NaATIONAL INSTITUTE OF STANDARDS AND TecHnoLoGY,/
NarmionaL Computer SecuriTy CENTER

14TH NaTtionAaL ComMPUTER SECURITY CONFERENCE

October 1-4, 1991
Omni Shoreham Hotel
Washington, D.C.

3
3

B i,

Welcome!

The National Computer Security Center (NCSC) and the Computer Systems
Laboratory (CSL) are pleased to welcome you to the Fourteenth Annual National

Computer Security Conference. We believe that the Conference will stimulate a vital

and dynamic exchange of information and foster an understanding of emerging

technologies.

The theme for this year’s conference, “Information Systems Security: Require-
‘ments & Practices,” reflects the continuing importance of the broader information

systems security issues facing us. At the heart of these issues are two items which will
receive special emphasis this week -- Information Systems Security Criteria (and how
it affects us) and Education, Training, and Awareness. We are working together, in

the Government, Industry, and Academe, in cooperative efforts to improve and

expand the state-of-the-art technology to information systems security. This year we

are pleased to present a new track emphasizing the integration of information

security solutions. These presentations will provide you with some thoughtful

insights as well as innovative ideas in developing your own solutions. Additionally,

we will be presenting an educational program which addresses the automated

information security responsibilities. This educational program will refresh us with

the perspectives of the past, and will project directions of the future.

We firmly believe that security awareness and responsibility are the cornerstone

of any information security program. For our collective success, we ask that you

reflect on the ideas and information presented this week; then share this

information with your peers, your management, your administration, and your

for tomorrow’s foundations.

. JAMES H. BURROWS

L/ Director
Computer Systems Laboratory

customers. By sharing this information, we will develop a stronger knowledge base

B R e £
PATRICK R A ~

Director
National Computer Security Center

Dr. Marshall Abrams
James P. Anderson
Jon Arneson
Devolyn Arnold
James Arnold

Al Arsenault

V.A. Ashby

David Balenson
Dr. D. Elliott Bell
James W. Birch
W.Earl Boebert

Dr. Martha Branstad
Dr. John Campbell
Lisa Carnahan

R.O. Chester

David Chizmadia
Dorothea deZafra
Donna Dodson
Karen Doty

Dr. Deboah Downs
Jared Dreicer

Ellen Flahavin
Daniel Gambel

Conference

The MITRE Corporation

J.P.Anderson Company

National Institute of Standards and Technology
Department of Defense

Department of Defense

Air Force Academy

The MITRE Corporation

Trusted Information Systems, Inc.

Trusted Information Systems, Inc.

Secure Systems, Inc.

Secure Computing Technology Corporation
Trusted Information Systems, Inc.

Department of Defense

National Institute of Standards and Technology
Martin Marietta

Department of Defense

Public Health Service

National Institute of Standards and Technology
-~ CISEC

The AEROSPACE Corporation

Los Alamos National Laboatory

National Institute of Standards and Technology
Grumann Data Systems

L. Dain Gary Mellon National Bank
Virgil Gibson Grumann Data Systems
Dennis Gilbert National Institute of Standards and Technology
Irene Gilbert National Institute of Standards and Technology
Captain James Goldston, USAF AFCSC

Dr. Joshua Guttman
Douglas Hardie
Ronda Henning

Dr. Harold Highland, FICS

Jack Holleran
Hilary H. Hosmer
Russell Housley
Howard Israel
Dr. Sushil Jajodia
Wayne Jansen

The MITRE Corporation

Unisys Corporation

Harris Corporation

Compulit, Inc.

National Computer Security Center
Data Security, Inc.

XEROX Information Systems

AT&T Bell Laboratories

George Mason University

National Institute of Standards and Technology

Referees
Carole Jordan .
Dr. Maria M. King
Leslee LaFountain
Steven LaFountain’
Paul A. Lambert
Dr. Carl Landwehr
RobertLau =
Dr. Theodore M.P. Lee
Steven B. Lipner
Teresa Lunt

Dr. William V. Maconachy :

Sally Meglathery
Dr. Jonathan Millen
Warren Monroe
William H. Murray
Noel Nazario

Ruth Nelson

Peter Neumann

J.D. Nichols

Steven Padilla

Nick Pantiuk

Donn Parker
Richard Pethia

Dr. Charles Pfleeger
Kenneth Rowe
Professor Ravi Sandhu’
Marvin Schaefer

Dr. Roger R. Schell
Emilie J. Siarkiewicz
Suzanne Smith
Brian Snhow

Professor Eugene Spafford

Mario Tinto

James Tippett
Eugene Troy .
LTC. R. Vaughn, USA
Grant Wagner
Kenneth vanWyk
Howard Weiss

Roy Wood
Carol Worden

Defense Investigative Service

The AEROSPACE Corporation
Department of Defense
Department of Defense
Motorola GEG

Naval Research Laboratory
Department of Defense

Trusted Information Systems, Inc.
Digital Equipment Corporation
SRl International

National Security Agency

ISSA

The MITRE Corporation

Hughes Aircraft

: Deloitte & Touche

Natlonal Institute of Standards and Technology
GTE

SRI International

Independent Consultant

SPARTA

Grumann Data Systems

SRl International

- Carnegie Mellon University
Trusted Information Systems, Inc.
Department of Defense

George Mason University
Trusted Information Systems, Inc.
GEMINI

Rome Air Defense Center

Los Alamos National Laboatory
Department of Defense

Purdue University

Department of Defense
Department of Defense
‘National Institute of Standards and Technology
U.S. Naval Academy

Department of Defense
Carnegie Mellon University
SPARTA

Department of Defense

State of Minnesota

14th National Computer Security Conference

Table of Contents

X Authofs Cross Index .
Tutorials

1 From Tuples to Trusted Subjects to TDI: A Brlef Tutorial on Trusted
Database Management Systems
John R. Campbell, National Security Agency

13 Tutorial Series on Trusted Systems
Joel E. Sachs, Dr. William F. Wilson, Arca Systems, Inc.

PAPERS (refereed)

15 Accreditation Strategy for the Air Force Satellite Control Network (AFSCN)
Lt Col William Price, USAF, Air Force Space Command
Michael O’Neill, Frank White, CTA, Inc.

25 An Analysis of Application Specific Security Policies
Daniel F. Sterne, Martha Branstad, Trusted Information S ystems Inc.
- Brian Hubbard, SPARTA Inc.
Barbara Mayer, 'Atlantic Research Corporation
Dawn Wolcott, MITRE Corporation

37 Another Factor in Determining Security Requirements for Trusted Computer
Applications
David Ferraiolo, National Institute of Standards and Technology
Karen Ferralolo Grumman Data Systems

45 Apparent Differences Between the U.S. TCSEC and the European ITSEC
Dr. Martha Branstad, Dr. Charles Pfleeger,
Trusted Information Systems, Inc.
Dr. David Brewer, Gamma Secure Systems, Ltd.
Mr. Christian Jahl, Mr. Helmut Kurth, IAGB Software Technology

59 Auditing of Distributed Systems
D. Banning, G. Ellingwood, C. Franklin, C. Muckenhirn, D. Price,
SPARTA, Inc.

69 Building a Multi-Level Application on an Untrusted DBMS in a UNIX
System V/MLS Environment - A Project’s Experience
David S. Crawford, Canadian Department of National Defence

78 Building a Multi-Level Secure TCP/IP
Deborah A. Futcher, Brian K. Yasakt, The Wollongong Group
Ron L. Sharp, AT&T Bell Laboratories

88 The Cascade Problem: Graph Theory Can Help
John A. Fitch, III, Lance J. Hoffman, George Washington University

iv

101

110

120

137

147

157

167

177

188

195

205

215

226

237

A Case Study for the Approach to Developing a Multilevel Secure Command
and Control Information System

James Obal, Supreme Allied Commander Atlantic

William Grogan, Contel Federal Systems

Contractors and Computer Security--Awareness, Education, and
Performance ,
Ronald E. Brunner, Ronald G. Brunner & Asssociates

Covert Channel Analysis Planning for Large Systems
Lee Badger, Trusted Information Systems, Inc.

Dealing With a Malicious Logic Threat: A Proposed Air Force Approach
Howard L. Johnson, Information Intelligence Sciences
Chuck Arvin, Earl Jenkinson, CTA, Inc.
Captain Bob Pierce, USAF, Electronic Security Command

Developing Applications on LOCK
Richard O'Brien, Clyde Rogers, SCTC

The Development of a Low-To-High Guard
Michelle J. Gosselin, MITRE Corporation

DIDS (Distributed Intrusion Detection System) - Motivation, Architecture,
and An Early Prototype

Gihan V. Dias, Terrance L. Goan, L. Todd Heberlein, Che-Lin Ho,

Karl N. Levitt, Biswanath Mukherjee, University of California, Davis

Stephen E. Smaha, Steven R. Snapp, Haystack Laboratories, Inc.

James Brentano, Pacific Gas and Electric Company

Lt. Tim Grance, USAF, Daniel M. Teal, USAF,

United States Air Force Cryptologic Support Center
Douglass L. Mansur, Lawrence Livermore National Laboratories

A Distributed Implementation of the Transform Model
Ravi S. Sandhu, Gurpreet S. Suri, George Mason University

Employee Privacy and Intrusion Detection Systems: Monitoring on the Job
Lorrayne dJ. Schaefer, The MITRE Corporation

Experience of Commercial Security Evaluation
Peter Fagan, Julian Straw, Secure Information Systems Limited

Experiences in Multi-Level Security on Distributed Architectures
Karl A. Siil, AT&T Bell Laboratories

An Expert System Application for Network Intrusion Detection
Kathleen A. Jackson, David H. DuBois, Cathy A. Stallings,
Los Alamos National Laboratory

Formal Verification of a Network Security Device: A Case Study
Hicham N. Adra, William Sandberg-Maitland,
CGI Information Systems & Management Consultants

A Framework for Advancing Integrity Standardization
Terry Mayfield, Stephen R. Welke, John M. Boone,
Catherine W. McDonald, Institute for Defense Analyses-

246

257

267
283

295

305

313

328
338
347
357

362

372
386
397
407

417

A Framework for Developing Accreditable MLS AISs
R.K.Bauer,dJ. Sachs, M. L. Weidner, W. F. Wilson, Arca Systems Inc.

Generalized Framework for Access Control: Towards Prototyping the
ORGCON Policy
Marshall D. Abrams, Jody Heaney, Osborne King, Leonard LaPadula,
Manette Lazear, Ingrid Olson, The MITRE Corporation

Honest Databases That Can Keep Secrets
Ravi Sandhu, Sushil Jajodia, George Mason University

Identifying and Controlling Undesirable Program Behaviors
Maria M. King

Improvement of Data Processing Security by Means of Fault Tolerance
Gilles Trouessin, Yves Deswarte, Jean-Charles Fabre,
LAAS-CNRS & INRIA

Brian Randell, Computing Laboratory, The University Newcastle upon Tyne

Information Security: Can Ethics Make a Difference
Corey D. Schou, John A. Kilpatrick, Idaho State University

Information Security Risk Analysis and Risk Management: Which
Approach?
Professor J .H.P. Eloff, K.P. Badenhorst, Rand Afrikaans University

Information Systems Security: A Comprehensive Model
Capt. John R. McCumber, USAF, Joint Staff, the Pentagon

Integrating B2 Security into a UNIX System
Kevin Brady, UNIX System Laboratories, Inc.

Knowledge Based Computer Security Advisor
William Hunteman, M. B. Squire, Los Alamos National Laboratory

The Logistics of Distributing a Smart Token
Dawn Brown, Department of Defense

A Method to Detect Intrusive Activity in a Networked Environment
L. Todd Heberlein, Biswanath Mukherjee, Karl Levitt,
University of California

Model Based Intrusion Detection
Thomas D. Garvey, Teresa F. Lunt, SRI International

Notification: A Practical Security Problem in Distributed Systems
Vijay Varadharajan, Hewlett-Packard Laboratories

Output Perturbation Techniques for the Security of Statistical Databases
Kasinath C. Vemulapalli, Elizabeth A. Unger, Kansas State University

An Overview of Informix-Online/Secure
Rammohan Varadarajan, Informix Software, Inc.

Peeling the Viral Onion
Russell Davis, Planning Research Corporation, Inc.

vi

427
436

446
456
472
480

494
505

514
5k24
533
543
533

563

572

582

598

Practical Models for Threat/Risk Analysis
. Mark W.L. Dennison, Kalman C. Toth
CGI Information Systems & Management Consultants, Inc.

Predicate Differences and the Analysis of Dependencies in Formal
Specifications
D. Richard Kuhn, National Institute of Standards and Technology

Preventing Weak Password Choices
Eugene H. Spafford, Purdue University

Putting Policy Commonalities to Work
D. Elliott Bell, Trusted Information Systems, Inc.

Reconciling CMW Requirements with Those of X11 Apphcatmns
Glenn Faden, Sun Mi icrosystems, Inc.

Restating the Foundations of Information Security
Donn Parker, SRI International

The Role Of Network Security In A Methodology For Information Security
Design And Implementation
Professor J.H.P. Eloff, Mr. A.J. Nel, Rand Afrlkaans University

A Secure European System for Applicationsina Multi-vendor Environment
(The SESAME Project)
T.A. Parker, ICL Secure Systems

A Secure Quorum Protocol =
Masaaki Mizuno, Mitchell L. Nlelsen Kansas State U nwerszty

Security Guidance for VAX/VMS Systems
Debra L. Banning, SPARTA, Inc.

Sneakernet: Getting a Grip on the World’s Largest Network
Captain James B. Hiller, USAF, Space and Warning Systems Center

A Socio-Technical Analysis of a USA National Computer Security Conference
Stewart Kowalski, Stockholm University & Royal Institute of Technology

Standardized Certification
Captain Charles R. Pierce, USAF, Air Force Cryptologzc Support Center

A Strategic Framework For Information Security Management
Rolf Moulton, BP America
Santosh Misra, Cleveland State University

A System Security Engineering Process
J.D. Weiss, AT&T Bell Laboratories

Teaching Computer Systems Security in an Undergraduate Computer
Science Curriculum - S
Alfred W. Arsenault, Captain Gregory B. Whlte USAF,
U.S. Air Force Academy ;

Toward Certification, A Survey of Three Methodologles ,,
Captain Charles R. Pierce, USAF, Air Force Cryptologic S upport Center

vii

608

619
630
634

644

Trusted Distributed Computing: Using Untrusted Network Software
E.John Sebes, Richard J. Feiertag, Trusted Information Systems

Trusting X: Issuesin Bu11d1ng Trusted X Window Systems or What'’s not
Trusted About X?

Jeremy Epstein, TRW Systems Division

Jeffrey Picciotto, MITRE Corporation

Using Existing Management Processes to Effectively Meet the Security Plan
Requirement of the Computer Security Act: The IRS Experience
Richard A. Stone, Joseph Scherer, Internal Revenue Service

Viruses in an OS/2 Environment: Remembrances of Things Past and a
Harbinger of Things to Come
Kevin P. Haney, National Institutes of Health

Why Does Trusted Computing Cost So Much?
Susan Heath, Phillip Swanson, Daniel Gambel, Grumman Data Systems

PANEL Executive Summaries (unrefereed)

654

655

658

663

664
665

666

667

669

PANEL: Acquiring Computer Security Services and Integrating Computer
Security and ADP Procurement
Dennis Gilbert, National Institute of Science and Technology
Barbara Guttman, National Institute of Science and Technology

PANEL: Compartmented Mode Workstation(CMW) Program Overview
Steven Schanzer, Moderator, Defense Intelligence Agency

PANEL: 'é‘he Computer Emergency Response Team System (CERT
: ystem) -
E.Eugene Schultz, Lawrence Livermore Laboratory
Richard Pethia, Software Engineering Institute, Carnegie Mellon University

PANEL: Computer Security Management and Planning
Christopher Bythewood, National Computer Security Center

PANEL: Cracking the Cracker Problem
Dorothy E. Denning, Moderator, Georgetown University
The Role of Technology
Matt Bishop, Dartmouth College

PANEIL: Electronic Dissemination of Computer Security Information
Executive Summary
Marianne Swanson, National Institute ofSczence and Technology
What Can Dockmaster Offer You?

Cindy Hash, Department of Defense

Session: Guidelines & Evaluations
Towards Mutual Recognition of Security Evaluations
Andrea Arnold, Digital Equipment Corp
Cornelia Persy, SIEMENS
Gottfried Sedlak, IBM

viii

674 PANEL: Fielding COTS Multilevel Security Solutions: The Next Step
James Litchko, Trusted Information Systems Inc.

675 PANEL: Inference and Aggregation in Multilevel Databases: Research
Directions
Teresa F. Lunt, Moderator, SRI International
676 Detecting and Evaluating Inference Channels
Thomas D. Garvey, SRI International
679 Inference Prevention in Databases: Data Design vs. Query Processing
Catherine Meadows, Naval Research Laboratory
680 - Challenges in Addressing Inference and Aggregation
LTC. Gary Smith, USA, National Defense University
681 Approaches to Handling the Inference Problem
Bhavani Thuraisingham, The MITRE Corporation

684 PANEL: Military and Telecommunications Security: Specialized Methods
Richard Lefkon, Moderator, New York University

685 Malicious Code Prevention for Embedded Computer Weapon Systems
Debra L Banning, Gail M. Ellingwood, SPARTA

689 Computer Viruses as Electronic Warfare
Myron Cramer, Booz-Allen & Hamilton

690 Preventing Virus Insertion Through Switches
Ed Fulford, Northern Telecon

693 Nuclear Disaster and The Millennium Horse

Richard Lefkon, New York University

Session: National Issues
695 Reduced Defense Spending Increases the Need for Trusted Systems
Carole S. Jordan, Defense Investigative Service

696 PANEL: 1991: A Year of Progress in Trusted Database Systems
John R. Campbell, Moderator, National Security Agency

698 Recent Developments in Some Trusted Database Management Systems
Bhavani Thuraisingham, The MITRE Corporation

701 Oracle and Security: Year in Review 1990-91
Linda L. Vetter, Oracle Secure Systems

704 1991 SYBASE Secure Products: Executive Summary

Helena B. Winkler-Parenty, SYBASE

706 PANEL: Requirements and Experiences
Dennis Gilbert, National Institute of Science and Technology

708 PANEL: Risk Management
Irene Gilbert, National Institute of Science and Technology

709 PANEL: Specifying, Procuring, and Accrediting MLS System Solutions
Joel E. Sachs, Arca Systems, Inc.

714 PANEL: Trusted Applicationsin the Real World
Stephen Walker, Trusted Information Systems Inc.

715 PANEL: Winning Strategiesin Information Systems Security Education,
Training, and Awareness
W. V. Maconachy, Moderator, Department of Defense

ix

FROM TUPLES TO TRUSTED SUBIJECTS TO TDI: A BRIEF TUTORIAL ON
TRUSTED DATABASE MANAGEMENT SYSTEMS

John R. Campbell
National Security Agency
9800 Savage Road

Fort George G. Meade, Maryland 20755-6000
301-859-4387

INTRODUCTION

Over ninety percent of the nation's mainframes and most minicomputers
and microcomputers contain database management systems (DBMS). Our most
critical data, including defense, intelligence, law enforcement, social welfare, and
financial data, are stored on such systems. Applications ranging from financial
systems to national defense mechanisms depend on the security of these systems.

The building of these systems and the construction of applications for
these systems is a multi-billion dollar industry. Yet, to date, little has been done to
secure database management systems. Vendors have emphasized performance and
ease of use, with security being an afterthought. Often any security included in the
database system is done without regard to consistency with the existing operating
system security mechanisms.

This lack of interest in DBMS security, however, is starting to change. The
threat to data, due to nondisclosure, lack of integrity and unavailability, is being
addressed. Trusted products are being introduced commercially. Vendors and
potential vendors of trusted products include Atlantic Research Corporation (ARC),
DEC, Informix, Infosystems Technology, Ingres, Oracle, Sybase and Teradata. A
second significant gain in 1991 is the completion of the Trusted Database
Management System Interpretation of the Trusted Computer System Evaluation
Criteria (TDI). The TDI extends the evaluation classes of the Trusted Computer
System Evaluation Criteria (TCSEC) to trusted applications in general, and to
database management systems in particular. The evaluation of trusted database
systems has been started by the National Computer Security Center. As of this
wri'fing, two products were under evaluation; others are in preparation for

evaluation.

Database security is maturing somewhat as a discipline. Some very tough
issues are being examined and understood. For example, we know a lot more about
the causes of, the problems associated with and the potential solutions for
polyinstantiation now than when we put it in a contract to force people to look at
the problem. There has been good research and development in this area. For
example, Rome Labs is sponsoring the development of a B2 system, Oracle is
examining the relationship between integrity and confidentiality and we are
supporting the development of a trusted database system with A1 Mandatory Access
Control. Research is being done, among other things,on distributed, multimedia,
and object-oriented trusted database systems.

This tutorial gives the background, describes the issues and offers some

proposed solutions for database security. The title was deliberately chosen. The

“tuple” is a record instance or row in a table. | will briefly discuss database systems,
and, more specifically, relational database systems, as systems based on this model
are curren’dy the most widely used systems. "TCB- Subsets” is a key concept in
database security because, as an application, it sits on other software, perhaps an
operating system. The concept permit efficient evaluation of trusted software in a
very high skill, labor intensive process. The "TDI" is an important work, not only
because it aids evaluators of trusted database systems but because it deals with
layering and applications in general.

DATABASES AND DATABASE SECURITY

In the August 1989 issue of Computer [JACO89], the reviewer of a book on
computer security makes two comments, both | especially agree with for database -
security. First, he states that the entire field of computer security has substantial
weaknesses. This is especially true for database security. For example, trusted
distributed database management systems present many unanswered quéestions.
There is no general theory of control for inference and aggregation, although there
are some application specific controls. Verification tools are weak. There are many
other unanswered issues.

Second, the reviewer states that the field of computer security is quickly
evolving. Again, this is especially true for database security. Itisjunior to operating
system security because it often has to depend on a trusted operating system. But,
until now, there were few trusted operating system products. Several yearsago, we
talked about the possibility of trusted database systems. Today there are at least
etgt;t prototypes, half of which are commercial quality. Truly the fleld is rapudly
evolving.

Whatis a database? Date [DATE86] defined them as collectlons “of stored
operational data used by the application systems of some particular enterprise.” The
operational data could include product, account, patient, student or planning data.
It does notinclude input or output data, work queues, temporary results or any
purely transient information. Databases are increasing in complexity. The data can
now be pictures, rules, or derived information.

What is a database management system? Date [DATE86] defines these as
systems that provide users with a view of the database that is elevated somewhat
above the hardware level, and support user operatlons such as SQL operations that
are expressed in terms of that higher level view. "SQL", or Structured Query
Language, is a high level query language that contains both data mampulatlon and
data definition features. It also contains data control features, "grant” and

"revoke", for example. Database management systems are also i increasing in
complex1ty Some database systems have natural language, rule manipulation and
other artificial intelligence components. Some are distributed. Database security
must meet these challenges.

WHY DATABASE SECURITY IS IMPORTANT

Database security is important because databases are so very important.
The DoD, the intelligence, financial, law and social services communities depend on
them to be safe and correct. Two billion dollars was spentin 1987 on database
systems. It is estimated that six billion will be spentin 1992. Applications for these
systems cost many times more. Ninety percent of mainframes use database systems

Database security is important because even with a trusted operating
system underneath, data is at risk if you are not using a trusted database system.
One problem is granularity. Operating systems usually protect at the file level. -
Databases need finer granularity such as table or relation, row or tuple, or even
element. Database systems can provide protection at these levels of granularity. In
addition, different discretionary security policies are often desired for database
systems that restrict access to specific data through specific database operations,
such as insert, update, retrieve and delete. Such controls are not available in
operating systems. ‘

Database security isimportant because database systems are the most
widely used class of application on computer systems. Assuch, much learned about
database systems, such as trusted operating system interface, can be transferred to
our knowledge of securing other applications.

Database security includes data integrity. Data integrity is important
because a database is useless if the information you get out of itis wrong. The
importance of integrity has long been realized by database system vendors and they
have provided some capabilities to preserve integrity. However, the active data
dictionary, where data constraints are recorded and enforced, is a relatively new
concept. o

Concentrated work done now on both database security and integrity is
important because the list of problems is constantly growing. In addition to the
vanilla stand-alone commercial database systems, which by themselves are quite
complex, we now have commercial expert, multimedia and/or distributed database
systems. These, plus intelligent, temporal, historical and object-oriented databases
add to the complexity of the problem. -

SOME ARCHITECTURES AND MODELS

Database systems employ different architectures and these present
differing problems. Database machines are computers dedicated to database
activities. All data is stored on these machines. Host computers issue queries to the
database machine. This machine processes the query, finds and manipulates the
data and returns the answer. Under this configuration, the machine's operating
system (OS) and database system are usually one; therefore the OS/DBMS interface
does not exist.

In host-based DBMSs, the OS/DBMS interface is a serious problem. Here
the DBMS runs on a general purpose computer that, in addition to the DBMS, usually
has other applications running on it. Some vendors want to port their database
management systems to as many computers as possible. How is this accomplished in

an efficient yet secure manner? There are no standard security interfaces.
Therefore, in order to be truly portable, DBMS vendors may choose to duplicate the
security functionality of the operating system and not use the security functionality
of the operating system. This avoids having to make several custom interfaces, but it
increases the complexity and size of DBMS security components. Also, if the DBMS is
trus’cedli i'g interactions with the operating system trusted computing base must be
controlled.

Client-server architectures are becoming popular. Data could be stored in
a database on a larger computer or server. The data is then usually accessed by
smaller computers called clients. Many users on personal computers or workstations
could then efficiently access a large database on a larger server. The clients and
servers are connected by perhaps a LAN. A problem is that the system: clients, server
and LAN must recognize and protect security labels. This recognition may notbe
easy, especially if each component comes from a different vendor.

Finally, distributed database systems have added additional complexities
to the security problem. The data in these system may have different physical
locations, may be on heterogeneous nodes and may be redundant. How do you
audit? How do you identify and authorize? How do you assure the integrity of
redundant information? What form of concurrency do you use? We are seeing
repeatedly that data integrity conflicts with confidentiality. How do you get both?
What are the tradeoffs? We are beginning to address these issues.

The DBMS model used may also affect security. Is the model relational,
network, hierarchical, object-oriented or other. A secure entity relationship study
reported that it was easier to secure a system based on an entity relationship model
than arelational model. One reason he gave was that he had the freedom to choose
the entity-relation model that could best contain security. There is no standard
model. The relational model, however, has solidified into almost a standard, a
standard where initially security was not considered, and therefore retrofitting
security, especially multilevel security, is difficult. While this is still a research topic,
object-oriented systems also appear to be easier to secure. :

WHAT S SECURITY?

Security, in some areas, has been equated only with nondisclosure. A
system is secure if you can prevent unauthorized users from reading sensitive
information. However, we also include integrity and availability or denial of service
components in this definition. If you can modify or destroy my data or otherwise
deny me access to my data, then the data is not secure. Consequently, our definition
agrees with what the Strategic Defense Initiative calls "security *" which includes
nondisclosure, data integrity and availability.

Our definition also includes ease-of-use as a requirement for "security”. If
the user or security administrator finds a system too difficult to use because of
security, then the security features will not be used. This is easily done as most
security features on database systems are optional. A goal then is to build systems
that appear to be very similar to vanilla systems, that use standards such as the
Structured Query Language (SQL), and that are compatible as possible to previous
databases and database systems.

WHAT IS INTEGRITY?

We've seen a list of 150 definitions of integrity. One we like is "sound,
unimpaired or perfect condition” [NCSC88a]. Is what you get out of the database
whatyou putinit?

, Three integrity components have been noted. The Department of
Defense Trusted Computer Evaluation Criteria (TCSEC or "Orange Book") [DOD85]
recognizes two types, label integrity and system integrity. Label integrity assures
that the security labels accurately represent the classifications of subjects or objects
with which they are associated. System integrity is the correct operation of the on-
site hardware and firmware elements of the TCB. This "TCB" is the totality of
protection mechanisms within a computer which is responsible for enforcing a
security policy.

What the TCSEC doesn't explicitly mention, the third integrity component,
data integrity, is something very important to DBMS users. We define it as the
"property that data has not been exposed to accidental or malicious alteration or
destruction [NCSC88b].

DATA INTEGRITY IMPLEMENTATION

Data integrity may be implemented as part of the overall security policy.
For example, the Biba integrity model [BIBA77] may be implemented with Bell-
LaPadula nondisclosure model [BELL73] to produce a model that enforces both
integrity and security. SeaView did this using a modified Biba model and Bell-
LaPadula. The model can then be translated into an operational system.

Even though a security policy may not be explicitly stated, integrity
components may exist. Entity integrity, for example, does not permit null primary
keys. In general, under referential integrity, foreign keys must reference existing
primary keys. Also, integrity constraints and typing may be used. For example, one
field or attribute may allow only months of the year, with the first letter capitalized.
The system will check that each item entered into this field satisfies these constraints.
Both secure recovery and the concept of serializability are also important for data
integrity.

Finally, it is important to note that nondisclosure and data integrity may
conflict. Referential integrity may enable someone at a lower classification level to
know whether something at a higher level exists. Hiding the existence of high data
from low users may also require that polyinstantiation be used. Under this concept,
multiple data objects with the same name, differentiated by their access class, may
exist simultaneously [DENNS88]. Is this an integrity violation? And couldn't it cause
data integrity problems?

Concurrency controls are integrity controls that enable many usersto run
their programs and access the database at the same time. They preventincorrect
interactions between transactions. In this way throughput and availability of the
database management system are enhanced. Standard controls however, can be

used as signalling channels, thereby harming nondisclosure. This area is a research
topic and work is being done.

BREAKDOWN OF THE PROBLEMS

Itis useful to break down the database security problem into historical
components. Research that has been done in each of these components may be
useful in building a secure database system.

The first component is operating system security. Many of the concepts
that originated in operating system security are also used in DBMS security. In
addition, in the computer system, the DBMS may be layered on top of the OS, may
depend on the OS for services and may share the responsibility for security policy
enforcement with the OS.

The second component is network security. Network security concepts will
be useful in client-server and distributed database work.

Some are handled as database security issues. The problems of inference
and aggregation are not unique to database systems. They deal with relationships
between data. However, the inference and aggregation problems are exacerbated
by database management systems, because these systems are designed to easily
manipulate large quantities of data. Some issues, such as granularity, are unique to
database security. :

Some issues are treated as database security issues because they had to be
solved before a trusted database system could be built. Layering and TCB subsets
were studied for trusted database systems but they apply to trusted applications in
general.

Finally, there are issues that seem to be unique to the distributed DBMS.

How do you update replicated data or recover in a secure fashion? These also are
research questions. : ;

STANDARDS/INTERPRETATIONS

Several useful standards and interpretations are available. The previously
mentioned TCSEC, although traditionally used on stand-alone operating systems,
has many concepts applicable to database systems. The Trusted Network
Interpretation is a trusted computer/communications network systems
interpretation of the TCSEC. Similarly, the TDI will add insight into the evaluation of
database management systems and other applications.

TCB SUBSETS

Wouldn'tit be of advantage to a vendor who ports a DBMS to many
computers and to the evaluator not to have to evaluate the operating system of
each target computer with the DBMS? If it can be shown that the DBMS does not
interfere with the underlying security mechanisms of the os, then this can happen.

The TCB or Trusted Computing Base is the totality of protection mechanismsin a
computer system. The combination of these mechanisms is responsible for enforcing
asecurity policy [DOD85]. A TCB Subset is a logical partition or layer of the TCB that
enforces a subset of the security policies and supporting accountability policies
enforced by the combined TCB [NCSC89]. With this approach, the TCB is divided into
TCB Subsets, and each subset enforces a distinct part of the security policy. Good
software engineering would also dictate layering.

A TCB subset M is a set of software and/or firmware and/or hardware that
mediates the access of a set S of subjects to a set O of objects on the basis of a stated
access control policy P and satisfies the properties:

1. M mediates every access to objects in O by subjectsin S;
2. M is tamper resistant; and

3.Missmall enough to be subject to analysis and tests, the completeness
of which can be assured. [NCSC91]

OTHER CONSIDERATIONS

A Trusted Path has been defined as a mechanism by which a person at a
terminal can communicate directly with the TCB. To prevent spoofing, the
mechanism cannot be imitated by untrusted software. A trusted path is also needed
between the system security officer and the TCB.

In good software engineering, a design and development process that
promotes modifiability, efficiency, reliability and understandability [BOOC83]
should be used.

‘Finally appropriate audit mechanisms should be used. The issueis to get
the granularity to record needed information while not severely impacting
performance. To achieve this balance we have recommended the use of summary
audit records to the TDI Chairman/Project Leader. Summary audit records log a count
of the accesses for each subject accessing each level/compartment in a relation.

INFERENCE AND AGGREGATION

Inference and aggregation are big security problems. Inference is the
derivation of information at a level for which the user is not permitted access by
referencing other information to which he has access. In aggregation, the sensitivity
level of a collection of data may be higher than the level of any individual datum.
Therefore, in either case, the data's security label is not enough to protect the data.
Neither is mentioned in the TCSEC. Again, they are not specifically DBMS problems
but are aggravated by the DBMS because the DBMS has been built to facilitate the
manipulation and combination of data.

AN INFERENCE EXAMPLE

Wha makes widgets? The answer is known but it is a secret. Isit company
A,B,C,DorE?

It is known that widget makers need lots of water for cooling. Therefore
the plant must be on a lake, river, etc. Also, they need lots of fossil fuel. Therefore

the plant needs to be on a railroad siding or a barge pier. Finally, widget makers
need chemical engineers.

The following additional information has been obtained from databases:
1.Company A ison a lake. Companies D and E are on rivers.

2. Companies A, C and E have railroad sidings.

3. Companies B and E advertise for Chemical Engineers.

Who? E.

INFERENCE/AGGREGATION CONTROLS

To control inference, and yet to keep classifications as low as possible, the
applications designer, in a relational system, can classify table linkages or keys, but
not the actual data in the tables. Or, the inference probiems may be defined and the
system could check queries for the problems. Control of aggregation could be done
with query response history information. This however, presents a data aging/
system performance problem. That s, the more history you have, the better the
control, but the longer it takes to scan the history.

SQL STANDARDS CONSIDERATIONS

"SQL" is a data definition and data manipulation language and is
currently an ANSI standard. "SQL3", a proposed future ANSI standard, provides for
triggers, mechanisms by which a user can affect the consistency of the database.
Therefore the impact of SQL on integrity must be considered. Also SQL must be
enriched to handle additions of audit, role and security level requirements.

CURRENT IMPLEMENTATIONS

There, fortunately, has been much activity in implementing commercial
versions of trusted database systems. The vendors include ARC, Informix, Oracle,
Sybase and Teradata. Other trusted systems are being developed.

The most popular implementation is a Trusted Computing Base (TCB)
implementation where the DBMS enforces Mandatory Access Control on the DBMS
objects. Part of the DBMS is a trusted subject. Performance here isindependent of

tne number security levels and compartments. Evaluation is more complex and
difficult. Sybase and Informix are examples.

In another Trusted Computing Base implementation, the operating system
provides the mandatory access control, while both operating system and DBMS may
provide discretionary access control. The evaluation should be easier. However,
each combination of security level and compartment requires a separate database
instance. Performance should decrease with increasing numbers of security
level/compartment combinations. Unclassified data may be separately stored as
such. Oracle's product offers the choice of either this or the first approach.

The integrity lock approach uses a trusted filter in front of an untrusted
DBMS. The filter mediates all accesses between the users and the database, and
performs trusted downgrades where necessary when providing at lower security
levels with data from the database. [WINK89] A trusted operating system at least
the filter level and B1 or higher is required to enforce the separation between DBMS
end users. Both discretionary and mandatory access controls are at least in part
located in the filter.

This method should require minimal additional trusted code and minimal
changes to an existing DBMS, and therefore be less costly to build. Because the
DBMS is untrusted, there may be covert channel problems [LAND88] and more direct
attacks. ARCis an example.

The TCB implementations place the assurance and security functionality in
a relatively small kernel of code. The smaliness of the kernel invites verification and
other proofs of correctness. The TCB may be broken into subsets, with each subset
enforcing a part of the policy.

One additional approach has been called the "distributed” approach.
Here, one untrusted computer is used for each security level/compartment
combination. A central trusted computer handles computer selection and query
parsing. Two varieties exist. In the first, each machine has security combination. In
the second, each machine has all the data up to that security combination. in the
first, joins must be done in the central computer; in the second, joins can be done in
the untrusted computers. Both could require much hardware. We know of no
vendor examples. Research is being done.

NATIONAL COMPUTER SECURITY CENTER (NCSC) DISCRETIONARY
SECURITY PROTOTYPE CONSIDERATIONS

Some of the factors considered in the "C2" prototypes developed at the
NCSC are:

- discretionary access control
- object reuse
- identification and authentication
- audit
- security testing
- data integrity
- performance
These are typical factors that would be considered in a trusted implementation.

NCSC MANDATORY SECURITY PROTOTYPE CONSIDERATIONS

In addition to the "C2" prototype considerations, the following are belng
considered in the "B"-level prototypes developed at NCSC:

~labels

- label integrity

- exportation to

- multilevel hosts

-single level hosts

- exportation of labeled information
- mandatory access control

DISTRIBUTED DATABASE MANAGEMENT SYSTEMS (DDBMS)

Distributed database management systems form an important set of
security problems and opportunities. This type of DBMS has multiple sites connected
together into a communications network in which a user at any site can access data
at any site. Characteristics of this DBMS may include the physical location of the data
being transparent to the user, redundant data for performance and heterogeneous
nodes. Vendors who have current implementations include Oracle and Ingres.

The DDBMS may be very efficient because data can be stored where the
user uses it. Data can be better controlled by isolating it on particular nodes. The
DDBMS, with multiple nodes and redundant data and communication paths answers
the system availability or denial of service problem. System performance may be
enhanced by local storage of frequent used data and by other distribution of data.
Also, there are opportunities for the parallel execution of queries.

Problems also are many. How do you maintain database consistency with
redundant data during updates/deletes and restores? What is the best method of
identification and authentication? What is the best way to audit? Deadlocks must
be controlled and priorities maintained. Other problems include the construction of
a distributed MTCB, the part of the TCB that manages mandatory access control.
Also, we must look at»the distributed management of DAC, the Discretionary Access
Control, and the problem of the consistency of DAC on replicated tables. How do
you handle distributed transactions? Can serializability be maintained without
creating inference channels? Can we use weak consistency? Are there new covert
channtfels'? A subsetted TCB could be very large and complex and therefore difficult
to verity

Encryption would be very useful between nodes and to store data. Long
term keys are a problem. What algorithms should be used? How does this affect
performance? How should the DDBMS be administered? What tools are needed?
How do you resolve heterogeneous security policies? How do you assure the securlty
of the system? ~

10

SUMMARY

Database security is a young interdisciplinary science, filled with promise
and opportunities. The demand already exists. C-level operating systems and some
B-level operating systems are here. An evaluation aid, the Trusted Database
Interpretations,has been published. Trusted DBMS products are being produced. In
the future there will be an increasing demand for database security. Many
databases will be very large, distributed and with heterogeneous nodes. Databases
will be smart, with multimedia data, where rules, and derived knowledge are stored
and used. Parallel, array and fault tolerant processing will be the norm. Operating
systems may have some database management system functionality. Security
research and development is needed in all of these areas.

GLOSSARY

aggregation problem - The aggregation problem refers to the fact that the
sensitivity level of a collection of data may exceed the sensitivity level of
any individual datum in that collection. [NCSC89] ’ :

B - ATCSEC Division. The notion of a TCB that preserves the integrity of sensitivity
labels and uses them to enforce a set of mandatory access control rulesis a
major requirement in this division. Systems in this division must carry the
sensitivity labels with major data structures in the system. [DOD85]

C2- ATCSEC class. Systems in this class enforce a more finely grained discretionary
access control than C1 systems, making users individually accountable for
their actions through login procedures, auditing of security-relevant
events, and resource isolation. [DOD85]

Discretionary Access Control - A means of restricting accessto objects based on the
identity of subjects and/or groups to which they belong. The controls are
discretionary in the sense that a subject with a certain access permission is
capable of passing that permission (perhaps indirectly) on to any other
subject (unless restrained by mandatory access control). [DOD85]

domain - The set of objects that a subject has the ability to access. [NCSC91]

inference - derivation of new information from known information. The inference
‘ problem refers to the fact that the derived information may be classified
at a level for which the user is not cleared. [NCSC89]

Mandatory Access Control - A means of restricting access to objects based on the
sensitivity (as represented by a label) of the information contained in the
objects and the formal authorization (i.e., clearance) of subjects to access
information of such sensitivity. [DOD85]

subset-domain - A set of system domains. For evaluation by parts, each candidate
TCB subset must occupy a distinct subset domain such that modify-access
to adomain within a TCB subset's subset-domain is permitted only to that
TCB subset and (possibly) to more primitive subsets. [NCSC91]

11

trusted subject - A subject that is permitted to have simultaneous view and alter
access to objects of more than one sensitivity level. [NCSC91]
REFERENCES

[BELL73] Bell, D., and L. Lapadula, "“Secure Computer Systems: Mathematical
Foundations and Model", MITRE Report MTR 2547, v2 Nov 1973.

[BIBA77] Biba, K., "Integrity Considerations for Secure Computer Systems”, U.S.
Air Force Electronic Systems Division, 1977.

[BOOC83] Booch, Grady, Software engineering with Ada, Menlo Park: the
Benjamin Cummings Publishing Company, 1983.

[DATE86] Date, C.J., An Introduction to Database Systems, Reading, MA:
Addison-Wesley, 1986.

[DENN88] Denning, D.E., "Lessons Learned From Modeling a Secure Multilevel
Relational Database System", Database Security: Status and Prospects,
Amsterdam: Elsevier Science Publishers, 1988.

[DODS85] DoD, Department of Defense Trusted Computer System Evaluation
Criteria, DOD 5200.28-STD, 1985. [JACO89] "Security In Computing”,
Computer, August, 1989, p. 150.

[LAND88] Landwehr, C.E., "Database Security, Where Are We?", Database Status
and Prospects, Amsterdam, Elsevier Science Publishers, 1988.

[NCSC88a] National Computer Security Center, Glossary of Computer Security
Terms, NCSC-TG-004-88, 1988.

[NCS288b] National Computer Security Center, Trusted Network Interpretation of
the Trusted Computer System Evaluation Criteria, NCSC-TG-005, 1987.

- [NCSC89] National Computer Security Center, Draft Trusted DBMS Interpretation
of the DoD Trusted Computer System Evaluation Criteria, 1989.

[NCSC91] National Computer Security Center, Trusted Database Management
Crnterla 1991.

[WINK89] Winkler-Parenty, C. E., "Can You Trust Your DBMS", Database
Programming & Design, July 1989, pp. 50-59.

12

Tuatorial Series On Trusted Systems

Joel E. Sachs and Dr. William F. Wilson
Arca Systems, Inc.

2841 Junction Ave., Suite 201
San Jose, CA 95134
408-434-6633
Schedule
Tuesday, October 1 0900 Trust Fundamentals - Part I
1030 BREAK
1100 Trust Fundamentals - Part II
Network Security Fundamentals
1200 LUNCH
1400 System Solutions and Security
Distributed Security
1530 BREAK o :
1600 Certification & Accreditation
Trusted Integration
1730 ADJOURN
Description

These tutorials are based on Arca Systems' public and on-site Information Security Courses and
experience learned in applying Arca's security consulting and engineering services to systems
solutions. Arca provides support to its clients on both secure MLS system solutions and security
products in all facets of trusted system design, analysis, development, implementation, testing,
verification, integration, certification and accreditation. Arca has focused particularly on both
trusted applications development and trusted integration of many products into secure system
solutions. The tutorials relate experience from supporting systems integrators, applications
developers, and end-users, as well as product vendors, who are addressing security in a variety of
MLS system solutions for command and control, communications, and intelligence systems,
development environments, and embedded systems.

The tutorials will be presented in lecture format with questions and answer periods. While there is
a logical flow between the tutorials, each tutorial will be presented as a separate unit so that
conference attendees can attend any or all of them. The morning tutorials concentrate on
information security basics and the afternoon ones focus on addressing security in system
solutions. The tutorials are intended to introduce many and varied security topics as opposed to
exploring them in-depth. Brief descriptions of each tutorial identified above follows:

Trusted Fundamentals - Part I focuses on security and (TCSEC) trust concepts. Topics include
security policies, mandatory and discretionary access controls, identification and
authentication; security mechanisms, reference monitors, trusted computing bases, trusted path,
least privilege; and assurance, formal and informal verification, covert channel analysis,
security design analysis, security and penetration testing,

Trusted Fundamentals - Part II focuses on the TCSEC Evaluation Classes. The tutorial presents
an overview of the TCSEC, its evaluation classes, and the NCSC evaluation process.

13

Network Security Fundamentals focuses on basic points in network security and gives an
overview of the TNI. Topics include network security concerns and services, the structure of the
TNI and its Evaluation Classes for both network TCBs and network components, and an overview
of the TNI evaluation process.

System Solutions and Security focuses on system-wide security requirements in the context of
system solutions. Topics include system solution characteristics, models, and development
methodologies; and system-wide security problems, concerns, and threats and vulnerabilities.

Distributed Security focuses on the role of network security in today's distributed system solutions.
Topics include system composition and interconnection, single system views versus
interconnected automated information systems [AISs], cascading, encryption, and trusted
network interfaces.

Certification & Accreditation focuses on the development of the certification evidence and inputs
and decision process for accreditation. Topics include an overview of the certification and
accreditation process, critical considerations, modes of operation, risk analysis, overall
assurance requirements, and collecting system-wide evidence and assurance.

Trusted Integration focuses on integration issues that arise when developing and integrating
secure and MLS system solutions. Topics include system-wide views of security policy,
mechanism, and assurance; system, subsystem and component level interpretations for the roles
of security policies, security policy models, and security top level specifications; security 1mpact
on the development methodology; and overview of security trade-offs.

14

ACCREDITATION STRATEGY FOR THE AIR FORCE SATELLITE CONTROL.
NETWORK (AFSCN)

By Lt Col William R. Price
Air Force Space Command/LKXS, Peterson AFB, CO 80914
Michael E. O'Neill, Ph.D. and Frank O. H. White
- CTA Incorporated
7150 Campus Drive, Colorado Spnngs CO 80920°

ABSTRACT

This paper examines the accreditation approach for a large, complex computer
network, namely the Air Force Satellite Control Network. The network represents many
existing computer networks, and as such, the approach for accreditation has broad application
to the computer security community. The paper -provides a brief background and history of
the AFSCN. The accreditation approach is then described, followed by specific
implementation stages for accreditation. The last section addresses "lessons learned” in the
development of an accreditation strategy for the complex network.

Section 1-INTRODUCTION

This paper describes an ongoing effort to accredit a large, military communications-
computer network. Although the paper describes a particular network, the Air Force Satellite
Control Network, the authors believe it is representative of many existing networks and the
approach taken has broad application to the computer security community. Functionally, the
network supports the tracking, telemetry and commanding of military satellites. Telemetry from
satellites provides status and health functions of on-orbit platforms (e.g., navigation, orientation,
status of power system). The network typically does not process data collected or transmitted by
satellite mission sensors (e.g., weather data). It provides both voice and data connectivity among
satellite control sites throughout the world. This "real world," operational network has evolved
over many years without the benefit of modern computer or network security theory and practice.
Accreditation of the network is challenging from both a technical and management perspective.

The large and complex AFSCN has evolved over the last three decades. It employs a
variety a variety of technologies. These technologies range from second generation computers and
patch panel based communication systems to modern computers, workstations and computer
controlled communication switching systems using fiber optics. Although security was not
ignored in the design and evolution of the network, most AFSCN security protections predate the
Trusted Computer Security Evaluation Criteria (TCSEC) and its Trusted Network Interpretation
(TNI). A significant part of the accreditation effort is to devise or "reverse engineer"” the overall
network security concept and and document it.

Several organizations are involved in the management, operation and use of the AFSCN.
Air Force Space Command (AFSPACECOM), an Air Force major command, is the network
manager and, consequently, the Network Designated Approving Authority (DAA). Other
organizations involved are Air Force major commands, DoD activities and civilian agencies such as
the National Aeronautics and Space Administration (NASA). No one organization has complete
control over the network, and the accreditation of the network must involve mutual benefit and
agreement rather than the dictates of a single organization.

The remainder of this paper describes the ongoing efforts to accredit the network. Section

2 describes the AFSCN in more detail, providing information on its basic functions as well as the
complexity encountered in addressing security architecture and security management relationships

15

in the AFSCN community. Section 3 discusses the approach to accreditation that is being pursued
and the considerations that determined the approach. Section 4 describes the accomplishments to
date and remaining activities planned. Section 5 describes our lessons learned which may of value
to security managers involved in approving other communications-computer networks.

Section 2-BACKGROUND
v AFSCN Componen F ion

The AFSCN provides spacecraft owner/operators (Air Force, NASA and others) the
capability to track their satellites, send them commands and downlink health and status telemetry.
These tracking, telemetry and commanding (TT&C) functions are depicted in Figure 1, AFSCN
Concept of Operations. Several key AFSCN facilities, also referred to as AFSCN components in
this paper, are shown in Figure 1. These components are briefly described below:

e Mission Control Centers (MCCs) are owner/operator facilities that remotely monitor
and control spacecraft from launch to the end of their on-orbit life. MCCs maintain tracking
information on their satellites and contact them as required to send commands and download
telemetry related to spacecraft health and status. MCCs are operated by a variety of military and
civilian agencies (AFSPACECOM, Air Force Systems Command (AFSC), NASA and others).
Some MCCs support specialized Research and Development (R&D) spacecraft while others
manage mature operational satellite systems. Most Air Force MCCs are located at the Consolidated
Space Test Center, Onizuka Air Force Base (AFB), California or the Consolidated Space
Operations Center, Falcon AFB, Colorado. Some MCCs supporting joint NASA/DoD operations
are located at Johnson Space Center near Houston, Texas.

» There are nine Remote Tracking Stations (RTSs) located worldwide that provide
spacecraft interface to the AFSCN environment. Most RTSs have two or more independent
antennas and associated ground equipment sets for acquiring, tracking and communicating with
spacecraft. A wide variety of radio frequency links and data link protocols can be supported by the
ground equipment. RTS equipment, especially that installed by the Automated Remote Tracking
Station (ARTS) program, can be remotely controlled by an MCC interfaced through the AFSCN
communications network.

e AFSCN has redundant network control nodes at Onizuka and Falcon AFBs. Each
node consists of a Resource Control Complex (RCC) and a Communications Control Complex
(CCC). The RCC schedules network resources and directs configuration of network facilities to
support the unique requirements of each spacecraft contact support mission. Under direction of its
associated RCC, the CCC establishes connectivity called for in the contact mission support
schedule. The CCC establishes circuits for commands, status and control, timing, telemetry and
secure voice. Circuits to perform these functions are set up on both primary wideband and
narrowband communications links to the RTSs. Bandwidth and data formats vary greatly from
mission to mission due to the characteristics of the supported satellite.

-« There are many other facilities in the AFSCN environment that support those
described above. Software development facilities, test laboratories, satellite and RTS simulators,
test driver systems and command centers are just examples. A variety of development, operations
and logistics organizations operate these and a host of contractor support systems.

The AFSCN provides the communications services for satellite operators in MCCs to

contact and control their spacecraft. The following scenario describes a typical satellite contact
support mission:

16

Air Force Satellite Control Network'(AFSCN)

Concept Of Operations
Mission | Spacecratft
Spacecraft Mission Control

Center (MCC)

Network Comm Flow::

Tracking Data From RTS —————»
Telemetry From Spacecraft —————
Commands To Spacecraft -¢———
Command Echos and Status From RTS —————»
NetworkTiming ————»
Secure Voice ———»

LT

S cssess SREE L E
Remote Tracking Station (RTS) or Network Control Node
Automated Remote Tracking Station (ARTS) (Onizuka or Falcon AFB)

Figure 1 AFSCN Concept Of Operations

+ Usually weeks in advance, an MCC coordinates with the AFSCN's primary RCC
at Onizuka to schedule a contact support mission for its spacecraft. The contact support mission
calls for the MCC to be connected to an RTS that has the satellite in its line-of-sight long enough
for the required TT&C operations.

» The RCC schedules the network resources (the RTS, the mission-unique circuit .
mix on primary and alternate communications paths, and CCC interface to the MCC). This’
configuration is called a contact support mission string. The string may be needed for a few
minutes or several hours depending on the spacecraft, its orbit and the TT&C functions to be
performed. Hundreds of contact support missions are requested each week by MCCs representing
many different spacecraft programs. There are sufficient network resources to support several
simultaneous contact support missions (i.e., multiple mission strings operating in overlapping time
frames), but often not all requests can be- accommodated at the same time. The RCC continually
deconflicts these competing requirements, often negotiating alternate times and network
configurations with MCCs. The RCC manually generates a seven-day projection and a final 24-
hour schedule to task network resources.

* Just prior to mission time, the RCC coordinates with the RTS and CCC via secure
voice to configure the mission string. Establishing the mission string involves a combination of
automated processes and manual patching by operators in the RCC, CCC, MCC and RTS. After
verifying circuit connection on both primary and alternate communications systems, as well as
proper functioning of RTS equipment, the RCC transfers computer control of the mission string to
the supported MCC.

» After the RTS acquires the spacecraft, the MCC's Contact Support Processor
receives and records tracking data from the RTS and sends commands to both the spacecraft and
RTS equipment to start telemetry transfer. Typically, commands to the spacecraft and downlinked
telemetry are protected at the Secret level. This end-to-end communications security is provided by
peer encryption devices on the spacecraft and on the front end of the MCC processor. Unclassified
mission data (status and control messages, timing, etc.) exchanged between the MCC and RTS are
protected at the Unclassified Sensitive level. This transmission security protectmn is prov1ded by
bulk encryption devices on network communications links.

* When the MCC completes its spacecraft contact, the RCC disconnects the MCC and
resumes control of network resources. Equipment and circuits in the mission string are returned to
the pool of network resources for allocation to other scheduled missions. After disconnect, the
MCC processes the telemetry data and often transfers it to support facilities for further reduction -
and analysis.

Some History

Until recently, AFSCN facilities were developed, owned and operated primarily by AFSC,
an Air Force major command responsible for research and development. This changed in 1987
when the newly formed AFSPACECOM began to assume operational responsibility for AFSCN
assets not dedicated to research programs. Over time, AFSPACECOM became owner/operator of
the RTSs around the world, AFSCN satellite and terrestrial transmission systems and RCCs and
.CCCs at Onizuka and Falcon. They also activated some new Air Force MCCs at Falcon. AFSC
retained responsibility for R&D spacecraft and continues to support them from MCCs at the
Onizuka. With the transfer of most AFSCN operational systems to AFSPACECOM, the Colorado
Springs based command was designated the overall AFSCN Manager and assumed primary
responsibility for security management.

18

The N) ity Environmen

~ Two AFSPACECOM organizations were tasked to implement security management: (1),
the Headquarters DAA who is responsible for approving operation of all computer and
communications systems operated by AFSPACECOM,; (2) the AFSCN Security Manager in the 2
Space Wing (2 SWG) who is responsible for day-to-day management of the AFSCN system
security program. In assessing the state of security management in AFSCN, the DAA and
Security Manager found the following: :

» On the whole, competent security programs and security engineering had been put
in place by various program offices over the years, but these typically focused on the computer
system or facility being fielded or modified at the time. There were numerous security
accreditations on file for individual computer systems and even a few for logical groupings of
computer and communications facilities. The various accreditations for individual systems were
for different modes of operation and security classification levels. Several security classification
guidance changes were under consideration, but lacking an overall security concept or policy,
assessing the impact of these proposed changes on the network was virtually impossible. Like
most complex networks in place before promulgation of the national network security policy, the
existing system and facility accreditations were like pieces of a complex puzzle. No one had yet
begun to assemble the puzzle. - .

» There were many ideas how the puzzle should be assembled, but none of these
seemed practical from a security standpoint. Reviews of planning and program management
documents, as well as extensive interviews with managers of key development, operations and
support organizations, revealed multiple network definitions. Each of these definitions made sense
when seen through the eyes of their advocates, but no one definition provided a useful basis for
understanding security-relevant services, facilities, interfaces and bounds. Although differing in
detail, most definitions seemed all encompassing, driving the security analyst to examine
unfathomable detail: scores of computer facilities and systems, hundreds of interfaces and a
labyrinth of connectivity. In short, there was not a well articulated security architecture and there
was not enough time or money to perform a network security analysis using the complex
definitions offered up by various constituents in the AFSCN community. ,

e The network environment was highly dynamic, with literally hundreds of hardware
and software upgrades underway at any one time. These upgrades were advocated and managed
by a large number of organizations and programs, often competing for resources. Configuration
control across the network was extremely complex. Network security enjoyed a very low priority
in all this. ‘

» Security management roles of the various commands, agencies and organizations
involved in the community needed to be more clearly defined. There were many competent and
highly motivated security managers throughout the community, but they focused on the facilities
and systems within their sphere of influence. They were aware of evolving national guidance on
network security, but the concepts and mechanisms of network security had yet to be
institutionalized. - ~

e There were differences in-interpretation of Air Force computer security policy -
among the organizations. There was a perception that AFSCN systems would have to be
scrutinized by both the individual System DAA and the Network DAA. Some organizations
resisted such an approach where systems that had received security approval (System DAA) would
have to be reviewed and approved again by an outside organization (Network DAA). These
organizations felt that the Network DAA had no authority or responsibility for their operations.
Another concern was that the individual System DAAs would duplicate efforts and, moreover,

19

could reach different conclusions based on differing interpretations of Air Force computer security
policy.

Section 3-THE APPROACH

This section outlines the approach and methodology that was used to develop an
accreditation strategy for the network. The challenge was to develop means and methods that
would build consensus and approval for the approach and subsequent development of the AFSCN
Network Security Policy.

implification V mplexi

To get a reasonable handle on the network from a security perspective, a workable network
definition was needed. Stepping back from the complex network definitions available in the
community, we developed a simple model for trying to understand the security relevant
relationships among the various facilities and systems in the AFSCN environment. This model,
depicted at Figure 2, allocates the various facilities and systems to one of three layers. The model
consists of the "Core Network" surrounded by two additional layers, External Interfaces and
Support Components.

The Core Network consists of all the tracking, transmission, switching, and resource
control facilities required to connect a spacecraft to its respective MCC, whether that MCC is
operated by AFSPACECOM, AFSC, NASA or some other activity. The Core Network is
anchored by the control nodes at Onizuka and Falcon AFBs. The other components in the Core
Network are RTSs and ARTSs.

The External Interface layer of the model contains all AFSCN facilities that connect to the
Core Network for TT&C services. In the main, these are MCCs, but other AFSCN components
do connect to the Core Network from time to time for the purpose of TT&C testing and training.
Also included in the External Interface layer are two satellite control networks dedicated to specific
programs: Defense Metrological Support Program and the Global Positioning System.

All other AFSCN components are allocated to the Support Component layer of the model.
These components frequently connect to External Interfaces for data analysis, software
maintenance and other functions, but they rarely, if ever, connect to the Core Network. Allocation
of components to this layer, where they have no direct impact on Core Network operational or
security services, greatly simplified the complexity in our accreditation task.

We decided to look at the AFSCN as analogous to a telephone company providing service
to its customers. As the sole operator of the Core Network, AFSPACECOM provides spacecraft
- owner/operators TT&C services much in the same way a telephone company provides
telecommunications services to its customers. By thinking of the AFSCN and the Core Network
in this manner, it allowed us to develop a strategy for accreditation that could be supported by the
myriad of owners and users of AFSCN assets.

The telephone company view provided both technical and management benefits.
Technically, the view allows a "divide and conquer” approach. The Core Network is the
communications subsystem and provides for communication of unclassified data. It mediates
MCC accesses to RTSs and knows nothing about individual users (people) in the MCCs. From
the perspective of an MCC, the MCC communicates with a peripheral (i.e., the spacecraft) through
the Core Network. The management benefit of this view is that it divides the network along
organizational lines. The components of the Core Network are the responsibility of
AFSPACECOM, the Network DAA. Individual MCCs and other External Interfaces are the
responsibility of their operating commands, primarily AFSPACECOM and AFSC. The approach

20

Network
Interface
Data
System
(NIDS)

Layered Approach to AFSCN Security

Support Components
(No Core Connectivity
Except Some Secure Voice)

External Interfaces :
(Core Connect:vuty On Demand)

Contractor
Facilities

AFSPACECOM
MCCs

AFSC Mlsszon
" Control Cemers

_ Current
- Data System
- (eDs),

omated Remote Tracking Site
emote Tracking Sites (RT

\ System (NIS) Ops Centers

« Test Driver
- Systems (TDS

Station (MCS) "

Mission
Unique
Equipment
(MUE)

Software
Development
& Test Labs
(SDTLs)

Wing Command
Post (WCP)

Figure 2
Layered Approach to
AFSCN Security

21

& Maintenance
Facility (ADMF)

. OperationalSoftware
- - Maintenance Complex
- (OSMC)

DMSP Satelite -

(SOCs)

Camp Parks
Comm Annex
(CPCA)

to network approval involves mutual actions of the DAAs with the mutual benefit of secure
operations. The Network DAA certifies to the MCC DAA the security properties of the Core
Network (assuming the External Interface satisfies certain conditions of connection).
Correspondingly, the DAA for the MCC certifies compliance with network connection rules and
approves operation of the MCC (assuming the Core Network maintains its security properties).
This concept of mutual security assurance applies to all External Interfaces, not just MCCs.

Consensus Building

The development of a consensus among key AFSCN community players was absolutely
necessary for a successful accreditation strategy. The newly formed AFSCN Security Working
Group was instrumental in this effort.. This group represents the breadth of the AFSCN
community, including security professionals, space operations personnel, developers and support
managers. As a forum for presenting and refining the security model, it played a key role in
getting support for the security model, the security concept of operations and their codlficauon in
the AFSCN Network Security Policy.

The Network Security Policy

The Network Security Policy first defines the AFSCN in terms of the layered model
discussed earlier: a Core Network (tracking stations and communications that transport real time
data and voice services in support of spacecraft contact missions), External Interfaces to the Core
Network, and Support Components. This layered approach provides a method to understand who
has what authority, who is responsible for what components and who is held accountable for what
AFSCN security matters.

The policy defines three major security objectives for the Core Network. They are: 1.
Network Confidentiality (non-disclosure), 2. Network Integrity and 3. Network Assurance of
Service. An integrated program of protective security measures is employed across the Core
Network for each security objective. Responsibility for implementing Core Network security
objectives and protections are dlscussed as are specific connection rules for External Interfaces.

Dissecting the network into understandable components provided the framework to identify
management responsibilities, authority and a means to provide accountability for the security policy
objectives. Basically, the policy calls for command/agency DAAs to accredit individual AFSCN
components in accordance with AFR 205-16 or equivalent agency security policy directives. They
certify to the Network DAA that these formal accreditations are accomplished and that their
components are compliant with all applicable requirements of the Network Security Policy.

Operational Perspective

In developing the Network Security Policy with the AFSCN community, the Network
DAA and representatives from organizations operating network components, recognized the need
for simple, streamlined security procedures that minimize impact on network operations. Based on
the concept of mutual trust and security competence among DAAs, the Network Security Policy
established the Letter Of Assurance (LOA) as the administrative mechanism for the Network DAA
to maintain an ongoing assessment of the network security posture. The LOA is a one page
document whereby DA As for network components (Core Network and External Interfaces) certify
to the Network DAA that their components are compliant with the security protection standards and
connection rules in the Network Security Policy. The LOAs provide the basis for the Network
DAA to accredit the Core Network and authorize connection of its External Interfaces.

22

ion 4-IMP NTATION A N

Having developed a general consensus within the AFSCN security community regarding
the Network Security Policy, detailed implementation of the policy is underway. Some of the
major steps are discussed below:

« The first step is to create a network security management structure for implementing
and enforcing the Network Security Policy. This structure includes all organizations that operate
components in the Core Network and in the External Interface layer of network security model.
With the Network Security Policy laying out the authorities, responsibilities and key relationships,
this structure is headed by the Network Security Manager (NSM). The NSM is responsible for
overall implementation and enforcement of the policy across the network and across organizational
lines. The System Security Working Group, with representatives from all component
organizations, is the NSM's advisory group for surfacing and resolving policy issues. Network
Security Officers (NSOs) appointed in each Core and External Interface component execute the
NSM's program on a day to day basis. These "hands-on" security managers implement and
enforce detailed security procedures, investigate incidents and implement corrective actions. The
security management structure also includes the Network DAA and DAAs from the various
organizations that operate Core and External Interface components.

+ The NSM must develop, coordinate and publish a Network Security Plan that
provides detailed guidance for managing the Network Security Program. This document must
include methods and standards governing risk analyses and security test and evaluations.

* Procedures must be developed and implemented to enforce the Network Security
Policy in the requirements and configuration control processes. The DAAs and NSM must have
visibility of new requirements and network changes so that they may assess security impacts and
favorably influence implementation. .

» All Core Network components and External Interfaces must be accredited by their
respective DAAs. Most computer systems and facilities have current Interim or Final approvals to
operate; however, some communications and tracking facilities in the Core Network have never
been accredited. Additionally, some existing accreditations are nearing three-years of age and must
be reaccomplished.

* As DAAs accredit components, they will certify these approvals to operate to the
Network DAA through the Network Security Manager. As discussed earlier, the Letter Of
Assurance will be the vehicle for this certification.

* When all the Core Network components and External Interfaces are accredited, the
Network DAA will be able to accredit the network.

Section S-LESSONS LEARNED

The AFSCN had been in place for many years before promulgation of national network
policy. As such, it represented an evolving collection of complex components. It was a significant
challenge to take this amalgam of components and develop a strategy for its accreditation. The
lessons learned in this process are as follows:

* Develop a forum of security professionals for consensus building and negotiation

of critical security considerations in the network. Look for people who have a vested interest in
development of the forum and ultimate accreditation of the network.

23

» Define a simple, understandable architectual security model. It was necessary to
develop a single but realistic definition of the AFSCN from a security standpoint. The concept of
the Core Network was developed in order to bound the network. This was done through
consensus building and negotiation with the security professionals from throughout the AFSCN
community.

» Develop a spirit of mutual trust among the developers and operators that represent
various organizational interests. This involves divorcing the Network DAA from the detailed risk
analysis activities and holding the various organizations accountable for their portion of network
risk assessment and accreditation. The Network DAA should, however, assure network integrity
to its users and operators by initiating a Network Security Policy that precisely defines security
protection mechanisms and connection rules. The basis for assurance from the Network DAA and
DAAs accrediting network components and interfaces are Letters of Assurance that certify
compliance with the Network Security Policy.

+ The Network DAA should have a realistic and flexible attitude toward the network.
It would be unrealistic to think that the Network DAA could shut down the AFSCN.

« Focus on a security management structure for implementing and enforcing the
Network Security Policy. When defining network security responsibilities and authority, look for
an existing organizational structure that can fulfill these duties whenever possible. For example,
Network Security Officer responsibilities can be assigned to personnel who currently perform
Computer System Security Officer functions at the various network facilities.

» Get senior management involvement from all organizations at critical stages of the
accreditation process. Continually brief senior management on progress and strategy. This will
develop the necessary support when critical decisions are required that cut across organizational
boundaries.

24

AN ANALYSIS OF APPLICATION SPECIFIC
SECURITY POLICIES

Daniel F. Sterne ~ Martha A. Branstad Brian S. Hubbard! Barbara A. Mayer?
' Dawn M. Wolcott$

Trusted Information Systems, Inc., Glenwood, Maryland

Abstract

The TCSEC [20] is concerned primarily with the DoD confidentiality. As a result, for many appli-
cations, systems that satisfy the TCSEC may nevertheless provide an insufficient base of security policy
enforcement. This paper summarises a study whose objective is the identification of a broader range of
security policies that merit automated support, particularly in tactical computer systems.

The study analysed operational requirements of a collection of tactical and non-tactical application
scenarios. Synopses of several example scenarios are presented, and the findings of the study are discussed.
The study suggests that while many policies are application specific, there exists a core of policy elements
common to a broad range of such policies, and that this core merits automated support in future trusted
systems.

Keywords: security policy, access control, roles, integrity, denial of service.

1 Introduction

The TCSEC [20] is oriented primarily toward confidentiality policies, and in particular, the protection of
classified information from disclosure to insufficiently cleared individuals. As a result, systems that satisfy
the TCSEC may fail to address other important security requirements, particularly those associated with
tactical military applications. If systems capable of satisfying broader ranges of security requirements are
to be constructed, the security policies that underlie these requirements must be more clearly articulated.
To the extent that these policies may be application specific, it is important that policy elements common
among them be identified, that these elements become candidates for automated support in future trusted
systems.

This paper summarizes the initial phase of a project whose ultimate objective is the construction of a pro-
totype system that can be configured to support a range of application specific security policies, and in
particular, policies associated with military systems [24]. The objective of this initial phase is the identifi-
cation of security policies and common policy elements that merit automated support in tactical computer
systems.

The U.S. Department of Defense (DoD) is under increasing pressure to use commercial-off-the-shelf (COTS)
hardware and software, and to avoid procuring customised system components. Because commercial systems,

This work was fanded by DARPA through RADC contract F30602-89-C-0125
tCurrently with SPARTA, Inc., Columbia, MD

tCurrently with Atlantic Research Corp., Hanover, MD

$Currently with the MITRE Corp., McLean, VA

25

like tactical systems, may also need to support policies not addressed directly by the TCSEC, another
objective of the initial phase is to examine the commonality of commercial and other non-tactical policies
with those of the tactical realm. If commonality exists, systems designed to support commercial and non-
tactical security policies may be able to support tactical policies as well.

1.1 Approach

This study could have proceeded based purely on conjecture and an abstract conceptual view of tactical
operations. That approach seemed overly speculative, and unlikely to produce meaningful results. To keep
the study more closely tied to reality, a somewhat different approach was taken. A sampling of applications
“scenarios” was selected, and for each scenario, information was gathered and then analysed. The tactical
scenarios chosen deal with the Navy’s Aegis combat system, the command, control, and communications
interactions associated with the Air Force nuclear weapon release process, and Army field operations and
support services. The non-tactical scenarios concern government procurement document preparation and
release, commercial accounting and data processing, air traffic control, and medical information system
usage.

If the security policies associated with these scenarios were clearly understood and had been clearly artic-
ulated by their associated organizations, it would have been sufficient for this study to have collected and
catalogued existing policy statements; little if any policy analysis would have been required. However, the
distinction between a “security policy” and other kinds of regulations, operational procedures, and critical
system requirements has not been clearly established. Consequently, for many organizations, it is not clear
that distinct security policy statements actually exist, apart from those concerned with confidentiality.

In the absence of such policy statements, the study proceeded by examining operational and system re-
quirements for each scenario. For scenarios dealing with existing organisations and systems, to the extent
practical, these requirements were collected from technical articles and discussions with knowledgeable in-
dividuals. For scenarios dealing with future systems whose requirements and impacts on organisations have
not yet been completely established (e.g., CALS [9]), incomplete information about operational requirements
was augmented by educated guesses.

Each scenario was then analyzed to identify underlying security policies and policy characteristics. While
the analysis produced results the authors believe are useful, these results are of necessity partly subjective;
policy statements cannot be mathematically derived from operational requirements, but can only be loosely
inferred. Moreover, the analysis was not exhaustive; it did not attempt to consider all requirements or identify
all possibly relevant security concerns. The analysis of each scenario concentrated on a small set of security
concerns that seemed most fundamental with respect to the overall mission and threats. Consequently, the
results reported here are not intended as a definitive analysis. Rather, they represent an illustrative sampling
of security policies in which an emphasis has been placed on security concerns other than confidentiality.

1.2 Organization

This paper is organized as follows. First, a few fundamental definitions are given. Next, excerpts from the
security analysis of three example scenarios are presented to illustrate the range of security policy elements
identified in tactical and non-tactical scenarios. The examples are followed by a summary and discussion of
the study’s findings, and a short section on future work.

26

2 What Is A “Security Policy” ?

The scenarios examined in the study encompass a wide spectrum of critical operational and system require-
ments. Given the objective of identifying security policies, in particular, policies beyond confidentiality, it
became apparent early on that a means for distinguishing security policies from other kinds of critical require-
ments was needed. Since recent trends in terminological usage have tended to blur the distinction between
criticality and security, a set of fundamental definitions was developed for use in the study. These defini-
tions, described below, also distinguish between policies that govern human activity and those that govern
automated processes on a computing system. Furthermore, these definitions describe a somewhat different
view of security than that implied by the maxim “confidentiality, integrity, and assured service” {27, 7, 22].
A more complete discussion of these definitions can be found in [25].

2.1 Definitions

Security Policy Objective - A statement of intent to protect an identified resource from
unauthorized use. The statement must identify the kinds of uses that are regulated. A security
policy objective is meaningful to an organization only if the organisation owns or controls the.
resource to be protected.

This definition establishes the primary notion of security upon which the other definitions are based: pro-
tection of tangible assets from unauthorized use. Examples of security policy objectives include protecting
classified information from unauthoriged disclosure or modification, preventing unauthorized distribution of
financial assets, preventing unauthorized use of long-distance telephone circuits, preventing unauthorised
dispensing of prescription drugs. The notion of a security policy used here is broader than that of the
TCSEC, which is concerned with protecting a single kind of resource: information. '

Organizational Security Policy (OSP) - The set of laws, rules, and practices that regulate
how an organization manages, protects, and distributes resources to achieve specified security
policy objectives. These laws, rules and practices must identify criteria for according individuals
authority, and may specify conditions under which individuals are permitted to exercise or dele-
gate their authority. To be meaningful, these laws, rules, and practices must provide individuals
reasonable ability to determine whether their actions violate or comply with the policy.

An OSP describes how a security policy objective is to be manifested in the routine activities of the organi-
sation. The OSP definition is patterned after the security policy definition given in the TCSEC glossary,!
but addresses protection of resources other than information. In addition, it explicitly cites the authorization
of individuals as fundamental to the notion of a security policy, and allows authorization to be based on
attributes other than clearance and need to know. For example, authorigation may be based on job title,
employer, training, licensing, enrollment, or membership.

Automated Security Policy (ASP) - The set of restrictions and properties that specify how
a computing system prevents information and computing resources from being used to violate an
organizational security policy.

An ASP specifies what a trusted system is trusted to do. The ASP for a TCSEC-oriented trusted system
(class B or higher) typically includes the Bell-LaPadula properties (3], labeling requirements for human
readable output, I&A-oriented resirictions (e.g., minimum password length), audit capture requirements,
and so forth.

14The set of laws, rules, and practices that regulate how an organisation manages, protects, and distributes sensitive
information.”

27

2.2 The Meaning of “Security Policy” In this Paper

This study is concerned with organizational security policies, that is, laws, rules, and practices that govern
the activities of people. The analysis of organisational security policies is a prerequisite for analysis of
automated security policies. Throughout this paper, the terms “security policy”, and “policy” are used for
brevity, but are intended to refer to organizational rather than automated security policies.

3 Roles

In the sections that follow, the term “role” [2, 15, 26] occurs frequently. We will use the term role to mean
a named group of rights; these rights are permissions to access, operate on, or otherwise use resources in
particular ways. A financial officer role might include rights to disburse financial assets (by signing checks)
and to approve release of corporate financial information. The role of payroll clerk may include the right to
examine employee salary data. The role of pharmacist includes the right to dispense drugs but not prescribe
them; that right belongs to the physician role. A DoD security officer role might include rights to add new
user accounts to a classified computing system and to control the system’s audit data collection. Individuals
belonging to an organization are assigned to roles and are then able to exercise the rights associated with
those roles. Consequently, roles are a means of naming and describing many-to-many relationships between
individuals and rights.

Role exclusion rules may be associated with roles. These rules place constraints on the ability of individuals
to be authorized for roles or to assume roles for which they are otherwise authorised. For some roles, there
may be a limitation on how many individuals can be concurrently active in the role [15]. For example, in
certain military organisations, only a single individual may be able to assume the role of watch officer at
a time. Other individuals who are otherwise authorised to assume the watch officer role, cannot assume
the role until it has been relinquished. Some combinations of roles may be considered “conflicting” because
together they provide more authority than the organization permits any one individual to hold; there may be
a prohibition against any one individual being assigned (authorised for) more than one of these. For example,
in a commercial corporation, an individual may be prohibited from acting as both a financial officer and a
financial auditor. This kind of exclusion rule is equivalent to so-called “static” separation of duty, as defined
in [19], and discussed elsewhere in the literature [6, 18].

4 The Aegis Combat System

The Aegis combat system is a sophisticated shipboard combat system used in U.S. Navy cruisers and destroy-
ers [8]. The Aegis system includes a variety of sensors, including radar and sonar, and weapons, including
surface-to-air missiles, surface-to-surface missiles, miscellaneous anti-submarine devices, guns, and small
multi-purpose helicopters. These assets are monitored and controlled from the Combat Information Center
(CIC), a room containing numerous operator consoles and large screens used to display situation maps and
tactical summaries. In order to support mission requirements for high fire power and rapid response to
threats, the Aegis system provides extensive automated response capabilities that can be programmed by
the ship’s crew.

Three organisational security policies were identified from descriptions of the Aegis system. These con-
cern the prevention of 1) unauthorized disclosure of classified information, 2) unauthorised modification of
information, and 3) unauthorized release of weapons. Bach is discussed in a subsection below.

28

4.1 Information Disclosure Policy

The information disclosure policy is based on well-established DoD regulations and is directed at protecting
classified information from individuals lacking sufficient clearances. Crew members may be uncleared, cleared
for shipboard tactical information, or cleared for both intelligence and shipboard tactical information. In
addition, uncleared visitors may occasionally be aboard. Most members of the crew are cleared for tactical
information, which includes targeting data, locations of friendly forces, mission plans and situation tactics,
and information about capabilities and limitations of sensors, weapons, and other equipment. A small
fraction of the crew may, in addition, be cleared for access to intelligence information.

Both kinds of information are protected by physical and procedural security measures. Armed guards prevent
unauthorized individuals from boarding the ship when it is in port. While at sea, access to the CIC and
to the intelligence room is controlled by locks on entry doors. When information is transmitted among the
ships in the fleet, communications security measures are employed to prevent eavesdropping.

4.2 Information Modification Policy

The information modification policy is concerned with preventing unauthorised individuals from supplying,
changing, or deleting intelligence and tactical information. To a lesser extent, it may also be concerned with
preventing authorised individuals from modifying such information in an clearly erroneous manner. This
policy is not explicitly articulated, but has been inferred by the authors from descriptions of operational
procedures. ‘

Intelligence information and tactical information must only be accepted from designated sources. Designated
sources may be organisations, or individuals assigned to particular job functions. Designated sources vary
according to the type of information. Accepting information from sensors, computers, or other equipment is
authoriged if the equipment is operated under the auspices of a designated source organization or individual.
The authority to act as a designated source for a particular kind of information constitutes a role.

Cleared shipboard personnel are authorized to extract, derive, delete, enter, or otherwise modify tactical
information. Similarly, personnel with intelligence clearances are authorized to modify intelligence informa-
tion. When authorized individuals make such modifications, they are expected to employ any applicable
designated processing methods or algorithms? so that modifications are minimally subjected to simple error
checks. In some cases, however, the organisation must rely primarily on the considered tactical judgment of
senior officers to ensure that information modifications are valid, i.e., consistent with reality and the inten-
tions of superiors. Moreover, all authorised individuals are trusted not to introduce intentional inaccuracies
into protected information, except as required for sanitization purposes.

Ships in the fleet may share tactical data (e.g., concerning potential targets) in digital form via radio-based
ship-to-ship communications. As a result, console operators on one ship have a limited measure of authority
to influence (modify) another ship’s tactical information base. The extent of this authority is constrained by
protocols and algorithms that are used to resolve conflicts among multiple information sources. Depending
on the circumstances and kind of information involved, conflicting information received from other ships may
replace or be added to the information generated by a ship’s own sensors and crew. Alternatively, conflicting
information may be discarded, or mathematically combined.® Thus for each ship, an authorization distinction
is made between console operators on that ship, and those on other ships in the fleet; these constitute different
roles. Except for cleared members of fleet crews and designated information sources, no other individuals
have authority to modify shipboard information.

3These may be embedded in the ship’s co:ﬁputer programs.
3Planned for future system upgrades.

29

http:unauthori.ed

4.3 Weapon Release Policy

The weapon release policy is directed at preventing weapons, especially missiles, from being released without
appropriate authorization. Only the ship’s Commanding Officer (CO) has the authority to order the release
of weapons, although he may delegate this authority to the Tactical Action Officer (TAO). Although several
individuals on a ship may be authorized to assume the TAOQ role, only one can assume it at a time; this
is an example of a role exclusion rule. The CO or TAO can order (authorize) one or more of the combat
system console operators to release a weapon. A weapon release order can be given directly to the console
operator, or may propagate downward to the operator through the chain of command. Similarly, only the
CO and TAO have the authority to order the creation, modification, enabling or disabling of programmable
automated weapon release rules called “doctrine statements”. The Combat System Coordinator (CSC) is
the only role given authority to enter or alter these statements and typically is authorized to do so only when
specifically directed. Furthermore, typical operating procedures dictate that doctrine statements be written
on paper and signed by the CO prior to being entered into the system by the CSC.

4.4 Policy Summary

The security policy objectives for this scenario include preventing unauthorized disclosure and modification
of information, and preventing unauthorized release of weapons. Authorisation to use these resources is
contingent on clearances, roles and role exclusion rules, delegation of authority, and non-repudiatable (signed)
orders. ' '

5 Nuclear Command, Contfol, and Communications

The principal requirements of the nuclear command, control, and communications (NC3) system are 1) rapid
response to authorized orders directing the release of nuclear weapons, 2) prevention of unauthorised weapon
release, and 3) prevention of unauthorized disclosure of classified information associated with deployment
plans and the release process.

5.1 Weapon Release Policy

A nuclear weapon release requires collaborative actions on the part of multiple individuals, each of whom
has been assigned one of three specific roles. The civilian authority authorizes the use of nuclear weapons.
The military authority generates specific targeting orders that must comply with previously established
plans. These orders are then carried out by launch control officers. This division of authority amongst the
‘civilian authority, the military authority, and the launch control officers constitutes separation of duty. No
unilateral action by any individual in any of these roles, by itself, should allow a nuclear weapon release to
be successfully initiated. Forced collaboration among these roles during the release process is accomplished
via cryptographic procedures. In addition, a split knowledge policy among the individuals assigned the role
of military authority requires that at least two of these individuals collaborate (by combining secrets) before
they are able to execute a release successfully. Stringent source authentication requirements play a central
role in the protocols used by these roles during their interactions; in some cases, the protocol prohibits a role
from proceeding with its duties without having successfully authenticated the source of a received directive.

Following authorization, two-person or N-person controls are used extensively; each launch control officer is
assigned to a team, and is prohibited from carrying out launch control related activities unless authorized and
accompanied by his team member(s). These controls prohibit a single launch control officer from accessing
launch control information, facilities, authenticators, and cryptographic materials.

30

5.2 Denial of Service Policy

The denial of service policy for the NC3 system is directed at preventing unauthorized individuals from
inhibiting an authorised release of nuclear weapons. (Having such a policy does not preclude the possibility
that some individuals may be authorized to prevent weapon releases, for example, after cessation of hos-
tilities.) This policy is manifested in a host of personnel, physical, and communications security measures
that are beyond the scope of this discussion. We note, however, that the N-person controls described above
for essential components of the launch control process also make less likely the unauthorized modification,
replacement, theft, or destruction of these components. Because a loss, or loss of effectiveness, of any such
component may inhibit weapon release, these N-person control measures also support the denial of service
policy.

5.3 Information Disclosure Policy

As for the Aegis information disclosure policy, this policy is based on well-established DoD regulations and
is directed at protecting classified information from individuals lacking sufficient clearances. Among the
kinds of information of concern for the NC3 system are plans and contingencies for weapon deployment,
and current status. The latter may include current capabilities, information about deployments in progress,
and heightened states of operational preparedness. This information is protected by a variety of physical,
procedural, and communications security measures.

5.4 Information Modification Policy

This policy is a subordinate policy whose objective is primarily to support the NC3 weapon release policy and
denial of service policy. For example, if release orders are subject to unauthorised modification prior to being
carried out, then it may be possible to subvert the intent of the release authorities, causing an unauthorised
release. Similarly, to the extent that information is used as an enabling element in the launch control process,
an unauthorised information modification could inhibit release, resulting in an unauthorized denial of service.
Weapons orders, plans, and other types of release-governing information are protected against unauthorised
modification by a variety of communications, physical, and procedural security measures including the N-
person control procedures described above.

5.5 Policy Summary

The security policy objectives for the NC3 scenario include unauthorised disclosure and modification of
information, unauthorized release of weapons, and unauthorized denial of service. Authorization to access or
use these resources is contingent on clearances, roles, separation of duty, split knowledge, N-person control,
and source authenticated inputs.

6 Government Procurement Document Preparation

This scenario is concerned with the security policies associated with the government procurement process,
primarily as they affect the government participants. The Computer-aided Acquisition and Logistics Support
(CALS) program [21], is an ambitious attempt to antomate much of this process in the future, as well as
other activities supporting the design, manufacture, and logistical support of systems used by DoD. Unlike
the previous two scenarios, which are based on existing operational and system requirements, this scenario
is based on hypothetical future requirements extrapolated from fragmentary published descriptions of the

31

CALS program [21, 9, 10]. It concentrates on the preparation, approval, and release of Requests for Proposals
(RFPs), allocation of government funds and manpower, and evaluation of competing bids.

6.1 Information Disclosure Policy

Much of the information associated with the procurement process may be sensitive with respect to disclosure.
The procured items may have specifications that are classified. To ensure fair competition among bidders,
information about the contents of RFPs under development must not be “leaked” prematurely to prospective
bidders. There may also be information which is considered proprietary to a particular vendor. Dissemination
controls (e.g., NOFORN, NOCONTRACTOR) and export control restrictions may need to be enforced.

6.2 Information Modification and Release Policy

The RFP development process consists of a sequence of draft, approval, and release phases. Among other
purposes, these phases serve to prevent unauthorized procurement documents (e.g., erroneous RFPs and
contracts) from resulting in unauthorised expenditure commitments of government funds and manpower
resources. At each stage in the RFP development process, approval must be obtained prior to proceeding
to the next stage. Furthermore, authority to submit, modify, or approve procurement documents at various
stages is reserved to individuals who have been assigned particular roles. To the extent that procurement
documents are kept on-line, controls are required to ensure that only appropriate individuals are able to
update or modify information at each stage.

RFP development is initiated by a technical team whose members are authorized to generate a statement of
work (SOW). Before an RFP can be generated, the SOW must be approved by management, and procurement
funds must be allocated. The SOW is then forwarded to the contracts department, whose personnel are
authorized to generate an RFP. The RFP must be approved by the legal department and approved for
release by a contracting officer. As part of the release process, an authenticating code may be attached
to assist bidders in verifying the authenticity of the RFP prior to committing their own resources for bid
development. ’

6.3 Other Constraints

The roles held by individuals may be subject to role exclusion constraints. For example, members of the
technical review team for bid evaluation may be prohibited from participating on the cost review team;
this can be viewed as a form of separation of duty. Furthermore, they may also be forbidden from finding
out about contents of the cost portions of bids. It may also be the case that an individual who has had
access to a contractor’s bid containing proprietary information may be forbidden from accessing a competing
contractor’s proprietary information for a set period of time.

6.4 Policy Summary

The security policy objectives for this scenario include preventing unauthorised disclosure of information,
unauthorized modification and release of information, and unauthorigzed expenditure commitments of funds
and manpower. Resource usage authorization is based on clearances and dissemination controls, roles, role
exclusion constraints (including separation of duties), operation sequencing constraints and source authen-
tication.

32

7 Observations
An analysis of the scenarios studied, including those outlined above, leads t6 a number of observations.

o Access control according to clearances or roles appears to be a fundamental aspect of each scenario. In
particular, access control to protect information from both unauthorised disclosure and unauthorised
modification was an element of every scenario. In addition, numerous other role-based access controls
regulating use of resources other than information (e.g., weapons, financial assets) were found.

o Infrastructure support, particularly in the form of communications, identification and authentication,
and auditing services, is likely to be applicable, independent of policy objectives. The extent of
applicability depends on the geographic distribution of the organisation and the extent of its reliance
on automation.

e Separation of duty constraints were found in several scenarios. This suggests that separation of duty
is a well-established general principle that is widely employed when an organisation is reluctant to
entrust unilateral control over a resource to any single individual. Furthermore, separation of duty
requirements were sometimes accompanied by operation sequencing requirements. In some military
environments, however, the principle of separation of duty may conflict with the need to ensure that,
at all times, at least one individual (e.g., a commanding officer) has sufficient authority over resources
to carry out an assigned mission successfully.

e Each scenario encompasses a unique combination of policy elements. No clear-cut patterns emerged to
distinguish the policies for tactical scenarios, as a group, from those for non-tactical and commercial
scenarios. However, because responsibilities must be rapidly and flexibly reassigned following combat
casualties, tactical policies may tend to rely more heavily on fluid personnel authorisation methods
including delegation of authority.

e Source authentication or non-repudiation requirements stipulating that personal or electronic signa-
tures accompany data or permission to act, (e.g., military orders) appear to be widespread.

e “N-person rules” requiring teams of people to act simultaneously (or nearly so), and split knowledge
requirements, were not.common. This may be because their implementation is too costly or cumber-
some o be used on a routine basis unless the resources being protected are extremely critical, as in
the case of nuclear weapons.

e Numerous requirements related to denial of service, including requirements for reliability, survivability,
and performance were encountered. However, few denial of service policies (as defined above) were
identified; such policies govern the authority of particular individuals to use or operate on resources in
ways that may deny use of those resources to otherwise authorised individuals. Several explanations
for this result can be posited. First, denial of service remains an ill-understood problem, and denial of
service policies remain difficult to identify definitively. Second, the security policy definitions used in
this study deliberately exclude from consideration a variety of critical requirements that are commonly
treated as security policy manifestations [27, 7, 22]. Third, primary threats to assured service in tactical
systems include electronic warfare and the destruction of combat assets by the enemy. Threats of this
nature are more naturally addressed by military tactics and improved equipment capabilities than by
computer security technology, and were consequently deemphasized in the study.

These observations suggest that there exists a core set of security policies and policy elements that merit
support in computing systems intended for a broad range of tactical, non-tactical, and commercial appli-
cations. This policy core includes protection of information from unauthorized disclosure and modification,
role-based access control, role exclusion rules, (e.g., static separation of duty), delegation of authority, and

33

operation sequencing.? The core also includes identification and authentication, auditing, and reliance on
secure communications, especially to support source authentication and non-repudiation requirements.

These observations also support the contention that the TCSEC requirements are incomplete in comparison
with secure tactical computing needs. A number of other security policies beyond confidentiality are integral
to the contexts in which tactical systems are used, and it appears that tactical systems should be capable
of providing some degree of automated support for these policies. Determining the extent to which policy
support can be automated usefully, especially when possible system failure modes are taken into account,
will require a significant level of continuing research addressing both human factors and systems engineering
issues.

The authors feel it unlikely that automated mechanisms designed primarily for TCSEC requirements are
well-suited to support these other policies. (Similar sentiments have been published elsewhere [11, 16].
See [4, 5] for a different perspective.) On the other hand, it appears that the information disclosure policies
toward which TCSEC requirements are targeted remain crucial to tactical systems. Consequently, computing
systems designed for a broad range of tactical applications should be minimally capable of satisfying TCSEC
requirements in addition to supporting other organisational security policies.

8 Summary and Future Work

This paper has summarized the results of a study intended to identify security policies and common policy
elements that may merit support in systems designed for tactical applications. While each analysed scenario
appears to encompass a different combination of policy elements, the study suggests that these combinations
may share a common policy core. This offers the hope that by supporting this common core, a single,
configurable system may be able to support a wide variety of application specific security policies in the
tactical, non-tactical, and commercial realms.

While a number of previous research papers have discussed table-driven, rule-driven, or otherwise configurable
systems that may support multiple policies [14, 1, 17, 26, 4, 5], the feasibility and assurance potential of such
systems remains an open research question; much more work is needed before a definitive answer can be put
forth. Toward this end, functional requirements for a prototype system to support the policy core have been
developed, and high-level design activities have been initiated. Follow-on plans include implementation of the
prototype and an assessment of the applicability, effectiveness, and assurance of its enforcement mechanisms.

References

[1] Abrams, M.D., Eggers, K.W., La Padula, L.J., Olson, I.M., “A Generalized Framework For Access
Control: An Informal Description,” Proceedings of the 13th National Computer Security Conference,
Washington, D.C., October, 1990.

[2] Baldwin, R.W., “Naming and Grouping Privileges to Simplify Security Management in Large
Databases,” Proceedings of the 1990 IEEE Symposium on Research in Security and Privacy, Oakland,
CA, 1990.

(3] Bell, D.E., La Padula, L.J., “Secure Computér Systems: Unified Expoﬁtmn and Multics Interpretation,”
Technical Report No. ESD-TR-75-306, Electronics Systems D1v151on, AFSC, Hanscom AF Base, Bedford
MA, 1976.

[4] Bell, D.E., “Lattices, Policies, and Implementations,” Proceedings of the 13th Natlonal Computer
Security Conference, Washington, D.C., 1990.

‘Although dynamic separetion of duty [19, 23, 12], is not discussed above, we include it as an extension of operation
sequencing.

- 34

[6] Bell, D.E., “Putting Policy Isomorphisms to Work,” Report 355-D, Trusted Information Systems, Glen-
wood, MD, November 1990.

[6] Clark, D.D., Wilson, D.R., “A Comparison of Commercial and Military Computer Security Policies,”
Proceedings of the 1987 IEEE Symposium on Security and Privacy, Oakland, CA, 1987.

[7] Gasser, M., Building a Secure Computer System, Van Nostrand Reinhold Co., New York, NY, 1988.

[8] Gersh, J., Private Communications, Johns Hopkins University Applied Physics Laboratory, October
1989, January 1990, August 1990, February 1991, June 1991.

[9] Gorham, Jr., W.C., “Data Protection Requirements in Computer-Aided Acquisition and Logistics Sup-
port,” Proceedmgs of the Fifth Annual Computer Security Applications Conference, Tucson, AZ, De-
cember 1989.

[10] Gove, R.A., Friedman, A.R., “A Structured Risk Analysis Approach to Resolve the Data Protection
and Integrity Issues for Computer-Aided Acquisition Logistics Support (CALS),” Proceedings of the
Fifth Annual Computer Security Applications Conference, Tucson, AZ, December 1989.

[11] Graubart, R., “On the Need For a Third Form of Access Control,” Proceedings of the 12th National
Computer Security Conference, Baltimore, MD, October, 1989.

[12] Karger, P., “Implementing Commercial Data Integrity with Secure Capabilities,” Proceedings of the
1988 IEEE Symposium on Security and Privacy, Oakland, CA, 1988.

[13] Karp, B.C., “The CALS Data Protection and Integrity Industry Working Group,” Proceedings of the
Fifth Annual Computer Security Applications Conference, Tucson, AZ, December 1989.

(14] La Padula, L.J., “Formal Modeling in a Generalized Framework for Access Control,” Proceedings of the
' Computer Security Foundation Workshop III, June 1990.

[15] Mayer, F.L., “Security Controls for an Automated Command and Control Information System (ACCIS):
Baseline Definition,” Report 201, Trusted Information Systems, Glenwood, MD, May 1989.

[16] McCollum, C.J., Messing, J.R., ‘Notargiacomo, L., “Beyond the Pale of MAC and DAC - Defining
New Forms of Access Control,” Proceedings of the 1990 IEEE Symposium on Research in Security and
Privacy, Oakland, CA, May 1990.

[17] Miller, D.V., Baldwin, R.W., “Access Control by Boolean Expression Evaluation,” Proceedings of the
Fifth Annual Computer Security Applications Conference, Tucson, AZ, December 1989.

(18] Murray, W.H., “Data Integrity in a Business Data Processing System,” Report of the Workshop on
Integrity Policy in Computer Information Systems (WIPCIS), Waltham, MA, October 1987.

[19] Nash, M.J., Poland, K.R., “Some Conundrums Concerning Separation of Duty,” Proceedings of the
1990 IEEE Symposium on Security and Privacy, Oakland, CA, May 1990.

[20] National Computer Security Center, Department of Defense Trusted Computer System Evaluation Cri-
teria, DOD 5200.28-STD, December 1985.

[21] O'Neal, S.A., “CALS: Enabling Process Improvement,” Signal, September 1989, pp. 41-44.
[22] Pfleeger, C., Security in Computing, Prentice-Hall International, Inc.; Englewood Cliffs, NJ, 1989.

[23] Sandhu, R., “Transaction Control Expressions For Separation of Duties,” Proceedings of the Fourth
Annual Computer Security Applications Conference, 1988.

[24] Sterne, D., Branstad, M., Hubbard, B., Mayer, B., Badger, L., Wolcott, D., “Security Policies for
Tactical Environments: A Research Study,” Report No 353, Trusted Informatlon Systems Glenwood,
MD, November 1990.

35

[25] Sterne, D., “On The Buszword ‘Security Policy’,” Proceedings of the 1991 IEEE Symposium on Research
in Security and Privacy, Oakland, CA, May, 1991.

[26] Thomsen, D.J., “Role-based Application Design and Enforcement,” Proceedings of the Fourth IFIP
Workshop on Database Security, Halifax, England, September 1990.

[27) Unisys, Camarillo, CA., and Trusted Information Systems, Inc., Glenwood, MD., SDI Battle Manage-
ment Security Issues: A Preliminary View, TM-8361/000/00, February 1987.

36

ANOTHER FACTOR IN DETERMINING SECURITY REQUIREMENTS FOR
TRUSTED COMPUTER APPLICATIONS

David Ferraiolo Karen Ferraiolo
NIST Grumman Data Systems
Building 224/A241 2411 Dulles Corner Park

Gaithersburg, MD 20899 Herndon, VA 22071

Computer systems take on security requirements that are unique to the operational characteristics and
needs of their application. These requirements can be applied on an individual basis in reducing
operational risk. Methods exist to determine security requirements per DoD 5200.28-STD [3] by
calculation of a risk index [4], [6]. This risk index is used to determine an appropriate level of trust
(criteria class) per DoD 5200.28-STD, which is then used to define a set of security requirements.
However, the resulting security requirements imposed on some systems by DoD 5200.28-STD can be overly
restrictive, in need of interpretation, or in many cases, non-applicable. The purpose of this paper is to
provide insights into determining appropriate security requirements for applications within a specified
criteria class. Observations depend to a great extent on the system’s user interface, considered as an
additional environmental condition.

Introduction

The intent of a computer application is to provide an organization with information processing capabilities
in support of its specific mission or goals. It has become apparerit that many of the security concepts
defined by DoD 5200.28-STD do not directly apply in a general manner to all trusted computer
applications. Some of the security features and assurances of DoD 5200.28-STD may be overly restrictive,
others in need of interpretation and in some cases, are not applicable at all. This is because the six
criteria classes that make up DoD 5200.28-STD, at least in part, assume a user environment with all the
risks associated with that of a full-capability general purpose operating system. For many applications
however, user capabilities are more restrictive than that of an operating system. Associated with these
capabilities is a lower relative risk that coincides with the constrained ability for the user to influence the
underlying processing environment.

Associated with each system is a User Interface Set (UIS). A UIS is a collection of processing capabilities
provided to the users of the system. These capabilities include system prompts, menus, transaétions,
utilities, privileges, and operations. The UIS can provide for or preclude users from the following
capabilities: execution of programs and transactions; creating and editing messages, documents, and files;
creating, compiling and linking application or system programs. At a higher abstraction, a UIS can
support an organization’s security policy such as restricting individual users or groups of users to specific
capabilities, functions and resources. For example, within a hospital system, a doctor may be provided
with the capability to perform diagnoses, order tests, and prescribe medicine, while at the same time be
prevented from directly performing updates or queries within the financial database.

For a large class of applications, the UIS may define a finite set of possible data accesses. The system’s
UIS constrains users by enforcing a template of capabilities. This template restricts users to the extent
that the system can be viewed as a set of predefined resources (applications, communication links and user
groups having specific capabilities). The security attributes which need to be associated with these
resources can be defined by design specification. Because of these fixed resource attributes and the
absence of a programming environment, security design techniques that are normally not acceptable for
general purpose systems can be applied to meet specific security feature and assurance needs. For
example, a peculiarity (with respect to DoD 5200.28-STD) that results from the stable functionality of
many embedded computer systems, is the ability to allow access control decisions to be unambiguously
established during system design time rather then having to be computed at run time. This is known as

37

the binding of processes and data accesses, or simply early binding, a concept that is described in [7] and
further exemplified by an access control triple described in [2]. In the context of DoD 5200.28-STD
mandatory and discretionary access controls, subjects are thought of as representing people or the
programs that act on their behalf, and objects as representing data or their files. However, in many
embedded applications some subset of all the objects are not accessible to human users but are accessible
only to the system hardware and software processes - these processes do not act as surrogates for users.

A good example is represented by a Regency Net (RN) terminal. The RN terminal is part of a tactical
command and control system developed during the mid and late eighties. Although all users would be
cleared for all information and belong to a single user group, security requirements were defined in respect
to 1) the flow of data among multi-level resources, 2) the preservation of the integrity of critical data, and
3) the denial and delay of the delivery of critical messages. The concept of a reference monitor and
security kernel was interpreted in order to‘ensure a high level of trust. The RN security kernel consists
of an Initializer, to establish the CPU’s initial secure state, and the Virtual Machine Monitor (VMM).
Because the RN functionality is severely restricted, all subject-object access configurations are bound in
the CPU Kernel code such that only those configurations which are both secure and functionally required
are possible. The VMM is an extraordinary reference monitor in that it does not compute secure states,
as a conventional reference monitor. It implements secure data flows directly rather than acting as an
intermediate computational abstraction.

Another application dependent concept is captured by the Clark-Wilson [2] integrity model. The Clark-
Wilson model defines an access control triple as the binding of a userID, transaction procedure (TP), and
a set of constrained data items (CDIs). This binding indicates not only the ability to specify which users
can access which executable program images (as is natural to normal DoD 5200.28-STD discretionary
access control), but also implies that these executable program images (TPs) possess privileges in isolation
from their mvokmg ‘user.

Determining Environmental Risk

Defining meaningful computer security requirements for applications has not been a straightforward
process. To help improve this situation, the National Computer Security Center (NCSC) published two
documents, Guidance for Applying the Department of Defense Trusted Computer System Evaluation Criteria
in Specific Environments and its associated Technical Rationale [4]. These two documents provide
guidance for choosing an appropriate criteria class per DoD 5200.28-STD, by calculating a risk index based
on the system’s operating environment. The risk index is partially formulated by comparing the clearance
of the least cleared user of the system to the highest classification of information to be processed by the
system. The greater the difference between the clearance of the users and the classification of the
information on the system, the greater the risk index and the greater the degree of trust that is required.
Another environmental condition considers whether the personnel developing the application are
authorized access to Secret information (or to the highest level of information to be processed by the
system if the information classification is less than Secret). If not, the requirement is for a higher criteria
class in order to compensate for the additional enwronmental risk developers impose on the delivered
systemn.

It has been observed that not all potential risk associated with a system is due to the difference of the
clearances of system users and the classification of information and the development environment. Risk
may also result from other environmental factors. Another method, using other environmental factors to
calculate potential risk has been developed by the Naval Research Laboratory (NRL) [6]. This report
provides a more sophisticated approach for calculating risk, taking into account the environmental
conditions of CSC-STD-003-85 as well as user processing capabilities and communication paths.

38

The Need for More Guidance

Both [4] and [6] define security requirements to the granularity of a predefined DoD 5200.28-STD criteria
class. In the world of trusted computer applications, seldom have the calculated features and assurances
of a criteria class of DoD 5200.28-STD defined a complete and essential set of applicable security
requirements. Although this granularity may be at a reasonable level for products that are developed to
be general purpose in nature (with no specific application in mind), for many applications minimal user
capabilities can be ensured. Applicable security requirements can be defined (at least in part) in terms
of the way a human user is intended to interact with the processing environment.

The premise of this paper is that, even though two systems may be defined as having the same risk index,
and subsequently would require the same criteria class, applicable security features and assurances
associated with these systems can vary significantly.

The Range of the Flexibility of User Interface Sets (R-FUIS)

It is suggested here that there is another significant environmental element that should be considered in
determining information security requirements: the Flexibility of the User Interface Set (FUIS). As the
flexibility provided through these interfaces increases, so does the risk that a user can influence and
undermine the security preserving flow of information. This is regardless of whether the objective of an
organization is to maintain the confidentiality of classified information, protect the privacy of individuals,
ensure human safety, prevent fraud, or prevent unauthorized modification of educational records.

In order to consider the FUIS in the calculation of security requirements for applications, the FUIS must
be measured in some way. The concept of a range in the flexibility of user interface sets (R-FUIS) is
introduced. In theory, all systems fall somewhere on the R-FUIS. The relationship between these systems
is such, that as systems progress on the range from left to right, applicable security features and
assurances (requirements) appear that were not present prior to that point, until a point is reached where
all features and assurances of DoD 5200.28-STD are present for a defined level of trust. Systems that fall
to the extreme left have the most restrictive interface sets, and have the smallest subset of DoD 5200.28-
STD requirements, while systems that fall to the extreme right are considered to have the most flexible
interface sets and the most DoD 5200.28-STD requirements. Unlike the Risk Index, The R-FUIS represents
a continuum where there is potentially an infinite number of possible points at which a system can be
plotted. What is significant about the plotting of a system is where it falls relative to where other systems
would fall. All systems can be plotted at some point on the R-FUIS. Depending on where systems fall,
observations can be made as to security characteristics and requirements associated with that point.
Moving from left to right along the continuum, the R-FUIS accounts for an extreme with no user interface;
further along it accounts for a single user system, still further, multiple users but of a homogeneous nature
(same role). Beyond the mid point, there are considerations for multiple users each belonging to a specific
'user role, while at the extreme right individual users with individual needs and privileges to access
information are taken into account. (Instances of a role can include: a Doctor or Nurse within a hospital
system; a Loan Officer or a Teller within a banking system; or a Traffic Analyst or Cryptanalyst within an
intelligence system.) The concept of the R-FUIS is illustrated in Figure 1 below.

No Single Muiti-User Multi-User : Multi-User
Users User Single Role Multi-Role individual Needs
f i K {

3
- 1

i
f ¥ T
{ i ! !

Figure 1. The Range in the Flexibility of User Interface Sets

39

A R-FUIS can be associated with each criteria class of DoD 5200.28-STD. The result is a two dimensional
view of DoD 5200.28-STD, where there are 6 rows each representing a criteria class with the associated
R-FUIS representing the range of applicable security requirements for that criteria class. An appropriate
criteria class can first be determined through the use of current environmental guidelines [4], [6]. The
position of the system on the R-FUIS for the criteria class can then provide insight as to applicable security
requirements for the system.

The R-FUIS ranges from the most primitive or restrictive interface set, such as that of a black box with
no user interface, to the most flexible interface, such as the full capabilities of a general purpose operating
system. Both of these systems may process the same type and classification of information but because
of the extreme differences in the FUIS, security requirements will differ greatly. The black box can be
thought to have inherent security protection such as the inability of a human to alter its processing
(except by physically removing its chassis and reprogramming it). However, a programming environment
does not come as part of the system. It would need to be reprogrammed on another environment and
down-loaded to the black box. On the other hand, the operating system supports the ability to create
executable programs and alter existing ones. With the operating system interface, the following risks exist:
the potential for introduction of a trojan horse, trap door, or virus; a program that mimics the operating
system software and steals passwords; or the alteration of security relevant software. All these risks are
a result of an operating system’s natural user interfaces, while none of these risks are associated with the
black box. '

In order to reduce operational risk, security requirements are imposed throughout the system development
cycle. These requirements must then be evaluated to ensure a secure operating environment. When a
certification is performed for an application to operate in a specific environment, the certification should
be an evaluation of the applicable security requirements associated with that system type. Because this
evaluation would be conducted against some subset of requirements of a specified criteria class, it may
not be appropriate to assign a criteria rating to the system, but instead indicate that the system mitigates
known security risk, and is known to implement some list of security features and some level of
assurances.

Defining Applicable Security Requirements

The R-FUIS can be subdivided in several ways depending on the UIS associated with the various types or
categories of systems. By subdividing the R-FUIS into various types of systems and defining the security
characteristics belonging to each of the types, the R-FUIS can be used to provide insight in the definition
of security requirements. It is acknowledged that the use of the R-FUIS does not provide an absolute
solution to defining security requirements for trusted applications. However, a widely agreed upon
definition of the R-FUIS could provide guidance and establish precedence as to applicable security
requirements that could be used from project to project, making the definition of applicable security
requirements less of a subjective process.

By continuously subdividing the R-FUIS into smaller and more numerous pieces, the R-FUIS will be more
helpful in the definition of security requirements. However, it is not the intent here to define an extensive
list of possible types of computer systems. Instead, four types of systems are described and plotted on the
R-FUIS to demonstrate how the R-FUIS can be used. By plotting a system on an even sparsely defined
R-FUIS, guidance can be provided as to the system’s applicable security requirements.

Observations on the R-FUIS
In the examples presented in this section, security features of DoD 5200.28-STD are described as they

apply for each type of application. Figure 2 below summarizes these observations, providing one view of
the R-FUIS.

40

No Single User Multi-User Multi-User Multi-User

Users Single Role Single Role Mutti-Role Individual Needs
!
. 1&A o . | v ol
- Se Poll - Discretionary Execution . - DAC (User Spacified) :
- Regzgz:e ‘L)f;gzling - User Accountability (Administrative) - Isolation a | - isolation {
- Dwect Data Flow _(Gnterpreted) - Object Rouse Us m’r") { . User Accountability |
Cortrols - Object Reuse - User Accountability -Usertabel | yserLabel !
dmplementation drtorpretod) (Single Session) { Mai-Session) |
Black Box Limited Transaction Role Enforcing Transaction Based Full Capability
Based System System Operating System

Figure 2. Example Systems Mapped onto the R-FUIS
Black Box Systems

For the most restrictive systems, which will be typed Black Box, many of the security features and
assurances of DoD 5200.28-STD are not applicable. For the Black Box system, no humans have the
ability to directly influence (read, or write) its objects. These systems are usually components incorporated
to perform one or more specific control functions within a larger system. A Black Box system can be
thought of as a "closed” system that contains only embedded processes where none of these processors
contain a direct man-machine interface. In fact, in many applications a Black Box provides specialized
services to a larger system which is totally transparent to human users. Although a Black Box system does
not support the direct needs of human users it still may be trusted to perform a vital processing function.
Military Black Box applications are numerous but they can include civil and commercial applications as
well. For example, the routing of mail, aircraft avionics, robot control, and transportation switching
devices. What is significant is that the execution of the controls of the device can be assumed to be free
of human interaction.

Obviously for Black Box systems direct user related features such as identification and authentication, and
user accountability are not applicable. In addition, making access control decisions based on the identity
of or an attribute associated with a direct user does not make sense within a Black Box environment --

no Discretionary or Mandatory Access Controls with respect to the UIS. Also, there is not a requirement
for a trusted path between a system user and the TCB.

The applicable security features can be viewed as the smallest subset of DoD 5200.28-STD requirements.
These security features are relevant for all systems of this specified R-FUIS and the specified criteria class.
All systems that fall to the right of the black box will include these fundamental features in their list of
security requirements. Probably the most fundamental of all security requirements is that of a security
policy. It is the security policy that defines what it means for a system to be secure. All other security
features and assurances are present only in support of that policy. This policy may ensure that
information of varying levels does not get mixed while in the local system. Because there exists a security
policy there must be an associated mechanism to implement the policy. For many Black Box applications,
controls are flow-oriented where the policy is preserved through flow decisions that could be considered
at design time rather than at run time. Object reuse more than likely would not be applicable. Pools of
previously used memory are not available for subsequent scavenging.

Because there is no concept of application software as opposed to system software, there is a de-emphasis
on the need for isolation techniques, such as domains of execution. Strong physical and procedural
controls can be applied during system development to ensure an execution environment that is free of
malicious code. Tools can be applied to ensure all flows are security preserving. Lastly, the absence of
a user interface goes a long way in ensuring that the secure environment stays secure.

41

Limited Transaction Based Systems

The next type of system that will be described is a Limited Transaction based system. A good example
of a Limited Transaction based system is an Automatic Teller Machine (ATM). For these systems there
is the presence of a man-machine interface, although it is quite limited. All users generally belong to one
user group. Although this group may potentially be quite large, the users are constrained to a narrow set
of processing capabilities and all perform the same functions.

For example, there may be a menu where selections can be made via a simple interface device such as
a numeric key pad. For a Limited Transaction based systems, users are precluded from accessing
information other than through well defined inter-related sets of processes known as transactions. For
systems of this type, subject-object access configurations can be pre-specified and bound in such a way
that only those access configurations which are both secure and functionally required are possible.
Authorized users are first identified and then given "select” access to a limited set of transactions, which
in turn have access privileges to information. By making a selection on a menu, a transaction is started
and a specified and controlled set of activities occur. This transaction will access and manipulate specific
files based on the type of transaction being invoked. The only access to information is defined by
specification and determined during the system design.

For many Limited Transaction Based Systems most of the objects are not accessible to human users but
are accessible only to the system hardware or software processes. It is the data and the flow of
information associated with these processes that are security relevant rather than humans accessing
information. There may be some number of secure data communications links where the information may
be multilevel in nature. The system must be trusted not to mix information of a higher level with that
of a lower level where it would then be perceived as being of the lower level (this is the mandatory
policy). While supporting secure links, this type system could also support a link that is not secure
(unencrypted) which would have to be considered unclassified. Although there exists multiple users each
belongs to the same role and would possess the same security clearance. The users security attributes
would be considered fixed for which data would flow accordingly.

Identification and authentication mechanisms are generally used for accountability purposes alone.
Discretionary access controls (per DoD 5200.28-STD) do not apply in the sense that user’s can specify
what other users have access to the files. For the ATM example, the user’s Personal Identification Number
(PIN) may be used as a parameter within a transaction for the purposes of retrieving the correct account
record. No capability exists for users to grant or revoke privileges other than through disallowing access
to the system.

Role Enforcing Transaction Based Systems

- A Role Enforcing Transaction based system is similar in many ways to a Limited Transaction based system
in that the access to information is granted or configured in terms of a process or transaction ID. For this
type system all users have a proper clearance and need-to-access within their role. Therefore a user
security level can be assumed (no need to specify security session level) and as with the Limited
Transaction based system the flow of data can be considered accordingly.

The access control mechanisms principally enforce the rigid concept of least privilege and not the richer
mechanisms implied by discretionary access control. Role Enforcing systems restrict access to information
based on the role a user chooses. A given user may have the ability to move from role to role if he is
authorized, but the user can only take on one role at a time. A user would choose a role via a menu
selection, at which point a validation would be conducted to ensure the user can take on that role. The
user’s identity is critical for both validating that his role is legal and accounting for his actions. The
method of enforcing need-to-access is not implemented through a strict discretionary access control
mechanism as defined in DoD 5200.28-STD, but rather through a series of mechanisms and characteristics
of the system. First, a check is made as to whether a user can take on a selected role. If the user is

42

granted access to the role, he is given execute access to a series of transactions that are presented to him.
The user is presented only with a list of transactions that has been specified to support his role. After
the selection of a-transaction, the user specifies parameters associated with the transaction and hits a
return key or clicks a mouse to effectively start the transaction. The transaction is deterministic,
performing activities in support of the user’s role. Individual users can be added and deleted to each role.
Role membership is most likely centrally administered rather than at the discretion of the individual users.
Role membership may be altered through administrative and procedural controls. The capabilities
represented by each role would be static in nature and could not easily be changed.

A role enforcing system in many cases supports a type of mandatory (non-discretionary) access control
policy. Consider the hospital example described above. The system may provide a physician with the
capability to perform a diagnosis, prescribe medication, and add to a record of treatments performed on
a patient. Here roles would be created to preclude the physician from giving away the capability to
perform a diagnosis or prescribe medicine to a non-physician. It is also a mandatory policy that users are
prevented from modifying the record of treatments maintained for each patient.

The deterministic characteristics of the system is an important consideration in maintaining an audit trail.
UserID, time, transactionID, and transaction parameter entries, in many cases are sufficient in holding
users accountable for their actions. However, any one transaction may invoke numerous processes across
several platforms and access countless data items. To audit each successful access would provide an
overwhelming amount of information.

Full Capability Operating System

The most complex of all human interface sets is associated with an operating system. A Full Capability
Operating system supports many users simultaneously while at the same time enforces both a mandatory
and discretionary access control policy with respect to users and information. Discretionary access control
mechanisms allow users to specify, using their discretion, the access privileges other users have to the
objects they own. Although discretionary access controls are intended to be the principal means of
enforcing need-to-access, these controls are inherently insecure. Because of a real possibility of users
introducing malicious software, a more reliable mechanism than a discretionary access control mechanism
must be provided, namely mandatory label-based access controls. These mandatory access controls are
typically provided through the enforcement of the rules of the Bell & LaPadula security model [1].

Within an operating system environment, mandatory security rules must consider fixed resources, the
assumption of malicious software, users with different security clearances, and data of multiple security
levels. Here a run time access control intermediary must be provided that enforces the rules of the Bell
& LaPadula security model. This access control intermediary is based on the concept of a reference
monitor and may be implemented as a security kernel, depending on the risk index calculated for the
application. Before a subject is permitted to have access to an object, a run time check is performed to
ensure that the proposed access conforms to the set of underlying security rules governing the system.
The theory of security in an operating system is induced from an initial secure state and a demonstration
of the preservation of security for every operation subsequently allowed by the reference monitor. In
essence, the purpose of a reference monitor is to compute security states for the system.

To preclude the ability of a subject from having simultaneous read access to an object of a higher
classification and write access to an object of a lower classification (where there is the potential for an
illicit flow of information) a rule similar to the *-property must be enforced. The *-property requires. the
subject’s security level to be equal to or lower than that of an object for which the subject is attempting
to gain write access. Because the classification of the object can be lower than the highest security
clearance of the user, a method must be provided to allow the user to establish a session level lower than
that of his or her highest security clearance. If that user needs to read an object of a higher classification
then the object to which the user just wrote, the user’s session level must be raised to a level at least as
high as the level of the object to be read.

43

Application software can be added or modified at any time during the operational life cycle of the system,
and often is created by the very subjects to which the rules of the security policy apply. In order to
provide a reasonable degree of assurance that applications software cannot by-pass or alter the security
policy enforcing mechanisms, security mechanisms must reside in a separate and more privileged execution
domain than that of the applications software.

Further, to preclude a malicious user from stealing an unsuspecting user’s password through the creation
of a program that mimics a legitimate password request, a trusted path must be provided. A trusted path
would ensure a reliable communication channel between system users and security relevant software.

Conclusion

Computer applications range from a black box which has no direct system user, to a very flexible system
supporting many human users simultaneously, where these users have the ability to create executable
images of programs and share information on a discretionary basis. It is reasonable to believe that
although these systems may have the same calculated risk index per [4], they should implement only
security mechanisms that are applicable to their operational environment.

The R-FUIS (Range in Flexibility of the User Interface Set) has been introduced to provide insights to
determining security requirements for a system based on characteristics of the application as well as other
environmental conditions identified in [4] and [6]. It is acknowledged that the use of the R-FUIS will
not provide an absolute solution to determining security requirements, but it is our hope that the
determination of applicable security requirements may become more of a methodology.

By further defining the R-FUIS innovative security design techniques can be uniformly applied across new
secure application development efforts. This definition can be provided through the consideration of
existing and future secure application development cases studies. The result would be new and increasing
numbers of innovative security techniques uniformly applied within appropriate (better defined) security
environments. Through a peer review process new security techniques can be accepted as legitimate
methods in combating environmental risk. The existence of criteria, criteria interpretation, and guidelines
should never result in the stifling of new and innovative approaches for applying security within our
systems.
References

[1] Bell, D.E,, LaPadula, L.J., Secure Computer Systems: Mathematical Foundations, ESD-TR-73-278, Vol.
I, Electronic Systems Division, Air Force Systems Command, November 1973.

[2] Clark, D.D., Wilson D.R., "A Comparison of Commercial and Military Computer Security Policies,” Proc.
on Security & Privacy, Oakland, CA., pp. 184-194, IEEE Computer Society, April 27-29, 1987.

[3] Department of Defense, Department of Defense Trusted Computer System Evaluation Criteria,
Department of Defense 5200.28-STD, December 1985.

[4] Department of Defense Computer Security Center, Computer Security Requirements - Guidance for
Applying the Department of Defense Trusted Computer System Evaluation Criteria in Specific
Environments, CSC-STD-003-85, National Computer Security Center, June 1985.

[S] Goguen, J.A., Meseguer, J., "Security Policies & Models," Proceedings 1982 Symposium on Security &
Privacy, Oakland, CA., pp. 11-20, IEEE Computer Society, April 1982.

[6] Landwehr, C.E., Lubbes, H.O., "An Approach to Determining Computer Security Requlrements for Navy
Systems,” NRL Report 8897, Naval Research Laboratory, May 1985.

[7] Norton, W., Reider, L., "Computer Security in Regency Net," DRAFT.

44

APPARENT DIFFERENCES BETWEEN THE
U.S. TCSEC AND THE EUROPEAN ITSEC

Dr, Martha A, Branstad Dr. David Brewer Mr, Christian Jahl

Dr. Charles P. Pfleeger Gamma Secure Systems, Ltd. Mr. Helmut Kurth

Trusted Information Systems, Inc. Diamond House IAGB Software Technology
3060 Glenwood, MD 21738 149 Frimley Road EinsteinstraBe20

D-8012 Ottobrunn

The U.S. Trusted Computer System Evaluation Criteria, called the TCSEC [TCS85] which was
first published in 1983 and revised in 1985, has become an accepted standard for the evaluation
of trusted systems. Not only is it used in the U.S. for evaluations by the National Computer
Security Center (NCSC), it has also been adopted by NATO for the evaluation of systems for use
in NATO installations. More recently, in May 1990, a group of four nations, France, Germany,
the Netherlands, and the United Kingdom, produced a first draft of its Information Technology
Security Evaluation Criteria, called the ITSEC [ITS90]. The ITSEC shows clearly that the
thinking of the computer security community has been heavily influenced by the TCSEC, but the
ITSEC also addresses some issues in ways that are very different from the TCSEC. A meeting
was held under the sponsorship of the European Commission in Brussels on September 25-26,
1990, at which members of the four nations discussed their reactions to comments received since
the publication of the ITSEC and presented their opinions of changes that should be made to the
ITSEC.

As a method of understanding the ITSEC more completely, it was analyzed to determine the
impact that compliance with an F5/E5 rating would have upon a B3 targeted system that is under
development. This analysis led to a discussion with ITSEC authors from both Germany and the
United Kingdom that helped to clarify many questions conceming specific wording and concepts
of the ITSEC and its relationship with the TCSEC. It should be noted that the views presented

here are the authors’ and not official statements from the various organizations with which they
are affiliated.

BACKGROUND
TCSEC Overview

Briefly, the TCSEC establishes six levels of evaluation: C1 and C2 provide discretionary access
control only, Bl, B2, B3, and Al provide both discretionary and mandatory access control.
Beginning at B2 and progressing to B3 and Al, the requirements for assurance — measures that
inspire confidence that the implementation of the system truly and rigorously enforces its stated
security policy — play a very significant part in the evaluation. Each TCSEC rating, called a
digraph, is thus a combination of a particular set of features and a necessary minimum degree

Copyright © 1990 Trusted Information Systems, Inc.

Portions of the work reported in this paper were performed on DARPA contract #F30602-89-C-0125

45

of assurance. Since publication of the TCSEC, there has been discussion in the computer
security community over the advisability of this bundling of features and assurance. There has
also been considerable discussion regarding the predetermined collections of features represented
by each digraph class; little room is available for the development and evaluation of a trusted
system that had goals other than maintaining confidentiality.

ITSEC Overview

In consideration of these two concems, the authors of the ITSEC chose to separate the
functionality of a trusted system' from ratings of its assurance?, and to expand the range of
functionality. Each evaluated trusted system would be awarded two descriptors: one denoting
the functionality the trusted system presents, and the second, denoting the assurance of correct
implementation of that functionality. Currently, there are ten exemplary predefined functionality
classes, F1-F5 and F6, F7, F8, F9, and F10. The classes F1-F5 correspond closely with
functionality required at the TCSEC classes C1, C2, B1, B2, and B3’, respectively. The five
remaining predefined classes represent integrity, availability, data communications integrity, data
communications confidentiality, and data communications integrity and confidentiality, respective-
ly. A trusted system can be evaluated against more than one of these classes of functionality,
if appropriate. There is also the potential for a developer to define a new class of functionality,
if these classes fail to describe a particular trusted system adequately. Assurance is recognized
as a combination of correctness and effectiveness. Six correctness ratings were defined as
E1-E6; these combine with the judgement of effectiveness of the security functions and
mechanisms. These assurance ratings were intended to correspond generally to the TCSEC
assurance requirements for C1, C2, B1, B2, B3, and Al trusted systems, respectively. Thus,
given trusted systems might achieve ratings of F3/E2 or F4-F7/E4, for example.

Because the requirements for the F1-F5 and E1-E6 classes so closely resemble the TCSEC
requirements, it is reasonable to try to identify points where ITSEC and TCSEC ratings coincide.
The annex to Appendix A of the ITSEC lists the intended correspondences from the ITSEC to
the TCSEC, that is, functionality/assurance combinations that are at least as strong as TCSEC
digraphs. Table 1 shows these intended correspondences. The ITSEC criteria contain a number
of requirements that do not appear in the TCSEC explicitly, and thus, according to the ITSEC,
direct equivalence of evaluation levels is inappropriate.

The ITSEC distinguishes between a "product” which is intended to be useful in a wide range of application
environments, and "system" which is designed and built for the needs of a specific type of environment. The
term "trusted system" is used in this paper fo denote either a product or a system that is being evaluated under
one of the criteria.

The separate evaluation of functionality and assurance was first documented in the German II Security
Evaluation Criteria [GISA89].

TCSEC class Al was omitied from this list because its functionality requirements are identical to those of class
B3.

46

Table 1 Intended correspondence from ITSEC to TCSEC
L

ITSEC Class TCSEC Class
F1/E2 C1
F2/E2 C2
F3/E3 B1
F4/E4 B2
F5/F5 B3
F5/E6 Al

However, it is also true that there are requirements in the TCSEC that were not replicated in the
ITSEC. Thus, the correspondence of Table 1 does not work in either direction. Still, it is a good
starting point for analyzing the differences between the two evaluation criteria.

TCSEC/ITSEC CORRESPONDENCE

As a method of understanding the ITSEC more completely, it was analyzed to determine what
was involved in achieving compliance with an F5/ES5 rating and what the impact would be upon
a B3 targeted trusted system that is under development. First the ITSEC was examined to
determine (a) how a trusted system could be evaluated as F5/ES yet fail to meet B3, and (b) how
a system could be evaluated as B3 yet fail to meet FS/E5. The intention of this analysis was
first, to understand better the nuances of the requirement language, and second, to determine what
additional work a developer would need to do in order to produce a system that met both criteria.
After the identification of apparent differences, some of the TCSEC authors, some of the ITSEC
authors, and some others met to determine if the apparent differences were really intended.
Among the ITSEC authors, there were representatives both from Germany and the United
Kingdom. The remainder of this report describes the outcome of that meeting. It should be
noted that the participants at the meeting were presenting their own views of the sense of the
groups of which they are a part.

Attributes of Trusted Systems that could Pass F5/ES but Fail B3

The following sections present statements from the TCSEC and the ITSEC, followed by a brief
statement of intention from the authors. Section or page number references are included. Bold
face type is reproduced from the original; underlining is used to draw attention, but is an addition
to the original text.

1. No DAC or DAC does not apply to all named objects.

TCSEC: §3.3.1.1 ...These access controls shall be capable of specifying, for each
named object, a list of named individuals, ...

47

ITSEC:

Discussion:

F5, p. 104 (§ Administration of rights) The system shall be able to
distinguish and administer access rights between each user and/or user group
and the objects which are subject to the administration of rights.

The ITSEC drafters indicated that it was their intention to have this F5
requirement correspond to B3. Rework of the ITSEC wording could make
the equivalency more evident.

The ITSEC drafters wanted to avoid the term "named object” since there has
been some controversy about its meaning in the TCSEC. There is ambiguity
in the phrasing of the ITSEC, however. The ITSEC drafters intended for this
requirement to apply to all objects defined by and visible to users. In any
system there are three classes of objects that might be subject to administra-
tion of rights: i) those that are defined by and visible to users, ii) those that
are defined by the system and may be directly or indirectly visible to users,
and iii) those that are defined by the system but used at a level below that at
which access control policy is enforced. The objects of class iii) are not
subject to the administration of rights but must be considered in covert
channel analysis. Those of classes i) and ii) are subject to mandatory access
controls. The objects of class i) are subject to discretionary access controls.

The ITSEC drafters acknowledge that they would like less restrictive language
to apply to lower assurance levels. Progressively more stringent requirements
for applicability of access control were desired as the assurance level rose
within a given functionality class, but given the separation between function-
ality and assurance, it is very difficult for the ITSEC authors to impose such
progressive requirements within one functionality class. The ITSEC authors
are searching for a way to delineate those objects that must be subject to
administration of rights; it may be that the categorization of class i, class ii),
and class iii) above is a way to achieve this.

2. MAC does not apply to all resources directly or indirectly accessible by subjects external to

the TCB.

TCSEC:

ITSEC:

Discussion:

§3.3.1.4 The TCB shall enforce a mandatory access control policy over all
resources. ..

F5, p. 106 (§ Verification of rights) With each attempt by users or user
groups to access objects which are subject to the administration of rights, the
system shall...

This is the same problem as above. The wording of the TCSEC is open to
some interpretation (e.g., whether or not it is intended to apply to a system
console). The intention of the ITSEC authors was to be equivalent to their
perception of the meaning intended in the TCSEC.

48

3. Encrypted storage is not cleared before reuse.

TCSEC:

ITSEC:

Discussion:

§3.3.1.2 No information, including encrypted representations of information,
... is to be available to any subject that obtains access to an object that has
been released back to the system.

FS5, p. 107 (§ Object Reuse) All storage objects returned to the system shall
be treated before reuse by other subjects, in such a way that no conclusions
can be drawn regarding the preceding content.

The distinction between the TCSEC and the ITSEC was intended. If
encryption is judged adequate to protect data in transmission or storage, then
it should also be adequate to prevent any determination of plaintext from
ciphertext that may be obtained from a reused object.

4. Human readable labels are provided, but not at places specified.

TCSEC:

ITSEC:

Discussion:

§3.3.1.3.2.3 The TCB shall mark the beginning and end of all human-
readable, hardcopy output.

F5, p. 106 (§ Administration of rights) The system shall mark human
readable output with attribute values. The values of the attributes shall be
determined according to the rules laid down in the system. Authorized users
shall be able to specify the printable name of each attribute value and the
location of the corresponding marking.

The distinction between the TCSEC and the ITSEC was intended. It should
be a matter of agreement between system user, system designer, and system
security administrator precisely where the labels are placed.

5. The trusted path mechanism is not available for the user to change security level or to query
the system about security level. ~

TCSEC:

ITSEC:

Discussion:

§3.3.2.1.1 The TCB shall support a trusted communication path between
itself and users for use when a positive TCB-to-user connection is required
(e.g., login, change of subject security level).

FS5, p. 106 (§ Administration of rights) A user shall be notified immediately
of any change in the security level associated with that user during an
interactive session. The user shall be able at all times to display all the
subject’s attributes.

The authors of the ITSEC have consciously tried to separate functionality
requirements from mechanisms by which those requirements are implemented.
They do not wish to be prescriptive of specific mechanisms in their
requirements. However, without a trusted path in an F5/E5 trusted system,

49

there is a possibility that an untrusted process could masquerade as the login
process, thereby capturing a user’s login and authentication date. This
presents a security threat which, if included in the trusted system’s Security
Target (the actual baseline against which the system is evaluated, see Chapter
2 and page 63 of the ITSEC) would need to be identified and countered, for
an ES rating. o o '

"The ultimate difference here is that the TCSEC authors felt strongly enough

about the need for a trusted path at the B3 level to mention it explicitly. In
the ITSEC the issue is handled through the suitability of functionality and
strength of mechanism requirements of assurance - effectiveness (§4.2.1 and

- §4.2.4). The trusted path is not an explicit requirement of the ITSEC, but it,
~ or a similarly effective mechanism, would be needed to counter the threat of

a masquerade of the login procedure. Explicit specification of implicit
effectiveness requirements would lead to greater clarity of actual ITSEC
requirements. This is another instance in which a low assurance class might
not necessitate such a strong mechanism as the trusted path, which would be
very appropriate at the higher assurance levels.

6. No identifiable reference monitor exists.

 TCSEC:

ITSEC:

Discussion:

§3.34.4 Documentation shall describe how the TCB implements the
reference monitor concept and give an explanation why it is tamper resistant
cannot be bypassed, and correctly implemented.

no such explicit requirement exists

The identification of a TCB and implementation of protection through the
reference monitor concept was seen by the ITSEC authors as being associated

- with specific security policies and prescriptive of particular mechanisms. On

the other hand, the ITSEC authors recognize the desirability of the reference
monitor concept and TCB in many instances. They intend to use the
effectiveness component of assurance to exclude systems that fail to use the
reference monitor concept when it would have been more appropriate than
whatever approach the developers used. A need for greater specificity of the

~ effectiveness requirements is recognized, but such specificity is difficult to

achieve while maintaining the goal of policy generality. It is of course open
for the person defining the security target for an ITSEC F5/ES evaluation to
mandate the use of particular types of mechanism, for example a reference
validation mechanism implementing the concept of a reference monitor.
Clearly, this then constrains the developer to follow a TCSEC-like approach.

7. TCB not appropriately structured

TCSEC:

§3.3.3.1.1 The TCB modules shall be designed such that the principle of
least privilege is enforced... It shall make effective use of available hardware

50

ITSEC:

Discussion:

Observation:

to separate those elements that are protection critical from those that are not.
The TCB shall be designed and structured to use a complete, conceptual-
ly simple protection mechanism with precisely defined semantics. - This
mechanism shall play a central role in enforcing the internal structure of
the TCB and the system. The TCB shall incorporate significant use of
layering, abstraction, and data hiding. Significant system engineering
shall be directed toward minimizing the complexity of the TCB and
excluding from the TCB modules that are not protection critical.

no such explicit requirement exists -

This issue is essentially the same as the trusted path issue explored above.
All of these structuring requirements were seen by the ITSEC authors as
prescribing mechanisms that would be very appropriate in many situations but
might not be appropriate in all. Their intention is to treat this issue in the
effectiveness section. It is likely that this issue w111 be addressed in a manual
for evaluators, by way of example.

The TCSEC and ITSEC authors recognize these last two points as definite
differences between the TCSEC and the ITSEC. If a developer wants to
achieve both F5/E5 and B3 evaluations, the developer will want to plan to
meet both sets of requirements. The ITSEC authors recognized that exact
correspondence with the TCSEC was impossible within the ITSEC scheme.
They have indicated that their intention was that trusted systems evaluated at
the F5/ES or the B3 level should yield equivalent assurance of enforcement
of the defined security policy.

Attributes of systems that could pass B3 but fail FS/E5 -

1.

Fail to prov1de a read-only access mode.

TCSEC:

ITSEC:

Discussion:

§3.3.1.1 These access controls shall be capable of speclfymg, for each
named object, a list of named individuals... with their respective modes
of access to that object.

F5 p 104, (§ Administration of rights) It shall also be possible to restrict a
user’s access to an object to those operations Wthh do not modify it.

Since many commercial clients are concerned with controlliag the ability of

a user to modify information but are not concerned with whether the user can
read the data, the existence of read-only access mode is deemed important.

51

http:modul.es

2 Fail to provide labels for subjects and objects intemal to the TCB.

. TCSEC:

ITSEC:

Discussion:

§3.3.1.4 The TCB shall enforce a mandatory access control policy over all
resources... that are directly or indirectly accessible by subjects external to
the TCB. These subjects and objects shall be assigned sensitivity labels...

F5,p 105 (§ Administration of rights) In addition, the system shall provide
all subjects and objects... with attributes.

The words as currently written do not convey the intended meaning of the
ITSEC authors. '

3. Fail to provide design documentation for non-TCB elements.

TCSEC:

ITSEC:

Discussion:

no requirement

§3.6.1.1.1 The sponsor shall provide the following documentation...
structured description of the detailed design.

The ITSEC authors indicated that their intent was for design documentation
to be required only for parts of the system critical to the enforcement of
security. ' .

4. Use a non-validated compiler.

TCSEC:

ITSEC:

Discussion:

no requirement

§3.6.1.2.2 b) The used compilers shall be validated e.g., approved by an
appropriate body.

This requirement was discussed at the Brussels conference; it is expected that
the requirement will be reworded.

5. Use a non-rigorous notation for the architectural design.

TCSEC:

ITSEC:

Discussion:

no requirement

§3.6.1.1.3 ¢) The architectural description shall use some form of rigorous
approach and notation.

The concept is appropriate for reconsideration by ITSEC authors. At the

Brussels conference, a number of inconsistencies were reported in Chapter 3
of the ITSEC. Rewording of requirements is likely.

52

6. Provide no mathematical analysis of design refinements.

TCSEC:

TTSEC:

Discussion:

no requirement

§3.6.1.14 c) Mathematical reasoning shall be used to show that each
hierarchical level is a refinement of the previous level.

The intention of the ITSEC authors was to support traceability between levels
of the design. The term "logical" is perhaps a better choice than "mathemati-
cal" to express the ITSEC authors’ intent of supporting traceability.

7. Include functions with side-effects.

TCSEC:

ITSEC:

Discussion:

no requirement

§3.6.1.1.4 ¢) An analysis of the detailed design for side effects shall indicate
that none exist and that no additional functionality is present which would
allow the security mechanisms to be bypassed.

This distinction is both semantic and substantive. In some European
evaluation circles, a "side effect” is something that a trusted function does
which is security-relevant and which the function is not intended to do. In
the U.S., "side effect” is used more broadly to mean any effect beyond the
defined functionality. The narrower usage is consistent with the intention of
the TCSEC as described under Security Testing (§3.3.3.2.1) as "their [testers’]
objectives shall be: to uncover all design and implementation flaws..." The
intention of the ITSEC authors was to prohibit side effects that could
undermine the security policy enforcement. The difficulty in designing a
completely side-effect free product is acknowledged. The ITSEC wording
could be clarified.

8. Fail to map security functions to mechanisms.

TCSEC:

ITSEC:

Discussion:

no requirement

§3.6.1.14 b) It [the specification document] shall also map security
functions to mechanisms and functional units.

§3.6.1.1.4 c¢) It shall be shown that the security mechanisms provide the
security functions stated in the security target.

This requirement was intentionally included by the ITSEC authors; however,

it is anticipated that this requirement might be met by a level-by-level
analysis as part of the philosophy of protection required by the TCSEC.

53

10.

11.

TCSEC:

ITSEC:

Discussion:

9. Fail to identify all non-local variables.

no explicit requirement

§3.6.1.1.4 b) All variables used by more than one functional unit shall be
defined at the lowest level of the specification and their purpose shall be
explained.

This requirement was intentionally included by the ITSEC authors as an
extension of the TCSEC.

Provide inadequéte configuration management tools by (a) failing to illustrate item
relationships or (b) failing to identify security relevant changes.

TCSEC:

ITSEC:

Discussion:

TCSEC:

ITSEC:

no explicit requirement

'§3.6.1.2.2 b) All objects created during the development process, such as

design documents, source code, and other dependent data shall be subject to
configuration control. ... In the event of a change of any of these objects, the
tools shall be able to identify all objects affected by this change. The tools
shall support the determination of whether a change is security relevant.

This requirement was intentionally included by the ITSEC authors as an
extension of the TCSEC. Part (b) was not intended to be extreme; its
intention was to force the developer to separate the code into a part that was
security relevant and a part that was not. Changes to only the security

* relevant code were to be tracked; and any change to security relevant code

was to be tracked.

‘Provide inadequate vulnerability analysis.

" No general vulnerability analysis requiremént exists, but sections 3.3.3.1.3 and 3.3.3.2.1 require

covert channel analysis and penetration testing, respectively.

§3.6.1.1.4 b) The design vulnerability analysis shall determine any ways in
which it is possible for a user of the TOE to deactivate, bypass, corrupt, or
otherwise circumvent the security afforded by the TOE as configured by a
security admnustrator

§3.6.1.1.5 b) The implementation vulnerability analysis shall determine
any ways in which it is possible for a user of the TOE to deactivate,
bypass, corrupt, or otherwise circumvent the security afforded by the
TOE as configured by a security administrator, based on the source code.
It shall identify covert channels.

54

Discussion;

Comment;

The ITSEC authors recognize that defining what constitutes an adequate

‘vulnerability analysis is difficult, especially for systems and products that

span a collection of varying security policies. The authors intend to include
more specific guidance in the manual for evaluators. For the present, in
confidentiality-preserving systems, the authors’ intent was that penetration
testing and covert channel analysis suffice for a vulnerability analysis.

With respect to penetration testing, the ITSEC authors expect that the
developer and the evaluators will be in a cooperative, not an adversarial,
relationship. The developer will undoubtedly perform some amount of
penetration testing; notes on the analysis required to hypothesize penetrations
and the tests performed to validate the hypotheses will reduce the amount of
work the evaluators need to perform for penetration testing.

Moreover, covert channel analysis is only applicable under certain circum-
stances, i.e., where the security policy concems confidentiality and the threat
of covert channel attack is included in the Security Target. Thus it may be
better to move the covert channel analysis requirement (pages 57, 65, and 73
of the ITSEC) from Chapter 3 to the predefined functionality classes F4, F5,

" and F6.

12. Fail to use test coverage tools.

13.

TCSEC:

ITSEC:

Discussion:

no requirement

§3.6.1.1.5 b) The test documentation shall contain plan, purpose, procedures
and results of the tests, the extent of test coverage, the metric used for
calculating extent, and a justification why the coverage is sufficient.

The intent of the ITSEC authors was to require evidence of degree of test
coverage by developers for individual functional units and for the trusted
system as a whole. Because of the size and complex functionality of some
trusted systems, extensive, let alone complete, test coverage is difficult to
achieve. The developer and evaluator should know and be able to document
what has been achieved through testing.

Fail to provide trusted distribution.

TCSEC:

ITSEC:

Discussion:

no fequirement

§3.6.2.2.2. b) A procedure approved by the certification authority for this
assurance level shall be followed, which guarantees the authenticity of the
delivered TOE. :

This is an intentional requirement that extends the TCSEC.

55

14. Fail to provide checks against maintenance without agreement of the security administrator.

TCSEC:

ITSEC:

Discussion:

no requirement

§3.6.2.2.3 b) No maintenance shall be possible without the agreement of the
administrator.

This is an intentional requirement that extends the TCSEC. Constraints in the
trusted system are required so that the agreement of the administrator is
assured before on-line maintenance is performed.

15. Fail to identify all security mechanisms and their interrelationships.

TCSEC:

ITSEC:

Discussion:

no explicit requirement

§3.6.1.1.4 b) It [the specification document] shall explain the realization of
all security functions through all levels of design hierarchy, and identify all
security mechanisms.

This requirement was intentionally included by the ITSEC authors. The
requirement should be met by the philosophy of protection required by the
TCSEC. '

16. Fail to provide security functions that are adequately easy to use.

TCSEC:

ITSEC:

Discussion:

SUMMARY

no requirement

§4.3.1 a) Under this aspect of assessment, the security functions and
mechanisms of the TOE are assessed for their practicality of use in actual live
operation.

This requirement was discussed in Brussels. It is likely to be reworded to
make it more objective.

As indicated by the previous sections, although they are similar, the F5/E5 and B3 requirements
are not identical. Without explicit effort to meet additional requirements, a system targeted at
one rating would not meet the other. An F5/E5 targeted system must meet additional or more
constrained requirements on system structure, trusted path, labels on printed output, and object
reuse. A B3 targeted system must take additional effort with system development practices,
trusted distribution, and maintenance controls. Expressed another way, an F5/ES system has
more architectural freedom than B3 in achieving high assurance of confidentiality while a B3
system is less constrained in its development practices. For a B3 targeted system to achieve an
F5/E5 rating, the following additional requirements must be met:

56

* Provide detailed design specifications with mappings between design levels.
* Use more elaborate configuration management tools.

* Use test coverage tools for unit testing.

* Develop trusted distribution procedures.

* Incorporate security administrator authorization for maintenance.

Analyzing the TCSEC to determine the impact of compliance with F5/ES requirements upon a
B3 system proved to be a very useful technique for determining the relationship between the
ITSEC and the TCSEC. It caused the questions to become specific enough so that productive
dialogue could take place with ITSEC authors to clarify the meaning of particular requirements.
This resulted in better understanding of the document as a whole by those more familiar with the
TCSEC and realization of the implications of ITSEC wording by its authors. In thirteen cases,
specific intentional differences between the TCSEC and ITSEC were identified. In two instances,
the participating authors felt that changes in the ITSEC were likely. Wording changes to clarify
intent were deemed essential in nine cases. In two instances, the authors felt that clarification
would occur in the manual for evaluation that is anticipated in the future.

Although the analysis of F5/ES and B3 requirements does not provide a general comparison of
the ITSEC with the TCSEC, it does serve to clarify some of the intended similarities and
differences in the two documents. As such, the dialogue that ensued cannot but lead to the
development of more precise and understandable criteria.

Since its first publication in 1983, there have been at least two broad types of criticism levied
at the TCSEC. The first is that parts of it are ambiguous and imprecise. The TCSEC authors
freely admit that there are inadequacies in the document. The ITSEC authors have tried to
eliminate some of the difficulties of the TCSEC. Many of these points where the authors of the
ITSEC have intentionally varied with the written or interpreted TCSEC lead to points where the
ITSEC is stronger than the TCSEC. Being human, however, the ITSEC authors in their own
writing have introduced ambiguity and imprecision which, ideally, will be clarified in future
drafts. This paper has identified both points of intentional variation of the ITSEC from the
TCSEC, and points of ambiguity in the current draft of the ITSEC.

A second major criticism of the TCSEC is that its binding of functionality and assurance into a
single digraph class is too restrictive. The authors of the ITSEC have chosen to separate
functionality and assurance completely, so that for example, evaluation of a high assurance-
limited functionality trusted system becomes a possibility. Also, the authors of the ITSEC have
decided to broaden its applicability by allowing the evaluation of trusted systems whose policy
is other than confidentiality. These goals extend the applicability of the ITSEC beyond the range
of trusted systems for which the TCSEC is appropriate. These goals also have the unfortunate
side effect of allowing only minimal requirements to be posed for either functionality or
assurance. To mandate specific mechanisms would be inappropriate since different policies may
require different mechanisms. At low assurance levels, one might be willing to accept modest

57

functionality, but one would want more stringent functionality requirements as the assurance level
rises. Given the absolute separation of features from assurance, it was impossible for the ITSEC
authors to impose such progressive requirements. While the ITSEC authors have addressed the
excessive restrictiveness in the TCSEC, they have also become susceptible to the problems of
generality.

The authors of the ITSEC used different premises and language then the TCSEC and thereby
created an evaluation document that is close but not identical to the TCSEC. As has been
identified in this analysis, some of the variations between the ITSEC and the TCSEC were
intentional, while others were not. A goal of this analysis has been to clarify the differences so
that as the authors of the ITSEC refine their criteria, only the intentional differences will remain.
However, ignoring the predefined functionality classes (which are in any case only exemplary),
the ITSEC represents a catalogue of evaluation criteria, whereas the TCSEC is a mixture of
evaluation criteria and security requirements. The ITSEC does not (nor was it intended to) tell
anyone what to build, only how to evaluate what has been built.

REFERENCES

[ITS90] Information Technology Security Evaluation Criteria, Draft version 1, May 1990.

[GISA89] German Information Security Agency, IT-Security Criteria, version 1, 1989.

[TCS85] National Computer Security Center, Trusted Computer System Evaluation Criteria,
DOD 5200.28-STD, December 1985.

58

AUDITING OF DISTRIBUTED SYSTEMS

D. Banning, G. Ellingwood, C. Franklin, C. Muckenhirn, D. Price
SPARTA, Inc.
7926 Jones Branch Drive
Suite 900
McLean, VA 22102

Security auditing systems are used to detect and assess unauthorized or abusive
system usage. Until recently, security audits have been confined to a single computer
system. Current work examines ways of extending auditing to include heterogeneous
groups of computers (distributed systems). This paper examines the issues involved
in auditing distributed systems, presents the framework for a Distributed Auditing
System (DAS), and proposes a design for the audit reporting elements of the DAS.

Security auditing for computer systems is the collection and analysis of computer system usage
information used to ascertain the security posture of a computer system. Until recently, auditing has
been performed only on a local basis, that is, information collected was logged on the system under
audit. While this is a reasonable approach in an environment where there are few hosts that
require auditing, as the number of hosts requiring audit increases, it becomes difficult to 1) examine
the audit trails, 2) analyze the information and correlate events on one host to events on others, and
3) maintain consistent levels of audit collection. A further complication in large networks is the
probable use of a variety of computer systems, each potentially having a different auditing
mechanism, reporting syntax, and audit trail.

_ This paper presents an architecture for the collection of audit data in a distributed
environment. One of the goals of this document is to relate the Distributed Audit System (DAS)
architecture to the large body of work currently being done in the area of intrusion detection.

We are providing a method for presenting system-independent audit information and
transportation of the information for analysis by a security officer or intrusion detection system at a
central node in a distributed network. Our approach is expected to complement intrusion detection
systems, not to compete with them.

Overview

The primary purpose of this paper is to describe a concept for auditing security-relevant events
in a distributed environment. To accomplish this goal we defined the relevant audit issues, outlined
the specific goals of auditing, and put our work in perspective with. ongoing intrusion detection
projects. These are briefly outlined here in order to accomplish the main focus as described above.
An in-depth discussion of these issues can be found in the draft report delivered to Lawrence
Livermore National Laboratory in September of 1990 and referenced in the bibliography.

The issues relevant to distributed auditing include: what data should be collected, how to
transport audit data from a collection point to an analysis point, the system-independent audit data
representation, the user interface and user invoked functions and the control of audit functions from
a remote location. These are all issues that have been addressed in the concept and design of the
DAS architecture as presented in Figure 1.

Other issues that are more appropriate for research by developers of intrusion detection
systems include: data storage for subsequent retrieval and damage assessment, formulation of audit
records into "security events” and anomaly detection from a set of events. What constitutes a good
intrusion detection algorithm for network use is being addressed by projects such as Intrusion
Detection Expert System (IDES), Haystack and the Network Security Monitor (NSM).

59

AUDIT
AGENTS

Audit Server for:
Host A

Host B
Audit Manager 2

Audit Server for:
Host A

Host C
Host D

Senr?
Audit Manager 2 | Audit Manager 1

Figure 1 Distributed Auditing System Conceptual Architecture

A

This section briefly summarizes the goals of auditing and serves to establish the requirements
for the design.

Security auditing is a broad function that can include the definition of security events, the
creation of audit records, the real time analysis of these records for indications of anomalous
activity, the archiving of these records for subsequent analysis, and the postmortem analysis of
these archived records for various purposes.

From a security objectives standpoint, one of the more important goals of security auditing is
that of providing for individual accountability, such that an individual knows with certainty that
he is to be held accountable for his actions. This alone may serve as a major deterrent to abusive
behavior.

Other related requirements for audit records are summarized below:

Intrusion Detection: the ability to detect suspicious activity through the use of user proﬁles

Real Time Monitoring: the ability to monitor activity on a system in order to detect
unauthorized activity

Damage Assessment: the ability to determine what was compromised

Attack Reconstruction: the ability to understand how an attack was carried out (i.e., in order
to design effective countermeasures to guard against future attacks of the same type)

Damage Recovery: the ability to recover from whatever damage may have occurred

Each application may require an additional set of information that the security auditing

system should collect. A good auditing system should address all applications that have a
requirement for audit records.

The approach has been to define an overall security auditing architecture with functions and
mechanisms for the collection and management of audit-related data, and allowing for the future
refinement of these mechanisms to serve advanced requirements such as computer analysis.

D EVOL
The history of the DAS began in 1988 with the initial concept of a “virtual audit trail”. It
has evolved into the current definition of a set of network management protocols to control the
collection of audit data

60

Initial Concept

The original concept defined a standard representation of a canonical audit trail that could be
used by the current audit analysis tools. Standard form records collected on multiple machines could
be analyzed by a single security monitor for an entire network of systems. This concept evolved into
the notion of a “virtual audit trail” and a related set of protocols for transporting data in a common
format. In considering complex situations where multiple “audit messages” are needed to compose a
single “network virtual audit message”, a method was considered where the “translation” would be
performed at the application level and the presentation protocol would be used for local data-
representation translation.

Different types of transport protocols such as, TCP, UDP and VMTP were considered with
respect to the selection of transport reliability, duration of calls and use of network resources. The
main difference between the different transport protocols is in how they move data (e.g., as
independent blocks of data or as a continuous stream of bytes) and how reliability is achieved.

Evolution of the Concept

An architecture for distributed auditing developed as mechanisms were described for collecting
data from multiple host systems in a network for a multitude of purposes (e.g., real time intrusion
detection or after the fact analysis resulting in damage assessment). The architecture provides a
framework for a set of application/transport level protocols for transmission of auditing data, and a
management protocol for controlling the local host (e.g., setting thresholds and synchronizing clocks)
from a remote location. ’

A top level outline of a DAS was developed and documented in a report delivered to LLNL in
September 1989. Later, the notion of an auditing protocol was extended to address both the
transmission of data from the Audit Agent (AA) to the Audit Manager (AM) and the control the
operation of the AA from the AM. The names of these components have evolved to allow
association with terms more commonly used in network management.

: The belief is that the AM can send commands to the AA (via the Audit Data Communication
Service (ADCS))to increase granularity of monitoring, to audit specific users in detail, to audit
accesses to specific files, to audit specific system calls, log all traffic to/from a specific
node/terminal, take a snapshot core image, etc. Thus the security officer, sitting at a workstation
connected to the AM, can control the auditing throughout the entire network and can respond quickly
to newly discovered attacks (e.g., as those reported on the networks by CERT and LLNL’s CIAC).

The machine that supports the AM can also have a back-end connection to a system that
interprets the audit information for real time detection of anomalous events. An extension is to
allow such a system to signal the AM to increase the fidelity of monitoring, etc., much as a human
security officer would respond to detected anomalous events. The concept can be further extended to
the idea of mul:::igle AMs, where each community of interest can have its own AM, allowing logical
subnets for which each AM collects audit data.

[NCQTWORK gLASCIICIIL a5 d - AUCITING

SPARTA's Networking Research group is heavily involved in the design and development of
network management protocols. Struck by the similarity between collecting audit data and
collecting performance data, they suggested that we examine the work in the network R&D
community that is leading to the definition of network management protocols providing mechanisms
for collecting data from various nodes in a network. They observed that, since the mechanisms for
controlling the collection process and for reporting it to a central site are similar, the same protocols
might be used for both purposes. ‘

A review of the evolving specifications for the upcoming Common Management Information
Protocol (CMIP), the related CMI Service (CMIS) specification, and the Management Information
Base (MIB) which defines the data elements showed the similarity between collecting data in a
network for network management and collecting security-relevant data elements.

A copy of CMOT (CMIP running over TCP) was obtained from the University of Wisconsin and

was evaluated on the company’s internal LAN to determine whether it could be easily extended to
collect the network security data elements.

61

We concluded that network management protocols provide a good model for our DAS design
and the network auditing architecture and design presented in this document is based on the premise
of extending the network management protocols currently being defined to incorporate provisions for
the collection of security events. '

The DAS concept now includes the following:

1. An application for collecting data and transforming it to a network virtual
representation. This requires a format and semantic meaning for audit records

2. A transport protocol for transmitting the audit records. -

3. A management protocol for dispatching commands from the central site to the
remote node that requires a format and semantic meaning for the commands (i.e., to
instruct the remote node how to behave upon receipt of each command). ~

Network management protocols provide a mechanism for transmitting network performance
information from remote nodes to a central collection point. As mentioned earlier, the collection and
reporting process for performance data and audit data are very similar. Therefore, the network
management protocols can serve as a “model” for collecting, reporting, and transmitting audit
information in a distributed network. Below is a brief description of network management protocols
and their applicability to audit functions.

Introduction fo Network Management

Network management is accomplished by managers at local management stations and agents at
remote managed nodes exchanging monitoring and control information via protocols and shared
conceptual schema about a network and its components. The shared conceptual schema mentioned
above is a priori knowledge about "managed objects" concerning which information is to be
exchanged. Managed objects are abstractions of system and networking resources (e.g., a protocol
entity, an IP routing table, or in this case, auditing resources) that are subject to management.
Managed objects have attributes, operations, and notifications that are visible to managers. The
internal functioning of the managed object is not visible to the manager. Currently, an agent is
responsible for conversions between a managed system's internal format of managed objects and the
external format of managed objects (i.e., the form expected by the manager).

Using management services and protocols, a manager can direct an agent to perform an
operation on a managed object for which it is responsible. Such operations might be to return certain
values associated with a managed object (i.e., get a variable), to change certain values associated
with a managed object (i.e., set a variable), or perform an action, such as self-test, on a managed
object. In addition, the agent may also forward to the manager notifications generated
asynchronously by managed objects (e.g., send updates periodically).

The network management architecture described here consists of a Management Information
Base (MIB) containing a list of managed objects, the International Organization for Standardization
(ISO) Common Management Information Services (CMIS)/Common Management Information Protocol
(CMIP) Manager and Agents. The Managers and Agents exchange information based on the managed
object definitions contained in the MIB, and the ISO network management protocols that facilitate
the exchange of this information.

ent Informati

A MIB is a list of managed obijects, described in external format, which are considered useful
for a particular application. The Internet MIB contains managed objects that are read-only (since
current management protocols are not sufficiently secure to exert control, as would be the case with
writable objects), and help a manager determine the status of the network elements. Using the
Internet MIB as a model, it should be possible to develop an audit MIB.

62

CMIS/CMIP Manager and Agents

The Common Management Information Services (CMIS) are provided by the Common
Management Information Service Element (CMISE). The Common Management Information Protocol
(CMIP) supports these services. An invoking CMISE-service-user, or “manager”, may invoke a
management operation. A performing CMISE-service-user, or “agent”, is the process that performs a
management operation invoked by a “manager.” A CMIS/CMIP manager and agent applications
could use adaptations of the ISO Common Management Information Service Element (CMISE) to
exchange information and commands for the purpose of auditing.

CMISE provides facilities for a managed “agent” to send multiple linked responses to a
manager. An audit agent could use this type of service to send detailed information to an audit
manager. -

CMISE also provides to managers the ability to “multicast” operations to be performed on a
group of managed objects. Through CMISE services, a manager can perform a single operation on a
group of managed objects. A distributed audit mechanism could use such a service to assist in
responding interactively to network attacks.

4.3 Uses of CMIP in Distributed Auditing

CMIP offers a mechanism to transmit information between agents and managers in a
distributed network. The components of the auditing system could use the network communication
services offered by CMIP.

AMs located on remote network nodes can send messages to audit applications located on many
different local nodes. Audit applications would use the same services to send audit information to
the AMs. The advantage of using CMIP for such communication is that a rudimentary mechanism
already exists through the CMISE services.

To implement a distributed audit capability using the CMIP protocol for communication, the
CMIP protocol would have to be extended. Additions to CMIP would include definition of message
types to transmit between manager and agent and specification of what information is expected of
both the manager and the agent.

TEM DESIGN
The design of the DAS consists of 4 major components, Virtual Audit Trail (VAT), Audit Agent
(AA), Audit Manager (AM), and Audit Data Communication Service (ADCS) as depicted in Figure
2. The functions performed by each of these components are discussed below. '

Security of the DAS is critical to a successful implementation of audit services. Without the
implementation of security principles, a DAS may be attacked and rendered useless in either
detecting an attack on other computing resources or in assessing the cause and extent of any resulting
loss.

The DAS Architecture incorporates three security principles: access control, data integrity,
and assured delivery of messages. In light of this: 1) only specifically authorized individuals
(usually a security officer) may change the selection of audited events on a system or cause the audit
reporting mechanism/process to stop; 2) audit reports must not be modified while in storage or in
transit to storage (over the networkg and 3) audit reports that are generated and transmitted to a
manager must be received.

Virtual Audit Trail (VAT)

The VAT is formulated from audit information sent from the AA to the AM. A virtual audit
record is distinct from what is recorded on a particular host. It is O/S independent and reflects
security relevant events and must be inclusive enough to fulfill any of the goals outlined in Section 2.
The virtual audit record is unrestricted by what the local site security policy defines as security
relevant.

To determine what constitutes such an audit record we should examine several areas:

1) look at the auditing done by particular O/Ss, determine the security relevant
events and include these in the virtual audit record,

63

Secdrity
Officer

AUDIT MANAGER

HOST

APPLICATIONS:
FTP, TELNET, ETC,

o/s

AUDIT
| SERVICE

PRESENTATION PRESENTATION
SERVICE SERVICE
TCP TCP

—NETWORK
N W oaK SERVICE

ADCS

Figure 2. Distributed Audit System Design

2) look at the current audit analysis tools and catalogue what events are needed by
each of them for their particular analysis, and

3) look at what events have triggered discovery of incidents in a real 51tuat10n (e.g.,
Cliff Stoll’s incident, etc.).

Using the above information, a set of record types that represent different types of events can
be defined. For each type of record, the variables that define that event are determined These
audit records constitute the VAT at the AM.

Once the contents of the audit records have been defined, a MIB of audited elements is
specified for use with the network management protocols. An audit MIB contains managed objects
considered essential for auditing.

Audit A £ (AA)

The AA consists of a process running on each network host and has three principle functions:
selecting audit events for forwarding to the AM, translating host-specific information into a
“virtual” format, and responding to commands from the AM.

The AA sends selected audit information from the host to the remote AM. In a distributed
network, each host would have an AA and would report to a number of AMs. The AA examines the

audit records generated by the host’s O/S and determines what information to forward by examining
an audit table.

64

Forwarding Audit Events

This audit table, depicted in Figure 3 is maintained and updated in response to commands from
the AM. The use of the audit table allows each site to send audit reports based upon the site’s
individual security policy.

The audit table tells the AA which events to send as event reports, which to send as event
summaries, and which to ignore. An event report is a detailed record containing information such as
the userid, command invoked, network address, and any related fields specific to a particular event.
An event summary reports the frequency and number of a particular event per some unit time. The
event summary could be useful in a real-time situation where limited specific information is needed
quickly (e.g., when an intrusion is suspected and more information is needed). ‘

The audit table is read by the AA upon initialization. The audit table has the structure of
username, event, report, and summary. The username field indicates which user’s activities are to
be audited. The event field indicates what event to audit. The report field is a boolean value that
indicates if an event report is to be sent to a Audit Manager. The summary field is also a boolean
value that indicates if an event summary is to be sent to the Audit Manager. Usually, the event,
and report fields are mutually exclusive, i.e., you either send an event report or an event summary
but not both. Finally the AM field indicates to which audit manager(s) this event should be
reported.

lati Crorifi rmati
The AA will use a language tailored to each O/S to perform translation of host-specific
information to a “virtual” format. The language will consist of a set of verbs and nouns which

express all the audit events to be used in the DAS. It is expected that this language will be
extensive in order to express all the required information with the desired level of granularity.

Using this approach, logon reports could be as simple as “Joe logged on at 1:30” or as complex
as “Sam, aliased to Joe, logged onto host Euler from host Kepler, whose internet address is
192.48.111.1, via the Internet gateway 192.5.8.1, on 26 June 1989 at 1:30 pm.” Each of these reports is
optimal for the information they contain. Each report relays all the information available from
their respective O/Ss without loss or overhead.

Responding to Commands from the AM :

- The audit information collected by a particular AA is determined by local security policy.
What subset of this information is sent to the AM is predetermined by the AA’s audit table.
Though this information would be periodically updated by the AM, it would be useful to have the
ability to request further information from the AA.

The DAS provides the AM the capability of controlling the operation of the AA through a
series of commands sent via the ADCS. These commands allow the AM to request increased
granularity of audit information on specific: users, files, system calls, resources, and node/terminal
traffic. Upon receipt of the commands the AA processes them, performs the necessary action and
provides a response. If the necessary action cannot be performed (e.g., user has logged off and no
gurthei' iencflormation can be obtained), a response indicating the inability to complete the task is
ormulated.

Audit Manager (AM)

The AM consists of three components: Audit Record Manager (ARM), Security Officer Interface
(SOD) and the Intrusion Detection System (IDS). The AM acts as a centralized control center for
audit information transmitted from distributed hosts. The three components of the AM work closely
together to provide these services: collection/correlation of audit information, interpretation of
audit information, and notification of the AA to take further action. Figure 4 shows the logical
interrelationships between the AM components.

Audit R 1M (ARM}

Upon receiving audit records from the AA, the ARM updates the audit database with the new
information. Some maintenance functions are provided automatically (e.g., archiving and deletion
of duplicate entries). Other functions are provided through a set of security officer queries entered

65

Security Officer

AUDIT MANAGER

/" T\
.

g
AUDIT RECORD
FILE,

Figure 4. Audit Manager Architecture

through the SOI (e.g.,) deletion by record, correlation of audit entries and record retrieval. The
ARM initiates transmission of audit table updates at specified time intervals. The ARM also has
the capability of sending audit table updates upon instruction from the SOL

A primary purpose of the audit database is to provide the necessary information for the IDS
for identifying suspicious activity. Querying of the audit database can be done through the IDS or
via the SOI and controlled by the ARM.

The ARM also provides correlation of incoming audit information from different hosts. This
correlated information is then given to the IDS for analysis. Correlation of information is important
for those networks where the same user utilizes different hosts such that a complete set of audit
information can be given to the IDS for analysis. :

The SOI provides an information display and command processing capability. The SOI
display will use a window structure to provide graphical display of detected anomalies, security of
the network and status of AM functions. A command capability will be provided for issuing
commands to the AA for additional audit information. A menu of frequently used commands will be
provided as well as a command line option. e R :

Infrusion Detection System (IDS)

The IDS to be used with the Distributed Audit System is not specified in this design, but
treated as a “black box” that uses the audit records maintained by the ARM to detect suspicious
activity. The IDS used for this function can be any of the current systems available. The
configuration or function of the IDS is independent of its use for this DAS design.

The DAS will provide audit records to the IDS for analysis of user activity. The security
officer will then be able to send a command to the AA requesting an additional granularity of
information on a particular user. For example, if the AM receives an event summary that user Joe
has used the telnet command 50 times in the past hour and this activity is outside of Joe’s user
profile (according to the IDS), the AM can send a message to the AA asking to see all the commands

66

issued by Joe. When the AA receives this request, it would modify the audit table to reflect the
request to monitor Joe more closely. : ,

However, if an IDS is used that does not perform real-time monitoring, the additional
information available will be limited to that already in the AA audit trail since the user will most
likely not be active. - ’

Audi Data C ication Service (ADCS)

The ADCS provides the necessary communication services for transporting messages between
AA and AM. To enable an AM to control the functions of an AA, services currently defined by CMIS
could be adapted for use in the ADCS. Using the network management services provided by the
ADCS, the AM could request the AA to provide additional audit records on a particular user or
event, change the events being audited, set/reset audit thresholds, and provide event reporting at
specified intervals. o

The automatic reporting of audit events to the AM from the AA could be accomplished using
the M-EVENT-REPORT service which is invoked by the AA at specified intervals.

Using the CMIS management services and CMIP protocol, the manager can direct the agent to
perform an operation on a managed object for which it is responsible. The following services would
be invoked by the AM to make requests of an AA:

M-GET: Used to request additional audit records from the AA for increased granularity
from existing audit records. : :
M-SET:. Used for setting/resetting AA audit thresholds from the AM.

M-ACTION: Used to increase collection of data by modifying an existing parameter
(e.g., change the system files to be audited).

M-CREATE: Used to request an AA to audit new events for a particular user.
M-DELETE: Used to request AA delete audit records, audit events or an audited user due
to changes in operation.

The ADCS must also provide the security services of data confidentiality, data integrity
during transmission and assured service of messages. '

: OTHER ISSUES AND FUTURE DIRECTIONS
As indicated in the overview section, many issues were considered in the DAS design and not
all of them can be thoroughly discussed here. To fully define the DAS design, it is necessary to
resolve some additional audit issues that are currently being researched. These include, but are not
limited to the security and technology issues outlined briefly below.
- Security issues related to the building of a DAS include:

o Assurance - both in the case of being assured that the AA is performing as it should
‘and in the case of being assured that the AM is secure from penetration;

. . Transmission security - the information flow from the AAs to the AMs and vice versa
must be secure; and

. Network Management Protocol Security - while work is ongoing in this area, the
idea is still fairly new.

Technology issues facing the successful implementation of a DAS include:

. Commercial Marketability;
. Anomaly Detection Capability - the testing of; and
. Time Stamping - addressing the delays related with heterogeneous hosts.

All of these issues can be addressed via prototyping, which is the next step in the process.

67

BIBLIOGRAPHY
11 DOD5200.28-STD, DOD Trusted Computer System Evaluation Criteria (TCSEC),
December 1985.

[2] International Organization for Standardization (ISO)/International Electro-
technical Commission (IEC) 9595, CMIS, 6 December 1989.

{31 International Organization for Standardization (ISO)/ International Electro-
technical Commission (IEC) 9596, CMIP, 6 December 1989.

[4] Internet Request For Comments (RFC) 1156, MIB, May 1990.

{51 Internet RFC 1155, Structure and Identification of Management Information for
TCP/IP-based Internet (SMI), May 1990.

[6] Internet RFC 1095, The Common Management Information Services and Protocol
over TCP/IP (CMOT), April 1989.

[71 NCSC-TG-001, Version 2, A Guide to Understanding Audit in Trusted Systems, 1
June 1988.

[81 NCSC-TG-005, Version 1, Trusted Network Interpretation, 31 July 1987.

[91 SPD1003.6, Draft 2, Security Interface for the Portable Operating System Interface
for Computer Environments, 4 June 1989.

[10] Auditing of Distributed Systems (Draft), SPARTA, Inc., 28 September 1990
[11] Survey of Sudit Trails and Audit Analysis Tools, SPARTA, Inc., 3 March 1989

68

-A PROJECT'S EXPERIENCE

David S. Crawford
Directorate of Security Operations
Department of National Defence
National Defence Headquarters
101 Colonel By Drive
Ottawa, Ontario, Canada K1A 0K2
(613) 993-6775

ABSTRACT The procurement option of using an untrusted DBMS on a TCB where both trusted system and
DBMS functionality is required is briefly discussed in Appendix B of the Trusted Database
Interpretation. This paper discusses an approach proposed for a Canadian Department of National
Defence project to design and implement several multilevel multiuser DBMS-based applications
using an untrusted DBMS on a B1 UNIX® TCB, and the design and operational constraints
imposed by this solution.

PART I - INTRODUCTION
1.0 BACKGROUND

Adequate segregation of sensitive information has historically been a serious impediment to the provision of
Information Technology services in support of defence activities. One Canadian Department of National Defence
project had concerns about the ability to provide a secure environment for applications and data on Base level
computer systems due to presence of both UNCLASSIFIED and CONFIDENTIAL information. Data analysis had
determined that information processed on these applications was, in certain instances, classified in isolation and in
aggregation. In addition, the number of sites involved resulted in significant cost implications if all equipment at all
sites was required to meet TEMPEST standards, since current Canadian standards require TEMPEST protection for
any classified processing.

These concemns led to the project to plan to operate in a Controlled (restricted form of multilevel) Security Mode of
Operation and the statement of a requirement for a B1 Trusted Computer Base, which was subsequently specified as
AT&T UNIX® System V/MLS (SV/MLS)!. By specifying a B Division TCB, the project intended to address
confidentiality concerns and to minimize the number of TEMPEST equipment required, since device labelling could
be used to restrict classified processing to only the limited number of TEMPEST devices attached to the TEMPEST
host computer. Other integrity concerns would be addressed by traditional software engineering practices.

The other early concern for the project was establishing the application software environment. Procurement of a

1 UNIX is a registered trade mark of AT&T

69

DBMS and 4GL environment was initiated and resulted in the procurement of ZIM®2, a DBMS and 4GL from
Sterling Software, for this project prior to determination of the TCB requirements.

The framework of untrusted DBMS and secure UNIX was established without considering whether or not the DBMS
could be effectively used on a multilevel operating system and how the DBMS based applications could be designed.
It now remained to determine how to design and implement DBMS based applications that would meet security

~ requirements without violating the TCB.

This paper discusses major design issues necessary to build multilevel applications within the project constraints and
additional considerations employed to provide additional protection.

2.0 PROJECT FRAMEWORK AND CONSTRAINTS

The nature of a multilevel application is that it more closely models an actual defence-related environment, where
information exists at various levels of sensitivity. More traditional data processing approaches, such as operating
" separate systems for various levels of sensitive information or treating all information at the highest level of
sensitivity held, are expensive both in terms of capital procurement costs and administrative overhead. From the
project perspective, operating with UNCLASSIFIED and CONFIDENTIAL information would require all project
equipment to meet TEMPEST requirements unless an acceptable multilevel solution could be implemented.

The project, as part of the requirements definition, had conducted extensive data modelling. Analysis of the
information model from a security perspective established that any tuple, in isolation, was UNCLASSIFIED.
However, specific tables were identified that were, in the aggregate, CONFIDENTIAL. These tables were relatively
static and managed in isolation by a central authority.

In addition, specific joined tables, in the aggregate, were CONFIDENTIAL. Project personnel were able to identify
- specific views, application screens and reports that contained classified information.

One area of considerable concern dealing with aggregation concerned the quantity at which the aggregate became
classified. The classic example on the project was the aggregation of persons, where an individual tuple was
UNCLASSIFIED and all persons belonging to a unit reveal operational capability and thus was CONFIDENTIAL.
The project solution was to establish an overly restrictive de-facto business rule that any set containing more than
one tuple was classified. ’ - "

Project applications would be developed and maintained by a central authority. Each application would be released to
sites as a turnkey application or subsequently as an update to an application. No capability to modify the
applications was to be provided to the field.

-DE FR
The specific conditions within the project and _the features available in the TCB and the DBMS led to the formulation

of two general problems and the associated approaches in building multilevel applications that relied on TCB
controls and the identification of additional controls that would compensate for acknowledged weaknesses.

2 ZIM is a registered trade mark of Sterling Software

70

3.0 SECURING DBMS TABLES - A FILE BASED APPROACH

The first general problem was controlling access to any data within a given DBMS table and was based on the .
existence of tables that contained CONFIDENTIAL information. The general approach taken to address this problem
was based on the use of the TCB mandatory access controls to control access to DBMS tables. This approach
involved the labelling of the O/S files containing the DBMS tables according to the highest level of sensmvny of
the DBMS table, thus controlling access to data through TCB controls.

The extensive data analysis on the project supported this approach since it was readily apparent that tuples within
tables could be assumed to be of a uniform sensitivity and table level sensitivity labelling would be sufficient. This
approach would have not be appropriate had tuples within tables been required to reflect differing levels of
sensitivity.

This approach was technically possible in the target environment since the ZIM DBMS managed each table as a
separate O/S file. The DBMS only opened those tables required and opened tables as READ-ONLY unless the table
was being updated. Errors in opening tables for WRITE access, such as are caused by opening files labelled ata
lower level, resulted in the SELECT operation returning a null set and a warning message issued by the DBMS.

One concern with this approach is that it may impose significant restrictions on functionality if update activities
spanning classification levels are necessary. In the case of this project, most tables were UNCLASSIFIED. The few
CONFIDENTIAL tables were relatively static, were not closely linked to its related UNCLASSIFIED tables and
could be maintained independent of the UNCLASSIFIED tables.

4.0 SECURING DBMS VIEWS - A PROCESS BASED APPROACH

The second general problem was controlling access to CONFIDENTIAL views of data that was UNCLASSIFIED in
isolation. The approach to address this problem was made somewhat obtuse since the ZIM DBMS did not directly
support a view mechanism. However the view mechanism was represented through each Selection and Pro_pecuon
operation in each ZIM program.

A means to address this problem was needed. A view was represented as the retrieval statement, such as a SELECT
statement, within a program. Each ZIM program existed as an O/S file and the DBMS required READ access to the
file in order to execute the program. By labelling each program with a sensitivity label corresponding to the highest
level of sensitivity of the views or aggregations being manipulated, the TCB was employed to control access to
views and aggregations. Access would be based on the sensitivity label of the user's process that invoked the
program, hence the term "process based" control. This meant that users operating at a level dominating the program
label could execute the program whereas users operating at a lower level would be unable to execute the program.
Based on this approach, it was accepted that labelling the means of producing views or aggregations would represent
a comparable functionality to labelling views.

This approach was supported by earlier work on the project to define screen and report formats and contents, This
work had included review for security relevant issues, such as display of classified information.

An additional refinement to this approach sought to employ mandatory controls to enforce some integrity issues by
using confidentiality labels as de-facto integrity labels. The labelling scheme was modified so that application
programs would be labelled at a <level - 1> in order to isolate the programs from the user processes. In the project
example, UNCLASSIFIED was established as level 30 and CONFIDENTIAL was level 180. Level 29 was created
for UNCLASSIFIED programs and level 179 was created for CONFIDENTIAL programs.

N

71

Leve] Name Level Number |Suffix Prompt Hardcopy
(numeric level)
Secret 210) SECRET SECRET
Application S 209 (ApplS) | Appl (S) Appl (S)
Confidential 180 © CONFIDENTIAL CONFIDENTIAL
Application C 179 (ApplC) | APPL (C) APPL (C)
Protected A 60 PA) PROTECTED A PROTECTED A
Application PA 59 (Appl PA) | APPL (PA) APPL (PA)
Unclassified 30 ()] UNCLASSIFIED UNCLASSIFIED
Application U 29 (Appl U) | APPL (U) APPL (U)
System 0 (TCB) SYSTEM SYSTEM

Figure 1: Project Labelling Hierarchy

5.0 ADDITIONAL CONTROLS

In considering a process based approach to managing access to data, the software engineer must consider both
controlled access and uncontrolled access o sensitive information. Controlled access to information is the access that
a user has through the application functionality and is a direct result of system design and implementation. This type
of access is defined in terms of application screens, reports and query facilities. Uncontrolled access is the access that
a user may have if free to specify how and what to retrieve. This type of access is typified by the use of ad-hoc query
languages or through the use of other software, such as system utilities. In addition, access to information also
includes device level considerations as there must be mechanisms in place to ensure that classified information is
routed to the appropriate devices and labelled appropriately.

Uncontrolled access to information poses the most immediate threat in the use of a process based approach to
building a multilevel application.. This is primarily due to the potential for uncontrolled aggregations permitted
through ad-hoc query facilities. The ability of a user to extemporaneously, repetitively and interactively define and
retrieve any possible combination or permutation of data existing on a system poses a horrendous burden of proof on
the software engineer that all possible data retrievals will be at the same level of sensitivity as the base data. In the
case of this project, it was already known that some aggregations of data were CONFIDENTIAL, even though these
combinations are based on data which is UNCLASSIFIED in isolation. This implies that access to the ad-hoc query
capability, if permitted, be restricted to known users with the appropriate clearances and permissions, to users
operating at the appropriate security level and to TEMPEST devices, if classified aggregates are possible.

There are two aspects to the ad-hoc query threat. There is the possible surreptitious access to underlying query
capability. This is represented by users who circumvent controls and use software they are otherwise unauthorized to
use. The second and more plausible threat is that of legitimate-access to an ad-hoc query capability. Since the
designer cannot control what the end user specifies as retrieval criteria, there are legitimate concerns that users could
intentionally or inadvertently retrieve sensitive aggregations while operating at inappropriate security levels, while
operating without the appropriate clearances or while using inappropriate (non-TEMPEST) devices.

The requirement to permit ad-hoc query can be very real for the applications designer as it will add considerable

functionality in terms of addressing unforeseen information requirements and may significantly reduce the number of
report generators required to be developed. The problem of controlling the contents of a query can only realistically

72

be addressed by application software to pre-screen each query, a daunting software development task. However if the
designer cannot control the contents of the query, he can control access to the means to query by denying
unauthorized users and devices access to the query engine.

The problem of actual or potential access to an ad-hoc query facility, if sensitive aggregations can exist, will require
that all applications be executed on a runtime engine. This requirement is necessary since it is imperative to
guarantee that inappropriate end users or devices cannot, either intentionally or inadvertently, access any ad-hoc query
facility. This assurance cannot be provided by application software. However, the operating system, since it is a
TCB, can provide this assurance.

The use of the TCB mechanism of mandatory access controls can be employed to permit selective access to the ad-
hoc query facility. The design of the ZIM engine assisted in that it did not use a client/server architecture but was
separately invoked by each process executing the file. It was therefore possible to restrict access to the ad-hoc query
facility by labelling the query runtime engine (executable file) at the CONFIDENTIAL level, which will make it
inaccessible to users operating at levels lower than CONFIDENTIAL. Provided that the UNCLASSIFIED
components of an application use the ZIM runtime engine, it was then possible to provide the functionality of ad-
hoc query for users operating at a CONFIDENTIAL level without compromising access to the means to create
classified aggregations.

One problem with this approach was that there were several smaller sites where more than one application would be
hosted on the same CPU. In order to address this problem, the use of mandatory access controls in the form of
application specific categories was established to enforce mandatory need to know separation of incompatible
communities of interest. Since an application that does not hold information which is sensitive in the aggregate
should not have restrictions placed on access to an ad-hoc query capability, such applications co-resident witha
second application holding information which is sensitive in the aggregate could employ mandatory access controls
in the form of application specific categories to differentiate between applications. Separate copies of the query
runtime engine, each labelled with the appropriate security level and application specific category, would exist on the
system. Users belonging to the second application would not be able to access the query runtime engine labelled for
the first application and would, provided that they are restricted to a runtime engine, be unable to gain access to an ad-
hoc query capability.

The requirement to ensure all classified or potentially classified information is routed to TEMPEST devices can be
effectively addressed if access to classified aggregations is restricted to users operating at an appropriate classified
level. SV/MLS supported device labelling whereby minimum and maximum clearance levels are assigned to devices,
such as terminals and printers, by the system or security administrator. Labeiling all non-TEMPEST terminals and
printers with a maximum level of UNCLASSIFIED and all TEMPEST devices with the maximum level of
CONFIDENTIAL provided assurances that potentially sensitive information could only be displayed or printed at
appropriate devices.

The need to label screens with appropriate sensitivity labels was identified as a requirement. Label processing on
SV/MLS required privileged system calls. The DBMS had a feature that enabled reading and writing to UNIX pipes.
This feature enabled a very small, simple piece of untrusted application code to be developed to read the stdout output
from the SV/MLS labels -u command, a trusted program that was part of the TCB, and extract the sensitivity
label of the process knowing that the label was correct. Actual screen labelling was not trusted but was to be
considered part of the normal software activity and subject to independent verification and validation.

Additional controls that were felt to be required included removing all access to the operating system interface
("prompt"). All project applications would deny access to the O/S prompt through the development of application
specific menus installed as default shell. In addition, the removal, imposition of restrictive labelling or restricted file
permissions on O/S shells and utilities would be carefully considered prior to system implementation. This was not

73

seen as being detrimental to the project since systems were to be considered turnkey application specific systems and
not general purpose ADP equipment.

"PART III - DBMS CONSIDERATIONS : ‘

A number of DBMS related issues were encountered in building a prototype multilevel application on ZIM under
SV/MLS. There are a number of areas where the SV/MLS environment impacts the use of ZIM and the application
design. These areas do.not, in general, represent problems which cannot be addressed but have approaches that solve,
avoid or work around the difficulties.

One SV/MLS feature that proved key to the ability to implement an untrusted DBMS on a secure UNIX platform
was secured, or multilevel directories. This feature was developed to address the problem caused by the widespread
use of common directories with global read/write access, such as /fmp, in UNIX. This feature enables the user to
reference the same directory from more than one level, while the operating system transparently redirects the user
into an appropriate subdirectory for the user's privilege (security) level. Untrusted subjects can reference the same
directory and be transparently redirected to a directory which is appropriate for the subject's privilege. Trusted
subjects, on the other hand, are not subject to this redirection and the entire directory structure is both visible and
accessible [1]. ”

6.0 DBMS WORK FILES

ZIM uses several working files (zimsetd, zimsett) on a per user session basis and which require READ/WRITE
access. The SV/MLS environment impacts this DBMS requirement in that each user will require read/write access to
their ZIM working files at all times and ZIM creates and maintains these files in the defined work directory. The
immediate problem is that these files will exist at the same security level as the process creating them, which poses
a problem in the case of an application requiring two or more security levels.

It was possible to set the working directory to a specific directory through the "work path <pathname>" entry in
the ZIM configuration file (config.zim). By creating the working directory as a multilevel directory, a user account
could be set up that would permit multilevel use of the DBMS.

7.0 DATA DICTIONARY

The ZIM data dictionary points to the location of all interpreted ZIM program files and all compiled ZIM programs
are located in the zim0001 .ws directory. ZIM, as of Release 3.03, required read/write access to the ZIM data
dictionary (zim0001). This was subsequently modified to READ/ONLY access as a result of the DBMS port to the
UNIX System V/MLS platform. The DBMS data dictionary did not now pose a problem in a SV/MLS environment
since this file was now accessible to any process existing at a dominating level.

8.0 TRANSACTION FILES

ZIM used, in support of database journalling, a pool of transaction files that are used by all users of a database.
Since these files are reused by all users of the database, the label associated with all journal files must be identical

_ with that of all users. If users operating at a range of more than one label access the database, the DBMS will fail to
function since journal files may not have identical labels. The location of zim transaction files (zimtrans.n) posed a
possible problem as these files normally reside in the database directory. However, the transaction files can be
redirected to another directory through the "audit path <pathname>" entry in the config.zim file. Once again, the
creative use of multi-level directories addressed this problem. By creating the transaction journalling directory as a
multilevel directory, a user account could be set up that would permit multilevel use of the DBMS.

74

http:zimfJOOJ.ws

Jusr2

f 1
testusrl " testbed
| | | l
‘'work programs transactions pseudo-db actual-db
| 1 I_'L'I I'—I_I | I—'I_l I
L30.1 L180.11 L30.1 L180.1 L30.1 L180.1 L30.1 L180.1 all
o © C) L) © o © dafgﬁbase
X es
zimsetd J | zim0001 zimtrans.01 zimlock.zim
zimsett ’ zimtrans.02 areas.zim
f zim0001.ws ¢ -
(all compiled
programs)

Note 1: This represents a multi-level directory to support 2 labelé. These labels would be an

UNCLASSIFIED label (L30.1) and a CONFIDENTIAL label (L180.1) -

Home directory: fusr2/testusrl

configzim: database path fusr2/testbed/pseudo-db
work path fusr2/testusrl/work =
audit path /usr2/testbed/transactions
audit updates yes '

areas.zim: 0001 /usr2/testbed/actual-db

0002 /fusr2ftestbed/actual-db

Figure 2: Sample Directory Structure - |

75

http:zimtrans.02
http:zimtrans.Ol
http:zimOOOl.ws

9.0 CONCURRENCY CONTROLS - THE MULTIUSER LOCK FILE .

A review of multi-user ZIM under UNIX System V indicated that the concurrency control mechanism would be a
problem under SV/MLS. This is a multi-user locking scheme based on all processes having read/write access to the
zimlock.zim file, which is resident in the database directory. A suitable mechanism within the DBMS was needed
but this was not a problem which could be addressed within the scope of the project.

The problem associated with multi-user ZIM and the zimlock.zim file could be addressed, in terms of a "work-
around”, through the use of a multilevel database directory. This directory would contain subdirectories for each level
associated with the application and each subdirectory would contain a separate copy of the lock file. A ZIM
configuration file, the areas.zim file, can be used to point to specific directories for specific tables on a table by table
basis. This file would be used in this scenario to point to each actual ZIM database table file, which would be
located in conventional directories.

The issue of a lack of a guaranteed rereadability was tested. The only problem that was encountered was when the
following scenario occurred:

a. aset was selected by a CONFIDENTIAL process;

b. an UNCLASSIFIED process updated a table that was part of the set selected by the CONFIDENTIAL
process; and

c. the CONFIDENTIAL process attempted to process the previously selected set.

The ZIM DBMS issued several error messages related to pointer and read errors to the CONFIDENTIAL process
since file pointers in the temporary working file were invalid. These error messages could be trapped in the
application program and the program could be reexecuted.

This approach is not a solution as it will not guarantee rereadability and will not ensure integrity across security
levels since separate copies of the lock file exist for each level. The ideal solution to this problem would be the
procurement of a true secure DBMS but this course of action would require new procurement actions and would cause
. significant project delays. It was accepted by project management that the loss of guaranteed rercadability for
processes reading tables from lower sensitivity levels was an acceptable loss of functionality, given the
- predominantly read-only nature of the of the classified components of the applications within the project.

10.0 ZIM PROGRAMS

There are two aspects to the manner in which ZIM uses programs which assist in the building of a multilevel
application. The first, the labelling of specific program files, has already been discussed. In the context of the ZIM
DBMS, the inability of the DBMS to read a program will result in a warning message, which can be disable, and
continued processing.

The second aspect is the possibility of building separate applications based on the sensitivity level of a given user.
The ZIM data dictionary points to the location of all interpreted ZIM program files. All compiled ZIM programs are
located in the zim0001 .ws directory. It is possible to put the application programs in a multilevel directory so that a
complete application is present for each level of sensitivity of the application. To the ordinary user, there will
appear to be only one program directory. The filenames referenced in the ZIM data dictionary will, if they refer to
multilevel directories, be interpreted by the operating system to point to the appropriate directory for the user's
current security level. Document filenames, defined as absolute path references, will always point to the appropriate
directory since the ZIM data dictionary will reference the appropriate multilevel directory under SV/MLS.

76

http:zimOOOJ.ws

PART IV - CONCLUSIONS

In conclusion, this paper outlines, in terms of a specific project, how multilevel multiuser applications can be
developed for an untrusted DBMS on a TCB and use the controls implicit in the TCB. The use of features implicit
in UNIX SV/MLS can assist in the use of an untrusted DBMS. The specific case of the ZIM DBMS and its
constraints, within the operational context of a project, demonstrate a specific means of implementing a multiuser
multilevel application using untrusted DBMS on a TCB.

REFERENCES

[1] "System V/MLS 1.1.1 Trusted Facility Manual”, AT&T, 13 June 1989.

77

' BUILDING A MULTI-LEVEL SECURE TCP/IP

Deborah A. Futcher
The Wollongong Group -
2010 Corporate Ridge Dr
Suite 550, McLean, VA 22102

Ron L. Sharp
AT&T Bell Laboratories
Rm 14E-214, 1 Whippany Rd
Whippany, NJ 07981

Brian K. Yasaki -
The Wollongong Group
2010 Corporate Ridge Dr
Suite 550, McLean, VA 22102

ABSTRACT

Thls paper describes changes made to a networking protocol in order to make it "trusted” in a mulu-level
secure operating system. The protocols are the standards used by the Internet; the Transmission Control
Protocol and the Internet Protocol (TCP/IP). These protocols are currently used in many heterogeneous
networking environments. This paper is based on actual work being done by AT&T Bell Laboratones
and The Wollongong Group in the joint design and development of a secure TCP/IP. \

‘ INTRODUCTION

The Transmission Control Protocol .(TCP) and the Internet Protocol (IP) were originally developed for the
ARPANET. Together they comprise one of the most popular transport and network layer protocol suites in use
today, particularly within the U.S. Department of Defense (DOD). Since TCP is always run on top of IP the two
are commonly referred to as- TCP/IP. Initially TCP/IP provided no security services except for reliable delivery
and integrity checksums. A sensitivity label was added as a possible option in the IP datagram header to
enhance security. Since Multi-Level Secure (MLS) systems and networks are just now becoming available, most
implementations of TCP/IP do not include this IP option.

Just adding an IP security label to each IP datagram does not provide enough security information for an MLS
system, Many conditions must be met when importing information into an MLS system. Is the data labeled?
Can the label be trusted to be correct? Is the host authorized to handle the level of sensitivity represented by the
~label? These questlons and others must be answered prior to bringing networlung data (ie., IP datagrams) into
an MLS host or passing it on to another network.

AT&T Bell Laboratories and Wollongong have teamed up to develop a security enhanced TCP/IP. This new
TCP/IP, referred to as MLS/TCP, is fully compatible with existing TCP/IP implementations. Additional features
have been added to provide network labeling and other security services in concert with System V/MLS.[!
System V/MLS is a multi-level secure enhancement to. AT&T’s System V UNIX® operating system. System
V/MLS received a B1 rating from the National Computer Security Center in September 1989.

In addressing the problem of how to add security to a TCP/IP protocol stack, we were concerned with three
non-security requirements. The first was that the specifications for the networking protocols could not be
modified. This would ensure that the multi-level host would still be interoperable with all the other TCP/IP
implementations. Second was that the MLS/TCP host should be able to remain trusted in an environment where
both non-secure and multi-level secure hosts were part of the network. This would provide a transition path from
a partially secure network (mixture of trusted and non-trusted hosts) to a completely multi-level secure network.
The third requirement was that we wanted current applications to be reused without any changes (i.e., be binary

78

compatible). This would allow "commercial off the shelf’ (COTS) software to still be used. This requirement
was later limited to those applications that did not require "root” privileges.! Since "root" privilege implies trust,
we did not believe that having to modify a trusted application to recognize the security policy was excessive.

This paper provides some of the insights gained and lessons learned while enhancing TCP/IP to work in an MLS
environment. Enhancements to the TCP/IP implementation are described. Two types of IP labels are supported
and discussed in the Packet Labeling section. Changes to the route selection mechanism are also discussed. A
decision was made to support trusted and untrusted application level servers and the impact to these servers is
shown. The Network Interface section discusses the changes required to interface to trusted and untrusted
networks. As stated earler, some changes were required to support trusted applications. A section is included
which describes some of these changes. Finally, the audltlng requirements for a multi-level secure TCP/IP are
reviewed. ,

MLS REQUIREMENTS

Introducing TCP/IP into an MLS environment places additional requirements on the implementation.
Modifications are needed to provide the additional security features required to protect the data from compromise
or corruption. In addition, a careful examination of the TCP/IP software must be performed to ensure that it
meets the assurance requirements for an MLS system.

One of the most important requirements is the added trust that is required. Most TCP/IPs are implemented in the
kemel® and thus have access to all of the kemel data structures. A malicious implementation of TCP/IP could
violate the security policy by manipulating critical operating system data. Of course this threat is not unique to
MLS hosts or even to UNIX hosts. Untrusted software in an operating system can render any secunty control
useless; however, on an MLS host the potential damage posed by such a threat is even greater.

All data in an MLS system must be labeled. Without a label the host can not make access control decisions.
There must be a strong link between the data and its associated label. The Trusted Network Interpretation?
("Red Book™) has the following requirement concerning network labeling:

"When the TCB exports or imports an object over a multilevel communications channel, the protocol
used on that channel shall provide for the unambiguous pairing between the sensmvxty labels and the
associated information that is sent or received.”

There is no one standard format for a sensitivity label. In addition, there are many' dlfferent representatlons of
the fields within a label. Therefore a robust implementation of an MLS TCP/IP must understand and be able to
map between these multiple formats and representations. ,

Most implementations of TCP/IP do not handle labels. They are used on single-level networks where there is no
need for labeling. Backward compatibility requirements dictate that the MLS host should be able to connect to
such a single level network, accept data and associate the proper label with this data.

Networks connected to an MLS host may be accredited to handle multiple labels or only one label. The TCP/IP
must ensure that no data is sent to a network that is not authorized for that data. In addmon, all mcommg data
must be within the sensitivity range authorized for the host. :

As with any protocol, TCP/IP buffers data until the receiving host can receive it or until the user is ready to read
it. It is critical that the MLS TCP/IP maintain strict separatxon of thxs data msxde the kernel allowmg no
accidental mixing of data of two different sensitivities.

All security relevant events must be audited. This includes successful and failed connections as well as any
change in security parameters. Since the operating system may never see a failed connection, such auditing must
be performed within TCP/IP.

1. ‘The concept of "root” privilege in the UNIX environment means that the process has the capability to bypass most security checks.

2. The kemel is the pant of the UNIX operating system that is sepnmed from the user application by a dnsunct address space. It handles
access requests to all system resources such a3 1erminals, disks, printers, and networks

79

PACKET LABELING

IP implements part of the network layer of the Open Systems Interconnection (OSI) Reference Model. IP is
based on the datagram model. In this model, each data unit is treated as an isolated entity. All the information,
such as a sensitivity label, necessary to transmit the data unit through the network is contained within the packet.
IP datagrams contain a header which includes the source and destination addresses for the datagram and any
other information that the network may require in order to transport the datagram from source to destination.
Additional information can be included in the header in the form of IP options. The total amount of space that
can be used by all the IP options sent in a datagram is limited to forty octets.

It is easy to see that a sensitivity label represented by human-readable ASCII characters could exceed forty octets
in length. Thus security related information that is transmitted as an IP option is usually represented by numbers
and not letters. Another reason for using numbers instead of letters is that label comparing is less costly. The
computer resources required to compare two numbers is significantly less than that used when comparing two
character strings.

Current IP Security Options

The Military Standard 1777 (MIL-STD 1777) specifies the Internet Protocol. Included as part of that document
is a section on the defined IP options. There is a definition for an IP Security Option which includes fields for a
security level, compartments, handling restrictions and transmission control code. Request For Comment 1038
(RFC 1038), currently in draft form, specifies changes to MIL-STD 1777 regarding two IP security options. The
options are referred to as the "Basic Security Option" (BSO) and the "Extended Security Option” (ESO).

Basic Security Option

RFC 1038 has the following to say about the purpose of the DOD Basic Security Option.

"This option identifies the U.S. security level to which the datagram is to be protected, and the
accrediting authorities whose protection rules apply to each datagram.”

The BSO defines four security levels: "Top Secret”, "Secret”, "Confidential” and "Unclassified.” It also identifies
four accrediting authorities. The BSO option reuses the option type 130 which changes the definition of the
option as defined by MIL-STD 1777. MLS/TCP supports the BSO and allows the security administrator to
define the meanings of the security levels.

Extended Security Option

There were concerns that the BSO did not provide‘all of the label information that was needed. In response to
this concern a flexible security option was created that allows a recognized authority to define the contents of the
option. RFC 1038 specifies the DOD Extended Security Option as follows:

"This option permits additional security related information, beyond that present in the Basic Security
Option, to be supplied in an IP datagram to meet the needs of registered authorities. If this option is
required by an authority for a specific system, it must be specified explicitly in any Request for
Proposal”.
The ESO uses IP option type 133. See reference ! for a detailed definition of each option. Due to the largely
undefined nature of the ESO, we have chosen not to implement this option in the first release of our product.

Commercial IP Security Option

The Trusted Systems Interoperability Group (TSIG) 2 has proposed a new IP security option that better meets the

3. TSIG is composed of a group of vendors developing secure operating systems. They are working together to solve interoperability issues
with respect to MLS networking.

80

requirements of transmitting security related information in an IP option in an open systems environment. The
BSO and ESO are administered by the U.S. Department of Defense and meet defense department requirements.
These requirements do not always satisfy those found in the commercial or open systems environments.

The Commercial IP Security Option (CIPSO) permits security related information to be passed between systems
within a single Domain of Interpretation (DOI). A DOI is a collection of systems which agree on the meaning of
particular values in the security option and which have a common security policy. The format of the CIPSO
option is shown below. '

8 bits 8bits 32 bits 8 bits 8 bits ? bits 8 bits 8 bits ? bits

1-
134 | 6-40 | oxfeeeeeer 1-255| 1-34 ? |---|1-255| 1-34 ?
option option .. tag info :r ta info
number length DOI tagid jength field tag id lenith field

The option length is the total length of the CIPSO option including the number and length fields. The Domain
of Interpretation field is 4 octets in length.. The remainder of the option is variable in length and contains a
stream of tags. These tags are used to transmit additional security information associated with the datagram.
TSIG has currently defined two tag types.

The first tag type is referred to as the "bit-mapped” tag type. Its format is shown below.

8 bits 8 bits 8 bits 0 - 248 bits
1 3-34 | 0-255 |bitl : .-+ : bit248

tag type tag length level bit map of categories

The tag type is equal to 1. The tag length is the total number of octets including the tag type and length fields.
The bit map can range from 0 to 31 octets in length. If bit N is a 1, then category N (as defined by the DOI) is
part of the sensitivity label for the datagram. If bit N is a 0, then that category is not part of the label.

The second tag type is referred to as the -"enumerated” tag type. It is used to describe large but sparsely
populated sets of categories. Its format is shown below.

8 bits 8 bits 8 bits 8 bits 16 bits 16 bits
2 4-34 0-255 [0-255 | catl | --- | catl5
tag type tag length level flags list of categories

The tag type is equal to 2. The tag length includes the tag type and length fields. The flags field is interpreted
as follows. If the least significant bit is a 0, then all the enumerated categories are part of the sensitivity label.
If the bit is a 1, then all categories defined by the DOI are set excluding the ones listed. All other bits in the flag
field are reserved for future use. Each enumerated category is 2 octets in length. This allows from 0 to 15
enumerated categories per CIPSO.

With the backwards compatibility requirement, MLS/TCP allows both BSO and CIPSO security options to be
used. They can be used in any combination. The security administrator for the host determines the configuration
of which IP security options to use for each network interface.

Label Mapging

The method of converting a human-readable sensitivity label to machine representation is a local issue. Each
host is free to use any conversion it wants. Most implementations just create a mapping table where the human-
readable security attribute is converted to a number. An entry is made in the table for every legal value for each
security attribute defined in the host.

81

The use of numbers to repreéent security attributes introduces a new problem when used in the environment of
networked computers. It is now necessary for each host that communicates with another host to use the same

_security attribute to number mapping conversion. One solution is that each host has a mapping table for every

host it wishes to communicate with, This introduces the problem of maintaining a large number of mapping

-tables when the number of hosts grows large. Another solution is to have each host connected to the network

use the same global mapping table. But this solution implies that all the hosts belong to the same security

domain. These solutions represeat the two extreme cases.

The CIPSO option avoids this problem through the use of a flexible yet manageable solution. In most situations,

~when a host joins a network, it will communicate with a set of hosts with which it has the requirement to share
_information. Since the set of hosts will be sharing information, the security policy regarding the protection of the

information should be the same. Thus for each different group of hosts sharing information, a new Domain. of
Interpretation (DOI) is created. If all the groups share the same security policy, only one DOI is required. The
DOI in the CIPSO option is then used to point to a mapping table that is common to all the hosts using the same
DOI or within the same security domain of interpretation. MLS/TCP can support multiple DOIs for hosts that

. belong to more than one security domain such as gateways.

'ROUTING

When a host is connected to a network, the security policy may state that data labeled at a certain secuﬁty level
is restricted to a particular path it takes through the network. IP normally chooses the least cost path, where cost
is the number of hops that an IP datagram would traverse. TCP uses the datagram service provided by IP. TCP

-provides for the reliable delivery of a stream . of data from source to destination. By using the services of . IP,

TCP will gain some of the datagram capabilities. One such capability is that IP will chose the path that an IP

, datagram takes dependent upon the current conditions in the underlying network. Thus if one gateway along a

path goes down, IP could detect the problem and choose to route IP datagrams through a different path. Figure 1
depicts this situation. If host A wishes to communicate with Host B Secret information then it must use Net 1 or
Net 3. If the routing policy does not take labels into account then the connection could be set up through Net 2.
TCP will have provided the service requested but the security policy will be violated.

Thus, the algorithm that IP uses to determine the path that the datagram takes required modifications to make it

cognizant of sensitivity labels. This change required that each physical network interface connected to the host
be assigned a range of sensitivity labels. IP compares the label of the packet to be sent to the network label

range. If the packet label is not within this range then that path will not be chosen.

Net 1
Secret
%
7
MLS/TCP Net 2 | MLS/TCP
HOST | T Public [HOST
A N N__ B

Net 3
Secret

N

Figure 1: Multi-Level Secure Routing

82

NETWORK SERVERS

Network applications are sometimes described by a client/server model. = The client and server together
implement a defined application layer protocol. The client is the application that is requesting some: service
while the server is the application providing that service. The three most widely known network applications are
the File Transfer Protocol (FTP), Simple Mail Transfer Protocol (SMTP) and the TELNET Protocol (TELNET).

Servers normally accept connections from any host. Each service has assigned to it a unique "well known" port
number. Using this port number, the server will notify TCP that it is willing to accept any connection requests
to its port number. This is commonly called a "passive open." When a server posts a passive open, the TCP
state for that connection is in the "LISTEN" state. Thus servers may also be called "listeners." The client
application knows what service it is requesting on behalf of a user. With this information, it can look up the
corresponding well known port number for that service. - The client then makes an "active open" to the server's
well known port number. The server gets notification from TCP that a client is requesung a network connection.
The server can accept or reject the request. If accepted, the network connectmn is established and the client and
server can then communicate. Server processes will normally spawn* a child process and it is the child process
that will perform the work requested by the client. The parent process is then free to go back to listening for
new connection requests. '

Uhtrusted Servers

When any server process requests that a passive open be performed, the networking software checks to see if the
process has "root" privileges.’ If it does not, the networking software stores the sensitivity label of the server
process as the "session label." This action is taken without any assistance from the server process. The session
label is used to restrict all incoming connections to the server to have the same sensmvxty label as the unlrusted
server process.

When a client connection request comes in, the networking software checks to see if the session label is set. If
so, then a label compare of the sensitivity label from the IP datagram of the i incoming connection request is made
against the session label. If the labels are equivalent, then the rest of the processing for connection establishment
is performed. - If not equivalent, the client’s connection request is rejected. This allows untrusted servers to be
“supported without modification while restricting their operation to a single label.

There is a generic problemi with untrusted servers; any user of the system has the capability to crea_te an untrusted

server. This allows the import/export of data, albeit at a single level, without any identification or authentication

processing being performed. We solved this problem by restricting all server executables to be stored at the
"system low" level, a level at which normal users can not create executables.

Trusted Servers

When a process with "root" privileges requests a passive open, the networking software does not fill in the
session label. When a client connection request comes in, the networking software detects that there is no
session label set for the associated listener. The networking software then checks the sensitivity label of the
incoming IP datagram to make sure that it is within a range of values that the security administrator has set for
the host. If within range, the networking software notifies the server of the connection request. If the server
accepts the connection request, the session label for the new connection is set to the label of the incoming IP
datagram. This allows the trusted server to know the sensitivity label of the client process.

The server process spawns a child process. This child‘process still has "root" privileges. Before the child execs
a program that will provide the service, it must perform a few tasks. First it must retrieve the session label from

4. In the UNIX environment, 2 new process is "spawned” by executing the system call "fork." This creates a new process that is an exact
copy of the original process. It has the same security privileges and has access to all the same open files. The new process.can then use
the system call "exec” which overlays the current running process with another program if it wants to run a different program.

5. In a MLS UNIX environment an "wntrusted server,” is any server process that does not have "root" privileges.

83

TCP and change the process sensitivity label to the session label. The child process must then change its User
Identification (uid)® from "root” to another uid thus removing its "trusted” capability. Only after the child
process has removed its "trusted” capability can the child process exec the program that will provide the
requested service. In this way the program that provides the actual service does not need to be trusted. The uid
that is selected can be predetermined based on the service the server is providing. For example if the server is
providing the Simple Mail Transfer Protocol service, the uid is that of the "mail” dacmon. Other services require
that some other authentication mechanism be performed. For example the TELNET server relies on the supphed
foinflogin’ program after setting up a terminal environment.

There maybe cases when a server needs to be trusted in order to gain access to other system resources but it only
wants. t0 accept network connections at a specific session label. A trusted server is allowed to make a call o
TCP that will set the session label. Thus when a client connection request is received, the networking software
detects that the session label is set and processes the request as if the server were untrusted.

MODIFIED NETWORK APPLICATIONS

It was previously mentioned that the three most widely known network applications are implementations of the
TELNET, FTP and SMTP protocols. This section goes into more detail on how the implementation of each
network application had to be modified to be supported under MLS/TCP.

TELNET

The TELNET client application required no changes. This is due to the fact that the kernel TCP software can
obtain security relevant information about the user of a client TELNET without any assistance from the TELNET
program. The TELNET server also required no changes. The reason for this is that server TELNET is
implemented in the kernel and it ultimately depends upon the /bin/login trusted program to perform the UNIX
login processing. '

FTP

The FTP client application required no modification. . In order to support the server FTP program, two changes
_were required. First a trusted front-end to server FTP was created. This trusted program performed the
identification and authentication portion of the FTP protocol. The FTP protocol for identification and
authentication requires a user name and the password associated with the user name. After checking that the user
name and password are valid, the trusted front-end makes a call to TCP to retrieve the session label. A check is
then made to sce if the user name has been authorized to process information at that session label. If not, an
error is returned to the client FTP and the network connection is closed. If allowed, the trusted front-end
changes the security attributes of the process to match those of the session label. It then execs the "original"
FTP server program. The original "untrusted” FTP server program has been modified to disable the user name
and password commands. The original FTP server remains an untrusted program that responds to the commands
requested by the FTP client. The untrusted server FTP process can only access correctly labéled data because of
the MAC and DAC checks performed by System V/MLS.

SMTP

The SMTP protocol application presented a different set of security considerations due to the fact that it is most *
often implemented and accessed on behalf of the user via the general internet mail routing application known as
"sendmail”. As a stand-alone protocol specification, SMTP as its name implies provides for a very simple set of
handshaking and etiquette requirements. In contrast, the sendmail application is a complicated program which
integrates the SMTP protocol implementation with such functions as mail collection, routing and queuing.

6. UNIX assigns a user identification number 1o each user account. The "root” account has always used the uid of 0. Thus & non-zero nid
implies some user that does not have the trust associated with "root.”

7. foinflogin is a trusted program used by UNIX to perform identification and authentication.

84

http:untrust.ed
http:untrust.ed

On the client side, no real modifications were necessary for the main processing path. A user wishing to send
mail to a remote system uses the MLS mail interface program which in turmn invokes sendmail to route the
message to the remote destination. If sendmail determines that the SMTP protocol should be used to
accomplish this task, it attempts to establish the connection. The networking software will automatically set the
session label to the user’s current operating level. Assuming the connection can be established and their are no
violations of the "simple" protocol requirements, the message is delivered to the remote system and stored in a
user mailbox file whose label matches that of the sending user. The problem arises when something goes wrong
in this scenario such as the inability to connect to the remote system. In this case, sendmail queues the message
for later delivery attempts. Queue processing in an MLS environment adds an additional complication to the
sendmail application. The solution was incorporated into the trusted server section of the program.

Most of the changes made to the server side of this application in support of the MLS/TCP environment are
similar to those already described for the other trusted server applications. Specificly, when invoked as a server,
sendmail first verifies that it is executing with "root” privileges. If so, it sets up a trusted SMTP listener without
an associated session label set. Subsequent attempts by client SMTP applications to establish connections are
handled by spawning new processes which set the label of the server to match that of the incoming connection
and the uid of the process to the uid of the mail daemon before continuing with the normal SMTP transfer
function. This differs somewhat from the "identification and authentication” process described for the FTP and
TELNET protocol applications as the uid is automatically set to the uid of the mail daemon. However, since
mail accepted by sendmail’s SMTP server will be delivered to the local user at the level at which the sending
user invoked SMTP, if the local user is not authorized to operate at that level, he will not have access to the
message. In fact, the MLS mail interface program will not even notify him that it exists.

As mentioned above, a second change to the sendmail server software was necessary to handle the queue
processing. Standard sendmail implementations spawn a new process which retains "root” privileges to
periodically examine the mail queue and attempt to deliver any accumulated messages. The server was modified
to create a separate process for each level at which mail capability has been authorized and set the label of each
process to match. The user id of all of these processes is set to the mail user ID. This solution was chosen
because it reduced the amount of processing that required root privileges while minimizing the changes to the
existing sendmail implementation.

NETWORK INTERFACE

One of the strengths of TCP/IP is that it can connect to many different types of networks. Some of the common
types are 802.3 (Ethernet), token ring, X.25, or even a serial RS232 line. A secure TCP/IP can protect the data
only while it is in the host. Once it leaves the host it is the responsibility of the network to protect it. For many
Local Area Networks (LANs) this protection is just physical control of the communications media (the copper
wire). For other networks there are devices that provide special security services such as encryption or
mandatory access control. Each of these types of network interfaces have unique requirements pertaining to
security. A secure TCP/IP should be configurable to handle the needs or shortcomings of these networks.

Trusted Networks

Within the context of this paper, a trusted network is one in which the security parameters provided are
guaranteed to be accurate. These parameters may be provided by a network device or by the host at the other
end of the connection. It must not be possible for a non-trusted host or user to be able to interject false security
parameters into a trusted network.

One example of a trusted network is the Verdix VSLAN network.® The security parameters (i.e., the sensitivity
label) for each 802.3 packet is provided by a network interface card. We have modified an 802.3 network driver
to accept the VSLAN label and convert it to a CIPSO or BSO label. The label and the data packet is then passed
up to IP. IP attaches the label to the packet and sends it up to TCP or out another network interface depending

8. The VSLAN network was evaluated by the National Computer Security Center and has received a B2 rating.

85

on the IP destination address.

Another example of a trusted network is Blacker. The Blacker Front End (BFE) is a device that provides data
confidentiality through the use of high-grade encryption. Blacker uses BSO to obtain the security level of data
and performs access control based on this label. No additional changes were required to support Blacker.

A simple Ethemet network can be a trusted network if all hosts on the network are trusted. The level of trust
provided by this network is equal to the level of trust of the least secure host on the network. For this network,
the security parameters are passed in the TCP/IP protocol and a separate security interface is not required.

Untrusted Networks

Most networks in use today offer no security services and any security parameters provided by these networks
can not be trusted. We could neqmre MLS hosts to only connect to MLS networks, however that would not be
practical. Our solution was to assign a fixed set of security attributes to these networks. These attributes are
provided by the security administrator of the MLS host and reflect the security attributes associated with the
untrusted network.

As mentioned earlier, all data coming into an MLS host must have a label. Datagrams from untrusted networks
should not contain a label. If a label is present in the datagram then it can not be trusted. Our solution is to
insert a CIPSO or BSO label into the IP datagram as it enters the MLS host. If a sensitivity label is already
present in the datagram it is overwritten with the new label. This sensitivity label is obtained from the fixed set
of security attributes assigned to that network. Figure 2 illustrates the function of a MLS/TCP gateway between
an untrusted, non-labeled network and a trusted, MLS labeled network. If the label was not added then hosts on
the untrusted network could not communicate with hosts on the MLS network where a label is required.

For packets going from the MLS host to the untrusted network we provide the capability to "strip” out the
CIPSO or BSO label from the datagram. Some of the hosts on the untrusted network may not be able to handle
an unrecognized IP option and may crash the host.

Ulll,tl';.)lls_ted L(':I;LtS/TCP MLS
uplic atewa .
‘Network 3y |, Network

Figure 2: Label Insertion and Stripping

AUDITING

All security relevant events must be audited. A security relevant event is any action taken by a host or network
which provides a user with access to a resource or that effects a change to security information. The information
included in an audit record must be sufficient to determine the characteristics of the access or change. Below is
a list of some of the events that are recorded.

1. All failed or successful connections to the host
2. Incoming packet with a label outside of the host label range

3. Outgoing connection refused due to no route found that meets security requirements for the level of the
requested connection

Label on incoming packet contains a security level not recognized
CIPSO DOI on incoming connection not supported by the host
TCP connection closed

86

These new audit records are. mcluded in the host audxt record. Some TCP/IP events could generate a large
amount of audit records and overwhelm' the system. For example, all audit events at the packet level could
generate an audit record for every packet associated with a particular connection. For this reason we have
included the capability to allow the security admxmstmtor to turn off the recording of any event that the

~ administrator determines is not needed.
* An argument could be made that all packets received should be audited. As mentioned above this would quickly

consume all the disk space on the system. Since TCP is a connection oriénted protocol, we feel that just auditing
the success or failure of the connection is enough. The operation of connecting to a remote host using TCP is
analogous to opening a file. The Orange Book!* requires the file open to be audited, but does not require

- auditing of the individual reads or writes. Likewise auditing the closing of a file is also required and TCP audits

the closing of each connection. UDP (User Datagram Protocol) is a connectionless protocol and audit of each

,packet would probably be required. The networking software does not currently implement a trusted UDP but

one is planned for a later release.

ASSOCIATION WITH THE TNI

The Trusted Network Interpretation (TNI), also known as the "Red Book" describes the requirements for MLS
networks. It recognizes that most networks are made up of many components each of which may provide a
different security service. For this reason the TNI breaks the requirements for a secure network into four distinct
areas. These areas are Identification and Authentication (I&A), Mandatory Access Control (MAC), Discretionary
Access Control (DAC), and Audit. The implementation described in this paper is designed and implemented to
satisfy the MAC and Audit requirements. It is expected that the DAC and I&A requirements are satisfied at a
higher layer in the protocol stack.

CONCLUSIONS '

Despite the complicated nature of the MLS requirements, the design and implementation of this project went very
smoothly. TCP/IP already embodied many important concepts such as data separation and integrity. The
ﬂexibxhty of the options 'in the IP header was. a particularly critical ingredient. Many of the changes involved
hooks in the TCP/IP that called new operatmg system routmes There were no major rewrites of. TCP/IP or
UNIX code.

Most of the new capabilities have been embedded in the internal workings. of TCP/[P and can not be seen outside
of the host or even by the user. The only change seen outside of the host is the newly supported IP security
labels and those can be stripped if not needed. The user application interface to TCP/IP has not been changed so
all applications should continue to operate. Some additional applications interface features were added to support
trusted applications that understood labeling.

REFERENCES
1. C.W. Flink and J.D. Weiss, "System V/MLS Labeling and Mandatory Poliey Alternatives”, Proceedings of
the 1989 Winter USENIX Conference, February, 1989.

2. National Computer Security Center, "Trusted Network Interpretation of the Trusted Computer System
Evaluation Criteria”, NCSC-TG-005, 31 July 1987

3. M. St. Johns, "Draft Revised IP Seturity Option”, Request For Comments 1038, January 1988.

-4. Department - of Defense Standard 5200.28- STD "Department of Defense Trusted Computer System
- Evaluation Criteria", December 1985 ‘

k8"7

THE CASCADE PROBLEM: GRAPH THEORY CAN HELP

John A. Fitch, lli! and Lance J. Hoffman
Départment of Electrical Engineering and Computer Science
' George Washington University
Washington D.C. 20052

Abstract :

This paper presents a new approach, based on finding shortest paths in a graph, for solving the
cascade problem. The result is an efficient (O(N®)) algorithm, where N is the number of security domains
in the network. The paper provides background on the cascade problem, generalizes the problem from
its traditional military roots, and then applies the shortest path technique to a military example. The
shortest path approach appears quite general and provides a method based on established mathematics
for evaluating network security.

Keywords: Cascade problem, graph theory, shortest path, network security, risk analysis.

1. The Cascade Problem

The cascade problem was first defined and discussed in{14]. The importance of the cascade problem
is that it demonstrates how networking systems together may produce unacceptable risks even though
the individual systems in the network are secure and reasonable interconnection rules are followed.
"Reasonable interconnection rules” means that the network connections comply with security policy and
are secure from external attacks such as wiretapping. This paper provides background information on the
cascade problem, generalizes the problem from its traditional military roots, and applies a resource-
constrained shortest path technique to a military example. The result is a new, efficient (O(N3)) algorithm,
where N is the number of security domains in the network, for determining if a network has a cascade
problem. This graph-theoretic approach appears quite general and provides a method based on
established mathematics for evaluating network security.

1.1. The General Cascade Problem

The cascade problem is described in [14, 8]. Both references focus on cascading in military networks
where both security risk assessment and system security evaluation use Defense Department standards
and guidelines. This section describes the cascade problem in more general terms, provides the
background information to understand the types of networks in which cascading may be a concern, and
presents a military example of the cascade problem.

1.1.1. General Cascade Problem Definltion

~ The cascade problem belongs to a subspace of the problem set that asks, "If secure systems are
connected together, is the resulting network secure?”. This section partitions the problem set to place the
cascade problem in perspective and then presents a more formal definition of cascading.

Before partitioning, it is first necessary to define secure system. This paper defines a secure system as
a system that has undergone both a system security evaluation and a risk analysis evaluation that results
in an acceptable risk of operating the system. A risk analysis considers the assets of a system and
threats against it to determine how much security is sufficient. System security can be modeled as a

Mr. Fitch is also affiliated with GTE Government Systems

88

function of several parameters: physical security, personnel security, administrative security,
communications security, and computer security [15]. These parameters can be represented by classes
of countermeasures that reduce system risks. For example, physical security can be described by the
class of countermeasures that includes locks, fences, and guards. A system security evaluation,
therefore, measures the effectiveness of the countermeasures used in the system.

The first partitioning of the network security problem space is to divide the space into networks that (for
security purposes) can be treated as a single system and networks that cannot be treated as a single
system. Cascading is only a concern in the latter type of network. There are reasons why some
networks cannot be or are not viewed as single systems. First, the network may be so large that a single
system security evaluation is not feasible, so a divide-and-conquer approach must be taken. Second, the
network may be made up of systems that are owned or operated by differing administrative entities or

- systems that use different system security evaluation or risk assessment methods.

Having limited the problem space to networks that either are not or cannot be evaluated as single
systems, the next step is to reduce the problem space by examining the conditions under which two
systems would interconnect. As a minimum, the administrators of the two systems have to mutually
agree that the other system is secure in its own environment; that is, they need to understand and accept
the risk assessment and security evaluation methods used by the other and believe that the analysis was
done correctly. This does not imply that all the systems on the network are equally secure: it means that
each system recognizes that the other’s security is good enough as a stand-alone system (that is, before
the interconnection is considered). If one system does not believe that the other is secure, then there is a
clear risk to sharing data with that system. For example, two systems that implement completely different
security policies or conduct very different evaluation methods are unlikely to share sensitive data. For the
cascade problem, only mutually recognized secure systems are interconnected and each system
provides the other with its system security evaluation metrics.

Having mutually recognized that the other system is independently secure, the next step is to decide
which assets (or classes of assets) are to be shared with the other system. This step is closely related to
mutually accepting the other system’s security evaluation because each system must identify a subset of
assets for export that it believes the other system will protect accordingly. This does not imply that the
two systems must have identical export sets: the exchange may be one way, with one system acting only
as an exporter and the other acting only as an importer.

Because each exporting system believes that the importer will properly protect the exported asset, it
implicitly believes that the importer will share the asset with third-party systems only if those systems are
also secure. This means that a system needs to consider only the security of the system directly involved
in the interconnection and not the security of all the systems in the network in order to be assured that the
exported asset is properly protected. This "nearest neighbor* approach thus creates an implied transitive
property of protection. .

Because the systems agree to share assets via a network connection, the security of the connection
itself must be addressed. The cascade problem assumes that the interconnection mechanism itself is
secure; (that is, assets are not threatened when on the connection) and that the threats are only at the
two systems involved in the connection.

In summary, the following type of network is being considered:

» The network consists of independent secure systems; that is, each system in the network,
based on its own risk analysis and system security evaluation, is secure before considering
network connections.

o For size or political reasons the network cannot be treated as a single system and undergo a
security evaluation similar to that of the component systems in the network.

89

» Before agreeing to an interconnection, each system mutually recognizes the security of thé
other.

s The systems involved in a connection only share assets that the exporting system believes
the importing system will protect properly.

¢ The connection itself is secure; that is, there is no threat posed against data while in transit
between the systems.

Limiting the discussion to these types of networks, it is now possible to define when a cascade problem
exists:

A cascade problem exists when independent, mutually recognized secure systems are
interconnected by secure channels lo creale a network system that is not secure.

1.1.2. Why Cascade Problems Occur

The existence of the cascade problem results from several factors. The decision to allow an
interconnection between systems was based only on assuring the protection of the assets being shared;
it was not based on all the assets in the source and destination systems. This at first appears adequate
because the two systems are independently secure, but the fact of the interconnection means that the
two systems are no longer truly independent. The cascade problem exploits these two facts in a subtle
fashion based on risk analysis principles.

One purpose of a risk analysis is to determine how much security is needed to protect an asset.
Because the asset has some determined value, there is a threshold on the amount one is willing to spend
on protection. For example, one may not be willing to spend $75 on a safe to protect a $100 watch, but
may be willing to spend $20 to buy better locks for the door: there is a limit at which one accepts the
residual risk o an asset rather than pay more for security. Another way to view this concept is that
security is measured by the amount of effort required to steal the watch. The watch owner wants the thief

-to have to spend the effort to defeat a $20 lock in order to steal the watch. In a computer system, there is
an analogous threshold where one is willing to accept the residual risk to the asset (such as compromise.
or destruction of data) rather than incur the cost of additional protection (see [16]). The definition of a
secure system in the previous section is consistent with this cost/reward observation.

A penetration (either by a human or by "nature”) of one of the systems may cause other systems’
assets to propagate to an interconnected system. While a stand-alone secure system that suffers a
penetration is, by definition, willing to accept the local penetration as within acceptable risk, that system
does not necessarily accept the export of other assets as within acceptable risk. (This was the point of
identifying import and export sets.) Thus the cascade problem is essentially a risk assessment problem
that measures network risk based on local risk metrics of an export of data not in the export set. The
problem is called cascading because the links between the systems act as conduits that cascade assets
along a path between systems. If the assets arrive at a system that does not adequately protect them,
then a cascade problem exists.

Thus, determining if a network has a cascade problem requires identifying if the network is of the type
identified in the previous section, stating the acceptable level of risk against loss by cascading, calculating
the actual cascade risk based on the network configuration, and assessing if the cascade risk exceeds
the acceptable level. As in the example of the thief and the watch, security from cascading can be
measured by the amount of effort required to defeat the protection mechanisms. Security from cascading
can be measured by requiring a penetrator to expend a stated quantity of resources to affect the
penetration{s) necessary to cause a loss via cascading. From a penetrator’s perspective, cascading can
be viewed as an accumulation of costs as the penetrator creates a path of penetrations through the I

network.

90

1.2. Military Cascade Example

" To derive a specific cascade problem from the general cascade problem requires indicating the risk
assessment and system security evaluation methods used by the systems in the network. This section
briefly reviews the risk analysis and evaluation methods used in the military cascade problem as defined
in [14, 8] and presents an example of a network with a military cascade problem.

The risk assessment method used in[14, 8] is based on the environment guidelines given in
[12, 13] where assets values are measured by the security classifications of the data in the system and
the threats are measured by the minimum user ciéarance in the system. The risk analysis method uses
the maximum data classification and minimum user clearance as indices into a table to determine a
recommended amount of computer security for the system. The amount of computer security is
measured by a specific rating defined in the Orange Book[10, 11). Figure 1-1 shows a table from
[13] that maps a (minimum user clearance, maximum data sensitivity) pair to a required Orange Book
level of computer security. The Orange Book computer security ratings are ordered as D < C1 < C2 < B1-
<B2<B3 <A1

Maximum Data Sensitivity

ulN]c|s|Ts]|ic]mc

U Ci|Br[B2|B3| * | * [|°*
Minimum N Cl1JC2]B2}]B2]| Al * »
Qlearance or| ™™g ci|celcz|Br|B3}aA1| *
ization S Cljcajc2z|cC2]B2]B3} Al
of System [
Users TSBI) JCiljcCczicCc2jcC2]cC2]|B2]| B3

TS(SBI) | C1 [C2{cC2]cC2]C2]| Bi| B2
1C CijcCc2|cC2jcC2jcC2jcC2 |B1
MC Cijc2ajc2ajczjc2ijcz2 |cC2

Figure 1-1: Security Index Matrix For Open Environments (adapted from [13))

The Orange Book rating is used as the computer security portion of a system security evaluation that
also includes other factors, such as physical and procedural security. The cascade problem in
[14, 8] considers only the computer security portion of a system security evaluation. To simplify the
mutual recognition of each system’s security and to follow the example from [14, 8], only the computer
security portion of the system security evaluation is considered here as well.

"The next step is to define the acceptable impornt and export sets between systems. This is done by
requiring that the interconnection between systems obeys the military multilevel security policy of "no read
up" and "no write down" between data at different classification levels. The classifications in the example
are ordered as CONFIDENTIAL < SECRET < TOP SECRET. See [2] for details on the multilevel security
policy and [3] for a general lattice-based model of secure information flow.

 Having reviewed the military risk assessment and security evaluation methods, the military cascade
problem can now be discussed. The cascade problem for the military multilevel system is informally

91

defined in [14] as when a penetrator can take advantage of the network connections to compromise data
over a range of sensitivity levels that is greater than the accreditation range of any of the systems that
must be defeated to do so. (An accreditation range is the set of security levels a system is trusted to
process and separate correctly according to the information flow policy). -

The example shown in Figure 1-2 from [14] demonstrates the military multilevel cascade problem.
System A has :an accreditation range of (SECRET, TOP SECRET) and the minimum user clearance is
SECRET. System B has an accreditation range of (CONFIDENTIAL, SECRET) and the minimum user
clearance is CONFIDENTIAL. Based on the guidelines in[13] and shown in Figure 1-1, System A
requires at least B2 computer security and System B requires at least B1 (System B’s rating of B2 in
Figure 1-2 satisfies this constraint).

System A
T8
System B
S S
B2
C
B2

T8 = TOP SECRET, 8 « SECRET, C « CONFIDENTIAL

~ Figure 1-2: A Network With A Cascade Problem

Each of the systems agrees to export only SECRET information to the other. This interconnection
conforms to the military information flow policy and thus defines the allowed export set.

The cascading in this network occurs by assuming a penetration of the operating system protection
mechanisms at both end systems. If a penetrator compromises System A, TOP SECRET information
may be leaked via the SECRET connection to system B. If system B is compromised, then this TOP
SECRET information may be leaked to a user who is only cleared CONFIDENTIAL. Thus the network
has a cascade problem because the penetrator has compromised three levels of data by defeating two
systems with accreditation ranges consisting of two levels of data.

To determine it a network has a cascade problem, the next section formulates the multilevel military
cascade problem as a resource-constrained shortest path problem.

2. Shortest Path Formulation of the Military Cascade Problem

Formulating the cascade problem as a resource-constrained shortest path problem provides an
efficient algorithm for determining if a network has a cascading problem and thus improves greatly on the
heuristic presented in Appendix C of [14]. The resource-constrained shortest path algorithm is also
superior to the algorithm designed by Millen [9] based on matrix multiplication. There are several

92

motivations for performing a cascade analysis. For example, a system administrator may make a
decision to join or not to join a network based on the risk posed by cascading. In a network where there
is additional cooperation between the system administrators, the network can possibly be re-architected
to eliminate the cascade so that all parties may securely use the net.

The resource-constrained shortest path -approach to determine whether or not a network has a
cascade problem is based on three phases: Preprocessing, Shortest Path Calculation, and
Postprocessing. The details of each of these steps is provided in the following sections.

2.1. Preprocessing Step
The preprocessing step consists of three actions:

¢ Defining the cascade problem as a graph by identifying nodes, edges, and weights;

» Viewing the problem from the penetrator's perspective by allocating the penetrator a set of
resources; and

¢ Defining the resource consumption function that determines how the network consumes the
penetrator's resources.

The formulation of the cascade problem as a graph begins with the definition of protection domains.
Appendix C of the Trusted Network Interpretation [14] defines a protection domain as a (system, level)
pair. The protection domains in Figure 1-2 are (A, TOP SECRET), (A, SECRET), (B, SECRET), and (B,
CONFIDENTIAL). The protection domains are the nodes of the graph in the shortest path formulation of
the cascade problem.

The edges in the graph are the flows between protection domains. Viewing the problem from the
penetrator’s perspective, edges are assigned as follows:
1. An edge between nodes (protection domains) is created if it represents a network
interconnection. This edge is weighted 0 because it is an allowed flow under the military flow
policy and, therefore, represents no cost to the penetrator.

2. An edge between nodes internal to the same host system is treated if it represents an
allowed information flow. This edge is weighted 0 because it conforms to the military flow
policy and therefore represents no cost to the penetrator.

3. An edge between nodes intermnal to the same host system is created if the flow represents a
downgrade; that is, if the flow is not allowed by the military flow policy. This edge is weighted
by the Orange Book computer security rating of the host system because it represents
having to defeat the computer protection mechanisms in order to achieve the information
flow.

4. For mathematical completeness, flows from a node to itself cost 0 and all other node pairs
receive an edge weight of infinity. :
The path a penetrator can follow through the network thus consists of steps consisting of penetrations
internal to a host system or a legitimate network link.

Whether or not to consider allowed flows internal to a system depends on whether the objective is to
locate the core paths that actually cause the cascades {achieved by not considering flow 2 above) or to
locate all information flows that may be threatened by the cascade via legitimate flows into the core
cascading paths (achieved by including the type 2 flows). This paper will not apply the type 2 flows to the
example problem and will thus search for core cascading paths.

Having defined the nodes, edges, and weights, the next step is to allocate a set of resources to the
penetrator and define a resource consumption function. The cascade problem in [14] treats the source
and destination protection domains as requiring the same level of protection as a stand-alone system;

93

that is, any network path of protection domains must meet the computer security protection given in the
Environments Guidelines [12, 13] (see Figure 1-1). For a specific source and destination, one could use
the matrix lookup to determine the required path protection and allocate that quantity of resource to the
penetrator. Because the concern here is to find all cascading paths, it eases analysis to calculate the
cost of all paths and then test the path cost against the required path protection as part of the
postprocessing stage rather than preallocate a fixed resource to be used for path pruning during the
shortest path calculation.

The consumption function used here is similar to what Millen calls the path resistance [9]: the cost of a
path is the cost to the penetrator of achieving the information flow from source to destination protection
domain. According to [14] and [8], the example of Figure 1-2 has a cost of B2 for the cascading path
between the (A, TOP SECRET) and (B, CONFIDENTIAL) protection domains. This. cost of a path is
found by taking the maximum of the costs of the edges in the cascading path. This results in a
consumption function that states that for the military cascade problem, the amount of penetrator
resources consumed on a path between protection domalns Is equal to the largest edge cost In
the path. Naturally, the penetrator wants to minimize the path cost between source and destination
domains because it represents the level of effort required to effect a cascade. This objective (minimizing
the consumption function) has now mapped the cascade problem to a resource-constrained shortest path
problem.

The consumption function for the military cascade problem implicitly assumes that if a penetrator can
defeat a system with a specific security rating (B2 in the example), the penetrator can defeat other
systems with the same rating with no significant additional effort. By viewing the problem from a shortest
path perspective, other consumption functions can be easily defined and tested. For example, if one
~assumes that all system penetrations are independent, then the corresponding consumption function
simply sums the cost of all the edges along the path. A corporate cascade example that uses summation
as the consumption function is in [4].

The network shown in Figure 2-1 is used to demonstrate the shortest path method for finding
cascading paths. The results of the preprocessing step are shown in Figure 2-2. The security levels in
the circles are the graph nodes and the dashed boxes indicate the domain in which the nodes belong.
Note that the example network includes both one-way and bidirectional flows. The adjacency matrix for
the preprocessed system is also shown in Figure 2-2.

2.2. Shortest Path Caiculation

Having defined the nodes, weights, edges, and the consumption function, it is now possible to apply
the shortest path algorithm. Because the objective is to first determine if the network has a cascading
problem, an all-pairs algorithm is used to calculate the shortest path costs between all pairs of security
domains. Should the all-pairs algorithm indicate a cascade problem, a specific source-destination
shortest path algorithm can be used to yield the actual path involved. (The act of determining ali the
edges in the shortest path can actually be incorporated into the all-pairs algorithm, but the two steps are
kept separate here for clarity.) The all-pairs algorithm presented here is similar to that of finding the
transitive closure of a graph. In fact, as long as the relationship between the edge weights and the
consumption function forms a closed semiring, an N3 algorithm can be used [1] to find all paths. This is
indeed the case because the computer security evaluations can be ordered as D < C1 < C2<B1<B2 <
B3 < A1 and, therefore, mapped to integer values; and because the operations minimum and maximum
needed to optimize and express the consumption function can be shown to be valid + and o operations,
respectively, on the closed semiring of integers [5].

As a consequence, the all-pairs algorithm shown in Figure 2-3, which is modified from [6], is used. The
graph is stored as an N-by-N adjacency matrix named cost, where N is the number of protection domains.
The array a is the resulting N-by-N matrix of least path costs under the military consumption function
defined in the previous section. The line

94 _

SystemA ' " SystemB

T8 TS
- System C
S S S
B2
C C
B3 B2
System D
S
81

Flgure 2-1: Military Network With A Potential Cascade Problem

ali,j] = min(a(i,j), max(ali k], alk,31)) (1)
in the algorithm represents minimizing the military consumption function.

The all-pairs algorithm provides a shortest path solution in O(N®) time, although the postprocessing
phase has not been considered yet. The shortest path cost results table is shown in Figure 2-4. As will
be shown, the postprocessing is O(N?) so the computation complexity to determine if the network has a
cascade problem remains as O(N3) where N is the number of protection domains. For comparison,
Millen’s work [9] is not quite as efficient. He calculates the resistance of all paths in the network by a
matrix computation requiring O(N3log,(N})) steps.

2.3. Postprocessing Step

Figure 2-4 shows the cost of the shortest path between all pairs of (source, destination) security
domains under the consumption function defined in equation (1). This path cost represents the minimal
effort required by a penetrator to effect an information flow from the source to destination domain. The
Postprocessing step determines whether the cost of the paths is within acceptable risk. This is done by
considering the minimum user security clearance at the destination domain for all pairs of security
domains. The real system risk is not that a penetrator has simply achieved a flow from one source
security domain to another at an unacceptable cost; the risk is that a user who is not cleared for the
information (as it was protected at the source domain) may actually obtain this information at the
destination domain.

The risk acceptance test can be done as a set of table look ups for each security domain pair as

- follows:

95

System A

System B

2
1
1
I
{
)

- ean S oew s o e s e o aw

an ap o oy e w oo D = = o o -

-————-J

Src/Dest

(Sys A,TS)

(Sys A,S)

(Sys B,TS)

(Sys B,S)

(Sys B,C)

(Sys C.S)

(Sys C,C)

(Sys D,S)

(Sys A,TS)

0

B2

0

(Sys A,S)

0

(Sys B,TS)

B3

B3

(Sys B,S)

B3

(Sys B, C)

(Sys C,S)

B2

(Sys C,C)

(Sys D,S)

0

TS = TOP SECRET, S = SECRET, C = CONFIDENTIAL

Figure 2-2: Military Network After Shortest Path Preprocessing

96

procedure allpairs (

cost : adjacencymatrix, {initial edge cost matrix)

var a:adjacencymatrix, {all pairs shortest path costs)

n :integer) . {number of security domains}
{ Computes the shortest path cost between all pairs of domains}
{ cost[l..n,1l..n] is the initial graph cost adjacency matrix }
{ a[1..n,1..n) is the cost of shortest path between nodes }
var i : integer; ({loop control for source noces}

j : integer; ({loop control for destination nodes}
k : integer; {loop control for intermediate nodes)
begin

{copy the array cost into the array a}
for i = 1 to n do
for j = 1 to n do begin
al[i,j] = costli,j);
end;

{Calculate shortest path cost for all domain pairs}

for k = 1 to n do {for path with highest node index k}
for i = 1 to n do { for all possible source nodes}
for § = 1 to n do {for all possible destinations}

{if i->k->3j cost is smaller than current i->j cost}
{then update the i->j path cost. 1In other words, }
{minimize the consumption function}
af[i,j) = min(a[i,j), max(ali, k], alk,3]))

end.

Figure 2-3: All-Pairs Shoriest Path Algorithm (adapted from [6])

Src/Dest (Sys A,TS) | (Sys A,S) | (Sys ﬂ.TS)_ (Sys B,S) | (Sys B,C) | (Sys C.S) | (Sys C,C) | (Sys D,S)
(Sys ATS)| © B2 o | B3 | B3 B2 | B2+ | B2
(Sys A,S) 0 : ' : 0 B2 0
(Sys B,TS) 1 o B3 | B3 | B3 | B3
(Sys B,S) | o B3 0 B2
(Sys B, C) -0
(Sys C,S) . .0 B2
(Sys C,C) 0
(Sys D,S) (1] _ 0 B2 0

TS = TOP SECRET, S = SECRET, C = CONFIDENTIAL, s+ = CASCADE

Figure 2-4: Military Shortest Path Cost Results

917

1. Look up the minimum user clearance for the destination security domain’s system and
determine the larger of the security level of the destlnatlon domam and the security level of
the minimum user clearance. : » - : .

2. Use the resuits of step 1 and the security level of the source security 'dcmain as an index into
Figure 1-1 to determine the required amount of computer secunty

3. From Figure 2-4, look up the actual cost to the penetrator to achieve the mformanon flow
between the source and destination domains. If the actual cost to the penetrator is less than
the amount of security required by step 2 above, a cascade problem exists.

For the network in Figure 2-1, recall that the minimum user clearance at System A was SECRET, at
System B CONFIDENTIAL, at System C CONFIDENTIAL, and at System D SECRET. As an example of
the risk acceptance test, consider the flow from (System A, TOP SECRET) to (System C,
CONFIDENTIAL). Step 1 of the postprocessing results in a value of CONFIDENTIAL because both the
minimum user clearance at System C and the security level of the destination domain are
CONFIDENTIAL. Step 2 consults Figure 1-1 using TOP SECRET as the source data sensitivity and
CONFIDENTIAL as the minimum user clearance to obtain a recommended computer security rating of
B3. In Step 3, referencing Figure 2-4 shows that the actual cost to the penetrator to achieve the flow from
(System A, TOP SECRET) to (System C, CONFIDENTIAL) is B2. Since B2 is less than B3, a cascade
condition exists for this path. The entry marked ** in Figure 2-4 shows the source and destination security
domains that make up the cascade in Figure 2-1. The core cascade path is from (A, TOP SECRET) to
(A, SECRET) to (D, SECRET) to (C, SECRET) to (C, CONFIDENTIAL) with a total cost of B2. This path
is shown in bold in the upper half of Figure 2-2.

The postprocessing step to test all security domain pairs for a cascade problem can be done in O(N?)
time. There is a total of N2 domain pairs and the processing for each domain pair requires performing a
table lookup from a table of minimum user security levels, from the shortest path results table, and from
the table shown in Figure 1-1. The table references plus the comparison of recommended security to the
penetrator’s actual cost can be done in constant time, resulting in a total O(N?) complexity for the
postprocessing step. Thus the complexity of the overall cascade problem is dominated by the O(N3)
shortest path calculation. Should the actual path causing the cascade be desired, either the all-pairs
algorithm in Figure 2-3 should be modified to save the paths as the costs are calculated, or a specific
source-destination algorithm should be run on the domain pairs found to have a cascade problem. An
algorithm to find the shortest path between a specific pair of nodes is O(N?) [1], so locating the actual
cascading paths can be done without changing the O(N3) complexity for the overall problem.

2.4. Interpreting the Military Consumption Function

One way to view the military consumption function is that it makes a network risk assessment policy
decision that once a computer system with a particular security rating (say B2) is defeated, the defeat of
another system with the same level of protection does not cost the penetrator any significant amount of
effort. This implies that no matter how many B2 systems are connected in series, a network system
created from them will never afford the protection of a B3 system. This consumption function makes
sense if one is looking for a worst case analysis of the problem or if it is realistic to assume that the
systems in the network suffer from identical or similar flaws so that once one system is defeated, all
similar systems are easy to defeat. However, it is easy to postulate other consumption functions based
on different assumptions about the (lack of) interdependence of defeating individual systems in a network.
For example, assuming that system penetrations are independent events results in a consumption
function that is identical to the "normal” shortest path calculation; that is, it minimizes the sum of the edge
costs in the path. A comporate cascade example that uses this consumption function is in [4]. As long as
the consumption function forms a closed semiring, an O(N3) algonthm ex:sts for solvmg the cascade
problem under that function.

98

3. Conclusions

This paper has presented a new method based on the resource-constrained shortest path for solving

the cascade problem. There are several conclusions: ,

1. The generalization of the cascade problem and its formulation as a resource-constrained
shortest path problem point out the underlying security issues in interconnecting
independently evaluated systems; this process leads to a broader understanding of network
security risks.

2. Requmng a consumption function to be defined forces a clear policy statement about the
(lack of) interdependence of defeating individual systems in a network.

3. A broad set of consumption functions can be defined that allows for a network risk function to
reflect a given system’s dependence or independence from its peers.

4. The shortest path formulation can detect and locate cascades in O(N®) time as long as the
consumption function and minimization form a closed semiring operating on the graph. The
military consumption function presented here and a corporate consumption function in [4] are
well-behaved and demonstrate that the semiring requirement is not overly strict.

- The resource-constrained shortest path approach and the concept of a consumption function appear
quite general. Potential extensions to the basic approach presented here and suggested applications

include the following activities:

¢ Analyze the computatlonal complexity of the algorithm when the consumption function is not -
as well behaved as in the examples presented here.

¢ Investigate the effects on the approach when a vector of resources rather than a scalar is
involved.

« Explore path-pruning algorithms that incorporate the penetrator resource set into the shortest
path calculation step. Compare the path-pruning approach to the method presented here
that uses the resource set as a threshold during the postprocessing step.

Investrgate techniques for reducmg the number of security domams that must be considered
in the cascade problem.

. Compare the ability of the shortest path consumption function to reflect the interdependence
of a system from its peers with a statistical analysrs of the cascade problem such as that
done by Ted Lee [7].

» Develop precise methods for systems to mutually acknowlédge each other's security.

929

References

1. A. Aho, J. Hopcroft and J. Ullman. 7he Desrgn and Analysis of Computer Algorithms. Addison-
Wesley, Reading, Mass., 1974.

2. D.E. Bell and L.J. LaPadula. Secure Computer Systems: Mathematical Foundations. Tech. Rept.
ESD-TR-73-278, Volume 1, The MITRE Corporation, Bedford, Mass., March, 1973.

3. Dorothy E. Denning. Cryptography and Data Security. Addison-Wesley, Reading, Mass., 1982.

4. J.A. Fitch and L.J. Hoffman. A Neiwork Shortest Path Security Model. Tech. Rept. GWU-1IST-90-32,
George Washington University, Washington, D.C., September, 1990.

5. John A. Fitch, ill. A Nelwork Security Model Based on the Resource Consltrained Shortest Path.
Ph.D. Th., George Washington University, Washington, D.C., 1991. To appear..

6. E. Horowitz and S. Sahni. Fundamentals of Data Structures in PASCAL. Computer Science Press,
Rockville, Maryland, 1984.

7. Theodore M.P. Lee. Statistical Models of Trust: TCBs vs. People. Proceedings of the IEEE
Symposium on Security and Privacy, April, 1989, pp. 10-19. ‘

8. J.K. Millen. The Cascading Problem for Interconnected Networks. Fourth Aerospace Computer
Security Applications Conference, December, 1988, pp. 269-273.

9. J.K. Millen. Algorithm for the Cascading Problem. In Internet IEEE Cipher News Group,
J. P. Anderson, Ed., June 25 IEEE Cipher forum on DOCKMASTER.NCSC.MIL, 1990.

10. Computer Security Center. Department of Defense Trusted CompUter System Evaluation Criteria.
CSC-STD-001-83, Department of Defense, Computer Security Center, Fort G.G. Meade, Maryland,
August, 1983.

11. National Computer Security Center. Department of Defense Trusted Computer System Evaluation
Criteria. DoD 5200-28.STD, Department of Defense, Fort G.G. Meade, Maryland, December, 1985.

12. National Computer Security Center. Guidance for Applying the Department of Defense Trusted
Computer System Evaluation Criteria in Specific Environments. CSC- STD 003-85, National Computer
Security Center, Fort G.G. Meade, Maryland, June, 1985.

13. National Computer Security Center. Technical Rationale Behind CSC-STD-003-85: Computer
Security Requirements. CSC-STD-004-85, Natlonal Computer Security Center, Fort G.G. Meade,
Maryland, June, 1985.

14. National Computer Security Center. Trusted Network Interpretation of the Trusted Computer System
Evaluation Criteria. NCSC-TG-005, National Computer Security Center, Fort G.G. Meade, Maryland,
July, 1987.

15. T.A. Rullo. Advances in Computer Network Security Management. Heyden & Sons, Inc., 1980.

16. Rein Turn and Norman Z. Shapiro. Privacy and Security in Databank Systems: Measures of
Effectiveness, Costs, and Protector-Intruder Interactions. In Security and Privacy in Computer Systems,
Lance J. Hoffman, Ed., John Wiley & Sons, Los Angeles CA, 1973. Originally published as Rand
Corporation Report P- 4871 1972.

100

http:DOCKMASTER.NCSC.MIL

A CASE STUDY FOR THE APPROACHTO
DEVELOPING A MULTILEVEL SECURE
COMMAND AND CONTROL INFORMATION SYSTEM

James Obal
Supreme Allied Commander Atlantic
- U.S. Naval Base
Norfolk, Virginia 23511-6696

William Grogan
Contel Federal Systems
15000 Conference Center Drive
P.O.Box 10814
Chantilly, Virginia 22021-3808

ABSTRACT

This paper presents a case study of two NATO Command and Control
Information Systems (CCIS) projects with stringent computer security requirements.
These projects were conceived and initiated at a time when trusted products were
not readily available and the concepts of trusted system development and
evaluation were not well understood. These circumstances have necessitated the
Government and the contractor to seek a unified approach to integrating security
into the development process; to ensuring that security requirements are satisfied;
and to performing the security evaluation. That approach has been adopted and is
now permitting the development of the CCISs to advance. This paper outlines the
history of the problems and decisions which culminated in their definition.

INTRODUCTION

This paper provides a description of the lessons learned from the early stages of
the two multilevel secure (MLS) CCIS projects. Included are the managerial and
engineering decisions which have been taken to help ensure that the project will
continue to move forward to completion and satisfy the requirement for B3
certifiability. The importance of demonstrating a sound trusted engineering
methodology as well as the role of prototyping in trusted system development is
discussed. Particular attention is given to the definition and development of the
security documentation which is essential to support both the engineering aspects
and the security certification needs of the projects.

BACKGROUND

A fixed price contract to build a high assurance (B3) CCIS for the Supreme Allied
Commander Atlantic (SACLANT) was awarded to Contel Federal Systems in October
1984. A second fixed price contract to build a high assurance (B3) CCIS for the

101

Commander-in- Chief Iberian Atlantic Area (CINCIBERLANT) which has similar
functional requirements was also awarded to Contel in October 1987. Both projects
are one hundred per cent funded by NATO, and were initially managed
independently. Each project had specified unique documentation standards,
different engineering design methodologies and separate certification
requirements. This duplication of effort soon proved to be extremely expensive and
time consuming for both the Government and Contel. The operational needs of
both systems were closely analyzed and with concessions being made by all parties
the notion of a single system design emerged. Both projects have since adopted a
unified security policy, a single set of security requirements, and have been placed
under the direction of a single project management office. Thisjoint projectis
entitled Alpha CCIS, and will be referenced hereinafter as the ACCIS.

The ACCIS is required to process automated messages received from multiple
telecommunications lines; to maintain a myriad of databases which contain plain
text formatted messages, parametric (record) data, and geographic representations;
to provide the capability to create and release formal messages; and to retrieve and
display formatted information from its databases.

The ACCIS will combine a suite of alphanumeric and graphical terminals,
communication processors, central hosts, and database machines to form the
hardware architecture. The system will be highly redundant in order to provide the
continuous service requirements mandated by the performance specifications.

Woven into the ACCIS functional requirements is a dominating requirement
that the system provide a spacified level of computer and communications security.
This pervasive requirement for security is principally defined in terms of the so called
Orange Book [1]. The ACCIS must be certifiable to class B3 in accordance with the
criteria established in the Orange Book. The basic requirement for a B3 system was
formed by applying the guidance contained in the Yellow Book series [2]. The B3
requirement is augmented by stringent performance requirements which mandate a

- high assurance and responsive architecture. The Gemini Multiprocessing Secure

Operating System (GEMSOS) developed by Gemini Computers Incorporated was
proposed by Contel as the commercial off-the-shelf (COTS) system for the ACCIS
Trusted Computing Base (TCB). As another high assurance TCB has subsequently
become available ?pre-endorsed), the COTS portion of the ACCIS TCB has been re-
evaluated. Currently, the HFSI XTS-200 has been identified as the best choice for the
ACCIS.

'SECURITY POLICY DEVELOPMENT

The ACCIS Security Policy was developed by the Government with the
cooperation of Contel. The ACCIS Security Policy contains the administrative,
personnel, physical, emanations, communications, and processing security :
requirements. Itis intended to be used both as an operational policy documentand
as a definition of the requirements for the TCB. The development of the policy wasa .
unique process in that the contractor was reviewing a government originated
document for accuracy of content. These reviews were conducted first to determine
the consistency, correctness and completeness of the policy and secondly to
determine if specific aspects of the policy might pose implementation problems.

The first review process discovered inconsistencies in the policy, mostly due to
semantics. However slight, the terminology differences highlighted the need for a

102

glossary of security terms. There were also policy statements that Contel felt were
inconsistent with accepted interpretations of the Orange Book but had to remain
because of operational needs. An example is the policy's requirement that allows a
user to delete a file that is classified at a security level below the user's sign-on
security level. There is a potential covert channel associated with this requirement,
but it was determined by the Government that the operational need for the feature
exceeded the threat of compromise posed by a covert channel. ‘

The second level of review focused on evaluating the impact that :
implementing the policy would have upon the target TCB. A goal of the ACCIS
design philosophy is to produce a system that does not require extensive
modifications to the COTS TCB. The selected approach is to layer the additional
ACCIS TCB functionality on top of the COTS TCB. The security policy was reviewed
with this approach in mind, identifying those requirements that could
fundamentally affect the COTS TCB. Additionally, the review produced suggestions
for specific policy amendments and recommended design approaches that could be
employed to implement the functionality and mitigate the impact on the COTS TCB.
An example of a policy impact on the COTS TCB was in the area of auditing. The
policy explicitly stated how audit data were to be protected. The method of
protecting audit data used by the COTS TCB is equally as strong as the stated policy
for audit data protection but it uses a different approach. The policy was modified:
to allow different approaches for protecting audit data, provided those approaches
meet a minimum level of assurance. =

Interrelationships between the ACCIS Security Policy, the ACCIS security v
requirements and TCB design became apparent. A detailed effort to align the ACCIS
Security Policy and system security requirements was initiated. :

CAPTURING SECURITY REQUIREMENTS

The ACCIS security requirements are a mixture of the standard computer
security features specified by the Orange Book (e.g., mandatory access controls,
discretionary access controls, identification and authentication, and audit). The
ACCIS also has unique security features that are needed to support specific system
applications. These features include a Two-Designated-Man-Rule, Trusted Turnover,
and trusted message handling functions. :

Specific security requirements were identified in the ACCIS Security Policy, the
SACLANT Request For Proposals, the CINCIBERLANT Invitation For Bid, and Contel’s
proposals. Additional ADP security specifications were defined in specific NATO
standards and guidelines referenced by these basic requirements’ documents. in the
process of identifying the security requirements, a basic dichotomy was discovered.
The requirement for a B3 system imposed a structure dictated by the evaluation
process that did not directly align with the standard systems engineering process.
The basis of an Orange Book evaluation is the system's security policy. All
certification evidence is derived to some extent fromit. Thisisin contrastto a
systems engineering approach which traces the system's development back to the
requirements.

To resolve this difference, it was decided that the ACCIS Security Policy would
contain all of the security requirements; that s, it would incorporate the security
requirements from all of the sources mentioned above. This had the effect of ‘
blending the Orange Book evaluation and the systems engineering processes. The

103

ACCIS Security Policy statements and the ACCIS system security requirements are in
complete correspondence.

CERTIFIABILITY, EVALUATION AND OVERSIGHT

Significant emphasis has been placed on the tasks of evaluation, certification
and accreditation of the ACCIS. Initially, there existed very broad interpretations of
what the term "certifiability” meant to the Government and to Contel. The
differences between the evaluation process normally applied to trusted products
and an evaluation of an application system that integrated a trusted product had to
be sorted out. The issues that arose concerning the question of certifiability
illustrate the conflict between developing and evaluating a B3 system and
developing a useful system that satisfies its requirements and performs its mission.
The initial discussions regarding the nature of the evaluation process revolved
around issues concerning the latitude of the evaluators in defining the scope of the
evaluation. The prevailing government position was that the ACCIS was a "system"
and not a "product” and that a standard National Computer Security Center (NCSC)
type evaluation was not sufficient. It was discussed whether the evaluators could
mandate additional evaluation requirements regardless of contractual
requirements. There were also questions as to how theoretical (vs. pragmatic) the
evaluation should be.

The certification evidence document and Contract Data Requirement List
(CDRL) item that brought all of these issues to the forefront was the Formal Model of
the Security Policy (FMSP). Contel's FMSP was based upon the Bell and LaPadula
Model, as are the formal models used by most evaluated TCBs. As with other
evaluated TCBs, Contel did not intend to modify the model, but intended to provide
an interpretation of how the system mapped into the model. Since other COTS TCB's
were also modeled using Bell and LaPadula, this appeared a reasonable approach.
However, the Government maintained that the ACCIS was a system and not a
product, and Contel was directed to develop a FMSP that was specific to the ACCIS.
Accordingly, Contel extensively modified the Bell and LaPadula Model to make it
specific to the ACCIS Security Policy. Notions such as ownership and group
membership were incorporated. The model's rules were replaced by ACCIS specific
rules. The formal proofs were revised but the core theorems, properties and
corollaries of the model were preserved, though in a modified form. However, the
Government determined that the resultant model, as modified to be ACCIS-specific,
was overly complicated and did not effectively represent the ACCIS security policy.
Consequently, a joint effort between the Government and CONTEL is in process to
rewrite the model without any pre-ordained dependencies on the traditional Bell
and LaPadula framework. That effort led to a cooperative FMSP production activity.

Because there were no formal definitions of the certifiability process and the
nature and content of the required certification evidence, the resolution of issues
like these threatened to stymie the project. As aresponse, the Government and
Contel agreed upon the necessity for a certification plan. To this end, the
Government has developed a certification plan specific to the ACCIS. It details the
tasks that must be performed by the system evaluators and indirectly, what is
expected to be produced by Contel as certification evidence. The certification plan
establishes orderings and dependencies between the certification evidence
documents. The certification plan is the framework for understanding how the
ACCIS can achieve B3 certifiability.

104

The security evaluator for the ACCIS, entitled Security Certification Technical
Agent, is the United States Naval Research Laboratory (NRL). The Certification
Authority for the SACLANT CCIS is the United States Commander-in-Chief Atlantic
(USCINCLANT) and SACLANT is the accreditation authority. The Certification
Authority for CINCIBERLANT is the Portuguese Autoridade Nacional de Seguranca
(ANS) and CINCIBERLANT is the Accreditation Authority.

A Security Certification Working Group (SCWG) has been formed to oversee
the security aspects of the developing ACCIS system and to reduce the risk of not
achieving certification. The SCWG is chartered to provide guidance and resolve
security issues as they arise. The membership of the SCWG includes representatives
from the ADP security organizations of SACLANT and CINCIBERLANT, NRL, Mitre,
Military Committee Communications and Information Systems Security and
Evaluation Agency (SECAN), and Contel.

An extensive amount of time and resources will be expended by the
Government in order to evaluate, certify, and accredit these systems. The availability
of technical support required to evaluate a system of this complexity is very limited
and expensive. Careful planning must be exercised to ensure that tﬁe contractual
milestones and associated deliverables align closely with the certification plan to
ensure that these valuable resources are effectively employed and ultimately assist
rather than hinder the project's progress.

SECURITY DOCUMENTATION

While there existed substantial guidance on types of security documents
required for a B3 system, little information pertaining to document content was
available. Consequently, the ACCIS project did not define security-specific Data Item
Descriptions (DID) for the security CDRLs. In many cases the only clear documen-
tation specification was that the security documents were to be developed in
accordance with the Orange Book. The Orange Book was never intended to be used
for defining the content of contract deliverables or for determining the form of
certification evidence. Considerable time was expended in SCWG meetings trying to
establish agreement on what was expected for each security CDRL. While the
security CDRLs closely mirrored the list of certification evidence documentation
required by the Orange Book it was not always certain which document would
contain specific evidence and if all of the evidence would be accounted for in the
complete set of security CDRLs.

To alleviate these documentation problems, the Government and Contel
developed DIDs for the ACCIS security CDRLs. A mapping of certification evidence to
CDRLs was performed to ensure that all of the evidence would be produced. The
NCSC "Guide to Understanding” series, especially the one for Design Documentation
[3], was used to develop the DIDs. The Guide for Security-Relevant Acquisitions CDRL
and DID Handbook [4] developed by the Headquarters Electronic Security Command,
Air Force Computer Center at Kelly Air Force Base, Texas and the Trusted Computer
System Security Requirements Guide for DoD Applications [5] developed by MITRE
were also used extensively in determining the standards for security CDRLs. Finally,
the certification plan was brought into alignment with the evidence mapping and
associated DIDs. '

Security DIDs had to be written or at least modified to accommodate the
Security Policy Input, Formal Model of the Security Policy, Descriptive Top Level

105

Specification (DTLS), DTLS Implementation Mapping, Security Test and Evaluation
Plan, Security Test Procedures, Security Test Descriptions, Security Test Reports,
Covert Channel Analysis Report, Trusted Facility Manual and Security Features Users
Guide. System documentation follows DOD-STD-2167A DIDs as tailored by the
contract.

TCB DEVELOPMENT AND THE SYSTEMS ENGINEERING PROCESS

Both the Government and Contel recognized the importance of not separating
" the development of the ACCIS TCB and the remainder of the system. Consequently,
the TCB development process was integrated into the systems engineering process
when these processes were being defined in the Systems Engineering Management
Plan (SEMP), the Software Development Plan (SDP), the Software Quality Assurance
Plan (SQAP) and the Configuration Management Plan (CMP). Similarly, the security
requirements are contained in the Systems Requirements Document (SRD) along
with all other requirements. ’

When unique aspects of the security engineering process required special
procedures, those procedures were detailed in the appropriate system plan. For
example, the requirements for configuration control of the TCB are more rigorous
than for the system as a whole and the CMP describes the additional TCB unique
procedures. Iin the final analysis, requirements for development of the TCB are
represented by good engineering practices which were adopted by the systems
engineering process.

Contel's ACCIS systems engineering methodology closely adheres to the
methodology described in U.S. Army Field Manual 770-78 System Engineering and
the U.S. DoD Systems Management College's Systems Engineering Management
Guide. The methodology is being augmented by techniques defined in Yourdon's
Modern Structured Analysis and in Ward-Mellor's Structured Development for Real
Time Systems. .

System development will be evaluated at key contractual milestones as defined
in and using the criteria of MIL-STD-1521A [6]. Engineering management follows
the general guidelines of MIL-STD-1521A, DoD-STD-2167A [7], and MIL-STD-499A
[8]. Configuration Management practices and procedures are based upon MIL-STD-
4808B [9], MIL-STD-483A [10], and NCSC-TG-006-88 [11].

SECURITY TESTING

An early topic at the SCWG meetings was security testing. It was agreed that
Contel would perform penetration testing and testing in support of covert channel
analysis. The Government could also perform those forms of testing at their option.
Less clear was what constituted the testing of the system’s security functionality.

The consensus that eventually evolved was that there existed two sets of
security functional tests. The first set of tests would be on the system boundary.
These tests would be standard, "black box" validation tests, conducted against
system security requirements and performed during the factory and site acceptance
test phases. These tests would be performed by Contel's testing organization as part
of the s;ite of tests that demonstrate that all system requirements have been
satisfied. ' : SR

‘106

4

The second set of tests would be conducted against the TCB boundary using
the DTLS as the basis for the tests. These tests would include the software drivers
that exercise the interface into the TCB from the untrusted application environment.
Conduct of these tests would be the responsibility of Contel's security engineering
organization.

SECURITY RISK REDUCTION

Historically, the development of high assurance computer systems has been
troubled by a myriad of technical problems that either delay the project or cause it
to be terminated. Both the complexity of the engineering and the complexity of the
evaluation processes can contribute to the development problems. In an attempt to
identify risk areas early in the development process, the Government devised a -
demonstration to test the systems engineering process defined by Contel and to
“assess the complexities of evaluating the product. . .

To demonstrate their engineering process, Contel was asked to develop a
representative "slice" of the TCB, exercising all phases of the engineering process,
commencing with requirements definition and carrying the development through to
its detailed design. The requirements that were selected involved the processing of
messages received from the MLS ACP-127 communications lines. Following the
procedures defined in the SEMP, SDP, CMP, and SQAP, Contel produced the TCB slice
with all of its required documentation. The results of this exercise significantly aided
the refinement of the ACCIS engineering process and provided the Government and
Contel with a clear understanding of the complexity associated with developing and
evaluating a high assurance system. _

TCB design issues are also being addressed early in the development process by
prototyping. The purpose of this prototyping effort is to identify solutions to
difficult TCB design issues so those solutions can direct the design of the actual ACCIS
TCB. This will help reduce the risk that the system may fail to be certifiable at the B3
level. The prototyping effort will be formally documented in the Interface Require-
ments Specification, Software Requirements Specification and System Design Docu-
ment CDRLs. The Government and Contel will be able to explore design alternatives,
seeking solutions that provide the required functionality without introducing
unnecessary COTS TCB modifications or ACCIS TCB complexities. The prototype will
also identify early in the design process any operational impacts that may occur by
implementing some of the security features as they are currently definec{

The prototyping will include the ACCIS specific security requirements, includin
the Two-Designated-Man-Rule and Trusted Turnover. The requirement for a truste
data base management system will also be prototyped.

STATUS

Project management for both systems has been delegated to a joint project
office located at SACLANT Headquarters, Norfolk, Virginia. In addition to the
obvious benefits of centralized management, the logistics support problems
inherent in the geographic separation between the European and U.S. sites were
removed. The joint ACCIS Security Policy and associated security requirements have
been aligned and the development of an ACCIS formal model is in process. A
certification plan has been produced and agreed by all parties. The role of the

107

Security Certification Technical Agent and the Security Engineering Support Agent
have been identified and are in place.

Host Nation responsibilities for their respective projects remain autonomous.
Contract modifications are in process to unify contract milestones and deliverables.
The System Requirements Review phase concluded 10 October 1990. System Design
Review is scheduled for November 1991, Critical Design Review is scheduled for
October 1992 and Initial Operating Capability is slated for October 1993.

CONCLUSION

The development and evaluation of complex, secure command and control
systems is only now being better understood. All of the tools and experience
necessary are not yet available. There is a dearth of evaluated high assurance TCBs
available to use as a basis for secure systems and there are few in the evaluation
pipeline that will ultimately achieve endorsement. Performance requirements can
further reduce the number of suitable TCBs for a given system. What should be clear
by now is that it simle is not possible at this time to acquire secure systems "off-the-
shelf" that satisfy all the requirements of real systems. -

The absence of standard security DIDs, certification plans, and secure systems
development processes also hampers the ability to define, develop and evaluate
secure systems. The Government and the developer must share the same
understanding of how security is to be integrated into the system and how that
security will be evaluated. ‘

Because the development of secure systems currently involves some
uncertainty, strong management support is required. Management mustseta
course through the sparsely defined territory of secure systems development,
identifying deficiencies in the process and finding ways to correct them. A rigorous
project management structure is required to ensure that the possibly conflicting
interests of building a system that satisfies a critical military mission and maintains a
demonstrably high level of security do not bring the development to a standstill.

The ACCIS project can be viewed as a useful case study of the development of a
secure, complex military system. It suffered from the lack of tools, products and
experience. Fortunately, the mutual desire of both the Government and Contel to
complete this project has brought it through the most difficult period.

References

[1] Department of Defense, Trusted Computer Systems Evaluation Criteria,
DOD 5200.28 STD, December 1985 -

[2] Guidance For Applying The Department of Defense Trusted Computer
System Evaluation Criteria In Specific Environments, CSC-STD-003-85 and
CSC-STD-004-85, 25 June 1985 ;

[3] A GuideTo Understanding Design Documentation In Trusted Systems,
NCSC-TG-007, Version-1, 2 October 1988

108

[4]
[5]
(6]

[7]
[8]
9]

[0}

(11l

Guide For Security Relevant Acquisitions CDRL and DID Handbook,
Volumes 1 and 2, 1 May 1989

Mitre Trusted Computer System Security Requnrements Gulde for DOD
Appllcatnons (Draft), 18 March 1988 .

Technical Review and Audlts for System Equnpments and Computer
Software, MIL-STD-1521A

Department of Defense System Software Development, DOD-2167A
Engineering Management For Total System Deveiopment MIL-STD-499A

Configuration Control, Engineering Changes, Devuatnons and Waivers,
MIL-STD-480B

Conflguratlon Management Practices for System Equupment and
Computer Software, MIL-STD-483A

A Guide to Understanding Conﬁguratuon Management In Trusted
Systems, NCSC-TG-006, Version-1, 28 March 1988

109 .

CONTRACTORS AND COMPUTER SECURITY -
AWARENESS, EDUCATION, AND PERFORMANCE

Ronald G. Brunner
Ronald G. Brunner and Associates
2 Jasmine Court
Rockville, Maryland 20853
(301) 929-1518

Preface
This paper addresses the dual problems of monitoring a contractor's performance
and providing adequate computer security within the Federal government environ-
ment. Contractors perform many of the government's computer functions, there-
fore security must be a part of their services and products.

How does the government know that the contractors' are performing the computer
security function in an acceptable manner, and that they have the proper level of
awareness, commitment, and skills to provide this security? Guidance for determin-
ing a contractor's experience, and assuring performance, as they relate to computer
security, are contained in this paper.

- The paper is intended for use by computer security officers, computer resources
management and technical staffs, and contracting officers, as well as by educators
who are responsible for training the government personnel. Although the paper is
directed toward those individuals within the Federal government, most of what is
stated would also be of value to individuals who are working for a commercial
organization. -

The contents of the paper is based on the author's thirty years of experience working
as a computer manager, technician, and educator within both the Federal govern-
ment and commercial environments.

. BACKGROUND

A. Contractorsin the Federal Computer Environment

During the past thirty years, computer technology, and the way in which in it is used,
has changed dramatically. Automated Data Processing (ADP) at one time meant
transferring data from written documents to punched cards, for processing by large
computer systems in secure data centers. The results of the processing were volumes
of printed reports, difficult to handle and use. Any change in the requirements
meant days, if not weeks, of work by computer programmer/analysts. Manual
activities supported the processing, and when the computer failed, manual work
could replace its function. Computers were not easy to use, and they were only
critical for a small number of a Federal agency's functions.

Today, terminology has changed. ADP has been replaced by such terms as Manage-
ment Information Systems (MIS), Information Resources Management (IRM), Federal |
Information Processing (FIP), and many others which are too numerous to list here.
Today data is entered into a computer {)y optical scanning, voice recognition, remote |
sensing, data communications, and a variety of other methods. Computers can be |

110

large, still housed in a data center, or small, sitting in a person's lap. The data which
they process may be shown in printed form, graphically, or be an electronic signal
which is sent to a different location to perform another task. Computer programs
can be modified easily, sometimes even by non-technical personnel.

The importance of using computer technology has changed also. Today computer
technology relates to the sharing of information by the use of local area networks,
the creation of documents via word processing, the electronic transfer of funds, the
instantaneous location of a unique document, fax transmissions, and a wide variety
of tasks and functions. These tasks are critical to the successful completion of an
agency's mission. They can no longer be performed manually. The use of computers
is no longer optional. This paper will use the term computer resources in the broad-
est sense, as it relates to all of the technologies and terminologies described above.
It relates to any data, information, hardware, software, system, facility, or communi-
;.'ations function, where technology is utilized in the performance of an agency's
unction. :

The Federal government is one of the largest users, if not the largest user, of com-
puter technology in the world. It operates thousands of data centers and communi-
cations networks, and hundreds of thousands of personal computers. Many of these
computer functions are performed by civil service employees, but.an increasing num-
ber are performed by contractors. Many Federal organizations use contractors to
perform the majority of their computer related work, with the civil servants only
monitoring the contractors' functions. There are thousands of contracting firms,
large and small, whose only source of business is providing computer services to the
Federal government. The Office of Management and Budget reports that for FY-
1990, the Federal government spent over ten billion dollars for these services. The
hardware, software, communications networks, and other computer products which
the Federal government uses on a daily basis are also produced by the contractor
community. The Federal government, in general, relies completely on the private
sector for the computer related products which it requires, and could not function
without the products which the private sector provides to it. For FY1990, the Office
of Management and Budget reports that nearly five billion dollars were spent on
these products. ' ,

B. Federal Computer Security Requirements

As computer resources become more of a critical component within the
government's work processes, measures have to be taken to assure that these
resources are always available for use, for without them, organizations, and even
entire government agencies, could stop functioning. Protection has to be provided
to guard the government's computer resources from (1) adverse actions such as acts
of nature andgaccidents, (2) improper actions such as malicious and illegal acts, and
(3) undesirable occurrences such as system failures due to design limitations and
inadequate testing. The integrity, confidentially, and access to all of the
government's computer resources must be protected. In this paper, the term
computer security is meant to include protection against all threats to all of these
- resources.

To assure that the computer resources are adequately protected, Congress created
- the Computer Security Act of 1987, as well as numerous other laws. Federal agencies
with oversight responsibility, such as the Office of Management and Budget, and the
General Services Administration, have published numerous regulations which all
agencies must follow regarding computer security. Individual agencies have created

111

their own rules. Organizations are legally bound to provide security for their
computer resources.

The laws and regulations require organizations to be concerned about computer
security, and to implement computer security programs. Many government
managers have also realized, from a practical viewpoint, that their computer
resources are very critical to the performance of their functions, and as a result have
taken prudent actions to protect those functions.

C. Contractors’ Role in Computer Security

Two major trends within the Federal government have now converged, the use of
contractors' products and services to perform the governments' expanding and
critical computer related functions, and the expanding concern about the security of
the government's computer resources. Contractors therefore must not only be
. concerned about computer security, they must take an active role in protecting the
government's computer resources.

Il. THE CURRENT STATE OF COMPUTER SECURITY

A. Contractors’ Involvement With Security

Are all contractors fully aware of all of the laws and regulations which apply to
computer security, of all of the threats which exist which can adversely affect the
government’'s computer resources, and of the impact to the government if those
resources are not available? Most of us will agree that "all" contractors do not have
this awareness, and some government employees will state that "many" contractors
do not have this awareness.

While this author has not conducted, nor knows of anyone conducting, a formal
survey as to the degree of contractor awareness concerning computer security, the
author has held dozens of discussions with computer security officers, contracting
officers, technical monitors, trainers, and managers within the government, as well
as many contractor personnel. These discussions have lead the author to believe that
"many" contractors do not have the proper level of security awareness. The fact
that you are reading this paper, could be interpreted as indicating that you too are
concerned about potential threats to your computer resources, which your
contractor is doing little to protect.

Before a contractor can be expected to performance a task, the contractor must be
aware of the task. Unfortunately today, "many"” contractors are not aware of the
need for adequate computer security. They are not aware because their contract
with the government does not address it, or because of their lack of understanding
about computer security. Computer security is a sleeping giant which is very easy for
the contractor, and government, to ignore until a disaster occurs.

Are all contractors fully committed to computer security? The same survey discussed
above indicates that there is also a lack of commitment by "many" contractors in
implementing a computer security program, or in implementing good security fea-
tures in their products. This lack of commitment can be the result of a lack of aware-
ness, or it can be that computer security conflicts with the contractors' prime objec-
tive, which is to make a profit, or with their client's objectives, which do not include
security. If the contract does not spell out what the contractor's responsibilities are
regarding computer security, or if the contractor's client is not concerned about
security, is the contractor going to do anything about security? Probably not.

112

Many contractors have the problem of not possessing the necessary skills to
implement an adequate computer security program, or to include adequate security
features in their products. This is not a problem which is unique to contractors. In
general, there appears to be a shortage of computer security individuals who are
knowledgeable in both the theoretical and practical aspects of security. This
condition is known to anyone who has attempted to recruit an experienced
computer security technician.

There are many reasons for the shortage, but they include an ever changing
technology, a lack of interest by the computer industry in computer security, and a
lack of good, practical, computer security educational programs. Many government
agencies and private organizations do offer educational courses on computer
security, but the quality of these classes varies greatly, and only a small number of
courses are offered. In addition, training funds are usually in short supply. Too
often, training on how to develop new systems, install LAN's, or use a state-of-the-
art technique takes precedence over security training.

B. Government's Involvement With Computer Security

Before all problems relating to the lack of computer security are blamed on the
contractors, the government has to review its own environment. Some organiza-
tions within the Federal government have excellent computer security programs,
some have adequate security programs, but some just provide "lip service" to
computer security. This observation is based on the author's interactions with
dozens of government organizations. The lack of awareness and commitment by
Federal employees applies to both civil servant managers, computer technicians, and
contracting officers.

Many agencies today have serious shortages of civil servant employees. Therefore
government employees often state that it is difficult, if not impossible, to monitor
on a regular basis what the contractor is doing, as it relates to computer security.
Some government contracting officer's technical representatives (COTR) say that
they have all to do to assure that the contractor is delivering its products on time, or
that it is responding to all of the users' problems, without monitoring what the
contractor is doing about computer security.

Even if the COTR has the time to monitor the contractor performance in the compu-
ter security area, how do they determine that the contractor's computer security
awareness, commitment, and skills are adequate? In too many cases, the COTR does
not know enough about computer security to question the contractor about it.

C. Contracts

What work a contractor does, or does not, do is defined in the contract which exists
between the government and the contractor. The contractor is not going to do
anything not contained in the contract because the contractor will not get paid for
it. In some cases, if the contractor performs work not contained in the contract, it
could even be considered as being an illegal act.

Computer security has not been adequately addressed in many of the government
contracts the author has reviewed. Many times this is because the technical security
requirements have not been determined, other times because the necessary security
clauses have not been kept current, and still other times, because there are no funds
available to include any security features.

113

Il IMPROVING COMPUTER SECURITY

A. Overview

You are very concerned about the security of your computer resources. You do not
believe that your contractor is doing an adequate job in protecting those resources,
resources which must be operational for your-organization to fulfill its mission. How
-do you get the contractor to be more responsive and to protect the computer
resources, and maybe even your job? Perhaps, you do not even know whether your
- contractor is performing in a satisfactory manner or not, or whether the contractor
. has the skills and motivation to do the job. Or maybe, both you and your contractor
- know exactly what should be done, but you can not convince your management to
authorize the necessary security program, or there are no funds to perform the
- work. The remainder of this paper will provide guidance to anyone who is
concerned about these conditions, or has to educate government personnel, such as
contractor monitors, about computer security. '

B. Government's Awareness

The first thing any government organization must do to develop and implement an
adequate computer security program, is to make the government’s managers and
technical staff aware of the legal and management needs for computer security, and
- to educate them as to what computer security really means. You can not place
requirements on your contractor, if you and your management do not understand
the requirements, or if there are no funds to perform the work. You can not tell
your contractor that computer security is important, if you and/or your management
“do not agree. You can not monitor a contractor's technical performance if you do
not understand what the results of that performance should be.

Awareness and education of the government personnel concerning computer
security are necessary before you can get the contractor involved. A contractor who
is knowledgeable in the area of computer security, can assist you in "selling" security
- to your management, and in the education of your staff regarding the technical
aspects of computer security. The contractor can not be the driving force behind
computer security, it must be the government. Step one then in any computer secu-
rity program is to assure that you, your management, and technical staff are knowl-
edgeable about the legal, management, and technical requirements for computer
security, and are committed to a reasonable and adequate security program.

How do you accomplish that? Lengthy papers have been devoted to informing and
educating people about computer security, and to completely address the issue here
would not be practical. Briefly though, the legal and management need for compu-
ter security must be made known to all. It is the process of awareness. You have to
know that if you do not have an adequate computer security program, you are not
complying with the law. You have to be aware that your organization may be
placed at great risk if you do not have an adequate computer security program.
Your computer resources could be vulnerable to a wide variety of threats, which
could have a significant adverse effect on the mission of your organization.

- Those threats not only include computer viruses and white collar criminals, but also
the results of unusual weather conditions, the failure of a sprinkler system, a labor
dispute, the detection of a hazardous material in your physical environment, a
design error in your computer system, a feature in a product which does not work as
promised, and thousands of other actions and events which occur in computer
environments throughout the world on a regular basis.

114

After awareness has been established, a program of computer security education
must take place within the government. The government does not have to under-
stand the details of how a specific virus works, or what are the different types of
data encryption. or how an uninterruptible power system functions. They do have
to be able to recognize what are the potential threats to their resources, where and
how they are vulnerable to those threats, what will be the effect on their operations
if the threat turns into an adverse action, what technology and management prac-
tices exist to counter those vulnerabilities and adverse actions, and whether the cost
for this protection can be justified. The question must be addressed as to how much
computer security, and at what cost, is appropriate. This is risk management. A
contractor can assist you in gathering all of the required information and perform-
ing the necessary analyses, but the final decision as to which risk is not acceptable
and therefore must be protected against, and which risk is acceptable, for which no
protection will be provided, must be made by the government. :

C. Expanding the Contract

After it has been determined what level of computer security is required and must
be provided by the contractor, it must be addressed in a contract. If your computer
security requirements are not described in your solicitation, and not detailed in the
resulting contract, those requirements are not going to be satisfied by your contrac-
tor. You can not assume that the security features or commitment you desire are
oing to be provided, nor that the contractor will want to, or be able to, provide
eatures or work not contained in the contract. After a contract has been created, it
can be modified to add security requirements to it, but that is usually costly,
sometimes difficult, and always politically a problem. You must ask your boss for
more money than you had planned for, and he/she asks why? ~

Your security requirements must be described in detail in your solicitation. Any
specific security requirements which are unique to your environment must be
inserted. General requirements can be obtained from your agency's procurement
"boiler plate”, or from prior solicitations, but usually that will not provide all of the
protection you need. ' : S

Your solicitation must address your overall needs, and what security features and
services those needs require: Areas to be included are: how is security controlled by
the hardware and software; what security features do you require in the products
and systems; how is access to the resources controlled; what user and technical
documentation is needed; what are the legal considerations; how are communica-
tions to be protected; what is the importance, confidentially, and criticality of your
data; what clearances and skills must the personnel possess; how will security
training and awareness be handled; what are the security needs for the facilities;
and how will contract administration be conducted. Assistance in placing the proper
requirements in your solicitation is provided by the National Institute of Standards
and Technology, as well as the General Services Administration.

In addition to your security requirements, you must describe your environment to
your contractor. If a risk analysis just determined that your installation has serious
security problems, you must tell the contractor. If you do not, the contractor may
not address those issues, and costs, in the proposal. If a continiency plan exists to be
used in the event of a computer failure, the contractor must know about the plan.
Anything which can affect the security and the functioning of your computer
resources must be told during the solicitation phase to your potential contractors.

115

Many times, all of the security requirements which you desire the contractor to
respond to, can not be identified at contract award, or if they have been identified,
there are no funds to support them. It is therefore wise to include in any contract,
options for the contractor to perform additional security activities, if the require-
ment and/or funds arise. Options do not commit the government to having the
contractor perform the work, but they can save significant time and procurement
effortif the government does require the work to be performed.

D. Responsibilities

The solicitation, and the resulting contract, must make it clear as to the responsibil-
ities of the government and the contractor. Who trains the contractor, pays for the
training, determines the level of training required, and determines when it has been
successfully completed? Who creates the risk assessment, screens the contractor's
personnel, and controls the passwords to access the computer system? The who, and
how, and what, and when, for all activities must be included. The specificareasto be
considered included: computer security planning, risk determination and analysis,
identification of sensitive systems, contingency plans, training, procurement of addi-
tional security related products and services, personnel requirements, determination
of costs and available funding, and controlling and monitoring the contractor's
performance.

Unless these responsibilities are clearly defined, several adverse actions will occur.
First, the government and the contractor will be arguing throughout the term of the
contract as to who is doing what and who is going to pay for it, and second, the even
more important, required functions may not be performed.

General guidance is that the government is responsible for overall planning and
control, conducting awareness training, the identification of sensitive systems, and
funding. The contractor would perform all of the required analyses, do the detailed
training, and be responsible for the day by day security actions. The exact break-
down of responsibilities will vary from contract to contract. It is very important that
all responsibilities be identified, and assigned to either the government, or the
contractor, or even a different contractor.

E. Determining The Contractors Awareness, Commitment, and Skills

You have defined in your contract what support you require, but how do you know
if the contractor has the capabilities to provide that support? The contractor's pro-
posal states that they have the knowledge and experience, or their product performs
that function, but how can you be sure? Techniques which are used include: (1)
reviewing their past performance, (2) assessing their plans for future performance,
(3) interviewing their proposed personnel, and (4) seeing a demonstration of their
proposed products.

Past performance can be determined by checking with organizations who the con-
tractor has supported in the past. The contractor says that they have performed
these security activities for this client. Check with the client to determine is that true,
and whether the client was fully satisfied with the contractor's performance. Check
with many prior clients, and with both the technical and procurement monitors.
Determine if the contractor have the skills, commitment, and record for doing what
they say they can do. If the contractor is proposing personnel, check the references
on the resumes.

lle

In addition to past performance, you want to know what the contractor plans to do
for you. Require the contractor, in their proposal, or response to your task order, to
provide to you a detailed plan as to how the security work will be accomplished. The
plan should address exactly what is going to be accomplished and how. What is the
level of staffing proposed, and what are the qualifications of the staff? What is the
detailed schedule with interim milestones? What are the responsibilities of the
contractor and the government? What are the deliverables, and how will the
government know that the work has been performed in a satisfactory manner? This
plan must be agreed to by the government before the contract is awarded, or the
task signed off by the government. It should provide to the government a feeling
that the contractor understands the security problem, has the talent to attack the
problem, and possesses a plan to resolve the problem.

A part of a government contract, should be the contractor's security training plan.
The difficult question is, what is the correct level of training? There is no correct
answer, for the answer will depend on the required level of security, the funding
which is available, the sensitivity of the application, and many other factors. You
should assure though that the training proposed corresponds to all of those factors.

At the time a contractor submits a proposal to the government, it is proper and
advantageous for the government to interview some, if not all, of the contractor's
proposed personnel. This will assure that they are committed to working on your
project, and that they possess the necessary skills to support your security program.
If you do not have the necessary skills to adequately interview them, obtain those
skills from elsewhere in your agency, or even hire another contractor to assist you.
Do not assume that because the proposed resume says that the person has the
required experience, that the person actually does have the experience.

Benchmarks, or product demonstrations, can be used to prove to you that the pro-
posed product or technique, actually accomplishes what it is suppose to accomplish.
This "hands on" viewing of what is being proposed can be very detailed, and require
many hours of time by both the government and contractor personnel, or it can be
just a brief demonstration at another client's site. Some contractor's products are
formally approved, or accepted, by some government agencies, or the commercial
marketplace. This approval or acceptance could be used instead of having your own
demonstration, but be sure that the environment in which the product was
approved or accepted is exactly the same as yours. Demonstrations do not only apply
only to products, they also apply to techniques. If the contractor proposes to
conduct their own in-house training program, it is appropriate for government
personnel to sit in on those training sessions to assure that they will meet the
government's specific requirements. If the contractor is to develop a contingency
plan, the government may review prior contingency plans the contractor has created
to assure that the approach is acceptable. Do not accept promises from the
contractor. Rather, view with your own eyes what you are going to receive from the
contractor, and determine whether it meets the contractual requirements. ‘

F. Monitoring Performance

You have now been convinced, at least in theory, that your contractor has the skills,
experience, commitment, and plan to protect your computer resources. How you do
know that the contractor is doing what the contractor has promised to do. How do
you monitor and control the contractor? Especially when your staff tells you that
they do not have the time to perform this monitoring function. First, the question of
priorities must be addressed. Iif computer security is really important to your
organization, and if you really desire to control what your contractor is doing, you

117

will have to locate resources to monitor the contract. They do not have to be full
time resources, but they do have to be at a level which relates directly with the
importance of what the contractor is doing. :

The best way to monitor your contractor, at any level, is by using multiple control
points. What is meant by that, is that you obtain, on a regular basis, data concerning
your contractors performance not from one source, but from multiple sources. You
then compare all of the data to assure that it is consistent. If it is not, you have a
problem. For example, you receive from your contractor status reports telling you of
the good things the contractor is doing for you. At the same frequency, you should
also receive similar data from your user community, your operations personnel, even
from other contractors concerning the contractors performance. Is all of the infor-
mation consistent? You receive written reports concerning your contractors perfor-
mance. Does verbal inquiries agree with the written data? In walking around the
entire environment being protected, does your visual inspection and discussions
agree with the written data? If it does not compare, you better start asking many
more questions. ' ,

For example, how do you know that the contractor's employees are receiving the
security training which was proposed. First, obtain from the contractor detailed in-
formation concerning which contractor employees went to class. Since the govern-
ment is paying, either directly or indirectly, for the training this is an appropriate
request. Contact the trainer yourself to obtain feedback as to who was trained, and
what was their performance in the class. Talk to government employees who may
have been in the same class. Submit to the contractor a simple task concerning the
material which was covered in the class, to be completed by the students who just
completed the class. Have the results of the task reviewed by competent security
sources. Does all of the information you have gathered agree, or not?

Remember though, that any information, especially written, which you require from
the contractor should have been identified in the contract. This does not mean that
every report has to be listed, but categories and frequencies of reports should be
addressed. You can only perform the contact monitoring specified in your contract,
and/or permitted by government laws and regulations.

G. Contract Administration

Most interactions between you and contractors are to be in writing, and flow
through your contracting officer, or at least the contracting officer's technical repre-
sentative. Too often that does not occur. Verbal direction, usually illegal, is provi-
ded to the contractor by a variety of government employees. The result is confusion
on the part of the contractor because they do not know who to respond to, frustra-
tion by the government's technical staff because the required work is not being per-
formed, anganger by the procurement officer because the laws and contract are not
being followed. The government's procurement laws and regulations must be
followed in administrating any contract, not just because they are the laws, but
because good management practices require that they be followed. In addition,
there must be a good contract "audit trail”, that is a file of documents showing what
the contractor was to do and what they actually accomplished. Letters of commen-
dation as well as complaints must be included. Do not assume that the contractor
will respond to your verbal requests or concerns. Put it in writing, send a copy to the
contracting officer, and place it in the file.

Either because you are doing a good job in monitoring your contractor, or because a
disaster just occurred, you determine that your contractor is not accomplishing what

118

Kou thought the contractor was accomplishing. What do you do now? First, you
ave to determine if the function is addressed in the contact or not. Ifitis notin the
contact, you can not force the contractor to do something which the contractor is
not legally bound to do. If your legal and procurement staff tell you the contact is
not clear, "the monkey is on your back". Your only real course of action, is to have
the contracting officer issue a modification to the contract, or to obtain other
resources to get the job done. Hopefully you will have learned from your mistake,
and will write a better solicitation, or task order, the next time.

Suppose though, the contract is complete and clear, and your contractor is just not
performing. Initiating the disputes, default, and termination clauses in the contract
is normally not the way to go. The contractor, your contracting officer, and your
management, will all get mad at you, but the work still is not getting done. Instead
attempt to determine what is the problem. Most contractor problems have been
caused by incorrect, incomplete, or erroneous communications. Therefore, when a
problem does arise, talk to your contractor project manager, vice president, or the
owner of the company, and determine what the problem is and how it can be
corrected. The contractor usually is just as interested as you are in solving the
problem. Contractors can obtain additional contracts only if their prior performance
has been acceptable. The last thing they desire is to have an unhappy client.

It is possible though that you can encounter the contractor that can not or will not
perform. The task then is one of terminating the contract, and obtaining a new
contractor. Remember, that if your contract is clear and complete, and you have
good administration records, there should be no question concerning the contrac-
tor's lack of performance. These documents will permit you to terminate the con-
tractin a shorter time, and with less frustration, than if things are not documented.

You have placed the security of your computer resources in the hands of your
contractor, but computer security is still the government's responsibility. You must
work together with your contractor to attack and resolve your security concerns. In
this way, the resolution of most problems will occur in the shortest of time, the
~ protection of the computer resources will be maximized, and everyone will benefit.

Computer security is-a sleeping giant. You are going to need all of the help you can
get, to properly protect all of your computer resources, from those bad things, which
are guaranteed to happen to you.

119

COVERT CHANNEL ANALYSIS PLANNING
FOR LARGE SYSTEMS

Lee Badger ‘
Trusted Information Systems, Inc.
3060 Washington Road (Rt. 97)
Glenwood, MD 21738

Abstract

Covert channel analysis is a challenging task, particularly when performed during the development
of a large system. Some elements of covert channel analysis, such as timing channel identification and
reduction, require techniques currently beyond the state of the art. Performing a useful covert channel
analysis during development requires a careful balancing of costs and assurance, and a careful selection of
currently available techniques. While it is possible for new research to assist in the covert channel analysis
of large systems, developers cannot plan on breakthroughs. This paper discusses available techniques,
their limitations and tradeoffs, and makes recommendations for performing covert channel analysis.’
Keywords: Assurance and Analytic Techniques, Conducting Security Evaluations.

Introduction

Covert channel analysis (CCA) is a process of identifying and analysing information flows in a security policy
model, system specification, or system implementation. CCA is required to satisfy the TCSEC [1] B2 and
higher evaluation class requirements and also the ITSEC [9] E4 and higher assurance levels. CCA may be
performed either informally or formally. In general, CCA has 3 distinct components: 1) identification of
covert channels, 2) estimation of their capacities, and 3) reduction of capacities. An additional, implicit
component of CCA, is to gain assurance that each of the three tasks are correctly performed.

Performing a credible CCA, successfully and at reasonable cost, during a large (i.e., complex) system’s
development is a challenging task. In the context of the Trusted Mach system currently under development
at Trusted Information Systems, a CCA plan has been evolved that balances concerns over assurance, cost,
and feasibility. This paper first provides definitions and summarises available techniques. It then compares
the techniques, and presents an approach for performing CCA during system development.

Definitions

Generally, covert channels make use of system characteristics, such as error return codes or global identifiers,
that are not normally thought of as containers of information but that reveal the state of shared resources
(hence the word “covert”). In contrast, information flows that occur between system “objects” as a result
of using system primitives in the intended way can normally be thought of as “overt channels.” A covert
channel is usually defined to be a “communications channel that allows a process to transfer information in a
manner that violates the system’s security policy.”[1] A system security policy (for B2 and greater systems)
should be completely stated in its FSPM (Formal Security Policy Model[1]).? If the FSPM includes an
information flow policy, such as noninterference [6] or nondeducibility [18], this definition is accurate. For
access control FSPMs (e.g., [3]), however, the system security policy makes no statement about information

1This work was supported by DARPA/ISTO Contract MDA97-90-C-0027.
3The construction of an FSPM that accurately reflects external security requirements is beyond the scope of this paper; &
valid FSPM is assumed.

120

flow, and the “intent” of the system security policy must be inferred from the properties of the defined secure
state. For example, the ss-property and *-property of the Bell and LaPadula FSPM imply an information
flow rule of “no flow down.” For these systems, the purpose of CCA is to gain assurance that information
may not flow contrary to the intent of the system’s security policy. It should be noted that this definition is
very broad, including as covert channels all mechamsms that reveal failures by the TCB (Trusted Computing
Base) to satisfy the FSPM.

Although not required by the definition of a covert channel, the general paradigm of covert channel ex-
ploitation involves one or more sending subjects that have access to sensitive information, and one or more
receiving subjects that have lower access to sensitive information. Under the assumption that components of
the TCB do not intentionally compromise information, there must at least exist a receiver that is untrusted.
If there is no untrusted sender, the receiver’s actions amount to spying on events going on in the TCB, which
satisfies the definition above, but is & much smaller threat because there can be no cooperation between
sender and receiver, and because presumably the TCB is using care in its handling of information. Most
of the literature on covert channels focuses on the more dangerous case, where both sender and receiver
are untrusted subjects and cooperate. In this case, the sending subject must be executing & trojan horse
program that is using the access rights of a highly cleared user. Although there may be many senders and
receivers to exploit a given channel, the number is an implementation detail of the exploitation; this paper
refers to “the sender” and “the receiver.”

Typically (and in the TCSEC), covert channels are divided into two classes: storage channels and timing
channels. A storage channel is a covert channel in which the transmission of information involves the
alteration and observation of storage locations in the TCB. A timing channel is a covert channel in which
the transmission of information involves the manipulation, by the sender, of the length of time that the
receiver requires to perform some operation. For a timing channel to exist, the receiver must have access to
a timing reference in order to measure the time required. Some channels are difficult to categorise as either
timing or storage[23]. For example, the following channel would appear to satisfy both definitions: a sender
positions a disk’s arm to the middle or outer track of a disk by performing I/O to files that are known to
reside in those places; the receiver performs I/O to an inner track, measuring the delay in servicing the I/Q
request. The position of the arm is internal state (storage), and the receiver deduces that information using
timing properties.

Because covert channel exploitations bring about the disclosure of information, a definition of information
is necessary. Although the intuitive definition of information as “bits” is useful, a more formal foundation
is required to calculate the capacity of a channel, that is, the rate at which information flows through it.
Shannon’s definition [17] is widely accepted as the proper foundation. Very informally stated, information
is the amount of “surprise” that the receiver experiences when learning the value of a symbol received. As
sn example, & receiver that receives one of n symbols (all equally likely) learns more than a receiver that
receives one of m symbols (all equally likely) when n > m. The amount of information received depends on
the probabilities of the symbols. If one of the n symbols is very likely, so that the rest are very unlikely, then
receiving one of the rest is relatively “surprising,” and more information is received than would be the case
if the probabilities were equal. Because the overhead of sending different symbols may vary dramatically,
covert channel exploitations may substantially increase channel capacity through the use of coding. Using
coding, a sender can change the probability distribution of symbols received by the receiver by encoding
expensive symbols as sequences of less expensive symbols.

TCSEC B3 Requirements

The TCSEC requires a system developer to conduct a thorough search for covert channels (storage channels
only at B2; timing channels also at B3 and Al), and to determine channel capacities for identified channels
using either actual measurement or engineering estimation. In the recent Trusted Xenix B2 evaluation, the
evaluation team rejected the use of actual measurement because there could be no guarantee that the strate-
gies and code used to drive the channel were the most efficient possible. Analytic techniques must therefore
be used for measurement (note: just as measurement is prone to underestimation, analytic techniques are

121

http:cha.n.n.el
http:cha.n.n.el
http:�tof'a.ge

prone to overestimation). The TCSEC criteria refers the reader to the covert channel guideline section of
the TCSEC for guidance on both acceptable capacity and auditing. The guideline asserts that all channels
with capacities above 1 bit per second can be audited without adversely affecting system performance, and
therefore that such channels should be audited.? Additionally, it recommends auditing of channels with
capacities above 1/10 bits per second where possible. Since the guideline is not part of the criteria, however,
it is subject to modification by precedent. During the Trusted Xenix B2 evaluation, the team found the
following channel capacity and auditing categorization acceptable:

Capacity | Action
<1 no concern
1-10 | document, audit if possible
10 — 100 | if not possible to reduce, audit and document
> 100 | not generally acceptable

ITSEC Requirements

Development of ITSEC rated systems has 4 phases: requirements, architectural design, detailed design, and
implementation. At the E4 assurance level, CCA is required in the detailed design phase. At E5 and E6,
CCA is required both during the detailed design and implementation phases.

In the detailed design phase, a specification using “some form of rigorous approach and notation” is re-
quired. The specification is required to provide a DTLS and to identify all security mechanisms. A “design
vulnerability analysis” must be conducted on the specification to determine how security may be subverted
on a system configured in a specific way by a security administrator. This analysis must identify covert
channels. It is required that the exploitation of covert channels be auditable. In the implementation phase,
an “implementation vulnerability analysis,” for a given configuration, must identify covert channels.

The ITSEC targets covert channel analysis at specific configurations, which opens the possibility of support-
ing both covert channel analysed configurations and other, perhaps more useful, configurations. In general,
the ITSEC does not appear mature in its treatment of covert channels. First, a definition is not given,
although the reader might be justified in using the TCSEC definition. Second, the requirement that all
channels be auditable is probably not technically feasible.

Channel Identification

There is currently no known technique for identifying all covert channels in an implementation. Relatively
high confidence can be gained that storage channels have been eliminated from specifications [11] Unfortu-
nately, implementation details not present in an interface specification may introduce new channels. For a
complete, rigorous treatment of storage channels, it is probably necessary to combine analysis of interface
specifications with code level (or very low level specification) checking to validate the interface analysis.
Although at least one informal methodology exists for searching for timing channels (summarised below),
identification of timing channels remains ad hoc. Most of these methods focus on finding “potential” chan-
nels; informal techniques must then be used to determine if the channels can actually be used. This section
presents three different approaches to finding storage channels, and one approach for finding timing channels.

Shared Resource Matrix Methodology

The shared resource matrix (SRM) methodology of Kemmerer [10] focuses on identifying the shared resources
whose “attributes” can be used for covert channel exploitation, and the system primitives that must be used
to manipulate the attributes. As defined by Kemmerer, a shared resource is “any object or collection of
objects that may be referenced or modified by more than one process”?. The definition of the storage

3The auditing of some timing channels, if attempted, would severely degrade system performmce.
4Kemmorer assumes that subjects are processes.

122

objects in the system’s security policy model determines a subset of objects about which attributes may
exist for covert manipulation. For example, a file or terminal may be a shared resource that has a sise or
‘lock attribute that is subject to manipulation. Subjects may communicate by changing the sise or setting

the lock. Whenever multiple subjects share a cpu, an additional shared attribute, the response time, is also
available. ’

Kemmerer gives the following minimum criteria for the presence of a storage channel:

1. Sending and receiving subjects have access to an attribute.
2. The sender can cause the attribute to change.
3. The receiver can detect the change.

4. The sender and receiver are able to synchronise.
Timing channels have a slightly different set of criteria:

1. Sending and receiving subjects have access to an attribute.

2. The receiver has access to & time reference.®

3. The sender can modulate the receivers response time for detecting a change in the attribute.

4. The sender and receiver are able to synchronise. ©

The methodology is applied by first identifying the shared resources and their attributes, and then the system
primitives that can be used to manipulate them. This information is then ozganised into a matrix where the
rows correspond to shared attributes and the columns correspond to available primitives. The elements of
the matrix are labeled by a R, M or both to indicate whether the primitive observes the attribute, modifies it,
or both. If the row for an attribute contains both R and M, it may be usable as a covert channel. A weakness
in the methodology is that it does not state how to identify the attributes or primitives, or how to determine
whether or not an exploitation is possible. Due to this informality, concluding the analysis is a subjective
decision. At the lowest level, analysis is performed on every primitive: 1) that a subject may invoke, and
2) that causes or observes a system state change. These primitives include all system traps, kernel interface
calls (which are interpretations of system traps), functions made available by trusted processes, and cpu
instructions. Depending on its arguments, for example, the move instruction may affect system memory or
cache contents; these effects may be visible to subjects at other security levels.

Once constructed, the matrix is transformed by calculating the transitive closure of the information flows.
The transitive closure simply extends all direct information flows to include indirect flows as well. Both
Tsai [20] and Levin [11] have argued that this step is not necessary because indirect lows must be based
on direct flows. Levin notes that, because an exploitation may exist for indirect flows, such a conclusion
is only justified if no direct flows are eliminated from consideration as having no exploitation. Some tools
exist for assisting in constructing an SRM from specifications. Gemsos [11] used FDM (Formal Development
Methodology) tools [5] to generate a SRM for storage channel analysis. The system interface was described
using the Ina Jo specification language.

5 Actually, Kemmerer asserts that both sender and receiver need access to a time reference. It does not appear nocossary,
however, for the sender to have such access so long as the actions that the sender takes are known in advance to affest the
recoiver’'s response time.

S This is not necessarily a significant requirement. In the absence of synchronisation, variations in the sender’s and receiver’s
relative speeds show up as noise in the transmission (which can be eliminated using suitable encoding). Synchronisation is
required for a noiseless channel, however.

123

http:reference.11

Noninterference

A subject is “noninterfering” with another if the subject’s actions do not affect the other subjects view of
the system’s behavior [6]. If we view a system as a sequence of inputs and outputs, noninterference can be
stated: subject A does not interfere with subject B if, for every sequence w of inputs and outputs of A and
B, the output seen by B is identical to that which would be seen by B in the sequence that is identical to
w except that all of A’s inputs have been deleted. A system has the MLS property if, for every subject A
whose security level properly dominates that of another subject B, A does not interfere with B. These ideas
can be more precisely stated; a state machine definition is given in [6].

Noninterference is characterised by system behavior at an interface; the interface may be at any level of
abstraction. Noninterference belongs to the family of information flow models because the satisfaction of
the policy can be shown by demonstrating that no information flows between noninterfering subjects (as
defined by the label dominance relation). Because covert channels are means by which high subjects can
interfere with low subjects, a system that has the MLS property has no covert storage channels.” Covert
channels may then be discovered by attempting to show the MLS property for a system, and examining the
places where the proof fails. This approach was used, in comparison with the SRM methodology, to analyse
specifications of the Secure Ada Target for covert storage channels [7].

The noninterference approach has the advantage that, unlike the Shared Resource Matrix approach, it is
possible to “know when you are done.” The method of analysis, however, is extremely arduous. Constructing
proofs that source code satisfies a particular specification is extremely difficult; producing arguments about
where and why a proof fails (and that the proof could not in fact have succeeded) is even more difficult.

A Code Level Technique

Although the SRM methodology [10] provides an approach to identifying covert channels, it leaves out the
specifics of how to find channels in source code. Tsai [19] provides a way to identify channels in C source
code using semi-automatic. analysis. It is claimed that the method is formal and that all storage channels are
found. Although the method does use some formal techniques, the strength of the results is limited by the
strength of the (to date, informal) correctness claims for system implementation in general. Additionally,
the choice of C as the implementation language makes the analysis vulnerable to incorrectly implemented
pointer manipulations that cannot be caught by the analysis. Tsai’s method can be seen as an extension of
the SRM methodology. It can be described in three broad phases:

Identify trusted interface primitives: This information is available from the system DTLS.

Determine the visibility /alterability of internal TCB variables This determination starts by first
examining, using dataflow concepts, whether or not variable values are (potentially) returned to a
caller of a TCB primitive, or are potentially altered by call. For example, the statement “x = y;”
causes information to flow from y to x. If the statement is guarded by an “if B”, then information
flows from B to x as well. Dataflow rules for tracking information flow in code have been given by
Denning [4]. This analysis is performed on a function by function basis. Potential function call paths are
then examined by discovering which functions can be called from each TCB primitive. TCB variables
that can be set or observed from the TCB interface are then flagged as covert channel attributes for
a code level SRM. The TCB primitives from which the atiributes can be modified or from which the
attributes are visible are identified as the columns of the code level SRM.

Analyse shared attributes (and weed most out): The criteria for weeding out identified attributes are
not formalised. Attributes may be weeded out either because the information flows supported are legal,
or because they confer no useful information.

Tsai’s method identifies numerous attributes. It does not, however, provide a formal way to determine which

TIn [7] it is stated that a system having the MLS property might still have timing channels, because there is no explicit
representation of time in the noninterference model.

124

are actually harmful. Ideally, an FSPM would be mapped down onto the code, and the legal channels could
at least then be formally eliminated. The “no useful information” channels are more difficult yet.

A weakness of the method is its focus on global variables. First, such variables should be considered in
assembler as well, and also.i/o should be analysed. Additionally, it should be possible to include the CPU
instructions as part of the TCB interface. I/o can present obvious channels, such as the print job identifier
channel for Unix. In that channel, print job numbers are written into a file in a DAC-protected directory by
the trusted printer daemon. New jobs are numbered after the last job written into the file. Because users
cannot access the directory directly, they cannot read the file, but they can notice which job numbers are
assigned to their print jobs. Using the SRM methodology, such channels can be detected by identifying the
resource consisting of print job numbers.

Tsai’s method, used in Trusted Xenix [2], identifies essentially three kinds of storage channels:
resource exhaustion A resource pool (¢.g., 8 memory allocator) returns an error message when there is

no more resource to allocate.

policy conflict An operation that may compromise information, but which must be maintained for compat-
ibility or usability. For example, some systems refuse to remove directories when their (high) contents
are not empty.

event count Channels in which the sender can manipulate a (usually integer valued) index or sise atiribute
of a resource. For example, a report of the total number of free disk blocks is an event count channel.

Timing Channels

Timing channel identification has historically been ad hoc. In order to measure the time that an operation
requires, the receiver of a timing channel must have a point of comparison. The most obvious such point of
comparison is the system clock. Points of comparison need not be so obvious, however. As stated in [22], a
timing channel may exist whenever there are two or more clocks where a clock is defined to be “any series
of events, visible to a process, which may be used by the process to measure the passage of time.”

In [22], Wray proposes a methodology that focuses on the identification of clocks. Using the methodology,
all clocks are identified and an N by N matrix for the N clocks is constructed. The vertical axis would list
the clocks to be modulated by the sender, and the horizontal axis would list the clocks to be used by the
receiver to measure the modulations. Except for the diagonal of the matrix, each cell can be filled in with the
modulation scenario. It is not possible to modulate some clocks. This technique is not extremely different
“ from the SRM approach. Clocks are discovered by first listing “clock classes” (an informal activity), and
then subdividing the clock classes by their internal events. For example, some clock classes proposed in [22]
were: instruction timings, operating system calls, the system clock, and disk I/O transfer time.

Once clock classes have been identified, individual clocks (usually subparts of a class, for example the
different interrupts for a disk transfer) are identified, and example exploitation scenarios are hypothesized.
For a particular pair of clocks there may be a large number of possible exploitation scenarios. Choosing
the fastest and most difficuli-to-audit scenarios is an ad hoc process. In [22], Wray provides a number of
example exploitation scenarios:

disk-arm The sender positions the disk head by performing i/o on known tracks. The sender issues two
read requests (to different sectors) and examines the completion time of two read requests.

disk-arm write Similar to the above, the sender first positions the disk head. The receiver issues two write
requests such that they partially overlap on the disk and such that one will happen first depending on
the position of the disk head. The location of the disk head is revealed by which value remains. This
is an example of a “direct” channel, in which the information is deposited on a medium without the
receiver learning it first.

125

printer write with timing loop The receiver issues print requests and waits in a timing loop, after which
it cancels the request. The sender modulates the length of the receiver’s timing loop by contending for
memory access.

bus contention A high processor modulates memory access contention with low processors. This channel
is potentially large.

cache reload The receiver fills the processor cache with low information. The sender causes some cache
entries to be invalidated, and the receiver then notices the time delay in accessing memory.

Other timing channels have been presented in the Htérature; an exhaustive list of reported channels is beyond
the scope of this document.

Channel Capacity Estimation

Channel capacity estimation should be done after the identification phase is complete. The capacity estimates
serve as input to the channel reduction process. Capacity estimation has three components:

e measuring the time each TCB primitive requires to execute,

¢ finding scenarios for the manipulation of each channel, abstracting the scenarios to gain a guarantee
that no other scenario exists that can drive the channel at higher speeds, and

o estimating the rate at which information can be transmitted using the abstracted scenario.

In principle this approach works for both storage and timing channels, but techniques for finding the infor-
mation rates of abstract scenarios may differ. This section discusses each of these components.

Measurement

Measurement requires that, for each evaluated hardware base, all TCB primitives, that have been related to
covert channels in the identification phase, be timed. Both kernel and server interactions will require timings
since CCA will be performed for both the kernel and servers. It can be difficult to obtain believable timings
for TCB primitives. Primitives may execute much faster than the clock ticks of the system clock used to
measure the time.® In this case, it is necessary to time n calls of a primitive. For primitives that allocate
(or deallocate) resources, however, it may not be possible to execute the primitive n consecutive times.
Primitives may have to be paired (allocating and deallocating) to measure their composite timings. Many
primitives may require different amounts of time to execute depending on the system state. Characterising
the state is sometimes possible (e.g., file creation in a large directory is slow), but often the state is such a
complex result of previous system history that analysis is not feasible. To blend the differences, the timings
should be measured multiple times, and confidence intervals should be used to gain assurance that actual
times are close to measured times with high probability.

Many primitives transmit information through failure conditions; it is therefore necessary to measure both
calls that succeed and calls that fail. An additional, unquantifiable, concern is that the time that a primitive
requires to execute often depends on what arguments are provided it. Arguments can sometimes be selected
that “do no work” (resulting in fast executions), but covert channels cannot in general be driven by “null”
operations. “Reasonable” arguments must be chosen.

Idealiged Scenarios

Channel capacity depends heavily on the scenario, or algorithm, used to manipulate it. In the abltrﬁct, it
is very difficult (virtually impossible) to show that a particular scenario for manipulating a covert channel

81r lbodd diagnostic hardware is a.vn.ihbh:, this may not be an issue.

126

is optimal. It is much easier to show that every scenario for the exploitation of a certain channel must pay
a specific overhead (e.g., deallocating resources that must be allocated to exploit the channel). Some well
known overheads, like synchronisation, however, cannot in general be included because it is not known how
clever an attacker might be in synchronising the sender and receiver. In general the attacker is assumed to
have the use of the entire system (no interference from others). The exploitation scenario can therefore be
started by selecting the most efficient TCB primitives for manipulating (sender modifies, receiver observes)
the channel, regardless of whether there is an apparent way to use them for that purpose. If the capacity
is sufficiently low, the analysis can end there. If the capacity is high, a search can then be performed for
reasons why those primitives can’t be used, or why other primitives must also be used, lowering channel
capacity.

Estimation of Information Rate

Although there is general agreement that information theory (Shannon’s definition) is the proper basis for
capacity calculations, methods of calculating covert channel capacity is an ongoing research area [21, 13].
Except for some simple classes of channels, precise calculation of covert channel capacity exceeds current
mathematical techniques. In order to make calculations feasible, however, simplifying assumptions can be
made. By avoiding capacity underestimation, simplifying assumptions sometimes dramatically exaggerate
channel capacities.

In the TCSEC, acceptable capacities are expressed for individual channels. In previous evaluations, channel
“aggregation” has been an issue. The motivation for aggregating several channels into a single one is the
recognition that it may be possible to exploit several channels in parallel, thus increasing the rate at which
information is compromised. In the Trusted Xenix evaluation, aggregation was a consideration for channels
based on attributes which could be created in large numbers (e.g., directories) by an attacker. For single-
processor systems, the effects are essentially to diop context switch time from the capacity calculation. For
multiprocessors, aggregation may introduce a factor of n into the capacity estimation where there are n
processors (because the channels can be exploited in parallel). Some agreement with the evaluation teams
will be required to determine which channels will be subject to aggregation and which will not.

Resource exhaustion (and some policy conflict) channels may be modeled as a one bit noiseless channels.
Analytic techniques (and even tools®) exist that are adequate to calculate capacities for one bit noiseless
channels. An upper bound on the capacities of event count channels can be obtained through simplifying
assumptions of the technique used for one bit noiseless channels. Timing channels are more difficult to
estimate. Some timing channels operate at memory speeds, limited only by the time required to resolve
hardware contention [14]. In this case, the channel is not sustainable using encoding because the sender
must “take time out” to encode the information!?, and the analysis can be simplified. Also, contention
resolution that is fair in the sense that it does not penalize one symbol or another with a delay reduces the
benefits to be gained through coding. Reduced channels will require more careful analysis, however. The
following section presents a measurement technique that is useful for many storage channels.

One Bit Noiseless Channels

This section summarises the technique given by Millen [13] for finding the capacity of one bit noiseless
channels. A channel may not be noiseless in a real system, but this results only in possible overestimation

of channel capacity. Using information theory, the capacity of a noiseless discrete channel is known to be
defined by the limit

Jim log,(N(t))/t

where N(t) denotes the number of messages that can be sent in time £. When the effort required to send a 1
is much different from the effort required to send a 0, the capacity significantly exceeds the information rate
9 Which were used in the Trusted Xenix evaluation.

104 consequence of allowing coding in channels that operate at memory speeds is to have channel capacities that esceed
memory speeds.

127

obtained when an equal distribution of ones and seros is assumed. When the transmission of information is
effected by a state machine with more than one state, the effort required to send a 1 and to send a 0 may
depend on the current state of the state machine. Figure 1 shows a two state machine which corresponds to
a one-bit noiseless channel where the edges are labeled by pairs: the symbol before each “/” designates the
symbol being transmitted when that edge is traversed, and the letter after the “/* identifies the edge and
is a parameter for how much time is required to traverse that edge. The parameters can be understood as
follows:

0/a 1/d

0/b

state 0) { statel

1/e
Figure 1: State Diagram For A One-Bit Channel

a send 0 if the last bit sent was 0,
b send 0 if the last bit sent was 1
¢ send 1 if the last bit sent was 0

d send 1 if the last bit sent was 1

These parameters are related to the definition of channel capacity in [13], where it is shown that the capacity
is given by logy(r) where » > 1 is the (unique) solution of the equation

1—p2 _p-b _
A X il

0

—r

This equation can be solved numerically given the four state transition times. A more general form, presented
in [13], may be applied to state machines which have more than two states and two symbols and can
therefore transmit more than one bit at one time. The solution to the resulting equations, however, becomes
unworkable when the number of states is much larger than two. In order to measure channel capacity for
event count channels, which are modeled as state machines with N states (N possibly large), we can use a
simplification which is guaranteed to not underestimate the channel capacity. The simplification finds an
upper bound for n-bit channels by always using the smallest state transition time. For N states and N?
state transitions sy, 3, 83, ..., 852, loga(N) bits may be transmitted at one time. An upper bound on the
channel capacity is therefore given by:

logz(N)
min(s1, 82,83, ..., SN2)

This upper bound is not tight, but may allow the elimination of some event count channels from further
analysis.

128

Channel Capacity Reduction

If a channel’s capacity exceeds acceptable limits, channel capacity must be reduced or audited. Accurate
estimation of channel capacity is important because it determines the selection of and severity (perfbnnn.nce
impact) of reduction techniques. For example, delays that are unnecessarily large degrade system perfor-
mance unnecessarily whereas delays that are inadequately small affect system security adversely. Some
channels may be eliminated by design changes (that usually reduce functionality), or by using certain config-
uration options. For example, Gemsos allows most storage resources to be statically preallocated by security
level, therefore eliminating most resource exhaustion channels. Such preallocation is expensive, however,
and primarily addresses a class of storage channels that can be effectively reduced using delays.

Storage Channel Reduction

The two major techniques for reducing storage channels are delay and randomisation. Resource exhaustion
channels can be reduced by temporarily suspending (delaying) any process that exhausts a resource. Such
delays usually have acceptable performance impact because resource exhaustion is a (relative) rare event for
most resources. Delay can be used in a similar way for policy conflict channels. Delay is both less effective
and more costly for event count channels that report giobal status (e.g., total free blocks), however, because:
1) the attribute being observed may take on many values and the receiver therefore may receive more than
one bit per delay, and 2) the delay must be imposed on every use of the reporting function.

Event count channels that show how resources are allocated (e.g., new Unix pid’s) respond well to random-
isation, assuming a sufficiently strong random number generator. For Trusted Xenix, a congruential random
number generator seeded by the time of day and number of system calls provided sufficient strength. In
practice, an exploiter could not discover the seed because of the frequency and variable number of system

calls. :

Randomisation is less effective against status reporting event count channels because the accuracy of the
functions is inversely related to the degree of “fussing” provided by randomisation.

Timing Channel Reduction

For some timing channels, a system has no way to tell the difference between exploitation and normal
activity. This characteristic makes timing channels intrinsically more difficult to reduce than many storage
channels. This is particularly true when the channel is based on high speed hardware based contention. The
(now classic) example is the shared bus multiprocessor where there are three or more processors [14]. In
that channel, low processor A increments a global memory location as rapidly as possible, high processor
B sometimes accesses global memory, contending for the bus, and low processor C continually checks the
progress of processor A. Bus cycles stolen by B show up (to C) as failures to increment the memory location.
This channel operates at memory speeds, and cannot be meaningfully audited by software because the
operations used to transmit information are “normal” processing, and because their volume would quickly
overwhelm any audit system.

It is beyond the scope of this plan to describe how to delay all timing channels. Several possibilities are:

o Where the system primitives that return the value of a clock can be identified, use delay to reduce the
capacity. It is worth noting that the alphabet of such channels may be large, and that the information
rate may not be reduced as effectively as it is for resource exhaustion channels (which have an alphabet
of {error, not error}).

e Randomly introduce perturbations into readily available clocks to reduce the speed or ease of signaling.
Noise may reduce, but cannot close such channels. Analytic techniques for evaluating the effect of the
noise may be difficult.

o Fuss some clocks to reduce the accuracy with which covert senders and receivers can measure clock
differences. A variant of this approach, used in the VAX security kernel [8], randomised system timers

129

and added random delays to the initiations and notifications (of completion) of I0. This technique,
called “fussy time,” attempts to isolate each process from the precise tlnﬁng information provided
by hardware supplied clocks such as interrupts and cpu bus contention. Although the measurement
technique was not specified, [8] reports evaluation team agreement that all tumng channels i in the VAX
security kernel were reduced to less than 10 bits per second.

o For contention channels like the bus channel, schedule the resource (in that case, the bus) by security
level, so that most contention is limited to being within a security level (and therefore legal). The
performance impact of this approach is not known, but may be severe (all processors contendmg for
the bus would have to change security level at the same time).

Assurance of Channel Reduction

Although channel identification may be conducted using specifications, channel reduction techniques must
be implemented, and assurance of their effectiveness must be gained at the code level. At the least, some
form of covert channel testing must be performed to evaluate the effectiveness of reduction techniques. Code
analysis tools may assist for storage channels. Trusted Xenix used “covert channel flow tracing,” a method
in which function call trees and variable references are analysed to ensure that a delay or randomisation
algorithm is always used before selected variables can be reported to a receiving process. IBM did not
have a production quality tool and, in practice, performed much of the analysis manually. If the analysis is
correctly performed, assurance can be gained in general that storage channels are reduced. It is not clear
that such tools can be effective for timing channels, however. Assurance for timing channels may depend on
comprehensive testing and code inspection. ’

Planning the Analysis

The covert channel analysis for a large system should satisfy three goals: 1) proceed concurrently with system
development, 2) provide credible results, and, and 3) remain within available resources.

There are basically two approaches to concurrently performing CCA and system development: 1) substan-
tially automate the analysis so that it can be completely redone after each significant system change; or
2) decompose the system into parts each of which can be independently analysed, and then combine the
analyses as the system is constructed. In either approach, analysis should be performed continually during
development so that feedback from the analysis can impact the system design and implementation.

Although attractive in the abstract, substantial automation of CCA is an area of active research. A number
of tools exist that may assist in CCA by automating part of the process or by enforcing rigor in specification:
Malpas(12], Ina Flo [5], and an IBM proprietary tool [19] (this list is not exhaustive). In addition, a covert
channel analysis tool is under development inside TIS [16]. As is the case with programming projects, the
use of such tools may require dramatically more time than is anticipated.

Unfortunately, decomposing the system into components upon which independent CCA can be performed is
also a research area. In principle, modular covert channel analysis could be based on Kemmerer’s SRM, but
there are no worked examples (known to the author). Changes to each component would at the least force
reanalysis of the affected component. If the reanalysis changes the results obtained by the previous analysis,
other components that depend on the changed component must be reanalysed as well.

Because CCA is still an art, the credibility of the results is somewhat subjective. Clearly an analysis that
fails to find many channels that are subsequently discovered in penetration testing or evaluation will not
be credible, however. Both specification and code level anslyses may miss channels. In general the rigor
imposed by using tools or formal techniques may increase the confidence that specification based analysis
is sufficient. It has been claimed that code level analysis finds ell storage channels [19]'!. The handling of
timing channels will of necessity be informal; here, conﬁdence can be gained only through sustamed effort
to find as many channels as possible.

11 owever, see section A Code Level Techm’jte

130

Channel Identification

The most fundamental decision for covert channel identification is whether to use noninterference or some
form of the SRM methodology (or both). In [7], noninterference was compared with the SRM methodology.
Although the authors refrained from selecting one strategy as the best, they noted that noninterference
proof failures might become unworkably difficult as the sise of a specification increases. Although, in a high
level (and simple) specification, the ideal of noninterference might be reasonable because channels present
at that level would of necessity be present in any faithful implementation, a low level specification would
(practically speaking) always cause proof failures. The authors further noted in [7] that noninterference, by
itself, probably could not be a comprehensive tool, although the SRM might be. Noting that their study was.
limited, the authors in [7] refrained from selecting one strategy as the “best” and indicated their intention
to use both in the future. Unfortunately, a developer must choose a strategy even though there may not be
adequate information to show that it is always superior.

Selection of SRM mé_thodology versus noninterference is difficult; in many large scale development activities,
however, the following disadvantages of noninterference seem to argue against its use:

o Proofs are difficult; interpreting proof failures is even more difficult.
o Proof failures that are not understood provide no information.

e Noninterference may require a level of formality that cannot be sustained on a large project with many
changes to the system.

The following assumes the use of some form of the SRM methodology.
Storage Channels

The primary decision to be made is whether to pursue a code level analysis, an analysis based on specifi-
cations, or both. CCA has been more frequently performed on specifications than on implementation code.
The considerations can be broken down:

e specification analysis

- pro
* easier to do informally
* potentially less expensive
* some tools exist (e.g., Ina Jo, Ina Flo[5] 1?)
* the analysis is less sensitive to minor system changes

~ ¢on

* depends on specification accuracy
* omits necessary detail-—channels not present in the specification will not be discovered
* there is no way to know when the job is finished (i.e., what specification is low level enough?)

e code leve] analysis
- pro
* includes implementation detail

- con

* more expensive
"% few tools, e.g., Malpas [12], are available

13Experience on two projects indicates that Ina Flo is not yet mature enough to use.

131

* tools are required

* because of the complexity of the real implementation, coverage is not likely to be complete—
the detail can overwhelm the analysis

The true difference between analysis of specifications and code depends on the amount of detail present in
the specifications. Some analyses have used very detailed specifications [11] containing more than 700 state
variables. Although there are more “pro” items for the specification approach, the omission of necessary
detail and the dependency on specification accuracy are severe handicaps. Equally severe is the great
complexity of a code level analysis, in which detail can overwhelm the intuition of the person performing the
analysis. Given the limitations and costs of each approach, it is difficult to choose one exclusively. A dual
track approach therefore seems most prudent.

A specification analysis should be conducted on the interface specifications, and on each refinement of
those specifications. Parallel with that, a code level analysis should focus on validating (not verifying) the
correspondence between the specification and the implementation. Although a breakthrough in formal code
analysis is possible ([16] may eventually be such a silver bullet), the code level analysis should focus on
“informally” validating the specification analysis. Much of the code analysis will probably be manual, but
tools to assist the analyst should be obtained or written as necessary. If possible, tools such as Ina Jo and
the SRM matrix generator should be used to enforce specification consistency through the provision of type
checking, etc., and to construct the SRM.

At the interface level, the first step in the construction of the SRM is to identify the TCB primitives that
may be used to manipulate system attributes. Normally this is the TCB interface. It is necessary in the SRM
approach for the R and M entries in the cells of the matrix to represent all direct flows between primitives.!?
In this context, two primitives A and B are atomic if every interaction between them affects the system state
as if they executed sequentially in some order. If two primitives of the SRM were not atomic, then a worst
case analysis (including all possible interleavings) would have to be applied to determine what date flows
between the two primitives were possible. The kernel calls of some operating systems (e.g., most versions of
Unix) provide a simple version of atomicity by suspending most process scheduling during kernel processing.
Even with these kernels, some operations will not be atomic because multiple processes may have to be
suspended in the kernel waiting for I/0. The analysis should identify what operations are atomic, and how
information flows between any non-atomic operations are included in the SRM.

Timing Channels

Identification of timing channels must depend on an informal but extensive search by knowledgeable de-
velopers. Wray’s methodology can assist in guiding the search for clocks, and the matrix proposed in the
methodology can assist the developers in keeping track of the relationships between different identified chan-
nels. An approach similar to that used for penetration testing (the flaw hypothesis methodology) may
provide the best results. Because timing channels often depend on hardware contention, it will be necessary
to conduct the testing on all significantly different hardware platforms (particularly multiprocessors).

Capacity Estimation

CCA for a family of hardware bases should be parameterized by hardware timing characteristics for each
supported hardwaze base. The determination of which channels can be aggregated affects capacity estima-
tion. This determination should be made as channels are identified. Channel capacities for multiprocessor
hardwares will require special consideration since the multiprocessor version will probably have more iden-
tified timing channels. The timing information can be derived from engineering data or from test programs
written to derive the characteristics of each hardwaze base. The multiprocessor hardware bases will require
additional tests to measure characteristics not present in uniprocessors.

As given above, analytic techniques exist for some channel types. For others, upper bounds are required.
The use of coding theory is indicated wherever the cost of sending one symbol is much larger than the cost

13If & transitive closure is performed, indirect flows would be present as well.

132

http:primitives.13

of sending another (perhaps because of a delay). For channels in which all symbols are equally easy to send,
the use of coding theory provides little capacity increase, and capacity can be approximated by assuming an
equal distribution of output symbols. For such channels, the capacity is logz(n) * cycles per second where n
is the number of possible output symbols in a cycle.

Storage Channel Reduction

The kind of channel (resource exhaustion, policy conflict, or event count) affects the available alphabet.
Exhaustion and policy conflict tend to be binary valued. Event count channels usually have numerous
symbols. Some channels can be eliminated through design changes, for example, by removing the status
reporting functions, or by changing them to tell white lies. Other channels can be reduced primarily through
delay and randomisation. Global identifiers, for example, the process id in Unix, present special problems.
They can be reduced using randomisation so long as the space of identifiers is much larger than the number
of identifiers that can be in use at any one time, and so long as allocation of the next identifier always chooses
randomly from the entire pool of unused identifiers. When caching is used to optimise the use of resources
associated with an identifier, the cache reduces the options for selection of the next identifier, and can be
exploited to signal. For such global identifiers, the maintenance of separate security level partitions (that
move slowly in response to demand) for the identifiers and the cache can be used to reduce capacity.

Two attacks on per-process delays must be prevented for delays to be effective: 1) interruption of the delay,
and 2) overlapping of multiple delays. If a delay can be interrupted in any way, it is not effective because
a process can notice when another process is in a delay, interrupt it, and resume covert communication. It
should not be possible to destroy processes that are suspended in delays.

If multiple per-process delays can be overlapped, an attacker may use multiple processes to effectively poll a
resource more rapidly than permitied during the delay. This scenario can be prevented by serialising delays.
A general serialisation scheme is as follows. Let the delay period be D seconds. The first process to be
delayed for use of the channel is delayed D seconds. The second process to use the channel is delayed for the
greater of: D seconds or D seconds from the time the first process finishes its delay. Multiple delays for a
resource may therefore not overlap. Using this technique, delays can be overlapped when they are imposed
on different resources.

Timing Channel Reduction

The suggestions in the above section on timing channel reduction apply as stated. In addition to the use
of delays to reduce capacity, however, delays might be used to hide activity. For example, to prevent a
channel in which one process infers information from another through the time to access a shared page (i.e.,
whether a page fetch was necessary or not), sporadic delays that would correspond to page fetching could be
introduced. The delay must conceal from the receiver the fact that a page fault was not necessary because
the sender had already paged in the data. Specifically, all low processing that could not occur during a real
page fault must be prevented during a delay that mimics a page fault. If other low tasks could run, the
receiver could schedule another task to run and then measure its progress. Processing by higher level tasks
could continue, however. Additionally, the delay must be realistic. For example, actually performing a page
fault can be expected to take varying amounts of time to account for disk latency, rotational delay, etc. If
a delay always takes exactly the same amount of time, but the real operation times would vary, the channel
is not effectively reduced. o ‘

' Recommendations

Covert channel analysis can be approached in the following sequential phases. In each phase, all activities
may proceed in parallel:

1. (a) Obtain timing parameters for all hardware bases. Programs that obtain the parameters may be
developed on prototype or untrusted versions of the final system.

(b) Begin the search for timing channels.

133

(c) Survey available tools for system specification and SRM construction, and evaluate. Select one,
or reject all and develop and use a proprietary notation.
2. (a) Continue search for timing channels.

(b) Complete design documentation to incorporate the use of the selected tool or notation in the
specification layers.

(c) Decide which system components can be independently analysed.
(d) Begin development of source level tools to support the specification analysis, and also to provide
evidence of coverage for channel reduction.
3. (a) Continue search for timing channels.
(b) Enhance source level tools as necessary.

(c) Construct the SRM for each system component with a stable interface.

4. (a) Continue search for timing channels.
(b) Combine analyses of separate components and categorise channels discovered by the SRM.
(c) Use the source tool to validate the specification analysis.

(d) Calculate channel capacities (for all platforms, as possible), eliminating from further consideration
channels that are too slow.

8. (a) Continue search for timing channels.
(b) Reduce or audit identified channels through system source or configuration changes.

(c) Use the source tools to check coverage of reduction techniques.

6. (a) Continue search for timing channels.
(b) For all changed components, until the system is frosen:

i. Recalculate the SRM (or determine informally that it need not be recalculated).
ii. Revalidate the SRM using source tools (incrementally, if possible).
i

ii. If any new channels are discovered, calculate their capacity, and reduce or audit as necessary
and possible. :

The search for timing channels is present in each phase, but the effort required in each phase may not be
equal. The search for timing channels should be performed until the number (and severity) of additional
channels discovered using a given amount of energy falls below some threshold. Because system changes
can introduce new channels, the search must be revisited until the system is frogen (but perhaps at much
reduced levels of effort).

The CCA will require a diverse set of skills: 1) skills in the use and evaluation of tools (including an
understanding of formalism), 2) coding skills, 3) knowledge of the role that covert channels played in past
evaluations, and 4) design knowledge of the system being analysed. The writing of test programs and the
search for timing channels can contribute to design knowledge. The covert channel “team” should include
trust engineers and developers.

It is important to allocate sufficient energy for these tasks. The energy devoted to CCA will be used
to evaluate tools, create (modest) tools, write test programs, perform analysis on a complicated body of
changing software, produce designs to reduce and audit identified channels, and achieve assurance that
identified channels are reduced. This is an enormous amount of work and should not be underestimated.

134

Acknowledgments

The author would like to thank Mike Masurek, Tim Redmond, and the reviewers for helpful comments on
the technical content and presentation.

| %

References
[1] National Computer Security Center, Department of Defense Trusted Computer System Evaluatfon Cri-
teria, DoD 5200.28-STD, December 1985.

[2] L. Badger, F. L. Mayer, T. Redmond, “Trusted Xenix Covert Channel Capacity Estimation And Re-
duction,” TIS Technical Report #364.

{3] D.E. Bell and L. Lapadula, Secure Computer System: Unified Ezposition and Multics Interpretation.
(Technical Report No. ESD-TR-75-306, Electronics Systems Division, AFSC, Hanscom AF Base, Bed-
ford MA, 1976).

[4] D. E. Denning and P. J. Denning, “Certification of programs for secure information flow,” Communi-
cations of the ACM, (July, 1977), pp. 504-513.

[6] S. T. Eckmann, “Ina Flo: The FDM Flow Tool,” Proceedings of the 10th National Computer Security
Conference, p. 175-182.

[6] J.A. Goguen and J. Meseguer, “Unwinding and Inference Control.” Proceedings of the 1984 IEEE
Symposium on Security and Privacy, 1984.

[7] 3. T. Haigh, R. A. Kemmerer, J. McHugh, and W. D. Young, “An Experience Using Two Covert
Channel Analysis Techniques on a Real System Design,” IEEE TSE Vol. SE-13, No. 2, Feb. 1987.

{8] W. Hu, “Reducing Timing Channels with Fussy Time,” Proceedings of the 1991 Symposium on Research
in Security and Privacy, May, Oakland, Cal.

[9] Information Technology Security Evaluation Criteria, Harmonised Criteria of France, Germany, the
Netherlands, and the United Kingdom May 1990.

[10] R.A. Kemmerer, "Shared Resource Matrix Methodology: An Approach to Identifying Storage a,nd
Timing Channels,” ACM Tran. on Computer Systems, 1:3, August 1983, p 256-277.

[11] T. E. Levin, A. Tao, S. J. Padilla, “Covert Storage Channel Analysis: A Worked Example,” Proceedmgs
'13th National Computer Security Conference, Oct. 1990.

[12] Malpas: a commercial tool used on the VAX security kernel that can assist in code level analysis for
multiple languages: Pascal, PL/1, Fortran, and C.

[13] J.K. Millen, “Finite-State Noiseless Covert Channels,” Proceedings of the Computer Secunty Founda—
tions Workshop II, Franconia, New Hampshire, P.81, 1989,

[14] “Minutes of the First Workshop on Covert Channel Analysis,” September 19-21, 1989.

[15] T. Redmond, B. A. Mayer, F. L. Mayer, “The Abstract TMach Kernel Model,” TIS Technical Report
#293.

[16] T. Redmond, “Formal Approach to Identifying Covert Channels in Source Code”, TIS Technical Report
(in progress). A

135

[17] C. E. Shannon and W. Weaver, “The Mathematical Theory of Communication,” the University of
Illinois Press, Urbana, Illinois, 1964.

[18] D. Sutherland, “A Model of Information,” Proceedings of the 9th National Computer Security Confer-
ence, Sept. 1986, p. 175.

[19] C. Tsai, "A Formal Method for the Identification of Covert Storage Channels in Source Code,” Pro-
ceedings of the 1987 symposium on Research in Security and Privacy, May, Oakland, Cal.

[20] C.R. Tsai, “Covert-Channel Analysis in Secure Computer Systems,” Phd. Dissertation, University of
Maryland, College Park, Maryland, Aug. 1987.

[21] J. T. Wittbold, “Information Flow in Nondeterministic Systems,” Proceedings of the 1990 Symposium
on Research in Security and Privacy, May, Oakland, Cal.

[22] J. C. Wray, “A Methodology for the Detection of Timing Channels,” Proceedings of the Computer
Security Foundations Workshop II, Franconia, New Hampshire.

[23] J.C. Wray “An Analysis of Covert Timing Channels, “ Proceedings of the 1991 symposium on Research
in Security and Privacy, May, Oakland, Cal.

136

DEALING WITH MALICIOUS LOGIC THREAT
A PROPOSED AIR FORCE APPROACH

Howard L. Johnson
Information Intelligence Sciences, Inc.
1903 So. Franklin Sst.

Denver, CO 80210
(303) 777-4266

Chuck Arvin and Earl Jenkinson
CTA Incorporated
7150 Campus Drlve, Suite 100
Colorado Springs, CO 80918
(719) 590-8890

Captain Bob Pierce
AF Cryptologic Support Center
Hqg. Electronic Security Command, AFCSC/SR
Kelly AFB, TX 78243-5000
(512) 925-2511

ABSTRACT

Trojan horses, viruses, worms, and other malicious logic that seek
to interrupt service or modify or destroy data are not necessarily
defeated by confidentiality mechanisms. The Air Force Trusted
Critical System Evaluation Criteria (AFTCCSEC) [1] supplements
confidentiality requirements found in the Trusted Computer System
Evaluation Criteria (TCSEC) [2] by addressing integrity and service
assurance, This paper introduces and describes criticality
division/class G2 found in the AFTCCSEC. The approach imposes
mandatory controls including access constraints, type enforcement,
detection techniques, and use of a resource scheduling
architecture. It applies to all life-cycle phases: development,
distribution, operations, and maintenance. Features include
program/data isolation (e.g., physical, 1logical or use of
cryptography), protection against covert criticality channels (that
allow malicious code insertion), and strict configuration control
of software and hardware. Any TCSEC division/class and G2
criticality can coexist, though retrofit of G2 will require an
existing TCSEC TCB of Bl or higher. This paper provides a basic
understanding of the concepts and policy, and also addresses
questions most often asked by reviewers of the AFTCCSEC document.

THE PROBLEM

Compromise of classified information has been the primary concern
of DoD computer security for three decades. The viruses and
Internet worms have shown the reality of malicious code attacks.

Work was accomplished under CTA Contract Number F41621-88-D5001
issued by Hg. Electronlc Securlty Command, AFCSC/SR, Kelly AFB, TX
78243-5000.

137

There have been no prev1ous DoD requirements, evaluation criteria,
and models that specifically address the malicious logic problem.

Thus, systems that previously were deemed secure a.cording to TCSEC
requlrements may in fact be vulnerable. Because upgrade message
flow is usually allowed, this could theoretically prov1de the
ability to insert and execute malicious programs. A likely attack
involves inserting a small virus to monitor a compromlsed channel.
It would recognize other mallc1ous code hidden Dbetween
communications protocol "end" codes in incoming messages and cause
its execution. It might then erase any trace of the larger code.
The enemy would have subversion capability over the llfe of the
- system (or until thwarted) to perform subversive missions (fact
finding, sabotage, or attempting to leak classified data). The
attackers would make these activities difficult to detect or to
distinguish from other failures types.

There is a sense of urgency to provide defenses against potential
debilitating malicious logic attacks on major command and control
systems. We believe the best immediate defense is to provide
quick, substantial reactlon to the threat.

THE N. F ORS AILURES

When a computer system error failure is discovered, it is often not
immediately known whether the cause is hardware, a design/
development error, an accident, or a malicious attack. An error or
an accident may result in a normal or simple failure, a failure
that propagates, or one that exhibits nonpredictable (chaotic)
behavior [3]. The most common state is "normal" (see for example:
Beizer 1983 [4] for references) although people like to talk about
the exceptions (the 1989 AT&T failure Neumann [3]). An accident
has no goal so one would expect the impact to a system to be:
naturally (e.g., normally) distributed. A malicious intruder (not
a harmless hacker) will often seek debilitating system impact.

Malicious logic is generally more complex than an accident or an
error. Accidents and errors are seldom caused by more than a
single action and or flaw. An accidental action or flaw can
normally be emulated by a few computer instructions. The length of
known virus and worm attacks, however, is generally on the order of
1000 or more bytes. Sixty percent of reported viruses are derived
from the Jerusalem B virus which is approximately 1800 bytes.
Others range from 405 bytes (405 Virus) to 60,000 bytes (the
Internet Worm). The reason code for a malicious attack is large is
because the perpetrator usually has multiple objectives that
1nc1ude detection. av01dance, formatting to conform to appllcatlons,
causing a state of qulescence, plannlng, file searching,
communications monitoring, trigger monitoring, self erasure, and/or
propagation.

Design/development errors exist prior to and after validation (if

not discovered) and generally repeat (e.g., after rollback).
Hardware failures occur after validation and may be transient. If

138

they repeat, they can be caught by dlagnostlcs. Accidents seldom
repeat and are usually recognized by individuals involved after
they occur, Malicious attacks can occur either prior to or after
validation, though avoiding a thorough validation is difficult.
Malicious attacks can repeat, may not repeat, are probably not
revealed by dlagnostlcs (but could be if the attacker desired),
often have multiple stages, and sometimes give multiple independent
results. Joseph and Avizienis [5) propose a logic tree approach
that assists in determining the cause of an error or a failure.

SCOPE

In recent papers (e.g., [6]) we deflned a need and an approach to
deal with loss of integrity and denial of resource use. This
evolved into the Air Force Trusted Critical Computer System
Evaluation Criteria (AFTCCSEC) patterned after the Orange Book
(TCSEC). The AFTCCSEC has been pule.shed as Air Force Special
Security Instruction (AFSSI) 5029. Figure 1 shows the
division/classes of the

AFTCCSEC and the Criticsllt P

relationship to the TCSEC Dlvlolon/élns ' totoctlon‘

D and C1 levels. This

paper focuses on H Same as sensitivity D
criticality class G2 that Q Single Level

incorporates protection a1 Almost the same as sensitivity C1
against malicious logic. a2 Protects against malicious logic
Class G3 which addresses a3 Supports Critical operations
critical Air Force F Multilevel (Labels)

systems and classes F3, F1 Critical and Highly Critical

F2, F1 and El that F2 Critical and Non Critical
address multilevel F3 No clearance and Critical
systems and higher E(E1) - Formal methods (no clearance and
assurance, are discussed Highly Critical)

in other papers [7 and

8]. The AFTCCSEC , _

basically uses the TCSEC Figure 1 'AFTCCSEC Division/Class

control objectlves. A

relnterpretatlon is required since AFTCCSEC addresses 1ntegr1ty and
service assurance which complements the TCSEC application to
confidentiality. v

APPROACH

Current DoD budgets cannot afford to dupllcate present Orange Book
security costs. Therefore, in the AFTCCSEC we have taken an
approach that has three implementation cost reducers. Each also
reduces time until implementation and implementation risk.

a) Division/class required depends on mission criticality.
Malicious logic protectlon is introduced at the G2 level where
systems are nelther critical nor highly critical and can be
realized with a minimum fund expenditure.

b) sSince the approach follows directly from the TCSEC, most

139

mechanisms and procedures required by the TCSEC can be used
directly or modified to accommodate AFTCCSEC requirements.

c) Cryptography and cryptographlc checksums used as isolation
mechanisms will reduce vulnerability and cost of protection.

POLICY

This section reviews new policy proposed for the Air Force:

There shall be protection. against malicious logic throughout the
system life- cycle beglnnlng w1th»development and continuing through
assurance, distribution, operations, and maintenance.

COMPUSEC techniques used by the TCSEC for discretionary access
control, object reuse, accountability, assurance, and documentation
shall be used where poss1b1e for program and data integrity and
assurance of service protection.

COMPUSEC techniques shall be employed using Air Force accepted
trusted approaches to control access by individuals and processes
to programs (stored processes), data, and system resources.

Intrus1on detection shall be used to discover unauthorized users,
system misuse, or malicious logic. Response should include fault
isolation, analysis, and malicious 1logic elimination. These
capabilities shall be protected from malicious logic attacks.

Public and private key encryption, and cryptographic checksums
shall be used for the protection of data and programs where
technically feasible and when cost, performance, and risk
requirements can be met, (Standards shall be developed that relate
the strength of algorithms' and key management approaches to the
protection required, supplementlng current use of encryption to
protect classified and sensitive information.)

Information gained from traffic analysis shall not reveal knowledge
of system or security protection details that could be used in a
malicious attack.

Software shall be developed, stored, and delivered under strict
configuration control and screening to make the probability of
malicious hardware or software reasonably small.

ION ROACH

As stated in policy, the AFTCCSEC uses techniques identical to the
TCSEC including the trusted computing base (TCB), discretionary
access control, ob]ect reuse, accountability, assurance, and
documentation. Additional or changed techniques introduced at the
G2 level are dlscussed further.

140

Constrained Access . » - ‘
Current security Subject 3-D ACL
mechanisms control access ‘
of subjects to objects.
Constrained access
(Figure 2) adds one
dimension to the access
control process by
constraining process
access to objects,
independent of user.
specific access type is
also controlled (called
type enforcement). - A :
process must be on a
valid process list to be Prpcess
executed and can be Valid
removed from that list to '
quickly contain malicious
. int . .
(i:ggitif iegonsg’alnw:y ag; ‘ Figure 2 Acceas Control Triplets
process and object profiles. Processes are restricted to interact
as they were intended when programmed. Additional constraints
restrict operations on objects to the minimum required subset.
Constraints are identified by the developer and established by the
security officer. Attempts to violate the restrictions are
reported to the auditing function. There is strict configuration
control of programs, constant data, valid process lists, process
profiles, and object profiles throughout the system life- cycle to
detect unauthorized modification or other potentlal malicious
characteristics. The idea of a security policy between users,
processes, and objects, (also called triplets) is discussed by
Clark and Wilson [9] and
the c?ntrol by access
type also called type s
enforcement) is discusgle)d Sensitivity
by Boebert and Kain [10].

Authorized
Types -

Read

Y

Object

Data File
Resources

insert Execute Tcs Leak

Covert Channels Code et -
A covert channel is a , Code —%=% Data

communication channel

that allows unauthorized _
transfer of data in a itionals
manner that violates Criticality
security policy. A
sensitivity attack using .
a covert channel |has Insert Execute
three steps and a Code _X—" Code
criticality attack has
two steps as shown in .
Figure 3. In the TCSEC, X co

the protection objective vert Ghannels

is to control data Fiau
leakage. The TCSEC does | igure 3 Covert Channels

TCB

141

little, except through,dlscretlonary security, to control insertion
and running of malicious code.

In criticality, covert _channels are considered at the G2
division/class. Input data must be assured to be malicious logic
free. Unauthorized channels "in" are potential covert channels
that must be plugged or monitored and are of concern during
development, delivery, operations and maintenance. AFTCCSEC covert
channel methods are much the same as the TCSEC.

Cryptographic processes protect data from vulnerabilities in
trusted domains or when data is traveling through untrusted
domains. Private keys and prlvate encryption algorlthms are
controlled by the TCB. Private key encryption prevents
unauthorized reads and executes and some algorithms detect data
modification. Decryption can invalidate unencrypted malicious
logic (see the Pozzo-Gray Virus Containment Model [11]).
Cryptographic checksums detect unauthorized modification. Public
key encryption identifies

the originator and, when Non Disclosure Bandwlidth Fillin

g
used with a checksum, |gentification (Covert Channel)
allows users even in an Key Management Execution Prevention
untrusted domain to ' Labeling No Intelligent Change
detect modification.. = Mechanism Protection Enemy Spooting
One-way encryption can be Modification Detection Signature
used for identification/ :
authentication. Useful

cryptographlc proces ses FIOWO 4 Encryptlon Uses

are itemized in Figure 4.

AFTCCSEC requlrements can be 1mp1emented with or without
cryptographic processes. The intent is to open the door to
cryptography use for other than confldentlallty. Cryptography is
efficient and 1nexpens:we, and will become even more so as
popularity is gained. The issue of required strength can be raised
during design and dealt with by the appropriate DoD organizations.

it B

The TCB for integrity and denial of service protection is larger
and more complex than required by the TCSEC. Some of the functions
(e.g., encryption) will normally be implemented in hardware. The
primary increases in complexity are for detection and resource
scheduling. Protocols, constant data, programs, and other control
data are protected by the TCB by ensuring against unauthorized
modification wusing cryptographic checksums. Cryptographic
processes are essentially an extension of the TCB.

o
The TCSEC is concerned about someone tampering with the TCB. The
AFTCCSEC additionally worries about injection of malicious logic to
system hardware, flrmware, or software. Downloadlng of software
within a complex system is also considered a distribution problem.

142

N OACH

Different than confidentiality, in preserv1ng integrity and
assuring serv1ce, an effective approach is to detect a problem and
respond in adequate time (called critical time) to ensure- the
mission is still accomplished. At the G2 level, missions are not
critical, however, detection is still based on a response time
model. Assuming the malicious logic has avoided or defeated
prevention mechanisms, the strategy is to identify the occurrence
of a malicious attack, minimize its 1mpact, and make the requ1red
correction (e g., remove malicious loglc)

ggal T;ge Audit

Malicious attack detection uses both an inductive and a deductlve
approach. The inductive approach determines intrusion behavioral
characteristics and seeks them out. The deductive approach
determines the normal behavior of many aspects of the system
through statistics and use of profiles to help determine what is
abnormal behavior. 1In each case a discrimination technique is used
to reduce false alarms. This approach makes use of current
intrusion detection research (presented by Lunt [12]) in
application of statistical, rule based, expert, and other heuristic
approaches. Nothing previously unproven 1is required by the
AFTCCSEC, and the door has been 1left open to technological
advances. : ‘

To avoid overhead, auditing can be accomplished in parallel by low-
cost, high-performance hardware. Auditing may be thought of as a
time prioritized data driven process. An audit function is
triggered by the avallablllty of its appllcable detection/audit
data. The maximum time until execution is determined based on the
time variables specified by the policy. The function and time are
placed in a time prioritized queue. The time is counted down and
the function with minimum time is executed.. The detection process
checks itself for a possible denial of service attack and responds
with a corresponding predefined response plan. Data compressing
and discarding can be used. ~

Resource Scheduling

A precise resource scheduling policy must be defined, both to
define what constitutes denial of service and to know what action
must be taken in response to a denial of service attack.

Malicious Code Search

A tool that searches for malicious logic can be used during
development as part of validation and during operations as part of
configuration control, real-time audit, and communications
monitoring. Search profiles help to recognize known or modified
malicious 1logic, illegal system functions, or system-only .
functions. Non random data in encrypted (random) data streams can
also be identified. Keeping the search profiles secret and the
search process protected increases the mechanism effectiveness.

Hardware pattern matching logic can perform a fuzzy search. The

143

term "fuzzy" means that the profiles need not match exactly.
Appllcatlon specific frequency welghtlng can be used to further
discriminate. Hardware implementation can reduce search of very
large databases to a few hours and keep up with very high
communication bandwidths.

SUMMARY

Current approaches in PCs to virus preventlon, detection, and
isolation/removal are an ever growing compilation of checks that a
clever infiltrator eventually can work his way around. The
phllosophy of playing catch-up will always leave the penetrator
with the advantage. That approach presumes repetition or
variations on past attacks. The professional infiltrator will
probably not use known malicious code.

The approach in the AFTCCSEC contains as a minimum all of the known
protections used by antivirus software. The approach further
depends on the existence of a TCB and utilizes strong encryption.
The approach allows the protection to be site, application, and
security officer specific, avoiding the predictability of canned
solutions.

This paper has presented the policy and discussed new approaches
introduced at the G2 division/class of the AFTCCSEC to deal with
the malicious logic problem for DoD systems. The approach has used
the concepts, mechanisms and language of the Orange Book (TCSEC) to
simplify understanding and reduce implementation cost. The
approach can be implemented in an Orange Book protected system or
‘one where confidentiality is not an issue.

GLOSSARY

Constrained Access Control- A security policy that identifies which
processes may be executed and what objects (i.e., other processes,
storage objects, and I/0 devices) they may access. Process and
object profile data are used to ensure that each process access of
an object is allowed and is of the allowed type.

Denial of Service - Action or actions that result in the inability
of the system or any essential part to perform its designated
mission either by loss or degradation of operational capability.

Integrity - Ensuring that data changes in only highly structured
and controlled ways. Air Force regulations define integrity as a
computer security characteristic that ensures computer resources
operate correctly and that data in the data bases are correct. The
integrity protection goal is to protect against deliberate or
inadvertent unauthorized modification or execution.

Malicious Attack - Insertion of malicious logic, exploitation of
system flaw (e.q., trapdoor), or protectlon mechanism bypass. The
attack is considered a fault which may or may not result in an
error.

144

Malicious Logic - Computer hardware, firmware, or software intended
to do harm to the system, its data, or the mission being supported.

Object Profile Data - An access control 1list of processes
(programs), the objects for which they are authorized access, and
their access type.

Process - A program that has been requested to be executed. It is
completely characterized by a single current execution point
(represented by the machine state) and address space. The process
becomes an entity once it is recognized by the Trusted Computing
Base (TCB) that it is potentially to be run (e.g., executed). A
process that is not part of the TCB is an internal subject.

Process Profile Data - Identifies legitimate objects (files,
resources, and programs) to be accessed by processes and access

type.

Program - An object containing potentlally executable computer
instructions.

Service Assurance - Ensurlng avallablllty of a system disrupted by
malicious or nonmalicious errors or failures where availability is
defined as the computer securlty characteristic that makes certain
computer resources are available to authorized users when needed.

REFERENCES

[1] AFSSI 5029, Air Force Trusted Critical Computer System
Evaluation Criteria, Air Force Special Security Instruction

5029, Air Force Cryptologic Support Center, June 1, 1991

[2] DoD 5200.28-STD, Trusted Computer System Evaluation Criteria,
December, 1985 .

[3] Neumann, P.G., "Toward Standards and Criteria for Critical
Computer Systems," Compass '90, Proceedings of the Fifth
(o} t s ce, 25-28 June 1990, NIST

and IEEE, pp. 186-188

[4] Beizer, Software Testing Technigues, Van Nostrand, 1983, p. 35

[5) Joseph, M.K., and A. Avizienis, "A Fault Tolerant Approach to

Computer'Vlruses, zxggggg;ggs 1988 IEEE Symposium on Security
gng_z;;yggx 18-21 April 1988, pp. 52-58 :

[6] Johnson, H.L, "security Protection Based on Mission
Criticality, Proceedings Fourth Aerospace Computer Security
on; , 1IEEE, December 12-16, 1988, pp.228-

232

[7)] Johnson, H.L., C. Arv1n, E. Jenkinson, B. Pierce, "Proposed

Securlty for Critical Air Force Missions," Information
Intelligence Sciences, Inc, February 15, 1991

145

(8l

[91]

(10]

[11]

[12]

[13]

Johnson, H.L., C. Arvin, E. Jenkinson, B. Pierce, "Proposed
USAF Approach to Multilevel Criticality," Information
Intelligence Sciences, Inc, February 15, 1991

Clark, D.D, and D.R. Wilson, "A Comparison of Commercial and
Mllltary Computer Securlty Policies," Proceedings of the 1987

§1mp sium on Security and Privacy, Oakland, CA., April 1987,
PP. 184-194

Boebert, E. and R. Kain, "A Practical Alternative to

Hlerarchlcal Integrity Policies," Proceedings 8th National
Computer Security Conference, 30 September 1985

Pozzo, M.M., and T.E. Gray, "Computer Virus Containment in
Untrusted Computing Environments," Information Security: The
Challenge, preprints of papers from the Fourth IFIP Security
of Information Systems Conference, Monte Carlo, December, 1986

Lunt, Theresa "Survey of Intrusion Detection Approaches,”

groceed;ngg 11th National Computer Security gonference, NBS
and NCSC, 17-20 October, 1988

AFR 205-16, Security: Automatic Data Processing (ADP) Securit

Policy, Procedures and Responsibilities, Department of the Air
Force, April 28,1989

146

Developing Applications on LOCK*

Richard O’Brien and Clyde Rogers
SCTC
1210 W. County Road E., Suite 100
Arden Hills, MN 55112

Abstract

The Logical Coprocessing Kernel (LOCK) system is a highly assured INFOSEC system
that can be used as a platform to develop countermeasures to current and future security
threats. In this paper we discuss the manner in which applications are developed on LOCK
and the features of the LOCK system that allow these applications to be developed quickly
and securely. The paper focuses on the design of such applications using LOCK’s type
enforcement and the implementation of these applications using the current LOCK software
development environment. ’

1 INTRODUCTION

The Logical Coprocessing Kernel (LOCK) system is a highly assured INFOSEC system that can be
used as a platform to develop countermeasures to current and future security threats. The system
is based on a trusted computing base (TCB) that satisfies the security requirements defined for the
Al level in the Trusted Computer System Evaluation Criteria [1] and includes embedded encryption
for media storage. The LOCK design uses a security coprocessor, called the SIDEARM, that
makes access decisions based on conventional multilevel and discretionary security mechanisms as
well as LOCK’s unique type enforcement mechanism. The SIDEARM attaches to a host processor
and, together, the two processors define and enforce the system’s security decisions [2], [3], [4].

The approach taken in the design of the LOCK system is based on the belief that the threats
that a computer system faces are constantly growing. As more secure computer systems are
developed, techniques for attacking these systems are also being developed and becoming more
sophisticated. In order to counter these new threats, LOCK is based on an open security
architecture that allows for the development of additional security countermeasures as the need
arises. In this paper we discuss the manner in which applications are developed on LOCK and the
features of the LOCK system that allow these applications to be developed quickly and securely.
The paper focuses on the design of such applications using LOCK’s type enforcement and the
implementation of these applications using the current LOCK software development environment.
We also describe future enhancements to the software development environment.

In section 2, a brief description of type enforcement is presented, and section 3 then describes
some ways in which applications can be designed to take advantage of the enhanced security and
integrity provided by type enforcement. A description of LOCKix, LOCK’s version of Unix?, and
the manner in which applications can currently be implemented on LOCK using either LOCKix or
the LOCK TCB interface is presented in section 4. Future enhancements that will provide
additional support for implementing privileged applications are described in section 5, and
section 6 gives examples to illustrate these ideas.

*©1991 SCTC. All Rights Reserved.
1Unix is a registered trademark of AT&T

147

2 Type Enforcement

LOCK provides a type enforcement mechanism, used to restrict the access of subjects (processes)
to objects (data) and other subjects. In contrast to discretionary access mechanisms, which can be
circumvented, type enforcement supports mandatory controls which provide assurance equivalent
to that provided by the multilevel controls. Type enforcement controls are orthogonal to multilevel
controls, and provide separation and security both within and across levels. In this section, we
present a brief review of the type enforcement concept. More details can be found in [5]. A
comparison of the type enforcement mechanism with the ring mechanism of Multics can be found
in [6].

The LOCK type enforcéement mechanism associates a fype with each object and a domain with
each subject on the system. The access a subject is permitted to an object depends on the access
capability that the subject’s domain is permitted to the object’s type. Further, the access a
subject is permitted to another subject depends on the access capability that the first subject’s
domain is permitted to the second subject’s domain.

Conceptually, the access a subject has to an object via type enforcement can be thought of as
an entry in a data structure called the Domain Definition Table (DDT). The DDT is a matrix with
columns indexed by type and rows indexed by domain. Figure 1 shows a portion of a sample DDT
and lists the possible capabilities a subject can be granted to an object. The matrix entry in the
(d,?) position contains the access capability a subject in domain d is permitted to an object of type
t. Similarly, the access capability that one subject has to another subject via type enforcement can
be thought of as an entry in a data structure called the Domain Interaction Table (DIT). The DIT
is a matrix with columns and rows both indexed by domain. The matrix entry in the (d1, d2)
position contains the access that a subject in domain d1 is permitted to a subject in domain d2.
The subject to subject capabilities are: observe, signal, create, and destroy. Trusted capabilities
are defined for each access capability that involves modification: trusted write, trusted create,
trusted destroy and trusted signal.

The LOCK type enforcement mechanism can be used to solve security problems not addressed
by the multilevel and discretionary security policies. It can also be used to develop high integrity
subsystems. The manner in which this is done is described more completely in section " 3.

3 Designing Applications that Use Type Enforcement

Designing a LOCK application adds a major step to a developer’s software design process. Rather
than just decomposing the application along functional lines, it must also be partitioned along
security and integrity lines. The application designer must identify the components of the
application that require added security or integrity, and modularize the application to isolate those
components in separate subjects. The collection of subjects that make up an application are called
a software subsystem.

~ The design goal is to put each different security or integrity relevant task into its own subject
that runs in a distinct domain, and to isolate the data that these subjects must handle into special
types. Only the appropriate access capabilities that a subject in each domain requires to perform
its task and to communicate with other subjects are assigned to the domain via the DDT and
DIT. Then, rather than calling a function to perform a security relevant task, a subject sends a
message to an isolated subject designed to perform that task and waits for a return message.

A number of design concerns may require parts of a system to be modularized and isolated. In

this section, we discuss some of these concerns and describe how type enforcement can be used to
address them.

Subsystem Separation

As part of a subsystem design, special types for subsystem objects and special domains for
subsystem subjects are generally defined. The degree and manner of interaction between the
subsystem and other subsystems can be rigidly controlled by the DDT and DIT configuration. If

148

TrP1

] I []] 1 []]
Type : UnF1 : F1 : F1 : : TrP1 : : DB : DB
t Data v+ Data ' Code ' Data ' Code ! tData ' Code
Domai] 1 1] 1]] 1
1 K ' 1 1 i H '
1 L, W ' T [' r [
Pre F1 i, d ; i i : ; :
"""""""" b et dhaihaiiiialh Shaiadbadbad fiadieaiaiiosll Shviniiiionll Sindiaciiadiedlh dhadieiiedieiinl mlieniiaiinainaliond
: VLW : " : : l
- T ’ e - - - - -
Fl : 1 cd g : : : : :
--------- b Shalhadbatbnlh Shaibltbh Sl Sonihoindhadl Sheiiatiibatlh Sl Slaainidedial el
1 1 1 o T ' I 1 1
_ [T 'woatw ' e 1 - o (I
TeP1 : : : 16 : ' :
----------- L R R LR R LDl DAL EE R el R
1)]] 1 1 1]
: ¢t 4 - oand - I
]] 1]]]] 1
"""""" b il il Mhaiieniindad fhadieaibenibell Shedincibaiinally Seniiiiadionlh dadienibeiiiienl g
1 1] 1 4 1 Ir’w 1
S T ST B R A
]] 1 [} 1 I 1§ 1
"""""""" b Stiihlbadl il Shaihadb et Shafiaiiiballh Shatiiaiiadl bbbl et el
1 1 1 1] 1 1]
: Pt 4 - oand - Voo -

Figure 1: A Sample DDT. Domains are listed down the left-hand side, and types are listed across the
top. The capabilities are: r - read, w - write, a - append, e - execute, ¢ - create, d - destroy. Trusted
capabilities grant the domain the privilege of violating the *-property in a well-defined fashion for
objects of the given type. The trusted capabilities are: tc - trusted create, tw - trusted write, td -
trusted destroy. A dash, -, indicates that the domain is not allowed any access to the type.

total isolation of the subsystem files from other system subjects is desired, then the DDT can be
configured so that subjects that are not in one of the subsystem domains are not allowed access to
objects of the subsystem types. Hence, no subject outside of the subsystem can access the
subsystem’s data. Similarly, subjects within the subsystem can be prevented from accessing data
outside of the subsystem. The DB domain and its corresponding types, DB data and DB code, in
Figure 1 is an example of a subsystem that has been completely isolated from the rest of the
system by the proper configuration of the DDT.

The DDT and DIT can also be configured so that communication between different
subsystems can only occur through a well-defined interface. For example, a subsystem can have a
message queue of a special type that provides the only means for subjects outside the system to
contact it. Access to this message queue can then be limited to subjects in special domains.

Managing Trust

Trust on the LOCK system has a very specific meaning. It can be used to override the *-property
and permit a subject to modify (write, append, create, destroy) a lower level object, or modify
(signal, create, destroy) a lower level subject. It is implemented and enforced using the type
enforcement mechanism by defining special domains that have trusted access capabilities to objects
of special types. A subject in one of these domains has the privilege to perform trusted accesses.

Note that only accesses that involve modification have trusted modes. Accesses that involve
observing (such as read and execute) have no trusted mode on LOCK. There is no privilege that
allows a lower level subject to read higher level data.

149

LOCK’s approach to trust provides a number of design and security advantages. Trust can be
granted at a very fine granularity in conformance with least privilege. Since there are separate
trusted accesses for each mode of modification, only the access that is required needs to be granted.
Furthermore, the DDT can be configured so that these accesses are only granted to special
domains and types. That is, for objects trust is granted on a domain-to-type basis, and granting a
trusted access to objects of a given type does not mean that such access is also granted to objects
of other types. Similarly, for subjects, accesses are granted on a domain-to-domain basis. Hence,
even if a subject has a trusted access, it can only use this access on objects of the indicated type,
or subjects of the indicated domain. Since those subjects that use trust are specifically identified
and isolated, a least privilege policy with respect to the use of trust can be implemented.

(In this paper we use the term privileged subject to indicate a subject that is intended to
perform some security or integrity critical function. This is what often is called a trusted subject.
We use the term privileged, rather than trusted, to avoid confusion with the more restricted notion
of trust, described above, that involves the ability to override the *-property of the Bell and
LaPadula model. We will restrict our use of the phrase trusted subject to indicate a subject whose
domain has a trusted access capability.)

Separation of Duties

Within a subsystem, the LOCK type enforcement mechanism allows a strict least privilege policy
to be implemented and enforced. In order to take advantage of this capability, the subsystern must
be designed in a modular fashion that isolates privileged functionality in separate modules. These
modules can then be implemented as separate subjects, each in its own special domain, and the
data that they access can be assigned special types. The assured pipelines, described in the next
section, are examples of such design. The DDT and DIT can be configured to allow only the least
amount of access necessary for the desired functionality. In particular, individual subsystem
modules can be prevented from accessing data or communicating with other subsystem subjects in
ways that are unnecessary for the proper function of the module.

Such a design allows for simple modifications and additions. Adding a new subject to perform
a new task is a localized operation, so its effects on system security and integrity can be easily
identified. Also, such a design simplifies assurance work by identifying and isolating security and
integrity critical subsystem portions. The primary assurance effort can then be directed toward
only those subjects that perform privileged tasks.

Unbypassable Filters

The type enforcement mechanism also provides a means for implementing high integrity
operations. By using special domains and types, filter processes can be created to strictly control
the manner and order in which certain operations are performed. As figure 2 indicates, these filters
have the three critical properties of a reference monitor. They are unbypassable, tamperproof, and
can be verified correct. These properties are implemented by the definition of the necessary types
and domains and by the correct configuration of the DDT. In Figure 1, the F1 and the TrP1
processes are examples of unbypassable filters.

By composing one or more such filters, assured pipelines can be constructed that ensure the
security and enhance the integrity of data that flows through the pipeline. This is illustrated in
figure 3. Assured pipelines and the LOCK concept of a role, described below, can be used to
implement a variety of integrity policies, including those proposed by Clark and Wilson [7], [8].
One application of an assured pipeline might be to guarantee that any modifications to user
records must pass through a previewer pipeline before the modifications are committed. This
previewer pipeline allows the user to review and commit the changes using filter processes that
have been assured to maintain certam integrity properties of the records.

150

Unfiltered
. Data

Figure 2 A ﬁlter process. The filter reads the unfiltered data and performs its filtering operation
before writing the data to a new object of a different type. A special domain (the Filter Domain) is
created for the filter process and special types are created for the unfiltered data (Unfiltered Data
Type), the filtered data (Filtered Data Type), and the filter code (Filtered Code Type). By using
the DDT to restrict create and write access to Filtered Data Type objects to the Filter Domain, the
filter process is made unbypassable-it is only through the Filter Domain that filtered data can be
produced.. By allowing the Filter Domain execute access to only objects of Filter Code Type and
by not allowing any other domain create or write access to objects of Filter Code Type, the filter
process is made tamperproof. (There is no way to modify the code that it executes.) By having
only one object of type Filter Code Type and performing the desired assurance on that code object,
the filter process can be verified to perform its filtering process correctly.

Roles

In the LOCK system, user roles are implemented in a manner that relies on the use of types and
domains. Every subject is associated with a user. A Role Authorization Table is used to determine
in which domains each user is allowed to have subjects operating. Roles are represented as sets of
domains, and a user is allowed to operate in a particular role (or subrole) only if the Role
Authorization Table permits the user to have subjects in the domains associated with that role (or
some subset of these domains).

To extend the example from the previous subsection, the Role Authorization Table can be
configured so that only users identified as System Security Officers (SSOs) are allowed the ability
to have subjects in the previewer ﬁlter domain. In this way, only an SSO is allowed to modify
LOCK .user records. :

4 Implem_enting LOCK Applications

After developing a design that takes advantage of LOCK’s type enforcement mechanism, the next
step is to implement the design on LOCK. LOCK currently provides two interfaces for software
development. For applications requiring no assurance, a fully functional Unix interface, LOCKix, is
provided. Privileged applications, on the other hand, must be implemented on the TCB interface
directly. A third interface that allows privileged applications to be developed on a LOCKix style
interface is under development. It is described in Section 5.

151

--

]
[]
' Object Process Object Process Object
' e
] a A b] B Cc
[} 1
[}]
I 1 : !
E Code : Code
' A : B
] 1
1]
] 1
: ; Subsystem B
1]

--

Figure 3: An Assured Pipeline. This example of an assured pipeline is composed of two filters, each
designed and assured to perform its particular function. Process A filters the data in object a and
places it into object b. Object b is a shared object used to construct the pipeline. Process B filters
data from object b and places it into object c. An example of an assured pipeline might be a labeler
process (process A) followed by a printer process (process B). Object ¢ in this case would be the
output from the printer. The labeler process would be assured to correctly label the data and put
the labeled data in object b. The printer process would be assured to print the data it receives
correctly. .

4.1 Implementing Unprivileged LOCK Applications

For unprivileged software that does not need to communicate with other LOCK subjects, a
developer can use the LOCKix programming environment. LOCKix is an unprivileged application
providing a Unix interface on top of the LOCK TCB. It provides a fully functional single level
Unix kernel with read only access to files at dominated levels. LOCKix is based on Unix System V,
Release 1 and is over ninety percent system call compatible with Unix System V Release 2 as
measured by the System V Verification Suite. The next release of LOCKix will be based on
System V, Release 4.

LOCKix supports a C compiler, 68000 assembler, loader and C library. It also has program
development utilities such as an archiver and “make”, and runs many existing Unix programs with
little or no modification. Most of the modifications required, in fact, are corrections of hardware
dependent programming errors in older programs. Most modern Unix code ports reasonably easily.
LOCKix provides a familiar programming interface and Unix library support.

The LOCK type enforcement mechanism allows a great deal of flexibility in controlling use of
the LOCKix compiler. LOCK can be configured so that only users privileged to run LOCKix in a
special domain can create objects that the LOCK host can execute. This prevents unauthorized
users from creating LOCK executable code.

LOCKix currently does not support a debugger, but will at some time in the future. The
present lack of a debugger makes LOCKix a less than ideal environment for program development.
Further work is also needed to develop high level support for inter-subject communication.
Multiple processes running inside the same LOCKix session communicate like any Unix process.
However, no Unix library support currently exists to enable LOCKix processes to communicate
with other LOCK subjects. LOCKix currently does not have a library interface to the LOCK TCB
(although creation of one is planned), so the direct TCB calls currently required for inter-subject
communication must be made in assembly language.

Because LOCKix presents a compatible Unix interface, the current development approach is
for application developers to write, debug, test and run applications on their favorite Unix system,

152

and then, once the application is ready for use, simply recompile and run it on LOCKix. This
approach has been used with great success in porting Unix software to LOCKix. Portable software
(Kermit, some GNU software, etc.) has been compiled and run on LOCKix without modification.

While the best method of implementing most unprivileged applications on LOCK is to develop
them to run on LOCKix, there may be some applications that would require little or no support
from LOCKix. Such applications could be implemented directly on the LOCK TCB interface used
for privileged software. The method by which this is done is discussed in the following section.

4.2 Implementing Privileged LOCK Applications

Privileged software cannot depend on LOCKix as the underlying system because it is large and
unassured, and if subverted, could cause the privileged software to be subverted also. Privileged
software must be developed to run directly on the native LOCK TCB. The TCB provides a small
set of well understood, well behaved primitives providing simple memory and communication
facilities. The simplicity and power of the LOCK TCB interface makes development of
sophisticated, multi-level assured applications possible.

Privileged (and some unprivileged) applications have been developed using the library
interface to the TCB. A full set of routines for inter-subject communication, memory management,
device handling, signaling and more are available in this library. A set of Unix stubs that simulates
most of these library routines has been developed so that the first phase of debugging can take
place on a Unix system, using its program development utilities. The LOCKix C compiler cannot
be used to compile the code because it cannot generate the fully relocatable code required to run
on the native TCB. LOCK TCB code is generated using a cross compiler. Once code is moved to
the TCB, it must be integrated using a hardware level debugger. A software based debugging
capability should be available some time in the future.

5 The Future of LOCK Software Development

In future LOCK systems the goal is to provide a complete software development environment in
which both privileged and unprivileged software can be developed in the same manner and with
the same ease. This section describes some of the ideas and enhancements that will make such an
approach possible.

5.1 Features of the Software Development Environment

An Isolated Development Environment. The LOCK type enforcement mechanism can be
used to create insulated test environments for development of privileged applications. By
insulating the development and test environment, it becomes reasonable to develop and test
privileged applications using LOCKix. For example, when testing a text downgrader a special
LOCKix domain can be created that has read and trusted write access capabilities to a special
type of test object. That domain would not be able to read or write any other type of object, and
other domains would only be able to destroy that type of object. This allows controlled creation of
a high level object that contains no high level information, which can be safely downgraded during
testing. This way when testing the downgrade function, the domain restriction keeps any
information from being accidentally or deliberately downgraded during testing. Less critical
software can be developed in less insulated domains with fewer controls.

An Assurable Unix Interface Library. The LOCK assurable Unix interface library is a
small subset of the Unix system call interface. This library will provide developers with access to a
simple Unix file system, allowing them to specify object identifiers using a pathname. System calls
providing file manipulation, interprocess and inter-subject communication, and signal management
will also be provided.

This library will provide an interface for privileged software to be compiled using a subset of
Unix system calls. The need for TCB interface stubs will be eliminated, and programming
privileged software will be simplified due to the more familiar Unix interface.

153

Run-Time Environment Enhancements. The format and execution of TCB subjects will
be changed to add support for non-relocatable program code. Also, the TCB subject calling
conventions will be enhanced to provide arguments and environment information in a manner
similar to a Unix system. With these enhancements, development of privileged software can take .
place in LOCKix without special support tools. '

Complete Software Development Toolset. Another major improvement will be the
addition of a standard Unix source level debugger to LOCKix. This will make it possible for
developers to debug LOCKix code while running in LOCKix, and will complete the LOCKix
programmer’s toolset. ‘

5.2 Using the Software Development Environment

With a complete toolset in place, a more Unix-like TCB run time environment, the assured Unix
interface library, and the proper use of type enforcement, LOCKix will become an effective
-platform for developing both unprivileged and privileged LOCK applications. Developers will be
able to write and test assured software in a special domain insulated from regular system users. In
such an environment they can compile and run privileged (and unprivileged) code until they are
satisfied with its correctness. ‘

Applications would then be moved from a development environment to a production
environment via an assured pipeline. The source code written in the assured software development
environment would be of type assurable code. To compile this code in a format executable by
general LOCK users, it would have to be reviewed using a privileged source code reviewer that

_runs in a domain that can read objects of type assurable code and can write objects of type
reviewed code. The LOCKix compiler would then be run in a special domain that can read objects
of type reviewed code, and write objects of a type that can be executed outside of the insulated
development domain. Different review steps could be added or deleted as required by individual
sites.

This model allows for controlled transition of software from development to operational status.
It supports role separation, allowing sites to separate the roles of software developer, reviewer and
installer. It uses many of the features of type enforcement to provide a secure, controlled
environment for the complete LOCK application development cycle.

6 Examples

In order to illustrate the manner in which critical applications can be designed and implemented
on LOCK, we present some examples.

Example 1. A Privileged Subsystem.

For our first example consider a subsystem that is designed to run as a single privileged subject on
top of a TCB. Such a subsystem might be a multilevel DBMS that performs all of its processing at
system high and then downgrades the results.

If the design is such that the entire DBMS cannot be easily decomposed into modules, some of
which need to be privileged and others that do not, then the full advantage of type enforcement
cannot be gained. However, it is still desirable to create a special DBMS domain, in which the
DBMS privileged subject would run, and special types for the DBMS files. It would then be
possible to run:the DBMS as an isolated subject on the system as described in figure 1.

Although implementing the subsystem directly on a version of the standard LOCKix system
might be very easy, this approach has the disadvantage that since LOCKix is unprivileged, if it is
corrupted, the privileged subsystem might be subverted. This danger can be mitigated by using a
small, well-understood LOCKix subset, that only supports the functionality required by the
DBMS, on which to perform- the port and then configuring the DDT so that this code object can
not be modified and so that it is the only code object that can be executed from the special DBMS

154

domain. Note that if the application is properly isolated, even if it is subverted, it can only affect
information available within its subsystem.

Of course, the danger that the LOCKix subsystem can be subverted is always present To
insure that the subsystem cannot be compromised, it would be necessary to implement it using
either the LOCK TCB interface or, in the future, the assurable Unix interface. If it provides the
required support that the privileged subsystem needs, then the assurable Unix interface is
probably the best choice, since the implementation would be easier. In fact, if minimal additional
support is required, it might be desirable to add this support in an assured manner. In this way
additional functionality can be added to the assurable Unix interface in an incremental manner.

Example 2. A Modularized Subsystem

The real advantage of type enforcement is only obtained when a subsystem is designed so that its
security and integrity components are separated into modules which are small enough so that the
corresponding code can be properly assured for correctness. This highly reliable code, and the data
it deals with, can then be isolated using special domains and types and the remainder of the
subsystem can be implemented as an unprivileged subject.

As an example consider a multilevel DBMS design, such as LDV [9], [10] in which all
privileged processing can be isolated in a few modules, and most of the DBMS functionality is
unprivileged. The unprivileged portion of the DBMS could be implemented on standard LOCKix
using standard database code. This might involve nothing more than compiling the code on
LOCKix. The privileged portions would be implemented as discussed in the previous example,
using either the LOCK TCB or the assurable Unix kernel. The LDV design is an example of an
assured pipeline, since any query first passes through the unprivileged DBMS, then the privileged
filter that determines what information can be released, and then the response passes back out
through the unprivileged DBMS. '

Example 3. A Role Based Subsystem

Examples 1 and 2 illustrate the manner in which unprivileged and pnvﬂeged software can be
ported to LOCK to take advantage of LOCKix and type enforcement. To illustrate how roles can
be implemented, consider a simple example in which a DBMS is used to create reports which must
be reviewed by a human before they are released. The DBMS may itself be unprivileged, but the
previewer subject that handles the review processing is privileged to correctly display the report,
so that a user can review it, and only release it if it passes review. In effect, the previewer acts as a
filter. Furthermore, the role of the reviewer is only allowed to certain privileged individuals.

This subsystem can be implemented on LOCK in much the same way as described in Example
2 with the previewer being put in a special domain that acts as a filter between objects of type
report and objects of type reviewed report. The role of the reviewer is then implemented by using
the Role Authorization Table. Only users who are allowed to be reviewers are permitted to have
subjects that execute in the previewer domain. Hence, only these users are allowed to perform the
role of a reviewer.

7 Conclusion

This paper has discussed some issues involved in designing and implementing an application on the
LOCK system, and some of the features LOCK provides to aid application development.

LOCK’s ty