
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY/

NATIONAL COMPUTER SECURITY CENTER

1 TH ATIONAL COMPUTER SECURITY ONFERENCE

October 1-4, 1991

Dmni Shoreham Hotel

Washington, D.C.

Welcome!

The National Computer Security Center (NCSC) and the Computer Systems

Laboratory (CSL) are pleased to welcome you to the Fourteenth Annual National

Computer Security Conference. We believe that the Conference will stimulate a vital

and dynamic exchange of information and foster an understanding of emerging

technologies.

The theme for this year's conference, "Information Systems Security: Require­

ments & Practices," reflects the continuing importance of the broader information

systems security issues facing us. At the heart of these issues are two items which will

receive special emphasis this week --Information Systems Security Criteria (and how

it affects us) and Education, Training, and Awareness. We are working together, in

the Government, Industry, and Academe, in cooperative efforts to improve and

expand the state-of-the-art technology to information systems security. This year we

are pleased to present a new track emphasizing the integration of information

security solutions. These presentations will provide you with some thoughtful

insights as well as innovative ideas in developing your own solutions. Additionally,

we will be presenting an educational program which addresses the automated

information security responsibilities. This educational program will refresh us with

the perspectives of the past, and will project directions of the future.

We firmly believe that security awareness and responsibility are the cornerstone

ofany information security program. For our collective success, we ask that you

reflect on the ideas and information presented this week; then share this

information with your peers, your management, your administration, and your

customers. By sharing this information, we will develop a stronger knowledge base

for tomorrow's foundations.

'~~J~··· (_
/ ~AMES H. BURROWS
\.._/ Director Director
Computer Systems Laboratory National Computer Security Center

i

Conference

Dr. Marshall Abrams The MITRE Corporation
James P. Anderson J.P.Anderson Company
Jon Arneson National Institute of Standards and Technology
Devolyn Arnold Department of Defense
James Arnold Department of Defense
AI Arsenault Air Force Academy
V.A. Ashby The MITRE Corporation
David Balenson Trusted Information Systems, Inc.
Dr. D. Elliott Bell Trusted Information Systems, Inc.
James W. Birch Secure Systems, Inc.
W.Earl Boebert Secure Computing Technology Corporation
Dr. Martha Branstad Trusted Information Systems, Inc.
Dr. John Campbell Department ofDefense
Lisa Carnahan National Institute of Standards and Technology
R.O. Chester Martin Marietta
David Chizmadia Department of Defense
Dorothea deZafra Public Health Service
Donna Dodson National Institute of Standards and Technology
Karen Doty CISEC
Dr. Deboah Downs The AEROSPACE Corporation
Jared Dreicer Los Alamos National Laboatory
Ellen Flahavin National Institute of Standards and Technology
Daniel Gambel Grumann Data Systems
L. Dain Gary Mellon National Bank
Virgil Gibson GrumannData Systems
Dennis Gilbert National Institute of Standards and Technology
Irene Gilbert National Institute of Standards and Technology
Captain James Goldston, USAF AFCSC

Dr. Joshua Guttman The MITRE Corporation

Douglas Hardie Unjsys Corporation

Ronda Henning Harris Corporation

Dr. Harold Highland, FICS Compulit, Inc.

Jack Holleran National Computer Security Center

Hilary H. Hosmer Data Security, Inc.

Russell Housley XEROX Information Systems

Howard Israel AT&T Bell Laboratories

Dr. Sushil Jajodia George Mason University

Wayne Jansen National Institute of Standards and Technology

Referees
Carole Jordan.
Dr. MariaM. King
leslee Lafountain
Steven Lafountain
Paul A. lambert
Dr. Carl Landwehr
Robert lau
Dr. Theodore M.P. lee
Steven B. lipner
Teresa lunt
Dr. William V. Maconachy
Sally Meglathery
Dr. Jonathan Millen
Warren Monroe
William H. Murray
Noel Nazario
Ruth Nelson
Peter Neumann
J.D. Nichols
Steven Padilla
Nick Pantiuk
Donn Parker
Richard Pethia
Dr. Charles Pfleeger
Kenneth Rowe
Professor Ravi Sandhu·
Marvin Schaefer
Dr. Roger R. Schell
Emilie J. Siarkiewicz
Suzanne Smith
Brian Snow
Professor Eugene Spafford
Mario Tinto
James Tippett
Eugene Troy
l TC. R. Vaughn, LIS~
Grant Wagner
Kenneth vanWyk
Howard Weiss
Roy Wood
Carol Worden

Defense Investigative Service
The AEROSPACE Corporation

Department of Defense
Department of Defense

Motorola GEG
Naval Research Laboratory

Department of Defense
Trusted Information Systems, Inc.

Digital Equipment Corporation
SRI International

National Security Agency
ISSA

The MITRE Corporation
Hughes Aircraft

Deloitte & Touche
National Institute ofStandards and Technology

GTE
SRI International

Independent Consultant
SPARTA

Grumann Data Systems
SRI International

Carnegie Mellon University
Trusted Information Systems, Inc.

Department of Defense
George Mason University

Trusted Information Systems, Inc.
GEMINI

Rome Air Defense Center
Los Alamos National Laboatory

Department of Defense
Purdue University

Department of Defense
Department of Defense

National Institute ofStandards and Technology
U.S. Naval Academy

Department of Defense
Carnegie Mellon University

SPARTA
Department of Defense

State of Minnesota

14th National Computer Security Conference

Table of Contents
x 	 Authors Cross Index

Tutorials
1 	 From Tuples to Trusted Subjects to TDI: A BriefTutorial on Trusted

Database Management Systems

John R. Campbell, National Security Agency

13 Tutorial Series on Trusted Systems
Joel E. Sachs, Dr. William F. Wilson, Area Systems, Inc.

PAPERS (refereed)

15 	 Accreditation Strategy for the Air Force Satellite Control Network (AFSCN)
Lt Col William Price, USAF, Air Force Space Command

Michael O'Neill, Frank White, CTA, Inc.

25 	 An Analysis of Application Specific Security Policies
Daniel F. Sterne, Martha Branstad, Trusted Information Systems, Inc.

BrianHubbard,SPARTA,Inc.

Barbara Mayer, Atlantic Research Corporation

Dawn Wolcott, MITRE Corporation

37 	 Another Factor in Determining Security Requirements for Trusted Computer
Applications

David Ferraiolo, National Institute ofStandards and Technology
Karen Ferraiolo, Grumman Data Systems

45 	 Apparent Differences Between the U.S. TCSEC and the European ITSEC
Dr. Martha Branstad, Dr. Charles PfZeeger,
Trusted Information Systems, Inc.

Dr. David Brewer, Gamma Secure Systems, Ltd.
Mr. ChristianJahl, Mr. Helmut Kurth, IAGB Software Technology

59 	 Auditing of Distributed Systems
D. Banning, G. Ellingwood, C. Franklin, C. Muckenhirn, D. Price,
SPARTA, Inc.

69 	 Building a Multi-Level Application on an Untrusted DBMS in a UNIX
System V/MLS Environment- A Project's Experience

DavidS. Crawford, Canadian Department ofNational Defence

78 	 Building a Multi-Level Secure TCPIIP
Deborah A. Futcher, Brian K. Yasaki, The Wollongong Group

Ron L. Sharp, AT&T Bell Laboratories

88 	 The Cascade Problem: Graph Theory Can Help
John A. Fitch, III. Lance J. Hoffman, George Washington University

iv

101 	 A Case Study for the Approach to Developing a Multilevel Secure Command
and Control Information System

James Obal, Supreme Allied Commander Atlantic

William Grogan, Contel Federal Systems

110 Contractors and Computer Security--Awareness, Education, and
Performance

Ronald E. Brunner, Ronald G. Brunner & Asssociates

120 	 Covert Channel Analysis Planning for Large Systems
Lee Badger, Trusted Information Systems, Inc.

137 	 Dealing With a Malicious Logic Threat: A Proposed Air Force Approach
Howard L. Johnson, Information Intelligence Sciences

Chuck Arvin, Earl Jenkinson, CTA, Inc.

Captain Bob Pierce, USAF, Electronic Security Command

14 7 	 Developing Applications on LOCK
Richard O'Brien, Clyde Rogers, SCTC

157 	 The Development of a Low-To-High Guard
Michelle J. Gosselin, MITRE Corporation

167 	 DIDS (Distributed Intrusion Detection System)- Motivation, Architecture,
and An Early Prototype

Gihan V. Dias, Terrance L. Goan, L. Todd Heberlein, Che-Lin Ho,
Karl N. Levitt, Biswanath Mukherjee, University ofCalifornia, Davis

Stephen E. Smaha, Steven R. Snapp,Haystack Laboratories,Inc.
James Brentano, Pacific Gas and Electric Company
Lt. Tim Grance, USAF, Daniel M. Teal, USAF,

United States Air Force Cryptologic Support Center
Douglass L. Mansur, Lawrence Livermore National Laboratories

177 A Distributed Implementation of the Transform Model
Ravi S. Sandhu, Gurpreet S. Suri, George Mason University

188 	 Employee Privacy and Intrusion Detection Systems: Monitoring on the Job
Lorrayne J. Schaefer, The MITRE Corporation

195 	 Experience of Commercial Security Evaluation
Peter Fagan, Julian Straw, Secure Information Systems Limited

205 Experiences in Multi-Level Security on Distributed Architectures
Karl A. S iil, AT&T Bell Laboratories

215 	 An Expert System Application for Network Intrusion Detection
Kathleen A. Jackson, David H. DuBois, Cathy A. Stallings,

Los Alamos National Laboratory

226 	 Formal Verification of a Network Security Device: A Case Study
Hicham N. Adra, William Sandberg-Maitland,

CGIInformation Systems & Management Consultants

237 	 A Framework for Advancing Integrity Standardization
Terry Mayfield, Stephen R. Welke, John M. Boone,

Catherine W. McDonald, Institute for Defense Analyses-

v

246 	 A Framework for Developing Accreditable MLS AISs
R. K. Bauer, J. Sachs, M. L. Weidner, W. F. Wilson, Area Systems, Inc.

257 	 Generalized Framework for Access Control: Towards Prototyping the
ORGCON Policy

Marshall D. Abrams, Jody Heaney, Osborne King, Leonard LaPadula,
Manette Lazear, Ingrid Olson, The MITRE Corporation

267 	 Honest Databases That Can Keep Secrets
Ravi Sandhu, Sushil Jajodia, George Mason University

283 	 Identifying and Controlling Undesirable Program Behaviors
MariaM. King

295 	 Improvement ofData Processing Security by Means ofFault Tolerance
Gilles Trouessin, Yves Deswarte, Jean-Charles Fabre,

LAAS-CNRS & INRIA
Brian Randell, Computing Laboratory, The University Newcastle upon Tyne

305 	 Information Security: Can Ethics Make a Difference
Corey D. Schou, John A. Kilpatrick, Idaho State University

313 	 Information Security Risk Analysis and Risk Management: Which
Approach?

Professor J.H.P. Eloff, K.P. Badenhorst, Rand Afrikaans University

328 	 Information Systems Security: A Comprehensive Model
Capt. John R. McCumber, USAF, Joint Staff, the Pentagon

338 	 Integrating B2 Security into a UNIX System
Kevin Brady, UNIX System Laboratories, Inc.

347 	 Knowledge Based Computer Security Advisor
William Hunteman, M. B. Squire, Los Alamos National Laboratory

357 	 The Logistics of Distributing a Smart Token
Dawn Brown, Department ofDefense

362 	 A Method to Detect Intrusive Activity in a Networked Environment
L. Todd Heberlein, Biswanath Mukherjee, Karl Levitt,

University ofCalifornia

372 	 Model Based Intrusion Detection
Thomas D. Garvey, Teresa F. Lunt, SRI International

386 	 Notification: A Practical Security Problem in Distributed Systems
Vijay Varadharajan, Hewlett-Packard Laboratories

397 	 Output Perturbation Techniques for the Security ofStatistical Databases
Kasinath C. Vemulapalli,ElizabethA. Unger, Kansas State University

407 	 An Overview oflnformix-Online/Secure
Rammohan Varadarajan, Informix Software, Inc.

417 	 Peeling the Viral Onion
Russell Davis, Planning Research Corporation, Inc.

vi

427 	 Practical Models for Threat/Risk Analysis
Mark W.L. Dennison, Kalman C. Toth

CGI Information Systems & Management Consultants, Inc.

436 	 Predicate Differences and the Analysis of Dependencies in Formal
Specifications

D. Richard Kuhn, National Institute ofStandards and Technology

446 	 Preventing Weak Password Choices
Eugene H. Spafford, Purdue University

456 	 Putting Policy Commonalities to Work
D. Elliott Bell, Trusted Information Systems, Inc.

472 	 Reconciling CMW Requirements with Those ofXll Applications
Glenn Faden, Sun Microsystems, Inc.

480 	 Restating the Foundations of Information Security
Donn Parker, SRI International

494 	 The Role OfNetwork Security In A Methodology For Information Security
Design And Implementation

ProfessorJ.H.P. Eloff, Mr. A.J. Nel, Rand Afrikaans University

505 	 A Secure European System for Applications in a Multi-vendor Environment
(The SESAME Project)

T. A. Parker, ICL Secure Systems

514 	 A Secure Quorum Protocol
Masaaki Mizuno, Mitchell L. Nielsen, Kansas State University

524 Security Guidance for V AXNMS Systems
Debra L. Banning, SPARTA, Inc.

533 	 Sneakernet: Getting a Grip on the World's Largest Network
Captain James B. Hiller, USAF, Space and Warning Systems Center

543 	 A Socio-Technical Analysis of a USA National Computer Security Conference
Stewart Kowalski, Stockholm University & Royal Institute ofTechnology

533 	 Standardized Certification
Captain Charles R. Pierce, USAF, Air Force Cryptologic Support Center

563 	 A Strategic Framework For Information Security Management
RolfMoulton,BP America

Santosh Misra, Cleveland State University

572 	 A System Security Engineering Process
J.D. Weiss, AT&TBell Laboratories

582 	 Teaching Computer Systems Security in an Undergraduate Computer
Science Curriculum

Alfred W. Arsenault, Captain Gregory B. White, USAF,
U.S. Air Force Academy

598 	 Toward Certification, A Survey of Three Methodologies
Captain Charles R. Pierce, USAF, Air Force Cryptologic Support Center

vii

608 	 Trusted Distributed Computing: Using Untrusted Network Software
E. John Sebes, Richard J. Feiertag, Trusted Information Systems

619 	 Trusting X: Issues in Building Trusted X Window Systems or What's not
Trusted About X?

Jeremy Epstein, TRW Systems Division

Jeffrey Picciotto, MITRE Corporation

630 	 Using Existing Management Processes to Effectively Meet the Security Plan
Requirement of the Computer Security Act: The IRS Experience

Richard A. Stone, Joseph Scherer, Internal Revenue Service

634 	 Viruses in an OS/2 Environment: Remembrances ofThings Past and a
Harbinger ofThings to Come

Kevin P. Haney, National Institutes ofHealth

644 	 Why Does Trusted Computing Cost So Much?
Susan Heath, Phillip Swanson, Daniel Gambel, Grumman Data Systems

PANEL Executive Summaries (unrefereed)

654 PANEL: 	 Acquiring Computer Security Services and Integrating Computer
Security and ADP Procurement

Dennis Gilbert, National Institute ofScience and Technology
Barbara Guttman, National Institute ofScience and Technology

655 	 PANEL: Compartmented Mode Workstation(CMW) Program Overview
Steven Schanzer, Moderator, Defense Intelligence Agency

658 PANEL: 	 The Computer Emergency Response Team System (CERT
System)

E. Eugene Schultz, Lawrence Livermore Laboratory
Richard Pethia, Software Engineering Institute, Carnegie Mellon University

663 	 PANEL: Computer Security Management and Planning
Christopher Bythewood, National Computer Security Center

664 	 PANEL: Cracking the Cracker Problem
Dorothy E. Denning, Mode rat or, Georgetown University

665 The Role ofTechnology
Matt Bishop, Dartmouth College

666 PANEL: 	 Electronic Dissemination of Computer Security Information
Executive Summary

Marianne Swanson, National Institute ofScience and Technology
667 What Can Dockmaster Offer You?

Cindy Hash, Department ofDefense

Session: Guidelines & Evaluations
669 Towards Mutual Recognition of Security Evaluations

Andrea Arnold, Digital Equipment Corp

Cornelia Persy, SIEMENS

Gottfried Sedlak, IBM

viii

674 PANEL: 	 Fielding COTS Multilevel Security Solutions: The Next Step
James Litchko, Trusted Information Systems Inc.

675 PANEL: 	 Inference and Aggregation in Multilevel Databases: Research
Directions

Teresa F. Lunt, Moderator, SRI International
Detecting and Evaluating Inference Channels676

Thomas D. Garvey, SRI International
Inference Prevention in Databases: Data Design vs. Query Processing679

Catherine Meadows, Naval Research Laboratory
Challenges in Addressing Inference and Aggregation

-- LTC. Gary Smith, USA, National Defense University
681 Approaches to Handling the Inference Problem

680

Bhavani Thuraisingham, The MITRE Corporation

684 PANEL: 	 Military and Telecommunications Security: Specialized Methods
Richard Lefkon, Moderator, New York University

685 Malicious Code Prevention for Embedded Computer Weapon Systems
DebraLBanning, Gail M. Ellingwood, SPARTA

689 Computer Viruses as Electronic Warfare
Myron Cramer, Booz-Allen & Hamilton

690 Preventing Virus Insertion Through Switches
Ed Fulford, Northern Telecon

693 Nuclear Disaster and The Millennium Horse
Richard Lefkon, New York University

Session: National Issues
695 Reduced Defense Spending Increases the Need for Trusted Systems

Carole S. Jordan, Defense Investigative Service

696 PANEL: 1991: A Year of Progress in Trusted Database Systems
John R. Campbell, Moderator, National Security Agency

698 Recent Developments in Some Trusted Database Management Systems
Bhavani Thuraisingham, The MITRE Corporation

701 Oracle and Security: Year in Review 1990-91
Linda L. Vetter, Oracle Secure Systems

704 1991 SYBASE Secure Products: Executive Summary
Helena B. Winkler-Parenty, SYBASE

706 PANEL: 	 Requirements and Experiences
Dennis Gilbert, National Institute ofScience and Technology

708 PANEL: 	 Risk Management
Irene Gilbert, National Institute ofScience and Technology-

709 PANEL: Specifying, Procuring, and Accrediting MLS System Solutions
Joel E. Sachs, Area Systems, Inc.

714 PANEL: 	 Trusted Applications in the Real World
Stephen Walker, Trusted Information Systems Inc.

715 PANEL: 	 Winning Strategies in Information Systems Security Education,
Training, and Awareness

W. V. Maconachy, Moderator, Department ofDefense

ix

FROM TUPLES TO TRUSTED SUBJECTS TO TDI: A BRIEF TUTORIAL ON

TRUSTED DATABASE MANAGEMENT SYSTEMS

John R. Campbell

National Security Agency

9800 Savage Road

Fort George G. Meade, Maryland 20755-6000

301-859-4387

INTRODUCTION

Over ninety percent of the nation's mainframes and most minicomputers
and microcomputers contain database management systems (DBMS}. Our most
critical data, including defense, intelligence, law enforcement, social welfare, and
financial data, are stored_on such systems. Applications ranging from financial
systems to national defense mechanisms depend on the security of these systems.

The building of these systems and the construction of applications for
these systems is a multi-billion dollar industry. Yet, to date, little has been done to
secure database management systems. Vendors have emphasized performance and
ease of use, with security being an afterthought. Often any security included in the
database system is done without regard to consistency with the existing operating
system security mechanisms.

This lack of interest in DBMS security, however, is starting to change. The
threat to data, due to nondisclosure, lack of integrity and unavailability, is being
addressed. Trusted products are being introduced commercially. Vendors and
potential vendors of trusted products include Atlantic Research Corporation (ARC},
DEC, lnformix, lnfosystems Technology, lngres, Oracle, Sybase and Teradata. A
second significant gain in 1991 is the completion of the Trusted Database
Management System Interpretation of the Trusted Computer System Evaluation
Criteria (TDI}. The TDI extends the evaluation classes of the Trusted Computer
System Evaluation Criteria (TCSEC} to trusted applications in general, and to
database management systems in particular. The evaluation of trusted database
systems has been started by the National Computer Security Center. As of this
writing, two products were under evaluation; others are in preparation for
evaluation.

Database security is maturing somewhat as a discipline. Some very tough
issues are being examined and understood. For example, we know a lot more about
the causes of, the problems associated with and the potential solutions for
polyinstantiation now than when we put it in a contract to force people to look at
the problem. There has been good research and development in this area. For
example, Rome Labs is sponsoring the development of a B2 system, Oracle is
examining the relationship between integrity and confidentiality and we are
supporting the development of a trusted database system with A 1 Mandatory Access
Control. Research is being done, among other things,on distributed, multimedia,
and object-oriented trusted database systems.

1

This tutorial gives the background, describes the issues and offers some
proposed solutions for database security. The title was deliberately chosen. The
"tuple" is a record instance or row in a table. I will briefly discuss database systems,
and, more specifically, relational database systems, as systems based on this model
are currently the most widely used systems. "TCB- Subsets" is a key concept in
database security because, as an application, it sits on other software, perhaps an
operating system. The concept permit efficient evaluation of trusted software in a
very high skill, labor intensive process. The 11 TDI II is an important work, not only
because it aids evaluators of trusted database systems but because it deals with
layering and applications in general.

DATABASES AND DATABASE SECURITY

In the August 1989 issue of Computer [JAC089], the reviewer of a book on
computer security makes two comments, both I especially agree with for database
security. First, he states that the entire field of computer security has substantial
weaknesses. This is especially true for database security. For example, trusted
distributed database management systems present many unanswered questions.
There is no general theory of control for inference and aggregation, although there
are some application specific controls. Verification tools are weak. There are many
other unanswered issues.

Second, the reviewer states that the field of computer security is quickly
evolving. Again, this is especially true for database security. It is junior to operating
system security because it often has to depend on a trusted operating system. But,
until now, there were few trusted operating system products. Several years ago, we
talked about the possibility of trusted database systems. Today there are at least.
eight prototypes, half of which are commercial quality. Truly the field is rapidly
evolving.

What is a database? Date [DATE86] defined them as collections II of stored
operational data used by the application systems of some particular enterprise. II The
operational data could include product, account, patient, student or planning data:
It does not include input or output data, work queues, temporary results or any
purely transient information. Databases are increasing in complexity. The data can
now be pictures, rules, or derived information.

What is a database management system? Date [DATE86] defines these as
systems that provide users with a view of the database that is elevated somewhat
above the hardware level, and support user operations such as SQL operations that
are expressed in terms of that higher level view. "SQL", or Structured Query
Language, is a high level query language that contains both data manipulation and
data definition features. It also contains data control features, "grant" and
"revoke", for example. Database management systems are also increasing in
complexity. Some database systems have natural language, rul~ manipulation and
other artificial intelligence components. Some are distributed. Database security
mustmeet these challenges.

2

WHY DATABASE SECURITY IS IMPORTANT

Database security is important because databases are so very important.
The DoD, the intelligence, financial, law and social services communities depend on
them to be safe and correct. Two billion dollars was spent in 1987 on database
systems. It is estimated that six billion will be spent in 1992. Applications for these
systems cost many times more. Ninety percent of mainframes use database systems

Database security is important because even with a trusted operating
system underneath, data is at risk if you are not using a trusted database system.
One problem is granularity. Operating systems usually protect at the file level.
Databases need finer granularity such as table or relation, row or tuple, or even
element. Database systems can provide protection at these levels of granularity. In
addition, different discretionary security policies are often desired for database
systems that restrict access to specific data through specific database operations,
such as insert, update, retrieve and delete. Such controls are not available in
operating systems.

Database security is important because database systems are the most
widely used class of application on computer systems. As such, much learned about
database systems, such as trusted operating system interface, can be transferred to
our knowledge of securing other applications.

Database security includes data integrity. Data integrity is important
because a database is useless if the information you get out of it is wrong. The
importance of integrity has long been realized by database system vendors and they
have provided some capabilities to preserve integrity. However, the active data
dictionary, where data constraintsare recorded and enforced, is a relatively new
concept.

Concentrated work done now on both database security and integrity is
important because the list of problems is constantly growing. In addition to the
vanilla stand-alone commercial database systems, which by themselves are quite
complex, we now have commercial expert, multimedia and/or distributed database
systems. These, plus intelligent, temporal, historical and object-oriented databases
add to the complexity of the problem.

SOME ARCHITECTURES AND MODELS

Database systems employ different architectures and these present
differing problems. Database machines are computers dedicated to database
activities. All data is stored on these machines. Host computers issue queries to the
database machine. This machine processes the query, finds and manipulates the
data and returns the answer. Under this configuration, the machine's operating
system (OS) and database system are usually one; therefore the OS/DBMS interface
does not exist.

In host-based DBMSs, the 05/DBMS interface is a serious problem. Here
the DBMS runs on a general purpose computer that, in addition to the DBMS, usually
has other applications running on it. Some vendors want to port their database
management systems to as many computers as possible. How is this accomplished in

3

an efficient yet secure manner? There are no standard security interfaces.
Therefore, in order to be truly portable, DBMS vendors may choose to duplicate the
security functionality of the operating system and not use the security functionality
of the operating system. This avoids having to make several custom interfaces, but it
increases the complexity and size of DBMS security components. Also, if the DBMS is
trusted, its interactions with the operating system trusted computing base must be
controlled.

Client-server architectures are becoming popular. Data could be stored in
a database on a larger computer or server. The data is then usually accessed by
smaller computers called clients. Many users on personal computers or workstations
could then efficiently access a large database on a larger server. The clients and
servers are connected by perhaps a LAN. A problem is that the system: clients, server
and LAN must recognize and protect security labels. This recognition may not be
easy, especially if each component comes from a different vendor.

Finally, distributed database systems have added additional complexities
to the security problem. The data in these system may have different physical
locations, may be on heterogeneous nodes and may be redundant. How do you
audit? How do you identify and authorize? How do you assure the integrity of
redundant information? What form of concurrency do you use? We are seeing
repeatedly that data integrity conflicts with confidentiality. How do you get both?
What are the tradeoffs? We are beginning to address these issues.

The DBMS model used may also affect security. Is the model relational,
network, hierarchical, object-oriented or other. A secure entity relationship study
reported that it was easier to secure a system based on an entity relationship model
than a relational model. One reason he gave was that he had the freedom to choose
the entity-relation model that could best contain security. There is no standard
model. The relational model, however, has solidified into almost a standard, a
standard where initially security was not considered, and therefore retrofitting
security, especially multilevel security, is difficult. While this is still a research topic,
object-oriented systems also appear to be easier to secure.

WHAT IS SECURITY?

Security, in some areas, has been equated only with nondisclosure. A
system is secure if you can prevent unauthorized users from reading sensitive
information. However, we also include integrity and availability or denial of service
components in this definition. If you can modify or destroy my data or otherwise
deny me access to my data, then the data is not secure. Consequently, our definition
agrees with what the Strategic Defense Initiative calls "security*" which includes
nondisclosure, data integrity and availability.

Our definition also includes ease-of-use as a requirement for "security". If
the user or security administrator finds a system too difficult to use because of
security, then the security features will not be used. This is easily done as most
security features on database systems are optional. A goal then is to build systems
that appear to be very similar to vanilla systems, that use standards such as the
Structured Query Language (SQL), and that are compatible as possible to previous
databases and database systems.

4

WHAT IS INTEGRITY?

We've seen a list of 150 definitions of integrity. One we like is "sound,
unimpaired or perfect condition" [NCSC88a]. Is what you get out of the database
what you put in it?

Three integrity components have been noted. The Department of
Defense Trusted Computer Evaluation Criteria (TCSEC or "Orange Book") [DOD85]
recognizes two types, label integrity and system integrity. Label integrity assures
that the security labels accurately represent the classifications of subjects or objects
with which they are associated. System integrity is the correct operation of the on­
site hardware and firmware elements of the TCB. This "TCB" is the totality of
protection mechanisms within a computer which is responsible for enforcing a
security policy.

What the TCSEC doesn'texplicitly mention, the third integrity component,
data integrity, is something very important to DBMS users. We define it as the
"property that data has not been exposed to accidental or malicious alteration or
destruction [NCSC88b].

DATA INTEGRITY IMPLEMENTATION

Data integrity may be implemented as part of the overall security policy.
For example, the Biba integrity model [BIBA77] may be implemented with Beii­
LaPadula nondisclosure model [BELL73] to produce a model that enforces both
integrity and security. SeaView did this using a modified Biba model and Beii­
LaPadula. The model can then be translated into an operational system.

Even though a security policy may not be explicitly stated, integrity
components may exist. Entity integrity, for example, does not permit null primary
keys. In general, under referential integrity, foreign keys must reference existing
primary keys. Also, integrity constraints and typing may be used. For example, one
field or attribute may allow only months of the year, with the first letter capitalized.
The system will check that each item entered into this field satisfies these constraints.
Both secure recovery and the concept of serializability are also important for data
integrity.

Finally, it is important to note that nondisclosure and data integrity may
conflict. Referential integrity may enable someone at a lower classification level to
know whether something at a higher level exists. Hiding the existence of high data
from low users may also require that polyinstantiation be used. Under this concept,
multiple data objects with the same name, differentiated by their access class, may
exist simultaneously [DENN88]. Is this an integrity violation? And couldn't it cause
data integrity problems?

Concurrency controls are integrity controls that enable many users to run
their programs and access the database at the same time. They prevent incorrect
interactions between transactions. In this way throughput and availability of the
database management system are enhanced. Standard controls however, can be

5

used as signalling channels, thereby harming nondisclosure. This area is a research
topic and work is being done.

BREAKDOWN OF THE PROBLEMS

It is useful to break down the database security problem into historical
components. Research that has been done in each of these components may be
useful in building a secure database system.

The first component is operating system security. Many of the concepts
that originated in operating system security are also used in DBMS security. In
addition, in the computer system, the DBMS may be layered on top of the OS, may
depend on the OS for services and may share the responsibility for security policy
enforcement with the OS.

The second component is network security. Network security concepts will
be useful in client-server and distributed database work.

Some are handled as database security issues. The problems of inference
and aggregation are not unique to database systems. They deal with relationships
between data. However, the inference and aggregation problems are exacerbated
by database management systems, because these systems are designed to easily
manipulate large quantities of data. Some issues, such as granularity, are unique to
database security.

Some issues are treated as database security issues because they had to be
solved before a trusted database system could be built. Layering and TCB subsets
were studied for trusted database systems but they apply to trusted applications in
general.

Finally, there are issues that seem to be unique to the distributed DBMS.
How do you update replicated data or recover in a secure fashion? These also are
research questions.

STANDARDS/INTERPRETATIONS

Several useful standards and interpretations are available. The previously
mentioned TCSEC, although traditionally used on stand-alone operating systems,
has many concepts applicable to database systems. The Trusted Network
Interpretation is a trusted computer/communications network systems
interpretation of the TCSEC. Similarly, the TDI will add insight into the evaluation of
database management systems and other applications.

TCB SUBSETS

Wouldn't it be of advantage to a vendor who ports a DBMS to many
computers and to the evaluator not to have to evaluate the operating system of
each target computer with the DBMS? If it can be shown that the DBMS does not
interfere with the underlying security mechanisms of the os, then this can happen.

6

:::::::~:::->

~@I~~~~;~i

The TCB or Trusted Computing Base is the totality of protection mechanisms in a
computer system. The combination of these mechanisms is responsible for enforcing
a security policy [DOD85]. A TCB Subset is a logical partition or layer of theTCB that
enforces a subset of the security policies and supporting accountability policies
enforced by the combined TCB [NCSC89]. With this approach, the TCB is divided into
TCB Subsets, and each subset enforces a distinct part of the security policy. Good
software engineering would also dictate layering.

A TCB subset M is a set of software and/or firmware and/or hardware that
mediates the access of a setS of subjects to a set 0 of objects on the basis of a stated
access control policy P and satisfies the properties:

1. M mediates every access to objects in 0 by subjects inS;

2. M is tamper resistant; and

3. M is small enough to be subject to analysis and tests, the completeness
of which can be assured. [NCSC91]

OTHER CONSIDERATIONS

A Trusted Path has been defined as a mechanism by which a person at a
terminal can communicate directly with the TCB. To prevent spoofing, the
mechanism cannot be imitated by untrusted software. A trusted path is also neede.d
between the system security officer and the TCB.

In good software engineering, a design and development process that
promotes modifiability, efficiency, reliability and understandability [BOOC83]
should be used.

Finally appropriate audit mechanisms should be used. The issue is to get
the granularity to record needed information while not severely impacting
performance. To achieve this balance we have recommended the use of summary
audit records to the TDI Chairman/Project Leader. Summary audit records log a count
of the accesses for each subject accessing each level/compartment in a relation.

INFERENCE AND AGGREGATION

Inference and aggregation are big security problems. Inference is the
derivation of information at a level for which the user is not permitted access by
referencing other information to which he has access. In aggregation, the sensitivity
level of a collection of data may be higher than the level of any individual datum.
Therefore, in either case, the data's security label is not enough to protect the data.
Neither is mentioned in the TCSEC. Again, they are not specifically DBMS problems
but are aggravated by the DBMS because the DBMS has been built to facilitate the
manipulation and combination of data.

7

AN INFERENCE EXAMPLE

Who makes widgets? The answer is known but it is a secret. Is it company
A, B, C, D orE?

It is known that widget makers need lots of water for cooling. Therefore
the plant must be on a lake, river, etc. Also, they need lots of fossil fuel. Therefore
the plant needs to be on a railroad siding or a barge pier. Finally, widget makers
need chemical engineers.

The following additional information has been obtained from databases:

1. Company A is on a lake. Companies D and E are on rivers.

2. Companies A, C and E have railroad sidings.

3. Companies Band E advertise for Chemical Engineers.

Who? E.

INFERENCE/AGGREGATION CONTROLS

To control inference, and yet to keep classifications as low as possible, the
applications designer, in a relational system, can classify table linkages or keys, but
not the actual data in the tables. Or, the inference problems may be defined and the
system could check queries for the problems. Control of aggregation could be done
with query response history information. This however, presents a data aging/
system performance problem. That is, the more history you have, the better the
control, but the longer it takes to scan the history.

SQL STANDARDS CONSIDERATIONS

"SQL" is a data definition and data manipulation language and is
currently an ANSI standard. "SQL3", a proposed future ANSI standard, provides for
triggers, mechanisms by which a user can affect the consistency of the database.
Therefore the impact of SQL on integrity must be considered. Also SQL must be
enriched to handle additions of audit, role and security level requirements.

CURRENT IMPLEMENTATIONS

There, fortunately, has been much activity in implementing commercial
versions of trusted database systems. The vendors include ARC, lnformix, Oracle,
Sybase and Teradata. Other trusted systems are being developed.

The most popular implementation is a Trusted Computing Base (TCB)
implementation where the DBMS enforces Mandatory Access Control on the DBMS
objects. Part of the DBMS is a trusted subject. Performance here is independent of

8

me number security levels and compartments. Evaluation is more complex and
difficult. Sybase and lnformix are examples.

In another Trusted Computing Base implementation, the operating system
provides the mandatory access control, while both operating system and DBMS may
provide discretionary access control. The evaluation should be easier. However,
each combination of security level and compartment requires a separate database
instance. Performance should decrease with increasing numbers of security
level/compartment combinations. Unclassified data may be separately stored as
such. Oracle's product offers the choice of either this or the first approach.

The integrity lock approach uses a trusted filter in front of an untrusted
DBMS. The filter mediates all accesses between the users and the database, and
performs trusted downgrades where necessary when providing at lower security
levels with data from the database. [WINK89] A trusted operating system at least
the filter level and B 1 or higher is required to enforce the separation between DBMS
end users. Both discretionary and mandatory access controls are at least in part
located in the filter.

This method should require minimal additional trusted code and minimal
changes to an existing DBMS, and therefore be less costly to build. Because the
DBMS is untrusted, there may be covert channel problems [LAND88] and more direct
attacks. ARC is an example.

The TCB implementations place the assurance and security functionality in
a relatively small kernel of code. The smallness of the kernel invites verification and
other proofs of correctness. The TCB may be broken into subsets, with each subset
enforcing a part of the policy.

One additional approach has been called the "distributed" approach.
Here, one untrusted computer is used for each security level/compartment
combination. A central trusted computer handles computer selection and query
parsing. Two varieties exist. In the first, each machine has security combination. In
the second, each machine has all the data up to that security combination. In the
first, joins must be done in the central computer; in the second, joins can be done in
the untrusted computers. Both could require much hardware. We know of no
vendor examples. Research is being done.

NATIONAL COMPUTER SECURITY CENTER (NCSC) DISCRETIONARY

SECURITY PROTOTYPE CONSIDERATIONS

Some of the factors considered in the "C2" prototypes developed at the
NCSC are:

-discretionary access control
-object reuse
-identification and authentication
-audit
- security testing
-data integrity
-performance

These are typical factors that would be considered in a trusted implementation.

9

NCSC MANDATORY SECURITY PROTOTYPE CONSIDERATIONS

In addition to the IIC2 11 prototype considerations, the following are being
considered in the II BII -level prototypes developed at NCSC:

-labels

-label integrity

-exportation to

-multilevel hosts

-single level hosts

-exportation of labeled information

-mandatory access control

DISTRIBUTED DATABASE MANAGEMENT SYSTEMS (DDBMS)

Distributed database management systems form an important set of
security problems and opportunities. This type of DBMS has multiple sites connected
together into a communications network in which a user at any site can access data
at any site. Characteristics of this DBMS may include the physical location of the data
being transparent to the user, redundant data for performance and heterogeneous
nodes. Vendors who have current implementations include Oracle and lngres.

The DDBMS may be very efficient because data can be stored where the
user uses it. Data can be better controlled by isolating it on particular nodes. The
DDBMS, with multiple nodes and redundant data and communication paths answers
the system availability or denial of service problem. System performance may be
enhanced by local storage of frequent used data and by other distribution of data.
Also, there are opportunities for the parallel execution of queries.

Problems also are many. How do you maintain database ~onsistency with
redundant data during updates/deletes and restores? What is the best method of
identification and authentication? What is the best way to audit? Deadlocks must
be controlled and priorities maintained. Other problems include the construction of
a distributed MTCB, the part of the TCB that manages mandatory access control.
Also, we must look atthe distributed management of DAC, the Discretionary Access
Control, and the problem of the consistency of DAC on replicated tables. How do
you handle distributed transactions? Can serializability be maintained without
creating inference channels? Can we use weak consistency? Are there new covert
channels? A subsetted TCB could be very large and complex and therefore difficult
to verify.

Encryption would be very useful between nodes and to store data. Long
term keys are a problem. What algorithms should be used? How does this affect
performance? How should the DDBMS be administered? What tools are needed?
How do you resolve heterogeneous security policies? How do you assure the security
of the system?

10

SUMMARY

Database security is a young interdisciplinary science, filled with promise
and opportunities. The demand already exists. C-level operating systems and some
B-level operating systems are here. An evaluation aid, the Trusted Database
lnterpretations,has been published. Trusted DBMS products are being produced. In
the future there will be an increasing demand for database security. Many
databases will be very large, distributed and with heterogeneous nodes. Databases
will be smart, with multimedia data, where rules, and derived knowledge are stored
and used. Parallel, array and fault tolerant processing will be the norm. Operating
systems may have some database management system functionality. Security
research and development is needed in all of these areas.

GLOSSARY

aggregation problem- The aggregation problem refers to the fact that the
sensitivity level of a collection of data may exceed the sensitivity level of
any individual datum in that collection. [NCSC89]

B- A TCSEC Division. The notion of a TCB that preserves the integrity of sensitivity
labels and uses them to enforce a set of mandatory access control rules is a
major requirement in this division. Systems in this division must carry the
sensitivity labels with major data structures in the system. [DOD85]

C2- A TCSEC class. Systems in this class enforce a more finely grained discretionary
access control than C1 systems, making users individually accountable for
their actions through login procedures, auditing of security-relevant
events, and resource isolation. [DOD85]

Discretionary Access Control- A means of restricting access to objects based on the
identity of subjects and/or groups to which they belong. The controls are
discretionary in the sense that a subject with a certain access permission is
capable of passing that permission (perhaps indirectly) on to any other
subject (unless restrained by mandatory access control). [DOD85]

domain- The set of objects that a subject has the ability to access. [NCSC91 1

inference- derivation of new information from known information. The inference
problem refers to the fact that the derived information may be classified
at a level for which the user is not cleared. [NCSC89]

Mandatory Access Control- A means of restricting access to objects based on the
sensitivity (as represented by a label) of the information contained in the
objects and the formal authorization (i.e., clearance) of subjects to access
information of such sensitivity. [DOD85]

subset-domain- A set of system domains. For evaluation by parts, each candidate
TCB subset must occupy a distinct subset domain such that modify-access
to a domain within a TCB subset's subset-domain is permitted only to that
TCB subset and (possibly) to more primitive subsets. [NCSC91]

11

trusted subject- A subject that is permitted to have simultaneous view and alter
access to objects of more than one sensitivity level. [NCSC91 1

REFERENCES

[BELL73] Bell, D., and L. Lapadula, "Secure Computer Systems: Mathematical
Foundations and Model", MITRE Report MTR 2547, v2 Nov 1973.

[BIBA77] Biba, K., "Integrity Considerations for Secure Computer Systems", U.S.
Air Force Electronic Systems Division, 1977.

[BOOC83] Booch, Grady, Software engineering with Ada, Menlo Park: the
Benjamin Cummings Publishing Company, 1983.

[DATE86] Date, C. J., An Introduction to Database Systems, Reading, MA:
Addison-Wesley, 1986.

[DENN88] Denning, D. E., "Lessons Learned From Modeling a Secure Multilevel
Relational Database System", Database Security: Status and Prospects,
Amsterdam: Elsevier Science Publishers, 1988.

[DOD85] DoD, Department of Defense Trusted Computer System Evaluation
Criteria, DOD 5200.28-STD, 1985. [JAC089] "Security In Computing",
Computer, August, 1989, p. 150.

[LAND88] Landwehr, C. E., "Database Security, Where Are We?", Database Status
and Prospects, Amsterdam, Elsevier Science Publishers, 1988.

[NCSC88a] National Computer Security Center, Glossary of Computer Security
Terms, NCSC-TG-004-88, 1988.

[NCS288b] National Computer Security Center, Trusted Network Interpretation of
the Trusted Computer System Evaluation Criteria, NCSC-TG-005, 1987.

[NCSC89] National Computer Security Center, Draft Trusted DBMS Interpretation
of the DoD Trusted Computer System Evaluation Criteria, 1989.

[NCSC91] National Computer Security Center, Trusted Database Management
Criteria, 1991.

[WINK89] Winkler-Parenty, C. E., "Can You Trust Your DBMS", Database
Programming & Design, July 1989, pp. 50-59.

12

Tutorial Series On Trusted Systems

Joel E. Sachs and Dr. William F. Wilson

Area Systems, Inc.

2841 Junction Ave., Suite 201

San Jose, CA 95134

408-434-6633

Schedule

Tuesday, October 1 0000 Trust Fundamentals -Part I

1030 BREAK

1100

1200

Trust Fundamentals -Part ll
Network Security Fundamentals

LUNCH
1400 System Solutions and Security

Distributed Security

1530 BREAK

1600 Certification & Accreditation
Trusted Integration

1730 ADJOURN

Description

These tutorials are based on Area Systems' public and on-site Information Security Courses and
experience learned in applying Area's security consulting and engineering services to systems
solutions. Area provides support to its clients on both secure MLS system solutions and security
products in all facets of trusted system design, analysis, development, implementation, testing,
verification, integration, certification and accreditation. Area has focused particularly on both
trusted applications development and trusted integration of many products into secure system
solutions. The tutorials relate experience from supporting systems integrators, applications
developers, and end-users, as well as product vendors, who are addressing security in a variety of
MLS system solutions for command and control, communications, and intelligence systems,
development environments, and embedded systems.

The tutorials will be presented in lecture format with questions and answer periods. While there is
a logical flow between the tutorials, each tutorial will be presented as a separate unit so that
conference attendees can attend any or all of them. The morning tutorials concentrate on
information security basics and the afternoon ones focus on addressing security in system
solutions. The tutorials are intended to introduce many and varied security topics as opposed to
exploring them in-depth. Brief descriptions of each tutorial identified above follows:

Trusted Fundamentals - Part I focuses on security and (TCSEC) trust concepts. Topics include
security policies, mandatory and discretionary access controls, identification and
authentication; security mechanisms, reference monitors, trusted computing bases, trusted path,
least privilege; and assurance, formal and informal verification, covert channel analysis,
security design analysis, security and penetration testing.

Trusted Fundamentals - Part II focuses on the TCSEC Evaluation Classes. The tutorial presents
an overview of the TCSEC, its evaluation classes, and the NCSC evaluation process.

13

Network Security Fundamentals focuses on basic points in network security and gives an
overview of the TNI. Topics include network security concerns and services, the structure of the
TNI and its Evaluation Classes for both network TCBs and network components, and an overview
of the TNI evaluation process.

System Solutions and Security focuses on system-wide security requirements in the context of
system solutions. Topics include system solution characteristics, models, and development
methodologies; and system-wide security problems, concerns, and threats and vulnerabilities.

Distributed Security focuses on the role of network security in today's distributed system solutions.
Topics include system composition and interconnection, single system views versus
interconnected automated information systems [AISs], cascading, encryption, and trusted
network interfaces.

Certification & Accreditation focuses on the development of the certification evidence and inputs
and decision process for accreditation. Topics include an overview of the certification and
accreditation process, critical considerations, modes of operation, risk analysis, overall
assurance requirements, and collecting system-wide evidence and assurance.

Trusted Integration focuses on integration issues that arise when developing and integrating
secure and MLS system solutions. Topics include system-wide views of security policy,
mechanism, and assurance; system, subsystem and component level interpretations for the roles
of security policies, security policy models, and security top level specifications; security impact
on the development methodology; and overview of security trade-offs.

14

ACCREDITATION STRATEGY FOR THE AIR FORCE SATELLITE CONTROL
. NETWORK (AFSCN)

By Lt Col William R. Price
Air Force Space Command/LKXS, Peterson AFB, CO 80914

Michael E. O'Neill, Ph.D. and Frank 0. H. White
CT A Incorporated .

7150 Campus Drive, Colorado Springs CO 80920 •

ABSTRACT

This paper examines the accreditation approach for a large, complex computer
network, namely the Air Force Satellite Control Network. The network represents many
existing computer networks, and as such, the approachfor accreditation has broad application
to the computer security community. The paper provides a brief background and history of
the AFSCN. The accreditation approach is then described, followed by specific
implementation stages for accreditation. The last section addresses "lessons learned" in the
development of an accreditation strategy for the complex network.

Section 1-INTRODUCTION

This paper describes an ongoing effort to accredit a large, military communications­
computer network. Although the paper describes a particular network, the Air Force Satellite
Control Network, the authors believe it is representative of many existing networks and the
approach taken has broad application to the c~mputer security community. Functionally, the
network supports the tracking, telemetry and commanding of military satellites. Telemetry from
satellites provides status and health functions of on-orbit platforms (e.g., navigation, orientation,
status of power system). The network typically does not process data collected or transmitted by
satellite mission sensors (e.g., weather data). It provides both voice and data connectivity among
satellite control sites throughout the world. This "real world," operational network has evolved
over many years without the benefit of modern computer or network security theory and practice.
Accreditation of the network is challenging from both a technical and management perspective.

The large and complex AFSCN has evolved over the last three decades. It employs a
variety a variety of technologies. These technologies range from second generation computers and
patch panel based communication systems to modern computers, workstations and computer
controlled communication switching systems using fiber optics. Although security was not
ignored in the design and evolution of the network, most AFSCN security protections predate the
Trusted Computer Security Evaluation Criteria (TCSEC) and its Trusted Network Interpretation
(TNI). A significant part of the accreditation effort is to devise or "reverse engineer" the overall
network security concept and and document it.

Several organizations are involved in the management, operation·and use of the AFSCN.
Air Force Space Command (AFSPACECOM), an Air Force major command, is the network
manager and, consequently, the Network Designated Approving Authority (DAA). Other
organizations involved are Air Force major commands, DoD activities and civilian agencies such as
the National Aeronautics and Space Administration (NASA). No one organization has complete
control over the network, and the accreditation of the network must involve mutual benefit and
agreement rather than the dictates of a single organization.

The remainder of this paper describes the ongoing efforts to accredit the network. Section
2 describes the AFSCN in more detail, providing information on its basic functions as well as the
complexity encountered in addressing security architecture and security management relationships

15

in the AFSCN community. Section 3 discusses the approach to accreditation that is being pursued
and the considerations that determined the approach. Section 4 describes the accomplishments to
date and remaining activities planned. Section 5 describes our lessons learned which may of value
to security managers involved in approving other communications-computer networks.

Section 2-BACKGROUND

AFSCN Components and Functions

The AFSCN provides spacecraft owner/operators (Air Force, NASA and others) the
capability to track their satellites, send them commands and downlink health and status telemetry.
These tracking, telemetry and commanding (TT &C) functions are depicted in Figure 1, AFSCN
Concept of Operations. Several key AFSCN facilities, also referred to as AFSCN components in
this paper, are shown in Figure 1. These components are briefly described below:

• Mission Control Centers (MCCs) are owner/operator facilities that remotely monitor
and control spacecraft from launch to the end of their on-orbit life. MCCs maintain tracking
information on their satellites and contact them as required to send commands and download
telemetry related to spacecraft health and status. MCCs are operated by a variety of military and
civilian agencies (AFSPACECOM, Air Force Systems Command (AFSC), NASA and others).
Some MCCs support specialized Research and Development (R&D) spacecraft while others
manage mature operational satellite systems. Most Air Force MCCs are located at the Consolidated
Space Test Center, Onizuka Air Force Base (AFB), California or the Consolidated Space
Operations Center, Falcon AFB, Colorado. Some MCCs supporting joint NASA/DoD operations
are located at Johnson Space Center near Houston, Texas.

• There are nine Remote Tracking Stations (RTSs) located worldwide that provide
spacecraft interface to the AFSCN environment. Most RTSs have two or more independent
antennas and associated ground equipment sets for acquiring, tracking and communicating with
spacecraft. A wide variety of radio frequency links and data link protocols can be supported by the
ground equipment. RTS equipment, especially that installed by the Automated Remote Tracking
Station (ARTS) program, can be remotely controlled by an MCC interfaced through the AFSCN
communications network.

• AFSCN has redundant network control nodes at Onizuka and Falcon AFBs. Each
node consists of a Resource Control Complex (RCC) and a Communications Control Complex
(CCC). The RCC schedules network resources and directs configuration of network facilities to
support the unique requirements ofeach spacecraft contact support mission. Under direction of its
associated RCC, the CCC establishes connectivity called for in the contact mission support
schedule. The CCC establishes circuits for commands, status and control, timing, telemetry and
secure voice. Circuits to perform these functions are set up on both primary wideband and
narrowband communications links to the RTSs. Bandwidth and data formats vary greatly from
mission to mission due to the characteristics of the supported satellite.

• There are many other facilities in the AFSCN environment that support those
described above. Software development facilities, test laboratories, satellite and RTS simulators,
test driver systems and command centers are just examples. A variety of development, operations
and logistics organizations operate these and a host of contractor support systems.

The AFSCN provides the communications services for satellite operators in MCCs to
contact and control their spacecraft. The following scenario describes a typical satellite contact
support mission:

16

I-'
-...J

Remote Tracking Station (RTS) or

Network Comm Flow::

-
-­-­
-­

.•~:;:~;.::::,.::::.:';(;.:;:-;·""N?

Center (MCC)

Network Control Node

Air Force Satellite Control Network (AFSCN)

Concept Of Operations

Spacecraft.. Mission
Mission Control~ Spacecraft

Automated Remote Tracking Station (ARTS) (Onizuka or Falcon AFB)

Figure 1 AFSCN Concept Of Operations

• Usually weeks in advance, an MCC coordinates with the AFSCN's primary RCC
at Onizuka to schedule a contact support mission for its spacecraft. The contact support mission
calls for the MCC to be connected to an RTS that has the satellite in its line-of-sight long enough
for the required TT &C operations.

• The RCC schedules the network resources (the RTS, the mission-unique circuit
mix on primary and alternate communications paths, and CCC interface to the MCC). This·
configuration is called a contact support mission string. The string may be neededfor a few
minutes or several hours depending on the spacecraft, its orbit and the TT &C functions to be
performed. Hundreds of contact support missions are requested each week by MCCs representing
many different spacecraft programs. There are sufficient network resources to support several
simultaneous contact support missions (i.e., multiple mission strings operating in overlapping time
frames), but often not all requests can be accommodated at the same time. The RCC continually
deconflicts these competing requirements,. often negotiating alternate times and network
configurations with MCCs. The RCC manually generates a seven-day projection and a final24­
hour schedule to task network resources.

• Just prior to mission time, the RCC coordinates with the RTS and CCC via secure
voice to configure the mission string. Establishing the mission string involves a combination of
automated processes and manual patching by operators in the RCC, CCC, MCC and RTS. After
verifying circuit connection on both primary and alternate communications systems, as well as
proper functioning of RTS equipment, the RCC transfers computer control of the mission string to
the supported MCC.

• After the RTS acquires the spacecraft, the MCC's Contact Support Processor
receives and records tracking data from the RTS and sends commands to both the spacecraft and
RTS equipmentto start telemetry transfer. Typically, commands to the spacecraft and downlinked
telemetry are protected at the Secret level. This end-to-end communications security is provided by
peer encryption devices on the spacecraft and on the front end of the MCC processor. Unclassified
mission data (status and control messages, timing, etc.) exchanged between the MCC and RTS are
protected at the Unclassified Sensitive level. This transmission·security protection is provided by
bulk encryption devices on network communications links.

• When the MCC completes its spacecraft contact, the RCC disconnects the MCC and
resumes control of network resources. Equipment and circuits in the mission string are returned to
the pool of network resources for allocation to other scheduled missions. After disconnect, the
MCC processes the telemetry data and often transfers it to support facilities for further reduction
and analysis.

Some Histozy

Until recently, AFSCN facilities were developed, owned and operated primarily by AFSC,
an Air Force major command responsible for research and development. This changed in 1987
when the newly formed AFSPACECOM began to assume operational responsibility for AFSCN
assets not dedicated to research programs. Over time, AFSPACECOM became owner/operator of
the RTSs around the world, AFSCN satellite and terrestrial transmission systems and RCCs and

. CCCs at Onizuka and Falcon. They also activated some new Air Force MCCs at Falcon. AFSC
retained responsibility for R&D spacecraft and continues to support them from MCCs at the
Onizuka. With the transfer of most AFSCN operational systems to AFSPACECOM, the Colorado
Springs based command was designated the overall AFSCN Manager and assumed primary
responsibility for security management.

18

The Network Security Environment

Two AFSPACECOM organizations were tasked to implement security management: (1),
the Headquarters DAA who is responsible for approving operation of all computer and
communications systems operated by AFSPACECOM; (2) the AFSCN Security Manager in the 2
Space Wing (2 SWG) who is responsible for day-to-day management of the AFSCN system
security program. In assessing the state of security management in AFSCN, the DAA and
Security Manager found the following:

· • On the whole, competent security programs and security engineering had been put
in place by various program offices over the years, but these typically focused on the computer
system or facility being fielded or modified at the time. There were numerous security
accreditations on file for individual computer systems and even a few for logical groupings of
computer and communications facilities. The various accreditations for individual systems were
for different modes of operation and security classification levels. Several security classification
guidance changes were under consideration, but lacking an overall security concept or policy,
assessing the impact of these proposed changes on the network was virtually impossible. Like
most complex networks in place before promulgation of the national network security policy, the
existing system and facility accreditations were like pieces of a complex puzzle. No one had yet
begun to assemble the puzzle. ·

• There were many ideas how the puzzle should be assembled, but none of these
seemed practical from a security standpoint. Reviews of planning and program management
documents, as well as extensive interviews with managers of key development, operations and
support organizations, revealed multiple network defmitions. Each of these defmitions made sense
when seenthrough the eyes of their advocates, but no one definition provided a useful basis for
understanding security-relevant services, facilities, interfaces and bounds. Although differing in
detail, most definitions seemed all encompassing, driving the security analyst to examine
unfathomable detail: scores of computer facilities and systems, hundreds of interfaces and a
labyrinth of connectivity. In short, there was not a well articulated security architecture and there
was not enough time or money to perform a network security analysis using the complex
definitions offered up by various constituents in the AFSCN community.

• The network environment was highly dynamic, with literally hundreds of hardware
and software upgrades underway at any one time. These upgrades were advocated and managed
by a large number of organizations and programs, often competing for resources. Configuration
control across the network was extremely complex. Network security enjoyed a very low priority
in all this. '

• Security management roles of the various commands, agencies and organizations
involved in the community needed to be more clearly defined. There were many competent and
highly motivated security managers throughout the community, but they focused on the facilities
and systems within their sphere of influence. They were aware of evolving national guidance on
network security, but the concepts and mechanisms of network security had yet to be
institutionalized.

• There were differences in interpretation of Air Force computer security policy
among the organizations. There was a perception that AFSCN systems would have to be
scrutinized by both the individual System DAA and the Network DAA. Some organizations
resisted such an approach where systems that had received security approval (System DAA) would
have to be reviewed and approved again by an outside organization (Network DAA). These
organizations felt that the Network DAA had no authority or responsibility for their operations.
Another concern was that the individual System DAAs would duplicate efforts and, moreover,

19

II

could reach different conclusions based on differing interpretations of Air Force computer security
policy.

Section 3-THE APPROACH

This section outlines the approach and methodology that was used to develop an
accreditation strategy for the network. The challenge was to develop means and methods that
would build consensus and approval for the approach and subsequent development of the AFSCN
Network Security Policy.

Simplification Vs. Complexity

To get a reasonable handle on the network from a security perspective, a workable network
definition was needed. Stepping back from the complex network definitions available in the
community, we developed a simple model for trying to understand the security relevant
relationships among the various facilities and systems in the AFSCN environment. This model,
depicted at Figure 2, allocates the various facilities and systems to one of three layers. The model
consists of the "Core Network" surrounded by two ~dditionallayers, External Interfaces and
Support Components.

The Core Network consists of all the tracking, transmission, switching, and resource
control facilities required to connect a spacecraft to its respective MCC, whether that MCC is
operated by AFSPACECOM, AFSC, NASA or some other activity. The Core Network is
anchored by the control nodes at Onizuka and Falcon AFBs. The other components in the Core
Network are RTSs and ARTSs.

The External Interface layer of the model contains all AFSCN facilities that connect to the
Core Network for TI&C services. In the main, these are MCCs, but other AFSCN components
do connect to the Core Network from time to time for the purpose of TI&C testing and training.
Also included in the External Interface layer are two satellite control networks dedicated to specific
programs: Defense Metrological Support Program and the Global Positioning System.

All other AFSCN components are allocated to the Support Component layer of the model.
These components frequently connect to External Interfaces for data analysis, software
maintenance and other functions, but they rarely, if ever, connect to the Core Network. Allocation
of components to this layer, where. they have no direct impact on Core Network operational or
security services, greatly simplified the complexity in our accreditation task.

We decided to look at the AFSCN as analogous to a telephone company providing service
to its customers. As the sole operator of the Core Network, AFSP ACE COM provides spacecraft
owner/operators TT&C services much in the same way a telephone company provides
telecommunications services to its customers. By thinking of the AFSCN and the Core Network
in this manner, it allowed us to develop a strategy for accreditation that could be supported by the
myriad of owners and users of AFSCN assets.

The telephone company view. provided both technical and management benefits.
Technically, the view allows a "divide and conquer" approach. The Core Network is the
communications subsystem and provides for communication of unclassified data. It mediates
MCC accesses to RTSs and knows nothing about individual users (people) in the MCCs. From
the perspective of an MCC, the MCC communicates with a peripheral (i.e., the spacecraft) through
the Core Network. The management benefit of this view is that it divides the network along
organizational lines. The components of the Core Network are the responsibility of
AFSPACECOM, the Network DAA. Individual MCCs and other External Interfaces are the
responsibility of their operating commands, primarily AFSPACECOM and AFSC. The approach

20

Network
Interface

Data
System
(NIDS)

Contractor
Facilities

Support Components
(No Core Connectivity

Except Some Secure Voice)

Wing Command
Post (WCP)

Others

Other
· Agency

MCCs

ARTS
Development

& Maintenance
F~r.illitv (ADMF)

OperationaiSoftware
Maintenance Complex

(OSMC)

Mission
Unique

Equipment
(MUE)

Camp Parks
CommAnnex

(CPCA)

Layered Approach to AFSCN Security

Software
Development
& Test labs

(SDTLs)

Figure 2

Layered Approach to

AFSCN Security

21

to network approval involves mutual actions of the DAAs with the mutual benefit of secure
operations. The Network DAA certifies to the MCC DAA the security properties of the Core
Network (assuming the External Interface satisfies certain conditions of connection).
Correspondingly, the DAA for the MCC certifies compliance with network connection rules and
approves operation of the MCC (assuming the Core Network maintains its security properties).
This concept of mutual security assurance applies to all External Interfaces, not just MCCs.

Consensus Buildini

The development of a consensus among key AFSCN community players was absolutely
necessary for a successful accreditation strategy. The newly formed AFSCN Security Working
Group was instrumental in this effort.. This group represents the breadth of the AFSCN
community, including security professionals, space operations personnel, developers and support
managers. As a forum for presenting and refining the security model, it played a key role· in
getting support for the security model, the security concept of operations and their codification in
the AFSCN Network Security Policy.

The Network Security Policy

The Network Security Policy first defines the AFSCN in terms of the layered model
discussed earlier: a Core Network (tracking stations and communications that transport real time
data and voice services in support of spacecraft contact missions), External Interfaces to the Core
Network, and Support Components. This layered approach provides a method to understand who
has what authority, who is responsible for what components and who is held accountable for what
AFSCN security matters. ·

The policy defines three major security objectives for the Core Network. They are: 1.
Network Confidentiality (non-disclosure), 2. Network Integrity and 3. Network Assurance of
Service. An integrated program of protective security measures is employed across the Core
Network for each security objective. Responsibility for implementing Core Network security
objectives and protections are discussed as are specific connection rules for External Interfaces.

Dissecting the network into understandable components provided the framework to identify
management responsibilities, authority and a means to provide accountability for the security policy
objectives. Basically, the policy calls for command/agency DAAs to accredit individual AFSCN
components in accordance with AFR 205-16 or equivalent agency security policy directives. They
certify to the Network DAA that these formal accreditations are accomplished and that their
components are compliant with all applicable requirements of the Network Security Policy.

Operational Perspective

In developing the Network Security Policy with the AFSCN community, the Network
DAA and representatives from organizations operating network components, recognized the need
for simple, streamlined security procedures that minimize impact on network operations. Based on
the concept of mutual trust and security competence among DAAs, the Network Security Policy
established the Letter Of Assurance (LOA) as the administrative mechanism for the Network DAA
to maintain an ongoing assessment of the network security posture. The LOA is a one page
document whereby DAAs for network components (Core Network and External Interfaces) certify
to the Network DAA that their components are compliant with the security protection standards and
connection rules in the Network Security Policy. The LOAs provide the basis for the Network
DAA to accredit the Core Network and authorize connection of its External Interfaces.

22

Section 4-IMPL£MENT A TION ACTIQNS

Having developed a general consensus within the AFSCN security community regarding
the Network Security Policy, detailed implementation of the policy is underway. Some of the
major steps are discussed below:

• The first step is to create a network security management structure for implementing
and enforcing the Network Security Policy. This structure includes all organizations that operate
components in the Core Network and in the External Interface layer of network security model.
With the Network Security Policy laying out the authorities, responsibilities and key relationships,
this structure is headed by the Network Security Manager (NSM). The NSM is responsible for
overall implementation and enforcement of the policy across the network and across organizational
lines. The System Security Working Group, with representatives from all component
organizations,. is the NSM's advisory group for surfacing and resolving policy issues. Network
Security Officers (NSOs) appointed in each Core and External Interface component execute the
NSM's program on a day to day basis. These "hands-on" security managers implement and
enforce detailed security procedures, investigate incidents and implement corrective actions. The
security management structure also includes the Network DAA and DAAs from the various
organizations that operate Core and External Interface components.

• The NSM must develop, coordinate and publish a Network Security Plan that
provides detailed guidance for managing the Network Security Program. This document must
include methods and standards governing risk analyses and security test and evaluations.

• Procedures must be developed and implemented to enforce the Network Security
Policy in the requirements and configuration control processes. The DAAs and NSM must have
visibility of new requirements and network changes so that they may assess security impacts and
favorably influence implementation.

• All Core Network components and External Interfaces must be accredited by their
respective DAAs. Most computer systems and facilities have current Interim or Final approvals to
operate; however, some communications and tracking facilities in the Core Network have never
been accredited. Additionally, some existing accreditations are nearing three-years of age and must
be reaccomplished.

• As DAAs accredit components, they will certify these approvals to operate to the
Network DAA through the Network Security Manager. As discussed earlier, the Letter Of
Assurance will be the vehicle for this ·Certification.

• When all the Core Network components and External Interfaces are accredited, the
Network DAA will be able to accredit the network.

Section 5-LESSONS LEARNED

The AFSCN had been in place for many years before promulgation of national network
policy. As such, it represented an evolving collection of complex components. It was a significant
challenge to take this amalgam of components and develop a strategy for its accreditation. The
lessons learned in this process are as follows:

• Develop a forum of security professionals for consensus building and negotiation
of critical security considerations in the network. Look for people who have a vested interest in
development of the forum and ultimate accreditation of the network.

23

• . Define a simple, understandable architectual security model. It was necessary to
develop a single but realistic definition of the AFSCN from a security standpoint. The concept of
the Core Network was developed in order to bound the network. This was done through
consensus building and negotiation with the security professionals from throughout the AFSCN
community.

• Develop a spirit of mutual trust among the developers and operators that represent
various organizational interests. This involves divorcing the Network DAA from the detailed risk
analysis activities and holding the various organizations accountable for their portion of network
risk assessment and accreditation. The Network DAA should, however, assure network integrity
to its users and operators by initiating a Network Security Policy that precisely defines security
protection mechanisms and connection rules. The basis for assurance from the Network DAA and
DAAs accrediting network components and interfaces are Letters of Assurance that certify
compliance with the Network Security Policy.

• The Network DAA should have a realistic and flexible attitude toward the network.
It would be unrealistic to think that the Network DAA could shut down the AFSCN.

• Focus on a security management structure for implementing and enforcing the
Network Security Policy. When defining network security responsibilities and authority, look for
an existing organizational structure that can fulfill these duties whenever possible. For example,
Network Security Officer responsibilities can be assigned to personnel who currently perform
Computer System Security Officer functions at the various network facilities.

• Get senior management involvement from all organizations at critical stages of the
accreditation process. Continually briefsenior management on progress and strategy. This will
develop the necessary support when critical decisions are required that cut across organizational
boundaries.

24

AN ANALYSIS OF APPLICATION SPECIFIC

SECURITY POLICIES

Daniel F. Sterne Martha A. Branstad Brian S. Hubbardt Barbara A. Mayer*

Dawn M. WolcottS

Trusted Information Systems, Inc., Glenwood, Maryland

.Abstract

The TCSEC [20] is concerned primarily with the DoD confidentiality. As a result, for many appli ­
cations, systems that satisfy the TCSEC may nevertheless provide an insufficient base of security policy
enforcement. This paper summarises a study whose objective is the identification of a broader range of
security policies that merit automated support, particularly in tactical computer systems.

The study analysed operational requirements of a collection of tactical and non-tactical application
scenarios. Synopses ofseveral example scenarios are presented, and the findings ofthe study are discussed.
The study suggests that while many policies are application specific, there exists a core of policy elements
common to a broad range of such policies, and that this core merits automated support in future trusted
systems.

Keywords: •ecurity policy, acceu control, role•, integrity, denial of •ert~ice.

1 Introduction

The TCSEC [20] is oriented primarily toward confidentiality policies, and in particular, the protection of
classified information from disclosure to insufficiently cleared individuals. As a result, systems that satisfy
the TCSEC may fail to address other important security requirements, particularly those associated with
tactical military applications. If systems capable of satisfying broader ranges of security requirements are
to be constructed, the security policies that underlie these requirements must be more clearly articulated.
To the extent that these policies may be application specific, it is important that policy elements common
among them be identified, that these elements become candidates for automated support in future trusted
systems.

This paper summarizes the initial phase of a project whose ultimate objective is the construction of a pro­
totype system that can be configured to support a range of application specific security policies, and in
particular, policies associated with military systems [24]. The objective of this initial phase is the identifi­
cation of security policies and common policy elements that merit automated support in tactical computer
systems.

The U.S. Department of Defense (DoD) is under increasing pressure to use commercial-off-the-shelf (COTS)
hardware and software, and to avoid procuring customized system components. Because commercial systems,

This work was funded by DARPA through RADC contract F30602-89-C-012&

fCurrenUy with SPARTA, Inc., Columbia, MD

I Currently with Atlantic Research Corp., Hanover, MD

I Currently with the MITRE Corp., McLean, VA

25

like tactical systems, may also need to support policies not addressed directly by the TCSEC, another
objective of the initial phase is to examine the commonality of commercial and other non-tactical policies
with those ofthe tactical realm. If commonality exists, systems designed to support commercial and non­
tactical security policies may be able to support tactical policies as well.

1.1 Approach

This study could have proceeded based purely on conjecture and an abstract conceptual view of tactical
operations. That approach seemed overly speculative, and unlikely to produce meaningful results. To keep
the study more closely tied to reality, a somewhat different approach was taken. A sampling of applications
"scenarios" was selected, and for each scenario, information was gathered and then analysed. The tactical
scenarios chosen deal with the Navy's Aegis combat system, the command, control, and communications
interactions associated with the Air Force nuclear weapon release process, and Army field operations and
support services. The non-tactical scenarios concern government procurement document preparation and
release, commercial accounting and data processing, air traffic control, and medical information system
usage.

If the security policies associated with these scenarios were clearly understood and had been clearly artic­
ulated by their associated organisations, it would have been sufficient for this study to have collected and
catalogued existing policy statements; little if any policy analysis would have been required. However, the
distinction between a "security policy" and other kinds of regulations, operational procedures, and critical
system requirements has not been clearly established. Consequently, for many organi1ations, it is not clear
that distinct security policy statements actually exist, apart from those concerned with confidentiality.

In the absence of such policy statements, the study proceeded by examining operational and system re­
quirements for each scenario. For scenarios dealing with existing organisations and systems, to the extent
practical, these requirements were collected from technical articles and discussions with knowledgeable in­
dividuals. For scenarios dealing with future systems whose requirements and impacts on organi1ations have
not yet been completely established (e.g., CALS [9]), incomplete information about operational requirements
was augmented by educated guesses.

Each scenario was then analysed to identify underlying security policies and policy characteristics. While
the analysis produced results the authors believe are useful, these results are of necessity partly subjective;
policy statements cannot be mathematically derived from operational requirements, but can only be loosely
inferred. Moreover, the analysis was not exhaustive; it did not attempt to consider all requirements or identify
all possibly relevant security concerns. The analysis of each scenario concentrated on a small set of security
concerns that seemed most fundamental with respect to the overall mission and threats. Consequently, the
results reported here are not intended as a definitive analysis. Rather, they represent an illustrative sampling
of security policies in which an emphasis has been placed on security concerns other than confidentiality.

1.2 Organization

This paper is organised as follows. First, a few fundamental definitions are given. Next, excerpts from the
security analysis of three example scenarios are presented to illustrate the range of security policy elements
identified in tactical and non-tactical scenarios. The examples are followed by a summary and discussion of
the study's findings, and a short section on future work.

26

2 What Is A "Security Policy" ?

The scenarios examined in the study encompass a wide spectrum of critical operational and system require­
ments. Given the objective of identifying security policies, in particular, policies beyond confidentiality, it
became apparent early on that a means for distinguishing security policies from other kinds of critical require­
ments was needed. Since recent trends in terminological usage have tended to blur the distinction between
criticality and security, a set of fundamental definitions was developed for use in the study. These defini­
tions, described below, also distinguish between policies that govern human activity and those that govern
automated processes on a computing system. Furthermore, these definitions describe a somewhat different
view of security than that implied by the maxim "confidentiality, integrity, and assured service" [27, 7, 22].
A more complete discussion of these definitions can be found in [25].

2.1 Definitions

Security Policy Objective - A statement of intent to protect an identified resource from
unauthorized use. The statement must identify the kinds of uses that are regulated. A security
policy objective is meaningful to an organization only if the organization owns or controls the
resource to be protected.

This definition establishes the primary notion of security upon which the other definitions are based: pro­
tection of tangible assets from unauthorized use. Examples of security policy objectives include protecting
classified information from unauthorized disclosure or modification, preventing unauthorized distribution of
financial assets, preventing unauthorized use of long-distance telephone circuits, preventing unauthorized
dispensing of prescription drugs. The notion of a security policy used here is broader than that of the
TCSEC, which is concerned with protecting a single kind of resource: information.

Organisational Security Polley {OSP) - The set of laws, rules, and practices that regulate
how an organization manages, protects, and distributes resources to achieve specified 1ecurity
policy objective~. These laws, rules and practices must identify criteria for according individuals
authority, and may specify conditions under which individuals are permitted to exercise or dele­
gate their authority. To be meaningful, these laws, rules, and practices must provide individuals
reasonable ability to determine whether their actions violate or comply with the policy.

An OSP describes how a security policy objective is to be manifested in the routine activities of the organi­
zation. The OSP definition is patterned after the security policy definition given in the TCSEC glossary,1

but addresses protection of resources other than information. In addition, it explicitly cites the authorization
of individuals as fundamental to the notion of a security policy, and allows authorization to be based on
attributes other than clearance and need to know. For example, authorization may be based on job title,
employer, training, licensing, enrollment, or membership.

Automated Security Policy (ASP) -The set of restrictions and properties that specify how
a computing system prevents information and computing resources from being used to violate an
organizational 1ecurity policy.

An ASP specifies what a trusted system is trusted to do. The ASP for a TCSEC-oriented trusted system
(class B or higher) typically includes the Bell-LaPadula properties [3], labeling requirements for human
readable output, !&A-oriented restrictions (e.g., minimum password length), audit capture requirements,
and so forth.

1 "The set of laws, rules, and practices that regulate how an organisation manages, protects, and distributes sensitive
information."

27

2.2 The Meaning of "Security Policy" In this Paper

This study is concerned with orgtJniztJtiontJl security policies, that is, laws, rules, and practices that govern
the activities of people. The analysis of organi1ational security policies is a prerequisite for analysis of
automated 1ecurity policies. Throughout this paper, the terms "security policy", and "policy" are used for
brevity, but are intended to refer to organiutional rather than automated security policies.

3 Roles

In the sections that follow, the term "role" [2, 15, 26] occurs frequently. We will use the term role to mean
a named group of rights; these rights are permissions to access, operate on, or otherwise use resources in
particular ways. A financial officer role might include rights to disburse financial assets (by signing checks)
and to approve release of corporate financial information. The role of payroll clerk may include the right to
examine employee salary data. The role of pharmacist includes the right to dispense drugs but not prescribe
them; that right belongs to the physician role. A DoD security officer role might include rights to add new
user accounts to a classified computing system and to control the system's audit data collection. Individuals
belonging to an organi1ation are assigned to roles and are then able to exercise the rights associated with
those roles. Consequently, roles are a means of naming and describing many-to-many relationships between
individuals and rights.

Role exclusion rules may be associated with roles. These rules place constraints on the ability of individuals
to be authori1ed for roles or to assume roles for which they are otherwise authori1ed. For some roles, there
may be a limitation on how many individuals can be concurrently active in the role [15]. For example, in
certain military organi1ations, only a single individual may be able to assume the role of watch officer at
a time. Other individuals who are otherwise authori1ed to assume the watch officer role, cannot assume
the role until it has been relinquished. Some combinations of roles may be considered "conflicting" because
together they provide more authority than the organintion permits any one individual to hold; there may be
a prohibition against any one individual being assigned (authori1ed for) more than one ofthese. For example,
in a commercial corporation, an individual may be prohibited from acting as both a financial officer and a
financial auditor. This kind of exclusion rule is equivalent to so-called "static" separation of duty, as defined
in [19], and discussed elsewhere in the literature [6, 18].

4 The Aegis Combat System

The Aegis combat system is a sophisticated shipboard combat system used in U.S. Navy cruisers and destroy­
ers [8]. The Aegis system includes a variety of sensors, including radar and sonar, and weapons, including
surface-to-air missiles, surface-to-surface missiles, miscellaneous anti-submarine devices, guns, and small
multi-purpose helicopters. These assets are monitored and controlled from the Combat Information Center
(CIC), a room containing numerous operator consoles and large screens used to display situation maps and
tactical summaries. In order to support mission requirements for high fire power and rapid response to
threats, the Aegis system provides extensive automated response capabilities that can be programmed by
the ship's crew.

Three organi~ational security policies were identified from descriptions of the Aegis" system. These con­
cern the prevention of 1) unauthori1ed disclosure of classified information, 2) unauthori1ed modification of
information, and 3) unauthoriled release of weapons. Each is discussed in a subsection below.

28

4.1 Information Disclosure Policy

The information disclosure policy is based on well-established DoD regulations and is directed at protecting
classified information from individuals lacking sufficient clearances. Crew members may be uncleared, cleared
for shipboard tactical information, or cleared for both intelligence and shipboard tactical information. In
addition, uncleared visitors may occasionally be aboard. Most members of the crew are cleared for tactical
information, which includes targeting data, locations of friendly forces, mission plans and situation tactics,
and information about capabilities and limitations of sensors, weapons, and other equipment. A small
fraction of the crew may, in addition, be cleared for access to intelligence information.

Both kinds ofinformation are protected by physical and procedural security measures. Armed guards prevent
unauthori1ed individuals from boarding the ship when it is in port. While at sea, access to the CIC and
to the intelligence room is controlled by locks on entry doors. When information is transmitted among the
ships in the fleet, communications security measures are employed to prevent eavesdropping.

4.2 Information Modification Policy

The information modification policy is concerned with preventing unauthori.ed individuals from supplying,
changing, or deleting intelligence and tactical information. To a lesser extent, it may also be concerned with
preventing authori1ed individuals from modifying such information in an clearly erroneous manner. This
policy is not explicitly articulated, but has been inferred by the authors from descriptions of operational
procedures.

Intelligence information and tactical information must only be accepted from designated sources. Designated
sources may be organintions, or individuals assigned to particular job functions. Designated sources vary
according to the type of information. Accepting information from sensors, computers, or other equipment is
authori1ed if the equipment is operated under the \auspices of a designated source organintion or individual.
The authority to act as a designated source for a particular kind of information constitutes a role.

Cleared shipboard personnel are authori1ed to extract, derive, delete, enter, or otherwise modify tactical
information. Similarly, personnel with intelligence clearances are authori1ed to modify intelligence informa­
tion. When authori1ed individuals make such modifications, they are expected to employ any applicable
designated processing methods or algorithms2 so that modifications are minimally subjected to simple error
checks. In some cases, however, the organi1ation must rely primarily on the considered tactical judgment of
senior officers to ensure that information modifications are valid, i.e., consistent with reality and the inten­
tions of superiors. Moreover, all authori1ed individuals are trusted not to introduce intentional inaccuracies
into protected information, except as required for saniti1ation purposes.

Ships in the fleet may share tactical data (e.g., concerning potential targets) in digital form via radio-based
ship-to-ship communications. As a result, console operators on one ship have a limited measure of authority
to influence (modify) another ship's tactical information base. The extent ofthis authority is constrained by
protocols and algorithms that are used to resolve conflicts among multiple information sources. Depending
on the circumstances and kind ofinformation involved, conflicting information received from other ships may
replace or be added to the information generated by a ship's own sensors and crew. Alternatively, conflicting
information may be discarded, or mathematically combined.3 Thus for each ship, an authori1ation distinction
is made between console operators on that ship, and those on other ships in the fleet; these constitute different
roles. Except for cleared members of fleet crews and designated information sources, no other individuals
have authority to modify shipboard information.

2 These may be embedded in the ship's co~puter programs.

SPlanned for future system upgrades.

29

http:unauthori.ed

4.3 Weapon Release Policy

The weapon release policy is directed at preventing weapons, especially missiles, from being released without
appropriate authorisation. Only the ship's Commanding Officer (CO) has the authority to order the release
of weapons, although he may delegate this authority to the Tactical Action Officer (TAO). Although several
individuals on a ship may be authorised to assume the TAO role, only one can assume it at a time; this
is an example of a role exclusion rule. The CO or TAO can order (authorise) one or more of the combat
system console operators to release a weapon. A weapon release order can be given directly to the console
operator, or may propagate downward to the operator through the chain of command. Similarly, only the
CO and TAO have the authority to order the creation, modification, enabling or disabling of programmable
automated weapon release rules called "doctrine statements". The Combat System Coordinator (CSC) is
the only role given authority to enter or alter these statements and typically is authorised to do so only when
specifically directed. Furthermore, typical operating procedures dictate that doctrine statements be written
on paper and signed by the co prior to being entered into the system by the esc.

4.4 Policy Summary

The security policy objectives for this scenario include preventing unauthorised disclosure and modification
of information, and preventing unauthorised release of weapons. Authorisation to use these resources is
contingent on clearances, roles and role exclusion rules, delegation of authority, and non-repudiatable (signed)
orders.

5 Nuclear Command, Control, and Communications

The principal-requirements of the nuclear command, control, and communications (NC3) system are 1) rapid
response to authorised orders directing the release of nuclear weapons, 2) prevention of unauthorised weapon
release, and 3) prevention of unauthorised disclosure of classified information associated with deployment
plans and the release process.

5.1 Weapon Release Policy

A nuclear weapon release requires collaborative actions on the part of multiple individuals, each of whom
has been assigned one of three specific roles. The civilian authority authorises the use of nuclear weapons.
The military authority generates specific targeting orders that must comply with previously established
plans. These orders are then carried out by launch control officers. This division of authority amongst the
civilian authority, the military authority, and the launch control officers constitutes separation of duty. No
unilateral action by any individual in any of these roles, by itself, should allow a nuclear weapon release to
be successfully initiated. Forced collaboration among these roles during the release process is accomplished
via cryptographic procedures. In addition, a split knowledge policy among the individuals assigned the role
of military authority requires that at least two of these individuals collaborate (by combining secrets) before
they are able to execute a release successfully. Stringent source authentication requirements play a central
role in the protocols used by these roles during their interactions; in some cases, the protocol prohibits a role
from proceeding with its duties without having successfully authenticated the source of a received directive.

Following authorisation, two-person or N-person controls are used extensively; each launch control officer is
assigned to a team, and is prohibited from carrying out launch control related activities unless authorised and
accompanied by his team member(s). These controls prohibit a single launch control officer from accessing
launch control information, facilities, authenticators, and cryptographic materials.

30

5.2 Denial of Service Policy

The denial of service policy for the NC3 system is directed at preventing unauthorised individuals from
inhibiting an authori1ed release of nuclear weapons. (Having such a policy does not preclude the possibility
that some individuals may be authori1ed to prevent weapon releases, for example, after cessation of hos­
tilities.) This policy is manifested in a host of personnel, physical, and communications security measures
that are beyond the scope of this discussion. We note, however, that the N-person controls described above
for essential components of the launch control process also make less likely the unauthori1ed modification,
replacement, theft, or destruction of these components. Because a loss, or loss of effectiveness, of any such
component may inhibit weapon relee,se, these N-person control measures also support the denial of service
policy.

5.3 Information Disclosure Policy

As for the Aegis information disclosure policy, this policy is based on well-established DoD regulations and
is directed at protecting classified information from individuals lacking sufficient clearances. Among the
kinds of information of concern for the NC3 system are plans and contingencies for weapon deployment,
and current status. The latter may include current capabilities, information about deployments in progress,
and heightened states of operational preparedness. This information is protected by a variety of physical,
procedural, and communications security measures.

5.4 Information Modification Policy

This policy is a subordinate policy whose objective is primarily to support the NC3 weapon release policy and
denial of service policy. For example, if release orders are subject to unauthorind modification prior to being
carried out, then it may be possible to subvert the intent of the release authorities, causing an unauthorised
release. Similarly, to the extent that information is used as an enabling element in the launch control process,
an unauthorised information modification could inhibit release, resulting in an unauthori1ed denial of service.
Weapons orders, plans, and other types of release-governing information are protected against unauthorised
modification by a variety of communications, physical, and procedural security measures including the N­
person control procedures described above.

5.5 Policy Summary

The security policy objectives for the NC3 scenario include unauthorind disclosure and modification of
information, unauthoriled release of weapons, and unauthori1ed denial of service. Authoriution to access or
use these resources is contingent on clearances, roles, separation of duty, split knowledge, N-person control,
and source authenticated inputs.

6 Government Procurement Document Preparation

This scenario is concerned with the security policie,s associated with the government procurement process,
primarily as they affect the government participants. The Computer-aided Acquisition and Logistics Support
(CALS) program [21], is an ambitious attempt to automate much of this process in the future, as well as
other activities supporting the design, manufacture, and logistical support of systems used by DoD. Unlike
the previous two scenarios, which are based on existing operational and system requirements, this scenario
is based on hypothetical future requirements extrapolated from fragmentary published descriptions of the

31

CALS program [21, 9, 10]. It concentrates on the preparation, approval, and release of Requests for Proposals
(RFPs), allocation of government funds and manpower, and evaluation of competing bids.

6.1 Information Disclosure Policy

Much of the information associated with the procurement process may be sensitive with respect to disclosure.
The procured items may have specifications that are classified. To ensure fair competition among bidders,
information about the contents of RFPs under development must not be "leaked" prematurely to prospective
bidders. There may also be information which is considered proprietary to a particular vendor. Dissemination
controls (e.g., NOFORN, NOCONTRACTOR) and export control restrictions may need to be enforced.

6.2 Information Modification and Release Policy

The RFP development process consists of a sequence of draft, approval, and release phases. Among other
purposes, these phases serve to prevent unauthori1ed procurement documents (e.g., erroneous. RFPs and
contracts) from resulting in unauthori&ed expenditure commitments of government funds and manpower
resources. At each stage in the RFP development process, approval must be obtained prior to proceeding
to the next stage. Furthermore, authority to submit, modify, or approve procurement documents at various
stages is reserved to individuals who have been assigned particular roles. To the extent that procurement
documents are kept on-line, controls are required to ensure that only appropriate individuals are able to
update or modify information at each stage.

RFP development is initiated by a technical team whose members are authori1ed to generate a statement of
work (SOW). Before an RFP can be generated, the SOW must be approved by management, and procurement
funds must be allocated. The SOW is then forwarded to the contracts department, whose personnel are
authori1ed to generate an RFP. The RFP must be approved by the legal department and approved for
release by a contracting officer. As part of the release process, an authenticating code may be attached
to assist bidders in verifying the authenticity of the RFP prior to committing their own resources for bid
development.

6.3 Other Constraints

The roles held by individuals may be subject to role exclusion constraints. For example, members of the
technical review team for bid evaluation may be prohibited from participating on the cost review team;
this can be viewed as a form of separation of duty. Furthermore, they may also be forbidden from finding
out about contents of the cost portions of bids. It may also be the case that an individual who has had
access to a contractor's bid containing proprietary information may be forbidden from accessing a competing
contractor's proprietary information for a set period of time.

6.4 Policy Summary

The security policy objectives for this scenario include preventing unauthori1ed disclosure of information,
unauthori1ed modification and release of information, and unauthori&ed expenditure commitments of funds
and manpower. Resource usage authori&ation is based on clearances and dissemination controls, roles, role
exclusion constraints (including separation of duties), operation sequencing constraints and source authen­
tication.

32

7 Observations

An analysis of the scenarios studied, including those outlined above, leads to a number of observations.

• 	 Access control according to clearances or roles appears to be a fundamental aspect of each scenario. In
particular, access control to protect information from both unauthorised disclosure and unauthorised
modification was an element of every scenario. In addition, numerous other role-based access controls
regulating use of resources other than information (e.g., weapons, financial assets) were found.

• 	 Infrastructure support, particularly in the form of communications, identification and authentication,
and auditing services, is likely to be applicable, independent of policy objectives. The extent of
applicability depends on the geographic distribution of the organisation and the extent of its reliance
on automation.

• 	 Separation of duty constraints were found in several scenarios. This suggests that separation of duty
is a well-established general principle that is widely employed when an organisation is reluctant to
entrust unilateral control over a resource to any single individual. Furthermore, separation of duty
requirements were sometimes accompanied by operation sequencing requirements. In some military
environments, however, the principle of separation of duty may conflict with the need to ensure that,
at all times, at least one individual (e.g., a commanding officer) has •ufficient authof'ity over resources
to carry out an assigned mission successfully.

• 	 Each scenario encompasses a unique combination of policy elements. No clear-cut patterns emerged to
distinguish the policies for tactical scenarios, as a group, from those for non-tactical and commercial
scenarios. However, because responsibilities must be rapidly and flexibly reassigned following combat
casualties, tactical policies may tend to rely more heavily on fluid personnel authorisation methods
including delegation of authority.

• 	 Source authentication or non-repudiation requirements stipulating that personal or electronic signa­
tures accompany data or permission to act, (e.g., military orders) appear to be widespread.

• 	 "N-person rules" requiring teams of people to act simultaneously (or nearly so), and split knowledge
requirements, were not .common. This may be because their implementation is too costly or cumber­
some to be used on a routine basis unless the resources being protected are extremely critical, as in
the case of nuclear weapons.

• 	 Numerous f'equif'ement. related to denial of service, including requirements for reliability, survivability,
and performance were encountered. However, few denial of service policie• (as defined above) were
identified; such policies govern the authority of particular individuals to use or operate on resources in
ways that may deny use of those resources to otherwise authorised individuals. Several explanations
for this result can be posited. First, denial of service remains an ill-understood problem, and denial of
service policies remain difficult to identify definitively. Second, the security policy definitions used in
this study deliberately exclude from consideration a variety of critical requirements that are commonly
treated as security policy manifestations [27, 7, 22]. Third, primary threats to assured service in tactical
systems include electronic warfare and the destruction of combat assets by the enemy. Threats of this
nature are more naturally addressed by military tactics and improved equipment capabilities than by
computer security technology, and were consequently deemphasised in the study.

These observations suggest that there exists a core set of security policies and policy elements that merit
support in computing systems intended for a broad range of tactical, non-tactical, and commercial appli­
cations. This policy core includes protection of information from unauthorised disclosure and modification,
role-based access control, role exclusion rules, (e.g., static separation of duty), delegation of authority, and

33

operation sequencing.4 The core also includes identification and authentication, auditing, and reliance on
secure communications, especially to support source authentication and non-repudiation requirements.

These observations also support the contention that the TCSEC requirements are incomplete in comparison
with secure tactical computing needs. A number of other security policies beyond confidentiality are integral
to the contexts in which tactical systems are used, and it appears that tactical systems should be capable
of providing some degree of automated support for these policies. Determining the extent to which policy
support can be automated usefully, especially when possible system failure modes are taken into account,
will require a significant level of continuing research addressing both human factors and systems engineering
issues.

The authors feel it unlikely that automated mechanisms designed primarily for TCSEC requirements are
well-suited to support these other policies. (Similar sentiments have been published elsewhere [11, 16].
See [4, 5] for a different perspective.) On the other hand, it appears that the information disclosure policies
toward which TCSEC requirements are targeted remain crucial to tactical systems. Consequently, computing
systems designed for a broad range of tactical applications should be minimally capable of satisfying TCSEC
requirements in addition to supporting other organisational security policies.

8 Summary and Future Work

This paper has summarised the results of a study intended to identify security policies and common policy
elements that may merit support in systems designed for tactical applications. While each analysed scenario
appears to encompass a different combination of policy elements, the study suggests that these combinations
may share a common policy core. This offers the hope that by supporting this common core, a single,
configurable system may be able to support a wide variety of application specific security policies in the
tactical, non-tactical, and commercial realms.

While a number of previous research papers have discussed table-driven, rule-driven, or otherwise configurable
systems that may support multiple policies [14, 1, 17, 26, 4, 5], the feasibility and assurance potential of such
systems remains an open research question; much more work is needed before a definitive answer can be put
forth. Toward this end, functional requirements for a prototype system to support the policy core have been
developed, and high-level design activities have been initiated. Follow-on plans include implementation of the
prototype and an assessment of the applicability, effectiveness, and assurance of its enforcement mechanisms.

References

[1] 	 Abrams, M.D., Eggers, K.W., La Padula, L.J., Olson, I.M., "A Generalised Framework For Access
Control: An Informal Description," Proceedings of the 13th National Computer Security Conference, .,
Washington, D.C., October, 1990.

[2] 	 Baldwin, R.W., "Naming and Grouping Privileges to Simplify Security Management in Large
Databases," Proceedings of the 1990 IEEE Symposium on Research in Security and Privacy, Oakland,
CA, 1990.

[3] 	 Bell, D.E., La Padula, L.J ., "Secure Computer Systems: Unified Exposition and Multics Interpretation,"
Technical Report No. ESD-TR-75-306, Electronics Systems Division, AFSC, Hanscom AF Base, Bedford
MA, 1976.

[4] 	 Bell, D.E., "Lattices, Policies, and Implementations," Proceedings of the 13th National Computer
Security Conference, Washington, D.C., 1990.

4 Although dynamic separation of duty [19, 23, 12], is not discussed above, we include it a1 an extemion of operation
sequencing.

34

[5) 	 Bell, D.E., "Putting Policy Isomorphisms to Work," Report 355-D, Trusted Information Systems, Glen­
wood, MD, November 1990.

[6] 	 Clark, D.D., Wilson, D.R., "A Comparison of Commercial and Military Computer Security Policies,"
Proceedings of the 1987 IEEE Symposium on Security and Privacy, Oakland, CA, 1987.

[7) 	 Gasser, M., Building a Secure Computer Syltem, Van Nostrand Reinhold Co., New York, NY, 1988.

[8) 	 Gersh, J., Private Communications, Johns Hopkins University Applied Physics Laboratory, October
1989, January 1990, August 1990, February 1991, June 1991.

[9) 	 Gorham, Jr., W.C., "Data Protection Requirements in Computer-Aided Acquisition and Logistics Sup­
port," Proceedings of the Fifth Annual Computer Security Applications Conference, Tucson, AZ, De­
cember 1989.

[10) 	 Gove, R.A., Friedman, A.R., "A Structured Risk Analysis Approach to Resolve the Data Protection
and Integrity Issues for Computer-Aided Acquisition Logistics Support (CALS)," Proceedings of the
Fifth Annual Computer Security Applications Conference, Tucson, AZ, December 1989.

[11] 	 Graubart, R., "On the Need For a Third Form of Access Control," Proceedings of the 12th National
Computer Security Conference, Baltimore, MD, October, 1989.

[12) 	 Karger, P., "Implementing Commercial Data Integrity with Secure Capabilities," Proceedings of the
1988 IEEE Symposium on Security and Privacy, Oakland, CA, 1988.

(13) 	 Karp, B.C., "The CALS Data Protection and Integrity Industry Working Group," Proceedings of the
Fifth Annual Computer Security Applications Conference, Tucson,. AZ, December 1989.

(14) 	 La Padula, L.J ., "Formal Modeling in a Generalized Framework for Access Control," Proceedings of the
Computer Security Foundation Workshop III, June 1990.

[15) 	 Mayer, F.L., "Security Controls for an Automated Command and Control Information System (ACCIS):
Baseline Definition," Report 201, Trusted Information Systems, Glenwood, MD, May 1989.

[16) 	 McCollum, C.J ., Messing, J .R., N otargiacomo, L., . "Beyond the Pale of MAC and DAC - Defining
New Forms of Access Control," Proceedings of the 1990 IEEE Symposium on Research in Security and
Privacy, Oakland, CA, May 1990.

[17) 	 Miller, D.V., Baldwin, R.W., "Access Control by Boolean Expression Evaluation," Proceedings of the
Fifth Annual Computer Security Applications Conference, Tucson, AZ, December 1989.

(18) 	 Murray, W.H., "Data Integrity in a Business Data Processing System," Report of the Workshop on
Integrity Policy in Computer Information Systems (WIPCIS), Waltham, MA, October 1987.

(19] 	 Nash, M.J ., Poland, K.R., "Some Conundrums Concerning Separation of Duty," Proceedings of the
1990 IEEE Symposium on Security and Privacy, Oakland, CA, May 1990.

[20) 	 National Computer Security Center, Department of Defen•e Trulted Computer Syltem Evaluation Cri­
teria, DOD 5200.28-STD, December 1985.

[21) 	 O'Neal, S.A., "CALS: Enabling Process Improvement," Signal, September 1989, pp. 41-44.

[22) 	 Pfleeger, C., Security in Computing, Prentice-Hall International, Inc., Englewood Cliffs, NJ, 1989.

[23] 	 Sandhu, R., "Transaction Control Expressions For Separation of Duties," Proceedings of the Fourth
Annual Computer Security Applications Conference, 1988.

[24] 	 Sterne, D., Branstad, M., Hubbard, B., Mayer, B., Badger, L., Wolcott, D., "Security Policies for
Tactical Environments: A Research Study," Report No. 353, Trusted Information Systems, Glenwood,
MD, November 1990.

35

[25] 	 Sterne, D., "On The Bunword 'Security Policy'," Proceedings ofthe 1991 IEEE Symposium on Research
in Security and Privacy, Oakland, CA, May, 1991.

[26] 	 Thomsen, D.J ., "Role-based Application Design and Enforcement," Proceedings of the Fourth IFIP
Workshop on Database Security, Halifax, England, September 1990.

[27] 	 Unisys, Camarillo, CA., and Trusted Information Systems, Inc., Glenwood, MD., SDI Battle Manage­
ment Security Issues: A Preliminary View, TM-8361/000/00, February 1987.

36

ANOTHER FACTOR IN DETERMINING SECURITY REQUIREMENTS FOR

TRUSTED COMPUTER APPUCATIONS

David Ferraiolo Karen Ferraiolo
NIST Grumman Data Systems
Building 224/A241 2411 Dulles Comer Park
Gaithersburg, MD 20899 Herndon, VA 22071

Computer systems take on security requirements that are unique to the operational characteristics and
needs of their application. These requirements can be applied on an individual basis in reducing
operational risk. Methods exist to determine security requirements per DoD 5200.28-STD [3] by
calculation of a risk index [4], [6]. This risk index is used to determine an appropriate level of trust
(criteria class) per DoD 5200.28-STD, which is then used to define a set of security requirements.
However, the resulting security requirements imposed on some systems by DoD 5200.28-STD can be overly
restrictive, in need of interpretation, or in many cases, non-applicable. The purpose of this paper is to
provide insights into determining appropriate security requirements for applications within a specified
criteria class. Observations depend to a great extent on the system's user interface, considered as an
additional environmental condition.

Introduction

The intent of a computer application is to provide an organization with information processing capabilities
in support of its specific mission or goals. It has become apparent that many of the security concepts
defined by DoD 5200.28-STD do not directly apply in a general . manner to all trusted computer
applications. Some of the security features and assurances of DoD 5200.28-STD may be overly restrictive,
others in need of interpretation and in some cases, are not applicable at all. This is because the six
criteria classes that make up DoD 5200.28-STD, at least in part, assume a user environment with all the
risks associated with that of a full-capability general purpose operating system. For many applications
however, user capabilities are more restrictive than that of an operating system. Associated with these
capabilities is a lower relative risk that coincides with the constrained ability for the user to influence the
underlying processing environment.

Associated with each system is a User Interface Set (UIS). A UIS is a collection of processing capabilities
provided to the users of the system. These capabilities include system prompts, menus, transactions,
utilities, privileges, and operations. The UIS can provide for or preclude users from the following
capabilities: execution of programs and transactions; creating and editing messages, documents, and files;
creating, compiling and linking application or system programs. At a higher abstraction, a UIS can
support an organization's security policy such as restricting individual users or groups of users to specific
capabilities, functions and resources. For example, within a hospital system, a doctor may be provided
with the capability to perform diagnoses, order tests, and prescribe medicine, while at the same time be
prevented from directly performing updates or queries within the financial database.

For a large class of applications, the UIS may defme a finite set of possible data accesses. The system's
UIS constrains users by enforcing a template of capabilities. This template restricts users to the extent
that the system can be viewed as a set of predefined resources (applications, communication links and user
groups having specific capabilities). The security attributes which need to be associated with these
resources can be defined by design specification. Because of these fixed resource attributes and the
absence of a programming environment, security design techniques that are normally not acceptable for
general purpose systems can be applied to meet specific security feature and assurance needs. For
example, a peculiarity (with respect to DoD 5200.28-STD) that results from the stable functionality of
many embedded computer systems, is the ability to allow access control decisions to be unambiguously
established during system design time rather then having to be computed at run time. This is known as

37

the binding of processes and data accesses, or simply early binding, a concept that is described in [7] and
further exemplified by an access control triple described in [2]. In the context of DoD 5200.28-STD
mandatory and discretionary access controls, subjects are thought of as representing people or the
programs that act on their behalf, and objects as representing data or their files. However, in many
embedded applications some subset of all the objects are not accessible to human users but are accessible
only to the system hardware and software processes - these processes do not act as surrogates for users.

A good example is represented by a Regency Net (RN) terminal. The RN terminal is part of a tactical
command and control system developed during the mid and late eighties. Although all users would be
cleared for all information and belong to a single user group, security requirements were defined in respect
to 1) the flow of data among multi-level resources, 2) the preservation of the integrity of critical data, and
3) the denial and delay of the delivery of critical messages. The concept of a reference monitor and
security kernel was interpreted in order to· ensure a high level of trust. The RN security kernel consists
of an Initializer, to establish the CPU's initial secure state, and the Virtual Machine Monitor (VMM).
Because the RN functionality is severely restricted, all subject-object access configurations are bound in
the CPU Kernel code· such that only those configurations which are both secure and functionally required
are possible. The VMM is an extraordinary reference monitor in that it does not compute secure states,
as a conventional reference monitor. It implements secure data flows directly rather than acting as an
intermediate computational abstraction.

Another application dependent concept is captured by the Clark-Wilson [2] integrity model. The Clark­
Wilson model defines an access control triple as the binding of a useriD, transaction procedure (TP), and
a set of constrained data items (CDis). This binding indicates not only the ability to specify which users
can access which executable program images (as is natural to normal DoD 5200.28-STD discretionary
access control), but also implies that these executable program images (TPs) possess privileges in isolation
from their invoking user.

Determining Environmental Risk

Defining meaningful computer security requirements for applications has not been a straightforward
process. To help improve this situation, the National Computer Security Center (NCSC) published two
documents, Guidance for Applying the Department of Defense Trusted Computer System Evaluation Criteria
in Specific Environments and its associated Technical Rationale [4]. These two documents provide
guidance for choosing an appropriate criteria class per DoD 5200.28-STD, by calculating a risk index based
on the system's operating environment. The risk index is partially formulated by comparing the clearance
of the least cleared user of the system "to the highest classifica1ion of information to be processed by the
system. The greater the difference between the clearance of the users and the classification of the
information on the system, the greater the risk index and the greater the degree of trust that is required.
Another environmental condition considers whether the personnel developing the application are
authorized access to Secret information (or to the highest level of information to be processed by the
system if the information classification is less than Secret). If not, the .requirement is for a higher criteria
class in order to compensate for the additional environmental risk developers impose on the delivered
system.

It has been observed that not all potential risk associated with a system is due to the difference of the
clearances of system users and the classification of information and the development environment. Risk
may also result from other environmental factors. Another method, using other environmental factors to
calculate potential risk has been developed by the Naval Research Laboratory (NRL) [6]. This report
provides a more sophisticated approach for calculating risk, taking into account the environmental
conditions of CSC-STD-003-85 as well as user processing capabilities and communication paths.

38

The Need for More Guidance

Both [4] and [6] define security requirements to the granularity of a predefined DoD 5200.28-STD criteria
class. In the world of trusted computer applications, seldom have the calculated features and assurapces
of a criteria class of DoD 5200.28-STD defmed a complete and essential set of applicable security
requirements. Although this granularity may be at a reasonable level for products that are developed to
be general purpose in nature (with no specific application in mind), for many applications minimal user
capabilities can be ensured. Applicable security requirements can be defined (at least in part) in terms
of the way a human user is intended to interact with the processing environment.

The premise of this paper is that, even though two systems may be defined as having the same risk index,
and subsequently would require the same criteria class, applicable security features and assurances
associated with these systems can vary significantly.

The Range of the Flexibility of User Interface Sets CR-FUIS)

It is suggested here that there is another significant environmental element that should be considered in
determining information security requirements: the Flexibility of the User Interface Set (FUIS). As the
flexibility provided through these interfaces increases, so does the risk that a user can influence and
undermine the security preserving flow of information. This is regardless of whether the objective of an
organization is to maintain the confidentiality of classified information, protect the privacy of individuals,
ensure human safety, prevent fraud, or prevent unauthorized modification of educational records.

In order to consider the FUIS in the calculation of security requirements for applications, the FUIS must
be measured in some way. The concept of a range in the flexibility of user interface sets (R-FUIS) is
introduced. In theory, all systems fall somewhere on the R-FUIS. The relationship between these systems
is such, that as systems progress on the range from left to right, applicable security features and
assurances (requirements) appear that were not present prior to that point, until a point is reached where
all features and assurances of DoD 5200.28-STD are present for a defined level of trust. Systems that fall
to the extreme left have the most restrictive interface sets, and have the smallest subset of DoD 5200.28­
STD requirements, while systems that fall to the extreme right are considered to have the most flexible
interface sets and the most DoD 5200.28-STD requirements. Unlike the Risk Index, The R-FUIS represents
a continuum where there is potentially an infinite number of possible points at which a system can be
plotted. What is significant about the plotting of a system is where it falls relative to where other systems
would fall. All systems can be plotted at some point on the R-FUIS. Depending on where systems fall,
observations can be made as to security characteristics and requirements associated with that point.
Moving from left to right along the continuum, the R-FUIS accounts for an extreme with no user interface;
further along it accounts for a single user system, still further, multiple users but of a homogeneous nature
(same role). Beyond the mid point, there are considerations for multiple users each belonging to a specific
user role, while at the extreme right individual users with individual needs and privileges to access
information are taken into account. (Instances of a role can include: a Doctor or Nurse within a hospital
system; a Loan Officer or a Teller within a banking system; or a Traffic Analyst or Cryptanalyst within an
intelligence system.) The concept of the R-FUIS is illustrated in Figure 1 below.

No Single Multi-User Multi-User Multi-User
Users User Single Role Multi-Role lndMdual Needs

I !

Figure 1. The Range in the Flexibility of User Interface Sets

39

A R-FUIS can be associated with each criteria class of DoD 5200.28-STD. The result is a two dimensional
view of DoD 5200.28-STD, where there are 6 rows each representing a criteria class with the associated
R-FUIS representing the range of applicable security requirements for that criteria class. An appropriate
criteria class can first be determined through the use of current environmental guidelines [4], [6]. The
position of the system on the R-FUIS for the criteria class can then provide insight as to applicable security
requirements for the system.

The R-FUIS ranges from the most primitive or restrictive interface set, such as that of a black box with
no user interface, to the most flexible interface, such as the full capabilities of a general purpose operating
system. Both of these systems may process the same type and classification of information but because
of the extreme differences in the FUIS, security requirements will differ greatly. The black box can be
thought to have inherent security protection such as the inability of a human to alter its processing
(except by physically removing its chassis and reprogramming it). However, a programming environment
does not come as part of the system. It would need to be reprogrammed on another environment and
down-loaded to the black box. On the other hand, the operating system supports the ability to create
executable programs and alter existing ones. With the operating system interface, the following risks exist:
the potential for introduction of a trojan horse, trap door, or virus; a program that mimics the operating
system software and steals passwords; or the alteration of security relevant software. All these risks are
a result of an operating system's natural user interfaces, while none of these risks are associated with the
black box.

In order to reduce operational risk, security requirements are imposed throughout the system development
cycle. These requirements must then be evaluated to ensure a secure operating environment. When a
certification is performed for an application to operate in a specific environment, the certification should
be an evaluation of the applicable security requirements associated with that system type. Because this
evaluation would be conducted against some subset of requirements of a specified criteria class, it may
not be appropriate to assign a criteria rating to the system, but instead indicate that the system mitigates
known security risk, and is known to implement some list of security features and some level of
assurances.

Defining Applicable Security Requirements

The R-FUIS can be subdivided in several ways depending on the UIS associated with the various types or
categories of systems. By subdividing the R-FUIS into various types of systems and defining the security
characteristics belonging to each of the types, the R-FUIS ·can be used to provide insight in the definition
of security requirements. It is acknowledged that the use of the R-FUIS does not provide an absolute
solution to defining security requirements for trusted applications. However, a widely agreed upon
definition of the R-FUIS could provide guidance and establish precedence as to applicable security
requirements that could be used from project to project, making the definition of applicable security
requirements less of a subjective process.

By continuously subdividing the R-FUIS into smaller and more numerous pieces, the R-FUIS will be more
helpful in the defmition of security requirements. However, it is not the intent here to define an extensive
list of possible types of computer systems. Instead, four types of systems are described and plotted on the
R-FUIS to demonstrate how the R-FUIS can be used. By plotting a system on an even sparsely defined
R-FUIS, guidance can be provided as to the system's applicable security requirements.

Observations on the R-FUIS

In the examples presented in this section, security features of DoD 5200.28-STD are described as they
apply for each type of application. Figure 2 below summarizes these observations, providing one view of
the R-FUIS.

40

No Single User Multi-User Multi-User Multi-User
Users Single Role Single Role Multi-Role Individual Needs

I

'
-I&A- Security Policy

1 - User Accountability
- Resource Labeling I

1,.

j ~reted)
- Direct Data Flow I 1 - Object Reuse Comols

I
1 Omplementation! Dependent)

I

- Discretionary Execution 	 I - DAC (User Specified) !
- bollllion(Administrative) 	 I - Isolation 'I(lnlelpreted)- Object Reuse 	 I - User Accountability .
- User Label - User Accountability 	 I -User Label

(Single Session)(hsrpreted) 	 j 4'Ui-Session)
I

Black Box Umited Transaction ·Role Enforcing Transaction Based Full Capability
Based System System Operating System

Figure 2. Example Systems Mapped onto the R-FUIS
Black Box Systems

For the most restrictive systems, which will be typed Black Box, many of the . security features and
assurances of DoD 5200.28-STD are not applicable. For the Black Box system, no humans have the
ability to directly influence (read, or write) its objects. These systems are usually components incorporated
to perform one or more specific control functions within a larger system. A Black Box system can be
thought of as a "closed" system that contains only embedded processes where none of these processors
contain a direct man-machine interface. In fact, in many applications a Black Box provides specialized
services to a larger system which is totally transparent to human users. Although a Black Box system does
not support the direct needs of human users it still may be trusted to perform a vital processing function.
Military Black Box applications are numerous but they can include civil and commercial applications as
well. For example, the routing of mail, aircraft avionics, robot control, and transportation switching
devices. What is significant is that the execution ofthe controls of the device can be assumed to be free
of human interaction.

Obviously for Black Box systems direct user related features such as identification and authentication, and
user accountability are not applicable. In addition, making access control decisions based on the identity
of or an attribute associated with a direct user does not make sense within a Black Box environment -­
no Discretionary or Mandatory Access Controls with respect to the UIS. Also, there is not a requirement

for a trusted path between a system user and the TCB.

The applicable security features can be viewed as the smallest subset of DoD 5200.28-STD requirements.
These security features are relevant for all systems of this specified R-FUIS and the specified criteria class.
All systems that fall to the right of the black box will include these fundamental features in their list of
security requirements. Probably the most fundamental of all security requirements is that of a security
policy. It is the security policy that defines what it means for a system to be secure. All other security
features and assurances are present only in support of that policy. This policy may ensure that
information of varying levels does not get mixed while in the local system. Because there exists a security
policy there must be an associated mechanism to implement the policy. For many Black Box applications,
controls are flow-oriented where the policy is preserved through flow decisions that could be considered
at design time rather than at run time. Object reuse more than likely would not be applicable. Pools of
previously used memory are not available for subsequent scavenging.

Because there is no concept of application software as opposed to system software, there is a de-emphasis
on the need for isolation techniques, such as domains of execution. Strong physical and procedural
controls can be applied during system development to ensure an execution environment that is free of
malicious code. Tools can be applied to ensure all flows are security preserving. Lastly, the absence of
a user interface goes a long way in ensuring that the secure environment stays secure.

41

Limited Transaction Based Systems

The next type of system that will be described is a Limited Transaction based system. A good example
of a Limited Transaction based system is an Automatic Teller Machine (ATM). For these systems there
is the presence of a man-machine interface, although it is quite limited. All users generally belong to one
user group. Although this group may potentially be quite large, the users are constrained to a narrow set
of processing capabilities and all perform the same functions.

For example, there may be a menu where selections can be made via a simple interface device such as
a numeric key pad. For a Limited Transaction based systems, users are precluded from accessing
information other than through well defined inter-related sets of processes known as transactions. For
systems of this type, subject-object access configurations can be pre-specified and bound in such a way
that only those access configurations which are both secure and functionally required are possible.
Authorized users are first identified and then given "select" access to a limited set of transactions, which
in turn have access privileges to information. By making a selection on a menu, a transaction is started
and a specified and controlled set of activities occur. This transaction will access and manipulate specific
files based on the type of transaction being invoked. The only access to information is defmed by
specification and determined during the system design.

For many Limited Transaction Based Systems most of the objects are not accessible to human users but
are accessible only to the system hardware or software processes. It is the data and the flow of
information associated with these processes that are security relevant rather than humans accessing
information. There may be some number of secure data communications links where the information may
be multilevel in nature. The system must be trusted not to mix information of a higher level with that
of a lower level where it would then be perceived as being of the lower level (this is the mandatory
policy). While supporting secure links, this type system could also support a link that is not secure
(unencrypted) which would have to be considered unclassified. Although there exists multiple users each
belongs to the same role and would possess the same security clearance. The users security attributes
would be considered fixed for which data would flow accordingly.

Identification and authentication mechanisms are generally used for accountability purposes alone.
Discretionary access controls (per DoD 5200.28-STD) do not apply in the sense that user's can specify
what other users have access to the files. For the ATM example, the user's Personal Identification Number
(PIN) may be used as a parameter within a transaction for the purposes of retrieving the correct account
record. No capability exists for users to grant or revoke privileges other than through disallowing access
to the system.

Role Enforcing Transaction Based Systems

A Role Enforcing Transaction based system is similar in many ways to a Limited Transaction based system
in that the access to information is granted or configured in terms of a process or transaction ID. For this
type system all users have a proper clearance and need-to-access within their role. Therefore a user
security level can be assumed (no need to specify security session level) and as with the Limited
Transaction based system the flow of data can be considered accordingly.

The access control mechanisms principally enforce the rigid concept of least privilege and not the richer
mechanisms implied by discretionary access control. Role Enforcing systems restrict access to information
based on the role a user chooses. A given user may have the ability to move from role to role if he is
authorized, but the user can only take on one role at a time. A user would choose a role via a menu
selection, at which point a validation would be conducted to ensure the user can take on that role. The
user's identity is critical for both validating that his role is legal and accounting for his actions. The
method of enforcing need-to-access is not implemented through a strict discretionary access control
mechanism as defined in DoD 5200.28-STD, but rather through a series of mechanisms and characteristics
of the system. First, a check is made as to whether a user can take on a selected role. If the user is

42

granted access to the role, he is given execute access to a series of transactions that are presented to him.
The user is presented only .with a list of transactions that has been specified to support his role. After
the. selection· of a -transaction, the user specifies parameters associated with the transaction and hits a
return key or clicks a mouse to effectively start the transaction. The transaction is deterministic,
performing activities in support of the user's role. Individual users can be added and deleted to each role.
Role membership is most likely centrally administered rather than at the discretion of the individual users.
Role membership may be altered through administrative and procedural controls. The capabilities
represented by each role would be static in nature and could not easily be changed.

A role enforcing system in many cases supports a type of mandatory (non-discretionary) access control
policy. Consider the hospital example described above. The system may provide a physician with the
capability to perform a diagnosis, prescribe medication, and add to a record of treatments performed on
a patient. Here roles would be created to preclude the physician from giving away the capability to
perform a diagnosis or prescribe medicine to a non-physician. It is also a mandatory policy that users are
prevented from modifying the record of treatments maintained for each patient.

The deterministic characteristics of the system is an important consideration in maintaining an audit trail.
UseriD, time, transactioniD, and transaction parameter entries, in many cases are sufficient in holding
users accountable for their actions. However, any one transaction may invoke numerous processes across
several platforms and access countless data items. To audit each successful access would provide an
overwhelming amount of information.

Full Capability Operating System

The most complex of all human interface sets is associated with an operating system. A Full Capability
Operating system supports many users simultaneously while at the same time enforces both a mandatory
and discretionary access control policy with respect to users and information. Discretionary access control
mechanisms. allow users to specify, using their discretion, the access privileges other users have to the
objects they own. Although discretionary access controls are intended to be the principal means of
enforcing need-to-access, these controls are inherently insecure. Because of a real possibility of users
introducing malicious software, a more reliable mechanism than a discretionary access control mechanism
must be provided, namely mandatory label-based access controls. These mandatory access controls are
typically provided through the enforcement of the rules of the Bell & LaPadula · security model [1].

Within an operating system environment, mandatory security rules must consider fixed resources, the
assumption of malicious software, users with different security clearances, and data of multiple security
levels. Here a run time access control intermediary must be provided that enforces the rules of the Bell
& LaPadula security model. This access control intermediary is based on the concept of a reference
monitor and may be implemented as a security kernel, depending on the risk index calculated for the
application. Before a subject is permitted to have access to an object, a run time check is performed to
ensure that the proposed access conforms to the set of underlying security rules governing the system.
The theory of security in an operating system is induced from an initial secure state and a demonstration
of the preservation of security for every operation subsequently allowed by the reference monitor. In
essence, the purpose of a reference monitor is to compute security states for the system.

To preclude the ability of a subject from having simultaneous read access to an object of a higher
classification and write access to an object of a lower classification (where there is the potential for an
illicit flow of information) a rule similar to the *-property must be enforced. The *-property requires the
subject's security level to be equal to or lower than that of an object for which the subject is attempting
to gain write access. Because the classification of the object can be lower than the highest security
clearance of the user, a method must be provided to allow the user to establish a session level lower than
that of his or her highest security clearance. If that user needs to read an object of a higher classification
then the object to which the user just wrote, the user's session level must be raised to a level at least as
high as the level of the object to be read.

43

Application software can be added or modified at any time during the operational life cycle of the system,
and often is cz:eated by the very subjects to which the rules of the security policy apply. In order to
provide a reasonable degree of assurance that applications software cannot by-pass or alter the security
policy enforcing mechanisms, security mechanisms must reside in a separate and more privileged execution
domain than that of the applications software.

Further, to preclude a malicious user from stealing an unsuspecting user's password through the creation
of a program that mimics a legitimate password request, a trusted path must be provided. A trusted path
would ensure a reliable communication channel between system users and security relevant software.

Conclusion

Computer applications range from a black box which has no direct system user, to a very flexible system
supporting many human users simultaneously, where these users have the ability to create executable
images of programs and share information on a discretionary basis. It is reasonable to believe that
although these systems may have the same calculated risk index per [4], they should implement only
security mechanisms that are applicable to their operational environment.

The R-FUIS (Range in Flexibility of the User Interface Set) has been introduced to provide insights to
determining security requirements for a system based on characteristics of the application as well as other
environmental conditions identified in [4] and [6]. It is acknowledged that the use of the R-FUIS will
not provide an absolute solution to determining security requirements, but it is our hope that the
determination of applicable security requirements may become more of a methodology.

By further defining the R-FUIS innovative security design techniques can be uniformly applied across new
secure application development efforts. This definition can be provided through the consideration of
existing and future secure application development cases studies. The result would be new and increasing
numbers of innovative security techniques uniformly applied within appropriate (better defmed) security
environments. Through a peer review process new security techniques can be accepted as legitimate
methods in combating environmental risk. The existence of criteria, criteria interpretation, and guidelines
should never result in the stifling of new and innovative approaches for applying security within our
systems.

References

[1] Bell, D.E., LaPadula, L.J., Secure Computer Systems: Mathematical Foundations, ESD-TR-73-278, Vol.
I, Electronic Systems Division, Air Force Systems Command, November 1973.

[2] Clark, D.O., Wilson D.R., "A Comparison of Commercial and Military Computer Security Policies," Proc.
on Security & Privacy, Oakland, CA, pp. 184-194, IEEE Computer Society, April 27-29, 1987.

[3] Department of Defense, Department of Defense Trusted Computer System Evaluation Criteria,
Department of Defense 5200.28-STD, December 1985.

[4] Department of Defense Computer Security Center, Computer Security Requirements - Guidance for
Applying the Department of Defense Trusted Computer System Evaluation Criteria in Specific
Environments, CSC-STD-003-85, National Computer Security Center, June 1985.

[5] Goguen, J.A., Meseguer, J., "Security Policies & Models," Proceedings 1982 Symposium on Security &
Privacy, Oakland, CA, pp. 11-20, IEEE Computer Society, Apri11982.

[6] Landwehr, C.E., Lubbes, H.O., "An Approach to Determining Computer Security Requirements for Navy
Systems," NRL Report 8897, Naval Research Laboratory, May 1985.

[7] Norton, W., Reider, L., "Computer Security in Regency Net," DRAFT.

44

APPARENT DIFFERENCES BETWEEN THE
U.S. TCSEC AND THE EUROPEAN ITSEC

Dr. Martha A. Branstad Dr. David Brewer Mr. Christian Jahl
Dr. Charles P. Pfleeger Gamma Secure Systems, Ltd. Mr. Helmut Kurth
Trusted Information Systems, Inc. Diamond House IAGB Software Technology
3060 Glenwood, MD 21738 149 Frimley Road EinsteinstraBe20

D-8012 Ottobrunn

The U.S. Trusted Computer System Evaluation Criteria, called the TCSEC [TCS85] which was
first published in 1983 and revised in 1985, has become an accepted standard for the evaluation
of trusted systems. Not only is it used in the U.S. for evaluations by the National Computer
Security Center (NCSC), it has also been adopted by NATO for the evaluation of systems for use
in NATO installations. More recently, in May 1990, a group of four nations, France, Germany,
the Netherlands, and the United Kingdom, produced a first draft of its Information Technology
Security Evaluation Criteria, called the ITSEC [ITS90]. The ITSEC shows clearly that the
thinking of the computer security community has been heavily influenced by the TCSEC, but the
ITSEC also addresses some issues in ways that are very different from the TCSEC. A meeting
was held under the sponsorship of the European Commission in Brussels on September 25-26,
1990, at which members of the four nations discussed their reactions to comments received since
the publication of the ITSEC and presented their opinions of changes that should be made to the
IT SEC.

As a method of understanding the ITSEC more completely, it was analyzed to determine the
impact that compliance with an F5/E5 rating would have upon a B3 targeted system that is under
development. This analysis led to a discussion with ITSEC authors from both Germany and the
United Kingdom that helped to clarify many questions concerning specific wording and concepts
of the ITSEC and its relationship with the TCSEC. It should be noted that the views presented
here are the authors' and not official statements from the various organizations with which they
are affiliated.

BACKGROUND

TCSEC Overview

Briefly, the TCSEC establishes six levels of evaluation: Cl and C2 provide discretionary access
control only, Bl, B2, B3, and Al provide both discretionary and mandatory access control.
Beginning at B2 and progressing to B3 and Al, the requirements for assurance- measures that
inspire confidence that the implementation of the system truly and rigorously enforces its stated
security policy- play a very significant part in the evaluation. Each TCSEC rating, called a
digraph, is thus a combination of a particular set of features and a necessary minimum degree

Copyright© 1990 Trusted Information Systems, Inc.

Portions of the work reported in this paper were performed on DARPA contract #F30602-89-C-0125

45

of assurance. Since publication of the TCSEC, there has been discussion in the computer
security community over the advisability of this bundling of features and assurance. There has
also been considerable discussion regarding the predetermined collections of features represented
by each digraph class; little room is available for the development and evaluation of a trusted
system that had goals other than maintaining confidentiality.

ITSEC Overview

In consideration of these two concerns, the authors of the ITSEC chose to separate the
functionality of a trusted system 1 from ratings of its assurance2

, and to expand the range of
functionality. Each evaluated trusted system would be awarded two descriptors: one denoting
the functionality the trusted system presents, and the second, denoting the assurance of correct
implementation of that functionality. Currently, there are ten exemplary predefined functionality
classes, Fl-F5 and F6, F7, F8, F9, and FlO. The classes Fl-F5 correspond closely with
functionality required at the TCSEC classes Cl, C2, Bl, B2, and B33

, respectively. The five
remaining predefmed classes represent integrity, availability, data communications integrity, data
communications confidentiality, and data communications integrity and confidentiality, respective­
ly. A trusted system can be evaluated against more than one of these classes of functionality,
if appropriate. There is also the potential for a developer to defme a new class of functionality,
if these classes fail to describe a particular trusted system adequately. Assurance is recognized
as a combination of correctness and effectiveness. Six correctness ratings were defmed as
El-E6; these combine with the judgement of effectiveness of the security functions and
mechanisms. These assurance ratings were intended to correspond generally to the TCSEC
assurance requirements for Cl, C2, Bl, B2, B3, and Al trusted systems, respectively. Thus,
given trusted systems might achieve ratings of F3/E2 or F4-F7/E4, for example.

Because the requirements for the Fl-F5 and El-E6 classes so closely resemble the TCSEC
requirements, it is reasonable to try to identify points where ITSEC and TCSEC ratings coincide.
The annex to Appendix A of the ITSEC lists the intended correspondences from the ITSEC to
the TCSEC, that is, functionality/assurance combinations that are at least as strong as TCSEC
digraphs. Table 1 shows these intended correspondences. The ITSEC criteria contain a number
of requirements that do not appear in the TCSEC explicitly, and thus, according to the ITSEC,
direct equivalence of evaluation levels is inappropriate.

The ITSEC distinguishes between a "product" which is intended to be useful in a wide range of application
environments, and "system" which is designed and built for the needs of a specific type of environment. The
term "trusted system" is used in this paper to denote either a product or a system that is being evaluated under

one of the criteria.

2 	 The separate evaluation of functionality and assurance was fust documented in the German ll Security
Evaluation Criteria [GISA89].

3 	 TCSEC class Al was omitted from this list because its functionality requirements are identical to those of class
B3.

46

Table 1 Intended correspondence from ITSEC to TCSEC

ITSEC Class TCSEC Oass
Fl/E2 Cl
F2/E2 C2
F3/E3 Bl
F4/E4 B2
F5/F5 B3
F5/E6 Al

However, it is also true that there are requirements in the TCSEC that were not replicated in the
ITSEC. Thus, the correspondence of Table 1 does not work in either direction. Still, it is a good -- ­
starting point for analyzing the differences between the two evaluation criteria.

TCSEC/ITSEC CORRESPONDENCE

As a method of understanding the ITSEC more completely, it was analyzed to determine what
was involved in achieving compliance with an F5/E5 rating and what the impact would be upon
a B3 targeted trusted system that is under development. First the ITSEC was examined to
determine (a) how a trusted system could be evaluated as F5/E5 yet fail to meet B3, and (b) how
a system could be evaluated as B3 yet fail to meet F5/E5. The intention of this analysis was
f'rrst, to understand better the nuances of the requirement language, and second, to determine what
additional work a developer would need to do in order to produce a system that met both criteria.
After the identification of apparent differences, some of the TCSEC authors, some of the ITSEC
authors, and some others met to determine if the apparent differences were really intended.
Among the ITSEC authors, there were representatives both from Germany and the United
Kingdom. The remainder of this report describes the outcome of that meeting. It should be
noted that the participants at the meeting were presenting their own views of the sense of the
groups of which they are a part.

Attributes of Trusted Systems that could Pass F5/E5 but Fail B3

The following sections present statements from the TCSEC and the ITSEC, followed by a brief
statement of intention from the authors. Section or page number references are included. Bold
face type is reproduced from the original; underlining is used to draw attention, but is an addition
to the original text.

1. No DAC or DAC does not apply to all named objects.

TCSEC: 	 §3.3.1.1 ...These access controls shall be capable of specifying, for each
named object, a list of named individuals, ...

47

ITSEC: 	 F5, p. 104 (§ Administration of rights) The system shall be able to
distinguish and administer access rights between each user and/or user group
and the objects which are subject to the administration of rights.

Discussion: 	 The ITSEC drafters indicated that it was their intention to have this F5
requirement correspond to B3. Rework of the ITSEC wording could make
the equivalency more evident.

The ITSEC drafters wanted to avoid the term "named object" since there has
been some controversy about its meaning in the TCSEC. There is ambiguity
in the phrasing of the ITSEC, however. The ITSEC drafters intended for this
requirement to apply to all objects defmed by and visible to users. In any
system there are three classes of objects that might be subject to administra­
tion of rights: i) those that are defined by and visible to users, ii) those that
are defined by the system and may be directly or indirectly visible to users,
and iii) those that are defmed by the system but used at a level below that at
which access control policy is enforced. The objects of class iii) are not
subject to the administration of rights but must be considered in covert
channel analysis. Those of classes i) and ii) are subject to mandatory access
controls. The objects of class i) are subject to discretionary access controls.

The ITSEC drafters· acknowledge that they would like less restrictive language
to apply to lower assurance levels. Progressively more stringent requirements
for applicability of access control were desired as the assurance level rose
within a given functionality class, but given the separation between function­
ality and assurance, it is very difficult for the ITSEC authors to impose such
progressive requirements within one functionality class. The ITSEC authors
are searching for a way to delineate those objects that must be subject to
administration of rights; it may be that the categorization of class i, class ii),
and class iii) above is a way to achieve this.

2. 	 MAC does not apply to all resources directly or indirectly accessible by subjects external to
the TCB.

TCSEC: 	 §3.3.1.4 The TCB shall enforce a mandatory access control policy over all
resources...

ITSEC: 	 F5, p. 106 (§ Verification of rights) With each attempt by users or user
groups to access objects which are subject to the administration of rights, the
system shall ...

Discussion: 	 This is the same problem as above. The wording of the TCSEC is open to
some intetpretation (e.g., whether or not it is intended to apply to a system
console). The intention of the ITSEC authors was to be equivalent to their
perception of the meaning intended in the TCSEC.

48

3. Encrypted storage is not cleared before reuse.

TCSEC: 	 §3.3.1.2 No information, including encrypted representations of information,
. . . is to be available to any subject that obtains access to an object that has
been released back to the system.

ITSEC: 	 F5, p. 107 (§ Object Reuse) All storage objects returned to the system shall
be treated before reuse by other subjects, in such a way that no conclusions
can be drawn regarding the preceding content.

Discussion: 	 The distinction between the TCSEC and the ITSEC was intended. If
encryption is judged adequate to protect data in transmission or storage, then
it should also be adequate to prevent any determination of plaintext from
ciphertext that may be obtained from a reused object.

4. 	 Human readable labels are provided, but not at places specified.

TCSEC: 	 §3.3.1.3.2.3 The TCB shall mark the beginning and end of all human­
readable, hardcopy output.

ITSEC: 	 F5, p. 106 (§ Administration of rights) The system shall mark human
readable output with attribute values. The values of the attributes shall be
determined according to the rules laid down in the system. Authorized users
shall be able to specify the printable name of each attribute value and the
location of the corresponding marking.

Discussion: 	 The distinction between the TCSEC and the ITSEC was intended. It should
be a matter of agreement between system user, system designer, and system
security administrator precisely where the labels are placed.

5. 	 The trusted path mechanism is not available for the user to change security level or to query
the system about security level.

TCSEC: 	 §3.3.2.1.1 The TCB shall support a trusted communication path between
itself and users for use when a positive TCB-to-user connection is required
(e.g., login, change of subject security level).

ITSEC: 	 F5, p. 106 (§Administration of rights) A user shall be notified immediately
of any change in the security level associated with that user during an
interactive session. The user shall be able at all times to display all the
subject's attributes.

Discussion: 	 The authors of the ITSEC have consciously tried to separate functionality
requirements from mechanisms by which those requirements are implemented.
They do not wish to. be prescriptive of specific mechanisms in their
requirements. However, without a trusted path in an F5/E5 trusted system,

49

there is a possibility that an untrusted process could masquerade as the login
process, thereby capturing a user's login and authentication date. This
presents a security threat which, if included in the trusted system's Security
Target (the actual baseline against which the system is evaluated, see Chapter
2 and page 63 of the ITSEC) would need to be identified and countered, for
an ES rating.

The ultimate difference here is that the TCSEC authors felt strongly enough
about the need for a trusted path at the B3 level to mention it explicitly. In
the ITSEC the issue is handled through the suitability of functionality and
strength of mechanism requirements of assurance- effectiveness (§4.2.1 and
§4.2.4). The trusted path is not an explicit requirement of the ITSEC, but it,
or a similarly effective mechanism, would be needed to counter the threat of
a masquerade of the login procedure. Explicit specification of .itnplicit
effectiveness requirements would lead to greater clarity of actual ITSEC
requirements. This is another instance in which a low assurance class might
not necessitate such a strong mechanism as the trusted path, which would be
very appropriate at the higher assurance levels .

.. ~· No identifiable reference monitor exists.

TCSEC: 	 §3.3.4.4 Documentation shall describe how the TCB implements the
reference monitor concept and give an explanation why it is tamper resistant
cannot be bypassed, and correctly implemented.

ITSEC: 	 no such explicit requirement exists

Discussion: 	 The identification of a TCB and implementation of protection through the
reference monitor concept was seen by the ITSEC authors as being associated
with specific security policies and prescriptive of particular mechanisms. On
the other hand, the ITSEC authors recognize the desirability of the reference
monitor concept and TCB in many instances. They intend to use the
effectiveness component of assurance to exclude systems that fail to use the
reference monitor concept when it would have been more appropriate than
whatever approach the developers used. A need for greater specificity of the
effectiveness requirements is recognized, but such specificity is difficult to
achieve while maintaining the goal of policy generality. It is of course open
for the person defming the security target for an ITSEC F5/E5 evaluation to
mandate the use of particular types of mechanism, for example a reference
validation mechanism implementing the concept of a reference monitor.
Clearly, this then constrains the developer to follow a TCSEC-like approach.

7. TCB not appropriately structured

TCSEC: 	 §3.3.3.1.1 The TCB modules shall be designed such that the principle of
least privilege is enforced. . . It shall make effective use of available hardware

50

to separate those elements that are protection critical from those that are not.
The TCB shall be designed and structured to use a complete, conceptual­
ly simple protection mechanism with precisely defined semantics. · This
mechanism shall play a central role in enforcing the internal structure of
the TCB and the system. The TCB shall incorporate significant use of
layering, abstraction, and data hiding. Significant system engineering
shall be directed toward minimizing the complexity of the TCB and
excluding from the TCB modul.es that are not protection critical.

ITSEC: 	 no such explicit requirement exists

Discussion: 	 This issue is essentially the same as the trusted path issu~ explored above.
All of these structuring requirements were seen by the ITSEC authors as
prescribing mechanisms that would be very appropriate in many situations but
might not be appropriate in all. Their intention is to treat this issue in the
effectiveness section. It is likely that this issue will be addressed in a manual
for evaluators, by way of example.

Observation: 	 The TCSEC and ITSEC authors recognize these last two points as defmite
differences between the TCSEC and the ITSEC. If a developer wants to
achieve both F5/E5 and B3 evaluations, the developer will want to plan to
meet both sets of requirements. The ITSEC authors recognized that exact
correspondence with the TCSEC was impossible within the ITSEC scheme.
They have indicated that their intention was that trusted systems evaluated at
the F5/E5 or the B3 level should yield equivalent assurance of enforcement
of the defmed security policy.

Attributes of systems that could pass B3 but fail F5/E5

1. Fail to provide a read-only access mode.

TCSEC: 	 §3.3.1.1 These access controls shall be capable of specifying, for each
named object, a list of named individuals •.. with their respective modes
of access to that object.

ITSEC: 	 F5 p. 104, (§ Administration of rights) It shall also be possible to restrict a
user's access to an object to those operations which do not modify it.

Discussion: 	 Since many commercial clients are concerned with controlling the ability of
a user to modify information but are not concerned with whether the user can
read the data, the existence of read;.only access mode is deemed important.

51

http:modul.es

2. Fail to provide labels for subjects and objects internal to the TCB .

. TCSEC: 	 §3.3.1.4 The TCB shall enforce a mandatory access control policy over all
resources ... that are directly or indirectly accessible by subjects external to
the TCB. These subjects and objects shall be assigned sensitivity labels ...

ITSEC: 	 F5, p 105 (§Administration of rights) In addition, the system shall provide
all subjects and objects ... with attributes.

Discussion: 	 The words as currently written do not convey the intended meaning of the
ITSEC authors.

3. 	 Fail to provide design documentation for non-TCB elements.

TCSEC: 	 no requirement

ITSEC: 	 §3.6.1.1.1 The sponsor shall provide the following documentation ...
structured description of the detailed design.

Discussion: 	 The ITSEC authors indicated that their intent was for design documentation
to be required only for parts of the system critical to the enforcement of
security.

4. 	 Use a non-validated compiler.

TCSEC: no requirement

ITSEC: §3.6.1.2.2 b) The used compilers shall be validated e.g., approved by an
appropriate body.

Discussion: This requirement was discussed at the Brussels conference; it is expected that
the requirement will be reworded.

5. 	 Use a non-rigorous notation for the architectural design.

TCSEC: 	 no requirement

ITSEC: 	 §3.6.1.1.3 c) The architectural description shall use some form of rigorous
approach and notation.

Discussion: 	 The concept is appropriate for reconsideration by ITSEC authors. At the
Brussels conference, a number of inconsistencies were reported in Chapter 3
of the ITSEC. Rewording of requirements is likely.

52

6. Provide no mathematical analysis of design refmements.

TCSEC: 	 no requirement

ITSEC: 	 §3.6.1.1.4 c) Mathematical reasoning shall be used to show that each
hierarchical level is a refinement of the previous level.

Discussion: 	 The intention of the ITSEC authors was to support traceability between levels
of the design. The term "logical" is perhaps a better choice than "mathemati­
cal" to express the ITSEC authors' intent of supporting traceability.

7. Include functions with side-effects.

TCSEC: 	 no requirement

ITSEC: 	 §3.6.1.1.4 c) An analysis of the detailed design for side effects shall indicate
that none exist and that no additional functionality is present which would
allow the security mechanisms to be bypassed.

Discussion: 	 This distinction is both semantic and substantive. In some European
evaluation circles, a "side effect" is something that a trusted function does
which is security-relevant and which the function is not intended to do. In
the U.S., "side effect" is used more broadly to mean any effect beyond the
defined functionality. The narrower usage is consistent with the intention of
the TCSEC as described under Security Testing (§3.3.3.2.1) as "their [testers']
objectives shall be: to uncover all design and implementation flaws ... " The
intention of the ITSEC authors was to prohibit side effects that could
undermine the security policy enforcement. The difficulty in designing a
completely side-effect free product is acknowledged. The ITSEC wording
could be clarified.

8. Fail to map security functions to mechanisms.

TCSEC: 	 no requirement

ITSEC: 	 §3.6.1.1.4 b) It [the specification document] shall also map security
functions to mechanisms and functional units.

§3.6.1.1.4 c) It shall be shown that the security mechanisms provide the
security functions stated in the security target.

Discussion: 	 This requirement was intentionally included by the ITSEC authors; however,
it is anticipated that this requirement might be met by a level-by-level
analysis as part of the philosophy of protection required by the TCSEC.

53

9. Fail to identify all non-local variables.

TCSEC: no explicit requirement

ITSEC: §3.6.1.1.4 b) All variables used by more than one functional unit shall
defined at the lowest level of the spedfication and their purpose shall
explained.

be
be

Discussion: This requirement was intentionally included . by the ITSEC authors
extension of the TCSEC.

as an

·10. 	 Provide inadequate configuration management tools by (a) failing to illustrate item
relationships or (b) failing to identify security relevant changes.

TCSEC: 	 no explicit requirement

ITSEC: 	 §3.6.1.2.2 b) All objects created during the development process, such as
design documents, source code, and other dependent data shall be subject to
configuration control. ... In the event of a change of any of these objects, the
tools shall be able to identify all objects affected by this change. The tools
shall support the determination of whether a change is security relevant.

Discussion: 	 This requirement was intentionally included by the ITSEC authors as an
extension of the TCSEC. Part (b) was not intended to be extreme; its
intention was to force the developer to separate the code into a part that was
security relevant and a part that was not. Changes to only the security
relevant code were to be tracked; and any change to security relevant· code
was to be tracked.

11. Provide inadequate vulnerability analysis.

TCSEC: 	 No general vulnerability analysis requirement exists, but sections 3.3.3.1.3 and 3.3.3.2.1 require

covert channel analysis and penetration testing, respectively.

ITSEC: 	 §3.6.1.1.4 b) The design vulnerability analysis shall determine any ways in
which it is possible for a user of the TOE to deactivate, bypass, corrupt, or
otherwise circumvent the security afforded by the TOE as configured by a
security administrator.

§3.6.1.1.5 b) The implementation vulnerability analysis shall determine
any ways in which it is possible for a user of the TOE to deactivate,
bypass, corrupt, or otherwise circumvent the security afforded by the
TOE as configured by a security administrator, based on the source code.
It shall identify covert channels.

54

Discussion: 	 The ITSEC authors recognize that defming what constitutes an adequate
vulnerability analysis is difficult, especially for systems and products that
span a collection of varying security policies. The authors intend to include
more specific guidance in the manual for evaluators. For the present, in
confidentiality-preserving systems, the authors' intent was that penetration
testing and covert channel analysis suffice for a vulnerability analysis.

Comment: 	 With respect to penetration testing, the ITSEC authors expect that the
developer and the evaluators will be in a cooperative, not an adversarial,
relationship. The developer will undoubtedly perform some amount of
penetration testing; notes on the analysis required to hypothesize penetrations
and the tests performed to validate the hypotheses will reduce the amount of
work the evaluators need to perform for penetration testing.

Moreover, covert channel analysis is only applicable under certain circum­
stances, i.e., where the security policy concerns confidentiality and the threat
of covert channel attack is included in the Security Target. Thus it may be
better to move the covert channel analysis requirement (pages 57, 65, and 73
of the ITSEC) from Chapter 3 to the predefined functionality classes F4, F5,
and F6.

12. Fail to use test coverage tools.

TCSEC: 	 no requirement

ITSEC: 	 §3.6.1.1.5 b) The test documentation shall contain plan, pwpose, procedures
and results of . the tests, the extent of test coverage, the metric used for
calculating extent, and a justification why the coverage is sufficient.

Discussion: 	 The intent of the ITSEC authors was to require evidence of degree of test
coverage by developers for individual functional units and for the trusted
system as a whole. Because of the size and complex functionality of some
trusted systems, extensive, let alone complete, test coverage is difficult to
achieve. The developer and evaluator should know and be able to document
what has been achieved through testing.

13. Fail to provide trusted distribution.

TCSEC: 	 no requirement

ITSEC: 	 §3.6.2.2.2 b) A procedure approved by the certification authority for this
assurance level shall be followed, which guarantees the authenticity of the
delivered TOE.

Discussion: 	 This is an intentional requirement that extends the TCSEC.

55

14. Fail to provide checks against maintenance without agreement of the· security administrator.

TCSEC: 	 no requirement

ITSEC: 	 §3.6.2.2.3 b) No maintenance shall be possible without the agreement of the
administrator.

Discussion: 	 This is an intentional requirement that extends the TCSEC. Constraints in the
trusted system are required so that the agreement of the administrator is
assured before on-line maintenance is performed.

15. Fail to identify all security mechanisms and their interrelationships.

TCSEC: 	 no explicit requirement

ITSEC: 	 §3.6.1.1.4 b) It [the specification document] shall explain the realization of
all security functions through all levels of design hierarchy, and identify all
security mechanisms.

Discussion: 	 This requirement was intentionally included by the ITSEC authors. The
requirement should be met by the philosophy of protection required by the
TCSEC.

16. Fail to provide security functions that are adequately easy to use.

TCSEC: 	 no requirement

ITSEC: 	 §4.3.1 a) Under this aspect of assessment, the security functions and
mechanisms of the TOE are assessed for their practicality of use in actual live
operation.

Discussion: 	 This requirement was discussed in Brussels. It is likely to be reworded to
make it more objective.

SUMMARY

As indicated by the previous sections, although they are similar, the F5/E5 and B3 requirements
are not identical. Without explicit effort to meet additional requirements, a system targeted at
one rating would not meet the other. An F5/E5 targeted system must meet additional or more
constrained requirements on system structure, trusted path, labels on printed output, and object
reuse. A B3 targeted system must take additional effort with system development practices,
trusted distribution, and maintenance controls. Expressed another way, an F5/E5 system has
more architectural freedom than B3 in achieving high assurance· of confidentiality while a B3
system is less constrained in its development practices. For a B3 targeted system to achieve an
F5/E5 rating, the following additional requirements must be met:

56

* Provide detailed design specifications with mappings between design levels.

* Use more elaborate configuration management tools.

* Use test coverage tools for unit testing.

* Develop trusted distribution procedures.

* Incorporate security administrator authorization for maintenance.

Analyzing the TCSEC to determine the impact of compliance with F5/E5 requirements upon a
B3 system proved to be a very useful technique for determining the relationship between the
ITSEC and the TCSEC. It caused the questions to become specific enough so that productive
dialogue could take place with ITSEC authors to clarify the meaning of particular requirements.
This resulted in better understanding of the document as a whole by those more familiar with the
TCSEC and realization of the implications of ITSEC wording by its authors. In thirteen cases,
specific intentional differences between the TCSEC and ITSEC were identified. In two instances,
the participating authors felt that changes in the ITSEC were likely. Wording changes to clarify
intent were deemed essential in nine cases. In two instances, the authors felt that clarification
would occur in the manual for evaluation that is anticipated in the future.

Although the analysis of F5/E5 and B3 requirements does not provide a general comparison of
the ITSEC with the TCSEC, it does serve to clarify some of the intended similarities and
differences in the two documents. As such, the dialogue that ensued cannot but lead to the
development of more precise and understandable criteria.

Since its first publication in 1983, there have been at least two broad types of criticism levied
at the TCSEC. The first is that parts of it are ambiguous and imprecise. The TCSEC authors
freely admit that there are inadequacies in the document. The ITSEC authors have tried to
eliminate some of the difficulties of the TCSEC. Many of these points where the authors of the
ITSEC have intentionally varied with the written or interpreted TCSEC lead to points where the
ITSEC is stronger than the TCSEC. Being human, however, the ITSEC authors in their own
writing have introduced ambiguity and imprecision which, ideally, will be clarified in future
drafts. This paper has identified both points of intentional variation of the ITSEC from the
TCSEC, and points of ambiguity in the current draft of the ITSEC.

A second major criticism of the TCSEC is that its binding of functionality and assurance into a
single digraph class is too restrictive. The authors of the ITSEC have chosen to separate
functionality and assurance completely, so that for example, evaluation of a high assurance­
limited functionality trusted system becomes a possibility. Also, the authors of the ITSEC have
decided to broaden its applicability by allowing the evaluation of trusted systems whose policy
is other than confidentiality. These goals extend the applicability of the ITSEC beyond the range
of trusted systems for which the TCSEC is appropriate. These goals also have the unfortunate
side effect of allowing only minimal requirements to be posed for either functionality or
assurance. To mandate specific mechanisms would be inappropriate since different policies may
require different mechanisms. At low assurance levels, one might be willing to accept modest

57

functionality, but one would want more stringent functionality requirements as the assurance level
rises. Given the absolute separation of features from assurance, it was impossible for the ITSEC
authors to impose such progressive requirements. While the ITSEC authors have addressed the
excessive restrictiveness in the TCSEC, they have also become susceptible to the problems of
generality.

The authors of the ITSEC used different premises and language then the TCSEC and thereby
created an evaluation document that is close but not identical to the TCSEC. As has been
identified in this analysis, some of the variations between the ITSEC and the TCSEC were
intentional, while others were not. A goal of this analysis has been to clarify the differences so
that as the authors of the ITSEC refme their criteria, only the intentional differences will remain.
However, ignoring the predefined functionality classes (which are in any case only exemplary),
the ITSEC represents a catalogue of evaluation criteria, whereas the TCSEC is a mixture of
evaluation criteria and security requirements. The ITSEC does not (nor was it intended to) tell
anyone what to build, only how to evaluate what has been built.

REFERENCES

[ITS90] Information Technology Security Evaluation Criteria, Draft version 1, May 1990.

[GISA89] German Information Security Agency, IT-Security Criteria, version 1, 1989.

[TCS85] National Computer Security Center, Trusted Computer System Evaluation Criteria,
DOD 5200.28-STD, December 1985.

58

AUDITING OF DISTRIBUTED SYSTEMS

D. Banning, G. Ellingwood, C. Franklin, C. Muckenhirn, D. Price

SPARTA, Inc.

7926 Jones Branch Drive

Suite 900

McLean, VA 22102

Security auditing systems are used to detect and assess unauthorized or abusive
system usage. Until recently, security audits have been confined to a single computer
system. Current work examines ways of extending auditing to include heterogeneous
groups of computers (distributed systems). This paper examines the issues involved
in auditing distributed systems, presents the framework for a Distributed Auditing
System (DAS), and proposes a design for the audit reporting elements of the DAS.

INTRODUCTION
Security auditing for computer systems is the collection and analysis of computer system usage

information used to ascertain the security posture of a computer system. Until recently, auditing has
been performed only on a local basis, that is, information collected was logged on the system under
audit. While this is a reasonable approach in an environment where there are few hosts that
require auditing, as the number of hosts requiring audit increases, it becomes difficult to 1) examine
the audit trails, 2) analyze the information and correlate events on one host to events on others, and
3) maintain consistent levels of audit collection. A further complication in large networks is the
probable use of a variety of computer systems, each potentially having a different auditing
mechanism, reporting syntax, and audit trail.

This paper presents an architecture for the collection of audit data in a distributed
environment. One of the goals of this document is to relate the Distributed Audit System (DAS)
architecture to the large body of work currently being done in the area of intrusion detection.

We are providing a method for presenting system-independent audit information and
transportation of the information for analysis by a security officer or intrusion detection system at a
central node in a distributed network. Our approach is expected to complement intrusion detection
systems, not to compete with them.

Overview
The primary purpose of this paper is to describe a concept for auditing security-relevant events

in a distributed environment. To accomplish this goal we defined the relevant audit issues, outlined
the specific goals of auditing, and put our work in perspective with ongoing intrusion detection
projects. These are briefly outlined here in order to accomplish the main focus as described above.
An in-depth discussion of these issues can be found in the draft report delivered to Lawrence
Livermore National Laboratory in September of 1990 and referenced in the bibliography.

The issues relevant to distributed auditing include: what data should be collected, how to
transport audit data from a collection point to an analysis point, the system-independent audit data
representation, the user interface and user invoked functions and the control of audit functions from
a remote location. These are all issues that have been addressed in the concept and design of the
DAS architecture as presented in Figure 1.

Other issues that are more appropriate for research by developers of intrusion detection
systems include: data storage for subsequent retrieval and damage assessment, formulation of audit
records into "security events" and anomaly detection from a set of events. What constitutes a good
intrusion detection algorithm for network use is being addressed by projects such as Intrusion
Detection Expert System (IDES), Haystack and the Network Security Monitor (NSM).

59

AUDIT
Audit Server for:
Host A
HostB
Audit Manager 2

AGENTS

A , ~ADCS
Audit Manager 2

Audit Server for:
Host A
HostC
HostD
Audit Manager 1

Figure 1 Distributed Auditing System Conceptual Architecture

GOALSOFAUDITING
This section briefly summarizes the goals of auditing and serves to establish the requirements

for the design.
Security auditing is a broad function that can include the definition of security events, the

creation of audit records, the real time analysis of these records for indications of anomalous
activity, the archiving of these records for subsequent analysis, and the postmortem analysis of
these archived records for various purposes.

From a security objectives standpoint, one of the more important goals of security auditing is
that of providing for individual accountability, such that an individual knows with certainty that
he is to be held accountable for his actions. This alone may serve as a major deterrent to abusive
behavior. ·

Other related requirements for audit records are summarized below:
Intrusion Detection: the ability to detect suspicious activity through the use of user profiles
Real Time Monitoring: the ability to monitor activity on a system in order to detect

unauthorized activity
Damage Assessment: the ability to determine what was compromised
Attack Reconstruction: the ability to understand how an attack was carried out (i.e., in order

to design effective countermeasures to guard against future attacks of the same type)
Damage Recovery: the ability to recover from whatever damage may have occurred
Each application may require an additional set of information that the security auditing

system should collect. A good auditing system should address all applications that have a
requirement for audit records.

The approach has been to define an overall security auditing architecture with functions and
mechanisms for the collection and management of audit-related data, and allowing for the future
refinement of these mechanisms to serve advanced requirements such as computer analysis.

DAS CONCEPT EVOLUTION
The history of the DAS began in 1988 with the initial concept of a "virtual audit trail". It

has evolved into the current definition of a set of network management protocols to control the
collection of audit data

60

Initial Coru;cpt
The origiJ.:tal concept defined a standard representation of a canonical audit trail that could be

used by the current audit analysis tools. Standard form records collected on multiple machines could
be analyzed by a single security monitor for an entire network of systems. This concept evolved into
the notion of a "virtual audit trail" and a related set of protocols for transporting data in a common
format. In considering complex situations where multiple "audit messages" are needed to compose a
single "network virtual audit message", a method w.as considered where the "translation" would be
performed at the application level and the presentation protocol would be used for local data­
representation translation.

Different types of transport protocols such as, TCP, UDP and VMTP were considered with
respect to the selection of transport reliability, duration of calls and use of network resources. The
main difference between the different transport protocols is in how they move data (e.g., as
independent blocks of data or as a continuous stream of bytes) and how reliability is achieved.

Evolution of the Concept
An architecture for distributed auditing developed as mechanisms were described for collecting

data from multiple host systems in a network for a multitude of purposes (e.g., real time intrusion
detection or after the fact analysis resulting in damage assessment). The architecture provides a
framework for a set of application/transport level protocols for transmission of auditing data, and a
management protocol for controlling the local host (e.g., setting thresholds and synchronizing clocks)
from a remote location.

A top level outline of a DAS was developed and documented in a report delivered to LLNL in
September 1989. Later, the notion of an auditing protocol was extended to address both the
transmission of data from the Audit Agent (AA) to the Audit Manager (AM) and the control the
operation of the AA from the AM. The names of these components have evolved to allow
association with terms more commonly used in network management.

The belief is that the AM can send commands to the AA (via the Audit Data Communication
Service (ADCS))to increase granularity of monitoring, to audit specific users in detail, to audit
accesses to specific files, to audit specific system calls, log all traffic to/from a specific
node/terminal, take a snapshot core image, etc. Thus the security officer, sitting at a workstation
connected to the AM, can control the auditing throughout the entire network and can respond quickly
to newly discovered attacks (e.g., as those reported on the networks by CERT and LLNL's CIAC).

The machine that supports the AM can also have a back-end connection to a system that
interprets the audit information for real time detection of anomalous events. An extension is to
allow such a system to signal the AM to increase the fidelity of monitoring, etc., much as a human
security officer would respond to detected anomalous events. The concept can be further extended to
the idea of multiple AMs, where. each community of interest can have its own AM, allowing logical
subnets for which each AM collects audit data.

Network Mana&ement as a Model for Audif:in&
SPARTA's Networking Research group is heavily involved in the design and development of

network management protocols. Struck by the similarity between collecting audit data and
collecting performance data, they suggested that we· examine the work in the network R&D
community that is leading to the definition of network management protocols providing mechanisms
for collecting data from various nodes in a network. They observed that, since the mechanisms for
controlling the collection process and for reporting it to a central site are similar, the same protocols
might be used for both purposes. ·

A review of the evolving specifications for the upcoming Common Management Information
Protocol (CMIP), the related CMI Service (CMIS) specification, and the Management Information
Base (MIB) which defines the data elements showed the similarity between collecting data in a
network for network management and collecting security-relevant data elements.

A copy of CMOT (CMIP running over TCP) was obtained from the University of Wisconsin and
was evaluated on the company's internal LAN to determine whether it could be easily extended to
collect the network security data elements.

61

We concluded that network management protocols provide a good model for our DAS design
and the network auditing architecture and design presented in this document is based on the premise
of extending the network management protocols currently being defined to incorporate provisions for
the collection of security events. ·

The DAS concept now includes the following:
1. 	 An application for collecting data and transforming it to a network virtual

representation. This requires a format and semantic meaning for audit records
2. 	 A transport protocol for transmitting the audit records.
3. 	 A management protocol for dispatching commands from the central site to ·the

remote node that requires a format and semantic meaning for the commands (i.e., to
instruct the remote node how to behave upon receipt of each command).

AuDITING AS A NETWORK MANAGEMENT FuNcTION
Network management protocols provide a mechanism for transmitting network performance

information from remote nodes to a central collection point. As mentioned earlier, the collection and
reporting process for performance data and audit data are very similar. Therefore, the network
management protocols can serve as a "model" for collecting, reporting, and transmitting audit
information in a distributed network. Below is a brief description of network management protocols
and their applicability to audit functions.

Introduction to Network Management
Network management is accomplished by managers at local management stations and agents at

remote managed nodes exchanging monitoring and control information via protocols and· shared
conceptual schema about a network and its components. The shared conceptual schema mentioned
above is a priori knowledge about "managed objects" concerning which information is to be
exchanged. Managed objects are abstractions of system and networking resources (e.g., a protocol
entity, an IP routing table, or in this case, auditing resources) that are subject to management.
Managed objects have attributes, operations, and notifications that are visible to managers. The
internal functioning of the managed object is not visible to the manager. Currently, an agent is
responsible for conversions between a managed system's internal format of managed objects and the
external format of managed objects (i.e., the form expected by the manager).

Using management services and protocols, a manager can direct an agent to perform an
operation on a managed object for which it is responsible. Such operations might be to return certain
values associated with a managed object (i.e., get a variable), to change certain values associated
with a managed object (i.e., set a variable), or perform an action, such as self-test, on a managed
object. In addition, the agent may also forward to the manager notifications generated
asynchronously by managed objects (e.g., send updates periodically).

Network Management Architecture
The network management architecture described here consists of a Management Information

Base (MIB) containing a list of managed objects, the International Organization for Standardization
(ISO) Common Management Information Services (CMIS)/Common Management Information Protocol
(CMIP) Manager and Agents. The Managers and Agents exchange information based on the managed
object definitions contained in the MIB, and the ISO network management protocols that facilitate
the exchange of this information.

Management Information Base <MIB>
A MIB is a list of managed objects, described in external format, which are considered useful

for a particular application. The Internet MIB contains managed objects that are read-only (since
current management protocols are not sufficiently secure to exert control, as would be the case with
writable objects), and help a manager determine the status of the network elements. Using the
Internet MIB as a model, it should be possible to develop an audit MIB.

62

CMIS/CMIP Manaser and Agents
The Common Management Information Services (CMIS) are provided by the Common

Management Information Service Element (CMISE). The Common Management Information Protocol
(CMIP) supports these services. An invoking CMISE-service-user, or "manager", may invoke a
management operation. A performing CMISE-service-user, or "agent'', is the process that performs a
management operation invoked by a "manager." A CMIS/CMIP manager and agent applications
could use adaptations of the ISO Common Management Information Service Element (CMISE) to
exchange information and commands for the purpose of auditing.

CMISE provides facilities for a managed "agent'' to send multiple linked responses to a
manager. An audit agent could use this type of service to send detailed information to an audit
manager. ··

CMISE also provides to managers the ability to "multicast'' operations to be performed on a
group of managed objects. Through CMISE services, a manager can perform a single operation on a
group of managed objects. A distributed audit mechanism could use such a service to assist in
responding interactively to network attacks.

4.3 	 Uses of CMIP in Distributed Auditin&
CMIP offers a mechanism to transmit information between agents and managers in a

distributed network. The components of the auditing system could use the network communication
services offered by CMIP.

AMs located on remote network nodes can send messages to audit applications located on many
different local nodes. Audit applications would use the same services to send audit information to
the AMs. The advantage of using CMIP for such communication is that a rudimentary mechanism
already exists through the CMISE services.

To implement a distributed audit capability using the CMIP protocol for communication, the
CMIP protocol would have to be extended. Additions to CMIP would include definition of message
types to transmit between manager and agent and specification of what information is expected of
both the manager and the agent.

DISTRIBUTED AUPIT SYSTEM DESIGN
The design of the DAS consists of 4 major components, Virtual Audit Trail (VAT), Audit Agent

(AA), Audit Manager (AM), and Audit Data Communication Service (ADCS) as depicted in Figure
2. 	The functions performed by each of these components are discussed below.

Security of the DAS is critical to a successful implementation of audit services. Without the
implementation of security principles, a DAS may be attacked and rendered useless in either
detecting an attack on other computing resources or in assessing the cause and extent of any resulting
loss.

The DAS Architecture incorporates three security principles: access control, data integrity,
and assured delivery of messages. In light of this: 1) only specifically authorized individuals
(usually a security officer) may change the selection of audited events on a system or cause the audit
reporting mechanism/process to stop; 2) audit reports must not be modified while in storage or in
transit to storage (over the network); and 3) audit reports that are generated and transmitted to a
manager must be received.

Vlrtual Audit Trail <vAn
The VAT is formulated from audit information sent from the AA to the AM. A virtual audit

record is distinct from what is recorded on a particular host. It is 0/S independent and reflects
security relevant events and must be inclusive enough to fulfill any of the goals outlined in Section 2.
The virtual audit record is unrestricted by what the local site security policy defines as security
relevant.

To determine what constitutes such an audit record we should examine several areas:
1) look at the auditing done by particular 0/Ss, determine the security relevant

events and include these in the virtual audit record,

63

HOST

PRESENTATION
SERVICE

TCP

NETWORK
SERVICE

ADCS

PRESENTATION
SERVICE

TCP

SERVICE

Figure 2. Distributed Audit System Design

2)

3)

look at the current audit analysis tools and catalogue what events are needed by
each of them for their particular analysis, and
look at what events have triggered discovery of incidents in a real situation (e.g.,
Cliff Stoll's incident, etc.).

Using the above information, a set of record types that represent different types of events can
be defined. For each type of record, the variables that define that event are determined These
audit records constitute the VAT at the AM.

Once the contents of the audit records have been defined, a MIB of audited elements is
specified for use with the network management protocols. An audit MIB contains managed objects
considered essential for auditing.

Auciit A&ent (M)

The AA consists of a process running on each network host and has three principle functions:
selecting audit events for forwarding to the AM, translating host-specific information into a
"virtual" format, and responding to commands from the AM.

The AA sends selected audit information from the host to the remote AM. In a distributed
network, each host would have an AA and would report to a number of AMs. The AA examines the
audit records generated by the host's 0/S and determines what information to forward by examining
an audit table.

64

Forwarding Audit Events
This audit table, depicted in Figure 3 is maintained and updated in response to commands from

the AM. The use of the audit table allows each site to send audit reports based upon the site's
individual security policy.

The audit table tells the AA which events to send as event reports, which to send as event
summaries, and which to ignore. An event report is a detailed record containing information such as
the userid, command invoked, network address, and any related fields specific to a particular event.
An event summary reports the frequency and number of a particular event per some unit time. The
event summary could be useful in a real-time situation where limited specific information is needed
quickly (e.g., when an intrusion is suspected and more information is needed).

The audit table is read by the AA upon initialization. The audit table has the structure of
usemame, event, report, and summary. The username field indicates which user's activities are to
be audited. The event field indicates what event to audit. The report field is a boolean value that
indicates if an event report is to be sent to a Audit Manager. The summary field is also a boolean
value that indicates if an event summary is to be sent to the Audit Manager. Usually, the event,
and report fields are mutually exclusive, i.e., you either send an event report or an event summary
but not both. Finally the AM field indicates to which audit manager(s) this event should be
reported.

Translating Host-Specific Information
The AA will use a language tailored to each 0/S to perform translation of host-specific

information to a "virtual" format. The language will consist of a set of verbs and nouns which
express all the audit events to be used in the DAS. It is expected that this language will be
extensive in order to express all the required information with the desired level of granularity.

Using this approach, logon reports could be as simple as ''Joe logged on at 1:30'' or as complex
as "Sam, aliased to Joe, logged onto host Euler from host Kepler, whose internet address is
192.48.111.1, via the Internet gateway 192.5.8.1, on 26 June 1989 at 1:30pm." Each of these reports is
optimal for the information they contain. Each report relays all the information available from
their respective 0 /Ss without loss or overhead.

Re!ij?onding to Commaruts from the AM
The audit information collected by a particular AA is determined by local security policy.

What subset of this information is sent to the AM is predetermined by the AA's audit table.
Though this information would be periodically updated by the AM, it would be useful to have the
ability to request further information from the AA.

The DAS provides the AM the capability of controlling the operation of the AA through a
series of commands sent via the ADCS. These commands allow the AM to request increased
granularity of audit information on specific: users, files, system calls, resources, and node/terminal
traffic. Upon receipt of the commands the AA processes them, performs the necessary action and
provides a response. If the necessary action cannot be performed (e.g., user has logged off and no
further information can be obtained), a response indicating the inability to complete the task is
formulated.

Audit Manager CAM>
The AM consists of three components: Audit Record Manager (ARM), Security Officer Interface

(SOl) and the Intrusion Detection System (IDS). The AM acts as a centralized control center for
audit information transmitted from distributed hosts. The three components of the AM work closely
together to provide these services: collection/ correlation of audit information, interpretation of
audit information, and notification of the AA to take further action. Figure 4 shows the logical
interrelationships between the AM components.

Audit Record Manager <ARM>
Upon receiving audit records from the AA, the ARM updates the audit database with the new

information. Some maintenance functions are provided automatically (e.g., archiving and deletion
of duplicate entries). Other functions are provided through a set of security officer queries entered

65

AUDIT MANAGER

Aocs.-t-----t

AUDIT RECORD
FILE

Figure 4. Audit Manager Architecture

through the SOl· (e.g.,) deletion by record, correlation of audit entries and record retrieval. The
ARM initiates transmission of audit table updates at specified time intervals. The ARM also has
the capability of sending audit table updates upon instruction from the SOl.

A primary purpose of the audit database is to provide the necessary information for the IDS
for identifying suspicious activity. Querying of the audit database can be done through the IDS or
via the SOl and controlled by the ARM.

The ARM also provides correlati~n of incoming audit information from different hosts. This
correlated information is then given to the IDS for analysis. Correlation of information is important
for those networks where the same user utilizes different hosts such that a complete set of audit
information can be given to the IDS for analysis.

Security Officer Interface (SOl)
The SOl provides an information display and command processing capability. The SOl

display will use a window structure to provide graphical display of detected anomalies, security of
the network and status of AM functions. A command capability will be provided for issuing
commands to the AA for additional audit information. A menu of frequently used commands will be
provided as well as a command line option.

Intrusion Detection System (IDS)
The IDS to be used with the Distributed Audit System is not specified in this design, but

treated as a "black box" that uses the audit records maintained by the ARM to detect suspicious
activity. The IDS used for this function can be any of the current systems available. The
configuration or function of the IDS is independent of its use for this DAS design.

The DAS will provide audit records to the IDS for analysis of user activity. The security
officer will then be able to send a command to the AA requesting an additional granularity of
information on a particular user. For example, if the AM receives an event summary that user Joe
has used the telnet command 50 times in the past hour and this activity is outside of Joe's user
profile (according to the IDS), the AM can send a message to the AA asking to see all the commands

66

issued by Joe. When the AA receives this request, it would modify the audit table to reflect the
request to moni~r Joe more closely.

However, if an IDS is used that does not perform real-time monitoring, the additional
information available will be limited to that already in the AA audit trail since the user will most
likely not be active.

Audit Data Communication Service <ADCS)
The ADCS provides the necessary communication services for transporting messages between

AA and AM. To enable an AM to control the functions of an AA, services currently defined by CMIS
could be adapted for use in the ADCS. Using the network management services provided by the
ADCS, the AM could request the AA to provide additional audit records on a particular user or
event, change the events being audited, set/reset audit thresholds, and provide event reporting at
specified intervals.

The automatic reporting of audit events to the AM from the AA could be accomplished using
theM-EVENT-REPORT service which is invoked by the AA at specified intervals.

Using the CMIS management services and CMIP protocol, the manager can direct the agent to
perform an operation on a managed object for which it is responsible. The following services would
be invoked by the AM to make requests of an AA:

M-GET: Used to request additional audit records from the AA for increased granularity
from existing audit records.

M-SET: Used for setting/resetting AA audit thresholds from the AM.
M-ACTION: Used to increase collection of data by modifying an existing parameter

(e.g., change the system files to be audited).
M-CREATE: Used to request an AA to audit new events for a particular user.
M-DELETE: Used to request AA delete audit records, audit events or an audited user due

to changes in operation.
The ADCS must also provide the security services of data confidentiality, data integrity

during transmission and assured service of messages.

01HER ISSUES AND fUTURE DIRECTIONS
As indicated in the overview section, many issues were considered in the DAS design and not

all of them can be thoroughly discussed here. To fully define the DAS design, it is necessary to
resolve some additional audit issues that are currently being researched. These include, but are not
limited to the security and technology issues outlined briefly below.

Security issues related to the building of a DAS include:
• Assurance - both in the case of being assured that the AA is performing as it should

and in the case of being assured that the AM is secure from penetration;
• Transmission security - the information flow from the AAs to the AMs and vice versa

must be secure; and
• Network Management Protocol Security - while work is ongoing in this area, the

idea is still fairly new.
Technology issues facing the successful implementation of a DAS include:
• Commercial Marketability;
• Anomaly Detection Capability - the testing of; and
• Time Stamping - addressing the delays related with heterogeneous hosts.
All of these issues can be addressed via prototyping, which is the next step in the process.

67

BIBUOGRAPHY

[1] 	 DOD5200.28-STD, DOD Trusted Computer System Evaluation Criteria (TCSEC),

December 1985.
[2] 	 International Organization for Standardization (ISO)/International Electro­

technical Commission (IEC) 9595, CMIS, 6 December 1989.
[3] 	 International Organization for Standardization (ISO) /International Electro­

technical Commission (IEC) 9596, CMIP,6 December 1989.
[4] 	 Internet Request For Co:mments {RFC) 1156, MIB, May 1990.
[5] 	 Internet RFC 1155, Structure and Identification of Management Information for

TCPliP-based Internet (SMO, May 1990.
[6] 	 Internet RFC 1095, The Common Management Information Services and Protocol

over TCP /IP {CMOT), April 1989.
[7] 	 NCSC-TG-001, Version 2, A Guide to Understanding Audit in Trusted Systems, 1

June1988.
[8] 	 NCSC-TG-005, Version 1, Trusted Network Interpretation, 31 July 1987.
[9] 	 SPD1003.6, Draft 2, Security Interface for the Portable Operating System Interface

for Computer Environments, 4 June 1989.
[10] 	 Auditing of Distributed Systems (Draft), SPARTA, Inc., 28 September 1990
[11] 	 Survey of Sudit Trails and Audit Analysis Tools, SPARTA, Inc., 3 March 1989

68

BUILDING A MULTI-LEVEL APPLICATION

ON AN UNTRUSTEP DBMS

IN A UNIX SYSTEM YIMLS ENVIRONMENT

-A PROJECTS EXPERIENCE

David S. Crawford

Directorate of Security Operations

Department of National Defence

National Defence Headquarters

101 Colonel By Drive

Ottawa, Ontario, Canada K1 A OK2

(613) 993-6775

ABS'IRACI' 	 The procurement option of using an untrusted DBMS on a TCB where both trusted system and
DBMS functionality is required is briefly discussed in Appendix B of the Trusted Database
Interpretation. This paper discusses an approach proposed for aCanadian Deparunent of National
Defence project to design and implement several multilevel multiuser DBMS-based applications
using an untrusted DBMS on a Bl UNIX® TCB, and the design and operational constraints
imposed by this solution.

PARTI-ThiTRODUCTIQN

l.OBACKGROUND

Adequate segregation of sensitive information has historically been a serious impediment to the provision of
Information Technology services in support of defence activities. One Canadian Department of National Defence
project had concerns about the ability to provide a secure environment for applications and data on Base level
computer systems due to presence of both UNCLASSIFIED and CONFIDENTIAL information. Data analysis had
determined that information processed on these applications was, in certain instances, classified in isolation and in
aggregation. In addition, the number of sites involved resulted in significant cost implications if all equipment at all
sites was required to meet 1EMPEST standards, since current Canadian standards require 1EMPEST protection for
any classified processing.

These concerns led to the project to plan to operate in a Controlled (restricted form of multilevel) Security Mode of
Opemtion and the statement of a requirement for a Bl Trusted Computer Base, which was subsequently specified as
AT&T UNIX® System V/MLS (SV/MLS)l. By specifying a B Division TCB, the project intended to address
confidentiality concerns·and to minimize the number of1EMPEST equipment required, since device labelling could
be used to restrict classified processing to only the limited number of 1EMPEST devices attached to the 1EMPEST
host computer. Other integrity concerns would be addressed by traditional software engineering pmctices.

The other early concern for the project was establishing the application software environment. Procurement of a

UNIX is a registered trade mark of AT&T

69

DBMS and 4GL environment was initiated and resulted in the procmement of ZIM®2, a DBMS and 4GL from
Sterling Software, for this project prior to determination of the TCB requirements.

The framework of untrusted DBMS and secme UNIX was established without considering whether or not the DBMS
could be effectively used on a multilevel opemting system and how the DBMS based applications could be designed.
It now remained to determine how to design and implement DBMS based applications that would meet Security
requirements without violating the TCB.

This paper discusses major design issues necessary to build multilevel applications within the project constmints and
additional considerations employed to provide additional protection.

2.0 PROJECT FRAMEWORK AND CONSTRAINTS

The nature ofa multilevel application is that it more closely models an actual defence-related environment, where
information exists at various levels of sensitivity. More traditional data processing approaches, such as operating
sepamte systems for various levels of sensitive information or treating all information at the highest level of
sensitivity held, are expensive both in terms of capital procurement costs and administrative overhead. From the
project perspective, operating with UNCLASSIFIED and CONFIDENTIAL information would require all project
equipment to meet 1EMPEST requirements unless an acceptable multilevel solution could be implemented.

The project, as part of the requirements definition, had conducted extensive data modelling. Analysis of the
information model from a security perspective established that any tuple, in isolation, was UNCLASSIFIED.
However, specific tables were identified that were, in the aggregate, CONFIDENTIAL. These tables were relatively
static and managed in isolation by a central authority.

In addition, specific joined tables, in the aggregate, were CONFIDENTIAL. Project personnel were able to identify
specific views, application screens and reports that contained classified information.

One area ofconsidemble concern dealing with aggregation concerned the quantity at which the aggregate became
classified. The classic example on the project was the aggregation of persons, where an individual tuple was
UNCLASSIFIED and all persons belonging to a unit reveal operational capability and thus was CONFIDENTIAL.
The project solution was to establish an overly restrictive de-facto business rule that any set containing more than
one tuple was classified.

Project applications would be developed and maintained by a central authority. Each application would be released to
sites as a turnkey application or subsequently as an update to an application. No capability to modify the
applications was to be provided to the field. ·

PART II - DESIGN FRAMEWORK

The specific conditions within the project and the featmes available in the TCB and the DBMS led to the formulation
of two general problems and the associated approaches in building multilevel applications that relied on TCB
controls and the identification of additional controls that would compensate for acknowledged weaknesses.

2 ZIM is a registered trade mark of Sterling Software

70

3.0 SECURING DBMS TABLES -A Fll.E BASED APPROACH

The fJTSt general problem was controlling access to any data within a given DBMS table and was based on the
existence of tables that contained CONFIDENTIAL infonnation. The general approach taken to address this problem
was based on the use of the TCB mandatory access controls to control access to DBMS tables. This approach
involved the labelling of the 0/S files containing the DBMS tables according to the highest level of sensitivity of
the DBMS table, thus controlling access to data through TCB controls.

The extensive data analysis on the project supported this approach since it was readily apparent that tuples within
tables could be assumed to be ofa unifonn sensitivity and table level sensitivity labelling would be sufficient. This
approach would have not be appropriate had tuples within tables been required to reflect differing levels of
sensitivity.

This approach was technically possible in the target environment since the ZIM DBMS managed each table as a
separate 0/S file. The DBMS only opened those tables required and opened tables as READ-ONLY unless the table
was being updated. Errors in opening tables for WRI1E access. such as are caused by opening files labelled at a ··
lower level, resulted in the SELECT operation returning a null set and a warning message issued by the DBMS.

One concern with this approach is that it may impose significant restrictions on functionality if update activities
spanning classification levels are necessary. In the case of this project, most tables were UNCLASSIFIED. The few
CONFIDENTIAL tables were relatively static, were not closely linked to its related UNCLASSIFIED tables and
could be maintained independent of the UNCLASSIFIED tables.

4.0 SECURING DBMS VIEWS -A PROCESS BASED APPROACH

The second general problem was controlling access to CONFIDENTIAL views of data that was UNCLASSIFIED in
isolation. The approach to address this problem was made somewhat obtuse since the ZIM DBMS did not directly
support a view mechanism. However the view mechanism was represented through each Selection and Projection
operation in each ZIM program.

A means to address this problem was needed. A view was represented as the retrieval statement, such as a SELECT
statement, within a program. Each ZIM program existed as an 0/S ftle and the DBMS required READ access to the
ftle in order to execute the program. By labelling each program with a sensitivity label corresponding to the highest
level of sensitivity of the views or aggregations being manipulated, the TCB was employed to control access to
views and aggregations. Access would be based on the sensitivity label of the user's process that invoked the
program, hence the term "process based" control. This meant that users operating at a level dominating the program
label could execute the program whereas users operating at a lower level would be unable to execute the program.
Based on this approach, it was accepted that labelling the means of producing views or aggregations would represent
a comparable functionality to labelling views.

This approach was supported by earlier work on the project to defme screen and report formats and contents. This
work had included review for security relevant issues, such as display of classified infonnation.

An additional refinement to this approach sought to employ mandatory controls to enforce some integrity issues by
using confidentiality labels as de{acto integrity labels. The labelling scheme was modified so that application
programs would be labelled at a <level - 1> in order to isolate the programs from the user processes. In the project
example. UNCLASSIFIED was established as level 30 and CONFIDENTIAL was level180. Level29 was created
for UNCLASSIFIED programs and level 179 was created for CONFIDENTIAL programs.

71

Lev~INam~ Level Mumma: Suffi& Prompt lJardc<m
(oumeri~ level)

Secret
Application S
Confidential
Application C
Protected A
Application PA
Unclassified
Application U
System

210
209
180
179
60
59
30
29
0

(S)
(ApplS)
(C)
(Appl C)
(PA)
(Appl PA)
(U)
(Appl U)
(I'CB)

SECRET
Appl (S)
CONFIDENTIAL
APPL (C)
PR01ECIEDA
APPL(PA)
UNCLASSIFIED
APPL(U)
SYS1EM

SECRET
Appl (S)
CONFIDENTIAL
APPL (C)
PR01EC1EDA
APPL(PA)
UNCLASSIFIED
APPL(U)
SYS1EM

Figure 1: Project Labelling Hiemrchy

5.0 ADDffiONAL CONTROLS

In considering a process based approach to managing access to data, the software engineer must consider both
controlled access and uncontrolled access to sensitive information. Controlled access to information is the access that
a user has through the application functionality and is a direct result of system design and implementation. This type
of access is defined in terms ofapplication screens, reports and query facilities. Uncontrolled access is the access that
a user may have if free to specify how and what to retrieve. This type of access is typified by the use of ad-hoc query
languages or through the use of other software, such as system utilities. In addition, access to information also
includes device level considerations as there must be mechanisms in place to ensure that classified information is
routed to the appropriate devices and labelled appropriately.

Uncontrolled access to information poses the most immediate threat in the use of a process based approach to
building a multilevel application. This is primarily due to the potential for uncontrolled aggregations permitted
through ad-hoc query facilities. The ability of a user to extemporaneously, repetitively and interactively defme and
retrieve any possible combination or permutation of data existing on a system poses a horrendous burden of proof on
the software engineer that all possible data retrievals will be at the same level of sensitivity as the base data. In the
case of this project, it was already known that some aggregations of data were CONFIDENTIAL, even though these
combinations are based on data which is UNCLASSIFIED in isolation. This implies that access to the ad-hoc query
capability, if permitted, be restricted to known users with the appropriate clearances and permissions, to users
operating at the appropriate security level and to 1EMPEST devices, if classified aggregates are possible.

There are two aspects to the ad-hoc query threat. There is the possible surreptitious access to underlying query
capability. This is represented by users who circumvent controls and use software they are otherwise unauthorized to
use. The second and more plausible threat is that of legitimate access to an ad-hoc query capability. Since the
designer cannot control what the end user specifies as retrieval criteria, there are legitimate concerns that users could
intentionally or inadvertently retrieve sensitive aggregations while operating at inappropriate security levels, while
operating without the appropriate clearances or while using inappropriate (non-1EMPES1) devices.

The requirement to permit ad-hoc query can be very real for the applications designer as it will add considerable
functionality in terms of addressing unforeseen information requirements and may significantly reduce the number of
report generators required to be developed. The problem of controlling the contents of a query can only realistically

72

be addressed by application software to pre-screen each query, a daunting software development task. However if the
designer cannot control the contents of the query, he can control access to the means to query by denying
unauthorized users and devices access to the query engine.

The problem of actual or potential access to an ad-hoc query facility, if sensitive aggregations can exist, will require
that all applications be executed on a runtime engine. This requirement is necessary since it is imperative to
guarantee that inappropriate end users or devices cannot, either intentionally or inadvertently, access any ad-hoc query
facility. This assurance cannot be provided by application software. However, the operating system, since it is a
TCB, can provide this assurance.

The use of the TCB mechanism of mandatory access controls can be employed to permit selective access to the ad­
hoc query facility. The design of the ZIM engine assisted in that it did not use a client/server architecture but was
separately invoked by each process executing the file. It was therefore possible to restrict access to the ad-hoc query
facility by labelling the query runtime engine (executable file) at the CONFIDENTIAL level, which will make it
inaccessible to users operating at levels lower than CONFIDENTIAL. Provided that the UNCLASSIFIED
components of an application use the ZIM runtime engine, it was then possible to provide the functionality of ad­
hoc query for users operating at a CONFIDENTIAL level without compromising access to the means to create
classified aggregations.

One problem with this approach was that there were several smaller sites where more than one application would be
hosted on the same CPU. In order to address this problem, the use of mandatory access controls in the form of
application specific categories was established to enforce mandatory need to know separation of incompatible
communities of interest Since an application that does not hold information which is sensitive in the aggregate
should not have restrictions placed on access to an ad-hoc query capability, such applications co-resident with a
second application holding information which is sensitive in the aggregate could employ mandatory access controls
in the form of application specific categories to differentiate between applications. Separate copies of the query
runtime engine, each labelled with the appropriate security level and application specific category, would exist on the
system. Users belonging to the second application would not be able to access the query runtime engine labelled for
the fll'St application and would, provided that they are restricted to a runtime engine, be unable to gain access to an ad­
hoc query capability.

The requirement to ensure all classified or potentially classified information is routed to TEMPEST devices can be
effectively addressed ifaccess to classified aggregations is restricted to users operating at an appropriate classified
level. SV /MLS supported device labelling whereby minimum and maximum clearance levels are assigned to devices,
such as terminals and printers, by the system or security administrator. Labelling all non-TEMPEST terminals and
printers with a maximum level of UNCLASSIFIED and all TEMPEST devices with the maximum level of
CONFIDENTIAL provided assurances that potentially sensitive information could only be displayed or printed at
appropriate devices.

The need to label screens with appropriate sensitivity labels was identified as a requirement Label processing on
SV/MLS required privileged system calls. The DBMS had a feature that enabled reading and writing to UNIX pipes.
This feature enabled a very small, simple piece of untrusted application code to be developed to read the stdout output
from the SV/MLS labels -u command, a trusted program that was part of the TCB, and extract the sensitivity
label of·the process knowing that the label was correct. Actual screen labelling was not trusted but was to be
considered part of the normal software activity and subject to independent verification and validation.

Additional controls that were felt to be required included removing all access to the operating system interface
("prompt"). All project applications would deny access to the 0/S prompt through the development of application
specific menus installed as default shell. In addition, the removal, imposition of restrictive labelling or restricted file
permissions on 0/S shells and utilities would be carefully considered prior to system implementation. This was not

73

seen as being detrimental to the project since systems were to be considered turnkey application specific systems and
not general purpose ADP equipment

. PART III -DBMS CONSIDERATIONS

A number of DBMS related issues were encountered in building a prototype multilevel application on ZIM under
SV/MLS. There are a number of areas where the SV/MLS environment impacts the use of ZIM and the application
design. These areas do not, in general, represent problems which cannot be addressed but have approaches that solve,
avoid or work around the difficulties.

One SV/MLS feature that proved key to the ability to implement an untrusted DBMS on a secure UNIX platform
was secured, or multilevel directories. This feature was developed to address the problem caused by the widespread
use ofcommon directories with global read/write access, such as /tmp, in UNIX. This feature enables the user to
reference the same directory from more than one level, while the operating system transparently redirects the user
into an appropriate subdirectory for the user's privilege (security) level. Untrusted subjects can reference the same
directory and be transparently redirected to a directory which is appropriate for the subject's privilege. Trusted
subjects, on 'the other hand, are not subject to this redirection and the entire directory structure is both visible and
accessible [1].

6.0 DBMS WORK FILES

ZIM uses several working files (zimsetd, zimsett) on a per user session basis and which require READ/WRTIE
access. The SV/MLS environment impacts this DBMS requirement in that each user will require read/write access to
their ZIM working files at all times and ZIM creates and maintains these files in the defined work directory. The
immediate problem is that these files will exist at the same security level as the process creating them, which poses
a problem in the case ofan application requiring two or more security levels.

It was possible to set the working directory to a specific directory through the "work path <pathname>" entry in
the ZIM configuration file (config.zim). By creating the working directory as a multilevel directory, a user account
could be set up that would permit multilevel use of the DBMS.

7.0 DATA DICTIONARY

The ZIM data dictionary points to the location of all interpreted ZIM program files and all compiled ZIM programs
are located in the zimfJOOJ.ws directory. ZIM, as of Release 3.03, required read/write access to the ZIM data
dictionary (zimOOOJ). This was subsequently modified to READ/ONLY access as a result of the DBMS port to the
UNIX System V /MLS platform. The DBMS data dictionary did not now pose a problem in a SV/MLS environment
since this file was now accessible to any process existing at a dominating level.

8.0 TRANSACTION FILES

ZIM used, in support of database journalling, a pool of transaction files that are used by all users of a database.
Since these files are reused by all users of the database, the label associated with all journal files must be identical
with that of all users. If users operating at a range of more than one label access the database, the DBMS will fail to
function since journal files may not have identical labels. The location of zim transaction files (zimtrans.n) posed a
possible problem as these files normally reside in the database directory. However, the transaction files can be
redirected to another directory through the "audit path <pathname>" entry in the config.zim file. Once again, the
creative use of multi-level directories addressed this problem. By creating the transaction journalling directory as a
multilevel directory, a user account could be set up that would permit multilevel use of the DBMS.

74

http:zimfJOOJ.ws

I
testusrl

I '
work programs

rJ. rJ.

L30.1 L180.11 L30.1 L180.1

cu> (C) ,=JP:J=:;~r>
.~·~

zimOOOl.ws

I
(all compiled
programs)

/usr2

I
I

testbed

I
I

transactions

L30.1 L180,1
(U) (C)

zimtrans.Ol
zimtrans.02

•
•

I
pseudo-db

rJ.

zimlock.zim
areas.zim

I
actual-db

I

all

database
flles

Note 1: 	 This represents a multi-level directory to support 2labels. These labels would be an
UNCLASSIFIED label (L30.1) and a CONFIDENTIAL label (L180.1)

Home directory: /usr2/testusrl

config.zim:

areas.zim:

database path /usr2/testbed/pseudo-db .
work path /usr2/testusrl/work
audit path /usr2/testbed/ttansactions
audit updates yes

•

•

•

0001 /usr2/testbed/actual-db
0002 /usr2/testbed/actual-db

•
•

•

Figure 2: Sample Directory Structure

75

http:zimtrans.02
http:zimtrans.Ol
http:zimOOOl.ws

9.0 CONCURRENCY CONTROLS -THE MULTIUSER LOCK FILE

A review of multi-user ZIM under UNIX System V indicated that the concurrency conttol mechanism would be a
problem under SV/MLS. This is a multi-user locking scheme based on all processes having read/write access to the
zimlock.zim file, which is resident in the database directory. A suitable mechanism within the DBMS was needed
but this was not a problem which could be addressed within the scope of the project.

The problem associated with multi-user ZIM and the zimlock.zim file could be addressed, in terms of a "work­
around", through the use of a multilevel database directory. This directory would contain subdirectories for each level
associated with the application and each subdirectory would contain a separate copy of the lock file. A ZIM
configuration file, the areas.zim file, can be used to point to specific directories for specific tables on a table by table
basis. This file would be used in this scenario to point to each actual ZIM database table file, which would be
located in conventional directo{ies.

The issue of a lack of a guaranteed rereadability was tested. The only problem that was encountered was when the
following scenario occmred:

a. 	 a set was selected by a CONFIDENTIAL process;

b. 	 an UNCLASSIFIED process updated a table that was part of the set selected by the CONFIDENTIAL
process; and

c. 	 the CONFIDENTIAL process attempted to process the previously selected seL

The ZIM DBMS issued several error messages related to pointer and read errors to the CONFIDENTIAL process
since file pointers in the temporary working file were invalid. These error messages could be trapped in the
application program and the program could be reexecuted.

This approach is not a solution as it will not guarantee rereadability and will not ensure integrity across security
levels since separate copies of the lock file exist for each level. The ideal solution to this problem would be the
procurement of a true secure DBMS but this course of action would require new procurement actions and would cause

. significant project delays. It was accepted by project management that the loss of guaranteed rereadability for
processes reading tables from lower sensitivity levels was an acceptable loss of functionality, given the
predominantly read-only nature of the of the classified components of the applications within the project.

10.0 ZIM PROGRAMS

There are two aspects to the manner in which ZIM uses programs which assist in the building of a multilevel
application. The f1rst, the labelling of specific program files, has already been discussed. In the context of the ZIM
DBMS, the inability of the DBMS to read a program will result in a warning message, which can be disable, and
continued processing.

nie second aspect is the possibility of building separate applications based on the sensitivity level of a given user.
The ZIM data dictionary points to the location of all interpreted ZIM program files. All compiled ZIM programs are
located in the zimOOOJ.ws directory. It is possible to put the application programs in a multilevel directory so that a
complete application is present for each level of sensitivity of the application. To the ordinary user, there will
appear to be only one program directory. The filenames referenced in the ZIM data dictionary will, if they refer to
multilevel directories, be interpreted by the operating system to point to the appropriate directory for the user's
current security level. Document filenames. defined as absolute path references, will always point to the appropriate
directory since the ZIM data dictionary will reference the appropriate multilevel directory under SV/MLS.

76

http:zimOOOJ.ws

PART IV - CQNCLUSIQNS

In conclusion, this paper outlines, in· terms of a specific project, how multilevel multiuser applications can be
developed for an untrusted DBMS on a TCB and use the controls implicit in the TCB. The use of features implicit
in UNIX SV/MLS can assist in the use of an untrusted DBMS. The specific case of the ZIM DBMS and its
constraints, within the operational context of a project, demonstrate a specific means of implementing a multiuser
multilevel application using untrusted DBMS on a TCB.

REFERENCES

[1] "System V/MLS 1.1.1 Trusted Facility Manual", AT&T, 13 June 1989.

77

BUILDING A MULTI-LEVEL SECURE TCP/IP

Deborah A. Furehel"

The Wollongong Group

2010 Corporate Ridge Dr

Suite 550, McLean. VA 22102

RonL. Sharp

AT&T Bell Laboratories

Rm 14E-214, 1 Whippany Rd

Whippany, NJ 07981

Brian K. Yasaki

The Wollongong Group

2010 Corporate Ridge Dr

Suite 550, McLean, VA 22102

ABSTRACI'

This paper describes changes made to a networking protocol in order to make it "trusted" in a multi-level
secure operating system. The protocols are the standards used by the Internet; the Transmission Control
Protocol and the Internet Protocol (TCP/IP). These protocols are currently used in many heterogeneous
networldng environments. This paper is based on actual work being done by AT&T Bell Laboratories
and The Wollongong Group in the joint design and development of a secure TCP/IP.

INTRODUCTION

The Transmission Control Protocol (TCP) and the Internet Protocol (IP) were originally developed for the
ARPANET. Together they comprise one of the most popular ttansport and network layer protocol suites in use
today, particularly within the U.S. Department of Defense (DOD). Since TCP is always run on top of IP the two
are commonly referred to as TCP/IP. Initially TCP/IP provided no security services except for reliable delivery
and integrity checksums. A sensitivity label was added as a possible option in the IP datagram header to
enhance security. Since Multi-Level Secure (MLS) systems and networks are just now becoming available, most
implementations of TCP/IP do not include this IP option.

Just adding an IP security label to each IP datagram does not provide enough security information for an MLS
system. Many conditions must be met when importing information into an MLS system. Is the data labeled?
Can the label be trusted to be correct? Is the host authorized to handle the level of sensitivity represented by the

-label? These questions and others must be answered prior to bringing networking data (i.e., IP datagrams) into
an MLS host or passing it on to another network. ·

AT&T Bell Laboratories and Wollongong have teamed up to develop a security enhanced TCP/IP. This new
TCP/IP, referred to as MLS/fCP, is fully compatible with existing TCP/IP implementations. Additional features
have been added to provide network labeling arid other security services in concert with System V/MLS.£11
System V/MLS is a multi-level secure enhancement to AT&T's System V UNIX® operating system. System
V/MLS received a B1 rating from the National Computer SecUrity Center in September 1989.

In addressing the problem of how to add security to a TCP/IP protocol stack, we were concerned with three
non-security requirements. The first was that the specifications for the networking protocols could not be
modified. This would ensure that the multi-level host would still be interoperable with all the other TCP/IP
implementations. Second was that the MLStrCP host should· be able to remain trusted in an environment where
both non-secure and multi-level secure hosts were part of the network. This would provide a transition path from
a partially secure network (mixture of trusted and non-trusted hosts) to a completely multi-level secure network.
The third requirement was that we wanted current applications to be reused without any changes (i.e., be binary

78

compatible). This would allow "commercial off the shelf' (COTS) software to still be used. This requirement
was later limited to those applications that did not require "root" privileges.1 Since "root" privilege implies trust.
we did not believe that having to modify a trusted application to recognize the security policy was excessive.

This paper provides some of the insights gained and lessons learned while enhancing TCPIIP to work in an MLS
environmenL Enhancements to the TCPIIP implementation are described. Two types of IP labels are supported
and discussed in the Packet Labeling section. Changes to the route selection mechanism are also discussed. A
decision was made to support trusted and untrusted application level servers and the impact to these servers is
shown. The Network Interface section discusses the changes required to interface to trusted and untrusted
networks. As stated earler, some changes were required to support trusted applications. A section is included
which describes some of these changes. Finally, the auditing requirements for a multi-level secure TCPIIP are
reviewed.

MLS REQUIREMENTS

Introducing TCPIIP into an MLS environment places additional requirements on the implementation.
Modifications are needed to provide the additional security features required to protect the data from compromise
or corruption. In addition, a careful examination of the TCPIIP software must be perfonned to ensure that it
meets the assurance requirements for an MLS system.

One of the most important requirements is the added trust that is required. Most TCP/IPs are implemented in the
kemel2 and thus have access to all of the kernel data structures. A malicious implementation of TCP/IP could
violate the security policy by manipulating critical operating system data. Of course this threat is not unique to
MLS hosts or even to UNIX hosts. Untrusted software in an operating system can render any security control
useless; however, on an MLS host the potential damage posed by such a threat is even greater.

All data in an MLS system must be labeled. Without a label the host can not make access control decisions.
There must be a strong link between the data and its associated label. The Trusted Network· lnterpretationl21
("Red Book") has the following requirement concerning network labeling:

"When the TCB exports or imports an object over a multilevel communications channel, the protocol
used on that channel shall provide for the unambiguous pairing between the sensitivity labels and the
associated infonnation that is sent or received."

There is no one standard fonnat for a sensitivity label. In addition, there are many different representations of
the fields within a label. Therefore a robust implementation of an MLS TCPIIP must understand and be able to
map between these multiple fonnats and representations.

Most implementations of TCPIIP do not handle labels. They are used on single~level networks where there is no
need for labeling. Backward compatibility requirements dictate that .the MLS host should be able to connec.t to
such a single level network, accept data and associate the proper label with this data.

Networks connected to an MLS host may be accredited to handle multiple labels or only one label. The TCPIIP
must ensure that no data is sent to a network that is not authorized for that data. In addition, all incoming data
must be within the sensitivity range authorized for the host.

As with any protocol, TCPIIP buffers data until the receiving host can receive it or until the user is ready to read
iL It is critical that the MLS TCPIIP maintain strict separation of this data inside the kernel allowing no
accidental mixing of data of two different sensitivities.

All security relevant events must be audited. This includes successful and failed connections as well as any
change in security parameters. Since the operating system may never see a failed connection, such auditing must
be perfonned within TCP/IP.

1. 	 The coocept of "root" privilege in the UNIX environment means that the process has the capability to bypass most security checks.

2. 	 The kernel is the part of the UNIX operating system that is separated fran the user application by a distinct address spa~ h handles
access requests to all system resources such as terminals, disks, printers, and networks.

79

PACKET LABELING

IP implements part of the network layer of the Open Systems Interconnection (OSI) Reference Model. IP is
based on the datagram model. In this model, each data unit is treated as an isolated entity. All the information,
such as a sensitivity label, necessary to transmit the data unit through the network is contained within the packet.
IP datagrams contain a header which includes the source and destination addresses for the datagram and any
other information that the network may require in order to transport the datagram from source to destination.
Additional information can be included in the header in the form of IP options. The total amount of space that
can be used by all the IP options sent in a datagram is limited to forty octets.

It is easy to see that a sensitivity label represented by human-readable ASCII characters could exceed forty octets
in length. Thus security related information that is transmitted as an IP option is usually represented by numbers
and not letters. Another reason for using numbers instead of letters is that label comparing is less costly. The
computer resources required to compare two numbers is significantly less than that used when comparing two
character strings.

Current IP Security Options

The Military Standard 1777 (MIL-STD 1777) specifies the Internet Protocol. Included as part of that document
is a section on the defined IP options. There is a definition for an IP Secmity Option which includes fields for a
security level, compartments, handling restrictions and transmission control code. Request For Comment 1038
(RFC 1038), cwrently in draft fonn, specifies changes to MIL-STD 1777 regarding two IP security options. The
options are referred to as the "Basic Security Option" (BSO) and the "Extended Secmity Option" (ESO).

Basic Security Option

RFC 1038 haS the following to say about the purpose of the DOD Basic Secmity Option.

"This option identifies the U.S. security level to which the datagram is to be protected, and the
accrediting authorities whose protection rules apply to each datagram."

The BSO defines four security levels: "Top Secret", "Secret", "Confidential" and "Unclassified." It also identifies
four accrediting authorities. The BSO option reuses the option type 130 which changes the definition of the
option as defined by MIL-STD 1777. MLS!I'CP supports the BSO and allows the secmity administrator to
define the meanings of the security levels.

Extended Security Option

There were concerns that the BSO did not provide all of the label infonnation that was needed. In response to
this concern a flexible secmity option was created that allows a recognized authority to define the contents of the
option. RFC 1038 specifies the DOD Extended Secmity Option as follows:

"This option permits additional secmity related infonnation, beyond that present in the Basic Secmity
Option, to be supplied in an IP datagram to meet the needs of registered authorities. If this option is
required by an authority for a specific system, it must be specified explicitly in any Request for
Proposal".

The ESO uses IP option type 133. See reference 131 for a detailed definition of each option. Due to the largely
undefined nature of the ESO, we have chosen not to implement this option in the first release of our product.

Commercial/P Security Option

The Trusted Systems lnteroperability Group (TSIG) 3 has proposed a new IP security option that better meets the

3. 	 TSIG is ccmposed of a group of vendon developing secure operating systems. They are woddng together to solve interoperability issues
with respect to MLS networking.

80

requirements of transmitting security related infonnation in an IP option in an open systems environment The
BSO and ESO are administered by the U.S. Department of Defense and meet defense department requirements.
These requirements do not always satisfy those found in the commercial or open systems environments.

The Commercial IP Security Option (CIPSO) permits security related information to be passed between systems
within a single Domain of Interpretation (001). A 001 is a collection of systems which agree on the meaning of
particular values in the security option and which have. a common security policy. The format of the CIPSO
option is shown below.

8 bits 8 bits 32 bits 8 bits 8 bits ? bits 8 bits 8 bits ? bits

134 1-34 ? ?16-40 1~ 11-2551 I· .·11-255 11-34 1 I
option option tag info tag id tag info

number length DOl tag id length field length field

The option length is the total length of the CIPSO option including the number and length fields. The Domain
of Interpretation field is 4 octets in length.~ The remainder of the option is variable in length and contains a
stream of tags. These tags are used to transmit additional security infonnation associated with the datagram.
TSIG has currently defined two tag types.

The first tag type is referred to as the "bit-mapped' tag type. Its format is shown below.

8 bits 8 bits 8 bits 0 - 248 bits

1 3-34 o • 255 1 bit 1 ~ bit 248

tag type tag length level bit map of categories
The tag type is equal to 1. The tag length is the total number of octets including the tag type and length fields.
The bit map can range from 0 to 31 octets in length. If bit N is a 1, then category N (as defined by the 001) is
part of the sensitivity label for the datagram. If bit N is a o. then that category is not part of the label

The second tag type is referred to as the · "enumeratetf' tag type. It is used to describe large but sparsely
populated sets of categories. Its fonnat is shown below.

8 bits 8 bits 8 bits 8 bits 16 bits 16 bits

2 4-34 o . 255 1 o • 255 1 cat 1 1 I cat15 I
tag type tag length level flags list of categories

The tag type is equal to 2. The tag length includes the tag type and length fields. The flags field is interpreted
as follows. If the least significant bit is a 0. then all the enumerated categories are part of the sensitivity label.
If the bit is a 1, then all categories defined by the 001 are set excluding the ones listed. All other bits in the flag
field are reserved for future use. Each enumerated category is 2 octets in length. This allows from 0 to 15
enumerated categories per CIPSO.

With the backwards compatibility requirement, MLS/I'CP allows both BSO and CIPSO security options to be
used. They can be used in any combination. The security administrator for the host detennines the configuration
of which IP security options to use for each network interface.

Label Mapping

The method of converting a human-readable sensitivity label tO machine representation is a local issue. Each
host is free to use any conversion it wants. Most implementations just create a mapping table where the human­
readable security attribute is converted to a number. An entry is made in the table for every legal value for each
security attribute defined in the host

81

The use of numbers to represent security attributes inttoduces a new problem when used in the environment of
networked computers. It is now necessary for each host. that communicates with another host to use the same
security attribute to numbel- mapping conversion. One solution is that each host has a mapping table for every
host it wishes to communicate with. This inttoduces the problem of maintaining a large number of mapping
tables when the number of hosts grows large. Another solution is to have each host connected to the network
use the. same global mapping table. But this solution implies that all the hosts belong to the same security
domain. These solutions represent the two extteme cases.

The CIPSO option avoids this problem through the use of a flexible yet manageable solution. In most situations,
when a host joins a network, it will communicate with a set of hosts with which it has the requirement to share
information. Since the set of hosts will be sharing information, the security policy regarding the protection of the
information should be the same. Thus for each different group of hosts sharing information, a new Domain of
Interpretation (DOl) is created. If all the groups share the same security policy, only one 001 is required. The
001 in the CIPSO option is then used to point to a mapping table that is common to all the hosts using the same
001 or within the same security domain of interpretation. MLS{fCP can support multiple OOis for hosts that
belong ·to more than one security domain· such as gateways.

ROUTING

When a host is connected to a network, the security policy may state that data labeled at a certain security level
is restricted to a particular path it takes through the network. IP normally chooses the least cost path, where cost
is the number of hops that an IP datagram would traverse. TCP uses the datagram service provided by IP. TCP
provides for the reliable delivery of a stream of data from source to destination. By using the services of IP,
TCP will gain some of the datagram capabilities. One such capability is that IP will chose the path that an IP

; datagram takes dependent upon the current conditions in the underlying network. Thus if one gateway along a
path goes down, IP could detect the problem and choose to route IP datagrams through a different path. Figure 1
depicts this situation. If host A wishes. to communicate with Host B Secret information then it must use Net 1 or
Net 3. If the routing policy does not take labels into account then the connection could be set up through Net 2.
TCP will have provided the service requested but the security policy will be violated.

Thus, the algorithm that IP uses to determine the path that the datagram takes required modifications to ·make it
cognizant of sensitivity labels. This change required that each physical network interface connected to the host
be assigned a range of sensitivity labels. IP compares the label of the packet to be sent to the network label
range. If the packet label is not within this range then that path will not be chosen.

MLS/TCP MLS/TCP
HOSTHOST

BA

Figure 1: Multi-Level Secure Routing

82

NETWORK SERVERS

Network applications are sometimes described by a client/server model. The client and server together
implement a defined application layer protocol. The client is the application that is requesting some service
while the server is the application providing that service. The three most widely known network applications are
the File Transfer Protocol (FIP), Simple Mail Transfer Protocol (SMTP) and the TELNET Protocol (TELNET).

Servers normally accept connections from any host Each service has assigned to it a unique "well known" port
number. Using this port number, the server will notify TCP thatit is willing to accept any connection requests
to its port number. This is commonly called a "passive open." When a server posts a passive open, the TCP
state for that connection is in the "LIS1EN" state. Thus servers may also be called "listeners." The client
application knows what service it is requesting ·on behalf of a user. With this information, it can look up the ··
corresponding well known port number for that service. The client then makes an "active open" to the server's
well known port number. The server gets notification from TCP that a client is requesting a network connection.
The server can accept or reject the request If accepted, the network connection is established and the client and
server can then communicate. Server processes will normally spawn4 a child process and it is the child process
that will perform the work requested by the client. The parent process is then free to go back to listening for
new connection requests. ·

Untrusted Servers

When any server process requests that a passive open be performed, the networking software checks to see if the
process has "root" privileges.5 If it does not, the networking software stores the sensitivity label of the server
process as the "session label." This action is taken without any assistance from· the server process. The session
label is used to restrict all incoming connections to the server to have the same sensitivity label as the untrusted
server process.

When a client connection request comes in, the networking software checks to see if the session label is set If
so, then a label compare of the sensitivity label from the IP datagram of the incoming connection request is made
against the session label. If the labels are equivalent, then the rest of the processing for connection establishment
is performed. If not equivalent, the client's connection request is rejected. This allows untrusted servers to be
supported without modification while restricting their operation to a single label.

There is a generic problem with untrusted servers; any user of the system has the capability to create an untrusted
server. This allows the import/export of data, albeit at a single level, without any identification or authentication
processing being performed. We solved this problem by restricting all server executables to be stored at the
"system low" level, a level at which normal users can not create executables.

Trusted Servers

When a process with "root" privileges requests a passive open, the networking software does not fill in the
session label. When a client connection request comes in, the networking software detects that there is no
session label set for the associated listener. The networking software then checks the sensitivity label of the
incoming IP datagram to make sure that it is within a range of values that the security administrator has set for
the host If within range, the networking software notifies the server of the connection request If the server
accepts the connection request, the session label for the new connection is set to the label of the incoming IP
datagram. This allows the trusted server to know the sensitivity label of the client process.

The server process spawns a child process. This child process still has "root" privileges. Before the child execs
a program that will provide the service, it must perform a few tasks. First it must retrieve the session label from

4. 	 In the UNIX environment, a new process is "spawned" by executing the system call "fork." This creates a new process that is an exact
copy of the original process. It hu the same security privileges and has access to all the same open files. 1be new process. can then use
the system call "exec" which overlays the c:um:nt nmning process with another program if it wants to nm a different program.

S. 	 In a MLS UNIX environment an "untrusted server," is any server process that does not have "root" privileges.

83

TCP and change the process sensitivity Jabel to the session Jabel. The child process must then change its User
Identification (uid)6 from "root" to another uid thus removing its "trusted" capability. Only after the child
process has removed its "trusted" capability can the child process exec the program that will provide the
requested service. In this way the program that provides the actual service does not need to be trusted. The uid
that is selected can be predetermined based on the service the server is providing. For example if the server is
providing the Simple Mail Transfer Protocol service, the uid is that of the,"mail" daemon. Other services require
that some other authentication mechanism be performed. For example the TELNET server relies on the supplied
/bin/login7 program after setting up a terminal environmenL

There maybe cases when a server needs to be trusted in order to gain access to other system resources but it only
wants to accept network connections at a specific session labeL A trusted server is allowed to make a call to
TCP that will set the session Jabel. Thus when a client connection request is received, the networking software
detects that the session label is set and processes the request as if the server were untrusted.

MODIFIED NETWORK APPUCATIONS

It was previously mentioned that the three most widely known network applications are implementations of the
TELNET, FIP and SMI'P protocols. This section goes into more detail on how the implementation of each
network application had to be modified to be supported under MLS/I'CP.

TELNET

The 1ELNET client application required no changes. This is due to the fact that the kernel TCP software can
obtain secw'ity relevant infonnation about the user of a client 1ELNET without any assistance from the TELNET
program. The TELNET server also required no changes. The reason for this is that server TELNET is
implemented in the kernel and it ultimately depends upon the /bin/login ttusted program to perform the UNIX
login processing.

FfP

The FIP client application required no modification. In order to support the server FIP program, two changes
were required. First a trusted front-end to server FrP was created. This trusted program performed the
identification and authentication portion of the FrP protocol. The FrP protocol for identification and
authentication requires a user name and the password associated with the user name. After checking that the user
name and password are valid, the trusted front-end makes a call to TCP to retrieve the session label. A check is
then made to see if the user name has been authorized to process information at that session label. If not, an
error is returned to the client FrP and the network connection is closed. If allowed, the trusted front-end
changes the security attributes of the process to match those of the session Jabel. It then execs the "original"
FIP server program. The original "untrusted" FIP server program has been modified to disable the user name
and password commands. The original FIP server remains an untrust.ed program that responds to the commands
requested by the FIP client. The untrust.ed server FrP process can only access correctly Ja~led data because of
the MAC and DAC checks performed by System V/MLS.

SMTP

The SMI'P protocol application presented a different set of security considerations due to the fact that it is most ·
often implemented and accessed on behalf of the user via the general internet mail routing application known as
"sendmail". As a stand-alone protocol specification, SMI'P as its name implies provides for a very simple set of
handshaking and etiquette requirements. In contrast, the sendmail application is a complicated program which
integrates the SMI'P protocol implementation with such functions as mail collection, routing and queuing.

6. 	 UNIX assigns a user identification nmnber to each user account. The "root" account has always used the uid of 0. Thus a DCD·zeJO uid
implies some user that does not have the trust associated with "root."

7. 	 /bin/login is a trusted program used by UNIX to perform identification and authentication.

84

http:untrust.ed
http:untrust.ed

On the client side, no real modifications were necessary for the main processing path. A user wishing to send
mail to a remote system uses the MLS mail interface program which in tum invokes sendmail to route the
message to the remote destination. If sendmail detennines that the SMTP protocol should be used to
accomplish this task, it attempts to establish the connection. The networking software will automatically set the
session label to the user's current operating level. Assuming the connection can be established and their are no
violations of the "simple" protocol requirements, the message is delivered to the remote system and stored in a
user mailbox file whose label matches that of the sending user. The problem arises when something goes wrong
in this scenario such as the inability to connect to the remote system. In this case, sendmail queues the message
for later delivery attempts. Queue processing in an MLS environment adds an additional complication to the
sendmail application. The solution was incorporated into the lruSted server section of the program.

Most of the changes made to the server side of this application in support of the MLS/fCP environment are
similar to those already described for the other trusted server applications. Specificly, when invoked as a server,
sendmail first verifies that it is executing with "root" privileges. If so, it sets up a lruSted SMTP listener without
an associated session label set. Subsequent attempts by client SMTP applications to establish connections are
handled by spawning new processes which set the label of the server to match that of the incoming connection
and the uid of the process to the uid of the mail daemon before continuing with the normal SMTP transfer
function. This differs somewhat from the "identification and authentication" process described for the FI'P and
TELNET protocol applications as the uid is automatically set to the uid of the mail daemon. However, since
mail accepted by sendmail's SMTP server will be delivered to the local user at the level at which the sending
user invoked SMTP. if the local user is not authorized to operate at that level, he will not have access to the
message. In fact, the MLS mail interface program will not even notify him that it exists.

As mentioned above, a second change to the sendmail server software was necessary to handle the queue
processing. Standard sendmail implementations spawn a new process which retains "root" privileges to
periodically examine the mail quelle and attempt to deliver any accumulated messages. The server was modified
to create a separate process for each level at which mail capability has been authorized and set the label of each
process to match. The user id of all of these processes is set to the mail user ID. This solution was chosen
because it reduced the amount of processing that required root privileges while minimizing the changes to the
existing sendmail implementation.

NETWORK INTERFACE

One of the strengths of TCP/IP is that it can connect to many different types of networks. Some of the common
types are 802.3 (Ethernet), token ring, X.25, or even a serial RS232 line. A secure TCP/IP can protect the data
only while it is in the host. Once it leaves the host it is the responsibility of the network to protect it For many
Local Area Networks (LANs) this protection is just physical control of the communications media (the copper
wire). For other networks there are devices that provide special security services such as encryption or
mandatory access control. Each of these types of network interfaces have unique requirements pertaining to
security. A secure TCP/IP should be configurable to handle the needs or shortcomings of these networks.

Trusted Networks

Within the context of this paper, a lruSted network is one in which the security parameters provided are
guaranteed to be accurate. These parameters may be provided by a network device or by the host at the other
end of the connection. It must not be possible for a non-trusted host or user to be able to interject false security
parameters into a trusted network.

One example of a trusted network is the Verdix VSLAN network.8 The security parameters (i.e., the sensitivity
label) for each 802.3 packet is provided by a network interface card. We have modified an 802.3 network driver
to accept the VSLAN label and convert it to a CIPSO or BSO label. The label and the data packet is then passed
up to IP. IP attaches the label to the packet and sends it up to TCP or out another network interface depending

8. The VSLAN network was evaluated by the National Computer Security Center and has received a 82 rating.

85

on the IP destination address.

Another example of a trusted network is Blacker. The Blacker Front End (BFE) is a device that provides data
confidentiality throqgh the use of high-grade encryption. Blacker uses BSO to obtain the security level of data
and perfonns access control based on this label. No additional changes were required to support Blacker.

A simple Ethernet network can be a trusted network if all hosts on the network are trusted. The level of trust
provided by this netwolk is equal to the level of trust of the least secure host on the network. For this network,
the security parameters are passed in the TCP/IP protocol and a separate security interface is not required.

Untrusted Networks

Most networks in use today offet no security services and any security parameters provided by these networks
can not be trusted. We could require MLS hosts to only connect to MLS networks, however that would not be
practical. Our solution was to assign a fixed set of security attributes to these networks. These attributes are
provided by the security administrator of the MLS host and reftect the security attributes associated with the
untrusted network.

As mentioned earlier, all data coming into an MLS host must have a label. Datagrams from untrusted networks
should not contain a label. If a label is present in the datagram then it can not be trusted. Our solution is to
insert a CIPSO or BSO label into the IP datagram as it enters the MLS host If a sensitivity label is already
present in the datagram it is overwritten with the new label This sensitivity label is obtained from the fixed set
of security attributes assigned to that network. Figure 2 illustrates the function of a MLS/TCP gateway between
an untrusted, non-labeled network and a trusted, MLS labeled network. If the label was not added then hosts on
the untrusted network could not communicate with hosts on the MLS network where a label is required.

For packets going from the MLS host to the untrusted network we provide the capability to "strip" out the
CIPSO or BSO label from the datagram. Some of the hosts on the untrusted network may not be able to handle
an unrecognized IP option and may crash the host.

Figure 2: Label Insertion and Stripping

AUDITING

All security relevant events must be audited. A security relevant event is any action taken by a host or network
which provides a user with access to a resource or that effects a change to security information. The infonnation
included in an audit record must be sufficient to determine the characteristics of the access or change. Below is
a list of some of the events that are recorded.

1. 	 All failed or successful connections to the host

2. 	 Incoming packet with a label outside of the host label range

3. 	 Outgoing connection refused due to no route found that meets security requirements for the level of the
requested connection

4. 	 Label on incoming packet contains a security level not recognized

5. 	 CIPSO DOl on incoming connection not supported by the host

6. 	 TCP connection closed

86

These new audit records are included in the host audit reeord. Some TCP/IP events could generate a large
amount of audit records and overwhelm the system. For example, all audit events at the packet level could
generate an audit reeord for every packet associated with a particular connection. For this reason we have
included the capability to allow the security administrator to tum off the recording of any event that the
administrator determines is not needed.

An argument couid be made that all packets received should be audited. As mentioned above this would quickly
consume all the disk sPace on the system. Since TCP is a connection oriented protocol, we feel that just auditing
the success or failure of the connection is enough. The operation of connecting to a remote host using TCP is
analogous to opening a file. The Orange Bookl41 requires the file open to be audited, but does not require
auditing of the individual reads or writes. Likewise auditing the closing of a file is also required and TCP audits
the closing of each connection. UDP (User Datagram Protocol) is a connectionless protocol and audit of each
packet would probably be required. The networking software does not cwrendy implement a trusted UDP but
one is planned for a later release.

ASSOCIATION WITH THE TNI

The Trusted Network Inte!pretation (lNI), also known as the "Red. Book" describes the requirements for MLS
networks. It recognizes that most networks are made up of many components each of which may provide a
different security service. For this reason the 1NI breaks the requirements for a secure network into four distinct
areas. These areas are Identification and Authentication (I&A), Mandatory Access Control (MAC), Discretionary
Access Control (DAC), and AudiL The i,mplementation described in this paper is designed and implemented to
satisfy the MAC and Audit requirementS. It is expected that the DAC and I&A requirements are satisfied at a
higher layer in the protocol stack.

CONCLUSIONS

Despite the complicated nature of the MLS requirements, the design and implementation of this project went very
smoothly. TCP/IP already embodied many important concepts such as data separation and integrity. The
flexibility of the options in the IP header was a particularly critical ingredient Many of the changes involved
hooks in the TCP/IP that called new operating_ system routines. There were no major rewrites of TCP/IP or
UNIX code.

Most of the new capabilities have been. embedded in the internal worlcings of TCP/IP and can not be seen outside
of the host or even by the user. The only change seen outside of the host is the newly supported IP security
labels and those can be stripped if not needed. The user application interface to TCP/IP has not been changed so
all applications should continue to operate. Some additional applications interface features were added to support
trusted applications that understood labeling.

REFERENCES

1. C.W. Flink and J.D. Weiss, "System V/MLS Labeling and Mandatory Policy Alternatives", Proceedings of
the 1989 Winter USENIX Conference, February, 1989.

2. National 	Computer Security Center, "Trusted Network Inte!pretation of the Trusted Computer System
Evaluation Criteria", NCSC-TG-005, 31 July 1987

3. M. SL Johns, "Draft Revised IP _SeelJlity Option"~ Request For Commenis 1038, January 1988.

4. Department of Defense Standard 5200.28-STD, "Department of Defense Trusted Computer System
Evaluation Criteria", December 1985

87

THE CASCADE PROBLEM: GRAPH THEORY CAN HELP

John A. Fitch, 1111 and Lance J. Hoffman

Department of Electrical Engineering and Computer Science

George Washington University

Washington D.C. 20052

Abstract
This paper presents a new approach, based on finding shortest paths in a graph, for solving the

cascade problem. The result is an efficient (O(N3)) algorithm, where N is the number of security domains
in the network. The paper provides background on the cascade problem, generalizes the problem from
its traditional military roots, and then applies the shortest path technique to a military example. The
shortest path approach appears quite general and provides a method based on established mathematics
for evaluating network security.

Keywords: Cascade problem, graph theory, shortest path, network security, risk analysis.

1. The Cascade Problem
The cascade problem was first defined and discussed in [14]. The importance of the cascade problem

is that it demonstrates how networking systems together may produce unacceptable risks even though
the individual systems in the network are secure and reasonable interconnection rules are followed.
"Reasonable interconnection rules" means that the network connections comply with security policy and
are secure from external attacks such as wiretapping. This paper provides background information on the
cascade problem, generalizes the problem from its traditional military roots, and applies a resource­
constrained shortest path technique to a military example. The result is a new, efficient (O(N3)) algorithm,
where N is the number of security domains in the network, for determining if a network has a cascade
problem. This graph-theoretic approach appears quite general and provides a method based on
established mathematics for evaluating network security.

1.1. The General cascade Problem
The cascade problem is described in [14, 8]. Both references focus on cascading in military networks

where both security risk assessment and system security evaluation use Defense Department standards
and guidelines. This section describes the cascade problem in more general terms, provides the
background information to understand the types of networks in which cascading may be a concern, and
presents a military example of the cascade problem.

1.1.1. General cascade Problem Definition
The cascade problem belongs to a subspace of the problem set that asks, "If secure systems are

cOnnected together, is the resulting network secure?". This section partitions the problem set to place the
cascade problem in perspective and then presents a more formal definition of cascading.

Before partitioning, it is first necessary to define secure system. This paper defines a secure system as
a system that has undergone both a system security evaluation and a risk analysis evaluation that results
in an acceptable risk of operating the system. A risk analysis considers the assets of a system and
threats against it to determine how much security is sufficient. System security can be modeled as a

1Mr. Fitch is also affiliated with GTE Govemrnent Systems

88

function of several parameters: physical security, personnel security, administrative security,
communications security, and computer security [15). These parameters can be represented by classes
of countermeasures that reduce system risks. For example, physical security can be described by the
class of countermeasures that includes locks, fences, and guards. A system security evaluation,
therefore, measures the effectiveness of the countermeasures used in the system.

The first partitioning of the network security problem space is to divide the space into networks that (for
security purposes) can be treated as a single system and networks that cannot be treated as a single
system. Cascading is only a concern in the latter type of network. There are reasons why some
networks cannot be or are not viewed as single systems. First, the network may be so large that a single
system security evaluation is not feasible, so a divide-and-conquer approach must be taken. Second, the
network may be made up of systems that are owned or operated by differing administrative entities or
systems that use different system security evaluation or risk assessment methods.

Having limited the problem space to networks that either are not or cannot be evaluated as single
systems, the next step is to reduce the problem space by examining the conditions under which two
systems would interconnect. As a minimum, the administrators of the two systems have to mutually
agree that the other system is secure in its own environment; that is, they need to understand and accept
the risk assessment and security evaluation methods used by the other and believe that the analysis was
done correctly. This does not imply that all the systems on the network are equally secure: it means that
each system recognizes that the other's security is good enough as a stand-alone system (that is, before
the interconnection is considered). If one system does not believe that the other is secure, then there is a
clear risk to sharing data with that system. For example, two systems that implement completely different
security policies or conduct very different evaluation methods are unlikely to share sensitive data. For the
cascade problem, only mutually recognized secure systems are interconnected and each system
provides the other with its system security evaluation metrics.

Having mutually recognized that the other system is independently secure, the next step is to decide
which assets (or classes of assets) are to be shared with the other system. This step is closely related to
mutually accepting the other system's security evaluation because each system must identify a subset of
assets for export that it believes the other system will protect accordingly. This does not imply that the
two systems must have identical export sets: the exchange may be one way, with one system acting only
as an exporter and the other acting only as an importer.

Because each exporting system believes that the importer will properly protect the exported asset, it
implicitly believes that the importer will share the asset with third-party systems only· if those systems are
also secure. This means that a system needs to consider only the security of the system directly involved
in the interconnection and not the security of all the systems in the network in order to be assured that the
exported asset is properly protected. This "nearest neighbor'' approach thus creates an implied transitive
property of protection.

Because the systems agree to share assets via a network connection, the security of the connection
itseH must be addressed. The cascade problem assumes that the interconnection mechanism itseH is
secure; (that is, assets are not threatened when on the connection) and that the threats are only at the
two systems involved in the connection.

In summary, the following type of network is being considered:

• The network consists of independent secure systems; that 	is, each system in the network,
based on its own risk analysis and system security evaluation, is secure before considering
network connections.

• For size or political reasons the network cannot be treated as a single system and undergo a
security evaluation similar to that of the component systems in the network.

89

• Before agreeing to an interconnection, each system mutually recognizes the security of the
other.

• The systems involved in a connection only share assets that the exporting system believes
the importing system will protect properly.

• The connection itself is secure; that is, there is no threat posed against data while in transit
between the systems.

Limiting the discussion to these types of networks, it is now possible to define when a cascade problem
exists:

A cascade problem exists when independent, mutually recognized secure systems are
interconnected by secure channels to create a network system that is not secure.

1.1.2. Why Cascade Problems Occur
The existence of the cascade problem results from several factors. The decision to allow an

interconnection between systems was based only on assuring the protection of the assets being shared;
it was not based on all the assets in the source and destination systems. This at first appears adequate
because the two systems are independently secure, but the fact of the interconnection means that the
two systems are no longer truly independent. The cascade problem exploits these two facts in a subtle
fashion based on risk analysis principles.

One purpose of a risk analysis is to determine how much security is needed to protect an asset.
Because the asset has some determined value, there is a threshold on the amount one is willing to spend
on protection. For example, .one may not be willing to spend $75 on a safe to protect a $100 watch, but
may be willing to spend $20 to buy better locks for the door: there is a limit at which one accepts the
residual risk to an asset rather than pay more for security. Another way to view this concept is that
security is measured by the amount of effort required to steal the watch. The watch owner wants the thief
to have to spend the effort to defeat a $20 lock in order to steal the watch. In a computer system, there is
an analogous threshold where one is willing to accept the residual risk to the asset (such as compromise
or destruction of data) rather than incur the cost of additional protection (see (16]). The definition of a
secure system in the previous section is consistent with this cost/reward observation.

A penetration (either by a human or by "nature") of one of the systems may cause other systems'
assets to propagate to an interconnected system. While a stand-alone secure system that suffers a
penetration is, by definition, willing to accept the local penetration as within acceptable risk, that system
does not necessarily accept the export of other assets as within acceptable risk. (This was the point of
identifying import and export sets.) Thus the cascade problem is essentially a risk assessment problem
that measures network risk based on local risk metrics of an export of data not in the export set. The
problem is called cascading because the links between the systems act as conduits that cascade assets
along a path between systems. If the assets arrive at a system that does not adequately protect them,
then a cascade problem exists.

Thus, determining if a network has a cascade problem requires identifying if the network is of the type
identified in the previous section, stating the acceptable level of risk against loss by cascading, calculating
the actual cascade risk based on the network configuration, and assessing if the cascade risk exceeds
the acceptable level. As in the example of the thief and the watch, security from cascading can be
measured by the amount of effort required to defeat the protection mechanisms. Security from cascading
can be measured by requiring a penetrator to expend a stated quantity of resources to affect the
penetration(s) necessary to cause a loss via cascading. From a penetrator's perspective, cascading can
be viewed as an accumulation of costs as the penetrator creates a path of penetrations through the
network.

90

1.2. Military cascade Example
To derive a specific cascade problem from the general cascade problem requires indicating the risk

assessment and system security evaluation methods used by the systems in the network. This section
briefly reviews the risk analysis and evaluation methods used in the military cascade problem as defined
in [14, 8] and presents an example of a network with a military cascade problem.

The risk assessment method used in [14, 8) is based on the environment guidelines given in
[12, 13] where assets values are measured by the security classifications of the data in the system and

the threats are measured by the minimum user clearance in the system. The risk analysis method uses
the maximum data classification and minimum user clearance as indices into a table to determine a
recommended amount of computer security for the system. The amount of computer security is
measured by a specific rating defined in the Orange Book [10, 11). Figure 1-1 shows a table from
[13) that maps a (minimum user clearance, maximum data sensitivity) pair to a required Orange Book
level of computer security. The Orange Book computer security ratings are ordered as D < C1 < C2 < B1
< B2< 83 <A1.

Maximum Data Sensitivity

Minimum
Clearance or
Author­
ization
of System
Users

u N c s TS lC MC

u Cl Bl B2 B3 • • •
•N Cl C2 B2 B2 Al •

c Cl C2 C2 Bl B3 Al •
s Cl C2 C2 C2 B2 B3 Al

TS(Bl) Cl C2 C2 C2 C2 B2 B3
TS(SBI) Cl C2 C2 C2 C2 Bl B2

lC Cl C2 C2 C2 C2 C2 Bl
MC Cl C2 C2 C2 C2 C2 C2

Figure 1·1: Security Index Matrix For Open Environments (adapted from [13])

The Orange Book rating is used as the computer security portion of a system security evaluation that
also includes other factors, such as physical and procedural security. The cascade problem in
[14, 8) considers only the computer security portion of a system security evaluation. To simplify the
mutual recognition of each system's security and to follow the example from [14, 8], only the computer
security portion of the system security evaluation is considered here as well.

The next step is to define the acceptable import and export sets between systems. This is done by
requiring that the interconnection between systems obeys the military multilevel security policy of "no read
up" and "no write down" between data at different classification levels. The classifiCations in the example
are ordered as CONFIDENTIAL< SECRET< TOP SECRET. See [2] for details on the multilevel security
policy and [3] for a general lattice-based model of secure information flow.

Having reviewed the military risk assessment and security evaluation methods, the military cascade
problem can now be discussed. The .cascade problem for the military multilevel system is informally

91

defined in [14) as when a penetrator can take advantage of the network connections to compromise data
over a range of sensitivity levels that is greater than the accreditation range of any of the systems that
must be defeated to do so. (An accreditation range is the set of security levels a system is trusted to
process and separate correctly according to the information flow policy).

The example shown in Figure 1-2 from [14] demonstrates the military multilevel cascade problem.
System A has an accreditation range of (SECRET, TOP SECRET) and the minimum user clearance is
SECRET. System B has an accreditation range of (CONFIDENTIAL, SECRET) and the minimum user
clearance is CONFIDENTIAL. Based on the guidelines in[13) and shown in Figure 1-1, System A
requires at least B2 computer security and System B requires at least B1 (System B's rating of B2 in
Figure 1-2 satisfies this constraint).

System A

TS
Sys1em B

s s

82
c

82

TS • TOP SECRET, S • SECRET, C • CONFIDENTIAL

Figure 1-2: A Network With A Cascade Problem

Each of the systems agrees to export only SECRET information to the other. This interconnection
conforms to the military information flow policy and thus defines the allowed export set.

The cascading in this network occurs by assuming a penetration of the operating system protection
mechanisms at both end systems. If a penetrator compromises System A, TOP SECRET information
may be leaked via the SECRET connection to system B. If system B is compromised, then this TOP
SECRET information may be leaked to a user who is only cleared CONFIDENTIAL. Thus the network
has a cascade problem because the penetrator has compromised three levels of data by defeating two
systems with accreditation ranges consisting of two levels of data.

To determine if a network has a cascade problem, the next section formulates the multilevel military
cascade problem as a resource-constrained shortest path problem.

2. Shortest Path Formulation of the Military Cascade Problem
Formulating the cascade problem as a resourc~-constrained shortest path problem provides an

efficient algorithm for determining if a network has a cascading problem and thus improves greatly on the
heuristic presented in Appendix C of [14). The resource-constrained shortest path algorithm is also
superior to the algorithm designed by Millen [9) based on matrix multiplication. There are several

92

motivations for performing a cascade analysis. For example, a system administrator may make a
decision to join or not to join a network based on the risk posed by cascading. In a network where there
is additional cooperation between the system administrators, the network can possibly be re-architected
to eliminate the cascade so that all parties may securely use the net.

The resource-constrained shortest path approach to determine whether or not a network has a
cascade problem is based on three phases: Preprocessing, Shortest Path Calculation, and
Postprocessing. The details of each of these steps is provided in the following sections.

2.1. Preprocessing Step
The preprocessing step consists of three actions:

• Defining the cascade problem as a graph by identifying nodes, edges, and weights;

• Viewing the problem from the penetrator's perspective by allocating the penetrator a set of
resources; and

• Defining the resource consumption function that determines how the network consumes the
penetrator's resources.

The formulation of the cascade problem as a graph begins with the definition of protection domains.
Appendix C of the Trusted Network Interpretation [14] defines a protection domain as a (system, level)
pair. The protection domains in Figure 1-2 are (A, TOP SECRET), (A, SECRET), (B, SECRET), and (B,
CONFIDENTIAL). The protection domains are the nodes of the graph in the shortest path formulation of
the cascade problem.

The edges in the graph are the flows between protection domains. Viewing the problem from the
penetrator's perspective, edges are assigned as follows:

1. An 	 edge between nodes (protection domains) is created if it represents a network
interconnection. This edge is weighted 0 because it is an allowed flow under the military flow
policy and, therefore, represents no cost to the penetrator.

2. An edge between nodes internal to ~he same host system is treated if it represents an
allowed information flow. This edge is weighted 0 because it conforms to the military flow
policy and therefore represents no cost to the penetrator.

3. An edge between nodes internal to the same host system is created if the flow represents a
downgrade; that is, if the flow is not allowed by the military flow policy. This edge is weighted
by the Orange Book computer security rating of the host system because it represents
having to defeat the computer protection mechanisms in order to achieve the information
flow.

4. For mathematical completeness, flows from a node to itself cost 0 and all other node pairs
receive an edge weight of infinity.

The path a penetrator can follow through the network thus consists of steps consisting of penetrations
internal to a host system or a legitimate network link.

Whether or not to consider allowed flows internal to a system depends on whether the objective is to
locate the core paths that actually cause the cascades (achieved by not considering flow 2 above) or to
locate all information flows that may be threatened by the cascade via legitimate flows into the core
cascading paths (achieved by including the type 2 flows). This paper will not apply the type 2 flows to the
example problem and will thus search for core cascading paths.

Having defined the nodes, edges, and weights, the next step is to allocate a set of resources to the
penetrator and define a resource consumption function. The cascade problem in [14] treats the source
and destination protection domains as requiring the same level of protection as a stand-alone system;

93

that is, any network path of protection domains must meet the computer security protection given in the
Environments Guidelines [12, 13) (see Figure 1-1). For a specific source and destination, one could use
the matrix lookup to determine the required path protection and allocate that quantity of resource to the
penetrator. Because the concern here is to find all cascading paths, it eases analysis to calculate the
cost of all paths and then test the path cost against the required path protection as part of the
postprocessing stage rather than preallocate a fixed resource to be used for path pruning during the
shortest path calculation.

The consumption function used here is similar to what Millen calls the path resistance [9]: the cost of a
path is the cost to the penetrator of achieving the information flow from source to destination protection
domain. According to [14] and [8], the example of Figure 1-2 has a cost of B2 for the cascading path
between the (A, TOP SECREn and (B, CONFIDENTIAL) protection domains. This cost of a path is
found by taking the maximum of the costs of the edges in the cascading path. This results in a
consumption function that states that for the military cascade problem, the amount of penetrator
resources consumed on a path between protection domains Is equal to the largest edge cost In
the path. Naturally, the penetrator wants to minimize the path cost between source and destination
domains because it represents the level of effort required to effect a cascade. This objective (minimizing
the consumption function) has now mapped the cascade problem to a resource-constrained shortest path
problem.

The consumption function for the military cascade problem implicitly assumes that if a penetrator can
defeat a system with a specific security rating (B2 in the example), the penetrator can defeat other
systems with the same rating with no significant additional effort. By viewing the problem from a shortest
path perspective, other consumption functions can be easily defined and tested. For example, if one
assumes that all system penetrations are independent, then the corresponding consumption function
simply sums the cost of all the edges along the path. A corporate cascade example that uses summation
as the consumption function is in (4).

The network shown in Figure 2-1 is used to demonstrate the shortest path method for finding
cascading paths. The results of the preprocessing step are shown in Figure 2-2. The security levels in
the circles are the graph node~ and the dashed boxes indicate the domain in which the nodes belong.
Note that the example network includes both one-way and bidirectional flows. The adjacency matrix for
the preprocessed system is also shown in Figure 2-2.

2.2. Shortest Path Calculation
Having defined the nodes, weights, edges, and the consumption function, it is now possible to apply

the shortest path algorithm. Because the objective is to first determine if the network has a cascading
problem, an all-pairs algorithm is used to calculate the shortest path costs between all pairs of security
domains. Should the all-pairs algorithm indicate a cascade problem, a specific source-destination
shortest path algorithm can be used to yield the actual path involved. (The act of determining all the
edges in the shortest path can actually be incorporated into the all-pairs algorithm, but the two steps are
kept separate here for clarity.) The all-pairs algorithm presented here is similar to that of finding the
transitive closure of a graph. In fact, as long as the relationship between the edge weights and the
consumption function forms a closed semiring, an N3 algorithm can be used (1) to find all paths. This is
indeed the case because the computer security evaluations can be ordered as D < C1 < C2 < B1 < B2 <
B3 < A1 and, therefore, mapped to integer values; and because the operations minimum and maximum
needed to optimize and express the consumption function can be shown to be valid + and o operations,
respectively, on the closed semiring of integers [5].

As a consequence, the all-pairs algorithm shown in Figure 2-3, which is modified from [6], is used. The
graph is stored as an N-by-N adjacency matrix named cost, where N is the number of protection domains.
The array a is the resulting N-by-N matrix of least path costs under the military consumption function
defined in the previous section. The line

94

SyslemA Sysleml

TS TS

s

82

SyslemC

s

c

82

s

11

Figure 2·1: Military Network With A Potential Cascade Problem

a[i,j] = min(a[i,j], max(a[i,k], a[k,j])) (1)

in the algorithm represents minimizing the military consumption function.

The all-pairs algorithm provides a shortest path solution in O(N3) time, although the postprocessing
phase has not been considered yet. The shortest path cost results table is shown in Figure 2-4. As will
be shown, the postprocessing is O(N2) so the computation complexity to determine if the network has a
cascade problem remains as O(N3) where N is the number of protection domains. For comparison,
Millen's work [9] is not quite as efficient. He calculates the resistance of all paths in the network by a
matrix computation requiring O(N31og2(N)) steps.

2.3. Postprocessing Step
Figure 2-4 shows the cost of the shortest path between all pairs of (source, destination) security

domains under the consumption function defined in equation (1). This path cost represents the minimal
effort required by a penetrator to effect an information flow from the source to destination domain. The
Postprocessing step determines whether the cost of the paths is within acceptable risk. This is done by
considering the minimum user security clearance at the destination domain for all pairs of security
domains. The real system risk is not that a penetrator has simply achieved a flow from one source
security domain to another at an unacceptable cost; the risk is that a user who is not cleared for the
information (as it was protected at the source domain) may actually obtain this information at the
destination domain.

The risk acceptance test can be done as a set of table look ups for each security domain pair as
follows:

95

System A System 8 r-----·
I

I I
I I

SyatemC
I I
I I
I I 0

I I
I
I
I
I------·

L-- -1

Src/Dest (Sys A,TS) (Sys A,S) (Sys B,TS) (Sys B,S) (Sys B,C) (Sya C,S) (Sys C,C) (Sya D,S)

(Sys A,TS) 0 82 0

(Sys A,S) 0 0

(Sys 8,TS) 0 83 83

CSys 8,S) 0 83 0

(Sys 8, C) 0

(Sys C,S) 0 82

(Sys C,C) 0

(Sys D,S) 0 0 0

TS • TOP SECRET, S • SECRET, C • CONFIDENTIAL

Figure 2·2: Military Network After Shortest Path Preprocessing

96

procedure allpairs(
cost : adjacencymatrix, {initial edge cost matrix}
var a:adjacencymatrix, {all pairs shortest path costs}
n :integer) {number of security domains}

{ Computes the shortest path cost between all pairs of domains}
{ cost[l ..n,l .. n] is the initial graph cost adjacency matrix
{ a[l .. n,l •• n] is the cost of shortest path between nodes }
var i integer; {loop control for source no~es}

j integer; {loop control for destination nodes}

k integer; {loop control for intermediate nodes}

begin
{copy the array cost into the array a}
for i :• l to n do

for j • 1 to n do begin

a[i,j] • cost[i,j];

end;

{Calculate shortest path cost for all domain pairs}
for k • 1 to n do {for path with highest node index k}

for i • 1 to n do { for all possible source nodes}
for j • 1 to n do {for all possible destinations}

{if i->k->j cost is smaller than current i->j cost}
{then update the i->j path cost. In other words, }
{min~ize the consumption function}
a[i,j] • min(a[i,j], max(a[i,k], a[k,j]))

end.

Figure 2·3: All-Pairs Shortest Path Algorithm (adapted from [6])

Src/Deat (Sya A,TS) (Sya A,S) (Sya B,TS) CSya B,S) (Sya B,C) CSya C,S) CSya C,C) (Sya D,S)

(Sys A,TS)

(Sys A,S)

0 82 0 83 83 82

0

82 ••

82

82

00

(Sys 8,TS) 0 83 83 83 83

(Sys 8,S) 0 83 0 82

(Sys 8, C) 0

(Sys C,S) 0 82

(Sys C,C) 0

(Sys D,S) 0 0 82 0

TS • TOP SECRET, S • SECRET, C • CONFIDENTIAL, •• • CASCADE

Figure 2-4: Military Shortest Path Cost Results

97

1. Look up the minimum 	user clearance for the ·destination security domain's system and
determine the larger of the security level ofthe destination -domain and the security level of
the minimum user clearance.

2. Use the results of step 1 and the security level of the source security domain as an index into
Figure 1-1 to determine the required amount of computer security.

3. From Figure 2-4, look up the actual cost to the pEmetrator to achieve the information flow
between the source and destination domains. If the actual cost to the penetrator is less than
the amount of security required by step 2 above, a cascade problem exists.

For the network in Figure 2-1, recall that the minimum user clearance at System A was SECRET, at
System 8 CONFIDENTIAL, at System C CONFIDENTIAL, and at System D SECRET. As an example of
the risk acceptance test, consider the flow from (System A, TOP SECRET) to (System C,
CONFIDENTIAL). Step 1 of the postprocessing results in a val.ue of CONFIDENTIAL because both the
minimum user clearance at System C and the security level of the destination domain are
CONFIDENTIAL Step 2 consults Figure 1-1 using TOP SECRET as the source data sensitivity and
CONFIDENTIAL as the minimum user clearance to obtain a recommended computer security rating of
83. In Step 3, referencing Figure 2-4 shows that the actual cost to the penetrator to achieve the flow from
(System A, TOP SECRET) to (System C, CONFIDENTIAL) is 82. Since 82 is less than 83, a cascade
condition exists for this path. The entry marked ** in Figure 2-4 shows the source and destination security
domains that make up the cascade in Figure 2-1. The core cascade path is from (A, TOP SECRET) to
(A, SECRET) to (D, SECRET) to (C, SECRET) to (C, CONFIDENTIAL) with a total cost of 82. This path
is shown in bold in the upper half of Figure 2-2.

The postprocessing step to test all security domain pairs for a cascade problem can be done in O(N 2)
time. There is a total of N2 domain pairs and the processing for each domain pair requires performing a
table lookup from a table of minimum user security levels, from the shortest path results table, and from
the table shown in Figure 1-1. The table references plus the comparison of recommended security to the
penetrator's actual cost ·can be done in constant time, resulting in a total O(N 2) complexity for the
postprocessing step. Thus the complexity of the overall cascade problem is dominated by the O(N3)
shortest path calculation. Should the actual path causing the cascade be desired, either the all-pairs
algorithm in Figure 2-3 should be modified to save the paths as the costs are calculated, or a specific
source-destination algorithm should be run on the domain pairs found to have a cascade problem. An
algorithm to find the shortest path between· a specific pair of riodes· is O(N 2) [1], so locating the actual
cascading paths can be done without changing the O(N3) complexity for the overall problem.

2.4. Interpreting the Military Consumption Function
One way to view the military consumption function is that it makes a network risk assessment policy

decision that once a computer system with a particular security rating (say 82) is defeated, the defeat of
another system with the same level of protection does not cost the penetrator any significant amount of
effort. This implies that no matter how many 82 systems are connected in series, a network system
created from them will never afford the protection of a 83 system. This consumption function makes
sense if one is looking for a worst case analysis of the problem or if it is realistic to assume that the
systems in the network suffer from identical or similar flaws so that once one system is defeated, all
similar systems are easy to defeat. However, it is easy.to postulate other ca.nsumption functions based
on different assumptions about the (lack of) interdependel')ce of defeating individual systems in a network.
For example, assuming that system penetrations are independent events results in a consumption
function that is identical to the "normal" shortest path calculation; that is, it minimizes the sum of the edge
costs in the path. A corporate cascade example that uses this consumption function is in [4). As long as
the consumption function forms a closed semiring, an O(N3) algorithm exists for solving the cascade
problem under that function. · ·

98

3. Conclusions
This paper has presented a new method, based on the resource-constrained shortest path, for solving

the cascade problem. There are several conclusions:
1. The generalization of the cascade problem and its formulation as a resource-constrained

shortest path problem point out the underlying security. issues in interconnecting
independently evaluated systems; this process leads to a broader understanding of network
security risks.

2. Requiring a consumption function to be defined forces a clear policy statement about the
(lack of) interdependence of defeating individual systems in a network.

3. A broad set of consumption functions can be defined that allows for a network risk function to
reflect a given system's dependence or independence from its peers.

4. The shortest path formulation can detect and locate cascades in O(N3) time as long as the
consumption function and·minimization form a closed semiring operating on the graph. Ttle
military consumption function presented here and a corporate consumption function in [4] are
well-behaved and demonstrate that the semiring requirement is not overly strict.

The resource-constrained shortest path approach and the concept of a consumption function appear
quite general. Potential extensions to the basic approach presented here and suggested applications
include the following activities:

• Analyze the computational complexity of the algorithm when the consumption function is not
as well behaved as in the examples presented here.

• Investigate the effects on the approach when a vector of resources rather than a scalar is
involved.

• Explore path-pruning algorithms that incorporate the penetrator resource set into the shortest
path calculation step. Compare the path-pruning approach to the method presented here
that uses the resource set as a threshold during the postprocessing step.

• Investigate techniques for reducing the number of security domains that must be considered
in the cascade problem.

• Compare the ability of the shortest path consumption function to reflect the interdependence
of a system from its peers with a statistical analysis of the. cascade problem, such as that
done by Ted Lee [7].

• Develop precise methods for systems to mutually acknowledge each other's security.

99

References

1. A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer Algorithms. Addison­
Wesley, Reading, Mass., 1974.

2. D.E. Bell and L.J. LaPadula. Secure Computer Systems: Mathematical Foundations. Tech. Rept.
ESD-TR-73-278, Volume 1, The MITRE Corporation, Bedford, Mass., March, 1973.

3. Dorothy E. Denning. Cryptography and Data Security. Addison-Wesley, Reading, Mass., 1982.

4. J.A. Fitch and L.J. Hoffman. A Network Shortest Path Security Model. Tech. Rept. GWU-IIST-90-32,
George Washington University, Washington, D.C., September, 1990.

5. John A. Fitch, Ill. A Network Security Model Based on the Resource Constrained Shortest Path.
Ph.D. Th., George Washington University, Washington, D.C., 1991. To appear ..

6. E. Horowitz and S. Sahni. Fundamentals of Data Structures in PASCAL. Computer Science Press,
Rockville, Maryland, 1984.

7. Theodore M.P. Lee. Statistical Models of Trust: TCBs vs. People. Proceedings of the IEEE
Symposium on Security and Privacy, April, 1989, pp. 10-19.

8. J.K. Millen. The Cascading Problem for Interconnected Networks. Fourth Aerospace Computer
Security Applications Conference, December, 1988, pp. 269-273.

9. J.K. Millen. Algorithm for the Cascading Problem. In Internet IEEE Cipher News Group,
J. P. Anderson, Ed., June 25 IEEE Cipher forum on DOCKMASTER.NCSC.MIL, 1990.

10. Computer Security Center. Department of Defense Trusted Computer System Evaluation Criteria.
CSC-STD-001-83, Department of Defense, Computer Security Center, Fort G.G. Meade, Maryland,
August, 1983.

11. National Computer Security Center. Department of Defense Trusted Computer System Evaluation
Criteria. DoD 5200-28.STD, Department of Defense, Fort G.G. Meade, Maryland, December, 1985.

12. National Computer Security Center. Guidance for Applying the Department of Defense Trusted
Computer System Evaluation Criteria in Specific Environments. CSC-STD-003-85, National Computer
Security Center, Fort G.G. Meade, Maryland, June, 1985.

13. National Computer Security Center. Technical Rationale Behind CSC-STD-003-85: Computer
Security Requirements. CSC-STD-004-85, National Computer Security Center, Fort G. G. Meade,
Maryland, June, 1985.

14. National Computer Security Center. Trusted Network Interpretation of the Trusted Computer System
Evaluation Criteria. NCSC-TG-005, National Computer Security Center, Fort G.G. Meade, Maryland,
July, 1987.

15. T.A. Rullo. Advances in Computer Network Security Management. Heyden & Sons, Inc., 1980.

16. Rein Turn and Norman Z. Shapiro. Privacy and Security in Databank Systems: Measures of
Effectiveness, Costs, and Protector-Intruder Interactions: In Security and Privacy in Computer Systems,
Lance J. Hoffman, Ed., John Wiley & Sons, Los Angeles, CA, 1973. Originally published as Rand
Corporation Report P-4871, 1972.

100

http:DOCKMASTER.NCSC.MIL

A CASE STUDY FOR THE APPROACH TO

DEVELOPING A MULTILEVEL SECURE

COMMAND AND CONTROL INFORMATION SYSTEM

James Obal

Supreme Allied Commander Atlantic

U.S. Naval Base

Norfolk, Virginia 23511-6696

William Grogan

Contel Federal Systems

15000 Conference Center Drive

P.O. Box 10814

Chantilly, Virginia 22021-3808

ABSTRACT

This paper presents a case study of two NATO Command and Control
Information Systems (CCIS} projects with stringent computer security requirements.
These projects were conceived and initiated at a time when trusted products were
not readily available and the concepts of trusted system development and
evaluation were not well understood. These circumstances have necessitated the
Government and the contractor to seek a unified approach to integrating security
into the development process; to ensuring that security requirements are satisfied;
and to performing the security evaluation. That approach has been adopted and is
now permitting the development of the CCISs to advance. This paper outlines the
history of the problems and decisions which culminated in their definition.

INTRODUCTION

This paper provides a description of the lessons learned from the early stages of
the two multilevel secure (MLS} CCIS projects. Included are the managerial and
engineering decisions which have been taken to help ensure that the project will
continue to move forward to completion and satisfy the requirement for 83
certifiability. The importance of demonstrating a sound trusted engineering
methodology as well as the role of prototyping in trusted system development is
discussed. Particular attention is given to the definition and development of the
security documentation which is essential to support both the engineering aspects
and the security certification needs of the projects.

BACKGROUND

A fixed price contract to build a high assurance (83} CCIS for the Supreme Allied
Commander Atlantic (SACLANT} was awarded to Conte I Federal Systems in October
1984. A second fixed price contract to build a high assurance (83} CCIS for the

101

Commander-in- Chief Iberian Atlantic Area {CINCIBERLANT) which has similar
functional requirements was also awarded to Contel in October 1987. Both projects
are one hundred per cent funded by NATO, and were initially managed
independently. Each project had specified unique documentation standards,
different engineering design methodologies and separate certification
requirements. This duplication of effort soon proved to be extremely expensive and
time consuming for both the Government and Contel. The operational needs of
both systems were closely analyzed and with concessions being made by all parties
the notion of a single system design emerged. Both projects have since adopted a
unified security policy, a single set of security requirements, and have been placed
under the direction of a single project management office. This joint project is
entitled Alpha CCIS, and will be referenced hereinafter as the ACCIS.

The ACCIS is required to process automated messages received from multiple
telecommunications lines; to maintain a myriad of databases which contain plain
text formatted messages, parametric {record) data, and geographic representations;
to provide the capability to create and release formal messages; and to retrieve and
display formatted information from its databases.

The ACCIS will combine a suite of alphanumeric and graphical terminals,
communication processors, central hosts, and database machines to form the
hardware architecture. The system will be highly redundant in order to provide the
continuous service requirements mandated by the performance specifications.

Woven into the ACCIS functional requirements is a dominating requirement
that the system provide a spfu:.if.iedlevel of computer and communications security.
This pervasive requirement for security is principally defined in terms of the so called
Orange Book [1]. The ACCIS must be certifiable to class B3 in accordance with the
criteria established in the Orange Book. The basic requirement for a B3 system was
formed by applying the guidance contained in the Yellow Book series [2]. The B3
requirement is augmented by stringent performance requirements which mandate a

· high assurance and responsive architecture. The Gemini Multiprocessing Secure
Operating System {GEMSOS) developed by Gemini Computers Incorporated was
proposed by Conte I as the commercial off-the-shelf {COTS) system for the ACCIS
Tru.sted Computing Base {TCB). As another high assurance TCB has subsequently
become available (pre-endorsed), the COTS portion of the ACCIS TCB has been re­
evaluated. Currently, the HFSI XTS-200 has been identified as the best choice for the
ACCIS.

SECURITY POLICY DEVELOPMENT

The ACCIS Security Policy was developed by the Government with the
cooperation of Contel. The ACCIS Security Policy contains the administrative,
personnel, physical, emanations, communications, and processing security
requirements. It is intended to be used both as an operational policy document and
as a definition of the requirements for the TCB. The development of the policy was a
unique process in that the contractor was reviewing a government originated
document for accuracy of content. These reviews were conducted first to determine
the consistency, correctness and completeness of the policy and secondly to
determine if specific aspects of the policy might pose implementation problems.

The first review process discovered inconsistencies in the policy; mostly due to
semantics. However slight, the terminology differences highlighted the need for a

102

glossary of security terms. There were also policy statements that Conte! felt were
inconsistent with accepted interpretations of the Orange Book but had to remain
because of operational needs. An example is the policy's requirement that allows a
user to delete a file that is classified at a security level below the user's sign-on
security level. There is a potential covert channel associated with this requirement,
but it was determined by the Government that the operational need for the feature
exceeded the threat of compromise posed by a covert channel.

The second level of review focused on evaluating the impact that
implementing the policy would have upon the target TCB. A goal of the ACCIS
design philosophy is to produce a system that does not require extensive
modifications to the COTS TCB. The selected approach is to layer the additional
ACCIS TCB functionality on top of the COTS TCB. The security policy was reviewed
with this approach in mind, identifying those requirements that could
fundamentally affect the COTS TCB. Additionally, the review produced suggestions
for specific policy amendments and recommended design approaches that could be
employed to implement the functionality and mitigate the impact on the COTS TCB.
An example of a policy impact on the COTS TCB was in the area of auditing. The
policy explicitly stated how audit data were to be protected. The method of
protecting audit data used by the COTS TCB is equally as strong as the stated policy
for audit data protection but it uses a different approach. The policy was modified
to allow different approaches for protecting audit data, provided those approaches
meet a minimum level of assurance.

Interrelationships between the ACCIS Security Policy, the ACCIS security
requirements and TCB design became apparent. A detailed effort to align the ACCIS
Security Policy and system security requirements was initiated.

CAPTURING SECURITY REQUIREMENTS

The ACCIS security requirements are a mixture of the standard computer
security features specified by the Orange Book (e.g., mandatory access controls,
discretionary access controls, identification and authentication, and audit). The
ACCIS also has unique security features that are needed to support specific system
applications. These features include a Two-Designated-Man-Rule, Trusted Turnover,
and trusted message handling functions.

Specific security requirements were identified in the ACCIS Security Policy, the
SACLANT Request For Proposals, the CINCIBERLANT Invitation For Bid, and Contel's
proposals. Additional ADP security specifications were defined in specific NATO
standards and guidelines referenced by these basic requirements' documents. In the
process of identifying the security requirements, a basic dichotomy was discovered.
The requirement for a B3 system imposed a structure dictated by the evaluation
process that did not directly align with the standard systems engineering process.
The basis of an Orange Book evaluation is the system's security policy. All
certification evidence is derived to some extent from it. This is in contrast to a
systems engineering approach which traces the system's development back to the
requirements.

To resolve this difference, it was decided that the ACCIS Security Policy would
contain all of the security requirements; that is, it would incorporate the security
requirements from all of the sources mentioned above. This had the effect of
blending the Orange Book evaluation and the systems engineering processes. The

103

ACCIS Security Policy statements and the ACCIS system security requirements are in
complete correspondence.

CERTIFIABILITY, EVALUATION AND OVERSIGHT

Significant emphasis has been placed on the tasks of evaluation, certification
and accreditation of the ACCIS. Initially, there existed very broad interpretations of
what the term "certifiability" meant to the Government and to Contel. The
differences between the evaluation process normally applied to trusted products
and an evaluation of an application system that integrated a trusted product had to
be sorted out. The issues that arose concerning the question of certifiability
illustrate the conflict between developing and evaluating a B3 system and
developing a useful system that satisfies its requirements and performs its mission.
The initial discussions regarding the nature of the evaluation process revolved
around issues concerning the latitude of the evaluators in defining the scope of the
evaluation. The prevailing government position was that the ACCIS was a "system"
and not a "product" and that a standard National Computer Security Center {NCSC}
type evaluation was not sufficient. It was discussed whether the evaluators could
mandate additional evaluation requirements regardless of contractual
requirements. There were also questions as to how theoretical (vs. pragmatic} the
evaluation should be.

The certification evidence document and Contract Data Requirement List
{CDRL} item that brought all of these issues to the forefront was the Formal Model of
the Security Policy (FMSP}. Contel's FMSP was based upon the Bell and La Padula
Model, as are the formal models used by most evaluated TCBs. As with other
evaluated TCBs, Contel did not intend to modify the model, but intended to provide
an interpretation of how the system mapped into the model. Since other COTS TCB's
were also modeled using Bell and LaPadula, this appeared a reasonable approach.
However, the Government maintained that the ACCIS was a system and not a
product, and Conte I was directed to develop a FMSP that was specific to the ACCIS.
Accordingly, Contel extensively modified the Bell and LaPadula Model to make it
specific to the ACCIS Security Policy. Notions such as ownership and group
membership were incorporated. The model's rules were replaced by ACCIS specific
rules. The formal proofs were revised but the core theorems, properties and
corollaries of the model were preserved, though in a modified form. However, the
Government determined that the resultant model, as modified to be ACCIS-specific,
was overly complicated and did not effectively represent the ACCIS security policy.
Consequently, a joint effort between the Government and CONTEL is in process to
rewrite the model without any pre-ordained dependencies on the traditional Bell
and LaPadula framework. That effort led to a cooperative FMSP production activity.

Because there were no formal definitions of the certifiability process and the
nature and content of the required certification evidence, the resolution of issues
like these threatened to stymie the project. As a response, the Government and
Contel agreed upon the necessity for a certification plan. To this end, the
Government has developed a certification plan specific to the ACCIS. It details the
tasks that must be performed by the system evaluators and indirectly, what is
expected to be produced by Contel as certification evidence. The certification plan
establishes orderings and dependencies between the certification evidence
documents. The certification plan is the framework for understanding how the
ACCIS can achieve B3 certifiability.

104

The security evaluator for the ACCIS, entitled Security Certification Technical
Agent, is the United States Naval Research Laboratory (NRL). The Certification
Authority for the SACLANT CCIS is the United States Commander-in-Chief Atlantic
(USCINCLANT) and SACLANT is the accreditation authority. The Certification
Authority for CINCIBERLANT is the Portuguese Autoridade Nacional de Seguranca
(ANS) and CINCIBERLANT is the Accreditation Authority.

A Security Certification Working Group (SCWG) has been formed to oversee
the security aspects of the developing ACCIS system and to reduce the risk of not
achieving certification. The SCWG is chartered to provide guidance and resolve
security issues as they arise. The membership of the SCWG includes representatives
from the ADP security organizations of SACLANT and CINCIBERLANT, NRL, Mitre,
Military Committee Communications and Information Systems Security and
Evaluation Agency (SECAN), and Contel.

An extensive amount of time and resources will be expended by the
Government in order to evaluate, certify, and accredit these systems. The availability
of technical support required to evaluate a system of this complexity is very limited
and expensive. Careful planning must be exercised to ensure that the contractual
milestones and associated deliverables align closely with the certification plan to
ensure that these valuable resources are effectively employed and ultimately assist
rather than hinder the project's progress.

SECURITY DOCUMENTATION

While there existed substantial guidance on types of security documents
required for a B3 system, little information pertaining to document content was
available. Consequently, the ACCIS project did not define security-specific Data Item
Descriptions (DID) for the security CDRLs. In many cases the only clear documen­
tation specification was that the security documents were to be developed in
accordance with the Orange Book. The Orange Book was never intended to be used
for defining the content of contract deliverables or for determining the form of
certification evidence. Considerable time was expended in SCWG meetings trying to
establish agreement on what was expected for each security CDRL. While the
security CDRLs closely mirrored the list of certification evidence documentation
required by the Orange Book it was not always certain which document would
contain specific evidence and if all of the evidence would be accounted for in the
complete set of security CDRLs.

To alleviate these documentation problems, the Government and Contel
developed DIDs for the ACCIS security CDRLs. A mapping of certification evidence to
CDRLs was performed to ensure that all of the evidence would be produced. The
NCSC "Guide to Understanding" series, especially the one for Design Documentation
[3], was used to develop the DIDs. The Guide for Security-Relevant Acquisitions CDRL
and DID Handbook [4] developed by the Headquarters Electronic Security Command,
Air Force Computer Center at Kelly Air Force Base, Texas and the Trusted Computer
System Security Requirements Guide for DoD Applications [5] developed by MITRE
were also used extensively in determining the standards for security CDRLs. Finally,
the certification plan was brought into alignment with the evidence mapping and
associated DIDs.

Security DIDs had to be written or at least modified to accommodate the
Security Policy Input, Formal Model of the Security Policy, Descriptive Top Level

105

Specification (DTLS), DTLS Implementation Mapping, Security Test and Evaluation
Plan, Security Test Procedures, Security Test Descriptions, Security Test Reports,
Covert Channel Analysis Report, Trusted Facility Manual and Security Features Users
Guide. System documentation follows DOD-STD-2167A DIDs as tailored by the
contract.

TCB DEVELOPMENT AND THE SYSTEMS ENGINEERING PROCESS

Both the Government and Contel recognized the importance of not separating
· the development of the ACCIS TCB and the remainder of the system. Consequently,
the TCB development process was integrated into the systems engineering process
when these processes were being defined in the Systems Engineering Management
Plan (SEMP), the Software Development Plan (SDP), the Software Quality Assurance
Plan (SQAP) and the Configuration Management Plan (CMP). Similarly, the security
requirements are contained in the Systems Requirements Document (SRD) along ·
with all other requirements. ·

When unique aspects of the security engineering process required special

procedures, those procedures were detailed in the appropriate system plan. For

example, the requirements for configuration control of the TCB are more rigorous

than for the system as a whole and the CMP describes the additional TCB unique

procedures. In the final analysis, requirements for development of the TCB are

represented by good engineering practices which were adopted by the systems

engineering process.

Contel's ACCIS systems engineering methodology closely adheres to the
methodology described in U.S. Army Field Manual770-78 System Engineering and
the U.S. DoD Systems Management College's Systems Engineering Management
Guide. The methodology is being augmented by techniques defined in Yourdon's
Modern Structured Analysis and in Ward-Mellor s Structured Development for Real
Time Systems.

System development will be evaluated at key contractual milestones as defined
in and using the criteria of MIL-STD-1521A [6]. Engineering management follows
the general guidelines of MIL-STD~1521A, DoD-STD-2167A [7], and MIL-STD-499A
[8]. Configuration Management practices and procedures are based upon MIL-STD­
4808 [9], MIL-STD-483A [10], and NCSC-TG-006-88 [11].

SECURITY TESTING

An early topic at the SCWG meetings was security testing. It was agreed that
Contel would perform penetration testing and testing in support of covert channel
analysis. The Government could also perform those forms of testing at their option.
Less clear was what constituted the testing of the system's security functionality.

The consensus that eventually evolved was that there existed two sets of
security functional tests. The first set of tests would be on the system boundary.
These tests would be standard, "black box" validation tests, conducted against
system security requirements and performed during the factory and site acceptance
test phases. These tests would be performed by Contel's testing organization as part
of the suite of tests that demonstrate that all system requirements have been
satisfied.

106

The second set of tests would be conducted against the TCB boundary using
the DTLS as the basis for the tests. These tests would include the software drivers
that exercise the interface into the TCB from the untrusted application environment.
Conduct of these tests would be the responsibility of Contel's security engineering
organization.

SECURITY RISK REDUCTION

Historically, the development of high assurance computer systems has been
troubled by a myriad of technical problems that either delay the project or cause it
to be terminated. Both the complexity of the engineering and the complexity of the
evaluation processes can contribute to the development problems. In an attempt to
identify risk areas early in the development process, the Government devised a
demonstration to test the systems engineering process defined by Conte I and to
assess the complexities of evaluating the product.

To demonstrate their engineering process, Contel was asked to develop a
representative "slice" of the TCB, exercising all phases of the engineering process,
commencing with requirements definition and carrying the development through to
its detailed design. The requirements that were selected involved the processing of
messages received from the MLS ACP-127 communications lines. Following the
procedures defined in the SEMP, SDP, CMP, and SQAP, Conte I produced the TCB slice
with all of its required documentation. The results of this exercise significantly aided
the refinement of the ACCIS engineering process and provided the Government and
ConteI with a clear understanding of the complexity associated with developing and
evaluating a high assurance system.

TCB design issues are also being addressed early in the development process by
prototyping. The purpose of this prototyping effort is to identify solutions to
difficult TCB design issues so those solutions can direct the design of the actual ACCIS
TCB. This will help reduce the risk that the system may fail to be certifiable at the 83
level. The prototyping effort will be formally documented in the Interface Require­
ments Specification, Software Requirements Specification and System Design Docu­
ment CDRLs. The Government and Contel will be able to explore design alternatives,
seeking soluti.ons that provide the required functionality without introducing
unnecessary COTS TCB modifications or ACCIS TCB complexities. The prototype will
also identify early in the design process any operational impacts that may occur by
implementing some of the security features as they are currently defined.

The prototyping will include the ACCIS specific security requirements, including
the Two-Designated-Man-Rule and Trusted Turnover. The requirement for a trusted
data base management system will also be prototyped.

STATUS

Project management for both systems has been delegated to a joint project
office located at SACLANT Headquarters, Norfolk, Virginia. In addition to the
obvious benefits of centralized management, the logistics support problems
inherent in the geographic separation between the European and U.S. sites were
removed. The joint ACCIS Security Policy and associated security requirements have
been aligned and the development of an ACCIS formal model is in process. A
certification plan has been produced and agreed by all parties. The role of the

107

Security Certification Technical Agent and the Security Engineering Support Agent
have been identified and are in place. ·

Host Nation responsibilities for their respective projects remain autonomous.
Contract modifications are in process to unify contract milestones and deliverables.
The System Requirements Review phase concluded 10 October 1990. System Design
Review is scheduled for November 1991, Critical Design Review is scheduled for
October 1992 and Initial Operating Capability is slated for October 1993.

CONCLUSION

The development and evaluation of complex, secure command and control
systems is only now being better understood. All of the tools and experience
necessary are not yet available. There is a dearth of evaluated high assurance TCBs
available to use as a basis for secure systems and there are few in the evaluation
pipeline that will ultimately achieve endorsement. Performance requirements can
further reduce the number of suitable TCBs for a given system. What should be clear
by now is that it simply is not possible at this time to acquire secure systems "off-the­
shelf" that satisfy all the requirements of real systems.

The absence of standard security DIDs, certification plans, and secure systems
development processes also hampers the ability to define, develop and evaluate
secure systems. The Government and the developer must share the same
understanding of how security is to be integrated into the system and how that
security will be evaluated.

Because the development of secure systems currently involves some
uncertainty, strong management support is required. Management must set a
course through the sparsely defined territory of secure systems development,
identifying deficiencies in the process and finding ways to correct them. A rigorous
project management structure is required to ensure that the possibly conflicting
interests of building a system that satisfies a critical military mission and maintains a
demonstrably high level of security do not bring the development to a standstill.

The ACCIS project can be viewed as a useful case study of the development of a
secure, complex military system. It suffered from the lack of tools, products and
experience. Fortunately, the mutual desire of both the Government and Contel to
complete this project has brought it through the most difficult period.

References

[1] 	 Department of Defense, Trusted Computer Systems Evaluation Criteria,
DOD 5200.28 STD, December 1985

[2] 	 Guidance For Applying The Department of Defense Trusted Computer
System Evaluation Criteria In Specific Environments, CSC-STD-003-85 and
CSC-STD-004-85, 25 June 1985

[3] 	 A Guide To Understanding Design Documentation In Trusted Systems,
NCSC-TG-007, Version-1, 2 October 1988

108

[4] 	 Guide For Security Relevant Acquisitions CDRL and DID Handbook,
Volumes 1 and 2, 1 May 1989

[5] 	 Mitre Trusted Computer System Security Requirements Guide for DOD
Applications {Draft), 18 March 1988 ·

[6] 	 Technical Review and Audits for System Equipments and Computer
Software, MIL-STD-1521A

[7] 	 Department of Defense System Software Development, DOD-2167 A

[8] 	 Engineering Management For Total System Development, MIL-STD-499A

[9] 	 Configuration Control, Engineering Changes, Deviations and Waivers,
MIL:.STD-4808

[10] 	 Configuration Management Practices for System Equipment and
Computer Software, MIL-STD-483A

[11] 	 A Guide to Understanding Configuration Management InTrusted
Systems, NCSC-TG-006, Version-1, 28 March 1988 .

109

CONTRACTORS AND COMPUTER SECURITY­

AWARENESS, EDUCATION, AND PERFORMANCE

Ronald G. Brunner

Ronald G. Brunner and Associates

2 Jasmine Court

Rockville, Maryland 20853

(30 1) 929-1518

Preface
This paper addresses the dual problems of monitoring a contractor's performance
and providing adequate computer security within the Federal government environ­
ment. Contractors perform many of the government's computer functions, there­
fore security must be a part of their services and products.

How does the government know that the contractors' are performing the computer
security function in an acceptable manner, and that they have the proper level of
awareness, commitment, and skills to provide this security? Guidance for determin­
ing a contractor's experience, and assuring performance, as they relate to computer
security, are contained in this paper.

The paper is intended for use by computer security officers, computer resources
management and technical staffs, and contracting officers, as well as by educators
who are responsible for training the government personnel. Although the paper is
directed toward those individuals within the Federal government, most of what is
stated would also be of value to individuals who are working for a commercial
organization.

The contents of the paper is based on the author's thirty years of experience working
as a computer manager, technician, and educator within both the Federal govern­
ment and commercial environments.

I. BACKGROUND

A. Contractors in the Federal Computer Environment

During the past thirty years, computer technology, and the way in which in it is used,
has changed dramatically. Automated Data Processing (ADP) at one time meant
transferring data from written documents to punched cards, for processing by large
computer systems in secure data centers. The results of the processing were volumes
of printed reports~ difficult to handle and use. Any change in the requirements
meant days, if not weeks, of work by computer programmer/analysts. Manual
activities supported the processing, and when the computer failed, manual work
could replace its function. Computers were not easy to use, and they were only
critical for a small number of a Federal agency's functions.

Today, terminology has changed. ADP has been replaced by such terms as Manage­
ment Information Systems (MIS), Information Resources Management (IRM), Federal
Information Processing (FIP), and many others which are too numerous to list here.
Today data is entered into a computer by optical scanning, voice recognition, remote
sensing, data communications, and a variety of other methods. Computers can be •

110

large, still housed in a data center, or small, sitting in a person's lap. The data which
they process may be shown in printed form, graphically, or be an electronic signal
which is sent to a different location to perform another task. Computer programs
can be modified easily, sometimes even by non-technical personnel.

The importance of using computer technology has changed also. Today computer
technology relates to the sharing of information by the use of local area networks,
the creation of documents via word processing, the electronic transfer of funds, the
instantaneous location of a unique document, fax transmissions, and a wide variety
of tasks and functions. These tasks are critical to the successful completion of an
agency's mission. They can no longer be performed manually. The use of computers
is no longer optional. This paper will use the term computer resources in the broad­
est sense, as it relates to all of the technologies and terminologies described above.
It relates to any data, information, hardware,software, system, facility, or communi­
cations function, where technology is utilized in the performance of an agency's
function.

The Federal government is one of the largest users, if n9t the largest user, of com­
puter technology in the world. It operates thousands of data centers and communi­
cations networks, and hundreds of thousands of personal computers. Many of these
computer functions are performed by civil service employees, but an increasing num­
ber are performed by contractors. Many Federal organizations use contractors to
perform the majority of their computer related work, with the civil servants only
monitoring the contractors' functions. There are thousands of contracting firms,
large and small, whose only source of business is providing computer services to the
Federal government. The Office of Management and Budget reports that for FY­
1990, the Federal government spent over ten billion dollars for these services. The
hardware, software, communications networks, and other computer products which
the Federal government uses on a daily basis are also produced by the contractor
community. The Federal government, in general, relies completely on the private
sector for the computer related products which it requires, and could not function
without the products which the private sector provides to it. For FY1990, the Office
of Management and Budget reports that nearly five billion dollars were spent on
these products.

B. Federal Computer Security Requirements
As computer resources become more of a critical component within the
government's work processes, measures have to be taken to assure that these
resources are always available for use~ for without them, organizations, and even
entire government agencies, could stop functioning. Protection has to be provided
to guard the government's computer resources from (1) adverse actions such as.acts
of nature and accidents, (2) improper actions such as malicious and illegal acts, and
(3) undesirable occurrences such as system failures due to design limitations and
inadequate testing. The integrity, confidentially, and access to all of the
government's computer resources must be protected. In this paper, the term
computer security is meant to include protection against all threats to all of these
resources.

To assure that the computer resources are adequately protected, Congress created
the Computer Security Act of 1987, as well as numerous other laws. Federal agencies
with oversight responsibility, such as the Office of Management and Budget, and the
General Services Administration, have published numerous regulations which all
agencies must follow regarding computer security. Individual agencies have created

111

. ·_.'1

their own rules. Organizations are legally bound to provide security for their
computer resources.

The laws and regulations require organizations to be concerned about computer
security, and to implement computer security programs. Many government
managers have also realized, from a practical viewpoint, that their computer
resources are very critical to the performance of their functions, and as a result have
taken prudent actions to protect those functions.

C. Contractors" Role in Computer Security
Two major trends within the Federal government have now converged, the use of
contractors' products and services to perform the governments' expanding and
critical computer related functions, and the expanding concern about the security of
the government's computer resources. Contractors therefore must not only be
concerned about computer security, they must take an active role in protecting the
government's computer resources.

II. THE CURRENT STATE OF COMPUTER SECURITY

A. Contractors" Involvement With Security
Are all contractors fully aware of all of the laws and regulations which apply to
computer security, of all of the threats which exist which can adversely affect the
government's computer resources, and of the impact to the government if those
resources are not available? Most of us will agree that "all" contractors do not have
this awareness, and some government employees will state that "many" contractors
do not have this awareness.

While this author has not conducted, nor knows of anyone conducting, a formal
survey as to the degree of contractor awareness concerning computer security, the
author has held dozens of discussions with computer security officers, contracting
officers, technical monitors, trainers, and managers within the government, as well
as manY. contractor personnel. These discussions have lead the author to believe that
"'many' contractors do not have the proper level of security awareness. The fact
that you are reading this paper, could be interpreted as indicating that you too are
concerned about potential threats to your computer resources, which your
contractor is doing little to protect.

Before a contractor can be expected to performance a task, the contractor must be
aware of the task. Unfortunately today, "many" contractors are not aware of the
need for adequate computer security. They are not aware because their contract
with the government does not address it, or because of their lack of understanding
about computer security. Computer security is a sleeping giant which is very easy for
the contractor, and government, to ignore until a disaster occurs .

Are all_contractors fully committed to computer security? The same survey discussed
above indicates that there is also a lack of commitment by "many" contractors in
implementing a computer security program, or in implementing good security fea­
tures in their products. This lack of commitment can be the result of a lack of aware­
ness, or it can be that computer security conflicts with the contractors' prime objec­
tive, which is to make a profit, or with their client's objectives, which do not include
security. If the contract does not spell out what the contractor's responsibilities are
regarding computer security, or if the contractor's client is not concerned about
security, is the contractor going to do anything about security? Probably not.

112

Many contractors have the problem of not possessing the necessary skills to
implement an adequate computer security program, or to include adequate security
features in their products. This is not a problem which is unique to contractors. In
general, there appears to be a shortage of computer security individuals who are
knowledgeable in both the theoretical and practical aspects of security. This
condition is known to anyone who has attempted to recruit an experienced
computer security technician.

There are many reasons for the shortage, but they include an ever changing
technology, a lack of interest by the computer industry in computer security, and a
lack of good, practical, computer security educational programs. Many government
agencies and private organizations do offer educational courses on computer
security, but the quality of these classes varies greatly, and only a small number of
courses are offered. In addition, training funds are usually in short supply. Too
often, training on how to develop new systems, install LAN's, or use a state-of-the­
art technique takes precedence over security training.

B. Government's Involvement With Computer Security
Before all problems relating to the lack of computer security are blamed on the
contractors, the government has to review its own environment. Some organiza­
tions within the Federal government have excellent computer security programs,
some have adequate security programs, but some just provide "lip service" to
computer security. This observation is based on the author's interactions with
dozens of government organizations. The lack of awareness and commitment by
Federal employees applies to both civil servant managers, computer technicians, and
contracting officers.

Many agencies today have serious shortages of civil servant employees. Therefore
government employees often state that it is difficult, if not impossible, to monitor
on a regular basis what the contractor is doing, as it relates to computer security.
Some government contracting officer's technical representatives (COTR) say that
they have all to do to assure that the contractor is delivering its products on time, or
that it is responding to all of the users' problems, without monitoring what the
contractor is doing about computer security.

Even if the COTR has the time to monitor the contractor performance in the compu­
ter security area, how do they determine that the contractor's computer security
awareness, commitment, and skills are adequate? In too many cases, the COTR does
not know enough about computer security to question the contractor about it.

C. Contracts
What work a contractor does, or does not, do is defined in the contract which exists
between the government and the contractor. The contractor is not going to do
anything not contained in the contract because the contractor will not get paid for
it. In some cases, if the contractor performs work not contained in the contract, it
could even be considered as being an illegal act.

Computer security has not been adequately addressed in many of the government
contracts the author has reviewed. Many times this is because the technical security
requirements have not been determined, other times because the necessary security
clauses have not been kept current, and still other times, because there are no funds
available to include any security features.

113

-l

lit IMPROVING COMPUTER SECURITY

A. Overview
You are very concerned about the security of your computer resources. You do not
believe that your contractor is doing an adequate job in protecting those resources,
resources which must be operational for your organization to fulfill its mission. How
do you get the contractor to be more responsive and to protect the computer
resources, and maybe even your job? Perhaps, you do not even know whether your
contractor is performing in a satisfactory manner or not, or whether the contractor
has the skills and motivation to do the job. Or maybe, both you and your contractor
know exactly what should be done, but you can not convince your management to
authorize the necessary security program, or there are no funds to perform the
work. The remainder of this paper will provide guidance to anyone who is
concerned about these conditions, or has to educate government personnel, such as
contractor monitors, about computer security.

B. Government's Awareness
fhe first thing any government organization must do to develop and implement an
adequate computer security program, is to make the government's managers and
technical staff aware of the legal and management needs for computer security, and
to educate them as to what computer security really means. You can not place
requirements on your contractor, if you and your management do not understand
the requirements, or if there are no funds to perform the work. You can not tell
your contractor that computer security is important, if you and/or your management

_do not agree. You can not monitor a contractor's technical performance if you do
not understand what the results of that performance should be.

Awareness and education of the government personnel concerning computer
security are necessary before you can get the contractor involved. A contractor who
is knowledgeable in the area of computer security, can assist you in "selling" security
to your management, and in the education of your staff regarding the technical
aspects of computer security. The contractor can not be the driving force behind
computer security, it must be the government. Step one then in any computer secu­
rity program is to assure that you, your management, and technical staff are knowl­
edgeable about the legal, management, and technical requirements for computer
security, and are committed to a reasonable and adequate security program.

How do you accomplish that? Lengthy papers have been devoted to informing and
educating people about computer security, and to completely address the issue here
would not be practical. Briefly though, the legal and management need for compu­
ter security must be made known to all. It is the process of awareness. You have to
know that if you do not have an adequate computer security program, you are not
complying with the law. You have to be aware that your organization may be
placed at great risk if you do not have an adequate comp~ter security program.
Your computer resources could be vulnerable to a wide variety of threats, which
could have a significant adverse effect on the mission of your organization.

Those threats not only include computer viruses and white collar criminals, but also
the results of unusual weather conditions, the failure of a sprinkler system, a labor
dispute, the detection of a hazardous material in your physical environment, a
design error in your computer system, a feature in a product which does not work as
promised, and thousands of other actions and events which occur in computer
environments throughout the world on a regular basis.

114

After aw~reness has been established, a program of computer security education
must take place within the government. The government does not have to under­
stand the details of how a specific virus works, or what are the different types of
data encryption. or how an uninterruptible power system functions. They do have
to be able to recognize what are the potential threats to their resources, where and
how they are vulnerable to those threats, what will be the effect on their operations
if the threat turns into an adverse action, what technology and management prac­
tices exist to counter those vulnerabilities and adverse actions, and whether the cost
for this protection can be justified. The question must be addressed as to how much
computer security, and at what cost, is appropriate. This is risk management. A
contractor can assist you in gathering all of the required information and perform­
ing the necessary analyses, ,but the final decision as to which risk is not acceptable
and therefore must be protected against, and which risk is acceptable, for which no
protection will be provided, must be made by the government.

C. Expanding the Contract
After it has been determined what level of computer security is required and must
be provided by the contractor, it must be addressed in a contract. If your computer
security requirements are not described in your solicitation, and not detailed in the
resulting contract, those requirements are not going to be satisfied by your contrac­
tor. You can not assume that the security features or commitment you desire are
going to be provided, nor that the contractor will want to, or be able to, provide
features or work not contained in the contract. After a contract has been created, it
can be modified to add security requirements to it, but that is usually costly,
sometimes difficult, and always politically a problem. You must ask your boss for
more money than you had planned for, and he/she asks why? ·

Your security requirements must be described in detail in your solicitation. Any
specific security requirements which are unique to your environment must be
inserted. General requirements can be obtained from your agency's procurement
"boiler plate", or from prior solicitations, but usually that will not provide all of the
protection you need.

Your solicitation must address your overall needs, and what security features and
services those needs require: Areas to be included are: how is security controlled by
the hardware and software; what security features do you require in the products
and systems; how is .access to the resources controlled; what user and technical
documentation is needed; what are the legal considerations; how are communica­
tions to be protected; what is the importance, confidentially, and criticality of your
data; what clearances and skills must the personnel possess; how will security
training and awareness be handled; what are the security needs for the facilities;
and how will contract administration be conducted. Assistance in placing the proper
requirements in your solicitation is provided by the National Institute of Standards
and Technology, as well as the General Services Administration.

In addition to your security requirements, you must describe your environment to
your contractor. If a risk analysis just determined that your installation has serious
security problems, you must tell the contractor. If you do not, the contractor may
not address those issues, and costs, in the proposal. If a contingency plan exists to be
used in the event of a computer failure, the contractor must know about the plan.
Anything which can affect the security and the functioning of your computer
resources must be told during the solicitation phase to your potential contractors.

115

. '
. '

Many times, all of the security requirements which you desire the contractor to
respond to, can not be identified at contract award, or if they have been identified,
there are no funds to support them. It is therefore wise to include in any contract,
options for the contractor to perform additional security activities, if the require­
ment and/or funds arise. Options do not commit the government to having the
contractor perform the work, but they can save significant time and procurement
effort if the government does require the work to be performed.

D. Responsibilities
The solicitation, and the resulting contract, must make it clear as to the responsibil­
ities of the government and the contractor. Who trains the contractor, pays for the
training, determines the level of training required, and determines when it has been
successfully completed? Who creates the risk assessment, screens the contractor's
personnel, and controls the passwords to access the computer system? The who, and
how, and what, and when, for all activities must be included. The specific areas to be
considered included: computer security planning, risk determination and analysis,
identification of sensitive systems, contingency plans, training, procurement of addi­
tional security related products and services, personnel requirements, determination
of costs and available funding, and controlling and monitoring the contractor's
performance.

Unless these responsibilities are clearly defined, several adverse actions will occur.
First, the government and the contractor will be arguing throughout the term of the
contract as to who is doing what and who is going to pay for it, and second, the even
more important, required functions may not be performed.

General guidance is that the government is responsible for overall planning and
control, conducting awareness training, the identification of sensitive systems, and
funding. The contractor would perform all of the required analyses, do the detailed
training, and be responsible for the day by day security actions. The exact break­
down of responsibilities will vary from contract to contract. It is very important that
all responsibilities be identified, and assigned to either the government, or the
contractor, or even a different contractor.

E. Determining The Contractors Awareness, Commitment, and Skills
You have defined in your contract what support you require, but how do you know
if the contractor has the capabilities to provide that support? The contractor's pro­
posal states that they have the knowledge and experience, or their product performs
that function, but how can you be sure? Techniques which are used include: (1)
reviewing their past performance, (2) assessing their plans for future performance,
(3) interviewing their proposed personnel, and (4) seeing a demonstration of their
proposed products .

Past performance can be determined by checking with organizations who the con­
tractor has supported in the past. The contractor says that they have performed
these security activities for this client. Check with the client to determine is that true,
and whether the client was fully satisfied with the contractor's performance. Check
with many prior clients, and with both the technical and procurement monitors.
Determine if the contractor have the skills, commitment, and record for doing what
they say they can do. If the contractor is proposing personnel, check the references
on the resumes.

116

In addition to past performance, you want to know what the contractor plans to do
for you. Require the contractor, in their proposal, or response to your task order, to
provide to you a detailed plan as to how the security work will be accomplished. The
plan should address exactly what is going to be accomplished and how. What is the
level of staffing proposed, and what are the qualifications of the staff? What is the
detailed schedule with interim milestones? What are the responsibilities of the
contractor and the government? What are the deliverables, and how will the
government know that the work has been performed in a satisfactory manner? This
plan must be agreed to by the government before the contract is awarded, or the
task signed off by the government. It should provide to the government a feeling
that the contractor understands the security problem, has the talent to attack the
problem, and possesses a plan to resolve the problem.

A part of a government contract, should be the contractor's security training plan.
The difficult question is, what is the correct level of training? There is no correct
answer, for the answer will depend on the required level of security, the funding
which is available, the sensitivity of the application, and many other factors. You
should assure though that the training proposed corresponds to all of those factors.

At the time a contractor submits a proposal to the government, it is proper and
advantageous for the government to interview some, if not all, of the contractor's
proposed personnel. This will assure that they are committed to working on your
project, and that they possess the necessary skills to support your security program.
If you do not have the necessary skills to adequately interview them, obtain those
skills from elsewhere in your agency, or even hire another contractor to assist you.
Do not assume that because the proposed resume says that the person has the
required experience, that the person actually does have the experience.

Benchmarks, or product demonstrations, can be used to prove to you that the pro­
posed product or technique, actually accomplishes what it is suppose to accomplish.
This II hands on II viewing of what is being proposed can be very detailed, and require
many hours of time by both the government and contractor personnel, or it can be
just a brief demonstration at another client's site. Some contractor's products are
formally approved, or accepted, by some government agencies, or the commercial
marketplace. This approval or acceptance could be used instead of having your own
demonstration, but be sure that the environment in which the product was
approved or accepted is exactly the same as yours. Demonstrations do not only apply
only to products, they also apply to techniques. If the contractor proposes to
conduct their own in-house training program, it is appropriate for government
personnel to sit in on those training sessions to assure that they will meet the
government's specific requirements. If the contractor is to develop a contingency
plan, the government may review prior contingency plans the contractor has created
to assure that the approach is acceptable. Do not accept promises from the
contractor. Rather, view with your own eyes what you are going to receive from the
contractor, and determine whether it meets the contractual requirements.

F. Monitoring Performance
You have now been convinced, at least in theory, that your contractor has the skills,
experience, commitment, and plan to protect your computer resources. How you do
know that the contractor is doing what the contractor has promised to do. How do
you monitor and control the contractor? Especially when your staff tells you that
they do not have the time to perform this monitoring function. First, the question of
priorities must be addressed. If computer security is really important to your
organization, and if you really desire to control what your contractor is doing, you

117

will have to locate resources to monitor the contract. They do not have to be full
time resources, but they do have to be at a level which relates directly with the
importance of what the contractor is doing.

The best way to monitor your contractor, at any level, is by using multiple control
points. What is meant by that, is that you obtain, on a regular basis, data concerning
your contractors performance not from one source, but from multiple sources. You
then compare all of the data to assure that it is consistent. If it is not, you have a
problem. For example, you receive from your contractor status reports telling you of
the good things the contractor is doing for you. At the same frequency, you should
also receive similar data from your user community, your operations personnel, even
from other contractors concerning the contractors performance. Is all of the infor­
mation consistent? You receive written reports concerning your contractors perfor­
mance. Does verbal inquiries agree with the written data? In walking around the
entire environment being protected, does your visual inspection and discussions
agree with the written data? If it does not compare, you better start asking many
more questions.

For example, how do you know that the contractor's employees are receiving the
security training which was proposed. First, obtain from the contractor detailed in­
formation concerning which contractor employees went to class. Since the govern­
ment is paying, either directly or indirectly, for the training this is an appropriate
request. Contact the trainer yourself to obtain feedback as to who was trained, and
what was their performance in the class. Talk to government employees who may
have been in the same class. Submit to the contractor a simple task concerning the
material which was covered in the class, to be completed by the students who just
completed the class. Have the results of the task reviewed by competent security
sources. Does all of the information you have gathered agree, or not?

Remember though, that any information, especially written, which you require from
the contractor should have been identified in the contract. Thisdoes not mean that
every report has to be listed, but categories and frequencies of reports should be
addressed. You can only perform the contact monitoring specified in your contract,
and/or permitted by government laws and regulations.

G. Contract Administration
Most interactions between you and contractors are to be in writing, and flow
through your contracting officer, or at least the contracting officer's technical repre­
sentative. Too often that does not occur. Verbal direction, usually illegal, is provi­
ded to the contractor by a variety of government employees. The result is confusion
on the part of the contractor because they do not know who to respond to, frustra­
tion by the government's technical staff because the required work is not being per­
formed, and anger by the procurement officer because the laws and contract are not
being followed. The government's procurement laws and regulations must be
followed in administrating any contract, not just because they are the laws, but
because good management practices re~uire that they be followed. In addition,
there must be a good contract"audit trail', that is a file of documents showing what
the contractor was to do and what they actually accomplished. Letters of commen­
dation as well as complaints must be included. Do not assume that the contractor
will respond to your verbal requests or concerns. Put it in writing, send a copy to the
contracting officer, and place it in the file.

Either because you are doing a good job in monitoring your contractor, or because a
disaster just occurred, you determine that your contractor is not accomplishing what

118

you thought the contractor was accomplishing. What do you do now? First, you
have to determine if the function is addressed in the contact or not. If it is not in the
contact, you can not force the contractor to do something which the contractor is
not legally bound to do. If your legal and procurement staff tell you the contact is
not clear, "the monkey is on your back". Your only real course of action, is to have
the contracting officer issue a modification to the contract, or to obtain other
resources to get the job done. Hopefully you will have learned from your mistake,
and will write a better solicitation, or task order, the next time.

Suppose though, the contract is complete and clear, and your contractor is just not
performing. Initiating the disputes, default, and termination clauses in the contract
is normally not the way to go. The contractor, your contracting officer, and your
management, will all get mad at you, but the work still is not getting done. Instead
attempt to determine what is the problem. Most contractor problems have been
caused by incorrect, incomplete, or erroneous communications. Therefore, when a
problem does arise, talk to your contractor project manager, vice president, or the
owner of the company, and determine what the problem is and how it can be
corrected. The contractor usually is just as interested as you are in solving the
problem. Contractors can obtain additional contracts only if their prior performance
has been acceptable. The last thing they desire is to have a·n unhappy client.

It is possible though that you can encounter the contractor that can not or will not
perform. The task then is one of terminating the contract, and obtaining a new
contractor. Remember, that if your contract is clear and complete, and you have
good administration records, there should be no question concerning the contrac­
tor's lack of performance. These documents will permit you to terminate the con­
tract in a shorter time, and with less frustration, than if things are not documented.

You have placed the security of your computer resources in the hands of your
contractor, but computer security is still the government's responsibility. You must
work together with your contractor to attac~ and resolve your security concerns. In
this way, the resolution of most problems will occur in the shortest of time, the
protection of the computer resources will be maximized, and everyone will benefit. ·
Computer security is a sleeping giant. You are going to need all of the help you can
get, to properly protect all of your computer resources, from those bad things, which
are guaranteed to happen to you.

119

COVERT CHANNEL ANALYSIS PLANNING

FOR LARGE SYSTEMS

Lee Badger

Trusted Information Systems, Inc.

3060 Washington Road (R.t. 97)

Glenwood, MD 21738

Abstract

Covert channel analysis is a challen1in1 task, particularly when performed durin1 the development
of a lar1e system. Some elements of covert channel analysis, such as timin1 channel identification and
reduction, require techniques currently beyond the state of the art. Performin1 a useful covert channel
analysis during development requires a careful balancin1 of costs and assurance, and a careful selection of
currently available techniques. While it is possible for new research to assist in the covert channel analysis
of lar1e systems, developen cannot plan on breakthrou1hs. This paper discusses available techniques,
their limitations and tradeofFs, and makes recommendations for performing covert channel analy.U.1

Keywords: Assurance and Analytic Techniques, Conducting Security Evaluations.

Introduction

Covert channel analysis (CCA) is a process ofidentifying and analysing information flows in a security policy
model, system specification, or system implementation. CCA is required to satisfy the TCSEC [1) B2 and
higher evaluation class requirements and also the ITSEC [9] E4 and higher assurance levels. CCA may be
performed either informally or formally. In general, CCA has 3 distinct components: 1) identification of
covert channels, 2) estimation of their capacities, and 3) reduction of capacities. An additional, implicit
component of CCA, is to gain assurance that each of the three tasks are correctly performed.

Performing a credible CCA, successfully and at reasonable cost, during a large (i.e., complex) system's
development is a challenging task. In the context of the Trusted Mach system currently under development
at Trusted Information Systems, a CCA plan has been evolved that balances concerns over assurance, cost,
and feasibility. This paper first provides definitions and summarises available techniques. It then compares
the techniques, and presents an approach for performing CCA during system development.

Definitions

Generally, covert channels make use of system characteristics, such as error return codes or global identifiers,
that are not normally thought of as contaipers of information but that reveal the state of shared resources
(hence the word "covert"). In contrast, information flows that occur between system "objects" as a result
of using system primitives in the intended way can normally be thought of as "overt channels." A covert
chGnnel is usually defined to be a "communications channel that allows a process to transfer information in a
manner that violates the system's security policy."[!) A system security policy (for B2 and greater systems)
should be completely stated in its FSPM (Formal Security Policy Model[1]). 2 If the FSPM includes an
information flow policy, such as noninterference [6] or nondeducibility [18], this definition is accurate. J!'or
access control FSPMs (e.g., [3]), however, the system security policy makes no statement about information

lThi• wol'k wu •upporied b:r D.A.RP.A./ISTO Cozdl'aet MD.A.O'T-110-C-0021.
'The eozutl'uetion o£ an FSPM that aeOUI'atel:r l'efleeb extemal •eemit:r nquil'ement. i• beyond the ••ope o£ thi8 papa; a

v.lid FSPM i• U81Uiled.

120

ftow, and the "intent" ofthe system security policy must be inferred from the properties ofthe defined secure
state. For example, .the as-property and *-property of the Bell and LaPadula FSPM imply an information
ftow rule of "no ftow down." For these systems, the purpose of CC.A is to gain assurance that information
may not ftow contrary to the in.ten.t of the system's security policy. It should be noted that this definition is
t1Cf'7/ broad, including as covert channels all mechanisms that reveal failures by the TCB (Trusted Computing
Base) to satisfy the FSPM•

.Although not required by the definition of a covert channel, the general paradigm of covert channel ex­
ploitation involves one or more sending subjects that have access to sensitive information, and one or more
receiving subjects that have lower access to sensitive information. Under the assumption that components of
the TCB do not intentionally compromise information, there must at least exist a receiver that is untrusted.
If there is no untrusted sender, the receiver's actions amount to spying on events going on in the TCB, which
satisfies the definition above, but is a much smaller threat because there can be no cooperation between
sender and receiver, and because presumably the TCB is using c:are in its handling of information. Most
of the literature on covert channels focuses on the more dangerous case, where both sender and receiver
are untrusted subjects and cooperate. In this case, the sending subject must be executing a trojan horse
program that is using the ac:c:ess rights of a highly cleared user • .Although there may be many senders and
receivers to exploit a given channel, the number is an implementation detail of the exploitation; this paper
refers to "the sender" and "the receiver."

Typically (and in the TCSEC), covert channels are divided into two classes: storage channels and timing
channels. .A •tof'a.ge cha.n.n.el is a covert channel in which the transmission of information involves the
alteration and observation of storage locations in the TCB. .A timing cha.n.n.el is a covert channel in which
the transmission of information involves the manipulation, by the sender, of the length of time that the
receiver requires to perform some operation. For a timing channel to exist, the receiver must have ac:c:ess to
a timing reference in order to measure the time required. Some channels are difficult to categorise as either
timing or storage[23). For example, the following channel would appear to satisfy both definitions: a sender
positions a disk's arm to the middle or outer track of a disk by performing 1/0 to files that are known to
reside in those places; the receiver performs 1/0 to an inner trac:k, measuring the delay in servicing the 1/0
request. The position ofthe arm is internal state (storage), and the receiver deduces that information using
timing properties.

Because covert channel exploitations bring about the disclosure of information, a definition of information
is necessary. .Although the intuitive definition of information as "bits" is useful, a more formal foundation
is required to calculate the c:apac:ity of a channel, that is, the rate at which information ftows through it.
Shannon's definition [17) is widely ac:c:epted as the proper foundation. Very informally stated, information
is the amount of "surprise" that the nc:eiver experiences when learning the value of a symbol received • .As
an example, a receiver that receives one of n.. symbols (all equally likely) learns more than a receiver that
receives one of m symbols (all equally likely) when n.. > m. The amount of information received depends on
the probabilities of the symbols. If one of the n.. symbols is very likely, so that the rest are very unlikely, then
receiving one of the rest is relatively "surprising," and more information is received than would be the case
if the probabilities were equal. Because the overhead of sending di:fl'erent symbols may vary dramatically,
covert channel exploitations may substantially increase channel c:apac:ity through the use of coding. Using
coding, a sender c:an change the probability distribution of symbols received by the receiver by encoding
expensive symbols as sequences of less expensive symbols.

TCSEC B3 Requirements

The TCSEC requires a system developer to c:onduc:t a thorough search for covert channels (storage channels
only at B2; timing channels also at B3 and .Al), and to determine channel capacities for identified channels
using either actual measurement or engineering estimation. In the recent Trusted Xenix B2 evaluation, the
evaluation team rejected the use of actual measurement because there could be no guarantee that the strate­
gies and c:ode used to drive the channel were the most efficient possible. .Analytic: techniques must therefore
be used for measurement (note: just as measurement is prone to underestimation, analytic: techniques are

121

http:cha.n.n.el
http:cha.n.n.el
http:�tof'a.ge

prone to overestimation). The TCSEC criteria refers the reader to the covert channel guideline section of
the TCSEC for guidance on both acceptable capacity and auditing. The guideline asserts that all channels
with capacities above 1 bit per second can be audited without adversely affecting system performance, and
therefore that such channels should be audited.3 Additionally, it recommends auditing of channels with
capacities above 1/10 bits per second where possible. Since the guideline is not part of the criteria, however,
it is subject to modification by precedent. During the Trusted Xenix B2 evaluation, the team found the
following channel capacity and auditing categorisation acceptable:

Capacity Action
<1 no concern

1-10 <fo'C:ument, audit if possible
10-100 if not possible to reduce, audit and document
> 100 not generally ac'ceptable

ITSEC Requirements

Development of ITSEC rated systems has 4 phases: requirements, architectural design, detailed design, and
implementation. At the E4 assurance level, CCA is required in the detailed design phase. At E5 and E6,
CCA is required both during the detailed design and implementation phases.

In the detailed design phase, a specification using "some form of rigorous approach and notation" is re­
quired. The specification is required to provide a DTLS and to identify all security mechanisms. A "design
vulnerability analysis" must be conducted on the specification to determine how security may be subverted
on a system configured in a specific way by a security administrator. This analysis must identify covert
channels. It is required that the exploitation of covert channels be auditable. In the implementation phase,
an ''implementation vulnerability analysis," for a given configuration, must identify covert channels.

The ITSEC targets covert channel analysis at specific configurations, which opens the possibility of support­
ing both covert channel analysed configurations and other, perhaps more useful, configurations. In general,
the ITSEC does not appear mature in its treatment of covert channels. First, a definition is not given,
although the reader might be justified in using the TCSEC definition. Second, the requirement that all
channels be auditable is probably not technically feasible.

Channel Identification

There is currently no known technique for identifying all covert channels in an implementation. Relatively
high confidence can be gained that storage channels have been eliminated from specifications [11] Unfortu­
nately, implementation details not present in an interface specification may introduce new channels. For a
complete, rigorous treatment of storage channels, it is probably necessary to combine analysis of interface
specifications with code level (or very low level specification) checking to validate the interface analysis.
Although at least one informal methodology exists for searching for timing channels (summariaed below),
identification of timing channels remains ad hoc. Most of these methods focus on finding "potential" chan­
nels; informal techniques must then be used to determine if the channels can actually be used. This section
presents three different approaches to finding storage channels, and one approach for finding timing channels.

Shared Resource Matrix Methodology

The shared resource matrix (SRM) methodology of Kemmerer [10] focuses on identifying the shared resources
whose "attributes" can be used for covert channel exploitation, and the system primitives that must be used
to manipulate the attributes. As defined by Kemmerer, a shared resource is "any object or collection of
objects that may be referenced or modified by more than one process"4 • The definition of the storage

s The auditinc of some ti:ming channel-, if attempted, would severely depade system performance.
• Kemmerer assumes that subjecb are processes.

122

objects in the system's security policy model determines a subset of objects about which attributes may
exist for covert manipulation. For example, a file or terminal may be a shared resource that has a si1e or
lock attribute that is subject to manipulation. Subjects may communicate by changing the si1e or setting
the lock. Whenever multiple subjects share a cpu, an additional shared attribute, the response time, is also
available.

Kemmerer gives the following minimum criteria for the presence of a storage channel:

1. Sending and receiving subjects have access to an attribute.

2. The sender can cause the attribute to change.

3. The receiver can detect the change.

4. The sender and receiver are able to synchroni1e.

Timing channels have a slightly difFerent set of criteria:

1. Sending and receiving subjects have access to an attribute.

2. The receiver has access to a time reference.11

3. The sender can modulate the receivers response time for detecting a change in the attribute.

4. The sender and receiver are able to synchronise. 8

The methodology is applied by first identifying the shared resources and their attributes, and then the system
primitives that can be used to manipulate them. This information is then organised into a matrix where the
row.s correspond to shared attributes and the columns correspond to available primitives. The elements of
the matrix are labeled by a R, M or both to indicate whether the primitive observes the attribute, modifies it,
or both. If the row for an attribute contains both R and M, it may be usable as a covert channel. A weakne11
in the methodology is that it does not state how to identify the attributes or primitives, or how to determine
whether or not an exploitation is possible. Due to this informality, concluding the analysis is a subjective
decision. At the lowest level, analysis is performed on every primitive: 1) that a subject may invoke, and
2) that causes or observes a system state change. These primitives include all system traps, kernel interface
calls (which are interpretations of system traps), functions made available by trusted processes, and cpu
instructions. Depending on its arguments, for example, the move instruction may afFect system memory or
cache contents; these efFects may be visible to subjects at other security levels.

Once constructed, the matrix is transformed by calculating the transitive closure of the information flows.
The transitive closure simply extends all direct information flows to include indirect flows as well. Both
Tsai [20] and Levin [11] have argued that this step is not necessary because indirect flows must be based
on direct flows. Levin notes that, because an exploitation may exist for indirect flows, such a conclusion
is only justified if no direct flows are eliminated from consideration as having no exploitation. Some tools
exist for assisting in constructing an SRM from specifications. Gemsos [11] used FDM (Formal Development
Methodology) tools [5] to generate a SRM for storage channel analysis. The system interface was described
using the Ina Jo specification language.

I .A.otuall;r, Kammonr aaaerb that both aender aDd noeiver need aooeaa to a time reference. It doea not appear neoeaaarJ,
however, lor tho aender to have auoh aeoe11 ao Ions u the aotiona that the aeader taltea are bowa ill advaDee to .Weot the
neeiver'a reapoaae timo.

eThis ia !lOt neoeaauil:r a aipifl.oaDt requinment. Ill the abaeaoe or a;rno~m•atioa, vuiationa ia the -der'a &lld noeiv•'•
:relative apeeda ahow up aa noiae ia the tranamiaaioa (which ClaD be ellmi-ted uainc auitable enoodiq). SJ'l\CI:Nom•ati- i1
required lor a noiaeleaa oh&nllel, however.

123

http:reference.11

Noninterference

A subject is "noninterfering" with another if the subject's actions do not affect the other subjects view of
the system's behavior [6]. If we view a system as a sequence of inputs and outputs, noninterference can be
stated: subject A does not interfere with subject B if, for every sequence w of inputs and outputs of A and
B, the output seen by B is identical to that which would be seen by B in the sequence that is identical to
w except that all of A's inputs have been deleted. A system has the MLS property if, for every subject A
whose security level properly dominates that of another subject B, A does not interfere with B. These ideas
can be more precisely stated; a state machine definition is given in [6].

Noninterference is characterised by system behavior at an interface; the interface may be at any level of
abstraction. Noninterference belongs to the family of information flow models because the satisfaction of
the policy can be shown by demonstrating that no information flows between noninterfering subjects (as
defined by the label dominance relation). Because covert channels are means by which high subjects can
interfere with low subjects, a system that has the MLS property has no covert storage channels.1 Covert
channels may then be discovered by attempting to show the MLS property for a system, and examining the
places where the proof fails. This approach was used, in comparison with the SRM methodology, to analyse
specifications of the Secure Ada Target for covert storage channels [7].

The noninterference approach has the advantage that, unlike the Shared Resource Matrix approach, it is
possible to "know when you are done." The method of analysis, however, is extremely arduous. Constructing
proofs that source code satisfies a particular specification is extremely difficult; producing arguments about
where and why a proof fails (and that the proof could not in fact have succeeded) is even more difficult.

A Code Level Technique

Although the SRM methodology [10] provides an approach to identifying covert channels, it leaves out the
specifics of how to find channels in source code. Tsai [lQ] provides a way to identify channels in C source
code using semi-automatic analysis. It is claimed that the method is formal and that all storage channels are
found. Although the method does use some formal techniques, the strength of the results is limited by the
strength of the (to date, informal) correctness claims for system implementation in general. Additionally,
the choice of C as the implementation language makes the analysis vulnerable to incorrectly implemented
pointer manipulations that cannot be caught by the analysis. Tsai's method can be seen as an extension of
the SRM methodology. It can be described in three broad phases:

Identify trusted interface primitives1 This information is available from the system DTLS.

Determine the visibility/alterability of internal TCB variables This determination starts by first
examining, using dataflow concepts, whether or not variable values are (potentially) returned to a
caller of a TCB primitive, or are potentially altered by call. For example, the statement "x ::::;: y;"
causes information to :flow from y to x. If the statement is guarded by an ''if B", then information
flows from B to x as well. Dataflow rules for tracking information flow in code have been given by
Denning [4]. This analysis is performed on a function by function basis. Potential function call paths are
then examined by discovering which functions can be called from each TCB primitive. TCB variables
that can be set or observed from the TCB interface are then flagged as covert channel attributes for
a code level SRM. The TCB primitives from which the attributes can be modified or from which the
attributes are visible are identified as the columns of the code level SRM .

.A.naly•e shared attributes (and weed most out)1 The criteria for weeding out identified attributes are
not formalised. Attributes may be weeded out either because the information flows supported are legal,
or because they confer no useful information.

Tsai's method identifies numerous attributes. It does not, however, provide a formal way to determine which

'In [T] it i1 dated that a •:r•tem having the MLS property might 1till have tim.inc eh&lU\ell, beeaUie there i1 no explicit
repre1entation of time in the noninterference model.

124

are actually harmful. Ideally, an FSPM would be mapped down onto the code, and the legal channels could
at least then be formally eliminated. The "no useful information" channels are more difficult yet.

A weakness of the method is its focus on global variables. First, such variables should be considered in
tJ66embler as well, and also.i/o should be analysed. Additionally, it should be possible to include the CPU
instructions as part of the TCB interface. I/o can present obvious channels, such as the print job identifier
channel for Unix. In that channel, print job numbers are written into a file in a DAC-protected directory by
the trusted printer daemon. New jobs are numbered after the last job written into the file. Because users
cannot access the directory directly, they cannot read the file, but they can notice which job numbers are
assigned to their print jobs. Using the SRM methodology, such channels can be detected by identifying the..
resource consisting of print job numbers.

Tsai's method, used in Trusted Xenix [2], identifies essentially three kinds of storage channels:

resource exhaustion A resource pool (e.g., a memory allocator) returns an error message when there is
no more resource to allocate.

policy conflict An operation that may compromise information, but which must be maintained for compat­
ibility or usability. For example, some systems refuse to remove directories when their (high) contents
are not empty.

event count Channels in which the sender can manipulate a (usually integer valued) index or sise attribute
of a resource. For example, a report of the total number of free disk blocks is an event count channel.

Timing Channels

Timing channel identification has historically been ad hoc. In order to measure the time that an operation
requires, the receiver of a timing channel must have a point of comparison. The most obvious such point of
comparison is the system clock. Points of comparison need not be so obvious, however. As stated in [22], a
timing channel may exist whenever there are two or more clocks where a clock is defined to be "any series
of events, visible to a process, which may be used by the process to measure the passage of time."

In [22], Wray proposes a methodology that focuses on the identification of clocks. Using the methodology,
all clocks are identified and an N by N matrix for the N clocks is constructed. The vertical axis would list
the clocks to be modulated by the sender, and the horisontal axis would list the clocks to be used by the
receiver to measure the modulations. Except for the diagonal of the matrix, each cell can be filled in with the
modulation scenario. It is not possible to modulate some clocks. This technique is not extremely different
from the SRM approach. Clocks are discovered by first listing "clock classes" (an informal activity), and
then subdividing the clock classes by their internal events. For example, some clock classes proposed in [22]
were: instruction timings, operating system calls, the system clock, and disk I/0 transfer time.

Once clock classes have been identified, individual clocks (usually subparts of a class, for example the
different interrupts for a disk transfer) are identified, and example exploitation scenarios are hypothesised.
For a particular pair of clocks there may be a large number of possible exploitation scenarios. Choosing
the fastest and most difficult-to-audit scenarios is an ad hoc process. In [22], Wray provides a number of
example exploitation scenarios:

disk-arm The sender positions the disk head by performing i/o on known tracks. The sender issues two
read requests (to different sectors) and examines the completion time of two read requests.

disk-arm write Similar to the above, the sender first positions the disk head. The receiver issues two write
requests such that they partially overlap on the disk and such that one will happen first depending on
the position of the disk head. The location of the disk head is revealed by which value remains. This
is an example of a "direct" channel, in which the information is deposited on a medium without the
receiver learning it first.

125

printer write with timing loop The receiver issues print requests and waits in a timing loop, after which
it cancels the request. The sender modulates the length of the receiver's timing loop by contending for
memory access.

bus contention A high processor modulates memory access contention with low processors. This channel
is potentially large.

cache :reload The receiver fills the processor cache with low information. The sender causes some cache
entries to be invalidated, and the receiver then notices the time delay in accessing memory.

Other timing channels have been presented in the literature; an exhaustive list of reported channels is beyond
the scope of this document.

Channel Capacity Estimation

Channel capacity estimation should be done after the identification phase is complete. The capacity estimates
serve as input to the channel reduction process. Capacity estimation has three components:

• 	 measuring the time each TCB primitive requires to execute,

• finding scenarios for 	the manipulation of each channel, abstracting the scenarios to gain a guarantee
that no other scenario exists that can drive the channel at higher speeds, and

• 	 estimating the rate at which information can be transmitted using the abstracted scenario.

In principle this approach works for both storage and timing channels, but techniques for finding the infor­
mation rates of abstract scenarios may dift'er. This section discusses each of these components.

Measurement

Measurement requires that, for each evaluated hardware base, all TCB primitives, that have been related to
covert channels in the identification phase, be timed. Both kernel and server interactions will require timings
since CCA will be performed for both the kernel and servers. It can be difficult to obtain believable timings
for TCB primitives. Primitives may execute much faster than the clock ticks of the system clock used to
measure the time.8 In this ease, it is necessary to time n calls of a primitive. For primitives that allocate
(or deallocate) resources, however, it may not be possible to execute the primitive n consecutive times.
Primitives may have to be paired (allocating and dealloeating) to measure their composite timings. Many
primitives may require different amounts of time to execute depending on the system state. Characterising
the state is sometimes possible (e.g., file creation in a large directory is slow), but often the state is such a
complex result of previous system history that analysis is not feasible. To blend the differences, the timings
should be measured multiple times, and confidence intervals should be used to gain assurance that actual
times are close to measured times with high probability.

Many primitives transmit information through failure conditions; it is therefore necessary to measure both
calls that succeed and calls that fail. An additional, unquantifiable, concern is that the time that a primitive
requires to execute often depends on what arguments are provided it. Arguments can sometimes be selected
that "do no work" (resulting in fast executions), but covert channels cannot in general be driven by "null"
operations. "Reasonable" arguments must be chosen.

Ideali1ed Scenarios

Channel capacity depends heavily on the scenario, or algorithm, used to manipulate it. In the abstract, it
is very difficult (virtually impossible) to show that a particular scenario for manipulating a covert channel

11£ apeaial diapostic hardw~e is availa'bl~, U~s ma;y not be an issue.

126

is optimal. It is muc:h easier to show that every scenario for the exploitation of a certain channel must pay
a specific: overhead (e.g., dealloc:ating resources that must be allocated to exploit the channel). Some well
known overheads, like synchronisation, however, cannot in general be included because it is not known how
clever an attacker might be in synchronising the sender and receiver. In general the attacker is assumed to
have the use of the entire system (no interference from others). The exploitation scenario c:an therefore be
started by selecting the most efficient TCB primitives for manipulating (sender modifies, receiver observes)
the channel, regardless of whether there is an apparent way to use them for that purpose. If the c:apac:ity
is sufficiently low, the analysis c:an end there. If the c:apac:ity is high, a search c:an then be performed for
reasons why those primitives can't be used, or why other primitives must also be used, lowering channel
capacity.

Estimation of Information Rate

Although there is general agreement that information theory (Shannon's definition) is the proper basis for
capacity calculations, methods of calculating covert channel capacity is an ongoing research area [21, 13].
Except for some simple c:lasses of channels, precise calculation of covert channel capacity exceeds current
mathematical techniques. In order to make calculations feasible, however, simplifying assumptions can be
made. By avoiding capacity underestimation, simplifying assumptions sometimes dramatically exaggerate
channel capacities.

In the TCSEC, acceptable capacities are expressed for individual channels. In previous evaluations, channel
"aggregation" has been an issue. The motivation for aggregating several channels into a single one is the
recognition that it may be possible to exploit several channels in parallel, thus increasing the rate at which
information is compromised. In the Trusted Xenix evaluation, aggregation was a consideration for channels
based on attributes which could be created in large numbers (e.g., directories) by an attacker. For single­
processor systems, the efFects are essentially to drop context switch time from the capacity calculation. For
multiprocessors, aggregation may introduce a factor of n into the capacity estimation where there are n
processors (because the channels c:an be exploited in parallel). Some agreement with the evaluation teams
will be required to determine which channels will be subject to aggregation and which will not.

Resource exhaustion (and some policy c:on:O.ict) channels may be modeled as a one bit noiseless channels.
Analytic: techniques (and even tools0) exist that are adequate to calculate capacities for one bit noiseless
channels. An upper bound on the capacities of event count channels can be obtained through simplifying
assumptions of the technique used for one bit noiseless channels. Timing channels are more difficult to
estimate. Some timing channels operate at memory speeds, limited only by the time required to resolve
hardware contention [14]. In this case, the channel is not sustainable using encoding because the sender
must "take time out" to encode th4!1 information10 , and the analysis can be simplified. Also, contention
resolution that is fair in the sense that it does not penalise one symbol or another with a delay reduces the
benefits to be gained through coding. Reduced channels will require more careful analysis, however. The
following section presents a measurement technique that is useful for many storage channels.

Qne Bit Noiseless Channels

This section summarises the technique given by Millen [13] for finding the c:apac:ity of one bit noiseless
channels. A channel may not be noiseless in a real system, but this results only in possible overestimation
of channel capacity. Using information theory, the c:apac:ity of a noiseless discrete channel is known to be
defined by the limit

lim log 2(N(t))/t
t-oo

where N(t) denotes the number of messages that can be sent in timet. When the efFort required to send a 1
is much difFerent from the efFort required to send a 0, the c:apac:ity significantly exceeds the information rate

'Whieh were used in the Tru1ted Xenix evaluation.
lO .A. eouequenoe o£ allowing codinc in channel• that. operate at memory 1peedl i1 to have channel capacitie1 that e•eeed

memory 1peedl.

127

obtained when an equal distribution of ones and seros is assumed. When the transmission of information is
efFected by a state machine with more than one state, the efFort required to send a 1 and to send a 0 may
depend on the current state of the state machine. Figure 1 shows a two state machine which corresponds to
a one-bit noiseless channel where the edges are labeled by pairs: the symbol before each"/" designates the
symbol being transmitted when that edge is traversed, and the letter after the "/" identifies the edge and
is a parameter for how much time is required to traverse that edge. The parameters can be understood as
follows:

0/a. 1/d

0/b

1/c

Figure 1: State Diagram For A One-Bit Channel

a send 0 if the last bit sent was 0,

b send 0 if the last bit sent was 1

c send 1 if the last bit sent was 0

d send 1 ifthe last bit sent was 1

These parameters are related to the definition of channel capacity in [13), where it is shown that the capacity
is given by log2 (7') where 7' > 1 is the (unique) solution of the equation

1- ,.-• _,.-· I_,.-c 1- ,.-.. = 0
1

This equation can be solved numerically given the four state transition times. A more general form, presented
in [13), may be applied to state machines which have more than two states and two symbols and can
therefore transmit more than one bit at one time. The solution to the resulting equations, however, becomes
unworkable when the number of states is much larger than two. In order to measure channel capacity for
event count channels, which are modeled as state machines with N states (N possibly large), we can use a
simplification which is guaranteed to not underestimate the channel capacity. The simplification finds an
upper bound for n.-bit channels by always using the smallest state transition time. For N states and N 2

state transitions •t, •2, •a, ...,•N2' log2(N) bits may be transmitted at one time. An upper bound on the
channel capacity is therefore given by:

logz(N)

This upper bound is not tight, but may allow the elimination of some event count channels from further
analysis.

128

Channel Capacity Reduction

If a channel's capacity exceeds acceptable limits, channel capacity must be reduced or audited. Accurate
estimation of channel capacity is important because it determines the selection of and severity (performance
impact) of reduction techniques. For example, delays that are unnecessarily large degrade system perfor­
mance unnecessarily whereas delays that are inadequately small afFect system security adversely. Some
channels may be eliminated by design changes (that usually reduce functionality), or by using certain config­
uration options. For example, Gemsos allows most storage resources to be statically preallocated by security
level, therefore eliminating most resource exhaustion channels. Such preallocation is expensive, however,
and primarily addresses a class of storage channels that can be efFectively reduced using delays.

Storage Channel Reduction

The two major techniques for reducing storage channels are delay and randomisation. Resource exhaustion
channels can be reduced by temporarily suspending (delaying) any process that exhausts a resource. Such
delays usually have acceptable performance impact because resource exhaustion is a (relative) rare event for
most resources. Delay can be used in a similar way for policy conflict channels. Delay is both less efFective
and more costly for event count channels that report global status (e.g., total free blocks), however, because:
1) the attribute being observed may take on many values and the receiver therefore may receive more than
one bit per delay, and 2) the delay must be imposed on every use of the reporting function.

Event count channels that show how resources are allocated (e.g., new Unix pid's) respond well to random­
isation, assuming a sufficiently strong random number generator. For Trusted Xenix, a congruential random
number generator seeded by the time of day and number of system calls provided sufficient strength. In
practice, an exploiter could not discover the seed because of the frequency and variable number of system
calls.

Randomisation is less efFective against status reporting event count channels because the accuracy of the
functions is inversely related to the degree of ''fussing" provided by randomisation.

Timing Channel Reduction

For some timing channels, a system has no way to tell the difFerence between exploitation and normal
activity. This characteristic makes timing channels intrinsically more difficult to reduce than many storage
channels. This is particularly true when the channel is based on high speed hardware based contention. The
(now classic) example is the shared bus multiprocessor where there are three or more processors [14]. In
that channel, low processor A increments a global memory location as rapidly as possible, high processor
B sometimes accesses global memory, contending for the bus, and low processor C continually checks the
progress of processor A. Bus cycles stolen by B show up (to C) as failures to increment the memory location.
This channel operates at memory speeds, and cannot be meaningfully audited by software because the
operations used to transmit information are "normal" processing, and because their volume would quickly
overwhelm any audit system.

It is beyond the scope of this plan to describe how to delay all timing channels. Several possibilities are:

• 	 Where the system primitives that return the value of a clock can be identified, use delay to reduce the
capacity. It is worth noting that the alphabet of such channels may be large, and that the information
rate may not be reduced as efFectively as it is for resource exhaustion channels (which have an alphabet
of {error, not error}).

• 	 Randomly introduce perturbations into readily available clocks to reduce the speed or ease of signaling.
Noise may reduce, but cannot close such channels. Analytic techniques for evaluating the efFect of the
noise may be difficult.

• 	 Fuss some clocks to reduce the accuracy with which covert senders and receivers can measure clock
difFerences. A variant of this approach, used in the VAX security kernel [8], randomised system timers

129

and added random delays to the initiations and notifications (of completion) of IO. This technique,
called "fussy time," attempts to isolate each process &om the precise timing information provided
by hardware supplied clocks such as inteirupts and cpu bus contention. Although the measurement
technique was not specified, [8] reports evaluation team agreement that all timing channels in the VAX
security kernel were reduced to less than 10 bits per second.

• 	 For contention channels like the bus channel, schedule the resource (in that case, the bus) by security
level, so that most contention is limited to being within a security level (and therefore legal). The
performance impact of this approach is not known, but may be severe (all processors contending for
the bus would have to change security level at the same time).

Assurance of Channel Reduction

Although channel identification may be conducted using specifications, channel reduction techniques must
be implemented, and assurance of their effectiveness must be gained at the code level. At the least,·some
form of covert channel testing must be performed to evaluate the effectiveness of reduction techniques. Code
analysis tools may assist for storage channels. Trusted Xenix used "covert chan11el flow tracing," a method
in which function call trees and variable references are analysed to ensure that a delay or randomisation
algorithm is always used before selected variables can be reported to a receiving process. IBM did not
have aproduction quality tool and, in practice, performed much of the analysis manually. If the analysis is
correctly performed, assurance can be gained in general that storage channels are reduced. It is not clear
that such tools can be effective for timing channels, however. Assurance for timing channels may depend on
comprehensive testing and code inspection.

Planning the Analysis

The covert channel analysis for a large system should satisfy three goals: 1) proceed concurrently with system
development, 2) provide credible results, and, and 3) remain within available resources.

There are basically two approaches to concurrently performing CCA and system development: 1) substan­
tially automate the analysis so that it can be completely redone after each significant system change, or
2) decompose the system into parts each of which can be independently analysed, and then combine the
analyses as the system is constructed. In either approach, analysis should be performed continually during
development so that feedback &om the analysis can impact the system design and implementation.

Although attractive in the abstract, substantial automation of CCA is an area of active research. A number
of tools exist that may assist in CCA by automating part of the process or by enforcing rigor in specification:
Malpas[12], Ina Flo [5], and an IBM proprietary tool [19] (this list is not exhaustive). In addition, a covert
channel analysis tool is under development inside TIS [16]. As is the case with programming projects, the
use of such tools may require dramatically more time than is anticipated.

Unfortunately, decomposing the system into components upon which independent CCA can be performed is
also a research area. In principle, modular covert channel analysis could be based on Kemmerer's SRM, but
there are no worked examples (known to the author). Changes to each component would at the least force
reanalysis of the affected component. If the reanalysis changes the results obtained by the previous analysis,
other components that depend on the changed component must be reanalysed as well.

Because CCA is still an art, the credibility of the results is somewhat subjective. Clearly an analysis that
fails to find many channels that are subsequently discovered in penetration testing or evaluation will not
be credible, however. Both specification and code level an&lyses may miss chanmils. In general, the rigor
imposed by using tools or formal techniques may increase the confidence that specification based analysis
is sufficient. It has been claimed that code level analysis finds all storage channels [19] 11 • -The handling of
timing channels will of necessity be informal; here, confidence can be gained only through sustained effort
to find as many channels as possible. ·

11 However, •ee •ection .A Cole Lewcl Tce!ait•e

130

Channel Identification

The most fundamental decision for covert channel identification is whether to use noninterference or some
form ofthe SRM methodology (or both). In [7], noninterference was compared with the SRM methodolosy.
Although the authors refrained from selecting one stratesy as the best, they noted that noninterference
proof failures might become unworkably difficult as the sise of a specification increases. Although, in a high
level (and simple) specification, the ideal of noninterference might be reasonable because channels present
at that level would of necessity be present in any faithful implementation, a low level specification would
(practically speaking) always cause proof failures. The authors further noted in [7] that noninterference, by
itself, probably could not be a comprehensive tool, although the SRM might be. Noting that their study was..
limited, the authors in [7] refrained from selecting one strategy as the "best" and indicated their intention
to use both in the future. Unfortunately, a developer must choose a strategy even though there may not be
adequate information to show that it is always superior.

Selection of SRM methodology versus noninterference is difficult; in many large scale development activities,
however, the following disadvantages of noninterference seem to argue against its use:

• 	 Proofs are difficult; interpreting proof failures is even more difficult.

• 	 Proof failures that are not understood provide no information.

• 	 N oninterferenee may require a level of formality that cannot be sustained on a large project with many
changes to the system.

The following assumes the use of some form of the SRM methodology.

Storage Channel•

The primary decision to be made is whether to pursue a code level analysis, an analysis based on specifi­
cations, or both. CCA has been more frequently performed on specifications than on implementation code.
The considerations can be broken down:

• 	 specification analysis

-pro

* easier to do informally
* 	potentially less expensive

* some tools exist (e.g., Ina Jo, Ina Flo[5] 12
)

* the analysis is less sensitive to minor system changes

-	 eon

* depends on specification accuracy
* omits necessary detail-channels not present in the specification will not be discovered

* there is no way to know when the job is finished (i.e., what specification is low level enough?)

• 	 code level analysis

-pro

* includes implementation detail

-	 con

* more expensive
* few tools, e.g., Malpas [12], are available

12Bxperienee on two p:rojeeb indicate. that Ina Flo ia not yet matu:re enouch to 1Ue.

131

* tools are required
* because of the complexity of the real implementation, coverage is not likely to be complete­

the detail can overwhelm the analysis

The true difference between analysis of specifications and code depends on the amount of detail present in
the specifications. Some analyses have used very detailed specifications [11] containing more than 700 state
variables. Although there are more "pro" items for the specification approach, the omission of necessary
detail and the dependency on specification accuracy are severe handicaps. Equally severe is the great
complexity of a code level analysis, in which detail can overwhelm the intuition of the person performing the
analysis. Given the limitations and costs of each approach, it is difficult to choose one exclusively. A dual
track approach therefore seems most prudent.

A specification analysis should be conducted on the interface specifications, and on each refinement of
those specifications. Parallel with that, a code level analysis should focus on validating (not verifying) the
correspondence between the specification and the implementation. Although a breakthrough in formal code
analysis is possible ([16] may eventually be such a silver bullet), the code level analysis should focus on
"informally" validating the specification analysis. Much of the code analysis will probably be manual, but
tools to assist the analyst should be obtained or written as necessary. If possible, tools such as Ina Jo and
the SRM matrix generator should be used to enforce specification consistency through the provision of type
checking, etc:., a.nd to construct the SRM.

At the interface level, the first step in the construction of the SRM is to identify the TCB primitives that
may be used to manipulate system attributes. Normally this is the TCB interface. It is necessary in the SRM
approach for the Rand M entries in the cells ofthe matrix to represent all direct flows between primitives.13

In this context, two primitives A and B are atomic if every interaction between them affects the system state
as if they executed sequentially in some order. If two primitives of the SRM were not atomic, then a worst
case analysis (including all possible interleaving•) would have to be applied to determine what date flows
between the two primitives were possible. The kernel calls of some operating systems (e.g., most versions of
Unix) provide a simple version of atomicity by suspending most process scheduling during kernel processing.
Even with these kernels, some operations will not be atomic because multiple processes may have to be
suspended in the kernel waiting for 1/0. The analysis should identify what operations are atomic, and how
information flows between any non-atomic operations are included in the SRM.

Timing Channell

Identification of timing channels must depend on an informal but extensive search by knowledgeable de­
velopers. Wray's methodology can assist in guiding the search for clocks, and the matrix proposed in the
methodology can assist the developers in keeping track of the relationships between different identified chan­
nels. An approach similar to that used for penetration testing (the flaw hypothesis methodology) may
provide the best results. Because timing channels often depend on hardware contention, it will be necessary
to conduct the testing on all significantly different hardware platforms (particularly multiprocessors).

Capacity Estimation

CCA for a family of hardware bases should be parameterised by hardware timing characteristics for each
supported hardware base. The determination of which channels can be aggregated affects capacity estima­
tion. This determination should be made as channels are identified. Channel capacities for multiprocessor
hardwares will require special consideration since the multiprocessor version will probably have more iden­
tified timing channels. The timing information can be derived from engineering data or from test programs
written to derive the characteristics of each hardware base. The multiprocessor hardware bases will require
additional tests to measure characteristics not present in uniprocessors.

As given above, analytic techniques exist for some channel types. For others, upper bounds are required.
The use of coding theory is indicated wherever the cost of sending one symbol is much larger than the cost

131£ a transitive elosure is performed, i~di~ct :8.ows would be present u well.

132

http:primitives.13

ofsencling another (perhaps because of a delay). For channels in which all symbols are equally easy to send,
the use of coding tpeory provides little capacity increase, and capacity can be approximated by assuming an
equal distribution of output symbols. For such channels, the capacity islog2(n) *cycles peP second where n
is the number of possible output symbols in a cycle.

StoNge Channel Reduction

The kind of channel (resource exhaustion, policy conflict, or event count) affects the available alphabet.
Exhaustion and policy conflict tend to be binary valued. Event count channels usually have numerous
symbols. Some channels can be eliminated through design changes, for example, by removing the status
reporting functions, or by changing them to tell white lies. Other channels can be reduced primarily through
delay and randomi1ation. Global identifiers, for example, the process id in Unix, present special problems.
They can be reduced using randomi1ation so long as the space of identifiers is much larger than the number
of identifiers that can be in use at any one time, and so long as allocation ofthe next identifier always chooses
randomly from the entire pool of unused identifiers. When caching is used to optimi1e the use of resources
associated with an identifier, the cache reduces the options for selection of the next identifier, and can be
exploited to signal. For such global identifiers, the maintenance of separate security level partitions (that
move slowly in response to demand) for the identifiers and the cache can be used to reduce capacity.

Two attacks on per-process delays must be prevented for delays to be efFective: 1) interruption of the delay,
and 2) overlapping of multiple delays. If a delay can be interrupted in any way, it is not efFective because
a process can notice when another process is in a delay, interrupt it, and resume covert communication. It
should not be possible to destroy processes that are suspended in delays.

If multiple per-process delays can be overlapped, an attacker may use multiple processes to efFectively poll a
resource more rapidly than permitted during the delay. This scenario can be prevented by serialiling delays.
A general seriali1ation scheme is as follows. Let the delay period be D seconds. The first process to be
delayed for use of the channel is delayed D seconds. The second process to use the channel is delayed for the
greater of: D seconds or D seconds from the time the first process finishes its delay. Multiple delays for a
resource may therefore not overlap. Using this technique, delays can be overlapped when they are imposed
on difFerent resources.

Timing Channel Reduction

The suggestions in the above section on timing channel reduction apply as stated. In addition to the use
of delays to reduce capacity, however, delays might be used to hide activity. For example, to prevent a
channel in which one process infers information from another through the time to access a shared page (i.e.,
whether a page fetch was necessary or not), sporadic delays that would correspond to page fetching could be
introduced. The delay must conceal from the receiver the fact that a page fault was not necessary because
the sender had already paged in the data. Specifically, all low processing that could not occur during a real
page fault must be prevented during a delay that mimics a page fault. If other low tasks could run, the
receiver could schedule another task to run and then measure its progress. Processing by higher level tasks
could continue, however. Additionally, the delay must be realistic. For example, actually performing a page
fault can be expected to take varying amounts of time to account for disk latency, rotational delay, etc. If
a delay always takes exactly the same amount of time, but the real operation times would vary, the channel
is not efFectively reduced.

Recommendations

Covert channel analysis can be approached in the following sequential phases. In each phase, all activities
may proceed in parallel:

1. 	 (a) Obtain timing parameters for all hardware bases. Programs that obtain the parameters may be
developed on prototype or untrusted versions of the final system.

(b) Begin the search for timing channels.

133

(c) Survey available tools for system specification and SRM construction, and evaluate. Select one,
or reject all and develop and use a proprietary notation.

2. 	 (a) Continue search for timing channels.

(b) 	Complete design documentation to incorporate the use of the selected tool or notation in the
specification layers.

(c) Decide which system components can be independently analy1ed.

(d) 	Begin development of source level tools to support the specification analysis, and also to provide
evidence of coverage for channel reduction.

3. 	 (a) Continue search for timing channels.

(b) 	Enhance source level tools as necessary.

(c) 	Construct the SRM for each system component with a stable interface.

4. 	 (a) Continue search for timing channels.

(b) 	Combine analyses of separate components and categorise channels discovered by the SRM.

(c) 	Use the source tool to validate the specification analysis.

(d) 	Calculate channel capacities (for all platforms, as possible), eliminating from further consideration
channels that are too slow.

5. 	 (a) Continue search for timing channels.

(b) 	Reduce or audit identified channels through system source or configuration changes.

(c) 	Use the source tools to check coverage of reduction techniques.

6. 	 (a) Continue search for timing channels.

(b) 	For all changed components, until the system is fro1en:

i. Recalculate the S~ (or determine informally that it need not be recalculated).

ii. 	Revalidate the SRM using source tools (incrementally, if possible).

iii. 	If any new channels are discovered, calculate their capacity, and reduce or audit as necessary
and possible.

The search for timing channels is present in each phase, but the effort required in each phase may not be
equal. The search for timing channels should be performed until the number (and severity) of additional
channels discovered using a given amount of energy falls below some threshold. Because system changes
can introduce new channels, the search must be revisited until the system is frosen (but perhaps at much
reduced levels of effort).

The CCA will require a diverse set of skills: 1) skills in the use and evaluation of tools (including an
understanding of formalism), 2) coding skills, 3) knowledge of the role that covert channels played in past
evaluations, and 4) design knowledge of the system being analy1ed. The writing of test programs and the
search for timing channels can contribute to design knowledge. The covert channel "team" should include
trust engineers and developers.

It is important to allocate sufficient energy for these tasks. The energy devoted to CCA will be used
to evaluate tools, create (modest) tools, write test programs, perform analysis on a complicated body of
changing software, produce designs to reduce and audit identified channels, and achieve assurance that
identified channels are reduced. Thi1 i1 an enormou1 amount of wor~ and 1hould not be undere.timated.

134

Acknowledgments

The author would like to thank Mike Masurek, Tim Redmond, and the reviewers for helpful comments on
the technical content and presentation.

*

References

[1] 	 National Computer Security Center, Deparl.ment of Defen•e Truded Computer Sy•tem Evaluation Cri­
teria, DoD 5200.28-STD, December 1985.

[2] 	 L. Badger, F. L. Mayer, T. Redmond, "Trusted Xenix Covert Channel Capacity Estimation AndRe­
duction," TIS Technical Report #364.

[3] 	 D.E. Bell and L. Lapadula, Secure Computer Sy.tem: Unified Eepo•ition and Multic• Interpretation.
(Technical Report No. ESD-TR-75-306, Electronics Systems Division, AFSC, Hanscom AF Base, Bed­
ford MA, 1976).

[4] 	 D. E. Denning and P. J. Denning, "Certification of programs for secure information flow," Communi­
cations of the ACM, (July, 1977), pp. 504-513.

[5] 	 S. T. Eckmann, "Ina Flo: The FDM Flow Tool," Proceedings of the lOth National Computer Security
Conference, p. 175-182.

[6] 	 J.A. Goguen and J. Meseguer, "Unwinding and Inference Control." Proceedings of the 1984 IEEE
Symposium on Security and Privacy, 1984.

[7] 	 J. T. Haigh, R. A. Kemmerer, J. McHugh, and W. D. Young, "An Experience Using Two Covert
Channel Analysis Techniques on a Real System Design," IEEE TSE Vol. SE-13, No.2, Feb. 1987.

[8] 	 W. Hu, "Reducing Timing Channels with Fussy Time," Proceedings of the 1991 Symposium on Research
in Security and Privacy, May, Oakland, Cal.

[9] 	 Information Technology Security Evaluation Criteria, Harmonised Criteria of France, Germany, the
Netherlands, and the United Kingdom May 1990.

[10] 	 R.A. Kemmerer, "Shared Resource Matrix Methodology: An Approach to Identifying Storage and
Timing Channels," ACM Tran. on Computer Systems, 1:3, August 1983, p 256-277.

[11] 	 T. E. Levin, A. Tao, S. J. Padilla, "Covert Storage Channel Analysis: A Worked Example," Proceedings
13th National Computer Security Conference, Oct. 1990.

[12] 	 Mal pas: a commercial tool used on the VAX security kernel that can assist in code level analysis· for
multiple languages: Pascal, PL/1, Fortran, and C.

[13] 	 J.K. Millen, "Finite-State Noiseless Covert Channels," Proceedings ofthe Computer Security Founda­
tions Workshop II, Franconia, New Hampshire, P.81, 1989.

[14] 	 "Minutes of the First Workshop on Covert Channel Analysis," September 19-21, 1989.

[15] 	 T. Redmond, B. A. Mayer, F. L. Mayer, "The Abstract TMach Kernel Model," TIS Technical Report
#293.

[16] 	 T. Redmond, "Formal Approach to Identifying Covert Channels in Source Code", TIS Technical Report
(in progress).

135

(17) 	 C. E. Shannon and W. Weaver, "The Mathematical Theory of Communication," the University of
nlinois Press, Urbana, nlinois, 1964.

(18) 	 D. Sutherland, "A Model of Information," Proceedings ofthe 9th National Computer Security Confer­
ence, Sept. 1986, p. 175.

(19) 	 C. Tsai, "A Formal Method for the Identification of Covert Storage Channels in Source Code," Pro­
ceedings of the 1987 symposium on Research in Security and Privacy, May, Oakland, Cal.

[20) 	 C.R. Tsai, "Covert-Channel Analysis in Secure Computer Systems," Phd. Dissertation, University of
Maryland, College Park, Maryland, Aug. 1987.

(21) 	 J. T. Wittbold, "Information Flow in Nondeterministic Systems," Proceedings ofthe 1990 Symposium
on Research in Security and Privacy, May, Oakland, Cal.

[22) 	 J. C. Wray, "A Methodology for the Detection of Timing Channels," Proceedings of the Computer
Security Foundations Workshop II, Franconia, New Hampshire.

(23] 	 J. C. Wray "An Analysis of Covert Timing Channell, " Proceedings of the 1991symposium on Research
in Security and Privacy, May, Oakland, Cal.

136

DEALING WITH MALICIOUS LOGIC THREAT

A PROPOSED AIR FORCE APPROACH

Howard L. Johnson

Information Intelligence Sciences, Inc.

1903 So. Franklin St.

Denver, co 80210

(303) 777-4266

Chuck Arvin and Earl Jenkinson

CTA Incorporated

7150 Campus Drive, Suite 100

Colorado Springs, CO 80918

(719) 590-8890

Captain Bob Pierce

AF Cryptologic Support Center

Hq. Electronic Security Command, AFCSC/SR

Kelly AFB, TX 78243-5000

(512) 925-2511

ABSTRACT

Trojan horses, viruses, worms, and other malicious logic that seek

to interrupt service or modify or destroy data are not necessarily

defeated by confidentiality mechanisms. The Air Force Trusted

Critical System Evaluation Criteria (AFTCCSEC) [1] supplements

confidentiality requirements found in the Trusted Computer System

Evaluation Criteria (TCSEC) [2] by addressing integrity and service

assurance. This paper introduces and describes criticality

division/class G2 found in the AFTCCSEC. The approach imposes

mandatory controls including access constraints, type enforcement,

detection techniques, and use of a resource scheduling

architecture. It applies to all life-cycle phases: development,

distribution, operations, and maintenance. Features include

program/data isolation (e.g., physical, logical or use of

cryptography), protection against covert criticality channels (that

allow malicious code insertion), and strict configuration control

of software and hardware. Any TCSEC division/class and G2

criticality can coexist, though retrofit of G2 will require an

existing TCSEC TCB of B1 or higher. This paper provides a basic

understanding of the concepts and policy, and also addresses

questions most often asked by reviewers of the AFTCCSEC document.

THE PROBLEM

Compromise of classified information has been the primary concern
of DoD computer security for three decades. The viruses and
Internet worms have shown the reality of malicious code attacks.

Work was accomplished under CTA Contract Number F41621-88-D5001
issued by Hq. Electronic Security Command, AFCSC/SR, Kelly AFB, TX
78243-5000.

137

There have been no previous DoD requirements, evaluation criteria,
and models that specifically address the malicious logic problem.

Thus, systems that previously were deemed secure a-~ording to TCSEC
requirements may in fact be vulnerable. Because upgrade message
flow is usually allowed, this could theoretically provide the
ability to insert and execute malicious programs. A likely attack
involves inserting a small virus to monitor a compromised channel.
It would recognize other malicious code hidden between
communications protocol "end" codes in incoming messages and cause
its execution. It might then erase any trace of the larger code.
The enemy would have subversion capability over the life of the
system (or until thwarted) to perform subversive missions (fact
finding, sabotage, or attempting to leak classified data). The
attackers would make these activities difficult to detect or to
distinguish from other failures types.

There is a sense of urgency to provide defenses against potential
debilitating malicious logic attacks on major command· and control
systems. We believe the best immediate defense is to provide
quick, substantial reaction to the threat.

THE NATURE OF ERRORS AND FAILURES

When a computer system error failure is discovered, it is often not
immediately known whether the cause is hardware, a design/
development error, an accident, or a malicious attack. An error or
an accident may result in a normal or simple failure, a failure
that propagates, or one that exhibits nonpredictable (chaotic)
behavior [3]. The most common state is "normal" (see for example
Beizer 1983 [4] for references) although people like to talk about
the exceptions (the 1989 AT&T failure Neumann [3]). An accident
has no goal so one would expect the impact to a system to be.
naturally (e.g., normally) distributed. A malicious intruder (not
a harmless hacker) will often seek debilitating system impact.

Malicious logic is generally more complex than an accident or an
error. Accidents and errors are seldom caused by more than a
single action and or flaw. An accidental action or flaw can
normally be emulated by a few computer instructions. The length of
known virus and worm attacks, however, is generally on the order of
1000 or more bytes. Sixty percent of reported viruses are derived
from the Jerusalem B virus which is approximately 1800 bytes.
Others range from 405 bytes (405 Virus) to .60,000 bytes (the
Internet Worm). The reason code for a malicious attack is large is
because the perpetrator usually has multiple objectives that
include detection avoidance, formatting to conform to applications,
causing a state of quiescence, planning, file searching,
communications monitoring, trigger monitoring, self erasure, and/or
propagation.

Design/development errors exist prior to and after validation (if
not discovered) and generally repeat (e.g., after rollback).
Hardware failures occur after validation and may be transient. If

138

they repeat, they can be caught by diagnostics. Accidents seldom
repeat and are usually recognized by individuals involved after
they occur~ Malicious attacks can occur either prior to or after
validation, though avoiding a thorough validation is difficult.
Malicious attacks can repeat, may not repeat, are probably not
revealed by diagnostics (but could be if the attacker desired),
often have multiple stages, and sometimes give multiple independent
results. Joseph and Avizienis [5] propose a logic tree approach
that assists in determining the cause of an error or a failure.

SCOPE

In recent papers (e.g., [6]) we defined a need and an approach to
deal with loss of integrity and denial of resource use. This
evolved into the Air Force Trusted Critical Computer System
Evaluation Criteria (AFTCCSEC) patterned after the Orange Book
(TCSEC). The AFTCCSEC has been published as Air Force Special
security Instruction (AFSSI) 5029. Figure 1 shows the
division/classes of the
AFTCCSEC and the criticality Protection
relationship to the TCSEC Dlvlalon/Ciaaa
D and Cl levels. This H Same aa aenaltlvlty D paper focuses on
criticality class G2 that 0 Single Lewtl
incorporates protection 01 Almoat the aame aa aenaltlvlty c 1
against malicious logic. 02 Protecta agalnat mallcloua logic

03 Supporta Critical operatlona Class G3 which addresses
critical Air · Force F Multllewl (Labela)
systems and classes F3, F1 Critical and Highly critical
F2, Fl and El that F2 Critical and Non Critical

F3 No clearance and Criticaladdress multilevel
systems and higher E(E1) Formal methode (no clearance and
assurance, are discussed Highly Critical)
in other papers [7 and
8] • The AFTCCSEC
basically us~s ~he TCSEC Figure 1 'AFTCCSEC Dlvlalon/Ciaaa
control obJect~ves. A·

reinterpretation is required since AFTCCSEC addresses integrity and

service assurance which complements the TCSEC application to

confidentiality.

APPRQACB

Current DoD budgets cannot afford to duplicate present Orange Book
security costs. Therefore, in the AFTCCSEC ·we have taken an
approach that has three implementation cost reducers. Each also
reduces time until implementation and implementation risk.

a) Division/class required depends on mission criticality.
Malicious logic protection is introduced at the G2 level where
systems are neither critical nor highly critical and can be
realized with a minimum fund expenditure.

b) since the approach follows directly from the TCSEC, most

139

mechanisms and procedures required by the TCSEC can be used
directly or modified to accommodate AFTCCSEC requirements.

c) Cryptography and cryptographic checksums used as isolation
mechanisms will reduce vulnerability and cost of protection.

PQLICY

This section reviews new policy proposed for the Air Force:

There shall be protection against malicious logic throughout the
system life-cycle beginning with development and continuing through
assurance, distribution, operations, and maintenance.

COMPUSEC techniques used by the TCSEC for discretionary access
control, object reuse, accountability, assurance, and documentation
shall be used where possible for program and data integrity and
assurance of service protection. · ·

COMPUSEC techniques shall be employed using Air Force accepted
trusted approaches to control access by individuals and processes
to programs (stored processes), data, and system resources.

Intrusion detection shall be used to discover unauthorized users,
system misuse, or malicious logic. Response should include fault
isolation, analysis, and malicious logic elimination. These
capabilities shall be protected from malicious logic attacks.

Public and private key encryption, and cryptographic checksums
shall be used for the protection of data and programs where
technically feasible and when cost, performance, and risk
requirements can be met. (Standards shall be developed that relate
the strength of algorithms and key management approaches to the
protection required, supplementing current use of encryption to
protect classified and sensitive information.)

Information gained from traffic analysis shall not reveal knowledge
of system or security protection details that could be used in a
malicious attack.

Software shall be developed, stored, and delivered under strict
configuration control and screening to make the probability of
malicious hardware or software reasonably small.

PREVENTION APPROACH

As stated in policy, the AFTCCSEC uses techniques identical to the
TCSEC including the trusted computing base (TCB), discretionary
access control, object reuse, accountability, assurance, and
documentation. Additional or changed techniques introduced at the
G2 level are discussed further.

140

Constrained AcCess
current security Subject 3-D ACL
mechanisms control access Authorizedof subjects to objects. 'fYpea-
Constrained access
(Figure 2) adds one
dimension to the access BJN
control process by
constraining process
access to objects, ~------Objectindependent of user.

Data File Specific access type is
Resourcesalso controlled (called

type enforcement) • A
process must be on a Process
valid process list to be
executed and can be Valid
removed from that list to
quickly contain malicious
code. Constraints are Figure 2 Access Control Triplets identified by way of
process and object profiles. Processes are restricted to interact
as they were intended when programmed. Additional constraints
restrict operations on objects to the minimum required subset.
Constraints are identified by the developer and established by the
security officer. Attempts to violate the restrictions are
reported to the auditing function. There is strict configuration
control of programs, constant data, valid process lists, process
profiles, and object profiles throughout the system life-cycle to
detect unauthorized modification or other potential malicious
characteristics. The idea of a security policy between users,
processes, and objects, (also called triplets) is discussed by
Clark and Wilson (9] and
the control by access
type (also called type Se

"81•t• •t
enforcement) is discussed lVI Y
by Boebert and Kain [10].

I tnear Execute _ LeakCovert Channels I I
TCB ..j.....t.~~•Code ___.,)•• Code X 11 Data

A covert channel is a
communication channel '-----------1

that allows unauthorized
transfer of data in a Criticality
manner that violates
security policy. A
sensitivity attack using

lneert Execu• I TCBa covert channel has
Code _.,.1\llfl-......,~• Codethree steps and a

criticality attack has
two steps as shown in
Figure 3. In the TCSEC, X Cowrt Channel•
the protection objective
is to control data Figure 3 Covert Channels leakage. The TCSEC do"es

141

.··_::_.!

'· .···.·;
-'

little, except through discretionary security, to control insertion
and running of malicious code.

In criticality, covert channels are considered at the G2
division/class. Input data must be assured to be malicious logic
free. Unauthorized channels "in" are potential covert channels
that must be plugged or monitored and are of concern during
development, delivery, operations and maintenance. AFTCCSEC covert
channel methods are much the same as the TCSEC.

Crxptogrophy
Cryptographic processes protect data from vulnerabilities in
trusted domains or when data is traveling through untrusted
domains. Private keys and private encryption algorithms are
controlled by the TCB. Private key encryption prevents
unauthorized reads and executes and some algorithms detect data
modification. Decryption can invalidate unencrypted malicious
logic (see the Pozzo-Gray Virus Containment Model [11]).
Cryptographic checksums detect unauthorized modification. Public
key encryption identifies
the ori9inator and, when Non Dlacloaure Bandwidth Filling used w~th a checksum, Identification (Co-vert Channel)
allows users even in an Key Management Execution Prevention
untrusted domain to Labeling No Intelligent Change
detect modification. Mechanlam Protection Enemy Spoofing
One-way encryption can be Modification Detection Signature
used for identification/
authentication. Useful

Figure 4 Encryption Uaea cryptographic processes
are itemized in Figure 4.

AFTCCSEC requirements can be implemented with or without
cryptographic processes. The intent is to open the door to
cryptography use for other than confidentiality. Cryptography is
efficient and inexpensive, and will become even more so as
popularity is gained. The issue of required strength can be raised
during design and dealt with by the appropriate DoD organizations.

Criticality TCB
The TCB for integrity and denial of service protection is larger
and more complex than required by the TCSEC. Some of the functions
(e.g., encryption) will normally be implemented in hardware. The
primary increases in complexity are for detection and resource
scheduling. Protocols, constant data, programs, and other control
data are protected by the TCB by ensuring against unauthorized
modification using cryptographic checksums. Cryptographic
processes are essentially an extension of the TCB.

TrUSted Distribution
The TCSEC is concerned about someone tampering with the TCB. The
AFTCCSEC additionally worries about injection of malicious logic to
system hardware, firmware, or software. Downloading of software
within a complex system is also considered a distribution problem.

142

DETBCTION APPROACH

Different than confidentiality, in preserving integrity and
assuring service, an effective approach is to detect a problem and
respond in adequate time (called critical time) to ensure- the
mission is still accomplished. At the G2 level, missions are not
critical, however, detection is still based on a response time
model. Assuming the malicious logic has avoided or defeated
prevention mechanisms, the strategy is to identify the occurrence
of a malicious attack, minimize its impact, and make the required
correction (e.g., remove malicious logic).

Real-Time Audit
Malicious attack detection uses both an inductive and a deductive
approach. The inductive approach determines intrusion behavioral
characteristics and seeks them out. The deductive approach
determines the normal behavior of many aspects of the system
through statistics and use of profiles to help determine what is
abnormal behavior. In each case a discrimination technique is used
to reduce false alarms. This approach makes use of current
intrusion detection research (presented by Lunt (12]) in
application of statistical, rule based, expert, and other heuristic
approaches. Nothing previously unproven is required by the
AFTCCSEC, and the door has been left open to technological
advances.

To avoid overhead, auditing can be accomplished in parallel by low­
cost, high-performance hardware. Auditing may be thought of as a
time prioritized data driven process. An audit function is
triggered by the availability of its applicable detection/audit
data. The maximum time until execution is determined based on the
time variables specified by the policy. The function and time are
placed in a time prioritized queue. The time is counted down and
the function with minimum time is executed. The detection process
checks itself for a possible denial of service attack and responds
with a corresponding predefined response plan. Data compressing
and discarding can be used.

Resource Scheduling
A precise resource scheduling policy must be defined, both to
define what constitutes denial of service and to know what action
must be taken in response to a denial of service attack.

Malicious Code Search
A tool that searches for malicious logic can be used during
development as part of validation and during operations as part of
configuration control, real-time audit, and communications
monitoring. search profiles help to recognize known or modified
malicious logic, illegal system functions, or system-only
functions. Non random data in encrypted (random) data streams can
also be identified. Keeping the search profiles secret and the
search process protected increases the mechanism effectiveness.

Hardware pattern matching logic can perform a fuzzy search. The

143

term "fuzzy" means that the profiles need not match exactly.
Application specific frequency weighting can be used to further
discriminate. Hardware implementation can reduce search of very
large databases to a few hours and keep up with very high
communication bandwidths.

SQMMARY

Current approaches in PCs to virus prevention, detection, and
isolation/removal are an ever growing compilation of checks that a
clever infiltrator eventually can work his way around. The
philosophy of playing catch-up will always leave the penetrator
with the advantage. That approach presumes repetition or
variations on past attacks. The professional infiltrator will
probably not use known malicious code.

The approach in the AFTCCSEC contains as a minimum all of the known
protections used by antivirus software. The approach further
depends on the existence of a TCB and utilizes strong encryption.
The approach allows the protection to be site, application, and
security officer specific, avoiding the predictability of canned
solutions.

This paper has presented the policy and discussed new approaches
introduced at the G2 division/class of the AFTCCSEC to deal with
the malicious logic problem for DoD systems. The approach has used
the concepts, mechanisms and language of the Orange Book (TCSEC) to
simplify understanding and reduce implementation cost. The
approach can be implemented in an Orange Book protected system or
one where confidentiality is not an issue.

GLOSSARY

Constrained Access Control- A security policy that identifies which
processes may be executed and what objects (i.e., other processes,
storage objects, and I/0 devices) they may access. Process and
object profile data are used to ensure that each process access of
an object is allowed and is of the allowed type.

Denial of Service - Action or actions that result in the inability
of the system or any essential part to perform its designated
mission either by loss or degradation of operational capability.

Integrity - Ensuring that data changes in only highly structured
and controlled ways. Air Force regulations define integrity as a
computer security characteristic that ensures computer resources
operate correctly and that data in the· data bases are correct. The
integrity protection goal is to protect against deliberate or
inadvertent unauthorized modification or execution.

Malicious Attack - Insertion of malicious logic, exploitation of
system flaw (e.g., trapdoor), or protection mechanism bypass. The
attack is considered a fault which may or may not result in an
error.

144

Malicious Logic - Computer hardware, firmware, or software intended
to do harm to the system, its data, or the mission being supported.

Object Profile Data - An access control list of processes
(programs), the objects for which they are authorized access, and
their access type.

Process - A program that has been requested to be executed. It is
completely characterized by a single current execution point
(represented by the machine state) and address space. The process
becomes an entity once it is recognized by the Trusted Computing
Base (TCB) that it is potentially to be run (e.g., executed). A
process that is not part of the TCB is an internal subject.

Process Profile Data - Identifies legitimate objects (files,
resources, and programs) to be accessed by processes and access
type.

Program - An object containing potentially executable computer
instructions.

Service Assurance - Ensuring availability of a system disrupted by
malicious or nonmalicious errors or failures where availability is
defined as the computer security characteristic that makes certain
computer resources are available to authorized users when needed.

REFERENCES

[1] AFSSI 5029, Air Force Trusted Critical Computer System
Evaluation Criteria, Air Force Special Security Instruction
5029, Air Force Cryptologic Support Center, June 1, 1991

[2] 	 DoD 5200.28-STD, Trusted Computer System Evaluation Criteria,
December, 1985

[3] 	 Neumann, P.G., "Toward standards and Criteria for Critical
Computer Systems," Compass '90, Proceedings of the Fifth
Annual Conference on Computer Assurance, 25-28 June 1990, NIST
and IEEE, pp. 186-188

[4] 	 Seizer, Software Testing Techniques, Van Nostrand, 1983, p. 35

[5] 	 Joseph, M.K., and A. Avizienis, "A Fault Tolerant Approach to
Computer Viruses," Proceedings 1988 IEEE Svmposium on security
and Privacy, 18-21 April 1988, pp. 52-58

[6] 	 Johnson, H.L, "Security Protection Based on Mission
Criticality, Proceedings Fourth Aerospace Computer Security
Applications Conference, IEEE, December 12-16, 1988, pp.228­
232

[7] 	 Johnson, H.L., c. Arvin, E. Jenkinson, B. Pierce, "Proposed
Security for Critical Air Force Missions," Information
Intelligence Sciences, Inc, February 15, 1991

145

(8] 	 Johnson, H.L., c. Arvin, E. Jenkinson, B. Pierce, "Proposed
USAF Approach to Multilevel Criticality," Information
Intelligence Sciences, Inc, February 15, 1991

[91 	 Clark, D.D, and D.R. Wilson, "A Comparison of Commercial and
Military Computer Security Policies," Proceedings of the 1987
Symposium on security and Privacy, Oakland, CA., April 1987,
pp. 184-194

[10] 	Boebert, E. and R. Kain, "A Practical Alternative to
Hierarchical Integrity Policies," Proceedings 8th National
Computer Security Conference, 30 September 1985

[11] 	Pozzo, M.M., and T.E. Gray, "Computer Virus Containment in
Untrusted Computing Environments," Information Security: The
Challenge, preprints of papers from the Fourth IFIP security
of Informat~on Systems Conference, Monte Carlo, December, 1986

[12] Lunt, Theresa "Survey of Intrusion Detection Approaches,"
Proceedings 11th National Computer Security Conference, NBS
and NCSC, 17-20 October, 1988

[13] 	AFR 205-16, Security: Automatic Data Processing (ADP) Security
Policy, Procedures and Responsibilities, Department of the Air
Force, April 28,1989

146

1

Developing Applications on LOCK*

Richard 0 'Brien and Clyde Rogers

SCTC

1210 W. County Road E., Suite 100

Arden Hills, MN 55112

Abstract

The Logical Coprocessing Kernel (LOCK) system is a highly assured INFOSEC system
that can be used as a platform to develop countermeasures to current and future security
threats. In this paper we discuss the manner in which applications are developed on LOCK
and the features of the LOCK system that allow these applications to be developed quickly
and securely. The paper focuses on the design of such applications using LOCK's type
enforcement and the implementation of these applications using the current LOCK software
development environment.

INTRODUC'riON

The Logical Coprocessing Kernel {LOCK) system is a highly assured INFOSEC system that can be
used as a platform to develop countermeasures to current and future security threats. The system
is based on a trusted computing base (TCB) that satisfies the security requirements defined for the
Allevel in the Trusted Computer System Evaluation Criteria [1] and includes embedded encryption
for media storage. The LOCK design uses a security coprocessor, called the SIDEARM, that
makes access decisions based on conventional multilevel and discretionary security mechanisms as
well as LOCK's unique type enforcement mechanism. The SIDEARM attaches to a host processor
and, together, the two processors define and enforce the system's security decisions [2], [3], [4].

The approach taken in the design of the LOCK system is based on the belief that the threats
that a computer system faces are constantly growing. As more secure computer systems are
developed, techniques for attacking these systems are also being developed and becoming more
sophisticated. In order to counter these new threats, LOCK is based on an open security
architecture that allows for the development of additional security countermeasures as the need
arises. In this paper we discuss the manner in which applications are developed on LOCK and the
features of the LOCK system that allow these applications to be developed quickly and securely.
The paper focuses on the design of such applications using LOCK's type enforcement and the
implementation of these applications using the. current LOCK software development environment.
We also describe future enhancements to the software development environment.

In section 2, a brief description of type enforcement is presented, and section 3 then describes
some ways in which applications can be designed to take advantage of the enhanced security and
integrity provided by type enforcement. A description of LOCKix, LOCK's version of Unix1 , and
the manner in which applications can currently be implemented on LOCK using either LOCKix or
the LOCK TCB interface is presented in section 4. Future enhancements that will provide
additional support for implementing privileged applications are described in section 5, and
section 6 gives examples to illustrate these ideas.

*©1991 SCTC. All Rights Reserved.

1 Unix is a registered trademark of AT&T

147

2 Type Enforcement

LOCK provides a type enforcement mechanism, used to restrict the access of subjects (processes)
to objects (data) and other subjects. In contrast to discretionary access mechanisms, which can be
circumvented, type enforcement supports mandatory controls which provide assurance equivalent
to that provided by the multilevel controls. Type enforcement controls are orthogonal to multilevel
controls, and provide separation and security both within and across levels. In this section, we
present a brief review of the type enforcement concept. More details can be found in [5]. A
comparison of the type enforcement mechanism with the ring mechanism of Multics can be found
in [6].

The LOCK type enforcement mechanism associates a type with each object and a domain with
each subject on the system. The access a subject is permitted to an object depends on the access
capability that the subject's domain is permitted to the object's type. Further, the access a
subject is permitted to another subject depends on the access capability that the first subject's
domain is permitted to the second subject's domain.

Conceptually, the access a subject has to an object via type enforcement can be thought of as
an entry in a data structure called the Domain Definition Table (DDT). The DDT is a matrix with
columns indexed by type and rows indexed by domain. Figure 1 shows a portion of a sample DDT
and lists the possible capabilities a subject can be granted to an object. The matrix entry in the
(d,t) position contains the access capability a subject in domain dis permitted to an object of type
t. Similarly, the access capability that one subject has to another subject via type enforcement can
be thought of as an entry in a data structure called the Domain Interaction Table (DIT). The DIT
is a matrix with columils and rows both indexed by domain. The matrix entry in the (d1, d2)
position contains the access that a subject in domain d1 is permitted to a subject in domain d2.
The subject to subject capabilities are: observe, signal, create, and destroy. Trusted capabilities
are defined for each access capability that involves modification: trusted write, trusted create,
trusted destroy and trusted signal.

The LOCK type enforcement mechanism can be used to solve security problems not addressed
by the multilevel and discretionary security policies. It can also be used to develop high integrity
subsystems. The manner in which this is done is described more completely in section 3.

3 Designing Applications that Use Type Enforcement

Designing a LOCK application adds a major step to a developer's software design process. Rather
than just decomposing the application along functional lines, it must also be partitioned along
security and integrity lines. The application designer must identify the components of the
application that require added security or integrity, and modularize the application to isolate those
components in separate subjects. The collection of subjects that make up an application are called
a software subsystem.

The design goal is to put each different security or integrity relevant task into its own subject
that runs in a distinct domain, and to isolate the data that these subjects must handle into special
types. Only the appropriate access capabilities that a subject in each domain requires to perform
its task and to communicate with other subjects are assigned to the domain via the DDT and
DIT. Then, rather than calling a function to perform a security relevant task, a subject sends a
message to an isolated subject designed to perform that task and waits for a return message.

A number of design concerns may require parts of a system to be modularized and isolated. In
this section, we discuss some of these concerns and describe how type enforcement can be used to
address them.

Subsystem Separation

As part of a subsystem design, special types for subsystem objects and special domains for
subsystem subjects are generally defined. The degree and manner of interaction between the
subsystem and other subsystems can be rigidly controlled by the DDT and DIT configuration. If

148

I I I

UnF1 1 F1 F1 1 TrP1 TrP1 I DB DBType I I I

Data Data Code 1 Data Code 1 Data Code
Domai I I

I

r, w I

I

PreF1 I C, d I I I I I I I

-----T----T----T----T----t----T----T-----~-----
1 I I I I I
I T I T, W I e I I I
I I I I I
I I C, d I I I I I I

F1
-----T----T----T----T----T----T----T-----~-----

1 I I If I I I I

I T I IW twl e I I
I I I ' I I
I I I I C, tc I I I I

TrP1
-----------T----T----T----T----T----T----T-----~-----

1 I
I d I
I T, I

I I I I I I I I
-----T----T----T----T----T----T----T-----~-----

1 I I I I 1 f, W
I I I 1DB
I I I I C, d e

I I I I I I I I
-----------T----T----T----T----T----T----T-----~-----

1 I I I I

I I I d I I

I I T, I I

Figure 1: A Sample DDT. Domains are listed down the left-hand side, and types are listed across the
top. The capabilities are: r- read, w- write, a- append, e- execute, c- create, d- destroy. Trusted
capabilities grant the domain the privilege of violating the *-property in a well-defined fashion for
objects of the given type. The trusted capabilities are: tc - trusted create, tw - trusted write, td ­
trusted destroy. A dash, -, indicates that the domain is not allowed any access to the type.

total isolation of the subsystem files from other system subjects is desired, then the DDT can be
configured so that subjects that are not in one of the subsystem domains are not allowed access to
objects of the subsystem types. Hence, no subject outside of the subsystem can access the
subsystem's data. Similarly, subjects within the subsystem can be prevented from accessing data
outside of the subsystem. The DB domain and its corresponding types, DB data and DB code, in
Figure 1 is an example of a subsystem that has been completely isolated from the rest of the
system by the proper configuration of the DDT.

The DDT and DIT can also be configured so that communication between different
subsystems can only occur through a well-defined interface. For example, a subsystem can have a
message queue of a special type that provides the only means for subjects outside the system to
contact it. Access to this message queue can then be limited to subjects in special domains.

Managing Trust

Trust on the LOCK system has a very specific meaning. It can be used to override the *-property
and permit a subject to modify (write, append, create, destroy) a lower level object, or modify
(signal, create, destroy) a lower level subject. It is implemented and enforced using the type
enforcement mechanism by defining special domains that have trusted access capabilities to objects
of special types. A subject in one of these domains has the privilege to perform trusted accesses.

Note that only accesses that involve modification have trusted modes. Accesses that involve
observing (such as read and execute) have no trusted mode on LOCK. There is no privilege that
allows a lower level subject to read higher level data.

149

LOCK's approach to trust provides a number of design and security advantages. Trust can be
granted at a very fine granularity in conformance with least privilege. Since there are separate
trusted accesses for each mode of modification, only the access that is required needs to be granted.
Furthermore, the DDT can be configured so that these accesses are only granted to special
domains and types. That is, for objects trust is granted on a domain-to-type basis, and granting a
trusted access to objects of a given type does not mean that such access is also granted to objects
of other types. Similarly, for subjects, accesses are granted on a domain-to-domain basis. Hence,
even if a subject has a trusted access, it can only use this access on objects of the indicated type,
or subjects of the indicated domain. Since those subjects that use trust are specifically identified
and isolated, a least privilege policy with respect to the use of trust can be implemented.

(In this paper we use the term privileged subject to indicate a subj~ct that is intended to
perform some security or integrity critical function. This is what often is called a trusted subject.
We use the term privileged, rather than trusted, to avoid confusion with the more restricted notion
of trust, described above, that involves the ability to override the *-property of the Bell and
LaPadula model. We will restrict our use of the phrase trusted subject to indicate a subject whose
domain has a trusted access capability.)

Separation of Duties

Within a subsystem, the LOCK type enforcement mechanism allows a strict least privilege policy
to be implemented and enforced. In order to take advantage of this capability, the subsystem must
be designed in a modular fashion that isolates privileged functionality in separate modules. These
modules can then be implemented as separate subjects, each in its own special domain, and the
data that they access can be assigned special types. The assured pipelines, described in the next
section, are examples of such design. The DDT and DIT can be configured to allow only the least
amount of access necessary for the desired functionality. In particular, individual subsystem
modules can be prevented from accessing data or communicating with other subsystem subjects in
ways that are unnecessary for the proper function of the module.

Such a design allows for simple modifications and additions. Adding a new subject to perform
a new task is a localized operation, so its effects on system security and integrity can be easily
identified. Also, such a design simplifies assurance work by identifying and isolating security and
integrity critical subsystem portions. The primary assurance effort can then be directed toward
only those subjects that perform privileged tasks.

Unbypassable Filters

The type enforcement mechanism also provides a means for implementing high integrity
operations. By using special domains and types, filter processes can be created to strictly control
the manner and order in which certain operations are performed. As figure 2 indicates, these filters
have the three critical properties of a reference monitor. They are unbypassable, tamperproof, and
can be verified correct. These properties are implemented by the definition of the necessary types
and domains and by the correct configuration of theDDT. In Figure 1, the Fl and the TrPl
processes are examples of unbypassable filters.

By composing one or more such filters, assured pipelines can be constructed that ensure the
security and enhance the integrity of data that flows through the pipeline. This is illustrated in
figure 3. Assured pipelines and the LOCK concept of a role, described below, can be used to
implement a variety of integrity policies, including those proposed by Clark and Wilson [7], [8].
One application of an assured pipeline might be to guarantee that any modifications to user
records must pass through a previewer pipeline before the modifications are committed. This
previewer pipeline allows the user to review and commit the changes using filter processes that
have been assured to maintain certain integrity properties of the records.

150

,---------,
Filter 1

I ,

Domain 1

I

Unfiltered

Data

.te:read Filter 1.~I
M'rt :

1 Process : . ata
---:----'I

.... ______ __
\ I

execute ·. Filtered
Unfiltered
Data TypeData Type Filter

Code

Filter

Code Type

Figure 2: A filter process. The filter reads the unfiltered data and performs its filtering operation
before writing the data to a new object of a different type. A special domain (the Filter Domain) is
created for the filter process and special types are created for the unfiltered data (Unfiltered Data
Type), the filtered data (Filtered Data Type), and the filter code (Filtered Code Type). By using
the DDT to restrict create and write access to Filtered Data Type objects to the Filter Domain, the
filter process is made unbypassable-it is only through the Filter Domain that filtered data can be
produced. By allowing the Filter Domain execute access to only objects of Filter Code Type and
by not allowing any other domain create or write access to objects of Filter Code Type, the filter
process is made tamperproof. (There is no way to modify the code that it executes.) By having
only one object of type Filter Code Type and performing the desired assurance on that code object,
the filter process can be verified to perform its filtering process correctly.

Roles

In the LOCK system, user roles are implemented in a manner that relies on the use of types and
domains. Every subject is associated with a user. A Role Authorization Table is used to determine
in which domains each user is allowed to have subjects operating. Roles are represented as sets of
domains, and a user is allowed to operate in a particular role (or subrole) only if the Role
Authorization Table permits the user to have subjects in the domains associated with that role (or
some subset of these domains).

To extend the example from the previous subsection, the Role Authorization Table can be
configured so that only users identified as System Security Officers (SSOs) are allowed the ability
to have subjects in the previewer filter domain. In this way, only an SSO is allowed to modify
LOCK user records.

4 Implell1,enting LOCK Applications

After developing a design that takes advantage of LOCK's type enforcement mechanism, the next
step is to implement the design on LOCK. LOCK currently provides two interfaces for software
development. For applications requiring no assurance, a fully functional Unix interface, LOCKix, is
provided. Privileged applications, on the other hand, must be implemented on the TCB interface
directly. A third interface that allows privileged applications to be developed on a LOCKix style
interface is under development. It is describedin Section 5.

151

..
----------------------r------ :

IOb:al~----;.....(~J~---t·~:IObrl....--t·--(~J~---t·--~i

~ ~

Subsystem BSubsystem A --------------------- ~~~~~~~··

Figure 3: An Assured Pipeline. This example of an assured pipeline is composed of two filters, each
designed and assured to perform its particular function. Process A filters the data in object a and
places it into object b. Object b is a shared object used to construct the pipeline. Process B filters
data from object b and places it into object c. An example of an assured pipeline might be a labeler
process (process A) followed by a printer process (process B). Object c in this case would be the
output from the printer. The labeler process would be assured to correctly label the data and put
the labeled data in object b. The printer process would be assured to print the data it receives
correctly.

4.1 Implementing Unprivileged LOCK Applications

For unprivileged software that does not need to communicate with other LOCK subjects, a
developer can use the LOCKix programming environment. LOCKix is an unprivileged application
providing a Unix interface on top of the LOCK TCB. It provides a fully functional single level
Unix kernel with read only access to files at dominated levels. LOCKix is based on Unix System V,
Release 1 and is over ninety percent system call compatible with Unix System V Release 2 as
measured by the System V Verification Suite. The next release of LOCKix will be based on
System V, Release 4.

LOCKix supports a C compiler, 68000 assembler, loader and C library. It also has program
development utilities such as an archiver and "make", and runs many existing Unix programs with
little or no modification. Most of the modifications required, in fact, are corrections of hardware
dependent programming errors in older programs. Most modern Unix code ports reasonably easily.
LOCKix provides a familiar programming interface and Unix library support.

The LOCK type enforcement mechanism allows a great deal of flexibility in controlling use of
the LOCKix compiler. LOCK can be configured so that only users privileged to run LOCKix in a
special domain can create objects that the LOCK host can execute. This prevents unauthorized
users from creating LOCK executable code.

LOCKix currently does not support a debugger, but will at some time in the future. The
present lack of a debugger makes LOCKix a less than ideal environment for program development.
Further work is also needed to develop high level support for inter-subject communication.
Multiple processes running inside the same LOCKix session communicate like any Unix process.
However, no Unix library support currently exists to enable LOCKix processes to communicate
with other LOCK subjects. LOCKix currently does not have a library interface to the LOCK TCB
(although creation of one is planned), so the direct TCB calls currently required for inter-subject
communication must be made in assembly language.

Because LOCKix presents a compatible Unix interface, the current development approach is
for application developers to write, debug, test and run applications on their favorite Unix system,

152

and then, once the application is ready for use, simply recompile and run it on LOCKix. This
approach has been used with great success in porting Unix software to LOCKix. Portable software
(Kermit, some GNU software, etc.) has been compiled and run on LOCKix without modification.

While the best method of implementing most unprivileged applications on LOCK is to develop
them to run on LOCKix, there may be some applications that would require little or no support
from LOCKix. Such applications could be implemented directly on the LOCK TCB interface used
for privileged software. The method by which this is done is discussed in the following section.

4.2 Implementing Privileged LOCK Applications

Privileged software cannot depend on LOCKix as the underlying system because it is large and
unassured, and if subverted, could cause the privileged software to be subverted also. Privileged
software must be developed to run directly on the native LOCK TCB. The TCB provides a small
set of well understood, well behaved primitives providing simple memory and communication
facilities. The simplicity and power of the LOCK TCB interface makes development of
sophisticated, multi-level a.Ssured applications possible.

Privileged (and some unprivileged) applications have been developed using the library
interface to the TCB. A full set of routines for inter-subject communication, memory management,
device handling, signaling and more are available in this library. A set of Unix stubs that simulates
most of these library routines has been developed so that the first phase of debugging can take
place on a Unix system, using its program development utilities. The LOCKix C compiler cannot
be used to compile the code because it cannot generate the fully relocatable code required to run
on the native TCB. LOCK TCB code is generated using a cross compiler. Once code is moved to
the TCB, it must be integrated using a hardware level debugger. A software based debugging
capability should be available some time in the future.

5 The Future of LOCK Software Development

In future LOCK systems the goal is to provide a complete software development environment in
which both privileged and unprivileged software can be developed in the same manner and with
the same ease. This section describes some of the ideas and enhancements that will make such an
approach possible.

5.1 Features of the Software Development Environment

An Isolated Development Environment. The LOCK type enforcement mechanism can be
used to create insulated test environments for development of privileged applications. By
insulating the development and test environment, it becomes reasonable to develop and test
privileged applications using LOCKix. For example, when testing a text downgrader a special
LOCKix domain can be created that has read and trusted write access capabilities to a special
type of test object. That domain would not be able to read or write any other type of object, and
other domains would only be able to destroy that type of object. This allows controlled creation of
a high level object that contains no high level information, which can be safely downgraded during
testing. This way when testing the downgrade function, the domain restriction keeps any
information from being accidentally or deliberately downgraded during testing. Less critical
software can be developed in less insulated domains with fewer controls.

An Assurahle Unix Interface Library. The LOCK assurable Unix interface library is a
small subset of the Unix system call interface. This library will provide developers with access to a
simple Unix file system, allowing them to specify object identifiers using a pathname. System calls
providing file manipulation, interprocess and inter-subject communication, and signal management
will also be provided.

This library will provide an interface for privileged software to be compiled using a subset of
Unix system calls. The need for TCB interface stubs will be eliminated, and programming
privileged software will be simplified due to the more familiar Unix interface.

153

Run-Time Environment Enhancements. The format and execution of TCB subjects will
be changed to add support for non-relocatable program code. Also, the TCB subject calling
conventions will be enhanced to provide arguments and environment information in a manner
similar to a Unix system. With these enhancements, development of privileged software can take
place in LOCKix without special support tools.

Complete Software Development Toolset. Another major improvement will be the
addition of a standard Unix source level debugger to LOCKix. This will make it possible for
developers to debug LOCKix code while running in LOCKix, and will complete the LOCKix
programmer's toolset.

5.2 Using the Software Development Environment

With a complete toolset in place, a more Unix-like TCB run time environment, the assured Unix
interface library, and the proper use of type enforcement, LOCKix will become an effective
platform for developing both unprivileged and privileged LOCK applications. Developers will be
able to write and test assured software in a special domain insulated from regular system users. In
such an environment they can compile and run privileged (and unprivileged) code untilthey are
satisfied with its correctness.

Applications would then be moved from a development environment to a production
environment via an assured pipeline. The source code written in the assured software development
environment would be of type assurable code. To compile this code in a format executable by
general LOCK users, it would have to be reviewed using a privileged source code reviewer that
runs in a domain that can read objects of type assurable code and can write objects of type
reviewed code. The LOCKix compiler would then be run in a special domain that can read objects
of type reviewed code, and write objects of a type that can be executed outside of the insulated
development domain. Different review steps could be added or deleted as required by individual
sites.

This model allows for controlled transition of software from development to operational status.
It supports role separation, allowing sites to separate the roles of software developer, reviewer and
installer. It uses many of the features of type enforcement to provide a secure, controlled
environment for the complete LOCK application development cycle.

6 Examples

In order to illustrate the manner in which critical applications can be designed and implemented
on LOCK, we present some examples.

Example 1. A Privileged Subsystem.

For our first example consider a subsystem that is designed to run as a single privileged subject on
top of a TCB. Such a subsystem might be a multilevel DBMS that performs all of its processing at
system high and then downgrades the results.

If the design is such that the entire DBMS cannot be easily decomposed into modules, some of
which need to be privileged and others that do not, then the full advantage of type enforcement
cannot be gained. However, it is still desirable to create a special DBMS domain, in which the
DBMS privileged subject would run, and special types for the DBMS files. It would then be
possible to run the DBMS as an isolated subject on the system as described in figure 1.

Although implementing the subsystem directly on a version of the standard LOCKix system
might be very easy, this approach has the disadvantage that since LOCKix is unprivileged, if it is
corrupted, the privileged subsystem might be subverted. This danger can be mitigated by using a
small, well-understood LOCKix subset, that only supports the functionality required by the
DBMS, on which to perform the port and then configuring the DDT so that this code object can
not be modified and so that it is the only code object that can be executed from the special DBMS

154

7

domain. Note that if the application is properly isolated, even if it is subverted, it can only affect
information available within its subsystem.

Of course, the danger that the LOCKix subsystem can be subverted is always present. To
insure that the subsystem cannot be compromised, it would be necessary to implement it using
either the LOCK TCB interface or, in the future, the assurable Unix interface. If it provides the
required support that the privileged subsystem needs, then the assurable Unix interface is
probably the best choice, since the implementation would be easier. In fact, if minimal additional
support is required, it might be desirable to add this support in an assured manner. In this way
additional functionality can be added to the assurable Unix interface in an incremental manner.

Example 2. A Modularized Subsystem

The real advantage of type enforcement is only obtained when a subsystem is designed so that its
security and integrity components are separated into modules which are small enough so that the
corresponding code can be properly assured for correctness. This highly reliable code, and the data
it deals with, can then be isolated using special domains and types and the remainder of the
subsystem can be implemented as an unprivileged subject.

As an example consider a multilevel DBMS design, such as LDV [9], [10) in which all
privileged processing can be isolated in a few modules, and most of the DBMS functionality is
unprivileged. The unprivileged portion of the DBMS could be implemented on standard LOCKix
using standard database code. This might involve nothing more than compiling the code on
LOCKix. The privileged portions would be implemented as discussed in the previous example,
using either the LOCK TCB or the assurable Unix kernel. The LDV design is an example of an
assured pipeline, since any query first passes through the unprivileged DBMS, then the privileged
filter that determines what information can be released, and then the response passes back out
through the unprivileged DBMS.

Example 3. A Role Based Subsystem

Examples 1 and 2 illustrate the manner in which unprivileged and privileged software can be
ported to LOCK to take advantage of LOCKix and type enforcement. To illustrate how roles can
be implemented, consider a simple example in which a DBMS is used to create reports which must
be reviewed by a human before they are released. The DBMS may itself be unprivileged, but the
previewer subject that handles the review processing is privileged to correctly display the report,
so that a user can review it, and only release it if it passes review. In effect, the previewer acts as a
filter. Furthermore, the role of the reviewer is only allowed to certain privileged individuals.

This subsystem can be implemented on LOCK in much the same way as described in Example
2 with the previewer being put in a special domain that acts as a filter between objects of type
report and objects of type reviewed report. The role of the reviewer is then implemented by using
the Role Authorization Table. Only users who are allowed to be reviewers are permitted to have
subjects that execute in the previewer domain. Hence, only these users are allowed to perform the
role of a reviewer.

Conclusion

This paper has discussed some issues involved in designing and implementing an application on the
LOCK system, and some of the features LOCK provides to aid application development.

LOCK's type enforcement mechanism allows an application designer to decompose an
application into modules which can then be separated into separate domains and types allowing the
interaction between the modules to be strictly controlled. Type enforcement also allows separation
of duties, simplified trust management, creation of assured pipelines and role enforcement.

Once an application is designed, LOCKix and the TCB interface provide tools a developer can
use to build privileged and unprivileged applications. In the future, LOCKix will add functionality

155

to its software development environment, and the assurable Unix interface will allow privileged
modules to be implemented in an even more efficient manner.

References

[I] 	 "Trusted Computer System Evaluation Criteria", Department of Defense Standard
5200.28-STD, December 26, 1985.

[2] 	 0. Sami Saydjari, J. Beckman and J. Leaman, "LOCKing Computers Securely", Proceedings of
the 10th DoD/NBS Computer Security Conference, NBS, 1987, pp. 129-140.

[3] 	 W.E. Boebert, "Constructing an Infosec System Using the LOCK Technology", Proceedings of
the 11th National Computer Security Conference, NBS, 1988, Postscript Volume.

[4] 	 0. Sami Saydjari, J. Beckman and J. Leaman, "LOCK Trek: Navigating Uncharted Space",
Proceedings of the IEEE Symposium on Security and Privacy, 1989, pp.l67-175.

[5] 	 W.E. Boebert and R.Y. Kain, "A Practical Alternative to Heirarchical Integrity Policies",
Proceedings of the 8th National Computer Security Conference, NBS, 1985, pp. 18-27.

[6] 	 W.E. Boebert and Steven M. Miller, "Comparison of Mechanisms for Implementing Protected
Software Subsystems", unpublished draft.

[7] 	 D.D. Clark and D.R. Wilson, "A Comparison of Commercial and Military Computer Security
Policies," Proceedings of the 1987 Symposium on Security and Privacy, 1987, pp. 184-194.

[8] 	 D. J. Thomsen and J. T. Haigh, "A Comparison of Type Enforcement and Unix Setuid
Implementation of Well Formed Transactions," Proceedings of the 1990 Computer Security
Applications Conference, 1990, pp. 304:..312.

[9] 	 J.T. Haigh, R.C. O'Brien, and D. Thomsen, "The LDV Secure Relational DBMS Model",
Proceedings of the 1990 IFIP Database Workshop, to appear.

[10] 	 P.D. Stachour and B. Thuraisingham, "Design of LDV: A Multilevel Secure Relational
Database Management System", IEEE Transactions on Knowledge and Data Engineering,
1990, Vol.2, pp. 190-209.

156

THE DEVELOPMENT OF A LOW-TO-HIGH GUARD

Michelle J. Gosselin

Tbe MITRE Corporation

Burlington Rd., Bedford, MA 01730

ABSTRACT

This report details the development of a guard to monitor electronic traffic between two
computer systems. The guard is intended to operate between two computer systems that are
accredited to operate at different security levels. One system (the high system) must be
accredited to process all information on the other system (the low system). The purpose of
the guard is to automate the delivery of information from the low system to the high system
while preventing any flow of information from the high system to the low system.

ACKNOWLEDGEMENT

This paper is based on work done for the Air Force, ESD-ICD. Their support in this effort is
greatly appreciated. Many co-workers at the MITRE Corporation are also to be thanked for
their contributions to this effort. Specifically, Karen Johnson is thanked for implementing
major pieces of this design.

INTRODUCTION

The low-to-high security guard described in this report was developed for two specific
systems accredited at two specific security levels. However, the design of the guard allows
for the guard to be easily applied to other environments with systems operating at different
security levels involving a low-to-high information flow.

The purpose of the guard is to automate the delivery of data from the low system to the high
system while preventing any flow of information from the high system to the low system.

The development of the guard occured in three phases. The first phase involved the selection
of the guard platform. Once the platform was chosen, the operational concept of the guard
was defmed. The third and final phase was the actual implementation of the operational
concept. Each of these phases is discussed in detail in this report.

Also discussed in this report are the issues that must be addressed before the guard can be
accredited for operation.

GUARD PLATFORM

SELECTION

The first task in developing the guard was to select a suitable hardware and software
platform. There were three requirements that were considered when selecting the guard
platform. These requirements are stated in the following list

1. 	 The guard should be a low cost system with a maximum cost near $10,000.

2. 	 Because the guard processes sensitive data, a guard must satisfy certain security
requirements mandated by the Department of Defense (DOD) in DOD Directive

157

5200.28. According to Directive 5200.28, a system that processes classified
information and that requires controlled access protection must meet, at a minimum,
the C2 class of security requirements specified in the DOD Trusted Computer
System Evaluation Criteria (TCSEC). The operating mode and the level of trust
that is required for the guard is determined by risk assessment which is determined
by the minimum clearance of the users and the maximum data sensitivity. For
systems of different security levels, B class services that provide mandatory access
control and can separate different security levels are required. The directives that
govern the interfacing of intelligence systems with nonintelligence systems
generally require that the guards be multilevel and provide a B2 level of trust as a
minimum.

3. 	 Since the purpose of the guard is to prevent the transmission of data from high to
low, the guard must be capable of keeping any network traffic intended for the low
system separate from any network traffic intended for the high system. One method
of keeping the traffic separate is for the guard to use separate network protocol
stacks and Ethernet cards to interface with each system. The configuration of such
a system is displayed in figure 1.

. . ·/'

GUARD
Low

Ethernet

Figure l. Configuration With Separate Ethemets

There are several systems that meet or surpass the C2 class of security requirements.
However, some of these systems far exceed the cost limit of $10,000, and many of the
systems do not have separate protocol stacks. The only system that meets the above criteria
is the Trusted Xenix operating system produced by Trusted Information Systems (TIS).
Trusted Xenix has received a B2 rating, which surpasses the required C2 rating. The
operating system runs on a variety of hardware platforms, including many INTEL 80286 and
80386 based workstations. Trusted Xenix and an appropriate hardware platform can be
purchased for approximately $10,000.

. _,
TIS has developed a version of Trusted Xenix that implements two separate instantiations of

' the networking protocols. Two separate Ethernet cards (and ports) are also supported .
Traffic can be kept separate by regulating the access to the protocols and to the ports. The

·method in which access is regulated is explained in detail in the following section.1

SECURITY POLICY

Trusted Xenix is a Unix-based operating system. The operating system has several types of
objects to which information can be written. These objects include files, directories, and

1 Unfortunately, the network interfaces are not included in the evaluated configuration. This matter will have to be

addressed prior to or during the accreditation process.

158

ports. A directory can contain files and other directories. A port can be used to transmit
information to devices external to the workstation.

Actions on the operating system objects are performed by processes. For instance, a process
can read information from and write information to a file, a directory, or a port. A process
can also initiate other processes. An example of a process is the networking process, referred
to as the inet daemon, that handles information coming into the system from the network. On
the guard, there are two inet daemons; one for the low side and one for the high side.

In the Trusted Xenix environment, each object and process has a sensitivity label associated
with it. The sensitivity label represents the sensitivity of the data contained in the object or
process. A sensitivity label is composed of two pieces; a hierarchical classification and a set
of nonhierarchical categor_ies. A sensitivity label S 1 dominates a sensitivity label S2 if the
classification of S 1 is higher than or equal to the classification of S2 and the category set of
S2 is a subset of the category set of S1.

The security policy of Trusted Xenix is composed of two pieces; a read policy and a write
policy. The read policy states that a process can read an object if the sensitivity label of the
process dominates the sensitivity label of the object. The write policy states that a process
can write to an object (which includes creation and deletion) if the sensitivity label of the
process equals the sensitivity label of the object. Trusted Xenix enforces strict adherence to
these policies. For a process to override these policies, the process must possess special
privileges granted by the System Security Officer using mechanisms provided by Trusted
Xenix.

The security policy of Trusted Xenix also applies to the unprivileged processes associated
with the guard software. The unprivileged processes of the guard software do not have a
separate security policy, and are forced to follow the policy established by Trusted Xenix.
However, there is one privileged guard process that does violate the Trusted. Xenix security
policy. This process is privileged to append one byte of information to a file that exists in a
directory that is at a lower security level than the level of the process2. The process does not
otherwise violate the Trusted Xenix security policy.

OPERATING CONCEPT

Before discussing the details of the guard software, it is necessary to understand the operating
concept of the guard. The operating concept is based on the following scenario: the low
system, which is accredited to process SECRET A data, sends a database update to the high
system, which is accredited to process SECRET AlB data. The high system then provides
either an acknowledgement or a negative acknowledgement of the receipt of the database
update. The operating concept can be separated into two phases. Phase I involves the
transfer of the database update from low to high. Phase II involves the transfer from high to
low of an indication of either having received (an acknowledgement) or not received
(a negative acknowledgement) the database update. Phase I of the operating concept is
depicted in figure 2, and phase II is shown in figure 3. In both figures, processes are
represented by circles, and files (the database update and the acknowledgment or negative
acknowledgement) are represented by squares.

2 The privileged process is discussed in detail in the paper.

159

LOW GUARD PROCESSOR HIGH

Figure 2. Operating Concept for File Transfer

The operational sequence of transferring the file is as follows. A~ authorized user of the low
system will initiate a file transfer process using an application layer transfer protocol (TP),
such as Simple Mail Transfer Protocol (SMTP) or File Transfer Protocol (FTP). The inet
daemon (inetd) on the low side of the guard will download the database update (dbu), in the
fonn of a file, to the guard platform in the low partition (or directory).

Once the dbu file is stored on the low partition, the guard software performs various actions
(such as reading and copying the file) in order to transfer the file to the high system. The
guard software is separated into three different processes: a low process, a guard process,
and a high process. The first process that takes any action on the file is the high process.
When the high process detects the presence of the file in the low partition by reading the
contents of the low partition, the high process initiates a TP connection with the high system.
Once the connection has been established, the file is transferred across the TP connection to
the high system.

After the file has been successfully transferred, an acknowledgment of the successful transfer
is sent back to the low system from the high system via the guard software. If the file was
not successfully transferred, a negative acknowledgment is sent back to the low system from
the high system via the guard software. The operating concept of the transfer of the
acknowledgment (ack) or negative acknowledgment (nack) is depicted in figure 3.

Low

LOW Partition Partition HIGH
GUARD PROCESSOR

Figure 3. Operating Concept for Transfer of (N)ack

The operational sequence of transferring the (n)ack is as follows. The high process
determines from the information received from the high inet daemon whether or not the dbu
file transfer was successful. If successful, the high process creates an acknowledgment, in
the fonn of a file, of the successful transfer on the high partition. Ifnot successful, the high

\ 	 process creates a negative acknowledgement, in the form of a file, to indicate the failure on
the high partition.

The guard process, after detecting the presence of the (n)ack file on the high partition creates
another (n)ack on the low partition by appending information to the original dbu file. Once

160

the acknowledgment has been created, the guard process deletes the original (n)ack file on
. the high partition.

Finally, the low process detects that the size of the (n)ack file (previous dbu file) has
increased and transmits the (n)ack file to the low system. The low process then deletes the
(n)ack file on the low partition.

IMPLEMENTATION

The guard software is composed of three continuously running processes; a low process, a
guard process, and a high process. Each of these processes is automatically started when the
system is started. Each process is cyclical in that it executes a sequence of steps and then
returns to the first step. The frrst step for each process is to detect the presence of a particular
file. H the file is not detected, the process temporarily suspends execution for a configurable
period of time (currently ten seconds). After this delay, the process again starts at the first
step. The low process runs at the SECRET A level, and both the guard process and the high
process run at the SECRET AlB level. The guard software also works in conjunction with an
inet daemon dedicated to the low side and an inet daemon dedicated to the high side. Each of
these processes is described in detail in this section.

TRANSFER OF THE DBU

Figure 4 depicts the actions that are taken on the incoming dbu file. Also provided in the

figure is the resulting sensitivity labels on both the dbu file (F) and the process (P) involved

in the action.

2

3.

dbu4• . file

F:SA

P:SA

P:SA
F:SA

F:SA
P:SA

F:SA
P: S AlB

P: S AlB
P: S AlB

F: SA
P: S AlB

P: S AlB
F: S AlB

Figure 4. Transfer of the DBU

The dbu file arrives in the following manner on the system. The low user sends a file to the
guard via a transport protocol. The only naming convention that the low user must follow is
to not begin the name of the file with the character II. II. When a low user sends data to the
guard, the data comes across the low Ethernet and through the port dedicated to that Ethernet.
This port is labeled SECRET A. When data comes across this port, the low inet daemon,
which is labeled SECRET A, reads the data. 3 The inet daemon then writes the data to a file

3 As staled previously, a port is an object that contains data. The data that the object contains is the data that is coming

across the port Therefore, the data corning across the port has the same sensitivity label that the port does.

161

in the low directory which is labeled SECRET A. This file is created at the SECRET A
level.

The low process checks the low directory for a file containing a database update. The search
of the low directory is allowed since both the low process and the low directory are SECRET
A. If a database update (dbu) file is detected, the low process records the size of the dbu file.

The high process also checks the low directory for a file containing a database. update. The
search of the low directory is allowed since the high process is SECRET AlB and the low
directory is SECRET A. If there is a dbu flle, the high process initiates a new process that
executes the commands found in a script file called hproto (for high protocol).

The hproto script file contains a list of executable commands. This script flle is entirely
tailorable to the specific environment that is hosting the guard. The script can be changed
without having to recompile any of the guard software. This allows for complete freedom in
choosing any of the TCP/IP based protocols to be used for file transfers. This includes FfP,
SMTP, and rep. Currently, the guard software calls a version of hproto that uses FfP as the
transfer protocol. Hproto issues the appropriate TP command in order to transmit the dbu to
high using the protocol stack dedicated to the high side.

After the transfer of the dbu file, the creation and transfer of the (n)ack file takes place as
described in the following section.

TRANSFER OF THE (N)ACK

Figure 5 depicts the actions that are taken on the (n)ack flle. Also provided in the figure is
the resulting sensitivity labels on both the file (F) and the process (P) involved in the action.

1. P: S AlB
F: S AlB

6. P:SA
P:SA

2. F: S AlB
P: S AlB

7. F:SA
.

1 P: SA

3.
P: S AlB
F: SA

8. P:SA
F:SA

P: S AlB P:SA
4. F: S AlB 9. F:SA

F: SA
5. P: SA

Figure 5. Transfer of the (N)ack

As the dbu file is being transfered, the data sent back from the inet daemon on the high host
is then analyzed by hproto to determine if the file was successfully sent. If the transfer was
successful, an ack file is created in the high directory with the name of the dbu flle in the low
directory. This ack file contains one byte that has a value ofO.

162

If the transfer was not successful, attempts are made to retransmit the ftle for a configurable
number of. times. If the maximum number of retransmission attempts is reached, the high
process creates a nack file in the high directory with the name of the dbu file in the low
directory. The nack file contains one byte that has a value of 1.

Once an (n)ack has been received, the next stage of the (n)ack transfer cycle involves the
guard process.

The guard process periodically checks for (n)acks in the high directory. The guard process
detennines that a (n)ack exists when there is a file with a size of one byte. If a file is greater
than one byte in length, a violation has occured, and the violation is audited4.

Upon detection of a (n)ack, the guard process attempts to open a file in the low directory that
has the same name as the (n)ack. If no such file exists, a (n)ack file exists that does not have
any corresponding dbu file. Therefore, a violation is indicated, and the violation is audited.

If the guard process finds a corresponding dbu ftle, the guard process reads the byte of
informationin the (n)ack file in the high directory. If the byte is a 0 (ack) or a 1 (nack), the
high process appends the byte to the dbu file in the low directory. This appended dbu file is
now considered the low ack file. The guard process then deletes the (n)ack in the high
directory. The writing of information to the SECRET A dbu file by the SECRET NB guard
process requires a special security privilege granted by the operating system to override the
write policy.

If the byte in the high (n)ack file holds a value of other than a 0 or a 1, a violation is
indicated, and the violation is audited. The (n)ack in the high directory is deleted.

The next stage of the database and (n)ack transfer cycle involves the low process.

The low process periodically checks the low directory for a file containing a (n)ack. The low
process determines that a (n)ack exists when the size of a file has increased by one byte. If a
(n)ack is found, the low process reads the file, which is labeled SECRET A, for the additional
byte of information. The low process then deletes all previous information from the file.
Once the low process has modified the (n)ack file to contain only the byte of information
from the guard process, the low process initiates a new process that executes the commands
found in a script file called lproto (for low protocol).

The lproto script file contains a list of executable commands. This script file is entirely
tailorable·to the specific environment that is hosting the guard. The script can be changed
without having to recompile any of the guard software. This allows for complete freedom in
choosing any of the TCP/IPbased protocols to be used for file transfers. This includes FI'P,
SMTP, and rep. Currently, the low process calls a version of lproto that uses FfP as the
transfer protocol. Lproto issues the appropriate TP command in order to transmit the (n)ack
to low using the protocol stack dedicated to the low side. low must determine if the file is an
ack or nack based on the contents of the file.

Once the commands in the /proto script file have been executed, the low process deletes the
the acknowledgment file.

4 All audit records includes the date and time when the violation was detected, the name of the (n)ack file, and the

contents of the (n)ack file.

163

ACCREDITATION

For the low/high guard to be used operationally, it must first be certified and accredited. This
section discusses the issues that need to be addressed in certifying and accrediting the guard.

ACCREDITATION AND CERTIFICATION PLAN

To properly accredit the low/high guard for operation, an accreditation and certification plan
should be written for the guard. The primary purpose of an accreditation and certification
plan is to serve as a handbook for the Information System Security Officer (ISSO) and the
Designated Approving Authority (DAA) in carrying out their roles in the accreditation and
certification process. An accreditation and certification plan usually provides the following
information:

1. A system overview describing the operational environment,
2. Security requirements the system must meet,
3. Documentation that must be supplied to the ISSO and/or DAA,
4. Organizational responsibilities, and
5. A detailed description of the accreditation and certification process.

EVALUATION

As stated previously, the guard base (Trusted Xenix on a 286 or 386 machine) has received a
B2 rating from the National Computer Security Center (NCSC). However, changes that have
been made to this base to implement the guard effect this rating. Both the networking
software and the guard software have to be analyzed for their effect on the overall rating.

Networking Software

NCSC currently does not evaluate any networking software and accompanying hardware.
Each system under evaluation is treated as a standalone system. Therefore, the networking
software used by the guard may not meet the NCSC B2 security requirements. During the
accreditation and certification process, the networking software resident in the kernel of the
operating system would have to be inspected by the ISSO and the DAA in order to determine
whether or not the software was trustworthy enough for the environment. The networking
software would have to analyzed for covert channels and for its effect on the trusted
operating system. According to TIS, there are two separate protocol stacks that can be
labeled separately. These separate protocol stacks and labels allow the separation between
low and high to be maintained. The ISSO and DAA would have to verify that there are
indeed two separate stacks.

Guard Software

Since the guard software is given the privilege to violate the security policy of the operating
system when creating the acknowledgment in the low directory, this software must also be
inspected. However, inspecting the guard software is a much easier task than inspecting the
networking software since the privileged portion of the guard software consists of six lines of
code. Inside the guard software, the following steps are taken:

1. A privilege to override the mandatory access control policy is granted.
2. A file in the low directory is opened for writing.

164

3. A byte ofinfonnation, containing either a 0 or a 1, is appended to the file.
4. The file is closed.
5. The privilege to override the mandatory access control policy is revoked.

These five lines of code could quickly be analyzed with respect to the B2 requirements, if the
desire is to maintain a B2 system. One of the B2 requirements that may pose a problem is
the covert channel analysis requirement. However, if the action of creating an
acknowledgment file does create a covert channel, the channel could easily be reduced to an
acceptable size by limiting the rate at which acknowledgments are created by the guard
process.

OPERATIONAL ENVIRONMENT

The operational environment of the guard must also be considered when accrediting the
guard. Aspects of the environment that must be considered are the location, additional uses
of the guard, and the users.

Location

The guard should be located in a facility where access is restricted to individuals who are
allowed to process SECRET AlB data.

Guard Uses

The guard is intended strictly for use as a guard. No application packages, such as word
processors and spread sheets, are resident on the guard. Without any application packages,
the desire to use the guard for other purposes will be minimal. By limiting the use of the
guard, the number of accidental security infractions will be limited.

Users

There are two groups of users that have accounts on the guard. One group consists of the
security personnel who are responsible for maintaining the system. The security personnel
include a security administrator, an auditor, and an operator. The security administrator
maintains user accounts and is responsible for the security of the system. The auditor
analyzes the audit trail,. and the operator performs day-to-day operations, such as systems
backups.

The other group of users are general users who do not have system responsibilities. There is
one general user with an account on the guard, which is the guard user. The guard user is the
owner of the low process, the guard process, and the high process respectively. Since these
processes are automatically started when the system is turned on, there is no need for this
user to log onto the system. Therefore, for security purposes, the guard user should be
administratively prevented from logging in.

By limiting the number of users of the guard, the number of intentional security infractions
will be limited.

CONCLUSION

The guard documented in this paper provides for the automated transfer of a database update
from a low system to a high system. The guard also automatically relays an acknowledgment
of a successful transfer or a negative acknowledgement is the transfer was not successful
back to the low system.

165

The guard also prevents the flow of information from the high community to the low
community. There are two types of the high-to-low information flow; the high side writing
to the low .side, and the low side reading from the high side. The way in which these flows
are prevented is as follows. For a user of the high side to gain access to the low side, the user
must fmt gain ~ess to the guard. Access can only be gained through the Ethernet card on
the high side. The port associated with this Ethernet card is labeled SECRET NB.
Therefore, the operating system will automatically label any data coming through that port
with the SECRET NB label. Similarly, a user on the low side must first access the guard via
the low side Ethernet card before accessing the high side. Since the port associated with the
low side Ethernet card is labeled SECRET A, all data coming through that port will be
labeled SECRET A by the operating system. If a SECRET NB process running on behalf of
a user from the high side attempted to write to the low side, the operating system would
disallow the write because the low side port is only SECRET A. If a SECRET A process
nmning on behalf of a user from the low side attempted to read from the high side, the
operating system would disallow this since the high side port is SECRET NB.

There is one instance where an information flow from high to low is allowed by the guard.
This capability is granted to the guard process through a privilege mechanism. The guard
process is trusted to append one byte of information to an existing file in the low directory.
The byte contains a value of either 0 or 1. The value of the byte is determined from
information supplied from high, and this value is passed to the low system. The guard
process is trusted to append strictly one byte containing no other value except 0 or 1. The
guard process cannot create a new file in the low directory.

As stated previously, the guard must be formally accredited before it is used operationally. It
might also be useful to make further enhancements to the guard before employing it. For
instance, the auditing and report generation features of the guard could be specialized for
each specific environment. Trusted Xenix is responsible for auditing system events and
~ating an audit trail of these events. However, the Trusted Xenix auditing capabilities are
general to the overall system. Auditing capabilities could be developed that are more specific
to the guard operations. This could reduce the size of the audit trail and make the audit trail
easier to understand.

Other features that could be added are host authentication and error reporting. Host
authentication would be used to verify both the low host and the high host as valid members
of the networks. Error reporting would give a better indication to the low host as to the
condition of the message when it arrived at the high host.

166

DIDS (Distributed Intrusion Detection System) - Motivation,

Architecture, and An Early Prototype

Steven R. Snapp1 , James BrentanoZ, Gihan V. Dias, Terrance L. Goan,

L. Todd Heberlein, Che-Un Ho, Karl N. Levitt, Biswanath Mukherjee, Stephen E. Smaha1 ,

Tim Grance3 , Daniel M. Teal3 , and Doug M~

Computer Security Laboratory

Division of Computer Science

University of California, Davis

Davis, California 95616

ABSTRACT

Intrusion detection is the problem of identifying unauthorized use, misuse, and abuse of
computer systems by both system insiders and external penetrators. The proliferation of
heterogeneous computer networks provides additional implications for the intrusion detection
problem. Namely, the increased connectivity of computer systems gives greater access to
outsiders, and makes it easier for intruders to avoid detection. IDS's are based on the belief
that an intruder's behavior will be noticeably different from that of a legitimate user. We are
designing and implementing a prototype Distributed Intrusion Detection System (DIDS) that
combines distributed monitoring and data reduction (through individual host and LAN moni­
tors) with centralized data analysis (through the DIDS director) to monitor a heterogeneous
network of computers. This approach is unique among current IDS's. A main problem con­
sidered in this paper is the Network-user Identification problem, which is concerned with
ttacking a user moving across the network, possibly with a new user-id on each computer.
Initial system prototypes have provided quite favorable results on this problem and the detec­
tion of attacks on a network. This paper provides an overview of the motivation behind
DIDS, the system architecture and capabilities, and a discussion of the early prototype.

1. 	Introduction
Intrusion detection is defined to be the problem of identifying individuals . who are using a computer sys­

tem without authorization (i.e., crackers) and those who have legitimate access to the system but are exceeding
their privileges (i.e., the insider threat). Work is being done elsewhere on Intrusion Detection Systems (IDS's)
for a single host [8,10,11] and for several hosts connected by a network [6, 7,12]. Our own earlier work on the
Network Security Monitor (NSM) concentrated on monitoring a broadcast Local Area Network (LAN) [3].

The proliferation of heterogeneous computer networks has serious implications for the intrusion detection
problem. Foremost among these implications is the increased opportunity for unauthorized access that is pro­
vided by the network's connectivity. This problem is exacerbated when dial-up or internetwork access is
allowed, as well as when unmonitored hosts (viz. hosts without audit trails) are present. The use of distributed
rather than centralized computing resources also implies reduced control over those resources. Moreover, multi­
ple independent computers are likely to generate more audit data than. a single computer, and this audit data is
dispersed among the various systems. Clearly, not all of the· audit data can be forwarded to a single IDS for
analysis; some analysis must be accomplished locally.

1 Haystack Laboratories, Inc., 8920 Business Park Dr, Suite 270, Austin, TX 78759
2 Pacific Gas and m~c Company, 77 Beale St. Room 18718, San Francisco, CA 94106
3 United States Air Force CryptolOgic Support Center, San Antonio, TX 78243
4 Lawrence Livermore National Labs, Livennore, CA 94550

167

This paper describes a prototype Distributed Inttusion Detection System (DIDS) which generalizes the tar­
get environment in order to monitor multiple hosts connected via a network as well as the netwodc itself. The
DIDS components include the DIDS director, a single host monitor per host, and a single LAN monitor for each
LAN segment of the monitored network. The information gathered by these distributed components is tran­
sported to, and analyzed at, a central location (viz. an expert system, which is a sub-component of the director),
thus providing the capability to aggregate information from different sources. We can cope with any audit trail
format as long as the events of interest are provided.

DIDS is designed to operate in a heterogeneous environment composed of C2 [1] or higher rated comput­
ers. The current target environment consists of several hosts connected by a broadcast LAN segment (presently
an Ethernet, see Fig. 1). The use of C2-rated systems implies a consistency in the content of the system audit
trails. This allows us to develop standard representations into which we can map audit data from UNIX, VMS,
or any other system with C2 auditing capabilities. The C2 rating also guarantees, as part of the Trusted Com­
puting Base (TCB), the security and integrity of the host's audit records. Although the hosts must comply with
the C2 specifications in order to be monitored directly, the network related activity of non-compliant hosts can
be monitored via the LAN monitor. ·since all attacks that utilize the network for system access will pass
through the LAN segment, the LAN monitor will be able to monitor all of this traffic.

Section 2 motivates our work by describing the type of behavior which DIDS is intended to detect. In
Section 3 we present an overview of the DIDS architecture. In Section 4 we formulate the concept of the
network-user identification (NID), an identifier for a netwodc-wide user, and descn"be its use in distributed intru­
sion detection. Sections 5 and 6 deal with the host and LAN monitors, respectively, while Section 7 discusses
the expert system and its processing mechanisms based on the NID. Section 8 provides some concluding
remarks.

2. 	 Scenarios

The detection of certain attacks against a networked system of computers requires information from multi­
ple sources. A simple example of such an attack is the so-called doorknob attack. In a doorknob attack the
intruder's goal is to discover, and gain access to, insufficiently-protected hosts on a system. The intruder gen­
erally tries a few common account and password combinations on each of a number of computers. These sim­
ple attacks can be remarkably successful [4]. As a case in point, UC Davis' NSM recently observed an attacker
of this type gaining super-user access to an external computer which did not require a password for the super­
user accounL In this case, the intruder used telnet to make the connection from a university computer system,
and then repeatedly tried to gain access to several different computers at the external site. In cases like these,
the intruder tries only a few logins on each machine (usually with different account names), which means that
an IDS on each host may not flag the attack. Even if the behavior is recognized as an attack on the individual
host, current IDS's are generally unable to correlate reports from multiple hosts; thus they cannot recognize the
doorknob attack as such. Because DIDS aggregates and correlates data from multiple hosts and the neiwork, it
is in a position to recognize the doorkDob attack by detecting the pattern of repeated failed logins even though
there may be too few on a single host to alert that host's monitor.

In another incident, our NSM recently observed an intruder gaining access to a computer using a guest
account which did not require a password. Once the attacker had access to the system, he exhibited behavior
which would have alerted most existing IDS's (e.g., changing passwords and failed events). In an incident such
as this, DIDS would not only report the attack, but may also be able to identify the source of the attack. That
is, while most IDS's would report the occurrence of an incident involving user "guest" on the target machine,
DIDS would also report that user "guest" was really, for example, user "smith" on the source machine, assuming
that the source machine was in the monitored domain. It may also be possible to go even further back and iden­
tify all of the different user accounts in the "chain" to find the initial launching point of the attack.

Another possible scenario is what we call network browsing. This occurs when a (network) user is look­
ing through a number of files on several different computers within a short period of time. The browsing
activity level on any single host may not be sufficiently high enough to raise any alarm by itself. However, the
network-wide, aggregated browsing activity level may be high enough to raise suspicion on this user. Network
browsing can be detected as follows. Each host monitor will report that a particular user is browsing on that
system, even if the corresponding degree of browsing is small. The expert system can then aggregate such
information from multiple hosts to determine that all of the browsing activity corresponds to the same network

168

user. This scenario presents a key challenge for DIDS: the tradeoff between sending all audit records to the
director versus missing attacks because thresholds on each host are not exceeded.

In addition to the specific scenarios outlined above. there are a number of general ways that an intruder
can use the connectivity of the network to bide his trail and to enhance his effectiveness. Some of the attack
configurations which have been hypOthesized include chain and parallel attacks [2]. DIDS combats these
inherent vulnerabilities of the network by using the very same connectivity to help track and detect the intruder.
Note that DIDS should be at least as effective as host-based ms•s {if we implement all of their functionality in
the DIDS host monitor). and at least as effective as the stand-alone NSM.

3. DIDS Architecture

The DIDS architecture combines distributed monitoring and data reduction with centralized data analysis.
This approach is unique among current ms•s. The components of DIDS are the DIDS director. a single host
monitor per host. and a single LAN monitor for each broadcast LAN segment in the monitored network. DIDS

. can potentially handle hosts without monitors since the LAN monitor can report on the network activities of
such hosts. The host and LAN monitors are primarily responsible for the collection of evidence of unauthorized
or suspicious activity. while the DIDS director is primarily responsible for its evaluation. Reports are sent
independently and asynchronously from the host and LAN monitors to the DIDS director through a communica­
tions infrastructure (Fig. 2). High level communication protocols between the components are based on the ISO
Common Management Information. Protocol (CMIP) recommendations. allowing for future inclusion of CMIP
management tools as they become useful The architecture also provides for bidirectional communication
between the DIDS director and any monitor in the configuration. This communication consists primarily of not­
able events and anomaly reports from the monitors. The director can also make requests for more detailed
information from the distributed monitors via a "GET" directive. and issue commands to have the distributed
monitors modify their monitoring capabilities via a "SET" directive. A large amount of low level filtering and
some analysis is performed by the host monitor to minimize the use of network bandwidth in passing evidence
to the director.

The host monitor consists of a host event generator (HEG) and a host agent. The HEG collects and
analyzes audit records from the host•s operating system. The audit records are scanned for notable events.
which are transactions that are of interest independent of any other records. These include. among others. failed
events. user authentications. changes to the security state of the system. and any network access such as rlogin
and rsh. These notable events are then sent to the director for further analysis. In enhancements under develop­
ment. the HEG will also track user sessions and report anolilalous behavior aggregated over time through
user/group profiles and the integration of Haystack [10] into DIDS. The host agent handles all communications
between the host monitor and the DIDS director.

Like the host monitor. the LAN monitor consists of a LAN event generator (LEG) and a LAN agent. The
LEG is currently a subset of UC Davis• NSM [3]. Its main responsibility is to observe all of the ttaffic on its
segment of the LAN to monitor host-to-host connections. services used. and volume of ttaffic. The LAN moni­
tor reports on such network activity as rlogin and telnet connections. the use of security-related services. and
changes in network traffic patterns. ·

The DIDS director consists of three major components that are all located on the same dedicated worksta­
tion. Because the components are logically independent processes. they could be distributed as well. The com­
munications manager is responsible for the ttansfer of data between the director and each of the host and the
LAN monitors. It accepts the notable event records from each of the host and LAN monitors and sends them to
the expert system. On behalf of the expert system or user interface. it is also able to send requests to the host
and LAN monitors for more information reganling a particular subject. The expert system is responsible for
evaluating and reporting on the security state of the monitored system. It receives the reports from the host and
the LAN monitors. and. based on these reports. it makes inferences about the security of each individual host. as
well as the system as a whole. The expert system is a rule-based system with simple learning capabilities. The
director•s user interface allows the System Security Officer (SSO) interactive access to the entire system. The
SSO is able to· watch activities on each host. watch network traffic (by setting "wire-taps"). and request more
specific types of infonnation from the monitors.

We anticipate that a growing set of tools. including incident-handling tools and network-management
tools. will be used in conjunction with the intrusion-detection functions of DIDS. This will give the SSO the

169

ability to actively respond to attacks against the system in real-time. Incident-handling tools may consist of pos­
sible courses of action to take against an attacker, such as cutting off network access, a directed investigation of
a particular user, removal of system access, etc. Network-management tools that are able to perform network
mapping would also be useful.

4. The Network-user Identification (NID)

One of the more interesting challenges for intrusion detection in a networked environment is to track users
and objects (e.g., files) as they move across the network. For example, an intruder may use several different
accounts on different machines during the course of an attack. Correlating data from several independent
sources, including the network itself, can aid in recognizing this type of behavior and tracking an intruder to
their source. In a networked environment, an intruder may often choose to employ the interconnectivity of the
computers to hide his true identity and location. It may be that a single intruder uses multiple accounts to
launch an attack, and that the behavior can be recognized as suspicious only if one knows that all of the activity
emanates from a single source. For example, it is not particularly noteworthy if a user inquires about who is
using a particular computer (e.g., using the UNIX who or finger command). However, it may be indicative of
an attack if a user inquires about who is using each of the computers on a LAN and then subsequently logs into
one of the hosts. Detecting this type of behavior requires attributing multiple sessions, perhaps with different
account names, to a single source.

This problem is unique to the network environment and has not been dealt with before in this context.
Our solution to the multiple user identity problem is to create a network-user identification (NID) the first time a
user enters the monitored environment, and then to apply that NID to any further instances of the user. All evi­
dence about the behavior of any instance of the user is then accountable to the single NID. In particular, we
must be able to determine that "smith@hostl" is the same user as "jones@host2", if in fact they are. Since the
netw.ork-user identification problem involves the collection and evaluation of data from both the host and LAN
monitors, examining it is a useful method to understand the operation of DIDS. In the following subsections we
examine each of the components of DIDS in the context of the creation and use of the NID.

5. The Host Monitor

The host monitor is currently installed on Sun SPARCstations running SunOS 4.0.x with the Sun C2 secu­
rity package [9]. Through the C2 security package, the operating system produces audit records for virtually
every transaction on the system. These transactions include file accesses, system calls, process executions, and
logins. The contents of the Sun C2 audit record are: record type, record event, time, real user ID, audit user ID,
effective user ID, real group ID, process ID, error code, return value, and label.

The host monitor (Fig. 3) examines each audit record to determine if it should be forwarded to the expert
system for further evaluation. Certain critical audit records are always passed directly to the expert system (i.e.,
notable events); others are processed locally by the host monitor (i.e., profiles and attack signatures, which are
sequences of noteworthy events which indicate the symptoms of attacks) and only summary reports are sent to
the expert system. Thus, one of the design objectives is to push as much of the processing operations down to
the low-level monitors as possible. In order to do this, the HEG creates a more abstract object called an event.
The event includes any significant data provided by the original audit record plus two new fields: the action and
the domain. The action and domain are abstractions which are used to minimize operating system dependencies
at higher levels. Actions characterize the dynamic aspect of the audit records. Domains characterize the objects
of the audit records. In most cases, the objects are files or devices and their domain is determined by the
characteristics of the object or its location in the file system. Since processes can also be objects of an audit
record, they are also assigned to domains, in this case by their function.

. The actions are: session_start, session_end, read (a file or device), write (a file or device), execute (a pro­
cess), terminate (a process), create (a file or (virtual) device), delete (a file or (virtual) device), move (rename a
file or device), change_rights, and change_user_id. The domains are: tagged, authentication, audit, network, sys­
tem, sys_info, user_info, utility, owned, and not_owned.

The domains are prioritized so that an object is assigned to the first applicable domain. Tagged objects
are ones which are thought a priori to be particularly interesting in terms of detecting intrusions. Any file, dev­
ice, or process can be tagged (e.g., /etc/passwd). Authentication objects are the processes and files which are
used to provide access control on the system (e.g., the password file). Similarly, audit objects relate to the

170

accounting and security auditing processes and files. Network objects are the processes and files not covered in
the previous domains which relate to die use of the network. System objects are primarily those which are con­
cerned with the execution of the operating system itself, again exclusive of those objects already assigned to pre­
viously considered domains. Sys_info and user_info objects provide information about the system and about the
users of the system, respectively. The utility objects are the bulk of the programs run by the users (e.g., com­
pilers and editors). In general, the execution of an object in the utility domain is not interesting (except when
the use is excessive), but the creation or modification of one is. Owned objects are relative to the user.
Not_owned objects are, by exclusion, every object not assigned to a previous domain. They are also relative to
a user; thus, files in the owned domain relative to "smith" are in the not_ owned domain relative .to "jones".

All possible transactions fall into one of a finite number of events formed by the cross product of the
actions and the domains, and each event may also succeed or fail. Note that no distinction is made between
files, directories or devices, and that all of these are treated simply as objects. Not every action is applicable to
every object; for example, the terminate action is applicable only to processes. The choice of these domains and
actions is somewhat arbitrary in that one could easily suggest both finer and coarser grained partitions. How­
ever, they capture most of the interesting behavior for intrusion detection and correspond reasonably well with
what other researchers in this field have found to be of interest [5,10]. By mapping an infinite number of tJ;an­

sactions to a finite number of events, we not only remove operating system dependencies, but also restrict the
number of permutations that the expert system will have to deal with. The concept of the domain is one of the
keys to detecting abuses. Using the domain allows us to make assertions about the nature of a user's behavior
in a sttaightforward and systematic way. Although we lose some details provided by the raw audit information,
that is more than made up for by the increase in portability, speed, simplicity, and generality.

An event reported by a host monitor is Called a host audit record (bar). The record syntax is:
har(Monitor-ID, Host-ID, Audit-UID, ~eal-UID, Effective-UID, Time, Domain, Action, Transaction, Object,
Parent Process, PID, Return Value, Error Code).

Of all the possible events, only a subset are forwarded to the expert system. For the creation and applica­
tion of the NID, it is the events which relate to the creation of user sessions or to a change in an account that
are importanL These include all the events with session_start actions, as well as ones with an execute action
applied to the network domain. These latter events capture such transactions as executing the rlogin, telnet, rsh,
and rexec UNIX programs. The HEG consults external tables, which are built by hand, to determine which
events should be forwarded to the expert system. Because they relate to events rather than to the audit records
themselves, the tables and the modules of the HEG which use them are portable across operating systems. The
only portion of the HEG which is operating system dependent is the module which creates the events.

6. The LAN Monitor

The LAN monitor is currently a subset of UC Davis' Networlc: Security Monitor [3]. The LAN monitor
builds its own "LAN audit ttail". The LAN monitor observes each and every packet on its segment of the LAN
and, from these packets, it is able to construct higher-level objects such as connections (logical circuits), and ser­
vice requests using the TCP/IP or UDP/IP protocols. In particular, it audits host-to-host connections, services
used, and volume of traffic per connection.

Similar to the host monitor, the LAN monitor u8es several simple analysis techniques to identify
significant events. The events include the use of certain services (e.g., rlogin and telnet) as well as activity by
certain classes of hosts (e.g., a PC without a host monitor). The LAN monitor also uses and maintains profiles
of expected network behavior. The profiles consist of expected data paths (e.g., which systems are expected to
establish communication paths to which other systems, and by which service) and service profiles (e.g., what a
typical telnet, mail, or finger is expected to look like).

The LAN monitor also uses heuristics in an attempt to identify the likelihood that a particular connection
represents inttusive behavior. These heuristics consider the capabilities of each of the network services, the
level of authentication required for each of the services, the security level for each machine on the network, and
signatures of past attacks. The abnormality of a connection is based on the probability of that particular connec­
tion occurring and the behavior· of the connection itself. Upon request, the LAN monitor is also able to provide
a more detailed examination of any connection, including capturing every character crossing the network (i.e., a
wire-tap). This capability can be used to support a directed investigation of a particular subject or objecL Like
the host monitor, the LAN monitor forwards relevant security information to the director through its LAN agenL

171

An event reported by a LAN monitor is called a network audit record (oar). The record syntax is:
nar(Monitor-ID, Source_Host, Dest_Host, Time, Service, Domain, Status).

The LAN monitor has several responsibilities with respect to the creation and use of the NID. The LAN
monitor is responsible for detecting any connections related to rlogin and telnet sessions. Once these connec­
tions are detected, the LAN monitor can be used to verify the owner of a connection. The LAN monitor can
also be used to help track tagged objects moving across the network. The SSO can also ask for a wire-tap on a
certain network connection to monitor a particular user's behavior.

7. The Expert System
DIDS utilizes a rule-based (or production) expert system. The expert system is currently written in Pro­

log, and much of the fonn of the rule base comes from Prolog and the logic notation that Prolog implies. The
expert system uses rules derived from the hierarchical Intrusion Detection Model (IDM). The IDM describes the
data abstractions used in inferring an attack on a network of computers. That is, it describes the transfonnation
from the distributed raw audit data to high level hypotheses about intrusions and about the overall securiiy of
the monitored environment In abstracting and correlating data from the distributed sources, the model builds a
virtual machine which consists of all the connected hosts as well as the network itself. This unified view of the
dlstributed system simplifies the recognition of intrusive behavior which spans individual hosts. The model is
also applicable to the trivial network of a single computer.

The model is the basis of the rule base. It serves both as a description of the function of the rule base,
and as a touchstone for the actual development of the rules. The IDM consists of 6 layers, each layer represent­
ing the result of a transfonnation perfonned on the data (see Table 1).

The objects at the first level of the model are the audit ~ords provided by the host operating system, by
the LAN monitor, or by a third party auditing package. The objects at this level are both syntactically and
semantically dependent on the source. At this level, all of the activity on the host or LAN is represented.

At the second level, the event (which has already been discussed in the context of the host and LAN mon­
itor) is both syntactically and semantically independent of the source standard format for events.

The third layer of the IDM creates a subject. This introduces a single identification for a user across
many hosts on the network. It is the subject who is identified by the NID (see section 7.1). Upper layers of the
model treat the network-user as a single entity, essentially ignoring the local identification on each host. Simi­
larly, above this level, the collection of hosts on the LAN are generally treated as a single distributed system
with little attention being paid to the individual hosts.

The fourth layer of the model introduces the event in context. There are two kinds of context: temporal
and spatial. As an example of temporal context, behavior which is unremarkable during standard working hours
may be highly suspicious during off hours [5]. The IDM, therefore, allows for the application of infonnation
about wall-clock time to the events it is considering. Wall-clock time refers to information about the time of
day, weekdays versus weekends and holidays, as well as periods when an increase in activity is expected. In
addition to the consideration of external temporal context, the expert system uses time windows to correlate
events occwring in temporal proximity. This notion of temporal proximity implements the heuristic that a call
to the UNIX who command followed closely by a login or logout is more likely to be related to an intrusion
than either of those events occurring alone. Spatial context implies the relative importance of the source of
events. That is, events related to a particular user, or events from a particular host, may be more likely to
represent an intrusion than similar events from a different source. For instance, a user moving from a low­
security machine to a high-security machine may be of greater concern than a user moving in the opposite direc­
tion. The model also allows for the correlation of multiple events from the same user or source. In both of
these cases, multiple events are more noteworthy when they have a common element than when they do not.

The fifth layer of the model considers the threats to the network and the hosts connected to it Events in
context are combined to create threats. The threats are partitioned by the nature of the abuse and the nature of
the target In other words, what is the intruder doing, and what is he doing it to? Abuses are divided into
attacks, misuses, and suspicious acts. Attacks represent abuses in which the state of the machine is changed.
That is, the file system or process state is different· after the attack than it was prior to the attack. Misuses
represent out-of-policy behavior in which the state of the machine is not affected Suspicious acts are events
which, while not a violation of policy, are of interest to an IDS. For example, commands which provide

172

information about the state of the system may be suspicious. The targets of abuse are characterized as being
either system objects or user objects and as being either passive or active. User objects are owned by non­
privileged users and/or reside within a non-privileged user's directory hierarchy. System objects are the comple­
ment of user objects. Passive objects are files, including executable binaries, while active objects are essentially
running processes.

At the highest level, the model produces a numeric value between one and 100 which represents the
overall security state of the network. The higher the number the less secure the network. This value is a func­
tion of all the threats for all the subjects on the system. Here again we treat the collection of hosts as a single
distributed system. Although representing the security level of the system as a single value seems to imply
some loss of information, it provides a quick reference point for the SSO. In fact, in the current implementa-:-.
tion, no information is lost since the expert system maintains all the evidence used in calculating the security
state in its internal database, and the SSO has access to that database.

In the context of the network-user identification problem we are concerned primarily with the lowest three
levels of the model: the audit data, the event, and the subject The generation of the first two of these have
already been discussed; thus, the Creati<?fi of the subject is the focus of the following subsection.

The expert system is responsible for applying the rules to the evidence provided by the monitors. In gen­
eral, the rules do not change during the execution of the expert system. What does change is a numerical value
associated with each rule. This Rule Value (RV) represents our confidence that the rule is useful in detecting
intrusions. These rule values are manipulated using a negative reinforcement training method which allows the
expert system to continually lower the number of false attack reports. When a potential attack is reported by the
expert system, the SSO determines the validity of the report and gives feedback to the expert system. If the
report was deemed faulty, then the expert system lowers the RV's associated with the rules that were used to
draw that conclusion. In addition to this directed training, which may lower some rule values, the system aJ_so
automatically increases the RV's of all the rules on a regular basis. This recovery algorithm allows the system
to adapt to changes in the environment as well as recover from faulty training. ·

Logically the rules have the form:

antecedent => consequence

where the antecedent is either a fact reported by one of the distributed monitors, or a consequence of some pre­
viously satisfied rule. The antecedent may also be a conjunction of these. The overall structure of the rule base
is a tree rooted at the top. Thus, many facts at the bottom of the tree will lead to a few conclusions at the top of
the tree.

The expert system shell consists of approximately a hundred lines of Prolog source code. The shell is
responsible for reading new facts reported by the distributed monitors, attempting to apply the rules to the facts
and hypotheses in the Prolog database, reporting suspected intrusions, and maintaining the various dynamic
values associated with the rules and hypotheses. The syntax for rules is:

rule(n ,r ,(single,[A]),(C))).

where n is the rule number, r is the initial RV, A is the single antecedent, and C is the consequence. Conjunc­
tive rules have the form:

rule(n ,r ,(and,[A t.A2.A:U),(C))).

where A 1,A2,A 3 are the antecedents and C is the consequence. Disjunctive rules are not allowed; that situation
is dealt with by having multiple rules with the same consequence.

7.1. 	 Building the NID

With respect to Unix, the only legitimate ways to create an instance of a user are for the user to login
from a terminal, console, or off-LAN source, to change the user-id in an existing instance, or to create additional
instances (local or remote) from an existing instance. In each case, there is only one initial login (system wide)
from an external device. When this original login is detected, a new unique NID is created. This NID is
applied to every subsequent action generated by that user. When a user with a NID creates a new login session,
that new session is associated with his original NID. Thus the system maintains a single identification for each
physical user.

173

We consider an instance of a user to be the 4-tuple <session_start, user-id, host-id, time>. Thus each
login creates a new instance of a user. In associating a NID with an instance of a user, the expert system first
tries to use an existing NID. If no NID can be found which applies to the instance, a new one is created. Try­
ing to find an applicable existing NID consists of several steps. If a user changes identity (e.g., using UNIX's su
command) on a host, the new instance is assigned the same NID as the previous identity. If a user perfonns a
remote login from one host to another host, the new instance gets the same NID as the source instance. When
no applicable NID is found, a new unique NID is created by the following rule:

rule(lll,lOOO,[
hharl,Hostl,AUID,_,_,Timel,_,session_start,....._•.'local',_,_,_), I* login*/
\f. (ih(net_user(NID,AUID,Host,_),_,_,_)), /*no NID yet*/
newNID(X) /*create new NID */

],
(net_user(X,AUID,Hostl,Timel))). /* new net user*/

The actual association of a NID with a user instance is through the hypothesis net_user. A new hypothesis is
created for every event reported by the distributed monitors. This new hypothesis, called a subject, is formed by
the rule:

rule(llO,lOO,(and,[
har(Mon,Host,AUID,UID,EUID,Time,Dom,Act,Trans,Obj,Parent,PID,Ret,Err).
net_user(NID,AUID,Host,_)

]),
subj(NID,Mon,Host,AUID,UID,EUID,Time,Dom,Act,Trans,Obj,Parent,PID,Ret,Err))).

The rule creates a subject, getting the NID from the net_ user and the remaining fields from the host audit
record, if and only if both the user-id and the host-id match. It is through the use of the subject that the expert
system correlates a user's actions regardless of the login name or host-id.

There is still some uncertainty involved with the network-user identification problem. If a user leaves the
monitored domain and then comes back in with a different user~id, it is not possible to connect the two
instances. Similarly, if a user passes through an unmonitored host, there is still uncertainty that any connection
leaving the host is attributable to any connection entering the host Multiple connections originating from the
same host at approximately the same time also allow uncertainty if the user names do not provide any helpful
infonnation. The expert system can make a final decision with additional information from the host and LAN
monitors that can (with high probability) disambiguate the connections.

8. 	 Conclusion

Our Distributed Intrusion Detection System (DIDS) is being developed to address the shortcomings of
current single host IDS's by generalizing the target environment to multiple hosts connected via a network
(LAN). Most current IDS's do not consider the impact of the LAN structure when attempting to monitor user
behavior for attacks against the system. Intrusion detection systems designed for a network environment will
become increasingly important as the number and size of LAN's increase. Our prototype has demonstrated the
viability of our distributed architecture in solving the network-user identification problem. We have tested the
system on a sub-network of Sun SPARCstations and it has correctly identified network users in a variety of
scenarios. Work continues on the design, development, and refinement of rules, particularly those which can take
advantage of knowledge about particular kinds of attacks. The initial prototype expert system has been written
in Prolog, but it is currently being ported to CLIPS due to the latter's superior perfonnance characteristics and
easy integration with the C programming language. We are designing a signature analysis component for the
host monitor to detect events and sequences of events that are known to be indicative of an attack, based on a
specific context In addition to the current host monitor, which is designed to detect attacks on general purpose
multi-user computers, we intend to develop monitors for application specific hosts such as file servers and gate­
ways. In support of the ongoing development of DIDS we are planning to extend our model to a hierarchical
Wide Area Network environment

174

Acknowledgments

The DIDS project is sponsored by the United States Air Force Cryptologic Support Center through a con­
tract with the Lawrence livermore National Labs.

References

1. 	 Department of Defense, Trusted Computer System Evaluation Criteria, National Computer Secmity Center,
DOD 5200.28-STD, Dec. 1985.

2. 	 G.V. Dias, K.N. Levitt, and B. Mukherjee, "Modeling Attacks on Computer Systems: Evaluating Vulnera­
bilities and Forming a Basis for Attack Detection," Technical Report CSE-90-41, University of California,
Davis, Jul. 1990.

3. 	 L.T. Heberlein, G. Dias, K. Levitt, B. Mukherjee, J. Wood, and D. Wolber, "A Network Security Moni­
tor," Proc. 1990 Symposium on Research in Security and Privacy, pp. 296-304, Oaldand, CA, May 1990.

4. 	 B. Landreth, Out of the Inner Circle, A Hacker's Guide to Compuer Security, Microsoft Press, Bellevue,
WA, 1985.

5. 	 T. Lunt, "Automated Audit Trail Analysis and Intrusion Detection: A Survey," Proc. 11th National Com­
puter Security Conference, pp. 65-73, Baltimore, MD, OcL 1988.

6. 	 T.F. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, P.G. Neumann, and C. Jalali, "IDES: A Progress
Report," Proc. Sixth Annual Computer Security Applications Conference, Tucson, AZ, Dec. 1990.

7. 	 T.F. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, C. Jalali, H.S. Javitz, A. Valdes, and P.G. Neumann,
"A Real-Time Intrusion-Detection Expert System (IDES)," Interim Progress Report, Project 6784, SRI
International, May 1990.

8. 	 M.M. Sebring, E. Shellhouse, M.E. Hanna, and R.A. Whitehurst, "Expert Systems in Intrusion Detection:
A Case Study," Proc. 11th National Computer Security Conference, pp. 74-81, OcL 1988.

9. 	 W.O. Sibert, "Auditing in a Distributed System: SunOS MLS Audit Trails," Proc. 11th National Com­
puter Security Conference, Baltiniore, MD, OcL 1988.

10. 	 S.E. Smaha, "Haystack: An Intrusion Detection System," Proc.IEEE Fourth Aerospace Computer Secu­
rity Applications Conference, Orlando, FL, Dec. 1988.

11. 	 H.S. Vaccaro and G.B. tiepins, ''Detection of Anomalous Computer Session Activity," Proc. 1989 Sym­
posium on Research in Security and Privacy, pp. 280-289, Oaldand, CA. May 1989.

12. 	 J.R. Winkler, "A Unix Prototype for Intrusion and Anomaly Detection in Secure Networks," Proc. 13th
National Computer Security Conference, pp. 115-124, Washington, D.C.• OcL 1990.

Level Name Explanation

6 Security State overall network security level

5 Threat definition of categories of abuse

4 Context event placed in context

3 Subject definition and disambiguation of network user

2 Event OS independent representation of user action
(finite number of these)

1 Data audit or OS provided data

Table 1. Intrusion Detection Model

175

Fig. 1. DIDS Target Environment

DIDS Director

UserExpert
System Interface

Communications -datapath
Manager ... ----control

, ,.tf!;,'tf ~-/ ,0:(
Host Agent LAN Agent

Host Event Generator
 LAN Event Generator

LAN Monitor
Host Monitor(s)

Fig. 2. Communications Architecture

Fig. 3. Host Monitor Structure

176

A DISTRIBUTED IMPLEMENTATION

OF THE TRANSFORM MODEL

Ravi S. Sandhu and Gurpreet S. Suri

Center for Secure Information Systems

and

Department of Information and Software Systems Engineering

George Mason University, Fairfax, VA 22030-4444

ABSTRACT The Transform access-control model is based on the concept of transformation of
access rights. It has previously been shown that Transform unifies a number of diverse access control
mechanisms such as amplification, copy flags, separation of duties and synergistic authorization. It
has also been shown that Transform has an efficient algorithm for safety analysis of the propagation
of access rights (i.e., the determination of whether or not a given subject can ever acquire access to
a given object). In this paper we propose a distributed implementation of Transform. Our design
is based on capabilities with identities of subjects buried in them. This ensures unforgeability of
capabilities as well as enables enforcement of "mandatory" controls on propagation of capabilities
from one subject to another. The design provides for immediate, selective, partial and complete
revocation on a temporary as well as permanent basis.

Keywords: Distributed Systems, Secure Architectures, Capabilities

1 INTRODUCTION

The need for access controls arises in any computer system that provides for controlled sharing
of information and other resources among multiple users. Access control models · (or protection
models) provide a framework for specifying, analyzing and implementing security policies in multi­
user systems. These models are typically defined in terms of the well-known abstractions of subjects,
objects and access rights with which we assume the reader is familiar. A wide variety of access­
control models have been described in the literature (3,4,10,12,16, for instance]. Unfortunately very
few have been implemented or have even influenced implementations of actual systems. •

In this paper we take a step towards closing this gap between theory and practise. Our principal
contribution is the outline of a distributed implementation of the recently proposed Transform
model [17]. Transform derives its name from its central concept of transformation of access rights.
The idea is that access rights get transformed as they are propagated from one subject to another,
e.g., a security-officer who has the review right for a document may propagate the release right for
the document to the document's author. It has previously been shown (17] that Transform elegantly
unifies a number of seemingly different access control mechanisms such as amplification [5], copy
flags [12], separation of duties [4] and synergistic authorization [14]. It has also been shown [17] that
there are efficient algorithms for the safety problem in Transform (i.e., the determination of whether
or not a given subject can ever acquire access to a given object).

Thus Transform incorporates practically useful expressive power while allowing for safety analy­
. sis. Transform is actually a special case of the Schematic Protection Model (SPM) [16]. Like Trans­
form, SPM also exhibits strong safety properties. This is in contrast to the weak safety properties
of the access-matrix model commonly known as HRU [10]. Both HRU and SPM have undecidable
safety in general [10,18]. In HRU safety becomes undecidable under very weak assumptions, notably

•The notable exceptionis the Bell-LaPadulamodel [3] whose strong influence on military systems has been formally
incorporated in evaluation criteria [8].

@) Ravi S. Sandhu and Gurpreet S. Suri, 1991

177

2

the bi-conditional monotonic case of [11]. On the other hand safety in SPM remains decidable under
very strong assumptions, notably the acyclic attenuating case of [16]. In particular Transform falls
outside the known decidable cases for HRU but well within the known decidable cases for SPM [17).

Our implementation proposal for Transformis strongly influenced by the identity-based capability
architecture pr.oposed by Gong [9]. The concept ofembedding the identity of a subject in a c~pability
in distributed systems has been known for some time [6]. It ensures that capabilities cannot be
forged or propagated from one subject to another without intervention of trusted software. Gong's
architecture is based on the familiar client-server model of services in a distributed system and
includes mechanisms for revocation which were missing in earlier proposals such as [6). We have
extended Gong's proposal to accommodate Transform. In particular the concept of strongly typed
subjects and objects, which is essential to Transform, has been incorporated.

The paper is organized as follows. Section 2 reviews the Transform model to the extent required
for our objectives in this paper. Section 3 discusses distributed capability-based architectures In
general and motivates our choice of building on Gong's approach. Section 4 describes our proposed
implementation for Transform. The protocols involved in creation, propagation and revocation are
presented. An example of the implementation is presented in section 5. The paper is concluded in
section 6 with a discussion and proposals for future research.

THE TRANSFORM MODEL

The Transform model [17] was obtained by identifying the common foundation underlying a variety
of different access-control mechanisms proposed in the literature. These include amplification [5],
copy flags [12], separation of duties [4) and synergistic authorization [14). Considered in isolation
these mechanisms are diverse and were largely proposed independently of each other. They all
appear to be desirable and should be supported by any system which claims generality. However
simply lumping them together results in a complex system with many unrelated mechanisms.

Transform introduces the unifying concept of transformation of rights which can occur in two
different ways.

1. 	 Self transformation or internal transformation allows a subject who possesses certain rights
for an object to obtain additional rights for that object.

2. 	 Grant transformation or ezternal transformation occurs in the granting of access rights by one
subject to another. The general idea is that possession of a right for an object by a subject
allows that subject to give some other right for that object to another subject.

In addition Transform is based on the strong typing of subjects and objects, i.e., subjects and objects
are classified into types when they are created and their type cannot change thereafter. Much of the
power of transformation derives from predicating the ability to transform on the types of subjects
and objects involved.

A security policy is stated in Transform by specifying the following (finite) components.

1. 	Disjoint sets of subject types TS object types TO and rights R.

2. 	A can-create function cc: TS---+ 2T0 .

3. Create-rules cr: TS x TO---+ 2R.

4. 	 An internal transformation function itrans :TS x TO x 2R ---+ 2R.

5. A grant transformation function grant :TS x TS x ·TO x 2R ---+ 2R.

178

The notation 2x denotes the power set of X, i.e., the set of all subsets of X. These components of a
Transform specification are explained in turn below.

The sets TS and TO define the subject types and object types respectively. For example subject
types might be faculty, student, guest, etc., and object types might be file, mail-message, bulletin­
board, etc. R defines the set of rights or privileges in the system, e.g., read, write, execute, etc.

There are two issues involved in object creation. t Firstly subjects need authorization to create
objects. Secondly the rights obtained as a result of creation must also be specified. Transform
authorizes creation by means of the can-create function cc. The interpretation of

is that a subject of type u is authorized to create objects of type o1 and objects of type o2 , etc. The
effect of creation is defined by create-rules. The interpretation of

is that when a subject U of type u creates an object 0 of type o the creator U obtains the rights r1,
r2, ... , rp for 0. For example if cc(user) ={file} and cr(user,file) = {own} the creator of a file gets
the own right for it. For readability we will usually drop the set parenthesis around singleton sets,
for instance by writing cc(user) = file and cr(user ,file) = own.

Authorization for internal transformation is specified by the internal transformation function
itrans. The interpretation of

itrans(u, o, {x1,. .. ,xn}) = {Yt,.. · ,ym}

is that a subject of type u who has all the Xi rights specified on the left hand side for an obj~ct of
type o can obtain the rights Yt, ... , Ym for that object by internal transformation. For example, the
policy that possession of the w (write) privilege for a file implies possession of the r (read) privilege
is easily stated as follows.*

itrans(user, file, w) = r

Another example of internal transformation occurs in situations described as synergistic authoriza­
tion in (14]. For instance consider a situation where a scientist (abbreviated as sci) needs approvals
from a security officer and a patent officer before he can release a document (abbreviated as doc) for
publication. Say these two approvals are respectively signified by possession of the as and ap rights.
We can express this policy as follows.

itrans(sci, doc, {own, as, ap}) = release

That is, a scientist who owns a document and possesses the two approvals can acquire the release
right for that document.

Grant transformations are authorized by the grant transformation function grant. The interpre­
tation of

grant(u, v, o, {xt,... ,xn}) = {Yt 1• ··.Ym}

fThere must be provision for creation of subjects in any realistic system. In practise creation of subjects is often
strictly controlled by some distinguished system administrator or security officer. Such creation can be considered as
occurring outside the normal scope of the system.

Sin multilevel systems this policy would amount to prohibiting write-up.

179

is that a subject of type u who has all the x; rights specified on the left hand side for an object of
type o can grant one or more of the rights Yl, ••• , Ym for that object to a subject of type v. A
common example of grant transformation occurs with the copy flag c which controls whether the
granted privilege can itself be further granted or not. For instance the following

grant(user, user, file, xc) = {xc, x}
grant(user, user, file, x) <P

defines the (unlimited) copy flag. Here a user who has the xc privilege for a file can grant the xc
privilege or the x privilege to another user, whereas a user with the x privilege for the file cannot
grant x any further. Other variations of the copy flag, such as 1-step or n-step copy flags can be
similarly defined [17].

The expressive power of Transform is illustrated by the following policy specification.

cc(sci)
cr(sci, doc)

= doc
{own, read}

grant(sci, security-officer, doc, own)
grant(sci, patent-officer, doc, own)

review
review

grant(security-officer, sci, doc, review)
grant(patent-officer, sci, doc, review) =

·as
ap

itrans(sci, doc, {own, a., ap}) = release

The first two equations specify that (i) a scientist can create documents, and (ii) the scientist who
creates a document obtains the own and read privileges for it.S The next two equations specify
that a scientist who owns a document can ask for it to be reviewed by a security-officer and by a
patent-officer. These officers can respectively return the as and ap rights to the scientist signifying
the respective approvals. The scientist can then release the document. This example is further
elaborated in section 5.

This completes our description of the Transform model. Further. motivation for Transform and
additional examples of policies are given in [17].

3 DISTRIBUTED CAPABILITY SYSTEMS

Capability-based architectures have had a strong appeal ever since the concept was first proposed [7].
They are viewed as providing a sound and common basis for providing both reliability and security.
In the context of conventional centralized systems a number of such machines have been built [13].
Some have even achieved moderate commercial success. Nevertheless today's popular CPUs are not
capability based. In retrospect one can argue that using capabilities to solve the memory protection
problem is an overkill. The marginal advantages of capabilities over memory segmentation and
protection rings (which are available in the latest generation of microprocessors such as the Intel
80386) do not justify the extra costs and performance penalties. In other words the initial application
of capabilities was at too low a level.

It is expected by many researchers [15, for instance] that in the 1990s distributed operating
systems will dominate the computing environment. These systems will appear to users as a single
centralized system with complete location transparency. To achieve this, reliability and security
must be addressed as part of the basic design of these systems. Attempts to graft security features

I Once a document has been created it can no longer be written. This is necessary in order to freeze the contents
of the document. H revisions are required a new version of the document needs to be created.

180

4

later in the design cycle will surely fail, much as they are failing in conventional centralized systems.
The capability-based framework continues to offer an attractive approach to these problems. In
a distributed. operating system capabilities are introduced at a much higher level than memory
addressing. Capabilities need to be incorporated into the remote procedure call mechanism rather
than the memory addressing mechanism. This offers the !tope that the additional overhead will not
severely degrade performance. Capabilities can moreover be integrated into the basic client-server
structure of distributed systems to provide transparency.

There are three basic issues which must be confronted by the designer of a distributed capability­
based system. These issues are complicated relative to conventional centralized capability-based
systems because capabilities are dispersed in individual workstations and can no longer be assumed
to be under tight control of a security kernel.

1. 	 Unforgeability. It must be guaranteed that capabilities cannot be modified or manufactured
by subjects. This requires some form of cryptographic sealing.

2. 	 Propagation. It must be guaranteed that capabilities cannot be copied from one user to another.
This requires· some means of embedding the identity of a subject in a capability.

3. 	 Revocation. It must be guaranteed that capabilities which have been granted can be withdrawn
or revoked in a timely manner. This requires some means of invalidating existing capabilities
and accounting for cascaded revocation.

Various solutions to one or more of these problems have been proposed in the literature. For
instance Amoeba [15] uses 11sparse capabilities" with cryptographic protection to ensure unforge­
ability. Unfortunately Amoeba does not address capability propagation or revocation. Davies [6]
discusses mechanisms to embed the identity of a subject in a capability. This ensures that capa­
bilities cannot be forged or propagated from one subject to another without intervention of trusted
software. Davies, however, does not address the revocation issue. Gong's proposed architecture [9]
is the first attempt to address all three issues in a distributed context. It is based on the familiar
client-server model of services in distributed systems and therefore is a suitable foundation for us to
build upon. However, Gong does not incorporate the notion of types which is basic to Transform.
His architecture therefore needs to be extended for this purpose.

IMPLEMENTATION OF TRANSFORM

We now describe a distributed capability-based implementation ofthe Transform model. We assume
that objects are encapsulated within object servers. The basic computation model is that of remote
procedure calls involving the following sequence of events: (i) a client sends a request to a server to
manipulate one or more objects, (ii) the server accepts and services the request, and (iii) the server
sends back a reply. The object server runs on a trusted host which guarantees that the server cannot
be bypassed. For ease of exposition we visualize each object server as running on a separate host.
However, we allow multiple object servers on the same trusted host provided the security kernel on
the host can enforce separation among these servers. If we have sufficient confidence in the security
kernel we can also allow untrusted clients to coexist with object servers on a single trusted host.

Each object server acts as the reference monitor (or access mediator) for the set of objects it
manages. In other words the object server is part of the trusted computing base (TCB). The object
server is responsible not only for access mediation but also for ensuring semantic correctness of the
objects with respect to the abstract operations exported from the server. The object server itself
has the ability to access all objects within its control. We emphasize that the object server is not a
subject in the system but is rather a part of the TCB.

181

For simplicity, we require that each object server manage exactly one type of object. In practise
this rule would probably be relaxed to allow a single .server to manage multiple object types, par­
ticularly if they are closely related. On the other hand the $arne type of object may be managed by
multiple object servers. For instance a given system may have numerous file servers. An individual
file server manages some subset of the total collection of files in the system. We assume there is no
replication of files, i.e., each file resides ·at exactly one file server.

Finally 'Ye assume there is an access decision facility (ADF) which can be consulted by object
sc:rvers to detexrnine the security policy. In the context of Transform the ADF will be consulted by
object ~ervers {<>J: finding out appropriate values of cc, cr, grant and itrans. Pieces of the ADF may
actually reside at each object server while other pieces are remotely accessed. The reason for this is

, to. allow quick. local aq:ess to. well-established and relatively static aspects of the policy while at the
same time allowing. fox. new types etc. to be introduced.

4.1 ··Identity and Type

Each subject or object in the system has a globally unique identifier. Each subject or object also

· Jias a unique type which is determined when that subject or object is created. Thereafter the type

cannot change. We assume the type ofa subject or object is embedded in its identifier. Henceforth

we refer to a subject identifier by aid and a object identifier by oid. These identifiers have the

following structure~

type identifier

The type. fielq den~tes the type ofthe object while the identifier field uniquelyidentifies each subject
. or 'abject a~()ng instl!,nces . of ihe same type. Note that sid 's and oid.'s .can be generated at will by
users.

4.2 Capability Seeds

A capability seed is a secret random number associated with each oid. The seed is known only to
the object server which manages the object identified by oid. We can visualize this association by
the following pair. 11

oid seed

The purpci,se of the seed is to facilitate revocation and prevent agaiJ;lSt replay of revoked capabilities,
as will be discussed later.

4.3 Capabilities .

A capability has the following structure.

I oid I rights seal

where the seal is computed using apublicly known one-way function f aS follows.

seal = f(sid, oid, rights, seed)

.11 Gong [9] calls this pair an "internal capability." We feel the name "internal: capability" is a misnomer and prefer
to call. the se.cret random number a capability seed because its principal use is in·cryptographically sealing capabilities
exported froll,l. the object server.

182

:::::>:::::-:

1~~\~~~~~:

The oid and rights components of a capability are exactly as one would expect even in a conventional
centralized system. The seal cryptographically embeds the subject identifier (sid) in the capability
using the capability seed for that purpose.

4.4 Access Mediation

Access mediation must be incorporated into the RPC (Remote Procedure Call) mechanisPt of the
client-server architecture. The object server must authenticate the source of every RPC request.
For this purpose, we assume that each subject has the means to place its digital signature on every
RPC communication to a object server. The RPC also carries within it the relevant capabilities
for the operation being requested. The object server first verifies that the sid on each capability is
authenticated by the digital signature, otherwise the RPC is immediately rejected ..Then the object
server looks up the capability seed for oid, computes the seal using the above formula and compares
the computed seal with the seal submitted by the subject. If these match the capability is known to
be authentic and the oper!lotion is performed provided the rights !lore sufficient to authorise it. Digital
signatures for the reverse communication from object servers to subjects can also be incorporated.
The details of these protocols are beyond the scope of this paper and can readily be found in the
standard literature [1, for instance]. We envisage a implementation similar to the interface function
box of Amoeba [15] which are placed between each processor module and the network.

4.5 Creation

For object creation the object server consults the access decision facility (ADF) to determine whether
or not such creation is authorised by cc(sid.type). If the creation is authorized a new object is created
with a new oid and a new capability seed. The rights to be entered on the capability are determined
from cr(sid.type,oid.type). Finally the capability is sealed and returned to the subject.

4.6 Internal Transformation

Let subject sid request the following internal transformation for object oid.

The object server must, of course, be a manager for objects of type o. The server checks that
sid.type=u and oid.type=o. It also checks that the RPC request includes a capability (or capability
list) for object oid :with the rights x1, ... , Xn· This check is performed by comparing the computed
seal with the seal on the capability as discussed in section 4.4. Finally the object server creates a
new capability sealed for sid with rights x11 ... , Xn Yt 1 ••• , Ym· This capability is returned to the
subject sid. Note that the original capability, with rights Xt 1 ••• , Xn continues to be valid. It is
however redundant and can be discarded by the subject.

4.7 Grant Transformation

Let subject sid1 request the following grant transformation for object oid to subject sid2.

grant(u, v, o, {Xt 1• •• 1Xn}) = {Yt,.. · ,ym}

The object server should again be a manager for objects oftype o. The server checks that sidl.type=u,
sid2.type=v and oid.type=o. It also checks that the RPC request includes a capability (or capability
list) for object oid with the. rights Xt 1 ••• , Xn· If the check is successful the object server creates a

183

new capability sealed for sid2 with rights Y1 1 ••• , Ym· This capability is returned to the subject sidl
who can then pass it on to subject sid2.

4.8 Revocation

Revocation has always been a problem in capability-based systems. In distributed systems the
problem is further compounded, since the subjects are completely autonomous with no central­
ised authorities enforcing security. There are various issues against which the implementation of
revocation can be compared [19].

1. 	Partial or Complete: Whether it is possible to revoke a specific right or whether all rights in
a capability have to be revoked to get any sort of denial of access in the system?

2. 	 Immediate or Delayed: If the implementation executes revocation immediately or it comes i.itto
force only the next time the subject tries to access the object?

3. Selective or General: 	 Does the revocation process affect all users or a select group of users
having access over the object?

4. Temporary or Permanent: Is access is to be denied permanently or if once it is revoked, is it
retrievable?

We provide revocation by a revocation list and a count field appended to the seed as shown
below.

I oid I seed I count I revocation list I
The revocation list contains entries of sids for whom the rights for that particular oid have been
revoked. The list specifies for each sid which of its rights have been revoked. When the validity
of the capability is checked during access mediation, the revocation lists are checked in parallel as
well. Since access mediation is performed on every operation revocation is immediate. The owner
of an oid always has the option to revoke partially or completely the capability of a sid for that oid.
Partial or complete revocation of a sid in no way hi.terferes with the access rights of other sids.

The count is a measure that determines the number of valid capabilities for that seed. The count
is incremented during creation and propagation, but decremented during complete revocation (i.e.
when all the rights of a subject for that object are revoked). Temporary or permanent revocation
is carried out, depending on the value of the count. If the size of the revocation list becomes a
significant fraction of the count the object server goes ahead with permanent revocation. The server
deletes the seed associated with that oid, computes a new one and sends new recomputed capabilities
to other associated sids. This of course requires that the object server keep a log of propagation of
capabilities. However if the size of the revocation list is small in comparison to the count, the object
server goes ahead with temporary revocation. In this case the object server appends the revocation
information onto the revocation list associated with that oid.

5 EXAMPLE

The scientist and the security-officer example discussed earlier in section 2 is illustrated here using
the protocols described above. A scientist (say Joe) creates a document (say SDI) on his workstation,
but before he can release it he needs to have approval from a security-officer (say Sam) and a patent­
officer (say Pat). The following is the sequence of protocols needed to complete the task.

184

1. 	 Joe asks the server to create a document called SDI. This RPC is made by the kernel of
Joe's workstation to the appropriate daemon responsible for the server's actions. The RPC
contains the action requested, the sid, oid, the types of sid and oid involved, and the actual
data to be stored in the created document; all signed under Joe's digital signature. In this
case the sid=sci.Joe and the oid=doc.SDI. Joe and SDI are respectively of type sci and doc.
On receiving the request, server checks the digital signature to authenticate Joe. The server
then checks the cc policy, taking into account the sid, oid and their types provided. If it is
in the affirmative it checks the cr policy, by which it determines what rights Joe gets for the
document he is creating. The server then pulls out the seed say seedl for that document and
stores it in its internal tables with the following association:

I doc.SDI I seedl I
Then the object server manufactures the following capability and sends it to Joe (strictly
speaking to the kernel of Joe's workstation):

I doc.SDI I own, read I seall

where seall = f(sci.Joe, doc.SDI, {own, read}, seedl)

2. 	 Now Joe is ready to release the document. His workstation sends the propagation requests to
the server on his behalf. The RPC looks like this:

grant(Sam, review) I doc.SDI I own, read I seall

The host when framing the RPC, appends to it the capability it possesses for SDI and signs
the request under Joe's digital signature. The server on receiving the request verifies the
digital signature and authenticates Joe. Then the server checks the validity of the capability
by retrieving the seed of SDI, i.e. seedl, from its internal tables, and computing the seal using
the one way function f. Then it computes seall from the capability provided by Joe and if
the two seals match the validity of the capability is confirmed. The request is then checked
against the grant policy of Transform. When the server determines Joe has sufficient rights,
i.e. own, for SDI, it authorizes the grant. The server then computes the capability for the
security-officer Sam to have the review right for SDI. The capability

I doc.SDI I review I seal2 I

where seal2 = f(security-officer.Sam, doc.SDI, review, seedl)

is sent to Joe. Joe then forwards this capability to Sam. Sam now has the capability for
oid=doc.SDI with the review right. With this capability he can only access the document to
review it. If he tries to get additional rights by internal transformation, the server will turn
down his request because when it will check the set of rights he possesses, namely review,
which is insufficient set for it to grant him additional rights. Sam now reviews the document,
and if he approves ofthe action to release SDI he requests the server to grant Joe the approval
(as) right.

grant(sci.Joe, a.) I doc.SDI I review I seal2

The server computes the following capability and sends it back to Sam who in turn sends it
to Joe.

185

I doc.SDI I a. I seal3 I

where seal3 = f(sci.Joe, doc.SDI, a., seedl)

3. Exact similar protocol steps are executed 	to get the approval (ap) from the patent-officer Pat.
At the end of this session Joe possesses the following capability.

I doc.SDI I ap I seal4 I

where seal4 = f(sci.Joe, doc.SDI, ap, seedl)

4. Now the scientist Joe possesses the capabilities giving him the approval to get the release right
by internal transformation. Joe presents these capabilities to the server with the following
request:

I doc.SDI I own, read I seall I
itrans(release) I doc.SDI I a.. I seal3 I

I doc.SDI I ap I seal4 I
Like before, the server carries out the authentication and the validity tests on the capabilities
presented to it by Joe. Then the server checks that Joe has the rights own, a5 and ap for SDI
which are required to get the additional release right. The server sends him a new capability:

I doc.SDI I own, read, a., ap, release I seal5 I

where seal5 = f(sci.Joe, doc.SDI, {own, read, a5 , ap, release}, seedl)

This completes the example.

6 CONCLUSION

In this paper we have proposed a distributed capability-based implementation for the Transform
model. The system is based on object servers who act as access-mediators on any attempt by a
subject to create, use, acquire, grant or revoke capabilities. We assume a digital signature facility
which authenticates the originating subject on each remote procedure call. The capabilities are cryp­
tographically sealed to tie together the identity of the subject, the identity of the object, the rights
and a secret cryptographic seed. Strong typing of subjects and objects has also been incorporated.

Our long term goal is to arrive at a practical distributed implementation for SPM (and its recent
extension catled ESPM [2]). Our first step towards this goal is the implementation of Transform
described here. Transform is a sufficiently interesting and non-trivial special case of SPM. At the
same time Transform is a sufficiently simplified version of SPM for which a realistic near-term
implementation can be contemplated.

Acknowledgment

We are indebted to Howard Stainer and Sylvan Pinsky for their support and encouragement, making
this work possible. The opinions expressed in this paper are of course our own and should not be
taken to represent the views of these individuals.

186

References

[1] 	 Akl, S.G. "Digital Signatures: A Tutorial Survey." Computer 16(2):15-24 (1983).

[2] 	 Ammann, P. and Sandhu, R.S. "Extending the Creation Operation in the Schematic Protection
Model." Proc. Smh Annual Computer Security Applications Conference, 340-348 (1990).

[3] 	 Bell, D.E. and LaPadula, L.J. "Secure Computer Systems: Unified Exposition and Multics
Interpretation." MTR-2997, Mitre, Bedford, Massachusetts (1975).

[4] 	 Clark, D.O. and Wilson, D.R. "A Comparison of Commercial and Military Computer Security
Policies." IEEE Symposium on Security and Privacy 184-194 (1987).

[5] 	 Cohen, E. and Jefferson, D. "Protectionin the Hydra Operating System." 5th ACM S1Jmposium
on Operating Systems Principles, 141-160 (1975).

[6] 	 Davies, D.W. "Protection." In Lampson, B.W., Paul, M. and Siegert, H.J. (Editors). Distributed
Systems: An Advanced Course. Springer-Verlag, 211-245 (1981).

[7] 	 Dennis, J.B. and Van Horn, F.C. "Programming Semantics for Multiprogrammed Computa­
tions." Communications of ACM 9(3):143-155 (1966).

[8] 	 Department of Defense Trusted Computer Systems Evaluation Criteria. DoD 5200.28-STD,
Department of Defense National Computer Security Center (1985).

[9] 	 Gong, L. "A Secure Identity-Based Capability System." IEEE Symposium on Security and
Privacy, 56-63 (1989).

[10] 	 Harrison, M.H., Russo, W.L. and Ullman, J.D. "Protection in Operating Systems." Communi­
cations ofACM 19(8):461-471 (1976).

[11] 	 Harrison, M.H. and Russo, W.L. "Monotonic Protection Systems." In DeMilio, R.A., Dobkin,
D.P., Jones, A.K. and Lipton, R.J. (Editors). Foundations of Secure Computations. Academic
Press, 337-365 (1978).

[12] 	 Lampson, B.W. "Protection." 5th Princeton Symposium on Information Science and Systems,
437-443 (1971). Reprinted in ACM Operating Systems Review 8(1):18-24 (1974).

[13] 	 Levy, H.M. Capability-Based Computer Systems. Digital Press (1984).

[14] 	 Minsky, N. "Synergistic Authorization in Database Systems." 7th International Conference on
Very Large Data Bases, 543-552 (1981).

[15] 	 Mullender, S.J ., van Rossum, G., Tanenbaum, A.S., van Renesse, R: and van Staveren, H.
"Amoeba: A Distributed Operating System for the 1990s." IEEE Computer, 23(5):44-53 (1990).

[16] 	 Sandhu, R.S. "The Schematic Protection Model: Its Definition and Analysis for Acyclic Atten­
uating Schemes." Journal of ACM 35(2):404-432 (1988).

[17] 	 Sandhu, R.S "Transformation of Access Rights" IEEE Symposium on Security and Privacy,
259-268 (1989).

[18] 	 Sandhu, R.S. "Undecidability of Safety for the Schematic Protection Model with Cyclic Cre­
ates." Journal of Computer and System Sciences, to appear.

[19] 	 Siberschatz, A., Peterson, J., and Galvin, P. Operating System Concepts. Addison Wesley(1991).

187

EMPLOYEE PRNACY AND IN1RUSION DETECITON SYSTEMS:

MONITORING ON THE JOB

Lorrayne J. Schaeferl

The MITRE Corporation

7525 Colshire Drive MIS Z 268

McLean, VA 22102

Abstract

The area ofintrusion detection systems and privacy has always had a conflict ofinterest.
Intrusion detection systems are designed to help the System Security Officer detect
malicious or unauthorized use ofa computer system by both unauthorized and authorized
users. These systems protect our computer systems from abuse, yet in doing so, it violates
our privacy. This paper discusses the legal and ethical issues involved in using an
intrusion detection system to monitor the computer system.

Introduction

Down in the street little eddies of wind were whirling dust and tom
paper into spirals, and though the sun was shining and the sky a
harsh blue, there seemed to be no colour in anything except the
posters that were plastered everywhere. The black-mustacio'd face
gazed down from every commanding comer. There was one on the
house front immediately opposite. BIG BROTHER IS
WATCHING YOU, the caption said, while the dark eyes looked
deep into Winston's own ...

Behind Winston's back the voice from the telescreen was still
babbling away...The telescreen received and transmitted
simultaneously. Any sound that Winston made, above the level of a
very low whisper, would be picked up by it; moreover, so long as
he remained within the field of vision which the metal plaque
commanded, he could be seen as well as heard. There was of
course no way of knowing whether you were being watched at any
given moment. How often, or on what system, the Thought Police
plugged in on any individual wire was guesswork. It was even
conceivable that they watched everybody all the time. But at any
rate they could plug in your wire whenever they wanted to. You
had to live - did live, from habit that became instinct - in the
assumption that every sound you made was overheard, and, except
in darkness, every movement scrutinized [1].

George Orwell's 1984 [1] presents a shocking view of a future where everyone's behavior
is carefully scrutinized. The feeling that "Big Brother is watching you 11 is clearly as
unsettling now as it was in 1949, and yet intrusion detection technology now allows
computer systems to be monitored by electronic "Big Brothers. II This raises many legal

1 This paper reflects work performed while Ms. Schaefer was an employee of
Trusted Information Systems, Inc.

188

and ethical questions as to exactly what privacy rights employees have, and what lengths
companies can go to ensure the security of their computer systems.

Computer security is required for enforcing privacy laws. "At the same time, the process
of detecting threats, vulnerabilities and abuses may result in violations of privacy and other
human rights, leading to a conflict between the use of computer security to guarantee
privacy and its use to invade privacy." [2] One area where this conflict is obvious is in the
use of intrusion detection technology. This paper will discuss the legal and ethical issues
associated with the use of intrusion detection technology in the work place.

Definitions

Intrusion detection systems (IDS) are System Security Officer (SSO) tools, which aid in
the identification of malicious or unauthorized use of a computer system by normal system
users (insiders) and unauthorized users (outsiders). In other words, the IDS is used to
monitor the computer system.

Intrusion detection systems usually get information from raw audit data retrieved from the
observed operating system. Typically, the audit data is then reduced for ease of use. This
reduction may involve searching for audit records corresponding to specific events that
have been previously deemed important, or simply reorganizing all of the audit records into
a more generalized format and disposing of fields that are not needed for further analysis.

The raw content of the audit trail may be system accounting information as well as security
relevant events. Generally audit records contain such information as subject (e.g., terminal
user, process running on behalf of user), object (e.g., file, device), action performed, time
stamp, resource measures, indication of any uses of privilege, and an error code. Most
intrusion detection systems are designed to observe abnormal patterns of system use such
as failed login, unusual user performance (perhaps an unauthorized user masquerading as a
legitimate user), Trojan horses, viruses, or an insider attempting to access unauthorized
files [3].

Privacy is extremely important to people, yet its meaning, especially for policy purposes, is
often unclear. Privacy represents concerns about autonomy, individuality, personal space,
solitude, anonymity, and a host of other related concerns [4]. There have been many
attempts to define a "right to privacy." Warren and Brandeis defined it as "the right to be
let alone."[5] Webster's dictionary defines it as "one's right to freedom from unauthorized
intrusion." Dean Prosser wrote that privacy is "in one form or another ... declared to exist
by the overwhelming majority of the American courts." [6] Prosser identified four types of
privacy invasions: intrusion, disclosure, false light, and appropriation. Each of these types
depends on physical invasion or requires publicity, and thus offers minimal protection for
privacy of personal information.

The Privacy Act of 1974 protects personal data collected by the government. Any
individual can request what data has been collected on him/her, for what purpose, and to
whom such information has been disseminated. An additional use of the law is to prevent
one government agency from accessing data collected by another agency for another
purpose. The Privacy Act requires diligent efforts to preserve the secrecy of private data
collected [7].

Webster's Dictionary defmes ethics as "the discipline dealing with what is good and bad
and with moral duty and obligation; the principles of conduct governing an individual or a
group."

189

Of course, "good" and "bad" cannot be precisely defined, since they are relative tenns that
refer in many cases to personal opinion. Consider two co-workers Jim and Mike. Jim
does not think it is wrong to take office supplies:

"I am just taking some pens and floppy disks. It's not going to break them."

"It probably won't," Mike replied, "but it's still wrong. It's company property."

Jim did not think this was wrong, but many others feel it is. We are taught in school, by
our parents and by our peers that it is morally wrong to take things that do not belong to us;
yet many of us still take "a few pens and pencils."

This is also true with monitoring people on the job. Some think it is acceptable to monitor
others because it infonns individuals as to who is doing their job properly. Others feel it is
only acceptable if there is suspicion that a job is not being properly done. Still others feel
that any sUI'Veillance at all is ethically wrong. The ethics of what should or should not be
monitored is discussed later.

The Use of Inttusion Detection Systems and Privacy Ri~hts

The Privacy Act of 1974 made the individual's right to privacy both a legal and ethical
issue. There is an ongoing debate now over where an individual's right to privacy ends
and a company's right to protect itself begins.

The use of IDS in the workplace has both advantages and disadvantages. A significant
advantage is that it can help detect outsiders breaking into the computer system. It can also
help detect insiders abusing company resources (e.g., using company time to develop
software for personal profit or committing insider fraud or abuse). Monitoring can be quite
useful in environments that have little or no protection of sensitive infonnation, in that an
intrusion detection system can help detect unauthorized access to the sensitive infonnation.
Some disadvantages employee monitoring can create are low employee morale, reduced
productivity, destructive countenneasures, and resentment [8], [9]. While security officials
or management may believe monitoring the system protects both individual data and
company resources, (i.e., it is not meant to watch over the "good guys" but rather to keep
the "bad guys" out) programmers, system developers, and other users of the system may
feel that they are automatically an "under suspicion" employee. A middle-of-the-road
approach states that if IDS operators were carefully restricted and administered,
"monitoring ofcomputer activity could be viewed as a benefit by the user community in the
same way as security monitoring of luggage at airports is viewed as a benefit by air
travellers" [2].

Monitorin~ on the Job

An example that makes the dilemma between individual and company's rights painfully
clear was published in Information Week [10] and the Washington Post [11]. Alana
Shoars was ftred from Epson America, Inc. when she questioned management about its

190

monitoring and reading of electronic messages between employees2. There is a question of
whether this is a violation of the employees' right to privacy. In 1986, the Electronic
Communications Privacy Act (18 U.S. Code 2511) was passed to protect users of
telephones and other communications equipment from wiretapping and similar invasions of
privacy. The Act also included electronic mail (E-mail), cellular phone service, and other
new forms of electronic communication. The Act also extended to communications other
than those carried over public networks. It is not clear, however, what rights companies
have to monitor the traffic on internal E-mail networks.

There is little question that, at least in the United States, monitoring people without good
reason is regarded as socially and ethically unacceptable. Nonetheless, many users of
computer systems regard their use of the computer as a personal matter, and a system that
watches over their activity could be seen as a violation of privacy. Ironically, people do
accept video cameras in banks, airports, and hallways at the workplace. Also, in a shared
computing environment, all but novices know that "private" files are not truly private;
unscrupulous system administrators and users can examine any cleartext file, and in some
cases may be able to read encrypted files. Thus, users generally do not maintain sensitive
Privacy Act information on shared systems that lack adequate protection measures.
Perhaps the main reason intrusion detection systems appear threatening is that they are
designed to judge user activity, specifically to determine whether or not a user is behaving
normally or violating some security policy [13].

What to Monitor?

An audit or intrusion detection tool is designed to detect anomalous behavior. Generally, it
is intended to aid the SSO in locating the "bad guys" who are circumventing the system.
But what about the "good guys"? Exactly how much system activity should an intrusion
detection system monitor? In other words, when does this start going beyond a tool and
begin invading someone's right to privacy? The IDS will not invade a person's privacy
rights if it is monitoring at the node level (login failures). If the IDS is monitoring every
keystroke of an individual, this would be an example of invading a person's privacy. On
the other hand, the tool could point out that an individual has been poking around files to
which she has no access rights. The SSO can then take preventive or preemptive action.
There certainly are enough cases of employee fraud where extensive auditing would be
deemed not only appropriate but imperative by management. Financial institutions could
hardly expect to be insured if a strong audit program were not in place.

As mentioned earlier, people are monitored all the time -- in airports, banks, supermarkets,
and department stores, to name a few common places. This usually does not upset people.
It is expected that a camera will monitor activity in these areas to help protect both the
public and the company assets, as well as to offer a warning to potential trouble-makers.

But what about being monitored on the job? All forms of surveillance and supervision are
accepted in factories. Factory workers owe 100% work time when they are on the job in
the factory. Whatever workers build in the factory is the factory's property.

2 This case was dismissed January 1991 by a superior court judge who said the
California wiretapping statute does not apply to E-mail. That suit, however, is
pending appeal [12].

191

This should also be true with white-collar jobs. All scientific discoveries made at work are
the company's property. Employees should not spend company resources making several
personal calls or revising resumes [14].

There is, however, an unspoken ethic that it is morally wrong to rifle through fellow
employee's drawers or f:ales, or eavesdrop on phone conversations.

An employee can consciously protect her files from being monitored. She can do this by
either calling an important document something meaningless or by putting file protections
on the document to prevent wandering eyes from seeing it. Even so, it is well known that
these hurdles can be brought down with little or no effort. The difference between these
examples and the knowledge that your system is being monitored by an IDS is that in the
fonner scenario the employee is still comforted with the unknown -- she really is not sure
that she is indeed being monitored. The latter case can change employee behavior with the
knowledge of being monitored.

As described earlier, employee monitoring may result in low employee morale, reduced
productivity, destructive countermeasures, fear, and resentment. As a real-life example,
take the boss who automatically has a file sent to him each time someone first accesses their
electronic mail. The boss uses the time stamp to determine when that employee has arrived
for work; that is, if the employee reads his mail as soon as he arrives. This is a classic
example of organizations analyzing patterns of E-mail. Employees can, of course,
purposely not read their mail until the afternoon.

As another example, suppose your supervisor, John, approaches you and asks why you
can't do an additional task to those currently assigned. You tell John that you don't have
enough time. Without your knowledge, John starts monitoring your daily activities using
an IDS. John notices that you spend more time reading personal mail than you should.
John approaches you later and accuses you of spending an average of two hours reading
mail per day and that if you spent less time reading personal mail, you would have plenty
of time to do the additional task. How would you feel in this situation? Most people
would probably be outraged, resenting the fact that John monitored them without prior
permission.

Even if employees know that extensive intrusion detection systems are used, the two
examples above illustrate the use of monitoring tools being abused by the unethical. The
examples illustrate extreme uses of intrusion detection systems in a "Big Brother is
watching" fashion.

Conclusions

Yet examples such as these happen often in the workplace. Using an IDS to monitor the
system is an excellent tool to aid the SSO in detecting attempted system breakins or
employee abuse of company resources. But this tool also makes it possible to abuse moral
issues such as spying on individuals or using the IDS to calculate employee performance.
A company using intrusion detection systems must face many legal and ethical questions
that to date have not been completely answered. Thus, each organization planning to use
such a system should consider these issues.

There are at least two major legal issues that need to be identified. First, whether or not
companies have the legal right to monitor computer use, and second, at what level could
such monitoring occur. Companies demand the right to monitor computer use to protect

192

proprietary infonnation and to prevent abuse of computer resources. Companies should
have a written policy that describes the extent to monitoring the system.

Even though the legal issues are not well-defined today, these issues should be better
understood in the near future. With the Shoars v. Epson E-mail case, many companies are
becoming more aware of the legal and ethical issues. This case has prompted many
organizations to review their policies on system security and employee monitoring, and
some companies that previously had no policy on system monitoring have created one.

Companies who do not have a policy could have problems if they have to go to court to
defend themselves concerning the monitoring of employees. It is clearly wise for
companies to develop a policy regarding the use of IDS. The policy should cover issues
such as limits of IDS use, use of the results obtained from monitoring, obtaining infonned
consent of users, and providing due notice of intent to monitor. The development of this
policy should not be limited to security experts, but should involve system users, as well as
psychologists, sociologists, constitutional lawyers, and human rights groups [2]. This
security policy should be openly available to employees. Each employee should read and
sign the policy indicating that they understand and will abide by the rules within.
Employees should be advised that they are being monitored when they are using company
computing resources. It should be very clear as to what exactly is being monitored and
how that infonnation will be used.

Bad policy can certainly become a reality within a company's use on intrusion detection
systems. There is also a possibility that the IDS operator can abuse the tool to monitor
anything and everything employees do, thereby becoming a kind of Big Brother. Who
should or shall oversee that companies do not, in fact, abuse this technology, which is
otherwise a great benefit for infonnation security, should be explored to prevent the
workplace from being under the constant surveillance of Big Brother and the Thought
Police.

References

[1] 	 Orwell, George, 1984, Harcourt, Brace, and Company, Inc., NY, 1949, pp 6-7.

[2] 	 Denning, Dorothy E., Peter G. Neumann, and Donn B. Parker, "Social Aspects of
Computer Security," Proceedings of the 1oth National Computer Security
Conference, September 1987.

[3] 	 Schaefer, Lorrayne J. and J. Noelle McAuliffe, "Intrusion Detection
Technologies," Trusted lnfonnation Systems Technical Report #334, February
1990.

[4] 	 Federal Government Information Technology, Electronic Record Systems and
Individual Privacy, OTA-CIT-296, U.S. Office of Technology Assessment,
Washington, D.C., June 1986.

[5] 	 Warren, S.D. and L.D. Brandeis, "The Right to Privacy," Harvard Law Review,
December 1890, pp 193-220.

[6] 	 Prosser, Dean, "Privacy," California Law Review, vol. 48, 1980, pp. 383, 386.

[7] 	 Privacy Act of1974, Public Law 93-579, U.S. Code 552(a), December, 1974.

193

[8] 	 Irving, R.H., C.A. Higgins, and F.R. Safayeni, "Computerized Performance
Monitoring Systems: Use and Abuse," Comm. ACM, Auglist 1986, pp 794-801.

[9] 	 Marx, Gary T. and Sanford Sherizen, "Monitoring on the Job: How to. Protect
Privacy as well as Property," Technology Review, November/December 1986, pp
63-72.

[10] 	 Caldwell, Bruce, "Big Brother is Watching," Information Week, June 18, 1990, pp
34-36.

[11] 	 Richards, Evelyn, "Privacy at the Office: Is There a Right to Snoop?," Business
Section, Washington Post, September 9; 1990, pp. H6, H8, H9. ·

[12] 	 Eckerson, Wayne, "E-mail Privacy Issue Gains Momentum With Second Suit,"
·. Network World, February 11, 1991, P• 33.

[13] 	 Bauer, DavidS. and Dorothy E. Denning, "Social and Privacy Issues of Intrusion
Detection;" Proceedings of the JSt SRI Intrusion Detection Workshop, March
1988.

[14] 	 Garson,. Barbara, The Electronic Sweatshop: How Computers are Transforming
the Office of the Future into the Factory of the Past, Simon and Schuster, New ·
York, NY, 1988, pp 205-224.

194

EXPERIENCE OF COMMERCIAL SECURITY EVALUATION
' •" .~

©Secure Information Systems Limited 1991

Peter Fagan & Julian Straw
Secure Infotmation Systems Limited, Sentinel House, Harvest Crescent, Aricells Park, Fleet,
Hampshire, GU13 8UZ, England

ABSTRACT

Considerable experience has been gained in Government funded or controlled facilities in the
United States, in the UK and elsewhere in the·evaluation of systems and products. This paper
discusses experiences gained from the operation and management of a UK Commercial
Licensed Evaluation Facility (CLEF), and highlights the issues involved in the marketing of
certification to security product vendors.

INTRODUCTION

Two licensed commercial evaluation facilities have been operating in the UK since June 1989.
The contracts to operate the CLEFs were granted to two parent companies, Logica Space and
Defence Limited and Secure Information Systems Limited (SISL), as · the result of a
competitive tender process.

In contrast to the existing UK Government funded evaluation facilities, the CLEFs operate on a
commercial basis, seeking evaluation work from product suppliers and project sponsors. The
CLEFs have now been in operation for two years and have provided unique experience in the
area of commercially funded formal evaluations. This paper outlines the procedure for
conducting such evaluations, and discusses the issues raised under headings of licensing,
staffing, management and marketing. The views expressed are those of the SISL CLEF only.

CONDUCT OF EVALUATIONS

Evaluations are carried out in the SISL CLEF against the evaluation criteria developed by the
UK Communications Electronic Security Group (CESG) [1] and also the harmonised European
IT Security Evaluation Criteria (ITSEC) [2]. The UK criteria define levels of assurance,
describing how confidence is obtained in the design, implementation and operation of a
product or system, but without applying constraints to the functionality of any item submitted
for evaluation. Because of this the criteria can be applied to systems and products with limited
and specific features but which meet high assurance requirements. The ITSEC are compatible
with the approach in [1], while at the same time being designed to provide a link to evaluations
of products using functionality as defined in the DOD Trusted Computer System Evaluation
Criteria (TCSEC) [3]. The ITSEC are the result of an initiative by the UK, France, Germany
and the Netherlands~ and are based on existing European criteria.

Because functionality and assurance are split, a target evaluation level (e.g. ITSEC E3) is
insufficient in itself to define the duration and extent of an evaluation. The information
required to control a UK evaluation is provided in two documents: the evaluation baseline and
the evaluation work programme.

The baseline document defines the scope of the evaluation work. It states the target assurance
level but also states the extent of the functionality of the item under evaluation. For ITSEC
evaluations this statement will either refer to or contain a Security Target, which in the case of

195

a system will describe the security policy for the system. In the case of a product the Security
Target will contain a set of claims, describing the security features provided by the product,
and a rationale which enables a prospective purchaser to assess whether the product will meet
his requirements.

The work programme lists all the work packages making up the evaluation, and states the
amount of effort assigned to each.

The baseline and work programme are issued in parallel and both are approved by the
certification body before the commencement of an evaluation. This ensures that necessary
and sufficient work is planned to allow the product to be evaluated, given the functionality
claimed for the product, and that the quality of any evaluation remains unaffected by the
competitive situation.

Evaluation then proceeds according to the requirements stated in the ITSEC or the UK criteria,
guided by an evaluation manual issued by the certification body, which provides a rationale
for standard work packages and describes contents and layout for the mandated reports.

This paper discusses the commercial nature of the relationships between the parties involved
in such an evaluation and the issues raised in operating such a facility on a commercial
basis. Figure 1 shows the major parties involved in a UK commercial product evaluation and
illustrates the flows between them. The roles of these parties are described fully in the UK IT
Security Evaluation and Certification Scheme Publication No 1 [5].

The relationship between the facility and the certification body requires commercially
sensitive information to be passed from the facility. This is to enable the certification body to
monitor progress and assist with the resolution of any problems which arise. The certification
body also refers government projects with a requirement for evaluation to the evaluation
facilities, in an equitable manner. In the UK both the commercially operated facilities and the
certification body are committed to the success of the CLEF scheme and work in concert, given
~e constraints of their different roles.

LICENSING

On 1st May 1991, the single UK IT Security Evaluation and Certification Scheme was launched
in the UK, replacing the scheme under which the CLEFs had been initially established. The
new scheme is managed jointly by CESG and the UK Department of Trade and Industry (DTI),
under the direction of a management board made up of representatives of a number of UK
Government departments. The scheme provides for a single UK Certification Body, reporting
to the board.

The SISL CLEF is licensed under the scheme, to carry out evaluations using the methodology
common to all UK evaluation facilities. The licence is granted by the certification body under
the terms described in UK IT Security Evaluation and Certification Scheme Publication No 2
[6].

The terms of the licence place constraints on the operation of the facility in the areas of security
procedures and management. In particular it is a requirement that a quality system which has
been accredited by the UK National Measurement Accreditation Service (NAMAS) be in place
at the facility. This fact is appreciated by CLEF clients since it increases their confidence in
the quality of the work performed. NAMAS is a service operated by the UK National Physical
Laboratory (NPL). The criteria used by NAMAS assessors are primarily reliability, quality

196

and traceability of results. The certificates awarded by NAMAS are recognised widely within
the UK, and mutual recognition agreements are in place with a number of European countries.

Licensing
Body

Control,
Standards

Evaluation Report,
Work Programme,
Baseline

CLEF

1
Support functions

I

Parent
Company

Certificate

Sponsor
(vendor)

Evaluation deliverables,
Fee

Fieure 1 : Commercial Relationships

The licensing terms also require an appropriate management structure to be in place. In
general terms this comprises a facility controller, responsible for the overall operation, a
business manager (reporting to the facility controller and therefore keeping control on
commercially sensitive information), a technical manager (responsible for day to day
operation), and an administration manager (whose responsibilities lie mainly in the area of
day to day security). In addition there are potentially a number of specialist roles such as
methods advisor (responsible for advising on the use of formal methods and associated static
and dynamic analysis tools). While it is possible for one individual to hold more than one of
these posts, two other posts exist which act as an internal check on the operation of the facility,
and which therefore cannot be combined with any of the other roles. These are the posts of
quality manager and security manager. It is an important aspect of these two positions that
they are independent of the facility controller, in order to assure their impartiality.

The licensing terms for the UK facilities ensure very high standards of work, and the
standards are coupled with an official endorsement of the work carried out. Unlicensed
companies offering similar services may in some cases be able to undercut the facilities in
terms of price; however their work will not carry the authority required for a vendor to achieve
the desired marketing benefits provided by a government certificate awarded after evaluation
in an approved facility.

197

STAFFING

In addition to licensing the facilities, CESG operate a separate scheme through which
individual evaluators are licensed on the basis of their training and experience. Training
courses can be run by a facility subject to approval from the certification body, which reviews
the content and quality of the course. This again increases customer confidence and allows
the licensing body to ensure that suitably qualified staff are used on evaluations.

The requirement for licensed staff creates a problem for a commercially-operated facility,
where the flow of work may be irregular. Training and licensing of individuals constitutes
an investment which must be used in the facility if it is to bring benefits. Therefore at the end
of an evaluation, when qualified staff potentially become unassigned, there is a need to retain
them in the CLEF and not to return them to the parent company, where they may be assigned to
long term projects and thus become unavailable to the facility. A stable and self-contained
community of evaluators is to be desired. However, only limited overheads in terms of low
staff utilisation levels can be tolerated in a commercial environment. These two conflicting
requirements can only be reconciled if there is a stable and reasonable flow of evaluations into
the facility, which in turn requires a commercially-oriented approach to operation and
marketing.

In order to minimise costs and risks to the CLEF, personnel are assigned for the duration of an
evaluation, and only very exceptionally are they removed for other work within the facility.

The possible consequences of breaches of commercial confidentiality affect staffing. While
document security, procedural security and physical security can be adequately addressed by
the means usually adopted by defence contractors, personnel security is an area requiring
increased attention. Non-disclosure agreements are made on an individual basis, so as to
confine the spread of information to those with a need to know. This agreement continues
beyond the lifetime of the evaluation. In addition, constraints are placed on the management
of facility staff, so that their deployment outside the facility will not place them in positions
where they could use information gained during the evaluation to the commercial
disadvantage of the vendor. Monitoring of staff who leave the facility and the parent company
remains a problem. ·

Staff motivation is an issue within CLEFs. Since one aim of evaluation and licensing is to
achieve standardisation, a danger exists that staff can be left with a feeling of insufficient
autonomy. This issue is considered to be an important one within the SISL facility since staff
motiv~tion is a prerequisite for high quality work.

Autonomy and feedback on performance are two major factors affecting motivation,
secondary issues being task significance and task integrity. Autonomy needs to be a feature of
a facility, with early responsibility and customer contact. While commercially desirable
technical skills are gained during the evaluation of a product, these tend to be knowledge of the
construction. of the product rather than knowledge of its use. Also there are constraints on the
use of the knowledge gained during the execution of an evaluation. Autonomy can provide
experience which compensates for this. Similarly, early and frequent feedback to staff on
performance and problems must be a feature of a primarily participatory management style.
By incorporating the commercial aspects of evaluation (e.g. proposal preparation,
presentations), into all positions in the facility, task significance and task integrity can be
achieved. In the experience of the authors this is best carried out by sharing the marketing
work and administration tasks.

198

MANAGEMENT

Commercial confidentiality is a major issue in the management of a facility as well as in the
licensing.

The key benefit which vendors see in obtaining certification for a product is that C)f obtaining a
marketing asset. This is particularly true in the case of certification to the ITSEC. In contrast
to the TCSEC, increased emphasis is placed on the development environment for a product,
successful evaluation reflecting upon the company and its development process just as much
as on the product. Therefore the timing of the announcement of certification, and· the
confidentiality of the results of evaluation are important factors in UK evaluations.

This requirement for commercial confidentiality arises in part from the commercial nature
of CLEF work. Knowledge of any corporate action expected shortly to provide an improved
market share might be considered by many vendors to be sensitive information. Where
longer timescales are expected, as is the case in the US, the early announcement of formal
evaluation may be beneficial. Since UK commercial evaluations are conducted with the
minimum evaluation effort commensurate with the maintenance of the enforced standards,
there are in contrast, potential benefits for a vendor choosing confidentiality.

This means that great care must be taken with the handling of customer identities within the
facility, and also within the parent company where facilities such as accounts; sales and
marketing are used. Identities of prospective and actual customers are disguised by an
internal numbering scheme, with only the minimum number of staff knowing for whom the
work is being carried out.

Strict measures are put in place within the facility to provide commercial confidentiality.
Primarily ·this is a matter of physically separating teams working on separate evaluations,
and providing secure storage facilities for each. Preferably teams should use dedicated
computer equipment which is flushed between evaluations, since working on two evaluations
simultaneously on the same computer places an increased dependence on logical separation of
user groups.

The SISL facility is physically separated from its parent company, with a separate entrance.
This separation reduces the. risk of accidental disclosure via documents or conversations. In
addition, prospective customers can be seen without the knowledge of personnel in the parent
company. A log of visitors to the facility is kept, and managed in a way which prevents one
prospective customer from seeing that another has visited. The same is true of any document
recording the identity of more than one customer (e.g. facsimile log, business reports). Visitor
passes are issued by the facility and not by the parent company so that no record is kept of the
visit by the parent company. Separate telephone and facsimile lines are provided so that
customers and prospective customers can be assured of the confidentiality of their project.

For all tasks, individual registers are kept of all deliverables supplied to the facility· whether
or not there is a requirement to handle classified information. At the end of the evaluation the
deliverables provided to the CLEF are either returned or destroyed, as agreed between the
facility and the client. Appropriate destruction procedures are among those defined by the
Security Operating Procedures (SOPs) under which the facility operates. The SOPs, approved
by the certification body, define the procedures for day to day management of the facility and
for the handling of the client evaluation deliverables. The existence of documented procedures
is essential for consistent application of confidentiality and quality requirements.

199

From the point of view of confidentiality the facility can be seen to comprise a number of
operating groups: those with knowledge of prospective customers (the facility controller and the
business manager, together with any staff involved with sales support); those with knowledge
of a particular evaluation; and those with overall knowledge of the CLEF operations. In fact
this last group consists of a single individual, the facility controller.

While it can be seen that there are management problems in operating a CLEF as an arm of a
parent company, there are advantages also. It is unlikely, for example, that any one
evaluation will be a significant fraction of parent company turnover; therefore cash flow on
one task is unlikely to be a significant factor for the overall health of the parent.

The primary problem in the management of CLEF evaluations is one of maintaining control
on costs. During the evaluation this is exemplified by the problem of evaluating a product in
which minor faults may be found which must be corrected before certification. Clearly this
will require some re-evaluation, and a suitable strategy must be chosen during contract
negotiation which will allow this to take place within the constraints of what is usually a fixed
price contract.

In entering a contract with a vendor the facility is in the unusual position of performing a
service without guaranteeing a result, since it does not itself award the certificate. The
evaluation results cannot currently be provided directly to the vendor, and the same is true of
information concerning faults which may be found in the system or product. These are sent
instead to the certification body who can release them (or not) to the vendor. This can lead to
situations where vendors may attempt to impose unacceptable constraints on the evaluators,
such as penalty clauses in the event of the certification body not responding within defined
timescales.

Commercial risks to the CLEF in entering into a fixed price contract are naturally a
management issue. The availability of deliverable items such as design documents and
source code has an impact on timescales and costs. In order for the evaluation to proceed the
deliverables must be provided at an early stage, and it is usual for a contractual clause to exist
which will protect the facility in the case of these items being delayed or being unavailable. To
guard against the effects of this situation, clear lists of required deliverables are provided to
vendors at the time of submission of a proposal by the CLEF.

The commercial liability which a CLEF is prepared to accept is defined by the terms of its
insurance cover and by the status of the reports which it produces. The SISL CLEF is covered for
example for security evaluations, but not for safety critical uses. The legal status of an
evaluation report is that of a statement that the product has been compared against a certain
standard; not that the CLEF is guaranteeing the product to be secure. This is obviously
essential to protect against third party claims for consequential loss.

A final management issue concerns the use of tools in the CLEF. For a commercially operated
facility the use of tools in areas such as source code analysis is justified where a saving will be
made or where the quality of the evaluation will be improved. For example at higher levels of
assurance it may be necessary to use a tool to achieve the required confidence level. Previously
this area has to some extent been one of academic research, and the tools which will be
necessary to derive commercial benefit for a CLEF may be different to those which are
currently being developed.

200

PRE-EVALUATION CONSULTANCY

Vendors consider the price of an evaluation as speculative investment, and an internal
marketing case may have to be provided before senior management will allocate a budget for
an evaluation. Evidence may have to be provided by the technical department that it is
confident of a successful result. To meet this need the facility offers pre-evaluation
consultancy. The aim of this activity is to highlight areas which should be addressed before
committing to an evaluation proper. A review period is sometimes beneficial, so that any
corrective action can be verified.

The aims of pre-evaluation consultancy depend on the requirements of the vendor. Frequently
the vendor will wish to understand more fully the evaluation process and the risks which are
being accepted. To meet this requirement the facility produces a vendor report which describes
the deliverables required for a target level, and assesses the available deliverable items
against those requirements. It may be that as part of the consultancy, a vendor will authorise
an evaluation at a level below the desired level, as a cost-effective check on the evaluatability
of the product, or just to confirm the target level. Vendors may also wish to compare the
requirements of an NCSC evaluation against those of an ITSEC evaluation, to determine the
effectiveness of an ITSEC evaluation in terms of addressing the European market. An
important form of pre-evaluation consultancy is in the preparation of a baseline and work
programme. The agreement of the certification body is required before an evaluation can
commence, and the controlling documents are required before such agreement can be given.
Therefore where a CLEF enters into an evaluation contract without having agreed the baseline
and work programme, it does so at its own commercial risk. A clear contractual and
licensing distinction is drawn between evaluation and this form of consultancy.

Therefore the common aim of all pre-evaluation consultancy can be seen to be to reduce risk in
the evaluation phase, both to the facility and to the vendor.

During the management of any form of pre-evaluation work it is important for the CLEF to
maintain impartiality. It has been suggested that CLEFs should be debarred from performing
evaluations where they have provided pre-evaluation consultancy. The basis of this argument
is that a conflict of interest can arise if a facility first determines the suitability of a product for
an evaluation which it then subsequently carries out. There are dangers in this view for all
parties. It is unlikely that other organisations offering such services will be licensed or
policed in the same way as CLEFs, and undoubtedly to protect their commercial interests there
will be disclaimers attached to the results. Such consultancy will be provided in the absence of
experience of evaluation itself and in the absence of up to date knowledge of the remit of the
approved facilities. Most importantly the consultancies will be taking on the role of the CLEF
during the period in which a CLEF would be gaining experience in the product and building a
relationship with the vendor. If a CLEF were to come in at the evaluation stage without having
reduced their own risks beforehand, the net effect would be higher prices for evaluation,
reflecting a higher contingency, in the light of possible contractual and quality problems
arising from the previous stage.

MARKETING

Evaluation is currently considered to be primarily a vertical market, in that the skills sold by
the evaluation facilities are narrow in range and are applied in a similar way to varying
sizes of project. However the SISL CLEF has found that skills are gained during evaluation
which should allow a broader base to be established, and which would enable evaluation
expertise to be applied across a wider range, possibly by applying subsets of the skills (e.g.
source code analysis services, secure product design reviews).

201

There are some unique issues to be addressed in marketing these, and other, CLEF services.

In order to understand the marketing issues in any industry it is useful to split the market into
appropriate segments (e.g. by customer type, contract size or geographical area). Segmentation
of the evaluation market, and the parameters which could be used, are issues yet to be
addressed in detail by the UK evaluation community. The primary reason being that the low
level of activity means that there is a limited amount of information to gather and thus
analyse. However it will soon be necessary for answers to be supplied to questions such as 'how
is the market split?' and 'how does our CLEF expertise map onto that split - what market share
will that give us?'. Initially however it can be assumed that at higher levels the evaluation
market is predominantly for certification of products for use in Government systems. The
price of evaluation for these products may be considered by vendors to be the price of admission
to the market.

Publicity following certification is another marketing issue for vendors. Press releases are
effective to a degree in alerting the public to a product undergoing evaluation, and in the UK
this has been employed at the lower end of the market. This is useful for the facilities since it
also alerts other vendors to the expected benefits. However, the facilities are still bound by their
agreements on confidentiality and this is a constraint on their marketing operations.

Currently the UK market for evaluation is a latent one (the market is considered to have
potential but currently it is not running at a very high level of activity). In these circumstances
a pro-active approach is required to identify and stimulate market areas. This is made more
important to the CLEFs by the vendor requirement to reduce through-life costs. In short, when a
vendor has undertaken an evaluation with a facility, and the quality of the original work has
met expectations, the staff of that facility will have been trained in the design of the product. It
will make commercial sense for the vendor to return to the same facility for subsequent re­
evaluations. Thus it is important from the point of view of the facilities to be pro-active, since
repeat business is generally considered to be cheaper to obtain than new business, and since
there are a finite number of product vendors.

In a competitive environment a CLEF must decide on a marketing stance. Although
performing the original work has been stated to be a factor in winning repeat business, it can
be expected also that the so-called 'marketing approach' will be the optimum stance in the long
term. In this the CLEF seeks to understand specific vendor requirements and to match the
work to the requirements, providing customer satisfaction as an internal goal. In a field in
which it is clearly possible to provide a service on a basis of 'take it or leave it', the marketing
approach can be expected to provide distinction to a CLEF.

Publication of the ITSEC has undoubtedly raised awareness of the process of certification. The
harmonised European criteria are increasingly relevant to the marketing activities of
European subsidiaries of US companies. When the planned framework for the ITSEC has been
put in place, the validity of evaluations will be accepted throughout a number of countries, with
the evaluation scheme recognising fully the TCSEC functionality which many vendors will
have incorporated. The use of the ITSEC will provide a number of benefits for commercial
evaluation facilities, primarily removal of the requirement for published interpretations of
the criteria in particular circumstances or for particular applications. The UK facilities have
not for example been delayed in database evaluations by the absence until recently of an
accepted version of the Trusted Database Interpretation [4]. However, in comparison to the US
market the UK market is small, and therefore the flexibility of criteria such as the ITSEC has
not been exploited on a scale necessary to achieve significant marketing benefits as yet for the
facilities.

202

The issue of cost-benefit analysis as performed by a vendor must be considered. It has already
been stated that in simple terms a vendor will see evaluation costs as a speculative investment
which can be expected to reap rewards in terms of increased sales.

This is nowhere more true than in situations where a vendor is aiming for a low level of
assurance in a simple product. A statement of assurance gained by an approved facility in the
correctness of a product, coupled with a statement from the vendor of his security claims,
provides a marketing asset sufficient to distinguish a product from its competitors. The total
cost of evaluation for a Personal Computer (PC) security add-on at the lowest assurance level
might be in the region of $7,000-$12,000. The elapsed time would be a matter of a very few
weeks. Therefore even distributors (rather than manufacturers) can and do consider this as a
feasible investment. For a comprehensive PC security product, moving up to a higher level of
assurance could cost $40,000-$60,000 and would run for perhaps 12-15 weeks. This is a different
sector of the market, and different reasons for acquiring certification apply.

MAINTENANCE OF CERTIFICATION

Aside from the initial costs, through-life costs are an issue for vendors, and are therefore a
marketing issue for CLEFs. For product vendors at any level there is an overriding
commercial benefit in being able to control the costs of certificate maintenance. It may for
example prove more cost-effective for the vendor to decouple a certificate maintenance
programme from the usual product release cycle. The ITSEC take into account the quality of
the development environment, and a vendor may be content to run through two or three bug
fixes or releases before going for recertification, relying on customer confidence in the
certification of the development environment. Strong configuration control requirements for
a product enable the impact of changes on product security to be closely monitored and
assessed. A commercially acceptable scheme for maintenance of certification will provide
control to the vendor over the timing and size of expenditure.

The separation of assurance from functionality has allowed small companies to gain
certification for simple products at low levels of assurance. Maintenance of certification at
these levels is generally accepted to be almost a re-evaluation. The costs of maintaining
certification as the product evolves will probably be significant in terms of the vendor company
turnover. Nonetheless, in the UK scheme the costs and timings for re-evaluation are under the
control of the sponsor. There is no requirement for open ended support or liaison with the
evaluation facility or certification body, which would be inappropriate for a small
organisation.

For larger products or systems, the nature of re-evaluation is different. Work must be done
during the evaluation to allow the certification maintenance to proceed, by constructing a
database of security relevant areas. After certification, changes are notified to the evaluators
by the vendor, and the evaluators assess the impact on certification, providing where
necessary, third party evidence that certification remains unaffected. However at this level
also the costs and timings of re-evaluation remain under the control of the sponsor.

SUMMARY

The relative advantages and disadvantages of commercial security evaluation are
summarised in Figure 2 below.

The market for commercial evaluation in the UK remains in its infancy. The UK CLEF
scheme has established a model for its development which has now been tested and refined,

203

and which will be sufficient to meet an expanded market. The ITSEC provide a widely
applicable basis upon which to build, and are expected to generate significant interest from
international markets in the use of UK facilities.

The establishment of the CLEFs has required considerable effort in the definition of
procedures for licensing and certification. It has also called for the resolution of problems
concerning commercial confidentiality and staffing. Market development has called for
careful examination of the requirements and motives of potential customers, to determine how
best their needs may be satisfied.

It is now believed that the UK model for commercial evaluation facilities, with its emphasis on
quality management and responsiveness to market needs, can provide the basis for a
significant expansion in the supply of evaluated products available internationally.

Advantages Disadvantages

Commercial
(CLEFs)

Government
(NCSC)

reduced timescales
no queues
reduced client restrictions
adaptable to customer needs

free
widely known

cost to vendor
not well known in US

long timescales
not development env
only US systems
queues

Figure 2 : Comparison Summazy

REFERENCED DOCUMENTS

1. 	 CESG Computer Security Memorandum Number 3
UK Systems Security Confidence Levels, Issue 1.1, February 1989

2. 	 Information Technology Security Evaluation Criteria (ITSEC)
Harmonised criteria of France, Germany, the Netherlands, the UK
Version 1, dated 02 May 1990

3. 	 Department of Defense Trusted Computer System Evaluation Criteria,
DoD 5200.28-STD, December 1985

4. 	 Trusted Database Management System Interpretation of
Trusted Computer System Evaluation Criteria, NCSC-TG-021, Version 1,
April1991

5. 	 UK IT Security Evaluation and Certification Scheme Publication No 1
Description of the Scheme
Issue 1.0, dated 1 March 1991

6. 	 UK IT Security Evaluation and Certification Scheme Publication No 2
The Licensing of Commercial Licensed Evaluation Facilities
Issue 1.0, dated 1 March 1991

204

EXPERIENCES IN MULTI-LEVEL SECURITY ON DISTRIBUTED ARCHITECfURES

Karl A. Sill

AT&T Bell Laboratories

1 Whippany Road, Rm 14E-218

Whippany, New Jersey 07981

ABSTRACT

This paper describes the port of a Multi-Level Secure (MLS) operating system to a multi-processor distributed
architecture. The implementation involved porting AT&T's B1 Rated System V/MLS to the AT&T 3B4000
super-minicomputer. -Although originally a port of the System V/MLS operating system, the 3B4000 port
provided valuable experience in solving problems associated with MLS networking. This type of experience is
required for the creation of future secure system solutions. Because, just as it is unlikely for a modem
computer not to be networked, it is equally unlikely for an MLS computer not to have need of MLS
networking.

INTRODUCTION

This paper describes the port of AT&T's System V/MLS to the AT&T 3B4000 super-minicomputer. During
this port, the 3B4000 distributed architecture's resemblance to a network unexpectedly provided answers to and
performance data on MLS networking issues that were not part of the original goals of the porting project

MLS networking is a relatively new and unexplored territory that is in demand by customers in both the
government and commercial realms. Theoretical pursuits, although constructive for determining avenues of
endeavor, are limited by the many real-world issues that, as yet, cannot be expressed as equations, proofs, or
algorithms. Worked examples of MLS networking are needed to confront and resolve such issues. The System
V/MLS 3B4000 port has acted as one such worked example.

The paper starts with brief overviews of System V/MLS, the 3B4000 distributed architecture, and UNIX®t
System V on the 3B4000 concentrating on those elements that are relevant to multi-processor and network
security. It then goes on to present a set of porting requirements determined before starting the port. The paper
then discusses network security issues encountered and tackled during the port It goes on to discuss the impact
of the requirements and network seCurity issues on the System V/MLS kernel modules, commands, and
h'braries. The paper then shows how achievement of the requirements was verified. Lastly, the results are
extended to network security in general showing how the porting experience can be applied to the development
of MLS networking products.

SYSTEM V/MLS AND 384000 OVERVIEWS

This section presents overviews of System V/MLS and the 3B4000 distributed architecture. This is to provide
the reader with the basis for the discussion of what was undertaken in the port and how the results of the port
can be applied to MLS networks.

System VIMLS

System V/MLS (SV/MLS) is an NCSC B1 Rated version of the UNIX System V operating system. The first

t UNIX is a Registered Trademark of UNIX System Laboratories.

205

UNIX system to achieve a B 1 Rating, SV/MLS is fully compliant with the System V Interface Definition
(SVID) and introduces no more than 4% perfonnance degradation with full auditing enabled. For this paper,
the most important components of SV/MLS are label management and audit subsystems.

The SV/MLS Mandatory Access Control (MAC) policy is a modified version of the policy described by Bell
and LaPadula.UJ Subjects and objects are labeled via an overloading of the conventional UNIX GID field.
Unlike conventional UNIX systems, this field is not a dimensionless number on SV/MLS. Instead, it is an
index into a file. Each element in the file is composed of the data necessary to fonn an SV/MLS privilege. A
privilege can be thought of as an instance of a conventional UNIX group at a given MAC label. An example of
two privileges is shown in (Figure 1).

Privilege =Discretionary Group + MAC Label

For example, in the ls(l) output:

-rw-r----­
-r--r---- ­

1
1

karl
karl

X[TS]
X[S]

31056
58547

Jun
Apr

11
17

13:19 Mission_Data
11:03 Design_Doc

The privileges, X [TS] and X [S] could be:

Privilege Group Label
X[TS] Project_X Top Secret
X[S] Project_ X Secret

Figure 1. System V/MLS Privilege Components

When an access check is perfonned, privilege infonnation is required by the access control software. SV/MLS
uses a cache to hold frequently referenced privileges. The cache is checked before any privilege infonnation is
read from the disk file. The file and cache have become known as the labels file and labels cache, respectively.
Technically, both contain more than labels. But, to maintain a smooth flow in the paper, the commonly used
terms shall also be used here. Also, the act of getting information from either of the labels cache or labels file
has become known as, getting a label. That tenninology will be used here, as well.

There are three (3) components to the SV/MLS audit subsystem. These are:

• A kernel-resident audit trail data buffer,

• An audit trail daemon process, and,

• A set of audit trail data files.

The SV/MLS audit trail is composed of binary records collected from 25 probe points throughout the kernel, as
well as 16 trace devices accessible only by trusted processes (e.g. login(1S), passwd(lS), etc.) via nodes in /dev.
The binary data is sent from the probe points and trace devices to the kernel buffer. The buffer is periodically
read by the trusted daemon process which then sends the audit data to the files.1 When a System Security
Officer wishes to review the audit data, he/she passes the binary data through a filter program to convert the
data to a human-readable format

1. 	 The audit trail daemon can wrile to any Conn of writable media (files, prinlen, network ports, etc.). Most SV/MLS sites use files,
however. So, the remainder of this paper only discusses files as targets for audit data.

206

AT&T 3B4000 Distributed Architecture

The 3B4000 super-minicomputer is a multi-processor system composed of up to 16 Processing Elements (PE's).
The system is composed of a 3B15 Master Processor (MP) with up to 15 Adjunct Processing Elements (APE's)
physically connected by a network fabric known as the A-bus.l21 Though the hardware is a star topology, the
3B4000 kernel software supports logical point-to-point and broadcast type messaging between PE's. Each PE
runs its own UNIX kernel. The APE's depend on the MP to provide services for many operating system
functions (e.g., process creation, clock synchronization) and cannot run autonomously for any great length of
time. However, each APE maintains data structures for its local files, inodes, mounted file-systems, devices,
etc. These data structures are similar to those of uniprocessor UNIX systems.

When aPE requires a resource/service from another PE (e.g., a remote file access), it issues an A-bus message
requesting that service. If the server PEcan satisfy the client PE's request immediately, the client waits for the
results. If not, the client process requesting the information goes to sleep and gives control of the CPU to the
next runnable process. When the information requested from the server arrives, the requesting process is made
runnable and, when given the CPU, it retrieves the data and continues its work.

One main goal of the d~signers of the 3B4000 version of UNIX System V was to maintain application
compatibility at the object code level. The internals of many system calls were augmented to handle the need
for sending and/or receiving messages over the A-bus. But, most of these changes are invisible to applications
programs.

PORTING REQUIREMENTS

Before the SV /MLS 3B4000 port began, several documents were referenced to determine the porting
requirements. The three (3) primary sources used were: The Orange Book,l31 the uniprocessor SV/MLS Design
Documents,l41 [SJ and the 3B4000 UNIX System V Design Documents.l21 Using these sources and a few others,
requirements were determined for the SV /MLS 3B4000 port In the list that follows, the requirement itself is in
italics. Additional information is provided to explain the requirement and its purpose.

<Al> 	SV/MLS on the 3B4000 must maintain the same system call interface and operation as the uniprocessor
version of SVIMLS. From the onset, it was known that SV/MLS would require non-trivial changes for
the port This requirement was designed to localize the SV/MLS changes to the kernel components.
Any kernel change that did not alter the system call interface from that of the uniprocessor SV/MLS
would aid in reducing the number of changes to SV/MLS user-level commands and libraries. ·

<A2> 	 Performance degradation on the 3B4000 because of SV!MLS must be no more than 5% compared to a
non-SVIMLS 3B4000 system as measured by industry accepted benchmarks. This requirement is the
same as the SV /MLS uniprocessor performance requirement. It is present to prevent the creation of a
secure brick. Performance degradations greater than 5% will cause users and system administrators to
disable the security features of SV /MLS and, therefore, make its presence on the system useless.

<A3> 	 The 3B4000 SV/MLS audit trail must be able to be written to any PEon the system. An extension of a
uniprocessor SV /MLS requirement, this is to assure that the audit trail can be written to any writable
device no matter which PE that device is on.

<A4> 	 The 3B4000 SV!MLS audit trail must contain data to allow the determination of the PE(s) that a given
event occu"ed on. Since PE's are addressable objects in the 3B4000 UNIX System V, successful and
failed accesses to them and the resources they control must be audited.

<A5> 	 A System Officer must be able to boot and shutdown APE's without shutting down the entire 3B4000
system. The booting and shutting down of APE's must be audited. This stems from an original 3B4000
requirement. A goal of the 3B4000 is to provide long spans of uninterrupted service. As such, the
shutdown of a given PE must be allowed without shutting down the rest of the system. Also, booting
(shutting down) APE's adds (deletes) objects from the users' address spaces. As. such, the booting
(shutting down) of an APE must be audited.

207

The above requirements are listed to show the basis for design decisions described later which impacted various
components of SV/MLS. As necessary, particular requirements will be called out at the relevant sections.

SECURE NETWORKING ISSUES ENCOUNTERED

When extending the concepts of secure computing to multiple CPU's, many concepts that are simple in a single
processor system become somewhat more complex. Two issues that had to be dealt with in the SV/MLS
3B4000 port were distributed auditing and label management

Distributed Auditing

On a single processor system, a single thread of control is guaranteed since there is only one CPU executing
instructions and, therefore, creating auditable events. In a multi-processor system or network, each CPU is
generating auditable events. Also, each CPU may have its own clock. This is especially likely in a netwoik.
As such, when auditing events on a multi-processor system or network, the time-stamp of an audit record must
be associated with the clock of the CPU that generated it

An audit record from a given CPU must be ordered with respect to the records of the other CPU's.
Determining the skew between the clocks or synchronizing them becomes important if the audit data is to have
meaning. Also, since multiple CPU's can cause simultaneous events, there must be a way to determine which
events are actually caused by other events and which are totally unrelated.

In addition to having correct time-stamps and proper ordering of the audit data from multiple CPU's, secure
multi-processor and networking products must decide where the audit data is to be stored. Audit data could be
stored at the processor local to the events until review of the data is required. Or, all the audit data could be
sent to a central collection point as the audit records are being generated. While centralized auditing provides
ease of access to the whole networks audit data, it could increase network traffic to the point where the entire
network grinds to a halL Localized auditing keeps the network clear, but each processor is required to have a
substantial amount of local storage for the audit data. The latter solution is unacceptable in a diskless
workstation environment

Label Management

SimiJar to the issue of distributed auditing, label management has to do with global access to a set of globally
significant data. In auditing, this data is almost entirely write-only. Conversely, the data and operations
associated with label ~~gement are almost entirely read-only. As in distributed auditing, centralized versus
localized label repositories can be used. The two primary concerns are:

• network traffic associated with distributing labels around the network, and,

• synchronization of labeling information between label repositories.

A centralized label repository requires no synchronization, but all but one processor must do non-local 1/0 to
get a labeL On the other hand, localized label repositories eliminate most, but not all, network traffic associated
with label passing. Some traffic must still occur to update the label repositories of processors not local to where
a new label has been defined for the overall distributed system or network. In addition, a communications
scheme must be developed to provide strong assurances that the label repositories are always synchronized for
access decisions to be made correctly.

SV/MLS has a file that is used, among other things, to translate the privilege associated with every subject and
object to a human-readable label. When dealing with a multi-processor system or network, however, a
mechanism for managing labels between CPU's must be implemented. For most distributed systems or a
network where all the hosts have come to agreement on a labeling standard, the mechanism could be as simple
as a shared resource that is accessible by all processors. In that case, an implementation similar to that of
SV/MLS could suffice. For large or heterogeneous networlcs, the label management mechanism might have to
be complex with labeling domains and mapping functions to translate between domains. This might be required
if only subsets of the systems on a network could come to agreement about what label convention to use.

208

When communicating labeled information out of one of these clusters of systems to another cluster, a label
mapping algorithm would have to be used to translate the labels of one domain to another.

3B4000 SVIMLS IMPLEMENTATION

This section presents the changes implemented in SV /MLS to meet the requirements and achieve workable
solutions to the network security issues presented above.

Audit Subsystem

In analyzing the 3B4000, it was discovered that the MP synchronizes all its APE's clocks at least once per
second. As such, for the SV/MLS 3B4000 port, no additional work was required in the area of clock
synchronization.

AT&T has already tackled the data ordering issue in its securing of UNIX Remote File Sharing (RFS) for use
with SV /MLS.l61 The SV /MLS RFS strategy is to audit accesses on the server that contains the object being
accessed. As the SV/MLS 3B4000 port progressed, other similarities between the 3B4000 distributed
architecture and RFS were noted. As such, it was decided to use the AT&T RFS/MLS auditing strategy for the
3B4000. This became known as the "Object PE Records Audit," or OPERA rule. Given the single-threaded,
non-preemptable nature of the 3B4000 PE kernels, and because auditing at the object PE assures that audit
records relevant to the object remain ordered, implementing the OPERA rule in the SV /MLS 3B4000 audit
subsystem was enough to meet the SV /MLS auditing requirements.

For placement of the audit data, it is possible for the three (3) audit subsystem components described earlier to
be resident on up to three (3) different PE's. This capability was implemented to meet <A3>. However, for
performance reasons, it was later found that all three components should reside on the same PE. The remainder
of this paper assumes that all three components are on the same PE, called the Security Audit Trail Processing
Element (SAT PE).

The SV /MLS 3B4000 port implements a centralized audit trail. The SAT PE is the central repository for audit
data. This solution was chosen because some 3B4000 PE's do not support local mass stomge. As such, these
PE's would have to send their data to a remote audit trail repository anyway. Therefore, the centralized audit
trail was chosen in the interests of a simple solution applicable to all PE's. All PE's send their audit data to the
SAT PE via the A-bus. As such, only the SAT PE needs to allocate a stomge area for audit trail data.
However, A-bus bandwidth is consumed by audit data traveling to the SAT PE from all the other PE's.

The question arises, "What should the other PE's do when the SAT PE goes down?" In theory:

a. all subsequent reference monitor requests on all other PE's should fai]/hang, and/or,

b. no more auditable events of any kind can occur on the entire system.

In determining whether reference monitor requests should fail or user processes should be suspended, it was
found that it dido't matter. If the SAT PE goes down, it cannot be rebooted without tripping an audit point.
Gmnting access to and executing the program to reboot a PE are auditable events.

Under normal circumstances (i.e., the SAT PE is up), the SAT START records that audit the boot of aPE are
cut by the MP and sent to the SAT PE. Under the SAT -PE-clashed case, the MP cannot audit the (SAT PE)
boot event and will therefore fail or hang, depending on the implementation chosen. With this the whole
3B4000 will eventually suspend, since the MP runs the A-bus. Sooner or later each APE will request an MP
service and hang waiting for the request to complete. In light of this, the "if there's no SAT PE, shutdown"
solution was chosen. If aPE genemtes an auditable event and can't send it out over the A-bus to the SAT PE,
the originating APE attempts to send a "go to single-user mode" request to the MP. If this request succeeds, the
APE waits for the MP to shut down the whole system. If the request fails, the APE panics.

A final note on the auditing requirements. To meet <A4>, all 3B4000 SV/MLS audit trail records have fields
that identify the PE's involved in the auditable event that genemted the record. The PE numbers stored in the
records depend on the auditable event type and the OPERA rule. To meet <A5>, a new audit trail record,

209

SAT_STOP, was implemented for the auditing of the crash or intentional shut-down of an APE. Also, the
meaning of the SAT_START record was expanded to include the booting of APE's in addition to the booting of
the MP.

Choosing a SAT PE

The choice of SAT PE can make a difference in the performance of the whole 3B4000 SV /MLS system. This
section provides guidelineS determined through review of the 3B4000 design documents and by experimentation
on the live development and production systems.

The first .thing determined. was. that, if possible, the SAT PE should not be the MP. If any APE has mass
storage capabilitjes, it should be used as the SAT PE, over the MP. The MP is best left free to move traffic
around the .A-bus.

Given the OPERA rule, the SAT PE should be the one that contains the greatest number of objects accessed
most frequently. This set of objects includes files, directories, pipes, and System V IPC sttuctures. The
placement of the audit trail files local to the bulk of the auditable activity greatly reduces the amount of A-bus
traffic, offloading the MP and generally improving throughput

As a final note on SAT PE placement, it was found that making the SAT PE and the PE that contains /bin,
/usrlbin, and /tmp one and the same helps throughput significantly. Actions on objects in these three file­
systems can amount to the bulk of the auditable events on a UNIX system.

Label Management Subsystem

The uniprocessor SV /MLS maintains all label information in use on the system in the labels file. This was not
changed for the SV /MLS 3B4000 port. There were concerns at first that such a file on only one PE would
greatly increase A-bus traffic, causing the product not to meet <A2>. But, by using per-PE caches similar to the
cache of the uniprocessor product, it was believed that <A2> could be met. A single file with label information
also eliminates the need to synchronize many such files on multiple PE's. The MP was chosen as the keeper of
the labels file. for a variety of reasons. The most significant reason was that since the MP is always the first PE
to be booted and it must have access to the labels file to boot itself and the other PE's, then, if there is only one
labels file, it must be on the MP.

Since label information is centrally stored on the MP, there must also be a way for APE's to get labels. The
algorithm used is a convenient extension of the uniprocessor SV /MLS version. In the uniprocessor version, if
the access control software requires a label, it first looks in the labels cache. If the label is not there, one or
more reads of the labels file are performed. When the label is retrieved, it is placed in the cache for future
reference. If the cache is full, the least used label (determined by a per-cache-entry hit count) is overwritten by
the newly gotten one.

On the 3B4000, the same algorithm is used on the MP, since the labels file is local. However, if an APE's
access control software requires a label, it first checks an APE-local cache. If the label is not found, the APE
sends an A-bus message to the MP requesting it. The MP first checks its cache and if the label is not there, the
MP gets the label from the labels file.

The MP cache check is important because the odds are that the label is already there from a previous access
check. When users log in, among the first things they access is /etc/profile, which is on the root file-system of
the MP. By virtue of the OPERA rule, the access checks are performed on the MP and the label is deposited in
the MP labels cache. Even if a user never accesses another MP object, the label remains in the cache (within
the constraints of the replacement algorithm). This saves a considerable amount of disk accesses which are
much more expensive than A-bus messages.

Any distributed or network label management system must account for the deletion of labels. When a label is
deleted, instances of the label in caches throughout the 3B4000 system must be rendered invalid. The SV/MLS
3B4000 port uses a global reset message which is sent by the MP to all APE's when a label is deleted. This
message causes each APE to invalidate all entries in its cache. The caches must then be reloaded. over time as

210

labels are required. This is not the most elegant of techniques. But, given that label deletion is a relatively rare
event, the technique was acceptable.

System VIMLS Commands and Libraries

Because of <Al>, few user level routines had to change. Those that did change were augmented to handle
additional capabilities and/or features of the 3B4000.

The most evident difference in the SV/MLS user interface on the 3B4000 versus a uniprocessor system is the
prlbl(lS) command. The interface to and output of prlbl -s had to be changed to 8ccommodate multiple
labels caches (one per PE). An administrator can use prlbl -s to display label cache hit statistics. Based
on this information, the administrator can "tune" the cache for optimal performance. Since each PE has its own
labels cache, the interface used by prlbl(lS) to get the statistics from the SV/MLS kernel modules had to .be
changed. Also, the display of the cache infonnation was changed. The old display is shown in (Figure 2).

t /mls/bin/prlbl -s
cache hits = 2638826
one read from disk = 52
more than one read from disk = 9
cross product found on disk = 4356

Figure 2. Output of a uniprocessor prlbl -s

For the 3B4000, the prlbl(lS) display has been augmented to show PE specific cache hit information. The new
display is shown in (Figure 3).

t /mls/bin/prlbl -s

I PE I chit dhit1 dhit2 rhit conlbl
+----+----------+----------+----------+----------+----------+

I 1211 104826521 149701 203471 I 107881.
I 0 I 1010 I I I 161 0 I
I 801 29182291 I I 167851 60761
I 1201 319191 I I 37811 01

Figure 3. Output of a 3B4000 pr1bl -s

The columns specified are:

chit - cache hits,

dhitl - retrieved label from disk with one read,

dhit2 retrieved label from disk, required more than one read,

rhit retrieved label via A-bus transaction,

conlbl- cross-product privilege constructed from group of one privilege and label of another.

ACHIEVEMENT OF REQUIREMENTS

The previous sections have shown the implementation choices made to meet the requirements and netwoD:
security issues of the SV/MLS 3B4000 port. This section presents the steps taken .to assure that these
implementation choices were valid.

211

Among the best ways to determine if <Al> was met was to examine the amount of change to the system test
software/procedures. AT&T offers the AT&T System V/MLS Security Test Package,rn (Sl'P) which is intended
to determine whether a particular implementation of SV/MLS meets the SV/MLS security requirements and
interface definition. This package is primarily for source customers to evaluate a port of SV/MLS to their
particular platform(s). It was expected that Sl'P would have to be changed to test the PE fields in the audit
data, plus the new SAT_STOP and enhanced SAT_START records. No other changes were expected before
starting the testing of the port. After testing was completed, the only changes, except for those expected, were
to· accommodate the 3B4000 package installation mechanisms, device names, and directory hierarchy, which
differ slightly from those of the AT&T 3B2 or 6386, the platforms Sl'P was originally designed for.

Early on in the port, the cache hit statistics showed that <A2> would be met. From the data in (Figure 2), the
uniprocessor cache hit ratio comes out to show that 99.8 percent of all label references are resolved with cache
hits. Using the data from (Figure 3), the average 3B4000 SV/MLS labels cache hit ratio was determined to be
99.5 percent?

As the port neared completion, the Neal Nelson benchmark was used to compare the 3B4000 SV/MLS
performance figures against vanilla 3B4000 UNIX System V figures, taken on the same system, before the port
began. The performance degradation was not measurable using the Neal Nelson benchmark, beyond differences
attributed to statistical error. This showed that <A2> had been met

In addition to data provided by the Neal Nelson benchmark and the Security Test Package, the SV/MLS
3B4000 port currently has over 6500 system-hours of hands-on use. Since the final load, no SV/MLS related
shut-downs have taken place. Therefore, a good deal of confidence exists that the implementation is sound.

LIMITATIONS OF 384000 PORT RESULTS

Although the SV/MLS 3B4000 port provided many insights into network security issues, two shortcomings in
the solutions were found. These two shortcomings are presented in this section.

Clock Synchronization

The 3B4000's existing clock synchronization simplified the implementation of the audit trail considerably. Had
the synchronization not been there, it would have had to have been implemented. This surely would have made
things much more complex. Most networks, however, do not have synchronized clocks between the hosts on
the network. As such, for a usable audit trail to be created based on the SV/MLS design and the 3B4000
porting work done to date, some type of synchronization mechanism must be developed. Given that, the lessons
learned from the 3B4000 port can be applied to the remainder of the network audit trail implementation.

Limitation of the OPERA Rule

The OPERA rule has one shortcoming. Although the OPERA rule implementation allows system administrators
to answer questions like:

- Who was the last person to open /etc/passwd for writing?

- What happened first; did Lucy write to the file, :xyz or did Andy read it?

Where the OPERA falls short is in answering questions like:

- Did Audrey write to the file, ABC on PESO first, or did she read the file, QXR on PE121, first?

The OPERA rule cannot be used to answer this question. And, if the two events mentioned above are close in
time (within the granularity of one system clock tick), the ordering cannot be accurately determined in the

2. Borh the 384000 and uniprocessor data come from configurations with 10 entries per labels cache.

212

3B4000 SV/MLS audit trail An analogous rule, "Subject PE Audits Request," or SPEAR, could answer a
question such as the previous one. But, given the same timing conditions, SPEAR could not answer the
questions that OPERA could. A combination of OPERA and SPEAR must be implemented to completely order
the audit trail for all cases. Because of other facets of the 3B4000 architecture beyond the scope of this paper,
SPEAR was not implemented, as the events that it is needed to distinguish are rare.

APPLICATIONS TO SECURE NETWORKING

Building on the experiences of the SV/MLS 3B4000 port, one could apply the results of the port to produce an
MLS network based on the SV/MLS design. This section applies the SV/MLS 3B4000 port design decisions to
the secure networking issues, distributed auditing and label management, described earlier.

Distributed Auditing

The Neal Nelson benchmarks and day-to-day use of the SV/MLS 3B4000 system show that the implementation
of centralized auditing and the associated networlc traffic for audit data necessary to achieve a Bl evaluatable
network is possible without sacrificing performance. The centralized approach also provides a solution for
networks that have components, such as diskless workstations, that don't have the ability to store audit data
locally.

The effort to determine which PE of a 3B4000 should be the target for the centralized audit files showed that
the choice of a target for audit trail data does make a difference in performance. Given the OPERA rule, the
audit trail should be collected on or as near as possible to the network component(s) that contain the greatest
number of objects that are accessed most frequently. The goal is to limit network audit trail messages as much
as possible. The SPEAR rule mentioned earlier, adds the additional constraint that auditing data should be
collected on or as near as possible to the network component(s) that contain the greatest number of subjects
that produce the most audit data. OPERA and SPEAR need not be conflicting rules. In client/server networks
with server processors containing database objects and server process subjects, OPERA and SPEAR work
together well. The database accesses account for a large amount of the auditing affected by OPERA and the
actions of the servers account for a large amount of the auditing affected by SPEAR. Since both types of
auditing come from the same network component, the audit files could be centralized on or near the most active
server(s), thereby satisfying both OPERA and SPEAR. Of course, real-world solutions are never so cut-and-dry.
But, the use of OPERA and SPEAR as guidelines, if not rules, can help determine where to place auditing in a
secure network.

Label Management

Like distributed auditing, the performance data and system usage experience show that centralization of label
information is practical from a performance perspective. With proper use of caches, the networlc traffic
associated with distributing labels from a central repository is not prohibitive. For distributed systems and
networks with all elements in agreement on labeling, efficient centralized label management proves to be
realizable. For those (larger) networks mentioned earlier that cannot come to agreement, a central label
repository per agreeable cluster is also shown to be realizable by the SV/MLS 3B4000 results.

A subtle, but important concept that emerged from the label distribution algorithm was the checking of a labels
cache local to the label repository before going to the repository itself. If a user is likely to access an object on
the network component containing the centralized label repository, then that component's labels cache will
contain the label in question when the access control software of another component requires it One real-world
occurrence of this phenomena is a network where a centralized database is searched to determine if a user has
access to the given networlc. If that database is on the network component that also contains the label
repository, then the cache searching technique presented above will decrease the number of times the repository
(rather than the cache) is searched for labels. Such a configuration would exist in a network architecture with a
central security server.

213

CONCLUSIONS

This paper described the port of AT&T's System V/MLS to the AT&T 3B4000 super-minicomputer. During
tbis port, the 3B4000 distributed architecture's resemblance to a network unexpectedly provided answers to and
performance data on MLS networking issues that were not part of the original goals of the porting project. The
SV/MLS 3B4000 port acted as a worked example to show that practical and efficient MLS networks can be
built and that the SV/MLS design is a practical base for an MLS networlc. With the increasing demand for
secure networking products and services, this provides welcome evidence that secme systems don't have to be
unusable systems.

ACKNOWLEDGEMENTS

I thank Bill Leighton and Pete Dinsmore for letting me "find" the time to prepare this paper, as well as
providing the funding and support. I thank Glen Gordon for sanity-checking potential designs and helping me
understand the internal operation of the 3B4000 system. I thank Cheri Dowell for her work in system testing
the SV/MLS 3B4000 port. I also thank the Department 46291 system administration staff for letting the port
loose in their lab. And, finally, I thank all the members of Department 46291. By acting as an (involuntary)
Beta site, they helped iron out the last kinks in the system.

REFERENCES

1. Bell, D. E., LaPadula, L. J., Secure Computer Systems: Unified Exposition and Multics Interpretation,
M1R-2997 Rev. 1, MITRE Corp., Bedford, Mass., March 1976.

2. Fish, R. W. (ed.), et at., DSB-720300CD- AT&T 3B4000 Kernel, Component Design Specification, Issue 3,
AT&T Information Systems, May 20, 1988.

3. National Computer Security Center, Department of Defense Trusted Computer System Evaluation Criteria,
DOD 5200.28-STD, December 1985.

4. System VIMLS Multilevel Security (MLS) Module -Requirements, Design, and Implementation, AT&T Bell
Laboratories, August 9, 1990. ·

5. The System VIMLS Security Audit Trail - Requirements, Design, and Implementation, AT&T Bell
Laboratories, June 27, 1990.

6. Johnson, E. M., Secure Remote File Sharing on SVIMLS, AT&T Bell Laboratories, June, 1, 1989.

7. AT&T System V/MLS Security Test Package User's Guide, AT&T Bell Laboratories.

214

AN EXPERT SYSTEM APPLICATION FOR

NETWORK INTRUSION DETECTION"'

Kathleen A. Jackson, David H. DuBois, Cathy A. Stallings

Computer Network Engineering Group, MS B255

Computing and Communications Division

Los Alamos National Laboratory

Los Alamos, New Mexico 87545

This paper describes the design of a prototype intrusion detection system for the Los Alamos
National Laboratory's Integrated Computing Network (ICN). The Network Anomaly De­
tection and Intrusion Reporter (NADIR) differs in one respect from most intrusion detec­
tion systems. It tries to address the intrusion detection problem on a network, as opposed to
a single operating system. NADIR design intent was to copy and improve the audit record
review activities normally done by security auditors1• We wished to replace the manual re­
view of audit logs with a near realtime2 expert system. NADIR compares network activity,
as summarized in user profiles, against expert rules that define security policy, improper
or suspicious behavior, and normal user activity. When it detects deviant (anomalous)
behavior, NADIR alerts operators in near realtime, and provides tools to aid in the investi­
gation of the anomalous event.

I Introduction

The authentication and access control system in any network is the first defense against intrud­
ers from outside. At Los Alamos, we define authentication as the identification of a user with rea­
sonable assurance that the user is who he or she claims to be. Access control is defined as a mecha­
nism of restricting access by authenticated users to those parts of the network consistent with their
clearance and need-to-know. It is clear, given the industry-wide frequency of break-ins by out­
siders, that authentication and access control mechanisms can be compromised or bypassed. They
alone cannot supply assurance against penetration by outsiders. Also, outside "hackers" are not
the only source of security problems. Far more often they are a result of abuse by the privileged in­
sider. Even the most secure system is vulnerable to abuse by insiders who misuse or try to misuse
their privilege. This is obvious from well publicized reports of incidences of unauthorized access
and removal of classified information by insiders from otherwise secure computer systems.

In a large, complex, and rapidly changing computer network such as the ICN it is not realistic. to
expect to identify all security loopholes and vulnerabilities. Even if identified, it is not a given that
they can be closed, since it may be impossible or impractical to do so. A primary reason for this is
the need to strike a balance between security and the provision of convenient services to network
users. Given the acknowledged doubt in the completeness of current security measures, we are
tasked to identify and implement new technologies that support network security.

An auxiliary line of defense against both intrusions by outsiders and insider misuse is the main­
tenance and review of an audit record of important network activity. In our case, maintenance of
an adequate audit record presents few problems. This has been a required activity at Los Alamos
for many years. However, attempts at audit record review result in security auditors wading
through huge quantities of output in an ineffective attempt to spot invalid activity. The sheer vol­

*The Los Alamos National Laboratory is operated by the Unive!'Bity of California for the United States Department of Energy under contract W-7405-ENG-36. This

work was performed under auspices of the United States Department of Energy.

1 Los Alamos security auditors are specialists whose responsibility is. to ensure the security of the ICN. They include security oflice!'B such as the CSSO and CSSM,

and their staffs.

2 For our purposes, we define a near realtime application as one that responds to data or user input in one to 30 seconds.

215

ume of data makes it nearly impossible to detect suspicious activity that does not conform to a few
obvious intrusion or misuse scenarios. Even these may be missed. To make audit review effec­
tive, the auditors need the capability for automated analysis of the audit record. This capability
combines the knowledge of security experts with a computer's capability to process and correlate
large quantities of data. When done in near realtime, the auditors can be notified of suspicious
activity quickly, and direct action taken to trace and stop an identified penetration attempt or other
misuse. This is the essence of an intrusion detection system.

2 Target System

The Integrated Computing Network (ICN) is Los Alamos National Laboratory's main computer
network. It includes host computers, file storage devices, network services, local and remote ter­
minals, and data communication interfaces. The core of the ICN includes the main host super­
computers and their support devices. Through the ICN, any user inside the Laboratory may access
any host computer (with authorization to do so and use of an approved access path) from office
workstations or terminals. Outside users typically access the ICN through telephone modems,
leased lines, or one of multiple world-wide networks. The core ICN has more than 8,000 validated
users.

The ICN consists of a unique arrangement of four "partitions," in which resources are dedicated
to specific levels of processing. Each partition limits access to only those users cleared for the most
sensitive information processed in the partition. A system of dedicated, special function, ICN
nodes· enforce partitioning throughout the network. These service nodes perform specific services
in the ICN, such as user authentication, access control, job scheduling, file access and storage, file
movement between partitions, and hardcopy output. They are physically protected, have tightly re­
stricted access, run only that software needed to perform a specific service, and do not execute user
programs. Only these dedicated nodes may service multiple ICN partitions. Each of these nodes
must produce and maintain an audit record of its activity. They are the ICN systems targeted for
our intrusion detection effort.

30yeniew

Until recently, security auditors manually reviewed ICN audit records to identify potential secu­
rity violations. Given the size of the audit records, manual review was limited to a small sam­
pling or a cursory scanning. The auditors found many security violations, but there was no way to
evaluate the general success or completeness of their effort. Also, the Laboratory's Internal Secu­
rity (ISEC) office often requests audits that cover weeks of audit data from months or years in the
past. As there was no automated way to do these audits, considerable effort was expended in com­
pleting them. It was for these reasons that development of an automatic audit record analysis, or
intrusion detection, system was undertaken at Los Alamos.

The early research of Dorothy Denning and her colleagues, and the IDES research and develop­
ment at SRI International, has heavily influenced intrusion detection development at Los
Alamos. Denning proposed monitoring standard operations on a target system for deviations in
usage. Her early research tried to define the activities and statistical measures best suited to do
this [1, 3], and continued with the development of an IDES prototype [4]. Teresa Lunt and her col­
leagues continue this research with the development of the IDES system [5, 6, 9, 13]. They expanded
the original concept by adding an expert system component that addresses known or suspected se­
curity flaws in the target system. IDES research has served to demonstrate two things. First, that
statistical analysis of computer system activities provides a characterization of "normal" system
and user behavior, and that activity deviating beyond normal bounds is detectable. Second, that
known intrusion scenarios, exploitation of known system vulnerabilities, and violations of a
system's security policy are detectable through use of an expert system rule base. The IDES ap­
proach puts a primary emphasis on the statistical detection of deviations from normal user and

216

system behavior. The expert system is intended to catch those invalid activities missed by the first
means [10].

Several intrusion detection systems have in recent years adapted the Denning model to their par­
ticular problem [7, 8, 11]. However, where the Denning model and most intrusion detection sys­
tems target specific operating systems, our effort addresses a network connecting many host sys­
tems, but not the hosts themselves [15]. Where Denning addressed the standard operations on a
specific operating system (system logon, program execution, file and device access) we wished to
address the standard operations on our network. The problems are similar in many respects, but
with some important differences. While the ICN contains many standard functions such as those
found on an operating system (authentication, access control, file access and storage, job control),
these functions are distributed across the network. Also, the ICN implements a distributed multi­
level secure system (the system of partitions and the controls over them), that must be monitored
closely by any intrusion detection system. Nonetheless·, if we view the ICN as one large distributed
operating system, then the Denning model applies well to the problem of network intrusion detec­
tion.

Current network intrusion detection efforts have taken one of two approaches. One approach is to
target network traffic at the service and protocol levels [12]. The second approach collects data from
separate hosts on a network, for processing by a centralized intrusion detection system [14].
Although NADIR does not capture network traffic, it targets service level activity by targeting the
service nodes that handle and log standard ICN service operations. We decided to target the ser­
vice nodes because of their critical nature, to keep the quantity of data to be processed at a manage­
able level, and because their audit record is sufficient to support an effective intrusion detection
system.

4Workip,gPmtotype

Once we decided to apply intrusion detection to the ICN service nodes, we adopted three basic tech­
nical goals. These goals support development of a flexible system that we could expand to multiple
target systems. The first goal was to limit the audit record to that currently supplied by the target
systems. The second, to keep target system changes to a minimum. The third, to avoid degrada­
tion of target system performance.

Because the ICN is a large, long-established network that has changed constantly over the last fif­
teen or so years, we had to take the following peculiarities into account:

• The Los Alamos developed network protocols are non-standard, so are not compatible with off­
the-shelf software.
• The ICN service nodes comprise several different hardware configurations, that run a variety
of operating systems.
• The software on most service nodes has been subject to many changes and upgrades, and is
programmed in several different languages.
• While each service node must maintain an audit record of its activity, the format and content
of the audited data differ greatly from system to system.

To support expansion to these various multiple target systems, we made three design choices. First,
to use dedicated workstations for intrusion detection processing. Second, to use flexible off-the­
shelf interface and database software, that supports data translation between different operating
systems and enables the merging of data into a single extended database. Finally, to limit re­
quired target system changes to the capability to collect the proper audit record of user activity,
transform the data into a specified canonicalformat, and transmit it to NADIR. Also, we designed
NADIR software in a modular fashion, so that new target system expansions can be handled with
a minimum of effort.

217

NADIR is to be implemented on a set of dedicated workstations, each of which will receive and cor­
relate data from multiple target systems. As we add more target systems to NADIR, we plan a net­
work of workstations, each contributing to a distributed database. This approach minimizes the
impact on target system performance, enables the collection of data from multiple diverse sys­
tems, and provides for maximum security. Ethernets will connect the workstations to the target
systems and to each other, and we will implement a standard network protocol.

The NADIR prototype consists of one workstation, a SUN SPARCstation3 with two 327 MByte disks.
It uses the Sybase4 relational database management system and a Los Alamos designed expert
system. Sybase provides tools used to structure, maintain, and display all data on the system. The
expert system is programmed almost entirely in Transact-SQL, an enhanced version of the SQL
database language supplied by Sybase. Transact-SQL provides such capabilities as stored proce­
dures, triggers, system administrator tools, and control flow language features, used extensively
in NADIR. NADIR communicates with each target system over a dedicated secure ethemet link.

The prototype NADIR currently monitors Network Security Controller (NSC)5 , Security Assurance
Machine (SAM)6 , and Common File System (CFS)' activity on the ICN. The NSC is a DEC-82508

machine, which runs the VMS operating system. The SAM is a DEC-730 machine, which runs the
UNIX9 operating system. The CFS is a IBM 3090 mainframe. NSC and SAM data is transmitted
directly to NADIR, while CFS data is passed to an intermediate V AXNMS system before trans­
mission to NADIR. The changes called for on each target system were minimal. Communication
with NADIR by a target system calls for only the installation of Sybase supplied interface soft­
ware, and the use of a standard DECnet or TCPIIP protocol. DB-Library packages for Fortran and
C provide the interface to Sybase. The Multinet10 software package provides an implementation of
TCP/IP under VMS. We changed each target system code as little as possible. The target system
must only format the audit record for NADIR and transmit it immediately after its occurrence.
NADIR required data processing has not resulted in any measurable degradation in system per­
formance on any target system.

5 System Design

We are applying NADIR to the ICN service nodes in a sequence of planned phases. Each phase in­
cludes analyzing a node individually, processing its data separately, then integrating it into the
NADIR system. As we add new nodes to NADIR, we correlate their user activity record with ear­
lier included nodes to produce more complete profiles of ICN activity. Eventually, this will allow
the tracking of users from the time they enter the ICN, until they leave the network. With the addi­
tion of each node, we define new expert rules that use the expanded information available. The
rules describe more elaborate scenarios of invalid or suspicious user activity, and will, over time,
improve the discrimination and judgement of the system. We have integrated the NSC, the SAM,
and the CFS into NADIR. Workis in progress to integrate the Facility for Operator Control and
User Statistics (FOCUS)11 and the Print and Graphics Express Station (PAGES)12• These are all the
nodes initially targeted for prototype development.

3 SUN SPARCstation and SUN workstation are trademarks of SUN Microsystems, Inc.
4 Sybase, Transact-SQL, and DB-Libnuy are trademarks of 8ybase Corporation.
5 The NSC is a dedicated, single-function computer through which all ICN user authentications must pass.
6 The SAM controls and audits the down-partitioning of unclaBSified files batween partitions in the Common File System (CFS).
7 The CFS is a large, centralized file management and storage system that provides long-term file storage in all ICN partitions for ICN users.

8 DECnet, VMS, DEC-11250, and DEC·730 are trademarks ofDigital Equipment Corporation.
9 UNIX ia a trademark AT&T Bell Leboratories.

tO Multinet ia a trademark of TGV, Inc.
11 FOCUS provide• operationa control, batch job acheduling, and accounting control for the ICN.

12 PAGES produces listinga, graphica, and formatted document output for ICN usera. Output ia subject to partition and claseification restriction&.

218

The NADIR system has six functional components; Data Collection, Data Processing,· Anomaly
Detection, Report Generation, Event Assessment, and the User Interface. Figure 1 illustrates their
relationship to each other.

5.1 Data Collection

NADIR monitors target system activity as it happens. Each audit record describes a single event.
Audit records from different target systems vary in format and contain mostly unique data, a re­
sult of the functionally different tasks done by those systems. Whatever the system, the audit
record will contain a unique ID for the ICN user, the date and time of the user's activity, fields that
describe the activity, and any errors that might have occurred.

Data Collection
• Network Definition
• User Definition
• Collect Audit Record

~

Data Processing
• User Descriptors
• Network Descriptors
• Profile Generation

User Interface
• Status Display
• Alarm Output
• Background Checks
• Interactive Analysis

J

r--­

.

Anomaly Detection
• Apply Expert Rules
• Set Level of Interest
• Output Alarms

t
Report Generation
• Ad-Hoc Reports
• Scheduled reports

~

-

Event Assessment
• Security Reviews
• Modify Rule Base
• Modify Algorithms

-

Figure 1: NADm System Model
5.2 Data Processing

NADIR summarizes all user and system activities, as represented by audit records from the target
systems, into statistical profiles. These profiles are a description of current behavior in a set of de­
fined parameters. NADIR maintains profiles for both separate ICN users and for a composite or
total of all ICN users. They contain measures (count statistics) that summarize user activity.
These measures keep a record of the occurrences of a particular event during a specified time.
NADIR updates the profiles when it receives an audit record. It parses the data from each audit
record and increments the proper profile measures. NADIR maintains past profiles for compari­
son purposes and as a permanent record.

5,3 AnomalyDetection

NADIR finds events in either the contents of a single input audit record or from an examination of
the user profiles. Single audit records define an event when any of the data fields in the record
match a specified pattern. Events detected in the profiles represent activity that is spread across
multiple audit records. They deime an event when the profile measures match a specified pattern.

219

NADIR compares proper and expected activity to observed events within either the audit record or
the profiles. It does this through the application of expert rules, and identifies deviations13• NADIR
assigns each deviant event (or anomaly) a Level-of-Interest14• It bases the Level-of-Interest on the
number and type of rule that the user's behavior has fired. NADIR applies the Level-of-Interest to
each unique user, host system, or entry point into the network. Every fired rule increases the
Level-of-Interest, though the firing of one critical rule may be enough to bring immediate attention
to the event. The current security status for each user and system is provided in the combination of
Level-of-Interest and record of fired events.

5.4 Report Genemtion

NADIR generates anomaly reports from deviant events. The frequency of reports is dependent on
the Level-of-Interest associated with each event. All events are documented in routine weekly re­
ports. Those events determined to be very interesting, but not critical, are output in daily reports.
Very suspicious events of a critical nature, such as a probable attack under way, are output imme­
diately. NADIR generates detailed follow-up reports as part of any investigation.

5,5 Event Assessment

Upon receipt of a NADIR report, whether critical or routine, security auditors review all anoma­
lous activity. To process anomaly reports quickly, specific auditors investigate certain categories
or types of ICN users. They review each anomalous user in detail, and decide whether to investi­
gate further. This may include interviewing the user. If the user's activity warrants it, the user is
blacklisted15 during the investigation. The auditors file a short report at the completion of each in­
vestigation, giving details of its resolution. They supply this information to us, so we may have
immediate feedback on system performance. The auditors hold periodic reviews to evaluate
NADIR effectiveness and to make recommendations for improvements. We use their feedback to
change the expert rules on NADIR and improve the discrimination and judgement of the system.

5.6 User lnterf'ace

The user interface uses Sybase front end tools, graphics packages, and Los Alamos designed rou­
tines to provide a preliminary interface for the knowledgeable user. It provides warnings,
alarms, and status displays. For users who have the proper access and privilege, the user interface
allows a choice of built-in or ad-hoc queries against the raw audit data, the separate user and com­
posite profiles, and status information. Data may be displayed in a variety of ways, including
graphically, and reports generated. In addition, NADIR provides tools for interactive background
analysis of current and past activity. It maintains indefinitely the audit data needed for this ac­
tivity.

6 ExpertRules

An expert rule base has separate reasoning rules encoded in a condition-action form (if-then-else
statements in the old days), that provide the criteria for end determination. The rules watch for
unusual separate events and attempt to evaluate the meaning of a group or series of events. NADIR
expert rules, whether they are rules that enforce security policy or result from a statistical deter­
mination of normal behavior, define an expected standard of behavior for all users.

13 The identification of a deviation by an expert rule is genemlly referred to as having "fired" or "triggered" the rule.
14 The Level-of-Interest io the calculated seriousness ofan event.
15 A blacklisted user is denied acceoa to the ICN by the NSC. Removal of the blacklist requirea the prior approval of security personnel.

220

The NADIR rule base includes four logical filters; each designed to separate out certain types or
levels of anomalous activities. Following a knowledge engineering approach successfully im­
plemented at Textronic [2], the rule base definition started with the abstraction of the well-under­
stood part of the problem. This included ICN security policy and well-defined invalid and suspi­
cious behavior, which resulted in rules for the Characteristic Filter. Report requirements supplied
rules for the Report Filter. From there evolved further refinements, implemented in the Misuse
and Attack Filters. These rules involve heuristic associations that sometimes make intuitive
leaps not always explicitly justified. NADIR activates the rule base filters in stages, as illustrated
in Figure 2.

Audit Record

Characteristic
Anomalies

Filter .,..____..,....

Misuse
Indications

Misuse Filter t----~~1

Misuse Reports

Attack Filter

Report Filter

Anomaly
Reports

1----...,..Attack Reports

Figure 2: NADm Rule Base Structure

• Characteristic Filter - applies rules that are straightforward descriptions of simple activities;
each serving to distinguish a separate feature of anomalous behavior. NADIR applies these rules
individually; it does not correlate one with another. It assigns a Level-of-Interest to each anomaly
defined by these rules. This Level-of-Interest, as applied to each user or system, is incremental;
with each rule fired it increases by a specified amount.

• Report Filter - applies rules to the anomalies output by the Characteristic Filter, to produce appro­
priate reports of anomalous behavior.

• Misuse Filter- applies rules to the anomalies identified by the Characteristic Filter. These rules
try to identify patterns of anomalous activity that have a good chance of being systematic misuse.
They specify what action to take when fired, such as the output of warning messages.

• Attack Filter - applies rules that try to correlate the recorded Characteristic anomalies and Mis­
use Indications with various Attack Scenarios. Attack Scenarios identify patterns of anomalous
activity that have a good chance of being attacks on the system. They specify what action to take
when fired, such as the output of alarm messages.

6.1 Characteristic Rules

NADIR applies Characteristic rules to either the input audit record or to profile data. As it finds
each anomaly, it either generates or updates the Anomaly Record, whichever is appropriate. The

221

Anomaly Record includes a Level-of-Interest for the involved user or system, and an indication of
the fired rule. Characteristic rules fall into three basic categories:

1. Security Policy • These rules are the implementation of ICN security policy. They result from
interviews with security personnel and documentation reviews. They detect and immediately re­
port potential or certain security violations. An example of a security violation rule:

IF 	NADIR has detected an "Improper Location" error,

AND the terminal used is in the Open Partition,

AND the password used is classified,

THEN update the Anomaly Record; assign the userla high Level-of-Interest.
EXPLANATION: Use of a classified password from an unprotected terminal is
reason enough to consider the password compromised. The password will be
immediately invalidated.

2. Individual Anomaly - NADIR applies these rules to separate user profiles, to detect when a
user's behavior departs from that which is normal and valid ICN user behavior. They result from
statistical analysis of the past behavior of ICN users, and interviews with security personnel. An
example of an individual anomaly rule:

IF 	the Failure Ratio16 of a user is >nl,
AND the user has logged on >n2 and ~n3 times,

THEN update the Anomaly Record; assign the user a Level-of-Interest.
EXPLANATION: If a user has logged onto the ICN at least n2 times then the
user is not new to the ICN. Since the average ICN user has a Failure Ratio
that is much less than nl, then a Failure Ratio of nl is significant. NADIR
applies a sliding scale of concern, balanced between the total number of
logons and the Failure Ratio, to this rule.

3. Composite Anomaly • NADIR applies these rules to composite user profiles, to detect when that
activity departs from that which is normal and valid for the system. They result from statistical
analysis of the past behavior of the composite of ICN users. An example of a composite anomaly
rule:

IF "Unknown User" errors are >n3/hour, OR >n4/day, OR >nS/week,
THEN update the Anomaly Record; assign the system a Level-of-Interest.
EXPLANATION: The normal number of attempted authentications that contain a
user number that is not valid for the ICN is statistically very consistent.
Extreme variations from this expected activity could be a sign of a break­
in attempt. NADIR applies a sliding scale of concern to this rule, that de­
pends on the variation from normal.

6.2 Report Rules

These rules do periodic checks of anomalous user activity levels, and define what reports to gener­
ate after specific intervals. Designated report intervals may be daily, weekly, or any other period.
They analyze the Anomaly Record for the indicated interval, and generate reports that summa­
rize and detail anomalous activity.

6,3 Misuse Indication Rules

NADIR fires these rules when it receives a sequence or combination of Characteristic anomalies
that have a low chance of happening. They suggest possible serious misuse of the network. They do

16 Failure Ratio. Inva!id_Logons.
Successfui_Logons+lnvabd_Logons

222

not try to defme anything as specific as an attack, but their firing shows something is seriously
amiss. The followi:J).g simplified Misuse Indication rule examines overall ICN user activity: ·

IF 	the Level-of-Interest for >n6 ICN users is >0,

OR the Level-of-Interest for >n7 ICN users is >x,

OR the Level-of-Interest for >n8 ICN users is >x + x/2,

OR the Level-of-Interest for >n9 ICN users is >2x,

THEN output an immediate report, that includes an urgent warning message to

the user interface.

EXPLANATION: The number of ICN users who reach a particular Level-of-Inter­

est is statistically very consistent. Extreme variations from the normal

level of anomalous activity could be a sign of some type of organized mis­

use of the network. NADIR applies a sliding scale of concern to this rule,

that depends on the users involved and their Level-of-Interest.

The following simplified Misuse Indication rule examines the Anomaly Record of a separate
user:

IF Characteristic rule 003 is set,
(a separate user has many logons this week)

AND Characteristic rule 056 is set,
(the user has an unusual distribution of logon tries during the swing
and weekend shifts) .
AND Characteristic rule 053 is set,
(the user has only unsuccessful ICN logon tries during the night shift) .

AND Characteristic rule 043 is set,
(the user has an unusual distribution of unsuccessful logon tries on the
weekend).
AND Characteristic rules 040, 041, 044, 045, 046, and 047 are not set,
(the user does not show a like pattern of failures during the day shift
or on weekdays) .

THEN output an immediate report, that includes a message to the user inter­
face.
EXPLANATION: The fired Characteristic rules show a greater than normal
usage of the ICN, combined with abnormal usage during off hours. Also, the
user has had an abnormal number of failures during off hours while not
showing a like pattern of failure during normal working hours. This could
be a try at masquerading, and is surely suspicious.

6.4 Attack Sqmarjg Rules

These rules may define one Characteristic anomaly or Misuse Indication, or a combination of
these, that have a low chance of happening. They suggest a known or postulated attack. It is these­
quence and combination of these rules that make for an increasing certainty that an attack may be
proceeding. Attacks are events that could lead to the compromise or bypass of authentication and
access control mechanisms, destruction or compromise of data, or denial of service. Attack Sce­
nario rules are in the definition stage for NADIR.

7Results

The NADIR working prototype has been in operation since June of 1990. During this time NADIR.
identified and aided in the investigation of invalid activity by unknown users, and in the investi­
gation of many cases of misuse or suspicious behavior by insiders. It has helped identify unantici­
pated network vulnerabilities, that have been remedied where possible or are being closely moni­
tored. NADIR development has resulted in the identification of unanticipated misuse conditions,
that have led to the definition of new expert rules. It has supported background analyses during in­
vestigations of several current and past ICN users. NADIR has also supplied unanticipated net­

223

work management benefits. It has enabled us to detect hardware and software problems with some
nodes of our network. It has also supplied detailed, statistical reports of network activity that were
useful in such areas as accounting and network planning.

8 Future Djrections

Anomaly and event notice now consists of terminal messages and periodic reports. For serious
security events, the ultimate goal is to give notice on a near realtime basis.

Some kinds of invalid user activity, if allowed to continue, could lead to break-ins or denial of ser­
vice to legitimate users. As a result, another goal is the notification of the proper ICN node of ex­
tremely suspicious activity, and the development of effective responses by that node. This would
consist of taking direct action to stop an identified penetration attempt. The node's actions must be
proportional to the extent that the monitored activity has deviated from valid behavior, what dam­
age could result from allowing an invalid activity to continue, and denial of service considera­
tions. We have not determined the criteria for such a response.

Finally, we would like to identify and use a rigorous method by which to validate and verify the
performance, consistency, and completeness of the NADIR expert rule base.

9Summmy

NADIR shows the feasibility of the automation of security auditing on a distributed environment
such as the ICN, and the benefits of applying an expert system to the problem. It shows the benefits
of a phased approach to applying intrusion detection in a distributed environment. The working
prototype is a start to a longer-range goal of expanding the system to more ICN nodes, and correlat­
ing their information to produce complete profiles of user activity on the ICN.

10 Aclmowledgments

We wish to acknowledge the contributions of Jimmy McClary, who introduced us to the basic ideas,
organized our funding, contributed enormously to our expert rule base, and supported us through­
out the project. Valuable contributions to our rule base were made by members of the Operational
Security Division. We are indebted to Harry Martz for his knowledge of statistics, and to Steve
Ruud and Dorothy Merrigan for their contributions to the implementation of the NADIR system.

11 "Referenoos

[1] 	D. Denning and P. Neumann. Requirements and Model for IDES -A Real-Time Intrusion
Detection Expert System, Final Report (Computer Science Laboratory, SRI International, Au­
gust 1985).

[2] 	M. Freiling, J. Alexander, S. Messick, S. Rehfuss, S. Shulman. Starting a Knowledge Engi­
neering Project: A Step-by-Step Approach (The AI Magazine, Fall 1985).

[3] D. Denning. An Intrusion Detection Model (Proceedings of the IEEE Symposium on Security
and Privacy, April 1986).

D. 	Denning. An Intrusion Detection Model (IEEE Transactions on Software Engineering, Vol.
13, No.2, February 1987). ·

[4] 	D. Denning, D. Edwards, R. Jagannathan, T. Lunt, P. Neumann. A Prototype IDES: A Real­
Time Intrusion Detection Expert System (Computer Science Laboratory, SRI International, ·
August 1987).

224

[5] T. 	Lunt and R. Jagannathan. A Prototype Real-Time Intrusion-Detection Expert System
(Proceedings of the IEEE Symposium on Security and Privacy, April 1988).

[6] T. 	Lunt, R. Jagannathan, R. Lee, S. Listgarten, D. Edwards, P. Neumann, H. Javitz, A
Valdes. IDES: The Enhanced Prototype A Real-Time Intrusion Detection Expert System (SRI
International, October 1988).

[7] M. Sebring, E. Shellhouse, M. Hanna, R. Whitehurst. Expert Systems in Intrusion Detection: A
Case Study (Proceedings of the 11th National Computer Security Conference, October 1988).

[8] 	L. Halme and B. Kahn. Building a Security Monitor with Adaptive User Work Profiles
(Proceedings of the 11th National Computer Security Conference, October 1988).

[9] T. Lunt. Real-Time Intrusion Detection (Proceedings of COMPCON, Spring1989).

[10] T. 	Lunt, R. Jagannathan, R. Lee, A. Whitehurst. Knowledge-Based Intrusion Detection
(Proceedings of the 1989 AI Systems in Government Conference, March 1989).

[11] G. Tsudik and R. Summers. AudES - An Expert System for Security Auditing (Proceedings of
AAAI Conference on Innovative Applications in AI, May 1990).

[12] L. Heberlein, G. Dias, K. Levitt, B. Mukherjee, J. Wood, and D. Wolber. A Network Security
Monitor (Proceedings of the IEEE Symposium on Research in Security and Privacy, May
1990).

[13] T. Lunt, 	A Tamaru, F. Gilham, R. Jagannathan, P. Neuman, C. Jalali. IDES: A Progress
Report (Proceedings of the 6th Annual Computer Security Applications Conference, December
1990).

[14] 	J. Winkler. A UNIX Prototype for Intrusion and Anomaly Detection in Secure Networks
(Proceeding of the 13th National Computer Security Conference, October 1990).

[15] K. Jackson, D. DuBois, and C. Stallings. A Phased Approach to Network Intrusion Detection
(Proceedings of the DOE Computer Security Group Conference, May 1991, LA-UR-91-334).

225

FORMAL VERIFICATION OF

A NE1WORK SECURITY DEVICE: A CASE STUDY

Hicham N. Adra

CGI Information Systems

& Management Consultants

275 Slater Street

19th Floor

Ottawa, Ontario, Canada

K1P 5H9

Tel: (613) 234-2155

FAX: (613) 234~6934

ABSTRACf

An automated formal verification study of a
commercial network security device, the
SmartCryptoTM, is described. A high level view of
relevant formal verification techniques using the
m-EVES environment is given. A description of
the SmartCryptoTM is provided, as well as a brief
overview of the m-EVES system. The uses and
roles of Verification plans, environmental and
device-specific models, and other planning
techniques are discussed in the context of this case.
Observations are made concerning the proof
process and the problem of tractability which may
apply to· similar projects.

1.0 INTRODUCfiON

This paper completes and extends the work
initially reported in (ADRA91]. It describes some
aspects ofthe formal verification ofa commercially
available Network Security Device (NSD). The
NSD under study was the SmartCryptoTM of the
CryptoNetTM product line bylntellinet. The study
involved a selection of several. source code
modules, and the development of a formal
verification of these target modules against
specified properties using the m-EVES
environment, described below. The purpose of this
study. was to establish that basic properties of

William Sandberg-Maitland

CGI Information Systems

& Management Consultants

275 Slater Street

19th Floor

Ottawa, Ontario, Canada

K1P 5H9

Tel: (613) 234-2155

FAX: (613) 234-6934

functionality and security hold for the NSD design.
This account extends that of (ADRA91),
promoting the view of formal verification as a
software engineering process. The conclusions
attempt to summarize and generalize the
experience gained. As in (ADRA91), technical
details are suppressed.

The paper begins with a presentation of the target
NSD system and a brief overview of the
verification environment. A brief treatment on the
theory of operations of the NSD is given. A more
comprehensive treatment can be found in
[ADRA91). A description of the m-EVES
verification environment follows. The emphasis is
on the user view of the environment, rather than
its internal design or technical details. The use of
a verification plan is covered, with examples from
the project. The role of modelling techniques is
an· important aspect of formal verification.
Examples of modelling drawn from the project are
discussed. The paper includes sections on the
proof process, some techniques found to be of
interest in this domain, and a set of general
observations on formal verification issues. The
summary draws together some opinions of the
authors based on their experience. The role of
formal verification within the context of the
systems design and development process is
highlighted.

226

CryptoNet Security Architecture

Encrypted Packets

Pigure 1: The NSD Environment

20 NSD DESCRIPTION

21 Theory of OperatioDS

The NSD operates as an end-to-end encryption
device functioning in an X.25 packet switching
network [X.25]. The DES (Data Encryption
Standard) is used in Cipher FeedBack (CFB) mode
to achieve confidentiality of the information in the
User Data field of X.25 data packets. The NSD is
located between the Data Terminal Equipment
(DTE) and the Data Circuit-terminating
Equipment (DCE) or network. The NSD filters
the traffic between the "host" and the network (see
Figure 1). The host may be a computer system or
a collection of terminals that are connected to an
X.25 PAD (Packet Assembler/Disassembler). The
Key Management Center (KMC) is responsible for
the management of the network, including the
distribution of keys and the remote monitoring and
control of the network sites.

Several internal states are supported, including a
Secure Normal State where encryption/decryption
processing is performed on all data packet traffic
between protected hosts. Since the control or
header information is transmitted in its plaintext

form and remains accessible to the intermediate
nodes in the network, this method of applying
encryption is called end-to-end; the nodes within
the network do not need to be trusted to protect
the security or secrecy of the information, as
discussed in Section 4.

23 Security Protocol ancl Communication
Requirements of NSD

Terminology related to ccm Recommendation
X.25 [X.25] will not be defined in detail here.
Some discussion of X.25 issues is necessary to form
the context for the inter-relation between security
and communications functionality.

The NSD operates at the Network layer of the-OSI
model. Within the X.25 packet level DTE/DCE (
interface (Level 3) frame of reference, the NSD
acts as a data filter which intercepts data packe~
in either the DCE to DTE, or the DTE to DCE
direction, and transforms them by decryption or
encryption of user data fields. Most X.25 control
packets are also recognised.

A Security Prot~l is followed when a DTE call
request packet initiates the setting up of a call.
The NSD ensures that certain requirements are

227

met; the security protocol relates to such elements
of the X.25 call as the addresses, the logical
channel numbers, the NSD network security
groups, the encryption variables, and a security
checksum.

Similar functions are performed in the case where
the call is incoming from the DCE.

3.0 VERIFICATION TOOLS: m-EVES
SYSTEM

The principal software tool used in this study was
them-EVES version 4 formal verification system
running on a Sun 3180 workstation under Sun OS
version 4.0.3. m-EVES (an Environment for
Verifying and Evaluating Software), of Odyssey
Research ~iates, is a prototype formal
verification system [CRAI88) [EVES89]. m­
EVES contains two main components:

• 	 m-Verdi, a specification and
implementation language,

• 	 m-NEVER an
interactive/automated theorem
prover.

An automated style of proof is possible with
certain high level commands which invoke proof
heuristics. m-EVES maintains an internal
database of proven theorems. m-EVES has a
soundness proof for its logic [EVES89]. For a
more complete description of the m-EVES
environment, see [CRAI88).

3.1 m-EVES Proof and Verification

This section defines some verification terminology
referred to in the rest of the paper. A more
detailed view of these topics will be found in
[EVES89).

The term 'formula' will refer to a first order logical
expression which is obtained from entering an m­
Verdi target text in an m-EVES session.
Informally, m-EVES reliably translates m-Verdi
text into an equivalent and purely logical format
which contains no occurrences of commands or
other algorithmic language constructs. The
resulting (initial) formula may be transformed into
other formulas, using EVES Command Language
(ECL) commands. Two particular formulas are of

note: 1RUE, which designates the universally valid
formula, and FALSE, its negation.

Informally, a proof in m-EVES is a successful
attempt to reduce the initial formula for a given
m-Verdi target text to 1RUE, through a finite
number of steps. This generates a sequence of
formulas, each formula derivable from its
predecessor by application of an ECL command,
and satisfying the following conditions:

• the first formula is obtained by
m-EVES from the m-Verdi
target,

• the final formula is 1RUE.

The terms 'formula' and 'proof are used in this
paper exclusively in the sense given above.

3.2 AJ!plication of m-EVES to the NSD
Verification Study

The NSD study involved a code verification of
sample modules of the NSD system. As both
specifications and implementation were known, a
method was required to translate both into m­
Verdi in the most reliable way. The
implementation source code for the NSD is in the
C language (with some assembler code). A
number of hardware components, such as the
encryption chip, also needed representation.
Fortunately, the translation of target C code to m­
Verdi was a relatively efficient manual operation.
Some other software may not be as easily
translatable, however, due to the use of pointers in
C code which have no built-in support in m-Verdi.
Hardware and environmental elements were
translated by modelling techniques discussed
below, and by the use of the m-Verdi
"environment• construct.

A standard theory of history sequences is easily
implemented in m-Verdi from examples in the
literature [CRAI88]. The NSD study required
some form of discrete temporal reasoning to prove
that basic liveness properties hold. A simple
history sequence theory is needed for this. Any
system whose specifications include time
dependencies between events will likely need a
similar model. It was observed that certain
theories expressed in terms of temporal logic have
a natural embedding into first-order m-Verdi
theories involving history sequences (see [FVR]).

228

This could be exploited in many general contexts.

Practicality ·may necessitate controlled
modifications to them-Verdi code. An example
from this study illustrates this point. One of the
target modules had interfaces with a large number
of lower level sub-modules, each of which had
extensive logical structure involving low level
variables lying outside the general context of the
verification module. In order to minimize the
impact that such a code structure can have on the
proof of high level structures, the low level
modules were stubbed. This involves declaring
them in m-Verdi without code, but possibly with
logical annotations which describe their action. In
addition, an array of nags, called an occurrence
a"ay, was defined. If a module is invoked, the
boolean nag pertaining to it is set in the
occurrence array. This can be done through
specifying postconditions on the stubs.

Using this technique, it is possible to express
general code-oriented specifications that say that
under specific conditions, certain modules should
be invoked. Proving this kind of specification
provides assurance that the right sub-modules were
called under various sets of conditions, and avoids
the difficulty of contriving equivalent expressions
employing low level variables. It is possible to
return to the proof later and integrate the low
level modules into the existing proof in a top-down
manner, or employ some independent method to
verify them. The use of in-line annotations,
supported in m-Verdi as the •note• command, is
also applicable to this problem.

4.0 VERIFICATION PLAN

4.1 Purpose of the Verification Plan

The role of the verification plan was to describe
the scope of the verification effort in terms of an
identification of general properties or areas of
functionality within the NSD that were considered
to be suitable objects of investigation in the next
phase(s) of the project. The verification plan
followed a phase where the architecture of the
NSD, including the theory of operation, the
hardware and software structure, and the
functional requirements were analyzed. The next
phase of the project was expected to involve the
development of a design-level description of the
verification targets, or modules to be specified,

229

verified, and implemented in the context of the m­
EVES environment.

The main focus in the verification plan was on the
selection of a subset of the NSD for the purposes
of formal verification and on the identification of
some of the main issues that characterized the
technical concerns at that stage. The criteria that
guided the selection of verification targets
included: the need to define the Scope of effort
based on the available resources, the importance of
choosing important/critical properties of the
device, and the characteristics of the formal
verification environment and process.

4.2 Selection of Verification Properties

The selectio:p of properties for formal verification
is of critical importance to the value and level of
achievement of the project as a whole. If the
properties chosen renect an overly simplistic or
trivial view of the system, little is achieved in
formally verifying them. If, on the other hand, the
properties are either complex or inconsistent, the
prospects for obtaining positive results become
minimal or nonexistent. In the interest of
obtaining useful results from the verification
process, a practical balance between meaningful
system properties and provable verification goals
was the prime motivation for this task.

The criteria that were used for selection of the
functionality that would be addressed can be
broadly expressed as the following two areas:

• Security properties and

• Basic Functionality properties.

It is worth recalling that the NSD implements end­
to-end encryption in an X.25 network [X.25]. It
acts as a •filter• and is situated between the DTE
or host and the DCE or network.

The properties selected and some necessary
assumptions regarding the system are described in
the following sections.

4.2.1 High Level Network Security Properties

The high level security properties of the NSD are
informally based on the main aspects of
information security. In this section these
properties are discussed brieny and related to the

major components of information security.

Security is generally considered to encompass the
following three areas: Confidentiality, Integrity,
and Availability. Threats to confidentiality relate to
the unauthorized disclosure of information.
Integrity refers to the properties through which the
system or information meets one's expectations.
Availability can be viewed in terms of the
manifestation of its absence in the form of denial
of service.

For the NSD, confidentiality is achieved through
encryption. If encryption of data can be verified
where it is required, then the confidentiality of
data in the network is guaranteed. The property is
largely dependent on the NSD processor which
sends the data to the network. The assumption is
made that no decryption activity can occur other
than within another NSD. It is assumed that a
DES-encrypted data packet cannot be read unless
the key and initialization vector are known. With
these assumptions, confidentiality is largely a
byproduct of the basic CSP (see [HOAR85])
specifications that were developed during· the
Architecture Review stage. The specifications
enforce rules regarding the conditions under which
a data packet is encrypted. Confidentiality is
compromised only if a data packet is not encrypted
according to these rules.

While encryption contributes to a limited form of
integrity, the data exchanged over the network can
be manipulated and additional measures (at a
higher communications layer) may be required to
protect against threats to integrity. The use of
distinct initialization vectors for each direction of
an X25 call aids in the detection of reverse
direction replays. Also, the NSD supports a
method for the authentication of the identities of
the communicating parties. Through the logical
design of the network and the ownership of the
keys, an implicit form of authentication is
achieved.

4.22 Basic Functionality Properties

The basic functionality of the NSD concerns
properties relating to its role as a type of data
encryption filter in a X25 network, as well as the
internal features which support this role, in
particular, its security protocol. The term "basic
functionality" is intended to describe the major
NSD documented specifications around which the

system is designed. In some cases, problems
resulting from conflicts between hardware,
communicationsand security requirements resulted
in non-trivial modifications to the network layer
behaviour of the NSD. It was important to
determine that the NSD implementation actually
satisfies these requirements.

The basic functionality of the NSD was primarily
expressed in the formal specifications. These were
written in CSP and required reliable translation to
m-Verdi. This immediately implies that the
underlying models (and their m-Verdi theories)
must be compatible with whatever form the
translations of the CSP functionality requirements
take. A theory in m-Verdi which adequately
describes the input-output black box view of the
NSD must therefore mimic the behaviour specified
in the CSP formal specifications.

4.221 X25 Protocol Properties

The basic X25 protocol is embedded in the CSP
formal specification of the NSD. It was observed
during the architecture analysis that not all
internal X25 states are irnplemented in the NSD,
and that some events are not treated in the
expected way. The specification took much of this
into account, although the Call Collision State is
present in this specification, but is not
implemented in the NSD (since the encryption
process does not allow for this). It was recognized
that some modification of the specifications may
therefore be in order prior to the verification
activities.

Proving that the NSD satisfied a modified subset
of X25 was one of the primary objectives of the
verification tasks.

4.222 NSD Security Protoool Properties

The security protocol for the NSD is embedded in
the lower invocation levels of the CSP formal
specification, i.e. in the form of special processes
which are triggered when certain security-sensitive
events occur. The main areas include Call
Initialization, encryption-related events, and
handling the interaction with the KMC. The last
area was not considered to be within the scope of
the verification plan.

Important high level properties are based on the
sufficiency of the NSD security protocol. However,

230

the strategy envisioned·in.the verification plan was
not to establish the security protocol properties
and then prove the high level properties. Rather,
the NSD security protocol was seen as an
inseparable part of the formal specification of the
NSD. Its verification was seen as part and parcel
of the verification of the basic functionality of the
system. It would be possible in any case to draw
on specific security properties obtained in the basic
functionality verification in the establishment of
high level security properties.

5.0 ROLE OF DEVICE-SPECIFIC
MODEl 1 .lNG TECHNIQUES

Given a device with the level of complexity of the
NSD, special models are often required to form a
framework for stating certain specifications.
lYPically these models portray or simulate an
environmental factor which the system must
tolerate, a special theory or recognized standard
which the system must satisfy, or possibly a
subsystem or external entity whose characteristics
are assumed and whose verification is considered
beyond the scope of the project.

Implementation of a model in the verification
language (e.g., m-Verdi) involves a design phase
where decisions are made regarding the type and
number of variables and data structures required.
Some procedures may be designed and coded. In
addition, a model will normally require purely
logical components such as axioms and
specification functions. A prototyping phase may
be called for, in order to resolve design decisions.
To finalize the initial model-building phase,
theorems involving model constructs and relating
them to the appropriate system interfaces are
developed. Again, this may entail prototyping, as
new model features may arise out of the attempt to
prove the target theorems. In this way the body of
theory involving the model is built up to the
required level of depth.

Experience gained in this research indicates that
even very simple models can entail significant costs
in terms of time and effort over the verification
phase. The effect of incrementally adding new
models to a stable (i.e. proven) body of modules
introduces the obligation to integrate all new
variables and data structures into the old module
proofs, and thus multiply their length. As more
models are integrated in this way, the effect

appears to be significantly non-linear. Although
too little quantitative evidence is available at this
point, this growth effect may have a significant
influence on the design and scope of verification
projects similar to the one documented here.

The following three main models were required by
the verification phase:

• 	 Nondetenninism model
A model which allows proof of
certain fault tolerance and
liveness properties of the NSD
under uncertainty of success . of
certain packet processing tasks.

• 	 X2Smodel
A decision tree model of the state
transitions of the X.25 protocol.

• 	 Enayption model
An elementary DES encryption
(CFB) model based on axioms
obtained from [FIPS81].

In each case, challenges were encountered with the
integration of the new model into the existing
proof database.

6.0 11IE PROOF PROCESS

6.1 Verification of an Emting System

The nature of this project, which has its basis in an
existing system, does not lend itself to the
traditional top-down approach. In a general
verification project one may have control over
models of both the specification and the
implementation and the verification can involve
the development of parallel or corresponding
descriptions. Attempting to gain assurance about
a system after it has been developed through
formal verification entails great difficulties.
Verification of a low level of specification (eg. the
source code) against a higher level of abstraction
(eg. specifications of the requirements) is ·almost
impossible without intermediate levels of detail.
Models that characterize the specifications of
system behaviour and the implementation must be
developed. The specifications and the
implementation must share various
correspondences that relate to their logical
structure and to their semantical content. The

231

process of verification entails building the
specification, the proof, and the implementation in
tandem. For large systems this process is not
easily managed, (lSpecially when an existing system
is being examined. The implications for the
certification of systems are serious.

6.2 IntenM:tion with the Prover

Although provers such as that of the m-EVES
environment are called automated provers, it
should be remembered that they function as proof
checkers and interactively assist in the proof
process. The developer or user should ensure that
the module or software being verified has been
designed and implemented such that a proof would
be forthcoming, and that the necessary conditions
are met. The user will issue commands to effect
certain proof steps, including the application of
types of heuristics that the prover supports and the
incorporation in the current proof of other
theorems, lemmas, or assumptions. The user has
to read the output of the prover at each step of
the proof and be able to determine what parts of
the current formula are of interest. The ability to
see where conditions need to be strengthened or
inconsistencies addressed is central to the process.

6.3 Modules and Prec:onditioDS

The verification of a module will show that if it is
invoked when its precondition is satisfied it will
terminate and its postcondition will be true. Even
when the requisite proof is completed there
remains the obligation to show that the
precondition is satisfied in the calling module.
Depending on the structure of the system and the
time relationships between variables it may become
very difficult to reason about the dependencies and
to ensure the consistency of the various conditions
when changes are made. When modules do not
have side-effects and their preconditions are very
simple this difficulty is reduced.

6.4 Use of Small StejJS and Automation

The m_EVES prover has a number of 'macro'
commands that may apply several basic or simple
steps. These macro commands effect highly
automated manipulations of a formula in an
attempt to show that the condition it embodies is
true. While it is desirable and sometimes easier to
invoke these powerful commands to arrive at a
proof, in cases where the formula is a complex or

long logical condition the highly automated
capabilities of the prover were not found to be
very effective. The time required for a powerful
command to execute becomes too long and the
prover cannot be guaranteed to find a proof. The
interactive application of a larger number of
smaller steps was found to be more productive and
allowed the developer greater flexibility in findin$
a proof. Although this required closer
examination of the formula being verified at each
step of the proof and was a very demanding
process the ability to gradually simplify the formula
and the higher likelihood of arriving at a proof
made such a strategy necessary. Such a strategy is
especially needed when an existing system is being
studied since the verification team has less control
over the software structure and design and the
proof has to be adapted to the general architecture
of the system.

6.5 Iterative Row of Activities

The general view of formal verification as a top­
down process of defining specifications and then
implementing the software that demonstrably
satisfies the specifications as evidenced by the
proof is an abstraction in search of a reality.
Formal verification necessitates a close match
between the specifications and the implementation
and between various parts of each. Changes to any
part of the system descriptions may require
changes to other parts depending on the
dependencies that exist. Since it is unlikely that
initial descriptions will be complete, changes and
extensions must result. In an automated
environment a considerable amount of the formal
descriptions or theories are developed to support
the verification effort or in order for the prover to
deal with leaps of abstraction and are not strictly
part of the system. Thus the likelihood of the
discovery of the need for additional assertions,
properties, and relationships is very high, and
semantical changes often require substantial
concern with aspects of the verification
environment and language. The result is a process
that defies simplistic depictions and which requires
both anticipation of what is needed and the ability
to recognize that changes will be necessary. A
developer should expect a considerable amount of
both planning and refinemenL

6.6 Gradual Building of Proof Reguirements

Despite the high penalty for changes to a system's

232

description (specification or implementation), in
some cases it is useful to experiment with a
module to arrive at the proper form and
conditions. In such cases the weaker or simpler
forms of the (post) condition that must be shown
may be used to gain confidence in the correctness
of the module's code or structure and to quickly
discover any flaws, which would be easier to detect
since any inconsistencies will be more apparent in
the simpler formula. The general strategy that was
used in the proof may also be applicable to the
stronger or final condition.

7.0 OBSERVATIONS AND FINDINGS

7.1 Meaning of Verification Results

The mathematical nature of formal methods and
the benefits of (automated or computer assisted)
formal verification do not obviate the need for a
critical assessment of the level of assurance
provided by the verification effort. The system
descriptions and documentation -- in the form of
such constructs as axioms, data declarations,
executable code, and theorems -- may encompass
several assumptions and models, the
appropriateness or validity of which cannot be
determined solely within the steps and proofs of
the formal verification effort or environmenL

The formal verification results may not guarantee
the absence of inconsistencies in the system
specifications. In addition, the strength and
completeness of the assertions that are shown is
central to the value of the verification effort. The
verification team is free to choose the form of a
module and the statements of the precondition and
postcondition. The assurance, about the behaviour
of a module, that is provided by a proof (based on
the precondition and postcondition) is not always
clear, especially with respect to intermediate
occurrences of conditions and states. The role of
the results of an individual proof must be carefully
considered in relation to other proofs and within
the general description of the system. The results
of the verification effort as a whole, in tum, must
be assessed with a recognition of any assumptions
and limitations that exist and to determine the
implications for the behaviour and trustworthiness
of the system.

12 Entrineering Side of Formal Verification

In addition to the mathematical nature of formal
verifiCation, the development of formal and
executable specifications and descriptions involves
many of the choices and decisions that characterize
engineering processes. Many of the engineering
issues do not manifest themselves in the formal
verification of a simple or small application, partly
because the implications of the decisions may not
be critical to the success of the software effort.
When large and complex systems are being built,
however, the number and difficulty of the choices
that the project team faces are increased. The
quantitative aspects may become qualitative in that
gradual accumulation of complexity may represent
unsurmountable obstacles to the successful
completion of the project. The ability to operate
within an integrated project support environment
is expected to form a key requirement of formal
specification and verification tools.

While most likely there is no general recipe for
building systems using formal methods and
automated verification environments, there are
various approaches that are effective in dealing
with the complexity that faces software designers
and developers. Although it is beyond the scope
of this paper to describe design or development
methods, some of the observations in this section
may hint at some properties that such methods
should have.

7.3 Relative Size of the Formal Descriptions

In specifying and implementing modules in m­
Verdi it was observed that the size of the resulting
software was considerably larger than the original
C source code. This may reflect a basic difference
between software development that uses third
generation languages and that which is based on
formal verification. In the latter case, some of the
information that would traditionally reside in the
various requirements and design documents has to
be represented in the formal specifications that are
developed within the verification environment.
Also, formal verification may require or be
facilitated by the specification of supporting
models and theories that capture the functionality
of the software and bridge the gaps between
different levels of abstraction. The general
observation was that the size of the formal product
far exceeded the C language source code. The use
of graphical depiction techniques may aid in

233

addressing the difficulties associated with the long
expressions and formulas; graphical nested
structures may be presented to the analyst in order
to increase the communications bandwidth of the
user interface between the environment and the
user (TAR]. However, the implications for a large
project of the large size of formal descriptions are
very serious when the effect of software size on the
required effort and schedule, as discussed below, is
recognized.

7.4 Effect of System Growth on Schedule and
Effort

The relationship between software size and the
effort or time required to develop that software is
considered to be non-linear, and in fact many
estimation models represent effort as an
exponential function of size. In this project, the
addition of more functionality and the attempt to
integrate these modules with the existing system
descriptions required considerable effort. The
nature of formal verification as an effort and time
intensive process and the need for ensuring proof
consistency indicate an even steeper form of the
curve for effort as a function of system size. The
consequences for the direct application of formal
verification to large projects are serious and seem
to entail considerable limitations.

7.5 Intermediate Levels of Absttaction

While the step-wise refinement of system
descriptions is a generally known technique for
design and development, the use of specifications
at different levels of abstraction has special
implications for formal methods and for attempts
to achieve a high level of assurance as required in
secure systems. The use of a several levels of
abstraction facilitates the mapping between levels.
It also increases the effort required to manage the
system descriptions and may become less effective
when too many levels are used. In formal
verification efforts the project team may find the
development of intermediate specifications (or
implementation layers) to be necessary in
interacting with an automated prover which can
not be expected to deal with wide abstraction gaps.
The recognition of: the need to maintain the
consistency of the software descriptions,
performance considerations, and the ripple effect
of changes to one module on other parts suggests
a trade-off between these factors and the number
of levels in the abstraction hierarchy. The careful

introduction of intermediate layers remains an
effective strategy for simplifying formal proofs.

7.6 Propagation ofProperties to Higher Levels of
Abstraction

As modules at the lower levels of the module
hierarchy, including those that have a relatively
self-contained function, are developed and
integrated with modules at a higher level their
properties need to be reflected in the properties of
the upper layers. This process of making the
function oflower-level modules known to a higher
module involves the upward migration of
properties within the hierarchical structure of the
software. The preconditions and postconditions at
adjoining layers need to be closely linked. Even
after achieving the proper correspondence between
the modules and their properties, there is a strong
likelihood that changes to a lower level will be
necessary and that a large part of the time that was
expended in the verification of the existing
modules will be required again.

7.7 Understanding the Automated Prover Output

In interacting with an automated prover, the
software developer or user is faced with several
characteristics of that tool and environment. One
such aspect is the length and complexity of
verification conditions that are generated by the
prover. The automated capability of the prover
includes the generation of a formula that formally
describes the module and its corresponding proof
obligation and the execution of user commands
that represent steps in verifying that the formula is
true. The formulas may be long and complex. The
developer has to read the formula and determine
what steps are necessary for its proof or whether a
proof can be found at all; the formula may be
amenable to proof with the right sequence of
commands, or it may be inconsistent or lacking
some necessary assertions in which case it cannot
be proven.

Thus, although the prover automates certain
capabilities the user person has to interact with it
and is expected to 'process' its output. This seems
to tie the person to the technological tool, It is
not clear to what extent expecting a developer to
read the long and intricate product of a tool (at
every intermediate step) represents the best form
of an activity's automation. This may be one stage
in the evolution of verification technology and

234

further advances in software engineering may be
expected to alter this cooperative process.

7.8 Focus OJl Critigl Functioaality

For several reasons that include the observed
growth effect in terms of the relationship between
the size of the system descriptions and the required
effort, as described earlier, the choice of the
appropriate scope for formal verification is
considered to be essential to the success of a
formal verification project. It is important to limit
the targets of formal verification to the "critical"
functionality or components of the system under
consideration. While determining the critical
nature of a component is a matter of judgement
and may be based on the area of interest or
depend on the design of the system, the choice of
the proper scope for formal verification is
necessary to the management of the complexity of
the verification process.

&.0 SUMMARY

This paper has identified several aspects of formal
verification as applied to a network security device.
The use of certain modelling techniques was
descn"bed in the context of the goals of the
verification effon. The role of a verification plan
within the life cycle of a formal verification project
was shown through a case study approach to the
communication of findings. The results and
observations described in this paper, and in
Sections 6 and 7 in particular, were part of this
attempt ·to share the project team's general
experience in the application of formal verification
to a target having substantial scope of
functionality.

In the verification of the NSD, the general areas
that were addressed included, in addition to the
general X.25 functionality, both safety and liveness
properties. Safety properties within the context of
the NSD were examined in terms of the controlled
application of encryption. The use of a model of
nondeterminism to support liveness stemmed from
a choice to characterize the rich behaviour of a
communications system and to avoid extreme
simplifications. While it is recognized that
abstraction is an essential part of the use of formal
methods and is often necessary in describing
systems, the need remains for formal verification
efforts to address the complex or flexible behaviour

that is inherent in some systems.

The logical separation between "security" and
"functionality" or "liveness• is sometimes
detrimental to the evaluation ofa system. (Among
other limitations: it seems to reflect a bias towards
viewing security as secrecy or confidentiality.
Furthermore, the assumption that properties of a
system are independent or even that different areas
of security can be examined in isolation is not
justified.) While a system that does nothing can be
conSidered safe with regards to confidentiality its
trustworthiness is of very little value. It is in the
area of complex systems and rich behaviour that
security and trust are of special interest and
importance.

The relationship between the general functionality
of a system and its security policy, especially in
their implementations, often involves many subtle
dependencies and provides a challenge in any
attempt to gain the high degree of assurance that
is necessary for the system to be considered
trustworthy. The formal proof process and the use
of an automated environment contribute to both
the challenges and the solutions. The tractability
of the verification problem, as manifested by the
effort and time required, is a serious concern. It is
hoped that this paper will contribute to the
recognition of the role of formal verification and
specification within the systems engineering
process and of the need for verification design
methods and techniques that support the
management of the complexity of the formal
development process. Towards such a view, it is
important to recognize the role, limitations, and
benefits of formal verification within an integrated
systems design and development process.

ACKNOWLEDGEMENTS

The work described in this paper was funded by
the Canadian Department of National Defence
under contract No. W8477-9-C0>7/0l-QD. The
support and insights of Mr. Milan Kuchta and Mr.
Vincent Taylor are gratefully acknowledged. This
paper has also benefited from the comments and
suggestions of the referees. The authors would
also like to thank lntellinet Corp. for their help
and for ,troviding access to the
CryptoNet /SmartCryptoTM technical
documentation.

235

[ADRA91)

[CRAI88)

[EVES89]

[FIPS81)

[FVR]

[HOAR85)

[INT87]

[TAR]

REFERENCES

Adra, H.N. and Sandberg­
Maitland, W., "Formal
Verification Techniques for a
Network Security Device",
Proceedings of the Third Annual
Canadian Computer Security
Symposium, May 15-17, 1991.

Craigen, Dan, "An Application of
the m-EVES Verification
System", Proceedings of the
Second Workshop on Software
Testing, Verification, and
Analysis", IEEE, July 1988, pp.
21-36.

m-EVES Collected Papers,
Odyssey Research Associates,
Inc., Ottawa, Ontario, Canada,
September 14, 1990.

U.S. Department of
Commerce/National Bureau of

' Standards, PIPS Publication 74,
Guidelines for Implementing and
Using the NBS Datil Encryption
Stilndard, April, 1981.

Verification of a Network Security
Device: Final Verification Report
(FVR), Technical Report SE­
R91.009, CGI Group, Ottawa,
Ontario, Canada, March 1991.

Hoare, C.A.R., Communicating
SequentialProcesses,Prentice-Hall
International, 1985.

CRYPTONET I SMART CRYPTO
Theory of Operation and
Functional Specification, Technical
Report INT-87-37, lntellitech
Canada Limited, Ottawa,
November 12, 1987.

Verification of a Network Security
Device: Technical Assessment
Report (TAR), Technical Report
SE-R91.008, CGI Group, Ottawa,
Ontario, Canada, March 1991.

[VPR)

[VR1)

[X.2S]

Verification of a Network Security
Device': Verification Plan and
Rationale (VPR), Technical
Report SE-R90.29, CGI Group,
Ottawa, Ontario, Canada, May
1990.

Verification of a Network Security
Device: Verification Report 1
(VRJ), Technical Report SE­
R90.43, CGI Group, Ottawa,
Ontario, Canada, September
1990.

Interface between Data Terminal
Equipment (DTE) and Datil
Circuit-Terminating Equipment
(DCE) for Terminals Operating in
the Packet Mode and Connected to
Public Data Networks by Dedicated
Circuit, CCITT Recommendation
X.2S, 1984.

236

http:SE-R90.29

A FRAMEWORK FOR ADVANCING INTEGRITY STANDARDIZATION

Terry Mayfield

Stephen R. Welke

JohnM. Boone

Catherine W. McDonald

Institute for Defense Analyses

1801 N. Beauregard St.

Alexandria, VA 22311

(703) 845-3500

Abstract

This paper deals with the issue of
preserving and promoting integrity within
computer and automated information systems.
It is intended to serve as the starting point for
defining those expectations and standardizing
integrity properties of systems. The paper
discusses the difficulty of developing a single
de!J.nition of the term integrity as it applies to
data and systems. Integrity has multiple
definitions in the dictionary and the application
of those definitions to data and systems using a
single attribute within the expectation set has led
to definitions that could not achieve consensus.
Concluding that a single definition is not needed
to advance our understanding, the paper
develops a more appropriate operational
definition, or framework, that encompasses
various views of the issue. This framework
includes the two distinct, yet interdependent,
contexts for integrity: data and systems. The
framework reinterprets, within these two
contexts, a general integrity protection goal to
derive three specific integrity goals. The
framework also interprets the integrity properties
and relationships of active and passive entities in
a system using the conceptual constraints of
"adherence to a, code of behavior,"
"wholeness," and "risk reduction." The paper
concludes that it is possible to begin to
standardize integrity properties. We acknowledge
that gaps in understanding exist, but recommend
that further studies be undertaken. We conclude
that . such studies can be accomplished
concurrently with standardization and that both
efforts could be mutually supportive.

1. Introduction

As public, private, and defense sectors
of our society have become increasingly
dependent on widely used interconnected
computers for carrying out critical as well as
more mundane tasks, integrity of these systems
and their data has become a significant concern.
The purpose of this paper is not to motivate
people to recognize the need for integrity, but
rather to motivate the use of what we know about
integrity and to stimulate more interest in
research to standardize integrity properties of
systems. This paper provides a framework for
examining the issue of promoting and preserving
integrity in computer systems. It is intended to
be used as a general foundation for further
investigations into integrity and a focus for
debate on those aspects of integrity related to
computer and automated information systems
(AISs).

One of the specific further investigations
is the development and evolution of product
evaluation criteria to assist the U.S. Government
in the acquisition of systems that incorporate
integrity preserving mechanisms. These criteria
also will help guide computer system vendors in

The work reported in this paper was conducted as part of
Institute for Defense Analyses Project T-AAS-459 under
Contract No. MDA903-89-C-0003 for the Department of
Defense. It is based on portions of IDA Paper P-2316,
Integrity in Computer and Automated Information Systems,
which is in preparation at this time. The publication of
this paper does not indicate endorsement by the
Department of Defense or the Institute for Defense
Analyses, nor should the contents be construed as
reflecting the official positions of those organizations.

237

producing systems that can be evaluated in terms
of protection features and assurance measures
needed to ascertain a degree of trust in the
product's ability to promote and preserve system
and data integrity. In support of this criteria
investigation, we have provided a separate
document [1] that offers potential modifications
to the Control Objectives contained in the
Trusted Computer Systems Evaluation Criteria
{TCSEC), DoD 5200.28-STD [2]. The
modifications extend the statements of the
control objectives to encompass data and
systems integrity; specific criteria remain as
future work.

2. Background

For some time, both integrity and
confidentiality have been regarded as inherent
parts of information security (INFOSEC).
Confidentiality, however, has been addressed in
greater detail than integrity by evaluation criteria
such as the TCSEC. The emphasis on
confidentiality has resulted in a significant effort
at standardizing confidentiality properties of
systems, without an equivalent effort on integrity.
However, this lack of standardization effort does
not mean that there is a complete lack of
mechanisms for or understanding of integrity in
computing systems. A modicum of both exists.
Indeed, many well-understood protection
mechanisms initially designed to preserve
integrity have been adopted as standards for
preserving confidentiality. What has not been
accomplished is the coherent articulation of
requirements and implementation specifications
so that integrity property standardization can
evolve. There is a need now to put a significant
effort on standardizing integrity properties of
systems. This paper provides a starting point.

The original impetus for this paper
derives from an examination of computer
security requirements for military tactical and
embedded computer systems, during which the
need for integrity criteria for military systems
became apparent. As the military has grown
dependent on complex, highly interconnected
computer systems, issues of integrity have
become increasingly important. In many cases,
the risks related to disclosure of information,
particularly volatile information which is to be
used as soon as it is issued,.may be small. On the

other hand, if this information is modified
between the time it is originated and the time it is
used (e.g., weapons actions based upon it are
initiated), the modified information may cause
desired actions to result in failure (e.g., missiles
on the wrong target). When one considers the
potential loss or damage to lives, equipment, or
military operations that could result when the
integrity of a military computer system is
violated, it becomes more apparent why the
integrity of military computer systems can be
seen to be at least as important as confidentiality.

There are many systems in which
integrity may be deemed more important than
confidentiality (e.g., educational record systems,
flight-reservation systems, medical records
systems, financial systems, insurance systems,
personnel systems). While it is important in
many cases that the confidentiality of
information in these types of systems be
preserved, it is of crucial importance that this
information not be tampered with or modified in
unauthorized ways. It is especially important
that unauthorized tampering not occur in
embedded computer systems. These systems are
components incorporated to perform one or
more ·specific (usually control) functions within a
larger system. They present a more unique
aspect of the importance of integrity as they
often may have little or no human interface to aid
in providing for correct systems operation.
Embedded computer systems are not restricted
to military weapons systems. Commercial
examples include anti-lock braking systems,
aircraft avionics, automated milling machines,
radiology imaging equipment, and robotic
actuator control systems.

Integrity can be viewed not only in the
context of relative importance but also in the
historical context of developing protection
mechanisms within computer systems. Many
protection mechanisms were developed
originally to preserve integrity. Only later were
they recognized to be equally applicable to
preserving confidentiality. One of the earliest
concerns in the development of computers was
that programs might be able to access memory
(either primary memory or secondary memory
such as disks) that was not allocated to them. As
soon as systems began to allocate resources to
more than one program at a time (e.g.,
multitasking, multiprogramming, and time­

238

sharing), it became necessary to protect the
resources allocated to the concurrent execution
of routines from accidentally modifying one
another. This increased system concurrency led
to a form of interleaved sharing of the processor
using two or more processor states (e.g., one for
problem or user state and a second for control or
system state), as well as interrupt, privilege, and
protected address spaces implemented in
hardware and software. These "mechanisms"
became the early foundations for "trusted"
systems, even though they generally began with
the intent of protecting against errors in
programs rather than protecting against
malicious actions. The mechanisms were aids to
help programmers debug their programs and to
protect them from their own coding errors. Since
these mechanisms were . designed to protect
against accidents, by themselves or without
extensions they offer little protection against
malicious attacks.

3. Defining Integrity

Integrity is a term that does not have an
agreed definition or set of definitions for use
within the INFOSEC community. Recent efforts
to define and model integrity have raised the
importance of addressing integrity issues and the
incompleteness of the TCSEC with respect to
integrity. They also have sparked renewed
interest in examining what needs to be done to
achieve integrity property standardization in
computing systems. However, the INFOSEC
community's experience to date in trying to
define integrity provides ample evidence that it
doesn't seem to be profitable to continue to try
and force a single consensus definition. Thus,
we elect not to debate the merits of one proposed
definition over another. Rather, we accept that
the definitions generally all point to a single
concept termed "integrity."

Our position is reinforced when we refer
to a dictionary; integrity has multiple definitions
[3]. Integrity is an abstract noun. As with any
abstract noun, integrity derives more concrete
meaning from the term(s) to which it is attributed
and from the relations of these terms to one
another. In this case, we attribute integrity to two
separate, although interdependent, terms (i.e.,
data and systems). Bonyun made a similar
observation in discussing the difficulty of arriving

at a consensus definition of integrity [4]. He also
recognized the interdependence of the terms
systems and data in defining integrity, and
submitted the proposition that "in order to
provide any measure of assurance that the
integrity of data is preserved, the integrity of the
system, as a whole, must be considered."

Keeping this proposition in mind, we
develop a conceptual framework or operational
definition which is largely derived from the
mainstream writing on the topic and which we
believe provides a clearer focus for this body of
information. We start by defining two distinct
contexts of integrity in computing systems: data
integrity, which concerns the objects being
processed, and systems integrity, which concerns
the behavior of the computing system in its
environment. We then relate these two contexts
to a general integrity goal developed from
writings on information protection. We
reinterpret this general goal into several specific
integrity goals. Finally, we establish three
conceptual constraints that are important to the
discussion of the preservation and promotion of
integrity. These definitions, specific goals, and
conceptual constraints provide our framework or
operational definition of integrity. A diagram of
this framework is given in Figure 1.

3.1. Data Integrity

Data integrity is what first comes to mind
when most people speak of integrity in computer
systems. To many, it implies attributes of data
such as quality, correctness, authenticity,
timeliness, accuracy, and precision. Data
integrity is concerned with preserving the
meaning of information, with preserving the
completeness and consistency of its
representations within the system, and with its
correspondence to its representations external to
the system. It involves the successful and correct
operation of both computer hardware and
software with respect to data and, where
applicable, the correct operations of the users of
the computing system (e.g., data entry). Data
integrity is a primary concern in AISs that
process more than one distinct type of data using
the same equipment, or that share more than one
distinct group of users. It is of concern in large
scale, distributed, and networked processing
systems because of the diversity and interaction
of information with which such systems must

239

Context

Goals

Conceptual

Coostraints

Entities

INTEGRITY

I I

Data Systems

• Prevendng unaulhorized users fJOm • Preventing unauthorized users from

making modificalicms to clara.
 making modific:alicms to~ or

using resources.
• Mainraining infernal & extemal

consisralcy ofclara. • Maintaining consistent systemS
c:onespondence widllbc extemal

• Preventing audlorized users ftom making environment.
improper mocliflcadODS to clara.

• Preventing aulhorized users fJOm making
improper modific:alicms to raowces.

Wholcllesl '·
. "

Pusive/

Specificalion of

Relalioaal ConslniDis

·IDfomwion Flow
• Ac:cess Conaol
• Procedural Conaol
• Temporal Conuol

Adbela!Ce to a
Code ofBcbavior

/

Figure 1. Integrity Framework

often deal, and because of the potentially large
and widespread number of users and system
nodes that must interact via such systems.

3.2. Systems Integrity

Systems integrity is defined here as the
successful and correct operation of computing
resources. Systems integrity is an overarching
concept for computing systems, yet one that has
specific implications in embedded systems whose
control is dependent on system sensors. Systems
integrity is closely related to the domain of fault
tolerance. This aspect of integrity often is not
included in the traditional discussions of integrity
because it involves an aspect of computing, fault
tolerance, that is often mistakenly relegated to
the hardware level. Systems integrity is only
superficially a. hardware issue, and is equally

applicable to the AIS environment; an
embedded system simply has less user-provided
fault tolerance. In this context, it also is related
closely to the issue of system safety (e.g., the safe
operation of an aircraft employing embedded
computers to maintain stable flight). In an
embedlied system, there is usually a much closer
connection between the computing machinery
and the. physical, external environment than in a
command and control system or a conventional
AIS. The command and control system or
conventional AIS often serves .to process
information for human users to interpret, while
the embedded system most often acts in a
relatively autonomous sense.

Systems integrity is also related to what
is traditionally called the denial of service
problem. Denial of service covers a broad

240

category of circumstances in which basic system
services are depied to the users. However,
systems integrity is less concerned with denial of
service than with alteration of the ability of the
system to perform in a consistent and reliable
mru:ner, given an environment in which system
design flaws can be exploited to modify the
operation of the system by an attacker.

For example, because an embedded
system is usually very closely linked to the
environment, one of the fundamental, but less
familiar, ways in which such an attack can be
accomplished is by distorting the system's view
of time. This type of attack is nearly identical to a
denial of service attack that interferes with the
scheduling of time-related resources provided by
the computing system. However, while denial of
service is intended to prevent a user from being
able to employ a system function for its intended
purpose, time-related attacks on an embedded
system can be intended to alter, but not stop, the
functioning of a system. System examples of
such an attack include the disorientation of a
satellite in space or the confusing of a satellite's
measurement of the location of targets it is
tracking by forcing some part of the system
out~ide of its design parameters. Similarly,
environmental hazards or the use of sensor
countermeasures such as flares, smoke, or
reflectors can cause embedded systems
employing single sensors such as infrared, laser,
or radar to operate in unintended ways.

When sensors are used in combination
algorithms often are used to fu~e the senso;
inputs and provide control decisions to the
employing systems. The degree of dependency
on a single sensor, the amount of redundancy
provided by multiple sensors, the dominance of
sensors within the algorithm, and the
discontinuity of agreement between sensors are
but a few of the key facets in the design of fusion
algorithms in embedded systems. It is the
potential design flaws in these systems that we
are concerned with when viewing systems from
the perspective of systems integrity.

3.3. Information System Protection Goals

Many researchers and practitioners
·interested in INFOSEC believe that the field is
concerned with three overlapping protection
goals: confidentiality, integrity, and availability.

From a general review of reference material, we
have broadly construed these individual goals as
having the following meanings:

a. 	 Confidentiality denotes the goal of ensuring
that information is protected from •
improper disclosure.

b. 	 Integrity denotes the goal of ensuring that
data has at all times a proper physical
representation, is a proper semantic
representation of information, and that
authorized users and information
processing resources perform correct
processing operations on it.

c. 	 Availability denotes the goal of ensuring
that information and information
processing resources both remain readily
accessible to their authorized users.

The above integrity goal (b) is complete
only with respect to data integrity. It remains
incomplete with respect to systems integrity. We
extend it to include ensuring that the services and
~esources composing the processing system are
Impenetrable to unauthorized users. This
extension provides for a more complete
categorization of integrity goals, since there is no
other category for the protection of information
processing resources from unauthorized use, the
theft of service problem. It is recognized that this
extension represents an overlap of integrity with
availability. Embedded systems require one
further extension to denote the goal of consistent
and correct performance· of the system within its
external environment.

3.4. Integrity Goals

Using the goal previously denoted for
in!egrity and the extensions we propose, we
remterpret the general integrity goal into the
following specific goals in what we believe to be
the order of increasing difficulty to achieve.
None of these goals can be achieved with
absolute certainty; some will respond to
mechanisms known to provide some degree of
assurance and all may require additional risk
reduction techniques.

241

3.4.1. Preventing Unauthorized Users From
Making Modifications

This goal addresses both data and system
resources. Unauthorized use includes the
improper access to the system, its resources and
data. Unauthorized modification includes
changes to the system, its resources, and changes
to the user or system data originally stored
including addition or deletion of such data. With
respect to user data, this goal is the opposite of
the confidentiality requirement: confidentiality
places restrictions on information flow out of the
stored data, whereas in this goal, integrity places
restrictions on information flow into the stored
data.

3.4.2. Maintaining Internal and External
Consistency

This goal addresses both data and
~ystems. It addresses self-consistency of
mterdependent data and consistency of data with
the real-world environment that the data
represents. Replicated and distributed data in a
distributed computing system add new
complexity to maintaining internal consistency.
Fulfilling a requirement for periodic comparison
of the internal data with the real-world
environment it represents would help to satisfy
both the data and systems aspects of this integrity
goal.. The accuracy of correspondence may
reqmre a tolerance that accounts for data input
lags or for real-world lags, but such a tolerance
must not allow incremental attacks in smaller
segments than the tolerated range. Embedded
systems that must rely only on their sensors to
gain knowledge of the external environment
require additional specifications to enable them
to internally interpret the externally sensed data
in terms of the correctness of their systems
behavior in the external world. It is the addition
of overall systems semantics that allows the
embedded system to understand the consistency
of external data with respect to systems actions.

a. 	 As an example of internal data consistency,
a file containing a monthly summary of
transactions must be consistent with the
transaction records themselves.

b. 	 As an example of external data
consistency, inventory records in an
accounting system must accurately reflect
the inventory of merchandise on hand.

This correspondence may require controls
on the external items as well as controls on
the data representing them (e.g., data entry
controls). The accuracy of
correspondence may require a tolerance
~hat accounts for data input lags or . for
mventory in shipment, but not actually
received.

c. 	 As an example of systems integrity and its
~elatio~ship to external consistency, an
mcreasmg temperature at a cooling system
sensor may be the result of a fault or an
attack on the sensor (result: overcooling of
the space) or a failure of a cooling system
component such as a freon leak (result:
overheating of the space). In both cases,
the automated thermostat (embedded
system) could be perceived as having an
~ntegrity failure unless it could properly
mterpret the sensed information in the
context of the thermostat's interaction with
the rest of the system, and either provide
an alert of the external attack or failure or . 	 ' prov1de a controlling action to counter the
attack or overcome the failure. The
essential requirement is that in order to
have the system maintain a consistency of
performance with its external environment . 	 ' 1t must be provided with an internal means
to interpret and flexibility to adapt to the
external environment.

3.4.3. Preventing Authorized Users From
Making Improper Modifications

The final goal of integrity is the most
abstract, and usually involves risk reduction
methods or procedures rather than absolute
checks on the part of the system. Preventing
improper modifications may involve
requirements that ethical principles not be
violated; for example, an employee may be
authorized to transfer funds to specific company
accounts, but should not make fraudulent or
arbitrary transfers. It is, in fact, impossible to
pro:ide absolute "integrity" in this sense, so
vanous mechanisms are usually provided to
minimize the risk of this type of integrity
violation occurring.

242

II

3.5. Conceptual Constraints Important to These behavioral constraints may be statically or
Integrity dynamically conditioned.

There are three conceptual constraints
that are important to the discussion of integrity.
The first conceptual constraint has to do with the
active entities of a system. We use the term
agents to denote users and their surrogates.
Here, we relate one of the dictionary definitions
[3] of integrity, adherence to a code of behavior,
to actions of systems and their active agents. The
second conceptual constraint has to do with the
passive entities or objects of a system. Objects as
used here are more general than the storage
objects as used in the TCSEC. We relate the
states of the system and its objects to a second of
Webster's definitions of integrity, wholeness. We
show that the constraint relationships between
active agents and passive entities are
interdependent. We contend that the essence of
integrity is in the specification of constraints and
execution adherence of the active and passive
entities to the specification as the active agent
transforms the passive entity. Without
specifications, one cannot judge the integrity of
an active or passive entity. The third system
conceptual constraint deals with the treatment of
integrity when there can be no absolute
assurance of maintaining integrity. We relate
integrity to a fundamental aspect of protection, a
strategy of risk reduction.

3.5.1. Adherence to a Code of Behavior

Adherence to a code of behavior focuses
on the constraints of the active agents under
examination. It is important to recognize that
agents exist at different layers of abstraction
(e.g., the user, the processor, the memory
management unit). Thus, the focus on the active
agents is to ensure that their actions are
sanctioned or constrained so that they cannot
exceed established bounds. Any action outside
of these bounds, if attempted, must be prevented
or detected prior to having a corrupting effect.
Further, humans, as active agents, are held
accountable for their actions and held liable to
sanctions should such actions have a corrupting
effect. One set of applied constraints are derived
from the expected states of the system or data
objects involved in the actions. Thus, the
expected behaviors of the system's active agents
are conditionally constrained by the results
expected in the system's or data object's states.

For example, consider a processor (an
active agent) stepping through an application
program (where procedural actions are
conditioned or constrained) and arriving at the
conditional instruction where the range (a
conditional constraint) of a data item is checked.
If the program is written with integrity in mind
and the data item is "out of range," the forward
progress of the processor through the
applications program is halted and an error
handling program is called to allow the processor
to dispatch the error. Further progress in the
application program is resumed when the error
handling program returns control of the
processor back to the application program.

A second set of applied constraints are
derived from the temporal domain. These may
be thought of as. event constraints. Here, the
active agent must perform an action or set of
actions within a specified bound of time. The
actions may be sequenced or concurrent, they
may be performance constrained by rates (i.e.,
actions per unit of time), activity time (e.g., start
& stop), elapsed time (e.g., start + 2hrs), and
discrete time (e.g., complete by 1:05 p.m.)

Without a set of specified constraints,
there is no "code of behavior" to which the
active agent must adhere and, thus, the resultant
states of data acted upon are unpredictable and
potentially corrupt.

3.5.2. Wholeness

Wholeness has both the sense of
unimpaired condition (i.e., soundness) and being
complete and undivided (i.e., completeness) [3].
This aspect of integrity focuses on the
incorruptibility of · the objects under
examination. It is important to recognize that
objects exist at different layers of abstraction
(e.g., bits, words, segments, packets, messages,
programs). Thus, the focus of protection for an
object is to ensure that it can only be accessed,
operated on, or entered in specified ways and
that it otherwise cannot be penetrated and its
internals modified or destroyed. The constraints
applied are those derived from the expected
actions of the system's active agents. There are
also constraints derived from the temporal

243

domain. Thus, the expected states of the system
or data objects are constrained by the expected
actions of the system's active agents.

For example, consider the updating of a
relational database with one logical update
transaction concurrently competing with another
logical update transaction for a portion of the set
of data items in the database. The expected
actions for each update are based on the
constraining concepts of atomicity (i.e., that the
actions of a logical transaction shall be complete
and that they shall transform each involved
individual data item from one unimpaired state
to a new unimpaired state, or that they shall have
the effect of not carrying out the update at all);
serializability (i.e., the consecutive ordering of
all actions in the logical transaction schedule);
and mutual exclusion (i.e., exclusive access to a
given data item for the purpose of completing the
actions of the logical transaction). The use of
mechanisms such as dependency ordering,
locking, logging, and the two-phase commit
protocol enable the actions of the two
transactions to complete leaving the database in
a complete and consistent state.

3.5.3. Risk Reduction

Integrity is constrained by the inability to
ensure absolute protection. The potential results
of actions of an adversarial attack, or the results
of the integrity failure of a human or system
component place the entire system at risk of
corrupted behavior. This risk could include
complete system failure, corrupted
representations of data, or complete loss of data.
Therefore, a strategy of protection which
includes relatively assured capabilities provided
by protection mechanisms plus measures to
reduce the exposure of human, system
component, and data to loss of integrity should
be pursued. Such a risk reduction strategy could
include the following:

a. Containment to construct "firewalls" to
minimize exposures and opportunities to
both authorized and unauthorized
individuals (e.g., minimizing, separating,
and rotating data, minimizing privileges of
individuals, separating responsibilities, and
rotating individuals).

b. Monitors to actively observe or oversee
human and system actions, to control the

progress of the actions, log the actions for
later review, and/or alert other authorities
of inappropriate action.

c. 	 Sanctions to apply a higher risk (e.g., fines,
loss of job, loss of professional license,
prison sentence) to the individual as
compared to the potential gain from
attempting, conducting, or completing an
unauthorized act.

d. 	 Fault tolerance via redundancy (e.g.,
databases to preserve data or processors to
preserve continued operation in an
acknowledged environment of faults).
Contingency or backup operational sites
are another form of redundancy. Note:
layered protection, or protection in depth,
is a form of redundancy to reduce
dependency on the impenetrability of a
single protection perimeter.

e. 	 Insurance. to replace the objects or their
value should they be lost or damaged (e.g.,
fire insurance, theft insurance, and liability
insurance).

4. Conclusions & Recommendations

This paper discusses the need for
integrity to be promoted and preserved with
respect to data and systems. It recognizes that
this need exists for military, public, private, and
commercial organizations who depend on the
integrity of their systems and their data in
automated information processing, process
control, and embedded computing applications.
Further, it shows that this need has been
recognized since the early days of computer
systems development. This latter point is
important in that often the argument is made that
we have had no worked examples of integrity and
that we need to conduct a significant amount of
research before any criteria are written. This
paper tries to add some balance to that
argument.

The paper discusses the difficulty of
trying to provide a single definition for the term
integrity as it applies to data and systems. We
conclude that a single definition is probably not
possible and, indeed, not needed. An
operational definition that encompasses various
views of the issue seems more appropriate. We

244

offer such an alternative so that progress beyond
definitional aspects can be made. Our
framework, or operational definition, provides a
means to address both data and systems integrity
and to gain an understanding of important
principles that underlie integrity. It provides a
context for examining integrity preserving
mechanisms and for understanding the integrity
elements that need to be included in system
security policies. However, this study is only a
beginning and remains incomplete in terms of
fully addressing the topic.

The framework provides foundational
material to continue the efforts toward
developing criteria for building products which
preserve and promote data and systems integrity.
For some aspects, we conclude that there is
sufficient understanding to write specific criteria,
but for other aspects of such criteria, more
experience, research, debate, and proofs of
concepts will be needed. We believe that this
partial knowledge should not delay the writing of
criteria. It is the idea of concurrently pursuing
both criteria and criteria-enabling research that
we believe is key to making the rapid advances
necessary to meet the recognized needs for
integrity.

We recognize the need to establish a
means to make the criteria, and thus the systems,
evolvable with respect to integrity protection.
Establishing this means may require more
participation by systems vendors in the
evolutionary development of integrity criteria
than there was in the development of
confidentiality criteria. The key here is to
understand what is involved in designing systems
for evolution so that criteria do not unnecessarily
stifle new system designs or new concepts for
preserving or promoting integrity.

We recommend that a criteria
development study be undertaken to extend and
apply the framework that has been developed in
this paper. The criteria study should be
conducted in parallel with protocol and
mechanism demonstration/validation studies.
This effort should interact with these two areas
in receiving and providing direction. One major
part of the criteria study should be form, a
second part should be scope and specific
content, a third part should address the evolution
of criteria, and a final part should address the

linkages of product criteria to certification and
accreditation of systems by using authorities.

References

[1] 	 Mayfield, T., J.M. Boone, S.R. Welke.
1991. Integrity-Oriented Control Objectives:
Proposed Revisions to the Trusted Computer
Systems Evaluation Criteria (TCSEC), DoD
5200.28-STD. Alexandria, VA: Institute for
Defense Analyses. IDA Document D-967.

[2] 	 Department of Defense. 1985. DoD Trusted
Computer System Evaluation Criteria. DoD
5200.28-STD. Washington, DC: U.S.
Government Printing Office.

[3] 	 Webster's Ninth New Collegiate Dictionary.
1988. Springfield, MA: Merriam-Webster,
Inc.

[4] 	 Bonyun, David A. 1989. On the Adequacy
of the Clark-Wilson Definition of Integrity.
In Report of the Invitational Workshop on
Data Integrity, January 25-27, 1989,
Gaithersburg, Maryland, B.5-B.5-9.
Gaithersburg, MD: National Institute of
Standards and Technology.

245

A FRAMEWORK FOR DEVELOPING ACCREDIT ABLE MLS AIS

R. K Bauer, J. Sachs, M. Weidner and W. Wilson

Area Systems, Inc.

2841 Junction Avenue, Suite 201

San Jose, CA 95134-1921

(408) 434-6633

Abstract
Multilevel Security (MLS) is an integral requirement of many of our defense systems. Building a system to meet these
requirements while still meeting stringent operational needs is quite challenging if not overwhelming. This paper
highlights the tasks associated with certifying and accrediting a system to meet the security and operational needs of the
end-user, then proposes a framework for integrating these tasks into the development process.

1. Overview

The ultimate objective of any Automated Information System (AIS) development or integration
effort is to be accredited for operational use. To achieve this objective, the system must provide a
satisfactory blend of security disciplines while accomplishing the intended mission.

Recent efforts integrating security into the development and acquisition process described in
DOD-STD-2167A have focused attention on the TCSEC trust requirements of the TCB [6,7,11].
While this is a necessary condition for secure MLS operation, it is not sufficient. The
fundamental premise of this paper is that prior efforts, while taking significant strides toward
making trusted systems ubiquitous in all defense systems, have not gone far enough to ensure they
will be operationally secure.

Operational security is often described as a chain comprised of links each of which represents a
different security discipline (COMPUSEC, COMSEC, personnel security, administrative security,
etc). This requires a balanced approach to allocating security requirements to each of the
disciplines since the chain is only as strong as the weakest link. This collective set of
requirements is the principal concern of the security certification efforts. Certification and MLS
AIS development must be closely interrelated in order to achieve an accreditable system meeting
its operational requirements. Key objectives of the development process and its products necessary
to enforce this interrelationship are the ability to:

1) support consideration of mission requirements and security requirements prior to
allocating requirements to trusted mechanisms.

2) support trade-oft's between security disciplines and between overall security versus
mission requirements.

3) address structure of complex integrated systems using newly developed and COTS
components.

This paper presents background on the specific security tasks which must be performed and
reviewed in support of certification (assessment of the overall security posture of a system in its
intended operational context) and accreditation (the approval for operational use), and proposes a
framework for developing Multilevel Secure Automated Information Systems (MLS AISs)
meeting these objectives.

2. Certifying and Accrediting AISs

Accreditation is the step which ultimately determines whether an MLS AIS can be used to meet
operational needs with acceptable risk. Although this step occurs at the boundary between
development and operation, we discuss it first because it defines objectives for the earlier
development and certification tasks. Accreditation is the step which determines that a system is

246

secure, or more accurately, secure enough given the fact that no system affords absolute security.
The determination of what is secure enough. is made in the light of operational mission
requirements, sensitivity of data, and residual risk (remaining threats and vulnerabilities) of
the system in the operational environment. This decision uses the certifier's assessment of the
trustworthiness of the· system bS:sed on thorough review and analysis of the features and assurance
the integrator has provided to make the system trusted. These words go beyond just the
requirements in the TCSEC to embrace all security disciplines including those addressing
personnel, physical, procedural, communications, and emanations security requirements. The
integrator's assertion that the system is trusted and the certifier's assessment of the degree of
trustworthiness must cover all aspects of the system's adherence to its System Security Policy.

2.1 Accreditation

The Designated Approving Authority (DAA) is typically the individual responsible for the
creation and maintenance of the information resources or the execution of the mission. The DAA
determines the acceptable level of risk while balancing the security of the AIS against the
operational benefit of meeting the system's mission. Government policies and directives
mandate protection features for each of the security disciplines based upon the information types
processed and .the mission accomplished. An analysis of the adequacy with which these
requirements are met provides the evidence that supports the DAA's accreditation decision.

Accreditation considers the relationship between the system's trustworthiness and its operational
environment. Important operational and environmental considerations include:

• 	 Range of data processed (e.g., Unclassified through Top Secret)
• 	 User trustworthiness (e.g., clearances)
• 	 Intended mode of operation (e:g., Dedicated, System High, Multilevel)
• 	 Location of the operation (Inside a command center or in a commercial office building?)
• 	 The owner of the information
• 	 What is the mission and the operational concept

The DAA considers both residual risk and operational requirements in determining if the system
will be allowed to operate. The DAA decides if the system:

• 	 May operate as planned.
• 	 May operate if specified changes are made verified prior to operation.
• 	 May begin operation as planned on the condition that specified changes are made within

some period after initial operation.
• 	 Will not be allowed to operate.

Required changes may affect the system design or implementation, the way the system is operated,
or the environment in which the system is operated.

The most intensive DAA involvement occurs at the end of the system development process when
the final review is made to determine operational suitability. However, early DAA involvement
is important, specifically with respect to the Security Concept of Operations and the intended
operational environment. This allows tradeoff's to be made in a manner which adequately
minimizes risk while maximizing operational flexibility. The DAA also reviews the system at
regular intervals (typically 3-5 years) and after major system changes. Major system changes
include altering the underlying security policy, changing the threats the system was designed to
counter, modifying or exchanging the components enforcing the policy, or accumulated changes
which may impact security enforcement. It is important to provide information to facilitate these
reviews so that the DAA can make a sound and expeditious decision. Clear policy and design
documentation and rigorous configuration control are needed to support these reviews. Careful
analysis of just what each component is trusted to do is essential to the efficient review of the
impact of changes to the system as a whole.

247

2.2 Modes ofoPeration

Accreditation of an AIS allows it to process data in a specific mode of operation. Modes of operation
are defined in DoD 5200.28. The reliance on system enforced security controls varies widely
among the various modes of operation. At one extreme is dedicated mode in which all us~rs are
cleared for all data on the system and have a need-to-know for all data. While accountability may
be required in order to determine which users have accessed which data, the system is not counted
on to enforce an access control policy restricting which data users can access. Accordingly, the
security features required of the system and the degree of assurance required for those features is
least in this mode of operation. In TCSEC terms, it is possible that a D system might suffice for
dedicated mode although a C2 system would be more appropriate even in this environment because
of the accountability it provides.

In system high operation all users are cleared for all data but may not possess a need-to-know.
The system is not relied on to control access by users to data based on classification, but it does
need to provide discretionary controls which can be used to control access to data based on a user's
need-to-know. In system high mode a C2 system is usually sufficient. However, the C2 system
provides no means for associating classifications with data and this association may be required
if output is to be disseminated to anyone not cleared for the data on the system.

In controlled mode or multilevel (MLS) mode, some users do not possess a sufficient clearance or
formal access authorization to access all.of the data on the system. The distinction between MLS
and controlled mode is the allowed size of the difference between the least cleared user and the
classification of the most sensitive data. In either case the system is relied on to control access to
data based on user clearances and data classification. This means the system must implement a
mandatory access control (MAC) policy. In the TCSEC, MAC enforcement is first required at the
Bllevel. The driving force for introducing requirements of systems above the Bllevel is the need
for greater assurance than that provided by a system developed to meet Bl level requirements.
Additional security requirements not considered in the TCSEC may be appropriate to meet the
operational site's needs in terms of data integrity and availability. (Note: in the intelligence
community, Compartmented Mode is used where data from multiple compartments is processed on
the system and not all users are authorized access for all the compartments).

2.3 Certification

Certification assesses the operational risk of a system. The certification must verify and report on
the environmental factors (e.g., physical and personnel security) and determine the
trustworthiness of the system. The trustworthiness of a system can be viewed in terms of the
security features provided by the system and the degree of assurance that those features are
properly designed, implemented and integrated. Since no useful system can provide absolute
security, it is necessary to make intelligent tradeoffs between alternative designs and
implementations that accurately reflect the security and functionality issues associated with these
tradeoff's. This requires the development of documents which clearly and precisely describe the
security policy, the system design, and the interaction of the system enforced security features with
the operational environment.

It is essential that the relevant documents be stated in a form which is as accessible as possible to
developers, certifiers, users and the DAA. Only if all parties understand the issues involved in
the tradeoff's between security and functionality is an informed decision possible. While this may
seem obvious, experience has shown that considerable care needs to be taken to make sometimes
arcane INFOSEC issues understandable to those not familiar with the technology and .vocabulary
[4,8]. Clarity of policy, requirements, and design documentation is especially crucial when one
considers the large number of parties which may participate in this process and their need to share
a common understanding and terminology. Interested parties may include security advisors
such as MITRE, Aerospace Corporation and NSA and organizations responsible for external
interfaces such as DIA, DCA, and NSA

248

The certification personnel should be involved in the early stages of system development.
Evidence regarding the system's ability to meet the security requirements should be presented to
the certifiers in a top-down fashion (system-wide issues followed by subsystem issues followed by
component issues) during system development. Thus, feedback regarding the more abstract
system design can provide guidance when making more detailed subsystem and component
design decisions. Once the system is complete, a bottom-up evaluation of the system should be
performed so that the certifiers can use the evidence from lower-level evaluations in their
analysis of higher-level subsystems and of the entire system.

The certifiers review evidence provided by the integrator supporting the claim that the system is
trusted and evidence produced by independent verification and validation activities. For a trusted
system composed of integrated trusted products, certification evidence for the system· as a whole

. will typically depend on an evaluation of certification evidence for the subsystems and
components..The NCSC's CSC-STD-003-85, Guidance for Applying the Department of Defense
Trusted Computer System Evaluation Criteria in Specific Environments provides some help in
selecting the appropriate class TCB for a given application environment, but there is no latitude in
constraining the operational environment. It assumes worst case operational risk environment.
Landwehr and Lubbes developed an approach to use other operational factors [9] to better refine the
risk index of the environments guideline by reducing the risk of exploitation in the operational
environment, resulting in reducing the trust requirements of the mechanism. Neither approach
went far enough in considering the impact of the operational environment, and as such is
inadequate to cover the certification and accreditation of large integrated systems consisting of
COMSEC and COMPUSEC components with differing levels of trustworthiness in a variety of
environments.

2.4 Security Mechanisms

In an MLS AIS there will be many required security mechanisms. These services will be drawn
from COMPUSEC, COMSEC, and TEMPEST. The certifiers need a vehicle to determine that the
right set of security services have been provided for the operational environment. The Security
Policy Statement identifies basic requirements which must be met. However, it is usually possible
to meet these requirements with more reliance on environmental controls or more reliance on
system enforced controls. The document which relates the system enforced controls to its
environment is the Security Concept of Operations. It allocates the security requirements between
TCB features and environmental controls and identifies the interrelationships between the TCB
and the environmental control measures. This is the first document which explicitly identifies
the security features which the system will provide. Information on how these features will work
and precisely what controls are enforced is provided by more detailed security documentation such
as the Descriptive Top Level Specification.

Potentially mechanisms include the following: confidentiality, accountability, data integrity,
and resource availability.. Confidentiality covers Mandatory Access Control, Discretionary
Access Control, and encryption. Accountability requires identification of individuals,
authentication that the individual is who s/he claims to be, and audit of the user's security relevant
actions. It is interesting to note that while a product evaluated against the TCSEC or TNI may
come with assurance of access control and accountability features by virtue of its evaluation, it is
unlikely to have been evaluated for integrity and availability features. Furthermore, integrity
and availability of one component may be significant for system wide confidentiality or
accountability if the component is used to store audit data or data on which access decisions are
based.

2.5 Security Assurance

Trustworthiness cannot be established by emphatic assertion on the part of the developers. The
integrator must provide evidence that the system is trusted. In the case of MLS AISs this evidence

249

is reviewed by the certification team. This review, along with independent testing and analysis,
determines the trustworthiness of the system.

Assurance that the system meets its security requirements must be built in as the system is
developed. It is more difficult and often impossible to gain the degree of assurance required for a
trusted system by after the fact testing and analysis. Testing and a variety of analysis techniques
during development and integration are an essential part of gaining the required assurance. The
development process must be structured so that designers and implementors are aware of system
security requirements and their implications for the design and implementation tasks. The
design a,nd implementation must be structured to support analysis of the adherence of the
implementation to the system security requirements. This means the design and implementation
must be understandable to certifiers. Assurance evidence comes in four forms: structured design,
structured development process, testing, and analysis.

Structured design supports the analysis of security requirements adherence. Structured design
starts with a carefully conceived security architecture. This architecture, which allocates the
system security requirements to the subsystems responsible for the enforcement of the
requirements, may be presented as part of the System Security Top Level Specification or as a
separate document. An effective security architecture can limit the security responsibility. of
subsystems and ultimately the components used to implement them. This is an application of the
principle of least privilege. Use of least privilege allows certifiers to focus their review on the
security critical portions of the design and implementation and to further concentrate their review
on the potential abuse of particular privileges. This principle should be followed throughout the
design and implementation to the largest extent possible consistent with performance and
functionality requirements. Since extensive use of least privilege will certainly impact
performance, and is likely to impact usage flexibility, this tradeoff must be made with skill and
care.

Structured trusted development has two facets. First, security requirements must be articulated
and made available to designers and implementors in a manner which facilitates their use. This
requires security analysis and documentation to be closely intertwined with the system
development. Security requirements need to be flowed down to more detailed design levels. The
implementor of any portion of the system must be able to understand the system security
requirements for the task at hand. Second control of what components, software and hardware,
are introduced into the final MLS AIS, must be applied throughout the development process.
Moreover, configuration control must apply to all design documentation and security
documentation as well as hardware and software.

The effectiveness of testing can only be as great as the knowledge of the requirements against
which to test. This emphasizes the need for an effective flow down of security requirements to
subsystems and components in order to facilitate security testing at these levels. In the case of
components which are evaluated products, the requirements for the component need to be reviewed
against the evaluated features in order to determine the applicability of evaluation testing. If
additional features are counted on to enforce system security it may be necessary to perform
additional testing on the product.

With today's operational AISs testing can never be exhaustive. Also security requirements tend to
be negative requirements (i.e., the system never allows certain kinds of unacceptable behavior).
For these reasons security testing must be supplemented by security analysis techniques to gain
assurance in the correct design and/or implementation of the security features. These techniques
include: security policy models, security top level specifications, verification, covert channel
analysis, security fault analysis (SFA), and penetration testing.

Security Policy Models give a precise statement of the security policy requirements enforced by the
Trusted Computing Base (TCB) and the types of operations provided by the TCB. Models may be

250

developed informally or formally, with the greater precision afforded by formal, mathematically
rigorous models required for systems deployed in riskier environments.

Security Top Level Specifications provide insights into how security mechanisms work, although
they do not include most implementation details. An informal Descriptive Top Level
Specification (DTLS) describes not only the functionality provided by the TCB, but also the
mechanisms used to make the TCB tamperproof and which guarantee that the TCB controls all
accesses by subjects to objects. For more highly trusted systems, a Formal Top Level Specification
(FTLS) is required. This is required in addition to, not instead of, the DTLS because formal
specification languages do not support the specification of some important aspects of TCB behavi,.or
such as the interfaces between the TCB software and the hardware described in the DTLS.

Verification compares different descriptions of system behavior to show that the more concrete
description satisfies all of the requirements of the more abstract description, for example, one can
verify that an FTLS meets the requirements of the Security Policy Model. If both descriptions are
formally presented, a formal verification, using mathematical proof, can be done. Formal
verification is only practical at the design level (e.g., Model-FTLS verification) because the
amount of detail at more concrete design levels and in the implementation quickly make formal
verification using current state-of-the-art techniques for systems of even moderate size
intractable.

Covert Channel Analysis is a technique for finding information flows contrary to the System
Security Policy. Covert channels exist due to the possibility that the modulation of shared
resources by one subject (or process) can be detected by another, even if the System Security Policy
would normally prohibit communication between the two.

Security Fault Analysis is a technique familiar to the COMSEC community. Whereas the
COMPUSEC community has put a large emphasis on software verification, SFA has focussed on
analysis of hardware and the effect of faults on the security of the component. This was originally
done when the complexity of devices made analysis down to the gate level practical. These
techniques are now applied to more complex hardware bases. In addition to the continued need to
apply SFA to critical hardware components, the principles of SFA provide lessons to COMPUSEC
design and development such as the significance of single points of failure.

Penetration Testing assesses the strength and effectiveness of security features by means of an
attempt to circumvent those features. The penetration testers analyze the system design and
implementation for potential flaws and then attempt to utilize those flaws to penetrate the system.
The results of penetration testing are only meaningful if it is carried out by experienced
individuals.

2.6 System and SecurityEvolution

The discussion above was primarily from the point of view of a newly developed MLS AIS.
Actually, most MLS systems are typically based on existing systems. Even when a system is
developed from scratch with MLS as an objective, it is likely that the need to promptly address user
requirements will necessitate an initial operating capability (IOC) with capabilities which will
evolve as new technology becomes available. The system may also have to evolve because of
changes in the environment which reduce or increase the reliance on system enforced security.
Such development and integration efforts in the past have used a modified waterfall development
model to provide some form of iterative development cycle [6,11]. New development models, for
example the Spiral Model developed by Boehm [15], are being investigated for their contribution to
the development of trusted systems [5].

The evolution of systems needs to be viewed from the point of view of its impact on system
functionality, performance, and trustworthiness. New commercial-of-the-shelf (COTS) products

251

http:behavi,.or

are not an end in themselves. Rather they are useful in so far as they make it possible to provide
increased functionality, better performance, or a higher degree of trustworthiness.

The certification team needs to be involved in the consideration of proposed improvements in
order to determine the security ramifications of the changes. Just as with the original
certification, the certifiers will need to provide information to the DAA which allows the DAA to
determine if the level of risk is acceptable. If the certifiers are involved in the early consideration
of proposed changes they can provide input as to whether the change will unacceptably affect .
security. If that is the case, the certifiers can propose alternative changes or recommend no
change be made. If this analysis is done before work on the change has proceeded very far, wasted
effort can be averted. The DAA must accredit the altered system. Coordination with the DAA
should define the level of change requiring reevaluation and whether interim operation of the
altered system may take place before final DAA approval.

Mission Directive Security Directives

~ .~

mis;n req'ts "' secut policy

f secure concept

~r··/m·r~
system requirements SPM ----- ~

levlol V ./ / \ ~ -- M=.,~~
p;::2~::z::;1:Z:z:Z2d:::!::.Z:::i!:Z~a:z:ZL:z:::z::;...~:zs~TLC:Sz':z:::;1:Z:z:;rJ input to

eslgn ------~ ~ environmentalf "-:
! ', !} security

r • I ' i activities
I ', n

requirements SPM , , 2'

subsystem ~ lA ~
level \II ''

L l ~~ lt''"-,, f ',,,'
r requirements " SPM' 'I IZ:z:z:z:;l:X2':¢..,........,~~-:z:::z:~~!!i:dt:zl.$.z:zz::z::.z:'.Jr-,,,

component pp===:::z:;"l-1=c==....... 'I
::C:I'""~==-=p.Z:'n=::z·~"-..tt~11j===q-]

level , / design ~ !_ 3

I
,L -~ l
I

~"~,,} STLSs'
I

COTS product f ~ ~ I
IL

,
'

selection implementation ~ I
I
I~====~~~~~Po==~~==~~g
I
I

- Isubsystem integration _ _ _ _ _________ .J

andtast 5"

iilt g
system integration ___ • ~ ___________ .J

and test :::s

Key: • optional
~nput 1o next actMty
-->test, analyze. or show

correspondence t~ reqts

Figure 1: Steps in MLS Development

252

3. MI.S AIS Development

The discussion to this point has highlighted the various tasks required to support certification and
accreditation. Failure to integrate security requirements and the attendant deliverables into the
development process and products has historically resulted in systems that were either
operationally deficient, unsecure or both [4,8]. Since security cannot be retrofitted, these tasks
must be carefully integrated into the system development process. The security requirements
must be clearly understood by all parties and appropriate requirements reflected throughout the
design and development. It must also support informed tradeoffs between security, performance
and functionality for alternative design and implementation approaches.

With these goals in mind we present the framework in Figure 1 as an approach to how particular
documents and activities are related to the overall development and certification process. For
clarity, the security tasks are called out from the standard development tasks, but the security
tasks must be executed in close collaboration with the development tasks or fully integrated with
the development process and products. The approach allows for separate security deliverables for
COTS trusted products with existing security policy models, top level specifications, etc. The
arrows in Figure 1 represent primary inputs. Later tasks will often identify required changes in
the results of earlier tasks providing necessary feedback, for example, the development of a Top
Level Specification may reveal deficiencies which must be corrected in the system design.
Certainly the form these various activities and documents take will vary, especially when the
process is used for an evolving system. The figure identifies some items which are optional
depending on the complexity of the system and its subsystems. However, it is important that
security tasks are performed which allow the tracking of security requirements through all
development steps and that these tasks support intelligent and timely tradeoff's between operational
flexibility, life cycle costs, performance, and security.

3.1 Requirements

Requirements are driven by mission directives and security directives. Applicable directives
and their implications for the. particular system under development are captured in the System
Security Policy Statement. The System Security Policy Statement specifies the security
requirements the system, in conjunction with environmental security controls, must enforce.
The System Security Policy must be stated in the context of the mission requirements.

The system security policy must be complementary to the administrative, procedural, physical,
and personnel controls present in or anticipated for the operational environment. The document
which describes the interaction .of system enforced controls and the system environment is the
Security Concept of Operations. Both the System Security Policy and the Security Concept of
Operations define the requirements for system security features. The Security Concept of
Operations is an important document for supporting the intelligent determination of tradeoffs
between security controls in the environment and system enforced controls. A Security Concept of
Operations can be written to describe phases through which the MLS system may evolve. The
Security Concept of Operations must be consistent with the System Concept of Operations.
Likewise, the System Concept of Operations must reflect the System Security Policy.

Since the Security Concept of Operations and the System Security Policy define security
requirements, they must be used by the developers to integrate security into the functional
requirements. The System Security Concept of Operations yields both environmental
requirements and system security requirements. This is noted in Figure 1, although the system
secure environment description is likely to be a portion of the System Security Concept of
Operations rather than a separate document. On the other hand, the System Security Policy Model
will typically be a stand-alone document which describes the specific properties which must be
enforced by the system TCB and the types of operations supported by the system TCB.

253

3.2 SystemArchitecture

After the system's functional and security requirements have been established, a system
architecture must be developed which defines subsystems and the functional and security
requirements on those subsystems. The first step in this process is the development of system
functional design. This has to reflect the system functional requirements and the security
requirements as described in the Security Policy Model. Depending on the complexity of the
system it may be desirable to have a Security Top Level Specification, either a DTLS or a DTLS
and FI'LS, based on the level of trustworthiness required. However, since security requirements
on subsystems are reflected in Subsystem Security Policy Models, it may be possible to incorporate
sufficient information about subsystem interaction in the System Security Policy Model and in
that way omit an explicit Security Top Level Specification. The subsystem requirements drawn
from the system functional design complete the system architecture phase. The Subsystem
Security Policy Models must reflect the security requirements allocated to that subsystem and the
impact of the functional requirements identified in the subsystem's requirements statement.

3.3 System Design

In this phase subsystem TLSs are developed to describe the security features implemented in the
subsystems. Because component Security Policy Models will not always be available, the
subsystem TLSs will be relied on to describe how security features work in each subsystem and
how components interact to implement those security features. Also, the role of the component
Security Model may be replaced by other documents such as the Software Requirements
Specification for COMSEC components. The component requirements must reflect both the
functional requirements flowed down in the subsystem designs and the security requirements in
the subsystem Security Top Level Specification. These component requirements form the basis for
selection of COTS products (whether COMSEC or COMPUSEC) or the design and implementation
of newly developed components.

3.4 System Implementation

System implementation is accomplished through the design and implementation of the newly
developed components which comprise the system and the selection of COTS products in the case of
components for which suitable products exist. Security specifications for components detail the
security aspects of the component design. Depending on the type of component, the nature of the
component security specification may vary significantly. For a complex trusted component,
whether newly developed or a COTS product, the specification may take the form of a traditional
Security Top Level Specification. For a COMSEC component, the STLS may take the form of a
Software Program Specification. In the case of particularly simple components, the component
STLS may be omitted.

3.5 Integration and Test

The steps identified in the framework provide the basis for security test and evaluation. Figure 1
shows where testing and analysis techniques can be used to ensure that security design and
requirements have been accurately followed. Security tests on subsystems can be performed using
test cases developed from the Security Top Level Specifications for the subsystems. For those
components where Security Policy Models and/or Security Top Level Specifications have been
developed, these documents can be used to generate test cases for component testing. Otherwise, the
Subsystem Security Top Level Specification will have to be relied upon to provide sufficient detail
on the required security behavior of the component to serve as a starting point for test case
generation. Security tests for the integrated system can be performed based on test cases derived
from the System Security Top Level Specification, if one has been developed, or directly from the
Informal Security Policy Model if it is sufficiently detailed.

254

3.6 SecurityAnalysis

Section 2.5 described techniques which can be used to perform security analysis at various points
in the system development. Verification can be used to demonstrate that the System Security Top
Level Specification meets the requirements of the Security Policy Model and that the subsystem
Security Policy Models meet the requirements of the System Security Top Level Specification.
Alternatively, the Subsystem Security Policy Models can be shown directly to meet the
requirements of the System Security Policy Model. For each subsystem, verification can be used to
justify that the design reflected in the Subsystem Security Top Level Specification is consistent
with the Subsystem Security Policy Model. Where component models and security specifications
exist, the verification can be carried down to that level. Otherwise, testing and review of
correspondence of the component implementation to the requirements of the Subsystem Security
Top Level Specification can be used to show that the component satisfies its specified security
requirements.

Penetration testers will use all of the documentation and specifications generated in this process to
determine potential faults to exploit. The penetration tester must eventually test these potential
faults by attempting to penetrate the integrated system. However, some faults may be dependent
solely on the fUiictionality of a particular component or subsystem. These faults can be .tested as
soon as the component or subsystem is available without waiting for integration. This early
feedback can support penetration testing which is extensive enough to provide reasonable
assurance, and the need to deploy the system promptly.

3.7 Tradeo:ffs

The framework described above allows security and functional requirements to be considered at
all stages of system development so that intelligent tradeoff's can be made. The first tradeoff's are
made in developing a System Security Policy which is sufficiently stringent to meet the
requirements of relevant directives and yet flexible enough to allow mission requirements to be
met. The next tradeoff is between system enforced and environmentally enforced security. This
tradeoff is made as the S.ecurity Concept of Operations is developed, reviewed, and updated. In the
system architecture phase the system functional design is the vehicle for allocating requirements
to subsystems. From the security point of view this allocation should be made in such a way as to
minimize and simplify the TCB. However, these considerations need to be considered in the
context of their effects on performance and flexibility. In the implementation phase, tradeoff's
between least privilege and performance will again need to be made as the subsystem designs are
developed. At this stage an important factor in that tradeoff will be the availability of evaluated
products which can provide some of the security enforcement.

Finally, it should be noted that this is necessarily an iterative process, for example, as subsystem
designs are developed it may become clear that a reallocation of requirements among subsystems
would enhance security, performance, functionality or some combination of these. Also, as new
COTS products become available, an altered subsystem design or even system functional design
may be appropriate. It is important to enforce configuration control on this process so that even
with iterations the set of accepted documents, specifications, and imp~ementations are consistent.

3.8 Operational Documentation

One of the important outputs of the MLS system development process is the documentation which
tells privileged users and other users how to interact with the system and maintain security.
Improperly used security controls can be just as vulnerable as insufficient or improperly
implemented controls. Two key documents which tell users how to properly use and maintain the
security features are the Trusted Facility Manual (TFM) and Security Features User's Guide
(SFUG). The TFM describes the functions available to privileged users such as the system
administrator and system security officer as well as what these users must do to properly initialize
and maintain the system; and securely recover from system failures. The SFUG explains to

255

general users what security controls are enforced and what the user's role is in conforming to the
security policy. Proper training of all users on their security responsibilities and more extensive
training for privileged users on how to keep the system secure are essential for the operational
system to be run securely. Clearly written, comprehensive documentation plays a central role in
making sure the users understand their security responsibilities.

4.0 Conclusion

This integrated approach to system development and security engineering allows effective
tradeoff's between system security controls and operational requirements to minimize the total cost
of development, operation, and maintenance. It ensures that the broader set of security
requirements, and not just trust requirements, are adequately considered throughout the
development process. Finally, it supports the integration of complex systems comprised of trusted
and untrusted COTS products, and newly developed components. This MLS AIS development
approach provides the basis for successful certification and accreditation of the fielded operational
system.

5.0 References

(1] 	 Department of Defense, Security Requirements for Automated Information Systems DoD 5200.28, March
1988.

[2] 	 National Computer Security Center, Computer Security Requirements-- Guidance for Applying the DoD
TCSEC in Specific Environments, CSC-STD-003-85, 25 June 1985.

[3] 	 National Computer Security Center, Department ofDefense Trusted Computer System Evaluation Criteria,
DoD 5200.28-STD, December 1985.

[4] 	 D. J. Bodeau and M, J. Reece, "A Multilevel-Mode System for Space Applications: Lessons Learned," in
Proceedings ofthe Sixth Computer Security Applications Conference, IEEE Society Press, December 1990.

[5] 	 A. Marmor-Squires, B. Danner, J. McHugh, L. Nagy, D. Sterne, M. Branstad, and P. Rougeau. "A Risk­
Driven Process Model for the Development of Trusted Systems," in Proceedings of the Fifth Computer
Security Applications Conference, IEEE Society Press, December 1989.

[6) 	 T. C. V. Benzel, "Developing Trusted Systems Using DOD-STD-2167A," in Proceedings of the Fifth
Computer Security Applications Conference, IEEE Society Press, December 1989.

[7] 	 S. D. Crocker and E. J. Siarkiewicz, "Software Methodology for Development of a Trusted BMS:
Identification of Critical Problems," in Proceedings ofthe Fifth Computer Security Applications Conference,
IEEE Society Press, December 1989.

[8] 	 C. R. Pierce, "Experiences in Acquiring and Developing Secure Communications-Computer Systems," in
Proceedings ofthe Thirteenth National Computer Security Conference, National Computer Security Center,
October 1990.

[9] 	 C. E. Landwehr and H. 0. Lubbes, An Approach to Determining Computer Security Requirements for Navy
Systems, Technical Report NRL 8897, Naval Research Laboratory, May 1985.

[10] 	 A. C. Hoheb, "Integrating Computer Security and Software Safety in the Life Cycle ofAir Force Systems," in
Proceeding• ofthe Thirteenth National Computer Security Conference, National Computer Security Center,
October 1990.

[11] 	 T. c~ V. Benzel, "Integrating Security Requirements and Software Development Standards," in Proceedings
ofthe Twelfth National Computer Security Conference, National Computer Security Center, October 1989.

[12] 	 W. Norvell, "Integration ofSecurity into the Acquisition Life Cycle," in Proceedings ofthe Twelfth National
Computer Security Conference, National Computer Security Center, October 1989.

[13] 	 F. Tompkins and R. Rice, "Integrating Security Activities into the Software Development Life Cycle and the
Software Quality Assurance Process," Computers and Security, Vol. 5, No.3, September 1986.

[14] 	 D. E. Bell, "Working Towards A1," in Proceedings of Seventh DOD/NBS Computer Security Conference,
DOD Computer Security Center, September 1984

[15] 	 B. W. Boehm, "A Spiral Model ofSoftware Development and Enhancement," IEEE Computer, May 1988.

[16] 	 M. S. Deutsch and R. R. Willis, Software Quality Engineering, Prentice-Hall, 1988.

256

GENERALIZED FRAMEWORK FOR ACCESS CONTROL:

TOWARDS PROTOTYPING THE ORGCON POLICYl

Marshall Abrams• Jody Heaney* Osborne King* Leonard LaPadula+ Manette Lazear* Ingrid Olson*

The MITRE Corportion *7525 Colshire Dr., McLean, VA 22102
+Burlington Rd., Bedford, MA 01730

1 INTRODUCTION

The Generalized Framework for Access Control (GFAC) was introduced in [1, 4] as a framework for studying and
constructing access control policies in Automated Information Systems (AISs). This paper discusses a prototyping
effort that uses the GFAC concepts. Further, it describes a security policy and the experience gained through
implementing a prototype based on that policy.

GFAC asserts that all access control policies can be expressed as rules specified in terms of attributes and other
information controlled by authorities. All policies can be expressed within this framework, including policies
conventionally implemented through trusted processes and privilege mechanisms. The GFAC concepts include four
factors representing dimensions of choice and constraints to the designer of a trusted AIS: ·

• 	 Access Control Information (ACI) - Characteristics or properties of subjects and objects. ACI names are used in
specifying the rules of the system; their values are used by the access control rules.

• 	 Access Control Context (ACC)- Additional information, such as time of day, used in access control decision
making.

• 	 Access Control Authorities (ACA) - Authorized agents who specify ACI, ACC, and rules.
• 	 Access Control Rules (ACR) - The set of formal expressions of policy for adjudicating requests by subjects for

access to objects.

1.1 	 Markim:s

Within the OOD/intelligence community, numerous dissemination/handling restrictions and markings are applied to the
manual handling of classified documents. Examples include NOFORN (Not Releasable to Foreign Nationals), ORCON
(Dissemination and Extraction of Information Controlled by Originator), and REL XX (Authorized for Release to
(name of country(ies)/intemational organization), which are defined in DCID 1(7 [2]. Williams and Day [8], and also
Graubart [3], provide excellent discussions of the complexities of such markings for classified documents, and the
inadequacies of current automated systems in handling them.

Such restrictive control markings are examples of a class of existing access control policies that limit the dissemination
of information beyond the traditional Mandatory Access Controls (MAC) and Discretionary Access Controls (DAC)
specified in the Trusted Computer System Evaluation Criteria (TCSEC) [5]. MAC and DAC have almost become
synonymous with access control in automated systems, when in practice there are many other policies in existence in
the paper world that are reasonable candidates for automation. Although MAC in particular, and DAC to some degree,
are useful and reasonable policies for some environments, support for additional policies in automated systems is
needed. The GFAC effort is attempting to demonstrate that a more general, useful model of access control is feasible
and necessary to support the many access control policies.

In the DOD/intelligence community, other policies must be satisfied in addition to MAC (i.e., in addition to having the
appropriate security clearance, the user must also satisfy the access rules of the additional policy). In the unclassified
world, such policies may be implemented through non-disclosure agreements and contractual limitations on information
disclosure. MAC may not be a requirement in conjunction with other non-DOD policies. For example, the Bureau of
Labor Statistics uses RELEASABLE AT <time,date> to safeguard unemployment figures. This information is highly
protected until <time,date> when it is widely distributed.

Using GFAC, appropriate markings and other supporting information needed to make access control decisions to
implement such restrictive control markings can easily be included as subject/object ACI or additional ACC

1 This work was supported in part by the MITRE Corporation as MITRE-Sponsored Research and in part by the U.S.
Army as Mission-Oriented Investigation and Experimentation under contract DAAB07-91-C-N751. Technical
direction for the research was provided by the National Security Agency.

257

information. Development of the necessary access controls is theoretically straightforward using GFAC. Note that the
strength or universal applicability of access control rules is independent of the information on which the rules base their
decisions. Thus, the implementation of a marlcing policy can be just as strong and pervasive in a trusted system as the
implementation of a ttaditional MAC policy.

1.2 Prototypina based on the GFAC Conccpg

To provide a tangible proof-of-concept, we are developing a prototype for one of the additional policies noted above
·that was, in turn, expressed using the GFAC concepts. ORCON is the most restrictive policy defmed in DCID tn and,
therefore, was selected as the basis for an automation policy. Development of an ORCON-like policy has been
instructive; this paper is intended to help share some of the experiences. The following sections discuss the ORGCON
policy, the ORCON-like policy that forms the basis of the prototype, and numerous prototype issues, design decisions,
results, and lessons learned. There are some characteristics of ORCON, such as special instructions relating to
incorporation or retention period, that were not included in the ORGCON policy. The term ORGCON, instead of
ORCON, is used so that a precise AIS policy can be implemented without usurping the Government's definition(s) of
ORCON.

2 ORCQN POLICY

The Organization Controlled (ORGCON) policy (described in Section 3) was developed as a practical example of using
the GFAC concepts. The ORGCON policy is a policy for AISs that builds upon the ORCON ("Dissemination and
extraction of information controlled by originatorj dissemination control on paper documents. In choosing to develop
ORGCON and prototype based on this policy, we are attempting to ttansfer a well-established policy from the control of
paper documents to the control of information in an AIS. For completeness, this section provides a high-level
description of the ORCON policy that the ORGCON policy is based on.
2.1 The ORCON Dissemjnatjon Control

ORCON is only one of a number of restrictive control markings defined in DCID tn applied in the dissemination and
use of intelligence information and related materials. These markings represent handling policies that limit the authority
of recipients of the information to use or ttansmit it ORCON requires the permission of the originator to distribute
information beyond the original receivers designated by the originator. For the purposes of this paper, the following
extract from DCID tn defines the ORCON marking:

This marking is used, with a security classification, to enable a continuing knowledge and supervision

by the originator of the use made of the information involved... Information bearing this marking may

not be disseminated beyond the headquarters elements of the recipient organizations and may not be

incorporated in whole or in part into other reports or briefings without the advance permission of and

under conditions specified by the originator.

2.2 The ORCON Oriainator apd Recipient

The originator bas not only the right, but the responsibility to identify and mark information as ORCON information.
The originator also bas the responsibility to explicitly identify what organizations will be indicated on the distribution
list for the specific information.

"Originator" is not defmed in DCID tn. We believe that the authority to control dissemination of the information rests
within an office or organization. An individual may only have dissemination authority by virtue of acting on behalf of
that office or organization. This implies that the originator of ORCON information is never an individual user. In fact,
the originator is always an office or organization code or some analog thereto. An individual does not own such
information any more than an Air Force pilot owns an F-15. Similarly, ORCON material is never addressed and
distributed to an individual. Some information may, however, be addressed to a commander only. Even this
information is likely to be handled by a limited number of people in addition to the designated recipient (e.g., executive
officer). The term designated recipient, in the preceding sentence, does not connote an individual, but rather the role
fdled by an individual (e.g., Commander-in-Chief (CINC)).

2.3 OR CON lpformatjop Dissemjpatjon

ORCON information may be received and processed in a number of different ways. Message traffic is the most
common. Messages may be read from a terminal, posted on a read-board, or routed as paper-copy. Access to the data
may be via remote terminal access from a terminal to a database at a central location. Information may also be received
via a dedicated or special purpose system.

258

The internal access to and distribution of ORCON marked information depends on its form and content, as well as the
number of staff with assigned responsibilities in the area related to the information. Access and distribution are also
dependent on the tools available to process ORCON information.

The originating organization for ORCON information is either explicit (a message has a "from" address indicating the
originating organization) or implicit (remote access to a database implies that the organization hosting the database is
the originator). ORCON information is transmitted by some method (e.g., photo-copy, electronic transmission) that
effectively creates a new copy of the information at the destination. Handling, retention, and destruction of ORCON
information, by both the originator and recipient organizations, varies. Handling, retention, and destruction depend, in
part, on other security markings on the information. Old copies of information may be destroyed after database updates.
Reports containing ORCON information are more likely kept on file for a specified period of time.

3 THE ORGCON POUCY

The ORGCON policy uses the ORCON policy concepts applied to paper documents, but was developed as an AIS
policy to control the dissemination of information. ORGCON is a policy for non-discretionary group-based access
control. Groups are discussed further in Section 4. The primary elements of the ORGCON policy are as follows:

• ORGCON information is owned by an originating organization and ownership is not alterable.
• ORGCON information is distributed only to an identified list of recipient organizations.
• The list of authorized individuals of each recipient organization is maintained by a recipient representative.

3.1 Oriainator and Recipient Representatjye Roles

The ORGCON policy controls the ownership and dissemination of ORGCON information (information marked
ORGCON). ORGCON information is owned by its originating organization. The originating organization is
represented by one or more individuals acting in the role "originator representative" (ORGREP). Any individual may
generate information that may eventually be designated with the ORGCON marking, but only an ORGREP can mark
the information ORGCON and specify a distribution list of recipients.

Individuals acting in the role of "recipient representative" (RECREP) specify the individuals who are authorized to
receive ORGCON information at the recipient organization.2 Example recipient organizations include the headquarters
staff and CINC. Note that ORGCON differs from ORCON by the introduction of the RECREP, which is believed to be
a necessary ~d practical step. The ORGREP cannot be expected to be aware of personnel changes in the recipient
organization, nor will (s)he be likely to have the privileges to redefine the membership of the recipient organizations.
The originator and RECREPs are authority agents (authority component of GFAC), perhaps the Information System
Security Officer (ISSO) or Security Administrator.

3.2 ORGCQN and ORGCON-C Markjnas

Two markings are defmed for the ORGCON policy. The ORGCON marking identifies an object as being under
ORGCON policy control. ORGCON-C·is a special marking that identifies an object as a candidate for handling under
the ORGCON policy. The ORGCON-C marking identifies the object as being write-accessible only to the individual
user who created it. By convention, this user is referred to as the owner of the ORGCON-C object. The owner may
read, write, or delete the object. The ORGREP may read the object and is privileged to change the marking; the only
authorized changes are from ORGCON-C to ORGCON. A normal progression would be for the individual owner to
pass an ORGCON-C object to the ORGREP for marking as ORGCON and distribution.

3.3 ReadinK 0RGCON Obiects

An individual can only obtain read access to ORGCON information if the individual is a member of a recipient
organization that is on the distribution list. This condition for read access holds for the creator of the ORGCON
information and all representatives of organizations. That is, once the information is marked ORGCON, there are no
exceptions to the conditions for read access. In order for an ORGREP or RECREP to be able to read an ORGCON
object, they must be members of a group named on the distribution list. As a practical matter, the ORGREP role will

2 Note that the ORCON policy identifies the headquarters element of an organization as the recipient. The
ORGCON policy has been generalized and does not imply the headquarters element as the recipient.

259

probably be placed on the distribution list and the RECREPs will be part ofeach respective recipient organization.
Other policies can be envisioned under varying circumstances.

3.4 Copyina ORGCQN Objects

In the process of distributing ORGCON information, multiple copies of the information may be generated. Many
different mechanisms could be employed for distributing ORGCON objects within a recipient organization, depending
on the AIS architecture employed. For the purpose of this paper, we discuss two possible architectures. The first
architecture has only authorized users accessing a shared file system (e.g., a single multi-user system, a shared file
server). Given this architecture, only one copy of an ORGCON object is required. The second architecture has users
without access to shared file systems (e.g., separate single or multi-user systems, non-client-server workstations). These
users will require individual copies. Therefore, the ORGCON policy must control the copying of ORGCON
information, as well as its final disposition. The original ofany ORGCON information logically resides with the
originating organization.

The major points of the ORGCON copy policy are identified below and discussed in the following paragraphs.

• 	 Only RECREPs or a daemon performing privileged system operations can copy ORGCON information for
distribution to those individuals defined as recipients.

• 	 Any recipient of an individual copy of ORGCON information can view and dispose of his/her own copy of the
information.

• 	 No individual recipient of ORGCON information can copy that information.

Many schemes for marking ORGCON objects are possible. In one scheme, an object marking has two fields, an
ORGCON field and an ORGCON-copy-control field. When an object enters the ORGCON system it is marked
ORGCON by the ORGREP. At this point the ORGCON-copy-control field defaults to Null. This configuration of
marking automatically identifies the object containing the information as the original version. When a copy is made the
ORGCON-copy-control field is fllled-in. This could be done in several ways. The fleld could contain a copy number
or some designation which identifies the recipient of the copy. This is summarized in the table 1.

Table 1. Possible Implementation of ORGCON Control Fields

STATUS FIELD

ORGCON ORGCON-Copy-Control

ORGCON original ORGCON Null

ORGCONcopy ORGCON Recipient ID

The RECREP (or daemon) is privileged to copy ORGCON objects for distribution to those users defmed as belonging
to the recipient organization. This distribution may be performed manually, but is performed by a process (e.g., a
daemon) with the privilege to make and distribute the copy, running on behalf of the RECREP. Each copy of
ORGCON information created carries the distribution list for that information and an identifler for the originating
organization.

Individuals in the recipient organization who are not RECREPs may not copy ORGCON information. The access of
these individuals to ORGCON information is limited to reading and disposal. Each individual recipient is responsible
for proper disposal of their individual copy of ORGCON information. The RECREP may delete the recipient
organization copy of the ORGCON object. ORGREPs are responsible for proper disposal of the original ORGCON
information.

3.5 Handlin& an ORGCON Object

There are several different roles associated with the ORGCON policy, and each role has different responsibilities and
privileges associated with it. In the prototype, two roles are implemented: the ORGREP and the RECREP.

When an object is marked ORGCON, the ownership of the object is changed to the ORGREP, the designated authority
for marking and extending access to ORGCON objects. The ORGCON policy rules specify the authority of the
originator representative role and the recipient representative role relative to granting read access to ORGCON objects.

260

An important feature of the ORGCON policy is that the distribution list for ORGCON information is part of the object
The ORGREP is the only role responsible for creating the distribution list (DL) for an ORGCON object The policy
decision was made that once an ORGCON object is created and the distribution list attached, no changes can be made to
the list of recipients. At the time of distribution, the ORGCON object should be thought of as jncludini the DL.
Consider that the aggregation of object and DL could change the hierarchical level classification. We have chosen not
to implement this in the current prototype, but it is one example of why the ORGCON policy forbids changes once the
DL is attached.

3.6 QRGCON Control of AcceM

The access control rules of the ORGCON policy are summarized in table 2.

Table 2. ORGCON Control of Access

WHEN THE REQUESTED ACTION IS: THE FOLLOWING CONDIDONS MUST BE MET:

Mark as ORGCON-C User is owner

Change ORGCON-C to ORGCON User is ORGREP

Read ORGCON-C object User is owner or ORGREP

Read ORGCON object User belongs to a recipient organization, or daemon

Delete ORGCON object copy User received an individual copy of the ORGCON object, or
copy belongs to recipient organization and user is RECREP

Delete ORGCON object original User is ORGREP

Copy ORGCON object User is RECREP, or daemon

Write ORGCON-C object null

4 ROLES/GROUPS AND DAC

4.1 Roles agd Groups

To develop a prototype for the ORGCON policy, identification of several roles (i.e., equivalence classes of users) is
required. Each of these equivalence classes is identified by name. The TCSEC implicitly defines groups as part of the
specification of DAC as follows:.

The enforcement mechanism ... shall allow users to specify and control sharing of those objects by named

individuals or defmed groups of individuals, or both...

The Trusted Network Interpretation (1NI) distinguishes between users and roles:

Note that "users" does not include "operators," "system programmers," "technical control officers," "system
security officers," and other system support personnel. They are distinct from users and are subject to the Trusted
Facility Manual and the System Architecture requirements. Such individuals may change the system parameters of
the network system, for example, by defining membership of a group. These individuals may also have the
separate role of users.

The concept of named equivalence classes of users, however, is too important a concept to be used only with DAC. The
usage has, therefore, been extended by prepending the policy name as an adjective when necessary for clarity (e.g.,
DAC-group, ORGCON-group). The meaning is clear: the members of this identified set of users are to be treated
identically with respect to the specified policy. There may be multiple groups, each having different privileges relative
to the specified policy.

Informally, a group is a collection of users that share a set of access control attributes. An individual member of the
group may act with any of the access privileges authorized for the group. The composition of a group is determined by
an appropriate authority, and a primary purpose of creating groups is essentially administrative convenience. However,
it is important to note the support for separation of function provided by groups. A role may be viewed as a particular

261

kind of group. The distinguishing feature of a role is the identification of unique privileges with respect to the stated
policy. When a user takes on a role (usually explicitly). the user relinquishes the privileges associated with their
previous role. A role is not associated with an individual user. but with a set of users (i.e.• a group) authorized for the
specific role. ORGCON-roles defined in this paper are summarized in Table 3.

Table 3. ORGCON-Roles

ROLE FUNCTION

Originator representative Marks an ORGCON-C object as ORGCON and affixes the
distribution list (list of recipient organizations)

Recipient representative Controls membership of recipient organization; may copy
ORGCON object for distribution to recipients

4.2 	Tradjtjonal DAC Policy

This effort has caused us to explore the nature of DAC and how it fits in the GFAC view of access control policies and
their implementations. Primarily. DoD Directive 5200.28. the TCSEC. and the DAC Guide [6] have been consulted. It
appears that the term DAC is used interchangeably to refer to both a set of mechanisms and a policy. The DAC policy
defined by the TCSEC is referred to here as traditional DAC. Traditional DAC allows an authorized user to determine
who is authorized what mode of access to an object Nothing is stated about how the user receives authorization for
specific modes. In the literature. the initial authorized user is often identified as the owner of an object. but this is not
necessarily the case. For that matter. the concept of ownership is not universally defined. The DAC policy is really a
special case of the principle of least privilege; that special case is need-to-know.

There are also numerous supporting policies that are NOT associated with DAC. With hindsight and the benefit of the
GFAC perspective. we note that many. perhaps all. of the weaknesses attributed to traditional DAC actually identify the
absence of supporting policies. GFAC provides an opportunity to experiment with the design of other identity-based
policies to overcome DAC deficiencies and to meet other policy objectives. Nothing in the TCSEC prohibits the
addition of these or other supporting policies to DAC. However. it is not clear if anyone has ever done so. A
precedence has thereby developed defming traditional DAC.

The two major shortcomings of traditional DAC are the lack of an inheritance policy and the lack of accountability.
The lack of an inheritance policy means that the mechanism only protects the container. not the information. Once the
information is read from the container. there are generally no controls on what can be done with the information; there
is no ability to control copies. The lack of accountability means that the DAC mechanisms are vulnerable to Trojan
Horses, since programs executing on behalf of a user generally assume the privileges ofthe user;

S THE PROTOTYPE

In this section. the goals of this prototyping effort are described and an overview of the System V /MLS prototyping
environment is provided. Some advantages. difficulties and limitations of adding an additional policy to an existing
secure system [9] are also discussed.

S.l 	Prototype Goals

There are two main goals to this initial GFAC prototype effort:

1. 	 To demonstrate a prototype based on the GFAC concepts.
2. 	 To implement an access control policy. namely ORGCON. in addition to MAC and DAC.

To demonstrate the GFAC concepts. the prototype must satisfy the following three goals. Note that accomplishment of
these goals makes it possible to implement any access control policy.

1. 	 The prototype must provide for the creation. maintenance. and change of those ACI relevant to the particular access
control policy being implemented.

2. 	 The prototype must provide the appropriate set of rules necessary to implement the given policy.
3. 	 The prototype must embody an explicit defmition of authority with respect to the given policy. either through well­

defined roles. through the rules, or in the ACI.

262

The second goal of the GFAC effort, to implement an additional policy, is important in order to demonstrate the
feasibility of implementing policies other than MAC and DAC.

For the sake of expediency, a system that already provides a B-level MAC policy was used as the prototype base. That
is, an existing TCB was modified to execute additional policies. We expected that many of the mechanisms used to
implement MAC sensitivity labels might carry over to the handling of the ACI for additional policies. Portions of the
TCB outside the kernel (i.e., the reference monitor implementation) were expected to be directly useful. AT&T System
V/MLS [7] was selected as the host base for development of the prototype.

5.2 	Prototype Enyjronment

System V/MLS supports two types of access controls: DAC and MAC. The discretionary controls provided are
identical to those controls provided by standard UNIX System V. DAC permits owner control of access to resources by
other users, and is implemented via the user/group/other mechanism. Pennission to read, write, and/or execute (for ~
ftles) and search (for directories) may be set for each class of users (owner of the object, group associated with the
object, and for others (all system users)).

In addition, System V/MLS provides mandatory controls, defining access to resources based on labels. System V/MLS
controls access to resources using the current operating privilege of the user and the privilege requirements associated
with a resource. Privilege is the term used to refer to the DAC group and the MAC label associated with a user or a
resource. The label is the combination of a hierarchical level and zero or more categories. A privilege can be thought
of as an instance of a group at different levels and categories. While an object has only one privilege associated with it,
users may change their current operating privilege (i.e., the label and group associated with them). The range of labels
over which a user may operate is referred to as the user's clearance. A user, however, may not necessarily be a member
of all privileges defined in that range.

Files or directories may only be created in a directory that has a label identical to the user's current operating label.
Once created, however, the ftles/directories'labels may be upgraded. Within DAC and MAC, files and directories are
accessed based on the user's current operating label (i.e., the label part of the privilege). This label must dominate (for
read access) or be identical to (for write access) the label of the file/directory the user is trying to access. Formal
models of System V/MLS and of the ORGCON policy are in preparation.

5.3 	Djfficultjes/Tradeoffs

While developing the prototype on an existing security system has its advantages, there are also numerous difficulties
and tradeoffs in retrofitting an existing system. A major dilemma was deciding which of the following two objectives
took precedence in the prototype:

1. 	 Strict adherence to the GFAC concepts and structure which could require extensive changes or additions to the
existing system base.

2. 	 Implementation of the additional policy using capabilities of the existing system without necessarily demonstrating
the GFAC concepts.

Occasionally, the effort was limited by existing structures within System V/MLS that were not alterable. Therefore,
·workarounds' were devised to implement the controls of the ORGCON policy. For example, the privilege concept in
System V/MLS, the coupling of the label {i.e., hierarchical level plus any categories) and the DAC group, and the
mechanism for the user's current operating privilege, restrict how a subject can access an object These controls are
strict and useful with respect to MAC and DAC. ORGCON, however, has additional controls and a different set of
groups (ORGCON-groups vs. DAC-groups) that presented difficulties during incorporation into the existing structure.

Part of the difficulty was related to our attempt to strictly adhere to the GFAC concepts. It was desirable to implement
ORGCON using data structures that clearly mirrored the GFAC concepts of ACI and ACC. The structures finally
chosen were rationalized as practical compromises that do not violate the GFAC concepts nor the System V/MLS
mechanisms.

In some cases, working on an existing secure system resulted in a less than ideal balance in terms of achieving the stated
goals. GFAC provides a high-level informal model of access control in AISs {i.e., an abstraction). The restrictions of
an actual system forced the sacrifice of implementation of the prototype strictly according to the GFAC concepts.

5.4 Implementjp& Based op the ORGCQN Poljcy

This section discusses the actual implementation effort on the prototype to date (June 1991). Primarily, the discussion
focuses on our current thinking with regard to best approaches for implementation of the controls to support the
ORGCON policy. Some details and issues remain to be resolved.

263

5.4.1 Observations on Implementin& Identity-Based Non-Discretionary Access Control

When formulating ideas for how to implement ORGCON, the discussion -of the suitability of the 0/G/W bit mask or
similar mechanism arose repeatedly. Initially, there was reluctance to use these mechanisms because of the well-known
weaknesses of traditional DAC mechanisms. The DAC access control list (ACL) and 0/G/W mechanisms are useful,
well known, and widely implemented. There is no apparent reason not to use them in implementing other policies.
Confusion has sometimes resulted from the common identification of DAC mechanisms with DAC policy. The
following discussion should aid in the clarification of the issue.

The particular category ofcontrols we are interested in is the class of identity-based non-discretionary access controls,
as exemplified by ORGCON. Traditional DAC mechanisms provide a weak form of need-to-know; the ORGCON
policy requires a much stronger form of need-to-know. After considerable debate, we decided that the 0/G/W
·mechanism can be an effective mechanism for identity-based access control, IF we also implemented supporting
policy(ies) that closed the DAC weaknesses. Put another way, we designed the mechanisms to implement the
ORGCON policy using the traditional DAC mechanisms in conjunction with other mechanisms. The uncontrolled copy
and the lack of accountability weaknesses of DAC are limited by restricting user access to ORGCON objects to a
limited set of functions.

A major difference between the requirements of the ORGCON policy and DAC mechanisms is delegation ofauthority.
Under traditional DAC, authority to determine read and execute access to information is effectively given to anyone
having read access to an object containing the information. Write access is somewhat more restricted. Under the
ORGCON policy, the authority to grant read access is shared by two roles to whom authority is delegated. One role
(the ORGREP) has the authority to change ACI associated with the object (i.e., the ACL). The other role (the
RECREP) has the authority to change ACI which is part of the context (i.e., subject's group/role membership). This
can be compared to mandatory controls wherein a single role (e.g., ISSO) or some agent such as the
classification/clearance officer, changes ACI associated with the subject (clearance) and ACI associated with the object
(classification).

The prototype implements two roles: the ORGREP and the RECREP. The prototype includes a ''role" command, that
allows users to assume a given role and limits their actions within that role. For example, a user wishing to act as the
ORGREP would explicitly change role to that of ORGREP. Appropriate TCB checks are made to ensure that the user is
authorized to act in the ORGREP role, and if so, the user, acting as ORGREP, is put in a restricted shell that limits the
available commands to those necessary to perform the appropriate ORGREP functions (e.g., read ORGCON objects,
add the distribution list, store the object, print the object). A similar role command is provided for the RECREP.

Since System V /MLS does not imlement ACLs it was necessary to develop a strategy for providing an ACL. Initially
we anticipated using available space in the label structure to implement an ACL by creating a pointer field to a linked
list containing the list of recipient organization roles. However, this proved infeasable due to the implementation of
labels in System V /MLS. A further issue was how to notify recipients of a new ORGCON object and how to deal with
recipients on remote AISs. Both of these were solved by exploiting the multi-level secure mail facility provided by
System V /MLS. The ACL was incorporated in the header of the message and mail mechanisms are used to distribute
ORGCON objects and notify recipients.

The credibility, reliability, and trustworthiness of the DAC authority is rather low. Lack of accountability undoubtedly
contributes to this low esteem. While DAC is supposed to be used to implement need-to-know policy, the DAC
Guideline [6] points out that access could be granted based on "whom do I like." Under the ORGCON policy and
MAC, access is controlled by a designated authority who is held accountable for his/her action. This authority is
responsible for changing the appropriate ACI based on information, such as a person's clearance or an organization's
roster, supplied by equally authorized and audited officials.

5.4.2 Addjtjopal ORGCON ACI

To support the ORGCON policy, several attributes were added to the object's ACI. The ORGCON marking was
previously discussed. The attribute "ORGCON- distribution" is also part of an object's ACI. The distribution list is a
set of recipient organizations (e.g., CINCPAC, Division X), serving as an access control list within the computer
system(s) and a distribution list when hardcopy is obtained. The defmition of these organizations and roles is part of the
ACC (i.e., the context on the destination AIS). The attribute originator identification (orig-ID) is also maintained in the
ACI. Only the ORGREP can populate the ORGCON distribution list and provide the orig-ID for an ORGCON object
In the prototype, all the ORGCON-related ACI are associated with the object or are ACC (i.e., there is no additional
ACI associated with the subject).

264

5.4J Desi&natin& ap Object ORGCON-C

One of the components of the implementation of the ORGCON policy is the ORGCON DESIGNATE program. This
program achie:ves the fust steps in limiting the dissemination and use of ORGCON infonnation.

Any user can create a potential ORGCON objecL However, once an object is designated ORGCON, the creator of the
object no longer has the authority over that objecL The originating representative is responsible for attaching the
distribution list to the object (although the creator may provide a suggested distribution list) and distributing the objecL
The designate program handles this "passing" of authority from the creator to the originating representative.

The program provides a convenient interface to the user for "passing" an object to an ORGREP, and handles the details
associated with the changes in authority, labeling the object, and the restricted access requirements of an ORGCON-C
object. The designate program takes the specified me and perfonns the following actions:

• Marks the me ''ORGCON-C" (ORGCON candidate)
• Changes the user (creator) pennissions to <read>.
• Changes the groups pennissions to <read>.
• Changes the other pennissions to <null>.
• Changes the group to the ORGREPS group.
• Renames the file uniquely to prevent accidental overwrite.
• Moves the me to /usr/users/orgreps.

In the process, the creator retains read pennission on the me so (s)he may still review it, and the originating
representatives may read the me (as long as the user is operating at the same MAC classification level as that of the
object). By changing the group and moving the file to /usr/users/orgreps, access is restricted to the owner and the
orgreps; no one in the group that the creator belongs to still has access to the file. This begins the process of changing
the markings and putting the additional controls on the object. At this point, the owner still has limited authority over
the ORGCON-C object.

5.4.4 Desi&oatin& ap Ohject ORGCQN

The next step, then, is for the ORGREP to change the designation of an object from ORGCON-C to ORGCON. Once
an object is designated ORGCON, the creator of the object no longer has the authority over that object. The program
again provides a convenient interface to the object, and handles the details associated with the changes in ownership,
labeling, and the restricted access requirements of an ORGCON object. At this point the designate program takes ihe
specified me and performs the following actions:

• Marks the file "ORGCON"
• Changes the ownership to "ORGREP".
• Changes the owner pennissions to <read>.
• Changes the groups pennissions to <read>.
• Changes the other pennissions to <null>.

The ORGREP then initiates the DISTRIBUTE program. This program prompts the ORGREP for a distribution list and
handles the actual distribution of the ORGCON object. It checks to verify that the organizations specified as recipients
are valid organizations and handles the dissemination of the object to local and remote systems as indicated in
configuration files. (Maintaining this authorized list of valid organizations is outside the scope of the prototype). This
program likewise provides a convenient interface for the ORGREP to distribute an ORGCON object.

6 CONCLUSIONS

6.1 Coocernin& Ses;urjty Policies

In this paper, a policy named ORGCON (Organization Controlled) that is based on the ORCON policy has been
defined. Though a policy for manual control of paper documents can be workable even though vague or lacking detail,
the policy must be extended and the detail must be specified to make it suitable for an AIS. By creating supporting
policies and hypothesizing procedures, the ORCON policy was extended and details added to create the ORGCON
policy. The ORGCON policy created pennits copying for distribution but not for incorporation of infonnation in
derivative objects.

Since the prototype described in this paper was a proof-of-concept, conformance to real world constraints was not the
highest priority though we understand that a real implementation would indeed have many such constraints. Experience
suggests that most organizations do not understand their information flows, and that security restrictions exacerbate the

265

concerns. In the extreme, some organizations may decide not to automate certain security policies because the AIS will
not have the ability to discern when the letter of the law may be ignored with impunity. However, we believe that it is
both possible and desirable to implement additional security policies in an AIS and plan to implement other existing
information dissemination/control policies.

6.2 Conceruio& Tecbpoton

This effort has demonstrated that it is possible to implement additional security policies by extending an existing TCB.
Such an effort requires a well formulated approach such as the Generalized Framework for Access Control. Part ofour
approach has involved formal modeling, which proved invaluable in aiding our understanding of the policies. A new
understanding of the increased level of detail required for modeling GFAC concepts will be reported in a subsequent
paper.

As with all research, additional questions surfaced while several others were answered. In particular, the potential
growth in size and complexity of the TCB if the mechanisms for implementing all of the security policies are placed in
the same TCB remains an issue. Exploration of the relationships among TCB mechanisms supporting separate policies
is required. For example, the TCB code that implements the ORGCON controls has no relationship to MAC or DAC
policy. Part of the problem is determining appropriate terminology to express the concepts. What words should be used
to refer to mechanisms that implement different policies? Can and should the TCB concept be expanded to embrace
additional policies? What should be the relationships among TCBs for different policies? It is anticipated that answers
to at least some of these questions will be discovered in the coming year.

LIST OF REFERENCES

1. 	 Abrams, M.D., K. W. Eggers, L. J. LaPadula, I. M. Olson, "A Generalized Framework for Access Control: An
Informal Description," Proceedings ofthe 13th National Computer Security Conference, October 1990.

2. 	 Director of Central Intelligence Directive No. 1n, Control ofDissemination ofIntelligence Information, 4 May
1981.

3. 	 Graubart, T. D., "On the Need for a Third Form of Access Control," Proceedings ofthe 12th National Computer
Security Conference, Baltimore, MD, October 1989.

4. 	 LaPadula, L. J., "Formal Modeling in a Generalized Framework for Access Control," Proceedings ofthe
Computer Security Foundation Workshop III, 12 June 1990.

5. 	 National Computer Security Center, Department ofDefense Trusted Computer System Evaluation Criteria, DOD
5200.28-STD, December 1985.

6. 	 National Computer Security Center, A Guide to Understanding Discretionary Access Control in Trusted Systems,
NCSC-TG-003, Version-I, 30 September 1987.

7. 	 National Computer Security Center, Final Evaluation Report ofAmerican Telephone and Telegraph System
VIMLS Release 1.1.2 Running on UNIX System V Release 3.1.1, CSC-EPL-89/003, 18 October 1989.

8. 	 Williams, J. C. and M. L. Day, "Sensitivity Labels and Security Profiles," Proceedings of the 11th National
Computer Security Conference, Baltimore, MD, October 1988.

9. 	 AT&T, "System V/MLS Users' Guide and Reference Manual," 27 March 1990.

266

HONEST DATABASES THAT CAN KEEP SECRETS

Ravi S. Sandhu and Suhil Jajodia•

Center for Secure Information Systems

and

Department of Information and Software Systems Engineering

George Mason University, Fairfax, VA 22030-4444

ABSTRACT Polyinstantiation has generated a great deal of controversy lately. Some have argued
that polyinstantiation and integrity are fundamentally incompatible, and have proposed alternatives
to polyinstantiation. Others have argued about the correct definition of polyinstantiation and its
operational semantics. In this paper we provide a fresh analysis of the basic problem that we are
trying to solve, i.e., how can a honest database keep secrets? Our analysis leads us to the concept
of restricted polyinstantiation wherein we show how to solve this problem without compromising
on any of the following requirements: secrecy, integrity, availability-of-service, element-level labeling
and high assurance. This is the first solution to meet all these requirements simultaneously.

1 INTRODUCTION

What distinguishes a multilevel database from ordinary single level ones? In a multilevel world as
we raise a user's clearance new facts emerge; conversely as we lower a user's clearance some facts
get hidden. Therefore users with difFerent clearances see difFerent versions of reality. Moreover,
these difl'erent versions must be kept coherent and consistent-both individually and relative to
each other-without introducing any downward signaling channels.t

The caveat of "no downward signaling channels" poses a major new problem in building multilevel
secure database management systems (DBMSs) as compared to ordinary single-level DBMSs. This
caveat is inescapable and absolute. We must reject outright "solutions" which tolerate downward
signaling channels. Solutions with such channels, e.g., as proposed in [1, 9], may well be acceptable as
an engineering compromise in particular situations. But they are clearly not acceptable as general­
purpose solutions. This point needs to be emphasized because security is usually the one to take the
first hit in engineering trade-oft's. It behooves us as security researchers to present solutions which
avoid taking this hit while at the same time providing

• no downward signaling channels,

• consistency and integrity of the database both within and across levels,

• flexibility for application semantics,

• fine-grained classification of data (i.e. element-level labeling), and

• high assurance with minimal trusted code.

•The work or both authors was partially supported by the U.S. Air Force, Rome Air Development Center through
subcontract #C/UB-49;D.O.No.0042 of prime contract #F-30602-88-D-0026, Task B-0-3610 with CALSPAN-UB
Research Center.

twe deliberately use the term downward signaling c:lumnel rather than covert channel. A downward signaling
channel ia a means or downward information flow which is inherent in the data model and will therefore occur in every
implementation or the model. A covert c:lumnel on the other hand is a property or a specific implementation and not
a property or the data model. In other words, even if the data model is free or downward signaling channels, a spec:ifU:
implementation may well contain covert channels due to implementation quirks.

@ Ravi S. Sandhu and Sushil Jajodia, 1991

267

The central point of this paper is to demonstrate how these diverse goals can be met in a multilevel
relational DBMS without compromising security as part of the bargain. Our solution is simple in
concept and almost obvious in retrospect. For the most part it uses standard concepts from the
database arena. A key new idea is to introduce a special value called "restricted" distinct from the
normal data values of an attribute (or column) as well as distinct from "null." The value "restricted"
denotes that the particular field cannot be updated at the specified level. So long as the value of
a field is not "restricted" our multilevel relations behave much as ordinary single-level relations do.
Particular attention is required when a field is changed from unrestricted to restricted and vice versa.
A notable property of our solution is that it can be implemented entirely by untrusted subjects, i.e.,
subjects which are not exempted from the simple security or *'"Properties.'

The rest of this paper is organised as follows. Section 2 reviews the concept of polyinstantiation
from an intuitive point of view, with the objective of identifying the sources of polyinstantiation
and alternatives to it. Section 3 informally introduces our solution of restricted polyinstantiation
and illustrates it by examples. Section 4 formalise& and precisely defines our solution. It also
provides additional examples. Section 5 discusses how our solution can provide the highest degree
of assurance. Section 6 concludes the paper.

2 POLYINSTANTIATION

The concept of polyinstantiation was explicitly introduced by Denning et al [3] in connection with
the SeaView project. Since then much has been written about this topic [1, 3, 4, 5, 6, 7, 9, for
instance]. In this paper we will set aside all this previous theory, formalism and debate. Instead
we go back to first principles and consider by means of examples how polyinstantiation arises and
therefore how it might be controlled. We assume the reader is familiar with basic relational notions
and terminology.

2.1 The Source of Polyinstantiation

Polyinstantiation can occur in basically two different ways which we call polyhigh and polylow re­
spectively for mnemonic convenience.

1. 	Poly high occurs when a high userS attempts to insert data in a field which already contains low
data. Overwriting the low data in place will result in a downward signaling channel. Therefore
the high data can be inserted only by creating a new instance of the field to store the high
data. We also have the option ofrejecting the update altogether with the attendant possibility
of denial-of-service to the high user.

2. Polylow occurs in the opposite situation where a low user attempts to insert data in a field
which already contains high data. In this case rejecting the update is not a viable option
because it establishes a downward signaling channel. That leaves us two alternatives. We can
overwrite the high data in place which violates the integrity of the high data. Or we can create
a new instance of the field to store the low data.

In both cases note that we have identified "secure" alternatives to polyinstantiation. These
alternatives are secure in the sense of secrecy and information flow. Unfortunately the alternatives
have denial-of-service and integrity problems reiterated below.

*The protocols of section 4 can be simplified if trusted subjects which are exempted from these properties are
allowed in 1elected situations.

I Strictly speaking we mould be aaying subject rather than user. For the moat part we will loosely use these terms
interchangeably. Where the distinction is important we will be appropriately preciae.

268

1. 	The alternative to polyhigh entails denial-of-service to high users by low users (i.e., once a low
value has been entered in a field a high value cannot be entered until the low value has been
nullified by a low subject f).

2. 	The alternative to polylow entails destruction of high data by low users which presents a serious
integrity problem (i.e., the high data is overwritten in place by low data.)

A naive implementation of these alternatives will create more real security problems than it solves.
Our main contribution in this paper is to show how these alternatives to polyhigh and polylow can
be employed in a careful, disciplined manner to achieve secrecy, availability-of-service and integrity
with high assurance.

It should be noted that there is an important difference between polyhigh and polylow. Polyhigh
can be completely prevented by reactive mechanisms at the cost of denial-of-service to entry of high
data. This is likely to be a tolerable cost in many applications. On the other hand polylow cannot be
completely prevented by reactive mechanisms. At the moment of enforcement a reactive mechanism
has only the alternative of overwriting high data by low data. This is likely to be intolerable in
most applications. Therefore polylow must-for all practical purposes-be prevented by a proactive
mechanism, i.e., steps must be taken in advance of the problem's occurrence to ensure that it cannot
occur.

2.2 Polyhigh Example

Let us now consider a concrete example to make poly high and poly low clearer. Consider the following
relation SOD where Starship is the apparent primary key.

Starship Objective I Destination I TC I
Enterprise U Exploration U I null U I U I

Here, as in all our examples, each attribute in a tuple not only has. a value but also a classification.
In addition there is a tuple-class or TC attribute. This attribute is computed to be the least upper
bound of the classifications of the individual data elements in the tuple.

Now consider the following scenario.

1. 	A U user updates the destination of the Enterprise to be Talos. The relation is therefore
modified as follows.

I Starship Objective I Destination TC

I Enterprise U Exploration U I Talos U U

2. 	 Next a S user attempts to modify the destination of the Enterprise to be Rigel. We cannot
overwrite the destination in place because that would create a downward signaling channel.
We can reject the update at the risk of denying entry of legitimate secret data. Or we can
polyinstantiate and modify the relation to appear as follows, respectively for U and S users.
Note that U users see no change.

11 This protocol-of nullifying low data prior to entry of high data-does not guarantee protection against denial­
of-service. If a low value is nullified to enable entry of a high value there remains the risk that a low Trojan Hone
can enter another low data value before the high subject has the opportunity to enter its high value. The solution
described in this paper (see Section 3) eliminates this vulnerability.

269

Starship Objective I Destination I TC III Enterprise u Exploration U I Talos u I u I
Stars hip Objective

Enterprise u Exploration u
Enterprise u Exploration u

What are we to make of this last relation given above. There are at least two reasonable interpre­
tations.

• 	 Cover Story. The destination of Talos may be a cover story for the real destination of Rigel.
In this case the database is accurately mimicking the duplicity of the real world. There are,
however, other ways of incorporating cover stories besides polyinstantiation. For example we
may have two attributes, one for cover-story destination and one for the real destination.
Debate on the relative merits and demerits of these techniques is outside the scope of this
paper. For purpo•e of th.u paper we a.•ume that polyin•tantiation u not to be ued for cover
•torie•. We therefore reject th.u alternative a• a valid interpretation.

• 	 Temporary Incon.utency. We have a temporary inconsistency in the database which needs to
be resolved. For instance the inconsistency may be resolved as follows: the S user who inserted
the Rigel destination latter logs in at the U level and nullifies the Talos value, so thereafter
the relation appears respectively as follows to U and S users.

I Stars hip Objective I Destination I TC I
I Enterprise u Exploration U I null u I u I

Starship Objective I Destination I TC III Enterprise u Exploration U I Rigel s I 	s I
It is most important to understand that this scheme does not create a downward signaling
channel from one subject to another. The nullification of the destination at the U level is
being done by aU subject. One might argue that there is a downward signaling channel with
a human in the loop. The human is however trusted not to let the channel be exercised without
good cause. Finally note that the U user who executed step 1 of the scenario may again try
to enter Talos as the destination, which brings us within the scope of polylow.

2.3 Polylow Example

Our example for polylow is similar to the poly high example with the difference that the two update
operations occur in the opposite order. So again consider the following relation SOD where Starship
is the apparent primary key.

I Starship Objective I Destination I TC .1

I Enterprise U Exploration U I null U I U I

This time consider the following scenario.

1. 	A S user modifies the destination of the Enterprise to be Rigel. The relation is modified to
appear respectively as follows to U and S users. Note that U users see no change in the relation.

270

I Starship I Objective I Destination I TC I

I Enterprise U I Exploration u I null u I u I

I Starship I Objective I Destination I TC I

I Enterprise U I Exploration UIRigel s lSI

2. A U user updates the destination of the Enterprise to be Talos. We cannot reject this update
on the grounds that a secret destination for the Enterprise already exists, because that amounts
to establishing a downward signaling channel. We can overwrite the destination field in place
at the cost of destroying secret data. This would give us the following relation for both U and
S users.

I Starship I Objective I Destination I TC I

I Enterprise U I Exploration UITalos U I U I

For obvious reasons this alternative has not been seriously considered by most researchers.
That leaves us the option of polyinstantiation which will modify the relation at the end of step
1 to the following for U and S users respectively.

I Starship I Objective I Destination I TC I

I Enterprise U I Exploration U I Talos U I U I

Starship Objective

Enterprise U Exploration

Enterprise U Exploration

This is exactly the same relation as obtained at the end of step 2 in our polyhigh example. The
possible interpretations are therefore similar, i.e., we either have a temporary inconsistency or a
cover story (the latter alternative has already been rejected for our database). The temporary
inconsistency can be corrected by having aU subject (possibly created by aS user logged in at the
U level) nullify the Talos destination. But the inconsistency may recur again and again.

3 RESTRICTED POLYINSTANTIATION

In the previous section we have examined the source of polyinstantiation and identified polyhigh
and polylow as the two different ways in which polyinstantiation arises. In this section we consider
applications which have the following requirements.

1. 	Downward signaling channels cannot be tolerated.

2. 	The simple security and *'"properties must be enforced for all subjects, i.e., no trusted code
can be used.

3. Temporary inconsistencies cannot be tolerated.

4. Denial of data entry service to high users cannot be tolerated.

Moreover each of these requirements has equal importance and one cannot be sacrificed for another.
The scenarios of the poly high and polylow examples of the previous section show that polyinstanti­
ation by itself cannot meet these requirements simultaneously. One requirement or the other must
give in some way.

271

In this section we show how all £our requirements identified above can be simultaneously met.
We describe our solution as re•tricted polyiMtantiation. The basic idea is to introduce a special
symbol denoted by "restricted" as the possible value o£ a data element. The value "restricted" is
distinct from any other value £or that element and is also different £rom "null." In other words the
domain o£ a data element is its natural domain extended with "restricted" and "null." We define
the semantics o£ "restricted" in such a way that we are able to eliminate both polyhigh and polylow.
"Null" has exactly the same semantics as any other data value and needs no special treatment.

Let us now play out the polyhigh and polylow scenarios o£ the previous section to intuitively
motivate our solution. A formal description o£ the update protocols is given in the next section.

3.1 Polyhigh Example Revisited

Consider again the following relation SOD where Starship is the apparent primary key.

I Starship Objective I Destination I TC I

I Enterprise U Exploration U I null U I U I

Now consider the following scenario.

1. 	A U user updates the destination o£ the Enterprise to be Talos. The relation is therefore
modified as follows.

I Starship I Objective I Destination I TC I

I Enterprise U I Exploration UITalos U I U I

2. Next aS user attempts to modify the destination o£ the Enterprise to be Rigel. We cannot
polyinstantiate even temporarily, so we must reject this update. Do we have denial-of-service
to the S user? No, because the S user can obtain service as follows.

Step Ia. The S user first logs in as a U-subject and marks the destination o£ the Enterprise as
restricted giving us the following relation.ll

Starship Objective I Destination I TC I
Enterprise U Exploration U I restricted U I U I

The meaning o£ restricted is that this field can no longer be updated by aU user. U users
can therefore infer that the true value o£ Enterprise's destination is classified at some level not
dominated by U.

Step lb. The S user then logs in as a S-subject and enters the destination o£ the Enterprise as
Rigel giving us the following relations at the U and S levels respectively.

Stars hip I Objective I Destination I TC I
Enterprise U I Exploration U I restricted u I u I

Stars hip I Objective Destination I TC I
Enterprise U I Exploration u Rigel s I s I

IIAitemately the S user lop in at the U-level and requests some properly authorised U user to c:eny out this atep.
CommUDic:ation of thia requeat from the S user to the U user may &lao oc:c:ur outaide of the computer ayatem, by say
direct peraonal c:ommUDic:ation or a aec:ure telephone call.

272

http:relation.ll

How does this differ from the scenario of section 2.2 (where the end result after cleaning up the
temporary inconsistency was as above except that we have null instead of restricted)? The main
difference is that, after step 2a, U users are no longer able to update the destination of the Enterprise.
In particular, attempts by U users to reenter Talos as the destination of Enterprise will be rejected
on the grounds that the field is restricted. Therefore the relation is guaranteed to be consistent till
such time as the restricted value is eliminated. Consideration of who should be allowed to enter and
remove the restricted value is deferred for now.

Does step 2a introduce a signaling channel? Yes, but this signaling channel is very similar to
the one resulting from the nullification of Talos at the U-level in the example of section 2.2. Both
involve a trusted S user in the loop who presumably will ensure that the channel is not exercised
wantonly, but rather that this inference is permitted only when the real world situation is actually
so. Such a channel with trusted humans in the loop can be exercised only by Trojan Horses that are
capable of manipulating the real world. This entails the manipulation of real trusted people making
real decisions and not merely the manipulation of bits in a database.

3.2 Polylow Example Revisited

Now consider the two update operations in the opposite order. So again we begin with the following
relation SOD where Starship is the apparent primary key.

I Starship Objective I Destination I TC I
I Enterprise U Exploration U I null U I U I

This time consider the following scenario.

1. 	A S user modifies the destination ofthe Enterprise to be Rigel. This update is rejected! Instead
the S user is asked to go through steps 2a and 2b of section 3.1 giving us the following relations
at the U and S levels respectively.

I Starship I Objective I Destination I TC-1

I Enterprise U I Exploration U I restricted Ul u I

Stars hip Objective I Destination I TC II I

I Enterprise U I Exploration u 1 rugel s I s I
2. A U user updates the destination of the Enterprise to be Talos. The update is rejected on the

grounds that the field is restricted.

Note that there is no denial-of-service to the S user. What is happening is a denial of improper
service, i.e., there is a protocol for entering high data which all S users are required to follow. Failure
to follow the protocol results in denial-of-service but this can hardly be considered a security breach.
The denial-of-service to the U user is, of course, only appropriate in this situation.

There is a crucial difference between this protocol and the one discussed in section 2.1. In both
cases entry of high data is enabled by an action of a low subject. Our protocol requires the low
subject to enter the "restricted" value in the data element. In section 2.1 the suggestion was for the
low subject to enter a "null" value. The key difference in the two cases is that a null value can be
made non-null by a low Trojan Horse, whereas the restricted value cannot be made unrestricted by
a low Trojan Horse. The latter operation requires a special privilege whose distribution is carefully
controlled by non-discretionary means. This privilege is available only to selected low subjects who
are trusted to exercise its use properly.

273

4 THE PREVENT PROTOCOLS

In this section we precisely define the collection of update protocols illustrated by example in the
previous section. We collectively call this collection the prevent protocou because they prevent
polyinstantiation due to either polyhigh or polylow from occurring. These protocols can be imple­
mented entirely by untrusted subjects, i.e., subjects which are not exempted from the simple security
or *-properties.

4.1 Multilevel Relations

We begin by reviewing some basic concepts and notation for multilevel relations. Let A1 , 0 1 , A2 , C2,

..., A., C" denote the attributes (columns) of a multilevel relation R with element levellabelin,g.
Each Ai is a data attribute and each Ci is the cltunfication attribute for Ai. A data attribute can
take on values from its natural domain Di extended with two special values, "null" and "restricted,"
whose meaning will be defined shortly. We assume that each Ci can take on any value c in the
security lattice. •• We require that Ci cannot be null. Finally R has a collection of relation imtance•
_Rc one for each access class c in the given lattice.

Assume there is a user-specified primary key AK consisting of a subset of the data attributes
Ai. We call AK the apparent primary lcey of the multilevel relation scheme. In general AK will
consist of multiple attributes. We have the following requirement in analogy to entity integrity in
the standard relation model. (The notation t[Ai] denotes the value of the Ai attribute in tuple t,
and similarly for t[Ci].)

Property 1 [Entity Integrity] Instance Rc of R satisfies entity integrity ift' for all t E Rc: (i) AK
is uniformly classified in each tuple, i.e., Ai, A; E AK ~ t[Ci] =t[C;], and (ii) the classification
of each non-key data attribute dominates the classification of the apparent key, i.e., Ai (/. AK ~
t(Ci] ~ t(CAK] where CAK is the classification of AK. 0

The notions introduced thus far are standard ones first introduced in the SeaView model (7].
Our next requirement severely limits polyinstantiation and distinguishes the appro&ch of this paper
from previous work on element-level labeling (such as [3, 4, 5, 6, 7]).

Property 2 [Key Integrity] R satisfies key integrity ift'for every Rc we have for all i: AK, CAK -

Ai,Ci. o

This property stipulates that the user-specified apparent key AK, in conjunction with key-classification
CAK, functionally determines all other attributes. In other words Rc cannot have more than one
tuple for a given combination of values for AK and CAK. That is, the real primary key of the
relation is AK, CAK. The eft'ect of key integrity is to rule out instances such as the following.

Starship Objective I Destination
Enterprise U Exploration U Talos U

Enterprise U Exploration U Rigel S

The reason for rejecting this instance is its inconsistency in specifying two dift'erent destinations-one
secret and one unclassified-for the Enterprise. Recall our assumption that cover stories are not to
be incorporated by polyinstantiation, so interpretations such as discussed in [5] do not apply in this
situation. Key integrity does allow instances such as the following where there is polyinstantiation
of the key.

••Jn practice o£ c:oune it ia dellirable to place appropriate upper and lower bounda on each Ci. Thi• will only require
minor c:hanaa to the following diKWIIIion.

274

Starship Objective Destination TC

Enterprise U Exploration U Talos u

Enterprise S Spying s Rigel s

In this case we interpret the two tuples as describing two distinct Starships which happen to have
the same name.

The next property is concerned with consistency between relation instances at different access
classes. Here again we depart from the analogous property defined in [5, 6, 7].ft

Property 3 (Inter-Instance Integrity] R satisfies inter-instance integrity iff for all c' :5 c we
have Rc• =u(Rc, c') where the filter function CT produces the c'-instance Rc• from Rc as follows:

1. 	For every tuple t E Rc such that t[CAx] :5 c' there is a tuple t' E Rc• with t'[AK, CAx] =
t[AK, CAx] and for A, (/. AK

if t[C,] :5 c't'[A· C.·]_ { t[A,, c,]
1

'
1

- <restricted, c' > otherwise

2. 	There are no tuples in Rc• other than those derived by the above rule.

The filter function maps a multilevel relation to different instances, one for each descending access
class in the security lattice. Filtering limits each user to that portion of the multilevel relation for
which he or she is cleared. For instance filtering the followingS-instance of SOD

Starship Objective I Destination TC

Enterprise u Exploration u I Rigel s s

gives us the following U-instance

Starship Objective I Destination TC

Enterprise u Exploration u I restricted u u

4.2 Update Protocols

In section 4.1 we have identified integrity properties for multilevel relations considered at some
instant in time as static objects. We now consider the dynamic behavior of these relations by
considering their update semantics. We emphasize that our protocols do not require any exception
from the simple security or *-properties.U There are three subcases to consider as follows.

4.2.1 Data Value Update

By the term data value we mean any value other than "restricted." Our first protocol addresses
the case where the value of attribute t[Ai] is changed from its previous data value to a new data
value, i.e., neither the previous value nor the new one can be "restricted." "Null" does not need any
special treatment in our protocols and is viewed as just another data value. We have the following
update protocol.

ttThe definition of the filter function given in [5, 6, 7] differs from the one given here in that <reatricted,c' > is
replaced by <null,t[CAK] >.

*'Note that the protocols can be simplified if trusted subjects which are exempted from these properties are allowed
in selected situations. In particular the protocol to change a restricted value to unrestricted (see section 4.2.3) would
be considerably simplified by using a trusted subject which is exempted from the *-property.

275

0

0

- . ·:j
-~

Protocol 1 t[Ai] can be changed from its pr~vious data value to a new data value by a c-user only

ift[Ci] =c.

The effect of this update operation is defined as follows.

1. 	The value of t[Ai] is changed to its new value in all relation instances Rc•, c' ;::: c. The value
of t[Ci] remains unchanged as c in all Rc•, c';::: c.

2. All other instances of R remain unchanged.

Note that the precondition for this protocol is stated as a necessary condition ("only if"). It is thus
a mandatory requirement. In addition to this mandatory pre-condition we may as usual impose
further mandatory and/or discretionary controls.

To illustrate the protocol consider the following U and S instances of SOD respectively.

I Starship I Objective I Destination I TC I

I Enterprise U I Exploration U I restricted U I U I

I Starship I Objective I Destination I TC I

I Enterprise U I Exploration ulrugel s1 s I

An update by aU user to change the Objective from "Exploration" to "Mining" has the following
effect.

Starship I Objective I Destination I TC I
I Enterprise U I Mining U I restricted U I U I

I Starship I Objective I Destination I TC I
I Enterprise uiMining uiRigel sl s I

That is the update takes effect at both the U and S levels. An attempt by aS user to change the
Objective attribute would be rejected. So would an attempt by a U user to change the Destination
attribute. AS user may change the Destination attribute to say "Talos" giving us the following U
and S instances of SOD respectively.

I Starship I Objective I Destination I TC I

I Enterprise U I Mining U I restricted U I U I

I Starship I Objective I Destination I TC I

I Enterprise UIMining UITalos sl s I

To appreciate how "null" is treated just like any other data value consider what happens if a S user
nullifies the Destination attribute. We get the following U and S instances of SOD respectively.

Starship I Objective I Destination I TC I
Enterprise U I Mining U I restricted U I U I

I Starship I Objective I Destination I TC I
I Enterprise U I Mining U I null S I S I

The Destination attribute remains restricted for U users and the null value is shown only to S users.
The classification of the null at S signifies that data in this field can only be entered by S users. If

276

the Destination attribute has a null value at the U level then both U and S instances of SOD must
be as follows. ­

I Starship I Objective I Destination I TC I
I Enterprise U I Mining U I null U I U l

In this case U users are allowed to enter data for the Destination attribute whereas S users are not
permitted to do so. In order to enable S users to change the Destination of the Enterprise we must
first restrict this field at the U level. This brings us to our next protocol.

4.2.2 Update from Unrestricted to Restricted

Let us first consider the case where the security lattice is totally ordered (i.e., there are no com­
partments). An update of attribute As in tuple t from some existing data value to "restricted" is
performed as follows.

Protocol 2 t[As] can be changed from its previous data value to "restricted" by a c-user only if
t[Ci] =c.
The efFect of this update operation is defined as follows.

1. The value oft[As,Ci] is changed to <restricted,c> in the instance Rc.

2. Let w(c) be the immediate predecessor of c (i.e., w(c) > c and there is nod such that w(c) >
d >c). The value oft[As,Ci] is changed to <null,w(c)> in all instances Rc•,d > C·

3. All other instances of R remain unchanged.

It suffices to have the pre-condition t[Ci] = c for this operation because, in conjunction with the
inter-instance integrity property, t[Ci] = c implies

(Vc': t[CAx] ~ c' <c) t[Ai,Ci] =<restricted,c'> in Rc•

In other words a data element can be made restricted at ·level c only if its data value is currently
classified at level c, which in turn implies that the data element is restricted at all relevant levels
below c.

To illustrate the efFect of such updates consider the following U instance of SOD (which is
identical to the S instance).

I Starship Objective I Destination I TC I

I Enterprise U Exploration U I Rigel U I U I

A U user can change the destination of the Enterprise to be "restricted" giving us the following U
and S instances.

Starship Objective I Destination I TC II
Enterprise U I Exploration U I restricted u I u I

Starship Objective I Destination I TC I
Enterprise U I Exploration U I null s I s I

Now let us consider the general case of a partially ordered security lattice. The problem with
partially ordered labels lies in step 2 in defining the efFect of protocol 2. In a partial ordering there

277

0

may be multiple immediate predecessors of c so w(c) is no longer uniquely defined. As part of the
update operation we have to designate one of c's immediate predecessors as the distinguished one
which will remain unrestricted. All other immediate predecessors become restricted. Let w(c) denote
the distinguished immediate predecessor. Step 2 of protocol 2 needs to be restated as follows.

2'. The value oft[A.,Ci] is changed as follows for all instances Rc•,c' >c.

t 	 . C.· _ { <null,w(c)> if c' ~ w(c)
[A., ,] - <restricted, c' > if c' lw(c)

As an example consider a lattice with four labels, S, U, M1 and M2; where M1 and M2 are both
dominated by S and both dominate U, but M1 and M2 are themselves incomparable. Suppose we
have the following instance of SOD at all four levels.

I Starship I Objective I Destination I TC I

I Enterprise U I Exploration UIRigel u I u I

Let a U user make the Destination field of the Enterprise "restricted" while designating M1 to be
· w(U) for this update. The U, M1, M2 and S instances of SOD will respectively become as follows.

Starship Objective Destination I TC II
Enterprise u Exploration u I restricted u I u I

Starship Objective Destination I TC II
Enterprise u Exploration U I null Mt I Mt I

Starship Objective Destination I TC II
Enterprise u Exploration u I restricted M2 I M2 I

Starship Objective I Destination I TC I
Enterprise u Exploration U I null Mt I Mt I

4.2.3 Update from Restricted to Unrestricted

Again for simplicity let us first consider the case where the lattice is totally ordered. We have the

following protocol for making a field unrestricted.

Protocol 3 t[Ai] can be changed from its current value of "restricted" to a data value dv only by

a c-user.

The efFect of this updat~ operation is defined as follows.

1. The value of t[A., Ci] is changed to < dv, c > in all instances Rc•, c' ~ c.

2. All other instances of R remain unchanged. 	 D

The pre-condition for this update, that t[Ai, Ci] = <restricted, c> in Rc, is sufficient to ensure that
t[Ai, Ci] = <restricted, c' > in all R!:, c' $ c (due to inter-instance integrity).

The protocol will overwrite any existing data value for t[Ai] in instances R~, c' > c. This
operation therefore has the potential for creating integrity problems by overwriting existing higher
level data. We have rejected this approach as a general solution in section 2. Here we are proposing

278

to employ it for the specific purpose of converting a field from restricted to unrestricted. We require
that this be a specially privileged opeiation so that we can be sure it is executed only when the real
world conditions warrant it. We will return to this point in the next section.

To illustrate this operation consider the following U and S instances of SOD.

,. Starship 1. Objective I Destination I TC I

I Enterprise U I Exploration U I restricted U I U I

I Starship I Objective I Destination I TC I

I Enterprise U I Exploration u 1 null s I s I

A suitably privileged U user can change the value of the Destination attribute in this tup? e to be
say "Talos" giving us the following (identical) U and S instances of SOD.

I Starship I Objective I Destination I TC I

I Enterprise U I Exploration UITalos U I U I

Next let us consider the case ofa partially ordered security lattice. The pre-condition ofprotocol3
is no longer sufficient. Before a c user is allowed to change a restricted field to non-restricted we
must ensure that field is restricted at all levels which do not dominate c. This includes levels which
are dominated by c as well as levels incomparable with c. The latter requirement cannot be checked
by a c user without violating simple-security. We circumvent this problem by requiring the update
of protocol 3 to occur in two phases as follows.

1. PrepaMtof'11 Pktue. Login at level t[CAK] and set

t[A., Ci] =<restricted, C
1 > in all instances ~1 d ~ t[CAK]

i.e., set t[Ai] to "restricted" at all levels where tuple t is visible.

2. Update Pktue. Login at level c and set t[Ai,Ci] = <dv,c>.

The net effect of this modified protocol is to set

t[A. C:] _ { < dv, c > in all instances Rc' 1 d ~ c
' • - <restricted, d > in all instances Rc•, d "l. c

For example consider the following U, M1, M2 and S instances of SOD respectively taken from the
end of section 4.2.2.

I Starship I Objective I Destination I TC I
I Enterprise U I Exploration U I restricted u I u I
I Starship I Objective I Destination I TC I
I Enterprise U I Exploration U I null M1 I Ml I

Starship Objective Destination I TC II I I
I Enterprise U I Exploration U I restricted M2 I M2 I

Starship Objective Destination I TC II I I
I Enterprise U I Exploration U I null Ml I Ml I

279

The preparatory phase will give us the following U, M1, M2 and S instances of SOD respectively.

I Starship I Objective I Destination I TC I
I Enterprise U I Exploration u I restricted u I u I

Starship Objective Destination I TC II I II Enterprise U I Exploration u I restricted Mt I Mt I

I Starship I Objective I Destination I TC I
I Enterprise U I Exploration u I restricted M2 I M2 I

I Starship I Objective I Destination I TC I
I Enterprise u I Exploration u I restricted M2 I M2 I

In other words the preparatory phase restricts the Destination attribute of this tuple at all levels
above U (which is the key class of the tuple). Subsequently, the update phase results in (say) the
following U, Mt, M2 and S instances of SOD respectively.

I Starship

I Enterprise
I Objective

u I Exploration

Destination

u I restricted u
I TC I
I u I

I Starship

I Enterprise
I Objective

U I Exploration

Destination I TC I
u I restricted Mt I Mt I

I Stars hip

I Enterprise
I Objective

u I Exploration
I Destination I TC I

U I Rigel M2 I M2 I
Stars hip Objective Destination I TC II I I

I Enterprise u I Exploration u 1 Rigel M2 I M2 I

5 ASSURANCE

In this section we briefly consider how the prevent protocols can be enforced.

Our first observation is that all our protocols adhere to both simple security and the ~property.
They can therefore be enforced by a DBMS trusted computing base (TCB) to the highest assurance
standards without the use of subjects which are exempt from simple-security or the ~property.

Secondly, our protocols are designed to achieve integrity and availability-of-service in addition
to secrecy. The secrecy objective can be enforced to Al standards by strict enforcement of simple
security and the ~properties. In order to achieve the integrity and availability of service requirements
we need controls beyond the traditional simple security and ~property. Let us consider each of the
following three cases in turn.

5.1 Data Value Update

This is the simplest case where our multilevel relations behave much as conventional single-level
relations do. It is obvious that in a high integrity system updates must be carefully controlled
even within a single security level. Conventional databases use mechanisms such as well-formed
transactions and least privilege for this purpose [2, 8]. The DBMS TCB must provide high assurance

280

support for such mechanisms. We do not need any additional mechanisms for multilevel DBMSs.
The required mechanisms should anyway be available in high-quality single-level DBMSs as discussed
in [8].

5.2 Update from Unrestricted to Restricted

Assigning a restricted value to a field with classification c requires a check that this field is already
restricted at levels below c. This is feasible within the scope of simple security. In high assurance
systems this application-independent pre-condition should be checked by the DBMS TCB. At lower
levels of assurance the pre-condition may be tested by individual transactions rather than the DBMS.

The effect of restricting a field at the c level is dangerous in that it can cause denial-of-service to
c usen. So when the destinations of all our flights are made restricted, when they should not be, we
might end up grounding the entire :fleet! Therefore the ability to mark a field as restricted should
be a carefully controlled privilege. This privilege should be assigned to a few subjects who need to
do this operation. We can ensure that this privilege cannot be acquired except by some very special
non-discretionary means such as involving intervention by a security officer.

The general problem of incorrect data essentially exists whether or not we recognize restricted
as a special value. For suppose a malicious program running at the U level, and obeying simple
security and *-property, sets the destination of all :flights to be Dayton, Ohio. Does the entire :fleet
converge on Wright Patterson Air Force Base? Presumably a high integrity system has corrective
measures to detect and recover from such errors. In principle, incorrectly restricted fields present a
similar problem except that recovery may be slightly more cumbersome.

5.3 Update from Restricted to Unrestricted

An update from restricted to unrestricted is different from the previous two cases because we cannot
test the pre-conditions for this action within the confines of simple security. If we wish to prevent
overwriting of high data by this operation we have to check that no high data exists (i.e., no non-null
high data exists). In view of simple security this is not feasible. Therefore we define the operation
as potentially overwriting high data. It follows that we must strictly control the ability to make a
restricted value unrestricted. The control in this case should be even stricter than in the case of
update from unrestricted to restricted. Alternately, we can use a trusted subject for this operation.

6 CONCLUSION

In this paper we have shown how both the polyhigh and polylow variations of polyinstantiation
can be eliminated by our solution of restricted polyinstantiation. This allows us to avoid downward
signaling channels, inconsistencies, denial of data entry to high users and the overwriting of high
data by low subjects while providing element-level labeling. This is the first solution to meet all
these requirements simultaneously.

In conclusion we wish to note that restricted polyinstantiation makes a particular trade-of£ among
con:flicting objectives. It may be eminently suitable to most applications. Yet we would advise
against having this as the only option. Databases are long lived and develop a great deal of inertia
over their life. Moreover different applications may call for different trade-ofrs. For example tem­
porary inconsistencies may be preferred to inconvenience in data entry. General-purpose multilevel
secure DBMSs must cater to such applications too. Therefore our recommendation is that restricted
polyinstantiation be available as one of several options that a multilevel secure DBMS supports.

281

Acknowledgment

We are indebted to John Campbell, Joe Giordano, and Howard Stainer for their support and en­
couragement, making this work possible. The opinions expressed in this paper are of course our own
and should not be taken to represent the views of these individuals.

References

[1) 	 Burns, R.K. "Referential Secrecy." IEEE Sympo1ium on Security a.ntl· Priva.cy, Oakland, Cali­
fornia, May 1990, 133-142.

[2] 	 Clark, D.D. and Wilson, D.R. "A Comparison of Commercial and Military Computer Security
Policies." IEEE Sympolium on Security a.ntl Priva.cy, 184-194 (1987).

[3) 	 Denning, D.E., Lunt, T.F., Schell, R.R., Heckman, M., and Shockley, W.R. "A Multilevel Rei.
tional Data Model." IEEE Sympo1ium on Securit71 a.ntl Priva.cy, 220-234 (1987).

[4) 	 Denning D.E. "Lessons Learned from Modeling a Secure Multilevel Relational Database System.•
In Da.tabue Security: Sta.tu a.ntl Pro1pect1, (Landwehr, C.E., editor), North-Holland, 35-43
(1988).

[5) 	 Jajodia, S. and Sandhu, R.S. "Polyinstantiation Integrity in Multilevel Relations.• IEEE Sym­
polium on Security a.ntl Priva.cy, Oakland, California, May 1990, 104-115.

(6] 	 Jajodia, S., Sandhu, R.S. and Sibley, E. "Update Semantics for Multilevel Relations.• Sid!
Annual Computer Security Applica.tiou Conference, Tucson, Arisona, December 1990, pages
103-112.

[7) 	 Lunt, T.F., Denning, D.E., Schell, R.R., Heckman, M. and Shockley, W.R. "The SeaView Secu­
rity Model." IEEE Traua.ction1 on Softwa.re Engineering, 16(6):593-607 (1990).

[8] 	 Sandhu, R.S. and Jajodia, S. "Integrity Mechanisms in Database Management Systems." 19tA
NIST-NCSC Na.tiona.l Computer Security Conference, Washington, D.C., October 1990, 526-540.

(9) 	 WISeman, S.R. "On the Problem of Security in Data Bases." In Da.tabue Security III: Statu a.ntl
Pt'Oipectl, (Spooner, D.L. and Landwehr, C.E., editors), North-Holland, pages 143-150 (1990).
Also available as Royal Signal and Radar Establishment, U.K., Memo 4263.

lil

282

http:Softwa.re
http:Priva.cy
http:Priva.cy
http:Priva.cy
http:Priva.cy

IDENTIFYING AND CONTROLLING

UNDESIRABLE PROGRAM BEHAVIORS

Maria M. King*

MKing@Dockmaster .ncsc.mil

Abstract

This paper describes a new mechanism for comparing selected program properties against a poljicy, or
set of rules, that states allowable program behavior{2, 10}. The motivation for this work is the increased
need to control undesirable behaviors of programs, such as those inherent in Trojan horses and computer
viruses. This mechanism, called an Automatic Policy Checker (APC), is currently implemented under
SunOst. This paper will discuss the design and implementation of the APC and the application of the
APC to the virus problem. Conclusions concerning anti-viral policy in light of the test results will also
be presented.

Introduction

The motivation for this work is the increased need for computer security mechanisms to control
undesirable activity of programs, such as those caused by computer viruses[l], Trojan horses and other
types of malicious logic.

The major contribution of this work is an automatic tool, called an Automatic Policy Checker (APC),
for comparing certain types of program behaviors against a policy that states allowable program behav­
iors. An important feature of the APC is that it does not implement any specific policy, clearly separating
the policy from the mechanism which enforces the policy[8]. Existing mechanisms either rely on the user
to specify their own policy[7] or embed an ad hoc policy in the mechanism[5]. The APC allows exper­
iments with policies intended to prohibit a variety of undesirable program behaviors. The APC does
not rely on any new architectural support, has minimal effect on performance, and does not require
user knowledge of threat. Furthermore, if the APC is used in conjunction with a filter mechanism as
described in [2, 6], reliance on some number of humans to act in a trustworthy manner, which is often
required in many computer security mechanisms, is no longer needed.

This paper first describes a formal language based on regular expressions that was developed for
stating policies and certain types of program behaviors. A high-level overview of the design of the APC
is described here while [10] provides a more detailed discussion. The APC has been applied to the
computer virus problem. A study of anti-viral policies based on the viral property of file modification
was conducted and is described in the section on policies. Experiments were run and the empirical data
is discussed and results presented.

High-Level Overview

The idea is to explicitly state a system's policy regarding allowable program activity. Subsequently,
the APC is used to compare a selected program property against the policy, prior to installation. The
APC determines whether a program's specified actions fall within the perimeter of a particular policy.

Definition 1 A policy is a set of rules that formally states allowable program behavior, in a particular
system.

*Formerly Maria M. Pozzo.

1SunOS is a trademark of Sun Microsystems, Incorporated.

283

Mini-Spec

Program

Figure 1: High-Level Overview

The term specification when applied to programs is usually taken to mean a general statement
of all of the functional and/or other relevant properties of a program. To distinguish this form
of specification from the more general use, the term mini-spec is used.

Definition 2 A mini-spec formally states a selected subset of the functional properties of a program's
behavior.

This paper discusses the question: "Does the mini-spec conform to the policy?" Of equal
concern is the correspondence between the mini-spec and the program it specifies. The scheme
described in [2) proposes the use of a filter that will analyze a binary program and ensure that
it conforms to what is stated in the mini-spec (see Figure 1). Traditionally, such an analysis
has proven to be difficult. However, the assumption in [2) is that such programs should take full
advantage of good software engineering techniques and need not contain the types of actions that
are difficult to analyze, such as dynamic code generation, complicated computations for gener­
ating object names, and operating system manipulations. The basic premise is that reasonably
engineered programs will be analyzable[2). A reasonably engineered program is one that at least
uses a structured methodology, is modular, and is written in a higher-level language. Current
research described in [6) has implemented a filter program such as the one proposed in [2). The
filter approach appears promising.

An alternative method for verifying that the program conforms to the mini-spec is source code
to specification correlation. The code-to-spec correlation process would have to be altered slightly
since it is a one-to-one mapping between each line of code and each line of the specification. The
mini-spec only states a subset of the program's behavior and such a mapping does not exist.
However, verifying the source code against the mini-spec, as opposed to the binary, requires the
existence of a trusted means for generating the binary from the source code. Without a trusted
means, it would be possible to change the binary during the compilation stage.

The scope of this work is the specification of the mini-spec, development of policy, and the
conformance of the mini-spec to a policy. It is assumed that mechanisms exist for verifying a
program against its mini-spec, as described above. It is further assumed that once a program is
verified against its mini-spec, whether by a filter program or some other means, the program and

284

the associated mini-spec must be sealed or encapsulated in some way to prevent tampering. These
issues are well understood and will not be addressed here. The APC accepts a program/mini-spec
pair that has been verified and properly sealed. The next section discusses the language used for
stating mini-specs and policies.

A Regular Expression Based Specification Language

This section discusses the formal language that was developed for writing mini-specs and
policies. The language is based on regular expression notation. The reasons for choosing regular
expressions are presented in the next section. The syntax and use of the language is provided in
Section , and the limitations of the language are discussed in Section .

Why Regular Expressions?

At the level of an applications program, a system resource might correspond to a file, device,
block of memory, an so on. An applications program requests system services through system
calls in which a system resource is referenced by a human-readable name. A name translation
mechanism converts the human-readable name to the actual page(s) on disk, memory location,
etc. The name translation mechanism assumes that the supplier of the name being translated has
appropriate access, leaving all access decisions to the access control mechanism, if one exists. The
problem is that conventional access control mechanisms are concerned with the access between
users and resources, no check is made concerning the access between programs and resources.
The example provided in [5] shows how the Fortran compiler only needs access to xyz.for and
xyz.obj but can easily gain access to login.com if allowed by the access control mechanism.

The APC controls the access between programs and system resources. The policy is a set
of rules which states allowable program behavior. There is one rule for each type of operation
under control. Each rule is a set of human-readable names of system resources accessible to that
operation. For example, the "modification rule" might be a set of names of directories where
modification is permitted on the system. A mini-spec is also a set of rules, one for each type
of operation that must be controlled in the particular system. Thus, a program's "modification
rule" would be the set of human-readable names of system resources that the program might
attempt to modify.

The notion of regular expressions has long been used in the design of lexical analyzers for
grouping variable names and other tokens[4]. Other uses for regular expressions include text
editors, pattern matching programs, and various file-searching programs. Regular expressions
are well-suited for representing a set of strings such as the set of resource names, attribute
names, or system call names that can be manipulated by a program.

For ease of discussion, the remainder of this paper will discuss policies and mini-specs that
have only one rule, i.e., control a single operation. It is a simple matter to extend these ideas to
multiple rules.

Discussion

An alphabet, :E, is a finite set of symbols. A (formal) language, denoted L, is a set of strings
of symbols from a particular alphabet. The language :E* is the set of all strings over a particular
alphabet :E; thus all languages L over :E are a subset of :E*. A regular expression, r, is a way of
describing these languages. The notation L(r) denotes the language described by r.

Let ri be the regular expression that denotes the mini-spec for a particular operation of
program i. The set of strings denoted by ri is a finite-state language over some alphabet :E. The
language specified by ri is denoted as

L(r;) (1)

Let p be the regular expression that denotes the policy, and L(p) is the language denoted by p.
Determining if the mini-spec for a given program is acceptable according to the policy of a specific

285

http:login.com

system then becomes a matter of determining if the language represented by the program's mini­
spec is a subset of the language denoted by the policy, for each individual rule. More formally,
if

L(r;) ~ L(p) 	 (2)

for each corresponding rule in the policy, then the mini-spec is acceptable according to the system's
policy.

Theoretically, the answer to equation 2 is straightforward. Ultimately, we want to be able to compare
the two regular expressions without having to elucidate each element in the languages denoted by the
expressions. To show that this can be done, consider the following properties of regular expressions.

1. 	 First, the languages denoted by regular expressions are precisely those languages accepted by, fi­
nite automata; so L(r;) and L(p) are accepted by deterministic finite automata M(r;) and M(p),
respectively[4, 9]. The class of languages denoted by regular expressions is closed under complemen­
tation, i.e., the complement of a language denoted by a regular expression is also a language that
can be denoted by a regular expression. To show this, let M = (Q, ~. 6,qo, F? be a deterministic
finite automaton (DFA). Let L be the language over~ accepted by M; so L ~ ~·. Then, the
complementary language, ~· - L, is accepted by the DFA M' = (Q, ~. 6, qo, Q - F). In other
words, M and M' are the same except that the final states are opposite.

2. 	 Second, by definition the languages denoted by regular expressions are closed under union. There­
fore, given that the class of languages denoted by regular expressions are closed under complemen­
tation and union, it is simple to show that they are also closed under intersection. Let L1 and L 2

be languages over the alphabet~. Then L1 A L2 = L1 U L2.

Returning to equation 2, to answer the question, consider the following equation:

(~* - L(p)) A L;(r) = 0 	 (3)

Consider the language that is the complement of the language denoted by the policy. If the
language denoted by the program's mini-spec, L(r;), has anything in common with the comple­
mentary language of the policy, E* - L(p), then clearly, L(r;) is not a subset of L(p).

Although it can be shown theoretically that two regular expressions can be directly compared
to determine if one is a subset of the other, algorithmically the problem is considered PSPACE­
complete[3). Solutions to many PSPACE-complete problems exist, and in fact, these algorithms
work well when certain constraints are applied. The APC currently implements one such algo­
rithm. The primary constraint is that the regular expressions that denote the mini-spec and the
policy, must be simple enough to be processed during a reasonable processing cycle. For regular
expressions that do not meet this constraint, two alternatives are available. A detailed discussion
of the algorithm, and these alternatives is provided in [10).

Language Syntax and Usage

Table 1 identifies the basic operators of the language. The precedence is listed from highest to
lowest with the loop operator having the highest precedence. Parenthesis are used to override the
normal precedence order as the example in Table 1 shows. The first four operators listed, loop,
concatenation, union, and parenthesis for grouping, are standard regular expression operators.
Note, however, that the loop operator indicates 0 :5 i where i is limited by the maximum string
length on a particular machine. Thus, the expression a• denotes a finite language, which differs
from the standard definition.

Nonterminal definitions provide user-friendliness by allowing a user to define commonly used
expressions. Nonterminal definition names are 1-8 characters in length, all small letters; the
definition itself is written in the operators of the language. Nonterminal definitions can be
referenced via the angle brackets (< >) operator and can be embedded. The depth of macro
definitions is machine dependent but it is wise to keep a limit on it. Nonterminal definitions are

2Where Q is the set of all states in the DFA, !: is the input alphabet, 5 represents the transition function, qo is the initial
state, F is the set of final states, and qo, F ~ Q.[4, 9]

286

Table 1: Syntax of Language
I SYMBOL I MEANING . I EXAMPLE

loop-O:Si a*=> {r,a,aa,aaa, ... } * concatenate ab => {ab}
union a I b => a U b; {a, b}

()

I

grouping (a I b)* => {a,b,aa,ab,ba,bb, ••• }
a I b* => {a,b,bb,bbb, ... }

non terminal id ::= (a I b)*··­
definition

<>
 non terminal <id>=> (a I b)*
reference (1)
series (2) [] [a I b I c ...]

{cwd}
 current working {cwd}/(a I b) => {cwdfa,cwdfb}
directory

{home} home directory {home}(a I b) => {homefa,home/b}
files define expression files::= <id>

Notes:

(1) Nonterminals are 1-8 characters, all small letters.
(2) Series can be used with nonterminal definitions.

stored in files; example nonterminal definition files, called sysdefs and unixdefs, are shown in
Figure 2. A file of nonterminal definitions can be referenced via the "#include" mechanism of
Unix. The square brackets operator ([]) is used to define a long series such as all the lowercase
letters or all the digits. This operator is an implementation enhancement; parenthesis or nothing
can be used to represent the same thing, i.e., (a I b I c) =a I b I c =[a I b I c]. An
improvement to the current language would be to allow [a- z] to indicate all the lowercase
letters.

The current working directory operator {cwd} and the home directory operator {home} can
be used in systems that have knowledge about filesystem location, such as Unix or Multics. In a
Unix system, for example, all directories in the system would include {cwd}/, {home}/, and all
other directory locations.

Policies and mini-specs are stored in files. Figure 2 shows the mini-spec for the modification
operation for the calendar program. The last line of a mini-spec or policy file must begin with
the ''files" operator followed by the defines or goes into (::=) symbol as shown in the example in
Figure 2. The example shows that the calendar program can create files in the current working
directory of the form "cal" followed by a string as defined in the unixdefs non terminal file. The
grammar for the language just described is provided in [10].

Writing Policies and Mini-Specs for Real Programs

A mini-spec is written either during program development by a user wishing to submit a
program for installation or it can be written for programs that already exist. Detailed information
must be available in order to write a mini-spec for an existing program. This information might
include source code, detailed design documentation, programmers notes, and test results.

Writing a policy requires knowledge about the particular threat, the system vulnerabilities,
and the desired environment. Although some users may have the sophistication for writing a
policy, in most cases the policy should be written by a security officer or other security personnel.
Section discusses the application of the APC to the virus problem, the development of anti-viral
policy, and presents results of using the APC to test for undesirable program behavior (in this
case viral behavior) in 125 Unix programs.

287

sysdefs:

small

large

digit

special

.. ­

.. ­

.. ­

.. ­

unixdefs:

atom ··­
string .. ­
dir .. ­

"mini-spec" for calendar:

#include "sysdefs"
#include "unixdefs"
files

[a Ib 1... 1z]

[A IB 1···1 Z]
[0 111···19]
[!I I 1···1 +]

(<small> I <large> I <digit> I <special>)

<atom><atom>*

/(<string>/)*

/tmpfcal<string> Istd(err Iout)

Figure 2: Example Nonterminal Definitions

The Language Preprocessor

The APC first calls a preprocessor to resolve the "#include" statements, and to check the
syntax of the mini-spec and the policy. The preprocessor enforces the rule that all expressions
must denote a regular language (all expressions must be regular). Regular languages with an
infinite number of strings are represented by the "*" operator in the regular expression or a cycle
in the Finite State Machine. Non-regular languages do exist and cannot be represented by these
constructs. For example, a language such as the one denoted by {an : n is prime} has no simple
periodicity, is not regular, and cannot be represented by the constructs of regular languages[9].

The preprocessor enforces this rule by making sure that all referenced nonterminal definitions
have been defined before they are referenced. A nonterminal is not defined until after the carriage
return, prohibiting expressions of the form: <foo> ::=a I<foo>. This forces the use of the "*"
operator for all loops and is sufficient to enforce that all expressions denote regular languages.
The preprocessor, part of the APC, provides an error message and the line number in the file
where the error occurred, when a syntax error, such as the one just described, is encountered.

Evaluation of the Language

The language for writing policies and mini-specs is based on regular expressions, which is a
commonly accepted notation for representing a name space. It is a straightforward matter to
use the language to represent the names of system resources manipulated by programs, such as
file and device names, file attributes, environment variables,. and system call names. Another
application would be to encode behavior patterns in a regular expression, such as user profiles,
using the constructs of the language.

The primary drawback to this language is that the expressions must be kept simple enough to
be processed by the APC during a reasonable processing cycle. A "reasonable processing cycle"
will be specific to a particular installation depending on the price, in processing time, one wishes
to pay for protection from viruses. This requires some knowledge about regular expressions on
the part of the individual writing the mini-spec or policy. In some cases, the mini-spec may have
to be broken down into several pieces or simplified according to regular expression transformation
rules.

288

Using the APC

The APC command is as follows:

ape namel [name2] [-Idir ...]

name1 is the name of the file that contains the mini-spec; name2 is the name of the file that
contains the policy. If name2 is not supplied, the default is the system policy.

-Idir "#include" files are sought first in the current working directory, then in the directories named in
the -1 options.

When the policy is not supplied by the user a default system policy can be used. This allows
a user to test out the mini-spec against an individual policy before submitting it to the system
administrator for installation. It also allows the user to have an individual policy that is more
stringent than the system policy. For example, suppose the system policy allows modifying of
any files in any user directory. If a user does not wish to allow modification of the home directory,
then the user can write an individual policy that only allows modifications to files not in the
user's home directory. The user can then use the APC, supplying the user-specific policy, when
deciding whether to execute new programs. The APC returns a message indicating whether or
not the program is acceptable according to the policy.

Application of the APC to the Virus Problem

This section discusses the application of the APC to the virus problem. All experiments were
conducted under SunOS. The distinguishing characteristic of a computer virus is its ability to
infect other programs by modifying them to include a copy of the virus. Although there are
other behaviors of programs that can be controlled to prohibit viral activity, all of the policies
discussed here focus on the modification operation, specifically, the modification of files and
directories. All of the policies contain a single rule which specifies the directory and file names
where modification is allowed. All of the mini-specs also contain one rule which specifies the
directory and file names that the associated program could attempt to modify.

Test Suite

All of the programs in sections 1 & 6 of the Unix Reference Manual[ll] were examined for
possible inclusion in the test suite3 . These programs include editors, compilers, game programs,
printing programs, and other basic utility programs available to normal users. The modification
behavior of each program were studied by reading the Unix manual pages, looking at source code
when available, and talking with Unix developers when necessary. In some cases, the modification
activity of a program could not be adequately identified due to the lack of sufficient information.
Such programs could not be included in the test suite. A total of 125 programs comprise the test
suite.

Many of the programs in the test suite had the same modification behavior. A total of
twenty-three unique mini-specs were written to represent the 125 programs in the test suite.
Three additional mini-specs were written to simulate programs infected with a real virus. The
reason for including "infected" programs was to show whether each policy prevented infected
programs from being accepted. All twenty-six mini-specs were tested against each identified
policy. The details of the program study, the mini-specs, and the programs they represent, are
presented in detail in [10].

Policies

The development of the anti-viral policies was approached from opposite angles. On the
one hand, normal user activity was identified and several policies were developed to allow that
behavior. On the other hand, several viruses were identified and policies were written to prohibit
their behavior. The basic methodology was to develop policies that allowed normal user behavior
and prohibited abnormal (viral) behavior.

3 All or the programs in these sections or the manual are available to normal users. For purposes or these experiments,
programs which require special privileges were not considered.

289

Policies for Normal User Activity

The first policy considered is a loose policy that allows. modification to any directory and
any file on the system. The reason for including such a policy is to show the operation of the
system with respect to viruses when no restriction is placed on allowable modification activity.
This policy is comparable to no policy and all programs in the test suite, including the three
"infected" programs, were accepted. At the opposite end of the spectrum of policies is a tight
policy that only allows modifications to the standard output and standard error devices. This
policy is included to represent a policy that allows very little modification activity. A policy such
as this effectively keeps all viruses out of the system, it does not accept any editors, compilers,
or programs to manipulate files.

Policy 3 allows modification to files in specific directories: /devf, /tmp/,{cwd} or {home}
This policy does not allow modifications to any other directory, nor does it allow modifications
to any subdirectory of these directories. A total of 50% of the programs in the test suite, are
accepted by this policy. More importantly, this policy successfully rejects all three "infected"
programs. Policy 4 is more restrictive and only allows modifications to the current working
directory; this does not include files in subdirectories of the current working directory. Only 42%
of the programs in the test suite are accepted by this policy. All three "infected" programs are
also rejected. Policy 5 is the opposite of policy 4 in that modifications are allow to any file located
anywhere in the system except the current working directory. A total of 59% of programs in the
test suite were accepted by policy 5, however, two of the "infected" programs were also accepted.
Policy 6 is also very restrictive; this policy only allows modification to objects located in the
temporary directory /tmpf. Although this policy correctly rejects the three infected programs,
it only accepts programs 42% of the programs in the test suite.

Of all the policies in this section, policy 3 which allows modifications to all four specific
directories appears to be the best policy in that it accepts that largest percentage of programs.
None of the policies accept any compilers or editors.

Policies to Prevent Specific Viruses

Four Unix viruses are identified in this seCtion. The details of each virus are not presented
for security reasons. Instead, each virus is de8cribed in terms of the name space of directories
and/or files that it modifies.

The Murray Unix Virus infects Unix shell programs. Murray looks for shell programs to infect
in the user's bin/ directory and the current working directory. Murray also creates and modifies
several files in the current working directory that start with a ".". Since shell programs are not
identifiable by their name, the policy is written to prohibit any modifications to the user's /bin/
directory or current working directory (modifications to subdirectories of the current working
directory are permitted). Furthermore, this policy only allows modification to files in the home
directory that do not start with a ".". Modifications to other files in other locations in the system
are permitted. This policy accepts the same set of programs that were accepted by policy 5 - the
policy that does not allow modification to the current working directory. Although this policy
rejects the mini-spec "infected" with the Murray virus, the other two "infected" programs are
accepted.

To simulate the IBM Christmas Tree virus in a Unix environment, policy 8 was written. This
virus is not technically a virus since it doesn't copy itself to another program, i.e., the virus
doesn't infect other programs. Instead, this virus, or worm, sends a copy of itself to all of the
electronic addresses of all the users listed in the victim's address alias file. To stop the spread,
policy 8 prohibits modification of the mail spool directories, the location where all outgoing mail
is queued until it is sent out of the system. This policy accepts 61% of the programs in the test
suite. However, it restricts the proper usage of the mail programs so that mail cannot be sent out
of the system by anyone. Also, this policy does not reject the other two "infected" mini-specs.

The virus described in [1] is a general virus that searches for any executable file and appends
itself to the executable. Since this virus can modify any file any where in the system, policy 9

290

Table 2: Policy Acceptance Rate

Policy Name
Mini-
Specs

Accepted

Total
Programs

Represented

%of
Programs
Accepted

Infected
Programs
Accepted

1 Loose all 125 100% yes
2 Tight 1 48 38% no
3 Specific

Directory
1,7,10-12,
14,18,20

63 50% no

4 {cwd} 1,11,14,20 52 42% no
5 not

{cwd}
1-7 ,9,10,12,

15,17-19,22,23 74 59% yes
6 /tmp 1,10,12 52 42% no
7 Anti-Murray same as 5 74 59% yes

8 Anti-
Xmas

1-7,9-12,
14,15,

17-20,23
76 61% yes

9 Anti-Generic 1,7,18 55 44% no
10 Anti-

Worm
1-6,9,10,12,
14,15,18-20 64 51% no

11 Combo 1,18 49 39% no

prohibits all modifications except to the devices. Such a policy is very restrictive and, although
it successfully prohibits all viruses, it allows only 44% of programs.

Policy 10 is intended to prohibit the Internet Worm. The Internet worm modified many
things on the system. Most important were the sockets that it wrote to in order to transfer the
worm from the host machine to the victim machine. The worm used unnamed sockets which
makes it impossible to use this scheme to prohibit writing to sockets. The worm also created
files beginning with the letter "x" which it later deleted in an attempt to hide itself. Prohibiting
modification to files whose name begins with the letter "x" would halt the Internet worm but it
would be a simple matter to re-write the worm to use some other letter. Policy 10 does prohibit
the ''infected" mini-spec which represents a program that is carrying the Internet Worm and
it accepts 56% of all useful programs. This policy also successfully rejects the other "infected"
programs. However, this policy would be very simple to circumvent. A second generation of this
virus could choose a different letter or randomly select a letter other than "x". In this way the
virus would be accepted by the policy.

Policy 11 was developed by using the union operator of the language and combining policies
7, 8, 9, & 10. The reason for including such a policy is to experiment with a single policy for
all viruses vs. a policy for each individual virus. This policy does successfully reject all three
"infected" programs, but it only accepts 39% of all programs. Also, it is easy to see that this
policy doesn't prohibit all viruses, just those described here.

Evaluation of Empirical Results

Table 2 shows the acceptance rate for each policy just described. Column 1 identifies the
policy by number, column 2 lists the number of the mini~specs that were accepted, column 3
shows the total number of programs represented by the accepted mini-specs. Column 4 indicates
the percentage of the 125 programs in the test suite that were accepted by each policy. The last
column indicates if any of the "infected" mini-specs were accepted.

Eleven total policies were identified: 6 policies allow normal user behavior while. 5 policies
prevent a specific virus(es). Policies 1, 5, 7, and 8 accepted one or more of the "infected" mini­
specs; mini-specs that were included to represent programs infected with a virus. Policies 10
& 11 are considered weak policies as it would be very simple to create a virus to circumvent
these policies. Policy 3, which allows modifications only to specific directories (/dev/. /tmp/,

291

{cwd}, {home}) accepts the largest number of programs. In general, policies based on normal
user behavior accept a larger percentage of programs, especially most necessary programs; those
based on specific viruses are easily circumvented.

None of the policies that are effective against viruses accept any editors, compilers, linkers,
or other programs considered necessary for normal user operation. This leads to the conclusion
that basing the policy on the modification behavior of programs, although an important activity
to control for virus prevention, by itself is inadequate. There are two reasons for this. First,
the nature of Unix programs is that they either modify only standard error and/or standard out
(39% of programs in the test suite), or they modify any file in any directory (34% of programs
in the test suite). This results in mini-specs that specify program behavior as "all or nothing''
for 72% of the programs in the test suite. Clearly, this approach would be more effective if th~
modification characteristics of Unix programs were restricted. The question is: could this be
done easily without a great deal of impact on users?

The second reason is the unavailability of user input. This approach is a static, preventative
mechanism, it is applied once, prior to program installation. The mini-spec attempts to capture
the potential dynamic behavior of a program but because of its static nature, this results in
many programs being rejected at installation time that could operate within the confines of the
policy at run-time. For example, suppose the policy states that the only modifications allowed
are to /tmp/ and files can have any name as long as they do not begin with the letter "a". If the
mini-spec for a particular program modifies files of any name in /tmp/ the program would not be
accepted for installation. If the mechanism were applied at run-time instead, the program might
execute within the confines of the policy, i.e., not modify any files that begin with the letter "a".
Thus, the unavailability of user input results in policies that appear overly restrictive.

The modification behavior of a program is the most obvious characteristic of a computer virus
which is why it was chosen as the behavior of focus for this study. However, although important
for virus control, policies based on this behavior are not restrictive enough, too restrictive, or
can easily be circumvented. Alternative behaviors to be considered include system call patterns,
modification of file attributes, modification of environment variables.

Lastly, the fact that the language does not contain a construct for intersection, and especially
complementation, results in policies that are more complex than if these operators had been
available. Policy 8, which is intended to prevent the Murray virus, is an example of this. Since
there is no way to directly express policies such as "anywhere but /bin/", policies tend to be
overly restrictive. An alternative would be to specify all the file names and directories that cannot
be modified in the policy. Then, if the APC determines that the mini-spec is not a subset of the
policy then the mini-spec would be considered acceptable.

Evaluation of the Overall Approach

This research has shown that the proposed mechanism can keep viruses out of a system and
still accept a percentage of most necessary programs; it is a feasible and practical approach. It
has further been shown that controlling the modification of files is an important behavior to
control for virus prevention, but results in policies that are too restrictive, not restrictive enough
or results in policies that can easily be circumvented. The APC clearly separates the policy from
the mechanism that enforces the policy. This will allow future studies to investigate alternative
behaviors for virus prevention and control.

On the negative side, the complex expressions that result due to the lack of the intersection
and complementation operators of the language, sometimes result in lengthy execution times.
However, the approach suggested in the previous section, i.e., testing for whether a given mini­
spec is not a member of the policy's language, may provide a simple solution to this problem. Also,
the inability to capture run-time user input results in a greater number of programs being rejected.
A possible solution to this problem is to move the mechanism into the run-time environment that
would not require a mini-spec and could operate on the actual file or directory name; a much
simpler check would need to be made in this case. The next section discusses future research.

292

Conclusions and Future Work

The investigation of alternative program behaviors is an obvious extension to this work since
it would not require any additional implementation. Since the mechanism and policy are clearly
separated, the study of alternative behaviors simply means supplying a new test suite. Several
possibilities for other behaviors to investigate include system call patterns, file attribute modi­
fications and environment variables. In the case of system call patterns, a possible approach is
to encode the patterns of modification system calls in a regular expression using the constructs
of the language. The same is true for file attributes or environment variables although specific
names could also be used in the same way as the current study. In any case, developing a new
test suite is not a simple matter. In order to provide a useful test suite, a large set of programs
should be investigated and studied. As this research has shown, policies based on normal user
activity are the most effective.

To accommodate user input, this mechanism could be extended to represent user behavior.
For example, user behavior could also be encoded in a regular expression using the constructs of
the language. The union operator of the language could then be used to combine a particular
user's behavior with that of a specific program. The combined specification could then be checked
against the policy. This would involve a study of user behavior, particularly user modification
behaviors. The advantage of this approach would be the information regarding each specific user
rather than just the program's behavior. This could also be classified by class of users or group
of users.

Another obvious extension of this work is to implement the mechanism as a run-time mech­
anism and to run experiments with test suites in both the static, prevention mode and the
dynamic, detection mode. This would provide information regarding prevention vs. detection of
VIrUSeS.

Lastly, extending this work to different types of systems, such as a DOS or Macintosh system,
would be a useful project. In both cases, neither system takes advantage of the memory protection
features of the hardware, allowing programs to modify any location in the system. The mechanism
described here, especially if implemented as a run-time mechanism, could be used to restrict the
modification activity of programs despite the failure to use memory protection. Since many of the
DOS viruses encountered directly modify memory addresses, an appropriate behavior to study
might be the actual calls for modification rather than the directory and file names as was done
in this study.

This research has implemented a mechanism for comparing program behavior against a policy
that states allowable program behavior. This approach has been applied to the virus problem and
shown to be a practical and feasible approach for preventing computer viruses. This mechanism
does not have a high impact on performance, and does not result in inconvenience to users. When
used with a filter program such as one described in [2, 6], it does not rely on some number of
humans to act in a trustworthy fashion. Most importantly, this approach clearly separates the
policy from the mechanism that enforces the policy. In this way a variety of policies and program
behaviors can be studied and tested using the APC.

References

[1] 	 F. Cohen. Computer Viruses. In Proceedings of the 7th National Computer Security Con­
ference, pages 240-263, 1984.

[2] 	 S. Crocker and M. Pozzo. A Verification-Based Virus Filter. In IEEE Symposium on
Research in Security and Privacy, 1989.

[3] 	 M.R. Garey and D.S. Johnson. Computers and Intractibility A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, San Francisco, CA, 1979.

293

[4] 	 J .E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley Publishing Company, Inc., Reading,MA, 1979.

[5] 	 P.A. Karger. Limiting the Damage Potential of Discretionary Trojan Horses. In IEEE
Symposium on Security and Privacy, 1987.

[6] 	 P. Kerchen, R. Lo, J. Crossley, G. Elkinbard, K. Levitt, and R. Olsson. Static Analysis
Virus Detection Tools for Unix Systems. In 13th National Computer Security Conference,
October 1990.

[7] 	 N. Lai and T.E. Gray. Strengthening Discretionary Access Controls to Inhibit Trojan Horses
and Computer Viruses. In Proceedings of the Summer 1988 USENIX Conference, 1988.

[8] 	 R. Levin, E.Cohen, W. Corwin, F. Pollack, and W. Wulf. Policy /Mechanism separation in
Hydra. In Proceedings of the Fifth Symposium on Operating Systems Principles, November
1975. University of Texas at Austin.

[9] 	 H.R. Lewis and C.H. Papadimitriou. Elements of the Theory of Computation. Prentice-Hall,
Inc, Englewood Cliffs, NJ, 1981.

[10] 	 M.M. Pozzo. Towards Computer Virus Prevention. PhD thesis, University of California,
Los Angeles, 1990.

[11] 	 Sun Microsystems, Sun Release 3.2. Commands Reference Manual, 1986. Mountain View,
CA.

294

IMPROVEMENT OF DATA PROCESSING SECURITY BY MEANS OF FAULT TOLERANCE

Gilles Trouessin * Yves Deswarte* Jean-Charles Fabre* Brian Randell**

* LAAS-CNRS & INRIA
7, Avenue du Colonel Roche

31077 Toulouse Cedex -France

**Computing Laboratory, The University
Newcastle upon Tyne

NEl7RU- United Kingdom

Abstract

This paper discusses various different solutions to the problem of reliable processing of confidential infor­
mation. One of the major difficulties of this problem comes from the fact that conventional techniques for
achieving reliability, on the one hand, and security on the other, tend to be in opposition to each other.
The different solutions presented here have been classified in three distinct types: two are related to classical
security techniques (protection, and encryption) and the third is a new technique, the fragmentation-redun­
dancy-scattering technique, which it is claimed demonstrates a potentially advantageous unified approach to
the provision of reliability and security, based on fault tolerance. Finally, a qualitative comparison of these
solutions is given, taking into account both dependability, openness and performance criteria.

Keywords: secure architectures, integrity, reliability/availability, protection, encryption,fragmentation.

1. Introduction

In this paper we concern ourselves with the provision of high reliability and availability, and the preservation of
data confidentiality, in large scale distributed systems, such as ones based on workstations connected over one or more
high speed LANs.

1.1. Problem statement

Dependability, a generic concept - defined as the trustworthiness of a computer system such that reliance can
justifiably be placed on the service it delivers - may be viewed w.r.t. different properties [8] and so enables the
definition of a number of different dependability attributes, including: availability (w.r.t. readiness for usage),
reliability (w.r.t continuity of service), safety (w.r.t. avoidance of catastrophic consequences on the environment),
security (w.r.t prevention ofunauthorized access and/or handling of information, i.e., provision of data integrity and
confidentiality).

Some of these attributes (reliability/availability and security) are often considered separately because the techniques
used to achieve them are usually perceived as being mutually antagonistic. Firstly, reliability and availability are
generally achieved by incorporating mechanisms for tolerating any faults (especially accidental faults) that occur, or
that remain despite attempts at fault prevention during the system design process. These techniques will of necessity
involve space and/or time redundancy; they can easily take advantage of a distributed computing architecture by means
of replicated computation using sets of untrustedl (or fallible) processors. Secondly, security features are generally
achieved by means of fault prevention mechanisms (w.r.t. intentional faults, such as intrusions) whereby critical
applications are implemented on physically and/or logically protected computers. Such protection is usually based on
the TCB (Trusted Computing Base) or NTCB (Network Trusted Computing Base) concepts [17] [18].

From the above we see that what can be termed an antagonism between reliability/availability and security arises in
at least the two following ways [7]: (i) accidental{ault tolerance (by means of replication) increases the number of
potential access points to confidential information and thus can reduce the effectiveness of the protection techniques;
(ii) intrusion prevention (by means of a local TCB or a NTCB partition) can suffer from the fact that one cannot
justifiably rely either on a single TCB (which forms a classical "single point of failure"), or on the local TCBINTCB
partition of each computer inter-connected to the network.

To be adequately realistic, a solution dealing with this antagonism must, we believe, take into account the
following two requirements: (i) trusted area reduction, by which we mean that the security provided by a potential

1 	 Here we use the term trusted component to mean one that is assumed to be highly reliable and available, and impervious to
intrusions (i.e., not to be a source of deliberate faults), in its intended environment.

295

solution should depend on as small as possible a trusted area, because it is impossible to place confidence on all of the
processors in the network; (ii) openness, by which we mean that a potential solution must not be (excessively)
software and/or hardware dependent, but instead allow implementation over a network of heterogeneous systems. The
former requirement, regarding trusted area reduction, would also contribute to the latter one, regarding openness, since
untrusted processors belonging to same critical application would thus not be security-dependent.

1.2. 	 Reliable processing of confidential information

Let us consider the problem of reliable processing
of confidential information as involving a combination
of the three following features a), b) and c):

a) Simple processing (Fig. 1a): processing (P) is ap­
plied to a set of input data (D) in order to obtain a
set of output results (R). Both areas are shaded to
denote the fact that neither the processor (the lower Figure la: Simple processing

area) nor the environment containing the 1/0 (in­
put/output) devices and which provides the inputs
and accepts the outputs (the upper area) are trusted.

b) Reliable processing (Fig.1b): the redundant execu­
tion of P (by means of processor replication) in
order to provide data integrity for D and R, and
reliable processing ofP.

c) Confidential processing (Fig. 1 c): in this, and Figure 1 b: Reliable processing

indeed all cases where confidentiality is required,
input is provided from, and output is delivered back
to, a trusted area. Neither of the two regions of
Fig. lc is shaded; this is to indicate that P is
executed, and its 1/0 prepared/received, securely (in
similarly trusted areas), in order to preserve the trusted rocessor
confidentiality of D, R and (perhaps) P. 	 Figure lc: Confidential processing

2. Achieving Combined Reliability and Security

2.1. Approach 1: Protection

This first approach is based on a classical security technique, protection, an intrusion-prevention technique which is
based on forecasting and preventing, as far as possible, the different intrusions that could damage overall system
security. This technique may be implemented by either of two different solutions: 1) centralized protection or 2) local
protection. In each case, replication is also employed, in order to add both processing reliability and data integrity.

2.1.1. Solution 1.1: Centralized protection and replication

This first solution (Fig. 2) is in fact the .logical combination of the features (reliability and confidentiality)
represented in Figs. lb and 1c. As in all cases where confidentiality is required, 1/0 operations, for each given user, are per­

f: ·,·,

formed in a trusted area using a similarly trusted
processor. However, the processing is replicated and
executed by trusted processors that all belong to the
same trusted area as that where the data is provided and
the results received by the user. Solution 1.1 can be
developed on the basis of a centralized TCB as recom­
mended in the Orange Book [17], using a specific archi­
tecture, i.e., a fault-tolerant computer system, such as
Tandem or Stratus systems.

There are two possibilities for preserving the confi­
dentiality of data whilst it traverses the medium used for

~---r-:_:~-----
D p R=P(D)

trusted rocessor 1

Figure 2: Solution 1.1 ­
Centralized protection and replication

296

inter-processor communication, depending on whether or not the medium is considered as pmtof the trusted area. In the
latter case, confidentiality preservation of the whole critical application is based on the encrypting of all commu­
nications between processors. In either case, the trusted area reduction requirement, and thus also the openness
requirement, are not adequately met, since all the processors (together, one can be sure, with significant portions of
their operating systems), and perhaps the communication medium, are considered as part of the trusted area.

Solution 1.1 is thus in practice perhaps well suited for very specific highly critical applications such as some types
of military computation but does not fit well with general-purpose applications which may invoke remote processors
and use several distinct networks.

2.1.2. Solution 1.2: Local protection and replication

This second solution (Fig. 3) is in fact a network generalization of the previous solution. 1/0 operations are
performed in a trusted area located on a special trusted processor. Normal processing is still replicated but it is now
accomplished in an untrusted area, on processors which are in general untrusted. Each of these processors is however pro­
tected by means of a local TCB and a NTCB partition
as recommended in the Red Book [18].

An Authentication-Access Control scheme (AAC
and AAC', in Fig. 3) is needed between the special
trusted processor and the other processors involved in
the critical application, in order to ensure the overall
security of the application.

There is only one possibility for the preservation of
the confidentiality of the communication medium since
processing is executed in the untrusted area: the medi­
um must be considered as part of the untrusted area and
all communications between the different processors
must thus be encrypted.

Several hardware and/or software implementations
of this solution have been developed, for example: the
Distributed Secure System [2] [11], the LOCK co­
processor [12] in connection with the SDNS project
[15], Secure Sun OS [16].

With Solution 1.2, we can see that the trusted area re­
duction requirement is partially respected: (i) respected,
since each processor involved in executing the critical
application is now considered to be untrusted, and to be Local protection and replication

situated in an untrusted environment area; (ii) partially, because each of these untrusted processors must be protected by
a local TCB and NTCB component, which are each in fact a local (albeit perhaps small) trusted software and/or
hardware mechanism operating in an untrusted environment. However, this means that the mechanism should therefore
be made tamper-proof, so that it cannot be opened without destroying its content. Such tamper-proof devices also need
to possess a master key in order to communicate securely with other such devices in the untrusted area; and in practice,
must be small and essentially maintenance-free.

The other requirement, openness, is not respected because each implementation of this solution requires the help of
a TCB!NTCB partition to enforce security on the different processors of the network. This is the main drawback of
Solution 1.2, particularly where the TCB or NTCB component is merely software running on the otherwise untrusted
processor, because it is very difficult to protect the component from and by something as complex as an operating
system, (e.g., Unix in the LOCK/ix project). However when the NTCB is in special-purpose hardware, monitoring all
communications to and from the untrusted processor (as in the DSS project), its task, and that of making it tamper­
proof, are more readily achievable. Anyway, in all cases, if any of the local TCB!NTCB components are corrupted or
replaced by Trojan Horses, all the others are threatened so that the security of the whole network is compromised and
the confidentiality of the critical application lost.

trusted
area

Figure 3: Solution 1.2 ­

297

2.2. Approach 2: Encryption

This second approach is based on another classical security technique, encryption, which is a well established
technique for preserving the confidentiality of communications and file archiving. It can be used for preserving the
confidentiality of information processing in two different ways: 1) homomorphic encryption or 2) black-box
encryption. In each case, replication is also used, in order to provide both processing reliability and data integrity.

l.l.l. Solution 2.1: Homomorphic encryption and replication

With this solution (Fig. 4), a user's 1/0 operations are as always performed in a trusted area, and reliability features
are obtained by means of processing replication, again in an untrusted area, but in a encrypted way. In the one trusted
area, a special trusted processor transforms the data set (D) and the processing (P) by means of a specific kind of
encryption technique (C) into an encrypted data set (D') and encrypted processing (P').

Only certain types of encryption, called privacy
homomorphisms [1] [10] [13], are suitable for such
transformations. However, when C is of such a type,
P' can be securely accomplished in the untrusted area,
by untrusted processors. Encrypted results (R') obtained
in the untrusted area can then be de-crypted (C-1) in the
trusted area to obtain results in clear (R):

• 	 D thus has an imageD' according to C: D'=C(D);

• 	 P also has its own "image" P' depending on both C
andP features: P' is afunction of(C,P);

• 	 R' is thus an image of D' with P': R'=P'(D').

With Solution 2.1 communication confidentiality
is directly preserved by means of encryption and no
additional techniques are required for this pmpose.

Figure 4: Solution 2.1 ­But a restriction must be observed in implementing
Homomorphic encryption and replication any scheme based on Solution 2.1. If an intruder can ac­

cess the encrypted value of any arbitrary constant and if the comparison operator is available then usage of a privacy
homomorphism is no longer secure. This is because the intruder can use a simple binary search strategy to discover the
encrypted value of each data item of the whole data set D [10]. However in some particular cases (where there is no
need for a comparison operator) Solution 2.1 is valid [1] [13]; but these cases are very limited (very specific banking
transactions, for example) and thus this approach cannot be considered as providing a general solution.

Because of the above restriction, we can say that Solution 2.1 partially respects the openness requirement since
processing is securely executed only in some particular cases (if C is a privacy homomorphism and if P does not
provide the comparison operator). However, we can say that Solution 2.1 respects the trusted area reduction
requirement perfectly, since processing is completely executed by untrusted processors, without any need for trusted
devices in the untrusted area.

l.l.l. Solution l.l: Black-box encryption and replication

This solution (Fig. 5) exhibits some common features with the previous solution: 1/0 operations are performed in
the trusted area and processing in the untrusted area, reliability is obtained by replication and confidentiality by
encryption. However, homomorphic encryption is replaced by black-box encryption. In fact, processing is apparently
executed in encrypted form: R'=P'(D'), since only encrypted data D', encrypted processing P' and encrypted results R'
can be observed in the untrusted area.

In reality, processing is executed in clear inside a trusted "black box" associated with each untrusted processor. This
solution involves three steps:

• 	 encrypted input data (D') is received and de-crypted with c-1: D=C-l(D');

• 	 normal processing P is executed in order to obtain results R: R=P(D);

• 	 results R are encrypted with C in order to obtain R' that can be sent out of the black box securely: R'=C(R).

298

The trusted black box thus contains a decrypting­
processor, a small size memory, a processor and an
encrypting-processor. To be really secure, it must be
tamper-proof (as described in Section 2.1.2 above).

However, Solution 2.2 suffers from several major
drawbacks (7], though the first three listed below are
essentially similar to those possessed by Solution 1.2:

• 	 protection against a Trojan-horse black box: in order
to be qualified as trusted, it must not be possible to
replace the black box by a Trojan-horse black box
during its operational life (leave alone during initial
installation);

• 	 management ofencrypted addresses: all data received
by the trusted black box, such as addresses, are en­
crypted and are thus more difficult to decode and use;

• 	 management of communication keys: one (or
several) master cryptographic key(s) is(are) required
in order to allow secure communications, which
increases the management complexity of key distri­
bution and use;

• 	 increase of local memory space: for management of
encrypted addresses or communication keys and local
data storage, thus increasing the local memory space required for the black box whereas it ideally should, as
mentioned previously, be small.

Because of these drawbacks, we can say that though Solution 2.2 is feasible, like Solution 1.2 it does not meet the
openness requirement, because the security in the untrusted area is really hardware- and software-dependent (i.e. black
box dependent), and it does not meet the trusted area reduction requirement very well, since a trusted device (the trusted
black box) must be installed essentially in each processor.

2.3. Approach 3: Fragmentation-Scattering

This third approach is based on what can be termed a "unified fault tolerance" technique, the Fragmentation­
Redundancy-Scattering (FRS) technique, since it provides, in a single mechanism, means of tolerating both accidental
and intentional faults, and hence of providing both reliability and confidentiality of data and its processing.
Fragmentation involves defining fragments of information so as to ensure that, once isolated into physically separate
processors, each fragment is of little value to a potential intruder due to the lack of significant information content in
any one processor. (In principle such fragmentation can either be achieved at the programming language level, where it
can take advantage of programmer-defined data structuring, or at the operating system level, where it is based on
machine-level data types, such as bytes, words and/or pages. Particularly in the former case there is the possibility of
requiring, and making use of, programmer-supplied constraints indicating which data items it would be especially
undesirable for an intruder to be able to correlate.) Such fragments are then replicated, and the replicated fragments
scattered across a (preferably large) number of processors.

FRS has been developed and successfully demonstrated in the context of a secure file archiving system [5] [6] and
in the course of research into security management [3] [4]. In the processing context [7] [19] the approach relies on the
correct execution of a majority of a set of copies of each of a number of program fragments with their corresponding
data fragments, these fragments being widely distributed across a number of untrusted processors. Research to date on
the application of FRS to processing! has resulted in the devising of two rather different implementation schemes:
1) fragmentation-scattering and replication or 2) fragmentation-scattering and threshold.

1 	 The FRS technique applied to processing is called Fragmented Data Processing (FDP). Some actual examples of this FDP
technique are presented in the Appendix to this paper.

Figure 5: Solution 2.2 ­
Black-box encryption and replication

299

2.3.1. Solution 3.1: Fragmentation-scattering and replication

With this solution (Fig. 6), 1/0 operations are again performed in the trusted area, reliability features are again
obtained by means of processing replication in the untrusted area, but in a fragmented fashion. In the trusted area, the
trusted processor transforms the data set (D) by means of a set of projections, or data-fragmentation functions, F = (!J,
f2, 	... ,f,J, into a set D = {dJ, d2, ... , d,J of data
fragments. Similarly, processing (P) is transformed by
means of a set of projections, or program-code fragmen­
tation functions, G ={g1, g2, ... , g,J, into a set
P =(pJ, P2· ... , p,J of program-code fragments. A
critical application is thus split into n distinct program
fragments, each of which consists of a data fragment d;
and a program-code fragment p;, as follows:

• 	 d; is the image of D by projection/;: d;=/;(D);

• 	 Pi is the image of P by projection g;: d;=g;(D);

• 	 r; is the image of d; by processing p;: r;=p;(d;).

Results R can only be reassembled on the trusted
processor because each untrusted processor does not
have enough information to permit such re-assembly:
perhaps just a single program fragment (one data­
fragment d;, one program code-fragment p;) and thus
one result fragment r;, for a given application. In
practice, several program fragments could however be
mapped on the same physical processor, provided that
they do not in sum reveal any significant information. ~ ---------- ..:;··..:;·~ ..:; --------------_,

Figure 6: Solution 3.1 ­
Solution 3.1 possesses two main beneficial features: Fragmentation-scattering and replication

• 	 different classes offragmentation functions(/; and g;) can be defined: security depends on the way the fragmentation
functions if; and g;) are chosen: for a given critical application different classes of fragmentation functions are
possible (data and/or program-code driven) and different fragmentation strategies are also possible, thus allowing
different security features to be obtained (data and/or program-code confidentiality preservation) [19] [20];

• 	 security does not depend onf; or g; confidentiality: security does not rely on a potential intruder being ignorant of
the semantics of the fragmentation functions if; or g;).

A potentially major drawback of Solution 3.1 is that it might be expensive, in terms both of performance and
program development effort. The major issues involved are as follows:

• 	 additional memory space overheads: the memory space overheads due to replication are exactly the same as for any
other solution using replication; those due to fragmentation come from the fact that there can be an overlapping of
the data fragments d; derived from D. In such a case and if these overheads are important, then another fragmentation
strategy (based on a larger, but then admittedly perhaps less secure, fragmentation granularity) might be adopted;

• 	 increased number ofprocessors: this is unavoidable, but in the introduction of this paper it was indicated that we
are assuming the basic global environment of the problem of reliable processing of confidential information in a
distributed computing environment. In many such systems, for example university computing networks, a large
number of processors can be idle very often [9]; in such cases the provision of reliability/availability by means of
processing replication and of security by means of fragmentation-scattering can together take advantage of such
unused processing power;

• 	 communication overheads: since many more processors are required than with the two previous approaches, much
more communication traffic may be induced; for example by data fragment exchanges between distinct program
fragments. In such cases, and if communication overheads are significant, this again, might motivate the adoption
of another fragmentation strategy, with larger fragmentation granularity;

• 	 development effort: if significant development effort is needed to apply the technique to each separate application
this would constitute the major cost of this approach, which would probably only be justifiable on very critical

trusted
area

300

applications which were thereafter to receive extensive use. To date, investigations have been somewhat
application-specific, but the prospect of application-independent methods of using the technique is now being
considered

From the above, and from experiments to date, we claim that solution 3.1 respects the openness requirement; we
believe that most types of critical application can be fragmented, at least to a degree, largely because a wide range of
fragmentation possibilities are offered by means of the different fragmentation classes and strategies. The trusted area
reduction requirement is certainly respected since no bUsted software and/or hardware components need be situated in
unttusted areas. In particular, the fragmentation functions (f; and g;), though they are used in the bUsted area and are the
basis of security, are not confidential and could actually be held in untrusted areas.

2.3.2. Solution 3.2: Fragmentation-scattering and threshold schemes

This solution (Fig. 7) has some points in common with the previous one: I/0 operations are performed in the
bUsted area, processing in the untrusted area, and confidentiality requirements obtained by means of fragmentation­
scattering. But reliability/availability are now obtained by using so-called threshold schemes [14] applied to processing,
instead of using processing replication. With the threshold technique, at least s (the threshold number) shadows of a
given secret are needed to reconstitute the secret and less than s shadows do not give any information about this secret.
Like error correcting codes, the threshold scheme technique thus imposes some redundancy in order to tolerate acci­
dental but also intentional faults (especially intrusions w.r.t. data confidentiality and integrity), and during processing.

In the trusted area, the special trusted processor
transforms the data set (D) by means of a specific set of
projections, taking into account the threshold scheme,
F 8 = (fJ 8 ,f28 , ••• .fm8J, into a set of data fragments,
D8 8= {dJ8 , d2 , ••• , dm8}. Similarly, processing (P) is
transformed by means of a specific set of projections,
G8 8= (g1 , g2s, ... , gm8J, into a set of program-code
fragments: ps = {PJ 8 , P2 8 , ••• , Pm 8}. A critical
application is thus split into m>n distinct program
fragments (each consisting of a data fragment df and a
program-code fragment pf) as follows:

• df is the image ofD by projectionft: dt=ff(D);

• pf is the image ofP by projection gf: df=gf(D);

• rt is thus the image of df by pf: rf=pf(df).

As with Solution 3.1, R can only be reconstituted
on the bUsted processor because each untrusted proces­
sor does not have enough information, possessing in
principal just one data and one program-code fragment
for a given application.

Solution 3.2 possesses many of the advantages and disadvantages of Solution 3.1 -however, it allows reduction of
the number of required processors to m, instead of the n.r needed by the previous solution (if r is the replication level)
and thus reduces various types of overhead, including communication overheads. But its main drawback is that not all
threshold schema are suitable. With Shamir's threshold schema based on polynomials [14] for example, a restricted set
of polynomials must be chosen: addition is conserved with this kind of processing, but multiplication becomes
quickly expensive (high degree polynomials are required in order to perform multiplications securely) and comparison
can be used only if the restricted polynomial set offers the total order property (any shadow of any secret must be
comparable and respect the total order property imposed by the secrets).

Thus we can see that this solution meets the trusted area reduction requirement fully and that just a restricted set of
threshold schemes can be used (high degree and ordered polynomials). Two main problems must also be considered:
(i) the security of the fragmentation projections (F8 and OS) must remain as strong as the (proved) security of the
threshold scheme technique; (ii) the cost of these fragmentation projections, i.e., in terms of development effort andre­
quired execution time, must not be too important compared to the execution time of the program-code fragments (ps).

trusted
area

'untrusted
j area

' -----------------------------·
Figure 7: Solution 3.2­
Fragmentation-scattering and threshold schemes

301

3. Qualitative Comparison

Different comparison criteria must be considered, dependability, openness and performance criteria, to provide a
qualitative comparison (fable 1) of the different solutions presented in the previous section.

3.1. Dependability, openness and performance criteria

AB explained in the introduction of this paper, reliable processing of confidential information is assumed to be
concerned with different dependability criteria (de), i.e., goals and requirements, and one openness criterion (oc):

• de_1 -	 reliability: data processing reliability (and availability) and data integrity;
• de_2 -	 confidentiality preservation (security): preservation of data (and perhaps processing) confidentiality;
• de_3 - trusted area reduction: non excessive security-dependence on trusted areas;

• oc_1 - openness: non excessive security-dependence on specific software or hardware.

Five performance criteria (pc) are considered, since valid solutions must not involve excessive performance
overhmds:
• 	 pc_1 - number of processors: the number of processors required, not counting those needed for redundancy

purposes (see pc_2);
• pc_2 -	 redundancy overheads: the number of processors required for redundancy purposes;
• pc_3 -	 number of messages: the number of messages induced by the total set of processors;
• pc_4 -	 memory size: the local (to each processor) memory space required for the solution implementation;
• pc _5 -	 system connectivity: the number of inter-connection links required between the different processors.

AB yet we do not have extensive experimental data concerning the performance and costs of FRS, when applied as
here to processing, as distinct from file archiving and security management. Therefore Table 1 gives our subjective
comparison of the six distinct solutions presented in this paper, taking into account the above dependability and
performance criteria. Five values, corresponding respectively to the following qualitative scale, are used to characterize
the extent to which the different criteria are satisfied:
• the five values are:-,-,=,+ and++;
• the corresponding qualitative scale is: very unfavourable, unfavourable, no injluence,favourable and very favourable.

dependability

rei. security
open­
ness

petformance

Table 1:

Qualitative comparison
of the different solutions
with respect to dependability,
openness and performance criteria

del
....!. >.·a
i; 'tb
~~ :.::::.:=>.
~;:
·s ~

de2

f.s
·= ~

I l

de3

~ ·~
i~
~ ~

oc 1

~
§.

pc_l

~~
.B "'
§ §
= IS.

pc 2

>.I
~~

pc_3

'Ci "'

i t "' = ~

pc_4

~
0 ~
~·~

pc_5

>.
.-;:::

=~
~ ~
~a

0
()

Approach 1: protection
Sol. 1.1: centralized protection + replication
Sol. 1.2: local protection+ replication

=

--
-
-

-
..........

-
-

++

++

=
=

..........

..........

..........

..........

..........

..........

Approach 2: encryption
Sol. 2.1: homomorphic encryption + replication
Sol. 2.2: black-box encryption+ replication

..........

=
-
-

++

=

=
-

+

+

..........

=

..........

..........

..........

..........
--
..........

Approach 3: fragmentation-scattering
Sol. 3.1: fraj!;mentation-scatterinj!; + replication
Sol. 3.2: fragmentation-scattering+ threshold

schemes

++

+

++

+

++

++

++

++

-
..........

..........

+

-
=

+

+

-
..........

302

3.2. Comparison results

Table 1 shows that in our opinion Approach 3 leads to better results w .r.t. the dependability (and openness) criteria:
this is due to the fact that it is a unified concept providing both accidental- and intentional-fault tolerance. Approach 1
and Approach 2 globally present better results w.r.t. performance criteria pc_1, pc_2, and pc_3; this is due to the fact
individual processing replicas (D, P andR) are not split over different processors, as is the case with Approach 3.

It should be noted that local (but not global) memory overheads are not expected to be significant with Approach 3;
this is because more processors are required for almost the same global memory occupation and each processor then
needs a smaller local memory space.

From this analysis and the judgements expressed in the Table, we conclude that all of the approaches described here
are in principle capable of providing solutions, suitable for at least some situations, to the problem of reliable process­
ing ofconfidential information. Each approach, however, has some weaknesses:

• 	 Approach 1: poor reduction of the trusted area, and either poor security openness (Solution 1.1) or poor confiden­
tiality preservation (Solution 1.2, when based on OS-enforced software partitioning);

• 	 Approach 2: poor confidentiality preservation, and either poor security openness (Solution 2.1: operator restriction)
or poor reduction of the trusted area (Solution 2.2);

• 	 Approach 3: though adequate w.r.t. our dependability requirements this approach is somewhat poor w.r.t. per­
formance, a situation which we believe can be ameliorated by exploiting the large range of possible fragmentation
strategies already identified for this new technique.

4. Concluding Remarks

The originality and potential attractiveness of the fragmentation-scattering approach is that it is provides a unified
means of achieving both reliability and security. At this stage, much remains to be discovered about its real advantages
and disadvantages, w.r.t. the pre-existing combined techniques against which we have compared it, but we believe the
analysis presented above shows that it has considerable promise as a new means of providing fault tolerance against
both accidental faults and intentional faults such as intrusions.

Acknowledgements
The authors wish to thank very much Jean-Claude Laprie and David Powell for their earlier basic ideas about the

Fragmentation-Redundancy-Scattering approach for ensuring high reliability/availability and security, Jean-Michel Fray
for his contribution to the concept of Fragmented Data Processing for reliable processing of confidential information,
and the reviewers of the submitted version of this paper for their constructive comments. This work was partially
supported by DRET under convention no. 88.34.051.00.470.75.01 and the PDCS (Predictably Dependable Computing
Systems) project no. 3092 of the European ESPRIT programme.

References
[1] 	 N. Ahituv, Y. Lapid, S. Neumann, Processing Encrypted Data, Comm. of the ACM, Vol. 30(9), Sept 1987, pp. 777-780.
(2] 	 D.H. Barnes, R. MacDonald. A Practical Distributed Secure System, Proc. NEOS'85 (Networks and Electronic Office

Systems), London- United Kingdom, IERE, 1985, pp. 83-91.
[3] 	 L. Blain, Y. Deswarte, An Intrusion-Tolerant Security Server for an Open Distributed Computing System, Proc. European

Symposium On Research In Computer Security, ESORICS'90, Toulouse- France, Oct. 24-26, 1990, Pub. AFCET, ISBN
2-9036778-9, pp. 97-104.

[4] 	 Y. Deswarte, L. Blain, J.-C. Fabre, Intrusion Tolerance in Distributed System, Proc. 1991 IEEE Symposium on Research
in Security and Privacy, Oakland - California, May 20-22, 1991, pp. 110-121.

[5] 	 J.-M. Fray, Y. Deswarte, D. Powell, Intrusion Tolerance Using Fine-Grain Fragmentation-Scattering, Proc. 1986 IEEE
Symposium on Security and Privacy, Oakland- California, April7-9, 1986, pp. 194-201.

(6] 	 J.-M. Fray, Y. Deswarte, D. Powell, A Secure Distributed File System based on Intrusion Tolerance, Proc. 4th
International Conference on Computer Security, IFIP/Sec'86, Monte Carlo, Dec. 2-4, 1986, pp. 407-416.

[7] 	 J.-M. Fray, J.-C. Fabre, Fragmented Data Processing: an Approach to Secure and Reliable Processing in Distributed
Computing Systems, Proc. 1st IFIP International Working Conference on Dependable Computing for Critical
Applications, Santa Barbara - California, Aug. 23-25, 1989, pp. 131-137, published in Dependable Computing for
Critical Applications, Ed. A. Avi1ienis, J.-C. Laprie, Springer Verlag 1991, Vol. 4, ISBN 3-211-82249-6 & 0-387­
82249-6, pp. 323-343.

303

http:88.34.051.00.470.75.01

[8] 	 J.-C. Laprie, A Unifying Concept for Reliable Computing and Fault-Tolerance, in Dependability of Resilient
Computers, Ed. T. Anderson, Blackwell Scientific Publications, 1989.

[9] 	 D.A. Nichols, Using Idle Nodes in a Shared Computing Environment, Proc. nth ACM Symposium on Operating
Systems Principles, Austin - Texas, Nov. 1987, pp. 5-12.

[10] R.L. Rivest, L. Adleman, M. Dertouzos, On Data Banks and Privacy Homomorphisms, in Foundations of Secure
Computation, Ed. R.A. Demilio, D.O. Dobkin, A.K. Jones, R.J. Lipton, Academic Press, 1978, pp. 169-179.

[11) J.M. Rushby, B. Randell, A Distributed Secure System, IEEE Computer, Vol. 16(7), 1983, pp. 55-67.
[12] S.O. Saydjari, J.M. Beckman, J.R. Leaman, 	Locking Computers Securely, Proc. lOth National Computer Security

Conference, Sept. 1987, pp. 129-141.
[13] J. Seberry, J. Pieprzyk, Cryptography: An Introduction to Computer Security, Ed. R.P. Brent, Prentice Hall, 1989, 375 p.
[14] 	A. Shamir, How to share a secret, Communications of the ACM, Vol. 22(11), Nov. 1979, pp. 612-613.
[15] E.R. Sheehan, Access Control within SDNS, Proc. lOth National Computer Security Conf., Sept. 1987, pp. 165-171.
[16] 	B. Taylor, D. Goldberg, Secure Networking in the Sun Environment, USENIX Association Summer Conference Proc.,

Atlanta - Georgia, 1986, pp. 28-37.
[17] TCSEC, Department of Defense Standard, Trusted Computer System Evaluation Criteria, Department Of Defense, DOD

5200.28-STD, Dec. 1985, 121 p.
[18] TNI, National Computer Security Center, Trusted Network Interpretation of TCSEC, National Computer Security Center,

NCSC.TG.005, July 1987, 278 p.
[19] G. Trouessin, J.-C. Fabre, 	Y. Deswarte, Reliable Processing of Confidential Information, Proc. 7th International

Conference on Information Security, IFIP/Sec'91, Brighton- United Kingdom, May 15-17, 1991, pp. 210-221.
[20] G. Trouessin, 	Quantitative Evaluation of Confidentiality by Entropy Calculation, Proc. 4th Computer Security

Foundations Workshop, Franconia- New Hampshire, June 18-20, 1991.

Appendix
Depending on the way that fragmentation is performed, It is possible to define different classes of fragmentation

techniques, which are concisely described below and more detailed in [19]. In addition, fragmentation granularity is
another parameter that can be considered in the choice of a given fragmentation class.

The frrst class of fragmentation technique relies on fine grain fragmentation (bit or small group of bits), and is in
effect a sort of bit-slicing technique: each data item within the whole data structure is split into f fragments of b bits.
Thus each of _the individual processors has only a local view of the data structure, i.e., b bits out offb bits. By this
means, the global value of each data item and thus its semantics can be effectively hidden. The code must then be
transformed into a set of code "fragments", each of which has been modified so as to work appropriately with the
corresponding fragmented data. Actually, this is not really code fragmentation since the code is simply slightly
transformed, and the original program's semantics is unlikely to be effectively disguised from an intruder. The main
interest of this class of fragmentation technique is that it allows a quantitative evaluation of confidentiality
preservation by means of entropy calculation [20], but its main drawback, due to its restriction to fine granularity
only, is that the openness requirement is not respected.

A second class can be defmed when applied at the module level. Each program fragment (data- and code-fragment)
corresponds to a single entity in the whole program structure (an instruction block, a program module or a library
function) delimited by breaks in the code sequence. Each such fragment is then replicated in r distinct copies scattered
over the network. Actually, this class of fragmentation technique is opposite to the previous one because the code is
first fragmented in connection with its structure (this is particularly interesting in the case of modular programming
languages or block-structured languages) and then the whole data structure is consistently fragmented (with respect to
the first code fragmentation). This means that each code fragment will be associated with its own local variables and
this implies also that global variables must be fragmented and shared by several distinct fragments.

From the above two classes of fragmentation technique we can derive a third one. As with the first class, this third
class takes into account the data structure in order to apply a first step of fragmentation. This first step is well suited to
the preservation of data confidentiality, since its aim is to cut some of the semantic links in the tree that could other­
wise be built with the main semantic links of the data structure. And secondly, as with the second class, it is applied at
the module level and thus similarly relies on the program structure, so is a technique which is well suited to
preservation of code confidentiality. This third class thus is used at the programming language level, and is a
compromise between fragmentation at the variable and program module levels. If fine grain fragmentation is required
for efficient confidentiality preservation then data and code fragmentation can be applied in alternation to get an overall
fragmentation which depends on both data and code structures.

304

Information Security:

Can Ethics Make a Difference?

Corey D. Schou

Associate Professor

Department of Computer Information Systems

Idaho State University

John A. Kilpatrick

Associate Professor

Department of Management

Idaho State University

ABSTRACT
Information is a vital organizational asset that affects ongoing decision making. It
has a finite life span therefore if it is delayed in its distribution, it has reduced value;
ifa proper user fails to have access, it has no value.

The objective of attempts to secure the organizational information system is to see
that unauthorized use is not possible, that destructive viruses are not introduced, and
that unauthorized study and alteration of records and files does not occur during the
distribution ofdata and information throughout the organization while guaranteeing
that proper users have easy access to their information. Are these objectives strictly
technical problems, or is it possible and appropriate to broaden the scope to include
the ethical issues that are raised as the security system is developed and installed?
The argument in this paper is that it is both appropriate and necessary to consider
the broader issues.

INTRODUCTION
Information is the lifeblood of an organization that over the years has become recog­
nized as an asset. Although determining the value of this asset from an accounting
standpoint is difficult, it should be protected like any other. One of the dominant

. characteristics facing any firm attempting to become and to stay competitive is the
dependence on information processing that relies on computers and computer soft­
ware. In this paper we attempt to address many of the ethical issues facing managers
in organizations as they attempt to cope with the complexity and cost of acquiring,
integrating and securing information systems in the workplace. In large organiza­
tions, this task is assigned to an Information Resource Manager who is responsible
for all aspects of information processing from data entry to the Executive Information
System1. This manager plays an important role in the security of the organization's
information assets. It is critical that Information Resource Managers convey the
importance of resource security to senior management of the organization.

In the process of performing this task, the manager must balance two competing
objectives that are for all practical purposes antithetical. The first is that of ease of
access to information to meet the requisite variety needs of decision makers within a
system2. The second is that of maintaining security, confidentiality and privacy of
organizational information assets.

1. Schou, Corey D., "Computer Security: Training Needs for Managers," Data Management,

Auerbach, September, 1990.

305

Frequently, this process is viewed as a technical problem rather than the more
complex socio-technical problem that should address some of the following issues:

• 	 Whose rights are to be considered?
• 	 To what extent are these rights in conflict?
• 	 What are the responsibilities of the information specialists?
• 	 How honest and trusting are the members of the user

community? In what sense do they represent a •community'?
What are the implications, if any, of their holding certain
interests in common?

• 	 How trusting ought they to be? What is implied in the use of the
term ought? Ofthe term trust?

These socio-technical problems are fundamental ethical issues. These issues may or
may not be legal issues. The manager should be aware that which is legal is not
necessarily a logical equivalence of either ethical or right.3

QUESTIONS OF PURPOSE AND VALUE
Since there is a documented body of law that governs portions of our behavior and a
cult of technology which asserts that it can make our electronic information systems
invulnerable to external penetration, we tend to rely upon it. To complete the
protection of our information assets, we must develop an awareness ofvalue systems.
This development must be more than another set of rules and regulations that dictate
how we should behave. They should be, on the other hand, an internalized set of
behaviors. We should ensure that rules and technology do not become the sole focus
of our security activities. These are destined to fail of their own weight in the long
term. John LaCarre? in one of his novels makes the point about the impact of
technology on human activity by stating:

George Smiley: ••you've made technique a way of life. Like a whore,
technique replacing love."4

In a technological environment, it is easy to focus on the techniques designed to
accomplish goals and on the technology used to assist in the accomplishment of those
goals. At times the tendency is to allow the focus on technique to overshadow the
purposes or ends. For example, a common observation of the modern •rat race' (a
revealing metaphor) is that participants spend so much time and energy pursuing the
good life that little remains for living. As this result suggests, it is easy to become
obsessed with the tools and in the process to forget the purpose of the tools.

Although information security systems are adequate from the successful system
control, they do not always take into account the corresponding human impact and
implications. This brings us to the question- What is the role played by the values
that members of a community hold that form the choices made and the ends toward
which those choices are directed? Stated another way, what is the significance of the
way a member of the information systems community views the world and his or her
relation to that immediate world and to other members of the community? These
values and perceptions underlie the choices that individuals make, the goals that are
pursued, and the priorities that are established. They affect both the means that are
selected and the ends toward which efforts are directed.

2. Beer, Stafford, The Brain ofthe Firm, John Wiley & Sons, New York, NY, 1981.

3. Richards, T., Schou, C.D. & Fites, P.E. "Information Systems Security Laws and Legislation," in
Information Technology Resources Utilization and Management: Issues and Trends, Idea Group,
Harrisburg, Pa., 1990.

4. LaCarre,John, Tinker, Tailor, Soldier, Spy, Doubleday, New York, NY, 1986.

306

ETHICAL SYSTEMS

What are the purposes of computer information systems? Information systems are
organizational mechanisms that collect data and distribute information. Frequently
these systems rely on electronic devices such as computers; however, the toffice boy'
carrying a scrap ofpaper to the file drawer also meets this definition.

Some systems relate to governmental objectives (e.g., national defense, collection of __
revenue, monitoring of international trade), some to business purposes and needs
(e.g., efficiency and competitiveness), but all must relate at some level to social needs
and values. For example, one might argue that a fundamental value is respect for the
rights ofothers. Another might be that the overall objective is a better quality of life
for all members of the community.

There are several ways of identifying and deciding ethical issues. One of the most
common Judeo - Christian ways of categorizing these approaches is the rules Vs.
consequences criteria. The first argues that our actions should be guided by general
rules or principles: do not harm; tell the truth; do not steal; have respect for persons
as tends in themselves.' The second argues that we should assess the rightness of an
action or decision by the consequences that will likely result. Most commonly the
second approach identifies some value or values, and measures an action by the
extent to which these values are or are not enhanced, or whether progress is made
toward certain goals, such as a better life for all. From a practical standpoint it may
be recognized that, for most people, over a span of time and in different situations,
both approaches will be used. That is, in general some ethical rule may seem
appropriate but under extreme circumstances exceptions to the rule or principle will
appear ethically acceptable because of the likely consequences.

ETHICS AND INFORMATION SYSTEMS
For an information system to function effectively and efficiently, there must be a free
flow of data and information among all participants. In the ideal situation, there
would be no barriers to this flow; this would improve the probability that tperfect
information' is in the hands of the decision makers. Of course, for this to occur, there
would have to be perfect confidence and trust within the organization.

Confidence and Trust
Information- adequate, relevant, timely, understandable - is a precondition of an
efficient and free society. Yet it is a means to power ... Therefore, the rights to create
property in information, to withhold, to disclose, to determine when and how
disseminated are criticalS.

In this section we are interested in the ethical issues involving the creation, control,
use, abuse, dissemination, protection, manipulation or alteration, examination and
destruction of information and its attendant data in computer systems. In order for
the above information activities to take place efficiently and legitimately, there must
be some minimal level of trust and confidence in the systems which handle the
information. Is it also necessary for there to be some minimal level of trust among
and between the various users of the system?

Assuming that such a level is necessary, what are the preconditions in order for this
confidence and trust to exist? It appears clear that first there must be a proven and
recognized history of dependability, both within the firm and with similar systems.

5. Behrman, Jack, "Information Disclosure, the Right to Know and the Right to Lie"' in Behrman,

Essays on Ethics in Business and the Profession, PrenticeHall, Englewood Cliffs, NJ., 1988,79.

307

By raising these issues in the context of the firm's culture or atmosphere, one ethical
principle is implied: that there must be respect for persons and certain property
rights. This falls within the first approach identified above, which argues for the
assessment of choices in light of certain ethical principles or rules. Actions which
result in intrusion, examination, alteration or destruction of information belonging
to others might be judged as morally wrong because they violate the principle of
respect for persons. The second approach, that of looking at the consequences of an
action, might suggest that in order for a community to meet the needs of its members,
individuals within the community must be able to have some confidence in systems of
communication. According to this view, it could be argued that actions that unduly
interfere with the smooth operation of information and communication systems, or
that diminish the confidence and trust in these systems, should be judged as
unethical.

Definitions
As a starting point for determining ways of evaluating actions, it is appropriate to
construct several definitions. The term legitimate is fundamental to the notion of
balancing rights and responsibilities. For the purposes of this paper, it is argued that
for an action or behavior affecting an information system to be legitimate, it must aid
in the achievement of one or more objectives of the system without unduly interfering
with progress toward other accepted objectives. The definition can be applied to the
ethical management of information. One objective of the system is to provide
information that is without deception and is understandable, timely, relevant,
complete and appropriate to the user. Upon examination, it can be seen that this
definition suggests both the practical and ethical elements of managing computer
information systems.

SPECIFIC CONCERNS RELATING TO THE DESIGN OF SECURE
SYSTEMS

Those involved in the design of a secure information system must be aware of the
conflicting rights, responsibilities and needs of system users and professionals, and of
the implications of some of these conflicts. Some paradoxical assertions may serve to
illustrate:

• 	 For people to have trust in an information system, the manager must trust
no one.

• 	 Systems which are truly trustworthy must use control processes that
inhibit use.

Another way of putting the problem, as Clifford Stoll suggests in his book, The
Cuckoo's Egg,6 is that as administrative controls are added to ensure
trustworthiness, the system becomes more difficult to use. This means that the
people for whom the system is designed end up finding another, less trustworthy but
more easily accessible system to use. The term administrative controls refers to those
policies and procedures imposed by a manager that are designed to regulate the
individuals and activities covered by the policies and procedures.

Administrative controls are designed and implemented to make sure that people act
in the way that managers desire. Generally this means, in ways that advance organ­
izational objectives through fixed procedures. This may be something as simple as
standardizing the ways employees claim reimbursements for job-related expenses. It
may mean something as broad as the budget process, which attempts to regulate the
activities of and to set standards for the entire firm. Frequently, however, it also
refers to the need to regulate behavior when it is perceived that:

6. Stoll, Clifford A., The Cuckoo's Egg, Doubleday, New York, NY, 1989.

308

a) there is motivation to engage in activities for personal, as opposed to
organizational, reasons; and

b) those activities are potentially harmful to the organization, to
organizational values or to other organizational members.

If the interests of individuals always coincided with those of the organizations with
which he or she lives and works, there would be very little need for administrative
controls. It is at the point where these interests diverge that the need for controls
arise. Further, some conflicts arise because of simple misunderstandings, some arise
because of differences in perceptions, some are due to different priorities, world-views
or values, and some come about because of individual malevolent intent.

Finally, there are those instances where it is in an individual's self-interest for every­
one else to exercise a degree of moral restraint while he or she exercises none. This
can be seen as the free-rider problem or, to use Garrett Hardin's excellent metaphor,
it is the ((tragedy of the commons"7. In this environmental fable, the members of the
community maintain their livestock on the commonly held grazing grounds. Ani­
mals can safely be added until the carrying capacity of the grounds are reached.
However, it is to the benefit of any individual community member to add animals to
his herd on the commons. The overall costs of degradation are borne by the commun­
ity but the benefits accrue to the individual community member. The tragedy is that
individuals can safely benefit in the short run while the long-term costs are dis­
persed. Greed is rewarded. One lesson for members of the community is that, unless
they are willing to eliminate all cooperative efforts, the exercise of some moral
restraint by each individual is necessary.

EXAMPLES OF ETHICAL ISSUES CONFRONTED IN ORGANIZATIONS
As long as the information system consists of(office boys' carrying paper from place to
place, the problems are less complex. Ifhe takes something home - he has stolen - he
is wrong. However, when the organization begins to rely on electronic means, this
issue becomes more clouded. The same individual can take or send electronic images
of the same information without overtly changing it. (After all, what is the value of a
simple •o' or •1'.)The following are examples of some problems that are uniquely
electronic.

Pirated Software
One of the more obvious and most prevalent problem deals with the use of pirated
software. The temptations are obvious and the risk of disclosure is slight. Why then
the concern? There are several ethical issues here, but perhaps the overriding one is
that of the failure to recognize intellectual property.

As with many ethical concerns, one can arrange many positions along a continuum.
In this instance, one can take an extreme individualist or ethical egoist position, and
argue that pirating another's software is not a big issue, and is useful for financially
strapped organizations. Further, one can argue that it is the responsibility of the
developer to take measures to limit the ease of pirating. In any case, is it stealing if
the property isn't gone?

At the other end is the argument that:
a) there are rights that are being violated while copying;
b) that no community can exist that refuses to acknowledge and protect the

rights of its members; and

7. Hardin, G., "The Tragedy of the Commons," Science, 162, December 1968, 1243-1248.

309

c) that progress will be limited unless there is some incentive for individuals
to develop tools that will prove useful in solving the problems of the
community.

The manager then must address the issue of whether to allow - profit from - the
pirating of another's intellectual creation, or, if the policy is to ensure that this does
not occur within the business, what policies will be required to ensure that it.does not
occur.

Criminal Entry
Even if one has problems recognizing intellectual property, physical property is
easier to define. This situation is analogous to the problem of the (office boy' If
someone breaks your physical lock, or physically enters your premises, there is little
question about (right'.

However, the problem of unwarranted entry into proprietary electronic information
systems with criminal intent is more complex. Using technological means, each firm
will obviously wish to ensure that its own system will not be so penetrated. What of
information gained either inadvertently or through the wizardry of an employee who
also happens to enjoy the challenge ofbreaking into another institution's information
systems? Since any technological means of protection may be compromised by
(wizardry' it is important that one engender an atmosphere of ™correctness' within
the organization.

Computer Surveillance & Employee Records
In a 1931 speech, George Bernard Shaw observed:

An American has no sense of privacy. He does not know what it means.
There is no such thing in the country.

At the time he may have been correct; however, the American society has matured
during the last sixty years. Even though Supreme Court candidates have been
unable to define the absolute nature of the rights of privacy on a constitutional basis,
most Americans believe that they have a vested right of privacy based on the Fourth
Amendment to the ConstitutionS . This for the most part protects us from our
government.

Computerization of information systems has made the communication and dissemin­
ation of information about companies and individuals an accepted procedure. The

·issue of computer surveillance and employee records involves questions about the
uses of databases that may involve invasion of privacy, either the customer's or em­
ployee's, and employee monitoring in the workplace. This latter involves the inclu­
sion of a piece of software in the information system which monitors and times or
otherwise measures the activities of operators. Is this a legitimate managerial exer­
cise of administrative control, or is it an unwarranted intrusion into the employee's
privacy? Put another way, should the firm legitimately be concerned only with the
quantity and quality of the employee's activities, or may it also surreptitiously
monitor the employee on a minute by minute basis? Questions of the impact on
morale aside, how far may the manager extend his or her control over the activities of
the employee? The sensitivity of this issue becomes more acute when the ability to
control is magnified or enhanced by the computer's capacities. One other issue in this
category involves the cross-reading or matching across information systems of em­
ployee or customer records. Again, the issue involves the right to privacy of employ-
B. Amendment IV Right of search and seizure regulated. The right of people to be secure in their per­
sons, houses, papers, and effects against unreasonable searches and seizures and not be violated, and
no warrants shall issue, but upon probable cause, supported by oath or affirmation and particularly
describing the place to be searched, the persons or things to be seized.

310

ees and customers. Formerly, this may have been an ethical concern only in firm's
large enough to have extensive databases. Today, even small organizations may
have the computer capacity, or have access to databases that give the firm the
capacity to intrude into the privacy of employees and customers.

The owner/manager of a small firm, then, is faced with many of the same ethical
dilemmas that managers in large firms face. Dealing with the issues may be more
difficult in that the small firm manager must be all things to all people, with little
time for contemplating the complexities of the ethics of the computer age.

Gaming
An example of an issue of interest with perhaps least clear cut ethical stands is the
use of company facilities for office games, such as 'rotisserie baseball' and 'fantasy
hockey'. Employees face an ethical choice over the extent to which such 'enlivening'
activities can legitimately be carried on during company time.

Managers face the need to balance productivity interests with maintaining a livable
working environment that is not so rigid and controlling that the quality of work life
drives off good employees.

SOURCES OF GUIDELINES AND CODES OF ETHICS
There are a not less than five organizations that have chosen to address directly the
ethical issues posed by the rapid expansion of information technology they are:

• 	 British Computer Society,
• 	 Institute ofElectrical and Electronic Engineers,
• 	 Institute for Certification of Computer Professionals,
• 	 CCPand
• The Data Processing Management Association.

The Data Processing Management Association (DPMA) has developed a code of
ethics and a separate 'Standards ofConduct.'9

Standards ofConduct
These standards are derived from the code of ethics and are specific statements of
behavior that no true professional will violate. Excerpts are provided below, as
examples ofethical guidelines that are being developed by industry professionals:

In recognition ofmy obligation to management I shall:
• 	 Not misuse the authority entrusted to me.
• 	 Not misrepresent or withhold information concerning the capabilities of

equipment, software or systems.
In recognition ofmy obligation to my fellow members and the profession I shall:

• 	 Be honest in all my professional relationships.
• 	 Not use or take credit for the work of others without specific acknowledgement

and authorization.
In recognition ofmy obligation to society I shall: .

• 	 Protect the privacy and confidentiality of all information entrusted to me.
• 	 To the best of niy ability, insure that the products of my work are used in a

socially responsible way.
• 	 Never misrepresent or withhold information that is germane to a problem or

situation of public concern nor will I allow any such known information to
remain·unchallenged~

9. DPMA Code ofEthics, Data Processing Management Association, 505 Bussie Highway, Park
Ridge IL.

311

• 	 Not use knowledge of a confidential or personal nature in any unauthorized
manner or to achieve personal gain.

In recognition ofmy obligation to my employer I shall:
• 	 Avoid conflict of interest and insure that my employer is aware of any potential

conflict.
• 	 Protect the privacy and confidentiality of all information entrusted to me.
• 	 Not exploit the weakness of an information system for personal gain or personal

satisfaction.

SUMMARY
If, due to security restrictions, an information system cannot disseminate its contents
to those who need access, it fails. Technology alone does not solve the problem. It is a
human problem.

It is ofbenefit to each user if everyone exercises discretion, judgment and professional
respect for other's rights in the use of a computer information system. Each knows
then that the system can be (trusted.' It means that the system manager will be less
concerned with intrusions or violations of rights and professional courtesies, respect
and so on. But it also means that if an individual does desire to access another user's
files, to change data, steal information, study someone else's personnel file, install a
Trojan horse or release a virus, it is much easier to do so. The implicit trust in the
system makes it easy for an individual user to violate that trust. Self-restraint thus
can be seen as a prerequisite for any activity requiring trust.

The violation of the trust, if discovered, necessitates a higher level of administrative
control, new restrictions placed on access, and that additional procedural processes be
installed. The violations have caused a reduction in the efficiency and effectiveness
of the system. A fundamental consideration for the manager, then, is to assess the
role of trust, the desirable and achievable level of trust to be sought, and the implica­
tions of these choices for the firm and individuals affected.

This dilemma serves to highlight the ethical considerations facing the manger. For
smaller organizations, it is further complicated by resource limitations, both finan­
cial and human. What balance between absolute confidence in the security of the
system and completely free access for users is desirable? What are the tradeoffs be­
tween rights and responsibilities, costs and benefits implied by the security or control
provisions that are contemplated? What values lie behind the choices made? As the
level of security increases, and with it the consequent increase in the level of confi­
dence or trust in the system, what other legitimate values are diminished or threat­
ened? In general, this is the age-old question of' the balance between individual and
community interests. In specific terms, it is the question of how to optimize the
legitimate and responsible use of computer information systems while eliminating
unauthorized use and protecting the rights of users and other affected parties.

To generalize the issues raised here:
• 	 If people will not exercise moral restraint, systems will develop controls for

protection;
• 	 The controls for protection will prove burdensome a.nd inefficient;
• 	 The systems will fail;
• 	 They will still be necessary as the threat comes, not from responsible users but

from (mavericks' with what is arguably an essentially anti-community ethic;
• 	 The systems will fail to be secure.

312

--:::;

•:INF<EMATICN SI!XllRITY RISK ANALYSIS AND RISK :MANAGI!H!Nr:
WHIOI APPROA.OI ?•

Prof. Jan H.P. Eloff
Karin P. Badenhorst
Deparbnent of Canputer Science, Rand Afrikaans University
P.O Box 524, Johannesburg, 2000, Republic of South Africa
EACSEMILE: 27-11-489-2138 TELEPHONE: 27-11-489-2842

copyright 1991 EloffBadenhorst

The IRR research model as proposed in this paper can be seen as
an bnportant first phase of a research process, aimed at
formulating a new approach to risk analysis, risk assessment and
risk management within the information technology enviromnent.
0\Ter the past decade, considerable resources and efforts have
gone into developing and autanating risk analysis methods, in an
attempt to make risk analysis more easily applicable and as a
whole more successful. This resulted in a large number of
autanated techniques, methods and packages being currently
available on the infonnation security software market. The
perspective the authors took in preparing this paper was to
address the question "Which approach ccmbined with underlying
business philosophies and business technologies ? " This opposes
the question usual!y asked by organisations, namely "Which
package?"

KEYWORDS: risk analysis; risk assessment; risk management;
risk resolution; infonnation security methodology; information
technology; environmental risk assessment; financial risk
management.

0. IN'IRCilCl'ICN

Information risk assessment is a vital business management
task. [15] General managers usually have a high appreeiation for
risks relating to the continuation of their business. However,
in practice the authors observed that a considerable amount of
apprehension are still felt by many managers of organisations
regarding the application of information technology risk
analysis.

313

http:APPROA.OI

A fundamental issue of infonnation security is rcx:>ted in the
oonflict between efficiency and oontrol. This is exactly why
risk analysis and risk management is such an hnportant part of an
overall infonnation security function within an organisation.
The objective of a risk analysis and risk management exercise is
to find the opthnum balance between efficiency, oontrol and the
oost of such oontrol for an organisation. As management problems
addressed in infonnation security are usually more eoonanic and
p:>litically based than technical, this should provide management
with sufficient motive to conduct a risk analysis exercise.

Management approaches problems with subjective rather than
objective solutions. On the other hand, risk analysis technology
has traditionally focussed on objective or deterministic issues.
Effective management should use risk analysis and risk management
techniques in their .proper role - as a management tool, not as a
substitute for good judgement. [15]

The process of risk analysis and risk management in the context
of infonnation technology is concerned, firstly with the
identification and measurement of risks related to infonnation
technology, and secondly with the control and minimisation of
such risks. For the remainder of this paper we will refer to the
process of infonnation technology risk analysis and risk
management as Infonnation Risk Resolution (IRR) .

1. IRR.: INFCRMATICN RISK RESOI.DTICN

IRR has for a mnnber of years been applied in the a:Eputer
related industry without substansive rate of success. Research
done since 1983 identified an increasing dissatisfaction with
previously and currently available IRR methods and
approaches. [16] Based on current literature and practical
experience the authors came to sane conclusions regarding IRR
methods:

It should be comprehensive in terms of handling all aspects
of an IRR process, so that one does not have to apply more
than one method and/or tool to accanplish meaningful
results. [16] On the other hand it is the authors' opinion
that IRR should not be so elaborate, that it defeats the
other objective, namely to make it simpler and less
time-consuming.

314

It should also be ocmprehensive in te:rrns of infonna.tion
security. It must be flexible enough to cover all aspects of
ocmputer and infonna.tion security, as well as the
interde:pen.dencies annngst those aspects. (20] The authors
believe that IRR should be addressed fran a multi-ctimensional
as well as a multi-disciplinary perspective. The
multi-disciplinary concept stans fran functional ocmputer
security levels (hardware, software, personnel, program
controls, etc.) . The interrelationships between tasks within
these functional security levels (such as identifying threats
related to the physical ocmputer roan, and detennining the
cost of logical access controls) constitute a
multi-dimensional character.[!]

The authors are of opinion that the assessment of risk is a
functional rather than a financial issue. Evident fran the
application of IRR in organisations is the fact that IRR is
usually performed by functions such as Audit (internal and/or
external) , and Finance.

A method must be flexible enough to be "calibrated" to an
environment. This also holds true for the maintainability of
such method - it must respond to changes in the nature of a
CCl'lpmy' s business. (9] The authors agree that it must be
possible to custanise an ideal IRR methodology for specific
types of industry and varying managanent styles.

A more qualitative and less quantitative method seaned
preferable to refinements of existing qauntitative
methods. [16] The reasoning behind this is that quantitative
figures can be misleading, because the fact that a figure is
exact, does not necessarily mean that the assumptions on
which the figure is based, are reliable. [25]

Methods should reduce the annunt of time, cost and overhead
of performing an IRR. Such methods should therefor preferably
be autamated.[l6]

A risk analysis program should not be sane arcane program
applied on an ad hoc basis, when sane unusual expense needs
to be cost-justified. It should rather be an integral part
of the business systan.[7]

It is very important that the method must be credible and
trusted to the people that apply it, or those that rely on
the results thereof.[9]

315

IRR should always be applied within the perspective and as
part of a a::mprehensive information security methodology.
The likelihood of success will be greatly enhanced if it is
not seen as a stand alone exercise.(2]

Consequently a number of autanated packages were developed so as
to make IRR "hopefully" more successfull. This resulted in a
large number of autana.ted techniques, methods and packages being
currently available on the software market.

rnAMM for example makes use of qualitative scalar techniques,
whereas LRAM's quantification of risk is based on formal Bayesian
probability theory and decision models. (20, 14] MARION assesses
business risks quantitatively and/or qualitatively making use of
sophisticated mathanatical and statistical principles. [19]
RANK-IT is based on the so-called Delphi techniques, where expert
opinion plays a major role in the assessment of risk. [12] !AVA,
on the other hand, makes use of binary tree concepts - it uses
hierarchical disaggregation structures to link questionaires with
event trees for vulnerability assessment. [26] It further makes
use of linguistic algebra and fuzzy set theory. It is clear that
divergent enabling techniques and approaches are used fran one
methcxl to the next.

We are sanewhat concerned that the root of the problem has not
been addressed. To add to this problem, we are of opinion that
information security risk analysis is a controversial issue
amongst information security specialists, auditors, information
technology managers, insurance surveyors and line managers, who
respectively approaches IRR from an individual biased point of
view. This statement is based on practical experience in major
organisations as well as the overall impression gathered at
international a::mputer security congresses. [22]

The question to be addressed should not be "Which package to
use?" but instead "Which approach cxrnbined with underlying
business philosophies and business technologies ? " This problem
brought us to the idea of "What makes Risk Analysis successfull
in the general business or public context ? " The a:uthors then
decided to attarpt a new approach to IRR through investigation of
existing risk analysis techniques and methods which normally
turns out successfully in business functions outside the scope of
information technology.

The above mentioned fonnulates the scope for the ranainder of

this paper.

316

INTRODUCTION IMPLEMENTATION MAINTENANCE
i------------------- ------------------­
'

-----------------~---
' ' --------­ ' --------­-------- -·

' ' ' ' ' ' '

FIG.1 High level view on a methodology for information security

The ranainder of this paper therefor aims at addressing approaches to
risk analysis as highlighted in phase 3 of the so-called
IS-Methodology.

3. THE IRR PHASE

Gathered fram a literature overview the following risk re~ated business
functions received considerable coverage regarding IRR: ·

Environmental (especial!y health related risk)
Engineering (especially nuclear risk)
Finance (especially investment related risk)
Insurance
Computerised Business Information Systems (CBIS)

Many risk related functional philosophies inherent to appropriate
business functions include risk management in financial tenns and
plant failure analysis in engineering tenns. Within these business
functions, various techniques are applied in the process of risk
analysis and risk management, such as statistical short term
forecasting techniques which are applied in financial risk
management. [21] The concept of risk balancing is a technique used in
envirornnental risk resolution. It is clear fran the last mentioned
that a technique plays an important part in the execution of IRR. The
authors therefor decided to import the idea of "enabling
teclmologies" (statistical short term forecasting techniques, risk
balancing, heuristics, etc.), by so referring to the techniques
inherent to specific approaches.

317

2• THEI~

We believe that another factor that negatively influenced the
success rate of IRR applications, is the fact that IRR is often
attarpted as a standalone exercise and on a piece meal, ad hoc
basis. IRR should rather be placed within the oontext of an
overall infonna.tion security function in an organisation. The
position of the IRR phase within an infonna.tion security
methodology can be seen in figure 1. The IS-Methodology as
presented usually oonsists out of five phases:(1]

PHASE 1 - Initiation: The management of an organisation has
to be cx:mnitted to the need for an infonna.tion security
function. SUch function should be initiated and guided by a
steering a::mnittee.

PHASE 2 - Infoma.tion Security Policy: The definition and
acceptance of a fonna.l infonnation security policy, which is

. in line with organisational strategies and CXl'I'paily mission.

PHASE 3 - RISK .ANALYSIS AND ~ DEFINITIW:
Infonna.tion security risks and associated potential losses
need to be detennined (if possible quantified) and weighed
against factors such as productivity, oost of oontrols, and
benefit, in order to select oost-effective safegaurds. The
objective of this phase is a well-defined project plan for
the installation of the acceptable level of safegaurds.

PHASE 4 - Installation: The timely installation of the
information security safegaurds as set out in the project
plan.

PHASE 5 -Maintenance: The on-going maintenance includes
the review of the status of infonna.tion security, on a
regular basis. It also requires infonna.tion security program
oontrols to beoane part of the business analysis and systans
developnent process.

318

Apart fran the roncepts business function and enabling teclmology
one also. has to address the issue of the means and utilities that are
used with emmling technologies during the risk resolution process.
Modelling, nonitoring, screening, questionaires and checklists, and
OCillpUter technology are exanples of such means used within business
functions, referred to as risk pnx:::esses in the rontext of our
research. The foll01r1ing table illustrates the ronceptual relationships
between risk related business functions, risk processes and enabling
technologies.

RISK RELATED
BUSINESS

FUNCTIONS

Finance
Engineering
Insurance
Environmental
CBIS

v
I"­

v
I'­

v
I"­

1/
I'­

RISK PROCESSES

accumulation
commitment

" peer reviews
/

modelling

" monitoring
/ screening

checklists

" info technology/
experimenting

" influence
/ education

expert systems

v " I"­ /

v " I"­ /

v "' I" /

/ "' "' /

v "I'­ /

ENABLING
TECHNOLOGIES

mathematical
statistical
heuristic
formal
psychological
philosophical
analytical
portfolio
balancing
unbundling
hedging
probabilistic
speculative

FIG.2 Risk Resolutioo: The IRR Research Model

Fran the above diagram can be seen that the IRR Research Approach is
made up of the foll01r1ing basic cx:mponents:

Risk related business functions,
Risk processes, and
Risk resolving enabling technologies.

More than one enabling technology and risk process might be used within
each risk related business flinction, as sh01r1n by the literature
overview undertaken by the IRR project team. Quantitative methods, for
exanple, which are statistical and mathanatical in origin, are applied
in the general managanent process to reduce the risk involved in
strategic decision-making. SUch a risk resolution exercise can be
further facilitated by means of processes such as spreadsheets and
cx:rnputer technology. In the same way rrtore than one business function,
enabling technology and risk process might be used within the
application of the IRR methodology.

319

4. RISK RErATED BUSINESS FUNCTI<:'NS

Fran a literature viewpoint, risks are generally classified into one of
two categories, namely (i) risks related to business functions usually
associated with socio-psychological issues, and (ii) risks related to
technological issues, as indicated by the following diagram:

Environmental
socio-psychological -il___ _

Engineering
risks

Finance
technological

Insurance

CBIS

FIG.3 Risk related business functions

The risk related business functions Engineering, Insurance and CBIS
will be defined and briefly discussed. Enabling technologies and risk
processes within the Environmental and Financial business functions
will be discussed in more detail.

Fran current literature it is clear that risk analysis and risk
managanent in the engineering environment is mostly ooncerned with
systan or plant failure analysis. Coverage of nuclear engineering risk
assessment oonstitutes a major part of workshops, saninars, research
and subsequent literature. Probabilistic event trees and fault trees
are the most praninent enabling technologies applied with regard to
risk resolution in the engineering environment. other approaches are
mostly analytical in origin. [23] 320

4.2 INSURANCE

The theory of risk associated with the insurance industry date as far
back as 1909. This classical theory was then mostly associated with
life insurance mathanatics. The theory of risks has since been expanded
to include not only short tenn insurance risks and other as:pects of the
insurance business such as reinsurance, but also risks related to
strategic decision making in general financial business planning.
Enabling techniques applied in insurance risk theory include amongst
others, stochastic processes, the time-dependent variation of risk
exposure' and the Monte carlo technique. [4]

4. 3 a:MPUTERISED BUSINESS INFOOMATICN SYSTEMS (CBIS)

Software risk management is an emerging discipline whose objectives are
to identify, address, and eliminate software risk items. Such risk
factors could became either threats to the successful operation of
software, or result in major rewrites of software. Enabling
technologies and risk processes used in software risk management
include amongst others, network analysis, decision trees, risk exposure
analysis, the Delphi technique, statistical decision analysis,
checklists, cost and perfonnance models. [5]

Envirornnental risk is a hazard or danger which threatens the
environment, for example the risk of a nuclear accident caused by human
error or by natural disaster. It is the probability or chance of an
envirornnent (i.e. human, nature, etc.) suffering an adverse
consequence, or of encountering sane loss. Envirornnental risk
management involves the search for a 'best route' between social
benefit and envirornnental risk. It is a balancing or trading-off
process in which various ccmbinations of risks are compared and
evaluated against particular social gains.

Risk research has been sponsored by industry and government in many
countries, largely because public opposition to sane technological
development has created powerful oontraints on further expansion in,
for example, the nuclear power industry.[27,25,24]

321

4.4.1 ~: 'lHE lMI?CRTANCE FCR IRR

Risk identification and risk estimation are steps in an environmental
risk analysis exercise. Sane risk pnlOeSses used within risk
identification and estimation include IOOdelling, monitoring
(surveillance), testing and screening. Enabling technologies include
psychological perception, quantitative techniques, heuristics,
balancing of risks, probabilistic binary event tree analysis, the
concept of reasonableness, and risk rationalisation versus risk
reduction.

The following aspects have been addressed in literature on
environmental risk assessment. The utilisation of these as enabling
technologies in IRR seems interesting and possible:

PSYCIOU:X;ICAL PERCEPI'IW

Psychological impact results in social and environmental risk
perception to differ greatly fran one person to another. [25]

In studies on judgements of positive versus negative values, it has
been shown that values guiding our behaviour are more negative on the
negative side than positive on the positive side. This means that we
are generally more sensitive to increases in loss (i.e. negative risk)
than to increases in gains (i.e. pc>sitive risk). [25]

In the balance between gains (positive risks} and potential losses
(negative risks}, or efficiency (positive risk) and risk resolution
(controls for negative risk}, does the above statanent with respect to
psychological impact hold true for the IRR environment ? Ik)

infonnation technology managers also regard the risk of the loss of a
cc:rnputer service as having 'more value' than the actual econanic
benefit of utilising the best information technology to provide a
service ?

Difficulty in the quantification of environmental risks is often
experienced. There are plenty of examples of risk estimates which are
often quoted (e.g. the risk of a disaster at a nuclear power plant) ,
which can very well be uncertain by a factor of 100 or 1000. But as
soon as a figure is given, many people tend to forget this and accept
the figure as a fact. Quantification of risks in IRR methods have for
sane time been treated with the same kind of scepticism. This resulted.
in current research to be aimed at qualitative rather than quantitative
awroaches. 3 2 2

HEURISTICS

Heuristics have been applied in simplifying environmental risk
analysis. This resulted in conclusions being deficient. It is often
quite debatable if such conscious deficiency is justified. [25] The
same reasoning would apply to IRR.. 'lWo thinking paradigms have been
identified in the field of IRR, namely rational/analytical versus
intuitive/heuristic. [6] It is the author's opinion that the fonner is
obviously nore technical whereas the latter is heavily influenced by
psychological perception. A general disctintion has been made in
literature between risk analysis approaches as being either
technological or psychological. [18]

Finance, which has been identified .·as another major risk related
business function, will be discussed next.

4.5 FINANCE

In organisations, risk managanent in the n~ow sense has been dealing
with the organisational aspects of assessing and limiting risk. Pure
risks are limited to events with detrimental consequences to a carpany,
such as risks threatening assets, labour potential or financial
potential of a oarnpany and are the result of accidental and probable
events. In contradistinction there are speculative risks, which
involve the possibility of both gain and loss. The resolution of the
latter is usually understood as being financial risk rnanaganent.[3]

Any financial instrument used within the financial business function,
can be viewed as having a unique ccmbination of characteristics, such
as yield, duration, size, marketability, and inherent risk profile.
Such risk profiles go hand in hand with financial innovation.
Financial transactions reallocate various categories of risk among
lenders, borrowers and financial intennediaries. The inherent risks
associated with finance, include price (market) risk, credit risk,
liquidity risk, settlanent risk, country and transfer risk, and the
investment risk associated with stock trading.[lO]

Enabling technologies applied in financial risk management include
techniques such as strategic switch analysis, duration and maturity gap
analysis, imnunisation, portfolio techniques, the unbundling of risks,
and quantitative decision tree nodelling.

323

4.5 .1 FINANCIAL: THE :J:MllCR'l2U«: FCR IRR

SWI'IOI ANALYSIS

SWitch analysis is a technique whereby a switch transaction takes
place, i.e. the selling of a stock in a portfolio and the simultaneous
purchase of a different stock. ONing to different stock volatilities,
sane stocks will appear to offer better value than others given a
particular "vie~r~" on interest rates, thus reducing possible negative
risk associated with a portfolio of stocks.[lO]

Financial switch analysis and the environmental balancing of risks are
similar in concept, as they both try to minimise risk to an optimmn
level. Within the IRR process, instead of reducing risks by means of
costly safegaurds, why not use the concept of switching by a:::mparing
risks and replacing risks with suitable alternatives ?

MA'IURITY GAP ANALYSIS

Maturity gap analysis is a flCM concept exclusively used for interest
rate risk managanent, while duration, as a stock concept, embraces
interest rate, invesbnent, and capital risk analysis. Duration and
maturity gap analysis may help a bank to fashion financial strategies
for the current, or next, financial year that will give it the
accounting profits it needs.

There also seem to be sane similarity between the time-dependent
variation of risk exposure used in insurance risk theory and the
duration and maturity gap analysis techniques used in financial risk
managanent, as both involve time factors. The time-change factor also
plays an i.rrportant role in IRR, because of the dynamic character of the
information technology environment.

The central idea of portfolio theory is that the total risk of an
invesbnent can be reduced by spreading it over a pool of assets.[3]

In the application of financial portfolio techniques, the application
of a risk reducing measure is oamparable to an investment in an asset.
If the security of certain values is based on a single measure, the
total of values at risk is exposed if the measure fails. If, however,
a oambination of measures, viz. a portfolio of measures, has been
applied, the. failure of an individual carq;x:ment will still result in a
recuded risk. [3] 324

5. <XNCUJSIW

In this paper the question "Which approach canbined with underlying
business philosophies and business technologies ? " instead of "Which
package ?" has been addressed, because the authors felt that research
into underlying business philosophies related to risk analysis could
contribute in resolving the dilemna that so often governs the
application of IRR.. The authors also strongly support the concept that
IRR should be placed within the context of an overall infonnation
security methodology, such as the IS-Methodology.

The basic carp:>nents of the IRR research model have been identified as:
Business Functions, Risk Processes and Enabling Technologies. The
business functions Environmental and Finance have been discussed so to
demonstrate the applicability of these concepts to the issues
surrounding Infonnation Risk Resolution. The discussion on
Environmental risk analysis appears to be very appropriate to the much
discussed topic of Disaster Recovery Planning for the computer
facilities of an organisation. The possibility of applying sane of
these enabling technologies in IRR raises the question: how can they be
adapted for the infonnation technology enviromnent ? The last
mentioned requires further research and will be reported on in a
follow-up paper.

325

.. ... ·

~\~\lt~l~

- .. ~

[1] Badenhorst K.P. & Eloff Jan H.P., "Framework of a Methodology for
the Life Cycle of Canputer Security in an Organisation", Canputers
& Security, 8 (1989) 433-442, Elsevier Science Publishers Ltd.

[2] Badenhorst K.P. & Eloff Jan H.P., "Canputer Security Methodology:
Risk Analysis and Project Definition", Canputers & Security, 9
(1990) 339-346, Elsevier Science Publishers Ltd.

[3] Bauknecht Kurt & Strauss Christine, "Portfolio techniques to
Support Risk Management and Security", IFIP/Sec 90 on 'Canputer
Security and Integrity in our Changing World', The 6th
International Cbnference and Exhibition on Information Security,
Espoo (Helsinki), Finland, May 23-25 1990.

[4] Beard R.E., Pentikainen T. & Pesonen E., "Risk Theory, The
Stochastic Basis of Insurance", Third Edition, Chapna.n and Hall,
London, 1984.

[5] Boehm Barry W. , "Software Risk Management",
Press, Washington D.C., 1989.

IEEE canputer Society

[6] Caelli William J., "Information Security: The Next Decade",
Saninar organised by Canputer Society of South Africa in
oonjunction with IFIP Ccmni.ttee ('ICll), Cape Town, South Africa,
18 May 1990.

[7] Carroll John M., "Coding Ethics ·and Law into Risk Analysis",
Proceedings of Canpsec 90 International, London, 10-12 October
1990.

[8] Crouch Edmund A.C. & Wilson Richard, "Risk/Benefit Analysis",
Ballinger Publishing Oompany, cambridge Massachusetts; 1982.

[9] Dorey Dr Paul G, "Canputer Security Risk Management: Practical
Experiences of a User", Proceedings of Canpsec 90 International,
London, 10-12 October 1990.

[10] 	Falkena H.B. & Kok W.J. (Ed.), "Essay$ on Financial Risk
Managanent", Maanillan Press Ltd, Lonc;.ibn, 1988 •

[11] 	Gardner Philip E., "Evaluation of Five Risk ASsessment Programs",
Canputers & Security, 8 (1989) 479-485, Elsevier Science
Publishers.

[12] Gilbert Irene E. , "Autanated Risk Managanent Software Tools",
National Canputer Systans laboratory & Canputer Security
Management and Information Exchange Group, National Institute of
Standards and Technology, Gaithersburg, Maryland, U.S.A., 1990.

[13] 	Gcxifrey A.I., "Quantitative Meth<Xis for Managers", Edward Arnold
Publishers 	Ltd, London, 1977.

326

[14] 	Guarro Sergio B., "Principles and Procedures of the IRAM Approach
to Infonnation Sysyems Risk Analysis and Management", carputers &
Security, 6 (1987) 493-504, Elsevier Science Publishers.

[15] Hutt A.E. , Bosworth S. & Hoyt D. B. , "Cclrputer Security Handbook",
Second Edition, Maanillan Publishing carpany, New York, 1988,
pp.22-32, 299.

[16] 	Katzke Dr. Stuart w., "NBS Perspectives on Risk Analysis: Past,
Present and Future", fran Minutes of the Federal Infonnaiton
Systems Risk Analysis Workshop, The Air Force carputer Security
Program Office, U.S.A., 1985, pages 2.3-2.5.

[17] 	Kunreuther Howard (Ed.), "Risk: A Saninar Series", IIASA
Collaborative Proceedings Series, CP-82-S2, International
Institute for Applied Systems Analysis, Laxenburg Austria, 1982.

[18] 	Kunreuther Howard C. & ley Eryl V (Ed.), "The Risk Analysis
Controversy: An Institutional Perspective", Proceedings of a
SUmmer Study on Decision Processes and Institutional Aspects of
Risk held at IIASA, Laxenburg, Austria, 22-26 June 1981, Springer
Verlag Berlin 1982.

[19] Lamere J .-M., I.eroux Y. & '!burly J., "Ia. Securite des Reseaux,
Methodes at Techniques", Dunod Infonnatique, Bordas, Paris 1987.

[20] 	Moses Robin H & Glover Ian, "A Model of Risk Analysis and
Management", Proceedings of the 2nd Annual Canadian National
Cclrputer Security Conference, ottawa, March 1990.

[21] 	O'IX:movan T.M., "Short Tenn Forecasting: An Introduction to the
Box-Jenkins Approach" John Wiley & Sons Ltd., Chichester, 1983.

[22] 	Proceedings: IFIP/Sec 90 (Espoo Helsinki Finland) 23-25 May 1990,
Cclrpsec 90 (l.Dndon U.K.) 10-12 October 1990, 13th National
Cclrputer Security Conference (Washington D.C. U.S.A.) 1-4 October
1990.

[23] 	Proceedings of the International Ans/Ens 'lbpical Meeting on
PROBALISTIC RISK ASSESSMENT - September 20-24, 1981, Port
Chester, New York. Sponsored by AMERICAN NUCLEAR SOCIETY, EUROPEAN
NUCLEAR SOCIETY.

[24] 	Shrader-Frechette K.S., "Risk Analysis and Scientific Method",
D.Reidel Publishing Cclrpany} Dordrecht 1985.

[25] 	Sjoberg I.ennart (Ed.), "Risk and Society", The Risks and Hazards
Series: 3, Allen & Unwin (Publishers) Ltd., I.ondon, 1987, p 156.

[26] Smith S. T. & Lim J. J. , "Framework for Generating Expert Systans to
Perfonn Cclrputer Security Risk Analysis", First ArulUal Anned
Forces Ccmnunications and Electronics Association Symposimn and
Exposition on Physical and Electronics Security, Philadelphia,
August 19-21, 1985.

[27] 	Whyte Anne v. & Burton Ian (Ed.), "Enviromnental Risk Assessment",
Scope 	15, John Wiley and Sons, '!bronte, 1980.

327

INFORMATION SYSTEMS SECURITY: A COMPREHENSIVE MODEL

Capt John R. McCumber
Joint Staff/J6K
The Pentagon
Washington, DC 20318-6000

INTRODUCTION

At speech to the 13th National Computer Security Conference
on 3 October 1990, Michelle VanCleave, Assistant Director for
National Security Affairs, Executive Office of the President
stated, "We need a comprehensive model for understanding the
threat to our automated information systems." I believe I have
developed that model. This model not only addresses the threat,
it functions as an assessment, systems development, and evaluation
tool. The model is unique in that it stands independent of technology.
Its application is universal and is not constrained by organizational
differences. As with all well-defined fundamental concepts, it is
unnecessary to alter the premise even as technology and human
understanding evolve.

Computers communicate. Communication systems compute. The
evolution of technology has long since eliminated any arbitrary
distinction between a computer and its communication components
or a communications network and its computing system. Some
organizations have attempted to deal with the phenomenon by marrying
these functions under common leadership. This has resulted in
hyphenated job descriptions such as Computer-Communications Systems
Staff Officer and names like Information Technology Group.
Unfortunately, these names can mask an inappropriate or poorly
executed realignment of organizational responsibilities. Ideally,
management will recognize there is a theoretical-as well as
organizational-impact.

The same is true for the security disciplines. Merely
combining the communications security (COMSEC) and computer
security (COMPUSEC) disciplines under an umbrella of common
management is unacceptable. Even if we address the other, albeit
less technical, aspects of information systems security such as
policy, administration, and personnel security, we still fail to
develop a comprehensive view of this evolving technology. The
reason for this becomes clear when we are reminded it's the information
that is the cornerstone of information systems security. In this
sense, any paradigm which emphasizes the technology at the expense
of information will be lacking.

THE NATURE OF INFORMATION

Defining the nature of information could be a tedious task.
To some it represents the free-flowing evolution of knowledge;
to others, it is intelligence to be guarded. Add to this the
innumerable media through which information is perceived and we
have a confusing array of contradictions. How can we present a
study of information that has uni~ersal application?

328

It may be best to develop a simple analogy. The chemical
compound H2o means many things to all of us. In its liquid state,
water means life-giving sustenance to a desert-dwelling Bedouin;
to a drowning victim, it is the vehicle of death. The same steam
we use to prepare vegetables can scald an unwary cook. Ice can
impede river-borne commerce on the Mississippi River or make a
drink more palatable. Science, therefore, does not deal with the
perception of the compound, but with its state.

As the compound H2o can be water, ice, or steam, information
has three basic states which I've already depicted. At any given
moment, information is being transmitted, stored, or processed.
The three states exist irrespective of the media in which information
resides. This subtle distinction ultimately allows us to encompass
all information systems technology in our model.

It is possible to look at the three states in microcosm and
say that processing is simply specialized state combinations of
storage and transfer; so, in fact, there are only two possible states.
By delving to this level of abstraction, however, we go beyond the
scope and purpose of the model. The distinction between the three
states is fundamental and necessary to accurately apply the model.
For example, cryptography can be used to protect information while
it's transferred through a computer network and even while it is
stored in magnetic media. However, the information must be available
in plaintext (at least to the processor) in order for the computer
to perform the processing function. The processing function is a
fundamental state which requires specific security controls.

When this information is needed to make a decision, the end
user may not be aware of the number of state changes effected. The
primary concern will be certain characteristics of the information.
These characteristics are intrinsic and define the security-relevant
qualities of the information. As such, they are the next major
building block of our information systems security model.

CRITICAL INFORMATION CHARACTERISTICS

Information systems security concerns itself with the maintenance
of three critical characteristics of information: confidentiality
(Pfleeger•s "secrecy"), integrity, and availability [PFL89]. These
attributes of information represent the full spectrum of security
concerns in an automated environment. They are applicable for any
organization irrespective of its philosophical outlook on sharing
information.

CONFIDENTIALITY

Confidentiality is the heart of any security policy for an
information system. A sec~rity policy is the set of rules that,
given identified subjects and objects, determines whether a given
subject can gain access to a specific object [DOD85]. In the
case of discretionary access controls, selected users {qr groups)
are controlled as to which data they may access. Confidentiality
is then the assurance that access controls are enforced. The reason

329

I prefer the term confidentiality to secrecy is merely to avoid
unwarranted implications that this is solely the domain of armies
and governments. As we will see, it is a desirable attribute for
information in any organization.

All organizations have a requirement to protect certain
information. Even owners of a clearinghouse operation or electronic
bulletin need the ability to prevent unwanted access to supervisory
functions within their system. It's also important to note the
definition of data which must be protected with confidentiality
controls is broadening throughout government [OTA87]. Actual
information labeling and need-to-know imperatives are aspects of the
system security policy which are enforced to meet confidentiality
objectives. The issue of military versus civilian security controls
is one which need not impact the development of a comprehensive
representation of information systems security principles.

INTEGRITY

Integrity is perhaps the most complex and misunderstood
characteristic of information. As I stated, we seem to have a better
foundation in the development of confidentiality controls than
those which can help insure data integrity. Pfleeger defines integrity
as "assets (which) can only be modified by authorized parties" [PFL89].
Such a definition unnecessarily confines the concept to one of access
control.

I propose a much broader definition. Data integrity is a matter
of degree (as is the concept of "trust" as applied to trusted systems)
which has to be defined as a quality of the information and not as
who does/does not have access to it. Integrity is that quality of
information which identifies how closely the data represent
reality. How closely does your resume reflect "you"? Does a credit
report accurately reflect the individual's historical record of
financial transactions? The definition of integrity must include
the broad scope of accuracy, relevancy, and completeness.

Data integrity calls for a comprehensive set of aids to promote
accuracy and completeness as well as security. This is not to say
that too much information can't be a problem. Data redundancy
and unnecessary records present a variety of challenges to system
implementors and administrators. The users must define their needs
in terms of the information necessary to perform certain functions.
Information systems security functions help insure this information
is robust and (to the degree necessary) reflects the reality it
is meant to represent.

AVAILABILITY

Availability is a coequal characteristic with confidentiality
and integrity. This vital aspect of security insures the information
is provided to authorized users when it's requested or needed.
Often it's viewed as a less technical requirement which is satisfied
by redundancies within the information system such as back-up power,
spare data channels, and parallel data bases. This perception,

330

.. /

however, ignores one of the most valuable aspects of our model
which this characteristic provides. Availability is the check­
and-balance constraint on our model. Because security and utility
often conflict, the science of information systems security is also
a study of subtle compromises.

As well as insuring system reliability, availability acts as a
metric for determining the extent of information system security
breaches [DOJ88]. Ultimately, when information systems security
preventive measures fail, remedial action may be necessary. This
remedial activity normally involves support form law enforcement or
legal departments. In order to pursue formal action against people
who abuse information systems resources, the ability to prove an
adverse impact often hinges on the issue of denying someone the
availability of information resources. Although violations of
information confidentiality and integrity can be potentially more
disastrous, denial of service criteria tend to be easier to quantify
and thus create a tangible foundation for taking action against
violators [CHR90].

The triad of critical information characteristics covers all
aspects of security-relevant activity within the information system.
By building a matrix with the information states positioned along
the horizontal axis and the critical information characteristics
aligned down the vertical, we have the foundation for the model.

SECURITY MEASURES

We've now outlined a matrix which provides us with the theoretical
basis for our model. What it lacks at this stage is a view of the
measures we employ to insure the critical information characteristics
are maintained while information resides in or moves between states.
It's possible, at this point, to perceive the chart as a checklist.
At a very high level of abstraction, one could assess the security
posture of a system by using this approach. By viewing the interstices
of the matrix as a system vulnerability, you can attempt to
determine the security aspects of an information system as
categorized by the nine intersection areas. For example, you may
single out systems information confidentiality during transmission
or any intersection area for scrutiny.

The two-dimensional matrix also has another less obvious utility.
We can map various security technologies into the nine interstices.
Using our example from above, we note it is necessary to protect the
confidentiality of the information during its transmission state. We
can then determine which security technologies help insure
confidentiality during transmission of the information. In this
case, cryptography would be considered a primary security technology.
We can then place various cryptographic techniques and products
within a subset in this category. Then we repeat the process with
other major types of technology which can be placed within this
interstice. The procedure is repeated for all nine blocks on our
grid. Thus we form the first of three layers which will become the
third dimension of our model-security measures.

331

TECHNOLOGY

The technology layer will be the primary focus of the third
dimension. We will see that it provides the basis for the other
two layers. For our purposes, we can define technology as any
physical device or technique implemented in physical form which
is specifically used to help insure the critical information
characteristics are maintained through any of the information
states. Technology can be implemented in hardware, firmware, or
software. It could be a biometric device, cryptographic module,
or security-enhanced operating system. When we think of a thing
which could be used to protect the critical characteristics of
information, we are thinking of technology.

Usually, organizations are built around functional responsibilities.
The advent of computer technology created the perception that a
group needed to be established to accommodate the new machines which
would process, store, and transmit much of our vital information.
In other words, the organization was adapted to suit the evolving
technology. Is this wrong? Not necessarily; however, it is
possible to create the impression that technology exists for
technology's sake. Telecommunications and computer systems are
simply media for information. The media need to be adapted to
preserve certain critical characteristics with the adaptation and use
of the information media .(technology). Adaptation is a design problem,
but use and application concerns bring us to the next layer.

POLICY AND PRACTICE

The second layer of the third dimension is that of policy
and practice. It's the recognition of the fact that information
systems security is not just a product which will be available at
some future date. Because of our technology focus, it's easy to begin
to think of security solutions as devices or add-on packages for
existing information systems. We are guilty of waiting for technology
to solve that which is not solely a technological problem. Having
an enforceable (and enforced) policy can aid immeasurably in
protecting information.

A study has shown 75% of Federal agencies don't have a policy
for the protection of information on PC-based information systems
[OTA87]. Why, if it is so effective, is policy such a neglected
security measure? It may be due in part to the evolving social
and moral ethic with regard to our use of information systems.
The proliferation of unauthorized software duplication is just
another symptom of this problem. Even though software companies
have policies and licensing caveats on their products, sanctions
and remedies allowed by law are difficult if not impossible to
enforce. No major lawsuit involving an individual violator has
come before our courts, and it appears many people don't see the harm
or loss involved. Although there are limits established by law,
it seems we as ''society" accept a less stringent standard.

Closely associated with the matter of policy is that of
practice. A practice is a procedure we employ to enhance our

332

security posture. For example, we may have a policy which states
that passwords must be kept confidential and may only be used by the
uniquely-authenticated user. A practice which helps insure this policy
is followed would be committing the password to memory rather than
writing it somewhere.

The first two layers of the third dimension represent the
design and application of a security-enhanced information system.
The last building block of our model represents the understanding
necessary to protect information. Although an integral aspect of the
preceding two layers, it must be considered individually as it is
capable of standing alone as a significant security measure.

EDUCATION, TRAINING, AND AWARENESS

The final layer of our third dimension is that of education,
training, and awareness. As you will see, were the model laid
on its back like a box, the whole model would rest on this layer.
This phenomenon is intentional. Education, training and awareness
may be our most prominent security measures, for only by understanding
the threats and vulnerabilities associated with our proliferating
use of automated information systems can we begin to attempt to deal
effectively with other control measures.

Technology and policy must rely heavily on education, training,
and awareness from numerous perspectives. Our upcoming engineers and
scientists must understand the principles of information security
if we expect them to consider the protection of information in
the systems they design. Currently, nearly all university graduates
in computer science have no formal introduction to information
security as part of their education [HIG89].

Those who are responsible for promulgating policy and regulatory
guidance must place bounds on the dissemination of information. They
must insure information resources are distributed selectively and
securely. The issue is ultimately one of awareness. Ultimate
responsibility for its protection rests with those individuals and
groups which create and use this information; those who use it to
make critical decisions must rely on its confidentiality, integrity,
and availability. Education, training, and awareness promises to
be the most effective security measure in the near term.

Which information requires protection is often debated in
government circles. One historic problem is the clash of society's
right to know and an individual's right to privacy. It's important
to realize that these are not bipolar concepts. There is a long
continuum which runs between the beliefs that information is a free
flowing exchange of knowledge and that it is intelligence which must
be kept secret. From a governmental or business perspective, it
must be assumed that all information is intelligence. The question
is not should information be protected, but how do we intend to
protect the confidentiality, integrity, and availability of it
within legal and moral constraints?

333

THE MODEL

OVERVIEW

The completed model appears as Figure 1. There are nine
distinct interstices, each three layers deep. All aspects of
information systems security can be viewed within the framework of
the model. For example, we may cite a cryptographic module as
technology which protects information in its transmission state.
What many information system developers fail to appreciate is that for
every technology control there is a policy (sometimes referred to
as doctrine) which dictates the constraints on the application of
that technology. It may also specify parameters which delimit the
control's use and may even cite degrees of effectiveness for different
applications. Doctrine (policy) is an integral yet distinct aspect
of the technology. The third layer-education, training, and awareness­
then functions as the catalyst for proper application and use of the
technology based on the policy (practice) application.

Not every security measure begins with a specific technology.
A simple policy or practice often goes a long way in the protection
of information assets. This policy or practice is then effected
by communicating it to employees through the education, training,
and awareness level alone. This last layer is ultimately involved
in all aspects of the information systems security model. It may
also be solely an educational, training, or awareness security
control. The model helps us understand the comprehensive nature
of information security that a COMSEC/COMPUSEC perspective cannot
define.

Figure 1

334

USE OF THE MODEL

The model has several significant applications. Initially,
the two-dimensional matrix is used to identify information states
and system vulnerabilities. Then, the three layers of security
measures can be employed to minimize these vulnerabilities based
on a knowledge of the threat to the information asset. Let's take
a brief look at these applications.

A developer would begin using the model by defining the various
information states within the system. When an information state is
identified, one then works down the vertical path to address all
three critical information characteristics. Once vulnerabilities
are noted in this fashion, it becomes a simple matter of working
down through the three layers of security measures. If a specific
technology is available, the designer knows that policy and practice
as well as education, training, and awareness will be logical follow­
on aspects of that control.. If a technology cannot be identified,
then policy/practice must be viewed as the next likely avenue.
(Again, the last layer will be used to support the policy/practice.)
If none of the first two layers can satisfactorily counter the
vulnerability then, as a minimum, an awareness of the weakness
becomes important and fulfills the dictates of the model at the
third layer.

Another important application is realized when the model is used
as an evaluation tool. As in the design and development application,
the evaluator first identifies the different information states
within the system. These states can be identified separately from
any specific technology .. A valuable aspect of the model is the
designer needn't consider the medium.

After identifying all the states, an evaluator or auditor can
perform a comprehensive review much the same way the systems
designer used the model during the development phase. For each
vulnerability discovered, the same model is used to determine
appropriate security measures. The third dimension of the model
insures the security measures are considered in their fullest sense.
It is important to note that a vulnerability may be left unsecured
(at an awareness level in the third layer) if the designer or
evaluator determines no threat to that vulnerability exists.
Although no security practitioner should be satisfied with glaring
vulnerabilities, a careful study of potential threats to the
information may disclose that the cost of the security measure
is more than the loss should the vulnerability be exploited. This
is one of the subtle compromises alluded to earlier.

The model can also be used to develop comprehensive
information systems security policy and guidance necessary for any
organization. With an accurate understanding of the relation of
policy to technology and education, training, and awareness, you
can insure your regulations address the entire spectrum of
information security. It's of particular importance that corporate
and government regulations not be bound by technology. Use of
this model allows management to structure its policy outside the

335

technology arena.

The model functions well in determining requirements for
education, training, and awareness. Since this is the last layer,
it plays a vital role in the application of all the security
measures. ·Even if a designer, evaluator, or-uBer determines to
ignore a vulnerability (perhaps because of a lack of threat),
then the simple acknowledgement of this vulnerability resides in
the last layer as "awareness". Ultimately, all technology,
policies, and practices must be translated to the appropriate
audience through education, training, and awareness. This
translation is the vehicle which makes all security measures
effective. For a more complete understanding of the nuances of
education, training, and awareness see [MAC89].

The twenty-seven individual "cubes" created by the model can
be extracted and examined individually. This key aspect can be
useful in categorizing and analyzing countermeasures. It's also a
tool for defining organizational responsibility for information
security. The example shows a policy security measure for protecting
the confidentiality of information while it is being processed. By
considering all 27 such "cubes", the analyst is assured of a complete
perspective of all available security measures. Unlike other computer
security standards and criteria, this model connotes a true
"systems" viewpoint.

CONCLUSION

The information systems security model acknowledges information,
not te~hnology, as the basis for our security efforts. The actual
medium is transparent in the model. This eliminates unnecessary
distinctions between COMSEC, COMPUSEC, TECHSEC, and other technology­
defined security sciences. As a result, we can model the security
relevant processes of information throughout an entire information
system-automated or not. This important aspect of the model
eliminates significant gaps in currently-used security architecture
guidance for information systems.

I developed this model to respond to the need for a
theoretical foundation for modeling the information systems security
sciences. The organizational realignments which have recognized
the interdependence of several complementary technologies will need
refinement in the near future. We can begin that process now by
acknowledging the central element in all our efforts-information.
Only when we build on this foundation will we accurately address
the needs of information systems security in the next decade and
beyond.

336

REFERENCES

[CHR90] Interview with Agent Jim Christy, Chief, Air Force Office
of Special Investigations, Computer Crime Division,
26 March 1990

[DOD85] Department of Defense Trusted Computer System Evaluation
Criteria, DoD 5200.28-STD, Department of Defense, Washington,
DC, December 1985

[DOJ88] BasicConsiderations in Investigating and Proving Computer­
Related Federal Crimes, u.s. Department of Justice,
Justice Management Division, Washington, DC, November 1988

[HIG89] Higgins, John c., Information Security as a Topic in
Undergraduate Education of Computer Scientists, Proceedings
of the 12th National Computer Security Conference,
November 1989

[MAC89] Maconachy, w.v., Computer Security Education, Training,
and Awareness: Turning a Philosophical Orientation into
Practical Reality, Proceedings of the 12th National Computer
Security Conference, November 1989

[OTA87] u.s. Congress, Office of Technology Assessment, Defending
Secrets, Sharing Data: New Locks and Keys for Electronic
Information, OTA-CIT-310, Washington, DC: u.s. Government
Printing Office, October 1987

[PFL89] Pfleeger,
1989

Charles P., Security in Computing, Prentice-Hall,

337

INTEGRATING B2 SECURITY INTO A UNIX SYSTEM

Kevin Brady

UNIX System Laboratories, Inc.
190 River Road, Summit NJ 07901

Overview

Within the last few years the integrity_of many computer systems has been violated in a variety .of ways,
the most prevalent of which has been via "virus" attacks. These attacks feature software which, either
intentionally or accidentally, result in a compromise of system security and subsequently result in hundreds
of thousands of dollars of damage in the form of compromised/lost data or computer downtime. Currently,
most attacks are detected long after the fact. Unfortunately, by the time the intrusion is detected, significant
damage is done. In the case of a virus, it is likely to have spread throughout an entire network of computers.

With the advent of systems containing additional security features such as access control lists, least
privilege, and mandatory access control, the question arises, do these systems meet the .challenge of
preventing system security violations and containing virus programs while still retaining the "look and feel"
of a traditional UNIX system ?

This paper focuses on the features added to UNIX System V Release 4.1 Enhanced Security (SVR4.1ES)
intended to raise the overall level of system security to the B2/F-B2 level.

1. Motivation

By the late 1980's, increased concerns regarding the privacy of computerized data, fear of unauthorized
access, and concerns regarding system and data integrity led to a demand within the UNIX community for a
higher level of system security. This in tum led to the inclusion of enhanced security features such as those
present in SVR4.1ES. While the model for some enhanced features, such as mandatory access control
(MAC), have their origins with the Trusted Computer Systems Evaluation Criteria (TCSEC), many others,
such as discretionary access control, represent extensions of existing features within the UNIX system. The
combination of these features, specifically least privilege and enhanced access control (MAC & DAC), not
only provides an environment that is more resistant to penetration and compromise than the UNIX systems
that preceded it but also provides compatibility for existing applications and retains the "look and feel" of
the UNIX system.

The following is a brief discussion of the approach used for feature definition followed by a description of
the key features found in the SVR4.1ES system; Least Privilege{frusted Facility Management, Enhanced
Access Control (Mandatory & Discretionary), Trusted Path, and Auditing.

2. Least Privilege

A frequent form of system security subversion is accomplished by the acquisition of "super user" or UID 0
privileges. Historically the UNIX system had a single privileged identity, that of "root" assigned the User
Id (UID) of 0. Both file access rights and privilege (i.e., the ability to circumvent the system security
policy) were based upon the UID. Due to the dual nature of the UID, once the all powerful user identity of
"root" was acquired, the attacker was then able to freely circumvent the system security policy, usually
without detection. This type of attack exploits several weaknesses with the historical "root" /UID 0
permission/privilege scheme.

The SVR4.1ES least privilege feature provides the ability for administrators to invoke tasks requiring
privilege without requiring "root" access. In previous versions of UNIX, any attempt to execute a
sensitive system service (e.g., mount a file system) required the use of a "privilege." In System V, there
has been traditionally one such privilege, commonly called "root" or "superuser", which is signified by a

UNIX is a registered trademazk of UNIX System Laboratories, Inc.

338

process whose effective user id is 0. In SVR4.1ES, this single superuser privilege is subdivided into a finer
grain set of privileges designed to ensure that sensitive system services execute with the minimum amount
of privilege required to execute the task.

In SVR4.1ES, a process has a maximum and working set of privileges associated with it. The maximum
set represents the most privilege the process could ever attain and the working set represents the minimum
set of privileges required to execute the task. A executable file may have associated with it an inheritable
or fixed set of privileges. A inheritable privilege is a privilege'which is,kept (i.e., left "turned on") only if
it already existed in the process. A fixed privilege is a privilege which is always given to the process
independent of the previous process privileges. When a file is exec'ed these sets are computed as illustrated
in the following diagram:

exec () ·­

.···························.. .. .Maximum . . Maximum

Working Working

Executable Inheritable
file -

Fixed

(1} Intersection Of Maximum Set Of Privileges Of (2} Union Of The Results Of (1)
The Invoking Process With The Inheritable Privileges With The Fixed Privileges
OfTheFile OfTheFile

Note: The fixed and inheritable privilege sets are disjoint; a privilege cannot be present in both sets at
the same time.

For compatibility with the current UNIX setuid mechanism, SVR4.1ES supports the concept of fixed file
privileges. When a file is executed that has fixed privilege(s), those privilege(s) are added (unioned) with
the maximum privilege set of the invoking process forming the maximum and working privilege sets for
the resulting process. Note that the fixed privileges are not added to the maximum or working privilege
sets of the invoking process.

For example if a site determined that all useci should be able to execute the ps command and not be subject
to mandatory or discretionary access control checks, the administrator would use the filepriv command to
set the p_DACread and p_MACread privileges as fixed privileges. Any user invoking ps would then
acquire the p _ DACread and p _ MACread privileges for the duration of the execution of the ps command.

For an additional degree of protection, system applications are written such that all privileges in the
working set are turned off prior to exec. Thus the exec' ed process must explicitly set the privileges which it
requires to properly execute. Since all privileges in the working set are dropped prior to exec, even if a
rogue version of a command were executed it would have inherited no privileges, thus no damage would
have occurred. Note that only the active privileges (i.e., the working set) were dropped. This allows a
properly exec'ed application to turn on the correct set of privileges upon execution (since the privileges still
exist in the maximum set).

2.0.1 Trusted Facility Administration (TFM)

The trusted facility administration (tfadmin) facility redefines the way in which the role/privilege
assignment mechanism works. In current UNIX systems, an administrator will login (or su) to an
administrative identity. Upon assumption of the identity, all file access rights (and privileges in the case of
"root"IUID 0) associated with the identity are assumed by the administrator; all subsequent processes
assume these privileges. With thls in mind, there are several scenarios by which the vulnerabilities of the

339

system may be exploited. For example logged in as "root" the administrator invokes:

$ date 010191 (set system date & time)

$ mail

Since a full pathname was not specified the administrator is relying on the PATil variable being properly
set such that the correct commands are executed. Thus the .aqministrator is very vulnemble to attack via
trojan horse programs. In this example if the administnitqr's PATH'is not properly set (likely if the
administrator assumed the identity via su), rogue versions of mail or date could be executed resulting in
the administrator giving "root" privileges away unknowingly. Since all Qf the attributes associated with the
"root" identity are passed to child processes via exec, all processes invoked by the administrator execute
with privilege, regardless of need. This in turn often results in the execution of code which is not expecting
to run with "root" privilege and was not designed with tnist in mind. This is especially dangerous with
commands that in turn execute other commands or that feature escapes to the shell. For example, an
administrator escapes to the shell from mail and executes cat. Since mail was running as "root", the cat
command was also executed as "root". If a rogue version of cat was executed, "root" privilege has
inadvertently been given away.

With ifadmin there are no privileges inherent with a given user identity, rather privileges are associated
with a defined role and are only acquired through execution of tjadmin. The ifadmin command has
associated with it an administmtor controlled data base. The data base contains entries in the following
format:

role:alias:command:privilege(s)

-for example­

secadmin:date:!binldate:p_sysops

Considering the example above:

$ tfadmin date 010191
$mail

Upon execution, the ifadmin command searches its database for an entry for date for the "role" invoking
tfadmin. If a match is found, the command is executed (via its fully qualified pathname) only with the
explicit privileges needed to perform the requested operation. In this case, only the sysops privilege is
needed to set the date, thus this is the only privilege passed to the process executing date. The next
command mail requires no privilege to run, therefore execution via tjadmin is unnecessary. Since tjadmin
will only associate privilege with a defined entry, if the administrator invoked:

tfadmin mail

the command would fail since no database entry would be defined for mail (since mail does not require
privileged execution).

3. Mandatory Access Control

In order to meet customer needs for high data integrity, Mandatory Access Control (MAC) labels have been
added to SVR4.1ES. With the addition of Mandatory Access Control, all processes, files, and IPC objects
must have a security label. While the DAC mechanism allows permissions to be set at the discretion of the
owner of an object, the MAC mechanism is set by the system administrator and enforced by the system.
The mandatory access control policy follows a modified Bell-LaPadula model [2] that can be summarized
as "read equal or down" and "write equal." For instance, a process at level "top-secret" can read a file at
level "secret," and a process at level"secret" would only be able to write to a file at level "secret."

340

Administrators are responsible for determining and setting up the discrete set of labels at which a user can
log in. An administrator also sets a login level range on a tenninalline, such that when a user attempts to
login, the label specified by the user must dominate the login-low label on the terminal line and in turn be
dominated by the login-high label on the terminal line.

By default, SVR4.1ES supports 256 classifications and 1024 categories though the system can be
configured to support values up to 65535 and 2097152. ·For reasons of disk space and performance,
SVR4.1ES implements MAC labels with an "indirection" sch.erfie. Each.named classification/category ruple
(i.e., fully qualified label) is associated with a unique level icfentifier also known as a LID. The LID serves
as a system "pointer" to the fully qualified label name and is the value which is stored in the inode.. For
reasons of user convenience, each fully qualified label may be assigned ·an "alias" name. The "alias" name
is a short hand representation of the fully qualified label. For example, the "alias" for the label:

TopSecret:projectA,projectB

maybe: TS

The kernel uses the LID as the primary method of label reference. When the kernel is requested to check
access, the LIDs involved in the access determination are compared. If write access is requested, the LIDs
themselves are simply compared (since the system enforces a policy of write equal and the LIDs are
guaranteed to be unique). For example, if write access to a file with a lid of 10045 is requested by a
process with a LID of 10045, access is granted since the LIDs are equal. However if \\Tite access is
requested to the same file by a process with a LID of 10046 access is denied since the LIDs are not equal.
Since the system supports a policy of "read down" the access check required for a read operation requires
an additional step. Since no hierarchy can be determined by the comparison of two LIDs (i.e., LID 10046 is
not guaranteed to dominate LID 10045), the binary representation of the fully qualified labels of the two
LIDs needs to be compared. For reasons of system performance, the binary representation of the labels
are kept in a cache, the size of which is a system tunable that may be increased or decreased as required.
For example if a read operation was requested to a file with a LID of 10045 by a process with a LID of
10046, the system would do the following:

• Check to see if the binary representation of the LIDs to be compared is already in the cache.

• 	If the binary representation of both LIDs are not in the cache, the system reads the LID database and
brings the binary representation of the LID(s) into the cache.

• The binary representation of the LIDs are compared to determine if a dominance relationship exists
(i.e., read access). If so, access is granted; if not access is denied.

4. MAC Access Isolation

An additional form of data integrity, access isolation, can be achieved by judicious use of mandatory access
control levels. By setting up a label hierarchy such that user defined labels are disjoint (i.e., do not
dominate) from system defined labels, the system is partitioned such that users are prohibited via MAC
from reading, modifying, or executing sensitive system files, and administrators are protected from
inadvertently executing untrusted code. The following picture illustrates how such a lattice may be defined:

341

Access Isolation Mechanism

' '
User ' \

\
System

' '
USER_LOGlN 0

\ SYS_AUDIT 0\
\

' \ \
0
I

SYS_OPERATOR

' \ I

' ' \ ~ p
\

\ SYS_PRIVATE (e.g./etc/shadow)

' 0
USER_PUBUC ' \
\ I

\ I

..... __ \ \ 'II

---\:-.,.0
 SYS_PUBUC (e.g./etc/passwd)

' \

In the lattice depicted above, the levels USER _PUBLIC and USER_ LOGIN are defined for non­
administrative use. The level USER_PUBLIC is defined for non-administrative user files and commands
(eg., emacs, databases, etc). The level USER_LOGIN is defined for non-administrative system access; by
default all non-administrative users access the system at this level. The levels SYS PUBLIC,
SYS PRIVATE, and SYS AUDIT are defined for administrative and system use. The level SYf PUBLIC
is defined for files/com~ds which are accessible to both administrators and users (eg., mail, mount, date).
The level SYS PRIVATE is defined for administrative system access and is not accessible by non-
administrative users. The level SYS_AUDIT is reserved for storage of the system audit trail. .

Considering the lattice defined above, the commands date and mail.would be labeled at SYS_PUBLIC.
Since both the user and system partions have read access to data labeled at SYS _PUBLIC, both
administrators and users have execute permission for these commands. Since the user does not have write
permission at the SYS _PUBLIC level (MAC restricts write access), a user cannot plant a trojan horse at
this level. Note that since the level SYS_PRIVATE dominates SYS_PUBLIC, the administrator does not
require either mandatory or discretionary override privilege to access these files. Thus the administrator
executing these commands does not have mandatory access control override permissions and therefore may
only execute commands and read files at levels which are dominated by SYS..;..PRIVATE. Since the
administrator at SYS _PRIVATE does not dominate either USER_ PUBLIC or USER_ LOGIN and does not
acquire the privilege required to circumvent mandatory access control, the administrator is protected from
invoking trojan horse programs planted at this level by users.

4.1 Discretionary Access Control

SVR4.1ES provides two complimentary DAC mechanisms: UNIX file permission modes and 1RUSIX
conformant access control lists (ACLs). The UNIX file permission modes are retained from previous
releases of UNIX System V for compatibility. Users already familiar with UNIX file permissions will find
that this mechanism still works as expected.

The SVR4.1ES ACLs are designed to satisfy the B3 level Orange Book requirements while still retaining
compatibility with the UNIX file mode scheme. The SVR4.1ES ACL mechanism allows for finer control
than existing file permission bits by providing the ability for the owner of an object to grant or deny access
by other users to the granularity of a single user.

For convenience, SVR4.1ES ACLs also allow specification of access rights to members of groups as
defined to the system in the administrative file /etdgroup. ACLs can also be arbitrarily large; that is, the
number of ACL entries is not limited by the system. The system administrator can set the maximum

342

number of entries per ACL by setting a tunable parameter. (Naturally, as ACLs get larger, processing gets
slower, which induces a practical limit on the number of ACL entries.)

In SVR4.1ES, an ACL is associated with every file system object and IPC object. ACLs for file system
objects are stored in the associated inode, the first 7 entries are stored in the inode, additional entries are
stored in indirectly referenced disk blocks. ACLs for IPC objects are stored in an internal structure
associated with the instantiation of the IPC object.

An ACL contains all the DAC access information for the object with which it is associated. For the sake of
compatibility, file permissions are diSplayed as usual in the expected situations, and pperations on files
behave as they would be expected to on any ·UNIX System V-base<;l operating system. However, in
SVR4.1ES, file permission bits are actually translated into and stored as ACL entries. The ACL entries
which are derived from the file owner, file owner group and other permission bits are called base entries.
Permission can be granted or denied beyond the base entrles by inclusion of additional ACL entries. A
simple SVR4.1ES ACL would appear as follows (note the numbers in parenthesis are used to indicate the
association between the permission bits, owner and group and the ACL. They do not appear in SVR4.1ES
ACLs):

(4)(5) (6) (2) (3) 	 (1)

rwxr-xr-x+ fred demo 73 Jan 6 20:27 nm.sh

#file: run.sh Cl>

#owner: fred (2)

##group: demo <3>

. user~:rw.x .(4) •••
: user:larry:-x :
: group::r-x (5) : or'ing these entries provides class entry
: irP.lJPi$)'$\-.-.:-•• :
Class:r-x
other:r-x (6)

Notes:
+ sign indicates file has an associaled ACL
the class enuy is always equal to the group pennission bits. Thus stat'ing the file provides the maximum pennissioo granted by the ACL

An ACL consists of the following types of entries, which must be in the following order:

• 	user entry - This entry is derived from the file owner permission bits; it contains a user ID and the
permissions associated with .it. There is always one entry of this type, which represents the object
owner and is denoted by a null (unspecified) user ID. There may be additional unique user entries.

• group entry - This entry is derived from the file group permission bits; it contains a group ID and the
permissions associated with it. There is always one entry of this type, which represents the object
owning group and is denoted by a null (unspecified) group ID. There may be additional unique group
entries.

• other entry - This type of entry contains the permissions granted to a subject if none of the above
entries have been matched. There is exactly one of these entries in an ACL.

• class entry 	- This type of entry contains the maximum permissions granted to the file group class.
There is exactly one of these entries in the ACL. The class entry indicates the maximum permission
allowed by the ACL. Additionally, this entry acts as a mask and provides compatibility for existing
applications which obtain file access permission via stat and attempt to change file status via chmod, for
example:

343

Modification of mode bits & ACL using chmod

Before chmod 000 	 After chmod 000 After chmod 755 (re-set mode bits)

IWXT-xr-x­ IWXT-xr-x­

#file: run.sh #file: run.sh #file: nm.sh

#owner: fred #owner: fred #owner: fred

#group: demo #group: demo #group: demo

user::rwx user::--­ user::rwx

user:lany:--x user:lany:-x user:lany:--x

group::r-x group::r-x group::r-x

group:sys:--­ group:sys:-­ gJ:oup:sys:-­

Class:r-x Class:--­ Class:r-x

other:r-x other:-- other:r-x

Refering to the example above; notice that the ACL entries for file owner, other and file group class are
changed to reflect the intended setting of the permission bits (via chmodO). No additional ACL entries
are modified. The intended effect of the chmod 000 is accomplished by using the file group class entry
as a mask. Note that the file owner group entry was not modified by the chmod. This is due tb the fact
that the SVR4.1ES implementation treats the file owner group as an additional ACL entry.

• default entry - This type of entry may only exist on a directory. These entries are similar to the entries
described above, except that they are never used in an access check, but are used to indicate the user,
group, and other ACL entries that should be added to a file created within the directory.

4.2 Trusted Path

The SVR4.1ES trusted path feature is a streams module which ensures that the user's password is being
requested by login and not by a malicious program that masquerades as a system program to gain sensitive
infonnation. The SVR4.1ES trusted path mechanism is only invoked at login time and is not directly
invokable by the user.

The user invokes the trusted path and subsequently gains access to the system via a tenninal using the
Secure Attention Key (SAK:). By default the SAK is a line drop though it can be configured by the
administrator to be a character or asynchronous line condition, such as a break.

The SVR4.1ES trusted path feature works as follows:

1. 	 A user requesting access to the system enters the SAK.

2. 	 The system identifies the SAK before any line discipline is applied.

3. 	 On detecting the SAK, the TCB tenninates any current login session, pennanently puts open
connections in a state such that they can no longer be used for tenninall/0, and eventually reinitiates
the login sequence.

4. 	 If login is not completed within the login timeout period, the login program will enter a mode where
login interaction cannot proceed until the SAK is entered again.

4.3 Audit

Hand in hand with the ability to penetrate system security is the ability to do so without detection. On most
UNIX systems the only record of process execution is the infonnation saved by the UNIX systems process
accounting facility. While this data provides some insight as to what may have occurred on the system, it
can be spoofed and does not provide sufficient granularity of data to fully determine the actions of an
intruder. Additionally, existing UNIX process accounting provides no granularity, it is an ali-or-nothing
feature; either accounting is enabled for all (known) events, for all users or it is completely disabled Since
the recording of accounting data is done on an all-event, all-user basis, a good deal of system resources are
expended; for this reasons, it is frequently not used. These shortcomings have been corrected in SVR4.1ES
with the addition of system auditing. Like accounting, auditing records events which occur on the system.
However, in addition to simply recording the occurrence of events, auditing also records the parameters

344

associated with the event and the outcome of the event. Granularity is provided at both the event and user
level, that is, the administrator can select specific events which will be audited and can specify the users for
whom those events are audited. Since the system's audit daemon runs with a mandatory access control
level which is disjoint from all defined user levels, the presence of the audit daemon (i.e., the ability to
detect auditing) is undetectable by unprivileged users. SVR4.1ES provides an audit mechanism capable of
recording and reporting on all security-related events that occur on the system.

All security-related events that occur on the system can be·audited, including those events identified as
being associated with covert channels. SVR4.1ES associates most audit events with a system call. For
example the mk _ dir and rm _ dir events map the mkdir and rmdir system calls. Since system
administrators tend to think in tenns of system events, SVR4.1ES provides the concept of an event class.
The class mechanism allows for a logical grouping of event types. For example, the mk _ dir and rm_dir
events fall into the dir_make class. Since auditing tends to generate large amounts of data and since an
administrator may wish to select most but not all of the event types within a class, SVR4.1ES pennits
selection by both event type and class. Additionally the selections can be intennixed (i.e., a class may be
selected and one or more types within the class may be turned off).

Since a certain sub-set of applications may wish to add records to the audit trail, the SVR4.1ES audit
feature provides the ability for applications to add their own free-fonnat records to the audit trail. Multiple
site or application records may be defined. These added records can be selected and later reported using the
standard SVR4.1ES selection and reporting tools.

Events which are deemed critical to the integrity of the system (i.e., events critical to the integrity of the
audit trail) are always audited whenever auditing is enabled regardless of the system wide and per-user
event masks. These events are called fixed events. Other events are auditable at the discretion of the
system administrator; these are called selectable events.

As stated above, events may be set on either a system wide or per-user basis. System wide events are
selected by the administrator with the auditset command. auditset may also be used after auditing is
enabled to specify additional events to be audited or to de-select events that no longer require auditing.

Per-user audit masks may be designated for each user by using the useradd command. These masks are
pennanent - whenever auditing is enabled and the user is logged on, events specified in these masks will be
audited. The set of fixed events along with the system wide and per-user audit masks are or'ed together to
form the user's process audit mask.

Each auditable event, when audited, generates an associated audit record; collected for each event audited
are a time stamp, the user identity, object name, level of the process (subject) causing the event, privileges
used, an identification of the type of event, and an indication of the success or failure of the event Other
infonnation specific to the event type is also collected. The auditrpt command is used to select, fonnat
and print data from the log file.

S. Summary

This paper has described several security features that provide a high degree of protection against
unauthorized access, viruses, and trojan horses. In most cases, system security is compromised by
exploitation of an administrative oversight such as incorrect setting of file mode bits. Meticulous use of the
security features already present in the UNIX system can eliminate or greatly reduce most breaches of
system security. However, since most, if not all, of the current UNIX system security features rely solely on
administrator discretion, no matter how carefully a system is administered. mistakes can and do occur.
When mistakes do occur, the system is left vulnerable in some area. System enforced features such as
mandatory access control and least privilege eliminate or greatly reduce the amount of compromise that
can occur if an administrative flaw is detected and exploited. Thus the burden of system protection is no
longer solely dependent on the administrator.

6. REFERENCES

[1] 	 Department of Defense. Trusted Computer System Evaluation Criteria, DOD 5200.28-STD,
December, 1985.

345

[2] Bell, D. E. and LaPadula, L. J. Secure Computer System: Unified Exposition and Multics
Interpretation, MITRE Corporation, M1R-2997, March 1976.

346

KNOWLEDGE-BASED COMPUTER SECURITY ADVISOR*

W. J. Hunteman and M. B. Squire

Safeguards Systems Group, MS-E541

Los Alamos National Laboratory

P.O. Box 1663

Los Alamos, NM 87545

ABSTRACf

The rapid expansion of computer security information and technology has included little
support to help the security officer identify the safeguards needed to comply with a policy and
to secure a computing system. Los Alamos is developing a knowledge-based computer secu­
rity system to provide expert knowledge to the security officer. This system includes a model
for expressing the complex requirements in computer security policy statements. The model is
part of an expert system that allows a security officer to describe a computer system and then
determine compliance with the policy. The model contains a generic representation that con­
tains network relationships among the policy concepts to support inferencing based on infor­
mation represented in the generic policy description.

I. INTRODUCTION

The field of computer security is continuing to expand the information security tech­
nology available to address security concerns in computing systems. The advances are often
directed towards technological solutions of a multidimensional problem, but the nontechnical
areas have received little, if any, serious effort towards improving the entire security environ­
ment surrounding a computing system. The use of trusted computing systems alleviates the
problem somewhat by implementing the nondisclosure policy in a standard manner [1]. How­
ever, this approach does not address other equally important security issues such as other
policy components (e.g., personnel security and physical security) or the interaction between
the Trusted Computing Base (TCB) and the security features in the local environment (e.g.,
administrative procedures).

This paper describes an effort initiated at Los Alamos to create a knowledge-based system
to act as an "expert" Advisor to a security officer. The Advisor will consider the total environ­
ment, including policy requirements, when identifying the security needs for a computing
system. The Advisor provides an automated capability to support the system certification
process. System certification, as described in References 2 and 3, requires an analysis of the
system security features, threats against the system, and the system operating environment
according to an information security policy. The Advisor system is designed to be used during
the development of a secure system and when reviewing or certifying the security of an exist­
ing system for compliance with a policy.

Most policy statements are complex and difficult to interpret for a local computing system
environment. This difficulty generally arises from the desire for the policy to allow the maxi­
mum flexibility for changes in the hardware or software configurations of a computing system.
Experts from the policy-making organizations will also sometimes give conflicting advice
regarding policy implementation for a particular system. The lack of clear guidance on applying
the policy and the absence of a consistent approach to implementation suggest that a uniform
methodology is needed to aid the security officer in interpreting and applying security policies.

*Work supported by the US Department ofEnergy, Office of Safeguards and Security.

347

The methodology being developed as part of the Advisor provides a consistent decomposition
and interpretation of policy statements into a knowledge base that can be used to guide the
selection of safeguards for a specific computing system. The Advisor architecture is designed
to

• 	 support the semantic or conceptual representation of a complex system;
• 	 ifappropriate, collect and organize information about local or site-specific policies;
• 	 support automated reasoning about the represented system;
• 	 manage the use of uncertain or incomplete information in the knowledge networks;
• 	 support "what-if' experimentation to adjust the local environment implementation

description; and
• 	 provide, on request, justification or explanation of each decision throughout the

process.

The architecture supports multiple representations of policies, regulations, local or site­
specific implementations of the policies, and the interdependencies between the various con­
cepts and implementations. The architecture is designed to allow the development of user
oriented interfaces that display information in a manner consistent with the user's vocabulary
and operating environment. The Computer Security version of the Advisor will implement the
Department of Energy (DOE) Classified Computer Security Program defmed in DOE Order
5637.1 [3].

II. POLICY REPRESENTATION ISSUES

A policy statement is intended to guide personnel in constructing a local environment that
has some general property, such as a safe or secure environment. Policy statements are usually
written by, or with the help of, experts in the field. Policy implementors, however, often lack
the complete understanding to interpret the exact meaning of the policy. Some statements may
be unclear, such as "Procedures for identifying and authenticating users must be addressed."
This may be either an oversight by the policy writer or a deliberate ambiguity to allow flex­
ibility of interpretation. If it is for flexibility, the implementor must decide how to interpret the
intent and then implement a solution. Typically this solution must then be approved by an
approval or accrediting authority who may have a different interpretation of the policy. Some
organizations also allow implementors to create unique interpretations and implementations of
the policy requirements, subject to approval by the accrediting authority. Regardless of the
allowed flexibility, there are some characteristics that seem to be shared by all policy state­
ments.

A. 	 Pmperty!ReQ.uirement Couplin~
When a policy is broken down into specific requirements, the requirements can be

expressed as a coupling of a specific problem and the expected solution. These require­
ment/solution pairs can be viewed as a list of IF!IHEN statements. For example, a policy
statement could be

IF a computer processes classified information

TiffiN it must have identification and authentication procedures.

We call the IF clause a property, and the THEN clause a requirement. A property is the
activity or condition that must be present or practiced to meet the requirement. We refer to this
coupling of property and requirement as a property/requirement (J>/r) couple. Most instances of
a p/r couple can be further decomposed. The property can be expressed as a nested set of
conjunctions and disjunctions of objects, relations, and attributes. Similarly, the requirement
can also be expressed as a nested set of conjunctions and disjunctions.

348

B. 	 Existence/Event Coqplin~
Policy statements also have a distinction between passive p/r couples and active p/r

couples. A passive policy statement does not explicitly or implicitly require invoking a specific
requirement based on some action by a subject, such as a user or process. For example, the
following could be viewed as a passive p/r couple because there is no explicit requirement to
invoke the requirement.

IF a computer processes classified information

THEN it must have identification and authentication procedures.

However, in most policies there is either an explicit or implied requirement to respond to
action by a subject For example, the implied active part of the policy statement in the above
example, could be

IF a subject attempts to logon to a computer

THEN identification and authentication procedures must be invoked.

We refer to the passive part of this policy element as the existence and to the active part as
the event. These pairs of existence and event p/r couples are referred to as existence/event (e/e)
couples. It is possible that either the existence or the event could be empty. For example, there
is no related event p/r couple in the following:

IF a computer processes classified information

THEN it must be in a protected area.

Property/requirement couples based on events are slightly more complicated and can be
modelled as state changes in the policy knowledge network. Many policies require that certain
procedures be done periodically. These can be modelled as an event, namely, the passage of
time. For example, it may be required that a computer system is reviewed annually. This can
be modelled as the event of a year passing or a time-related transition.

Problems based on existence will be referred to as "vulnerabilities," and solutions based
on existence as "safeguards." We will refer to problems based on events as "attacks" and to
solutions based on events as "responses." An interesting property of most policy statements is
that whenever an existence problem occurs, then the expected solution is also based on
existence. Similarly, problems.based on events have solutions based on events.

C. 	 Hierarchical Order of Policy Statements
Policy statements are often hierarchically arranged. First, the e/e couples can be arranged

by some categorical hierarchy. For example, all e/e couples relating to "Personnel Security"
can be grouped into one category, which in itself can be a category in "Computer System
Security." Also, each propeny or requirement can be composed of subprop­
erties/subrequirements. The subproperties/subrequirements can also be further refined with the
subordinate items categorizing and defming their parents. Figure 1 depicts the general repre­
sentation of a policy element used by the Advisor model.

D. User Defined Solutions
Some policies allow users to develop their own solutions to policy requirements. This

approach effectively allows the user to modify the hierarchy under the requirement part of one
or more p/r couples. Often the security officer is allowed to create a specific solution to the
problem as long as it satisfies the general. intent of the policy. The Advisor model allows a
controlled capability for security officers to substitute approved alternative solutions.

349

•••

•••

••• • ••

•••

Hardware and Software
0 Security

0 	 0Protection Index 0 0 A~~:~c:::::n DBMS

··~

0 0 Aaaurance

Teatlng
Meaaurea

0 Q 	 uaer Q need-to-know

authorization

0 0 0 Clearance Q Authorizations

~ntlfler 0 Entity

Uaer... "' I I 	
0 Relationship

0 possesses /\0 	 ,y posaesaeapossesses •• • Additional graph nodas
not shown

Haa Acceaa
Q Person To

/\ ComputerV----o Syatem
Information Proceaaea ------ ---------/\ Poeseaaea

0---- /\ v --0 AccreditationV 	 Level

Figure 1. Conceptual graph of policy fragment.

ill. POLICY REPRESENTATION

A. Policy Rcan-esentation Requirements
An acceptable representation of a policy statement must be able to represent the domain

addressed by the policy, differentiate between the policy concepts and instances, and support a
categorical organization of the policy. First, we must be able to accurately represent the policy
domain. In addition to properties and requirements, we must be able to represent relationships
between properties and requirements, interactions between events and p/r couples, and time.
For example, suppose we wished to represent a personnel security policy for a secure com­
puter system. We must be able to represent such concepts as computers, classification levels,
and users. We must also be able to represent relationships between these concepts, such as the
relationship between a computer and its users. We also must be able to differentiate between
instances and concepts. For example, if the policy states that all classified computers must be
in protected areas, we want to be able to differentiate between the concept of a classified com­
puter and a particular instance of a classified computer. The representation approach must also
support a categorical hierarchy for the e/e couples.. The Advisor model also allows for con­
trolled modifications to the hierarchy when the policy supports implementor flexibility. The
user modifications are restricted to properties already defmed in the policy domain. For
example, if the policy allows substitution of physical protection for user identification and
authentication, then the user must be restricted to selection of known and approved physical

350

protection properties when making the modification. Events must also be represented. For
example, we must be able to represent the event of a user login to the computer. We must also
be able to model procedures, such as the generation and distribution of authenticators.

B. 	 Advisor Model Representation
The Advisor model uses conceptual graphs [4] to represent policy information. The

policy representation conceptual graph contains three types of nodes: category, policy, and
network. Category nodes are used to organize the high-level segments of the policy. Policy
nodes represent e/e couples. A policy node may be connected to up to four network nodes.
Network nodes represent the policy node's existence p/r couple and its event p/r couple. Net­
work nodes are the clauses of the IF/f.HEN structures. The generic representation of policy
nodes and network nodes is given in Figure 2.

o Category Node

Compooltlon o
I' o
Polley Node

Compoaltlon 	 Compoaltlon0~0/ ~0

~ Compoaltlon ~

. 	 o~xlotence 'o Practice 0 Practice
Existence Requirement Property Alqulremenl

I
0

\"••••::..,.,., I \ I \ ''"'"" I \
Exletence Practice

Property Requirement Property Requlreme')A.'
 0

Child 0 0 Child 0 0 Child 0 0 Child V

I\ I\ I\ I\

0···0 0···0 0·· ·0 0···0

N1tworkNetwork NetworkNetwork NodaaNodal 	 NodeaNodes
Attrlbutaa: Node Type

Satlafled

Queried

Meaning
Children

Viaited

Figure 2. Generic Advisor model.

c. 	Advisor Architecture
The Advisor architecture, shown in Figure 3, contains two different networks [5]. The

Computing Environment network is composed of network nodes that are used to guide and
collect user-supplied descriptions of the local computing environment (instantiations). The
Policy network contains category, policy, and network nodes that represent the policy. The
Analysis component is software that evaluates the instantiations against the policy and reports
the results. The Developer Interface contains facilities for creating and maintaining the Policy
and Computing Environment Networks. The User Interfaces provide capabilities to allow the
user to enter, view, and manipulate information in a user-friendly manner.

351

Developer

I

Policy

Network

Text-Mode User
Interface

Interface

Figure. 3. Advisor architecture.

The Policy network also supports a global analysis of the policy statement by supporting
the representation of multiple policies and networks of attacks/vulnerabilities and
responses/safeguards that represent everything the policy must address. If a node in the Policy
network cannot be associated with an attack, then either the attack/vulnerability network is
incomplete and must be expanded, or that property or requirement is superfluous and should
not be in the policy statement. If there is an attack/vulnerability that does not match any prop­
erty or requirement, then this attack/vulnerability is not addressed by the policy, indicating an
incompleteness of the policy statement. A similar analysis can be performed with
responses/safeguards.

D. Advisor Knowledt:e Network
The interior nodes of the knowledge network may be either AND, OR, or XOR

(exclusive or) nodes. Each interior node will have a node-type attribute (either AND, OR, or
XOR), a satisfied attribute (YES/NO), and a meaning attribute. AND nodes require that all of
their children be addressed during instantiation and analysis. OR nodes represent redundant
information and allow any of their children to be addressed during instantiation and analysis.
XOR nodes are used when policy elements conflict with each other and only one child will be
considered during instantiation and analysis. An example of conflicting policy elements might
be an audit trail that recorded every keystroke entered by a user and normal password security.
The complete audit trail would contain user- and file-access passwords, while password secu­
rity would not allow the passwords to be exposed in a clear form.

The satisfied attribute specifies whether or not the user has supplied the information for
an instantiation of this node and whether or not the node is satisfied by the instantiation. An
AND node is considered satisfied only if all of its children are satisfied. An OR node is con­
sidered satisfied if any of its children are satisfied. An XOR is considered satisfied ifone of its
children is satisfied and the other is not. Ifboth children of an XOR node are satisfied a con­
flict is reported to the user. ·

352

The meaning attribute is used with network nodes in the Policy network to provide a
linkage between the Policy and Computing Environment networks. The meaning attribute
contains the name of a node in the Computing Environment network that is expected to contain
a user-supplied instantiation. During the analysis phase, the Policy network is searched for the
meaning attribute strings that are used to extract the instantiations for further analysis in the
Policy network.

E. System Evaluation
The leaf nodes of the Computing Environment network contain the user provided instan­

tiations and allow the Advisor to query the Policy network to determine if a p/r couple is satis­
fied. This information on the satisfied attribute of the child is then used by the parent concept
to determine whether or not it is satisfied. A leaf node in the Computing Environment network
is considered satisfied if an instantiation for the concept has been provided by the user. The
information on the satisfied attribute of the leaf node is propagated to the top of the Computing
Environment network where it is used to determine if the parent p/r couple is satisfied. The
satisfaction of a p/r couple is then used to determine the satisfaction of individual policy
couples in the Policy network.

N. USER INTERFACE

The Computer Security Advisor implementation is designed to support the needs and
activities of all of the positions identified in the Department of Energy (DOE) Classified
Computer Security Program. These positions include Computer Security Program Manager
(CSPM), Computer Security Operations Manager (CSOM), Computer Security Site Manager
(CSSM), and Computer System Security Officer (CSSO). The CSPM is responsible for
establishing the classified computer security policy for the DOE. The CSPM is also respon­
sible for developing and maintaining a definition of the threats to DOE and contractor facilities.
The CSPM may, under certain circumstances, be an accrediting authority for complex com­
puter systems or systems that cross CSOM responsibility boundaries. The CSOM position is
typically assigned to an individual in the DOE Operations Office and is responsible for over­
sight and guidance of the computer security program implemented by the Operations Office and
any DOE contractors reporting to the Operations Office. The CSOM is responsible for review
and approval of ADP Security Plans for all computer systems processing classified information
in the DOE office or contractor facilities. The CSOM is typically the accrediting authority for
these computer facilities. The CSSM is the individual responsible for the classified computer
security program at the site or facility. The CSSM is the principal contact point and coordinator
for all communications and interactions between the site and the CSQM. The CSSM is
responsible for review of all ADP Security Plans and the certification of the computer systems
during the accreditation process. The CSSM is also responsible for defining and implementing
site-wide computer security procedures. The CSSO is the security officer responsible for
defining and implementing the computer security procedures and mechanisms for a computer
system that processes classified information. The CSSO is also responsible for generating and
maintaining the ADP Security Plan and the ADP Security Test Plan.

The user interface of the Computer Security Advisor is based on the windowing system
supported by Sun Microsystem's Open Look software. The user is presented with a series of
successively detailed windows that are oriented to the particular function requested by the user.

The initial window, Figure 4, allows the user to select the desired interaction level
(security officer, reviewer, or developer). ·

The security officer window, Figure 5, allows the user to select operations to load or
save the Policy and Computing Environment networks (FILE button), exit the Advisor (QUIT
button), edit or display the Policy and Computing Environment networks (EDIT button),
describe a computer system (CREATE SYSTEM button), or evaluate the described system
against the policy requirements (ANALYSIS button). The ANALYSIS and CREATE

353

Figure 4. Initial Advisor screen.

Figure 5. Initial security officer screen.

SYSTEM functions allow the user to analyze or describe the entire system environment or
select a specific subset of the environment defined by the policy network. The DOE policy is
divided into personnel security, physical security, telecommunications security, administrative
security, and hardware/software security sections.

The CREATE SYSTEM functions guide the user through the process of specifying the
instantiations of the computer system. The Advisor searches the Computing Environment net­
work for concepts that must be instantiated to satisfy the policy. When a required concept is
found, the user is asked to respond if the concept is present or practiced in the local environ­
ment. If appropriate, the user is also asked to identify the instance (e.g., name or procedure
title). Figure 6 contains an example of the instantiation activity.

The ANALYSIS functions initiate the evaluation of the computer system against the
policy requirements. After the evaluation is completed, the results are displayed for the user.
Figure 7 contains a sample display showing the results of an analysis. If all p/r couples in the
Policy network are satisfied, then only a single line ifdisplayed stating that the top level policy
network node was. satisfied. If one or more p/r couples are not satisfied, then the unsatisfied
p/r couple(s) are displayed with all subordinate p/r couples .that contributed to the failure of the
top level p/r couple.

354

CurreRt ENTITY is 'co•puter syste•'·
No instantiations of this ENTITY.

would you like to
0 STOP, leave ENis as they are
1 ADD a new ENI
2 DELETE an ext sting ENI
3 MODIFY an existing ENI
>» 1

The EN to be instantiated is 'co1puter syste1'.
Enter na•e of new ENI > Cu1bres
New ENI created.

The current ENTITY is 'co1puter syste•'·

Figure 6. Instantiation window.

lity satisfies the property 'system processes classified info'
the requirement 'emission requirement'

able: 'SV'
ENI 'Cu1bres'

btl tty
ssion require•ent' is NOT SAT by current poss

Node 'e1ission review' i~ NOT SAT by current poss

'emission review' is NOT SAT by current poss
Blllll;o..MU:or; the possi bi 11 ty conflicts 1ts meanings.

1cy Node 'e1i ssi on security' is NOT_SATISFIED.

Figure 7. Analysis window.

355

y, IMPLEMENTATION

The Computer Security Advisor prototype is implemented on a Sun Microsystems work­
station in C. The Advisor uses the KNET library from KONEXSYS Corporation to manage
the Policy and Computing Environment network space. The user and developer interfaces are
implemented in the Open Look windowing environment provided by Sun Microsystems.

VI. SUMMARY

A knowledge-based system has been developed to collect and organize knowledge from
computer security experts for use by a security officer. The Advisor includes a model that
incorporates all aspects of a policy statement. The Computer Security Advisor contains a
generic description of the desired policy and the user interface to support a security officer
description of the local system and analysis of policy compliance. The system is policy-based
and contains the flexibility needed to support changes in policies and hardware and software
technology.

REFERENCES

1. 	 "Department of Defense Trusted Computer System Evaluation Criteria," DOD 5200.28­
SID, National Computer Security Center (1985).

2. 	National Research Council, Computers At Risk.· Safe Computing in the Information Age
(National Academy Press, Washington D.C., 1990).

3. 	 "Classified Computer Security Program," Department of Energy Order 5637.1, Department
of Energy (January 1988).

4. 	J. F. Sowa, Conceptual Structures-Information Processing in Mind and Machines
(Addison-Wesley, Massachusetts, 1984).

5. 	N. V. Findler, Ed., Associative Networks (Academic Press, New York, 1979).

356

THE LOGISTICS OF DISTRIBUTING

A SMART TOKEN

Dawn A. Brown

Department of Defense

Ft. George G. Meade, MD 20755-6000

(301) 859-4360

ABSTRACT

This paper will address the logistics of distributing a smart token on a computer
system. A smart token is an identification and authentication device for a host
computer system. This paper will address the logistics from four perspectives. The
first perspective will discuss why the smart token, WATCHWORD Generator was
implemented on DOCKMASTER. A cost analysis, including procurement of the
smart token, batteries, man hours, and maintenance is the second perspective. The
third perspective discusses how the smart token will enhance the security of the host
computer system. How DOCKMASTER will respond when a user is trying to access
the system with the WATCHWORD Generator implemented is the fourth
perspective. With a successful method of identifying and authenticating users of the
computer system, the system is less susceptible to penetration.

INTRODUCTION

DOCKMASTER is the National Security Agency,s (NSA) unclassified computer
system that directly supports the missions and functions of the National Computer
Security Center (NCSC). DOCKMASTER was established as the Information
Security Showplace for dissemination and exchange of Information Security data.
DOCKMASTER executes the Multics Operating System which was granted a B2
security rating based on the guidelines defined in the Department ofDefense Trusted
Computer System Evaluation Criteria, also known as the "Orange Book,,.

With the increasing number of computer penetrations, it is vital that each computer
user is correctly identified when accessing a computer system. The process of
correctly identifying each computer user is called authentication. The primary
authentication device on DOCKMASTER is the WATCHWORD Generator.

The WATCHWORD Generator is a portable, hand held authentication device that is
used in conjunction with the usees password during the login process. Each
WATCHWORD Generator is assigned a unique Personal Identification Number
(PIN) and Secret Key. During the login process, the user must correctly authenticate
his/her login process by using the WATCHWORD Generator. The WATCHWORD
Generator will generate a different response during each login process based on the
"Challenge" generated from DOCKMASTER. If the correct response to the
"Challenge,, is not entered the user will be denied access to DOCKMASTER.

WATCHWORD GENERATOR IMPLEMENTATION

With every computer system there should be a means of authenticating who is trying
to access the system. As with most computer systems, DOCKMASTER uses the
userid and password option as a means of authenticating each user. However, should
this option be the only means of authenticating users? The answer depends on
several questions. For example, what type of data (unclassified, classified,
proprietary) is the user trying to access, should the user have access to this data, and

357

is the data restricted to specific users. If the answer to any of these questions is yes,
then the userid and password option should not be the only means of authenticating
users.

In 1987, DOCKMASTER Management was faced with the question, how can we
enhance the protection of restricted data while also authenticating each user. A
decision was made to add an additional layer of security to the login sequence that
would identify and authenticate each user requesting access to restricted data. A
month long operational test consisting of twenty-one users accessing DOCKMASTER
through various methods (Direct Dial, Tymnet, Telnet, etc.) was conducted. Based on
the conclusions of the test, the WATCHWORD Generator was chosen as the most
effective way to add the additional layer ofsecurity to DOCKMASTER.

COST ANALYSIS

There are overhead costs involved in the implementation and use of the
WATCHWORD Generator. Some ofthe overhead costs include:

a. The WATCHWORD Generator software.
b. The WATCHWORD Generator devices.
c. The WATCHWORD Generator batteries.
d. The WATCHWORD Generator Administrator duties.
e. Maintenance and recovery of the WATCHWORD Generators.
f. Replacement WATCHWORD Generators and batteries.

The initial overhead cost of the WATCHWORD Generator includes procuring the
software for the WATCHWORD Generators. This software is necessary to
communicate with the host computer. Additionally the cost of one device for each
user that requires authentication by the system must be incurred. The
WATCHWORD Generator costs approximately ninety dollars each. Given a user
population of five hundred, the total cost to procure the WATCHWORD Generator is
approximately forty-five thousand dollars. This figure may appear to be substantial
at the outset, but consideration should be given to the thousands of dollars that will
be saved when the WATCHWORD Generator is implemented.

When a computer system is compromised, time and money must be spent on tracing
the path of the computer hacker, notifying users of the penetration so that they can
change their passwords and ensure that their data was not compromised, and
investigating why the penetration occurred. The cost involved in this whole process
can be substantial. The time and money that must be invested if the computer
system is compromised will not have to be incurred if the WATCHWORD Generator
is implemented. The chances of a computer system being compromised with the
WATCHWORD Generator implemented is virtually zero. The advantages of
implementing the WATCHWORD Generator out way the disadvantages
considerably.

The WATCHWORD Generator is battery operated, thus the cost of the batteries is a
second overhead cost. Each WATCHWORD Generator requires two calculator or
equivalent batteries. The cost per set of batteries for the WATCHWORD Generators
is less than one dollar. As with the cost of the WATCHWORD Generator device, the
cost of the batteries is minute compared to the advantages and additional security
that the WATCHWORD Generator will bring to the computer system.

358

The third overhead cost includes the actual man hours involved in implementing the
WATCHWORD Generator. Every computer system should have one or more
individuals that concentrates on the security of the system. This person is usually
called the Computer Security Officer (CSO). The CSO may be a prime candidate to
implement the WATCHWORD Generator since the WATCHWORD Generator does
add an additional layer of security to the computer system. However, the CSO does
not have to implement the WATCHWORD Generators,. A WATCHWORD
Generator Administrator (WGA) should be appointed.

The WGA responsibilities should include, but are not limited to, installing batteries
into the WATCHWORD Generator device, assigning a unique PIN to each device,
keying each device with a unique secret key, recording each device in the controllers
and database, maintaining an accurate inventory of WATCHWORD Generators and
b~tteries, and ensuring the return of unused WATCHWORD Generators for
re1ssuance.

Each device requires approximately fifteen minutes to implement on the computer
system. Based on the number of devices that will be implemented at one time, the
number of man hours invested is also minimal. The relatively small number of man
hours invested is small price to pay for the numerous advantages that implementing
the WATCHWORD Generator will provide.

Ensuring the return ofunused WATCHWORD Generators may require the most man
hours. For example, if a user changes job positions, relocates, is fired, or if the
company moves, it is the responsibility of the WGA to locate the user and ensure the
return of the WATCHWORD Generator. A Standard Operating Procedure (SOP)
should be established to deal with problems such as the ones listed above. With a
well defined SOP the WGA should not have any problems in deciding what the next
step should be in ensuring the return of the WATCHWORD Generators.

The life span of the batteries for the WATCHWORD Generators is approximately two
years. Therefore, to minimize user inconvenience, a system of exchanging
WATCHWORD Generators must be implemented. The WGA must issue each user a
new WATCHWORD Generator. Each WATCHWORD Generator must have a new
PIN as well as a new secret key. The purpose of issuing a new PIN and secret key is
to enhance key management and security of the computer system.

During the exchange phase of the WATCHWORD Generators, each user will have
two WATCHWORD Generators for a short period of time, but only one
WATCHWORD Generator will be used to authenticate the user. The WGA must
explain to the user population the procedures of why, when, and how the replacement
WATCHWORD Generator will be used. This process can become extremely
confusing if a detailed plan is not implemented. The exchanging of WATCHWORD
Generators will enhance the security of the computer system by reducing the chances
of a users PIN and or secret key being compromised. The longer a user utilizes the
same PIN the greater the possibility that their PIN will be compromised.

Some may argue that it would be easier and less time consuming to issue new
batteries to each user. This would not be a feasible method because once the batteries
are removed the memory is automatically erased. Once the PIN and secret key is
erased, the device will no longer be able to function as a smart token.

The cost involved in the exchange process is also minimal. Ifan adequate number of
WATCHWORD Generators and batteries are procured during the initial phase, the

359

only cost that should occur is the cost of mailing the replacement WATCHWORD
Generators and the man hours to implement the exchange process.

WATCHWORDGENERATORANDSECURITY

To reiterate, the implementation of the WATCHWORD Generator can only enhance
the security of the computer system. Some of the enhancements include, as a
minimum:

a. 	Providing the user community with a secure processing environment.
b. Identifying and authenticating each user to ensure that they have access to

information they need.
c. 	 Restricting sensitive data to only specific users who have access to review

such data.
d. 	 Providing an extra layer ofsecurity for the user and the computer system in

the event that the password is compromised.
e Reducing the probability that the computer system will be compromised.

Each user is assigned a unique PIN and secret key, however, the secret key is not
known to the user. The secret key is entered into the WATCHWORD Generator by
the WGA before it is issued to the user and is not accessible by the WATCHWORD
Generator. Because each PIN and secret key is unique for each WATCHWORD
Generator, a computer hacker would have to physically have the WATCHWORD
Generator, userid, password, and PIN of the user whom account he/she is trying to
compromise.

DOCKMASTER LOGIN WITH THE WATCHWORD GENERATOR

When a DOCKMASTER user logs in with the WATCHWORD Generator the
sequence of identification and authentication begins. Mter the user enters his/her
userid and password, DOCKMASTER. will ttChallenge" the user for a response. At
this point the user must enter his/her PIN into the WATCHWORD Generator
followed by the seven-digit system ttChallenge". The WATCHWORD Generator will
generate a seven-digit ttResponse" that the user will enter into DOCKMASTER. If
the user has correctly entered in his/her userid, password, PIN, Challenge, and
Response, DOCKMASTER will allow the user access to the system. If any of the
above elements were entered incorrectly, DOCKMASTER will not grant access to the
system.

If the PIN is entered incorrectly, the secret key will be unable to generate a correct
response to the ttChallenge". Although a ttResponse" will be generated, it will not be
correct, therefore the user will not g,ain access to DOCKMASTER. Also if the
ttChallenge" is entered incorrectly into the WATCHWORD Generator, a ttResponse"
will be generated for that ttChallenge" not the system generated ttChallenge". Since
the wrong ttChallenge" was entered, thus generating an incorrect ttResponse",
DOCKMASTER would deny the user access to the system.

FUTURE OF THE WATCHWORD GENERATOR ON DOCKMASTER

The WATCHWORD Generator has been an overwhelming success on
DOCKMASTER. Although the implementation of the WATCHWORD Generator on
DOCKMASTER caused minimal user frustration, the majority of the
DOCKMASTER user population view the implementation as a positive step toward
better computer security.

360

Where do we go from here? There are two options that the WATCHWORD Generator
offer that can be utilized by the DOCKMASTER user community~ The first option
includes user authenticating login to DOCKMASTER. The user can send a
nChallengen to the host computer, DOCKMASTER, and the host computer will
generate a ((Response". If the correct ((Response" is given, the user will know that
he/she is logging into the correct computer system.

The second option includes issuing the user two PINs and secret keys. The
WATCHWORD Generator has the capability of storing two PINs and secret keys for
user identification and authentication. This option will add another step to the
identification and authentication sequence as well as enhance security. This option
would be excellent for System Administrators. Because of the privileges that
System Administrators have, this option would greatly decrease the chances of a
computer hacker compromising a System Administrator's account.

Although neither of the options are being implemented on DOCKMASTER in the
near future, the options still remain open. Before either option is implemented, a
need assessment will be thoroughly conducted and based on the conclusions the
options may or may not be implemented.

CONCLUSION

With the growing concern for computer security, the implementation of the
WATCHWORD Generator on DOCKMASTER has greatly reduced the chances of the
system being compromised. Although no system is one hundred percent capable of
preventing a successful penetration, the WATCHWORD Generator does provide that
extra layer of security.

The advantages of implementing a smart token on a computer system outweighs the
disadvantages considerably. Providing a secure processing environment for
computer users is one of the the main concerns of computer security and the
implementation of a smart token would be a step in the right direction for ensuring
computer security.

I} U.S.GOI/ERNMENT PRINTIIIG CFFICE:1991-52>-425/406EIB

361

