user-visible functionality; 
represents detail which is not 
at the TCB interface. 

useful case study for this 
section is the SCOMP 
spec-to-code mapping, preceded 
by a reading of the MITRE paper 
on this subject (Benzel). 

TOPIC: 17. Correctness 

TIME FOR STUDENT TO COMPLETE: 
60 hours (2 hours daily for 6 
weeks) 

SUMMARY OF MODULE: 

I. INTRODUCTION 
A. Background Knowledge 
1. Formal logic 
2. set theory 
3 • Modeling , 
a. notion of using prec~se 

language . 
b. exposure to express~ng 

abstract concepts formally 

B. Basics in a Nutshell 

312 



1. What is formal 
specification? 

2. What is verification? 
3. What good is it? Why 

use it? 
4. Role of verification in 

developing secure systems. 

II. THEORY 
A. Read and Discuss 

Seminal Papers 
1. Floyd's "Assigning 

Meaning to Programs" 
2. Hoare's "An Axiomatic 

Basis for Computer Programming" 
3. Hoare's "Procedure and 

Parameters: An Axiomatic 
Approach" 

B. Special Topics 
1. Information flow tools 

a. recommend some of 
John Rushby's papers out of SRI 
explaining the theory and 
implementation of the 

tools. 
b. advantages 
c. restriction & 

limitations of the approach 

III. THE REAL WORLD 

A. Gypsy as a Reflection 
of FloydjHoare Theory 

1. Brief description of 
Gypsy 

2. How it's used 
a. read and discuss 

"Model and Design Proofs in 
Gypsy: An Example Using Bel"! 
and LaPadula. 11 

b. possibly read and 
discuss section of "Using the 
Gypsy Methodology. 11 It depends 
on the time available. 

B. Applications 
1. The EPI (Encrypted 

Packet Interface) work done at 
Texas. Recommend reading 
"Formal Verification of a 
Communications Processor" 

2. Possibly read and 
discuss the paper in the 
Scientific Honeyweller of July 
1985 entitled "Proving a 
Computer System Secure." 

c. How to Evaluate 
1. Analyze and 

understand the approach taken. 
Read and discuss "Structuring a 
System for Al Certification." 
Also read and discuss Platek's 
paper on problems with Feiertag 
tool and HOM to see the dangers 
of placing too much confidence 
in a set of tools simply 
because they are on a computer. 

2. Ask "What's being 
proved?" 

3. Ask "What's being 

assumed?" 

TOPIC: 18. Evaluation Theory
and Practice: Putting the 
Criteria to Use: 

TIME FOR STUDENT TO COMPLETE: 
40 hours 

SUMMARY OF MODULE: 

The purpose of this module 
is to give the student a full 
appreciation of the Criteria 
and its implications. It will 
give the student both 
vocabulary and true 
understanding of the scientific 
principles underlying the 
Criteria, which will allow him 
to be able to present/discuss
the Criteria from a firm 
technical base. It will use 
the Criteria as a central focus 
in order to consolidate all the 
preceding technical material. 
The approach will be to study 
each major class of products
(i.e., Cl- Bl, B2, B3- Al) 
with a view to how the concepts
of modeling and assurance are 
embodied at each level and 
what the architectural' 
implications are on each 
level. The presentation should 
be in the context of choosing
logical building blocks for 
converting high-level models of 
access control and policy into 
working systems which enforce 
the necessary constraints; how 
to progress from abstract 
design to end product in such a 
way that convincing arguments 
can be made for the correct 
security behavior of the end 
product. 

a. Cl Through Bl: The 

approach here, as it will be 

for each of these sections is 

basic~lly: "what is required 

to bu~ld one; what does it mean 

to satisfy the requirements?" 

The issues to be discussed will 

be: 


What are the architecture 

issues? Basically, what are 

"credible controls capable of 
enforcing access 
limitations •.• " (Cl); and what 
are the architectural 
implications? What are the 
implications of the requirement 
that the 11 TCB ••• maintain a 
domain for its own execution 
that protects it•.• "? 

What are the assurance 
issues? What counts for a 
"security policy model" at 

313 



these levels of the Criteria, 
and what are the "convincing 
arguments" which can be made 
for believing that the 
resultant system in fact 
provides the level of 
protection desired? 

What are the implementation 
choices; what tradeoffs can be 
made? What specific 
architectures provide the 
qualities desired? 

b. B2: Primarily the same 
discussions as above. A major
discussion should revolve 
around the question "how are 
the B2 requirements, and thus 
the resulting architecture 
fundamentally different from an 
architecture which satisfies 
the Cl-Bl requirements; why, 
and how, is a Bl architecture 
not adequate for B2?" 

c. BJ to Al: Same 
approach as above (details to 
be worked out by course 
designer). 

d. Lab: Perform a sample 
evaluation; students will show 
reasoning used to decide what 
level of Criteria is satisfied 
by the system being studied. 
Teams of 2 or 3 students will 
evaluate an appropriate device 
(real or imaginary) and produce 
a written report. 

314 



TRAINING ROAD MAP 

BASIC ISSUES: 

T--------------------T 
Orientation 


to 

Computer Security 


Issues 

~--------------------~ 

T--------------------T 
Fundamentals of 

the catechism 


~--------------------~ 

T--------------------T 
Center Organization: 


and Mission 


~-----------·---------~ 

T--------------------T 
Policy, Directives,: 

Regulations, and 


Legalities 


~--------------------~ 

T--------------------T 
Classification 

~--------------------~ 

T-------------------------T 
:Ethics and Responsibility: 

~-------------------------~ 

T---------------------T 
Potpourri 

~---------------------~ 

T--------------------T/
.. .. 
Measuring 
Computer 

: Security :~ . . ~ 
~--------------------~ 

TECHNICAL ISSUES: 

T------------------T 
Theoretical. Foundations 

-->~: .. 
~---------T--------~ 

T-----------~---------T 

Model 
Interpretation 

~-----------T---------~ 

T-----------~----------
Correctness .. 

~-----------T~--------~ 

T-----------~---------T 
Architectures .. 

~-----------T---------~ 

T----~---~---------T 

The 

Criteria 


~--------T---------~ 

***************************** 
* * 
* * * * * T--------------T * * :* :Elements of a : * 

** :Cl-Bl system * 

~::::::::::::::; * 
* 
* 

* :Elements of a * 
** :B2 System A * 
* 

~--------------~ * Potpourri * * T--------------T * * : * ~·~:Elements of a : * ~BJ-Al System : * * : * * ~--------------~ * 
***************************** 

Enclosure 5 

315 



DEPARTMENT OF THE NAVY AUTOMATED DATA PROCESSING 

SECURITY PROGRAM TRAINING 


OPNAVINST 5239.1A 


Patricia Grandy 


Navy Regional Data Automation Center San Francisco 

NAS Alameda, CA 94501-5007 


COMM: (415) 869-5300 

AVN: 686-5300 

ABSTRACT 

The Naval Data Automation Command (NAVDAC) is This approach is suitable for less complex 
an echelon II command of the Chief of Naval configurations and/or microcomputers. 
Operations. It consists of a headquarters 
staff located in Washington, D.C. having NAVDAC, through the NARDACs and NAVDAFs 
echelon III and IV Automated Data Processing located in San Francisco, Washington, D.C., 
(ADP) support activities known as Navy Jacksonville, Newport, and Pearl Harbor, 
Regional Data Automation Centers (NARDACs) conducts more than fifty ADP Security classes 
and Navy Regional Data Automation Facilities annually, at locations all around the world. 
(NAVDAFs). NAVDAC activities are found in 
most regions of the United States where there 
is extensive Navy activity. DON ADP SECURITY PROGRAM TRAINING 

OPNAVINST 5239.1A 
The Commander, Naval Data Automation Command The purpose of the DON ADP Security Program 
(COMNAVDAC) conducts training for all Training is to provide ADP Security Staff 
Department of the Navy (DON) and Marine Corps personnel with an overview of the Navy ADP 
activities (Shore and Afloat) and DON Program, which includes defining the scope of 
contractors. The DON ADP Security Program is the Navy ADP Program, providing an awareness 
established by OPNAVINST 5239.1A, an of the ADP security problem, and emphasizing 
instruction which consolidates all pertinent the need for a working activity ADP Security 
ADP security information on policies, Program. 
procedures, and responsibilities for 
establishing and maintaining ADP security OPNAVINST 5239.1A, the ADP Security Manual, 
programs at all levels within the DON. is a directive. A directive requires 

compliance. What is "ADP Security" all about? 
In implementing an activity ADP security In a few words, it is the means for 
program, one of the bigges~ obstacles facing protecting our investment in automated data 
the Commanding Officer ~s developing a processing. In our ADP "portfolio", we have 
command awareness of ADP security. The DON invested many dollars and much time in the 
approach to a problem of such magnitude as five asset areas defined in the DON ADP 
ADP security, is to analyze the problem, and Security Program. They are: 
find solutions through Risk Assessments. A 
four day "Introduction to the DON ADP I. HARDWARE 
Program• Course provides an awareness of the II. DATA 
ADP security problem and the need for a Navy III. HUMAN RESOURCES 
ADP Security Program. The course attendees IV. SOFTWARE 
are middle management (GS-9 and above, E-7 V. COMMUNICATIONS 
and above) assigned as ADP Security Officers, 
ADP System Security Officers, Network 
Security Officers, Terminal Area Security 
Officers or others with an interest in ADP 
security. Class size is maximum thirty-six 
and quotas are limited to two attendees from 
a command to ensure an equitable distribution 
of experience. The course schedule combines 
lecture, outside reading, and workshops with 
a modular workbook covering twenty-five 
areas. The course includes a challenging case 
study to present the two DON Risk Assessment 
Methodologies. Method I instruction involves 
conducting workshops to systematically study 
assets, their weaknesses and strengths, and 
possible threats: determining the probability 
of a successful attack occurring and the 
dollar value of its impact: and conducting a 
cost/benefit analysis of implementing add
itional countermeasures to achieve an optimum 
level of security. Method II is an 
abbreviated methodology for Risk Assessment. DON ADP SECURITY (FIVE AREAS) 

316 



The DON ADP Security Course consists of the 
following modules presented in a combination 
of lecture, conference, and workshop 
sessions. 

DON ADP SECURITY POLICY 
The objective of this session is to inform 
the students that the current Navy ADP 
Security Policy is a composite of existing 
Department of Defense (DOD) and Navy ADP 
security requirements. The discussion 
includes each specific element of DOD and 
Navy policy upon which the Navy's ADP 
Security Program is presently based. 

ADP SECURITY PROGRAM RESPONSIBILITIES 
This session helps the students to understand 
the distribution of policy-making, program 
management, operating and program review 
responsibilities of National Agencies, and 
Navy Offices involved in the DON ADP Security 
Program. The students are instructed on the 
individual responsibilities of the Designated 
Approving Authority (DAA), the Commanding 
Officer and the ADP Security Staff members 
and will be able to explain how these 
individuals interact to support an ADP 
Security Program at the Navy activity level. 
The DON ADP Security Staff consists of an ADP 
Security (ADPSO), a Network Security Officer 
(NSO), ADP System Security Officers (ADPSSO), 
Terminal Area Security Officers, an Office 
Information System Officer, the activity 
Security Manager and Security Officer, as 
required. Additional security personnel, such 
as Top Secret Control Officer and CMS 
Custodian, are discussed as they interface 
with the ADP Security Staff. 

ACCREDITATION OF NAVY ADP ACTIVITIES AND 
NETWORKS 
The objective of this session is to instruct 
the student on the accreditation concept and 
provide guidance on how to apply these 
concepts to their own activity. A Statement 
of Accreditation is the DAA's formal 
declaration that an appropriate security 
program has been implemented for an 
activity's systems or networks consistent 
with Levels I, II, and III data protection 
requirements. 

SECURITY OF NAVY OFFICE INFORMATION SYSTEMS 
(OIS) 
The objective of this session is to apply the 
knowledge of DON data levels to determine how 
OIS are be secured and which accreditation 
elements apply to the security of these 
systems in their own activities. 

MICROCOMPUTER SECURITY 
This session discusses security requirements 
for Personal Computers (PCs), as well as, 
suggestions for developing an activity 
policy on (1) privately-owned PCs accessing 
DON data from non-government controlled 
workspaces (e.g., horne)~ (2) the use of 
privately-owned software and data for 
government business~ and (3) privately-owned 
PCs, software and data brought into 
government controlled workspaces. This 
session emphasizes developing an activity 
policy on adherence to software licensing 
agreements for copyrighted software packages. 

AFLOAT SECURITY 
Shipboard computer systems provide unique 
considerations with respect to ADP Security. 
This session discusses physical security 
requirements for afloat units when underway, 
in foreign ports, and in drydock or a 
shipyard, TEMPEST certification (policy and 
guidance from Type Commanders), and shipboard 
ADP Security certification for particular 
computer systems, such as, the Shipboard Non
Tactical ADP Program II (SNAP II). 

THE PRIVACY ACT 
This session is designed to make the students 
aware of the significance and impact of 
Public Law 93-579 (The Privacy Act of 1974). 
The students are instructed in how to apply 
Conditions for Disclosure of Information, 
identify releasable information, and explain 
agency requirements. 

MINIMUM ADP SECURITY REQUIREMENTS 
This session teaches the students to relate 
Navy ADP security requirements to their own 
activities, recognizing any deficiencies in 
existing ADP security programs. Minimum 
mandatory requirements include environmental 
controls (temperature, humidity, lighting, 
electrical power, cleanliness, water damage, 
fire safety, smoke detection, etc.}, physical 
security (facility, remote terminal areas, 
disconnect procedures, control zones, etc.), 
communications security, emanations security, 
hardware/software security, and contingency 
planning. 

EMANATIONS SECURITY 
Emanations security discusses measures to 
control cornprorn1s1ng emanations (EMSEC), 
which are required under the provisions of 
DOD S-5200.19, Control of Compromising 
Emanations (U} and supplemented by OPNAVINST 
C5510.93D. Students are made aware of the 
risks associated with using equipment which 
produces compromising emanations, to enable 
them to recognize the various countermeasures 
to be implemented at their ADP facility. The 
session discusses how to initiate requests 
for TEMPEST Vulnerability Assessments (TVARs} 
for all ADP and OIS systems for processing 
Level I data and the necessary procedures to 
follow to obtain TEMPEST Accreditation. 

SECURITY OF ADP MEDIA 
This session is designed to enable the 
students to apply the requirements of both 
the Navy information and ADP security 
programs to marking, accounting for, and 
handling Level I (classified) and Level II 
data recorded on ADP media. 

ADP SECURITY SURVEYS AND CHECKLISTS 
This session provides the students an 
instruction in the use of a standard ADP 
security survey format to account for the 
status of ongoing ADP security programs in 
Navy computer systems and networks. 

RISK MANAGEMENT CONCEPTS 
This session is designed to provide the 
student a working knowledge of the role of 
Risk Management as an Accreditation Process 
and will be able to relate the Risk 
Assessment, Security Test and Evaluation, and 
Contingency Planning sub-processes to an 
Activity-level Risk Management Program. 

317 

http:S-5200.19


ACTIVITY ADP SECURITY PLAN (AADPSP) AND 
ACTIVITY ACCREDITATION SCHEDULE (AAS) 
The students are instructed in how to develop 
a plan for establishing a cohesive ADP 
Security Program within their activities, 
utilizing the AADPSP requirements. The plan 
defines: 

1. 	Scope of the Activity ADP Security 
Program 

2. 	Commanding Officer's Policy Statement 
3. 	ADP Organization and Responsibilities 
4. 	Objectives of the Activity ADP 

Security Program 
5. 	Description of the Current ADP 

Security Environment 
6. 	ADP Security Training 
7. 	Audit/Internal Review 
8. 	ADP Security in Life Cycle Management 
9. 	ADP Security in Configuration Control 

10. 	The Activity Accreditation Schedule 
(AAS) 

The AAS provides a Plan of Action and 
Milestones (POA&M) for the Accreditation 
progress of the Activity. 

RISK ASSESSMENT (METHOD I) 
Risk Assessment (Method I) instructs the 
students to be able to determine the 
circumstances in which Method I Risk 
Assessments must be performed, understand the 
steps involved in this method and be prepared 
to organize and manage Risk Assessment 
studies in their own activities. 

CASE STUDY PROBLEM 
Within this session the students combine 
information obtained during an ADP security 
survey with additional information provided 
about the scope of operations at a fictitious 
ADP activity. The members of the class are 
divided into Risk Assessment Teams and 
provided information to plan and conduct a 
Method I Ri~k Assessment. The workshop 
presentations are critiqued by the other 
teams and class solutions are discussed. 

ASSETS EVALUATION WORKSHOP 
Each team performs asset valuation for one 
category of assets typical of a Navy ADP 
activity (such as data, hardware, software, 
telecommunications, personnel, administrative 
procedures). The workshop includes asset 
identification, asset grouping, asset 
valuation and determining risk assessment 
impact values in the areas of Modification, 
Destruction, Disclosure, and Denial of 
Service. 

THREAT AND VULNERABILITIES EVALUATION 
WORKSHOP 
The students conduct threat evaluations for a 
related set of threats typical of those 
common to Navy ADP activities. The workshop 
includes a description of the threat, 
justification of the vulnerabilities that 
exist, identification of the existing 
countermeasures, and estimation of frequency 
of successful attack for each impact area of 
Modification, Destruction, Disclosure, and 
Denial of Service. 

ALE DETERMINATION WORKSHOP 
The members of the Risk Assessment Teams 
utilize the results of the asset valuations 

and the threat/vulnerability evaluations to 
calculate an Annual Loss Expectancy (ALE) for 
the Case Study ADP activity. The ALE 
determination process is based on the FIPS 
PUB 65 ALE formula: 

IMPACT x FREQUENCY OF OCCURRENCE 
LOSS 

YEARS 

COUNTERMEASURES SELECTION WORKSHOP 
The members of the Risk Assessment Teams 
select and prioritize cost-effective 
countermeasures to reduce the ALE of the 
Case Study ADP activity. 

RISK ASSESSMENT (METHOD II) 
This session instructs the students to 
perform an abbreviated Risk Assessment using 
Method II techniques. Method II includes the 
processes of asset identification and 
valuation, threat and vulnerability 
evaluation, ALE computation, and evaluation 
and selection of additional countermeasures. 

This methodology is appropriate for less 
complex ADP systems and most microcomputer 
systems. 

SECURITY TEST AND EVALUATION (ST&E) 
The objective of this session is to provide 
the students an understanding of Security 
Test and Evaluation as a component of Risk 
Management programs and as a part of the 
accreditation process. The students will be 
able to plan or conduct an ST&E within their 
own activities. 

CONTINGENCY PLANNING 
This session is designed to provide a general 
knowledge of the Contingency Planning 
process. This session enables the student to 
understand how Contingency Plans contribute 
to Risk Management programs and when they are 
required for the accreditation of Navy ADP 
activities and networks. 

AUDIT AND COMPLIANCE 
The objective for this session is to instruct 
the students concerning the role of Navy 
auditors and IG teams in reviewing the 
security programs of Navy ADP and OIS 
activities. 

ACTIVITY ADP SECURITY TRAINING 
This session is designed for the students to 
understand the activity level training 
requirements imposed by the DON ADP Security 
Program and information concerning those 
alternatives available for meeting the 
requirements. 

CONTRACTING AND REQUESTS FOR PROPOSALS 
This lesson enable~ the students to review 
the requirements of the contracting needs 
with COMNAVDAC and understand the role of the 
ADP security staff in their activity con
tracting process. 

NATIONAL COMPUTER SECURITY CENTER (NCSC) 
This session will provide guidelines for the 
student to review the primary and secondary 
mission of NCSC, understand the concept of 
the Trusted Computer System, and describe how 
the Center can be tasked by DON activities. 

318 



COURSE EVALUATION AND QUIZ 
The students complete a quiz covering the 
major issues presented during the course. In 
addition, students are provided with an 
opportunity to evaluate the quality and 
usefulness of course contents. 

SUMMARY 
What does OPNAVINST 5239.1A require? Your 
local NAVDAC activity will teach you what you 
need to know. Come to one of our classes, or 
arrange for our class at your site, to learn 
how to 

- Conduct Risk Assessments 
- Conduct a Security Test and Evaluation 

(ST&E) 
- Prepare and Test Contingency Plans 
- Prepare an Activity ADP Security Plan 

and Activity Accreditation Schedule 
(AADPSP/AAS) 

- Prepare a Statement of Accreditation 
- Obtain Contractor Assistance for ADP 

Security Compliance 
- Obtain Assistance in All of the Above 

I 

319 



SOCIAL ASPECTS OF COMPUTER SECURITY 

Dorothy E. Denning, Peter G. Neumann, and Donn B. Parker 


SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025 


Introduction 

The problem of computer misuse (intentional and acciden
tal) has been a growing concern as the number of computers 
and users increases, and as computers become an integral el
ement in areas such as medicine, finance, and defense. This 
concern has led to advances in computer security technol
ogy, and to the Department of Defense Trusted Computer 
System Evaluation CriteriallJ, which gives criteria for eval
u~ting the security of computer systems in terms of the poli
Cies to be enforced and the assurance one can obtain in the 
correct enf~rc~ment of those policies. The "Criteria" rep
resents a significant step forward in the computer security 
area. 

The objective of this .paper is to examine social aspects 
of computer security, particularly with respect to some of 
the technologies being developed. We believe that the prob
lem of computer misuse must be addressed within a broader 
context that includes the people who regulate and use the 
system, and the information resources that are external to 
the system. Security policies and mechanisms must be eval
uate~ in terms of their effect on privacy and productivity, 
and m terms of the actual and perceived threats they ad
dress. If we ignore these social aspects, then there is the 
danger of developing technologies that are not cost effec
tive, do not address the actual threats, or jeopardize human 
rights. 

In an article on system safety, Leveson 121 observes that 
"Safety is a system problem," and goes on to show that 
one cannot make systems safe just by focusing on software 
and hardware issues. Instead, one must examine the total 
system and its social aspects, including political legal and 
ethical issues. ' ' 

The same is true of computer security. We must pay 
gre~ter attention to the issues of user productivity, privacy, 
ethics, acceptance of security measures, the nature of the 
threats, and the role of computer security within the broader 
context of information security. 

In the remainder of this paper, we elaborate on four 
topics relating to the social aspects of computer security: 
security policy definition and awareness, user productivity, 
privacy, and the broad area of information security. For each 
of these topics, we make specific recommendations aimed at 
improving overall information security: 

Security Policy Definition and 
Awareness 

In many environments, information managers and workers 
lack the knowledge, motivation, and support to apply ba
sic security controls and practices. This is particularly true 
in business, where there are few written rules about how 
the computers may be used. It is not surprising that the 
systems are misused, because the users and their organiza
tions are not clear what the rules are. Also, many users are 
not consciously aware of how their carelessness can deleteri
ously affect other users who are sharing the same resources 
(including computer networks). 

There have been many violations of data privacy and in
tegrity, with a wide variety of motivations - personal gain 
greed, curiosity, harassment, etc. Documented cases includ~ 
external system break-ins; internal fraud and embezzlement· 
implantation of destructive Trojan horses, software time~ 
bombs inserted for blackmail, spoofing, jamming, and so on. 
Hiding of knowledge about system security vulnerabilities 
often (e.g., by system purveyors) creates a head-in-the-sand 
attitude, ripe for underground dissemination of the vulnera
bilities (which are usually known anyway) and abuse. Open 
discussion of such knowledge also creates problems, as it 
whets the appetites of would-be perpetrators. 

The federal computer crime law and 47 state statutes 
define as crimes unauthorized acts with, within, or to com
puters. This makes it imperative for computer systems man
agers to make clear what is unauthorized, such as personal 
use of electronic mail and other computer resources. All 
employees should have explicit requirements to protect in
formation assets in their job descriptions and performance 
evaluation criteria. Adequate motivation to support secu
rity will not be achieved until there are well-defined secu
rity policies and until security is considered part of one's 
job, since security can otherwise be viewed as an obstacle 
to productivity. 

In order to assist organizations develop security policies, 
policy· guidelines can be developed for various types of or
ganizations and various degrees of risk. These guidelines 
could be developed through industry and professional asso
ciations, such as the ACM External Activities Board, the 
IEEE, and the Data Processing Management Association. 

320 



The guidelines would suggest possible policies about what 
is considered to be acceptable use of an organization's infor
mation resources, including personal computers. The policy 
guidelines should address the broad social issues such as user 
productivity and privacy rights, discussing tradeoffs as they 
arise. Based on the guidelines, each organization would for
mulate its own specific policies in accordance with the sen
sitivity and value of the information (and other resources) 
to be protected, and the threats, vulnerabilities, and risks. 

When a user is given an account on a system, or other 
information-related responsibility, the user might be asked 
to read and sign the organization's policy statement. Mak
ing the security policy clear, together with asking all users to 
make a commitment to the policy, could help eliminate much 
computer misuse (both internally and externally), while at 
the same time helping the users appreciate the need for se
curity and the benefits to be gained by it, including making 
them of greater value to their organizations. 

Policies for using personal computers can be developed 
for elementary and secondary schools. Such policies should 
contain a clear statement that personal computers are not 
to be used for unauthorized entry into other computer sys
tems (when in doubt, ask for permission). This could help 
reduce the malicious hacker problem. Since break-ins are of
ten performed more out of challenge than malicious intent, 
alternative challenges can be presented to the students in 
the schools.1 

Overall there is a great absence of pervasive and cred
ible ethical principles; on the other hand, there are many 
incentives (e.g., weak technology) for violating such a code 
of ethics, even if it did exist. Nevertheless, such a code 
should be established, widely taught, and thoroughly prac
ticed within the context of an overall security policy. 

Productivity 

A main purpose of computers is to aid the productivity of 
people and organizations. Many users respond negatively 
towards computer security, because they view it as interfer
ing with their productivity. At least two factors contribute 
to this attitude: First, many users are not consciously aware 
of how security helps them with their work, for example, by 
protecting their files from accidental or malicious destruc
tion, and by allowing selective on-line access to sensitive 
information. Second, many security mechanisms are overly 
complicated or tedious to use or install. 

In addition, many organizations are reluctant to install 
security mechanisms that degrade the performance of the 
system or otherwise interfere with productivity. Indeed, 
many security mechanisms should not be installed for this 
very reason, because they are not justified by a cost/risk 
trade-off. Organizations are also reluctant to switch to more 
secure systems if the more secure systems are not compat
ible with the existing systems or provide less functional
ity. UNIX, for example, has remained popular despite its 
security weaknesses, because its functional properties con

1A recent study on the antisocial behavior of certain members of the 
computer community [3[ concluded that rather different approaches to 
education are required: " ... the cost of these educational environments 
may be considerably less than the losses being incurred." One particular 
recommendation was this: "Access to real computing power should be 
established for interested users, both students and their parents. Em
powerment can lead to increased responsibility." 

tribute to user productivity. Because of its popularity, sev
eral secure versions Of UNIX are under development (e.g., 
see (4]). In many environments, compatibility, performance, 
and functionality take precedence over security when up
grading to a new system. 

If our goal as computer security professionals is to make 
systems more secure, then we must pay greater attention to 
the impact of our policies and mechanisms on productivity. 
In particular, we should strive for policies and mechanisms 
that, within the scope of threats they address, are trans~ 
parent to users, simple to install and use, and offer positive 
benefits to the user community. To illustrate, we will dis
cuss two broad classes of security controls: identification 
and authentication of users, and discretionary and manda
tory access controls. 

Identification and Authentication 

A variety of different mechanisms has been developed to 
identify and authenticate users, including passwords, chal
lenge/response protocols, biometrics, keystroke dynamics, 
access cards, and smart cards. These mechanisms vary con
siderably both in terms of the security they provide and 
their impact on productivity. For example, long meaning
less passwords may offer greater security than short, easy
to-remember ones (if the users do not write them down in 
obvious locations), but are also more annoying to users. 
Some security experts have proposed using super-long, but 
meaningful, passwords, but we do not know whether these 
are preferred by users over shorter, nonsense passwords, 
because they require extra key strokes. Moreover, simply 
lengthening passwords does not protect them from possible 
exposure during transmission. Cryptographic-based chal
lenge/response protocols, such as the PFX system devel
oped by Sytek, can protect against certain threats not ad
dressed by passwords alone (including the exposure threat 
during transmission), but at the same time lengthen the 
time required to login. Biometrics, such as signature ver
ification, hand geometry, voice prints, and electronic fin
gerprints can add significant security, but can be expen
sive and generally require special equipment. Authentica
tion through keystroke dynamics is attractive in terms of 
user productivity, because it is totally passive, low-cost, and 
transparent, requiring no action on the part of users. In ad
dition, it offers continuous authentication, thereby protect
ing a user's session while the user is absent from the termi
nal. On the other hand, because of its passivity, it might 
raise privacy issues under certain circumstances if the users 
are not aware of its presence (we will return to this in the 
next section). Smart cards also can provide a high level of 
security without the need for much user interaction during 
login, but again require special equipment. 

In addition to the various identification and authentica
tion mechanisms, various strategies are applied when a user 
requests access to a subsystem or remote host. In many envi
ronments, the user must supply a separate password for each 
subsystem or remote host. Because this places an extra bur
den on the user, these additional passwords are frequently 
stored on the system, unencrypted, where they are vulnera
ble to exposure. Mechanisms that provide a high degree of 
security without requiring any additional information from 
the user better support the concept that computers are there 
to aid people. 

321 



Access Controls 
Discretionary and mandatory (multilevel) access controls 
can aid productivity by allowing sensitive information that 
serves the needs of different users to coexist on a single host 
computer or network. Without adequate host or network ac
cess controls, it is necessary both physically and logically to 
isolate the information, which interferes with a user's ability 
to access and integrate information. For example, because 
no commercial system supports a multilevel-secure database 
system, users who are cleared for information having differ
ent access classes (e.g., different sensitivity levels and/or dif
ferent compartments) cannot access that data from a com
mon database or manipulate it in a single session. 

Discretionary access controls are often complicated, mak
ing it difficult to grant or revoke access to an individual 
user, and difficult to understand the implications of doing 
so. The former is due in part to inadequate user interfaces. 
For example, on some systems one must remember obscure 
commands for granting access and even what bit patterns 
correspond to what access modes! Search-path strategies 
further complicate matters. The latter is due in part to the 
inherent limitations of discretionary controls [5,6], and their 
lack of policy about information flow, including copies of 
information. The "setuid" facility of UNIX, for example, 
attempts to provide a mechanism for enforcing the principle 
of "least privilege," but has dire consequences if not used 
correctly. Because of the complications associated with dis
cretionary controls, many users, accidentally or intention
ally, grant access to all users rather than to those with a 
need for access. 

Network access controls are often inadequate and diffi
cult to analyze. For example, some network facilities have 
all sorts of special conventions whereby a user can remotely 
login or copy files from one machine to another without giv
ing a password. However, there is no clear security policy 
or model underlying the mechanisms, and the result can 
be total confusion and misapplication of the functionality. 
Reid [7] describes how intruders broke into a network of 
UNIX systems by exploiting vulnerabilities in system direc
tories and permission files. These vulnerabilities often arose 
from shortcuts taken by programmers to improve their own 
productivity, thus demonstrating the importance of provid
ing secure mechanisms that do not burden the users, and 
the importance of making users aware of the consequences 
of break-ins. 

Several studies [8,9,IO] have shown the value of multi
level, lattice-based policies for controlling direct and indirect 
(via information flow) access to information of different sen
sitivities - that is, for enforcing multilevel security. Such 
policies are relatively easy to understand, avoid the need 
for users to grant and revoke access, and avoid the inher
ent limitations of discretionary policies. Moreover, because 
of their simplicity, it is possible to build systems that en
force multilevel security with a high level of assurance (B3 
or AI), and such systems are now becoming commercially 
available. These systems are based on the concept of a ref
erence monitor or security kernel. Examples include the 
Honeywell SCOMP and the Gemini GEMSOS [11]. Sys
tems with a lower level of assurance (BI or B2) could have 
enormous practical value in environments where the threat 
is not great, but the simplicity of multilevel security is de
sirable. 

Applications are under development that can exploit the 
properties of a system enforcing multilevel security. For ex
ample, under sponsorship by the U.S. Air Force Rome Air 
Development Center (RADC), a team at SRI International 
and Gemini Computers is developing a formal policy model 
and design for a multilevel-secure database system, which is 
to be implemented on top of a reference monitor (e.g., GEM
80S) in order tq provide AI assurance [I2,I3,14]. The de- , 
velopment of such applications will enable users to integrate 
sensitive data of different classifications, thereby improving 
user productivity. 

Although most of the early work on multilevel security 
was aimed at protecting classified data, some was aimed at 
protecting sensitive data in the public sector [10], including 
proprietary and confidential data. Lipner [15] has shown 
how multilevel policies can be applied to commercial data, 
and Cohen [16] has argued that such policies help protect 
against computer viruses. Although we do not claim that 
multilevel policies and mechanisms can replace discretionary 
ones, we believe that their potential in the commercial sec
tor has largely been ignored. While some organizations in 
the public sector have made efforts to classify information, 
few if any have attempted clearance of their users. Both 
classification and clearance must be rigorously and compre
hensively accomplished in order to obtain the full benefits 
of multilevel security. 

While multilevel security can improve productivity by 
allowing the integration of sensitive data having different 
sensitivity markings, if misused, it can inhibit productiv
ity by restricting the flow of information, thereby interfer
ing with the needs for efficient, timely, and effective anal
ysis of information. For example, attempting to eliminate 
all covert channels in a system improves security, but also 
impairs communication and the flow of information; simi
larly, attempting to solve all possible inference and aggrega
tion problems improves security, but makes data integration 
and analysis more difficult. When security and productivity 
compete, the appropriate balance can be determined only by· 
examining the particular application environment. 

Discretionary access controls are useful as a means of 
providing a finer granularity of control in order to enforce 
"need-to-know" constraints within the assigned classifica
tions. However, because they are inherently more compli
cated and weaker than mandatory ones, they should not be 
relied upon to control the flow of sensitive information. The 
limitations of discretionary controls are particularly evident 
in databases, where access controls may be at the view level 
(or transaction level) so that authorization can be value
dependent, context-dependent, or history-dependent. 

Other types of controls are also needed in order to en
sure the consistency or integrity of data, and to enforce 
other security policies. Our formal model of a multilevel
secure database system, for example, supports database con
sistency through integrity constraints, transactions, and a 
mandatory integrity policy [I7,I8J. Clark and Wilson [I9] 
argue that integrity is more important than multilevel se
crecy in most commercial environments, and go on to argue 
that such a policy should include controls that enforce sep
aration of duty among employees. 

322 



: ~ 

Privacy 

Computer security is essential for enforcing state and na
tional privacy laws. At the same time, the process of de
tecting threats, vulnerabilities, and abuses may result in 
violations of privacy and other human rights, leading to a 
conflict between the use of computer security to guarantee 
privacy and its use to invade privacy. These privacy issues 
became particularly apparent when backup files for a com
puter operated by the National Security Council were used 
to reconstruct and expose electronic mail messages regard
ifi;g the Iran arms deal. 

One area where this conflict is especially noticeable is 
threat monitoring - that is, analyzing system activity with 
the objective of detecting computer break-ins and abuse. We 
have identified several types of monitoring, listed in order 
of increasing privacy implications: 

1. 	Continuous authentication, such as through keystroke 
dynamics. 

2. 	 Monitoring unusual activity on the system through 
system status information (e.g., tracking password fail
ures and looking for sudden rises in system or network 
activity). 

3. Maintaining an audit trail of user activity for the pur
poses of enforcing user accountability. User events 
recorded in an audit trail may include login times and 
locations, commands executed, and file accesses. This 
type of auditing is required by the Criteria [1] for sys
tems that are rated at the level of C2 and above. 

4. 	 Analyzing user events as recorded in an audit trail in 
terms of abnormal behavior, where "normal" may be 
defined in terms of a user's past behavior or in terms 
of acceptable behavior. Under sponsorship from the 
Space and Naval Warfare Command (SPAWAR), we 
are developing at SRI a real-time Intrusion-Detection 
Expert System (IDES) that would detect various types 
of intrusions by looking for abnormal behavior on the 
system[20,21]. 

5. 	 Monitoring the contents of files and messages (e.g., as 
for the Iran arms case). Any backup system poten
tially gives a mechanism for implementing this type 
monitoring, though they are generally not used for 
this purpose. 

6. 	 Complete surveillance of a user's terminal session 
i.e., all information transmitted to and from a user's 
terminal (except possibly passwords). Limited forms 
of surveillance that provide this type of monitoring 
have been installed in some systems, and Clyde Digital 
Systems has developed a surveillance tool called the 
"Surveillance-Kernel." 

Monitoring has many advantages. For example, it has 
been used to catch outsiders who have broken into computer 
systems, and it could potentially detect other forms of com
puter misuse that go undetected by other security controls. 
Monitoring might be especially attractive in environments 
where the systems themselves lack adequate security con
trols commensurate with the sensitivity of the information 
handled by them. By protecting confidential information 

about individuals from unauthorized access, monitoring can 
help enforce privacy rights and protect information assets. 

While recognizing the benefits of monitoring, we have 
some concern that monitoring could foster a chilling and 
suspicious attitude in the working environment, especially 
if it is misused. In particular, the users could feel that they 
are not considered trustworthy or that their privacy and 
other rights are violated [22]. We are also concerned that 
threat monitoring could have an escalating effect as addi
tional monitoring capabilities are developed in order to pro
tect against a wider range of threats, while at the same time 
the user community becomes increasingly less satisfied with 
the working environment. Further, monitoring can aggra
vate the security problem if the data that are accumulated 
are sensitive but not adequately protected. For example, 
many audit logs accidentally expose user passwords, such 
as when a password shows up instead of the user identi
fier. Finally, the centralization of sensitive audit data that 
is not otherwise available in an integrated form has social 
implications. 

Because real-time threat monitoring systems are not yet 
generally available, it is difficult to determine the extent to 
which these concerns are justified. We can get some in
sights from a study by Irving, Higgins, and Safayeni [23] on 
computerized performance monitoring, which showed that 
"workers perceive increased stress, lower levels of satisfac
tion, and a decrease in the quality of their relationships 
with peers and management as a consequence of computer
ized monitoring." At the same time, however, those authors 
found that the cause of the dissatisfaction was not so much 
the monitoring per se as that "managers overemphasize the 
importance of quantity [over quality] ... in evaluating em
ployee performance." Thus, that study concluded that it 
is "not the technology itself, but rather how it is used by 
management that determines an individual's reaction." 

We believe that any threat monitoring must be carefully 
applied to preserve the rights of privacy and freedom from 
intrusion, and avoid creating an atmosphere that leads to 
employee and other user dissatisfaction. When a computer 
system is being shared, users should not expect that they 
can function privately, in isolation; yet limits must be put 
on monitoring lest it become oppressive. These issues might 
be partially resolved by comparisons with analogous situa
tions such as the sanctity of employee's desks and lockers, 
inter-office mail, television monitoring, use of work-place in
formants, and telephone eavesdropping practices. If suitably 
restricted and administered, monitoring of computer activ
ity could be viewed as a benefit by the user community in 
much the same way that security monitoring of personal 
luggage at airports is viewed as a benefit by air travellers. 

We recommend that a policy be developed regarding 
threat monitoring that addresses such areas as limits on 
threat monitoring, use of the results obtained from moni
toring, obtaining informed consent of users, and providing 
due notice of intent to monitor. The development of a mon
itpring policy should not be limited to security experts, but 
should involve users, as well as psychologists, sociologists, 
constitutional lawyers, and human rights groups. We be
lieve that this task should be assigned high priority in order 
that we do not find ourselves with threat monitoring systems 
that foster social problems in the work place. Our ultimate 

323 



goal must be to create an atmosphere that motivates people 
to behave responsibly and with confidence that both their 
rights and information assets are protected. 

Protecting N oncomputerized 
Information 

Although our society is still heavily dependent on informa
tion that is spoken and printed on paper, we often ignore the 
security of these other forms of information in favor of the 
technological challenges associated with automated informa
tion. Interviews of approximately 100 computer criminals, 
while not necessarily representative of all loss experience, in
dicate a skewing of emphasis across all forms of information 
[24]. Except for some of the malicious hackers, these peo
ple were attempting to solve their intense, unsharable, per
sonal problems with the easiest, safest, and surest methods, 
constrained by their own skills, knowledge, and resources. 
Their preferred forms of information were the spoken word 
first, printed information second, and computerized infor
mation third. Computerized information received their fo
cus of at.tention only when the other forms of information 
were not accessible to them or amenable to their knowledge 
and skills[25]. They did not need the computer as a tool to 
modify, disclose, or manipulate large amounts of informa
tion. 

Protectors of information must assign similar priorities 
in applying security, while not overlooking computerized in
formation in anticipation of the few, unusual perpetrators 
who do not fit the general pattern. Limited security re
sources would dictate "spoof-proofing" of key employees so 
that they are not deceived into giving information to out
siders who lack a need-to-know, and protecting printed pa
per and removable computer media before protecting infor
mation stored in computers or data communications [26]. 

Summary and Recommendations 

The pursuit of technology, in the absence of a broad policy 
that addresses the social aspects of computer security, op
erates in a vacuum that may lead to violations of human 
rights, abuse, or other unwanted consequences. Attention 
must be given to the. social aspects, and we make the fol
lowing specific suggestions: 

1. 	That the social aspects of specific computer security 
policies and technologies be examined in depth. Areas 
that should be addressed include identification and au
thentication, access controls (including those provided 
by add-on security packages), encryption, and threat 
monitoring. The technologies should be examined in 
terms of their actual and perceived effect on produc
tivity and privacy. 

2. 	That generic security policies be developed for differ
ent types of organizations and environments, taking 
into account the social aspects of information protec
tion. The generic policies could serve as guidelines for 
formulating specific security policies within an organi
zation. 

3. 	That a national policy be developed specifically for 
threat monitoring that recognizes the rights of the 
users as well as the potential threats. 

Even though the emphasis in this paper is on the so
cial aspects, it is vital that the technological and the social 
considerations be balanced. They must go hand in hand. 
Either one without an understanding of the other is likely 
to create serious problems. 

Moreover, security must be tempered with many other 
requirements that we have not addressed here, such as reli
ability, safety of use, and real-time responsiveness. To ad
dress a broad spectrum of requirements requires a holistic 
approach. At lower layers of system abstraction we tend to 
optimize rather locally to ensure that the technology sat
isfies rather specialized properties such as file privacy and 
integrity. At the higher layers the optimization may produce 
completely different results when all of the requirements are 
considered (technological and human, health and welfare, 
costs of automating, costs of not automating, etc.)[27]. 

Acknowledgments 

We are grateful to Peter Denning and John Rushby for their 
constructive comments. 

References 

[1] 	 Department of Defense Trusted Computer System Eval
uation Criteria. Dept. of Defense, National Computer 
Security Center, Dec. 1985. DOD 5200.28-STD. 

[2] 	 N. Leveson. Software safety: why, what, and how. 
ACM Computing Surveys, 1986. to appear. 

[3] 	 J.A.N. Lee, G. Segal, and R. Steier. Positive alterna
tives: a report on an ACM panel on hacking. Comm. 
ACM, 29(4):297-9, Apr. 1986. 

[4] 	 V. D. Gligor et al. On the design and the implemen
tation of secure XENIX workstations. In Proc. IEEE 
1987 Symp. on Security and Privacy, pages 102-117, 
IEEE Computer Society, Apr. 1986. 

[5] 	 M.A. Harrison, W. L. Ruzzo, and J. D. Ullman. Pro
tection in operating systems. Comm. ACM, 19(8):461
471, Aug. 1976. · 

[6] 	 D. E. Denning. Cryptography and Data Security. 
Addison-Wesley, Reading, Mass., 1982. 

[7] 	 B. Reid. Risks: lessons from the stanford UNIX 
breakins. ACM SIGSOFT Software Engineering Notes, 
11(5):29-35, October 1986. A shortened version of this 
material appears in CACM 30(2), February 1987, pp. 
103-5. 

[8] 	 C. Weissman. Security controls in the ADEPT-50 time
sharing system. Proc. Fall Jt. Computer Conf., 35:119
133, 1969. 

[9) 	 D. E. Bell and L. J. LaPadula. Secure Computer Sys
tems: Mathematical Foundations and Model. Technical 
Report M74-244, The MITRE Corp., Bedford, Mass., 
May 1973. 

324 



[IOJ 	 D. E. Denning. A lattice model of secure information 
flow. Comm. ACM, I9(5):236-243, May I976. 

[11] 	 R. R. Schell, T. F. Tao, and M. Heckman. Designing 
the GEMSOS security kernel for security and perfor
mance. In Proc. 8th National Computer Security Conf., 
pages 108-II9, I985. 

[12] 	 D. E. Denning, S. G. Akl, M. Heckman, T. F. Lunt, 
M. Morgenstern, P. G. Neumann, and R. R. Schell. 
Views for multilevel database security. IEEE 1hzns. 
on Software Eng., SE-I3(2):129-I40, Feb. 1987. 

[13] 	 D. E. Denning, T. F. Lunt, R. R. Schell, M. Heckman, 
and W. Shockley. A multilevel relational data model. 
In Proc. 1987 Symp. on Security and Privacy, IEEE 
Computer Society, I987. 

[14] 	 T. F. Lunt, D. E. Denning, , R. R. Schell, M. Heckman, 
and W. Shockley. Element level classification with AI 
assurance. 1987. Computer Science Lab, SRI Interna
tional. 

[15] 	 S. B. Lipner. Non-discretionary controls for commer
cial applications. In Proc. 1982 Symp. on Security and 
Privacy, pages 2-IO, IEEE Computer Society, 1982. 

[16] 	 F. Cohen. Computer viruses, theory and experi
ments. In Proc. 7th DOD/NBS Computer Security 
Conf., pages 24Q-263, Sept. I984. 

[17] 	 R. R. Schell and D. E. Denning. Integrity in trusted 
database systems. In Proc. 9th National Computer Se
curity Conf., pages 3Q-36, I986. 

[18] 	 D. E. Denning, T. F. Lunt, P. G. Neumann, R. R. 
Schell, M. Heckman, and W. Shockley. Security pol
icy and interpretation for a class AI multilevel secure 
relational database system. Nov. I986. Computer Sci
ence Laboratory, SRI International. 

[I9] 	 D. D. Clark and D. R. Wilson. A comparison of com
mercial and military computer security policies. In 
Proc. 1987 Symp. on Secun"ty and Privacy, IEEE Com
puter Society, Apr. I987. 

[20] 	 D. E. Denning and P. G. Neumann. Requirements and 
Model for IDES- a Real-Time Intrusion Detection Sys
tem. Technical Report, Computer Science Laboratory, 
SRI International, 1985. 

[21] 	 D. E. Denning. An intrusion-detection model. IEEE 
71-ans. on Software Eng., SE-I3(2):222-232, Feb. I987. 

[22] 	 G. T. Marx and S. Sherizen. Monitoring on the job: 
how to protect privacy as well as property. Technology 
Review, 63-72, Nov./Dec. I986. 

[23] 	 R. H. Irving, C. A. Higgins, and F. R. Safayeni. Com
puterized performance monitoring systems: use and 
abuse. Comm. ACM, 29{8):794-80I, 1986. 

[24] 	 D. B. Parker. Consequential loss from computer crime. 
In Proc. IFIP /Security 86, I986. 

[25] 	 D. B. Parker. Fighting Computer Crime. Charles 
Scribner's Sons, New York, 1983. 

[26] 	 D. B. Parker. Managers Guide to Computer Security. 
Reston, Reston, VA, I981. 

[27] 	 P. G. Neumann. On hierarchical design of computer 
systems for critical applications. IEEE Trans. on Soft
ware Eng., SE-12{9):905-920, Sept. 1986. 

325 



SECURITY AND PRIVACY: Issues of Professional Ethics 

Dr. Marlene Campbell 
Murray State University 
Murray, Kentucky 42071 

ABSTRACT 

The primary purpose of this paper is to pro
vide academicians with both motivation and 
ideas for bringing ethics formulation into the 
college Computer Science or Computer 
Information Systems classroom. It provides 
some mechanisms for introducing the topic and 
discussing its importance. It further pro
vides some fundamental facts and documents 
that are basic to any such discussion. 

INTRODUCTION 

It was a routine morning as John was on his 
way to his job in state government. Traffic 
was not unusually heavy when he was stopped at 
the light at a busy intersection. For some 
reason, the occupant of the car next to him 
caught his eye and his imagination. The car 
was a Mercedes 190e, and the occupant was a 
striking young woman about middle thirties. 
Traffic in her lane moved a bit faster than 
his, and he was further intrigued by the plate 
number II I N E 

When he arrived at the office, he did all the 
routine early morning tasks before flipping on 
his computer terminal. Once the screen was 
illuminated and he was logged on to the sys
tem, however, he made some very unusual 
requests for information. By accessing the 
Department of Motor Vehicles database and 
entering that plate number, he quickly learned 
the young woman's name, her address, vital 
statistics, and driver's license number <which 
also happened to be her social security num
ber). He then accessed various databases main
tained by state and local government and was 
able to learn the following: 

From the State Tax Office he learned her 
place of employment, her position, and 
her salary. 

From the Tax Assessor's Office he learned 
the value of her property and the condi
tions of her deed. <A joint ownership 
with a different last name signaled that 
she was divorced. ) 

From divorce records in the County 
Clerk's Office, he gained information 
about her children, and he learned that 
she had another previous marriage that 
had terminated iri divorce in Reno, 
Nevada. 

He pondered the situation a few moments before 
making his next move, and he 'opted for check

ing school records rather than linking with 
the State Data Exchange Network to find more 
details about this first marriage. In check
ing school records, he learned names, ages, 
and academic characteristics of her two 
children. 

Before abandoning his quest for information on 
the young woman, he added her name to a list 
of legitimate requests for unearned income 
information from the Internal Revenue Service. 
Within a few days, he learned that during the 
previous year she had earned in excess of 
$40,000 from investments, rental income, 
bonuses, and winnings at the track. 

All of this was, indeed, enough to convince 
her that a friend had suggested he contact her 
when he phoned. to make arrangements for a 
date. 

THE FACTS 

The story you have just read is not true. It 
was a scenario set by Pete Early in his arti
cle •Prying Eyes• published in the Louisville, 
Kentucky COURIER JOURNAL MAGAZINE on July 20, 
1986. He used this introduction to question 
the legality of the government's role in 
creating such database linkage,capabilities. 
I use it to introduce a lively classroom 
discussion on •Ethics and the Computer Profes
sional. • 

Computer Security Systems 

Did he violate or defeat any computer security 
system? To answer this question, it is n~ces
sary to co.n111ider what constitutes a security 
system. 

Figure 1 graphically illustrates the various 
layers o~ computer security, the first .of 
which is sound company policiae and procedures 
for access and use. Because this layer is 
somewhat vague and arbitrary, it is depicted 
with a broken line. This is a very vulnerable 
level at which ethics play a very important 
role. 

Other levels include environmental control 
which is some form of physical isolation, 
hardware control, software control, •nd 
encryption. The first two layers can easily 
be penetrated if the computer has dial-up 
capabilities; and the remaining layers, being 
devised by man, can be defeated by man. 

Without knowing the state policies and proce
dures, we still cannot determine if John vio
lated that level. It is highly likely tha~ he 

326 



r 
r------------------Eftvirona.n~al------------------, 

r----------------H~rdwar•·-----------------, 

~----------eo~~w•r•------------1 

------------------t~ 
·~----

FIGURE 1: LAYERS OF COMPUTER SECURITY 

did. We can determine that he did not violate 
other levels o£ security. He was an insider 
who had access to this in£ormation but simply 
chose to use his access 
what questionable manner. 

Computer Crimes Laws 

Did he break any laws? 
answer, we must know 
laws exist and what they 

Since 1978 £orty-seven 

capability in a some

Again, be£ore we can 
where computer crimes 
cover. 

o£ the £i£ty states 

negligence and cited a need £or increased 
sciousness o£ their responsibilities [3]. 

con

About 
lished 

that same time, Bess Gallanis 
an article in which she stated: 

[5] pub

..• as quickly as security systems are 
designed, ingenious criminals or preco
cious kids seem to be that much more 
challenged to £ind a weak link in the 
security chain. Until per£ect 
is designed, the £uture lies in 
legislation and court decisions 
de£ine speci£ic crimes and 
appropriate penalties. 

John Soma [7] in his book published 
same year wrote: 

securi~y 

pending 
that will 

attach 

in that 

have enacted speci£ic computer crimes legisla
tion. Florida has the oldest law and New 
York, Texas, and Indiana have the newest. 
Many o£ these laws did not come easy. 

At the ACM Conference in New York in 1983, 
there was lively discussion on the pros and 
cons o£ such laws. Kenneth Thompson o£ Bell 
Labs claimed that the media was causing legis
lation to start popping up in state legisla
tures that would impose heavy criminal penal
ties £or unauthorized access to computers that 
were an unnecessarily harsh response to acts 
that were more like •computer joy riding.• He 
recommended simple instruction £or youngsters 
that such activities were akin to vandalism 
and should not be practiced. David Brandon, 
then President o£ ACM, charged people who 
operate unprotected systems with contributory 

Although the majority o£ computer related 
crimes are basically "the same crimes 
that have been prosecuted since the apple 
was plucked, • it is di££icult to match a 
speci£ic crime with the traditional 
criminal statute. 

A£ter computer crime hit Congress with the 
in£iltration o£ computer systems belonging to 
Cali£ornia Representative Ed Zschau and 
Arizona Representative John McCain early in 
1986 [2], legislative response was strong and 
swi£t. Not only did some o£ the larger states 

327 



quickly enact laws, Congress passed two bills The following excerpts from the Kentucky
to amend Title 18, United States Code. The Revised Statutes 434.840 - 434.860 may yield
Computer Fraud and Abuse Act of 1986 which some insight at that level. 
became Public Law No: 99-474 on.October 16, 
1986 provides additional pen&lties for fraud 
and related activities in connection with KRS 434.840 - 434.860 
access devices and computers. The Electronic 
Communications Privacy Act of 1986 which 434.840. Definitions.-- . 
became Public Law No: 99-508 on October 21, 
1986 amended the Federal criminal code to 434.845. Unlawful access to a computer
extend the prohibition against the unauthor in the first degree. -- <1> A person is 
ized interception of communications to include guilty of unlawful access to a computer
specific types of electronic communications in in the first degree when he knowingly and 
addition to the interception of wire and oral willfully, directly or indirectly, causes 
communication only. to be accessed, or attempts to access any 

computer software, computer program,
Since he opted not to access the State Data data, computer system, computer network, 
Exchange Network and he did not use a computer or any part thereof, for the purpose of: 
to gain information from the IRS, it is rea <a> Devising or executing any scheme 
sonable to assume that John did not violate or artifice to defraud; or 
the aforementioned Federal law; but the <b> Obtaining money, property, or 
question still remains as to whether or not he services . 
violated a state statute. Since the story 
originated in Kentucky, consider how he would <3> Unlawful access to a computer in the 
fare in light of the Kentucky legislation. first degree is a Class C Felony. 

19§5 §ESSI!W LAWS IF KANSAS 

CAllES MD PIIUSIIENTS 

CHAPTER 108 * 
Substitute for HouSI! Bill No. 2044 

AN ACT l'l!lating to criiii!S and punishlll!nts; COIICI!I"Iling computer crime and unlawful computer aCCI!Ssj classifying
certain acts as misdl!lll!anors and felonii!S. 

Be it enacted by the Legislatul'l! of the State of Kansas: 

Section 1. (1) As used in this section, the following 1o10rds and phraSI!s shall have the meanings respec
tively ascribed thel'l!to: 

la) "Access" means to approach, instruct, COIIIIIunicate with, store data in, retrieve data from, or otherwiSI! 
uke USI! of any ri!SOUrci!S of a computer1 computer system or computer net1o10rk. 

(b) 'Collputer• means an electronic device which perfoi'IIS 1o10rk using progrillllll!d instruction and which has 
one or 1101'1! of the capabilitii!S of storage! logic, arithmetic or c011111unication and includi!S all input, out~ut, 
processing, storage, softwal'l! or ~unica ion facilitii!S which al'l! connected or related to such a device 1n a 
systl!lll or net11ork. 

(c) "Computer network' lll!ans the interconnection of COIIIIunication lini!S1 including microwave or other means 
of electronic comunication, 11ith a computer through l'I!IIOte terminals, or a complex consisting of two or more 
interconnected computers.

(d) 'Computer program" lll!ans a Sl!rii!S of instructions or statl!lll!nts in a f0r11 acceptable to a computer 
which pertnits the functioning of a computer system in a manner di!Signi!d to provide appropriate products from 
such computer systl!lll.

(e) "Computer soft11are• Eans COMputer programs, proceduri!S and associated documentation concerned with the 
operation of a computer systl!ll.

(f) "Collputer systl!ll" lll!ans a set of related computer equipMent or deviCI!S and computer software which may 
be connected or unconnected. 

(g) "Financial instrUEnt' means any check, drattl money order, certificate of deposit, letter of credit, 
bill of exchange credit card, debit card or marketab e security. 

(h) "Property~ includi!S1 but is not limited to, financial instruments, inforution, electronically produced 
on stored data 1 supporting documentation and COIIIputer software in either machine or human l'l!adable form and 
any other tang1ble or intangible itl!ll of value. 

(i) 'ServiCI!S" includi!S1 but is not limited to, eo~~puter time, data prOCI!Ssing and storage functions and 
other USI!S of a. computer, COIIIP.uter. systl!ll or COIIIP.uter netMC?rk to perfor11 USI!ful Mork. . . 

(jl "Supporting documentation" 1nclud1!S1 but 1s not hauted to, all documentation used 1n the construct1on, 
classificahon1 ill~ll!llentation1 USI! or 1101hfication of computer software, computer prograMS or data. 

(2) C011puter cr1111! is: 
(a) Willfully and without authorization gaining or attempting to gain aCCI!Ss to and damaging, modifying,

altering, di!Stroying1 copying, disclosing or taking posSI!Ssion of a c011puter1 computer system, computer net
IIOrk or any other property; 

(b) using a computer, computer system, computer network or any other property for the purpoSI! of devising 
or executing a schl!lle or artifice with the intent to defraud or for the purpose of obtainin9 money, property, 
Sl!rYiCI!S or anr other thing of value by means of falSI! or fraudulent pretenSI! or representahon; or 

(c) 11illful y exceeding the limits of authorization and damaging, Modifying, altering, destroying, copying,
disclosing or taking 	posSI!Ssion of a eo~~puter, computer system, computer network or any other property. 

Computer crilll! IIIlich cauSI!S a loss of the value of li!Ss than $150 is a class A misdl!llll!anor. 
Collputer crilll! which cauSI!s a loss of the value of $150 or ~~ore is a class E felony. 
(3) In any proSi!CUtion for computer crilll!1 it is a defenSI! that the property or serviCI!S were appropriated

openly and avowedly under a claim of title made in good faith. 
(11) Unla11ful computer aCCI!Ss is 11illfully1 fraudulently and without authorization gaining or attl!lllpting to 

gain aCCI!Ss to any computer, computer systl!ll1 computer network or to any COMputer software, program, documen
tation, data or property contained in any computer, computer systl!ll or computer network. 

Unlawful computer aCCI!Ss is a class A misdemeanor. 

(51 This section shall be part of and supplemental to the Kansas criminal code. 

Sec. 2. This act shall take effect and be in force from and after its publication in the statute book. 


Approved April 181 1985 

FIGURE 2: CRIMES AND PUNISHMENT, Chapter 108 

328 



Had he been in Pennsylvania, Title 18, Section 
3933 UNLAWFUL USE OF COMPUTER states: 

<a> OFFENSE DEFINED - A person commits 
an offense if he: 

(1) accesses, alters, damages or 
destroys any computer, computer system, 
computer network, computer software, 
computer program or data base or any part 
thereof, with the intent to interrupt the 
normal functioning of an organization or 
to devise or execute any scheme or 
artifice to defraud or deceive or control 
property or services by means of false or 
fraudulent pretenses, representations or 
promises; or 

<2> intentionally and without 
authorization alters, damages or destroys 
any computer, computer system, computer 
network, computer software, computer 
program or computer data base or any part 
thereof. 

It is still not clear cut. He did use a 
computer to access data, but did he have plans 
to defraud or obtain money, property, or 
services? We could examine the definition of 
defraud, a word which occurs in virtually all 
of the state ·laws. 

DEFRAUD To deprive of some right, 
interest, or property by deceit. -- Syn. 
See CHEAT. 

There are many similarities in the various 
state laws. There are also some very inter
esting differences in them. North Carolina 
excludes schemes •to obtain educational test
ing material, a false educational testing 
score, or false academic or vocational grade" 
for consideration as fraud and classificat-ion 
as a felony; and North Dakota specifically 
mentions "violation of data processing infor
mation confidentiality.• Georgia says the 
duty to report violations is coupled with 
immunity from any civil liability for such 
reporting. 

The Kansas Law, which is not atypical but is 
somewhat more brief than many, is included in 
its entirety in Figure 2 as a sample of a 
complete piece of computer crimes legislation. 

Was he guilty of fraud or did he simply satis
fy his normal curiosity? We would need to 
know more of the story, and then we would 
probably still need to deliberate a very long 
time. 

Privacy Protegt;!,gn 

Did he invade her privacy? Surely, this an
swer is •yes"! But, does she have any 
protection against this type of invasion of 
privacy? 

Two hundred years ago Thomas Jefferson said: 

laws and institutions must go hand in 
hand with the human mind..• As new dis
coveries are made, new truths disclosed, 
and manners and opinions change with the 
circumstances, institutions must advance 
also, and keep pace with the times. 

In 1890, Supreme Court Justice Louis Brandeis 
stated that "the right to be let alone is one 

of the most comprehensive of rights and the 
most valued by civilized man. • 

How there are, indeed, some federal laws that 
relate to privacy. The Fair Credit Reporting 
Act of 1970 which regulates credit bureaus; 
the Freedom of Information Act of 1970 which 
permits individuals to have access to data on 
them contained in federal agency files; the 
Education Privacy Act which pertains to cer
tain practices of federally funded educational 
institutions; the Privacy Act of 1974, the 
introduction of which is contained in Figure 
3, which provides certain safeguards for indi
viduals against an invasion of personal priva
cy by federal agencies; the Right to Financial 
Privacy Act of 1978 which restricts government 
access to certain records held by financial 
institutions; and the Electronic Funds Trans
fer Acts of 1979 and 1980 which outline 
responsibilities of companies using EFT are 
among them. These laws, however, govern only 
the actions of federal agencies or agencies 
who receive funds from the federal government. 

Many of the states also have laws relating to 
privacy, and these laws were quite often en
acted well in advance of computer crimes laws. 
Again, however, most do not specifically cite 
invasion of privacy as it relates to computers 
and databases; and interpretation of guilt 
under such laws would be uncertain. 

Few information privacy violation cases have 
been litigated. Since we do not know what is 
accumulated, stored, and transferred pertain
ing to us and it is not likely that we will 
ever know, we are unlikely to pursue such a 
matter. If we go to court to protect our pri
vacy everyone will know everything. Is the 
gain worth the risk? Probably not. 

If accused, then, could John be convicted of 
invasion of privacy? That, too, is doubtful. 

THE FUNDAMENTALS 

Professional Ethics 

Would his actions be considered ethical among 
computer professionals? Before deciding, we 
should consider statements pertaining to 
ethics in the Computer Science and Computer 
Information Systems literature. 

Definitions 

ETHICS A treatise on morals; the 
science of moral values and duties; the 
study of ideal human character, actions, 
and ends; moral principles, quality, or 
practice. <Webster's New Collegiate> 

ETHICS A system of moral principles; 
the rules of conduct recognized in 
respect to a particular class of human 
actions or to a particular group, cul
ture, etc.; moral principles; that branch 
of philosophy dealing with values per
taining to human conduct with respect to 
the rightness and wrongness of certain 
actions and to the goodness and badness 
of the motives and ends of such actions. 
<Random House Unabridged> 

329 



PRIVACY II:T IF 1974 

INTRIIDOCTIIJI 

The purpose of this act is to provide certain safeguards for individuals against an invasion of personal pri
vacy by requiring Federal agencies, except as other~~ise provided by law, to: 
1. Permit an individual to determine Mhat records pertaining to him are collected, maintained, used or dis
seminated by such agencies. 
2. Permit an individual to prevent records pertaining to him obtained by such agencies for a particular pur
pose from being used or made available for another purpose without his consent. 
3. Permit an individual to gain access to information pertaining to him in federal agency records, to have a 
copy of all or any portion thereof, and to correct, or illlend such records. 
4. Collect, •aintain, use or disseminate any record of identifiable personal information in a manner that 
assures that such action is for a necessary and la11ful purpose, that the information is current and accurate 
for its intended use, and that adequate safeguards are provided to prevent 11isuse of such information. 
5. Permit exemptions from the requirements with respect to records provided for in this act only in those 
cases llhere there is an i•portant public need for such exemption as has been determined by specific statutory 
authority. 
6. Be subject to civil suit for any damages llhich occur as a result of willful or intentional action 11hich 
violates any individual's rights under this act. 

The PRIVACY II:T IF 1974 applies to all federal agencies except the CIA and law enforcement agencies. 

FIGURE 3: PRIVACY ACT OF 1974 

We live in an age and in a society where 
morality and ethics seem to be eroding more 
each day. We are amazed when we read the ever 
growing accounts of questionable behavior on 
the part of prominent and not so prominent 
members of our society. We shake our heads 
and role our eyes when we read of unethical 
philanderings, but we do little or nothing 
difinitive to bring about ~ignificant change 
in such behaviors. We read and relate the 
accounts which glorify such behavior, and we 
buy tickets and attend lectures to hear former 
convicted felons present the rational for 
their unethical and/or criminal behavior. 

In May 1984, COMPUTERS and PEOPLE carried an 
article titled •Lack of Ethics as a Cause for 
Computer Crime• which was excerpted from 
Chapter 6 of HOW TO PREVENT COMPUTER CRIME by 
August Bequai. It exhibited the Table of 
Contents of the book and then began: 

Lack of Ethics 

A computer programmer attempts to seil 
valuable software belonging to his em
ployer to one of its competitors. When 
discovered, the employer is reluctant to 
prosecute; it is rumored that the pro
grammer threatened to "blow the whistle" 
on corrupt company practices. An execu
tive embezzles more than $400,000 of his 
company's assets through the use of its 
computer. When the auditors uncover his 
fraud, his employer simply asks for his 
resignation; it is said that dishonest 
conduct was a •way of life" at the com
pany. A computer operator uses a hospi
tal's computer to steal more than 
$20,000; the victim is reluctant to pro
secute. It is alleged that an investiga
tion would have led to exposure of thefts 
of drugs involving hospital personnel. 

The above examples serve to illustrate 
two key points: first~ that crime by 
dishonest employees has reached epidemic 
proportions ••. ; and second, that some 
victims are reluctant to prosecute 
because they have their own •skeletons• 
to hide. 

Other subheadings included: 

Law of the Jungle 
Glorifying the Computer Criminal 
We Ill-Treat "Whistleblowers• 
Role of Ethics 
Need for Ethical Management 
Implementing a Code 
A model Code 
Testing your Code 

He cited a study by the Ethics Resource Center 
of Washington, D.C., that •confirmed that, 
although top management occasionally pays lip 
service to the need for ethics in the work
place, little is done to carry this out.•[!] 

Robbin Juris [61, Associate Editor of COMPUTER 
DECISIONS, claimed in his article "Keeping Out 
the Insiders• that •security breaches by 
outsiders may be obscuring a much greater risk 
to corporate computer systems: the threat 
from within.• Only clearly stated company 
policies and procedures and ethical conduct of 
legitimate users will eliminate, or at least 
reduce, such security breaches from inside. 

Both the Association for Computing Machinery 
<ACM> and the Data Processing Management 
Association <DPMA> have made positive and 
definitive statements pertaining to profes
sional ethics. Excerpts from BYLAW 19, ACM 
CODE OF PROFESSIONAL CONDUCT are included in 
F.igure 4. The entire DPMA Code of Ethics is 
presented in figure 5. 

Note that the ACM code begins: 

PREAMBLE 

Recognition of Professional Status by the 
public depends not only on skill and 
dedication but also on adherence to a 
recognized Code of Professional Conduct. 

DPMA chooses to begin its CODE OF ETHICS with 
a statement of obligation to management, to 
fellow members, to society, to employer, and 
to country. The STANDARDS OF CONDUCT, then, 
specify the responsibilities of each of these 
obligations. 

330 



In l~ght of these presentat~ons, was he gu~lty 
of a breach of ethics? D~d he violate any 
subsect~ons of either CANON 1 or CANON 5 of 
the ACM code? Is there an ~nfract~on aga~nst 
the DPMA code? If h~s activities were known, 
would he be discipl~ned for h~s actions by one 
of these profess~onal assoc~at~ons? As com
puter professionals, how should we react to 
such behav~or in our ranks? 

Instiuct~onal Act~v~ties 

V~rtually every college textbook for use ~n 

~ntroductory ~nformat~on systems courses has 
one or more chapters devoted to soc~al ~ssues 
and ~mpl~cat~ons. Most have at least a br~ef 
d~scuss~on relating to e•.h~cs. Texts for 
~ntroductory computer sc~ence courses conta~n 
chapters on f~le process~ng and occas~onally 
make reference to data secur~ty and ~ntegr~ty. 

II 

PIIEAIIBI.E 

Recognition of professional status by the public depends not only on skill and dedication but also on 
adherence to a recognized code of Professional Conduct. The foll011ing Code sets forth the general principles 
<Canons), professional ideals <Ethical Considerations), and mandatory rules <Disciplinary Rules) applicable to 
each ACM Member. 

The verbs "shall" <imperative) and "should" (encouragl!lll!nt) are used purposefully in the Code. The Canons 
and Ethical Considerations are not, hOMever, binding rules. Each Disciplinary Rule is binding on each MeMber 
of ACM. Failure to observe the disciplinary rules subjects the MeMber to ad110nition, suspension or expulsion 
from the Association as provided by the Procedures for the Enfo~ll!nt of the ACM Code of Professional 
Conduct, llhich are specified in the ACM Policy and Procedures Guidelines. The ter11 "~~e~~ber(s) • is used in the 
Code. The Disciplinary Rules apply, hOMever, only to the classes of Elllbership specified in Article 3, 
Section 5, of the Constitution of the RCM. [i.e. -bers 11ith voting rights] 

CAt«JN 1 
An ACM member shall act 'at all times 11ith integrity. 
Ethical Consideration 

EC1.1 An ACM member shall properly qualify hiiiSI!lf llllen expressing an opinion outside his areas of 

competence. A member is encouraged to express his opinions on subjects 11ithin his area of co1petence. 

EC1.2 An ACM IIIE!IIber shall preface any partisan statl!lll!nts about inforAtion processing by indicating 

c 1 ear1 y on llllose behalf they are made. 

EC1.3 An ACM member shall act faithfully on behalf of his employers or clients. 


Disciplinary Rules 
DR1.1.1 An ACM member shall not intentionally lisrepresent his qualifications or credentials to pre
sent or prospective e1ployers or clients. 
DR1.1.2 An ACM ~~~e~~ber shall not like deliberately false of deceptive statl!lll!nts as to the present or 
expected state of affairs in any aspect of the capability, delivery, or use of infol'lition processing 
systeiiS. 
DR1.2.1 An ACM member shall not intentionally conceal or Misrepresent on llhose behalf any partisan 
statements are made. 
DR1.3.1 An ACM llll!llber acting or employed as a consultant shall, prior to accepting infol'lition fro~ 
a prospective client, infor1 the client of all factors of llhich the ~ember is a11are IIIIich uy affect 
the proper perfol'lllincti of the task. 
DR1.3.2 An ACM -ber shall disclose any interest of llhich he- is a~~are IIIIich does or uy conflict 
with his duty to a present of prospective employer or client. 
DR1.3.3 An ACM member shall not use any confidential infol'lition fr011 any sployer or client, past or 
present, without prior pel'llission. 

CAt«JN 2 
An ACM member should strive to increase his eo1petence and the eo~~petence and prestige of the profession. 

CAt«JN 3 
An ACM member shall accept responsibility for his ~~ork. 

CAt«JN 4 
An ACM ll!lllber shall act 11ith professional responsibility. 

CAt«JN 5 
An ACM member should use his special kno~~ledge and skills for the advancMent of hunn ~~elfare. 
Ethical Considerations 

EC5.1 An ACM 111e111ber should consider the health, privacy, and general ~~elfare of the public in 

perfol"'iiilnce of his 110rk. 

ECS. 2 An ACM lll!lllber, llhenever dealing 11ith data concerning individuals, shall al~~ays consider the 

principle of the individual's privacy and seek the foll011ing: 

• To mini•ize the data collected. 
• To lim'it authorized access to the data. 
• To provide proper security for the data. 
• To deter~ine the required retention period of the data. 
• > To insure proper disposal of the data. 

Disciplinary Rules 
DR5.2.1 An ACM ~~ember shall express· his professional opinion to his employers or clients regarding 
any adverse consequences to the public llhich might result fi"'OII the work proposed him. 

FIGURE 4: ACM CODE OF PROFESSIONAL CONDUCT <excerpts> 

331 



Database and £ile processing courses, system capitalize on that moment. A scenario such as 
design and analysis, and others have very good presented in this paper provides an excellent 
entry points £or in-depth discussions relating springboard. We can relate to this situation. 
to ethics and the computer pr?£essional. We can put ourselves in the position o£ either 

the young man or the young woman. We can 
Introducing the topic at a reasonable point in re£lect on what we would do in a similar 
the overall course plan yields an acceptance situation and what our reaction would be to 
o£ the relevance o£ such a discussion in the the possibility that someone could gain so 
classroom. It is then up to the instructor to much in£ormation about us so readily. 

CODE IF ETHICS 

I acknowledge: 
That I have an obligation to lilanagement, therefore, I shall promote the uroderstandirog of informatioro pro

cessing methods arod procedures to management usirog every resource at my commarod. 
That I have an obligatioro to rRy fellow members, therefore, I shall uphold the high ideals of DPMA as out

lined in its international Bylaws. Further, I shall cooperate with my fellow members arod shall treat them 
wi!.O, honesty and respect at all times. 

That I have an obligation to society and will participate to the best of my ability in the disseminatioro 
of kno~~ledge pertaining to the genet•al development and understanding of information processing. Furthel"1 I 
shall not use knowledge of a confidential nature to further my personal interest, nor shall I violate the pri 
vacy and confidentiality of information entrusted to me or to which I may >.<!in access. 

That I have an obligation to my employer whose trust I hold, therefore, I shall erodeavor to discharge this 
obligation to the best of my ability, to guam my employer's interests, and to advise him or her wisely and 
honestly. 

That I have an obligation to my country, therefore, in my personal, business and social contacts, 1 shall 
uphold my nation and shall honor the chosen way of life of my fellow citizens. 

I accept these obligations as a personal responsibility and as a member of this associatioro1 I shall 
actively discharge these obligations and I dedicate myself to that end. 

STANIJI.lRDS OF CONDUCT 

These standards expand on .the Code of Ethics by providing specific statements of behavior in support of each 
element of the Code. They are not objectives to be strived for, they are rules that no professional will vio
late. It is first of all expected that informatioro processing professionals will abide by the appropriate 
laws of their country and community. The following standards address tenets that apply to the profession. 
In Recognition of My Obligation to Managl!lll!rlt I Shall: 
* 	 Keep my personal knowledge up-to-date and insure that proper expertise is available when needed. 
* 	Share my knowledge with others and present factual and objective information to management to the best of 

my ability.
* 	 Accept full responsibility for work that I perform. 
* 	 Not misuse the authority entrusted to me. 
* 	 Not misinterpret or withhold information concerroing the capabilities of equipmerot 1 software, or systems.
* Not take advantage of the lack of knowledge or inexperience on the part of others. 
In Recognition of My Obligation to My Fell011 llellbers and the Profession I Shall: 
* 	 Be honest in all my professional relationships. 
* 	 Take appropriate action in regard to any illegal or unethical practices that come to my attentioro. How

ever, I will bring charges against any person only when I have reasonable basis for believing in the truth 
of the allegation and without regard to personal interest. 

* 	Endeavor to share my special knowledge.
* 	Cooperate with others in achieving understanding and in identifying problems. 
* 	 Not use or take credit for the work of others without specific acknowledgement and authorization. 
* Not take advantage of the lack of knowledge or inexperience on the part of others for personal gain. 
In Recognition of My Obligation to Society I ~all: 
* 	 Protect the privacy and confidentiality of all information entrusted to me. 
* 	 Use my skill and knowledge to inform the public in all areas of rRy expertise.
* 	 To the best of my ability, insure that the products of my work are used in a socially responsible way.
* 	 Support, respect and abide by the appropriate local, state, provincial, and federal laws. 
* 	 Never misrepresent or withhold information that is germane to a problem or situation of public concern nor 

will I allow any such known information to relilain unchallenged. 
* 	 Not use knowledge of a confidential or personal nature in any unauthorized manner or to achieve personal 

gain. 

In Recognition of My Obligation to My Ellployer I Shall: 

* 	 Make every effort to ensure that I have the most current knowledge and that proper expertise is available 

when needed. 
* 	 Avoid conflict of interest and insure that any employer is aware of any potential conflicts. 
* 	Present a fair, honest, and objective viewpoint. 
* 	 Protect the proper interests of my e11ployer at all times. 
* 	 Protect the privacy and confidentiality of all information entrusted to me. 
* 	 Not misrepresent or withhold information that is germane to the situation. 
* 	 Not attempt to use the resources of my employer for personal gain or for any purpose without proper 

approval.
* 	 Not exploit the weakness of a computer system for pet'SOnal gain or personal satisfaction. 

-·-------------------------------------------------------------------------
FIGURE 5: DPMA - CODE OF ETHICS and STANDARDS OF CONDUCT 

332 



Library assignments followed by group discus
sion of the most interesting articles is 
especially beneficial. A note of caution, 
however. The instructor must be sure where 
he/she stands on such issues and be ready to 
field very pointed questions about personal 
values. The day after such a discussion in 
one of my classes a student asked me about my 
feelings on copying software. This could be 
very touchy, but they deserve honest answers. 

Congressman Zschau [2] was quoted as saying 
that the infiltration of his computer system 
was "tantamount to someone breaking into my 
office, taking my files and burning them, " but 
there was no physical evidence of such a 
break-in and fire. "Because people don't see 
the files overturned or a pile of ashes out
side the door, it doesn't seem so bad. But it 
is equally as devastating. • 

Interacting with colleagues to discuss such 
topics is a great mechanism for building our 
own values and accumulating 'for instances' to 
relate to students. We had a faculty dutch 
tr'eat lunch recently to discuss ethics. I 
attended a breakfast at a recent professional 
meeting devoted to this topic. Listening 
while others talk about touchy issues is quite 
enlightening. 

If there were a file cabinet located in a 
hallway, should a passerby look in? If there 
were names on the drawers, would he/she be 
more or less likely to want to look in? If 
the cabinet were locked, would he/she feel 
challenged to look in? 

Is there any difference in walking around in 
Neiman-Marcus at 2 a.m. and walking around in 
someone's database at 2 a.m.? If caught, 
would the perpetrators be treated differentiy? 
Should they be? It is interesting that the 
Virginia computer crimes legislation includes 
a statement to attest that a •tangible docu
ment need not be evident when a computer is 
the instrument of forgery. • Do our written 
laws really need to be this specific? 

~i~~~~~ 
~~~~~~~~~~~~~ 

Computers are powerful tools at the disposal
of men. Men who understand and use these
machines have power to accomplish great and
worthy goals or to wreak havoc and destruc-_
tion. Although security mechanisms and laws
are provided to temper the activities of men
when they sit down at the machines, the only
truly binding controls are the professional
ethics of the man.

REFERENCES CITED

1. 	 Bequai, August. "Lack of Ethics as a
Cause of Computer Crime. • COMPUTERS
and PEOPLE <May-June, 1984) 7-14, 24.

2. 	 •computer Crime Hits Congress. • ~
Matters 1 <May, 1987) 2.

3. 	 "Computer Hacking and Security Costs. •
Science News 124 (November 5, 1983)
294.

4. 	 Early, Pete. "Prying Eyes. • The Courier
Journal Magazine (July 20, 1986).

5. 	 Gallanis, Bess. Computer Bandits, The
New Brain Pickers.• AdvertisinQ Age
54 <November 14, 1983) M-32.

6. 	 Juris, Robbin. "Keeping Out the Insid
ers.• COMPUTER DECISIONS <November
4, 1986) 48-49.

7. 	 Soma, John T. Computer Technology and
the Law. New York: Shepard's/McGraw
Hill, 1983.

333

DATA INTEGRITY VS. DATA SECURITY: A WORKABLE COMPROMISE

Ronda R. Henning and swen A. Walker

National Computer Security Center

Office of Research and Development

9800 savage Road

Fort George G. Meade, Maryland 20755-6000

301-859-4488

INTRODUCTION

There are many diverse opinions on the
relative importance of data integrity when
compared with the relative importance of data
secrecy. In the Department of Defense
Trusted Computer system Evaluation Criteria,
integrity is defined as the correct operation
of the hardware and firmware upon which the
operating system's Trusted Computing Base
(TCB) resides, and the assurance that the TCB
software has not been subject to unauthorized
modification. The correct operation of the
TCB only ensures that the file system is
intact and that the TCB has not been
unintentionally or maliciously modified. The
Criteria makes no claim as to the validity or
consistency of the information that may be
contained in the files protected by the TCB.

The problems of data integrity have
always existed in trusted operating systems.
Data management applications of these systems
make the problem more acute. Consistent,
accurate, reliable information is a critical
element for data management applications.
This paper provides an overview of data
integrity concerns, and why they are not
sufficiently addressed by conventional
secrecy policies. The issue of unauthorized
modification of data which might compromise
data validity is addressed, as is the
practicality of the implementation of the
current state of the art in integrity
policies. The discussion concludes with an
attempt to provide guidance on the
application of integrity policies to trusted
data management.

THE INTEGRITY PROBLEM

Before the Industrial Revolution, most
business enterprises were established by and
run as single person firms. Data integrity
was not a consideration because every piece
of information required to run the business
came through the proprietor.
Industrialization brought larger
conglomerates into being. It was not
possible to run a nationwide railroad, for
example, with one bookkeeper and one
accountant. As more people became involved
with corporate information, data integrity
became a greater problem. Two-man control of

sensitive information was introduced as one
control methodology. Single-point access to
company filerooms was another way to control
access to corporate information.
Information, however, was becoming more and
more accessible to larger numbers of people
as part of their daily duties. However, the
amount of information accessible and
changeable on any given day was still
relatively limited.

The Computer Age increased the data
integrity problem significantly. More data
was accessible to more people than had ever
been possible with manual processing methods.
It was also easier than ever before to make
wholesale changes to information, such as
cleaning out bank accounts, embezzling funds,
and just simple system failures wiping out
files. Backup copies could replace lost
files, but changes were harder to trace to a
single individual and restore. Eventually,
electronic audit files were used to establish
a chain of accountability for modifications.
This provided a way to know who last accessed
a file or a particular account. It did not
offer a remedy to the data entry clerk who
mistyped 1.000 instead of 1,000 and forgot to
proofread the screen before pressing the
transmit key.

Database management systems made it even
easier to modify large quantities of data
quickly and efficiently with simple query
languages. These systems also brought new
mechanisms, such as data dictionaries and
semantic constraints, into common use as
control mechanisms for data integrity [8].
For example, it was now possible to require
only numeric data for social security
numbers, and social security numbers had to
have nine digits. When such mechanisms
clashed with performance requirements,
however, they were often ignored or
circumvented, leaving information more
vulnerable to integrity compromise.

DEFINITIONS OF INTEGRITY

This brief history of the integrity
problem makes it easy to see that there can
be many definitions of data integrity, all of
which are valid. Perhaps an integrated
definition of integrity can be found in (16].
This definition covers six areas:

334

a. 	 How correct we think the

information is,

b. 	 How confident we are that the
information is from its original
source,

c. 	 How correct the functioning of
the process is,

d. 	 How closely the process function
corresponds to its designed
intent,

e. 	 How confident we are that the
information in an object is
unaltered, or was correctly modified,
and

f. 	 How correct the information in an
object is.

How correct we think the information is
can be considered the conventional data
management definition of integrity. In the
traditional data management environment,
integrity is defined as the consistency or
validity of data entered into a database or a
file. This definition includes semantic
integrity constraints which can be specified
as part of a data dictionary or application
program, such as all salaries must be greater
than zero; concurrency controls which ensure
that the serializability of transactions is
maintained to prevent interference between
two or more executing transactions; and
recovery mechanisms to ensure the proper
restoration of data in the event of a system
failure.

How correct the functioning of a process
is, and how closely it equates to its
designed intent can be defined as operational
consistency and correctness. Operational
consistency equates to confidence in
achieving the same results if the same code
is executed repeatedly with the same input.
It is the ability to rely on system
operations and services, such as daemons, to
run properly with predictable results.
correctness is the assurance or guarantee
that the system will perform as its designers
intended it to and that it will operate
properly. This type of integrity is often
referred to as system integrity.

How confident we are that the
information is from its original source, has
been subjected to only authorized
modifications, and is correctly represented
in a storage object can be considered the
computer security definition of integrity.
This definition includes the mapping of
information into digital data for storage in
an object, user authentication,
authorization of the user to perform
modifications, and confidence that the user
entered error-free information into the
system which was not maliciously or
unintentionally altered by either another
user or the operating system.

For example, a user enters data at a
terminal. The characters are translated into
ascii code, sent to an ijo buffer, and
eventually stored in a file. The user is
confident that the characters he entered were
accurately represented and not altered by a
short circuit into a different bit pattern.
He may wish to let another user edit this
data at a later date, and sets copy
privileges on the data for another user.
When a third user tries to copy the data, he

is not authorized to modify it and is denied
access. If the second user tries to
overwrite the data he is not permitted to do
so, because it would be an unauthorized
modification. The owner of the data also
believes that the operating system will not
lose his file in the event of a system crash.

WHY WORRY ABOUT INTEGRITY?

Is a trusted computer system that
enforces a global security policy as
described in the Criteria, sufficient to cope
with data integrity concerns? In the Shirley
and schell paper on validation by assignment
[20], the argument is made that a security
policy is based on external laws, rules,
regulations, and other mandates that
establish what access to data is permitted.
Access to data is defined as what information
may be disclosed to any given user, not as
what information may be modified by any given
user.

However, a security policy that addresses
only the disclosure of information is not a
complete policy. In Denning and Schell [11],
two principal components of ,the information
security policy are proposed: a secrecy
class to control information disclosure, and
an integrity class to control the
modification of information. A trusted
system is trusted to protect "sensitive"
information from unauthorized disclosure,
alteration, or destruction. Therefore, a
security policy that addresses only secrecy
is not sufficient unless it also addresses
data modification issues, or data integrity.

There are precedents and true, paper
based procedures upon which it is possible to
model an information disclosure policy.
Landwehr [15) has argued that a similar model
for an integrity policy does not exist. He
states that the government possesses large
amounts of sensitive information that would
compromise national security if it was
revealed to certain organizations outside of
the government. Therefore, it has had to
institutionalize a protection policy of
hierarchical classifications and compartments
for this information. No damage assessment
of the consequences of unauthorized
modification of such information has resulted
in a similar set of hierarchical integrity
labels. Therefore, a justification for a
global integrity policy to protect against
unauthorized modification of sensitive data
does not currently exist in government
regulations. On an application-specific
basis, information that must be protected
from unauthorized modification can be
identified and should be protected using
means appropriate to the sensitivity of the
information. There is no global integrity
policy for the Federal Government.

Beyond these arguments, security
policies specified by the Criteria are
required to have mechanisms available to
ensure the."correct" operation of the
software and firmware comprising the TCB.
The Criteria further requires that assurances
are in place to ensure that the software TCB
is subject to sound configuration management
practices and distribution techniques. There
is no requirement in the Criteria to enforce
data consistency constraints or other sue~

335

common integrity measures. Therefore, a
system meeting the intent of the Criteria
does not guarantee the validity of the
information represented within its objects.

DOES SECRECY OFFER SOLUTIONS?

Can integrity concerns be addressed
through the use of security mechanisms
designed to address secrecy? Secrecy
concerns, as stated above, address
information dissemination, not information
modification. Integrity is often considered
the dual of secrecy. Using a secrecy lattice
for integrity enforcement, therefore, will
protect high-level objects from low-level
subjects, but equates relative integrity with
relative secrecy. That is, the most widely
disseminated data (unclassified data) would
be considered the least vulnerable to
unauthorized modification. The least widely
disseminated data (top secret) would be the
most vulnerable to unauthorized modification
because it would be the most enticing to
someone trying to penetrate the system. This
is a restatement of the secrecy policy for
the system.

A program integrity policy [20] will

protect against insertion of malicious code

into an application and will ensure the

enforcement of integrity constraints upon a

user's application. such a policy assumes

that the development staff is trusted. The

policy will not enforce an access control

policy by itself, and, therefore, cannot be

used to enforce authorized modification

rules. A program integrity policy does not

necessarily have access control lists

associated with it to determine which users

are authorized to access data and which are

not. It can ensure that programs behave

"correctly", but cannot ensure against data

value corruption by malicious users.

A discretionary integrity policy based on
access control lists will limit the
modification rights granted to a user.
However, it makes no promises about the
enforcement of integrity constraints or the
"correctness" of code. A discretionary
integrity policy is also not automatically or
uniformly invoked for each data access by
every user. It is not, therefore, a
mechanism that is enforceable with a high
degree of assurance.

THE PROBLEM OF UNAUTHORIZED MODIFICATION

Various extensions and alternatives to
the current generation of secrecy policies
have been developed in an attempt to address
integrity considerations. Biba [1] discussed
three types of hierarchical integrity
policies: (1) strict integrity, (2) ring
policy integrity, and (3) low water mark
integrity.

The strict integrity policy considered
integrity the dual of secrecy. Whereas the
standard Bell-LaPadula security policy
permits the reading down and writing up of
information in secrecy classes, Biba contends
that these actions compromise the integrity
properties of the data. A higher-secrecy
level user compromises his higher-secrecy
level data by the act of reading data at a
lower-secrecy-level. A lower-secrecy-level

user performing a blind write to a higher
secrecy-level object may unintentionally or
maliciously provide misinformation to a
higher-secrecy-level process that wished to
use the same data file. In the strict
integrity policy, integrity levels are used
to counter this threat. A user may read an
object if his integrity level is dominated by
the object's integrity level. A user may
write to an object if his integrity level
dominates the object's integrity level.

The ring policy variant on Biba's strict
integrity policy states that no restrictions
are placed on the reading of data, but the
constraints on writing to an object are the
constraints specified in the strict integrity
policy. A subject may write high integrity
data to a file even though he has read low
integrity data in the same process.

The object's integrity level is never
changed in the low water mark integrity
policy, but the integrity level of the
subject is degraded when he reads data at a
lower integrity level. The subject may
eventually have his integrity level decreased
to the lowest integrity level on the system,
the low water mark. To restore his process
to a higher integrity level would require
reinitialization of his privileges; in all
probability, this would require a trusted
process.

Denning and Schell [11] proposed a more
flexible variation on the strict integrity
policy. This integrity policy proposes that
trusted subjects can read objects or write to
them as long as they fall within the
permitted range of integrity levels.
Untrusted subjects are limited to reading or
writing objects as stated in Biba's strict
integrity policy. An additional constraint
is added by the execute property, which
states that a subject can execute an object
only if the maximum integrity level of the
subject is less than or equal to the
integrity class of the object, and the
maximum secrecy level of the subject is
greater than or equal to the secrecy class of
the object.

The variation of Biba's strict integrity
policy proposed by Shirley and Schell [20]
allows the reading of lower integrity level
data by higher integrity level processes.
Execute access is established as a separate
access right, and a process may only execute
processes with an equal or greater integrity
level. Write access rights are applied as
specified in Biba's policy model. This
affords a greater degree of flexibility than
the strict integrity model because read and
update operations could be performed by high
integrity level processes across all lower
integrity levels.

Changeable subject integrity levels and
program integrity levels are used in Boyun's
[4] variation of strict integrity. As the
user reads lower-integrity data, his
integrity level is downgraded. This
variation also introduces the notion of
programs having an integrity level based on
their potential to corrupt higher-integrity
data. Since they offer the potential for
data corruption, programs must have a higher
integrity level than the data objects they

336

will be acting upon. Unfortunately, as the
user reads lower and lower integrity level
data, his own integrity level is permanently
degraded, preventing him from ever reading
high-integrity data again. The only way to
restore his integrity level is through a
trusted upgrade process, executable only by a
trusted subject, as in the low water mark
policy.

A~other typ7 of int7gri~y policy commonly
used ~n commerc~al appl~cat~ons is enforced
strictly through rule-based constraints.
These constraints are either written for each
application separately or generalized into a
global integrity policy for all applications
of a particular type. For example, a common
set of type-checking utilities for a database
mana~ement system. This type of policy
r~qu~res a trusted process to place the user
written constraints into the TCB. Such an
expansion of the TCB would, in all
probability, make it larger than current
analysis techniques could handle, which would
make it very difficult to guarantee the level
of assurance required at higher levels of the
Criteria.

An alternative to Biba's strict integrity
policy variations was proposed by Boebert [2]
an~ is b7ing implemented in the LOCK project.
Th~s pol~cy uses the concept of type-domain
en~orcement to implement constraints.
ObJects are associated with types, and
subjects are associated with domains. An
access matrix of domains and types determines
the rights available to a subject requesting
access to an object. The access matrix
consists of a combination of static access
constraints coupled with application-specific
access constraints specified by a trusted
user. If a domain does not have access to a
given type as specified by the access matrix
it violates the integrity policy and access '
is not permitted. The type-domain
enforcement integrity policy is orthogonal to
the secrecy policy and is logically "anded"
wit~ the access ~ights granted by the secrecy
pol~cy to determ~ne the subject's effective
access rights. That is, the intersection of
the ~wo matrices form the access privileges
perm~tted under the system security policy.

ARE THESE POLICIES USEFUL?

Are any of the various integrity policy
alternatives practical in a operational
environment? Or is the current generation of
integrity policies overly protective?

It is important to note that integrity
policies are not usually implemented by
themselves. They are usually implemented in
conjunction with a secrecy policy to provide
a system security policy. To determine the
utility of an integrity policy, its position
must be taken into consideration with respect
to the overall system security policy.

Using this criteria, the strict integrity
interpretation proposed by Biba does not
appear flexible enough to be useful in
practical applications, such as database
management systems [2]. Applications must
have read and write access to various system
tables and internal data structures in order
to perform their functions. In the context
of Biba's strict integrity policy, this can
only be accomplished if the integrity level

of all relevant data is system low. However,
a system low integrity level affords this
data minimal protection under the integrity
policy.

The ring integrity policy uses fixed
integrity labels on both subjects and
objects. It allows the subject, however, to
read data at any integrity level and write to
objects of lesser or equal integrity levels.
No execute access is defined in this policy.
Therefore, the subject integrity level is of
little value since programs of dubious
integrity may be executed by a subject with a
high integrity level. such a practice would
allow the destruction of any higher-integrity
data which the subject may access. This
policy has never been implemented in
practice.

The low water mark policy allows a
subject to paralyze itself. While necessary
objects can be created at higher- integrity
levels and the subject can access them as
long as it maintains an equal-integrity
level, reading a lower-integrity object will
degrade the integrity level of the subject,
making the higher-integrity objects
inaccessible to the now lower- integrity
subject.

Denning and Schell's integrity range,
Shi~ley and Schell's program integrity
pol~cy, and Boyun's changeable integrity
policies all are attempts to incorporate more
flexibility into the strict integrity policy.
Whether the increased flexibility they
provide will also increase the size of the
TCB beyond analytical limits, degrade
performance, or create new integrity concerns
and security covert channels has yet to be
investigated.

A rule-based integrity policy is not, in
and of itself, applicable to the general
case. Rules change from one application to
another, and one user interface to another.
Additionally, such a rule-based integrity
policy may provide a substantial inference
channel if simultaneously enforced at
multiple secrecy levels with a single
instantiation of the data. A user at a given
level may be able to carefully construct
queries that would allow him to determine the
information he was not permitted to access.

The type-domain enforcement mechanism
proposed by Boebert may prove useful when the
number of enumerated types enforced is
relatively small. However, user-specified
types may be more numerous and could possibly
cause serious performance penalties, unless
matrix compression techniques were used on
the access matrix. More investigation must
be conducted to determine the properties
associated with type-domain enforcement
mechanisms.

OTHER INTEGRITY CONSIDERATIONS

Polyinstantiation [11] has been proposed
a~ one solution to the integrity-secrecy
d~lemma. If a higher secrecy or integrity
user attempts to perform a modification
operation on lower level data, another copy
of the data is automatically created that is
identical to the original in all but the
level designation. This higher-level
instantiation of the data then reflects the

337

I

h~gher-level user's modifications. While it
w711 ensure that the security policy is not
v1olated, polyinstantiation will not solve
~he pro~lems of data consistency. Data that
1s repl1cated at each level will guarantee
consistency.within one level, but will not
ensure cons1stency across levels. The entire
datab~se would not necessarily be consistent.
In th1s case, one can never be certain which
instantiation of the original data is the
most accurate or recent representation.

As a final consideration, one must
examine the user interface issues entailed by
the ~arious policies. If the user is only
perm1t~ed to read or write at a single level,
mechan1cal cut-and-paste techniques will be
r7quired to obtain all of his data in a
s1ngl7 report. Users in general may be able
to adJust to almost anything, provided they
do not perceive duplication of effort. When
update operations become excessively tedious
as ~ay be the case wi~h the strict integrity'
pol1cy, users become 1ncreasingly rebellious
and either cease to use the system or develop
their own integrity policy: the high water
m~rk. No one piece of the integrity puzzle
f1t~ all the empty places in a security
pol1cy.

CAN 	 HIGH DATA INTEGRITY EXIST WITH HIGH
TRUST?

Data integrity cannot be ignored in a
trusted computer system. Assurance that the
TCB is functioning correctly at the operating
system level is not enough for trusted
applications that require data to be valid
and consistent. No one data integrity policy
clearly satisfies the many varieties of
integrity considerations. Environmental
factors must also be taken into
consideration. Just as the various
evaluation classes of the Criteria do not
unilaterally apply to all cases, neither can
integrity policies be blindly applied without
consideration of the sources, frequency of
modification, sensitivity, and perishability
of data.

A layered approach to data integrity may
be the best near-term solution. In such an
approach, the underlying support features of
the operating system's TCB would be used to
the most feasible extent, and the application
would be responsible for additional
assurances.

For 	example, program integrity policies
have proven to be an effective measure to
prevent users from introducing malicious code
into a production system. When coupled with
data validity constraints that are subject to
its 	protection, a program integrity policy
can 	provide enough assurance for data
integrity in a system-high benign
environment.

In a compartmented environment, however,
constraint-based integrity coupled with
program integrity would not suffice.
Integrity policy enforcement in such an
environment would have to be based on some
type of mandatory integrity policy. Such a
mandatory integrity policy would have to have
the 	full cooperation of the TCB to ensure its
enforcement. A mandatory integrity policy
for 	such an application obviously cannot be

based on operating system architectural
features that are nonexistent. Additionally
the integrity policy in effect must minimize'
any extensions to the TCB boundary that may
be required for its support. Variations on
Biba's strict integrity policy may be more
appropriate here.

Can a high degree of data integrity
coexist with a high degree of trust? The
current generation of highly trusted
operating systems have not been conclusively
examined in this area. Attempts to build
high integrity data management applications
on Honeywell's Multics system severely
limited the user's ability to exercise
untrusted applications and other system
features. Perhaps if a trusted system were
dedicated to a specific application, in
execute-only mode, high data integrity could
coexist with highly secure operating systems.

CONCLUSIONS

In conclusion, there have been many
different integrity policies proposed. Few
of them have been tested through a system
implementation. Still fewer have actually
proven successful in operational
environments. Each application must be
examined on an individual basis to determine
which integrity policy best fits its
requirements or if a combination of integrity
policies is more appropriate.

REFERENCES

1. 	 Biba, K.J., Integrity Considerations for
secure Computer Systems, ESD-TR-76-372,
USAF Electronic Systems Division,
Bedford, MA, March 1976.

2. 	 Boebert, W.E. & Kain, R.Y., "A Practical
Alternative to Hierarchical Integrity
Policies", Proceedings of the Eighth
National Computer Security Conference,
Sept. 1985.

3. 	 Boebert, W. E. , et. al. , "The Extended

Access Matrix Model of Computer

Security".

4. 	 Boyun, D., "A New Model of Computer

Security with Integrity and Aggregation

Considerations", I.P. Sharp Report,

21 March 1978.

5. 	 Boyun, D., "Aspects of Integrity",
I.P. Sharp report, March 1986.

6. 	 Coates, c. and Hale, M., ed.,

Proceedings of the NCSC

Invitational Workshop on Database

Security, Baltimore, MD.,

17-20 June 1986.

7. 	 Committee on Multilevel Data Management
security, Air Force Studies Board,
National Research Council, "Multilevel
Data Management Security", National
Academy Press, 1983.

8. 	 Date, C.J., An Introduction to Database
Systems, Vol. I. seconded.,
Addison-Wesley, 1986.

338

9. 	 Date, C.J., An Introduction to Database
Sys'!!ems, Vol. II, Addison-Wesley, 1983.

10. Date, C.J., Relational Database,
Selected Writings, Addison-Wesley, 1986.

ll. 	 Dennin~, D.E., et.al, Secure Distributed
Data V~ews, Secur~ty Policy and
Interpretation for a Class Al Multilevel
Secur7 Relational Database System,
Inter~m Report, USAF Rome Air
Development Center, Nov. 1986.

12. 	 Department of Defense Trusted Computer
System Evaluation Criteria,
DOD 5200.28-STD, December 1985.

13. 	 Ferguson, C.T. & Murphy, C.B., "A
Proposed Policy for Dynamic Security
Lattice Management", Proceedings of the
Ninth National Computer Security
Conference, Sept. 1986. ·

14. 	 Fernandez, E.B., summers, R.C., &
Wood, c. Database Security and
Integrity, Addison-Wesley, 1981.

15. 	 Landwehr, c., "What Security Levels are
for and why Integrity Levels are
Unnecessary", NRL Technical Memorandum,
23 Feb. 1982.

16. 	 National Computer Security Center,
"Trusted Network Interpretation of the
Trusted Computer system Evaluation
Criteria, DOD 5200.28-STD" (DRAFT),
April 1987.

17. 	 Porter, s. & Arnold, T., "On the
Integrity Problem", Proceedings of the
Eighth National Computer Security
Conference, Sept. 1985.

18. 	 Saydjari, o.s., et al, "LOCKing
Computers Securely", Proceedings of the
Tenth National Computer Security
Conference, 23 Sept. 1987.

19. 	 Schell, R.R. & Denning, D., "Integrity
in Trusted Database Management Systems",
Proceedings of the Ninth National
Computer Security Conference,
Sept. 1986.

20. 	 Shirley, L.J. & Schell, R.R., "Mechanism
Sufficiency Validation by Assignment",
Proceedings of the 1981 Symposium
on Security and Privacy, April 1981.

21. 	 Ullman, Jeffrey D., Principles of
Database Systems, Computer Science
Press, Rockville, MD, 1982.

22. 	 Weiderhold, Gio, Database Design,
McGraw-Hill, New York, NY, 1983.

339

STATUS OF .TRUSTED DATABASE MANAGEMENT SYSTEM INTERPRETATIONS

Michael w. Hale

NCSC ATTN: Cll

9800 savaqe Rd.

Fort Georqe G. Meade, MD 20755-6000

(301) 859;..4452

ABSTRACT

The National Computer Security Center
is developinq a document containinq inter
pretations of the Department of Defense
Trusted Computer System Evaluation Criteria
(TCSEC) for database manaqement systems.
With each interpreted TCSEC requirement, a
rationale for the interpretation is stated.
These sections of the document will be
supported by appendices that address
security issues that are unique to database
management systems. The document. will be
entitled, "Trusted DBMS Interpretations",
(TDI).

HCSC COMMITMENT ~0 DBMS SECURITY

A majority of data processinq installa
tions reqularly use database manaqement
systems. With the expandinq information
aqe, the percentaqe of installations doinq
data base manaqement is increasinq siqnifi
cantly. Unfortunately, the presence of a
trusted operatinq system in these installa
tions does not quarantee that the DBMS can
be used to share information in a trusted
manner.

There are several characteristics that
are common to most DBMS's which make it
necessary for them to provide some credible
security controls. In many operational
environments, users interface directly to
the DBMS, which makes the operatinq system
appear transparent. In fact, DBMS desiqners
often choose not to utilize the services
provided by operatinq systems, includinq the
security feat~res. In addition, DBMS's
typically provide the capability to share
objects that are of a more abstract type
than operatinq systems are capable of
recoqnizinq. These characteristics, amonq
others, create the need for security
controls within the DBMS to control access
to these objects.

Based upon these facts, the NCSC is
committed to determininq the extent to which
database manaqement systems can be trusted
to control sharinq of sensitive data, and to
evaluatinq and ratinq commercially available
systems aqainst a practical and reasonable
cri~eria.

This commitment will be realized
throuqh the TDI that is now beinq developed.
The TDI will strive to specify achievable,
practical requirem-nts in order to allow
current DBMS installations to become more
secure, while la~inq th.e framework for

technoloqically advanced trusted database
manaqement systems in the future.

HISTORY AND STATUS OF TDI DEVELOPMENT

NCSC Effort Begins - Spring 1985

In May of 1985 the NCSC beqan to
examine requirements for multilevel data
manaqement in an effort to determine whether
or not quidance should be written on the
subject. It was also part of the task to
determine what the scope of such quidance
should be. That is, we had to identify what
audience could benefit the most from a
document on DBMS security. We identified
three basic audience seqments that could
potentially use quidance to be DBMS users,
DBMS builders, and DBMS evaluators. ·Users
would benefit most immediately from a
document that provided suqqestive quidance
on how to confiqure and use existinq systems
in a secure manner. DBMS builders would
need a document that provided TCSEC type
criteria on what security features a
database manaqement system should have.

Of course the later document would also
indirectly help users to improve the
security posture of their DBMS installations
over the lonq run, by encouraqinq the
development and evaluation of trusted
database manaqement systems. We recoqnized
that this is clearly the most desirable type
of DBMS security quideline to be produced by
NCSC. We were then faced with the task of
determininq if it was technically feasible
to develop trusted database manaqement
systems, which would determine the practi
cality of a criteria type quideline.

DBMS Security Workshop - June 1986

To determine current technoloqy's
ability to support a DBMS security criteria,
we orqanized a workshop to discuss the state
of the art in database manaqement system
security. The workshop was held in Balti
more durinq June of 1986 and was attended by
57 experts from DBMS vendors and their
customers, qovernment and academia. The
participants were divided into three workiriq
qroups charqed respectively with producinq
reports on security policy, data inteqrity
and inference, and trusted DBMS architec
tures. Each repo~t details the technoloqi

340

cally possible solutions in each of these
areas as well as the problems that require
further research and development. These
reports and all issue papers written in
preparation for the Workshop are available
in [CSC86].

D~velop Preliminary Drafts - December 1986

At the beginning of FY87, NCSC tasked
Mitre and Aerospace to develop preliminary
drafts of DBMS evaluation criteria. The
drafts were to be in the form of interpre
tations of the TCSEC for database management
systems. This approach was chosen based
upon the belief that the TCSEC contains all
of the fundamental requirements and control
objectives that are necessary for any
trusted computer system. In the case of
database management systems, as well as
networks, the fundamental requirements need
to be interpreted more specifically for that
type of system.

The preliminary drafts were delivered
to NCSC on 31 December 1986. They were used
as a baseline to produce the working draft
of the TDI.

Working Group Formed to Refine Draft
January 1987

NCSC selected a working group to steer
the refinement of the preliminary drafts
into a releasable draft. The working
group's goal is to produce a releasable
draft by late 1987. The group decided at
the first meeting to work toward a DBMS
document that mirrors the TCSEC in the
number of evaluation classes it contains and
in the degree of security represented by
each class.

While the general feeling is that the
evaluation classes in the TDI should be
roughly equivalent in features and assuran
ces to the respective classes in the TCSEC,
the group did recognize that some require
ments which are unique to a DBMS environment
will have to be added (e.g., prevention of
unauthorized data modification). The group
quickly reached a consensus that the
requirements must be practical and achieva
ble with current technology.

The TDI will contain appendices that
address issues requiring further explanation
than can be reasonably provided in the main
body of the document. Appendices will
address issues concerned with system
architecture, including the implications of
using multiple hardware bases (e.g.,
database machines) and the distribution of
security functionalities over distinct
subsets of the system TCB. Additionally,
there will be an appendix that addresses
database integrity and consistency.

The group did not attempt to specify
requirements for areas that are on the
research fringes of DBMS and computer
security technology. Problems that are
considered to be intractable will be
identified and referred to the research and
development office of the NCSC. Through

worked examples of trusted database manage
ment systems, research and development will
be able to prove whether or not p~aqmatic
solutions to these problems exist.

It is expected that research. in the
area of DBMS security will progress ~nough
over the next five years to enable the
resolution of today•s research problems. If
this happens the TDI will evolve to encom
pass the newer technology.

SECURITY AT THE SYSTEM LEVEL

The most reliable place to implement
security controls on any type of compute~
system is at the system level. The security
cont~ols are much more robust when they are
implemented close to the physical represen
tation of the information to be protected.
Thus we must require that the system
implement as many of the security controls
as is technologic•lly feasible to achieve
the greatest level of security.

The main body of the TDI will epecify
requirements that DBMS vendors provide
security mechanisms to control the sharing
of databases. The TDI will not enable the
evaluation of database management systems in
isolation. Instead, it will require that
they be evaluated in the context of their
supportinq operating system and hardware
base. Thus the evaluation will be oi
specifically configured systems, which are
the most robust way to ensure that the
various security mechanisms work together
properly.

~-::B SUBSETS AND INCREMENTAL EYALYATION

A relatively new conc~pt addr~3sed in
the TDI is that of TCB subset~. TCB s~~~ets
occur when the DBMS relies upon the operat
ing system to provide it with a portion of
the overall system's security features and
assurances. The TDI itill specify prescrip
tive requirements for how TCB subsets must
inter~ace and function as a complete
security system. An in-depth discussion of
this concept will be provided in an appendix
to the document.

The precise way in which the TCB
subsets mu&t interface is that they must be
implemented in layers, where the security
polict~of a lower level subset is used by
all hiq~er level subse~~The ~ig~'r level
~•ubs~s can ne•,.3r bypa~~h~ secun.'!:y p.plicy
of the lower levels, but they may add their
own security policy that does not conflict
with the policy of the lower levels.

If TCB subsets intez~ace in a precisely
defined way, an evaluation methodology that
will become known as incremental evaluation
will be used to evaluate the DBMS. This
will be possible when a DBMS is undergoing
an evaluation in the context of an o~erating
system that has been previously evaluated,
or is being evaluated at the same time. If
the DBMS uses the security policy of the
underlying operating sys~em, and is layered
properly on top of the operating system,
then this system is a candidate for an

341

incremental evaluation that can be done in
two increments. The results of the operat
inq system's evaluation can be used as input
to the evaluation of the operatinq system
DBMS combination. Note that in the event
that the DBMS bypasses any operatinq system
services that were included in the previous
evaluation, the incremental evaluation
methodoloqy cannot be used, as the base TCB
subset has been altered.

The ratinq resultinq from the incremen
tal evaluation would apply only to the
aqqreqate of the TCB .subsets when used
toqether •. It would not apply to the DBMS
TCB subset if it were ported to another
operatinq system. The ratinq of the overall
TCB must always be less than or equal to the
ratinqs of all of the previous increments in
the evaluation. That is, addinq a TCB
subset cannot improve the ratinq of the base
TCB.

If the additional DBMS TCB does not
interface correctly with the base TCB, the
incremental evaluation methodoloqy cannot be
used. For example, performance considera
tions miqht dictate that the DBMS be
desiqned to bypass some of the operatinq
system's services. In this case, the entire
system must be reevaluated in its entirety,
because ~he TCB that was present in the
operatinq system is not beinq used by the
DBMS. This type of evaluation methodoloqy
is directly analoqous to a traditional
operatinq system evaluation. Since the
oriqinal operatinq system ratinq is invalid,
it is possible that the DBMS evaluation
could result in a hiqher ratinq than the
operatinq system had received.

EXPL1CIT BEQUIBEMENTS FQR INTEGRITY

The TDI will place siqnificantly more
emphasis on inteqrity of the protected data
than the TCSEC does. The concept of
inteqrity is divided into two fundamental
areas: unauthorized modification of the

data, and consistency and correctness of the
database. The requirements for unauthorized
modification will be inteqrated int.o the
security policy of the system. Separate
requirements miqht be written to ensure that
the DBMS contains features to ensure the
consistency and correctness of the database.
However, as of this writinq, this area is
less understood, and it is questionable as
to what level of assurance we can qet that
consistency and correctness controls are
correct. As a matter of fact, there is not
unanimous aqreement that consistency and
correctness requirements belonq in the TDI,
as some view them as DBMS operational
requirements as opposed to DBMS security
requirements.

ACKNOWLEDGMENTS

credit for many of the ideas in this
paper is due to the members of the Trusted
DBMS Interpretations workinq Group: Dr. D.
Elliott Bell, Dr. John campbell, Dr. Deborah
Downs, Kenneth Eqqers, Richard Graubart,
Neal Haley, Ronda Henninq, Terry Mayfield,
Dr. Robert Morris, Dr. Roqer R. Schell, Dr.
T.C. Tinq, Mario Tin·to, and Grant Waqner. I
express my appreciation for the ideas and
insiqhts that these people have qiven to the
Center's efforts in DBMS security.

REFERENCES

(CSC85] 	 National computer security

Center, Department of Defense

Trusted Computer system Evalua

tion Criteria, Auqust 1985.

(CSC86] 	 National Computer Security
Center, Proceedings of tbe
National Computer Security Center
Invitational ~orkshop on Database
security, Baltimore, Maryland,
17-20 June 1986.

342

Insider Threat Identification Systems
Allan R. Clyde

A. R. Clvde Associates
10101 Grosv~nor Place, #2006

Rockville, MD 20852

Abstract

Motivation is established for the importance of addressing
the risks arising from insider threat on automated information
systems. The insider threat is characterized and the types of
damage to the system sponsor are outlined. The concept of an
insider threat identification system is introduced as a framework
and a discipline for addressing this threat. The basic compo
nents of such a system are outlined. Mandatory, internal sys
tem surveillance is identified as the foundation component of
an insider threat identification system. Its characteristics are
discussed and the current status of surveillance technology is
noted. The second component is a capability for analyzing the
data captured by system surveillance. The work done. in this
field is reviewed. An expert system for analysis of a surveillance
knowledge base to identify suspicious events is proposed. The
last three components of an insider threat identification sys
tem are outlined. Their dependence on akeystroke and system
response level of surveillance is noted. However, discussion of
these components, dealing with investigative evidence gather
ing, damage assessment and recovery support, are outside the
scope of this paper. This work has been privately funded in the
interest of product and market development.

1. Introduction

It is widely recognized among the many critically concerned
professionals and policy makers in the lnfosec community that
managing the risks arising from insiders on sensitive computer
systems is of major and growing importance. 1 An insider may
be characterized as a member of a population of trusted users for

1
A number of policy makers and professionals have gone on record about

these concerns and the importance of managing the risk from insider threat.
The following are excerpts from some open letters to the author: "We ap
preciate your effort in addressing new technologies on the insider threat
against sensitive computer systems. We are also pleased to note that you
are working closely with the National Computer Security Center and its
new Chief Scientist in this regard We encourage you to continue your
valuable work to provide computer security products, especially those de
signed to specifically counter the insider threat, •.. ·"-Donald C. Latham,
Assistant Secretary of Defense (C3 I), January 2, 1987. "It is my firmly held
opinion that a substantial majority of financial losses suffered in the private
sector are caused by insiders In most cases, the acts that have caused
the losses have been done by persons who had the authority to· perform
the acts...• Any contribution to the interpretation of audit information
(computerized or otherwise) to counter these threats would clearly advance
the interests of computer security,"-Dr. Robert Morris, Chief Scientist,
National Computer Security Center, November 20, 1986. "I sincerely ap
preciate your bringing these (insider threat] concerns to my attention and
your continuing interest in developing technologies to counter the insider
threat, ... "-Harold E. Daniels, Deputy Director for Information Security,
National Security Agency, May 4, 1987. Late in November, 1986, the Asso
ciated Press reported that the President had sent an anti-spy master plan
to the House and Senate intelligence committees. This news item stated in
part: "The president's plan is an unprecedented blueprint for broad based
reform to U.S. efforts to counter the Soviet bloc intelligence threat..•. The
Defense Department is directed ... to provide monetary or administrative
penalties for contractors with security lapses and bonuses for those with
tight programs.•.. Additional research is promised on technical safeguards
for secrets stored in computers ..• sooner or later we'll come across a spy
case involving computer theft of secrets."

343

a given installation; that is, an insider has authorized access to
the automated information system and the resource it manages.
Access limits for each insider are set by security policy and
enforced by the computer access controls. The degree of trust
placed in a given insider may vary from one site population to
another, and it may also vary within a population. The degree
of trust assigned to each insider is generally a consequence of a
formal review or investigation of the person's background and
integrity.

Inappropriate conduct of an insider in the use of an au
tomated information system constitutes a threat of potential
damage to the sponsor of the system. This conduct may be
characterized as any use of the system that violates actual or
intended policy. Unauthorized persons who by skill may pene
trate the access controls of the system are regarded as intruders.
Such persons have the same potential for damage to the spon
sor as does the inappropriate conduct of insiders. Where such
insiders may also seek to extend the boundaries of their autho
rization the distinction between these insiders and intruders
i~ not i~portant relative to the technologies required for the
protection of the sponsor. The sponsor may be an agency of
the government, a military group, a government contractor, a
national laboratory, or an entity in the private sector.

Damage to the sponsor may take a number of forms. Much
has been reported, and the following is a distillation of the basic
categories:2

Denial of Service: The system becomes inoperable,
unresponsive or corrupted in some manner. Some or
all of the users are unable to perform their tasks on
the system in a .normal way.

Information Loss: Information managed by the sys
tem is lost by destruction or corruption.

Disinformation: Information is altered in a manner
that misleads.

Information Compromise: Information is conveyed
to persons not authorized by policy to receive it.

Resource Exploitation: The system is used to pro
mote objectives within or outside of the system that
are not authorized by policy.

Damaging conduct in the use of automated information
systems may be a consequence of ignorance, error or malfea
sance.3 This paper addresses the identification of insider threat
arising from any conduct that damages the sponsor by violating
actual or intended policy. The objectives of such a system in
clude the identification of the perpetrator and assessment of the
damage, together with support procedures for recovery. These
objectives depend on the successful collection and analysis of
detailed surveillance data. When these objectives are served,
it is also possible to take corrective measures that increase the

2 This categorization of damage has been distilled from a wide range
of recent publications discussing and reporting computer crime, inclu~ing
technical journals, trade magazines and the public media. These summanzed
categories appear to include the various forms of damage being currently
reported by the sponsors of automated information systems.

3 From the information reported in the press, the spy case involving
Jonathan J. Pollard included the theft and compromise of large volumes
of information managed by a secure, automated information system a~ a
military site. This site was protected by computer access controls supplied
by a major government vendor. These widely used access controls wer~ not
effective against insider threat. Similarly, such access control also fatls to
offer protection to the sponsor from the damaging potential consequences of
ongoing training inadequacies and human error.

resist;~.nce of the system to the kind of threat encountered. Se the risks that arise from inadequate training, human error, mis
curity policy can thus be updated, and the administration of direction, or loss of suitable accountability and supervision, as
access controls can subsequently be improved. 7in the Oliver North case.

Damage to the sponsor may occur entirely within the
framework of authorized access to the various objects protected
within an automated information system. Examples of such ob
jects are files, programs and memory structures. [tis clear that
the access controls of a trusted computing system will not pro
vide protection under these circumstances. However, insiders
perpetrating damaging activity are being detected at a number
of sites with user-interaction surveillance technology:1

Compromise and exploitation may also occur through a
penetration of access controls and an expansion of access bound
aries by skilled insiders. Instructions on how to penetrate the
secure, general purpose computer systems now in wide use may
often be found on the college campus and in the university
library.5 There are only a few systems that have been, or soon
will be, rated by the National Computer Security Center as
having access controls that are trusted at the high end, that
is, at the AI level of security.6 The trusted systems now in
dominant use have ratings at the Cl and C2 levels and are not
very tamper-resistant. For example, trojan horse attacks and
the insertion of viruses and worms continue to be quite suc
cessful [18]. Even should access control technologies, together
with their availability and cost, meet the community's highest
expectations, technologies that identify insider threat remain a
complementary and essential part of computer security.

Where many of the critical systems of interest are phys
ically secured within vault-type buildings, it is clear that the
management of risk arising from insiders is of dominant im
portance in protecting. sensitive, automated information from
compromise and exploitation. Historically, the management of
this risk has been sought by physical security, computer ac
cess controls, and a suitable clearance for the granting of trust
to users. However, as evidenced by the Jonathan J. Pollard
case and similar cases, technology that identifies insider threat
needs to address the problem of altered motivations in popula
tions of trusted users. The same technology can also address

<i A number of cases have been reported to the vendor of the Sentry
GATE product concerning the detection, evidence gathering and termination
of damaging activities by insiders on secure systems through the deployment
of surveillance technology. The access controls supported by a trusted com
puting base are not intended to address the detection of insider threat, but
rather, the prevention of llnauthorized access [1]. Case studies of perpetra
tor identification, evidence gathering, damage assessment and recovery are
in preparation at a number of sites.

5 It has been the habit of the vendors of the most widely used secure
systems to publish lists and descriptions of problems fixed in new versions of
these operating systems, where such systems either contain or support the
trusted computing base. These systems include MVS, VMS and UNIX. This
information has traditionally been ·available with operating system documen
tation and its updates. It may therefore be found, unrestricted, on college
and university campuses, in association with those computer systems and
the various related libraries. A perpetrator may often be able to depend on
a given installatio·n to be slow in upgrading to the new version. In this case,
the subject documentation becomes a textbook on system penetration.

6 The National Computer Security Center has been successful in com
pleting an evaluation of the Honeywell SCOMP system at the Al level.
Others are expected in the future. However, complexities of implementation
and of suitable evaluation for such systems are considerable. These lead to
high costs and substantial delays in an environment oflimited resource. The
Center publishes an Evaluated Product List, as a service to the community,
where information can be found on each product that has achieved evaluated
otatus.

The historical perspective on trust and the notable lack of
technology that can identify insider threat have led to wide
spread, blind trust of user populations.8

There is also a. pattern of exemptions to policy guidelines '
in those areas that require a surveillance-oriented technology.9

This circumstance may no longer be necessary. [t is in this
context, and in the backdrop of similar expressions of concern
found throughout the Infosec community, Lu that this paper in-·
troduces and outlines some proposed characteristics of insider
threat identification systems. The specific types of concerns ex
pressed throughout the [nfosec community about managing the
risks from insider threat suggest a system that consists of at
least these five basic components:

(1) 	 Capture of detailed system and user monitoring
data through high performance surveillance tech
nology

(2) 	 Expert system analysis of a surveillance knowl
edge base for suspicious events, with weighted
scoring

(3) 	 Identification of perpetrators by an interactive ex
pert system, using the analysis results and the

7 The report by the Tower Commission, acting under presidential di
rection, presents evidence of directives made by electronic mail on sensitive
computer systems at the National Security Council that demonstrate a loss
of suitable accountability and a use of government computers to further
objectives alleged to be contrary to the sponsor's policies and objectives.

8 Five groups are known to the author to have published in the area of
insider threat identification. Two of these, the groups at SRI International [3
and 13], and at the National Computer Security Center [2], are characterized
by their titles as intrusion detection. The Sytek, Inc. group speaks of
analyzing traditional, existing audit trails for security violations [4]. On
page 71 of this reference, under the section called Background, it states:

"Monitoring of computer system use for security violations will always
be necessary. Even if we perfect the ability to design secure computer sys
tems which we can trust, we can never fully trust their users. The problem of
catching legitimate users who violate system security will remain a problem
which can most effectively be addressed by security monitoring.

"Currently, system security officers perform security monitoring of
computer systems by manually reviewing the system audit trail. The only
automated help available to them comes in the form of audit mechanisms
capable of producing reports or data bases which store audit trail data. Con
sequently, there is a great need for more capable automatic tools to assist
in this task. This need, and the lack of work being done to develop such
tools, was pointed out by Marv Schaefer in his closing remarks to the Eighth
National Computer Security Conference. Although in 1980, the James P.
Anderson Co. produced an excellent discussion of this problem, not much
seems to have been done since then." (see reference [17]).

The fifth group, A. R. Clyde Associates, with collaborators at Clyde
Digital Systems, has addressed insider threat identification systems as a
whole. Most of the Clyde Digital Systems work has been done on surveillance
technology as a foundation for such systems. However, the SentryGATE
product now in the field also performs surveillance data analysis using a
small number of suspicious event tests with weighted scoring.

9 The author qas received reports of a number of instances where ex
emptions to government guidelines for monitoring the activities on critically
sensitive systems have been granted, in the belief that no effective technol
ogy exists in support of such guidelines. In particular, a classified document
produced by the Defense Intelligence Agency, called DIAM 50-4, is known
to contain such guidelines.

10 The author refers here to meetings and conversations with members,of
the National Telecommunications and Information Systems Security Com
mittee, staff personnel at NSC and NSA, SAISS committee members, Na
tional Computer Security Center chiefs and others in the government and
military intelligence community. There has been a unanimous expression of
concern about insider threat on automated information systems and recent
reports of serious compromise to the national interest from same.

344

surveil_lance data set for investigation, evidence
gathermg and case development

(4) Tools for a detailed damage assessment. from the
surveillance data set

(5) Support capability for recovery, based on success
ful damage assessment and the surveillance data
set

2. Internal Surveillance of Automated Information Sys
terns

. Methods of internal surveillance in an automated informa
tion system fall into two categories, depending on objectives.
The fi:st is passi_ve detection, which means that the in-depth
~n~lys1s of surveillance data is performed for the detection of
InSider threa.t takes place ~ff-line or off-hour. The second may
be charactenzed as pro-active detection, which means that the
surveillance data are tested in real time for. certain events that
the tests lead, when necessary, to an immediate protective re
sponse. The objective of pro-active detection is to recognize and
suspend processes that _rna! cause serious, immediate damage
to the syst~m. The ob~ectlve of subsequent in-depth analysis
of the surveillance data Is effective detection of the more subtle
threats that are, in a broader sense, damaging to the sponsor.

2.1 Full-system Surveillance

For convenience in subsequent references, the term full
system s_urveillance refers to the capturing and recording of
~ surveillance data that appear to have an important bear
mg on the successful detection of insider threat. Such full
s!stem surveillance falls naturally into three independent func
tional modules, referred to here as: 1) user-interaction, 2) batch
stream, and 3) system-event [6].

2.1.1 User-interaction Surveillance

User-interaction surveillance must deal with both local and
remote terminal users. These are dialup users, or users access
ing the system from another node on a network. This module is
responsible for monitoring the information that moves between
t~e processor and the terminal, including undisplayed informa
tiOn sue~ as esca~e codes and control codes. The security policy
at some mstallatwns requires the ability to play back a termi
nal session from _the surveillance data exactly as it originally
occurred.I 1

2.1.2 Batch Stream Surveillance

Batch stream surveillance records the contents of batch and
co~mand control files and the system's responses to these files.
Th1s module is responsible for monitoring the information that
moves between a batch stream and the processor. The secu
rity policy at some sites may require the ability to play back a
batch stream activity a_t a terminal as though it had been per
formed manually, showmg the command input and the system
responses.

11

_A nu~ber of sites, where surveillance technology is now integrated into

secur1~y pohcy and procedures, are performing blanket monitoring. This is
a contmuous, mandatory capture of all keystrokes and system responses for
each user. Passwords are excluded.

2.1.3 System-event Surveillance

System-event surveillance includes file I/0 activity and sys
tem services. These surveillance data characterize the response
of the system to users and processes. All I/0 calls and system
service calls may need to be monitored and the corresponding
surveillance data captured, depending on the requirements im
posed by security policy. Some installations may require total
system surveillance and may require that data be captured in
extensive detail.

· It is recommended that the system-event surveillance mod
ule also collect independent system accounting statistics. Con
tributions to the full-system surveillance data set should not
depend on an extraction from records handled and managed
by the operating system and systems management personnel.
Independence of data source and layered tamper-resistance are
important to assure data integrity, even if the trusted comput
ing base should be penetrated.

2.2 Subsequent Detection

The analysis of full-system surveillance data for certain
kinds of suspicious events also requires correlation with corre
sponding data from prior periods. The limited experience with
analysis obtained to date12 indicates that the more subtle forms
of computer crime are patterns of conduct that unfold over a
period of time. Detection is greatly improved by analysis of his
torical use patterns. Passive detection is characterized by the
collection of substantial amounts of data for off-line or off-hour
analysis, which does not burden the system in performing its
intended function.

2.3 Pro-active Detection

Pro-active detection must consist of a carefully limited set
of tests in order to avoid burdening the system. These tests are
performed against the surveillance data in real time, that is, as
the data are being collected. The amount of testing is guided
by security policy, the potential system burden, and the neces
sity of preventing system-damaging events. Upon detection of a
suspicious event, an alarm is sent to the system security admin
istrator and the suspicious task is suspended, pending a more
in-depth review of the potentially damaging activity. The task
may subsequently be terminated or re-activated, depending on
the decision of the system security administrator. For some
tests, additional computer analysis may be useful following de
tection of a suspicious event. Such analysis could be automatic,
or it could require interactive, investigative intervention by the
security administrator.

2.3.1 Dealing With Trojan Horses, Viruses and Worms

Should security require that each program in the system
library include a table that lists the resources needed for its
execution, then a system-events surveillance module could deal
pro-actively with clandestine attempts to insert damaging logic
into the system. Such a table could be interrogated prior to

12 In the case of Jonathan J. Pollard, suspicion was finally raised through
an observation by personnel that he seemed to be accessing large volumes
of data. As an authorized user, access controls offered no protection to the
sponsor, nor would the analysis of any given day's activities ne_ces.sarily have
shown a sufficient pattern for suspicion. However, had an ms1der thr~at
system been employed to analyze surveillance data using present and pnor
activities matched against a user profile table, it seems likely that such
suspicion would have been raised at greatly reduced levels of compromise.

345

execution. The resources subsequently requested by the pro
gram could then be test~d for compliance with the resources
authorized in the table. When lack of compliance is detected,
the program could be suspended. Appropriate alarms could be
sounded and interactive, investigative procedures initiated.

The resource table could be encrypted. Access to the de
cryption key could be limited to the system-events surveillance
module. In those cases where fully automatic code generat
ing tools are used to create system library programs, the table
would be constructed and encrypted by computer. The program
output from such a code generator could go by trusted path di
rectly to write-once media. This arrangement could virtually
preclude human interaction with code placed into a certified
standard master library. The programs in the system library
would be copied from this independently secured master library
and then periodically bit-checked against it for correctness.

2.4 Attended, One-on-one Surveillance

In addition to the unattended, pro-active detection just
suggested, attended, one-on-one surveillance of certain users by
the system security administrator has been found useful as an
investigative tool. 13 The technology referenced here has been
in the field for about eight years. It is characterized by high
performance, in that it does not place a burden on the processor.
The investigator or security administrator may interact directly
with the process when necessary.

2.5 The System Relationship of Insider Threat Compo
nents

The surveillance component of an insider threat identifica
tion system is the only one of the five components that requires
a close working relationship with the operating system and its
trusted computing base.14 The other four components may run
on-line or off-line as trusted application software.l 5

13 There is a product in the field that operates at a subject-object,
primitive-pair level, employing an S-gate technology. A discussion of these
concepts is found in reference [6]. A technical overview of this product, called
CONTRL, can be obtained from Clyde Digital Systems. This technology has
been used in concert with system surveillance technology in criminal invesc.
tigations on automated information systems. It allows an investigator to
dynamically link to an arbitrary given terminal and surveil all information
moving between that terminal and the processor. The perpetrator is unable
to detect the presence of this one-on-one surveillance activity. The session is
recorded and the results can be compared for added perfection of evidence
with the raw surveillance data set.

14 The operating system or the trusted computing base would contain the
instructions for transfer of program execution, at appropriate times, to the
surveillance modules. In order for these branching instructions to be inserted
dynamically into the trusted system without interfering in any way with its
operation and certification, the logic for inserting the surveillance modules
depends on a certain, precise knowledge of the subject target system. The
target system need not have any particular accommodation in anticipation
of, or in an attempt to support, the surveillance modules outside of its nor
mal, certified function. This broadly characterizes the relationship between
the trusted computing base and the surveillance technology now in the field.

15 The remaining four components of an insider threat identification sys
tem, namely expert system analysis, interactive investigation, damage as
sessment ·and recovery-support, need not impact the certification of the tar
get system under surveillance in any way. They may be executed as trusted
application software in an off-hour mode. In some cases it may be appro
priate to place these components on a system dedicated to insider threat
identification in support of a number of target systems under surveillance.

2.6 Surveillance Issues for Optimizing Detection

In order to optimize the ability to detect suspicious events
through analysis of the surveillance data set, it is essential that
policy dictate mandatory surveillance.16 To achieve mandatory
surveillance, the technology must be tamper-resistant, must not
burden the processor and must be a cost-effective adjunct to a
certified trusted computing base. This is necessary in order to ,
enforce such a policy and to make it viable.

Recent experience with a criminal penetration of a secure
system has emphasized the need for correct operation of the
surveillance component, even when the access controls of the
trusted computing base are penetrated and its alarms and au
diting turned offP This level of tamper-resistance is best as
sured when there are no operating system services that make
reference to, identify, or grant access to the surveillance com
ponent. This is a degree of concealment. Such concealment,
.or "data hiding," 18 has proven itself in the field by delivering

16 Discretionary surveillance may be used to gather evidence upon es
tablished suspicion. However, permitting discretion reduces the tamper
resistance of the surveillance function by granting discretionary access at
some level of authorization for enabling and thus for disabling surveillance.
In addition, the chain of evidence to the initial compromise will almost al
ways be lost; the perpetrator may escape notice and the innocent may come
under suspicion. Incomplete surveillance data limits the ability of expert
system analysis for suspicious events. In most cases, traditional audit tech
nology is regarded as too limited in detail and too burdensome to the target
system to be used in a manner sufficient to the demands of optimum ex
pert system analysis. In some cases, suspicion can only be established at a
prompt level for certain dangerously privileged programs.

17 In an investigation by the FBI on a system for which the author had
responsibility, an intruder was observed to penetrate the access controls of a
secure operating system. The intrusion was first noted by a system security
administrator when scanning the job queue during the course of a normal
procedure. A suspicious activity was noted and the security officer executed
one-on-one surveillance against the remote terminal under suspicion. The
system had a monitoring policy which was being• enforced by mandatory,
blanket surveillance. This surveillance also recorded the activities of the
security officer in observing the perpetrator directly. The perpetrator was
observed to penetrate all levels of system privilege and then to disable the
alarms and auditing of the trusted computing base. Certain features of the
penetration pointed clearly to insider knowledge of the system and, therefore,
a knowledge of the existence of the surveillance function.. In over 25 hours
of recorded activity on the system, the perpetrator committed criminal acts,
but did not disable the surveillance function. A complete chain of evidence to
the initial compromise was located and extracted from the raw surveillance
data set.

18 On page 49, section 4.1.3.1.1 of the Criteria [1J on the subject of class
A1 operational assurance; the National Computer Security Center states:
"The TCB shall incorporate significant use of layering, abstraction. and data
hiding.... " In the same context it states: "The TCB shall maintain pro
cess isolation through the provision of distinct address spaces under its con
trol. ... " It also states: "The TCB shall maintain a d6main for its own ex
ecution that protects it from external interference or tampe~ing.... " These
concepts should also be applied independently to the design and implemen
tation of surveillance modules. The user-interaction surveillance technology
now in the field utilizes each of tamper-resisting mechanisms in its relation
ship to the TCB. Therefore, should a penetration of the TCB occur, an
independent layer of logli: maintaining process isolation with control over its
own distinct address space can retain its integrity and monitor the penetra
tion. Footnote 17 describes such an instance. In addition, it is proposed
that the branching locations dynamically in'serted into the 'l'CB for transfer
of process execution to the surveillance modules be restricted information.
This adds an additional increment of tamper-resistance. It should be noted
here that the alteration of a given branching location in the TCB by a
perpetrator will not likely disable certain advanced surveillance technology .
currently in the field. Because of the independence of the surveillance mod
ules and their capacity for dynamic insertion, restricting the information on
the branching locations does not impact the public-knowledge practices of
key operating system vendors for source code on C 1 and C2 rated systems.

346

http:surveillance.16

mandatory, user-interaction surveillance that cannot be inter
rupted by any particular privileged use of the trusted comput
ing base or operating system. 19 The surveillance data set can
also be made more tamper-resistant through .the use of existing
write-once media, such as optical storage, and through suitable
encryption.

2.7 Survelll~nce Field Experience

Field experience with existing user-interaction surveillance
technology has also been particularly encouraging for its high
performance. When blanket monitoring (the continuous cap
ture of all keystrokes and system responses at the terminal for
each user, excluding passwords) of all users is applied, which
is the mode required by security policy at a number of sites,
the user-interaction surveillance technology does not reveal it
self to the user community as an observable burden on the
system. Measurements to date of processor time required for
the execution of this surveillance function consistently lie be
low 3%.20 This experience, together with recent development
work in the system-event area, indicates ·an expectation of high
performance for total system surveillance, which would include
all three classes of surveillance and the capturing of data at a
detailed level for all users.

2.8 Cost Effectiveness

Cost effectiveness in surveillance technology is essential
to the viability of a mandatory, full-system surveillance pol
icy. The cost components involved in making effective use of
surveillance technology on existing systems have been relatively
modest. These components, from experience in the field with
user-interaction surveillance, are limited to acquisition, integra
tion and training. The acquisition costs have been particularly
modest. Integration involves only updates and extensions to se
curity procedures. There are no changes to the certified trusted
computing base. The user-interaction ~urveillance technology
can be dynamically inserted into a system in normal operation
without interfering with its current processing in any way. It is
this technique, together with concealment,2 1 that precludes the

19 The surveillance technology now in the field in not accessible by services
provided by the operating system or Trusted Computing Base with which it
is installed.

20 The measurement data on user-interaction surveillance is limited.
However, the tests run with instrumentation in the code for processor-use
measurements consistently indicate a utilization of less than 3% for the
surveillance system in relationship to all other activities over various sample
increments of time. The tests were made for the blanket monitoring mode,
which is the maximum system loading condition. The job-mix was typical
of a highly interactive environment.

21 The requirement of a correct, coqtinued execution of the operating sys
tem and the trusted computing base, together with the tasks in execution,
under dynamic insertion of surveillance technology is a valuable form of mea
surable assurance of correct operation, functional independence and domain
isolation of each. On this subject, and relative to the operational assurance
of a trusted computing base for class A1, the National Computer Security
Center states the following on page 49, section 4.1.3.1.1 of the Criteria [1]:

"The TCB shall maintain a domain for its own execution that pro
tects it from external interference or tampering The TCB shall main
tain process isolation through the provision of distinct address spaces under
its control. The TCB shall be internally structured into well-defined largely
independent modules."

In addition, by precluding access to the surveillance technology through
the services of the trusted computing base and through the operating sys
tem, the certification of these components is not effected by the presence of
the complementary surveillance functions as it supports the identification of
insider threat. This form of concealment therefore has an important bearing
on the question of re-certification, and its costs, where access controls and
surveillance are both required by policy.

need for re-certification of the trusted computing base and the
high costs for same.

This is the primary corttributor to the excellent cost ef
fectiveness of user-interaction surveillance in the field tndav.
It is copied on and executed. It runs unattended and ~~~
interruptible. This favorable experience suggests the impor
tance of retaining the capability of dynamic insertion and
concealment in the implementation of the system-event and
batch stream modules, which, together with the existing user
interaction modules, would make up full-system surveillance.

3. Suspicious Event Analysis

The analysis of data gathered through the internal surveil
lance of automated information systems appears to have only
recently been addressed by technical professionals in the Infosec
community. There appear to be just five groups that have pub
lished papers in the field. In addition, one of the intelligence
agencies is known to have implemented suspicious events tests
for the UNIX environment and has had such tests in operation
for a few years. Others may be practicing some audit trail anal
ysis. 22 The UNIX operating system provides a number of user
and system-activity audit trails of limited detail [14] that may,
nevertheless, be used to detect inappropriate conduct with some
degree of success. However, such data lacks the detail necessary
to investigate the subtleties of many forms of damaging conduct
by authorized users. 23

3.1 The Intrusion-detection Expert System

A paper by Dorothy E. Denning of SRI International, one of
the five groups, appeared in early 1986, based on work reported
internally in 1985 [13]. This paper proposes a model for a real
time intrusion-detection expert system (IDES). "The model is
based on the hypothesis that exploitation ... [will involve]
an abnormal use of the system " [3]. Denning points out four
factors that motivate the development of such a system:

(1) Most existing systems have security flaws that ren
der them susceptible to intrusions, penetrations, and
other forms of abuse; finding and fixing all these de
ficiencies is not feasible for technical and economic
reasons; (2) Existing systems with known flaws are
not easily replaced by systems that are more secure
mainly because the systems have attractive features
that are missing in the more-secure systems, or else
they cannot be replaced for economic reasons; (3)
Developing systems that are absolutely secure is ex
tremely difficult, if not generally impossible; (4) Even
the most secure systems are vulnerable to abuses by
insiders who misuse their privileges. [3]

22 It is likely that some manual, and to some degree automated, analysis
of certain traditional audit trail data has been practiced in recent years by
various government, military, contractor and private sector groups. However,
no formalization of an insider threat identification system discipline appears
to have developed.

23 For example, the operational support of an automated information sys
ttm by security administrative and system management personnel requires
the use of dangerously privileged programs. Such programs include those
that are able to alter, passwords, set up accounts, change levels of access,
install privileged programs, disable alarms, alter traditional audit mecha
nisms, and alter the operating system or trusted computing base. In the
case of what a.ppears to be an authorized use of such programs, suspicious
activity can best be assessed at the prompt level. An effective investigation
that confirms suspicion or establishes innocence also depends critically on
evidence gathered at the keystroke and system response level.

347

These same factors represent concerns throughout the com
munity relative to insiders engaged in conduct that violates se
curity policy. Such persons may also 'engage in intrusive behav
ior through ignorance, error or malfeasance.

In the IDES approach (3], a subject or group of subjects is
characterized by an activity profile with respect to the objects
normally accessed.24 The audit record data of the system are
tested to detect abnormal usage by matching thern statistically
against the activity profiles. The ability to update the activity
profiles and to change the pattern matching rules implies an ex
pert system where a portion of the surveillance knowledge base
may, in a statistical sense, learn from individual use patterns
over a period of time.

The value of these techniques can be extended to off-line
or off-hour analysis, including cross-correlations of use pat
terns and their corresponding activity profiles with prior period
data. This and other suspicious event tests, which are amenable
to subsequent in-depth analysis, are further enhanced hy the
greater detail of.surveillance data. For example, it is possible to
support, at a keystroke level, activity profiles for certain users

"who execute dangerously privileged progr~ms. Such detailed
data will permit the detection of an anomalous or peculiar use
of selected interactive programs. This is also the case for critical
system services and batch command sequences.

3.2 Detection By Pre-assessed' Intrusion Patterns

Other work on intrusion-detection, related somewhat to
the SRI International activity (3 and 13], was reported at the

. 9th Annual National Computer Security Conference in Septem

. her 1986 by Lawrence R. Halme and John Van Horne of Sytek,
Inc. (4, 10 and 16]. This· work was based on a fixed set of pre
assessed intrusion patterns. Functions of certain fields found
in traditional audit records form what they have called fea
tures. Parameters in these features are set to values found to
characterize normal user patterns learned over some number
of sessions of a given kind. These features are then used to
discriminate between normal and intrusive behavior. Success
ful features are combined to create an activity profile for each
user. It seems intuitive that higher resolution in the data tested,
that is, greater session detail, would improve the discrimination
possible by this technique. In particular, certain tested features·
were reported to have failed for lack of data of sufficient quality.
In conclusion, the paper states in part: "It is also important to
determine what other monitoring data, not normally contained
in audit trails, would be useful" (4]. More work on generic fea

. ture development, based on detailed system surveillance data,
is indicated by the successful features reported.

24 A subject may be characterized as a person or a program which acts
upon an object within the automated information system. An object may
be characterized as an item of information, such as a record, a file, a system
table or a memory structure. ·It may also be a program. The access of a
given object by a given subjli(~ds mediated by a security kernel which im
plements a reference monitor to validate each access. The reference monitor
was introduced in a report by James P. Anderson Co. in 1972 [12]. This
report describes the concept of "a .reference monitor which enforces the au
thorized access relationships between subjects and objects of a system." A
reference validation mechanism was further defined as, "an implementation
of the reference monitor concept. . . • that validates each reference to data
or programs by any user (program) against a list of authorized types of
reference for that user." The Criteria of that National Computer Security
Center defines a security kernel as: "The hardware, firmware, and software
elements of a trusted computing base that implement the reference monitor
concept. It must mediate all accesses, be protected from modification, and
be verifiable as correct."

3.3 Intrusion Detection by Analysis of System Service
Calls

The work by Jeffrey D. Kuhn of the National Computer
Security Center was also reported in the 9th Annual National
Computer Security Conference [2J. This work is based on an
analysis of those system service calls that· are useful in detect
ing intrusion, as recorded by traditional audit trail techniques.
In the conclusion of the paper, Kuhn reports that "an exami-•
nation of operating system penetration techniques and current
auditing methods indicates that most sophisticated violations
of system security will be completely undetected, leaving poten
tially no trace in the audit logs at all" (2]. This is disappointing,
but not unexpected.25 [t is recommended that system-event
surveillance data be correlated with user-interaction and batch
stream surveillance data. As Kuhn points out (2], these data
should be gathered at the lowest possible levels.

If the data are not gathered by a mandatory mechanism
that is secure from tampering even when the trusted comput
ing base is penetrated and all privileges compromised, then any
analysis of those data is based on potentially limited or lost
information and on possible disinformation.26 Nevertheless, a
variety of suspicious event tests, together with techniques for
evaluating use patterns, have had some success in detecting con
duct that violates security policy. Correlated data on system
service calls can only enhance that success by extending the
tests that can be performed and by ratifying the expected rela
tionship between system-service activities and user-interaction
or batch stream activities. Alternatively, such data could be
used to disclose an unexpected relationship, indicating a par
ticularly subtle and sophisticated abuse of the system and its
trusted computing base.

The author has proposed the collection of full-system sur
veillance data by an S-gate technology. This technology medi
ates and surveils a common data path between subject-object
primitive pairs [6]. This is the technology that was used to im
plement the existing user-interaction surveillance system now
in the field. 27

25 Footnote 17 describes an investigation into an instance of criminal
conduct on a secure system where the perpetrator left no evidence in the
form of audit logs or alarms. These mechanisms were turned off by the
perpetrator before proceeding with the crime.

26 Relative to these concerns, Lawrence R. Halme and John Van Horne
state [4]:

"An automatic tool to assist in the task of security monitoring would
require data about user activity on the system. Audit trails already provided
by the system are one ·source of such data. They have the advantage that
they are an economical and practical source, since their use would require
the automatic monitoring tool only to interpret the data and not collect
it. On the other hand, the disadvantage of the use of audit trails should
be recognized. They may not have been originally intended for security
purposes and may not contain enough security relevant material. The audit
mechanism may not be secure itself, so that the audit data it produces may
be of questionable integrity."

27 In reference [6] on pages 1 and 2 the reader will find a discussion of
S-gates, and again on pages 11 and 12. For simplicity here, the author has
combined the local user-interaction S-gate and the remote-terminal S-gate
into the single surveillance model, called herein the user-interaction surveil
lance module. In reality, this capability is represented by more than one
software module with independent domains in the existing implementation.
Similarly, the system-call S-gate and I/O-call S-gate are combined in what
has been termed the system-event surveillance module for simplicity in dis
cussion. The history of S-gate development is presented on page 3. Robert
A. Clyde is recognized for the design and implementation of the first, and
successful, S-gate, with the original concepts.going back to 1975. This work
was done at Clyde Digital Systems, under the directio.n of the author and
with private funds. Also, a discussion of subject-object primitive pairs may
be found on pages 11 and 12.

348

3.4 Computer Security Threat Monitoring and Surveil
lance

A report ('ntitled "Computer Security Threat Monitoring
and Surveillance" was written under contract 78F296·l00 by
James P. Anderson Co. in early 1980 [17]. The study was per
formed for "the purpose [of improving] ... the computer security
auditing and surveillance capability of the customer's systems"
(Section 1.1, Introduction [17]). For background (Section 1.2),
the report states in part:

Audit trails are taken by the customer on a relatively
long term (weekly or monthly) basis. This data is
accumulated in conjunction with normal systems ac
counting programs. The audit data is derived from
Sl\IF records collected daily from all machines in the
main and Special Center. The data is temporarily con
solidated into a single file ... from which the various
summary accounting and audit trail reports are pro
duced. After the various reports are generated, the
entire daily collection of data is transferred to tape.
Several years of raw accounting data from all systems
are kept in this medium.

Audit trail data is distributed to a variety of individu
als for review; ... [This includes] activity security offi
cers for some applications located under their purview,
but the majority [goes] to the customer's data pro
cessing personnel. For the most part the users and
sponsors of a data base of an application are not the
recipients of security audit trail data. [17]

The term SMF means system management facilities and
refers to traditional audit trail information collected on IBM
mainframes, such as session, time, resource use, user identifi
cation, programs run, files opened, reads, writes and related
statistics. This section of the report goes on to characterize the
value and the limitations of this class of raw surveillance data:

Security audit trails can play an important role in the
security program for a computer system. As they are
presently structured, [these data] are useful primar
ily in detecting unauthorized access to files. The cur
rently collected customer audit trails are designed to
detect unauthorized access to a dataset by user iden
tifiers. However, it is evident that such audit trails
are not complete. Users ... with direct programming
access to datasets ... may operate at a level of con
trol that bypasses the application level auditing and
access controls. In other systems, particularly data
management systems, the normal mode of access is ex
pected to be interactive. Programmers with the ability
to use access method primitives can frequently access
database files directly without leaving any trace in the
application access control and audit logs. Under the
circumstances, such audit trail concepts can do little
more than attempt to detect frontal attacks on some
system resource.

Security audit trails can play an important role in a se
curity program for a computer system. As audit trails
are presently structured on most machines, they are
only useful primarily in detecting unauthorized access
to files. For those computers which have no access
control mechanisms built into the primary operating
systems, the audit trail bears the burden of detecting
unauthorized access to system resources. As access

control mechanisms are installed in the operating sys
tems, the need for security audit trail data will be
even greater; it will not only be able to record at
tempted unauthorized access, but will be virtually the
only method by which user actions which are autho
rized but excessive can be detected.

This work offers much valuable direction in the compila
tion and organization of the traditional, or audit trail, class
of system surveillance data. The report introduces a surveil
lauce system structure. This nomenclature describes a svstem
for the analysis of raw audit trail data. 28 System eleme;ts are
described "for the automated generation of security exception
reports" (Section 4, Structure of a Surveillance System [17]).
The structure includes a selection program that operates on
the raw audit trail data and certain selection parameters, plus
a surveillance program that operates on certain resulting ses
sion/job records. This is used together with the audit history
data to produce security exception reports.

3.5 Suspicious Event Testing and Weighted Scoring

The fifth group publishing in this new field consists of the
author and his associates Robert A. Clyde and James D. Gates
at Clyde Digital Systems. These papers are found in the pro
ceedings of meetings of the Insider Threat Identification Sys
tems Working Group [6, 7, 8 and 9]. The paper by Robert A.
Clyde [8] discusses the suspicious event testing and weighted
scoring used by the SentryGATE product line.29 This work has
been based on the analysis ofsystem-event and user-interaction
surveillance data. High scoring users are presented as an or
dered list on a report provided to the security administrator.
Though limited in scope, numerous acts of misconduct, includ
ing criminal conduct, have been detected on sensitive computer
systems with this capability.30 Tests fo~ misconduct in the use
of dangerously privileged system programs depend critically on
detailed user-interaction surveillance.

For example, consider a program used to install privileged
programs, or the one used to maintain access authorization ta
bles and system passwords. With .traditional system audit or
accounting logs, the perpetrator need only re-name the dan
gerously privileged program in order to execute it undetected.
Should the execution of such a program be detected, the tradi
tional audit records will not offer any information about what
the user did.31 For the protection of authorized users acting in
good faith and within the security policy guidelines, a record

28 The author has used the word surveillance to describe an ongoing mon
itoring activity of the target system. This usage is consistent with product
literature that has been in the field for several years. Anderson's use de
scribes a system that analyzes audit trail data.

29 The SentryGATE product line includes the user-interaction surveil
lance module designed by Robert A. Clyde and implemented with assistance
b_y his project team at Clyde Digital Systems, Orem, Utah. Some 14 suspi
CIOUS event tests are included with weighted scoring and an ordered listing
of suspicious users, starting with those determined to represent the highest
risk of insider threat [8].

30 With respect to the user-interaction surveillance now in the field, nu- ·
merous reports have been received by the vendor of misconduct and criminal
activity which has been detected using same on C1 and C2 rated, secure
systems. In each instance, the damage to the sponsor was perpetrated by
insiders. The evidence gathered by the surveillance technology includes the
keystrokes used to penetrate the access controls, together with the corre
sponding system responses.

31 See for example footnotes 17 and 27 for a discussion of a recent case
regarding operating system alarms and the traditional audit trails provided
with operating systems now in wide use.

349

http:capability.30

of keystrokes and system responses is essential. For the perpe
trator of damaging activity in the use of dangerously privileged
system programs, such a record is essential for the ultimate
detection of the true perpetrator of the original source of com
promise. For example, an authorized user, experiencing altered
motivations, may give certain privileges to unauthorized per
sons in a collaboration of compromise and exploitation.

3.5.1 System Surveillance Selectivity

In order to effectively enforce a broad spectrum of policy
requirements for system surveillance across a range of auto
mated information systems of varying sensitivity, the surveil
lance technology must be high performance,32 and it must be
able to meet a demand for full-trace capture of user-interactions,
batch stream activities and system-events when required. To
deal with these varying requirements and with what may be re
garded in some cases as excessive surveillance data, the surveil
lance technology must support parameterization for selectivity
of the monitored activities and of the data captured in response
to the governing policy.

For some cases the mandatory capture of just the key
strokes of certain, or perhaps all, of the users at all times may
be a suitable parameterization of the surveillance system for
the policy in force. 33 At other sites, there may be a policy of
blanket monitoring. There are numerous sites now using this
monitoring mode with user-interaction surveillance.

3.5.2 Secure Master Control

In order to assure secure access to a master control module
that is capable of parameterizing the execution of the surveil
lance system, and in order to assure the tamper-resistance of
the surveillance system itself, two techniques are recommended:
1) the executable image of the master control program can be
kept encrypted for all except a small portion of its user-interface
logic, and 2) direct access to the surveillance system should not
be given to the master control program, just as it is not given to
the operating system, the trusted computing base or any other
facility. This is in order to assure the independent tamper
resistance of the surveillance system.34 It is also important
that the execution of the user-interface logic require knowledge
of the decryption key which is external to the system.

The parameters set by the master control module can be
encrypted into a table for subsequent decryption by the surveil
lance system. The surveillance system itself should be brought

32 One of the most limiting problems with traditional audit trail capa
bilities currently delivered with the widely used operating systems as a set
of discretionary functions is the inordinate burden they impose on the pro
cessor. The consequence is a persistent conflict of interest in demand for
processor resource between the requirements of security policy for monitor
ing and the intended use of the system in meeting the sponsor's production
objectives. A security policy will not be viable in its enforcement unless the
technologies required for that enforcement do not conflict with the produc
tion objectives of the target system.

33 At some sites, where monitoring activities have been practiced with
the limited traditional auditing techniques, it has been suggested that con
siderable value could be obtained from monitoring for keystrokes only. It is
suggested by some that this is sufficient to that task of successful detection
of suspicious events by automated analysis of such data. However, when the
system responses are not recorded, the evidence value of the raw surveil
lance data is reduced unrecoverably. (e.g. It is difficult to determine with
certainty what took place when system responses are not captured.)

34 See footnote 22 for a discussion on tamper-resistance and data hiding,
together with domain independence and layering. Also, see section 4.3.1.1
on operational assurance, in reference [1 J.

onto the computer with media containing an executable image
that is encrypted for all but a small portion of logic that pro
vides a user-interface for the insertion of an external decryption
key. With this key the surveillance system decrypts, loads and
starts itself. Thereafter, it decrypts and interrogates the pa
rameter table created by the master control module. For added
protection the master control module can be removed from the
system when not in use. In addition, the external decryption
key necessary to run the master control module should be dif
ferent from the external decryption key necessary to bring up

the surveillance system.35

3.6 Raw Surveillance Data

The term raw surveillance data is given here to unal
tered surveillance data, exactly as it is captured and originally
recorded by the surveillance system. Such data can be used
to support a number of objectives in the management of auto
mated information systems. Those of particular importance to
a discussion of insider threat identification systems include the

following:

• 	 Detection of suspicious events by automated anal

ysis

• 	 Investigative activities for perpetrator identifica
tion by direct inspection

• 	 Evidence gathering for case development

• 	 Fact-oriented generation of a surveillance knowl
edge base, used for interactive, expert system
identification of perpetrators

• 	 Direct inspection for detailed assessrrfen t of known

damage

• 	 Recovery of damaged data structures

• 	 Direct inspection and analysis of attempted pen
etrations for unexpected weaknesses in the access

controls

It may be concluded that the generation and retention of raw
surveillance data at a detailed level is of substantial value. ·

Indeed, other important objectives suggest themselves, and
although these objectives lie outside the scope of this paper,
they nevertheless have a similar dependence on detailed raw
surveillance data that can be retained for subsequent inspection
and use. These objectives include the following:

• 	 Automated disaster recovery employing keystroke
surveillance data gathered from user interactions

• 	 Automated disaster recovery employing I/O-call
surveillance data

• 	 In-depth analysis of system use patterns for ca
pacity planning

• 	 In-depth analysis of training levels and adequacy

• 	 Independent auditing of process results against
those expected from policies and procedures (e.g.,
financial auditing)

• 	 Enforcement by computer of labor-management
policies governing harassment of users

35 The master control concept, credited to Robert A. Clyde at C_lyde ~ig
ital Systems, h·as been successfully implemented by members of hts proJect

350 t.eam.

http:system.35
http:system.34

• 	 Employee performance and productivity measure
ment (as regulated by policy and employee agree
ment)

It seems clear that raw surveillance data should be retained,
without alteration, in order to offer subsequent support to a
widely ranging set of potentially important objectives in the
management of automated information systems. Furthermore,
on the matter of retention, the value of any particular set of
surveillance data to some subsequent demand is often very dif
ficult to predict at the time the surveillance data are captured.36

3.6.1 Archiving

The archiving of raw surveillance data from blanket moni
toring with user-interaction surveillance is now commonly prac
ticed among security administrators who have this technology.
They are not, for example, trying to predict which data may be
of subsequent value. The number of bytes of user-interaction
surveillance data generated from user to user can vary widely.
However, the total byte counts for such data generated on a
given system in a day's time are typically quite manageable.37

No experience is yet available on the balance between de
tail and quantity of data in the areas of system-event and
batch stream surveillance. However, it seems clear that batch
stream surveillance need not be more than a modest extension
to the data archiving requirements of user-interaction surveil
lance. It is clearly of the same character. In both cases, re
dundant sequences of identical data, together with large con
tinuous outputs by the system in response to the user or the
hatch-command stream, can simply be counted. This count
information can replace the repetitive information in the raw
surveillance data set prior to archiving. Similar techniques
and appropriate selection of the data captured by system-event
surveillance need to be studied further. 38

3.6.2 Write-once Media

Optical storage technology now offers a number of compet
itive products in the single and multiple gigabyte range. Such
products are a cost-effective solution to the archiving require
ments of raw surveillance data. The write-once feature of this
technology is important in assuring tamper-resistance for the
surveillance record. The actual medium on which the data are
written is removable from the drive mechanism. This removable
medium, which is about the size of a traditional long-playing
phonograph record, goes into a cartridge one inch thick. It can
he packed closely and stored in quantity, even in limited vault

36 Suspicious events depend primarily for their detection on the analysis
of the raw surveillance data set. Detection of a suspicious event usually
occurs at a time which is considerably later than the event itself. Once a
suspicious event is detected, an investigation of raw surveillance data into
earlier periods is always of value in establishing the chain of evidence to the
original compromise.

37 Data taken from a system used in a highly interactive mode indicates
an average of about 250,000 bytes per user per day. This includes clerical,
technical support, technical writing and development personnel. These blan
ket monitoring results are believed to be fairly typical of such environments.
However, the amount of raw surveillance data captured in the blanket mode
can vary widely, depending on the nature of user activities on a given system.

38 The surveillance of I/O-call activity could become burdensome. How
ever, in most cases it would seem adequate to capture only. a small portion
of read-request output without losing the ability to characterize accurately
the events taking place. On the other hand, if I/O-call surveillance is to
be used for automated disaster recovery, then all write activity to the data
stn-1ctures requiring this level of protection would have to be captured.

space. This medium is not subject to damage from electric or
magnetic fields. It is expected to be stable over long periods of
time, with a life of at least 10 years.

· "":rite-once storage media require special file I/0 handling
that will not attempt to rewrite portions of the medium. Such a
file handler must deal with the differing requirements for media
faults and read access of this class of storage, in comparison with
the requirements of the traditional magnetic disk technology.
The file handler is supplied in some cases by the manufacturer of
the optical storage drive. File handling is also provided with the
surveillance system product in order to support the advantage
of tamper-resistance on traditional media, where write-once can
also be enforced.

3.6.2.1 Cost Effectiveness

The cost per byte of write-once media is consistent with
that of conventional magnetic-tape storage media for data
archiving. The cost of the drive is considerably less per byte
than that of tape-oriented drives.39 As for size, one optical
storage drive currently offered can be fitted into 5.25 inches of
standard electronic rack space.4o

In addition to the cost advantage of optical storage in
archiving, this technology also offers a cost effective alterna
tive to traditional on-line storage for random read-access to
large segments of raw surveillance data. It is expected that
the costs of optical storage will decline with time, maintaining
a continuing advantage over magnetic media where write-once
is required. For magnetic media, this write-once requirement
represents an additional cost for enforcement.

The peculiar combination of cost relationships currently of
fered by optical storage and the expectation of declining costs
are most encouraging. These benefits come at a time when it
is becoming more important to archive sufficient quantities of
raw surveillance data to successfully support the objectives of
insider threat identification systems. Within reasonable, bal
anced cost constraints, it now appears that such objectives can
be successfully addressed through the support of archived, full
system, raw surveillance data, where appropriate constraints
are imposed on the selection of the system-events monitored
and the quantity of such data captured.

3.7 Knowledge Base

The knowledge base that supports the expert system in the
analysis for suspicious events is described here as a surveillance
knowledge base. The surveillance knowledge base has a domain
that includes a number of fact contributions called fact-sets and
a number of rule contributions called rule-sets.

39
The Perceptics Laser System optical disk storage subsystem is com

P<I:red here with Digital Eq~ipment Corporation's TK50 magnetic tape drive
usmg a s~reamer tape cartndge. The Perceptics optical disk cartridge is cur
re?tly prtced at $0.245 per megabyte and the Digital TK50 tape cartridge is
pnced currently at $0.305 per megabyte. For the drives, Perceptics is priced
at $12.50 per megabyte and Digital is at $35.79 per megabyte.

40
The Perceptics optical disk cartridge measures 25mm (1 in.) in height,

330mm (13 in.) in width and 334mm (13.14 in.) in depth.

351

http:space.4o
http:drives.39
http:manageable.37

3.7.1 Fact-based Knowledge

The fact-based portion of the surveillance knowledge base
includes the following distinct sets of facts:

• 	 Surveillance fact-set-derived from raw surveil
lance data

• 	 External fact-set-external to the system, includ
ing facts about changes in user status, new users
and terminated users

• 	 Supporting fact-set-image facts, system library
facts, access authorization facts, and facts from
suspicious event test modules

• 	 Profile fact-set-the fact-oriented portion of the
surveillance knowledge base contained in each of
a number of profile structures for suspicious event
testing.

3.7.1.1 Primary Data Reduction

A variety of data extraction and structuring activities may
be applied to the raw surveillance data may be found useful,
depending on the system management objectives. However, for
support of the objectives of an insider threat identification sys
tem, only one such activity is considered here. The intention
of this activity is to create an appropriately structured, fact
oriented surveillance knowledge base by suitable extraction from
the raw surveillance data. The extr~ction process should invoke
a set of rules that serve to mediate the exclusion of extraneous
data in the generation of a reduced data set. This primary set
of rules must be based on expert knowledge about which data
are relatively safe to ignore.

3.7.1.2 Surveillance Fact-set

The reduced data are to be used in constructing the surveil
lance fact-set portion of the surveillance knowledge base. These
facts are extracted from the raw surveillance data captured over
a specified period of time. The construction of this contribution
to the surveillance knowledge base is governed by the base-level
knowledge engineering logic in the expert system. This base
level knowledge engineering is limited to that which can be in
dependent of a given system. The fundamental element of this.
fact-set is called a surveillance record.

The surveillance record is an access-oriented structure of
the following form:

(subject, object, access-attributes)

The access-attributes include the following:

• 	 Surveillance module source-a surveillance mod
ule that captures the data (this is essential to each
surveillance record)

• 	 Action-the type of operation performed by the
subject on the object

• 	 Resource usage-such information as the number
of reads, writes, lines printed, CPU resource used,
1/0 resource used, etc.

• 	 Date and time stamping-the date and time of
the access (this is an essential data item in each
surveillance record)

• 	 Keystrokes-keystrokes (for user-interaction sur
veillance) and pseudo-keystrekes (for batchstream

surveillance), included in the surveillance record
as required

• 	 Subsequent action-the response of the system to
an access; that is, the action or condition that re
sulted from the access, and as much of the output
data (information sent to a terminal or other out
put device) as required (the action or condition is
essential data)

This structure can be characterized as an n-tuple, where
n varies with the surveillance module on which the surveillance
record data depend.

3.7.1.3 External Fact-set

The external fact-set is a collection of facts external to
the system under surveillance that may contribute to the fact
oriented portion of the surveillance knowledge base. Such facts
may include information about termination of employment; new
users; users with changed status, including promotions, demo
tions and changed authorizations; and information that may
characterize motivations. This information may be updated to
the surveillance knowledge base from time to time as required.

3.7.1.4 Supporting Fact-set

The supporting fact-set contains other types of fact-orient
ed knowledge that are included in the surveillance knowledge
base. The access authorization tables are one such type of sup
porting facts. These tables may take a variety of forms at vary
ing levels of detail, depending on the system and the security
policy to be enforced. These are the data used by the trusted
computing base to determine if an access request is authorized.
A general form of these tables is discussed elsewhere [6]. In this
general form, the access of a specific object by a specific sub
ject is supported. A copy of this class of fact-oriented knowledge
(as independently secured data, extracted on a periodic basis)
is a necessary complement to the surveillance knowledge base
in some cases. This fact-set includes the variance from average
rates of change and related measurements.

Other supporting contributions to this fact-set include
changes in the operating system image and the system library
image. Of interest is the detail of the change, together with the
variance from average rates of change over a period of time.

In addition, there are supporting facts associated with the
suspicious event test modules and their modification and exten
sion.

3.7.1.5 Profile Fact-set

The concept of a profile comes from the need for a con
struct that can represent a norm for a specific activity on the
target system. It has grown out of the statistical analysis ap
proach to suspicious event testing. It is used here as an ex
tended construct for supporting both statistically-oriented and
inference-oriented suspicious event testing. These constructs
contain activity-dependent facts that contribute to the knowl
edge base, both for pattern matching and for detection by in
ference. This contribution is the profile fact-set. Facts derived
during the course of analysis are also included.

352

3.7.2 Rule-based Knowledge

The rule-oriented portion of the surveillance knowledge
base dept•nds critically on expert knowledge of system-compro
mising techniques and modes of security policy violation. A
rule is characterized as a fundamental structural element in the
survl:'illance knowledge base. It has the following form:

If (proposition) then (action)

When the proposition tests true, the action is performed.
Establishing a new fact is an important class of action. In gen
eral, an inference-oriented suspicious event test is a set of one
or more rules. Some propositions and actions are fixed, inde
pendent of the daily dynamics of a system or related external
events. Other propositions and actions may vary.

Some parameters, in propositions and actions may be au
tomatically changed by an update to the fact-oriented portion
of the surveillance knowledge base. Others may be changed, or
new rules crt•ated, dq>ending on thl:' action of a previous rule.
It is also important that some of these parameters be accessible
to an investigative expert. The parameterization of some sus
picious event tests is essential to an investigation in which the
expert system is used by trained professionals in an interactive
mode.

3.7.2.1 Surveillance Rule-set

The SIJ.rveillance rule-set is associated with the surveillance
fact-set. The construction of this contribution to the surveil
lance knowledge base is governed by the base-level knowle<;lge
engineering logic in the expert system. This rule-set is limited
to just those rules that can be independent of a given system.

3.7 .2.2 External Rule-set

The external rule-set is associated with the external fact
set. A domain expert is to be supported with tools for the mod
ification and extension of the rules in this setY These rules are
also to be parameterized where possible to "support the domain
expert in easily performing various investigative experiments.
The parameter changes must be simple to understand in their
effect and must be straightforward to perform.

3.7.2.3 Supporting Rule-set

The supporting rule-set is associated with the supporting
fact-set. As with the external rule-set, a domain expert is to
be supported with tools for the modification and extension of
the rules in the set. And again, the rules must be parame
terized, where possible, to permit investigation. The rules are
constructed to address changes in use norms and to identify
suspicious activity by inference when there have been changes
in user status.

3.7.2.4 Profile Rule-set

The profile rule-set is associated with the profile fact-set. It
includes activity-dependent rules, together with rules that may
be established by the expert system and inserted during the
course of analysis. The potential for such inserted rules must
exist throughout the expert system.

41 Donald A. Waterman [11] characterizes a domain expert as: "A person
who, through years of training and experience, has become extremely profi
cient at problem solving in the particular domain." The domain here is that
of expertise in system-compromising and penetration techniques relative to
specific security policy and system characteristics.

3.7.3 Profile Set

The profile set consists of a number of profile structures.
The profile structure used here is an extension of that described
by Denning [3] to accommodate the advantages of surveillance
record data. The advantage of this type of data is the ability
to look more closely at use patterns. The profile structure is
described here as a profile record. The structure of a profile
record is of this form:

(dependent components, independent components)

The following components of the profile record depend on
the subject and object in a given access relationship:

• 	 Subject pattern-the pattern to match with the
subject string in the surveillance record

• 	 Object pattern-the pattern to match with the
object string in the surveillance record

• 	 Fact-set-includes the results of one or more sta
tistical tests, the parameters for the statistical
model and some profile-record dependent facts as
required

• 	 Rule-set-includes certain profile-record depen
dent rules as required

• 	 Inference Logic-is used in conjunction with pro
file-record independent knowledge as part of the
expert system

The following components are independent of the subject
or object in a given access relationship:

• 	 Variable name-uniquely identifies the profile re
cord for a given subject pattern and object pat
tern

• 	 Surveillance module pattern-the pattern that
matches with the surveillance module identifica
tion string in a surveillance record

• 	 Action pattern-the pattern to match with the
action string in a surveillance record

• 	 Resource usage pattern-the pattern to match
with resource usage data in a surveillance record

• 	 Period pattern-the pattern matched to the dur
ation-of-action information as derived from the
date and time data in a surveillance record

• 	 Keystroke pattern-the pattern to match to key
stroke data in a surveillance record

• 	 Subsequent action pattern-the pattern to match
with subsequent action data in a surveillance rec
ord

• 	 Fact-set-suspiCious event test to be used and cer
tain profile-record independent facts that result
from inference or statistical analysis (this fact-set
also includes the threshold parameters used in de
termining suspicious activity from the results of a
statistical test)

• 	 Rule-set-includes certain profile-record indepen
dent rules resulting from inference or statistical
analysis

Each profile record represents a specific profile defined
uniquely by the variable name, subject pattern and object pat
tern. The general constructs for specifying a pattern [3]include
the following:

353

• 	 Character string

• 	 Wildcard matching for any string

• 	 Match for any numeric string

• 	 Match for any string in a given list

• 	 The string matched with a given string is to be
associated with a given name

• 	 Match pattern 1 followed by pattern 2

• 	 Match pattern 1 or pattern 2

• 	 Match pattern 1 and pattern 2

• 	 Match for all but the pattern

These constructs are used to support a variety of statistical
models. A number of such models are discussed by Denning [3].
These models are used to perform statistically-oriented suspi
cious event testing by matching profile record patterns against
selected surveillance records. The results are acted upon by
rules for determining abnormality (suspicion) based on thresh
old and variance parameters.

The results of statistical analysis for certain profiles may be
used to construct new facts and rules. These are placed in the
independent fact- and rule-set components of the profile record
and become part of the surveillance knowledge base on which
the inference-oriented suspicious event tests operate.

3.7 .3.1 Profile Record Classes

A profile record class is defined as one of a number of com
binations of subject-group and object-group pairs. For example,
there is a profile record class for actions performed by a group
of one subject aggregated over all objects in a group that forms
a class. Suspicious event tests are performed on these aggrega
tions of profile records. Such tests may be called class tests. 42

3.7.3.2 System Profile Set

A system profile set.should include a list of authorized pro
grams from the certified system library, together with the fol
lowing use attributes: 1) use frequency, 2) typical duration, 3)
typical times of day used, 4) seasonal or periodic use, and 5)
overall system burden. The typical system loading characteris
tics, including such information as job mix and peripheral use,
may also be useful. Daily, weekly, monthly and seasonal system
loading could be considered. Data movement and storage on the
system could be characterized with current volumes, and with
rates of change and variance. This should include movement
into and out of the system.

No work in the identification of insider threat is know to
have been reported for this type of profile table. It is likely
that such information may nevertheless enjoy some use by a
few government and military groups in identifying abnormal use
patterns. System profile tables can clearly make a contribution
to the fact-oriented portion of a surveillance knowledge base for
expert system analysis.

42 A brief description is given by Denning for each generic class of profile
record aggregates (3].

3.7.3.3 Program Profile Set

A program profile set should include such information as
files accessed, processes initiated and privileged system-services
requested. Typical data volumes and rates may also be in
cluded. In addition, data may be included for time and fre
quency of use. Attributes for I/0 a.nd compute process ra.tios
may be useful, together with a.ny special start-up or termination
restrictions.

In some cases policy requires a bit-image checking of the
entire system library against a.n independently secured copy of
same. Such periodic testing can provide assurance against per
manent loss of program certification from compromise due to
an insider act, malicious or otherwise, or due to spontaneous
media faults. This technique may be used to "disinfect" a sys
tem library under attack [18]. This practice will not, however,
offer protection against a. system penetration where a program
is altered briefly for certain inappropriate objectives and then
returned to its original certifit'd condition.

3.7.3.4 User Profile Set

The user profile set should include a. characterization of
programs typically accessed and their frequency of use. In some
cases, information on time of day normally used or on other
time-use habits may be important. Similarly, certain comple
mentary information about files accessed outside of fixed, certi
fied procedures (e.g., with an editor) should be included. Also,
habits in the use of various system services should be charac
terized.

Information about typical data volumes processed by the
user under different circumstances and with different selected
programs should be considered. In some cases it may be nec
essary to characterize use patterns at a ke¥stroke level, partic
ularly in the use of dangerously privileged programs and for
critically sensitive files.

The inclusion of certain privileges and authorizations that
may be complementary to specific object access rights found in
the access authorization tables may also be required by some
types of security policies. For example, a user may be autho
rized to change certain data only in specific ways.

Some activity profiles of particular interest may be found
described by Denning [3]. Others are listed in outline form in
[15]. An exhaustive list is represented by all objects managed
by the automated information system considered against the
possible actions with those objects. For example, read, write,
change, compute, execute and move or copy.

3.8 Expert System Considerations

It is recommended that the expert system for analysis be
constructed around a concept of generic test modules. For con
venience three generically distinct test classifications are identi
fied to span the domain of possible suspicious event tests. They
are the following:

• 	 System Test Module-includes suspicious event
tests that consider system activity as a whole.

• 	 Program Test Module-includes suspicious event
tests that consider program activity.

• 	 User Test Module-includes suspicious event tests
that consider user activity

354

Each module generally consists of some arbitrary number
of test submodules-, depending on the security requirements of
a given system. These submodules operate upon the surveil
lance knowledge base as components of the expert system. In
general, the submodules relate to profile records and particular
aggregates of profile records.

The expert system analysis for suspicious events must be
able to produce a trace of the inference chain that leads to
the identification of an asserted suspicious activity. Both al
gorithmic and heuristic rules must be supported. Suspicious
events are to be weighted by the expert system and aggregated
to characterize suspicious activities. These suspicious activities
are given a criticality score, based on the weighted scoring of the
supporting events. An ordered listing is to be produced with
the highest scoring suspicious events occuring first. Supporting
documentation is to be provided on demand at descending lev
els of increasing detail. For example, an investigator must be
able to request the presentation of a trace of the inference chain
for a specified suspicious activity. Other levels of detail include
the surveillance file names, excerpts from the raw surveillance
data, and finally, the raw surveillance data itself.

3.8.1 Code Generator Support

The submodules are to be constructed by fully automated
code generation. Such generators are themselves a type of spe
cial expert system. In this case there is a special knowledge
base that would correspond to each generic test module.

The user of the code generator would be a domain expert,
where the expertise is in the field of insider threat identification.
This expert would be supported by the code generator in spec
ifying suspicious event tests for each generic test module. This
type of capability requires a computable specification language
within the framework of an expert system based code generator.
This is a new field of technology that is attracting substantial
attention with products that are beginning to stabilize. 43

The generation of test submodules can be characterized
as the creation of the site variable portion of the rule-based
knowledge in the expert system. This addresses the issue of
cost effectiveness where the set of suspicious event tests and
their individual characteristics may have to vary substantially
from site to site, depending on policy and circumstances.

The code generator contributes a fact-set and a rule-set to
the corresponding supporting fact- and rule-sets of the surveil
lance knowledge base. This includes the code generator's
paradigm for each generic test module. The code generator
in turn shares the surveillance knowledge base with the expert
system for analysis.

Templates of all suspicious event test submodules are to be
included with the code generator as the starting point for the
domain expert at each site. This is the tool that supports the
domain expert in creating, modifying and extending suspicious

43 Computer-aided Software Engineering is now an active field in the pri
vate sector for product development. Some of these products are beginning
to fulfill the historical promise of fifth generation language. The First Inter
national Workshop on Computer-aided Software Engineering, called CASE
'87, was held in Boston late in May, 1987. A number of leading-edge contrib
utors shared position papers and current technical status in a professional
workshop environment. The proceedings are available. The more salient
material is to be published by the IEEE. Clyde Digital Systems has ad
vanced a product in the field which is believed to be capable of addressing
the problem of supporting a domain expert in transforming the generic test
shells into specialized, suspicious event tests by fully automated program
generation.

event tests. This approach will contribute high efficiencies and
low costs to the customization and production of site specific
test submodules. The type of expert system-based code gen
erator under discussion here makes it particularly easy for the
domain expert to re-enter a specification session, make changes
and regenerate correct code. 44

It appears reasonable to suggest that certain of the knowl
edge engineering which relates to the higher level structuring
of the fact-oriented portion of the surveillance knowledge base
could be programmed using the code generator.45 Such struc
turing would deal with creating relationships among the ele
mental structures that support a particular suspicious event
test submodule.

Some suspicious event tests require higher level structures
in the surveillance knowledge base. The logic responsible for
this task could come from the site-dependent knowledge engi
neering. This would be performed by the code generator in
conjunction with the generation of site specific suspicious event
tests.

3.9 Maintenance

The maintenance of the suspicious event submodules is pro
vided by the code generator. It is intended that persons of less
expertise than the domain expert be qualified to use the code
generator for maintenance of the test submodules.

3.9.1 Change of User Status

A change of user status will often require an adjustment to
a number of profile records involving the user as the subject.
It is intended that this be performed by the system security
administrator. The paradigms built into the code generator for
suspicious event testing are to largely automate the task of mak
ing profile record changes based on a few simple designations of
status change.

3.9.2 ~evv Users

The insertion of profile records corresponding with a new
user is to be performed by the system security administrator.
This is to be a highly automated task using typical profile record
templates.

4. Conclusions

Surveillance technology is the essential foundation of an in
sider threat identification system. The experience from the field
for user-interaction surveillance encourages the belief that full
system surveillance can be achieved cost effectively with high
performance products that do not represent an excessive burden
to the system under surveillance. Acceptance of the surveillance
concept has been expanding substantially in the private sector,
with growing interest and installed sites throughout the Navy

44 Substantial work has been done at Clyde Digital Systems by Stephen
W. Clyde and his project team, under the direction of the author, on expert
system based, fully automated code generation. The product, ProCODE,
now in the field, supports changes to a specification and regeneration of code
with particular ease.

45 Current experience with fully automated code generation and a com
putable high level specification interface encourages the belief that at least
a portion of the knowledge engineering can be done, site-specifically, by the
domain expert. This is the knowledge engineering that would create code
for building relationships among the structural elements of the surveillance
knowledge base in support of any given suspicious event test.

355

and certain government agencies. The technology and price
performance of the kind of on-line storage and archiving media
required to support the surveillance concept are now entering
the market.

Much work needs to be done to improve and extend the
technologies of analysis for suspicious events. The work of Den
ning [3] at SRI suggests an even more successful application of
statistical analysis techniques to full-system surveillance data.
It seems clear that the expert system approach can be fruit
ful, particularly as it is extended to perform inference-oriented
suspicious event testing. Code generating technologies are now
stabilizing in the field can contribute substantially to the cost
effectiveness of creating and maintaining site specific suspicious
event test submodules.

Work needs to be done in characterizing the structure and
detailed objectives of the last three components of an insider
threat identification system. It is clear, however, that evi
dence gathering, damage assessment and recovery-support de
pend critically on detailed surveillance data at a keystroke level.

· The government can benefit by offering the kind of support
and encouragement to this new discipline that will send a clear
signal to private capitol that there will be a market that justifies
investment.

References
[1] 	 Department of Defense, Computer Security Center, Department' of

Defense Trusted Computer System Evaluation Criteria, 1985, DoD
5200.28-STD.

(2] 	 Jeffrey D. Kuhn, "Research toward Intrusion Detection through the
Automated Abstraction of Audit Data," Proceedings of the 9th Na
tional Computer Security Conference, September 1986, pp. 204-208.

(3] 	 Dorothy E. Denning, "An Intrusion Detection Model," Proceedings
of the 1986 IEEE Symposium on Security and Prit'acy, April 1986,
pp. 118-131.

(4] 	 Lawrence R. Halme and John Van Horne, "Automated Analysis of
Computer System Audit Trails for Security Purposes," Proceedings
of the 9th National Computer Security Conference, September 1986,
pp. 71-74.

(5] 	 Clyde Digital Systems, SentryGATE-User Surveillance Sofhvare and
Insider Threat Identification System, Orem, Utah, February 1987.

(6] 	 Allan R. Clyde, "A Surveillance-Gate Model for Automated Informa
tion Security and Insider Threat Identification on Sensitive Computer
Systems", Proceedings of the 2nd Insider Threat Identification Systems
Conference, Rockville, Maryland, February, 1987.

(7] 	 Allan R. Clyde, "A Surveillance-Gate Implementation of an Extended
Security Kernel", Proceedings of the 3rd Insider Threat Identification
Systems Conference, Rockville, Maryland, April, 1987.

(8] 	 Robert A. Clyde, "Suspicious Event Testing and Weighted Scoring for
the Analysis of a Surveillance Data Set," Proceedings of the 3rd Insider
Threat Identification Systems Conference, Rockville, Maryland, April,
1987.

(9] 	 James D. Gates, "Tools for Identifying the Source of Security Brea
ches," Proceedings of the 3rd Insider Threat Identification Systems
Conference, Rockville, Maryland, April, 1987.

(10] 	 Lawrence R. Halme, Teresa F. Lunt, John Van Horne, "Results of an
Automated Analysis of a Computer System Audit Trail," Proceedings
of the Second Annual AFCEA Physical & Electronic Security Sympo
sium and Exposition, Philadelphia, Pennsylvania, August, 1986.

[11] 	 Donald A. Waterman, "A Guide to Expert Systems," Addison-Wesley
Publishing Company, Inc., 1986, USA.

(12] 	 James P. Anderson Co., "Computer Security Technology Planning
Study," ESD-TR-73-51, vol. I, AD-758 206, ESD/AFSC, Hanscom
AFB, Bedford, Mass., October 1972.

(13] 	 Dorothy E. Denni.ng and P. G. Neuman, "Requirements and Model for
IDES-A Real-time Intrusion Detection System," Technical Report,
Computer Science Lab, SRI International, 1986.

(14] 	 P. H. Wood and S. G. Kochan, "UNIX System Security," Pipeline
Associates, Inc., Hayden Publishing Company Inc., Hasbrouck Heights,
NJ 01985.

[15] 	 Allan R. Clyde, "User Surveillance System With Local Analysis," an
unsolicited proposal by Clyde Digital Systems, Orem, Utah, submitted
to a government agency, October 20, 1986.

[16] 	 Sytek, Inc., "Analysis of Computer System Audit Trails- Final Re
port," Sytek Technical Report TR-86007, Mountain View, California,
May 30, 1986.

(17] 	 James P. Anderson Co., "Computer Security Threat Monitoring and
Surveillance," Fort Washington, Pennsylvania, April 15, 1980.

(18] 	 Robert A. Clyde, "Defending Against Trojan Horses, Viruses and
Worms," VAX Systems Session Notes, Spring 1987 DECUS Sympo
sium, Nashville, Tennessee, April, 1987.

356

http:Denni.ng

Ma™ 'I'BCII&OLOGY/COIIPUSBC IBSEJl'fiOB
S'I'AftJS RBPOR'I'

Kenneth E. Rowe and Clarence 0. Ferguson, Jr.

Office of Research and Development

National Computer Security Center

III'I'JIODUC'fiOB

In January 1975, 1 a joint-services High
Order Language working Group (HOLWG) was
established by the u.s. Department of Defense
(DoD) to identify requirements for DoD high
order languages, evaluate existing languages
against these requirements, and recommend the
adoption or implementation of a minimal set of
programming languages. The HOLWG developed
the following series of increasingly-refined
requirements documents: STRAWMAN, April 1975;
WOODENMAN, August 1975; TINMAN, January 1976;
IRONMAN, January 1977; and STEELMAN, June
1978. All of these documents went through a
wide range of reviews from the DoD, academic,
and industrial communities. A study was
undertaken, with the release of TINMAN, to
determine if any existing language(s) met the
requirements. While it determined that no
language or set of languages satisfied the
requirements, the study indicated the
feasibility of developing a new language to
mee~ the requirements.

In April 1977, 2 an international design
competition was launched, based on the IRONMAN
requirements. The language design was
completed in May 1979. A testing phase
commenced and final revisions were made to the
Ad~_language. Ada was accepted as a Military
Standard (MIL-STD) in December 1980 and
established as an ANSI standard on 17 February
1983. .

The HOLWG Chairman, Lt Col'william
Whitaker (USAF, now retired), realized the
need, during the language design phase,3 for
programming support environments to be coupled
with the language to ensure the improvements
promised by the language. A series of three
documents were evolved to address the support
issues: SANDMAN, early 1978; PEBBLEMAN,
mid-1978; and STONEMAN, early 1980. The
STONEMAN document became the basis for Ada
programming support environments (APSE's).

The Ada community was focused inward
during this formative time for the Ada
language. Little concern was given for the
suitability of Ada for developing trusted
systems. A language construct existed in the
pre-1980 version of the language that could
aid program verifiers in proving program

™Ada is a registered trademark of the
u.s. Government, Ada Joint Program Office.

1Grady Booch, Software Engineering with
Ada (Menlo Park, CA: Benjamin/Cummings Co.,
me, 1983), PP· 14-16.

2Ibid., pp. 16-21.

3Ibid.

correctness. 4 The construct was removed in
the 1980 version.

Meanwhile, back at the ranch ••• the
computer security (COMPUSEC) community was
continuing to grow. In 1981, the DoD Computer
Security Center was established, and COMPUSEC
issues continued to get ever-increasing
attention. Tremendous strides have been made
in the technical areas of COMPUSEC, and this
year marks the tenth anniversary for the
National Computer Security Conference. Due to
its formative nature, the inward-focused
syndrome has affected the COMPUSEC community
as well.

An inward focus is necessary to establish
a core of expertise and experts; however, a
concerted effort must be made to focus
outward, each community to the other. While
there has been a significant change in their
focus over the past 2 years, a relatively
dichotomous situation still exists between
these two communities. we must establish a
strong synergistic relationship between the
Ada and COMPUSEC communities in order to
effectively address the problem of using Ada
for secure/trusted systems.

In the fall of 1984, the Center realized
the need to address this disjuncture between
the Ada and COMPUSEC communities. The Ada
Technology Insertion Branch was established in
January 1985 within the Secure Computer
Networks Division of the Office of Research
and Development at the Center. The goal of
the branch was to foster expertise on the
implications of using Ada for secure/trusted
computer networks. To achieve this goal, the
branch outlined its objectives. The first
priority was to develop the necessary internal
knowledge base in Ada and COMPUSEC. A
philosophy of "Learning by Doing" was
established as a means for developing this
base. To focus the learning effort, the
branch initiated the Secure Ada Protocols
Project (SAPP).

SAPP

Given the previously described dichotomy,
the SAPP team decided to approach the problem
from a real-world perspective by implementing
a secure protocol suite based on the Defense
Data Network (DDN) specifications of transport
control protocol (TCP) , internet protocol
(IP), and X.25. Further, we decided to do it
in Ada. we felt that implementation of this
secure protocol suite would give us a
significant grasp on protocols and Ada so that

4Peter Wegner, Programming with Ada:
An Introduction by Means of Graduated
Examples (Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1980) , pp. 77-78.

357

we could begin addressing the problem of
developing the same suite as a multilevel
secure (MLS) suite. Our goal was to use Ada
from beginning to end, including the use of
Ada for the formal specifications and
verification activity. We understood several
things at that time:

a. The experts said Ada was not
useful for the development of secure/trusted
software.

b. There were problems with the
language definition that must be addressed
before we could complete our task.

c. The MIL-STD documents were
inaccurate, incomplete, and ambiguous with
respect to the TCP and IP protocols.

d. No one on the development team
knew anything about protocols.

e. Only two of the team members had
ever written any Ada.

f. At the beginning of the project,
we did not have a validated (approved) Ada
compiler.

Even with those problems facing us, we
believed we could accomplish several important
objectives:

a. Train our people in Ada and
protocols.

b. Identify constructs of the
language for use on secure/trusted
applications.

c. Identify constructs of the
language requiring modification for use on
trusted software.

d. Dev·elop an unambiguous,
programmatical statement of the protocol
standards in Ada.

e. Push the state of the art f.or
developing a nbeyond-Aln MLS system.

f. Develop a cadre of expertise with
respect to the development of secure protocols
in Ada.

g. Introduce this technology to the
outside communities for enhancement and
refinement. ·

h. Demonstrate that it could be
done.

We defined the SAPP in three phases:
Phase I would develop a working understanding
of the Ada language and the selected protocol
suite, Phase II would develop a demonstrable
Ada language implementation of the protocol
suite, and Phase III would develop a secure
implementation of the protocol suite.

Phase I

After the initial staffing and
planning of the branch, work proceeded in two
areas of learning - the Ada language and

communications protocols. We first addressed
the lack of experience in protocols. Each
person was assigned the task of becoming
intimately familiar with one of the major
protocols (such as TCP) and acquiring a basic
overall understanding of the entire protocol
suite. Most of the training for protocols was
on a self-study basis.

Our initial programming facilities
were Telesoft and Janus/Ada subset compilers
for the IBM personal computers (PC's). With
the subset compilers, we also started a
self-study of the Ada language. Using the
Janus/Ada, we prototyped a high-level data
link control protocol between two IBM PC/XT's.
This phase was completed in April 1986.

Phase II

This phase began with the arrival of
the RATIONAL computer system, a system solely
for Ada development, in February 1986. After
branch personnel received formal training in
Ada as well as training on the RATIONAL, we
started work on the high-level design of the
protocol suite. Each component (TCP, IP,
X.25) was implemented as a separate process.
An Inter-Process Communication (IPC)
specification, independent of operating system
services, was developed to allow communica
tions between components of the suite.

We demonstrated the completed suite
(but not 100% full-featured) approximately 1
year after Phase II began. As the
implementation proceeded, we encountered
problems with Ada and the protocol
specifications. Both TCP and IP were
developed from MIL-STD's (1778 and 1777,
respectively). These specifications were in a
combination of state diagrams and structure
declarations; the declarations were in a
pseudo-Ada. Some of these were very difficult
to express in true Ada. Variant record
constructs needed to be used, but the protocol
MIL-STD's were erroneous and contradictory.
In addition, the description of variant
records in the Ada Language Reference Manual
(ALRM) was not clear. After overcoming these
obstacles, the resulting design was very solid

·and provided a better (less ambiguous)
specification than the original MIL-STD's
protocol specifications.

The X.25 specifications used were the
CCITT X.25 Recommendation and the DDN X.25
Host Interface Specification. The specifica
tions for the data link and physical levels of
X.25 are in prose. Translating these specifi
cations into a high-level design was a pains
taking activity. Even though the specifica
tions were not complete, design decisions were
easy to document, and the resulting Ada speci
fication was very readable. The high-level
abstraction capabilities of Ada were of great
help in this design. For example, the ability
to state user-defined data abstractions made
it much easier to specify the checksum
algorithm of X.25. We defined a package of
polynomial math functions and specified the
checksum algorithm as stated in polynomial
form. Some minor changes were required for
demonstration performance, but no change in
the polynomial abstraction was needed.

358

The use of Ada in our design and
implementation appears to have provided a very
portable, programmatic specification of the
DDN protocol suite. While it was not
optimized for real-time performance, our
implementation did demonstrate several of the
objectives outlined earlier. we demonstrated
that programmatic description is obtainable
and more precise than the standards. In the
area of Ada, we learned the language by using
it. We used all of the constructs in the
language, including generic packages with
internal tasks and dynamically allocated tasks
(via task types} •

At the writing of this paper, we were
in the process of porting our implementation
from the RATIONAL to VAX/VMS with DEC Ada.
Phase II of the project is coming to a close
and we are proceeding into Phase III.

Phase III

This phase of the SAPP involves the
prototype development of an MLS protocol
suite. Work begins with the development of
the Security Policy, followed by the Formal
Model, Formal Top Level Specification (FTLS},
and the implementation in Ada. The approach
to this phase is to take a global view of the
development of a trusted protocol suite.
While it is important that we pursue the use
of Ada throughout the entire development, we
are not going to pursue basic research in the
area of developing proof rules and verifica
tion systems. However, we will be working
closely with those who are doing this basic
research, both within and outside the Center.

There are initial issues about what
is the correct policy and formal model for a
network, how does the DoD Trusted Computer
Security Evaluation Criteria apply, and how
do you measure levels of trust outside of
verification technology. we will consider the
use of requirements tracing tools and software
engineering principles to provide higher
levels of trust. We plan to concentrate on
some of these issues as work progresses.

While proceeding through this phase,
Ada and Ada-based technology will be used
wherever possible. We are committed to using
an Ada--ba~ed specification language for the
FTLS; Anna looks like an initial candidate to
use. No verification environment currently
exists for Ada-based languages, and our
initial effort will proceed by using hand
verification of our specifications. The
ultimate benefits of not having to translate
the FTLS to a different implementation
language will offset this initial problem.

The ultimate hope is that this
project will produce a complete, programmatic,
MLS description of the protocol suite which
has been verified down through 90% or more of
the source code.

5Anna is an ABBotated tda language
developed at Stanford University by Dr.
Luckham, et al.

As the work progresses, the branch will
continue to interact with the government,
academic, and industrial communities to foster
interrelations with the Ada and COMPUSEC
communities. We have worked with two groups
that are especially worthy of note: the
Kernel Ada Programming Support Environment
(KAPSE} Interface Team (KIT} and the Ada
Run-Time Environments working Group (ARTEWG}
of the Special Interest Group on Ada (SIGAda} •

The KIT was established by a
memorandum of agreement between the Army,
Navy, and Air Force. As was mentioned, the
DoD realized the need for programming support
environments. It was also realized that a set
of interfaces needed to be defined for the
APSE's to the underlying operating systems
that would give much greater portability to
tools that were written and allow data to
interoperate among the APSE's. The set of
interfaces that were defined by the KIT is
known as the Common APSE Interface Set (CAIS} •
Through our involvement with the KIT, MLS
requirements were inserted into the CAIS in
1985. Currently, CAIS is the only DoD
Standard that references the need for both
Ada and a B3-level security.

The ARTEWG is a part of the Associ
ation of Computing Machinery's (ACM's} SIGAda.
Their objective is to address the issues of
the runtime environment for Ada. The Ada
language provides a sharp delineation between
the compiler, the runtime environment, and the
operating system. Many of the obstacles that
need to be overcome in the verification arena
are directly attributable to implementation
dependencies in the runtime environment. The
ARTEWG has published three papers that give
tremendous insight into the Ada runtime.

"A Canonical Model and Taxonomy of
Ada Runtime Environments" provides an
historical perspective on the evolution of
executives and operating systems to provide
services to the application programs. The
paper further suggests that the Ada
compilation system can generate its own
application specific, runtime system to run on
a bare machine.

"Catalogue of Ada Runtime
Implementation Dependencies" is a first pass
at identifying all of the allowed options for
implementing the runtime support for Ada
compilers. The catalogue is going through
peer reviews in the ARTEWG, the Performance
Issues Working Group (PIWG}, and many others.
This paper is intended to be an exhaustive,
authoritative list of all the runtime
implementation dependencies.

"A Catalog of Interface Features and
Options for the Ada Run Time Environment"
(CIFO} is similar in intent to the CAIS.
Release 1.0 is a baseline document for the
CIFO. This paper is geared towards providing
a standard specification for a set of common

359

interfaces between the user and the runtime
environment •

. These three papers are very good in
relation to the Ada runtime environments, but
all three are devoid of COMPUSEC. The ARTEWG
is concerned about COMPUSEC and is seeking
input on the issues of security in relation to
the runtime environment.

CORCLUSIOBS

Concerns of the impact of Ada technology
on COMPUSEC, and vice versa, are moving to the
forefront with projects like the Strategic
Defense Initiative (which has already decided
to use at least an Ada-based Process
Description Language [PDL]) and the NASA Space
Station (which has decided to use Ada as the
implementation language) •

We challenge both the COMPUSEC and Ada
communities to develop the synergistic
relationship that is necessary to understand
and resolve the problems of using Ada in and
for trusted systems.

BIBLIOGRAPHY

Booch, Grady. "Software Engineering with Ada."
Menlo Park, CA: Benjamin/Cummings
Company, Inc., 1983.

"Catalogue of Ada Runtime Environment
Implementation Dependencies." New York,
NY: Association for Computing Machinery,
Special Interest Group on Ada, Ada
Runtime Environment Working Group,
October 1986.

"A Catalogue of Interface Options for the Ada
Runtime Environment." New York, NY:
Association for Computing Machinery,
Special Interest Group on Ada, Ada
Runtime Environment Working Group,
November 1986.

"A Canonical Model and Taxonomy of Ada Runtime
Environments." New York, NY:
Association for Computing Machinery,
Special Interest Group on Ada, Ada
Runtime Environment Working Group,
November 1986.

"Reference Manual for the Ada Programming
Language, ANSI/MIL-STD-1815A-1983."
Washington, DC: U.S. Government Printing
Office.

Wegner, Peter. "Programming with Ada: An
Introduction by Means of Graduated
Examples." Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1980.

360

A Panel Discussion
on

Ma* and COMPUSEC

This panel presentation provides an open
forum to begin an earnest dialogue on Ada and
computer security (COMPUSEC) and their unique
problems and concerns in relation to each
other. From 1975 to 1983, two areas of
concern were being stressed within the Federal
Government (the Department of Defense in
particular) and industry: escalating software
costs and computer security. This concern
culminated in the establishment of two
standards. The Ada programming language
became an ANSI/Military standard on 17
February 1983, and the Department of Defense
Trusted Computer System Evaluation Criteria
was published on 15 August 1983 as a DoD
Computer Security Center guideline. In
December 1986, the Criteria was accepted as a
DoD standard (5200.28-STD). Both standards,
as well as their ensuing policies, were
developed separately from each other.

With projects like the Strategic Defense
Initiative (which has already decided to use
at least an Ada-based Process Description
Language [PDL]) and the NASA Space Station
(which has decided to use Ada as the
implementation language) , concerns of the
impact of Ada technology on COMPUSEC, and vice
versa, are moving to the forefront.

The panel members are:

Mr. Clarence Ferguson, Panel Moderator,
Chief, Ada Technology Insertion Branch, Office
of Research and Development, National Computer
Security Center (NCSC)

Ms. Virginia Castor, Director of the Ada
Joint Program Office (AJPO)

Dr. Charles McKay, Director of the NASA
Software Engineering Research Center (at the
University of Houston, Clear Lake)

Mr. Robert Morris, Chief Scientist, NCSC

*Ada is a registered trademark of the
U.S. Government, Ada Joint Program Office.

361

THE USE OF Ada™ IN SECURE AND RELIABLE SOFTWARE

Mark E Woodcock

Office of Research and Development

National Computer Security Center

"Am I so crazy to feel it's here prearranged?

The music must change!!"

-Pete Townshend, "The Music Must Change"
Who Are You, Eel Pie Publishing, 1977

ABSTRACT PROBLEMS

The Department of Defense (DoD) has an Clearly these were ambitious criteria;
obvious need for secure and reliable computing they remain beyond the capabilities of any
systems. Its language of choice, Ada, should existing language. While making great strides
be well suited to the development of these in achieving several of these goals (particu
systems. Although it currently has some larly in exploiting the newest developments in
features which make it better suited to these software engineering and usefulness for real
tasks than most programming languages, Ada time systems), Ada tried to be too much for
still requires a number of changes to properly too many people. Although the language does
fulfill its mission. The imprecise definition not have to be radically altered, some signi
in Ada's Language Reference Manual renders Ada ficant changes are needed in order to com
programs inconsistent from compiler to com pletely fulfill its requirements.
piler and cannot be guaranteed to be reliable
nor formally verified to meet the DoD computer 1. Security
security criteria. The Ada community must
make a commitment to see that the research is In approximately the same time
completed to enable Ada to fulfill both secu period that Ada was being developed, the con
rity requirements and its own requirements. cepts that determine the security of a comput

ing system were being defined. The features
THE PURPOSE OF ADA of the language are not directly critical to

the security of the system, but they do play a
In the mid-70's, the u.s. Department of key role in the reliability (whether the sys

Defense (DoD) noticed its increasing depen tem operates in a manner consistent with its
dence on mission-critical software and that specifications) • Since secure systems are
the cost of this software was growing rapidly. supposed to be reliable (and the language
It has been estimated that as much as $30 bil effects the reliability), the features
lion a year would be needed for software pro indirectly determine a system's security.
curement.(!] Because one of the key contribu
tors to this cost was the need to retrain pro According to the DoD Trusted Com
grammers and rewrite programs when different puter S~stem Evaluation Criteria (TCSEC) [4],
languages were used, a decision was made to the des1gn of a system to be classified at the
create a single programming language which Al level must be verified using one of the
could be used in all embedded systems (this tools endorsed by the National Computer Secu
includes all mission-critical and weapon sys rity Center (NCSC) (e.g., Gypsy verification
tems). [4] Environment [GVE] and Formal Development

Methodology [FDM]). Formal verification of a
The DoD also noted that programs which design (or a program) requires that the

were almost identical in functionality were language used to describe it must be mathemat
quite often implemented completely differently ically well-defined. (Ada, for reasons that
because of the choice of run-time environment will be described below, is not.) These tools
(compiler, operating system, etc.). What was require that a particular design language,

needed was not just one programming language, created specifically for that system (Gypsy

but one that was consistent from implementa for GVE [5] and Ina Jo for FDM [6]), be used

tion to implementation; an environment which in ord~r to reach the highest security clas

would enable programs and programmers to move sification.

freely from one machine to the next.

The DoD now requires the use of
The result was Ada. "Ada was designed an Ada-based Program Design Language(2], how

with three overriding concerns: program relia ever, in designing its software systems. This
bility and maintenance, programming as a human criterion is not completely consistent with
activity, and efficiency" (section 1-3, [3]). the TCSEC (particularly given DoD's desire not
It was intended to be usable in any mission to allow waivers) • Because the Al classifica
critical system, to exploit the advances being tion does not address the issue of the imple
made in software engineering, and to be easily mentation language, a system may be designed
portable (within system size and speed limita using one of the endorsed tools and then
tions) • implemented in Ada. This is possible because

no formal proof of the source code is neces
sary for an Al evaluation. "Manual or other

™ Ada is a registered trademark of the u.s. mapping of the FTLS (formal top-level specifi
Government, Ada Joint Programs Office. cation) to the TCB (trusted computing base)

362

source code shall be performed to provide evi
dence of correct implementation."(page 48,
[4]) Therefore, any implementation language
may be used for an Al system.

This will not be true of the
"beyond Al" criteria when they become better
defined. One of the requirements being con
sidered for the A2 criteria is: "The TCB must
be verified down to the source code level,
using formal verification methods ••• "(page 51,
[4]) Unfortunately, Ada code cannot be veri
fied because the language is not well-defined.
While we will soon reach a point where Ada
will be required for use in these secure sys
tems, Ada cannot meet the above requirement
and could never be used in any phase of the
development of a system intended to be
evaluated at the A2 level.

2. Definition

The present version of Ada is
defined by the MIL-STD 1815A.[3] The seman
tics of the language are "described by means
of narrative rules" that are composed of
technical and other terms. The technical
terms' "precise definition is given in the
text" and the other terms "are in the English
Language and bear their natural meaning, as
defined in Webster's Third New International
Dictionary of the English Language."(section
1-5, [3]). This means that Ada is defined by
the use of a natural language (English)--not a
well-defined, mathematical language.

Natural languages have proven to
be too complex to be used as the basis of a
mathematical proof (that is, it cannot be done
and never will be) • The existence of the
validation suite does not solve the problem.
It cannot even guarantee that a compiler fully
meets the requirements of the Language Refer
ence Manual (LRM) [3] (not that any validation
suite could), let alone be useful as a
mathematical definition. Since verification
is dependent on the ability to perform
mathematical proofs, Ada cannot be verified as
it presently exists.

Even if the effort was made to translate
the definition of Ada into some precise
mathematical notation (such as the denota
tional semantics recently completed by the
Dansk Datamatik Center [DDC]), however, two
significant types of problems would remain.
The first is that the DoD, in its quest to
leave no construct out of the language,
included certain language features whose
correctness may be impossible to formally
prove (e.g., dynamic tasking, generics). The
second problem is that allowing compilers to
implement a particular feature in many dif
ferent ways (sometimes even to the point that
one compiler may use more than one approach
depending on the situation-- optimatization
versus normal operation) makes it impossible
to know exactly what that feature really
means.

Consider the following piece of
Ada code:

package example is

function f (x:in out integer)
returns integer;

function g (x:in out integer)
returns integer;

end example;

package body example is

y:integer;
function f (x: in integer)

return integer is
begin
y:=x*x+y;
return y;
end;

function g (x: in integer)
return integer is

begin
y:=2*x+y;
return y;
end;

begin

y:=l;

end example;

y:=f(x) + g(x);

This is obviously a very simple
example (of the order of evaluation problem),
and any moderately-intelligent programmer
would not generate such dangerous code. While
any third-year computer science student would
notice this, no Ada compiler is required to
discover this problem. Since the two func
tions referenced in the assignment statement
have side effects, the value of the assignment
statement will vary dependent on the order of
evaluation (left-to-right or right-to-left).

There are also much more compli
cated problems. When passed as a parameter,
an atomic variable's (integer) value is passed
(copy in) • When a structure (such as an
array) is passed, however, it may be passed by
reference (its address is passed). Parameters
that are passed by value are always protected,
but parameters passed by reference may be
altered by the operation of some other task
(without the knowledge of the subprogram in
question) which also has a pointer to the same
variable.

This situation is particularly
bad because the operation of the program may
change from one execution to the next, not
just between machines or compilers. Even pro
tection schemes may fail, like checking the
value of the variable and then performing some
dangerous operation on it (this is known as
the "time of check--time of use" problem).
For example, a task might check if a variable
is zero before using it as a divisor, but the
check is no guarantee of correctness if
another task may alter that location's value
before it is used. This means that a program

363

could run perfectly when tested but still fail
(or give incorrect results) during actual
operation.

This scenario also raises the
possibility of a significant security flaw.
One user (even at the unclassified level)
could write Ada code using tasking, shared
variables, and call by reference which would
enable him to bypass even the most secure
existing computing systems and read any data
(at any level) in the system. While this is
not an Ada-specific problem, Ada does make it
quite easy to accomplish.

Chapter 13, Representation
Clauses and Implementation-Dependent Features,
of the LRM [3] is a list of optional features
which may be implemented by the compiler.
While this list at least standardizes the
variations between compiler versions, it does
not change the fact that any program which
uses one of these features is limited to a
compiler which implements that feature.

One of the biggest problems with
Ada, though, is the Run-Time Support Package.
The run-time support needs of most programming
languages is quite small. C's support package
of a few instructions is dwarfed by the
thousands of lines of code that may be
required to run an Ada program. Not only does
all this extra code (which is not validated)
open vast new possibilities for errors, the
system-specific features of each compiler's
support package make portability even more
difficult.

In the short run, it will be
necessary to select one valid implementation
for the language's features, validate the sup
port package, and avoid using the more complex
constructs to create a "verifiable" subset.
(Note well that this does not necessarily
require that a subset compiler be used, only
that secure programs use only the appropriate
subset.) Larger and larger parts of the
language will be usable as verification tech
nology becomes more robust, but the require
ment for a concise mathematical definition
will remain. While this will not please the
hardline Ada supporters, it could enable Ada
to be used for th~ design of secure systems·.

RESEARCH EFFORTS

The NCSC, .through the Consolidated Com
puter Security Program, is pursuing a two
pronged strategy to improve the state of Ada
verification technology. The first is a
short-term effort to demonstrate the feasibil
ity of such a verification system and to give
the community a starting point for discussion
and future work. This effort is being con
tracted through the Rome Air Development
Center to Odyssey Research Associates.

The second part is a long-term effort to
produce a production quality system and is
being contracted through the Defense Communi
cations Agency. The first phase is a back
ground study and technology evaluation being
done by IIT Research Institute. After comple
tion of this study, a request for proposal
will be issued for the design of a complete

Ada Verification Environment (AVE), and a con
tract award is anticipated late this year.

A number of other efforts are underway to
better define Ada. Dr. David Luckham at Stan
ford University continues to work on the Ada
specification language, Anna, which will pro
vide an operational definition of Ada. (Anna
is also being used in several other projects.)
DOC has just completed a denotational semantic
definition of the language for the European
Economic Community. There are also several
people working on axiomatic proof rules for
Ada.

WHY Ada HAS TO CHANGE

The one thing which has to be made really
clear is that the changes suggested are not
just for some rarely-applied or as yet non
existent security criteria. While the primary
motivation for this paper is convinc.ing the
Ada community that it should prepare to meet
the TCSEC security requirements, there are a
lot of other good reasons for these changes to
be made.

Both the Strategic Defense Initiative and
the NASA Space Station project intend to use
Ada as a design and implementation language.
Regardless of how secure these systems turn
out to be, they must be reliable. When
kinetic-kill weapons and high-powered lasers
start firing, you want to be very sure that
they are working correctly. The only way to
achieve the desired level of reliability is
through formal verification.

Moreover, it would be more cost-effective
over the life-cycle of the product if Ada sys
tems are formally verified. The maintenance
cost on a system that works correctly will be
virtually non-existent. Should enhancements
ever be needed, the design of the system will
be so clearly stated and its interfaces so
precisely defined that the changes could be
made easily and cheaply.

It is clear that Ada has still not met
its original criteria. There are programs
which have been written that will compile on
one validated Ada compiler but not on others.
If this is possible, more subtle errors than a
failure to compile are possible. This means
there is no guarantee that an Ada program will
be portable in a reliable way and the existing
understanding of Ada is not sufficiently
better than that of any other implementation
language. This suggests that even on the sys
tem for which it was created, an Ada program
will be no more reliable than a program writ
ten in another high-level language.

CONCLUSION: WHAT HAS TO BE DONE

The notion presently exists that Ada is
truly the single, clearly-defined language
that the DoD originally requested. Unfor
tunately, this is not true. Instead of having
different version names (FORTRAN IV, 77,
vanilla) , we now have Ada differing by the
compiler for which it was written. Even more
significant is that Ada is not sufficiently
well-defined to make it useable in a secure or
reliable way.

364

Ada is not much worse than any other
high-order language ~ it just includes all
their flaws. The difference is Ada promised
more, is expected to be used more widely (par
ticularly for security), and has an organized
system for change (the Language Maintenance
Board).

What is needed is an acceptance by the
Ada community that Ada will have to become
formally defined and internally consistent if
it is to remain the language of choice. Ada
has made significant strides in syntax stan
dardization and the inclusion of software
engineering techniques in the language struc
ture, but it still needs significant improve
ments. When the Ada community becomes con
vinced of this fact, the existing work to
define Ada can be accelerated and goals of the
future, as well as the language's original
requirements, can be met.

REFERENCES

[1] 	 Edward Lieblein, "The Department of
Defense Software Initiative~ Status
Report," Communications of the ACM, V29,
No. 8, Aug. 1986, p. 734.

[2] 	 John Schied, "The Ina Jo Specification
Language Reference Manual," SDG Working
Paper, 24 Jan. 1986.

[3] 	 Ada Joint Program Office, "Reference
Manual for the Ada Programming Language,"
ANSI/MIL-STD-1815A (Washington, DC), 17
Feb. 1983.

[4] 	 Department of Defense, "Use of Ada in
Weapon 	 Systems," DoD Directive 3405.2
(Washington, DC), 2 Apr. 1986.

[5] 	 Department of Defense, Department of
Defense Trusted Computer System Evalua
tion Criteria, CSC-STD-001-83 (Washing
ton, DC), 15 Aug. 1983.

[61 	 Donald I. Good, et al, "Using the Gypsy
Methodology," Institute for Computing
Science, University of Texas at Austin, 6
June 1984.

365

An Ada Verification Environment

David Guaspari, C. Douglas Harper, Norman Ramsey

Odyssey Research Associates
1283 Trumansburg Road
Ithaca, New York 14850

(607) 277-2020

Abstract

A group at Odyssey Research Associates is building
an environment for the formal verification of Ada pro
grams. These programs will be verified against specifi
cations written in PolyAnna, a high-order specification
language based on Anna. Poly Anna and Anna use asser
tional reasoning, and we describe a logical foundation for
the assertion language. We present a thumbnail sketch
of Anna, and a list of ways we have modified Anna. We
present an overview of how PolyAnn~!- differs from other
verification systems, and we review some features of Ada
that must be restricted to make verification of Ada pro
grams possible. We conclude with a prospective account
of the higher-order parts of Poly Anna, and an explana
tion of why these are suited to Ada verification.

Introduction

One good reason to build tools for the formal verification of
Ada programs is the expectation that they, and the verified
programs, might be used-Ada compilers, it is assumed, will be
widely available and Ada programmers as numerous as fleas. If
formally verified software were in general use, one could learn
whether the higher production costs of such software are justi
fied by higher reliability and by sewings in testing and mainte
nance. A group at Odyssey Research Associates is designing a
specification language for Ada and a verification environment
for proving the correctness of programs specified in that lan
guage. We plan to have a running system for a useful fragment
of the specification language by the fall of 1988.

The specification language can be separated into two parts:

• 	 A ground-floor language, based on Anna, supporting pro
gramming in the small (at the level of subprograms and
packages);

• 	 A higher-order polymorphic language (naturally enough
called PolyAnna) supporting programming in the large.

The ground floor will be implementable by application and
adaptation of established theory. Its expressive power is com
parable to that of Gypsy or EHDM [Gypsy 86,EHDM 86]. Its

underlying logic is a logic of partial functions that correctly han
dles undefined expressions, and it is in this respect an advance
on those systems. We have not yet studied proof checking and
term rewriting in this logic, but we expect standard techniques
to apply.

FUll Poly Anna will require new research in higher-order lan
guages and polymorphism. These are active and fashionable
topics of research. At the end of this paper we sketch some well
known reasons why a polymorphic language is especially suited
for specifying Ada programs.

Our primary goal for our software is that it support incremental
verification, rather than batch generation of verification condi
tions. We want to provide automated assistance for the pro
gramming style prominently associated with Dijkstra, Hoare,
and Gries, that of developing a program and its proof hand in
hand. (See, e.g., [Gries 83] or [Dijk 86].)

The ground floor

Assertional reasoning

Our strategy for verification is asurtional reasoning about pro
grams. An embedded assertion is, in effect, a comment-it stip
ulates that some condition (the assertion) is satisfied by the
program state every time control reaches some point in the pro
gram text (the point at which it is "embedded"). The language
in which these conditions are expressed is called the assertion
language.

Assertional reasoning about programs, formally introduced in
the famous papers of Floyd [Floyd 67] and Hoare [Hoare 69], is
a set of techniques that reduces the proof of general properties
of programs to the proof of finitely many logical formulas in
the assertion language. A typical program property provable
in this way is: if subprogram P is called in a state satisfying
entry condition c.p, then it will terminate in a state satisfying
exit condition if;.

By contrast, transformational methods begin with a specifica
tion of the desired behavior and attempt to rewrite it, by ap
plying a series of meaning-preserving transformations, as an ex
ecutable program. For example, one might specify a program
.recursively and apply an automatic transformation to rewrite
the recursion as an iteration. The European Economic Commu
·nity is sponsoring a consortium of several European universities
in a very ambitious project, PROSPECTRA [KB 86], to build a
transformational programming environment for Ada.

366

For our ground floor we use the assertional strategy because:

• 	It is well understood and therefore holds out a reasonable
probability of success;

• 	 There is an established pedagogy of writing programs as
sertionally, which we hope to support;

• 	 Assertional reasoning is unlikely to be entirely avoidable
a transformational system must provide a facility for es
tablishing new transformation rules, and the best under
stood way of doing that is assertional reasoning.

Writing assertions about Ada: Anna

Anna, described by its designers as "a cautious extension of
Ada," is a method of inserting formal comments into Ada pro
grams. Most of these comments can be translated into em
bedded assertions. The commented Ada program is an Anna
program, and it contains the full sense of the original Ada pro
gram, which is called the underlying Ada text. An Anna pro
gram can be transformed into an Ada program that runs the
underlying text and checks many of the embedded assertions.
Accordingly, Anna can be thought of as an extension of Ada
with extra checking constructs, and which compiles into Ada.

Anna object and type annotations are associated with scopes.
These can be interpreted as macro-instructions embedding as
sertions at certain points within their scopes (not merely at
entry and exit points). Anna also allows axioms, which spec
ify packages as abstract data types or as state machines, and
virtual text, which can embody specification concepts or instru
mentation.

Here is a typical Anna type annotation:

type EVEN is INTEGER;
--1 where x: EVEN=> x mod 2 = 0;

The formal comment (preceded by --1) says that every variable
of type EVEN must contain an even value (whenever it contains a
defined value at all). It applies to every observable state over the
whole scope of the declaration of type EVEN. If the annotation is
transformed into checking code, the code will raise the exception
ANNA_EXCEPTION whenever a variable of type EVEN is assigned
an odd value.

Here are some typical axioms, describing the semantics of a
stack type:

--1 axiom
--1 for all st: STACK; X: ELEM =>
--1 pop(push(st,x))=st,
--1 top(push(st,x))=x;

We assume that type STACK is a private type of a package, and
that pop, push, and top are visible subprograms of that package.
The annotation says: whenever all calls referred to terminate
normally, the equations hold.

Finally, as an example of virtual text, we declare a virtual func
tion that tells us whether an array of type T is sorted. The --:
sign marks the virtual text-text which, if the comment sign
were removed, would be legal Ada:

function sorted(a:T) return BOOLEAN;

--I where ...

After the where delimiter, the user enters his definition of the
notion "sorted." The user may supply a (virtual) body for this
function, which could be used to test arrays for sortedness.

Anna has other annotations such as propagation and context
annotations, which we don't discuss here.

Modifying Anna

Anna is intended to support both formal verification (proof) and
run-time testing. Our efforts, and our modifications of Anna,
are directed exclusively toward proof.

Avoiding reduction to Ada The current Anna reference
manual defines the semantics of Anna and of its assertion lan
guage by reducing them to Ada semantics [Anna 86]. Although
the meaning of Anna's assertion language need not be stated
computationally, the reference manual gives the meaning of each
annotation in terms of values computed by Ada code. There
fore one cannot provide the semantics for or the logic of Anna's
assertion language without first providing a semantics for Ada.
We give a meaning to the assertion language that is independent
of the semantics of Ada.

Unprovable annotations Certain Anna annotations cannot
be proved solely from the definition of Ada, whether they're
true or not. The annotation "if the stack is full push prop
agates stack_full" is an example. Before push can execute
raise stack_full a storage error or numeric overflow may oc
cur. The possibility of such implementation-dependent events
is, as far as the verifier is concerned, an act of God (and is
equally mysterious).

We change our interpretation of some of the unprovable anno
tations to make them more useful. For example, we qualify all
annotations by the implicit hypothesis that no storage error or
numeric error occurs.

Erroneous behavior If one thinks of Anna as being defined
by actual execution of checking code, then there is no direct way
in which to state that certain executions are erroneous since
they manifest themselves by differences in execution under dif
ferent compilers. Poly Anna has safeguards built in that prevent
us from certifying erroneous programs.

Partial correctness Anna's out annotations have the inter
pretation: if the scope is exited normally, then the out annota
tion is true upon exit. There is no way to say that a subprogram
will terminate normally. Techniques of proving termination for
deterministic sequential programs are well understood, and we
include them in PolyAnna.

367

Semantics of virtual functions In the current descripti~n
of Anna the semantics of virtual functions is informal. A virtual
function can be supplied with a body, if one wishes to generate
checking code for annotations that refer to the virtual func
tion. However, the body does not define the meaning of the
virtual function; there is no way to say in Anna that the body
"correctly" implements the annotations of the virtual function.
"Consistency" is not sufficient, since a body that never termi
nates on any input is consistent with any annotation (excepting
strong propagation annotations).

PolyAnna's virtual functions are purely definitional entities.
Properly annotated virtual functions are translated, without
appeal to Ada semantics, into constructors, which are strings
of our logical language. A well-formed constructor denotes a
partial function, and associated with it are rules of inference
that define the meaning of that function. For example, there is
a family of constructors that define functions by recursion. The

"""i
logical details are contained in (ORA 87b] and [ORA 87c].

Expressiveness We find it convenient to increase the expres
siveness of the annotation language by generalizing several of
the Anna constructs, including quantifiers, tests for definedness,
and successor states.

Quantifiers Anna's logical quantifiers are unusual. In Anna,
"for all x, P(x)" is true if there is no value of x for which P(x) is
false. Otherwise, "for all x, P(x)" is false. (In Anna, quantified
expressions are never undefined.) So, for example, "for all x,
x = 1/0" is true. This is convenient and compact for writing
equational axioms, when one means to say: the equations are
true whenever all their constituent terms are defined. The rules
of inference obeyed by Anna's quantifiers are, unfortunately, not
very convenient. For example, "for all x, P(x)"is not equivalent
to a conjunction of the values of P(x) for all possible values of
x. In addition, Anna's quantifiers are not monotone operators
(see (Stoy 77]). .

An expressive monotone language is desirable for the formu-,
lation of recursive definitions. The PolyAnna quantifiers are
monotone, and are more expressive than the Anna quantifiers.
We can define Anna's quantifiers in PolyAnna's logical lan
guage.

Definedness tests H x is a program variable, the Anna attribute
x'DEFINED has value TJ!.UE if x has been initialized, and other-·
wise has value FALSE. If e is an expression that is not a variable,
then e'DEFINED is illegal.* It is convenient to make an analogy
between an uninitialized variable and an expression that fails
to denote a value (because its evaluation fails to terminate,
terminates exceptionally, or is erroneous). In our formalism
e'DEFINED is legal for any expression.t

Successor states In Anna, the values of the local variables of a
package make up the state of the package. Anna uses a proce
dural notation for naming package states: for instance, S[P; Q]

•Although it is straightforward to implement a test for x 'DEFillED whel\
x is a variable, there is no general way to test an arbitrary expression fo~
definedness short of attempting to evaluate it-but that evaluation may not
terminate, may be erroneous, or may change the flow of control by raising
an exception.

twe actually use a different notation.

is the name of the state that results from state S after invoca
tion of P and Q (in that order) provided that both invocations
terminate normally. If either terminates exceptionally, there is
no Anna name for the state that results. We extend Anna so
that all reachable package states have names.

Concreteness By design, Anna assertions are "close to the
code." Although a specification like "this operating system is
secure" may ultimately be reducible to a large collection of em
bedded assertions about the relations of program variables to
one another, the connection between those assertions and the
original specification will be highly obscure. The difficulty of
relating a comprehensible specification to what's actually been
proved about the program is well known and is common to all
assertional systems. We expect to ameliorate this situation by
providing some modular specification mechanisms in high-level
PolyAnna, analogous to the mechanisms of LARCH [Guttag 85].

Subordination to Ada syntax Anna's conservative syntax,
which essentially follows Ada's, is useful in many ways: users
with a knowledge of Ada encounter relatively few novelties; the
possibility is left open that Ada tools may be modifiable into
Anna tools; the job of generating checking code is more straight
forward. On the other hand, Anna thereby inherits some of
Ada's compromises. For example, if private types are declared
in a package, Ada requires that their implementations be given
in the private part of the package; so, therefore, does Anna.•
Such implementation details are precisely what a specification
language wishes to abstract away from.

Here is a more esoteric example, for Anna aficionados. Con
sider the problem of constraining generic formal subprogram
parameters. Let sort be a generic sorting package. We wish
to constrain the formal parameter "<" by requiring it to rep
resent a total order. Suppose, further, that instead of writing
out the whole definition of "total order" we wish to import its
definition from a predefined library of sorting concepts and the
ory, a generic package called order_concepts. To do so would
require instantiating the order_concepts package with"<" at
some point in the generic formal part of sort. Such an instanti
ation is not legal Ada (and, therefore, not legal Anna); generics
are not treated as first-class objects. There is no conceptual
difficulty with this instantiation; it is proscribed because it is
beyond the compiler writer's art. We expect that full Poly Anna
will not be so tightly bound to Ada syntax.

Limitations

Our first implementation of the ground floor will omit concur
rency, and will probably omit any special facilities for repre
senting interaction with devices (in this we include 1/0), or for
generics.

Lessons learned from predecessors

We have learned a great deal from Anna and have tried to assess
the ways in which it must be modified to suit our special pur
poses. We have also learned from extensive experience with the

*This requirement makes possible separate compilation.

368

FDM and Gypsy systems, and from a more modest acquain-'
tance with EHDM. (See (FDM 80], (Gypsy 86], (EHDM 86].)
We describe, below, ways in which we hope to improve on them.

Justifying assertional reasoning

To use the assertional strategy, we must provide a way to re
duce specified programs to formulas in an assertion language.
The method of reduction is called an axiomatic $emantic$. We
must also provide sound logical rules for manipulating formu
las in the assertion language. The axiomatic semantics should
be justified against a mathematical definition of the meaning of
the programming language, and the logical rules should be jus
tified against a mathematical definition of the meaning of the
assertion language.

At this time Ada has no mathematical definition. Although a,

formal definition of Ada has recently been completed, it has
no official standing; it does not yet count as a semantics for
Ada [DDC 87]. The definition is very complex, and we do note
plan to justify our axiomatic semantics against it.

By extending and amending [Barr 84], we have formulated a
many-sorted first-order assertion language in which expressions
may be undefined, the collection of sorts may be declared to.
have any given structure of subsorts, and the domains modelling
the sorts may be empty. Under a straightforward mathematical
definition of the meaning of this language our rules of proof are
sound and deductively complete.* The full Ada type structure
(excepting task types) can be translated into this language. The
translation is demonstrably correct with respect to our formal
model of the Ada types. (Some restrictions apply; we do not
model implementation-dependent attributes, and we forbid cer
tain kinds of mildly pathological declarations. For example, an
array declaration with index type equal to the whole of INTEGER
is disallowed.)

We define the meaning of the assertion language by defining the
meaning of "formula 'P is satisfied in state u on the hypothesis
that the annotations Ann are true." The notion of hypothetical
satisfaction is a way of modularizing proofs; the hypotheses in
question are the assumptions that certain routines called on
obey their specifications.

Incremental verification

The verification environments we know work in batch mode.
The user writes a program, supplies appropriate assertions, and
then submits it all to the system, which generates verification
condition$: a list (sometimes large) of formulas in the assertion
language whose truth is sufficient to imply that the program
satisfies its specifications. The verification conditions must then
be shown to hold.

The drawbacks of batch processing are well known. When a
mistake is discovered the whole job must, as a rule, be resub
mitted and much correct work may have to be redone. The
relation between the specifications the user wrote and the veri
fication conditions he sees may be obscure. Intermediate stages
of verification condition generation are not observable and there

• Most existing systems use assertion languages with rules of inference
that are logically unsound (quite independent of any considerations of pro
gramming semantics) because they handle undefined expressions incorrectly.

is no way to tell that verification conditions are getting unman
ageably complex until it is too late.

Incremental compilers and syntax-directed editors are becoming
more widely available and techniques for building them are be
coming well-known. These techniques should allow us to build
a verification environment in which incomplete programs can
be partially verified, in which verification conditions are under
standably related to the code, and which directly supports the
methods of [Gries 83] and (Dijk 86].

Consider, for example, a simple while loop, guarded by condi
tion b. Suppose for simplicity's sake that there is no other exit.
The standard while-loop rule determines the effect of execution
of the loop solely from the condition b and a user-supplied in
variant I, which is restored by each circuit of the loop: the
effect of the loop is characterized by the fact that on exit the
invariant I remains true while the guard b is false. The user
should be able to supply the guard and the invariant of a loop
and then complete as much of the rest of the program as he
likes, leaving the loop body to be filled in later.

The peculiarities of Ada

There is little hope of verifying arbitrary Ada programs. Sur
veys such as [ORA 85], [Good 80a], and (Good 80b]list many
difficulties. Here we review some of the unusual features of Ada
and describe what we do with them.

Program errors Ada introduces two special categories of
program errors, executions that are "erroneous" or contain "in
correct order dependences." These errors needn't be caught at
compile time and needn't be checked for at run time. The ef
fect of an erroneous execution is completely undefined and that
of an incorrect order dependence varies undesirably from com
piler to compiler. For example, an attempt to read the value of
an undefined scalar is erroneous, as is a procedure call whose
effect depends on the parameter-passing mechanism. A proce
dure call whose effect depends on the order in which parameters
are passed contains an incorrect order dependence.

We think it essential that the products of a verification environ
ment contain neither erroneous executions nor incorrect order
dependences. Forbidding these errors also simplifies the rest of
Ada's semantics and should make verification more tractable.
Some of these simplifications are dis.cussed below.

Predefined exceptions We prove nothing about the prede
fined exceptions STORAGE_ERROR and NUMERIC_ERROR.* All ver
ifications are qualified by the hypothesis that neither of these
occurs. Since an implementation may choose not to report over
flows we must assume in addition that no unreported overflow
occurs.

One can in principle show that certain predefined exceptions,
such as CONSTRAINT_ERROR, are never raised. We will always
require proof that they are never raised. This forces a style on the
programmer that forbids use of CONSTRAINT_ERROR as normal
practice-e.g., as the intended exit from a loop.

*Some exceptions to this are described in [ORA 87a].

369

Optimizations We have shown elsewhere that, if a compiler
makes full use of the allowed optimizations to reorder computa
tions, it is impossible to guarantee such properties of the com
piled code as "no variable is read before it is written" [ORA 85].
We can undertake to verify the effects only of programs executed
in the standard order.

Restricting Ada

Here are some of the simplifications we wish to impose on the
Ada programs we undertake to verify.

• We do not plan to include real arithmetic or the implemen
tation-dependent parts of the language even in full-scale
Poly Anna.

• 	 As noted above, we treat the raising of all predefined ex
ceptions as mistakes. We wash our hands of some such
mistakes (NUMERIC_ERROR, STORAGE_ERROR) and require
proof that the others will not occur.

• 	 In order to prevent program errors resulting from im
proper parameter passing, we forbid certain instances of
aliasing among the actual parameters of any procedure
call (and between actual parameters and globals). When
this is not immediately guaranteed by static analysis, we
require a proof that the restriction has been obeyed. This
has the additional advantage of greatly simplifying the
logic of the proced~e call proof rules.

• We adopt the Anna requirement that packages have the
hidden state property [Anna 86], which guarantees, essen
tially, that the effects of package operations depend only
on the parameters to the operation and on local variables
of the package--not on externally visible (and therefore
externally modifiable) variables or on variables global to
the package. This makes it possible to specify the behav
ior of the package in isolation.

• 	 In order to avoid program errors resulting from indiscrim
inate use of side effects we forbid the use of functions with
side effects unless static analysis rules out the possibility
of a program error.

Many other restrictions are matters of style as much as of pro
gramming language theory-for there is little hope of verifying
completely arbitrary programs in any language. We hope that
incremental verification will naturally impose on the user a style
amenable to verification: a style in which one, in effect, outlines
the proof of a routine and then implements the proof outline.

PolyAnna

We have so far described a system with capacities analogous to
those of Gypsy or EHDM, but with certain important improve
ments made possible by some new theory and new techniques
in building software environments. To exploit more fully the
resources of Ada requires much more, and that is the purpose
of full Poly Anna. Our account is necessarily prospective and is,
to som,g _e_xt(:)nt, a firm endor~ement of motherhood.

A 	higher-order polymorphic language

Higher type operations are implicit in Ada. A generic func
tion, for example, can be thought of as a higher type oper
ation that accepts types and subprograms as parameters and
returns a function. A generic package is a higher-type opera
tion that returns a package, packages being objects that belong
to rather complicated types. Generics are not only higher type
operations, but polymorphic: a formal parameter can be validly
matched by objects of many types, or even by types themselves.
The Ada attributes, included principally to facilitate the writing
of generics, are also higher type, polymorphic operations.

For practical reasons Ada treats generics as macros rather than
full-fledged operations. The esoteric difficulty for Anna sketched
earlier, stemming from Ada's inability to instantiate one generic
at a particular place in the declaration of another, arises pre
cisely because Ada does not treat generics as "first-class ob
jects" on a par with variables (or even on a par with second-class
objects like functions). Ada does not pursue its own logic to a
:g.atural conclusion, which would require generics themselves to
be typed objects and accept as parameters: packages, package
and type-returning operations, the types of function-returning,
operations, et cetera. Poly Anna will, in the manner of ordinary
mathematics, draw this conclusion by making all such entities
first class.

Conclusion

An Ada verification environment offers the chance to put veri
fied code into general use. We hope to have a running system,
capable of verifying programs specified in a modest but use
ful formal specification language (a variant of Anna), by fall
of 1988. It is based on well-established techniques of asser
tional reasoning about programs and is intended to improve
on its ancestors in that the underlying logic of the assertion
language is formally based and demonstrably sound, and that
proofs of programs can be done incrementally, in step with their
development. Exploitation of Ada's mechanisms for abstraction
requires extension of this assertion language, possibly to a lan
guage that is both higher-type and polymorphic.

References

[Ada 83] Tbe Ada Programming Language Reference
Manual, US DoD, US Government Printing Of
fice, 1983, ANSI/MILSTD 1815A.

[Anna 86] David C. Luckham, Friedrich W. von Henke,
Bernd Krieg-Briickner, Olaf Owe, Anna: A Lan
guage for Annotating Ada Programs, Reference
Manual, 1986.

[Barr 84] H. Barringer, J. H. Cheng, and C. B. Jones,
"A Logic Covering Undefinedness in Program
Proofs," Acta Informatica 21, pp.'251-269, 1984,

[DDC 87] Tbe Draft Formal Definition
Datamatik Center, 1987.

of Ada, Dansk

[Dijk 86] Edsgar Dijkstra, Tbe Discipline ofProgramming,
Prentice HJ!ll, Englewood Cliffs, 19_86.

370

[EHDM 86] J. Crow, S. Jefferson, R. Lee, M. Melliar-Smith,
J. Rushby, R. Schwartz, R. Shostak, and F.
von Henke, Preliminary definition of the revised
SPECIAL specification language, SRI Interna
tional, 1986

[FDM 80] R. Locasso, J. Scheid, V. Schorr, and P. Eggert
The InaJa specification language reference man
ual, System Development Corporation, TM-(L)
6021/001/00, 1980.

[Floyd 67] R. Floyd, "Assigning meanings to programs,"
in Mathematical Aspects of Computer Science,
XIX American Mathematical Society (1967),
pp. 19-32

[Good 80a] D. I. Good, W. D. Young, and A. R. Tripathi, "A
preliminary evaluation of verifiability in Ada,"
in Proceedings of the 1980 Annual Conference of
the ACM, pp. 218-224

[Good SOb] D. I. Good and W. D. Young, "Generics and veri
fication in Ada," in Proceedings of the ACM Sig
plan Symposium on the Ada Programming Lan
guage, 1980, pp. 123~127.

[Gries 83] David Gries. The Science
Springer-Verlas, 1983.

of Programming,

[Guttag 85] J. V. Guttag, J. J. Horning, and J. M. Wing,
"LARCH in five easy pieces," systems Research
Center, Digital Equipment Corporation.

[Gypsy 86] D. I. Good, R. L. Akers, and L. M. Smith, Report
on Gypsy 2.05, Computational Logic Inc., 1986.

[Hoare 69] C. A. R. Hoare, "An axiomatic basis for com
puter programming," ACM Communications,
vol. 21, no. 8, 1969, pp. 578-580, 583."

[Hoare 85] C. A. R. Hoare, Communicating Sequential Pro
cesses, Prentice-Hall, 1985.

[KB 86] B. Krieg-Briickner, H. Ganzinger, M. Broy,
R. Wilhelm, U. Moncke, B. Weisgerber, A.
D. McGettrick, I. G. Campbell, G. Winter
stein, "Program development by specification
and transformation in Ada/Anna," in Ada:
Managing the Transition, Proceedings of the
Ada-Europe International Conference in Edin
burgh, ed. Peter J. L. Wallis, Cambridge Uni
versity Press, 1986.

[ORA 85] "Toward Ada verification,"
Associates.

Odyssey Research

[ORA 87a] Draft PolyAnna Reference Manual, version 0.1,
Odyssey Research Associates.

[ORA 87b] "More on partial logic," Odyssey Research Asso
ciates, 1987, in preparation.

[ORA 87c] "Domains for Ada types," Odyssey Research As
sociates, 1987, in preparation.

[Stoy 77] Joseph E. Stoy, Denotational Semantics,
Press, 1977.

MIT

371

Second, after the TCB receives the Procedure, the TCB validates
it to ensure that all internal structures and pointers are self
referencing. Essentially, the procedure is viewed as untrusted by
the TCB, so it is impossible for the Procedure to violate the
security provisions of the model. Next, the TCB performs a
discretionary access check on the databases and tables refer
enced in the Procedure. If any of these steps fail, the error is
audited and the host is notified that the command could not
complete. If these checks succeed, Query Execution continues to
execute the Procedure.

When data are selected from the database, the TCB returns
them through the Mandatory Security Check. Each security
label on each row is compared to the login-level clearance
associated with the user process. If the user's security level is
greater than or equal to the security level of the row, the row is
saved by Query Execution, and is returned to the host. Other
wise, the row is ignored and tlie selection process continues. The
data row, along with the security level of the row and a row-level
CRC is then returned to the host.

When data are inserted or updated in the database, the TCB uses
the Update page CRC and Label code to perform the operation.
The Update Page CRC and Label code computes the CRC for
the updated data page and uses the user's login security level to
update the row's new security label. Finally, it confirms the
logical consistency of the row and the logical placement of a row
on a memory page.

SUMMARY

The SYSDS design uses a reference monitor approach to system
security to achieve a robust multilevel secure DBMS without
sacrificing performance. It utilizes rows as the mandatory
security object, and databases and tables as the discretionary
security objects. This enables the system design to take advan
tage of existing Sybase DataServer software while introducing
new security mechanisms. The newly re-architected product is a
major departure from the basic DataServer architecture, but
significant performance features of the commercial system have
been maintained, indicating that the SYSDS app,roach will meet
its goals of multilevel security with excellent performance.

Most of all, the SYSDS is intended to be a commercially viable
system, able to be used in a number of government, military,
and private sector data processing systems. The approach
addresses the concept of data integrity and additionally intro
duces the concept of TCB integrity, since total system integrity is
a major concern in any DB:MS application. Because of these

{:\:?-§?:

;~~~~~~

points, it is felt that the SYSDS approach provides a solution to
the multilevel DBMS problem.

REFERENCES

[AFSB83] Air Force Studies Board, Multilevel Data
Management Security, National Research
Council, National Academy Press,
Washington, D.C., 1983.

[BIBA77] Biba, K. J., "Integrity Considerations for
Secure Computer Systems," Technical Report
ESD-RE-76-372, USAF Electronic Systems
Division, Bedford, MA, April 1976.

[BOEB85] Boebert, W. E., and R. Y. Kain, "A Practical
Alternative to Hierarchical Integrity Policies,
Proceedings of the 8th DoD/NBS Computer
Security Conference, 1985.

[DODT83] Department of Defense
System Evaluation
5200.28-STD. Department
dard, December 1985.

Trusted Computer
Criteria, DoD'
of Defense Stan

[HENN86] Henning, R. R. and S. A. Walker, "Computer
Architectures and Database Security,'' Pro
ceedings of the 9th NBS/NCSC National
Computer Security Conference, September
1986.

[LAND82] Landwehr, C. E., "What Security Levels Are
For and Why Integrity Levels Are Unneces
sary," NRL Technical Report Memo 7590-308:
CL:UNI, Naval Research Laboratory,
Washington, D.C., February 1982.

[LAND84] Landwehr, C. E., C. L. Hietmeyer, and J. L.
McLean, ''A Security Model for Military
Message Systems," NRL Report 8806, Naval
Research Laboratory, Washington, D.C., 31
May 1984.

[SCHL86] Schell, R., and D. E. Denning, "Integrity in
Trusted Database Systems," Proceedings of
the 9th NBS/NCSC National Computer
Security Conference, September 1986.

372

COMPUTER DISASTER RECOVERY PLANNING:

A FAST-TRACK APPROACH

0. R. Pardo

Bechtel Eastern Power Corporation

15740 Shady Grove Road

Gaithersburg, Maryland 20877

(301) 258-4023

1.0 DISASTERS--LARGE AND SMALL--ARE
CONTINGENCIES

When we think of computer disasters, we

tend to think of the large-scale disas

ters: hurricane, tornado, earthquake,

or fire. Few of us are surprised to

hear that most of all disabling 11 dis

asters11 involve either water or fire.

Several examples:

Location Year cause

State of 1973 Flood (river)

Pennsylvania,

Harrisburg

Census Bureau, 1980 Sprinkler

Maryland System

China Lake 1985 Flash Flood

Weapons Center,

California

Two of these events involved natural

catastrophes, the third (Census) in

volved a combination of human error and

mechanical failure. Outage times varied

from 3 weeks (to partial resto~ation) to

several months [8].

However, although very few computer

centers have had to fully recover from a

disaster as massive as those listed

above, most centers. have had to recover

from a small disaster--again, most often

resulting from human error, fire, or

water [9]. In my personal experience,

every data center that I have worked for

or managed has had a flood, with plumb

ing (broken, inadequate, or nonexis

tent) involved in every case. (One

reference reports that 90 percent of

outage contingencies are caused by

people--mostly by accident or ignorance.)

Because of the likelihood of an outage

resulting from an event other than a

catastrophe, we will refer to the

11 disaster 11 recovery pianning process as

contingency planning throug~out the

paper. This term properly emphasizes

the wide range of use of this type of

planning.

The need for contingency planning is

widely reported [16,21]. In a key 1978

study, the University of Minnesota

Management Information Systems Research

Center reported that many American

businesses could not stay in business if

their critical computer systems were off

line for 7 to 14 days [16]. In 1985,
the General Accounting Office study
reported that only 9 of 25 computer
systems studied had existing, tested
contingency plans [15]. The requirement
goes beyond business prudence into
regulation in many cases. The federal
government policy (Office of Management
and Budget) requires a contingency plan
for government facilities [15]. Recently,
the Comptroller of the Currency re
iterated its requirement that 11 national 11
banks have a contingency plan in place
for critical information systems [19].

This paper outlines a method of imple
menting a contingency plan in a single,
relatively short effort. The approach,
called fast track, is to develop a
workable plan by dealing only with the
most critical systems first. This
approach works best because it quickly
reaches the crucial phase-- testing. It
often proves less costly because the
critical systems can be run on a smaller
configuration than that required for all
computer applications. It permits a
recovery plan to be developed and tested
within a year; we target for 6 months.

2.0 FAST TRACK

The fast-track approach to contingency
planning is based on the principle of
restricting the set of problems to be
resolved wherever possible. It is
predicated on three key beliefs: (1)
res.toration of a part of an organi
zation's information systems will be
better than none; (2) a contingency
recovery plan must reach the test phase
to demonstrate the full extent of an
organization's vulnerability and to
develop managements' confidence; and (3)
a company can (in general) afford to
backup only a subset of its data and
applications.

2.1 Management Commitment

Management commitment is the key element
to all contingency recovery planning
[3]. In our recommended fast-track
approach, it is the first phase.
Depending upon the breadth of the
.computer systems beipg analyzed, the
management to be involved will range
from the head of a department (for a
departmental system), to a division
general manager (in a divisionalized
company), to the chief executive officer

373

(CEO). The key characteristic of the
manager to make the decision is the
ability to recognize the computer
application as key to the organization's
(and, therefore, the manager's) health.

To gain management's commitment, the
risk to the company of loss of infor
mation and/or information processing
must be put in terms of the company's
ability to perform or in terms of
potential dollars lost. Once management
recognizes this risk, they must agree to
a budget for development and implemen
tation of a contingency plan and for the
ongoing maintenance of the plan (and
enhancement if necessary). This is a
significant challenge to many managers,
who often find themselves two levels (or
more) below the level of the key manage
ment to be involved and in a climate of
reduced budgets. ·

The fast-track method isolates the
critical applications and their vulner
ability by applying two rules:

• 	 Limited extent. Establish the
extent of contingency at the
walls of the computer room and
develop the vulnerability of
that room being disabled.

Limited duration. Establish• the extent of the contingency
outage (to successful restor
ation--on site or at a restor
ation site) at 7 days.

By applying the first rule, the vulner
ability (in terms of events per 100
years, the standard measure) is real
istically high because of combination of
catastrophe (major storm, flood, major
fire) with the ordinary (human error,
small fire, broken pipes, clogged sewer
lines). By applying the second rule,
the applications that are exposed are
only those that are truly critical
(likely to result in major financial
loss to the company) and most recogniza
ble as such by senior management [1]. A
key element in identifying the appli
cations is establishing recovery time
criteria (i.e., the maximum time that
the application can be out of opera
tion).

The process of risk analysis should be
conducted quickly and with as few people
involved as possible. The data process
ing manager and his staff can develop
the first draft and then confirm their
findings with the managers responsible
for the functions supported by the
critical applications exposed. This
group of managers then forms the team to
confront senior management with the risk
and the need for a contingency recovery
plan. (Note: if this group cannot
agree upon the criticality, then it is
unlikely that a "sale" can be made to
senior management.) Other members of
the organization that may initiate the
risk analysis include: the manager of
security, the manager of the function at
risk, or (best of all) the CEO. In all

cases, both the users of the application
and data processing must be fully in
volved. (For details on risk analy
sis, see references 2 and 9.)

Once the critical applications are
identified, and senior management
recognizes the. company's vulnerability,
the risk analysis team (all managers)
must gain senior management commitment
to invest in a contingency plan and its
ongoing maintenance. This will require
a commitment to deliver a plan, ready
for testing, in a fixed amount of time.
We recommend 6 months, in four phases:

staff
Phase Reg:uired Time

1 - Management 2 - 5 4 weeks
Commitment

2 - Workable Plan
Pass 1 2 - 5 4 weeks
Pass 2 5 - 10 5 weeks

3 - Affordable 2 - 5 4 weeks
Plan

4 - Implemen- 5 - 10 9 weeks
tation & 26 weeks
Testing

It is essential that this commitment be
made if the plan is to be completed.
Otherwise, the plan is likely to fail
due to budget pressure, change in
management sponsorship, or worse,
disillusionment by the planning team.

2.2 	 Workable Plan

The next phase in the fast-track approach
is to develop a workable and affordable
plan. Can it be done? We believe it
can, because the plan should only target
to reco'ver the applications that are
truly critical (i.e., identified in the
first phase) and for contingencies that
are limited to the computer room itself.

["Why?" the reader exclaims. "Shouldn't
we consider the secondary applications
(those which must be restored within two
weeks)? Shouldn't we anticipate a major
catastrophe in which half the staff is
unavailable to·· support the recovery
process?" These questions are reasonable.
However, the fast-track approach does
not answer them at this time. Fast
track is targeted to develop a workable
and tested plan for the few truly
critical applications in a limited
"catastrophe." Once a successful plan
is in place, it is the author's belief
(and experience) that secondary (and
even tertiary) applications can be
accommodated more easily and at less
expense.]

The process of developing a workable
plan is described briefly below. The
list of references provides several
sources that provide superb detail for
this phase [1,6,9,12,18,20]. The key to
this plan is a two-pass approach: the
first is conducted by a small team; and

374

the second by the team of key players
identified in step 5.

1. 	 Clearly define the range of
contingencies that are being
planned for. For example, if
the computer room is destroyed
(or made inoperable for a week
or more), what is the effect on
the telecommunications network,
what is the effect on the onsite
tape and disk storage, on the
lists of work in progress, and
on operating procedures?

2. 	 Develop profiles of the critical
applications: required computer
peripherals, disk storage, tape
drives, telecommunicatons
requirements, unique operating
system features, locally developed
operating software and utilities,
vendor (and third party) software.
If data bases are involved: who
is data base administrator;
where are the lists of updates;
are audit tapes used?

3. 	 Review operations procedures,
assure that they are up to date,
and list changes that would
minimize the exposure to any of
the expected contingencies.
Especially important are the
offsite storage procedures [4]
(e.g., storage of duplicate
procedures offsite, more fre
quent backups of critical files,
maintenance of backup records in
duplicate, etc.).

4. 	 Review the computer center,
central telecommunications
network components, and data
library for ways in which loss
of one can be segregated from
the others.

5. 	 Establish a recovery team roster
made up of the key operations,
systems, telecommunications,
support, and and applications
users' supervisors and managers.
Identify those that may be at
risk (e.g., injured or dead) if
one of the (limited) contingen
cies occur. For all individuals,
select alternates. For those at
risk, select secondary alternates.
(Note: at this stage, it is all
right to use the same individual
for more than one. role; however,
care must be taken to avoid the
"all eggs ... "syndrome.)

6. 	 Develop most likely backup

scenarios: hot-site, cold-site,

full redundancy, mutual backup

arrangement,. etc. [4,18]. For

each, develop a telecommu

nications backup concept [13].

These should be simply sketched

out. At this point, the actual

method of backup will not be

decided. Only the fact of

backup is important (and its

resulting impacts on personnel,
data transfer, telecommuni
cations, and procedures).

7. 	 Develop an outline for the
contingency recovery plan
manual. During the first pass,
this outline should be at least
as detailed as that shown in
Figure 2.01. During the second
pass, draft sections are included
where they can be fleshed out.

At the end of the first pass, the team
is expanded to include the principal
backup members identified in step 5.
This team now reviews, criticizes, and
modifies each product of steps 1 through
7. The result should present a workable
plan containing all the elements required
to get the critical applications back
into operation. The result does not yet
address cost, the actual method of
backup, or the time it would take to
recover. However, the result should
identify those procedures, elements of
room layout, and application requirements
that will complicate the backup process.

In terms of staffing, this phase need
not be too expensive. Many of the steps
can be carried out in parallel. The
second pass can be staffed by the
additional members without removing them
from their current responsibilities in
most cases.

1. 	 Introduction and Overview

2. 	 Mobilization
Notification
Offsite storage

3. 	 Operations Recovery

Organization
Backup facility
Checklists

4. 	 Management Support Team

5. 	 Administrative Support Team

6. 	 Site Restoration

7. 	 Maintenance and Testing

8 . 	 T.eam Directory

Figure 2.01

Contingency Recovery Manual
(sample table of contents)

2.3 Affordable Plan

The third phase of the fast-track
approach develops the action plan for
achieving a plan and recommends the
best, affordable approach to backup. It
is principally a task of cost estimating
and problem simplification. It aims at

375

providing a backup plan that will meet
the budget requirements set in the
management commitment phase as well as
the recovery time parameters required by
the critical applications.

• 	 Cost estimating. The possible
backup plans are estimated by
reviewing the available market
options for backup recovery.
Once these are known, the
telecommunications backup costs
are developed, especially those
that are ongoing (e.g., dialup
modems, ACCUNET reserve "local
loops," additional network
nodes). At the same time,
offsite data storage costs are·
developed.

• 	 Problem simplification. During
phase 2, it is likely that
several problems were identified
that complicated the backup
planning or added expense to the
backup recovery plan. Examples
of these are: telecommunications
and/or data storage in the same
room with the computers; special
hardware for the critical
application that is difficult or
expensive to duplicate; locally
developed software options or
configuration-specific application
features; and data base layout
that combines time-critical data
with historical or infrequently
referenced data. Now, the team
identifies changes that could
mitigate the impact of these
problems on the backup process.
For example, it may be cheaper
to build fire walls between the
three areas of the computer room
than to plan for likely destruc
tion and total backup of all
three areas; it may be easier
to modify the application and to
restructure the data base than
to duplicate expensive hardware
or restore all data within 24
hours.

In determining the full cost of the
ongoing contingency plan, full cost
should be considered: a Contingency
Planning Manager (a minimum of one
quarter of a person); cost of updating
the manuals at least annually; cost of
offsite storage of critical application
data; duplicate communications equipment
(and data links if required); and ..the
cost of having the backup site ready and
tested (e.g., in the case of a "hot
site" this is usually a monthly fee that
includes testing once or twice a year).

2.4 Implementation and Testing

At this point, we are ready to imple
ment. The procedures and implementation
of the offsite data backup, telecommuni
cations network backup, operations
changes, and applications changes can be
cost justified and proceeded with on
their own. Each will bring a measure of

protection that likely did not exist in
full (or part) before. Only the backup
site need be reviewed again for cost
benefit. If the backup site fits the
original forecast budget (and already
committed to by senior management),
approval to proceed should be forth
coming. During this process of imple
mentation, the contingency recovery
manual should be completed and readied
for 	use.

Before proceeding on the backup imple
mentation, the plan should be quickly
reviewed by the full team for "test
worthiness." The team should agree that
the 	plan will work as tested. As soon
after the backup site is established,
the plan should be tested [3,17].
During testing, an independent observer
should track the test in terms of
successes and failures. At the end of
the test (or at the point that the test
has failed), the team should be de
briefed and an action plan put in place
to correct the major shortcomings of the
plan. A second test should then be
scheduled and the plan verified.

If the budget will not cover the cost of
establishing a backup method that meets
the recovery time criteria or the
application requirements, then the plan
should be reviewed with senior manage
ment. They should agree to one of
several conclusions:

• 	 The recovery time criteria are
too stringent.

• 	 The budget is inadequate, or the
applications involved are less
critical than originally deter
mined.

• 	 The systems are too monolithic
to permit backup. In this case,
either redesign of the appli
cations or redundant systems may
be the only solution.

2.5 The Living Plan

At this point, the company (or organi
zation) will have a tested and working
plan. The plan should now be reviewed
for its limits and most desirable
extensions. Several have been discussed
or alluded to previously:

• 	 Extension to cover loss of the
complete floor or building

• 	 Extension to anticipate the loss
of key personnel

• 	 Inclusion of the remainder of
the critical or near-critical
applications ..

These changes do not have to be made
immediately, but they should be described
in sufficient detail so that management
can assign priorities and consider them
for inclusion in future plans.

376

Just as important is the review of the
plans for computer, telecommunications,
and applications modifications. The
fast-track process of contingency
recovery planning shou~d bring to light
those critical factors that can be
eliminated with changes to the computer
and telecommunications configurations
and redesign of software and data base
applications. For example, future
additions to the computer system can
attempt to achieve redundancy in con
figurations, especially where the
configurations can be separated by
enough distance to reduce the chance of
both centers being placed out of com
mission by a single event. In another
instance, data base redesign may reduce
the critical application to a more
transportable size.

Finally, the incorporation of the
contingency plan procedures into the
day-to-day operations is essential
[5,7]. As new applications are developed,
they should be tested to see if they
meet the requirements of being declared
critical, and if so, added to the plan.
In the meantime, all secondary appli
cations should be encouraged to store
copies of software and recent data
offsite to ensure their recovery (if not
immediate availability).

3.0 CONCLUSIONS

The need for contingency recovery
planning is clear for businesses and
organizations whose survival depends on
computer systems. The fast-track
approach provides an alternative to the
traditional approach which pulls key
people off their day-to-day jobs and
delays the demonstration of benefit for
1 to 2 years. The fast-track approach
minimizes expense and provides flexible
positioning to changing computer needs.
The following conclusions can be drawn
from this paper.

• 	 Disaster planning is an umbrella
audit of" all procedures. A
tested disaster plan and its
related hardware, software, and
services is a form of insurance.
As in the case of insurance, it
does not have to be exercised to
be useful. By developing the
proper insurance program, a
company actually increases its
value. A disaster plan should
be viewed as lowering risk to
customers and investors.

• 	 Developing and maintaining an
operational disaster recovery
plan is seen as an expensive
process. However, when viewed
for its insurance value, and as
part of the overall data center
operations process, the expense
is reasonable and often has a
payback: it develops confidence
in your business by your cus
tomers.

• Commitment and support from top
management is essential. A
disaster recovery plan is
recognition that the data center
and the information systems
supported by the center are
critical corporate resources. A
disaster plan, even when estab
lished in one year, is a long
term program, requiring testing
and review on a regular basis.

• Critical systems identification
is the first step to the detailed
planning process. There are
usually three or four appli
cations that are key to a
company's survival. They are
the ones that must continue in
operation in event of a disaster.

• 	 The planning process is a
continuous, iterative process.
New and existing applications
should be reviewed annually for
inclusion (or removal) from the
plan. The plan itself should be
tested periodically and modified
when necessary.

If a contingency plan is not in place
today, the first plan should be put into
action as soon as possible and updated
iteratively until management is satisfied
that adequate protection exits for
critical business applications. With
the trend toward increased use of
automation, the dependence of critical
business operations on the data center
will increase. With the tendency toward
distributed (departmental and work
group) computing, the need for a
corporate-wide understanding of contin
gency planning will grow.

4.0 REFERENCES

[1] 	 "A Practical Approach to Catas

trophe Planning," Infosystems,

pp. 68-69, February 1986.

[2] 	 J. w. Barker, "Dollars and Sense:

The Economics of Contingency

Planning" NEWS/34-38, August 1985.

[3] 	 w. Colby, "Disaster Recovery Plan?
Nah ... It'll never happen to us!"
Infosystems, pp. 32-36, January
27, 1986.

[4] 	 Contingency Planning Options

Protect Corporate Data Assets

Computerworld (In Depth) pp. 73
74, January 27, 1986.

[5] 	 "Disaster Preparedness and Recovery
Procedures" Datapro Reports,
Datapro Research Corporation,
March 1986.

[6] 	 Disaster Recovery In Today's

Processing Environment, Critical

Technology Report: No. C-9-85

Chantico Publishing Co., Inc.

1985.

377

[7] 	 E. Dugan, "Disaster Recovery
Planning: Crisis doesn't equal
catastrophe, 11 Computerworld (In
Depth), pp. 67-74, January 27,
1986.

[8] 	 "Horror Stories Part II" Infor
mation WEEK, pp. 40-45, March 16,
1987.

[9] 	 W. Lord Jr., The Data Center
Disaster Consultant (Second
Edition), Prentice-Hall, Inc.,
1983.

[10] 	 M. Mandell, (editor) "Are you
Ready For Disaster?" Computer
Decisions, pp. 64-78, September 9,
1986.

[11] 	 H. W. Miller, "Disaster Recovery
Planning," Journal of Systems
Management, pp. 25-30, March 1986.

[12] 	 w. D. Minter, "Implementation of a
Total Disaster Recovery Plan."

[13] 	 T. J. Murray, "Disaster Recovery
Planning," Data Communications
Management.

[14] 	 D. B. Parker, "Evaluating Data
Backup Procedures and Services,"
Data Security Management.·

[15] 	 "Put Disaster Plans on-Line Rather
Than on the Shelf, 11 Government
Computer News, December 5, 1986.

[16] 	 J. R. Ritz, "An Evaluation of Data
Processing Machine Room Loss and
Selected Recovery Strategies,"
MISRC-WP-79-04, Working Paper
Series, Management Information
Systems Research Center, University
of Minnesota, Minneapolis, June
1978.

[17] 	 "Testing Disaster Recovery/
Contingency Plans," Datapro
Reports, Datapro Research Corpor
ation, March 1986.

[18] 	 s. Usdin, "Like It or Not, Plan
For a Disaster Recovery," The
Office, pp. 90-92, March 1987.

[19] 	 11 U.S. Wants Contingency Planning
By Banks, 11 MIS Week, vol 8,
Number 20, pp. 8, May 18, 1987
Fairchild Publications, NYC.

[20] 	 D. D. Walker, "Disaster Recovery
Planning Inside General Electric,"
Journal of Information Systems
Management, pp. 25-33, Fall 1985.

[21] 	 D. B. Wood, "Firms Build 'safety
deposit boxes' for electronic data
banks," Christian Science Monitor,
pp. 21, Thursday, July 31, 1986.

378

RETURN TO NORMALCY: ISSUES IN CONTINGENCY PROCESSING

Thomas C. Judd
Assistant Director of the CPC
Federal Reserve System
Culpeper, .Virginia

Much time and many words ha.ve been shared
regarding data processing security measures
and the recovery of lost data. Programs and
procedures are widely publicized as to their
monitoring and switching capabilities. The
topic of disaster management, however, goes
far beyqnd those measures. They are, of
course, important and crucial concerns. Yet,
a false sense of security may render the most
elaborate . plans wo.rthless if the recovery
process ignores the ability to return to
normalcy. ·This ability must address the
·issues of confidence, reliability, integrity,
availability, and the resumption of business
functions with continuity of operations.

Certain industrial, commercial, and service
organi'zations may rely upon P totally auto
mated system. These entities usually include
those activities which offer the consumer a
limited choice of vendo~. Federal agencies,
major municipalities, utilities, securities,
monetary services, military, and public
safety ·agencies quickly come to mind.
Smaller organizations, but still including
the major industries of any given area, are
much more affected by geographic locations of
competitors. It is all of these groups to
which this paper is dedicated.

The •cook book• approach has been used in an
effort to provide a kind of checklist of
things to do, and, one shou_ld not ignore the
many tasks involved in contingency planning.
The position here is not that such approaches
are wrong nor incomplete nor inappropriate;
they serve a very vital purpose. In the
government, OMB Circular A-130 and the
National Bureau of Standards' special pub
lication NBS 500-134, 8 A Guide on Selecting
ADP Back-up Processing Alternatives• are most
helpful. OUB.Circular A-130 establishes·
guidelines and authority while NBS 500-133
offers a useful contingency planning check
list. However:, planning for contingencies is
but the first step. The return to nOrmalcy
is, in our opinion, a more global and more
critical issue. Protecting •our• data is im
portant, but conveying to users the feeling
of confidence that our contingency strategy
provides continuous business functions is of
a greater magnitude.

To create such a mechanism requires a commit
ment 'o the·notion that contingency planning
is both an attitude and a process; each re
quiring flexibility of thought, firmness of
procedure, and commitment of resources. Bow
ever difficult it may be, there must be a ·
weighing of the cost of contingency planning
and processing against the cost of not doing
business. Bow long can a business function
b~ suspended before the business will fail in
its attempt to return to normalcy? Because
contingency processing is not an inexpensive
activity, it may well be that it is not for
everyone. Bence, the most major decision of

Howard W. Ward, Jr.
Assistant Professor
Germanna Community College
Locust Grove, Virginia

all: Bow much is it worth to be able to re
store the information processing capabilities?

Too often information processing is thought
of only in terms of computer activities.
Regardless of the method of processing data
the adage of GIGO remains true. Providing
for the gathering of data at the lowest .level
and the distribution of results at that same
level is the test which must not be failed.

Alternate procedures for both of these pro
cesses w.ith a realistic audit trail rests at
the heart of any contingency plan.
Major management decisions must be made at
the highest level. The degree of involvement
and commitment are the highly visible signs
of the extent to which management truly
wishes to secure itself against the hazards
of modern times. The rela.tively simple
issues of yesterday such as the disgruntled
employee or the interruption of power sources
remain as day-to-day concerns, but new and
more devastating evils must be dealt with.
Such evils -include but are not limited to
terrorism, nuclear damage, and environmental
deterioration. Preoccupation with ' backup
tapes_ and mainframes is being replaced by
such concerns as who is left to operate that
standby equipment, how are those people
transported to that backup site, and by what
means do our clients interact within a set
ting new to them; and perhaps new to us. The
"hot-site• concept has introduced still a new
dimension to the art of 0 being ready. n It
gains credence only in the context of a
return to normalcy. Critical transaction
based functions ordinarily require immed
iate resumption t,o prevent serious business
damage.

The position taken in this paper suggests
that new strategies are required and that
those new strategies involve a commitment of
the highest steps of the management ladder.
They require constant modification which
implies extensive educational activities.
They mandate a comn1unication process with
clients which instills confidence that we
will continue to serve with no loss of integ
rity, that we will maintain a degree of reli
ability which can and will surpass that of
our competitors, and that the availability of
our support or -backup procedures is both
immediate and continuous to the extent
necessa-ry.

Bow are these strategies addressed? Simply
~t, they are addressed _and effectively dealt
wJ.th through the concept categorized as the
Return to Normalcy. This. concept does not
substitute for well written programs, docu
mentation, or procedures. Neither does it
substitute for the many commercially avail
able techniques which preserve already
gathered data. The value of the Return to
Normalcy concept rests in its ability to

379

involve, stimulate, and support. It embraces
the following concepts:

1. 	continued senior management support
for contingency as a process.

2. 	as close to simulated disaster as
is feasible in testing contingency.

3. 	the ramifications of a fully imple
mented "hot contingency site."

4. 	the cost-effective use of fully
implemented back-up sites.

s. 	issues in providing contingency
backup for .multiple sites.

6. 	the cost of quality contingency
backup services.

7. 	returning to "business as usual.•

:ontingency preparedness, therefore, is not
just a program1 it is a process which remains
~ffective only when it is reflective of a
nanagement attitude.

ro deal with the concept of senior management
support requires a bold commitment of re
sources and a willingness to defend that
!?OSition. It is difficult to prescribe ex
actly what method of information processing
backup is best. This is a relatively new
field although the notions of stuffing the
mattress, filling the safe deposit box, and
burying the secret treasure map have been
with us a long time. What makes today dif
ferent is the need or desire to maintain
continuous processing regardless of the
operating environment.

How best to do this involves extensive study
of the kinds of mishaps which might befall an
organization and the measures which would
allow uninterrupted service to customers or
clients. Fundamental to these studies are
the measurement of tolerable down time, delay
in converting to the selected alternative,
start-up time required to bring facilities up
to full performance capabilities, reconcili
ation of data and/or transactions, and the
conversion back to "business as usual".

A study of this magnitude is, in itself, time
consuming and expensive. · Further it requires
parameters which delimit those alternatives
to acceptable cost _considerations. Because
such a study adds nothing to the product or
service and because it includes consideration
of events which may be considered ludicrous
by some, senior management stamina is vital.

Even after the conclusion of the study senior
managements' role continues. A further deci
sion must be made: is the recommendation
acceptable or, if alternatives are presented,
is one acceptable? If not, further study is
.the likely next step. And so the process
;continues. At each crossroad senior manage
ment must again test his or her degree of
•conviction that the cost of contingency pre
paredness is less 'than the cost of not doing
business.

Among the possible alternatives, and a biased
choice on the part of the authors, is the es
tablishment of a •hot site.• By definition,
a "hot site" is a staffed facility capable of
continuing information processing operations.
However, hot is a relative term and there are
varying degrees of staffing.

The many pos.sibilities including d~gree of
readiness and staffing make this a particu- '
larly difficult issue with which to· deal.
Ideally, paralleling facilities and personnel
would offer maximum coverage and security.
However, even under these conditions consid
eration is usually given only to computer
equipment and related personl)el. Issues ·of
comparable importance which are often over
looked are input procedures· including commu
nication links to the client, control tech
niques, storage, forms, client service, and
audit trail.

Perhaps the biggest problem with the fully
equipped and staffed "hot site" is not the
cost, as one might think, but rather the in
ability to keep talented employees honed to
maximum efficiency. High turnover coupled
with excessive training time and costs con
tribute to an expensive and inefficient
operation.

A "hot site• with duplicate hardware but min

imal staff provides a better solution. The

limited staff can be challenged by performing

developmental and testing. functions. Train

ing remains an important feature but it is

more easily accomplished. However, a li~ited

staff is unable to maintain· full scale opera

tions. To overcome this shortcoming, contin

gency teams can be employed. Such teams con

sist of selected key individuals, trained in

specific aspects of operations, and who are

regularly employed at remote sites. In the

event of a catastrophe, the team members

report to the •hot site" to lend support to

the •hot site" staff.

An approach of this nature overcomes one of
the. major problems in disaster recovery:
getting required personnel to the contingency
site. It cannot be assumed that _employees at
a damaged or destroyed location can be relo
cated. They may be injured or may not have
survived the incident. Travel may be inter
rupted or totally suspended. Further, when
the chips are down, employees may not be
willing to leave families or may be too dis
traught to be concerned with such things as
contingency operations.

A well conceived •hot site" must also include
current backup data, supplies, and an elabo
rate set of procedures. While each of these
is 	important, procedures are the most criti
cal. They are also the most difficult to
maintain current. Not only must they de
scribe what must be done, when, how, and by
whom, they must also describe and prescribe
under what circumstances a contingency plan
should be activated and by whom?. And,
further, they must blueprint how the organ
ization repositions itself to a state called
normalcy which may, in some cases, be a new
.or improved environment.

38.0

Despite the completeness of outfitting the
contingency site, the,staff training, and the
detail of the procedures, no disaster re
covery plan can be considered remotely secure
without repeated testing. Unfortunately,
~pst tests are limited to performing parallel
operations under rather ideal conditions.
~!though it may appear to be courting
~1!lf-imposed disaster, a part of the testing
program must include a complete catastrophe
simulated situation. An unannounced date
.hould be selected without regard to
!~cations, peak periods, or system
~onversions. This tru!y is a test of senior
~nagement conviction.

~refully avoided, thus far, has been any
$pproximation of cost and it will continue to
b,P avoided since the number of variables is
dgnificant. Worthy of exploration is the
use of the contingency facility to serve
several users. Two points are obvious. One
is that costs could be significantly reduced
if even a few users are involved. The other
is the dilemma if two or more users are
struck at nearly the same time.

These are not the only considerations, how
ever. Closely following the two major pro
blems are issues such as training and sup
plies • While there may be certain simi
larities in computer operations, the many
other tasks necessary to make an organization
function present an enormous training prob
lem. Consider, if you will, the variations
iin order entry applications. These points
:seem to lend added suppo.rt to the skeletal
•hot site• supplemented by contingency teams.

C.rtain cautions must be observed. A shared
~lte cannot support two or more users from
;tine same geographic area. Neither can it
;reasonably support multiple users with heavy
pemands for testing. Depending upon the sup
'p(>rting functions and the degree of activity
qetween user and client, the site management
lt;asks and responsibilities multiply dramati
Q'ally.

~eep in mind that the scenario prompting
~hese comments covers more than a mere local
~re or flood. It is possible that there is
o remaining staff to reinforce the. contintency site. It is possible that radiation or

jl poisonous cloud has isolated the central
i:Jite. It is possible that the target loca
~ion just does not exist any longer.

'hat kind of person must be found to assure
that operations can continue? Many adjec
tives might be used; intelligent, adaptable,
fearless, patient, conscientious, loyal, and
11ore. TQe obvious qualifications of loyalty
and honesty go without saying. The security
of any site is important. and the "hot site•
is no .exception. However, there are some
tnique circumstances. If we assume that the
•hot site• is not a commercial site but one
ander.the control of the principal then it -is
likely there is little, if any, actual pro
.cluction taking place. If therE;~ were, of
course, it is unlikely the description "hot
site• would be applicable. This lack of pro
4uction has a severe psychological effect on

"hot site• personnel. The pressure of daily
deadlines is absent and so is a normal rou
tine. Hence, personnel must be highly moti
vated so as to direct their energles toward
constructive activities such as testing
and training. These are key to providing
a high level of operational expertise.
The ability to function as a cohesive team
suggests the need for a selective recruit
ment and dynamic development process.

Most of what has just been said has been
directed toward the Contingency Center
Specialist (Computer Operator). There
are many other persons involved when dealing
with the "hot site.• Programmers face simi
lar problems, but face the awktqard situation
of having to conform to objectives and speci
fications developed at another location. This
lends some support to the notion of using the
"hot site• as a developmental center for ex
perimenting with new software or testing pro
posed procedures.

Probably the most difficult group of employ
ees to adequately deal with are those per
forming the mundane and routine operations.
Clerks, data entry and communications opera
tors, and like positions are difficult to
keep occupied except under production or
iented.conditions. No disrespect is intended
since many, or perhaps all, may be of superior
ability. But the opportunities for develop
ment and growth in such areas are relatively
few. Somehow, a challenging educational pro
gram must be integrated into the "hot site"
environment and it must be both interesting
to the employee and beneficial to the employ
er. Perhaps the idea of an organizational
training center utilizing the many re
sources of the "hot-site• is a concept worth
exploring. Keep in mind we are continually
referring to the ideal "hot site• whi·ch
represents a duplicate of the site being
backed up. Also keep in mind that the
position taken here is that merely backing
up the computer capabilities doesonot ensure
that all of the usual necessary tasks and
.procedures which come before and after
computer processing will also be backed up.
The frequent assumption is that simply
telling people to report to a different
location using different machines will allo\'1
for continuous operations. This assumption
is a luxurious approach to an unrealistic
solution. Although statistics are not
available, it is reasonable to assume
that the probability is less than slight such
total devastation would occur so as to
require complete backup. But that is pre
cisely the point; modern technology has pro
vided the opportunity to render entire com
munities decimated and useless.

To this point it would appear that we are
buildin<;{_ to a crescendo which suggests that
there really is no such thing as normalcy;
that the p~tential problems are so great that
no- solution can exist. To remain competi
tive, business and industry must continue to
strive for that better mousetrap which, in
cidentally, must cost less· than those of the
competitors. Can these two. objectives be
compatible within the context of allowing for

381

http:suppo.rt

contingency processing? This reinforces the
belief that senior management must seriously
and carefully weigh , the cost of not doing
business.

For governmental agencies the answer may be
somewhat easier. The profit motive is re
moved. The public good demands a kind of
protection that warrants such expensive
assurance. Major agencies such as . the
Department of Defense, Department of State,
Federal Reserve, Internal Revenue Service and
Social Security are illustrations of those
entities which absolutely must have such
security. State governments and major cities
such as New York, Los Angeles, and Chicago
would appear as likely candidates. But what
of smaller municipalities? What ripple ef
fects stemming from a disruption of major
local governments which depend heavily on
automated facilities would influence govern
mental functioning at higher levels? As ex
amples, consider the impact of the loss of
services provided by Dade County, Florida,
and Fairfax, Virginia. With standardized re
cording and reporting techniques, regional
ized "hot sites" with contingency teams or
reserve forces perhaps the degree of chaos
could be significantly reduced.

Let's now define that normalcy which bas been
the center of attention throughout this pre
sentation. In most cases it would be defined
as an environment which is familiar and ac
complishes the original objectives in an
equally efficient manner. Unfortunately,
that definition may be oversimplified.

A familiar env'ironment is essential7 but
familiar to whom? Certainly the employees
must be able to consider the equipment and
procedures familiar. This implies computers,
office equipment, communication equipment,
and supplies (particularly forms). But
clients or customers must also find them
selves in familiar territory. In many crit
ical transaction-oriented processes, the user
expects (and may require) 100 percent avail
ability with no recognizable change in
functionality. They must know how to com
municate and must be made a\'lare of any
changes in the usual procedures. A por
tion of the problem is that too full a dis
closure of the contingency process compro
mises its security which is part of the
reason for its existence.

Of major importance is the people. If a new
staff was to be created, would the original
employees still be available? If a new site
is created, especially at a distant location,
current personnel be interested in relocating?
If a contingency team bas been used, would
they want to return to their home site?
There are no standard answers for these ques
tions. However, one point is clear1 the
people problem is significant and those ex
pected to.play a role in contingency process
ing must be informed and reminded of the de~
mands which may be made of them.

It is worth mentioning one more time that the
crucial issue involves the lower level cler
ical positions1 the mail distribution clerks,

the switchboard operators, file clerks, and
supplies inventory clerk. These are often
positions. which do not have their tasks spe
cifically defined or who have modified their
job descriptions on their own to more effec
tively deal with their day-to-day operations.
These highly important people who are fre
quently at the lower end of the pay scale are
the Rodney Dangerfields of contingency plan- ,
ning. All too often they get no respect.

Returning to normalcy does not necessarily

mean relocating back to the original site.

One reason is that the site may· np longer

exist. A second reason is that the original

location may no longer be inhabitable. If

originally located near major clients or cus

tomers, they too may no longer exist. Hence,

there may be no real incentive to return. But

senior management must make this decision.

In any event, the "hot site" may not be the

place in \'lhich to remain. It may be too small

for full-scale operations in an on-going

mode. Even .if it is adequate, attention must

now be given to a new back-up location. And

the cycle begins to repeat itself.

Can an organization return to normalcy? At

this writing an answer does not appear to be

immediately forthcoming. The number of var

iables seem overwhelming. The extent and

type of disaster1 the attitudes of individu

als, the availability of replacement person

nelJ the success of the contingency plan1 and

the availability. of resources to permit a

recovery all contribute to the dilemma.

Some aspects of contingency planning do hold
up regardless of the disaster encountered.
First, the most feasible kinds of operations
to warrant consideration are those which deal

·with recordkeeping activities. Governmental
entities, insurance companies, monetary and
investment firms, and organizations selling
services seem to be the most likely candi
dates.

Second! providing facillties and staff is

expens1ve. Only those organizations with

large financial resources can accommodate the

financial requirements. when an organ~zation

exists in the profit-making arena, the less

conservative competitor \'Tho elects to risk it

may, in fact, drive out Cor price out) its

non-risktaking counterpart.

Governments with the ability to acquire rev
enue through increased taxes may be among the
few who can afford this kind of protection.
Even in this case, smaller governments simply
may not be able to bear the pressures.

This is not to say no effort should be made,
especially in. the private sector, to safe
guard the ability to maintain . operations.
What is being said is that there are limits
beyond which the cost of not doing business
may, in fact, be less than those of continu
ing business. This truly is a point on the
contingency scale which tests the entrepre
/neurial spirit of every organization.

A third point which is clear is that contin

38.2

gency planning is not an activity to be taken
lightly. There is probably some degree of
contingency preparedness appropriate for
every organization regardless of size.
Clearly, the larger organization has more
resources and more to lose. Poor or inade
quate planning equates to no planning since
it is ineffective and may, in fact, result in
greater costs.

To combat this problem it is essential that
the contingency planning team be composed of
the most qualified individuals. The limits
of their study and their recommendations must
be clearly defined by senior management.
Their advice and proposals should be careful
ly considered. Their authority to initiate
action must also be well defined. Too liberal
an approach may be too expensive to implement
~nd too restrictive an approach may generate
~ntolerable frustration.

Fourth, a plan which provides solely for the
security of computer operations is unrealis
tic. It is window dressing designed to give
the appearance of security in its shallowest
form. The same may be said o'f a plan \'Thich
addresses only the hardware Cand software) of
a computer system. Staffing concerns in both
the computer and non-computer functions in
crease in complexity in a direct relationship
with the magnitude of the disaster. Providing
for business function personnel wherever they
may be located is equally important. Further,
contingency planning extends beyond a dust
covered manual. To serve its purpose it must
be reviewed and regene,rated at a pace at
least equal to the growth of the organiza
tion it is expected to serve.

Fifth, in instances where quick conversion
and near full-scale operations are required,
a "hot site" is the safest choice. HO\'Tever,
the degree of staffing has a major influence
on the. site's operation. Full staffing is
expensive and inefficient in personnel usage.
Minimal staffing cannot support contingency
operations. Hence, a contingency team or
reserve force is an acceptable compromise 1
both in providing automation capabilities
as well as attending to the humanistic
capabilities; i.e., the business function.
Interim activities to maintain skills and
morale may include application testing,
documentation, and program development.

Lastly, none of the advantages of contingency
processing can be realized without a con
tinuous and active commitment on the part
of senior management which may possibly
surpass all prior requirements. Beyond this
commitment is also an enormous degree of
involvement to weigh alternatives and
determine that point at which the cost of
contingency exceeds the cost of not doing
business. The contingency process; plan
ning, testing and training, must be dynamic
in that it remains effective only to the
degree to which it matches the changing
business environment.

Can an organization return to normalcy? The
authors' opinion is that the extent of the
contingency will determine how long a return

will take if such a return is, in fact, pos
sible at all. Certainly without a contingency
plan no return can be anticipated. The nature
of conceivable disasters in today's world
suggest that innovative approaches are called
for. Cooperative ventures, "hot sites", con
tingency teams, and standardized procedures
add to the viability of contingency planning.
A return to normalcy (for all but the most
farsighted, creative, daring and resourceful)
seems to depend largely on the nature of
the disaster, and the contingency threshold;
where the cost of recovery meets the cost of
not doing business, or providing vital public
service.

383

APVISORJ MEHORANPUM ON OFFICI AUTOMATION SECURITY:

AN OVBRVIBW

Alfred w. Arsenault

National computer Security center

Ft. George G. Meade, MD

Abstract

This paper presents an ·overview of National
Telecommunications and Automated Information
Systems Security Advisory Memorandum
(NTISSAM) COMPUSEC/1-87, AdVisory M&morandum
on Office Automation security, which was'

·issued in January 1987. This guideline is
divided into four parts. . Part I is the
Introduction and statement of the Problem.
Part II consists of guidance to the users of
OA Systems, Part III is guidance to the ADP
System Security Officer responsible for OA
Systems, and Part IV provides guidance to
Procurement Officers and others responsible
for the procurement, disposal, and management
of OA Systems and their associated magnetic
media. In addition, there is an Appendix
that addresses labeling of OA Systems and
magnetic aedia. A distinction is made
between OA systems with fixed media and those
with only removable media. Fixed media are
defined as those that are not meant to be
routinely removed from the system by a user;
all other media are considered to be
removable. The guideline addresses
responsibilities of system users, of the OA
System's security officer, and of the
organization that owns the system.
Distinction is made between stand-alone OA
systems (those physically and electrically
isolated from other OA system$) and connected
OA Systems .(all others) • Guidance i.s
provided to the user for the secure operation
of stand-alone systems, of connected systems
used as terminals to ..inframe computer
systems, and of oonnectecl systems used as
hosts on a . LAN. An overview of threats,
VUlnerabilities, and controls is provided.
While the Advisory Memorandum addresses
issues in the areas of physical, personnel,
emanations, · communications, hardware/
software, and procedural security, this paper
concentrates on hardware/software security.

Introduction
'

on December 5, 1986, the Subcommittee on
Automated Information Systems Security

(SAISS) of the National Telecommunications
and Information Systems security (NTISS)
approved the publication of Advisory
Memorand1,pll on Office Automation security as
an NTISSAM (NTISS Advisory Memorandum) • · In
January 1987 1 NTISSAM COMPUSEC/1-87 was
signed by Lieutenant General Odom in his
capacity as the National Manager for
Telecommunications and Information systems
Security. The purpose of this paper is to
provide an overview of that document.

History of the Document

The members of SAISS Working Group #3, which
is responsible for developing computer
security guidelines, believed that guidance
was needed in the area of Office Automation
Security. The National Computer security
Center, which was already working on an OA
security guideline, was tasked with drafting
a guideline that could be used by all Federal
Government employees and contractors using OA
Systems to process classified or sensitive,
but unclassified, information. The working
group provided review and inpqt to the
process at each step, from the preliminary
outline to the final draft. When WG3 was
satisfied with the draft guideline, it was
sent to the members and observers of the
SAISS and the Subcommittee on
Telecommunications Security (STS) for ~eir
review. After several iterations of this
process, the guideline was approved. ·

structure of the Document

AdVisory Memorandum on Office Automation
Security, henceforth referred to as "the
Guideline", is divided into four parts. Part
I is the Introduction and Statement of the
Problem. Part II provides guidance· to .the
users of OA Systems. Part III is guidance to
the ADP SYEil'!::eJII S.e'?.urit:y Officer responsible
for OA Systems, and Part IV provides guidance
to Procurement Officers and others
responsible for the procurement, management,
and/or disposal of OA systems and their
associated magnetic media.

Th$se four parts are subdivided into ten
chapters that, when taken toqether, address
all of the major security issues associated
with OA systems.

Additionally, the document provides an·
Appendix that addresses labelinq of OA
Systems and maqnetic media, and a qlossary of
terms used in the Guideline.

~he purpose of this .paper is to discuss each
section of the GUideline, and to describe in
certain cases why recommendations were or
were not made.

Introduction and overview

To start with, we must decide what is and
what is not an "Office Automation System".
The Guideline defines an OA System as "Any
microprocessor-based AIS or AIS component
that is commonly used in an office
environment. This includes, but is not
limited to, Personal computers, Word
Processors, printers, and file servers. It
does not include electric typewriters,
photocopiers, and facsimile machines". [1]
While this author readily admits to sometimes
findinq it hard to make a qeneric distinction
between an "electronic typewriter" and a
"word processor", it is thouqht that this
definition makes the distinction clear in
most cases.

The'··next step is to define the· 110A security
problem". That is, what exactly are we
attemptinq to protect?

The answer to this question has several
parts. First of all, we are tryinq to
protect information from unauthorized
disclosure. United States ·Government policy
requires that certain types of information
not be disclosed to anyone unless that person
has an appropriate security clearance, and/or
specifically needs the information to do his
or her job. [2 , 3] Most current OA Systems do
not provide the hardware/software security
necessary to enforce the separation of users
and information within the system; therefore,
procedure, personnel, and physical security
measures must be taken to prevent
unauthorized persopnel ..from accessinq the
system, or from··· qaininq access to maqnetic
storaqe media used in the system.

Secondly, we are tryinq to prevent
unauthorized modification of information. To
do this, we must aqain control access to both

the system and its storaqe media.

Thirdly, we are attemptinq to prevent
(intentional or careless) damaqe to the OA
system itself. This requires followinq a few
simple rules that will help prevent the
system from beinq either stolen or damaqed.

\

FixedfXedia vs. Removable Media

In order to make the problem easier to deal
with, we make a distinction between OA
systems with fixed media and those with only
removable media. Fixed media are defined as
those that are not meant to be routinely
removed from the system by a user~ Examples
of fixed media are fixed disks and
nonvolatile memory expansion boards.
Examples of removable media include floppy
disks, cassette tapes, or removable hard disk
cartridqes.

The type of media employed within an OA
system affects what can be done with that
system. Systems with only removable media
can be used to process information of
different sensitivity levels at different
times ("periods processed, 11 if you will).
This means that information can be processed
on the system that not all users of the
system have a clearance, authorization, or
need-to-know for. All that is required is
that the information be removed from the
system before these people use it.

systems with fixed media can normally only be
used to process one level of information,
because the information cannot be removed
from the system. Therefore, all system users
must have a clearance and authorization for
all information on the system.

user Responsibilities

All users must realize that they play a vital
role in maintaininq the security of an OA
system. In fact, the role played by users of
OA systems is much qreater than that played
by users of mainframe systems, because there
are usually not as many "security
professionals" overseeinq what is done.
Users should normally be responsible for the
followinq, as a minimum:

(a). Kitowlnq · who the ADPSSO is for each
system, and knowinq how to contact that
person;

(b) Beinq aware of, and followinq, all
applicable security quidelines.

385

(c) Reporting to a security officer and
known or suspected security violation.
Violations of particular importance are those
involving compromise or modification of
information, and theft of property.

(d) Using only approved software. Software
should not be used without having been tested
by some responsible party (such as a security
officer). Under no conditions should pirated
software be used.

Operational Security for Stand-Alone Systems

A stand-alone OA system is one that is
physically and electrically isolated · from
other OA systems. Some rules to follow when
using a stand-alone system with only
removable media are:

(a) Place monitor screens, printers, or
other devices that produce human-readable
output where they cannot be seen by casual
passersby.

(b) Do not leave an OA system running
unattended while it contains information that
someone with physical access to it should not
see. Especially, do not leave a system
unattended while sensitive information is
displayed on the screen.

(c) Do not leave printers unattended while
sensitive information is being printed,

. unless the area in which . the printer is
located provides adequate physical security.

(d) Remove output from printers at the
earliest possible time.

(e) Ensure that all human-readable outputs
are appropriately marked for sensitivity. If
necessary, the user should apply the labels
himself.

(f) Do not eat, drink, or smoke while using
an OA system.

(g) Protect magnetic media from exposure to
smoke, dust, magnetic fields, and liquids.

(ht When a .:user is throug4 with -the sys.t811t,
(s)he should remove all sensitive information
from it. It is also .advisable to power the
system off. This way, there is little or no
possibility that the next user can gain
access to information, no matter who (s)he
h. '

(i) At the end of a shift (or workday),
remove all media from the system, then
overwrite the system's memory with some
pattern before the system is powered off. If
there is a key, remove it and store' it in a
secure place until the next shift or working
day. Remove printer ribbons that have been
used to print sensitive information, and
store or dispose of them.

For systems with fixed media, the above rules
also apply. The main thing to keep in mind
is .that the sensitivity level of the system
as a whole cannot normally be lowered.
Therefore, users should never be allowed
access to the system without clearance,
authorization, and need-to-know for all
information on the system.

Sensitive information can and should be
removed from the system, however. When a
user is finished, and has some files that
contain information that should not be seen
by other system users, these files should be
copied to a volume of removable media, then
erased from the fixed media. (Note: for
~ost systems, use of the. "delete" command
will remove the information from the medium.
The locations in memory must be explicitly
overwritten.)

Operational security for Connected Office
Automation systems

A connected OA System is one that is not a
stand-alone. Normally, these systems are
used in one (or both) of two configurations:
as a terminal attached to a mainframe, or as
a host on a local area network (LAN).

When an OA System is used as a terminal, it
can create security problems for the system
it is attached to. one of the more lucrative
attacks is for a penetrator to program an OA
system to copy any password that a user
types. Then, the penetrator returns later
and can log into one (or more) mainframe
computers as one of his (or her) innocent
victims. The best solution to this attack is
to use only communications software that has
been tested and approved by a "trusted party"
(such as a security officer), and to prevent
unauthorized personnel from accessing the OA
system at all.

When an OA system is used as a host on a LANi
its inability to provide adequate
hardware/software protection becomes more
important. In most of today 1 s OA Systems,
any information contained in the system can

386

be accessed by anyone who can access the
system. This includes anyone who can access
the OA System via a network. Nowf users must
be extra careful not to leave sensitive
information on the OA System.

Responsibilities or the ADPSSO

~There should be one individual responsible
for the security of each OA System. This
individual may or may not be one of the users
of the system. There may be a different
ADPSSO for each OA System, or one with
jurisdiction over all. Regardless, the
ADPSSO should have the following
responsibilities, as a minimum:i 	 .•

(a) Ensuring that each OA System is
,certified 	 and accredited, if. required by
orqanization policy.

. (b) Ensuring that all users of the. system
are aware of the security requirements, and
assuring that all procedures are followed.

(c) Investigating all reported or suspected
security violations.

(d) Reporting violations to appropriate
authorities (e.g., top management, law
enforcement officials, etc.).

(e) Ensuring that the confiquration
management program is followed.

(f) Reviewing the audit logs (if audit logs
are used).

Threats, VUlnerabilities, and controls

A threat is a person, thing, or event that
can exploit a vulnerability of the system,
such as a wiretapper, a business competitor,
or a maintenance person.

A vulnerability is an area in which an'
attack, if made, is likely to be successful.
Examples of vulnerabilities include lack of
identification and authentication schemes,
lack of physical access controls, and lack or
communications security controls.

A security control is a step that is taken in
an attempt to reduce the probability of
exploitation of a vulnerability. Examples of
controls include the use of encryption, a
confiquration management program, or a
hardware/software security feature.

There are many threats and vulnerabilities

associated with OA Systems. These occur in
the areas of physical and personnel security,
communications security, emanations security,
hardware;software security, and magnetic
remanence. While the Guideline addresses all
of these issues to some degree, we now
concentrate on hardware;software security.

OA Systems can be broken down into three
categories: single user systems, shared-use
systems, and multi-user systems. Single user
systems are those that are used exclusively
by one person. Obviously, no
hardware/software security is needed for
these systems, regardless of whether or not
fixed media is employed.

Shared-use systems are those that are used by
more than one person; howev.er, only one uses
the system at a time. Mult~-user systems are
those that are used by more than one person
at the same time. For shared-use systems, no
hardware/software security is needed if only
removable media is used. However, if fixed
media is employed, then either all users of
the system must have a clearance and need-to
know for all information, or the system
should meet the requirements of at least
class Cl, as specified in the TCSEC. Multi
user systems should meet these requirements,
regardless of whether or not they employ
fixed media.

currently, there are a large number of
products available on the commercial market
that claim to provide security for OA
Systems. However, as of the time of this
writing, none of these products has been
certified by the National Computer Security
Center as meeting even the class Cl
requirements. While many of these security
products are useful and do provide some
protection, anyone using them should be
careful not to be lulled into a "false sense.
of security."

There are several equipment vendors who are
attempting to build OA Systems or
workstations that will meet specific levels
of the TCSEC. If these vendors are
successful, it will be possible to control
sharing •..9f . inf~rDl~~iQn . on _the OA system
itself, by using the hardware/software
controls provided by the OA system. The
procedural controls needed will then be less
severe than what is currently required.

Organisational Responsibilities

The organization which "owns" (or leases, or

387

http:howev.er

is otherwise responsible for the secure
operation of) an OA System has several
responsibilities. These include:

(a) Having a security policy that defines,
at a minimum, what actions are permissible on
an OA System, what information may be
processed when and by whom, what the
organization permits regarding the use of
government-owned OA Systems offsite, the use
of personally owned OA systems to do
government work, procedures for maintenance
of OA Systems, and procedures for the secure
handling, marking, storage, and disposal of
sensitive information.

(b) Setting up a training program to ensure
that users and ADPSSOe are aware of their
responsibilities.

(c) Having a policy concerning the
procurement and use of hardware/ software.
This policy should explicitly address the
topics of copyrights and licensing
agreements.

(d) Having a configuration management
program in place.

(e) Having a policy concerning the use of
audit trails.

(f) Having a policy covering certification
and accreditation of OA Systems.

Procuring OA-Systems

Before an organization begins to procure OA
Systems, it should take several steps to
determine exactly what the security needs
will be. The first of these steps is a risk
analysis, as defined in OMB Circular A
130. (5) In addition, the following issues
should be addressed:

(a) If the OA System will be processing
classified information, there are policy
requirements for communications security and
emanations security that must be met.

(b) Since an OA System is generally
considered to be a high-dollar asset, it
should be either kept in an area where it
will not be stolen, or it should be locked to
a table or in a cabinet.

(c) Any nonvolatile parts of the OA System
should be identified.

(d) Security requirements of any Automated

Information Systems that will be connected to ,
the OA System should be considered.

conclusion

This guideline provides an important first
step in assuring Office Automation security
for the Federal Government and its
contractors. It is very useful by the
private sector, also.

REFERENCES

1. National Telecommunications and
Information Systems Security Advisory
Memorandum (NTISSAM) COMPUSEC/1-87, A
Guideline on Office Automation Security,
January 1987.

2. Executive Order.l2356, National Security

Information, 6 April 1982.

3. Public Law 93-579, "Privacy Act of 1974,"

31 December 1974.

4. DoD 5200.28-STD, Department of Defense
Trusted computer System
Evaluation Criteria, December 1985.

5. Office ·of Management and Budqet (OMB)
Circular A-130, "Management of Federal
Information Resources", 12 December 1985.

388 *U,S,GOVERNmENT PRINTING orriCE:19B7-722-774:62514

