
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY/

NATIONAL COMPUTER SECURITY CENTER

1 TH ATIONAL OMPUTER ECURITY ONFERENCE

October 1-4, 1991

Omni Shoreham Hotel

Washington, D.C.

Welcome!

The National Computer Security Center (NCSC) and the Computer Systems

Laboratory (CSL) are pleased to welcome you to the Fourteenth Annual National

Computer Security Conference. We believe that the Conference will stimulate a vital

and dynamic exchange of information and foster an understanding of emerging

technologies.

The theme for this year's conference, "Information Systems Security: Require

ments & Practices," reflects the continuing importance of the broader information

systems security issues facing us. At the heart of these issues are two items which will

receive special emphasis this week --Information Systems Security Criteria (and how

it affects us) and Education, Training, and Awareness. We are working together, in

the Government, Industry, and Academe, in cooperative efforts to improve and

expand the state-of-the-art technology to information systems security. This year we

are pleased to present a new track emphasizing the integration of information

security solutions. These presentations will provideyou with some thoughtful

insights as well as innovative ideas in developing your own solutions. Additionally,

we will be presenting an educational program which addresses the automated

information security responsibilities. This educational program will refresh us with

the perspectives of the past, and will project directions of the future.

We firmly believe that security awareness and responsibility are the cornerstone

ofany information security program. For our collective success, we ask that you

reflect on the ideas and information presented this week; then share this

information with your peers, your management, your administration, and your

customers. By sharing this information, we will develop a stronger knowledge base

for tomorrow's foundations.

¢~
ES H. BURROWS

Director Director
Computer Systems Laboratory National Computer Security Center

i

Conference
Dr. Marshall Abrams The MITRE Corporation
James P. Anderson J.P.Anderson Company
Jon Arneson National Institute ofStandards and Technology
Devolyn Arnold Department ofDefense
James Arnold Department of Defense
AI Arsenault Air Force Academy
V.A. Ashby The MITRE Corporation
David Balenson Trusted Information Systems, Inc.
Dr. D. Elliott Bell Trusted Information Systems, Inc.
James W. Birch Secure Systems, Inc.
W.Earl Boebert Secure Computing Technology Corporation
Dr. Martha Branstad Trusted Information Systems, Inc.
Dr. John Campbell Department of Defense
lisa Carnahan National Institute ofStandards and Technology
R.O. Chester Martin Marietta
David Chizmadia Department of Defense
Dorothea deZafra Public Health Service
Donna Dodson National Institute ofStandards and Technology
Karen Doty CISEC
Dr. Deboah Downs The AEROSPACE Corporation
Jared Dreicer Los Alamos National Laboatory
Ellen Flahavin National Institute ofStandards and Technology
Daniel Gambel Grumann Data Systems
l. Dain Gary Mellon National Bank
Virgil Gibson Grumann Data Systems
Dennis Gilbert National Institute ofStandards and Technology
Irene Gilbert National Institute ofStandards and Technology
Captain James Goldston, USAF AFCSC

Dr. Joshua Guttman The MITRE Corporation

Douglas Hardie Unisys Corporation

Ronda Henning Harris Corporation

Dr. Harold Highland, FICS Compulit, Inc.

Jack Holleran National Computer Security Center

Hilary H. Hosmer Data Security, Inc.

Russell Housley XEROX Information Systems

Howard Israel AT&T Bell Laboratories

Dr. Sushil Jajodia George Mason University

Wayne Jansen National Institute ofStandards and Technology

Referees
Carole Jordan
Dr. MariaM. King
leslee Lafountain
Steven Lafountain
Paul A. lambert
Dr. Carl Landwehr
Robert lau
Dr. Theodore M.P. lee
Steven B. lipner
Teresa lunt
Dr. William V. Maconachy
Sally Meglathery
Dr. Jonathan Millen
Warren Monroe
William . Murray
Noel Nazario
Ruth Nelson
Peter Neumann
J.D. Nichols
Steven Padilla
Nick Pantiuk
Donn Parker
Richa Pethia
Dr. Charles P11eeger
Kenneth Rowe
Professor Ravi Sandhu
Marvin Schaefer
Dr. Roger R. ScheU
Emilie J. Siarkiewicz
Suzanne Smith
Brian Snow
Professor Eugene Spafford
Mario Tinto
James Tippett
Eugene Troy
lTC.R.Vaughn,USA
Grant Wagner
Kenneth vanWyk
Howard Weiss
Roy Wood
Carol Worden

Defense Investigative Service
The AEROSPACE Corporation

Department of Defense
Department of Defense

Motorola GEG
Naval Research Laboratory

Department of Defense
Trusted Information Systems, Inc.

Digital Equipment Corporation
SRI International

National Security Agency
ISSA

The MITRE Corporation
Hughes Aircraft

Deloitte & Touche
National Institute ofStandards and Technology

GTE
SRI International

Independent Consultant
SPARTA

Grumann Data Systems
SRI International

Carnegie Mellon University
Trusted Information Systems, Inc.

Department of Defense
George Mason University

Trusted Information Systems, Inc.
GEMINI

Rome Air Defense Center
Los Alamos National Laboatory

Department of Defense
Purdue University

Department of Defense
Department of Defense

National Institute of Standards and Technology
U.S. Naval Academy

Department of Defense
Carnegie Mellon University

SPARTA
Department ofDefense

State of Minnesota

14th National Computer Security Conference

Table of Contents
x Authors Cross Index

Tutorials
1 From Tuples to Trusted Subjects to TDI: A BriefTutorial on Trusted

Database Management Systems
John R. Campbell, National Security Agency

13 Tutorial Series on Trusted Systems
Joel E. Sachs, Dr. William F. Wilson, Area Systems, Inc.

PAPERS (refereed)

15 	 Accreditation Strategy for the Air Force Satellite Control Network (AFSCN)
Lt Col William Price, USAF, Air Force Space Command
Michael O'Neill, Frank White, CTA, Inc.

25 	 An Analysis ofApplication Specific Security Policies
Daniel F. Sterne, Martha Branstad, Trusted Information Systems, Inc.

Brian Hubbard, SPARTA, Inc.

Barbara Mayer, Atlantic Research Corporation

Dawn Wolcott, MITRE Corporation

37 	 Another Factor in Determining Security Requirements for Trusted Computer
Applications

David Ferraiolo, National Institute ofStandards and Technology
Karen Ferraiolo, Grumman Data Systems

45 	 Apparent Differences Between the U.S. TCSEC and the European ITSEC
Dr. Martha Branstad, Dr. Charles Pfleeger,
Trusted Information Systems, Inc.

Dr. David Brewer, Gamma Secure Systems, Ltd.
Mr. Christian Jahl, Mr. Helmut Kurth, IAGB Software Technology

59 	 Auditing ofDistributed Systems
D. Banning, G. Ellingwood, C. Franklin, C. Muckenhirn, D. Price,
SPARTA, Inc.

69 	 Building a Multi-Level Application on an Untrusted DBMS in a UNIX
System V/MLS Environment- A Project's Experience

DavidS. Crawford, Canadian Department ofNational Defence

78 	 Building a Multi-Level Secure TCP/IP
Deborah A. Futcher, Brian K. Yasaki, The Wollongong Group
RonL. Sharp, AT&TBell Laboratories

88 	 The Cascade Problem: Graph Theory Can Help
John A. Fitch, III, Lance J. Hoffman, George Washington University

iv

101 	 A Case Study for the Approach to Developing a Multilevel Secure Command
and Control Information System

James Obal, Supreme Allied Commander Atlantic

William Grogan, Contel Federal Systems

110 Contractors and Computer Security--Awareness, Education, and
Performance

Ronald E. Brunner, Ronald G. Brunner & Asssociates

120 	 Covert Channel Analysis Planning for Large Systems
Lee Badger, Trusted Information Systems, Inc.

137 	 Dealing With a Malicious Logic Threat: A Proposed Air Force Approach
Howard L. Johnson, Information Intelligence Sciences

Chuck Arvin, Earl Jenkinson, CTA, Inc.

Captain Bob Pierce, USAF, Electronic Security Command

147 	 Developing Applications on LOCK
Richard O'Brien, Clyde Rogers, SCTC

157 	 The Development of a Low-To-High Guard
Michelle J. Gosselin, MITRE Corporation

167. 	DIDS (Distributed Intrusion Detection System)- Motivation, Architecture,
and An Early Prototype

Gihan V. Dias, Terrance L. Goan, L. Todd Heberlein, Che-Lin Ho,
Karl N. Levitt, Biswanath Mukherjee, University ofCalifornia, Davis

Stephen E. Smaha, Steven R. Snapp, Haystack Laboratories, Inc.
James Brentano, Pacific Gas and Electric Company
Lt. Tim Grance, USAF, Daniel M. Teal, USAF,

United States Air Force Cryptologic Support Center
Douglass L. Mansur, Lawrence Livermore National Laboratories

177 	 A Distributed Implementation of the Transform Model
Ravi S. Sandhu, Gurpreet S. Suri, George Mason University

188 	 Employee Privacy and Intrusion Detection Systems: Monitoring on the Job
Lorrayne J. Schaefer, The MITRE Corporation

195 	 Experience of Commercial Security Evaluation
Peter Fagan, Julian Straw, Secure Information Systems Limited

205 	 Experiences in Multi-Level Security on Distributed Architectures
Karl A. Siil, AT&T Bell Laboratories

215 	 An Expert System Application for Network Intrusion Detection
Kathleen A. Jackson, David H. DuBois, Cathy A. Stallings,

Los Alamos National Laboratory

226 	 Formal Verification of a Network Security Device: A Case Study
Hicham N. Adra, William Sandberg-Maitland,

CGI Information Systems & Management Consultants

237 	 A Framework for Advancing Integrity Standardization
Terry Mayfield, Stephen R. Welke, John M. Boone,

Catherine W. McDonald, Institute for Defense Analyses-

v

246 	 A Framework for Developing Accreditable MLS AISs
R. K. Bauer, J. Sachs, M. L. Weidner, W. F. Wilson, Area Systems, Inc.

257 	 Generalized Framework for Access Control: Towards Prototyping the
ORGCON Policy

Marshall D. Abrams, Jody Heaney, Osborne King, Leonard LaPadula,
Manette Lazear, Ingrid Olson, The MITRE Corporation

267 	 Honest Databases That Can Keep Secrets
Ravi Sandhu, Sushil Jajodia, George Mason University

283 	 Identifying and Controlling Undesirable Program Behaviors
MariaM. King

295 	 Improvement ofData Processing Security by Means ofFault Tolerance
Gilles Trouessin, Yves Deswarte, Jean-Charles Fabre,

LAAS-CNRS & INRIA
Brian Randell, Computing Laboratory, The University Newcastle upon Tyne

305 	 Information Security: Can Ethics Make a Difference
Corey D. Schou, John A. Kilpatrick, Idaho State University

313 	 Information Security Risk Analysis and Risk Management: Which
Approach?

Professor J.H.P. Eloff, K.P. Badenhorst, Rand Afrikaans University

328 	 Information Systems Security: A Comprehensive Model
Capt. John R. McCumber, USAF, Joint Staff, the Pentagon

338 	 Integrating B2 Security into a UNIX System
Kevin Brady, UNIX System Laboratories, Inc.

347 	 Knowledge Based Computer Security Advisor
William Hunteman, M. B. Squire, Los Alamos National Laboratory

357 	 The Logistics of Distributing a Smart Token
Dawn Brown, Department ofDefense

362 	 A Method to Detect Intrusive Activity in a Networked Environment
L. Todd Heberlein, Biswanath Mukherjee, Karl Levitt,

University ofCalifornia

372 	 Model Based Intrusion Detection
Thomas D. Garvey, Teresa F. Lunt, SRI International

386 	 Notification: A Practical Security Problem in Distributed Systems
Vijay Varadharajan, Hewlett-Packard Laboratories

397 	 Output Perturbation Techniques for the Security ofStatistical Databases
Kasinath C. Vemulapalli,ElizabethA. Unger, Kansas State University

407 	 An Overview oflnformix-Online/Secure
Rammohan Varadarajan, Informix Software, Inc.

417 	 Peeling the Viral Onion
Russell Davis, Planning Research Corporation, Inc.

vi

427 	 Practical Models for Threat/Risk Analysis
Mark W.L. Dennison, Kalman C. Toth

CGI Information Systems & Management Consultants, Inc.

436 	 Predicate Differences and the Analysis of Dependencies in Formal
Specifications

D. Richard Kuhn, National Institute ofStandards and Technology

446 	 Preventing Weak Password Choices
Eugene H. Spafford, Purdue University

456 	 Putting Policy Commonalities to Work
D. Elliott Bell, Trusted Information Systems, Inc.

472 	 Reconciling CMW Requirements with Those ofXll Applications
Glenn Faden, Sun Microsystems, Inc.

480 	 Restating the Foundations of Information Security
Donn Parker, SRI International

494 	 The Role OfNetwork Security In A Methodology For Information Security
Design And Implementation

ProfessorJ.H.P. Eloff, Mr. A.J. Nel, Rand Afrikaans University

505 	 A Secure European System for Applications in a Multi-vendor Environment
(The SESAME Project)

T. A. Parker, ICL Secure Systems

514 	 A Secure Quorum Protocol
Masaaki Mizuno, Mitchell L. Nielsen, Kansas State University

524 Security Guidance for V AXNMS Systems
Debra L. Banning, SPARTA, Inc.

533 	 Sneakernet: Getting a Grip on the World's Largest Network
Captain James B. Hiller, USAF, Space and Warning Systems Center

543 	 A Socio-Technical Analysis of a USA National Computer Security Conference
Stewart Kowalski, Stockholm University & Royal Institute ofTechnology

533 	 Standardized Certification
Captain Charles R. Pierce, USAF, Air Force Cryptologic Support Center

563 	 A Strategic Framework For Information Security Management
RolfMoulton,BP America

Santosh Misra, Cleveland State University

572 	 A System Security Engineering Process
J.D. Weiss, AT&TBell Laboratories

582 	 Teaching Computer Systems Security in an Undergraduate Computer
Science Curriculum

Alfred W. Arsenault, Captain Gregory B. White, USAF,
U.S. Air Force Academy

598 	 Toward Certification, A Survey of Three Methodologies
Captain Charles R. Pierce, USAF, Air Force Cryptologic Support Center

vii

608 	 Trusted Distributed Computing: Using Untrusted Network Software
E. John Sebes, Richard J. Feiertag, Trusted Information Systems

619 	 Trusting X: Issues in Building Trusted X Window Systems or What's not
Trusted About X?

Jeremy Epstein, TRW Systems Division

Jeffrey Picciotto, MITRE Corporation

630 	 Using Existing Management Processes to Effectively Meet the Security Plan
Requirement of the Computer Security Act: The IRS Experience

Richard A. Stone, Joseph Scherer, Internal Revenue Service

634 	 Viruses in an OS/2 Environment: Remembrances of Things Past and a
Harbinger ofThings to Come

Kevin P. Haney, National Institutes ofHealth

644 	 Why Does Trusted Computing Cost So Much?
Susan Heath, Phillip Swanson, Daniel Gambel, Grumman Data Systems

PANEL Executive Summaries (unrefereed)

654 PANEL: 	 Acquiring Computer Security Services and Integrating Computer
Security and ADP Procurement

Dennis Gilbert, National Institute ofScience and Technology
Barbara Guttman, National Institute ofScience and Technology

655 	 PANEL: Compartmented Mode Workstation(CMW) Program Overview
Steven Schanzer, Moderator, Defense Intelligence Agency

658 PANEL: 	 The Computer Emergency Response Team System (CERT
System)

E. Eugene Schultz, Lawrence Livermore Laboratory
Richard Pethia, Software Engineering Institute, Carnegie Mellon University

663 	 PANEL: Computer Security Management and Planning
Christopher Bythewood, National Computer Security Center

664 	 PANEL: Cracking the Cracker Problem
Dorothy E. Denning, Moderator, Georgetown University

665 The Role ofTechnology
Matt Bishop, Dartmouth College

666 PANEL: 	 Electronic Dissemination of Computer Security Information
Executive Summary

Marianne Swanson, National Institute ofScience and Technology
667 What Can Dockmaster Offer You?

Cindy Hash, Department ofDefense

Session: Guidelines & Evaluations
669 Towards Mutual Recognition of Security Evaluations

Andrea Arnold, Digital Equipment Corp

Cornelia Persy, SIEMENS

Gottfried Sedlak, IBM

viii

674 PANEL: 	 Fielding COTS Multilevel Security Solutions: The Next Step
James Litchko, Trusted Information Systems Inc.

675 PANEL: 	 Inference and Aggregation in Multilevel Databases: Research
Directions

Teresa F. Lunt, Moderator, SRI International
676 Detecting and Evaluating Inference Channels

Thomas D. Garvey, SRI International
679 Inference Prevention in Databases: Data Design vs. Query Processing

Catherine Meadows, Naval Research Laboratory
680 Challenges in Addressing Inference and Aggregation

LTC. Gary Smith, USA, National Defense University
681 Approaches to Handling the Inference Problem

Bhavani Thuraisingham, The MITRE Corporation

684 PANEL: 	 Military and Telecommunications Security: Specialized Methods
RichardLefkon, Moderator, New York University

685 Malicious Code Prevention for Embedded Computer Weapon Systems
Debra L Banning, Gail M. Ellingwood, SPARTA

689 Computer Viruses as Electronic Warfare
Myron Cramer, Booz-Allen & Hamilton

690 Preventing Virus Insertion Through Switches
Ed Fulford, Northern Telecon

693 Nuclear Disaster and The Millennium Horse
Richard Lefkon, New York University

Session: National Issues
695 Reduced Defense Spending Increases the Need for Trusted Systems

Carole S. Jordan, Defense Investigative Service

696 PANEL: 	 1991: A Year ofProgress in Trusted Database Systems
John R. Campbell, Moderator, National Security Agency

698 Recent Developments in Some Trusted Database Management Systems
Bhavani Thuraisingham, The MITRE Corporation

701 Oracle and Security: Year in Review 1990-91
Linda L. Vetter, Oracle Secure Systems

704 1991 SYBASE Secure Products: Executive Summary
Helena B. Winkler-Parenty, SYBASE

706 PANEl..: 	 Requirements and Experiences
Dennis Gilbert, National Institute ofScience and Technology

708 PANEL: 	 Risk Management
Irene Gilbert, National Institute ofScience and Technology

709 PANEL: 	 Specifying, Procuring, and Accrediting MLS System Solutions
Joel E. Sachs, Area Systems, Inc.

714 PANEL: 	 Trusted Applications in the Real World
Stephen Walker, Trusted Information Systems Inc.

715 PANEL: 	 Winning Strategies in Information Systems Security Education,
Training, and Awareness

W. V. Maconachy, Moderator, Department ofDefense

ix

Authors Cross Index

Abrams, Marshall D. 257

Adra, Hicham N. 226

Arsenault, Alfred W. 582

Arvin, Chuck 137

Arnold, Andrea 669

Badenhorst, K.P. 313

Badger, Lee 120

Banning, D.- 59, 524,685

Bauer, R. K. 246

Bell, D. Elliott 456

Bishop, M. 665

Boone, John M. 237

Brady, Kevin 338

Branstad, Martha 25, 45

Brentano, James 167

Brewer ,David 45

Brown, Dawn 357

Brunner, Ronald E. 11 0

Bythewood, C 663

Campbell, John R. 1, 696

Cramer, Myron 689

Crawford, DavidS. 69

Davis, Russell 417

Denning, Dorothy E. 664

Dennison, Mark W .L. 427

Deswarte, Yves 295

Dias, Gihan V. 167

DuBois, David H. 215

Ellingwood, G. M. 59, 685

Eloff, J.H.P. 313, 494

Epstein, Jeremy 619

Fabre, Jean-Charles 295

Faden, Glenn 472

Fagan, Peter 195

Feiertag, Richard J. 608

Ferraiolo, David 37

Franklin, C. 59

Fulford, E. 690

Futcher, Deborah A. 78

Gambel, Daniel 644

Garvey, T. D. 372, 676

Gilbert, Dennis 654, 706

Gilbert, Irene 708

Goan, Terrance L. 167

Gosselin, Michelle J. 157

Grance, Tim, Lt. 167

Grogan, William 101

Guttman, Barbara 654

Haney, Kevin P. 634

Hash,Cindy 667

Heaney,Jody 257

Heath, Susan 644

Heberlein, L. T. 167, 362

Hiller, J. B. ,Capt 53.~

Ho, Che-Lin 167

Hoffman, Lance J. 88

Hubbard, Brian 25

Hunteman, William 347

Jackson, Kathleen A. 215

J ahl, Christian 45

Jajodia, Sushil 267

Jenkinson, Earl H. 137

Johnson, Howard 137

Jordan, Carole 695

Kilpatrick, John A. 305

King, MariaM. 283

King,Osborne 257

Kowalski, Stewart 543

Kuhn, D. Richard 436

Kurth, Helmut 45

LaPadula, Leonard 257

Lazear, Manette 257

Ferraiolo, Karen 37 Lefkon, Richard 684, 693

Fitch, John A., III, 88 Levitt, Karl N. 167, 362

X

Authors Cross Index

Litchko, James 674

Lunt, Teresa F. 372, 675

Maconachy, W. V. 715

Mansur, Douglass L. 167

Mayer, Barbara 25

Mayfield, Terry 237

McCumber, John R.. 328

McDonald, C. W. 237

Meadows, Catherine 679

Misra, Santosh 563

Mizuno, Masaaki 514

Moulton, Rolf 563

Muckenhirn, C. 559

Mukherjee, B 167, 362

Nel,A.J. 494

Nielsen, Mitchell L. 514

Obal,James 101

O'Brien, Richard 147

Olson, Ingrid 257

O'Neill, Michael 15

ParkerDonn B. 480

Parker, T. A. 505

Pethia, Richard 658

Persy, Cornelia 669

Pfleeger, Charles 45

Picciotto, Jeffrey 619

Pierce, C. R. Capt . 137,533,598

Price, D. 59

Price, William, Lt Col 15

Randell, Brian 295

Rogers,Clyde 147

Sachs, Joel E. 13, 246, 709

Sandberg-Maitland, W. . . 226

Sandhu, Ravi S. 177, 267

Schaefer, Lorrayne J. 188

Schanzer, Steven 655

Scherer, Joseph 630

Schou, Corey D. 305

Schultz, E. Eugene 658

Sebes, E. John 608

Sedlak, Gottfried 669

Sharp, Ron L. 78

Siil, Karl A. 205

Smaha, Stephen E. 167

Smith, Gary 680

Snapp, Steven R. 167

Spafford, Eugene H. 446

Squire, M. B. 347

Stallings, Cathy A. 215

Sterne,Daniel F. 25

Stone, Richard A. 630

Straw, Julian 195

Suri, Gurpreet S. 177

Swanson, Marianne 666

Swanson, Phillip 644

Teal, Daniel M., Lt. 167

Thuraisingham, B. . . 681, 698

Toth, Kalman C. 427

Trouessin, Gilles 295

Unger, Elizabeth A. 397

Varadarajan, R. 407

Varadharajan, Vijay 386

Vemulapalli, K. C. 397

Vetter, Linda 701

Walker, Stephen 714

Weidner, M. L. 246

Weiss, J.D. 572

Welke, Stephen 237

White, Frank 15

White, G. B. , Capt 582

Wilson, W. F., Dr. 13, 246

Winkler-Parenty, H. 704

Wolcott, Dawn 25

Yasaki, Brian K. 78

xi

A Method to Detect Intrusive Activity in a Networked Environment!

L.T. Heberlein, KN. Levitt, B. Mukherjee

Computer Security Laboratory

Division of Computer Science

University of California

Davis, Ca. 95616

ABSTRACT
Intrusive activity is occurring on our computer systems, and the need for intrusion detection
has been demonstrated. This paper discusses some of the benefits and drawbacks of trying to
detect the intrusive activity by analyzing network traffic. A general solution, based on
detecting and analyzing abstract objects, is formulated. Finally, results from applying the
solution are presented.

1. Introduction
Computers are the targets of attacks [3]. Reports appear in the media almost weekly about outsiders

breaking into computers, employees misusing computers, and rogue viruses and worms penetrating computer
systems. Incidents such as the internet worm of 1988 [3], the Wank worm [3], and the Netherland hackers have
gained international recognition, and they serve to emphasize the vulnerability of computer systems around the
world.

These reported incidents are cases of intrusive activity in our computer systems. Intrusive activity can
be defined as any attempt which, if successful, will result in one of the following:

o disclosure of information against the wishes of the owner of the information
o modification of information against the wishes of the owner of the information
o denial of the use of services by legitimate users of the system
o use of resources against the wishes of the system's owner (e.g. disk or CPU)

The frrst three bulleted items are discussed in [4]. The last bulleted item, the stealing of resources, covers actual
observed activity which did not fit easily into the three previous categories. For example, using our network
security monitor (NSM) [8], we have observed an intruder use a system to crack password files. The intruder
was not interested in either looking at existing information on the system, modifying information on the
system, or denying resources to legitimate user. The intruder simply used the CPU, when it was idle, to crack
passwords.

Authentication and access control mechanisms are designed to guard against intrusive activity; however,
these mechanisms have not been wholly successful. Failure of these mechanisms is due in part to the ease by
which passwords can be compromised, failure by system administrators and users to properly use the access
control mechanisms, poor operating system designs, and flawed operating system implementations (i.e., bugs).

The failures of authentication and access control mechanisms are compounded by the decentralization of
computer systems and the increased access to a computer system by computer networks. The decentralization of
computer systems is the movement away from a single mainframe computer to multiple workstations and
personal computers. The movement is fueled by the increasing power and decreasing costs of workstations and
personal computers. The result of decentralization is a type of computer system which is administered by
people, usually the user community, with little or no formal training in system administration or computer
security. This in tum results in a greater chance for poorly configured authentication and access control
mechanisms.

Connecting a computer to a network also increases the chances of intrusive activity occurring on that
computer since this process increases the number of people who can potentially access it. Connecting a
computer to a network provides a path to that computer for every user with access to the network. If the

1 Tiiis work is supported in part by Lawrence Livermore National Laboratory

362

network is part of the internet, essentially everyone with access to a telephone has a path to that computer.
With the realization that current authentication and access control mechanisms have not provided

adequate security against intrusive behavior, institutions which use computers and computer networks have
become interested in detecting the intrusive activity which is occurring. If an intrusion can be detected, an
institution can at least know from where intrusive activity is coming, how the activity is being perpetrated (and
therefore, hopefully how to stop it), and what data have been compromised.

In the summer of 1988, University of California at Davis and Lawrence Livermore National Laboratory
began an effort to detect intrusive activity on a network of heterogeneous computer systems. A brief overview
of this effort is presented in section two. Sections three and four present the mechanisms by which our monitor
detects intrusive activity. And section five presents some of the results of our efforts as well as directions for
future research.

2. Network Monitor

Intrusion detection systems examine available sources of information about the various operations in a
computing system to determine if intrusive activity is occurring. The main source of information for most
intrusion detection system is the audit trails generated by the operating system. Although the audit-trail-based
analysis has provided a measure of success, a number of limitations exist with this method. First, audit trails
traditionally do not provide much of the information necessary to perform security analysis. This is due in part
to the historical purpose of audit trail collection - the billing of customers. Second, audit trails tend to be
system specific. Each operating system provides a different set of information in a different format. An
intrusion detection system designed to work on the Multics operating system's audit trails would need a great
deal of restructuring to operate on another operating system's audit trails. Third, the collection of audit trails is
expensive in terms of CPU usage and storage utilization. Many organizations, even those working in the field
of computer security, tum off auditing on their machines to avoid the resource penalty. Fourth, the audit trails
themselves can be the target of an intruder. Intruders have been known to tum off auditing on machines in order
to hide their tracks. Fifth, and last, the delay in the actual recording and analysis of the audit information can
allow an intruder to do damage and exit the machine before the intrusion is noticed So, although there
exists a strong desire for immediate notification of intrusive activity, audit mechanisms can introduce a delay
factor.

By exploiting the broadcast property of a local area network (LAN) and network protocol standards, the
analysis of network traffic can solve a number of the drawbacks associated with audit-trail-based analysis. First,
network standards exist by which a variety of hosts can communicate. An intrusion detection system based on
network traffic can therefore simultaneously monitor a number of hosts consisting of different hardware and
operating system platforms. Second, the collection of network traffic does not create any performance
degradation on the machines being monitored, so network monitoring is more attractive to a user community
which places importance in the perl'ormance and responsiveness of their machines. Third, since a network
monitor can be logically isolated from the computing environment, its analysis cannot be compromised by an
intruder. Typically, the intruder has absolutely no way of knowing that the network is being monitored. And
fourth, since a network monitor draws its information directly from the network, no delay occurs from the
instant an intrusion occurs until the instant the evidence is available. Instead, intrusive activity can be observed
as it occurs.

The original work on this type of network monitoring was based on simple traffic analysis: modelling
the flow of data among the different machines [9,10]. In [9,10], network traffic is modelled with a concept
called a data path. A data path is a method by which one machine can communicate with a second machine. A
data path is defined by the three-tuple <src_host, dst_host, network_service>. If the traffic flow shifted (e.g., a
new data path is observed) at any point, this information would be reported as a possible intrusion. For
example, a particular host initiating a login to a host to which it has never logged into before would be
considered suspicious. This work was based on Denning's hypothesis that intrusive activity would manifest
itself as anomalous behavior [2].

Although this method showed early promise, a major drawback quickly became apparent: the
information available from simple network packet analysis was at a level much too low to detect subtle
intrusive activity. For example, an intrusion over a commonly used data path would not be detected.
Unfortunately, this is often the case when the intrusion is being perpetrated by an insider.

To provide for a more effective intrusion detection system, our monitor needed the capability to detect

363

and analyze higher-level objects which are not directly observed (i.e., individual network connections and hosts).
Also, to perform the analysis information about each object-attributes for the object-needed to be known.

The logical architecture of our system is shown in figure 1, and the components which provide for the
additional complexity of analysis, viz. object detector and object analyzer, are shown in the dashed box. The
functionality provided by these components have greatly enhanced our efforts to detect intrusive activity.
Results from actual use of our monitor can be found in [7,8]. We have attempted to both generalize and
formalize the methods by which our monitor detects and analyzes objects, and this work is presented in sections
three and four.

Report/Display I Object Object I Packet Packet -
catchergenerator I Analyzer detector r filter

~ I I
L-------..J

Traffic__
storage

f4

Figure 1

3. System Description Language

The problem of detecting intrusive activity in a heterogeneous network of computers through the
observation of network packets can be generalized to the detection of a behavior in a complex system (e.g.,
networked system) from the analysis of low level information (e.g., network packets). The complex system is
composed of a variety of components (i.e. hosts, connection, and packets) each of which in tum may be
composed of other components, but only the simplest of components, the lowest levels of information, are
directly visible to a monitor. Unfortunately, to detect the behavior of interest (i.e. intrusive activity), the
complex components which are not directly observed, as well as the low level components, must be examined
for the manifestation of the behavior.

SDL hierarchy Traditional languages bierarclly

program written in
snapshot of system language definition

(eg. Pascal program)

t t
system language progranulringlanguage
definition (eg. ICEL) definition (eg. Pascal)

t t
System Description BNF meta-language
Language (SDL)

Figure 2

To provide for a formal mechanism to infer the complex components of a system, we have defined a
meta-language, called the system description language (SDL), to describe the relationships among components
of a system. The description of a system with this language is called its system language definition. As the

364

low level information is observed, the system language defmition is used to infer the existence of the complex
objects and the relationships between them. A snapshot of all the low level objects and the inferred complex
objects and their relationships to one another represent a model of the actual system at a particular time instant.
It is this model which will be examined for the manifestation of the behavior of interest

The SDL, the system language definition, and the snapshot of an actual system have a direct
resemblance to the defmition of a traditional programming language. The SDL provides a functionality similar
to that of the BNF meta-language. The system language defmition is similar to a traditional program language
definition (e.g., Pascal). And the snapshot of a system is similar to a program defined by a traditional
programming language. This relationship is shown in figure 2.

The system description language is the focus of this section. Section 3.1 introduces the issues which
must be addressed by the system description language. Section 3.2 presents a review of attribute grammars, the
ancestor of the system description language. And section 3.3 discusses the actual system description language.

3.1 Issues to be Addresses by the SDL
To design a meta-language which can be used to describe and model complex systems from the

observation of low level information, a number of issues must be addressed. First, how are the low level,
simple components of the system detected, and how are the attributes of each low level object determined? We
have chosen to not address this issue in this paper, and it is not part of the language definition. The low level
components are detected, and their associated attributes are detennined by a preprocessor. This is not unlike the
design of conventional programming languages which assume the presence of a lexical analyzer to detect tokens,
and, ifnecessary, determine their attributes.

The second issue is the identification and representation of components of the system which are not
observed directly. In fact, a complex object which does not have a· real world counterpart may be desired. For
example, our model for the computer network environment includes an object called a "service-set." The
service-set object does not exist in the actual system, but its presence is helpful in analyzing other components
such as network connections. The system description language must provide a mechanism for inferring the
existence of these unobserved, perhaps nonexistent, objects. Furthermore, the language must provide
mechanisms to determine enough information about these abstract objects so they can be analyzed for the
behavior of interest.

The third issue is concerned with the transitory nature of many of the objects in a system. Systems
such as a heterogeneous network have a number of components which exist for a time, and then disappear. For
example, networlc connections are created and destroyed continuously. The system description language must be
able to handle the creation and destruction of components, and the system description language must provide
information to 'determine when a component should be created or destroyed. Thus the model of an actual
system, as determined by a system language defmition, can change over time.

In summary, the system description language assumes that the low level, simple components and their
attributes are provided to it From these simple components, the systems description language must provide a
mechanism to infer the existence of, and the relationships between, complex objects. The system description
language must provide mechanisms to determine enough information about the complex objects to analyze the
objects for the presence of the behavior of interest. Finally, the system description language must provide a
means both to determine when a component to the system is created or destroyed and to modify the model of the
system due to the creation or destruction of a component

3.2 Attribute Grammars
The system description language which satisfies the above requirements is built upon the concept of

attribute grammars. A quick introduction to attribute grammars is provided below. Readers already familiar
with this subject may want to skip to section 3.3.

An attribute grammar describes both the strings accepted by a language (e.g., the syntax of the
language) and a method to determine the "meaning" of those strings (e.g., the semantics of the language). An
attribute grammar consists of a context-free grammar, a set of attributes for each symbol in the grammar, and a
set of functions defined within the scope of a production rule in the grammar to determine the values for the
attributes of each symbol in that production [1]. The following example of an attribute grammar for the
definition and interpretation of binary numbers2 will be used to clarify the relationships between these three

2 This example is taken from [12].

365

N~L.L

N~L

L~LB

L~B

B~1

B~O

A

components ofan attribute grammar.

N ~L1.L2

N~L

L1 ~LzB

L~B

B~1

B~O

B

Figure 3

v(N) =v(L 1) + v(Lz)f2l(Lz)

v(N) =v(L)

v(L1) =2v(L2) + v(B), l(L1) =l(Lz)+1

v(L) =v(B), l(L) =1

v(B) =1

v(B)=O

The context-free grammar for our language of binary numerals is defined by G =(V ,N,P,S) where Vis
the set of symbols, N is the set of nonterminal symbols, P is the set of production rules, and S, an element of
N, is the start symbol. The set of terminal symbols, a subset of V, is { 1,0,.}. These are the ASCII characters
one, zero, and period. The set of nonterminal symbols, N, is {B,L,N}. They represent the abstract objects bit,
list of bits, and number. The start symbol for our attribute grammar for binary numbers is N, the abstract
number. The set of production rules relating these symbols and providing the defmition of acceptable strings is
given in figure 3A.

By this context free grammar, we can see that the string 11.01 is an acceptable binary number. The
parse tree for this string is given in figure 4A.

N 6=3.25) ----f--- • L (l<=l, l =2)L -----~----(l.t::3, l=2){\B {\B
L (l<=l, l=l) L (l<=O, l=l)~------.........B (l<=l) ---- B (1.t::l)
I I I I I I I Ir 1 r 1 B (l.t::l) 1 B (l.t::O) 1
I I1 0 1 0

A

Figure4

The context-free grammar can be used to build a parse tree of a string and determine whether the string
is valid in the language; however, the context-free grammar cannot be used to determine the meaning of the
string. The addition of attributes and attribute functions are necessary to determine the meaning of the string.

The set of attributes, A, for each nonterminal are given as follows: A(B) ={v}, A(L) ={v,l}, andA(N)
= { v}. The attribute v is the value of a symbol, and the attribute l is the length of a symbol.

The set of functions defined within the scope of each production rule is given in figure 3B.
By using the attributes for each symbol and the attribute functions, we can now assign meaning to each

symbol in the parse tree (see figure 4B). For our language of binary numbers, the most important meaning is
that of the start symbol N. Our string 11.01 now has the meaning of 3.25.

3.3 Svstem Description Language
This section introduces the system description language, an extension of attribute grammars. This

system description language provides a structure by which a system's components and relationships between
components can be described. The description, or system language definition, of a system can be used to both
infer the existence of complex objects (e.g., determine the syntactic structure of the system) and assign
"meaning" to these objects (e.g., the semantic information about the system). The meaning of an object, the
values of its attributes, will be used to determine if the behavior of interest is present in any of the components
of the system.

Similar to an attribute grammar, a system language definition written in the SDL consists of a
structural grammar, a set of attributes for each object, or symbol, in the structural grammar, and a set of

366

functions defined within the scope of a production rule of the structural grammar which determine the attribute
values for each object in that production.

3.3.1 Objects
Objects are the components of the system which will be modelled. These objects may or may not have

real world counterparts. Two varieties of objects exist: basic objects and complex objects. Basic objects are the
low-level components which are directly observed. These are similar to terminal symbols in traditional
programming languages. Complex objects, on the other hand, are not observed and must be inferred from the
observation of basic objects. Complex objects are similar to non-terminal symbols in traditional programming
languages. These two objects are discussed further below.

3.3.1.1 Basic Obieds
Basic objects are simple, indivisible components of the complex system being modelled; they are

detected and their attributes determined by a preprocessor. This preprocessor performs the job of a lexical
analyzer in traditional programming languages. Basic objects are treated as events; they only exist for the
moment at which they are observed. For example, in the networked system, packets are basic objects. Basic
objects for other systems may be an audit record from an operating system, a message to a spacecraft
component, or a sampled data point from some measuring. instrument

A basic object type is defmed by a name and a list of attributes. The name format for our system is the
same as the standard C identifier. Attributes will be discussed in section 3.3.2. An example basic object
representing a possible network packet is:

basic: packet { attribute list }
The keyword basic states that the following object type is a basic object, and the object type's name is

packet. Attributes for this object will be discussed later in section 3.3.3.

3.3.1 .2 Complex Objects
As mentioned previously, complex objects are components of a system which are not directly observed

by the monitor, so they must be inferred from the observation of the basic objects. A complex object is
composed of basic objects and/or other complex objects. For example, a complex object type called process
may be defined for an audit-trail-based monitor. Although processes are not directly observed by the monitor,
information about them can be inferred from the audit records. Therefore, in our model, processes are composed

·of audit records. Compositions will be discussed further in section 3.3.3.
A major difference between complex objects and basic objects is that complex objects have persistence.

Whereas basic objects are treated as events, complex objects are treated as persistent elements which are created
and possibly destroyed. The creation of a complex object occurs as soon as it can be inferred. The destruction
of an object is considerably more difficult and depends on both the definition of the complex object and the
existence of objects which compose the complex object. The two rules which govern the possible destruction
ofan object are described below.

First, if any object A exists and is part of an object B's composition, then object B should continue to
exist. Second, if the last object which is part of object B's composition is destroyed, then object B will be
destroyed after a specified time delay, .6.t, unless another object which is part of B's composition is created or
observed. This specified .6.t is the value of a function associated with the object, and it may depend on the
object's attributes.

Complex objects can be composed of only basic objects, only complex objects, or a combination of
basic and complex objects. Complex object types are defined in my system by one of the following forms
depending on their composition:

complex type i: name {attribute list }
where i varies from 1 to 3 depending on the makeup of the composition objects.

3.3.2 AUribptes
As mentioned previously, each object has a set of attributes associated with it. These attributes provide

a "meaning" to each object It is the attributes which will be used to determine if the object is associated with a
particular behavior. These attributes are also used, along with the production rules described in section 3.3.3, to
determine if an object A is part of object B's composition.

Each attribute consists of a name and a type. The name is used to reference the value, and the type
determines the value type which can be assigned or retrieved from the attribute. For example, "int value" would

367

describe an attribute of type "int" which is referenced by the name "value." Attribute types may be complex
structures defined in the same format as complex types are described in the C language [11].

Many of the attribute values of an object will be assigned by the monitor. For example, when the
existence of a new host is inferred, a host object is created and its internet address is immediately assigned by the
monitor. The values of other attributes, however, are determined by attribute functions. Attribute functions,
described in section 3.3.4, take as input attribute values associated with the object and possibly attribute values
of other objects associated with it by the production rules (see section 3.3.3).

A complex object type to represent a stream (a unidirectional flow of data from one process to another
process) composed of packets can now be defmed as follows:

complex type 1: stream{
inet_addr SI:C_addr
inet_addr dst_addr
int src__port
int dst__port
int creation_time
int num_of_packets
int num_of_bytes

}
This simple definition of a process has a simple identifier, stream, addresses for the source and

destination hosts, source and destination ports to specify the processes on the two machines, a time of creation,
the number of packets exchanged between the two processes, and the number of bytes in all the packets
exchanged.

The set of attributes for an object 0 can be defined as A(O) ={a1.a2 ,an}. For example, A(process)
=(src_addr, dst_addr, src__port, dst__port, creation_time, num_of_packets, num_of_bytes}.

3.3.3 Productions
Productions defme the relationship between the different object types of a system. They defme which

types of objects compose a complex object, and they indicate how to determine which set of objects from an
object type compose the complex object. A production rule has the form:

complex_object_type ->list of object_composition
The complex_object_type is simply the name of a complex object type (e.g., stream). An

object_composition is a set defined by a tuple of the form <object_type, restrictionS>. The object_type is.
simply the name of one of the defined object types (basic or complex), and the restrictions determine which of
all possible objects of type object_type are actually used to compose the complex object.

For example, let the complex object type called stream be defme as above, and let the object type called
packet be defmed as follows:

basic: packet {
inet_addr SI:C_addr
inet_addr dst_addr
int src__port
int dst__port
int num_of_bytes
int time

}
A production rule for the stream object can now be defmed as follows:

stream -> packet
where for all e e packet

e.src_addr=stream.src_addr
& e.dst_addr= st:ream.dst_addr
& e.src__port =stream.src__port
& e.dst__port =stream.dst__port

Finally, each element ofpacket which composes a particular stream object is called a sub-component of
the stream objeet, and the stream object is called a super-component of the packet objects. The concepts of sub
components and super-components will be used in section 4.2 to define integrated object analysis functions.

368

3.3,4 A.Ufibpte Fmu;timu;;
The attributes of a complex object whlch are not defined by the monitor when the object is inferred are

defined by attribute functions. The attribute functions for a structural language are defined as they are for
attribute grammars; however, special attention must be given to the format of the production and the restriction
for the production. For example, an attribute function to determine the value for the attribute "num_of_bytes"
of a stream object coold be as follows:

n
stream.num_of_bytes = l:e:i.num_of_bytes

i=l
Where n = Ipacket 1. and each e e packet is assumed to be a sub-component of the stream object as defined by
the restrictions in the production rule for stream objects.

4. Detecting Bebayiors in Systems

Once the structural grammar, attributes, and attribute functions have been defined, a second set of
functions, called behavior-detection functions, must be defined for each object in the structural grammar.
Behavior-detection functions determine whether an object is associated with the particular behavior of interest.
Because a behavior may manifest itself differently or more clearly in different object types, each object in a
system parse tree (the snapshot of the system) must be examined for the behavior by particular behavior
detection functions designed for that object type. For each type of object, there will be two behavior-detection
functions: the isolated behavior-detection function and the integrated behavior-detection functions. These two
function types are discussed below.

4.1 Isolated Object A.palysis
An isolated behavior-detection function for an object uses the attributes of that object to calculate the

probability ~ the object is associated with the behavior of interest. In short, an isolated behavior-detection
function is a classifier. With some preprocessing to transform the attribute types, a large number of classifiers
can be used.

Unfortunately, classifiers generally have to be trained with sample data, and the behavior of interest is
often quite rare. There are at least two possible solutions to the problem of lack of sample data: expert systems
and single behavior classifiers. An expert system, designed by people knowledgeable about the problem
domain, can use heuristics to determine how close an object's behavior is to the behavior of interest A single
behavior classifier is built around the assumption that a rare behavior will be significantly different than normal
behavior [2]. If this is true, a single classifier can proftle normal behavior, and then it could report any behavior
which does not strongly resemble normal behavior. Work on such single behavior classifiers have been
performed by SRI for IDES [13] and Los Alamos National Laboratory for Wisdom and Sense [17]. For our
particular problem environment, ~e combined the efforts of both an expert system and a single behavior
classifier.

4.2 Iptegrated Objects Apalysis
An integrated behavior-detection function for an object modifies the result of the isolated behavior

detection function for the object by including the analysis of the isolated behavior-detection functions for sub
components and super-components of that object The modification by an integrated behavior-detection function
allows the inclusion of both the reswts of aggregated analysis (those from super-components) and the results of
more detailed levels of analysis (those from sub-components). The integrated behavior-deteCtion function can be
implemented by a weighted average function such as:

Wt*Object if+ W2'1'Super if+ W3*Sub if
Wt + W2 + W3

Where Object_if is the value calculated by the object's isolated behavior-detection function, Super_if is the
average isolated behavior-detection function value for all the super-components, Sub_if is the average isolated
behavior-detection function value for all the sub-components, and Wt, W2, and W3 are the weights.

The relationship between an object's attributes, isolated behavior-detection functions, and integrated
behavior-detection functions can be seen in figure 5. In this example, we are interested in analyzing the object
Bt for a particular behavior. The object Bt is composed of objects Ct and C2, and it is part of the object At.
Reswt B 1 v is the analysis of object B 1 in isolation, and reswt B 1 v' is the result after combining the result of
B 1 v with the results from objects Ct. C2, and A 1·

369

al -----~"'~-~

a2 ---flot==l---..
a3 -----~"'~-~

a4 -----~~~

bl--illro[

b2 --PV ~Jr---~~~~·objectB 1 isolated behavior detection b3--l>l"
function for objects of type Ab4 --v
isolated behavior detection cl
function for objects of type B

c3--...
integrated behavior detection

c2

c4 ---iioof\.

function for objects of type B
cl--'1..
C2-_."" isolated behavior detection objectC2 C3--'1.. function for objects of type C
c4 ---iioof\.

FigureS

5. Results and Future Research

By using the system language definition for the networked environment described in [7], one
programmer was able to code both the object detector and object analyzer modules in less than two weeks.
Since the coding of these modules is a straight forward implementation of the system language defmition, we
hope to provide automatic development tools in the future which will automatically generate object detector and
object analyzer modules from a system language defmition.

We have concentrated our analysis efforts on an isolated behavior-detection function for connections.
This function combines a simple anomaly detector, an attack model, and an expert system to arrive at a single
suspicion value. The higher the suspicion value is, the more likely our monitor believes the connection is
associated with intrusive activity.

We monitored the Electrical Engineering and Computer Science LAN at UCD for a period of
approximately three months. During this time over 400,000 connections were detected and analyzed, and among
these connections, over 400 were identified as being associated with intrusive behavior.

Our future work includes continual improvement of the isolated behavior-detection function for
connections as well as other objects in the model (i.e. service-sets, hosts, and streams). We would like to take
advantage of semantic knowledge about known system vulnerabilities, and we would also like to develop
profiles of intrusive activity as well as normal activity.

As mentioned previously, we are also moving towards automatic code generation for the object detector
and object analyzer components of the monitor. We are currently developing a system language definition for a
stand alone host based monitor too, and if we can develop automatic code generators for object detector and
analyzer modules, then porting the monitor to a different operating system should be greatly simplified.

Finally, we are incorporating our network monitor into a distributed intrusion detection system called
DIDS [15]. DIDS combines both host based as well as network based monitors to take advantage of the
benefits of both systems.

370

References

1. 	 G.V. Bochmann, "Semantic Evaluation from Left to Right," Communications of the ACM, vol. 19,
no. 2, pp. 55-62, Feb. 1976.

2. 	 D.E. Denning, "An Intrusion Detection Model," IEEE Trans. on Software Engineering, vol. SE-13,
no. 2, pp. 222-232, Feb. 1987.

3. 	 P.J Denning, ed. Computers Under Attack: Intruders. Worms. and viruses. New York: ACM Press,
1990.

4. 	 Department of Defense Trusted Computer System Evaluation Criteria, Dept. of Defense, National
Computer Security Center, DOD 5200.28-STD, Dec. 1985. ·

5. 	 G.V. Dias, K.N. Levitt, B. Mukherjee., "Modeling Attacks on Computer Systems: Evaluating
Vulnerabilities and Forming a Basis for Attack Detection," Technical Report CSE-90-41, University of
California, Davis.

6. 	 C. Dowell and P. Ramstedt, "The COMPUTERWATCH Data Reduction Tool," Proc. 13th National
Computer Security Conference, pp. 99-108, Washington, D.C., Oct 1990.

7. 	 L.T. Heberlein, "Towards Detecting Intrusions in a networked Environment," Technical Report CSE
91-23, University of California, Davis.

8. 	 L.T. Heberlein, B. Mukherjee, K.N. Levitt, D. Mansur., "Towards Detecting Intrusions in a Networked
Environment," Proc. 14th Department ofEnergy Computer Security Group Conference, May 1991.

9. 	 L.T. Heberlein, G.V. Dias, K.N. Levitt, B. Mukherjee, J. Wood., "Network Attacks and an Ethemet
based Network Security Monitor," Proc. 13th Department of Energy Computer Security Group
Conference, pp. 14.1-14.13, May 1990.

10. 	 L.T. Heberlein, G.V. Dias, K. N. Levitt, B. Mukherjee, J. Wood, D. Wolber., "A Network Security
Monitor," Proc.1990 Symposium on Research in Security and Privacy, pp. 296-304, May 1990.

11. 	 B.W. Kemigan, D.M. Ritchie., The C Programming Language, 2nd ed. Englewood Cliffs, New Jersey:
Prentice Hall, 1988.

12. 	 D.E. Knuth, "Semantics of Context-Free Languages," Math Systems Th. 2 (1968), 127-145.
Correction appears in Math Systems Th.5 (1971),95.

13. 	 T.F. Lunt, et al., "A Real Time Intrusion Detection Expert System (IDES)," Interim Progress Report,
Project 6784, SRI International, May 1990.

14. 	 S.E. Smaha, "Haystack: An Intrusion Detection System," Proc. IEEE Fourth Aerospace Computer
Security Applications Conference, Orlando, FL, Dec. 1988.

15. 	 S.R. Snapp, J. Brentano, G.V. Dias, TL. Goan, L.T. Heberlein, C. Ho, K.N. Levitt, B. Mukherjee,
S.E. Smaha, I. Grance, D.M. Teal, D.L. Mansur., "DIDS (Distributed Intrusion Detection System)
Motivation, Architecture, and an Early Prototype," to be published in Proc. 14th National Computer
Security Conference, Oct. 1991.

16. 	 W.T. Tener, "Discovery: an expert system in the commercial data security environment," Security and
Protection in Informations Systems: Proc. Fourth /FlO TCJJ International Conference on Computer
Security, North-Holland, May 1988.

17. 	 H.S. Vaccaro and G.B. Liepins, "Detection of Anomalous Computer Session Activity," Proc, 1990
Symposium on Research in Security and Privacy, pp. 280-289, Oakland, CA, May 1989.

18. 	 J.R. Winkler, "A Unix Prototype for Intrusion and Anomaly detection in Secure Networks," Proc. 13th
National Computer Security Conference, pp. 115-124, Washington, D.C., Oct. 1990.

371

http:14.1-14.13

MODEL-BASED INTRUSION DETECTION

Thomas D. Garvey* Teresa F. Lunt
Artificial Intelligence Center Computer Science Laboratory

SRI International SRI International
333 Ravenswood A venue 333 Ravenswood A venue

Menlo Park, California 94025 Menlo Park, California 94025

Abstract

This paper introduces model-based reasoning and discusses how model-based reasoning capa
bilities can be applied to intrusion detection. We discuss the benefits of the approach and have
shown its advantages over those currently in use. The use of model-based reasoning technology
allows intrusion models to be specified much more easily and naturally than is the case using
other technologies. Most importantly, the use of model-based reasoning technology will allow
IDES to be a much better detector of intrusions.

1 Introduction

Timely detection of unauthorized intruders into computers and computer networks is a problem
of increasing concern. Intruders might be characterized as "joy riders" with no malicious intent, as
thieves aiming to appropriate resources of the computer system or those controlled by the system,
or as terrorists aiming to destroy or incapacitate the system. Intruders often use specific, known
procedures to breach a system's security. Examples include programmed password attacks, access
to privileged files, or exploitation of known system vulnerabilities.

IDES is an intrusion detection system built on the concept of detecting anomalous behavior of
users with respect to observed behavioral norms. This approach may be likened to an unsupervised
learning scheme for behavioral patterns with a subsequent pattern recognition approach to deter
mining whether observed behavior falls inside or outside the pattern. In effect, a model of a user's
behavior is generated based on observations, but it is difficult to relate the model to specific (and
specifically proscribed) activities. Thus, validation of the behavior of IDES' statistical algorithms
may prove to be difficult.

IDES also includes an expert system component that attempts to encode known system vul
nerabilities and attack scenarios in its rule base. IDES raises an alarm if observed activity matches
any of its encoded rules. However, expert system technology provides no support for developing
models of intrusive behavior and encourages the de~lopment of ad hoc rules.

Here, we discuss how we are extending the IDES paradigm to include specific models of pro
scribed activities. These models would imply certain activities with certain observables which could
then be monitored. This would allow us to actively search for intruders by looking for activities
which would be consistent with a hypothesized intrusion scenario. A determination of the likelihood

*copyright 1991 Thomas D. Garvey and Teresa F. Lunt

372

of a hypothesized intrusion would be made based on the combination of evidence for and against
it. The security properties of such an explicit model should be easier to validate.

The primary objectives of this work are to enhance the IDES intrusion-detection system to
include top-down, model based intrusion detection as one of its capabilities. We expect that in
trusion scenarios will vary for different types of intruders and for different systems. Here, we are
specifically interested in representing models for intrusion into systems such as commercial banking
and financial systems, military computer networks, and systems for controlling communication and
power distribution networks.

1.1 Background

Existing security mechanisms protect computers and networks from unauthorized use through ac
cess controls, such as passwords. However, if these access controls are compromised or can be
bypassed, an abuser may gain unauthorized access and thus can cause great damage and disrup
tion to system operation. Most computer systems have security susceptibilities that leave them
vulnerable to attack and abuse. It is plain from numerous newspaper accounts of break-ins and
computerized thefts that access control mechanisms cannot be relied upon in most cases to safe
guard against a penetration or insider attack. Even the most secure systems are vulnerable to
abuse by insiders who misuse their privileges. Audit trails can establish accountability of users for
their actions, and have been viewed as the final defense, not only because of their deterrent value,
but because in theory they can be perused for suspicious events and then to provide evidence to
establish the guilt or innocence of suspected individuals. Moreover, audit trails may be the only
means of detecting authorized but abusive user activity.

One of the key problems detecting intrusions is that huge amounts of data are collected and
must be sorted through. This data is not necessarily relevant to detecting intrusions, and may
omit many items that would be of interest for intrusion detection. Furthermore, single events in
the audit trail may not themselves be indicators of an attempted or successful intrusion, but their
interrelationships with other events may be important indicators. Also, such audit trails may omit
information that is relevant to detecting intrusions. These factors make it difficult to analyze audit

· trails for possible security breaches using conventional techniques. What is needed is a basis for
understanding which data out of the huge volume of data available should be examined. This would
allow one to maximize the utility of the data collected while minimizing the extraneous information.

The earliest work on intrusion detection [1] categorized the threats that could be addressed
by audit trail analysis as external penetrators (who are not authorized the use of the computer);
internal penetrators (who are authorized use of the computer but are not authorized for the data,
program, or resource accessed), including masqueraders (who operate under another user's id and
password) and clandestine users (who evade auditing and access controls); and misfeasors (au
thorized users of the computer and resources accessed who misuse their privileges). This study
suggested that external penetrators can be detected by auditing failed login attempts; that some
would-be internal penetrators can be detected by observing failed access attempts to files, pro
grams, and other resources; and that masqueraders can be detected by observing departures from
established patterns of use for individual users. Nothing was offered for detecting clandestine users
and the legitimate user who abuses his or her privileges. In the decade since that first study was
published, several research groups have built prototype intrusion-detection systems using these
recommendations, but little or no further guidance has emerged on how to recognize intrusive
behavior, beyond these simple guidelines.

Subsequent early work focused on developing procedures and algorithms for automating the
offline security analysis of audit trails. One such project used existing audit trails and studied

373

possible approaches for building automated tools for their security analysis (2]. Another such
project considered building special security audit trails and studied possible approaches for their
automated analysis [3]. These projects provided the first experimental evidence that users could
be distinguished from one another based on their patterns of usage of the computer system [2],
and that user behavior characteristics could be found that were capable of discriminating between
normal user behavior and a variety of simulated intrusions [3].

Based on this early evidence, work was begun on a real-time intrusion-detection system, that
is, a system that would continuously monitor user behavior and be capable of detecting suspicious
behavior as it occurs. This system, called IDES (Intrusion-Detection Expert System), takes the
approach that intrusions, whether successful or attempted, could be detected by flagging departures
from historically established norms of behavior for individual users (4, 5, 6].

SRI's real-time intrusion-detection expert system (IDES) is an independent system processes
audit data characterizing user activity received from a target system. Its goal is to provide a
system-independent mechanism for real-time detection of security violations. IDES is independent
of any particular target system, application environment, system vulnerability, or type of intrusion,
thereby providing a framework for a general-purpose intrusion-detection system using real-time
analysis of audit data.

IDES currently has two detection components. Its statistical component keeps statistical profiles
of past user behavior, and compares current behavior with historical behavior to determine whether
the current behavior is anomalous. IDES' expert system component contains rules that characterize
types of intrusions, system vulnerabilities, and security policies, and raises an alarm if observed
activity matches any of its encoded rules.

The IDES prototype is currently running at SRI and monitoring an internal Sun network there.
A version of IDES is also installed and working with live data at the

There are obvious difficulties with attempting to detect intrusions solely on the basis of depar
tures from observed norms for individual users. Although some users may have well-established
patterns of behavior, logging on and off at dose to the same times every data and having a char
acteristic level and type of activity, others may have erratic work hours, may differ radically from
day to day in the amount and type of their activity, and may use the computer in several different
locations and even time zones (in the office, at home, and on travel). Thus, for the latter type
of user, almost anything is "normal," and a masquerader might easily go undetected. Thus, the
ability to discriminate between a user's normal behavior and suspicious behavior depends on how
widely that user's behavior fluctuates and on the range of "normal" behavior encompassed by that
user. And although this approach might be successful for penetrators and masqueraders, it may not
have the same success with legitimate users who abuse their privileges, especially if such abuse is
"normal" for those users. Moreover, the approach is vulnerable to defeat by an insider who knows
that his or her behavior is being compared with his or her previously established behavior pattern
and who slowly varies their behavior over time, until they have established a new behavior pattern
within which they can safely mount an attack.

Because the task of discriminating between normal and intrusive behavior is so difficult, another
study has taken the straightforward approach of automating the security officer's job. Such an
approach lends itself to traditional expert system technology, in which the special knowledge of the
"experts" in intrusion-detection, namely the system security officers, is codified as rules used to
analyze the audit data for suspicious activity. The obvious drawback to this approach is that the
security officers, in practice, have obtained only limited expertise because of the large amount of
audit data produced and the tedium and length of time required to perform their checks. Thus,
while automating these rules provides the useful function offreeing the security officer to perform
further analysis than they would otherwise have been capable of, such rules cannot be expected to

374

be comprehensive. This approach would be more aptly called a security officer's assistant.
Several intrusion-detection systems, including IDES, also include a rule-based system containing

rules designed to describe known system vulnerabilities and reported attack scenarios, as well as
intuition about suspicious behavior [7, 8], and some intrusion-detection systems rely exclusively
on such expert systems. The rules are fixed in that they do not depend on past user or system
behavior. An example of such a rule might be that more than three consecutive unsuccessful login
attempts for the same userid within :five minutes is a penetration attempt. Audit data from the
monitored system is matched against these rules to determine whether the behavior is suspicious.

2 Model-Based Reasoning for Intrusion Detection

We have recently embarked on a study to explore the application of model-based reasoning technol
ogy to intrusion-detection. The eventual result will be an additional intrusion-detection component
for IDES. This component will enable IDES to go beyond what any existing intrusion-detection
system is capable of.

The model-based reasoning approach extends the IDES paradigm to include specific models of
proscribed activities. These models imply certain activities with certain observables which could
then be monitored. This will allow IDES to actively search for intruders by looking for activities
which would be consistent with a hypothesized intrusion. A determination of the likelihood of
a hypothesized intrusion is made based on the combination of evidence for and against it. The
intrusion scenarios are expected to vary for different types of intruders and for different systems.

Figure 1 shows how model-based reasoning can be used for intrusion detection. The box labeled
"scenario models" represents a knowledge base containing specifications of various scenarios or
models of intrusion. These models are specified in terms of the sequences of user behavior that
constitute the scenario. For example, one scenario could represent a programmed password attack.
This scenario would contain the steps needed to carry out the attack, expressed in terms of the
specific user behavior involved (and not in terms of the audit data).

The box labeled "active models" includes those models for which the system has discovered some
evidence for their occurrence. The system is currently seeking additional evidence to confirm or
refute these models. As evidence is discovered that would support one of the other scenario models,
that model would be added to the active set. For example, the system may have hypothesized that
user A is carrying out a programmed password attack, because user A was observed to have scanned
the directory in which the password file resides.

The box labeled "anticipator" represents the part of the system that uses the active models to
hypothesize the next step in the scenario that is expected to occur. For example, the hypothesized
next step might be that user A will copy the password file. The "planner" then translates this
hypothesized behavior into the specific attributes and values of the audit data that would indicate
that behavior. In other words, the planner :figures out how the hypothesized behavior would show
up in the audit data. To do the translation, the planner uses a database of tables or matrices
that map aspects of user behavior to particular elements and values in the audit data, indicated
by the box labeled "behavior/data mapping." For example, the hypothesis that user A will copy
the password file might be translated into the following things to look for in the audit data: user
A uses the 'copy' command, user A opens the password file, and user A writes a new file.

This mapping of aspects of user behavior to how the behavior will show up in the audit data
must exhibit properties that differentiate the particular behavior of concern from everything else
that might be occurring. These distinguishing properties must have the following characteristics.

375

Scenario Anticipator Active
Models Models

Hypothesized
Behavior

Behavior/Data
PlannerMapping

Audit Data
Collection Plan

Audit Interpreter
Data

Updat~

Iterate

Figure 1: Model-Based Reasoning Approach

o 	 They must be easily recognized, so that they can be readily detected.

o They must be clearly associated with 	the behavior in question. These are called criterial
features, because they always occur in the behavior you are looking for.

o They must not be associated with other 'normal' behavior. 	 These are called distinguishing
features, because they generally do not occur in behavior that is considered normal.

Thus, in addition to the descriptions of how the intrusive behavior will show up in the audit data,
there also must be included descriptions of other, or normal, behavior. However, normal behavior
may be defined simply as anything other than the particular behavior the system is looking for. In
this case, the models of intrusion must be specified so as to include only aspects of behavior not
exhibited unless the intrusion scenario is being enacted.

The planner then uses this information, that is, the particular items in the audit trail that are
indicative of the behavior in question, to develop a plan for the specific audit data to examine next.

Next the "interpreter" compares the values in the plan to the actual values of the data observed,
in an attempt to confirm or refute the hypothesized scenario. The results are used to update the
active models, and then the process begins again with the anticipator. This process progresses
until enough evidence is obtained to put the likelihood for a particular intrusion scenario over some
predetermined threshold. At this point, the system announces that a potential intrusion has been
detected.

We plan to examine the feasibility of using SRI's Gister1 evidential reasoning system for the
fusion and interpretation of evidence for hypothesized intrusions. This process takes place in the

1 Gister is a trademark of SRI International [11].

376

interpreter described above. In Section 3, we describe how this fusion and interpretation of evidence
is done, and we include an example in Section 3.2 to help the reader understand the steps involved.
We will also develop a specification for a model-based intrusion detection capability, based on
Gister, for inclusion within IDES. Previous applications of Gister include intelligence processing,
military situation assessment, medical diagnosis, and acoustic and electronic signal processing.

2.1 Benefits of Model-Based Reasoning

The benefits of using model-based reasoning technology in intrusion detection applications are
manyfold, including the following.

• 	 Much more data can be processed, because the technology allows you to selectively narrow
the focus of the relevant data. Thus, at any given time, only a small part of the data collected
need be examined.

~ 	 More intuitive explanations of what is being detected can be generated, because the events
flagged can be related to the defined intrusion scenarios.

o 	The system can predict what the intruder's next action will be, based on the defined intrusion
models. Such predictions can be used to verify an intrusion hypothesis, to take preventive
action, or to determine which data to look for next.

In this section, we discuss these benefits.
A tremendous amount of audit data is generated in the monitored computer systems, and this

enormous amount of data collected contains relatively little real information. With the model-based
reasoning approach, the models of intrusion scenarios allow the intrusion-detection system to focus
its attention on the data likely to be of most utility at the moment. The models can be used to
examine only the data most relevant to detecting intrusions. In effect, we can narrow the field of
view to optimize data that has to be analyzed. This is analogous to pointing and tuning a
sensor to optimize performance.

If the stream of audit data contains a significant number of intrusions in comparison with the
total volume of audit data (i.e., there is a large signal-to-noise ratio),.then an approach in which all
the incoming data is examined and analyzed can be successful. However, if the number of intrusions
is very small in comparison with the total volume of audit data (a small signal-to-noise ratio), then
the amount of data to be examined can quickly overwhelm the intrusion-detection system. The
system will be drawing very many conclusions, most of which will be dead ends. In this case, a
more efficient approach would be to examine only the specific data in the audit data stream that
are relevant at the moment. Thus, we can, in effect, increase the signal-to-noise ratio in particular
areas by looking only in those areas. This top-down approach to data analysis will be more efficient
in the intrusion-detection domain, where the signal-to-noise ratio is extremely small.

With the top-down model-based reasoning approach, the models of intrusion can be used to
decide what specific data should be examined next. These models allow the system to predict
the action an intruder would take who is following a particular scenario. This in turn allows the
system to determine specifically which audit data to be concerned with. If the relevant data does
not occur in the audit trail, then the scenario under consideration is probably not occurring. If the
system does detect what it was looking for, then it predicts the next step and will then examine
only data specifically relevant to confirming the hypothesis of the posited intrusion, and so on until
a conclusion is reached. Thus, a model-based system reacts to the situation, using only that data
most appropriate to the given situation and context.

377

In contrast with this approach, in which a set of intrusion models allows you to look for only a
few things at any given point in time, an expert system's rules are always being used and evaluated
against all the incoming audit data.

As is the case with expert systems, the approach is limited, in that it looks for known intrusion
scenarios, whereas the greatest threat may be unknown vulnerabilities and the attacks that have
not yet been tried. IDES' statistical intrusion-detection component takes a more global approach.
Thus, the model-based and statistical approaches are each strong where the other is weak. The
combination of a statistical with a model-based approach would allow IDES to benefit from the
strengths of each.

A model-based component in IDES could also make use of the information generated by the
statistical component, because the statistical anomalies detected could be used as evidence by the
model-based component. Moreover, the model-based component could be used to adaptively add
or delete rules in the expert system rule base, as the situation requires.

2.2 Comparison with Expert Systems

Although an expert system can also be used to build models ofintrusions, the model-based reasoning
technology allows these models to be specified much more easily and directly. The technology allows
one to specify intrusion scenarios, and then the intrusion-detection system can generate th'~ specific
rules needed for identifying supporting evidence for these scenarios from the audit data.

With the model-based reasoning technology, the models of intrusion can be modified by a
security officer much more easily than can expert system rules. This is because with the model
based reasoning technology, the models can be constructed using a graphical menu-and-mouse
interface that dearly shows how the information is interrelated. The user does not have to deal
with the knowledge base in text form. Thus, maintaining the knowledge base does not require as
much care as when maintaining an expert system rule base. This is because the interrelationships
among the various model components can be displayed visually, so that it is evident to the user what
the effects of any given modification will be. In contrast, in expert systems, the interrelationships
among rules are not represented or even defined. Thus, it is difficult for the user to predict the
overall change in behavior of the system that will result from any particular rule modi;fication.

A model-based reasoning system is better at detecting intrusions than is an expert system.
The models can more accurately represent the undesirable behavior for which evidence is being
looked for in the audit data. This is because the models can be expressed naturally in terms of the
sequences of events that define the intrusion scenarios. By contrast, in an expert system, the rules
are generally specified in the language of the audit data. With a model-based reasoning system, it
is not necessary to identify the distinguishing features of the model, as you do with rules, because
these can be determined by the system itself.

Model-based reasoning supports a sound theory for reasoning under uncertainty. This tech
nology allows uncertainty in the rules - whether the behavior implies something illegitimate
and uncertainty in the significance of the data. Such a capability cannot easily be added to an
expert system. And although some rule-based expert systems allow the handling of approximate
information, they are based on an ad hoc theory, so that it is difficult to know what the results
mean.

In the next section, we give an overview of evidential reasoning, which is the theoretical foun
dation for the model-based reasoning technology we have been discussing.

378

3 Evidential Reasoning

A key problem in intrusion detection is the interpretation of audit data whose relationship to the
intrusive behavior you are looking for may be uncertain. A requirement, then, is to be able to
reason about the likelihood of an intrusion scenario, given evidence in the form of audit data. Ev
idential reasoning provides a methodology for this type of reasoning.

3.1 Overview of Evidential Reasoning

The goal of developing knowledge-based systems that can reason with information that is uncertain
or inexact in one way or another has long been a part of artificial intelligence research. Several
technologies have been proposed for representing knowledge and deriving consequences from imper
fect data: MYCIN's certainty factors (15], Prospector's inference nets [13], fuzzy sets [16), Bayesian
nets [12], and Dempster-Shafer belief functions [10] are prominent examples.

The theory of belief functions, as originally conceived by Dempster [9] and further developed by
Shafer [14], has received considerable attention as a basis for representing uncertainty within expert
systems. The theory is a generalization of classical probability theory and provides a representation
of degrees of precision as well as degrees of uncertainty. Its ability to express partial ignorance is
of great value in the design of knowledge-based systems for real-world domains.

Currently, one of the most highly developed knowledge-based systems that incorporates Shafer's
theory of belief functions for a wide range of application domains is Gister [11]. In this section we
give a brief review of the evidential reasoning technology employed by Gister.

The goal of evidential reasoning is to assess the effect of all available pieces of evidence upon
a hypothesis, by making use of domain-specific knowledge. The first step in applying evidential
reasoning to a given problem is to delimit a propositional space of possible situations. Within the
theory of belief functions, this propositional space is called the frame of discernment. A frame
of discernment delimits a set of possible situations, exactly one of which is true at any one time.
Once a frame of discernment has been established, propositional statements can be represented by
subsets of elements from the frame corresponding to those situations for which the statements are
true. Bodies of evidence are expressed as probabilistic opinions about the partial truth or falsity
of propositional statements relative to a frame. Belief assigned to a nonatomic subset explicitly
represents a lack of information sufficient to enable more precise distribution. This allows belief to
be attributed to statements whose granularity is appropriate to the available evidence.

The distribution of a unit of belief over a frame of discernment is called a mass distribution.
A mass distribution, me, is a mapping from subsets of a frame of discernment, 0, into the unit
interval:

me : 2e ~--+ [0, 1],

such that
me(¢)= 0 and I: me(X) = 1.

x~e

Any proposition that has been attributed nonzero mass is called a focal element. One of the
ramifications of this representation of belief is that the belief in a hypothesis X is constrained to
lie within an interval [Spt(X), Pls(X)], where

Spt(X) = L me(Y) and Pls(X) =1- Spt(X). (1)
Y~X

These bounds are commonly referred to as support and plausibility. A body of evidence (BOE) is
represented by a mass distribution together its frame of discernment. A BOE that directly

379

represents one of the available pieces of evidence is called primitive; all other BOEs are conclusions
or intermediate conclusions.

In evidential reasoning, domain-specific knowledge is defined in terms of compatibility relations
that relate one frame of discernment to another. A compatibility relation simply describes which
elements from the two frames can simultaneously be true. A compatibility relation, 0 A,B between
two frames 0 A and 0 B is a set of pairs such that

where every element of 0A and every element of 0B is included in at least one pair.
Evidential reasoning provides a number of formal operations for assessing evidence, including:

1. 	Fusion - to determine a consensus from several bodies of evidence obtained from indepen
dent sources. Fusion is accomplished through Dempster's rule of combination:

m~(Ah) = 1 ~ k 2:::: mMAi)m~(Aj), 	 (2)
A;nAj=Ah

k = L mMAi)m~(Aj)·
A,nAj=t/>

·Dempster's Rule is both commutative and associative (meaning evidence can be fused in any
order) and has the effect of focusing belief on those propositions that are held in common.

2. 	Translation - to determine the impact of a· body of evidence upon elements of a related
frame of discernment. The translation of a BOE from frame 0A to frame 0B using the
compatibility relation 0 A,B is defined by:

(3)2::::
CA,....B(Ak) = Bj

Ak ~ 0 A, Bj ~ 0 B

where CA,....B(Ak) = {bil(ai,bj) E 0A,B,ai E Ak}·

3. 	Projection - to determine the impact of a body of evidence at some future (or past) point
in time. The projection operation is defined exactly as translation, where the frames are taken
to be one time-unit apart.

4. 	Discounting - to adjust a body of evidence to account for the credibility of its source.
Discounting is defined as

aiacounted(A ·) _ { a·me(Aj), Ai =f 0 (4)me J - 1- a+ a·me(0), otherwise

where a is the assessed credibility of the original BOE (0 ~ a~ 1).

Several other evidential operations have been defined and are described elsewhere [11].
Independent opinions are expressed by multiple bodies of evidence. Dependent opinions can

be represented either as a single body of evidence, or as a network structure that shows the inter
relationships of several BOEs. The evidential reasoning approach focuses on a body of evidence,
which describes a meaningful collection of interrelated beliefs, as the primitive representation. In
contra.St, all other such technologies focus on individual propositions.

380

http:contra.St

3.2 The Analysis of Evidence

To illustrate the .reasoning methods described above, we use the following example.

A user logs in from a remote host after trying several bad passwords and usernames. The
user makes several errors in entering command names and arguments and tries to look at some
directories and files for which permission is denied. The user also several times uses commands
such as 'who' to find out about other system activity. After a few minutes, the user logs out.
Was this an intruder?

In evidential reasoning the first step is to construct the sets of possibilities (the frames of
discernment) of each unknown. For example, the user could either be an intruder or not:

{Yes, No}

Other frames could also be constructed; we would probably want one for user location

{Present, Remote}.

We distinguish two types of location for a user - present (i.e., physically at the keyboard) and
remote. Because the majority of intruders do not have direct physical access to the target machine,
a keyboard location is considered to indicate normal use and not an intruder. Most intrusions
originate from remote internet sites. However, because an intruder can jump from host to host,
intrusive behavior is also likely to appear from local hosts. Thus, activity originating from any
location other than the keyboard is considered equally indicative of intrusive behavior, so we use
only the single category 'remote' for this. For remote use, we cannot distinguish whether the user
is an intruder based on this dimension of behavior alone.

We expect that an intruder may be somewhat paranoid and we will also want to include a frame
to capture paranoia level

{Paranoid, Cool}.

A paranoid intruder (one who is afraid of being caught) will probably have very short sessions
(lasting under two minutes), because the longer the session the greater the risk of discovery. A
paranoid intruder will also comm.only check to see who is logged in and what they are doing. Thus,
for example, in Unix we can expect an inordinate number of 'who,', 'ps,' and 'finger' commands
to indicate a paranoid intruder. We can characterize user sessions as having a high degree of this
sort of activity two or more such commands are used. Thus, we consider short sessions and two or
more "surveillance" commands to be strong indicators of paranoia.

An intruder may also be unfamiliar with the system, so we will include a frame for familiarity

{Familiar, Unfamiliar}.

A person who is unfamiliar with the computer system is likely to have a relatively large number
of invalid commands, resulting from attempts to execute commands that are not recognized by
the system. Such a person is also likely to have a relatively large number of errors resulting from
invalid command usage, for example, from too few arguments or invalid parameters. A relatively
large number of file permission errors, resulting from attempting to read, write, or execute files or
directories when permission is denied, is also indicative of a person unfamiliar with the computer
system. Thus, we consider relatively large numbers of errors of these several types to be strong
indicators of unfamiliarity with the system. Conversely, low error rates for all of these categories
of error strongly suggest a normal, nonintrusive, user.

381

Authentication errors result from the use of an invalid username or password during login. We
consider a high rate of authentication errors (greater than three failed login attempts for a given
username in one minute) to be strongly suggestive of an intrusion attempt.

The second step in evidential reasoning is to construct the compatibility relations that define
the domain-specific relationships between the frames. A connection between two propositions A1

and B1 indicates that they may co-occur (in other words, (Ab Bt) E 0A,B)·
Figure 2 shows the frames and compatibility relations used in determining whether the user is

an intruder.

P&raRoio.•I•trudorl

Figure 2: Frames and compatibility relations. __

Once the frames and compatibility relations have been established, we can analyze the evidence.
The goal of the analysis is to establish a line of reasoning from the evidence to determine belief in a
hypothesis, in this case that the user is an intruder. Figure 3 shows the analysis within the Gister
framework.

The first step is to assess each piece of evidence relative to an appropriate frame of discernment.
Each piece of evidence is represented as a mass distribution, which distributes a unit of belief over
subsets of the frame. For example, the fact that the user logged in from a remote host is pertinent
to the Location frame, and we attribute 1.0 to Remote to indicate our complete certainty on this
point.

The fact that the user had a high number of authentication errors leads us to believe that the
user may be an intruder. Based on this, we assign a likelihood of 0.75 to the possibility that the
user is an intruder.

The high number of command usage and file permission errors gives information about Famili
arity. Based on the number and types of errors, we assign a belief of 0.7 to the possibility,
Unfamiliar; the remaining 0.3 is assigned to Familiar.

The last piece of evidence, that the user used several "surveillance" commands and had a short
session, give information about Paranoia and, might be assessed as giving 0. 75 support that the
user is paranoid and 0.25 that the user is Cool and that this is usual behavior for that user (perhaps
the user is a system administrator).

Evidence from these sources will provide the inputs to our analysis and are depicted in Figure 3.
Many of these determinations are judgments that may not be of equal validity. In order to be able
to weight them differently, we will provide a means for discounting the impact of the evidence
through the discounting operation. This will allow us to change their relative weights.

382

GRAPH
ANALYSIS

MQOJHkiHM

FIND
Cl\EATE

DESTROY
!lENA ME

FUSE
PROJECT

TRANSLATE
DISCOUNT

SUMMARIZE
CONVERT

INTERPRET
GIST

89.0
11.9

(89.499111 89,58785 89.943434)) (iNol (111.412143 11.5111199 19.956565)))
Par-anoial IF•I'I111ar-ityl !Author-ization Er-r-or-sl)

[88.9 99.11]
[19.11 12.9]

Ves
No

Figure 3: An intrusion analysis within Gister.

Our final step is to construct the actual analysis of the evidence as shown Figure 3 to
determine its impact upon the question at hand. In this case the question of whether our user
is an intruder can be answered by an assessment of belief over elements in the Intruder? frame.
Evidential operations are used to derive a body of evidence providing beliefs about whether the
user is an intruder.

In the analysis in Figure 3, all sources except the Location source are discounted. The
AuthorizationErrors source is already providing information about the likelihood of an intruder,
but the others must all be translated to the Intruder? frame. These independent BOEs are
now represented relative to a common frame and can be combined using the fusion operation (i.e.,
Dempster's Rule). Fusing the mass distributions yields a mass distribution relative to the Intruder?
frame, from which 'conclusions as to whether the user is an intruder can be drawn.

Specifically,
0.88, x ={Yes}

mrntruder? (X) = { 0.10, X ={No}

We use an interpretation node to assess the support and plausibility for the answers Yes and
No to the question of whether the user is an intruder. The associated evidential intervals for the
atomic propositions in this mass distribution (shown in the lower window pane of Figure 3) are:

[Spt({Yes}), Pls({Yes})] = [0.88, 0.90)
[Spt({No}), Pls({No})J = [0.10, 0.12]

The hypothesis {Yes} is clearly the most likely, and we conclude that the user is an intruder.

383

All the operations discussed above have been implemented within Gister. Frames and com
patibility relations are represented as graphs, which can be constructed, examined, and modified
interactively. Having an automated means to compute a conclusion is necessary.

The completed analysis graph can be seen to be the counterpart of the proof tree of logical
deduction. Each node represents an opinion, and the arcs trace the derivation of one opinion from
other opinions and the knowledge contained in the compatibility relations. The complete graph
shows the derivation of an ultimate conclusion from the primitive bodies of evidence.

The use of evidential reasoning provides a richer vocabulary for expressing belief about uncertain
events than is available in most other technologies.

4 Future Work

In future work, we plan to acquire various intrusion scenarios from law enforcement agencies and
elsewhere and to represent these scenarios as models within SRI's Gister system. Gister provides
capabilities for fusion and interpretation of evidence from audit trails and statistical profiles in
order to determine the likelihood that specific hypothesized intrusion scenarios are being enacted.
Finally, we plan to specify a model-based intrusion detection capability for inclusion within IDES.

We believe that the importance of this area will continue to increase as more and more key
systems become vulnerable to disruption or destruction by unauthorized intruders.

5 Summary and Conclusions

We have described model based reasoning and discussed how it can be applied to the intrusion
detection domain. We have discussed the benefits of the approach and have shown its advantages
over those currently in use, in particular expert systems. Finally, we identify our plan for incor
porating this technology into the IDES intrusion-detection system. Using model-based reasoning
technology will allow us to process much more audit data, because only the data most relevant to
the current context need be examined. The technology will allow for more intuitive explanations of
what is being detected can be generated, because the events flagged can be related to the defined
intrusion scenarios. The technology also allows intrusion models to be specified much more easily
and naturally than is the case using other technologies. Most importantly, the use of model-based
reasoning technology will allow IDES to be a much better detector of intrusions.

References

[1] 	 J. P. Anderson. Computer Security Threat Monitoring and Surveillance. Technical report, James P.
Anderson Company, Fort Washington, Pennsylvania, April 1980.

[2] 	 H. S. Javitz, A. Valdes, D. E. Denning, and P. G. Neumann. Analytical Techniques Development for
a Statistical Intrusion Detection System (SIDS) based on Accounting Records. Technical report, SRI
International, Menlo Park, California., July 1986. not available for distribution.

[3] 	 J. van Horne and .L. Halme. Analysis of Computer System Audit Trails - Final Report. Technical
Report TR-85007, Sytek, Mountain View, California., May 1986.

[4] 	 T. F. Lunt. IDES: An intelligent system for detecting intruders. In Proceedings of the ·symposium:
Computer Security, Threat and Countermeasures, Rome, Italy, November 1990.

[5] 	 T. F. Lunt, Ann Tama.ru, Fred Gilham, R. Ja.gannatha.n, Caveh Jalali, H. S. Ja.vitz, A. Valdes, and
P. G. Neumann. A Real-Time Intrusion-Detection Expert System. Technical report, Computer Science
Laboratory, SRI International, Menlo Park, California., 1990.

384

[6] 	 T. F. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, P. G. Neumann, and C. Jalali. IDES: A progress
report. In Proceedings of the Sixth Annual Computer Security Applications Conference, December 1990.

[7] 	 T. F. Lunt, R. Jaganna.tha.n, R. Lee, A. Whitehurst, a.nd S. Listgarten. Knowledge-based intrusion
detection. In Proceedings ofthe 1989 AI Systems in Government Conference, March 1989.

[8] 	 R. A. Whitehurst. Expert Systems in Intrusion-Detection: A Case Study. Computer Science Laboratory,
SRI International, Menlo Park, CA, November 1987.

[9] 	 Dempster, Arthur P., "A Generalization of Bayesian Inference," Journal of the Royal Statistical Society
30(Series B), 1968, pp. 205-247.

[10] 	 Lowrance, John D., and Garvey, Thomas D., "Evidential Reasoning: A Developing Concept," Proceed
ings of the IEEE International Conference on Cybernetics and Society, October 1982, pp. 6-9.

[11] 	 Lowrance, John D., Garvey, Thomas D., a.nd Stra.t, Thomas M., "A Framework for Evidential
Reasoning Systems," Proceedings AAAI-86, Philadelphia, Pennsylvania., August 1986.

[12] 	 Pearl, Judea., "Fusion, Propagation, and Structuring in Bayesian Networks," Tech. Report CSD-850022,
Cognitive Systems Laboratory, Computer Science Department, University of California, Los Angeles,
June 1985.

[13] 	 Reboh, Rene, "Knowledge Engineering Techniques and Tools in the Prospector Environment," Tech
nical Note 243, Artificial Intelligence Center, SRI International, Menlo Park, California., June 1981.

[14] 	 Shafer, Glenn A., A Mathematical Theory of Evidence, Princeton University Press, New Jersey, 1976.

[15] 	 Shortliffe, Edward H., Computer-Based Medical Consultations: MYCIN, American Elsevier, New York,
1976.

[16] 	 Zadeh, Lotfi A., "Fuzzy Sets as a Basis for a. Theory of Possibility," Fuzzy Sets and Systems, Vol. 1,
1978, pp. 3-28.

385

NOTIFICATION : A PRATICAL SECURITY

PROBLEM IN DISTRIBUTED SYSTEMS

Vijay Varadharajan

Hewlett-Packard Laboratories,

Filton Road, Stoke Gifford, Bristol BS12 6QZ, U.K.

Abstract

This paper considers a practical problem that arises when considering scenarios in
distributed computing environments. In a distributed object system, the dependency
between objects is a common phenomenon. This in turn implies that changes occurring
in an object's state will affect the behaviour of other objects. For correct operation
of the system these changes need to be properly notified to the other cooperating ob
jects. Such situations are very common in many office applications and we consider
one such typical case, namely the producer-consumer scenario and examine its security
implications. We consider a· solution to this problem, referred to- as the Notification
Problem. The solution is based on the increasingly publicized Kerberos authentication
system. Note that Kerberos forms part of the OSF's1 Distributed Computing Environ
ment (DCE). We then consider the trust implications of the proposed solution which
leads us to the more general problem of proxy or delegation in distributed systems. We
conclude the paper by proposing an extension of the Kerberos system to handle proxy
situations.

1 Open Software Foundation

386

1 Introduction

Several models of distributed systems are based on systems of objects, such as the ISO ODP
model ([2]) and the CCITT DAF model ([1]). Althou~h it is virtually impossible to get total
agreement as to what constitutes an object system t}ook at the various systems proposed
in [7]), the intrinsic concepts are very similar. We shall use the terms 'object system' and
'distributed system' intercha.nga.bly, to mean distributed object systems as in [8].

In distributed object systems we have a. number of objects that exist independently of one
another, but may use each others functionality to provide certain services. That is, although
many objects can exist as fully functional entities in isolation, many other objects need the
existance and functiona.llity of other objects.

Suppose that one object is dependent on another for data. so that it may perform some task,
and that the data. on which it relies is often changing. Thus the dependent object has to
know when there has been a. change, and access the other object to receive the updated
data.. The situation of dependency, notification of change, and access, is what we call the
Notification problem. Such situations commonly arise in office system applications.

It is the dependency between objects, and the need for some objects to access other objects
that is of interest from the security point of view. We need to establish how the dependency
is set up, and what conditions need to be satisfied for a. dependent object to access another
object. The security issues are of access control, and of course authentication (which is a.
basic premise for access control). So we want to check whether an object can access another
object, and that they are who they .claim to be.

In this paper, we will restrict the discussion to the Kerberos authentication (and access
control) system. Kerberos provides an a.uthenti,ea.tion mechanism, based on a. private key
scheme, which was originally developed in Project Athena. at MIT ~[4]). It is being proposed
as the underlying authentication mechanism in a. number of distributed systems architectures
and forms part of the OSF's Distributed Computing Environment (DCE). One of the nice
characteristics of the Kerberos scheme is that it is transparent to the user. Initial secure
communication is established using keys based on the users' passwords, but these initial
keys are stored only long enough to provide a. means of key distribution for session keys.
However, Kerberos is not entirely suited to delegation. We will consider the Kerberos scheme
in section 3.

The paper is organised as follows: section 2 describes in more detail the kinds of notification
scenarios that occur in distributed object systems. In section 3 we describe the particular
authentication and access control mechanism we are dealing with, namely Kerberos. This is
followed by a. section on how notification can be interpreted in Kerberos. This will involve
declaring our assumptions, proposing our solution, and considering the trust implications.
This in turn leads to the problem of delegation in distributed systems. We conclude the
paper by outlining an extension of the Kerberos system to cope with this delegation (proxy)
problem.

387

2 Notification Scenarios

In this section we ·will describe some scenarios where we have object dependencies in dis
tributed systems. These scenarios are just examples of a more general schemeof dependencies
where we have Producer and Consumer objects.

A typical situation which already exists in the PC office world is that of spreadsheets and
charts (as in Microsoft ExceP and Lotus 1-2-33

). The spreadsheet consists of tables of
information, where the contents of the table are called elements. Some elements in the table
stand in a direct relation to other elements, such as being the sum of values in a column. A
chart is a graphical representation of some section of the table, such as a bar chart. The chart
is constructed from the selected section of the table. A "hot link" is established between
the spreadsheet and the chart, so that if there is any alteration to the selected area of the
spreadsheet, then this results in a change in the chart.

In this case, the spreadsheet is a Producer object, in that it "produces" data that is used by
the chart. The chart is a Consumer object, in that it consumes the data of the Producer.
The Producer can be thought of as an active object, whilst the Consumer is more of a passive
object. Of course there could be many charts co-existing and using the same spreadsheet
data. This can be generalised to say that for each Producer there can be more than one
Consumer.

However, not every Consumer may want to know, or be allowed to know, of all the changes
that may occur in the Producer. Consumers may only be allowed access to restricted parts
of the Producer's data or output ports. The decision whether a Consumer is allowed .access
depends on the access control rules (the access control policy) of the distributed system.

Another example in distributed computing is that of electronic mail handlers. Each user in
the distributed system can be considered to have an electronic mailbox, or in..;tray. If mail
arrives for them in the distributed system, then they may want to he immediately informed
(in order to request their mail and maybe change the display of their mail icon). However,
if they are not currently logged on, then they may wish to defer collection of their mail until
the next time they logon. Here it is clear that the mailer is the Producer, and the mailbox
the Consumer.

In many cases the Producer should not have to know about the Consumers. This could be
handled by a Notification Server. The Notification Server is a register of all Consumers that
have an interest (want to be notified of changes) in the Producer. Every time there is a
change in the contents (data) of the Producer, the Producer informs the Notification Server
(including information on the change), and it in turn informs all parties that have registered
an interest. It is then up to the Consumers to directly request (interrogate) the Producer to
obtain the any remaining (e.g. updated) information.

When a Consumer registers an interest in a Producer, it does so via the Notification Server.
The Consumer must be authenticated (to establish that it is who it claims to be), and there
must be a check to see whether this Consumer has the necessary rights for it to be informed
of a change in the Producer, and also to request access to the Producer once it has been
notified of change.

2 Microsoft Excel is a trademark of Microsoft Corporation

3 Lotus 1-2-3 is a trademark of Lotus Corporation

388

3

Once the Consumer has established an interest in the Producer, it may not need to go
through the authentication process each time it wishes to access the Producer. However,
it will need some form of secret known to itself and the Producer for authentication and
to demonstrate that it has in fact been granted permission. This could take the form of a
capability, or maybe some shared secret key, with freshness.

Notice that the Notification Server is not a critical independent component of the system, as
it could be incorporated into the Producer. However, the function of the Notification Server
is fundamental in the system, as is establishes the register of "legal" Consumers (according
to the access control policy), which are all the entities that will be notified of changes to
the Producer. It should now be dear why the Notification problem is so dependent on the
authentication and access control mechanisms in use.

Kerberos

The Kerberos authentication scheme was developed by Project Athena at MIT. It is based
on the client/server model of distributed computing, where clients access the resources of
servers using remote procedure calls (RPC). One of the intentions of Kerberos is to make
the authenticat!on transpar~nt .to the users (Prin~ipals) of the system. So, ~ach user does
not have to decide whether 1t wishes to be authenticated or not by the use of 1ts secret keys.

The Kerberos system has two basic components: the authentication server (AS), and a
ticket granting server (TGS). The authentication server is used when a Client "logs in" (see
1 below). The AS communicates with the Client using a secret key known only to the AS
and the Client. This key is generated from the Client's password using a one-way function,
so that the Client does not have to provide any information other than its password (making
authentication transparent). The AS supplies a key to the Client which is to be used for
communication with the TGS, along with a Kerberos "ticket" for the TGS (see 2 below).

The Client requests from the TGS a ticket for a named Server, s. It also sends the tiCket
it received from the AS to the TGS, along with an authentication certificate (as in 3).
The authentication certificate contains some information about the Client that is encrypted
(signed) using the new key of the Client. The ticket contains the information on the Client,
and also the secret key that is shared with the Client. The information in the ticket is
encrypted (for both integrity and secrecy) using the secret key known only to the TGS and
the AS, so that only the TGS can obtain the key from the ticket, and so it may use the key
and the information about the Client to check the authentication certificate sent from the
Client.

Once the TGS has authenticated the Client, it may provide a session key and token to be
used by the Client for direct communication with the Server, encrypted using their shared
key (see 4). Access control may be enforced at the TGS, in determining which Clients it
may give tokens for the Server. Thus the TGS would effectively be generating capability
tokens, that are accepted (without question) by the Server. However, access control may
be enforced at the Server, using access control lists (ACLs). In this case the TGS is not
discriminatory as to who it grants tickets for, as the ticket in itself does not determine rights,
but can only be used for authentication.

So, the Client now has a ticket that it may present to the Server, and also a key (the session

389

key) which it uses to create an authentication certificate (so the Server can then authenticate
the Client). In the same way the Client established itself with the TGS, so it does so with
the Server, except that now uses the. ticket for the Server (and not the ticket for the TGS),
and also the session key for authenticating itself with the Server (and not the key from the
AS to authenticate itself with the TGS). The similarity between messages 3 and 5 can easily
be seen.

In the case where the Client requires authentication of the Server (mutual authentication),
the Server sends some return message to the Client, signed using the session key, demon
strating that it has received the key, and that this returned message is indeed "fresh" and
not a replay of an earlier response (as in 6).

1. Client ~ AS : c, tgs

2. AS ~ Client: <Kc,tgs, <Tc,tgs>Ktgs >Kc

3. Client ~ TGS : s, <Tc,tgs>Ktgs' <Ac>Ke,tgs

4. TGS ~ Client : <Kc,s' <Tc,s> K. > Ke,tgs

5. Client ~ Server : <Ac>Ke,•' <Tc,s>K,

6. Server~ Client : <currenttime+l>Ke,•

where:

Ac = <client-name, client-IP-addr, currenttime>

Tc,tgs = <client-name, tgs-name, current-time, lifetime, client-IP-aadr, Kc,tgs>

Tc,s = <client-name, server-name, current-time, lifetime, dient-IP-addr, Kc,s>

4 Notification and Kerberos

In this section we consider some of the properties of Kerberos, taken as given components
of the system. We look at how we may implement notification using the existing Kerberos
system, and the problems that it presents. We then propose a solution to those problems.
Finally we remark on the need for trusted entities in the system. Our aim is to use the existing
Kerberos protocols and message formats as far as possible. Papers have been published
recently (e.g. [6]) describing several weaknesses and limitations of Kerberos. In this paper,
it is not our intention to consider these issues.

4.1 Solution

Let us start by first considering some of the properties of Kerberos.

390

e 	For a Principal (Client) to use a Server, it must first authenticate itself with the
Kerberos Authentication Server. It then receives a token that it may take to a Ticket
Granting Server (TGS) to receive a ticket for a particular server.

e 	A Principal need only present its password when it logs in. Subsequent authentication
can be performed by presenting the token to the TGS. It may then receive a session
key for communication with the server, along with a token to authenticate itself with
the server.

~ 	Therefore, for a Principal to gain access to a specific service, it need only have a
valid token for that service (obtained from the TGS), and also the session key for
communicating with the server.

Corning to the problem of Principal/Consumer/Producer, we can consider two scenarios :

In the first scenario, we have the following :

e The Producer is in Kerberos terms a Server. It is registered with Kerberos, and can
be authenticated.

o The Consumer can be regarded as a Client. It is registered with Kerberos, and may
obtain a ticket-granting ticket from the Kerberos Authentication Server, and further
tickets for specific services from the TGS.

This is a direct mapping of Kerberos to the Producer-Consumer problem. Here, one could
have the TGS play the role of the notification server informing the Consumers of any changes
in the Producers' data. The Consumers need to be registered with_the Authentication Server
to begin with.

In the second scenario, we have

• The Producer is in Kerberos terms a Server. It is registered with Kerberos, and can
be authenticated.

• 	The Principal that created the Consumer can be regarded as a Client. This may be a
possibility when it is not feasible to register each of the Consumer as a Principal. In
this case, the Principal is registered with Kerberos, and may obtain a ticket-granting
ticket from the Kerberos Authentication Server, and further tickets for specific services
from the TGS.

Note that in the second scenario, as the Consumer is not regarded as a Kerberos Principal,
and therefore cannot in itself gain tickets for services, or be authenticated. If the Principal
were to give this token for a service and the session key for that service to the Consumer (an
object created by the Principal), then that Consumer may act on behalf of the Principal,
but strictly for use of the specified server. The Consumer will be acting on behalf of the

391

Principal as long as the token for the service is valid. It cannot act on behalf of the Principal
for any other services, or to communicate with the TGS or Authentication Server, as it has
neither of the required keys for such communication.

With this second scenario, we need the following changes to Kerberos:

• The ticket from the TGS given to 	the Principal for a specific service should have a
lifetime longer than the lifetime of the Principal (and set by the Principal). Currently
it has a time which is the minimum of the remaining lifetime of Principal's ticket
granting ticket, and the remaining lifetime of the server. This is so that the Consumer
may access the Producer after the Principal has logged off (but controlled by how long
the Principal wants it to last).

• Tickets may remain after the Principal logs off. In particular the Principal should be
able to define which tickets should exist. This does not affect the general security ofthe
Principal, as the Consumer knows nothing of the Principal's password or the session
key for the TGS.

e When a Consumer is requesting access to a Producer, the Producer can only recognize
the Principal involved and not the Consumer. The Consumer will be given access only
to the data that it is authorized for, which is dependent on the Principal on whose
behalf the Consumer is acting. This is important because a Consumer may acquire
authority to access Producers on behalf of several Principals.

4.2 Issues of Trust

Problems with the second solution above may occur if there is an ufltrusted medium between
the Principal and the Consumer. There will be a need to protect the channel between the
Principal and its Consumer. This problem could arise if the Consumer object "moves" to
another machine or domain. Neither the Consumer nor the Principal/Consumer communi
cation can be trusted.

The above problem suggests that there may be a need for a session key between the Principal
and the Consumer that it owns. This presents a problem unless the Consumer can somehow
register itself as a Principal. However, if the Consumer can register itself as a Principal, then
this leads to our first scenario. We can therefore consider a solution in which the Consumer
acts as any other Principal, in authenticating itself, communicating with the TGS, and
gaining tokens for servers.

An important issue in these solutions is the need for a proxy feature where one object is
authorised to act on behalf of another object. We consider this in the next section.

5 Proxy in Kerberos

We have considered the proxy or the delegation problem in distributed systems in detail in
[9]. Kerberos (Vers.4) is not entirely suitable for handling such. situations. We have just

392

received documention on Kerberos (Vers.5) ([5]) which has some support for proxy. In this
paper, we briefly outline an extension to Kerberos which can be used for managing proxy. In
fact, the schemes we describe here are diiferent from the one being considered in Kerberos
Version 5. As stated earlier, our intention here is to use as far as possible the existing
Kerberos framework and provide the extra delegation feature. Hence the delegations will
suffer from the general weaknesses of the Kerberos system described elsewhere (e.g. in [6]).

For our purposes we shall consider the delegation to be between Clients (Kerberos Principals)
for access to Servers. Thus we make the following observations:

1. 	We must assume the delegating client (originator) has been authenticated with the AS,
and has also gained a valid ticket and session key for the particular server from the
TGS (i.e. <Ta,s >K. and Ka,s).

2. 	 As Principals do not maintain their secret keys (based on their passwords), they can
only authenticate the:rriselves using their
shared keys with the TGS. Thus only authenticated objects can act as intermediaries.

3. 	The ticket and the session key for the server could be passed during proxy. If the
key is passed it cannot be used as an authenticator by the server to authenticate each
component in the chain of delegation (as it is shared by all objects in the path). Having
the key no longer guarantees uniqueness of the Client/Server pair. Furthermore, unless
the delegator and the delegate share a mutually secret key, then the session key must
be transferred in plain. This is obviously undesirable, making this session key virtually
worthless. An alternative would be to use the AS as a communications server, but this
would involve considerable overheads.

4. 	If the Principals have not yet requested tickets for services from the TGS, then the
TGS may not know their existence, and certainly not their-shared key. Thus the AS
must act as an authenticator for the server, given a chain of delegations, as it is the
only object that can decrypt each of the signed components in the chain.

5. 	The authenticating toke~ should contain information on the delegation of authority.
This should be sufficient to identifythe chain of authorisation and also to validate the
actual ticket for the server.

The above leads us to conclude that an extension to the Kerberos mechanism is needed for
managing proxy. We shall use a scheme based on the above secret key methods. We shall
assume that the AS acts as an authentication server for the end points, and that the secret
key of each object is the key generated by the AS for use between the Client and the TGS
(and therefore known by the AS for authenticated objects).

Firstly let us assume that the Client (delegator), A, has obtained an authorised ticket from
the TGS for a Server, S. This is obtained from the TGS in the standard manner, including
the session key. Client A may then choose to communicate directly, in the normal Kerberos
mariner, with S. However, A may choose instead to delegate this request to another Client,
B (where B must be registered with the AS).

We consider two delegation scenarios using Kerberos. First consider the following one, with
the syntax as before:

393

A delegates to B

1) A -+ B : < A, B, S, ta, durationa, DTa, Ta >

where

DTa = <A, B, S, ta, durationa>K..,c,. is the delegation token

Ta = <Ta,s>K. is the token proving A's right to the service.

B is given the details of its delegation.

B (as a delegate) then requests use of server S.

2).B-+ S : <DR, A, DTa, Ta >

where

DR is the delegate's service request, containing the information of T a in the Kerberos pro

tocol described above.

DR= <B, S, tb, durationb, <B,S,tb, durationb>K~o,t,.>

The time stamp tb subsequently allows B to verify the freshness of message (5). S reads

token T a and checks whether A has the delegated right. In the process, it also gets hold of

Ka,s·

3) S -+AS : < S, AS, <S, AS, t 8 , DR, A, DTa >K.

Here, S asks AS for authentication of the delegation token as having come from A, and the
delegate's service request as having come from B. The time stamp t8 subsequently allows S
to verify the freshness of AS's message (4).

AS authenticates the delegation chain by checking whether A has given the right to B and
B is in fact making the request. It also provides a session key Kb,s between delegate and
server. Furthermore AS can pass this session key to B viaS.

To complete the process, S sends the session key to B, extracted from (4). Its encryption
under Kb,tgs preserves its secrecy. Having obtained Kb,s, B is able to verify using tb that S
(and AS) have replied to a fresh message (3), so that the session key is indeed fresh.

Alternatively, instead of routing the key Kb,s to B viaS, one can make the AS reply directly
to B. However in this case it will not allow B to know whether Shas in fact received the key
Kb,s from AS.

Let us now consider an alternative delegation protocol for the Kerberos system. The differ
ence between this one and the one presented above is that in this case, we use the Ticket

394

Granting Server to perform the checking of the delegation chain instead of the Authentication
Server (see point 4 above).

1) The first step is exactly the same as the one given above, where A delegates to B.

B then follows the standard Kerberos procedure of requesting TGS for a ticket to the server,
except now it sends the message that it received from A to indicate that it is acting on behalf
of A.

TGS can now authenticate the delegation chain by checking whether A has the right to use
the server, ~hether A has delegated the rights to B, and whether B is making the request.
Then TGS can send the following to B ··

3) TGS--+ B: < S, Kb,s, to+ 1, MTb >K11 ,t9•

where ·

MT11 = <Tb,s, Ta,s, <A,B,S,ta,durationa>>K.

B can now pass the modified delegated token MTb to the server and authenticate itself using
the session key Kb,s· The final messages follow original Kerberos, using MTb.

A~; is a service request of the same form as Ac in the original Kerberos protocol above,
containing time stamp t 0• MTb allows the server to check for itself the delegation from A to
B, and A's rights to S.

B is able to verify the freshness of S's response using the time stamp.

Notice that in each of the above protocols the session key given to the original delegating
client A and the server S, namely Ka,s, is still maintained. A received this session key from
TGS, and the server received the key in the ticket Ta,s, generated by TGS. We may have
not used this key, yet it is still secret to this client/server pair.

A big advantage of retaining the session key in these protocols is that it could be used in the
revocation process, as follows. A may send a message directly to S, instructing S to deny
any delegate's request. The server does not have to use AS to authenticate this request, as
it may do so itself usi~g. Ka,s. It may then promptly take appropriate action, and will riot
have to rely on the performance and availability of AS.

395

6 Discussion

In this paper, we have considered a practical problem that arises in distributed object sys
tems. In such systems, the dependency between objects is a common phenomenon, which
implies that changes occurring in an object's state are required to be properly notified to
other objects to ensure correct operation. We considered a typical scenario, namely the
producer-consumer case, which occurs in many office applications. We considered its se
curity implications, solutions to which require suitable authentication and access control
mechanisms. We described a solution based on the increasingly publicized Kerberos au
thentication system. Trust implications of the proposed solution led to the more general
problem of proxy or delegation in distributed systems. We have considered the proxy prob
le~ in detail in [9]. We concluded this paper by proposing an extension of the Kerberos
system to handle proxy situations. The extension proposed provides an added advantage for
revocation, in providing a secure channel between the originator and the end point.

7 References
[1] 	 CCITT Distributed Applications Framework, CCITT SG VII/Q19- DAF.

[2] 	 ISO Open Distributed Processing, ISO/IEC JTC1/SC21/WG7.

[3] 	 ISO/IEC JTC1/SC21 N5045. Working Draft Access Control Framework. SC21/WG1
Security Ad Hoc Group, Seoul Meeting, July 16, 1990.

[4] 	 Steiner, Jennifer G., Neumann, Clifford, and Schiller, Jeffrey L, Kerberos: An Authen
tication Service for Open Network Systems, Vesrion 4, Project Athena, Massachusetts
Institute of Technology. Presented at USENIX 1988, Dallas, Texas.

[5] 	 Kohl John, Neumann Clifford, Steiner Jennifer., Kerberos Version 5, Draft RFC, Project
Athena, MIT, Dec.1990.

[6] 	 Bellovin Steven, Merrit Michael., Limitations of the Kerberos Authentication System,
Computer Communications Review, Vol.20 No.5, Oct.1990, pp119-132.

[7] 	 Meyer, B. Object-Oriented Software Construction, Prentice-Hall International, 1988.

[8] 	 V.Varadharajan, S.Black, Multilevel Security in a Distributed Object Oriented System.
Proceedings of the Annual Computer Security Applications Conference, 1990, Tucson,
Arizona.

[9] 	 V.Varadharajan, P.Allen and S.Black, An Analysis of the Proxy Problem in Distributed
Systems, To be Published in the Proceedings of the 1991 IEEE Symposium on Research
in Security and Privacy, 1991.

396

Output Perturbation Techniques for the Security of
Statistical Databases*

Kasinath C. Vemulapalli

Elizabeth A. Ungert

Department of Computing and Information Sciences

Kansas State University

Abstract

In the past a number of techniques have been proposed to avoid inferential security breaches
in statistical databases. The best methods qualitatively as well as quantitatively were based on
output perturbation. In this paper we present four output perturbation techniques as deterrents
to compromise in statistical databases. We analyze the techniques for the deterrent value against
compromise and the statistical consequences such as the amount of bias they introduce in the values
of the statistics released. In particular, we analyze the techniques for sum queries and also compare
the bias and deterrence of these techniques. The analysis is done for exact compromise. Compromise
accomplished by averaging, a common problem with output perturbation technique, is avoided by
releasing same answer for identical query sets.

1 Introduction

A database consists of a model of some part of the real world. Such a model is made up of
entities (elements of the part of the real world modeled), attributes (characteristics of the entities),
and relationships among different entities. Entities with identical attributes constitute a particular entity
type (e.g., Patient in a Hospital Database.) A database system that enables its users to retrieve only
aggregate statistics (e.g., sample mean and count) for a subset of the entities represented in the database
is called a Statistical Database System (SDB.) Some examples of SDBs are test data for manufacturing
processes and data released by the Census Bureau. These examples are special-purpose databases, since
providing aggregate statistics is their only purpose. In other situations, a single database may serve
multiple purposes. A hospital database, for instance, might be used by physicians to support their
medical work as well as the statistical researchers of the National Health Council. In this case, statistical
researchers are authorized to retrieve only aggregate statistics; the physicians, on the other hand can
retrieve microdata from the database.

The problem of providing security in both types of the databases described above has attracted much
attention in the recent years. This problem is greatly complicated by the possibility that a legitimate user
could ask many different "legal" queries and infer confidential information from them. The inference is
the deduction of confidential data from non-sensitive data objects. In addition, user might process either
"public" (age, sex, marital status, etc.) or confidential (salary, Grade Point Average, etc.) information
about certain individuals, and use this knowledge in framing queries to obtain information for other
attributes on those individuals.

•Copyright@ 1991 Elizabeth A. Unger

tPartially funded by CCRCA under Contract 9lE014

397

2 Statistical Database Model

We describe a statistical database in terms of an abstract model. Although the model does not
accurately describe either the logical or physical organization of most databases, its simplicity allows us
to focus on the disclosure problem and facilitate analysis.

The information state of a statistical database system has two components: the data stored in
the database and external knowledge. The database contains information about the attributes of N
individuals or entities (organizations, companies, persons, etc.,). There are M attributes, where each
attribute Aj(l ~ j ~ M) has I Aj I possible values. An example of an attribute is Sex, whose two
possible values are Male and Female. We let Zij denote the value of attribute j for individual i. When the
subscript j is not important to the discussion, we shall write simply x, to denote the value of an attribute
A for individual i.

It is convenient to view a statistical database as a. collection of N records, where each record contains
M fields, and Xij is stored in record i, field j. Note that this is equivalent to a relation (table) in a relational
database, where the records are M-tuples of the relation. If the information stored in the database is
scattered throughout several relations, then the natural join of these relations would be the database we
would be looking at as equivalent to SDB.

A disclosure may be either exact or approximate. Exact disclosure occurs when q is determined
exactly. In this paper we use compromise and exact compromise interchangeably. Approximate disclosure
occurs when q is not determined exactly. Dalenius describes three types of approximate disclosure [5].
First, a disclosure may reveal bounds 1 and U such that L ~ q ~ U. Second, a disclosure may be
negative in the· sense of revealing that q f y, for some value y. For example, a user may learn that
sum(Dept = EE *Sex= Female, GPA) i- 3.5. Third, a disclosure may be probabilistic in the sense of
disclosing information that is true only with some probability.

Complete compromise is said to occur when one deduces everything in the database. Partial dis
closure is said to occur if deductions regarding some individuals can be made but the entire database is
not deduced. Finally, if no positive or negative disclosure can occur in a database, then the database is
strongly secure. If only negative disclosure can occur in a database, then the database is weakly secure.

3 Previous work

Several techniques are proposed to deter inferential attacks on SDBs. These methods have been
classified under four approaches: conceptual, query restriction, data perturbation, and output perturba
tion[2]. Two models are based on conceptual approach: the conceptual model [4] and the lattice model [9].
Each of these models present a framework for better understanding and investigating the security prob
lem of SBDs. Neither presents a specific implementation procedure. Some query restriction techniques
are query set size control(6], query set overlap control(7], and partitioning[l2]. Most of these techniques
are ineffective against inferential attacks such as Trackers. Data perturbation introduce noise in the data
stored. The problem with this control is that it cannot be used in general purpose databases. Output
perturbation techniques introduces noise in the data released whereas the data stored is untouched. So
in general output perturbation techniques are effective for both static and dynamic databases. This is
because the snoopers in general do not have the ability to insert and delete records.

Output perturbation techniques can be classified into two categories: record based, and result
based. The record based output perturbation techniques introduce noise in each record values before
the statistic is calculated, whereas, result based output perturbation techniques add noise in the result
or in only one record randomly before the statistic is released. Random Sample Queries by Denning[7],

398

Varying-Output Perturbation by Beck[3] are record based techniques, whereas Round~g by Achugbue
and Chln[l], Dale:nius[5], and Duplication/Deletion by Ka.ushlk[lO] are result based techniques. We will
briefly describe the mechanisms proposed by Den:ning[7], Beck[3] and Ka.ushik(10].

The method introduced by Ka.ushik[10,14] is based on introduCing uncerta.i:nity in the released
statistk by perturbing one record in the query set. This perturbation is accomplished by duplicating,
deleting or returning the true value of one of the records in query set: The attractive feature of this
method is· that since only one record is perturbed and as the size of the query set increases the bias
introduced will diminish and yet the deterrent value is not reduced.

Formally, the scheme is as follows:

L If a. query, q(C), is answerable, then one of the following three options is chosen in order to report the
results to the user,

• 	The query response is calculated from the set of records obtained after duplicating a. record in the
query set.

e 	 The query response is calculated from the set of records formed by deleting a record from the query
set.

o 	The query response is the true query set.

2. The decision to choose one of the three options is random. However, it is necessary that the two
conditions below be satisfied:

• 	The same query option must be chosen for any query resulting in the same query set.

o 	 If two queries result in the same query set, and if the option chosen is to duplicate/delete a record,
the same record must be duplicated/ deleted from the two query sets regardless of the order of the
records in the query sets or the formulation of the queries.

These restrictions are necessary because compromise could occur if different options, (e.g., delete)
and different records are chosen as the query is repeatedly posed to the database, an accurate estimate
of the true response can be deduced by averaging.

Kaushik's work includes. the evaluation of the method's effectiveness against individual, general and
double trackers for exact disclosure. The bias introduced by the method is zero for statistics like mean
and relative frequency. The variance of mean is given by,

2)• 2 ((n+3) 1 u
2

Var(p) =up +-- -- +
(n + 1)2 (n- 1 n n

where u2 is the variance of the true values of the query set, n is the query set size, and p is the probability
of duplication or deletion (assuming equal probability). It is clear that variance of the mean is a function
of variance of the original query set and decreases with the increase in the size of the query set. For more
discussion on compromise and bias of this technique refer to Kaushik[lO].

4 Our Methods

Beck[3] describes that perturbation based on the statement of the query, the membership of the
response set, the variance of the individual values in the response set, and many other factors which can

39~

:be defeated by the well known averaging.· Our technique however is not based on any one of the above
factors. The possibility of averaging is averted by providing identical answers to identical query sets
regardless of the formulation the query[ll]. ·

Method-1: Every record Addition/Deletion

This method reports the results from a query set by perturbing each record in the query set. The
scheme is as follows:

1. For each query, q(C) (Sum(C, Y), mean of the attribute Y for the records in the query set is calculated
and multiplied by a constant fraction k determined by the database administrator. Let the product be
hfi. Each recc;>rd is perturbed by one of the options given below before reporting the results to the user:

o Add the product hfi to the value of the record.

• Subtract the product hfi from the value of the record.

• 	 Retain the true value of the record.

2. The decision to choose one of the three options is random. However, it is necessary that the following
conditions be satisfied:

• 	 For identical query sets the number of additions, subtractions and true values must be constant
regardless of the composition of the query.

• In addition, the additions should be over the same records (also subtractions and true values) for
the same query set.

The reason for the the above restriction is to disallow compromise by averaging.

Advantages of this method are that, it is suitable for all statistics, it does not introduce any bias in
the expected values, and the variance has attractive properties. The probability of exact compromise is
very low in this technique and increases with query set size. Exact compromise would be possible only if
the means y of the series of queries which are involved in compromise are equal. This method is simple
and has been analyzed statistically in sections 4.1 and 4.2.

Method-2: Every record Addition/Subtraction within a Range

This method is exactly same as the previous one except for the value of h. h takes a value in some
range between 0 and 1. Formally,

where,

0 :$ L :$ 1 and 0 :$ U :$ i

The values of L and U can be selected by the Database Administrator and h is randomly generated
in the range. This method results in higher bias but provides better security.

400

Method-3: Every record Rounding

In this method the effectiveness of a rounding technique at record level is investigated. Rounding
at record level eliminates the compromise as reported in Achugbue and Chin[l] for systematic rounding.
The scheme is as follows:

Each record is rounded up or down to the nearest multiple of some base b. Let ll =l(b + 1)/2J and
d = q mod b. Let z' be the perturbed value of record value :c. Then,

:c ifd=O
:c' = :c - d if d < V (round down)

{ :c + d if d ~ b' (round up)

Simulation results of this method have been very encouraging with zero compromise and bias intro
duced being marginally lesser than Method-1 and Method-2.

Method-4: Addition/Subtraction to single record

This method is similar to Kaushik's method, but instead of duplicating or deleting a record, we add
or subtract a product of the mean y i.e., hy from one of the record value which is selected at random
using some random distribution. Care is taken to return same response for identical queries. The method
is as follows:

1. If a query, q(C), is answerable, then one of the following three options is chosen in order to report the
results to the user,

• The query response is calculated from 	the set of records obtained after adding to a record in the
query set, the product hy.

• The query response is calculated from the set of records formed by subtracting from a record in the
query set, the product hfj.

• The query response is the true value.

2. The decision to choose one of the three options is random. However, it is necessary that the two
conditions below be satisfied:

• The same option must be chosen for any query with the same query set.

• 	If two queries result in the same query set, and if the option chosen is to add/subtract from a
record, the same record must be chosen from the two query sets regardless of the order in which
records are put together in the query sets.

The main disadvantage Kaushik's method had was that, if the database has extreme values and
if one of those values were selected for duplication/deletion the bias would be high. The modification
proposed in method-4 eliminates high bias problem by adding/subtracting some fraction of the mean of
the query set. The fraction can be decided by the DBA depending on the confidentiality of the data.

4.1 Bias for Total(sum) queries

Suppose that a query requests sum(C,Y) where Y represents an attribute. Let y; be the true value
for the ith record in the response set R, and let nbe the number of records in R. The mean value of the
response set is denoted by y.

As a response to the query, we return the value of

401

where

where X is the random variable and the distribution function f(x) is given by:

Pl when X = -1
f(:c) = P2 when X= 1

{
l - Pl - P2 when X = 0

where pl, p2 and (1-p1 - P2) are the probabilities of subtracting the fraction hy, adding it, and returning
the true value respectively of an attribute value.

The expected value ofT,

E(T) = E(E :ci)
= E(E(Yi + X hy))
= E E(yi + Xhy)
= EE(yi) + EE(Xhy)

ny + nhyE(X)

when Pl =P2, E(X) =0, hence,

E(T) = ny

So the bias introduced is zero if the probability of addition is equal to the probability of subtraction.

The variance of the total T,

Var(T) = V ar(E(Yi + X hy)
= Var(EY• +EXhy)
= Var(EXhy)

n2 h2 y2 Var(X)
n2 h2 y2 (E(X2)- (E(X))2)

when P1 =P2 = p, E(X) =0, and E(X2
) =2p, hence,

The variance calculated above has some attractive properties. It depends on the size of the query
set n as a square, thus, the standard deviation increases linearly with respect to n. Also more important,
the variance is dependent on the fraction h which can be decided by the database administrator. As the
value of h decreases, standard deviation decreases linearly.

402

4.2 Compromise

Let ql and q2 be two queries such that n1 =I q1(C1) I= n + 1 a.nd n2 =I q2(C2) I= n. Also let the
overlap of ~h and q2 be 'n'. Let X1 and X2 be the random variables used in the calculating the perturbed
results of q1 and q2. Let P(x) denote the probability of 'x' being true. Let P1 and P2 denote probability
of addition and subtraction respectively. The probability of compromise of (n + l)th record value Yn+l

is,

= P(l:?=1(Yi + h!llXt) = 2:?=1(Yi + kt/2X2))(1- P1 - P2)
+P(L?:1(Yi + h'Jl!Xl) = h'ff2 + l:?:1(Yi + h1hX2))p2
+P(L_:~=l(Yi + hy1X1) = -hy2 + l:?=t(Y• + hy2X2))Pt

When 111 = 'ff2, the probability distribution of li is given by,

l::~~jj)/2J pg'p~-j (1- Pl- P2)n- 2m+i (~) (: ~7) for j 2: 0

fy,(i) = l
'\:"""'Hn-j_)/2j pmpm+j (1 _ p _ po)n-2m-j (n) (n- n:) for j < 0
i...Jm=-J 2 1 1 • m m- J

Now,

P(Yt = Y2) = L
n

fy,(i)fy0 (i)
i=-n

n-1

P(Yt = 1 + Y2) = L fy2(i)fy,(i + 1)
i=-n

n-1

P(Yt = -1 + Y2) = L fy,(i)fy2(i + 1)
i:-n

When p1 = P2 = p, latter equations become equal, therefore,

n n-1

Pc = (1- 2p) L fYt(i)fY2(i) + 2p L fy,(i)Jy2 (i + 1)

i=-n i=-n

As the probability of compromise is higher for small query set sizes, our method would yield best
results when used with query set size control. Also, if the number of queries needed for compromise
increases (for example, general tra.ckers[6] need 4 queries for compromise as against 2 by individual tracker
and double tracker needs at least 4 queries) the probability of compromise decreases exponentially. This
is in addition to the exponential decrease of probability with the increase of query set size.

403

5 Simulation and Results

In this section a des~ription of the simulation and comparison of the four methods is presented. It
is encouraging to note that the simulation results agree with the analytical results of sections 4.1 and 4.2
for Method-1.

We again consider the two query compromise situation described in section 4.2, for simulation. Let
ql and <12 be two sum queries such that n1 =I q1(C1) I= n+ 1 a.:nd n2 =I q2(C2) I= n. Also let the overlap
of q1 and !l2 be n. Let Y be the attribute being compromised. Let Yi be the value of Y for 1-th record. Let
111 and Y2 be the mean of q1 a.:nd q2 respectively. Let Zi be the perturbed value of the record i released
after applying one of the methods discussed above.

Let 6 be defined as follows:

N

6 = ''f)Yi- zi)'1/N
i=l

where N is the size of the query. 5 gives the amount of bias introduced by the methods.

The simulated database contains random values as follows. It has 80% values in a narrow range,
and 10% very large and 10% very small values. This gives a true picture of confidential attributes such
as salary, GPA etc. In the following tables we present a comparison of bias introduced and deterrence
against exact compromise of the methods presented in section 4.

Method Query True_ofp Compromise Delta(bias) Sum %bias
Size (Qryl) (Qry1) (Qryl) (Qryl)

1 1-5 415 105 260 14402 1.823
2 10 15 168 14137 1.191
3 5 0 105 13008 0.805
4 325 78 93 16426 0.509
1 5-25 195 45 334 63891 0.514
2 2 2 358 52391 0.565
3 3 0 245 62337 0.408
4 324 76 93 65291 0.148
1 10-100 100 26 575 227496 0.248
2 2 1 708 223337 0.298
3 5 0 503 221063 0.226
4 325 84 93 225590 0.045

Table-1: Bias and Compromise for 1600 trials.

Some explanation is needed about the terms used in the table. For each query size per method 1600
trials are performed. The methods are tested with three different query sizes (Column-2.) Column-3
gives the number of instances (out of 1600) when perturbed value equals the true value. Column-4 gives
the number of instances of compromise in 1600 trials. Column-5 and 6 give the average bias from the
true value, and sum respectively from 1600 trials. Column-7 gives the bias as a percent of sum.

From the above table it is apparent that method-1 improves in terms of compromise as well as
bias (from size of the query increases. Method-2 has better deterrence properties but bias is somewhat
higher. The performance improves with size. Method-3 seems best it has zero compromise and less bias.
Method-4 has compromise almost constant but bias is considerably reduced as the query size increases.

Database Administrator (DBA) has control over the amount of bias introduced in the answers. In

404

Methods-1,2 and 4, value of the fraction h can be adjusted where as the value of base b can be changed
in Method-3. The following table illustrates the effect of change of the fraction h for Method-1.

Query
Size

h-value Compromise Delta
(Qry1)

Sum
(Qryl)

%bias

1-5 0.1
0.04
0.02
0.01

103
103
106
108

1315
526
263
131

14402
14402
14402
14402

9.132
3.650
1.823
1.213

5-25 0.1
0.04
0.02
0.01

32
37
50
50

1623
670
334
166

62826
63891
63891
63891

2.583
1.03

0.515
0.342

10-100 0.1
0.04
0.02
0.01

9
21
33
44

2786
1130
564
280

223177
227496
227496
227496

1.248
0.498
0.248
0.165

Table-2. Effect of h on Bias and compromise, Method-1

It can be observed that bias decreases as h value decrease. This allows the DBA to set the fraction
h of the database to the required value, to obtain the required degree of security. A note about the
compromise in the above table would be necessary. Integer arithmetic has been used in the calculation
of mean and the average, hence the the number of exactly compromised instances got slightly inflated.

6 Conclusions and Future work

Release of confidential information of an individual using inference control has been of interest of
many researchers for quite a long time. A number of methods were proposed which were either very
expensive or not very effective. In this paper we presented four effective output perturbation method to
deter compromisewhich are computationally inexpensive. Method-4 which involves perturbing the result
is very inexpensive. Statistical analysis is done for Method-1 and simulation studies are done for others
and a comparison is presented. It has been observed that these methods are increasingly effective as the
size of the query set increases.

Other methods can be statistically analyzed as an extension to this work. These methods can be
tested on real database which would give a better feel of their performance. An improvement of the
implementation is possible. Right now the averaging problem is averted by seeding the random number
generation on the size of the query set. This might not work if the order of the records is not maintained.
Ordering can be achieved by sorting the records, but sorting would be expensive. Literature suggests that
transforming the query into a canonical form before it is submitted to the database would be effective in
many cases[ll]. These issues are still open for research community to resolve.

References

[1] 	 Achugbue, J .0., and Chin, F .Y., "Effectiveness of output modification by rounding for protection of
statistical databases", INFOR Vol.l7, No.3, pp.209-218 (Aug 1979).

[2] 	 Adam, N. R., and Wortmann, J. C., "Security-Control Methods for Statistical Databases: A Com
parative Study", ACM Computing Surveys, Vol.2l, No.4, pp. 515-556 (Dec. 1989).

405

[3] Beck, L. L., 	"A Security Mechanism for Statistical Databases", ACM Transactions on Database
Systems, Vol. 5, No. 3, pp. 316-338 (Sep. 1980).

[4] 	 Chin, F. Y., andOzsoyoglu, G., "Statistical Database Design", ACM Transactions on Database
Systems, Vol. 6, No. 1, pp. 113-139 (Mar. 81).

[5] 	 Dalenius, T ., "A Simple Procedure for Controlled Rounding", Statistik Tidsskrift, Vol. 3, pp. 202-208,
1981.

(6] 	 Denning, D. E., Denning, P. J., and Schwartz, M. D., " The Tracker: A Threat to Statistical
Database Security", ACM Transactions on Database Systems, Vol. 4, No. 1, pp. 76-96 (Mar. 1979).

[7] 	 Denning, D. E., "Secure Statistical Databases with Random Sampling Queries", ACM transactions
on Database Systems, Vol. 5, No. 3, pp. 291-315 (Sep. 1980).

[8] 	 Denning, D. E., Cryptology and Data Security, AddisOn-Wesley Publishing Company, Inc., USA,
1982.

[9] 	 Denning, D.E., "A Security Model for Statistical Database Problem", Proceedings of the Second
International Workshop on Management, pp. 1-16, 1983.

[10] 	Kaushik, N., A New Deterrent to Compromise of Confidential Information from Statistical Databases,
M.S. Thesis, Kansas State University, 1988.

[11] 	 Maxwell, R., Output Perturbation Deterrent to Trackers, M.S. Report, Kansas State University,
1990.

[12] 	 McLeish, M., "Further Results on the Security of Partitioned Dynamic Statistical Databases", A CM
Transactions on Database Systems, Vol. 14, No. 1, pp. 98-113 (Mar. 1989).

[13] 	 Schlorer, J., "Disclosure from Statistical Databases: Quantitative aspects ofTrackers", A CM Trans
actions on Database Systems, Vol. 5, No. 4, pp. 467-492 (Dec. 1980).

[14] 	 Unger, E. A., McNulty, S. K., "Natural Change in Dynamic Database as a Deterrent to Compromise
by Tracker", Proceedings of Sixth. Annual Computer Security Applications Conference, pp. 116-124
(Dec 1990).

[15] Vemulapalli, K.C., 	and Unger, E.A., "Investigations of output perturbation techniques", Technical
Report, Dept. of Comp. and Info. Sciences, Kansas State University, 1991.

406

AN OVERVIEW OF INFORMIX-ONLINE/SECURE"'

Rammohan Varadarajan
Informix Software, Inc.
4100 Bohannon Drive
Menlo Park, CA 94025
ram.m@informix.com

This paper discusses the architecture of the Informix trusted DBMS product, INFORMIX
OnUne/Secure, a solution for open system environments based on the Trusted Database
Interpretation's [3] trusted subject architecture description. INFORMIX-OnUne/Secure
runs as a trusted application on secure UNIX TM platforms. It provides row level labeling,
supports a large label space, provides multimedia capability, and supports on-line trans
action processing . It has a small trusted computing base (TCB) that adheres to the '1east
privilege" doctrine.

INTRODUCTION
INFORMIX-Online/Secure is targeted to meet aU requirements for the Orange Book [1] Bl class. It has its
origins in the INFORMIX-OnUne product. In building INFORMIX-OnLine/Secure, we have gone beyond
traditional retrofit exercises as exemplified by many B1 UNIX systems. We have elected tore-architect the
system to provide high assurance. We have adhered to well-endorsed techniques of software reuse and lay
ering to .ensure that retrofitting security does not degrade the quality or functionality of an already proven
product.

The major goals for INFORMIX-OnLine/Secure are:

o 	 Multiple configurations. In addition to the primary Bl configuration, a C2 compliant configura
tion, and a Bl/EP "enhanced performance" configuration will be available.

e 	 High assurance. INFORMIX-OnUne/Secure's TCB is small, well structured, and adheres to the
principal of least privileged. Covert channel analysis and penetration tests are part of our devel
opment process.

• 	 Quality. The system is being developed following DOD-STD-2167 A [4] methodology, modified to
account for retrofit activity. DOD-STD-2168 [5] governs the project's quality control aspects.

• 	 Security Functionality. INFORMIX-OnUne/Secure supports as many labels as the operating sys
tem it runs on will support.

• 	 Performance and DBMS Functionality. The hallmarks of the INFORMIX-Online product- high
performance OLTP, multimedia capability, etc.,- are retained.

• 	 Portability. INFORMIX-Online/Secure executes on all secure UNIX platforms. The architecture
does not rely on features specific to any particular secure UNIX platform.

The major tenets influencing the architecture and design decisions are:

• 	 Do not re-invent technology.

• 	 Keep technology where it belongs.

As a result, there is no need to develop new login protocols, network security components, canonical label
formats, or modifying SE;Cure UNIX device drivers.

* ©Copyright 1991, Informix Software, Inc. Informix is a registered trademark of Informix Software, Inc.
Other names indicated by ® or TM are registered trademarks or trademarks of their respective manufac
turers.

407

mailto:ram.m@informix.com

OPERATIONAL ENVIRONMENT

INFORMIX-OnLine/Secure does not place any restrictions of its own on the operational environment. It
does, however, expect to be executing on a Bl secure UNIX operating system. In addition, the configuration
of the operating system must provide for the infrastructure for INFORMIX-OnUne/Secure to support var
ious user roles, data isolation, and an audit mechanism.

SUPPORT FOR IDENTIFICATION
INFORMIX-OnUne/Secure relies entirely on the secure UNIX TCB callsto identify and authenticate the
security attributes of a user session. There is no login to the DBMS.

SUPPORT FOR USER ROLES

INFORMIX-OnUne/Secure supports three user roles: Database System Administrator, Database System

Security Officer, and the regular DBMS user. Some user roles possess more privilege than others. Adequate

controls on proliferation of privileges are critical. INFORMIX-OnUne/Secure achieves this control by pro

cedural methods which require operational environment support.

INFORMIX -OnLine/Secure User

INFORMIX-OnUne/Secure expects the operational environment to provide a special UNIX group

("ix_users") to which all users of INFORMIX-OnUne/Secure must belong~

Database System Administrator

The Database System Administrator (DBSA) is charged with maintaining INFORMIX-OnLine/Secure. A

special category ("IX_DBSA") and group ("ix_dbsa") must be set aside for the exclusive use of the DBSA.

The DBSA must be permitted to log in only at the security level Data.High .. + IX_DBSA and aU levels that

this label dominates. There can be multiple DBSA login accounts on each system.

Database System Securitv Officer

The Database System Security Officer (DBSSO) is entrusted with maintaining the security of an INFORMIX

OnLine/Secure system through such tasks as re-labelling data, reassigning privileges and configuringaudit

granularity. A special category ("IX_DBSSO") and group ("ix_dbsso") must be set aside for the exclusive

use of the DBSSO. The DBSSO must be permitted to log in only at the security label DataHigh + IX_DBSSO.

There can be multiple DBSSO login accounts on each system.

ISOLATION OF DATA STORES

INFORMIX-OnUne/Secure has to isolate its data stores from operating system processes (other than the
DBMS TCB). A special category ("IX_DATA") and group ("ix_data") must be set aside for use in labeling
the device containing the data stores in INFORMIX-OnUne/Secure. A process must possess the IX_DATA
category and be a member of the ix_data group to access the DBMS data stores through the MAC and DAC
mechanisms of the secure operating system. No users should possess the category IX_DATA or be a mem
ber of ix_data.

SUPPORT FOR AUDIT
Audit records generated by INFORMIX-OnLine/Secure are stored in the secure UNIX audit trail. They are
marked and distinguishable from other audit records generated by the operating system.

SYSTEM ARCHITECTIJRE
Figure 1 is a schematic of the INFORMIX-OnLine/Secure architecture. It operates on a client/server para
digm. The main components that make up INFORMIX-OnUne/Secure are the User Front End, the Admin
istrator Front End (for exclusive use by the DBSA), the SQL Engine, the Kernel, and the Secure
Administrative Front End (used exclusively by the DBSSO). Each of the components executes as a separate

,. "DataHigh" refers to the highest security level at which data can be in the DBMS.

408

UNIX process or a collection of UNIX processes. Process isolation features of UNIX are used to maintain
separate address spaces for each component. Secure UNIX interprocess communication (IPC) primitives are
used for communication between the main components. As shown in Figure 1, devices under the control of
secure UNIX are used as data stores. A section of the memory is used as a disk cache.

Figure 1 INFORMIX-OnLine/Secure System Architecture

The architecture could be classified as a trusted subject with respect to the operating system. However, the

principle of least privilege is enforced by making large portions of the TCB a proper TCB subset by making

them single level processes.

Synchronous protocols are used between the processes for communication. The DBMS components are

examined in more detail in the following subsections.

FRONT ENDS

Three kinds of front ends can be used to interact with INFORMIX-OnLine/Secure.

User Front End

The User Front End (UFE) is the entity that interacts with the ordinary user.

The User Front End can be written using a wide repertoire of tools available: interactive SQL, embedded

SQL in languages like C, Ada, Fortran, or Cobol, 4GL programs, or 3GL programs with direct calls into the

TCB. If the user programs are themselves multilevel secure programs, then they have to be 3GL programs

written to the trusted application protocol. INFORMIX-OnLine/Secure allows for application programs to

be multilevel secure with respect to the DBMS while being single level with respect to the operating system.

This is achieved by having the multilevel secure applications run with the special category, IX_DATA.

Administrator Front End

The Administrator Front End (AFE) is a special kind of User Front End, tailored for use by the DBSA. It is

a full screen menu driven interlace which allows (and restricts) the DBSA to perform only DBMS mainte

nance related tasks. Access to the AFE is restricted by the category IX_DBSA and group ix_dbsa.

409

The AFE is an application built using the tools mentioned above. It is untrusted and single threaded. The
DBSA role involves system start-up, shut-down, tuning, monitoring, arehlve, restore and integrity checking
actions. The AFE initiates separate processes to do each of these tasks. These processes are part of the Ker
nel, discussed later.

Secure Administrator Front End
The Secure Administrator Front End (SAFE) is the front end used by the Database System Security Officer
(DBSSO) to do the following:

• Label maintenance

• DAC maintenance

• Audit maintenance

The SAFE is part of the TCB. Its interaction with the DBSSO is via a simple, dialogue-driven interface. It is

a multilevel secure application written in C. It allows and restricts the DBSSO to perform only operations

related to the DBSSO role.

Because this interface is for use only in times of pressing security need, it locks objects when the DBSSO is

changing them. If a user happens to have an object locked when the DBSSO is making a change to it, the

user's lock is broken, their process is forced to exit, and the transaction rolled back.

Sensitivitv I.abel Maintenance

The MAC policy cannot be circumvented by any user in the system; hence there must be some provisions

for correcting mislabeled information in the system. Using the menus provided by the SAFE, the DBSSO

can examine and modify a storage object's attributes and sensitivity label to any valid sensitivity label sup

ported by the operating system.

DAC Maintenance

The DBSSO is permitted to add and remove all discretionary access privileges from a user. Ownership

attributes of an object can also be changed using the menus provided for DAC maintenance.

Audit Maintenance

The SAFE provides an Audit Maintenance interface which has a set of menus used to assist in maintenance

of the audit masks. Audit masks are discussed in a later section.

To help the DBSSO maintain the audit masks, INFORMIX-OnUne/Secure provides a user audit mask

report option. This option generates a report as an operating system file that the DBSSO can print showing

all of the audit mask catalog.

SOL ENGINE

The SQL Engine translates SQL statements from users and conveys them to the Kernel. In addition to pars

ing SQL statements, it builds an execution plan, optimizes the execution plan, and executes this plan. Log

ically, the SQL Engine can be viewed as being made up of a parser, optimizer and plan-executor.

Parser

The parsing operation does not require any multilevel information.

Optimizer

INFORMIX-OnLine/Secure uses theOnLine optimizer. Such optimization typically requires information at

levels different from that of the session. For example, information about the total number of rows in a table

may be germane to estimate the cost of an operation in terms of I/0 and CPU-cycles.

Modifications to the optimizer and the Kernel have been made to ensure that satisfactory optimization can

be achieved with sanitized information.

410

Executor
No multilevel information is needed to interpret the optimized plan. The executor invokes data definition
and manipulation operations implemented in the TCB. The SQL Engine, therefore need not be trusted.

KERNEL
The Kernel is the entity within INFORMIX-OnLine/Secure that directly interacts with the device where the

data resides. The Kernel implements the access method for reaching data within the DBMS.

There are four types of processes within the Kernel:

e RSAM processes

• Daemon processes

• Support processes

• 'fransient processes

RSAM Process
The Relational Storage Access Method (RSAM) process is the workhorse of the Kernel. It is the entity within
the Kernel that supports all DBMS object abstractions and services requests from outside the TCB.

The RSAM process is not multi-threaded; there is one RSAM process instance for each user session. The
RSAM process has to ensure that the integrity of the database is preserved over concurrent execution of sev
eral RSAM processes. The disk and disk-cache are shared with other RSAM processes which could be ser
vicing front ends at different security levels.

The RSAM process acts as the reference monitor between the front ends and the data. It is therefore trusted
and part of the TCB. It identifies the front end (via the operating system) and performs MAC and DAC
checks as expected of the reference monitor. The RSAM process(es) also perform audit activities as per
guidelines in [1] and [8].

Support Processes
Support processes are specialized programs that perform infrequent non-periodic tasks. Examples of what
they do are:

• starting INFORMIX-OnLine/Secure

• archiving INFORMIX-OnLine/5ecure

• restoring INFORMIX-OnLine/Secure

The Support processes are small specialized programs. They are single threaded and execute in separate
address spaces as per the UNIX process paradigm. Because of this, the size and complexity of the TCB is
not adversely affected. There is no connection between user session instances and the number of active sup
port processes; the support processes are started up by the DBSA when a particular special functionality is
needed within the Kernel. Support process need to be trusted because they haveaccess to the systemduring
start-up and have access to the disk and archive tapes that have multilevel data.

Daemon Processes

The Daemon processes are specialized programs that conduct repetitive tasks in service of all RSAM pro

cess instances. For example, they:

• periodically write data from the disk cache to disk

• clean up after user processes that terminate abnormally

• signal state changes to RSAM instances

411

The Daemon processes are small, specialized programs. Each executes in a separate address space. Because
of this, the size and complexity of the TCB is not adversely impacted. The Daemon processes are single
threaded. There is no connection, however, between user session instances and the number of active dae
mon processes; the number of Daemon processes is configurable by the DBSA. The Daemon processesmust
be trusted because they have access to multilevel data on the disk and disk cache.

Transient Processes
The Transient processes are programs used to launch Support and Daemon processes from an untrusted
front end.

DISK AND DISK CACHE
The Kernel uses a "raw'' device as the disk store for the INFORMIX-OnLine/Secure data.· A raw device is
a device without the operating system's file system on the disk.

The raw device and disk cache are labelled at DataHigh +IX_ DATA. To the operating system, the disk and
the disk cache appear as single-level entities. To INFORMIX-OnLine/Secure, the disk and disk cache are
multilevel stores. The DBMS Kernel is the only DBMS entity that can directly access the disk and disk cache.
It is trusted to keep the separation of objects at different security levels.

All access to the disk by the Kernel uses the secure UNIX read, write and seek functions. As a consequence,
operating system device drivers that are used for disk access must be trusted and function to specification.

Bl/EP CONFIGURATION
The difference between the B1 and the B1/EP configurations is that the SQL Engine executes in the same
address space as the RSAM process of the Kernel in the B1 /EP configuration. This makes the SQL Engine
part of the TCB in a Bl /EP system.

SECURITY ISSUES
The TCB is the totality of protection mechanisms responsible for enforcing a unified security policy over the
system. The "system'' is made up of INFORMIX-OnLine/Secure and the underlying operating system. The
abstractions (objects) managed by the two components are different. The result is a separate TCB for each
component. The system TCB is the combination of the Secure UNIX TCB and the INFORMIX-OnLine/
SecureTCB.

The secure UNIX TCB is provided by the UNIX vendor. The INFORMIX-OnLine/Secure TCB is made up
of the entire INFORMIX-OnLine/Secure Kernel and the SAFE, as shown by the shading in Figure 1.

Although all the processes within the Kernel are part of the INFORMIX-OnLine/Secure TCB, there is a
security distinction between them. The RSAM process and the Transient processes run as multilevel pro
cesses (at all security levels) while the Daemon and Support processes run as single level, DataHigh +
IX_DATA, trusted processes. In operating systems that provide least privilege, RSAM can execute at that
level with the ability to write down to the session level IPC connection.

The reason the Daemon and Support Processes run as single level processes is enforcement of the "principle
of least privilege." The Daemon and Support processes only need the following actions to perform their
allocated functionality:

e access (read and write) to the cache and the raw device

• communicate with the RSAM process

Since the disk and cache are single level entities, DataHigh + IX_DATA, the Daemons and Support pro
cesses must be at least that level. No special security level is required for communicating to the RSAM pro
cess, because the RSAM process is multilevel secure (e.g., it runs at all levels). So, there is no need for the
Daemon and Support processes to run at any level other than DataHigh+ IX_ DATA. The reason to trust
them is obvious - the cache and the raw device contain multilevel data.

* A UNIX file may be used as a "cooked" data store.

412

The RSAM process needs to be multilevel secure because it has to access the raw device and cache (which
are at DataHigh + IX_DATA) and communicate with User Front End or SQL Engine processes at various
levels between Data Low and DataHigh.

The Transient processes need to be multilevel secure because they have to talk to User Front End processes
at various levels, and they spawn trusted children at specific levels. To accomplish this, they need to change
their level because secure UNIX does not allow processes to spawn children at levels that are different than
their own.

The SAFE runs as a single level DataHigh + DBSSO trusted process. Just as in the Kernel, the reason for the
SAFE being single level is the principle of "least privilege."

DESIGN OVERVIEW
It is dearly beyond the scope of this article to describe the design details of INFORMIX-OnUne/Secure.
However, some of the salient design features of the INFORMIX-OnUne/Secure TCB are highlighted in the
sections that follow.

Changes to INFORMIX-OnLine were warranted for the following reasons:

• 	 To reduce the size of the TCB

In INFORMIX-OnLine, the SQL Engine and RSAM executed in the same address space.

• 	 To dose covert channels

Most of the storage and retrieval mechanisms used in vanilla DBMSs provide the user of the sys
tem with information about the order and location of DBMS objects within the storage device.
OnLine is no exception.

• To provide an acceptable semantics to some existing functionality that is inherently insecure

As was mentioned in the introduction, it is our goal to use good software engineering principles in this ret
rofit exercise. INFORMIX-OnLine, the baseline for INFORMIX-OnLine/Secure, is a stable product with
plenty of field testing. When making changes to the product, we wanted to ensure that we did not introduce
errors which thereby negate the valuable field tested correctness that INFORMIX-OnLine/Secure would
inherit.

Therefore instead of intrusive changes to the design of OnLine, we decided to build on abstractions and
implementation that currently existed. In other words INFORMIX-OnLine/Secure introduces a new soft
ware layer, leaving the existing implementation essentially intact.

A NEW TABLE ABSTRACTION
We are implementing a new abstraction within the Kernel called a Bundle". A Bundle is the Kernel's internal
implementation of a multilevel table. In INFORMIX-OnLine, the abstraction used to implement a table is
called a tblspace. A Bundle hides the internal structures of tables in INFORMIX-OnLine/Secure in the same
way that tblspaces do in OnLine. For the SQL Engine or any process communicating with RSAM, the table
abstraction is indistinguishable from OnLine. This is depicted in Figure 2. This provides an elegant way to
hide data about location of single level objects, hence eliminating the covert channels mentioned above.
Additionally, it provides a simple yet acceptable semantics for operations like the "serial" data type; values
in serial columns are only serial within a level.

Tblspaces maintain exactly the same structure that they have in OnLine. However, they are no longer
directly accessible from outside the Kernel. Tblspaces are used as the building blocks in the implementation
of Bundles. A Bundle consists of a set of tblspaces, each at its own sensitivity level, sharing a common
schema. Additionally, an properties associated with tblspaces in OnLine (for example, locking, logging,
etc.), are shared by all the tblspaces that make up a Bundle.

When a user session accesses a table in INFORMIX-OnLine/Secure, the user can see only those tblspaces
within the Bundle that are dominated by the user's session sensitivity level.

*The concept and the term are due to Aryeh Tal-Nir.

413

OnLine 	 Outside RSAM Inside

OnLine/Secure

Top Secret

Secret

Unclassified

Figure2 Tables and Table Abstractions in OnLine and INFORMIX-QnLine/Secure

AUDIT
Trusted systems must be capable of recording security-relevant events in a security audit log. In a trusted
DBMS, this could imply auditing every event that takes place while the system is operational. Thus, each
INFORMIX-OnUne/Secure system is able to audit aU of its security relevant events and place the audit
information in a security audit log. Keeping with the philosophy of not inventing any functionality that is
already provided by the secure UNIX operating system, INFORMIX-OnLine/Secure audits events at the
TCB boundary and sends each audit record to the operating system audit interface.

To allow the system to operate within the constraints of machine size and on-line storage capacity,
INFORMIX-OnLine/Secure provides the ability to tailor which events will be audited while the system is
operational.

There are five types of audit masks that determine which events are audited:

• 	 default- The default audit mask is used if no user audit mask exists for a specific user. This implies
that in the absence of any direction from the DBSSO, the events in this mask will be audited. This
mask can not be removed, although it can be set to any combination of events, including removing
all events from it.

• 	 compulsory- The compulsory audit mask specifies events that are always audited, in addition to
any other directions from the default or user audit masks. Like the default mask, this mask can not
be removed, although it can be set to any combination of events, including removing aU events
from it.

• 	 user- User audit masks are for individual users of the system who require auditing that is different
from most users of the system. There can be as many user audit masks are there are users of the
system, identified by login user id.

• 	 DBSA - DBSA audit masks are for DBSAs. They are different from standard users of the system
and apply to all DBSAs. Like the default and compulsory masks, this mask can not be removed,
although it can be set to any combination of events, including removing aU events from it.

414

411

• 	 templates -The DBSSO may create special audit templates and store them in the audit repository.
Templates may be created for specific roles or types of users in the system and then used to apply
to individual users filling those roles.· .

The default, compulsory, and user audit masks all potrentially audit the same set of events, but the DBSA
audit mask covers the set of actions that are only permitted to be performed by the DBSA. The actions of
the DBSSO are always audited, so there is no DBSSO audit mask.

IMPLEMENTATION

In the architecture discussion, it was noted that only the RSAM process communicates with the entities out
side the TCB and implements the standard DBMS abstractions. The Support, Daemon and Transient pro
cesses are small programs designed to provide a specific functionality. Therefore, this implementation
discussion focuses only on the RSAM process.

Figure 3 shows a schematic of the software layering inside the RSAM process of the Kernel. The layering,
in addition to conforming with good software engineering principles, provides a convenient modularity to
build the C2 and the Bl/EP versions of the product.

• 	 SQLEngine

The SQL Engine is used as a representative application communicating with RSAM.

~ Interface Management Layer

This layer is the dispatcher. AU entry points into the TCB are managed by this layer. For example,
if a "read row" function is to be visible outside the TCB, there must be a dispatch entry for it within
this layer, However, calls to "read row" made from within RSAM do not come through this layer.
Instead, they go to the Audit Layer.

Audit Layer

The audit layer traps every RSAM function call that can give rise to an audit event. If the audit
masks indicate that the call should be audited, an audit record is generated.

• 	 DACLayer

All Discretionary Access checks are done only in this layer.

• 	 MACLayer

All Mandatory Access Checks are done only in this layer.

• 	 Bundle Layer

This layer is where the translation from Bundle to tblspace is made. At this layer, all calls to a table
made in the SQL Engine are translated into calls to the corresponding tblspace within the Bundle
using disk and memory structures that hold state information. Once a call traverses this layer, all
remaining processing is identical to what would take place within OnLine.

Not all requests processed by RSAM need to traverse this layer. For example, calls that are not
related to data definition or manipulation can by-pass this layer.

• 	 OnLine RSAM Layers

These are unchanged from those in OnLine.

415

I SQL Engine I
,........."j..fut~ri~~~·M~~~~~;~~~·····j.......,

l I Audit Layer

11~==;D~A~C~L~a=y=er====~

l
OnLine/Secure ~
RSAM !

~
~

i
:

!

Figure3 Interface Call Handling in INFORMIX-OnLine/Secure

CONCLUDING REMARKS
INFORMIX-OnLine has distinguished itself by high performance and advanced functionality. The architec
ture chosen for the INFORMIX-OnLine/Secure accounts for all requirements that arise out of the Orange
Book, TDI and RAMP plan. Our architecture yields a small TCB with least privilege, thereby facilitating a
speedy evaluation. The adoption of a well-thought-out development methodology and the extensive DoD
standard documentation adds credibility to our high assurance claims. There is no compromise in terms of
functionality; the secure product retains all the functionality of INFORMIX-OnLine. In terms of security, it
supports the label space that the underlining secure operating system supports, and we believe the archi
tecture can be migrated to B2 and B3 systems.

ACKNOWLEDGMENTS
Special thanks to Loren Anderson, Eugene Ding, Christina Fu, Leroy Lacy, Stephan Nguyen, Candace
Novbakhtian, Jenny Roberson, Haiyan Song, Jack Stephens, and Aryeh Tal-Nir, without whose contribu
tions this paper and INFORMIX-OnLine/Secure would not be successful.

REFERENCES
[1] 	 Department of Defense 'llusted Computer System Evaluation Criteria. DOD 5200.28-STD, National

Computer Security Center, December 1985.

[2] 	 Rating Maintenance Phase- Program Document, NCSC-TG-013, June 1989.

[3] 	 Trusted Database Management System Interpretation of Trusted Computer System Evaluation Crite
ria, NCSC-TG-021, National Computer Security Center, 1991.

[4] 	 DOD-STD-2167 A, "Military Standard, Defense System Software Development," February 1987.

[5] 	 DOD-STD-2168, "Defense System Software Quality Program," Department of Defense, 1988.

[6) 	 DOD-STD-480A, "Configuration Control- Engineering Changes, Deviations and Waivers," U.S. De
partment of Defense, 1978.

[7] 	 A Guide to Understanding Configuration Management in Trusted Systems, NCSC-TG-006, March
1988.

[8] 	 A Guide to Understanding Audit in Trusted Systems, NCSC-TG-001, June 1988.

416

Peeling the Viral Onion

Russell Davis

PRC,Inc.

Suite850

600 Maryland Avenue, SW

Washington, D.C. 20546

(202) 453-9021
rdavis@ames.arc.nasa.gov

Abstract

This paper boils down much of the existing virus research into a succinct set of inference rules. These
rules are then expanded to include the newer self encrypting stealth viruses along with the necessary conditions
for their detection. This foundation is then applied to derive additional properties of new viruses.

Forward

One problem with any virus control is in isolating the control from the virus. To overcome the issues
associated with protecting the virus detector, the discussion will assume an isolated platform such as the
Security Pipeline Interface (SPI) [9].

An expert system includes facts and rules which when applied together can infer new facts.
Additionally, an expert system should be able to explain how a conclusion was achieved. This paper describes
12 general rules and includes predicate calculus representation. An expert system using the rules stated will
most likely require external programs to calculate functions such as encryption and checksums.

Previous Work

Computer systems are exposed to a variety of security threats. Of the threats many are known while
others will manifest themselves as time passes. To cope with the ever changing security environment there has
been promising work done in the area of real time expert systems which have demonstrated the ability to detect
computer system intrusions.

The National Computer Security Center (NCSC) has installed the "Multics Intrusion Detection and
Alerting System (MIDAS) on their D.OCKMASTER network [18]. Other promising work includes the
Intrusion Detection Expert System (IDES) prototype at SRI International [12]. In these examples, the expert
system is located on an isolated platform (a Sun Workstation for IDES and Symbolics for MIDAS). This paper
will examine possible extensions to intrusion detection systems which will identify computer viruses.

One area of interest is how to detect viruses and upon their detection, how to recover. Computer
viruses became publicized [2] as a security threat in 1984. Since Cohen's paper, much research has gone into
finding ways to combat viruses.

Platform Description

Detecting a virus infection, subsequent to starting with a known good product can be accomplished
through the use of a weak or strong cryptographic checksum such as those described in [17] and [4]. Checksum
identifiers, cryptographic or otherwise, run the risk of themselves being infected. The methods to assure
checksum generator integrity include implementing the algorithm in ROM or by partitioning the function from
the main system. For any rule based virus control to be effective, it must be insulated from the direct effects of
a virus. One architecture which isolates the virus control software from the potentially infected host
environment is SPI [9].

The SPI architecture is essentially a physical pipeline of processors configUred inline with the I/0
paths. The SPI pipeline processor affords an opportunity to isolate any detecting algorithm from the host or
DBMS in use. In a SPI configuration, the pipeline processor will have in-line connectivity to a backup store.

417

mailto:rdavis@ames.arc.nasa.gov

This store contains a copy of the distributed software for the purpose of comparison. No assumptions are made
with respect to the cleanness of the files originally placed on the backup store. The only restriction is that the
backup store is not directly assessable to the host environment. Adleman [1] implies that viruses are no threat
if new programs can't be introduced, old programs never change, and communications are not allowed. The
isolated SPI architecture satisfies each of these three conditions.

General Rules

This section develops general computer virus inference rules. The common security threat to
executables posed by viruses is loss of integriiyl. One introductory point made in [23] is that a virus carrier is
usually unrelated to the program it infects.

Rule 1: An executable will change following
a virus infection.

executable(file) A infection(file) => ~integrity(file)

An executable is some set of machine readable instructions such as a program file or some binding
mechanism. A virus alters a program by copying itself into programs or files [22]. The central focus of this
paper is to provide an analysis of file corruption caused by computer viruses. One point made by Spafford [19]
is that "viruses cannot spread by infecting pure data." Pure data in this context does not include source code nor
other data which influence a computer's control execution. That is, for a virus to propagate, it must influence
instructions executed by the CPU at some point In general, data files are not executable.

Rule 2: A changed file can be identified through the
use of a checksum function.

checksum(file) => integrity(file)
~checksum(file) => ~integrity(file)

There are many types of checksum functions. Some are based on Cyclic Redundancy Checks (CRC) or
cryptographic algorithms. One example of a cryptographic checksum is described by Pfleeger [16]. Pfleeger
points out that if the computed checksum matches the stored value then it is likely that the file has not been
changed. That is, changes to files result in changes to the computed checksum value. As indicated in [20], a 16
bit checksum such as the CRC-16, detects 99.998% of all18-bit and longer burst errors. It should be noted that
if a CRC algorithm is known it can be defeated. To overcome a known CRC attack, an isolated platform such
as SPI can be used to randomlY select the CRC algorithm used and thereby immunize itself from a CRC
attacker [7]. A certainty factor" based on the strength of the checksum function should be considered when
usingrwe2.

Rule 3: 	For a virus to function, it must influence
machine readable instructions on the host
computer.

executable(file) A infected(file) => virus(file,active)

1. In this paper, loss of integrity implies unauthorized modification (including destruction).
2. The certainty factor is a measure which approaches 1.0 as the evidence for a given hypothesis increases.

418

Rule 3 provides the key for detecting self encrypting viruses. A self encrypting virus is designed to
defeat the prefix and postfix checker controls such as those described in [24]. A virus incorporating this stealth
technique introduces a different pattern for each me infected. The common denominator is that the host
computer must be able to decrypt the virus as it executes the infected me. If this were not true then the
infection could not execute and thereby not propagate itself.

Rule 4: 	Given an original file and a corrupted version
of the original, there exists a function DIFF
that returns the changes made to the original
file which, when applied to the original file,
result in the corrupted file.

original(file) A altered(file) => diff(pattern)

The confidence that the proper diff pattern has been obtained increases when the !dentical pattern is
observed in several corrupted files.

Rule 5: 	Given an encrypted pattern containing an
encrypting virus the decrypted code can be
obtained by incrementally applying Rule 3.

diff(pattern) A applied_to(first_instruction, pattern) A executable(pattern)
=> algorithm(decryption)

The function "applied_ to" uses the first executable instructions obtained from the infection to operate
on the encrypted me. The initial infection instructions must provide the method for restoring the executable
virus instructions. In a typical stealth virus which encrypts itself, some pattern (key stream) is usually added,
using modulo 2 addition, to each byte of the virus code. By using a randomly generated pattern during the
initial infection, each virus infection pattern appears different A multi-encrypted me would also be recoverable
by recursively applying Rule 5. That is, n decryption passes are required in order to obtain the decryption
information necessary for the n + 1 th pass. In general, if there are m encryption passes used in the stealth
virus, then rule 5 would have to be incrementally applied m times.

Rule 6: 	 It is possible, through the use of a
disassembler, to disassemble an executable
file.

executable(file) A disassemble(file) => assembly(file)

In this discussion we use a goal-driven search for viruses. Moreover, the disassembled code has certain
exploitable characteristics. We know where to begin disassembly (the start ofthe diffflle). Additionally, a well
formed executable program should be parsable into a assembly listing. Today, many debug utilities include an
disassemble capability. This rule points out that if the corruption applied to a me is executable then it should be
possible to disassemble.

419

Rule 7: An encrypted file cannot be correctly
disassembled

encrypted(file) ~ ~achine_readable(file)
~achine_readable(file) A disassemble(file) ~ ~assembly(file)

Encrypted data is an unintelligible form called cipher [14]. If a file is encrypted then it is unintelligible
and hence cannot be correctly disassembled. That is, an encrypted file must be processed (decrypted) prior to,
or as part of, execution. It is possible that an encrypted file will disassemble into something syntactically
acceptable but semantically meaningless. This property aiso applies to data files. Indeed, the me might contain
data which would halt the processor.

D~IM lllmoolil lnlh'M!IM•..

I{:········Original P!'Oiram lntctotlon I
,~~~-- ,,

,,,'

I~P mR lmmedlm Unic;ll4ll ~:;;_k I Tht Ka PilCH

~~·~====~
-~ !EmluqM OR

FiWJre 1: A Self Ene!J!Pting Virus

Rule 8: An encrypted file can be disassembled
after applying Rule s.

encrypted(file) A applied_to(first_instruction, file) A disassemble(file) ~
assembly(file)

The function performed in Rule 5 decrypts the cipher thereby restoring the code to a machine readable
format. The resulting machine readable rode can then be disassembled by applying Rule 6.

420

Rule 9: A known and unencrypted virus can be
located if it resides in an executable.

~encrypted(pattern) A known_as(pattern, name) => virus(name)

A simple pattern matching function is sufficient to satisfy Rule 9. Many of the existing virus detecting
programs search files looking for patterns representing viruses. The function "known_ as" is a table look-up of
known viruses.

Figure 2: Double Encwted Virus

Rule 10: 	If a binary difference from DIFF
disassembles, the likelihood of a
random error is low.

assemble(file) => file(executable)

It is remotely possible to disassemble a random flle and get legitimate code, however there are
sufficient invalid states to make this unlikely. Rule 10 points out that in a random corruption of a file, the
probability of the corrupted difference being executable is low. Within a given CPU instruction set there are
many illegal states. A random corruption would most likely result in many non-valid instructions, any of which
would result in an error state.

421

Figure 1 and 2 illustrate a stealth encryption virus. In this simple example, the circle represents a
process performing the exclusive-OR function of a MASK byte to each byte of the infection. In a more
sophisticated encryption scheme, the MASK could be obtained from a key stream such that each byte-wise
XOR would be with a psuedo-randomly derived MASK. The random outputs would be exclusive OR'd to each
byte resulting in a stronger encryption scheme.

Software Development Rules

In a development environment changes are made to source code and then recompiled. Thus legitimate
changes to executable code should follow changes to source code. If the development tools and source code
remain unchanged while the executable changes, then the changed executable is probably not legitimate as
shown in Figure 3.

NeCJ.•"III""•thl~cw

I c (/....- ""·,

Figure 3: Development Versus Infection

Rule 11: 	If an executable program changes but the source
code does not then the changed executable is
probably not legitimate

configuration(unchanged) A integrity(source,file) A
~integrity(executable,file) => ~legitimate(executable,file)

Ifnothing changes, then compiling the same source code should result in identical executables.

422

Rule 12: Compiling revised source code produces
revised executable code.

~integrity(source,file) A compile(source,file) ~ ~integrity(executable,file)

An interesting point made by Page [15] is the possibility of source code viruses. Given the C compiler
Trojan horse example described by Thompson [21], it is not unreasonable to visualize a source code virus. To
see how a source code virus might work, consider the following. By infecting only source code, it would be
difficult for many of the current "executable" detectors to monitor systems. Optimizing compilers often
restructure code such that the executable files might not have a discemable signature. A source infector would

.-

Ybv Porm.u

.....
···=:::::::::::::···············..

----------lilt IQI!dd

Figure 4: Source Code Virus

require several pieces including source code readable by a translator (compiler). The actual infection could
insert two copies of itself into the source code. The first copy might be declared as a text array. The second
copy would be destined for in-line insertion thereby becoming executable after compilation. Further, a stealth
virus might encrypt the text array making executable pattern recognition more difficult as shown in Figure 4. A
source code virus might be detected by comparing infected source code files to reveal identical in-line
instructions representing the virus.

A typical source code infector might look like the virus format shown in Figure 4. In this example, the
virus contains executable code and a text buffer containing compiler readable source code. Everything is self
contained within the infection. After compilation, the resulting file contains both source and executable code.
Clearly, a source code virus is feasible.

423

Applying the Rules

By applying the above stated rules a disassembled copy of the viral infection can be extracted. This
section describes the procedure and then address what can be learned from the virus code. The specific rule
addressed will be abbreviated. For example, Rule 1 will be denoted (R1).

Cohen has shown that in general, it is undecidable whether or not a sequence of code is a virus [3].
Furthermore, other researchers agree with Cohen's proof and have proposed refinements to his proof model
[10]. By contrast, Crocker and Pozzo [5] proposed a "fail-safe" virus filter. Ducking the religious issues
associated with these two extreme positions, there are some pieces of information whlch are decidable in
polynomial time. For example, if we have a known virus such as n VIR we can conclude that a file is infected if
we find n VIR in an executable. This example holds for the special case of a known virus, but not in general.

Balle 1 (DIIIIhlct Corruption)

··········· Security Eunctlon Pmceaaora
···················· ,,_,,,,,,,-' ~\

Holt
Computer

Difference~ an pged
to tho pattern tearchor

Figure 5: A Possible Virus Control

One use of assembly code is to search for illicit code as described in [8]. The assumption is that viral
code has some identifiable features which differentiate it from normal instructions. A similar approach focusing
on viral operating system calls was proposed in [11]. For example, in the 80x86 CPU, instructions such as IN,
OUT, or INT might be cause for concern.

When a new virus hits there is time lost in figuring out what the virus does. Typical inquires request
information on triggers and payloads. Much of the desired information can be obtained from a parse
performed within an isolated processor. By applying a disassembly to the executable program and then
searching for viral instructions, much information can be accumulated. An example environment using the SPI
architecture is shown in Figure 5.

Using the SPI architecture described in [9], changes to executable files can be detected using (lU).
From the altered fl1e, the difference can be extracted by (R4). The extracted difference can be decrypted if

424

encrypted {R5) and then disassembled (R6). If the disassembly succeeds (R10) then there is a good indication
that the file has been deliberately modified. If the unencrypted difference {R5) appears in multiple files then it
is likely that a virus is at work.

Figure 5 also illustrates a possible mitigative control based on transparently restoring corrupted files
from a backup disk. In this example, the backup store files are used for comparisons and are not executed on
the SPI processor. Therefore, an infected file residing on the backup store could not infect the SPI processor.
As a final point, the backup store could be updated using an approach similar to [13] where the user is queried.

Derivable Cases

Consider the shrink-wrap virus case. The virus would first manifest itself by executing its payload or by
reproducing. If the virus is still in the reproductive stage, then it will most likely be detected in another file after
that fde's integrity is altered due to infection. Through the application of the rules previously stated, the newly
infected file will provide a source for extracting the viral code. A pattern matcher can then explore all
executable files for an occurrence of the same viral set. Should the pattern be found in an original distributed
file then we can infer that the source is a shrink-wrap virus.

Summary

This paper examines inference rules involved in identifying a computer virus. The newer self
encrypting stealth viruses are examined and along with the necessary conditions for their detection. The rules
are then used to derive properties of new viruses.

Acknowledgements

I would like to thank Cheryl Ledbetter, Lee Rice, and the reviewers for their objective comments and
recommendations.

References:

[1] Leonard M. Adleman, "An Abstract Theory of Computer Viruses", Lecture Notes in Computer Science
Vol. 403,Advances in Computing- Crypto '88, S. Goldwasser (ed.), Springer-Verlag, 1990.

[2] Fred Cohen, "Computer Viruses", Proceedings of the 7th DOD/NBS Computer Security Conference, pp.
240-263.

[3] Fred Cohen, "Computer Viruses", pp. 23-27, Copyright 1985 by Fred Cohen.
[4] Fred Cohen, "A Cryptographic Checksum for Integrity Protection", IFIP Computers and Security 6(6),

1987.
[5] Steve Crocker & Maria Pozzo, "A Proposal for a Verification Virus Filter", Proceedings of the 1989

IEEE Computer Society Symposium on Security and Privacy, pp. 319-324.
[6] Russell Davis, "Exploring Computer Viruses", Proceedings of the Fourth Aerospace Computer Security

Applications Conference, pp. 7-11.
[7] Russell Davis, "Uncovering Viruses", Proceedings: Fourth Annual Computer Virus &:: Security

Conference, pp. 796-803, March 14-15, 1991.
[8] Garnett, "Selective Disassembly: A First Step Towards Developing a Vuus Filter", Proceedings of the

Fourth Aerospace Computer Security Applications Conference, pp. 2-6.
[9] Lance J. Hoffman, et al., "Security Pipeline Interface (SPI)", Proceedings of the Sixth Annual Computer

Security Applications Conference, December,1990.
[10] Kimmo Kauranen, et al., "A Note on Cohen's Formal Model for Computer Viruses", Special Interest

Group Security, Audit&:: Control Review, Volume 8, Number 2, pp. 40-43, ACM Press.
[11] Paw Kerchen, et al., "Static Analysis Virus Detection Tools For UNIX Systems", Proceedings of the

13th National Computer Security Conference, pp. 350-365.
[12] Teresa F. Lunt, "Automated Audit Trail Analysis and Intrusion Detection: A Survey", Proceedings of

the 11th National Computer Security Conference, October 1988.

425

[13] 	 James Mollni and Chris Ruhl, "The VtrUS Intervention and Control Experiment", Proceedings of the
13th National Computer Security Conference, pp. 366-373.

[14] 	 "The Data Encryption Standard", FIPS PUB 46, National Bureau of Standards (Now NIST).
[15] 	 1o1m Page, "An Assured Pipeline Integrity Scheme for VtrUS Protection", Proceedings of the 12th

National Computer Security Conference, pp. 378-388.
[16] 	 Charles P. Pfl.eeger, "Security in Computing", copyright 1989 by Printice-Hall, Inc., pp. 160-161.
[17] 	 Pozzo and Gray, "An Approach to Containing Computer Viruses", IFIP Computers and Security, 6(4),

1987.
[18] 	 Michael M. Sebrint et. al., "Expert Systems in Intrusion Detection: A Case Study", Proceedings of the

11th National Computer Security Conference, October 1988.
[19] 	 Eugene H. Spafford, et al., "Computer Viruses: Dealing With Electronic Vandalism and Programmed

Threats",ADAPSO.
[20] 	 AndrewS. Tanenbaum, "Computer Networks", Copyright 1981 by Prentice Hall, pp. 128-132.
[21] 	 Ken Thompson, "Reflections on Trusting Trust", Communications ofthe ACM, Vol. 27, No. 8.
[22] 	 Steve R. White, et al., "Coping with Computer Viruses and Related Problems", copyright 1989 by

International Business Machines Corporation.
[23] 	 David R. Wichers, et. al., "PACVs: An Access Control List Approach to Anti-Viral Security",

Proceedings ofthe 13th National Computer Security Conference, pp. 340-349.
[24] 	 Catherine L. Young, "Taxonomy of Computer VtrUS Defense Mechanisms", Proceedings of the lOth

National Computer Security Conference, pp. 220-225.

426

PRACTICAL MODELS FOR THREAT/RISK ANALYSIS

Mark W.L Dennison

Kalman C. Toth

CGI Information Systems & Management Consultants Inc.

275 Slater Street, 19th Floor

Ottawa, Ontario, Canada, KlP 5H9

Tel: (613) 234-2155

Fax: (613) 234-6934

ABSTRACf

This paper describes practical. models used to conduct threat and risk analyses for large
information systems ornetworks. The process ofanalyzing and relating threat agents, assets, and
safeguards within a static threat model is described. In adllition, a dynamic risk model is
described that consists ofthreat events, security failures, and damaging outcomes. This approach
permits the incorporation ofknown baseline security requirements such as policies and standards,
as well as hardware and software security features that could be distributed throughout the
information system.

INTRODUCilON

The aim of this paper is to describe new threat and risk models, together with a methodology
that can be employed to support a practical risk assessment of computer systems and networks. The
model and methodology are applicable in the government environment, while retaining essential
compliance with previous work done in the threat/risk arena. This paper expands upon the previous
work of Toth, Dennison, and Clayton (Toth 91] by adding more details pertaining to the structure
of the threat and risk models.

A threat and risk analysis can be used in various ways to achieve different objectives. It can
be used to assess the risks of operating an existing system within a given operating environment and
mode. The analysis can determine if additional safeguards or alternative operating modes could
contain the risks in an existing system. Threat/risk analysis can also evaluate technology alternatives
and provide recommendations for designing a new system given environmenta~ operational, and
budgetary constraints.

Our threat/risk analysis approach is based on models that characterize and relate the threat
i and risk elements of the system, and a methodology that plans, organizes, and guides the analysis to
produce meaningful assessments of the threats and risks associated with the system. The methodology
provides guidance for creating instances of the models and for conducting the risk analysis.

The threat/risk model has been broken down into two submodels, the threat model and the
risk model These models contain common entities, namely, "threat agents", "assets", and "safeguards",
but address these aspects from different points of view. The threat model deals with identifying the
entities that comprise these components and determines their attributes·and relationships. The risk

427

model identifies and relates threat events that cause security failures which in tum produce damaging
outcomes. It also includes an additional component for calculating risks.

OBJECilVES

The threat/risk models have been designed to be applicable in a government environment,
to have an information technology orientation, and to be compatible with the framework defined in
the Strawman Model [Katzke 85].

Government Applicability

Government organizations are mandated to conduct threat and risk assessments in relation
to classified or sensitive information and other assets. This has generated considerable interest in
practical models and methods that can be used to conduct assessments. Most security damage in the
public sector does not have a direct monetary effect. Methodologies that attempt to put a dollar
value on aU types of damage are not appropriate in many government and industry environments.
This issue has been addressed by allowing security damage to be defined in terms of non-monetary
outcomes.

Many risk methodologies do not address information technology security standards which exist
in the government. These methodologies often assume that all options are open and that no baseline
requirements exist. The proposed threat/risk model addresses this problem by allowing certain
security policies and standards to be included in the "safeguards" portion of the model. This ensures
that minimum standards are met.

Information Tecbnoio&J Orientation

Many risk assessment methodologies fail to account for the hardware and software platform
used by the organization. These methodologies often assume that there is no existing system to
consider. This issue has been addressed by introducing "safeguards" as a component of the model to
characterize the security mechanisms implemented by the existing or proposed system. This emphasis
on safeguards follows the risk management framework proposed by [Katzke 85], subsequently evolved
in the risk management workshops [Workshop 88] and [Workshop 89]. The model allows for
distributed safeguards in order to address the distributed nature of today's information systems.

The threat/risk model addresses the organization and its system platform·by·limiting its scope
to only those entities and events that are applicable. It addresses the organization's system platform
by analyzing the security mechanisms of existing or proposed products, systems, and procedures. It
also identifies and assesses the cost exposures and non-cost effects (confidentiality, integrity, and
availability) of target assets within the existing system due to security failures.

Strawman Framework

The threat/risk models use terms that are familiar to system users, senior management, and
other threat/risk model builders. Much of the standard terminology of the Strawman Model is
utilized with some extensions. The various elements of the threat model are referred to as "entities"
and each entity can have descriptive "attributes." The elements of the risk model are "events," which
can also have "attributes." There are also functional relationships amongst entities and attributes.

428

The threat/risk model that bas been proposed can be used for future applications, system
environment changes, or security mechanism upgrades. To update the model, the specific tasks
defined in the methodology are repeated taking into account the system changes. The iterative
nature of the model ensures that threat/risk assessments can be refined or revisited throughout the
life-cycle ofan operational system. Furthermore, the model supports trade-off analysis among system
alternatives and comparative cost-benefit analysis.

THREAT/lUSK ANALYSIS MEIHODOLOGY

The threat/risk analysis methodology is a comprehensive and structured approach for analyzing
the threats and risks of computer systems and networks. The methodology includes phases for
preparation, threat assessment, risk assessment, and recommendations.

The preparation phase is required to plan the strategy for the threat/risk assessment. The
choices made wiD. reflect the size of the system, the value and sensitivity of assets, and the nature of
the perceived threats. The plan should clearly identify the scope of the system and the level of detail
required in the threat/risk analysis. It also must be decided if proposed safeguards will be included
within the analysis.

The organizing step is required to identify all of the inputs to the threat assessment. Some
inputs, such as threat descriptions, may come from external sources while other inputs may exist
intemaD.y. The preparation phase identifies inputs such as the system security policy, statement of
sensitivity, mode of operation definition, contingency plans, and disaster recovery plans. A checklist
is used to ensure that no inputs are forgotten. When a required input cannot be found, steps must
be taken to produce that input. Questionnaires and interviews can be used to collect missing
information.

~t~mentPh~

The threat assessment phase puts information into the threat model by specifying entities,
entity attributes, and entity relationships. An instance of the threat model is thereby obtained that
defines the threat agents, safeguards, and assets pertaining to the information system under
consideration. It should be noted that the term "threat model" is used due to its general acceptance
even though it includes descriptions for assets and safeguards. The scope of the threat analysis is
controlled by the scope of the information system under consideration as defined in the preparation
phase.

The first part of the threat assessment is to load the asset component of the threat model.
This documents all of the assets within the system boundary and defmes attribute values. The second
part is to load the threat component, which includes definitions of aU threat agents and their
attributes. The third part is to load the safeguard component, which includes a definition of aU
safeguards and their attributes.

The threat assessment implicitly includes a vulnerability assessment. Vulnerability is included
as an attribute of assets and safeguards. Asset vulnerabilities are estimated by considering attributes
of threat agents (such as intention) and attributes of the asset (such as value). Safeguard
vulnerabilities are estimated by considering attributes of threat agents (such as potency) and attributes

429

of the safeguard (such as effectiveness). Vulnerability analysis is heuristic in nature and is often
performed based upon past experience. In our interpretation, vulnerability analysis is a qualitative
estimate of risk in the absence of detailed knowledge about events and event probabilities.

The fourth part of the threat assessment is to link the entities of the model via functional
relationships. This shows which safeguards protect which assets, as well as which threat agents target
which assets. In addition, the relationships show that some entities are composed of other entities.
For example, a high-level system safeguard may be composed of subsystem safeguards.

Risk Assessment Phase

The risk assessment phase of the methodology puts information into the risk model by
specifying events, event attributes and event relationships. An instance of the risk model is thereby
created that defines the possible threat events, security failure events, and damaging outcome events.
Probabilities are introduced as attributes of events in the risk model to deal with the likelihood of
these events. Probabilities are a measure of the expectation that a particular event will occur. It is
suggested that the selected time period be one year. Information from the threat model is used to
help compute the probabilities of these events occurring.

While threat assessment is qualitative, risk assessment is mainly quantitative. Risk is
calculated as the expectation of a given level of damage over a given period of time resulting from
threat events that cause security failures producing damaging outcomes. The risk calculation,
therefore, includes both the probabilities of events and the severity of the damage to assets. Since
risk assessment is more rigorous than threat assessment, it may be decided to only perform risk
assessment for parts of the system.

Trade-off analysis is used to study risk by varying threats, assets, and safeguards. Various
alternatives are analyzed, although the scope of possible adjustments is system-specific, and trade-offs
among alternative safeguard solution sets are examined. It is often difficult to reduce threats as such,
although there is considerable flexibility when designing a new system. Asset exposure can often be
changed by altering the scope of the computer system or network. An organization usually has
control over safeguard selection, although these choices are usually subjected to a cost-benefit
analysis. The analysis phase continues until the maximum risk acceptability is obtained.

The methodology permits iteration at various levels. A typical approach might be to establish
a baseline from mandated requirements (safeguards) and initial identification and assessments of
assets and threats. Initial risk based trade-off's and cost-benefits may be analyzed as various safeguard
sets and strengths are evaluated. Later on in the project life-cycle, as information becomes more
accurate and new safeguard alternatives arise, the threat and risk assessments and analysis work could
be redone to produce more refined recommendations.

Recommendations Phase

The recommendations phase is intended to document the results of the threat/risk analysis
and to provide an overall statement of risk. The document is often directed towards senior
management and presents alternatives, options, and recommendations for action. The
recommendations may suggest adding additional security mechanisms, altering the assets in the system,
or reducing threats. If recommendations for change are accepted, the threat/risk methodology can
be used in an iterative manner to develop a new risk assessment

430

'I'HREAT MODEL

To fully understand the threat assessment phase, it is necessary·to examine the details of the
threat model. The entities of the threat model have primary attributes and sometimes seoondacy
attributes, which provide even more detailed information. The threat model consists of threat agent
entities, asset entities, safeguard entities, and functional relationships.

A threat agent Ti is an entity (e.g. person, organization, or thing) that desires to or is able to
trigger an event that can compromise the security of an asset. The attribute threat agent identifier
or Ti(ident) is the unique information identifying each threat agent. Secondary attributes indicating
threat agent type (i.e. natural or human), geographic location, and historical behaviour may also be
specified.

The attribute threat agent potency or Ti(pot) is an aggregate expression of the potential of
a threat agent and indicates what the threat agent can do. The secondary attribute threat agent
capability or Ti(cap) indicates the individual ability of a threat agent to act, or to be effective. The
secondary attribute threat agent resources or Ti(res) indicates the resources at the disposal of the
threat agent. These attributes are relatively independent of the safeguard and asset components of
the model.

The attribute threat agent intention or Ti(intent) indicates the threat activities that the threat
agent is liable to mount and indicates what the threat agent will do. It has secondary attributes of
motive and determination. The secondary attnbute threat agent motive or Ti(mot) indicates which
assets or safeguards the threat agent is likely to attack, and is a function of the threat agent's
perception of asset vulnerability and value. The secondary attribute threat agent determination or
Ti(det) indicates· the degree to which the threat agent will pursue the desired asset.

Asset Entities

An asset ~ is an entity that is ofvalue to an organization. It is assumed that the asset's value
is sufficient to warrant concern· for the asset's protection. The attribute asset identifier or ~(ident)
is the unique information identifying each asset. The attribute asset role or ~(role) indicates if an
asset exists for its own purpose, or whether it is a secondary asset providing support or protection
functions. The attribute asset ownemhip or ~(own) indicates the individual or organization who
owns the asset.

The attribute asset type or ~(type) indicates if the asset is tangible or intangible (i.e physical
asset or information asset). Asset type can take on values such as classified information, sensitive
information, classified asset, or sensitive asset. The attribute asset grouping or ~(grp) can take on
a value from the following set: physics~ environmental, information, hardware, software,
communications, operations, human resources, and documentation. There could be other secondary
attributes specifying geographic location, system or subsystem name, and whether the asset is internal
or external to the information system being analyzed.

The attribute asset value or ~(val) indicates the value of the asset to the organization. Asset
values are measured against the secondary attnbutes of sensitivity (for confidentiality), criticality (for
integrity and availability), and replacement value (for monetary value). The attribute asset
wlnerability or ~(vuln) indicates the degree to which successful attacks might be launched against

431

this particular asset. This attribute is functionally related to threat agent entities, safeguard entities,
and other attributes of the asset. For example, asset wlnerability may be related to accessability,
complexity. user friendliness, fragility, etc. Vulnerability is considered a static property of assets, and
is supplemented by a more detailed risk analysis of outcome events in the risk model.

A safeguard Si is a mechanism that protects assets from threat agents by thwarting threat
activities. Safeguards must be included in the threat model to account for the complexities of the
information system. Since safeguards are assets, they inherit all asset attributes. In addition, each
safeguard entity has attributes relating to the protection mechanism that it provides. If safeguards
are interpreted as all mechanisms providing confidentiality, integrity, and availability then all
functional components of an information system would be considered as safeguards.

The attribute safeguard type or Si(type) indicates whether the safeguard is active or passive.
The attribute security function or Si(func) indicates the general purpose and function of the safeguard
and can take on values from the set ofdeterrence, prevention, detection, containment/mitigation, and
recovery. The attribute safeguard cost or Si(cost) shows the cost of implementing the safeguard, and
is required for performing a cost/benefit analysis.

The attribute safeguard effectiveness or Si(eft) indicates how well the safeguard is" able to
perform a protection function. The attribute safeguard wlnerabillty or Si(wln) indicates the degree
to which the functionality of the safeguard could be compromised. This functional wlnerability is
the dual ofsafeguard effectiveness. Note that safeguards are also wlnerable as assets, which involves
a broader assessment including threat agents and other assets.

The attnbute safeguard requirement or Si(req) indicates if the safeguard is required
(mandated) as a baseline security measure by a government security policy or standard. Safeguard
requirements are functionally related to the value of an asset. Safeguard requirements map to
government standards for physical, procedura~ personnel, and information technology security.

Functional Relationships

Entities are the essential elements of the threat model and correspond to real objects in the
system that are of consequence to the threat analysis. The entities and relationships of a sample
instance of the threat model are illustrated in Figure 1.

Threat Agents Safeguards Assets

FigUre 1: Sample Instance of the Threat Model

432

The relationships in Figure 1 show which assets are targeted by which threat agents, which
assets are protected by which safeguards, and which safeguards provide protection against which
threat agents. Other relationships could have been added to show a component hierarchy of
safeguards and assets or to show how safeguards and assets are distn"buted.

RISK MODEL

To fully understand the risk assessment phase, it is necessary to examine the details of the risk
model. Events are the key elements of the risk model An attribute is a property of an event that
provides additional information about the event. Note that events are related to the entities o(the
threat model, and to the attributes of these entities. The risk model consists of threat events, failure
events, outcome events, and event relationships.

Threat Events

A threat event E. is an attack against the system caused by a threat agent that has the
potential to compromise the security (i.e. monetary or non-monetary loss) ofan asset. A threat event
is only an attempt to compromise security, and may be blocked by security safeguards before any
damage is done.

The attribute threat event identifier or E1(ident) is the unique information identifying each
threat event and relates the event to a set of threat agents. There are secondary attributes relating
to geographic location, system or subsystem identifiers, asset(s) attacked, etc. The secondary attribute
threat event activity or Ei(act) indicates whether the event is related to espionage, sabotage,
subversion, terrorism, criminal acts, accidents, or natural hazards.

The attribute threat event frequency or Ei(freq) is the expected rate of occurrence of the
threat event and must be converted to an annual frequency. The frequency ofoccurrence ofa threat
event is a function of the threat agent's potency and intention. The attribute threat event
undesirability or Ei(undes) indicates the degree to which the event is considered detrimental to the
organization. It is a function of asset value and outcome severity.

Failure Events

A security failure Fi is an event that breaches the security of a safeguard. The security failure
event is the one main element that has been added to the Strawman Model. It was felt that to go
directly from a threat event to an outcome event does not adequately reflect the role of safeguards
in the information system. Given a threat event, there can be many possible failure events, each with
its own degree_ of severity. For example, suppose there is a threat event that attempts to read
encrypted data. The possible failure events related to the encryption mechanism could be a total
failure (data in clear-text), a partial failure (weak key), or no failure (fully encrypted).

The attribute failure event identifier or Fi(ident) is the unique information identifying each
failure event and identifies the set of safeguards involved. There are secondary attributes relating
to geographic location and system or subsystem identifiers. The attribute failure severity or Fi(sev)
shows the severity of the security failure and can range from no failure to total failure. The attribute
failure probability or Fi(prob) is the expectation that a failure will occur. This is a function of the
threat event, safeguard effectiveness, and safeguard vulnerability.

433

A damaging outcome Oa is an event resulting in an undesirable change in the state of an
asset's security. Given a threat event and a corresponding security failure, there can be many possible
outcome events, each with its own degree of severity. For example, suppose there is a threat event
that attempts an unauthorized terminal access to a large file and that there is a total security failure.
The possible damaging outcomes could be one screen of compromised information, one chapter of
compromised information, or a total compromise of information if the threat agent had sufficient time
to browse through the entire file.

The attn"bute outoome ewd identifieror Oi(ident) is the unique information identifying each
outcome event and relates to the assets affected. There are secondacy attributes relating to
geographic location and system or subsystem identffien. The secondacy attn"bute outcome
consequence indicates whether the damaging outcome is related to unauthorized disclosure,
destruction, remova~ modification, or interruption. The attribute outcome probability or Oi(prob)
is the expectation that the outcome will occur. The attribute outcome severity or Oi(sev) indicates
the degree of damage. Outcome severity is related to asset value and has seoondacy attributes of
sensitivity of disclosure, effect of corruption, maximum acceptable unavailability, and replacement
cost.

Event Relationships

Events can be related so as to form a scenario. The current risk model only allows a scenario
to be a simple sequence comprised of a threat event, a failure event, and an outcome event. As an
example, assume a threat event of a hacker tcying to dial into a computer system. The possible
failure events could be that the hacker gets total system access, access to one account, or no access.
The damaging outcomes would then relate to the information present in the various accounts.

The risk model intuitively captures the temporal flow of how security problems might be
manifested in an operational system. One or more threat agents. pose. an attack against the system.
If the system is vulnerable, this attack may lead to a security failure which can result in a damaging
outcome expressed as a monetacy loss and/or an intangible loss relating to the confidentiality,
integrity, and/or availability of assets. This concept is shown in Figure 2

Threat Agents Safeguards Assets

Threat Failure Outcome
Event Event Event

Fmgure 2: Sample Instance of the Risk Model

431

Risk is calculated based upon the probabilities of events and the severity of outcome damage.
The expected loss for each outcome event is Oi(sev) x. Oi(prob). To see how risk is calculated,
assume a scenario where threat event & causes Fj which then causes outcome event 0~~:. The
contribution to total risk by this scenario is given by the following equation:

The total system risk can then be calculated by adding the risks associated with every scenario.
Note that the product of the threat event frequency and failure event probability is the expected
failure event frequency. The product of the failure event frequency and outcome event probability
is the expected outcome event frequency.

CONCLUSION

The Strawman Model has provided a useful framework for developing threat and risk models.
This paper has shown how both the static and dynamic aspects of risk analysis can be modelled by
using a static threat model and a dynamic risk model. Vulnerability is seen as an attribute of the
static threat model, while risk is calculated based upon the event probabilities defined in the dynamic
risk model. An information technology perspective is maintained throughout by considering
safeguards as part of both the threat and risk models.

REFERENCES

[Katzke 85] Stuart Katzke, "Federal Information System Risk Analysis Workshop,"
Montgomery, Alabama, January 1985.

[Mayerfeld 89] Harold Tzui Mayerfeld, "A Synthesis of Working Group Reports from the
First Computer Security Risk Management Model Builders Workshop," July
1989.

(Toth 91] Kalman C. Toth, Mark W.L Dennison and John F. Clayton,
"A Practical Approach to Threat/Risk Analysis," 1991 Third Annual Canadian
Computer Security Symposium, Ottawa, Ontario, May 1991.

[Workshop 88] "First Computer Security Risk Management Model Builders Workshop,"
Denver, Colorado, May 1988.

[Workshop 89] "Report on the Second Risk Model Builders Workshop,"
Ottawa, Ontario, June 1989.

435

PREDICATE DIFFERENCES AND THE ANALYSIS OF

DEPENDENCIES IN FORMAL SPECIFICATIONS

D. Richard Kuhn

Computer Systems Laboratory

National Institute of Standards and Technology

Gaithersburg, Md. 20899

kuhn@ swe.ncsl.nistgov

ABSTRACT

Working with formal specifications often involves an iterative cycle of
development and change, either to correct errors discovered in a proof attempt,
or to reflect changes in requirements. Making changes requires an understand
ing of the dependencies among terms in the specification. Boolean differences
may be used to determine dependencies among functions in Boolean algebra.
This paper introduces the notion of predicate differences in predicate calculus.
The paper shows how predicate differences may be used to analyze the effect of
changes to formal specifications; to investigate the conditions under which
invalid assumptions will render a system non-secure; and in some cases may
help to simplify re-verification of a modified formal specification.

1. 	Introduction
In working with specifications expressed in mathematical logic, one generally encounters

formulas of the form P=>S . 1 For example, P may be the specification of some programmed
function F, and S is the security or safety property that F must ensure. Another example is the
refinement of a specification R , where the refined specification R' must be shown to imply R, that
is, R' => R. In developing trusted systems, it is usually necessary to show that a set of transitions
Pi imply a set of security invariants Sj. The proof obligation is thus of the form
P1 & P2 & · · · & P,. => St & S2 & .. · & s,., where each P; and si is an implication A=>B. Usu
ally, terms in the various P; will be found in the Sj as well.

Like any software, formal specifications are likely to require changes, either in develop
ment or to meet changing requirements. The safety or security condition is often stable.
Although the behavior of the system may change, it must still meet the security requirement, so
the proof becomes P'=>S rather than P=>S, where P represents the old function specification, P'
the new function specification, and s the security specification. It would be helpful to have some
method of analyzing the effect that the change from P to P' would have on the invariant security
requirement. This paper examines a method of determining dependencies among terms of

1 The symbols "&,I,....,,=>" represent and, or, not, implies, respectively. The exclusive or
operation is denoted by e.

436

specifications written in first order logic, and ways to verify that the new specification meets the
requirements of the invariant.

Formal specifications of security properties often require very large formulas in mathemati
cal logic. Understanding the relationships between terms in the formulas can be challenging,
even with the help of interactive theorem provers (which are essentially expression simplifiers
with some limited inference capabilities). When a proof seems to be impossible, it is necessary
to understand why. To change the specification, it is necessary to understand the effect that the
change will have. Both of these situations require an understanding of the dependencies among
terms. We are interested in the contribution of a particular term to the implication, and in the
effect that a change to the term will have on the truth of P =>S. Depending on the formulas
involved, changing the value of a variable, x, may or may not affect the truth of the implication.
In general, the values of other terms will determine whether a change in the value of x will
change the implication P =>S.

It is often necessary to change the antecedent P but still show that it meets the consequent,
security conditions·. The change is typically made by replacing a term from the antecedent with
another term. An additional conjunct may be added as well. For example, suppose the invariant
is A & B & C & D=>S, and it is changed to G & B & C & D=>S. To specify precisely the
modifications to be studied here, let P represent the.antecedent, and M represent the modification
term, i.e. the new conjunct to be added to the antecedent. Then the modified version of P with
variable x replaced is given by r:, and the new antecedent is given by P; & M.2 For the example,
the desired new invariant G & B & C & D =>S is given by (A & B & C & D)~=>S. If the invariant
is a formula in propositional logic, the effect of such a change can be determined the Boolean
difference. A generalization of the Boolean difference for predicate logic will be described in
Section 3.

2. 	Boolean Difference
The Boolean difference [Reed, 1954; Akers, 1959], can be used to .calculate the depen

dency of a Boolean function on a literal x; of that function. The Boolean difference of x; with
respect to F, dF ldxi, gives the conditions under which the value ofF will change if the value of x;

changes. Boolean differences have been used in digital circuit testing [Marinos, 1971], [Reed,
1973] and in computer security access control [Trueblood and Sengupta, 1986]. The Boolean
difference has been generalized to multi-valued logic for VLSI circuit testing [Bell et. al, 1972],
[Lu and Lee, 1984], and [Whitney and Muzio, 1988].

For a function F=f (x1•••• ,x; ,xn), the Boolean difference ofF with respect to x; is

dF fdx; =f (Xt,)Cj , ••• .,Xn) (!} f (Xt, ... , -,xi ,,Xn).

This is equivalent to

dF ldx;=f (Xt, ... ,O,... .Xn) (!} f (Xt, ... ,l,....;xn),

which follows from the fact that Xi must be either 0 or 1. The difference dF ldx; is an expression
that does not contain Xi.

2 The notation P; represents predicate P with every free occurence of variable x replaced by
term e, with suitable renaming to prevent variable capture.

437

A useful property of the Boolean difference is that

1 ifF is unconditionally dependent on Xi

0 ifF is unconditionally independent ofxi
F' an expression not containing x;, otherwise

To see intuitively why dF ldx; giv~s the conditions under which a change in the value of x;
will change the value ofF, consider that F will change if either (a) it is initially true and chang
ing the value of x1 makes it false: F & -,(F~). or (b) it is initially false and changing the value of
x; makes it true: :...,p & (F~). Note that the disjunction of (a) and (b) is, by definition, the
exclusive OR.

The Boolean difference of a function F=f(Fl,··..f'n). with respect to one of its component
functions F; is

dF ldF;=f(F l, •.. .,F;,... ,Fn)ef (Fl,...,..Fj,....,F,.).

The partial Boolean difference gives the effect on the truth value of a Boolean fonnula of a com
ponent of the fonnula, through a particular tenn. For a fonnula F=f(Fl,···.Fn), the partial Boolean
difference ofF with respect to F; with respect to a tenn xi ofF;, is

dF !d (Xj IFi) = dF /dFj & dF; ldxj

3. Predicate Difference

The Boolean difference can be generalized to a predicate difference in predicate calculus.
The properties of the predicate difference are similar to those of the Boolean difference. How
ever, the Boolean difference with respect to a term gives the conditions under which a change in
the value of the tenn will change the value of the Boolean function. A Boolean term can change
only from x to ox. The change to a predicate depends on the tenn substituted for x. Thus a
predicate difference is with respect to a particular change xle (the substitution of tenn e for free
variable x), rather than simply with respect to x. Note also that the predicate difference with

respect to a change xle may still contain x.

Definition 1. Independence: P is independent of xle when P has the same truth value asP:, i.e.

p :P;.

Definition 2. Dependence: If P is not independent of x!e, then P is dependent on the value of
xle.

Definition 3. Predicate difference: The predicate difference for a predicate P with respect to
variable substitution xle, denoted dP;, is PeP:.

438

http:F=f(Fl,���.Fn

Lemma 1. dP: = 0 iff Pis independent of the value of x.

Proof.

Assume (''if' direction) P =P: {definition of independence}

Then (P <=> P)

=(P e P = 0) (definition ofe}

::: (PeP:=O)

Assume (PeP:= 0) ("only if' direction)

=(-,(P <=> P;) = 0) {definition ofe}

:: (P 	<=>P:)

(End ofproof.)

Definition 4. Unconditional Dependence: P is unconditionally dependent on xle if P has the

opposite truth value of P:, i.e. (P <=> --.P;) & (P: <=> -,p)

Lemma 2. dP: = 1 iff P is unconditionally dependent on the value of xle.

Proof.

(P <=> --.P;) & (P; <=> -,p)

:-,(P=P:)

:(PeP:)= 1
(End ofproof.)

If dP; is not 0 and not 1, then the resulting formula can be solved for 1 to determine the condi

tions under which P: will be dependent on x. Note that if e is a Boolean and e = --.x in a propo

sitional formula, the predicate difference is equivalent to the Boolean difference.

4. Partial Predicate Difference

The predicate difference of a predicate formula F=f (F1,.•• .Fn), consisting of component formulas
connected by &, 1. or=>, with respect to one of its component formulas F; is

dF ldF;=f (F l, ••• .F;,....Fn)ef (Ft,...,-.Fi,···.Fn).

Definition 5. Partial Predicate difference: the partial predicate difference gives the effect on a
formula of a component of the formula, through a change in a particular term. For a formula
F=f(Ft,···.Fn), the partial predicate difference ofF with respect to F; with respect to a change in a
term xi le ofF;, is

5. 	Application to Dependency Analysis

Let I ·be an invariant P =>S. To determine the effect on the invariant 1 of changing term x
in P to e, the partial predicate difference dlldP; can be computed. This gives the conditions
under which the invariant will change value, in other words, the conditions under which it
becomes false, since it was true before the change.

439

http:F=f(Ft,���.Fn
http:Fi,���.Fn

If the invariant I has already been shown and we wish to modify P toP:, we can compute
the conditions under which the value of the invariant will change using the following result:

Theorem 1. Let I be an invariant P=>S. Then I is dependent on the value assigned to x in P
under the conditions given by -.P & Pi & ...,s =Pi & -.S.

Proof

dltdP: = (P e Pf) & ...,s {Definition 3 and 5}

=(P & -.P; 1-.P & Pf) & ...,s {Definition ofe}

=-.P & P; & ...,s {assumed: (P =>S) =-.(P & ...,s)}

=:P:& ...,s {(P=>S) => (-.P & -.S =:-.S)}

(End ofproof)

The form -.P & P: & ...,s may be more useful if we expect the change xle to maintain the invari

ant, because showing either P; & -.P =o, or Pi & ...,s = 0 is sufficient to show that P: => S. If
P: & -.P, is easier to calculate, and the result is o, then there is no need to compute the predicate
difference. Note that by Lemma 1, the invariant is independent of the change if P: & -.s =0,
which is equivalent toP:=> s.

After analyzing the effect of the change, if a conjunct M is added to the antecedent, it is
necessary to show that the new antecedent maintains the security invariant. There are then two
ways to proceed with showing that the modified antecedent (P;) & M maintains the invariant.
The first is to show directly that P: & M =>S. The second is to show that the modification guaran
tees that the invariant will not change value by showing that the conditions under which it
becomes false do not occur, i.e., the antecedent P: & M implies the negation of the partial predi
cate difference dl!dP; i.e.: P;& M=>-.[dl!dP;J. Proving this is equivalent to proving P;& M=>S

directly. This result is proved formally below.

Theorem 2. [<P=>S)&[M=>-.[dl ldP:]] <=> [(P => S) & (P; & M => S)]

Proof

(P=>S)&[M=>-.[dl tdP:]]

::: (P=>S)& (M=>-.(P: & -.S)) {Theorem l}

::: (P=>S)&(M=>(-.Pi IS))

::: (P=>S)&(M =>Pi=> S)

::: (P=>S)&(M & Pi=> S)

(End ofproof)

Thus, if the modification term M implies the negation of the predicate difference, the invariant
will be preserved.

5.1. 	Example

Consider a system which uses a token to control access to a network. To gain access, a user
must have both a valid token and the right password. The system maintains the following state
invariants (among others) as security requirements.

440

http:P=>S)&(M=>(-.Pi

A user is authorized only if the token is authorized:
(u._au~h => t_auth)

A token is authorized only if its password is active (non-zero):
(t_au.th => pw:;tO)

We wish to ensure that the following state transition invariant holds:

A token can be activated (i.e., its password changed from zero to non-zero) only by the security

officer:

(pw' :;tO & pw =0 => s_auth)

The password changing function is

chgpasswd(input_ val)
{
/*if security officer, then change password to input value*/

if (s_auth) pw := input_ val

}

This chgpasswd function is modeled by

(s_au.th => pw'=inval) & (-.s_auth => pw'=pw)

A proof is done to show that the state invariants plus the effect of the chgpasswd function ensure
the state transition invariant (the function must also maintain the invariants, but this is not shown
for conciseness).

(u_au~h => t_auth) &

(t_auth => pw:;tO) &

(s_au.th => pw'=inval) &

(-.s_aulh => pw'=pw)

=> (pw':;tO & pw=O=> s_auth)

Suppose that the design is to be changed to allow either the user or the security officer to change
passwords, rather than requiring the security officer to do so. The chgpasswd function
specification then becomes:

((s_au.th Iu _auth) => pw' =inval) & (-.(s _ auth Iu_auth) => pw' =pw)

After making the change to the specification, a new proof must be conducted. If the proof fails,
the specification must be analyzed manually to determine why, then appropriate changes made.
The conditions under which the change will affect the state transition invariant can be calculated
using the predicate difference. As it turns out, the predicate difference is 0, so the change will
not affect the invariant. By Theorem 1, the predicate difference is

441

(u_auth => t_auth) &

(t_auth => pw#J) &

(u_auth Is_auth => pw' =inval) &

(-,(u_auth ls_auth)=> pw'=pw) &

-,(pw'#J & pw=O=> s_auth) =0

Depending on the problem, the predicate difference may be either more or less effort to cal
culate than a new proof. The advantage in computing the predicate difference is in determining
the conditions under which a change will render non-secure a system that was previously shown
secure.

6. Analyzing the Effect of Security Flaws

One important problem in security evaluations is to determine the effect of violations of
assumptions. In general, violations of assumptions will affect the security of the system under
some conditions, but not make the system non-secure all the time. The predicate difference for a
hypothesized violation of assumptions gives the conditions under which the security invariant
does not hold.

In a state machine model a proof is given that transitions T; imply the security invariant S,
i.e., T1=>S & T-r=>S & · · · & Tn=>S. A violation of assumptions in a transition, such as the
failure of a variable to maintain a specific value, can be modeled by letting a term e represent the
potential new value of a variable x, then computing the predicate difference d(T => S):. The
predicate difference gives the conditions under which the invariant will change truth value, that
is, the conditions under which the system would not be secure.

1. 	A Metric for Predicate Changes

A metric for changes to a predicate can be defined by using the predicate difference to
define a partial order: xle Szlf if dP;=> dPJ (x may equal z and e may equal f). Also define
xle <zlf if dP;=>dPf but not dPf=>dP:. The partial order xle Szlf expresses the fact that the
change xle is "smaller" than zlf. The smallest change xle is no change at all, where dP: = 0, as
shown in Lemma 1.

If dP; => dPJ then it could be said that P; differs less from P than does Pf. To compare how
two predicates Q and R differ from P, the differences PeQ and PeR can be computed. (We do
not necessarily know what substitutions xle, if any, will make P: equal to Q orR.) If PeQ =>
PeR then Q differs less from P than R, otherwise R differs less than Q (unless Q=R).

7.1. 	Example

Given a predicate (a 1b), does ale represent a bigger or smaller change than al(a lc)? The
predicate difference d (a 1b)! is e & -,b 1b & -,e, and d (a I b)G!c is -,a & -,b & e. So d (a I b)G!c
=> d(a 1b)g, i.e., ale is a bigger change than al(a Ie). Although the substitution a/(a Ic) is a
greater text change than ale, the predicate that results from al(a lc) simply enlarges the number
of states (since a 1b =>a 1b 1e), but ale changes the predicate to define a different set of states.

442

8. Application to Verification

Some of the previous results can be used in strategies for computer assisted theorem prov
jng. In secure systems verification one often proves invariants of the form P1 => S1 & P2 => S2 &
••• P,. => S,.. Many proof tools treat the system being specified as a finite state machine. To prove
consistency with an invariant s, the user shows that the new values of variables after each state
transition maintain the invariant. The proof is inductive. The initial conditions are shown to
satisfy the invariant, then each transition is shown to maintain it by substituting values of vari
ables that change in a transition into the invariant. The proof is: invar => invar', where invar' is
the invariant with the postcondition values of variables substituted in. A proof by contradiction
is used. The system substitutes the new values of variables changed in a state transition (as given
by the postcondition) into the invariant to get inval, and generates the conjunction
invar &: -.inval . The user must show that this conjunction results in a contradiction, that is,
invar &: -.inval = 0, which is equivalent to invar => invar'.

8.1. Example
Suppose the invariant is p 1q => r, and the effect of the state transition is q' =p &: q 1q.

The new value of the invariant is p 1(p &: q 1q) => r, so the invariant is maintained. This is

shown by showing a contradiction: [p 1q => r] & -.[p 1(p &: q 1q) => r] = 0.

Suppose we are proving that a system maintains the following invariant:

(1) 	 (w I t I u=>p &: d &: l) &:

(2) 	 (w=>t) &:

(3) 	 (t=>u)

. The new value of w, denoted N"w, is given by the substitution wl(t &: d &: p) I w. The system
assumes the negation in preparation for proof:

(4) 	 (N"w I t I u &: -.(p & d & l)) I (N"w & -.t)

After substitution, we have (P t)l & -.s 1 I (P 2): & .s2 I (P,.): & -.s,., i.e.

(4) 	 ((t &: d & p) I w It I u & .(p & d & l)) I ((t & d & p I w) & -,t)

The system assumes this new information and the user is required to show a contradiction
between the assumed formula and the invariant. At this point the proof would proceed by taking
the two disjuncts in tum. The first,

(5) 	 ((t & d & p) I w It I u & -.(p & d & l))

would be proven by directing the system to simplify

(6) 	 (w I t I u=>p & d & l)

in the invariant, since the second conjunct is the negation of the consequent in (6). This
simplifies to -,w & -.t & -.u . A contradiction can now be derived by directing the system to sim
plify the left conjunct of (5). The proof of the first disjunct of (4) is now complete.

The second disjunct of (4) which is

(7) 	 ((t &: d & p 1w) & -,t) can now be proven by first directing the system to simplify it, result
ing in an assumption w.

443

Directing the system to simplify (2) now results in a contradiction because the consequent t con
tradicts the second conjunct, -.t of (7). The proof is now complete.

A second strategy is suggested using some of the previous results for predicate differences.
By Lemma 1 and Theorem 1, if the conjunctions of the modified antecedents (P,.); with the nega
tions of the original antecedents, -.P & -s, are all 0, then the invariant is independent of the
change, that is, the invariant is maintained. Computing the result shows that the predicate differ
ence is indeed equal to 0, so the invariant is maintained:

(-.(w I t I u) & (t & d & p I w)) =o
and

(-.w & (t & d & pI w)& -.t):sO.

Note that since

(-,(w I t I u) & (t & d & p I w)) =o
it is not necessary to compute

-.(w 	I t I u) & (t & d & p I w) & -.(p & d & l).

9. 	Summary and Conclusions

Predicate differences can be an effective analytical tool for evaluating the effect of changes
to formal specifications. They may also be useful re-verifying specifications after
modification; determining if a change will cause a previously secure system to become non
secure; and as a metric for changes to predicates.

Examples presented in this paper were based on real specifications, but additional experi
ence is needed to explore the technique. Integrating calculation of predicate differences into
a verification tool for a formal specification language would be helpful toward this end. The for
mal specification language Z provides a schema calculus that seems particularly suitable, if tools
for manipulating Z schemas become available.

10. Acknowledgements

Suggestions by Bill Majurski, Jim Lyle, John Cherniavsky, and the anonymous referees
were helpful in clarifying the text.

11. References

[Akers, 1959] S.B. Akers. "On a Theory of Boolean Functions," SIAM Journal Vol. 7, No.4.

[Bell et. al, 1972] N. Bell, E.W. Page, and M.G. Thomason, "Extension of the Boolean Differ
ence Concept to Multi-valued Logic Systems," Proceedings of the 1972 Symposium on the
Theory and Applications ofMultiple-Valued Logic Design

[Gries, 1987] D. Gries. The Science ofProgramming, Springer Verlag, New York, 1987.

[Lu and Lee, 1984] H. Lu and S.C. Lee, "Fault Detection in M-Logic Circuits Using the M
Difference," Proceedings of the International Symposium on Multiple Valued Logic, 1984."

[Marinos, 1971] P.N. Marinos. "Derivation of minimal complete sets of test-input sequences
using Boolean differences," IEEE Transactions on Computers, Vol. C-20, No. 1.

444

[Muller, 1954] D.E. Muller. "Application of Boolean Algebra to Switching Circuit Design and
Error Detection," Transactions of the Institute ofRadio Engineers, Vol. EC-3.

[Reed, 1954] I.S. Reed. "A Class of Multiple-error Correcting Codes and the Decoding Scheme,"
Transactions ofthe Institute ofRadio Engineers, Vol. IT-4.

[Reed, 1973] I.S. Reed. "Boolean Difference Calculus and Fault Finding," SIAM Journal of
Applied Mathematics, Vol. 24, No.1.

[Trueblood and Sengupta, 1986] R.P. Trueblood and A. Sengupta. "Dynamic Analysis of the
Effects Access Rule Modifications Have Upon Security," IEEE Transactions on Software
Engineering, Vol. SE-12, No.8.

[Whitney and Muzio, 1988] M. Whitney and J. Muzio. "Decisive Differences and Partial Differ
ences for Stuck-at Fault Detection in MVL Circuits,"

445

Preventing Weak Password Choices

Eugene H. Spafford
Department of Computer Sciences

Purdue University

West Lafayette, IN 47907-1398

spaf@cs.purdue.edu

June 1991

Abstract

A common problem with systems that use passwords for authentication
results when users choose weak passwords. Weak passwords are passwords
that are easy to guess, or likely to be found in a dictionary attack. Thus, the
choice of weak passwords may lead to a compromised system.

Methods exist to prevent users from selecting and using weak passwords.
One common method is to compare user choices against a list of unacceptable
words. The problem with this approach is the amount of space required to
store even a modest-sized dictionary of prohibited password choices.

This paper describes a space-efficient method of storing a dictionary of
words that are not allowed as password choices. Lookups in the dictionary
are 0(1) (constant time) no matter how many words are in the dictionary.
The mechanism described has other interesting features, a few of which are
described here.

Keywords: passwords, dictionaries, password aging

446

mailto:spaf@cs.purdue.edu

1 Introduction

Passwords are a commonly-used method of authentication. A unique sequence of
characters is presented to the system when identification is needed. This sequence
is then compared with a stored sequence, perhaps after some transformation (e.g.,
encryption). A match provides the proof of identity.

One weakness with password systems is the choice of the password. If the choice
of possible characters to use in the password is too small, or if the overall length of
the password is too short, the password may be compromisable. Even a rich character
set may not be sufficient to create secure passwords if the combination of characters
is restricted to an arbitrary set of possibilities. Thus, good password choice should
avoid common words and names (cf. [1, 6, 10, 12, 15]).

As an example, consider the UNIX1 password system.[12) The current password
mechanism is based on a cryptographic transformation of a fixed string of zero bits,
using the user-supplied password as a key. The transformation is an altered version of
DES encryption, performed 25 times. The transformation is sufficiently slow so that
exhaustive keyspace attacks are currently not practical, although fast implementation
such as deszip,[3] can perform many thousands or tens of thousands of comparisons
per second.

In UNIX, the encrypted version of the password has traditionally been kept in
a world-readable file; the safety of the passwords has been protected by the time
complexity of an exhaustive attack. Thus, one of the keys to the safety of UNIX
passwords is a large potential keyspace for passwords. If the full character set is used,
and seven or eight-character passwords are chosen, the number of potential passwords
to be searched is far too large to be successfully searched, even at high speed. 2 Unfor
tunately, users often select passwords that do not exploit the large keyspace available.
Instead, they choose common words and names, or simple transformations of those
names. This greatly simplifies an attacker's task.

This tendency to select weak3 passwords has led to a number of system break-ins,

1
UNIX is a trademark of Unix System Laboratories, Inc.

2
Assuming a usable character set of 120 characters, there are 43,359,498,756,302,520 (4.34e16)

possible passwords of length one through eight. At 50,000 attempts per second, an exhaustive search
of this keyspace would require over 27,480 years to complete.

3
Strength being defined as the ability to resist a dictionary-based attack, and weakness as its

opposite.

447

some quite highly publicized: cf. [14, 18, 20, 21, 23]. Current technology is such that
construction of a large pre-encrypted dictionary on-line using optical disks is easily
done. By creating such a dictionary, a password search and attack may be easily
conducted in a matter of seconds. Without such a database, but using a tool such as
deszip on a modern workstation, it is possible to make a full scan of 300,000 dictionary
entries against several hundred passwords in a matter of a few hours or days.

Despite wide-spread publication of good password policy and the risks inherent in
bad passwords, users continue to select weak passwords. This is a continuing threat
to the best-managed systems. (For example: [2, 7, 8, 9, 10, 11, 15, 19, 22, 24].)

There are four basic methods for a system administrator to enforce better password
security on a computer system:

1. 	Educate and encourage users to make better choices of passwords.

2. 	 Generate strong passwords for users and do not allow them to choose passwords
of their own creation. This is often done using some random password generator.

3. Check passwords after-the-fact and force users to change those that can be easily
broken with a dictionary attack.

4. 	 Screen users' password choices and prevent weak ones from being installed.

This first method, that of educating users to choose strong passwords, is not
likely to be of use in environments where there is a significant number of novices,
or where turnover is high. Users might not understand the importance of choosing
strong passwords, and novice users are not the best judges of what is "obvious." For
instance, novice users (mistakenly) may believe that reversing a word, or capitalizing
the last letter makes a password "strong."

A further problem is if the education provided to users on how to select a password
is itself dangerous. For instance, if the education provided gives users a specific way
to create passwords -such as using the first letters of a favorite phrase- then many
of the users may use that exact algorithm, thus making an attack easier.

The second method of strengthening passwords is to generate the passwords for
the users and not allow them the opportunity to select a weak password. For this
mechanism to work well the passwords need to be randomly drawn from the whole
keyspace. Unfortunately, this method also has flaws. In particular, the "random"
mechanism chosen might not be truly random, and could be analyzed by an attacker.

448

Furthermore, random passwords are often difficult to memorize (especially if they are
changed (aged) regularly). As a result, users may write the passwords down, thus
providing an opportunity to intercept them without the effort of a dictionary search.

The third method of preventing poor password choice is to scan the passwords
selected, after they are chosen, to see if any are weak. This is supported by many
systems, including deszip and CoPs.[5] There are significant problems with this ap
proach:

e 	The dictionary used in the search may not be comprehensive enough to catch
some weak passwords. Outside attackers might think of these choices, but the
password scanner would not include them in the search.

• 	 The scanning approach takes time, even for a fast implementation. A lucky
(or determined) attacker may be able penetrate a system through a weak pass
word before it is discovered by the scanner. This is especially a problem in an
environment with a very large number of users.

• 	 The output of a scanner may be intercepted and used against the system.

Additionally, there is not always a correlation between finding a weak password and
getting it replaced with a stronger one. At many universities, for example, faculty
members have repeatedly been informed of the weakness of their passwords as exposed
by a scanner, but they have not chosen new passwords in years. The administration
of university systems is such that it is impossible to force faculty members to choose
better passwords.

The fourth method, that of disallowing the choice of poor passwords in the first
place, appears to have none of the drawbacks mentioned above. However, it too has
difficulties associated with it. In particular, the storage required to keep a sufficiently
large dictionary may prevent this method from being used on workstations and small
computer systems. For instance, the standard UNIX dictionary, jusr/dictjwords, is
about 25,000 words and 200,000 bytes of space. A dictionary of 10 to 20 times that
size would be necessary for reasonable protection; there are over 170,000 words in
Webster's New World Dictionary, and that would occupy well over a million bytes
of disk storage. That figure does not include many slang and colloquial words and
phrases, nor does it include any user names, local names and phrases, likely words in
foreign languages, or other strings shown to be poor password choices. A moderately
comprehensive dictionary I have used in password research has over 500,000 entries,
and requires almost five million bytes of storage.

449

Maintaining such a large dictionary is also difficult. To add new words or phrases
means that the dictionary must have additional space overhead for indexing or it
must be sorted after each addition -otherwise, lookups take time proportional to the
length of the dictionary. In small computer environments, neither of these alternatives
may be appropriate.

2 OPUS

The OPUS Project4 is intended to address the space problems associated with a
sufficiently complex password screening dictionary. The goal is to derive a mechanism
that provides protection equivalent to a comparison against a large dictionary, yet be
small enough to be practical in a small computer environment.

2.1 The Dictionary Filter

The central component of this system is a Bloom filter-encoded version of the dictio
nary.[4] A Bloom filter is a well-studied probabilistic membership checker, often used
in applications such as spelling checkers.[13, 16, 17] It works as follows: a word to
be entered into the filter is passed through n independent hash functions generating
integer values. Each of these values is used as an index into the filter, represented as
a bitmap. The bits (one per hash function) corresponding to the input word are then
set. This procedure is repeated for each word to be entered into the filter.

When a lookup is to be performed, the word to be examined is passed through
the same hash functions and the corresponding bits in the filter are examined. If any
of the bits is reset (i.e., not set), then the word is determined not to be present in
the dictionary. If all the corresponding bits are set, the likelihood is high that the
word was in the list that was used to build the dictionary. In the case of OPUS, this
means the choice is rejected as a weak password choice. The probability of a false
rejection can be set arbitrarily low by increasing the size of the bitmap and increasing
the number of hash functions used; an obvious upper bound on the size of the hash
table is the size of the plaintext dictionary.

To be more exact, assume we have a hash table of N bits, and d independent hash
functions. From [4], with n words we have the proportion of bits left unset, </J, equal

4
0bvious Password Utility System.

450

to
d n

<P = (1- -)
N

A word will be falsely shown as present in the dictionary if and only if it hashes
to a set of bits that are all set. The expected proportion, P, of words in the input
space that will be mistakenly shown as in the dictionary is thus

From these equations, we can derive appropriate values to choose for our filter and
hash functions.

For example, suppose we pick n = 250,000 words for the dictionary, and we wish
to have a 0.5% chance (P = 0.005, i.e., one out of 200) of false positives on any given
text string. If we choose six uniform hash functions, we will need 2,800,000 bits of
storage and achieve q) = 0.586. This works out to a file of 350K bytes. Doubling
the chance of false positives to 1% (P = 0.01) results in needing only 300K bytes
of storage for the dictionary with six hash functions. Storing the full dictionary as
plaintext would likely take in excess of 2Mb of storage. Thus, we are able to achieve
almost a seven-fold compression with only a small loss of accuracy.

As can be seen from the above examples, with the appropriate choice of hash
functions it is possible to greatly reduce the storage necessary to keep an extensive
dictionary of words to compare against password choices. By making queries on the
dictionary with variations of the candidate password- upper/lower case, reversed,
trailing digit, etc. - it should be possible to quickly check for the strength of the
password. Each probe into the dictionary is basically a constant-time operation, so
the number of words in the dictionary has no effect on the time of access. If the union
of all the probes results in a positive response, the user is told to try again.

2.2 Other Features

The model of the dictionary used in OPUS provides benefits other than simple dic
tionary lookup. By providing a writable interface to the dictionary for the system
administrator, it is a simple task to add the representation of new words to the dictio
nary. The administrator can therefore augment the dictionary with local user names
and colloquialisms. Adding words to the dictionary requires no expensive sorting or

451

temporary storage. Furthermore, the system administrator never needs to be con
cerned if a word has already been added - adding a word more than once has no
effect.

The OPUS system also supports password aging. With password aging, users
are required to change their passwords periodically. However, a common fault with
password aging is that users attempt to reuse old passwords, and this may present a
security risk.

OPUS can be configured so that whenever a password is changed, it is added
to the dictionary. Thus, if a user attempts to reuse an old password, she will find
it already in the dictionary, and the choice will not be allowed. As seen from the
value of¢>, above, there is plenty of room in the dictionary for adding new words, so
even prolonged operation will not result in a noticeable degradation of service. Also,
simple steps need to be taken to prevent very frequent changes of passwords that
might degrade the filter, such as putting a minimum time for which a new password
must be kept before a change is again allowed.

One obvious problem with updating the dictionary in this manner is the possibility
of an attacker using delta information to craft a set of password attempts. That is,
by observing the changes made to the filter when another user changes his password,
an attacker might be able to use the hash functions to derive a set of possible text
strings that account for the changes, and use these in a penetration attempt.

A related problem is if an attacker finds a way to use the dictionary as a filtering
mechanism to exclude patterns when doing a brute-force keyspace search to break
passwords. Doing a probe into the dictionary will determine if a candidate is a
possible choice or not, thus saving (some) on the computation required to perform an
exhaustive search.

Luckily, there is a simple way to defeat these problems. Instead of hashing plain
text words into the dictionary, OPUS first encrypts the words to be entered or exam
ined. The encryption must be something time-consuming, similar to multiple rounds
of the DES function, and computationally infeasible to reverse. The hashing algo
rithms are then applied to the encrypted string rather than to the plaintext. Thus,
to gain any information from the dictionary, either as a pre-screen or as a source of
delta information, would require much more computational effort than some other
approach (e.g., exhaustive keyspace search).

To further confound attackers, the key used to encrypt the input words should
either be site-selectable, or generated as a function of the input word itself. For

452

3

instance, if something similar to the UNIX mechanism is used, the first and last letter
of the input word, converted to uppercase, could be used as the "salt." As there is
never a reason to recover words from the dictionary, this choice of key is something
that probably cannot be recovered unless the plaintext word is known.

Final Remarks

This paper has discussed the motivations and design behind a system for preventing
users from installing weak passwords. The system should be compact and simple
to customize and enhance. It can be used standalone, as a front-end to an existing
password program, or coupled with some form of password generator so as to prevent
the accidental generation of a word susceptible to dictionary attacks.

The choice of hashing algorithms used with the system is critical for the success
of the filter. Choosing non-uniform or overlapping hash algorithms reduces the effec
tiveness of the Bloom filter by increasing the incidence of false positives (effectively
shrinking the number of useful bits employed). When possible, the hash algorithms
should be chosen to produce the same results whether used on a string or on its
reverse. This will allow probes for common words and their reverses to be made si
multaneously. Case-insensitivity can also be used in the hash functions, but this may
result in too great a narrowing of the keyspace; words in monocase, or with only a
leading or trailing capital letter are perhaps the only combinations that need to be
examined.

A UNIX version of OPUS is being constructed. It will be preloaded with a locally
developed dictionary of almost 500,000 strings. Experiments will then be conducted
to determine, for this dictionary, the optimal working size and number of hash func
tions. Further experiments will determine the accuracy rate for rejection of candidate
passwords that are not present in the real dictionary, and the speed of operation.
By performing side-by-side experiments with users selecting potential passwords and
comparing a dictionary search with the results of the Bloom filter, it should be pos
sible to determine the overall utility of this approach.

References

[1] Ana Maria De Alvare. How crackers crack passwords, or what passwords to avoid.

453

Technical Report UCID-21515, Lawrence Livermore National Laboratory, 1988.

[2] 	 Ana Maria De Alvan§ and Jr. E. Eugene Schultz. A framework for password selec
tion. Technical Report UCRL-99382, Lawrence Livermore National Laboratory,
1988.

[3] 	 M. Bishop. An application of a fast data encryption standard implementation.
Computing Systems, 1(3):221-254, 1988.

[4] 	 Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422-426, July 1970.

[5] 	 Daniel Farmer and Eugene H. Spafford. The COPS security checker system. In
Proceedings of the Summer Usenix Conference. Usenix Association, June 1990.

[6] 	 Simson Garfinkel and Eugene H. Spafford. Practical Unix Security. O'Reilly and
Associates, Inc., May 1991.

[7] 	 David L. Jobusch and Arthur E. Oldehoeft. A survey of password mechanisms:
Weaknesses an potential improvements. part 2. Computers & Security, 8(8):675
689, 1989.

[8] 	 David L. Jobusch and Arthur E. Oldehoeft. A survey of password mecha
nisms: Weaknesses and potential improvements. part 1. Computers & Security,
8(7):587-603, 1989.

[9] 	 Daniel V. Klein. A survey of, and improvements to, password security. In UNIX
Security Workshop II, pages 5-14. The Usenix Association, August 1990.

[10] 	 Belden Menkus. Understanding password compromise. Computers & Security,
7(6):549-552, December 1988.

[11] 	 Chris Mitchell and Michael Walker. The password predictor- a training aid for
raising security awareness. Computers & Security, 7(5):475-481, October 1988.

[12] 	 Robert Morris and Ken Thompson. Password security: a case history. In Unix
Programmer's Supplementary Documentation. AT&T, November 1979.

[13] 	 James K. Mullin. A second look at Bloom filters. Communications of the ACM,
26(8):570-571, August 1983.

454

[14] 	 Neil Munro. Simple password opens navy computer to hacker. Government
Computer News, 7(15):61, July 1988.

[15] 	 National Computer Security Center. Password management guideline. Technical
Report CSC-STD-002-85, US Department of Defense, 1985.

[16] 	 Robert Nix. Experience with a space efficient way to store a dictionary. Com
munications of the ACM, 24(5):297-298, May 1981.

[17] 	 M. V. Ramakrishna. Practical performance of Bloom filters and parallel free-text
searching. Communications of the ACM, 32(10):1237-1239, October 1989.

[18] 	 Brian Reid. Reflections on some recent computer break-ins. Communications of
the ACM, 30(2):103-105, February 1987.

[19] 	 Bruce L. Riddle, Muray S. Miron, and Judith A. Semo. Passwords in use in a
university timesharing environment. Computers & Security, 8(7):569-578, 1989.

[20] 	 Donn Seeley. Password cracking: A game of wits. Communications of the ACM,
32(6):700-703, June 1989. 1989.

[21] 	 Eugene H. Spafford. The Internet Worm: Crisis and aftermath. Communications
of the ACM, 32(6):678-687, June 1986.

[22} 	 Cliff Stoll. How secure are computers in the U.S.A.? an analysis of a series of
attacks on MilNet computers. Computers & Security, 7(6):543-547, 1988.

[23] 	 Cliff Stoll. The Cuckoo's Egg. Doubleday, NY, NY, October 1989.

[24] 	 Patrick H. Wood and Stephen G. Kochan. Unix System Security. Hayden Book
Company, 1987.

455

PUTIING POLICY COMMONALITIES TO WORK

D. ELLIOTT BELL

TRUSTED INFORMATION SYSTEMS, INC.

3060 Washington Road

Glenwood, Maryland 21738

Abstract

An examination of general policy support is undertaken using an abstraction of trusted
systems termed the "Universal Lattice Machine." This policy supportability is applied to
selected policies from the literature. It is shown that multinational sharing, Clark & Wilson,
dynamic separation of duty, the Chinese Wall security policy, and originator control are
supportable in this fashion. A constructive theoretical method of switching between
isomorphic policy representations is presented in an annex.

OVERVIEW

Recognizing and documenting the fact that different-seeming policies governing the access
by people to information can actually have strong commonalities (in fact, exhibit actual
mathematical isomorphism, as shown in [BELL90]) is only a first step. Putting that result
to practical use requires several further steps. One needs to resolve the question of whether
the provision of policy conversion logic within a TCB •· will be overly complex and
cumbersome. One needs to determine which policies of interest can indeed be addressed
using the conceptual and actual lattice-policy-enforcing machinesavailable, and conversely,
which cannot. One needs to devise policy commonality tools .to be provided with trusted
systems that enable a system security administrator to reap the benefits implicit in trusted
systems for the support of different -seeming policies.

This paper focuses on the issue of supporting "policies" required by organizations, groups,
or, in general, by enterprises, using the technical policies provided at the system level by
lattice-policy-enforcing trusted systems. The attempt is made throughout to keep clear and
distinct the two notions of "policy", that of the enterprise and that of the system. (See also
[STER91] and [1DI91] for discussion of the distinction and its importance.) The terms
"enterprise policy" and "technical policy" will be used when the distinction between the two
levels of discourse needs to be emphasized or made clear.

The paper begins with the introduction of a generalized, conceptual trusted system, termed
the "universal lattice machine". Extensions to the basic functionality that are implicit in the
basic properties are then introduced. The extensions are binding, exclusion, roll-back, and
n-person control. Each extension is realized two ways, one using discretionary access control

456

mechanisms only and the other using non-discretionary access control mechanisms. Then,
using the universal lattice machine construct, several identified enterprise-policies from the
literature are addressed. It is demonstrated that multinational sharing, Clark and Wilson,
dynamic separation of duty, the Chinese Wall policy, and ORCON can be directly treated
using universal lattice machine functionality and assurances. The paper concludes with
directions for further work and an annex that resolves in the negative the question of whether
policy conversion logic would be overly complex for inclusion in a minimized TCB.

UNIVERSAL LATTICE MACHINE

For purposes of this discussion, we will use the notion of a universal lattice machine (ULM)
that abstracts the essential features of trusted systems. A ULM has subjects and objects, as
well as the ability to deal with groups of subjects (such as, but not limited to, Multics
Projects or UNIX groups) and groups of objects (such as, but not limited to, UNIX
filesystems). The access to objects by subjects in several access modes is restricted in two
ways. The first type of restriction is based on access control lists (ACL's) and negative
access control lists (NACL's), pairing subjects and groups of subjects to objects and groups
of objects. This restriction is discretionary in the sense that there is in general a capability
for subjects to alter the permissions recorded in ACL's and NACL's at their own discretion!

The second type of restriction is based on boolean-lattice values assigned both to subjects and
objects. A particular mode of access will be permitted provided that a logic equation linking
the subjects and objects involved evaluates to true. As an example, ! access of a subject S
to an object 0 is allowed provided lattice-value(S) => lattice-value(O).

The general notion of a ULM as described is predicated on a central portion of the system
that provides the ULM abstractions with a high degree of confidence in the immutability,
correctness, and unavoidability of those abstractions (both conceptually and
implementationally). That is, the presence of ULM mechanisms and limitations in the stream
of access requests and mediations is assured and the metadata (which includes both data
structures on the basis of which decisions are made and executables that embody the logic)
cannot be altered except in known, advertised ways. In a word, the ULM presumes a
reference monitor in the sense of [ANDE72] and [TCSEC85].

Part of the basic functionality that a ULM provides is the ability to alter the metadata of the
ULM itself. Some categories of metadata change are altering the human-readable version of
the lattice-values; altering group membership of subjects and objects; altering entries on

1 Latitude in extending access privilege varies from instance to instance of a ULM. In some
cases, an entry in an ACL (not subordinate to a NACL entry) will imply the ability to extend
access permissions. In others, an explicit right to extend is required (as in UNIX ownership and
in cases where an explicit control attribute exists, such as in Multics modify access to the parent
directory). The general case here will leave the limitations on altering ACL's and NACL's
unspecified.

457

ACL's and NACL's; establishing new user accounts or new system subjects ("creating"
subjects); changing the lattice-range of a subject (that is, altering the simultaneous view-alter
range of a subject to change the "trustedness" of the subject); changing the lattice-value of
objects; and changing the maximum lattice-value of subjects. These basic metadata changes
themselves fall into different groups with regard to their effect on previously-established
confidence. Several of the functions are confidence-neutral: they do not alter the confidence
in the ULM since they are part of the functionality analyzed and reviewed in the
establishment of confidence. Altering human-readable versions of lattice-values and altering
ACL's and NACL's fall into this~category,2 as do altering group membership of subjects and
objects and creating subjects. Changing a subject's range alters its potential interaction with
other trusted subjects and with other trusted code within the Reference Validation Mechanism
(the implementation of a reference monitor). Such a change can have a substantial impact
on previously-established confidence. When an untrusted subject (one whose range consists
of a single lattice-value) has that level raised to a higher value (one that implies, or
dominates, the original value), there is no impact on the confidence, providing that proper
alterations in system state are made to retain secure state after the change. Similarly,
alteration of an object's lattice-value has no impact on the confidence in the system, provided
the proper bookkeeping and alterations are bound to the change.3

INTRINSIC EXTENSIONS TO ULM FUNCTIONALITY

Given the basic functionalities of altering a ULM's metadata, one can construct a set of more
complex functions for the actualization of various policies. For each function, a realization
using either the discretionary mechanisms (ACL's and NACL's) or the non-discretionary
mechanisms (lattice-values) is possible. Four functions will be described below - binding,
exclusion, roll-back, and n-person control. Each function will be described both in
discretionary and non-discretionary terms and the implications of the alternate forms will be
explored.

Binding. The basic concept of binding is derived from [CL WI87]. Stated narratively, what
is desired is the ability to limit invocation of specific code for the processing of particular
data items. The expectation is to (1) limit invocation and (2) limit manipulation of data items
(designated VDI and ADI, for view-data-items and alter-data-items) to the combination of
authorized invokers (AI) and identified processing code (T). Implicit is the expectation that
the code, the set of authorized invokers, and the controlled data items, both for viewing and
altering, can be altered or viewed only under the control of a reference validation mechanism,
an assumption present in the Clark & Wilson paper. [CLAR90] Within the context of a

2 Different instances of ULM's will provide different limitations on the alteration of ACL's
and NACL's. The differences sometimes matter in the compound tasks that can be constructed
out of the more basic functionalities under discussion here.

See, for example, rules change-subject-current-security-level (RlO) and change-object
security-level (R11) in [BLP75, pp. 110-111] and the rule NRange in [BELL86, p. 39].

458

3

ULM, the problem will be stated as trying to limit invocation of a single transaction T to an
identified set of authorized invokers {AI} for the manipulation of the data items { VDI} u
{ADI}, the sets of view-data-items and alter-data-items, respectively. Both the AI and the
T will be viewed as subjects and the xDI as objects.

A discretionary solution to binding is to establish a group of subjects for the AI and give
"invoke" access toT only to the subjects in the AI group of subjects by setting the ACL of
T; establish two groups of objects, the VDI and ADI groups, and limit access to those groups
to T by setting the ACL of the VDI and ADI groups. This solution is subject to the
depredations of safety [HRU76] to the extent that the particular instance of the ULM allows
extension of access privilege based on existing access permission. If changes to the ACL's
and NACL's were strictly limited to administrative action, then the effects of safety would
be constrained, but a potential flow of information (vice the alteration of ACL's and NACL's)
would still be present.

A non-discretionary solution would assign unique lattice-values to mark the various system
elements. The set of subjects {AI} would be given the mark MARK-AI; the transaction T,
MARK-T; the view-data-items {VDI}, MARK-VDI; and the alter-data-items {ADI}, MARK
ADJ. Invocation ofT would be limited to subjects whose lattice-value implies (includes)
MARK-AI. Twould be assigned the lattice-valueMARK.-VD/ A MARK-ADJ. Viewing {VDI}
objects would be limited to subjects whose lattice-value implies (includes) MARK-VDI and
altering { ADI} objects would be limited to subjects whose lattice-value is implied by (is
included by) MARK.-AD/.4 The necessary relations among the lattice-values MARK-AI,
MARK-T, MARK-VDI, and MARK-AD/ would depend on the actual implications of the
accesses "invoke", "view", and "alter" in an instance of a ULM. For example, if invocation
is a pure~-access mode, there would be no necessary relationship between MARK-T and
MARK-AI. On the other hand, if invocation includes r-access, then one would have to have
MARK-AI implies (includes) MARK-T. Similarly, forT to view the {VDI} and to alter the
{ADI}, one needs to assure that MARK-AD/ implies MARK-T implies MARK-VD/.5 If a
ULM instance allows a pure-~ invocation, then binding of a transaction T to authorized users
{AI} for the manipulation of { VDI} u { ADI} using only confidence-neutral metadata actions
can be accomplished as follows. The {VDI} are assigned a lattice-value a= MARK-VDI.
The transaction T and the {ADI} are assigned the lattice-value a At, where t = MARK-T.6

4 This solution of the binding problem is derived from the solutions found in [LEE88],
[KARG88], and [SHOC87].

5 If the altering access mode implies a viewing capability, then MARK-T would have to imply
MARK-ADJ.

6 MARK-AD/ becomes MARK-T A MARK-VDI.

459

Authorized invokers have the lattice-value i = MARK-AI "added" to their lattice;..value.7

Invocation of T is limited by the presence of i in the invokers' lattice-value. Viewing of
{VDI} is limited by the condition "lattice-value(subject) implies lattice-value(object)."
Alteration of {ADI} is limited by the condition "lattice-value(subject) is implied by lattice
value(object)." This tranliteration of binding into a non-discretionary setting is sufficient
provided that a set of related transactions is intrinsically structured so that the "sensitivity"
of the successive transactions T and the various data items used in sequence sort neatly in a
monotonically increasing fashion within the lattice. Where that cannot be done (as in
rollback below), one must include a notion of transactions as trusted subject, as in [LEE88].
In that case, the transaction is given the ability to view objects with lattice-value MARK-VDI
and to alter objects with lattice-value MARK-AD/. This version of binding includes, therefore,
a non-confidence-neutral action, the inclusion of a "trusted" subject in the original sense of
the term.

Exclusion. The second complex function is exclusion. This can be expressed as the
requirement to have the invocation of a bound transaction exclude the invoker ftom the ability
to invoke another transaction. Using the same notation as in the binding discussion, one can
restrict an invoker of Tl ftom invoking T2 using either discretionary or non-discretionary
features of a ULM. The discretionary approach would be to put the invoker of Tl onto a
NACL for T2 as part of the execution of Tl. That is, the actiGn of subjectS invoking Tl
would cause Tl, running as a subject, to set the NACL of T2 to exclude S from invoking it.
This solution, of course, is subject to the safety problem, but one can argue that the safety
problem is of lesser importance in the context of invoking bound transactions than in cases
where the main concern is the flow of information into or out of the object (in this case, the
transactions Ti). The non-discretionary solution is to introduce additional lattice-values
MARK-EXCLUDE-Ti that is added to the invoker's current lattice-value on invocation (that
is, the invoker of Tl has MARK-EXCLUDE-T2 added to its current lattice-value) and the
logic for invocation of T2 is altered to be "lattice-value(subject) includes MARK-T2 and does
not include MARK-EXCLUDE-T2".8

This non-discretionary solution is both aesthetically ugly and probably inappropriate to the
actual needs of exclusion. It can be argtied that the exclusion of actors in a sequence of
transactions is really exclusion ftom action in a particular chain of data item ·manipulation
rather than an exclusion ftom action. Thus, the notion of binding the AI only to the T is only
acceptable at the lowest level of transaction-chaining. In cases where the transactions interact
in chains, one needs a way to indicate the ability of an authorized invoker to supply input
data items for manipulation by a bound transaction. Further, these data items for a chain of

7 The lattice-value i is added in the sense of having it ANDed onto whatever other lattice
value is already existing.

8 Note that this solution is the direct analogue of enforcing informal need-to-know through
the imposition of formal categories or compartments.

460

transactions need assured association with each other. 9 Using the two transactions Tl and
T2 above, a subjectS in {All} would be able to invoke Tl provided Shad "supply as input"
mode to { VDU} and "invoke" mode to Tl. This more natural expression of bound
transactions allows a similarly natural representation of exclusion through the addition of
NACL alteration to the downstream { VDin} that are related to the chain at hand rather than
a blanket prohibition on the invocation of T2 and any further bound transactions. 10 It will
be assumed herein that a discretionary approach to exclusion will be the norm; general
permission to invoke a transaction will be limited by non-discretionary lattice-value
protection, while transitory tuning of that capability for particular chains of transactions will
be provided through the application of NACL's. To recapitulate, one provides exclusion
among the bound transactions { Tl, ... , Tn} by adding the requirement that invocation of
Tj by subject S requires both invocation access to Tj and "supply as input" access to { VDij}.
Successful invocation of Tj includes within its operation the NACLing of S, either of all the
other {Ti} or of all the data items associated with the chain at hand and labeled {VDii}.
Thus subject S will not be able to provide the needed input data items and is excluded from
performing more than one of the { Ti} in a particular chain of transactions.

Roll-back. The third complex function is roll-back. This refers to the necessity to un-do the
effects of a transaction that has already been invoked. This function is nothing but a special
case of bound transaction, one that un-does the actions of a paired bound transaction while
recording the fact of roll-back in an unassailable audit record. The unavoidable complication
here is that any restoration of input data items required of the roll-back transaction involves
confidence-questioning, if only in the sense of having the transaction alter ACL's and
NACL's on data-item objects that are earlier in a chain, and hence have "lower" or
"sideways" lattice-values.

For a bound transaction T as above, the roll-back transaction RT will be invocable by its own
authorized invokers { RAI} (this could be the same set as {AI} but need not be) and its action
will be to remove NACL's from the downstream chained-data-items as well as the NACL's
on the chained-data-items of type { VDI} for T (the NACL entries that were added in order
to prevent a single chain from being treated more than once). The changes required are
·confidence-neutral, with the exception of the possibility of covert passage of information
through the changing of metadata relative to objects at a lower lattice-value than the invoking
subject.

9 If such assured association is not available, one can provide a work-around by passing
along NACL's at each step in the chain rather than globally setting NACL's as described in the
text.

10 It is worth noting that the exclusion concept here is directly related to the notions of
"mutual exclusion" mechanisms that grew out of consideration of indivisible operations for use
in isolating critical regions of crucial, shared program logic.

461

N-Person Control. The fourth comple,x function is n-person control. N:·person control refers
to the idea of requiring separate agents to cooperate to cause a particular: a<;tion to take place.
The traditional examples are the use of two keys to open a safety-deposit box and to limit the
activation of a missile in a silo. In a ULM context, n-person control can be expressed as the
need to have n authorized users, each with proper authorization, to jointly cause the
invocation of a target action. The discretionary version of this function is provided by the
use of ACL's and NACL's and no other ULM mechanism. The usual reason for n-person
control makes the limitations of a discretionary solution unacceptable. The non-discretionary
solution is a case of n bound transactions mutually excluded preceding a single bound
transaction that embodies the protected action. This solution does not deal with the common
requirement to have the n authorizations occur within a short, fixed time interval. That detail
can be provided with a timed roll-back attached to each of the initiating bound transactions.
The confidence implications of n-person control of a non-discretionary sort are the covert
information flow concerns of altering metadata of lower lattice-valued objects.

APPLICATIONS TO SPECIFIC "POLICIES"

The application of functions that can be supported in a ULM range from the familiar and
obvious to the unexpected. It is a truism, for example, that Biba integrity [BIBA 77] can be
supported on a ULM through the simple expedient of "turning the lattice upside down''.
What this means in practice is the alteration of the human-readable version of lattice-values,
the most benign version of changing the metadata. The applications to be covered below
include multinational sharing of data, Clark & Wilson [CL WI87] with the elaborations of
[NAP090], the Chinese wall policy of [BRNA89], and two versions of Originator Control
(that is, ORCON).

Multinational Sharing. Classffied information is sometimes shared between allied nations.
The classffied information of a particular level of sensitivity thus is divided into three
subtypes: that shared by the representatives of the two countries and that held separately. As
an example, suppose Eire (Ireland) and Lower Volga were to agree to share certain classified
information. Then SECRET information dealt with by Lower Volgan and Irish nationals
would be termed SECRET ElLV Only, while the two nations would label information not
to be shared as SECRET LV Noforn and SECRET EI Noforn, respectively. A Lower
Volgan national cleared to SECRET is allowed to read information designated either
SECRET ElLV Only or SECRET LV Noforn; analogously for a Irish national cleared to
SECRET. A Lower Volgan is allowed to create SECRET LV Noforn documents, but has
to create SECRET ElLV Only documents with adequate care that overly sensitive Lower
Volgan information is not inserted into anything shared with Irish nationals. This situation
gets more complicated when Yugoslavia enters into bi-lateral agreements with Lower Volga
and Eire, as well as initiating a trilateral exchange of information.

This particular type of multinational sharing can be directly supported by a ULM by the
expedient of assigning new human-readable forms to available lattice values. In bitmap

462

tenns, one picks three unused categories, p, q, and r. One assigns the bitmap combinations
involving p, q, and r as follows:

p ~ "EIL V Only" p, q ~ "LV Only"
q ~ "L VYU Only" q, r ~ "YU Only"
r ~ "EIYU Only" r, p ~ "EI Only",

and then associates the null set of categories with the string "EIL VYU Only". Each Lower
Volgan national is assigned the combination {p, q}, in addition to the maximum actual
security clearance held; each Irish national, the combination { r, p}; and each Yugoslav
national, the combination { q, r}. Normal operation of the ULM will provide the isolation of
national sensitivity as desired. No change to the ULM is required beyond re-assigning the
string equivalents of the categories (the lattice values) provided. In this case, just as true for
Biba integrity. the solution is implicit in the ULM itself without either discretionary or non
discretionary functional extensions.

Clark & Wilson. The Clark & Wilson transactions TP can be directly implemented on a
ULM as bound transactions, with separation of duty being provided by exclusion on related
TP's. The dynamism of separation of duty elaborated in [NAP090] is nothing more than the
requirement for roll-back of individual steps in a single chain.

Chinese Wall. The Chinese wall policy of [BRNA89], focusing exclusively on the access
of analysts to insider information on various corporate entities within conflict of interest
groups, addresses two interesting complications. The first is initial free will in choosing
which of a set of restricted data items (relating to a particular company within a conflict of
interest group) will be accessed, causing thereafter a prohibition on access to restricted data
items concerning other companies within the same group. The second is the interaction with
general, open information on companies. This set of policy statements can be expressed as
a set of bound transactions. open information is assigned a lattice-value OPEN. Every
conflict of interest group is identified as a group of objects. Every company is assigned a
lattice-value. 11 Every restricted data item is assigned the lattice-value 0 PEN and the mark
of the company Ltd, MARK-Ltd, to which the restricted data item refers. ACL's and NACL's
are initiated with view access granted to all users and with no NACL's at all. Changes to
ACL's and NACL's must be limited to the bound transaction described below, except for the
usual administrative functions. Every brand-new (viewing) analyst operates at a lattice-level
of OPEN. Retrieving information requires that the analyst's current lattice-level imply the
lattice-value of the data item. 12 Any analyst may request access to any restricted data item.
Requesting access to restricted data items is implemented as the invocation of a bound

11 It is assumed for simplicity that every company is in exactly one conflict of interest group.
The more complex case can also be treated with a few more lattice-values.

12 One can view the retrieved information as being put into a read-only workspace.

463

transaction C. This transaction grants access to the requested data item provided that the,
subject has MARK-Ltd for the company Ltd or if the subject is not listed in the NACL for
the data item. If there is no NACL for the subject, the subject's current lattice-value is
augmented with MARK-Ltd and the subject is entered in the NACL for the conflict of interest
group to which Ltd belongs. This solution is a discretionary form. In a manner exactly
analogous to the discussion of exclusion above, a parallel non-discretionary solution is
possible, using an additional set of lattice-values NOT-CO/. In that form, access to a
restricted data item is approved provided the subject's lattice-value implies MARK-Ltd or it
does not imply NOT-CO/, for the conflict of interest group to which Ltd belongs. In the
second case, the cilrrent subject's lattice-value is augmented by MARK-Ltd A NOT-COIP

ORCON. The next application is in the realm of "Originator Control" or "ORCON" of
material. For this discussion, the focus will be on groups of individuals representing
organizations.14 Such organizations will be presumed to produce two types of documents,
released ones and pre-release material. Released documents correspond to those marked
ORCON and the limitation that pertains is not to include or cite the released document or the
information without explicit approval. Pre-release material is draft material and not-as-yet
released documents. The release of material involves an explicit decision and action to mQve
the report into the category of Released.

Individuals outside of organization Q whose parent organization P has been granted access
to a particular released ORCON Q report can read that report. Further, they are allowed. to
produce draft material based on or including the ORCON information. This preparation of
a draft is necessary in order to provide Q organization the context of a request to release the
ORCON Q information. In what one could term "single-level ORCON," an agreement by
organization Q for organization P to include data or implications from ORCON Q material
would allow organization P to release a report listing nothing more than ORCON P.
Multilevel ORCON would address the process of releasing material with joint originator
controls of the nominative form ORCON P & Q.

Addressing ORCON within a ULM context requires the assignment of lattice-values to
subjects and to objects and the provision of actions to cover the release decision and process
in a way that preserves the intent of Originator Control. The initial discussion will be limited
to single-level ORCON. Identify two lattice-values DRAFT and REL (for "released"). Each
user is assigned a lattice-value associated with the user's organization (of the form ORG-P
or ORG-Q), the lattice-value DRAFT, and other lattice-values related to organizations (of the

13 The exclusive focus on receiving information in [BRNA89] makes the treatment here
relatively simple. The inclusion of the obviously-needed maintainers of the information being
protected complicates the situation significantly.

14 The case of individuals can of course be included by viewing each individual as a group
of one.

464

http:organizations.14

fonn MARK-P or MARK-Q). 15 A user can run at any level below the maximum level
allowable, with the condition that the organizational mark and the DRAFT mark must be
present. Released material has as lattice-value {REL, MARK-Q} for the infonnation produced
by organization Q.16 Reading of objects is governed as follows:

(1) 	 if the object is labeled REL, then the portion of the lattice-value of the
requesting subject (exclusive of the organizational designator and DRAFT) has
every lattice-value of the object (exclusive of the REL itself), subject to ACL
and NACL constraints; and

(2) 	 if the object is labeled DRAFT, then the subject's lattice-value (less the
organizational designator) implies the lattice-value of the object, subject to
ACL and NACL constraints.

The implication of these conditions is that one can read a released object if all the REL
lattice-values on the object are part of the subject's lattice-value and one can read a draft
object if aU the markings on the object are part of the subject's lattice-value. Discretionary
controls fine-tune the ability to include or exclude readers.

The logic fonnulation of the non-discretionary conditions above is as follows:

lattice-value(S)- {DRAFT, ORG-PARENT(S)} ==> lattice-value(O)- {DRAFT, REL}.

Writing of objects is more restricted:

(3) 	 the object is labeled ORG-P ARENT(S) and DRAFT, and

the object's lattice-value implies the subject's lattice-value.

These restrictions allow the reading of ORCON infonnation released by organizations to
organizations, further restricted by ACL's and NACL's on the individual data objects. That
reading makes possible the manipulation of material in a "work space" in the same functional
way that the preparation of original draft material for release as Originated and Controlled
infonnation. In order to meet with the intent of ORCON, however, there needs to be no way
that an organization can release material without the explicit approval of the organization that

15 For this discussion, it is assumed that each organization will mark all its released material
with REL and a single organizational designator. Finer grained access can be provided with
ACL's and NACL's. The ability to use more than one organizational designator complicates the
exposition but not the concept.

16 It will be presumed that REL material is only read. Maintenance can be viewed as being
done by repeated draft-to-release actions. The addition of the ability to alter released material
would require a few more limitations and restrictions.

465

http:MARK-Q).15

provided released material in the rll'St place. What is required is a bound transaction with the
exclusive ability to perlorm releases.

A release, in this context, is the removal of the lattice-value DRAFT and the substitution of
the value REL. What is required is a non-controvertible and unavoidable ability to create a
copy of an existing object with a different lattice-value attached to it; further, it must be
controlled by the originator. As a simple example, suppose subject S from the P organization
has used material marked { REL, MARK-Q} in the preparation of a draft report R now marked
{DRAFT, ORG.;.P, MARK-P, MARK-Q}. An authorized individual from the P organization
needs to approve the re-marking of R to {REL, MARK-P}. At the same time, an authorized
individual from the Q organization needs to approve that same re-marking. This complex
function is 2-person control of a copy-sideways transaction. In this case, there is no overlap
between the authorizers of the two halves of the pre-copy step. Thus it suffices to use bound
transactions, one for P organization approval, one for Qorganization approval, one to impose
2-person control on the final bound transaction, and the final bound transaction Tl itself, that
effects the sideways copy .17

Interestingly, multilevel ORCON can be handled in exactly the same way, using a similar
fmal bound transaction Tm. The only difference between Tl and Tm is that Tm copies
sideways from {DRAFT, ORG-P, MARK-P, MARK-Q} to {REL, MARK-P, MARK-Q}.
Moreover, the extension from a bilateral decision between two organizations to a multilateral
decision requires only the substitution of an n-person control front-end in place of the 2
person control described.

Other treatments of ORCON include [GRAU89], [McMN90], and [AEL090]. Those
treatments and the one here are complementary, in the following manner. LGRAU89] and
[McMN90] illustrate that the usual system-level technical policy mechanisms for discretionary
and non-discretionary access control do not patently match the enterprise-policies for
ORCON. Both propose conceptual mechanisms (PACL's and ORAC's, respectively) that
better match enterprise-policy ORCON, as well as support other needs. The independent
control of PACL's and ORAC ACL's by different agents is a feature not covered in the
treatment here.18 [AEL090] provides a taxonomic and analytical tool for the consideration
of enterprise-policies with an eye towards the implications of implementation. This treatment
addresses the conceptual match of a ULM's intrinsic technical-policy mechanisms to ORCON
(viewed as an enterprise-policy). In a sense, this approach is inductive and short-term: how
can current and existing concepts be used now and what documented needs are outside the
scope of current conceptual technology? The other work is deductive, constructive, and mid

17 Clearly roll-back can be used to extricate the system from an anomalous state when there
is a difference of opinion about the release.

18 One should note that the combining function for ORAC ACL's is a logical AND. Thus,
ORAC ACL's cannot directly support an enterprise-policy of the form "either the Comptroller's
Office or the Personnel Office can authorize a person's access to that type of dossier".

466

to long-tenn: what new concepts are needed? how can more efficient and simpler solutions
be brought to fruition? The complementary use of both approaches is clearly what is needed
in order to address current needs as best one can while assuring that better analytical tools
and enterprise-policy support will be available in the future.

FUTURE DIRECTIONS

There are several areas of investigation and work that merit further attention. One is further
analysis of enterprise policies. The initial treatments here should be used as a basis for
complete analysis and proof-of-concept prototyping. That exercise should help clarify which
extended ULM functionality should be addressed and implemented directly so as to realize
benefits of simplicity and performance. A similar analysis of other enterprise policies should
also be undertaken. Taken as a whole, these analyses should help delineate the truly different
enterprise policies from the only apparently different ones.

Another area that deserves attention is the match between actual trusted computer systems and
the features postulated for ULM's. The facilities for groups of subjects and groups of objects,
especially the setting of ACL's and NACL's and the addition and deletion of items from
groups, are not fully realized in all implemented trusted systems. To the extent that those
features of ULM' s provide a necessary flexibility, those features, or equivalent ones, will have
to be conceived and implemented.

One topic of this sort that requires further attention involves the operational embedding of
trusted subjects into a system with previously established confidence. In most of the simple
situations, where various bound transactions are largely independent, one can often embed the
required policy without the need for trusted subjects. Even in those cases where roll-back or
convoluted data references force a trusted subject, it is usually the case that the exact
functionality required of these trusted subjects is to cause an exact copy of an object to be
created at a lattice-value that is not at-or-above the working lattice-value of the subject. That
observation raises the possibility that provision of a "trusted copy" or a "trusted append"
operation to a trusted system might allow for containment of the confidence-shaking that one
will experience when inserting a trusted subject into an operational system.

A particularly important example of needed ULM functionality relates to the size of lattices
that need to be supported. As was noted in [LEE88] and elsewhere, the use of lattice-policy
mechanisms can require the use of enormous numbers of lattice-values. The fact (cited in
the Annex) that the size of the full logic-lattice on n policy alphabet letters is 22

**n is
confirming in that regard. But it must be remembered that isomorphism results are
implacable in the sense that implementation of a policy that is demonstrably a lattice-policy
as if it were not a lattice-policy does not allow one to escape the size implications. A
general-purpose implementation of such a policy will be a lattice-policy implementation no
matter what. Thus the lattice explosion to very large lattices is intrinsic to the problems being
addressed.

467

Given the fact that the lattices will be very large, it is worth recalling the latent lesson of the
traditional method of implementing the traditional lattice policy as a direct product of two
separate lattices. Attention should be directed towards the ability to implement lattice-policy
mechanisms in a way that allows the conceptual use of many different lattices, combined as
a Cartesian product, rather than forcing the use of a single lattice. One can imagine, for
example, a sensitivity label as consisting of a list of lattice-values of the following form:
(lattice-21, value-18), (lattice-77, value-54), (lattice-116, value-42).

SUMMARY

The use of policy commonalities in the form of policy isomorphism and policy conversion
logic can be an important force, both in the analysis of proposed and mandated enterprise
policies and in the selection of lattice-based features and mechanisms for initial
implementation or optimization in trusted systems of the future. The broad applicability of
this perspective has been demonstrated by the analysis here of a wide variety of enterprise
policies in terms of the lattice-based policies enforced by Universal Lattice Machines.

References

[AEL090] M. D. Abrams, K. W. Eggers, L. J. La Padula, and I. M. Olson, "A
Generalized Framework for Access Control: An Informal Description," Proc.
13th National Computer Security Conference, Washington, D.C., 1-4 October
1990, 135-143.

[ANDE72] J.P. Anderson, "Computer Security Technology Planning Study," ESD-TR-73
51, Vol. I, AD-758 206, ESD/AFSC, Hanscom AFB, MA, October 1972.

[BELL90] D. E. Bell, "Lattices, Policies, and Implementations," Proc. 13th National
Computer Security Conference, Washington, D.C., 1-4 October 1990, 165-171.

[BELL86] D. E. Bell, "Secure Computer Systems: A Network Interpretation," Proc.
Second Aerospace Computer Security Conference, McLean, VA, 2-4 December
1986, 32-39.

[BLP75] D. E. Bell and L. J. La Padula, "Secure Computer Systems: Unified Exposition
and Multics Interpretation," MTR-2997, The MITRE Corporation, Bedford,
MA, July 1975. (ESD-TR-75-306)

[BffiA 77] K. Biba, "Integrity Considerations for Secure Computer Systems," The MITRE
Corporation, Bedford, MA, April 1977.

468

[BIRK48] G. Birkhoff, Lattice Theory (1st ed.) American Mathematical Society:
Arbor, Michigan, 1948.

Ann

[BRNA89] D. Brewer and M. Nash, "The Chinese Wall Security Policy," Proc. 1989
Symposium on Security and Privacy, Oakland, CA, May 1989, 206-214.

[CLWI87] D. D. Clark and D. R. Wilson, "A Comparison of Commercial and Military
Computer Security Policies", Proc. 1987 IEEE Symp. on Security and Privacy,
27-29 April, 1987, Oakland, CA, 184-194.

[CLAR90] D. D. Clark, private communication, April, 1990.

[GRAU89] R. Graubart, "On the Need for a Third Form of Access Control," Proc. 12th
National Computer Security Conference, Baltimore, MD, 10-13 October 1989,
296-303.

[HR.U76] M.A. Harrison, W. L. Ruzzo, J.D. Ullman, "Protection in Operating Systems,"
Comm. ACM 19, 8 (August 1976), 461-471.

[KARG88] P. Karger, "Implementing Commercial Data Integrity with Secure Capabilities,"
Proc. 1988 Symposium on Security and Privacy, Oakland, April 1988, 130
139.

[LEE88] T. M.P. Lee, "Using Mandatory Integrity to Enforce 'Commercial' Security",
Proc. 1988 IEEE Symp. on Security and Privacy, 18-21 April, 1988, Oakland,
CA, 140-146.

[McMN90] C. J. McCollum, J. R. Messing, and LA. Notargiacomo, "Beyond the Pale of
MAC and DAC- Defining New Forms of Access Control," Proc. 1990
Symposium on Security and Privacy, Oakland, May 1990, 190-200.

[NAP090] M. Nash and K. Poland, "Some Conundrums Concerning Separation of Duty,"
Proc. 1990 Symposium on Security and Privacy, Oakland, May 1990,201-207.

[SHOC87] W. R. Shockley, "Implementing the Clark/Wilson Integrity Policy Using
Current Technology," Proc. 11th National Computer Security Conference, 17
20 October, 1987, Baltimore, MD, 29-37.

[STER91] D. F. Sterne, " On the Buzzword 'Security Policy'," Proc. 1991 Symposium
on Security and Privacy, Oakland, 20-22 May 1991, 219-230.

[TCSEC85] Department of Defense Trusted Computer System Evaluation Criteria, DoD
5200.28-STD, December 1985.

469

[TDI91] 	 Trusted Database Management System Interpretation ofthe Trusted Computer
System Evaluation Criteria, DoD 5200.28-STD, December 1985, NCSC-TG
021.

ANNEX - POLICY CONVERSION.

The issue of treating policy conversions at the lattice-theoretic level is parameterized by those
implementations that are of interest. Three obvious candidates are (1) the traditional
combination of a totally ordered set and the powerset of a given set; (2) abstract data types
with some form of comparison (for example, domination, covering, meet, or join); and (3)
undefined symbols combined into logical formulas using AND, OR, and NOT. The first
category represents the usual implementation for classified governmental practice, clearances,
classification and formal compartments. It is in a sense an "installed base", both of policy
perspective and of policy implementations. The second category, abstract data types,
represents security levels as opaque, uninterpreted tokens with explicit operations available
for manipulation, specifically the operations of comparing for equality and for dominance.
The third category is uncommon, but seems to hold great promise for being able to represent
a wide variety of narrative policies directly.

In this paper, attention will be limited to the first and third categories. The problem to be
solved is how to represent a partial order of the traditional trusted-systems sort in pure-logic
terms, and, conversely, how to represent pure-logic in terms of a traditional partial order
represented as a characteristic function on a set of elements, usually in the form of a bitmap.

The basis for conversions from pure-logic to bitmaps is contained in the following result:

(Thm 11) 	 The meet-irreducibles of the boolean lattice on the alphabet A are

where s(a) is either a or..., a for a in the alphabet A.
[BIRK48, p. 163]

Hence the concern "... [that] the policy conversion code (which will have to be inside a
Trusted Computing Base) could become intricate and possibly of some size" raised in
[BELL90, p. 168] proves to be unfounded.

Let A be a set of uninterpreted symbols and refer to A as the "policy" alphabet. By (Thm
11), the minimal boolean lattice including A has as its meet-irreducible those wff's19 that
consist of the meet of exactly I A I wff' s, each one of which is either an element a of A or
the negation (..., a) of an element a of A. Inasmuch as each meet-irreducible is equivalent

19 "wff' is a "well-formed formula", a syntactically correct sequence of symbols from the
alphabet A and the special set of symbols { A. , v , ..., , (,) } .

470

to a characteristic function for the powerset ofA, the number of meet-irreducibles is 21AI and
the total number of elements in the lattice is 22*"'~Al. 20 [BIRK48, p. 163]

The embedding of a policy alphabet A with operations (A , v , ...,) thus proceeds by
allocating 2J AI meet-irreducibles, associating each one with one of the elements of (Thm 11),
and associating with each element in the resulting lattice a reduced version of the meets of
the constituent meet-irreducibles. As an example, let A = {a, b, c}. The set of meet
irreducibles of the generated lattice Lis as follows:

{ aAbAC,a/\b/\-,C,a/\...,b/\C,...,a/\bAC,

a A..., b A..., c , ..., a A b A..., c , ..., a A..., b A c , ..., a A.., b A..., c }.

The 0 element of L is false, or a A ..., a; the I element is true, or a v b v c. The elements
a and a v ..., b are the elements

~AbA~V~/\b/\-,~V~A...,bA~V~/\-,b/\...,~

and (a A b A c) v (a A b A ..., c) v (a A ..., b A c) v (a A .., b A ..., c)
v (..., a A b A c) v (..., a A ..., b A c),

respectively.

The reverse embedding, putting traditional compartments into a pure-logic context, is even
easier. It is in fact the special case mentioned before. Let the set of compartment names be
the policy alphabet. The embedding above applies.

One should note here that the hierarchical portion of traditional sensitivity labels has not been
treated explicitly. Since a totally ordered set can clearly be embedded in a boolean lattice
(with height equal to the cardinality of the totally ordered set; or with a set of meet
irredudbles with one fewer elements than the cardinality of the set), this omission is only
apparent. Further, the usual practice of treating the traditional lattice as the cross-product of
two lattices, the totally ordered hierarchy and the non-hierarchical compartments, points out
that the existence of an embedding into a single lattice does not necessarily argue for a
conceptual or implementational superiority of a single-lattice perspective.

20 If the policy statements do not require v and..., (or A and-.), then the size of the required
lattice can be reduced considerably. In fact, in those cases, one can use the lattice with ..., A or
A as the set of meet-irreducibles, respectively. The first case corresponds to the traditional non
hierarchical-compartments situation for classified information.

471

Reconciling CMW Requirements with Those of Xll Applications

Glenn Faden

Sun Microsystems, Inc.

Mountain View, CA 94043

© 1991 Sun Microsystems, Inc.

ABSTRACT

This paper discusses some of the issues in meeting the Compartmented Mode Workstation (CMW)
requirements while still supporting commercial applications. The reader is assumed to have a gen
eral familiarity with CMW and window systems. The security policy is summarized, and followed
by a discussion of how it has been interpreted in the real world of X11 programming. Applying re
strictions to the X protocol prevents clients from interfering with each other, while still providing
enough functionality to make these programs useful. Special considerations are given to the root
window, selections, grabs, and atoms to meet the needs of existing applications.

Keywords: Systems Application - Secure Architectures; Xll Window System'IM; CMW

"The essence ofsecurity is telling lies; the art ofsecurity is ensuring that it is done by suppressing
the truth rather than by inventing falsehoods."

David Rosenthal

1. 	 Introduction

The SunOS™ CMW Window System provides the user
interface for SunOS CMW. All user interaction with the
system is initiated through the window system. The win
dow system allows the user to perform multiple tasks
concurrently, and to operate at multiple sensitivity levels
in a single login session. The window system must be
trusted to provide the necessary mandatory and discre
tionary access controls (MAC and DAC) described in
[1], and to provide a trusted path by which users can be
assured that they are communicating with trusted appli
cations. The window system is based on the Sun's Open
Windows, and supports both the X Window System
protocol and Sun's NeWS protocol. Only the Xll proto
col [2) has been modified to meet the CMW require
ments~ the NeWS protocol which is based on the
PostScript language, is reserved for privileged clients.

Many papers have been written about the lack of security
in the X Window System [3, 4, 5]. Since X was designed
with insufficient mechanisms for enforcing security, pro
grammers have had to rely on conventions such as those
described in the Inter-Client Communications Manual
(ICCCM)[6] and those provided by various toolkits, to
provide some order in the X environment Many of the
solutions proposed for making X more secure have the
unfortunate side effect oflimiting the number of applica
tions which will run without modification. When at

tempting to support Commercial Off the Shelf (COTS)
applications, requiring even minor modifications be
come impractical. So we are left with the problem of try
ing to provide adequate security while imposing the
fewest restrictions on existing protocols and conven
tions.

The problems needing solution are:

• 	 to protect the data displayed by subjects
and entered by users from being read or
modified by subjects based on MAC and
DAC policies.

• 	 to prevent clients from interfering with the
security policy which includes the normal
operation of certain trusted clients like the
window manager and the selection agent.

Unfortunately the X protocol and the conventions of
most toolkits provide some very thorny problems in
meeting these goals.

2. An Xll Overview

The server provides the basic windowing mechanism. It
handles client connections, demultiplexes graphic re
quests onto the screens, and multiplexes input back to the
appropriate clients. It directly controls the keyboard,
monitor, and pointer. A client is an application program

472

connected to the window system server by an inte:rpro
cess communication path. The program is referred to as
a client of the window system server.

The X protocol deals with objects known as resources
which are maintained in the address space of the window
server. Some of these objects are created automatically
by the server, and others are created in response tore
quests from clients. The standard X protocol imposes
very few restrictions on access to these resources, and
they can normally be modified or destroyed by any client
connected to the server. Included in the list of X objects
are:

Window A window is an abstraction of a display
able region on the workstation screen

Pixmap A pixmap is a three-dimensional array of
bits. A pixmap is normally thought of as a
two-dimensional array of pixels, where
each pixel stores an N-bit value, where N
is the depth of the pixmap. Both windows
and pixmaps are referred to as drawables.

Property Windows may have associated properties,
each consisting of a name, a type, a data
format, and some data They are intended
as a general-purpose storage and intercom
munication mechanism for clients.

Atom An atom is a unique ID corresponding to a
string name. Atoms are used to identify
properties, types, and selections.

These resources are uniquely identified by numbers
known as XIDs which are used by the clients and the
server in protocol requests, replies, and events.

The X protocol also provides synchronization primitives
for clients to take control of certain resources. These are
known as grabs. Protocol requests exist to grab the key
board, individual keys, the pointer, or the server. When
the keyboard is grabbed no other clients can receive key
board input. When the pointer is grabbed, no other cli
ents Cal\,receive motion events or button press events.

3. 	 The Security Model

The trusted version of the Xll/NeWS Server is respon
sible for implementing most of the CMW security policy
for the window system. It is analogous to the UNIX ker
nel in that it maintains information and performs services
on behalf of many clients.The basic security model is de
fined in terms of subjects and objects. In the X Wmdow
System subjects are clients of the window server, and ob

jects are the resources maintained by the server. The fol
lowing security attributes are associated with clients in
SunOSCMW:

Sensitivity label 	 A classification and compart
ments set that is used as the basis
for mandatory access control de
cisions.

Information Label 	 A classification, compartments
set, and markings set that is used
to represent the actual classifica
tion and required handling of the
data with which it is associated.

UseriD 	 An integer which uniquely identi
fies a user. The server may share
the screen with multiple users.

Privileges 	 A set ofrights granted to a pro
cess to perform actions that
would otherwise be prohibited
by the security policy.

The SunOS CMW Window System maintains a sensitiv
ity label, an information label, and a user ID, for those re
sources that are created on behalf of clients. Normally,
when a resource is created, the client's sensitivity label
and user ID are applied to the resource. Access to these
resources are controlled by the server according to the
following policies:

• 	 A client cannot access any resource whose
sensitivity label is not dominated by that
of the client.

• 	 A client cannot modify any resource
whose sensitivity label is different from
that of the client

• 	 A client cannot access any resource whose
owner is a different user from that of the
client.

• 	 Resources that are created automatically
by the server during initialization are pub
licly accessible to all clients, but may not
be modified by them.

• 	 Appropriately privileged clients may vio
late any of these policies.

In addition to sensitivity labels, the server also maintains
an information label on each object that can be modified
by ordinary clients. The information label is initially sys
tem low. When an object is modified as a result of a client
request, the client's current information label is floated
up with the previous label of the object, to form a new la

473

bel. When an object is read by a client, the infoimation
label of the data associated with the object is passed back
to the client and conjoined with the client's process infor
mation label.

The mechanism for passing security attributes is imple
mented on top of the UNIX socket mechanism, and is
known as Trusted Sockets [7].The decision was made to
rely on Trusted Sockets, rather than extending the X pro
tocol to pass additional state infoim!Uion on each re
quest. Changing the X protocol was rejected because it
would restrict interoperability to those clients that were
recompiled with a non-standard X library. Furtheimore,
clients could bypass any such code that was placed in the
X library.

For window objects there are some extra considerations
for information labels. Since windows are maintained in
a hierarchial tree, the top of each client window subtree
has two special infoimation labels. The first is the display
infoimation label which is the conjunction of all the in
foimation labels of the windows in that subtree. The oth
er is the input infoimation label which is used to label
keystrokes which originate from any window in that sub
tree.

4. 'I'rusted Clients

Although the server is responsible for most of the access
control decisions in the window system, it does not de
teimine the user interface or the conventions for interac
tion between clients. There are a small number of
privileged clients that comprise the Trusted Computing
Base (TCB) user interface. These clients are responsible
for implementing specific CMW requirements, and are
generally independent of each other. This modular ap
proach allows the clients to perfoim their functions with
a minimal set of privileges and to be customized without
affecting other TCB components. Other CMW systems
have implemented all of these functions into the window
manager [8], or into a Security Services Client [4].

FIGURE 1. The Trusted Wmdow Fnme

4.1 Logintooi

Logintool is the first component of the SunOS CMW
Window System to execute. It is started by imt, and in
turn starts the Xll/NeWS server. After identification and
authentication of the login user, the session clearance is
determined from the intersection of the user's default
clearance and the maximum sensitivity label of the work
station. Once the user is given the chance to further re
strict the default session clearance, a new session is
established, and the rest of the privileged clients are start
ed by logintool. These include the window manager and
the selections agent, among others. These clients are crit
ical to proper operation of the window system. The sys
tem can be administered to cause an automatic logout if
any of these privileged clients exit.

Logintool also starts a user thread of execution for un
privileged processes to be initiated with the user's envi
ronment The processes started from this thread are
started with the same sensitivity label as the users's home
directory. This label is called the session low label.

4.2 The Window Manager

The window manager is based on olwm, the OPEN
LOOK Window Manager in Open Wmdows. In addition
to the functions noimally perfoimed by a window man
ager, oiwm. displays a CMW label (a combined informa
tion and sensitivity label) for each top-level window,
which accurately reflects the data in the window (and
subwindows), and displays an input information label for
each top-level window. See FIGURE 1.

Along the bottom of the workspace, the window manag
er maintains a dedicated region which is known as the
Screen Stripe {See FIGURE 2.). This area extends the
full width of the workspace and is not movable, resize
able, or obscurable. Its background color is distinguished

SECRET BRAV04 [TS A B SA SB CC]

Typical Window Title Here

474

FIGURE 2. The fonnat of the Secure Screen Stripe

[E1j \f CONFIDENTIAL NOFORN

' \f CONFIDENTIAL PROJECf X LIMDIS DIE NOFORN [TS A B SAC]

from the background color assigned to other objects ren
dered by the window manager. It provides a number of
trusted path functions:

• 	 it displays the input information label of
the window which has the keyboard focus.

" 	 it displays the CMW label of the window
associated with the pointer (either the win
dow containing the pointer, or the pointer
grab window).

• 	 it alerts the user to active pointer grabs and
keyboard grabs.

• 	 it provides confirmation that the user is
communicating with the trusted path by
displaying a trusted chevron W .

• 	 it provides an area on the screen from
which the trusted path menu can always be
invoked.

Applications which provide components of the trusted
path inherit a unique privilege from logintool. The win
dow server distinguishes all of the X resources created
by such clients by setting a flag in each resource XIDs.
Then the window manager examines this flag to deter
mine whether a window is associated with a trusted cli
ent.

When the pointer is in a component of the trusted path,
the trusted chevron Wappears in the lower left portion
of the screen stripe. When an untrusted client has affect
ed an active pointer grab, the pointer grabbed icon ap
pears. Normally this field is blank.

When the keyboard is associated with a trusted path win
dow, the trusted chevron appears in the upper left portion
of the screen stripe. When an untrusted client has affect
ed an active keyboard grab, the keyboard grabbed icon
appears. Normally this field is blank.

There are two choices for controlling the input focus:
click-to-type and focus-follows-mouse. When focus-fol
lows-mouse is selected, the input information label is up
dated whenever the pointer crosses a window boundary.

475

In click-to-type mode, the user must explicitly set the fo
cus using the SELECT pointer button before the input in
formation label is updated.

4.3 The Selection Agent

The selection agent is another trusted path component. It
is responsible for mediating inter-window data moves,
such as cut and paste or drag and drop operations. The
window server has been modified to redirect all selection
requests to the selection agent which then performs the
following trusted functions:

• 	 it prevents unauthorized transmission be
tween clients.

• 	 it provides an interactive confirmer for set
ting the information label of pasted data.

• 	 it identifies the selection holder and the se
lection requestor.

• 	 it provides a window to view the data be
fore accepting it.

The selection agent implementation supports arbitrary
types of selections including text, graphics, and binary
data. This provides greater support for COTS applica
tions.

4.4 The Workspace Menu. Manager

The workspace menu manager is a privileged program
which may be started from a user shell. Itprovides the in
terface by which the user may launch user programs at
sensitivity labels between the session low label and the
session clearance. This program runs with the user's en
vironment so that it may pass arbitrary parameters to any
program it launches. Programs may be latmched auto
matically from a start up file, or from a menu. Both the
start up file and the menu are user configured.

5. Special Considerations

Some resources and protocol requests present special
problems in terms of their effect on security and compat
ibility. The following discussion provides examples of
how we resolved these problems. Refer to [2] for addi
tional backgrmmd information.

5.1 The Root Window

The root window doesn't actually belong to any client,
although the window manager controls some of its be
havior. It is a public object, which by our definition
would not be writable by unprivileged clients, but would
be readable by any client. What we really care about,
however, is not whether anyone can write it, but whether
another6:1ient can detect that it has been written Further
more, we have tried to avoid returning errors for opera
tions which we can safely ignore. Since some clients will
terminate on a error replies, it is our goal to return the
fewest errors necessary.

We make a distinction between the window attributes,
which are protected at system low, and the actual draw
able, which is protected at the session clearance. Letting
any client draw on the root window (via Putlmage or
PolyLine) does not violate security, as long as we pre
vent the client from writing into any subwindows by en
forcing CiipByChildren mode. When a lower level
client attempts to read back the root window (via Getl
mage), it is given a constant value of all zeroes.

Protecting the root window drawable at the session clear
ance also solves another problem. Since all windows re
gardless of their sensitivity label are children of the root
window, the Getlmage must be constrained from return
ing those images of windows which the client does not
dominate. The production of such a sanitized view is a
difficult task, and is rendered unnecessary by this securi
typolicy.

Creating sub windows of the root window can be likewise
unrestricted, provided that other clients can not discover
the existence of such windows. The QueryTree function
has been modified to hide this information.

The server can ensure that the trusted screen stripe win
dow carmot be obscured, but clients must receive some
help here as well. The window manager can ensure that
the windows it manages are placed appropriately. Over
ride redirect windows, such as pop-up menus, should not
be clipped, and therefore the screen height returned in the

display structure (via XOpenDispiay) and the apparent
root window height returned by GetGeometry, is re
duced by the height of the trusted screen stripe.

In order for clients to receive events associated with win
dows, they must express interest in specific event classes
via CreateWindow or ChangeWmdowAttributes. We
restrict modifying the interest mask on windows that the
client carmot write. Expressing interest on the root win
dow would normally be okay, because clients carmot dis
cover the interest masks of other clients. Unfortunately,
many clients send events (via SendEvent) to the root
window, which in turn would then be delivered to any
client who had established a matching event mask on the
root window. Rather than limiting the delivery of events
based on MAC and DAC of the event, we have chosen to
prevent clients from establishing interest masks on the
root window as well. This does not affect most COTS ap
plications.

The policy for creating properties on the root window is
restricted to normal clients whose sensitivity label is
equal to the session low labeL Before the selection mech
anism was developed, X clients implemented cut and
paste operations by modifying CUTBUFFER properties
on the root window. This mechanism is now obsolete and
clients should rely on selections instead.

5.2 Grabs

Some CMW systems restrict clients from grabbing the
keyboard or pointer [5], except as passive grabs. There
striction is enforced because users may be unaware that
their keystrokes are being redirected However, this pol
icy limits the number of COTS programs that will run
without modification in the CMW environment. Grab
bing the keyboard is commonly done in notices, where a
carriage return can be used to select the default action,
and nonnal input must be suppressed until the user re
sponds. This is sometimes called a modal dialog.

SunOS CMW allows keyboard grabs by ·implementing
the following policy:

• Keystrokes are not delivered unless the
sensitivity label of the grab window domi
nates the input infonnation label of the fo
cus window.

" Keyboard grab states are displayed in the
trusted screen stripe. The server reports
keyboard grab status changes to the win
dow manager so that this state is continu~
ously displayed to the user.

476

" 	 A grab interrupt key is provided so that the
user may terminate excessively long or er
rant grabs. This grab interrupt key has pre
cedence over a nonnal keyboard grab.

When the server is grabbed (via GrabServer), the server
operates on behalf of the grabbing client, deferring re
quests from other clients. Server grabs can be used to
guarantee that the screen will not change during a se
quence of requests, or that certain state information will
remain consistent. There are quite a few problems that
server grabs represent:

• 	 First of all, a client can prevent the user
from performing any further operations on
that workstation. If the client cannot be
killed by some external means such as re
mote login, the system must be rebooted.

Second, the user cannot easily determine "
which client is doing the server grab, be
cause the server does not report status, nor
accept queries from any other client, in
cluding the window manager which main
tains the viewable system status in the
screen stripe.

.. 	 Third, there is no way to force a time-out
on server grabs.

Therefore, we have made the server grab a privileged re
quest Normal clients who attempt to do a server grab
will not be informed of the failure, however, because
there is no error defined for this condition in the X proto
col. Therefore, COTS applications will not be affected
overtly. However, there may be some side effects which
result from denying the GrabServer request. In practice,
these differences have proven to be minor.

5.3 	Override-redirect Windows

Menus and other pop-up windows are usually imple
mented as override-redirect windows. This means that
the wintlow is not reparented by the window manager
and does not receive the standard window border that is
applied to other top-level windows. Its label is displayed
in the screen stripe whenever it grabs the pointer, or the
user places the pointer over the window.

In SunOS CMW, an override window cannot get key
board input except by issuing a keyboard grab. It does
not have its own input information label, and cannot be
used to set the input focus via SetlnputFocus.

5.4 Transparent Windows

Normally windows are filled with a client specified back
ground before they can be drawn upon. However, a client
may specify a null background whereby the pixels that
were previously rendered by another client are left un
changed. This allows the client to create visual effects
like transparent shadows or windows which appear to
have irregular shapes, such as the OPEN LOOK notice
window. Unfortunately, these windows may contain data
from clients whose label dominates the client owning the
window. To prevent unauthorized data flow, the server
prevents clients from reading back the pixels of transpar
ent windows.

5.5 Selections

A selection agent is necessary to provide a way for cli
ents to complete such operations as cut and paste. In or
der to preserve isolation, clients must not be able to get
attributes which can be set by other clients. For example,
a client may establish itself as the owner of a selection
via SetSeledionOwner. If another client queries the
owner of the selection, the server will respond with the
redirected window of the Selection Agent.

When a client requests a copy of a selection (via Con·
vertSeledion), the request is redirected to the selection
agent, which in turn gets a copy from the real selection
holder. The selection agent (with input from the user) de
termines whether the requested data can be copied on to
the requesting client window property, and completes or
denies the original request. Although the default time-out
provided by most X toolkits is too short to allow enough
time for the user to examine the data, apply a label, and
confinn the request, this can usually be customized by
the user. If the toolkit does not provide a resource to al
low the user to lengthen the time-out period, the utility of
this mechanism is severely limited.

Some toolkits use multiple ConvertSelection requests to
pass attributes as well as data in cut and paste operations.
The user can configure the selection agent to automati
cally confinn the transmission of these attributes, subject
to the limits of the covert channel policy.

5.6 Atoms

During each login session, the window server keeps an
internal list of all predefined atoms and their correspond
ing name strings. Clients can make a new entry (by using
IntemAtom request) in the server's internal list, creat
ing a new atom and specifying the name associated with
this atom.

477

The client-created atom will remain defined even after
the client who defined it has exited. Therefore, the own
ership information about which client created an atom is
not valid after the client has disconnected from the serv
er. In the SunOS CMW Window System, there is no
ownership information associated with an atom. More
over, once an atom is created, the window server does not
provide any request to change the string associated with
an atom identifier. Thus an atom can be considered as a
read-only object after it is created.

To prevent information from being passed through atom
names, some CMW systems polyinstantiate atom IDs at
eaCh sensitivity level at which they are interned. As anal
ternative, we can associate with each atom all the sensi
tivity levels at which it has been interned. Clients cannot
read the string associated with the atom (via GetAtom
Name) unless their sensitivity label dominates a label at
which the atom was interned. Therefore the ID for any
atom string can be a constant within the login session;
trusted clients, like the selection agent, don't have to do
translations from one labeled name space to another.

5.7 Connection Access Control

The SunOS CMW Window System enforces two restric
tions with respect to connection requests:

• 	 The user ID of the client must be in the ac
cess list provided by the login user.

• 	 The sensitivity label of the client must be
dominated by the session clearance of the
login user.

Because the system requires the use of Trusted Sockets
to connect to the window server, we do not rely on any
special authentication scheme, such as Ketberos or MIT
MAGIC-COOKIE-1. In the CMW environment, the
network is assumed to be trusted, and the user credentials
supplied by the socket services are used without authen
tication by the X server. Instead, we provide a trusted
tool that allows the user to grant or deny access to indi
vidual users based on the username. This server access
control list is maintained by using the existing host list
protocol (C.IumgeHosts), except a new address family is
used to specify the valid usernames. Since the security
attributes are retrieved from the connection as socket at
tributes, the client does not need to be aware of the access
control mechanism. No changes are required to the X li
brary and the existing address families, Internet, DEC
net, and Chaos are simply ignored

478

In addition, privileged clients may set the label of their
connection and assert privileges via the connection. The
X server allows clients which have asserted appropriate
privileges to bypass certain security policies.

6. Conclusion

While there are quite a few additional considerations for
applying security to the X protocol, the issues discussed
here are representative of the general solution. Although
[1] imposes severe restrictions on the X11 environment,
it is still possible to run many COTS applications. By
careful analysis and flexibility, Sun has met the security
goals and still provided enough compatibility with exist
ing conventions and toolkits, so that the commercial
goals have been met. The application of the security pol
icy has been carefully applied to each protocol request
and each object to prevent the policy from becoming un
necessarily restrictive.

References

[1] 	 Security Requirements for System High and
Compartmented Mode Workstations. John
P.L.Woodward, MITRE MTR 9992 Revision 1,
DIA Document Number DDS-2600-5502-87.
November 1987.

Xlib Programming Manual, volume 1 & 2. A.[2]
Nye. O'Reilly and Associates, Inc., 1988.

[3] 	 LINX - a Less INsecure X server. David. S.. H.
Rosenthal, Sun Microsystems, Inc., April
1989.

[4] 	 Trusted X Window System, Volume 1: Design
Overview. J. Picciotto, MITRE, February
1990.

[5] 	 An Xll-based Multilevel Window System Ar
chitecture. Mark E. Carson, Janet A. Cugini,
IBM

[6] 	 X Window System: Version 11 - Inter-Client
Communications Conventions Manual. David
S.H. Rosenthal, MIT X Consortium, January
1989.

[7] 	 Trusted Interprocess Communication. Secure
Ware.

[8] 	 CMW+ Trusted Facilities Manual. Secure
Ware, January 1990.

[9] 	 A Proposal for an Xll Protocol Extension to
Implement B1/CMW Secure Workstations. E.
Cande, Digital Equipment Corporation, Janu
ary 1990.

[10] 	 Xll/NeWS Design Overview. R Schaufler,
Sun Microsystems, Inc.,

[11] 	 Xlib - C Language X Interface. Protocol Ver
sion 11. R. W. Scheifier, R. Newman, J. Gettys,
Massachusetts Institute of Technology, Sep
tember 1987.

[12] 	 X Window System Protocol Specification, Ver
sion 11. R. W. Scheifier, Massachusetts Insti
tute of Technology, September 1987.

[13] 	 The X Window System. R. W. Scheifier, J. Get
tys, ACM Transactions on Graphics, Vol. 5,
No.2, April1986, Pg. 79-109.

Trademarks

UNIX and OPEN LOOK are trademarks of AT&T.

The X Window System is a trademark of MIT

PostScript is a trademark of Adobe Systems.

SooOS, OpenWindows and NeWS

are trademarks of Soo Microsystems.

479

RESTATING THE FOUNDATION OF INFORMATION SECURITY

Donn B. Parker

SRI International

Menlo Park, California 94025

INTRODUCTION

Information security is unlike other information technology disciplines yet its development has
progressed as if it were the same, addressing purely technical issues. Other disciplines in
information technology seem to have no devious potential adversary, save the usual complexity
and problems in logic. In security, however, we must add the challenge of active, unpredictable
human adversaries accidentally or intentionally causing failures and losses in systems.
Adversaries have great freedom in attempting to achieve their often-changing goals.
Technologists and systems managers who are inexperienced in loss events and untrained in
security must nonetheless protect assets-including new assets-created by users and fixed in
time, place, and form, often with little correct intelligence information about adversaries' plans or
actions or about users' needs for protection.

Consequently, security technologists and architects tend to use their information systems,
technical background, and knowledge to create static, artificial, predictable, and sometimes loose
systems of controls that protect against only those adversaries they can imagine and against
limited, idealistic attacks, ignoring the remaining huge array of possible adversaries and their
methods of attack. For example, an espionage agent whose motivation is hatred for his target
might fail in his attempt to obtain and disclose secret information in a Trusted Computer Systems
Evaluation Criteria (TCSEC)l B2 rated system but then change his goal and proceed to do far
more harm by destroying the information instead. The system design protected against the loss
of secrecy but not the destruction of information, loss of availability, or damage by failure of
authorized persons to act when necessary.

The TCSEC Trusted System Criteria (Orange Book), the only formalized system of security
controls for confidentiality that exists, is an example of this narrow technological approach.
This set of criteria is also the only known one that meets the U.S. National Security Agency
(NSA) mission goal of protecting the secrecy of information in multilevel security military
systems (the mission of protecting military systems from fraud and loss of integrity and
availability is the responsibility of other military organizations such as intelligence, police, or
audit). The Orange Book deviates from the common definition of data integrity by defining it as
"The state that exists when computerized data is the same as that in the source documents and
has not been exposed to accidental or malicious alteration or destruction." The U.S. Federal
Information Processing Standard 732 uses a similar definition that is in disagreement with the
common meaning, which is limited to wholeness and completeness, not conformance to fact or
reality.

Another example is the "Draft #2 July 23, 1990, Guidelines and Recommendations on Integrity"
prepared for the Third Integrity Workshop, September 26, 1990, at the National Institute of
Standards and Technology (NIST)3. This is one of the best available documents on integrity, yet
its contents are still flawed by the failure of attendees at the first two workshops to reach
agreement on a definition of integrity. Unfortunately, the attendees decided to narrow the
definition to focus on one component of integrity that all could agree upon and move ahead
toward the solution in the hope that a better definition would evolve. The component of integrity
they chose was "ensuring that data changes only in highly structured and controlled ways"-an
approach and definition that pose serious fundamental problems.

©1991 Donn B. Parker

480

In the frrst place, security cannot ensure (make certain or guarantee) anything. The limits of
security are to preserve information assets from loss and to do what the owners want done if their
information is attacked. Ensuring, however, is the role of owners, system designers,
implementors, managers, users, and quality control engineers. Second, integrity deals with
wholeness and completeness, not accuracy, correctness, and precision resulting from direct or
indirect change. Information could lose its integrity completely yet not change at all if, for
example, the specifications of wholeness and completeness change. There are two separate
purposes to control the change of information. One is to preserve its intrinsic form,
completeness, and wholeness for integrity. The other is to preserve its extrinsic state of
conformity to fact and reality for authenticity. Finally, the definition of integrity is faulty
because it states only how to achieve integrity but does not actually say what integrity is.

The basic problem is that integrity is only one of two important security attributes to consider.
The other attribute is authenticity, meaning conformance to fact and reality, of undisputed origin,
and genuine, or true. If the Third Integrity Workshop had addressed this duality, then one
component of preserving both integrity and authenticity would definitely be allowing users to
change information only in highly structured and controlled ways to preserve its completeness
and genuineness. However, this component would still be deficient because it would not include
anticipating changes to external conditions or values that cause a loss of authenticity.

The remainder of this paper points out the looseness, inconsistency, and lack of completeness
that typify even major efforts (heroic as they may be) to specify major systems of security
controls or to reach practical and consistent answers about the nature and scope of information
security. If such limitations can be overcome in other disciplines of information technology,
why not in. security? The answer is that an operating system, for example, is acceptable if it
mostly or partially works; partial success, however, is not enough in security where the
adversaries. are intelligent humans, not technical barriers. If it is to succeed, security must be
sturdy and have a tight enough weave to avoid fatal flaws that skilled and determined adversaries
can exploit. It is measured by its weakest point. In contrast, an operating system is measured by
the sum of features that work correctly minus the sum of its misoperating features. An operating
system with flaws maystill be acceptable.

RESTATING THE FOUNDATION OF INFORMATION SECURITY

The generally accepted definition of information security is preservation of confidentiality,
integrity, and availability (some say continuity instead of availability) of information. In
addition, information losses are generally said to be from modification, destruction, disclosure,
and use. The four losses loosely match with the three attributes in obvious ways (i.e.
confidentiality with disclosure), and these attributes and types of loss have for many years
seemed complete, comprehensive, and adequate.

These three attributes, the four types of loss, and the methods of achieving and preserving
security are in fact incomplete, dangerously simplistic, and inconsistent; consequently, they are
failing. Their widespread acceptance has led to an inability adequately to define the terms used,
as the Introduction indicates. Their use (as well as technological limitations and special interests
of sponsoring organizations) has led to suboptimization of security and makes secure system
models such as the Trusted System Criteria and Clark-Wilson Integrity Model4 difficult to match
with the attributes and especially with the types of losses. Such deficiencies make systems that
use the policies in these models obvious targets for misuse outside of their intended narrow and
incomplete single-attribute purposes, for example, causing loss of availability of a TCSEC
evaluated secrecy system or violating the confidentiality of information stored in a Clark-Wilson
Integrity system.

481

Another deficiency relates to availability. Availability refers only to being present or accessible
for use and does not encompass usefulness and fitness for a purpose. Therefore, another attribute
is necessary to preserve usefulness of information as well as its presence.

The solution is to expand the three attributes of security by adding authenticity (genuineness,
conforming to fact, or correct) and utility (fitness for a purpose) to the original three-integrity,
confidentiality, and availability-and to replace totally the loss types with the inverses of the
attributes, for example, loss of integrity. Computer systems must then maintain all five attributes
at an acceptable, evaluated level to be secure in any combination of attributes or any single
attribute. This would avoid the current attempts to extend the common meaning of integrity to
include accuracy and correctness and availability to include usefulness. The remainder of this
paper supports these proposed changes on the basis of actual and anticipated loss experience and
of generally accepted defmitions, showing the appropriateness, applicability, consistency.
comprehensiveness, and benefits of the proposed new attributes of information security and loss.

The results of this effort should advance toward solutions of the definitional and scoping
problems in the information security field, provide a truly comprehensive identification of all
known types of information losses to be protected against, and aid in producing comprehensive,
consistent, and more effective systems security policies and models. Authenticity and utility add
explicit preservation objectives of conformance to fact and fitness to function, respectively, to
each of the five levels of abstraction-information, applications, operating system, hardware
(including communications hardware), and information workers (users). A matrix providing
specific defmitions, control examples, and types of loss for each combination of attribute and
level appears in Table 1. In this table, each level (column) represents an object with the property
of the designated attribute (row); for example, an application loses confidentiality as a result of
piracy or espionage, and the specified controls protect the confidentiality of the application.
Another useful matrix would treat each level except information as a subject acting to preserve
the attribute of the lower levels to the left in the matrix, treated as objects; for example, an
application protects the confidentiality of information by limiting distribution of data to
programs on a strict need-to-use basis.

Other approaches to the foundation issue are less formal. One concludes that the whole subject
is relatively unimportant and is at the level of how many angels can dance on the head of a pin.
In this approach, the objectives of security are open-ended; confidentiality, integrity, and
availability are acceptable descriptors if one interprets them in very general ways (e.g., integrity
includes correctness and therefore the addition of authenticity is unnecessary). Another approach
is conservative in concluding that security should limit itself to attributes that have yes or no
achievement answers, and that one should ignore correctness and conformance to the real world
requiring user or owner judgment until the more intrinsic purposes are accomplished. This
conservative approach would result in rejecting the Clark-Wilson Integrity Model, leaving the
model to the accounting profession to implement, and concentrating on preserving the
authenticity of information but not its conformance to requirements outside of computer systems.
Such an approach would cover theft of information but not fraud. This paper rejects these
approaches in an attempt to achieve a comprehensive, definitive foundation or at least make
progress toward that goal.

Security practitioners could apply the conclusions in this paper to help ensure that the tests they
are applying to their risk assessments, security reviews, controls selection, and implementation
are truly anticipating the complete, material range of threats and countermeasures. For example,

482

Table 1

LEVELS OF ABSTRACTION ADDRESSED BY SECURITY ATTRIBUTES

Control examples

Loss examples

Control examples

Loss examples

Control examples

Loss examples

nrormataon

,iffiiiOO access to code
and use.

Copyngnt. patent.
enc~o~testand
production separatio~

al-access locks,

·esting, maintenance

arcware sers

ser-controlloo access
use of private personal
information.

"""00
w

Control examples

Loss examples

AvailabUUy

Control examples

Loss examples

adding utility extends their charter to help preserve the usefulness of computers as well as their
availability. Freedom from the constraints of the four old types of loss from modification,
destruction, disclosure, and use encourages practitioners to consider real additional threats such
as sabotage by workers who fail to act when required or maliciously conform to the rules, fraud
by misrepresentation or repudiation, and denial of computer services by slowing responsiveness
or prolonging the response. Forcing integrated attributes into systems of controls policies will
accelerate our advancement beyond the narrowly defined TCSEC and Clark-Wilson criteria to
computer products that are secure from the full range of threats, not just from subsets that
adversaries can easily subvert by changing goals to attack where controls are lacking.

This paper presents each of the attributes separately in more detail, with discussions on how to
integrate them, put them in a more appropriate priority order, evaluate them in security reviews,
and use them better to categorize types of losses. However, security policies, criteria, system
models, and architecture require modification to account for the extended attributes and address
them in integrated fashion to achieve practical and effective information security.

Confidentiality

Considerable knowledge about confidentiality and how to protect it is available, at least within
simple computer systems if not yet within networks of computers. Achieving confidentiality
requires numerous controls that have other purposes as well, such as authenticity. Starting with
the various dictionary definitions (on the assumption that security definitions should at least be
consistent with traditional definitions), we have no trouble with confidentiality: the state of
being private or secret, known to only a limited few. This definition is totally consistent with the
best computer systems criteria, TCSEC and the Bell La Padula model5 that implements the U.S.
Department ofDefense secrecy policy.

Disclosure is well accepted as the primary violation of confidentiality. However, a person may
think certain information is confidential, but if someone has changed the information it may have
lost confidentiality because the change signaled an application program to drop protection.
Modification of confidential information, or lack of modification, may violate confidentiality
without actually disclosing the information. Thus confidential information that someone has
secretly changed may no longer be confidential because it is different. In addition, some would
say that deriving information about confidential information or its use, or making inferences
about that information without disclosure-such as from traffic analysis-is loss of
confidentiality, although the loss may not be obvious. Therefore, we cannot limit confidentiality
to the threat of direct disclosure.

Application of the need-to-know principle is the accepted determination of confidentiality. Users
and system processes should receive only the information necessary to do their jobs, and in the
default or starting state they possess no information. This is appropriate in a military type of
system, in which military rules of order prevail and which assumes continual threat from an
adversary with unlimited resources. However, in business environments, values of trust, ethics,
and friendliness prevail to increase profits, productivity, and growth and are usually more
important than confidentiality. The need-to-know principle here may be stifling and
inappropriate. In a business environment, the inverse principle-need-to-withhold-is often
more appropriate, with a default or beginning state in which all infonnation is freely available.
Only the small amount of infonnation that is truly confidential is withheld and available only to a
few.

The conclusion is that confidentiality is well understood and that the dictionary definition is
adequate and consistent with security purposes. Both principles of need-to-know and its inverse,

484

need-to-withhold, meet confidentiality requirements. However, the threats to confidentiality go
beyond the most obvious, disclosure type of loss .to encompass an open-ended set.

Authenticity

Authenticity is, by common definition, the state of being true, real, or genuine; worthy of
acceptance by reason of conformity to fact and reality; of unquestioned origin; not copied,
original; properly qualified; possessing authority not open to challenge. Authenticity of
information refers to its extrinsic correct or valid representation of that which it means to
represent. Timeliness of information is an authenticity issue since conformity to fact and reality
would preclude obsolete information that no longer represents present reality. A representation
of money will show a sufficiently accurate and precise amount (number of digits) to be accepted
as correct in whatever national monetary units. A program is authentic if one can trace its
provenance back to include the original copy and can show authorization for all changes.
Hardware is authentic if it comes from the vendors specified. People are authentic if they can
prove that they are who they claim to be. None of the definitions use the synonyms correct or
accurate. However, inclusion of the idea of conformity to fact and reality seems sufficient reason
to adopt the words correct and accurate as synonyms of authentic. Thus authenticity refers to
extrinsic states whereas integrity refers to intrinsic states of information, applications, operating
systems, hardware, and users.

Integrity

Integrity is the most difficult concept to consider because it is already in common (but incorrect)
use in information security as encompassing both intrinsic and extrinsic states. However, by
severely limiting the defmition of integrity to "being in an unimpaired condition, sound, adhering
to a code of values, a state of completeness and wholeness," we can assign word its proper
place among security attributes. Applied to information, it means that all of the information is
present and accounted for (not necessarily accurate or correct). Integrity thus plays a more
limited role and need not be the subject of a separate system policy as confidentiality is. This
oonfmns the idea that the Clark-Wilson Model is primarily a policy preserving authenticity and
integrity of information rather than integrity alone. Integrity has a greater role to play at system
policy and user-policy levels of abstraction than at the information level

Information integrity means that when a user moves or communicates information, that
information starts and ends in the same state of wholeness, unimpaired condition, and
completeness. No parts of the information are missing or concatenated, encrypted, or converted
in any unanticipated ways. These considerations are independent of whether the information is
correct (authentic) at any given time. The information could lose authenticity if a user failed to
make corrections to it between the beginning and ending states, yet it would conserve its
integrity by remaining whole, unimpaired, and complete.

The International Standards Organization (ISO) recognizes authenticity and integrity as separate
attributes in the Open System Interconnection Basic Reference Model6 by defining authenticity
as assurance that the data source is the one claimed (correct}. Integrity is defined as assurance
that the data sent and received are the same (nothing says or implies that the data are necessarily
correct) without insertions, duplications, modifications, or resending.

Information integrity controls consist primarily of checks for intrinsic problems of missing data
in fields, records, and files; checks for missing fields, records, and files of variable length and
number; and check bits and bytes, hash totals, and message and transaction sequence checks. At
higher levels, integrity concerns completeness, compatibility, consistency of performance,
history, failure reports, and communication between levels. user level, honesty,

485

forthrightness, loyalty, and ethics are key integrity factors. A background investigation of a
person's past helps determine his or her integrity.

Utility

Utility means the state of being useful or fit for some purpose, designed for use or performing a
service. The preservation of utility for security purposes becomes quite clear with this definition.
Information utility means that information must be useful, for example, in such a way that it may
be tested to determine if it is authentic or has integrity. Information has utility if it is in a directly
useful form (e.g., expressed in the expected units of dollars, not yen). One way to sabotage a
system of accounts while preservin~the other attributes of integrity, authenticity, availability,
and confidentiality would be secretly to convert all U.S. monetary values to the correct values in
yen. Utility loss can occur--and availability remain untouched-when information is encrypted,
a source program is without a compiler, hardware has no power, or a computer user is too tired to
work.

Availability

A vailab:ility is the least understood and most ignored purpose of security, with the exceptions of
recovery planning and backup. Formal security policies usually omit it. And in the form of
recovery planning as a means of restoring information services it often appears as separate from
security. In a broader context, this is the arena of business resumption planning. Availability is
defined as the state of being present, accessible, or obtainable; capable of use for a purpose,
immediately utilizable. The difference from utility (usefulness rather than usability) is
significant; availability means that something is usable for a specific purpose at a specific place
and time and is ready for immediate use, independent of whether it is useful.

The primary controls that help preserve availability are redundancy, data backup, and protection
from physical harm. The application of these controls is usually external to systems and
therefore is usually missing from the security aspects of systems architecture or design.
Exceptions are built-in hardware redundancy, applications checkpoint :restart capability, and
electronic vaulting of data. The design of operating systems also facilitates the backup, physical
removal, and restoration of data. Availability may become a more inclusive purpose in systems
security policy as systems assume more control over their physical environments and redundancy
and backup can become more automatic, as with electronic vaulting.

INTEGRATING THE ATTRffiUTES OF INFORMATION SECURITY

Security consists of preserving the attributes of confidentiality, integrity, authenticity, utility, and
availability and the unique, nonoverlapping values each represents. Security technologists
attempt to categorize controls for a specific purpose, such as by the use of passwords for
authentication, cryptography for confidentiality, and systems of controls such as the TCSEC
criteria for confidentiality and the Clark-Wilson Model for integrity and authenticity. Such
categorization, however, may suboptimize the security of a system for only one or two attributes,
whereas adversaries' strategies in attacking systems are not so constrained and leave the systems
even more vulnerable to attacks on the missing attributes.

Each control has several purposes, direct or indirect, for protecting information, systems, or
people (e.g., TCSEC includes some integrity value, helps assure availability, etc.). This also
means that the Information Technology Security Evaluation Criteria 7 (ITSEC, the new draft
criteria in Europe) is faulty in dividing its functionality by attribute. For example, Tandem has
been forced to seek both the German F2 Confidentiality and F7 Availability categories of
evaluation for their Nonstop System product. But the product possesses other security purposes

486

of integrity and authenticity that the evaluation does not :recognize. One result is that these
evaluations aid attackers by guiding them to attack evaluated systems for purposes and in ways
in which the systems have not been evaluated. Systems must be evaluated and rated secure to
varying degrees in all five respects to demonstrate their complete range of security or lack
thereof.

Authenticity of a computer program or system means that all its desired features (vendor, color,
size, contents, parameters, code, constants) are acceptably correct. Utility means that when in
use it works in some useful way, although not necessarily correctly. Integrity means it is all
there, with parts, documentation, code, etc. in the right order or position. Availability means
that it is in the right location or that someone in a desired location can use it. Confidentiality
means that unauthorized persons don't know about its existence, about certain of its qualities, or
about certain contents (when it may be okay to know about its existence). Each security attribute
applies unique values that the others do not provide. Ifany attribute is missing or lost in the face
of any material threats, security will be deficient. The addition of any other specific attribute,
such as reliability or auditability, will alter security, will not focus on protection from loss, or
will encroach on other subjects.

Although defining security policy for one attribute to be preserved may be useful for theoretical
purposes, in practice system security must be seamless in all aspects because adversaries are
likely to switch from one goal to another. The overall purpose is to protect from all kinds of loss,
and means of protection from loss are so diverse that controls overlap in purpose.

The TCSEC focuses almost entirely on confidentiality because that is the mission of its creators.
Only a small serendipitous integrity and authenticity value is apparent. The Clark-Wilson
Integrity Model calls for a TCSEC Trusted Computer Base almost as an afterthought and doesn't
specify how to integrate it, although others have discussed this issueS, 9, 10. However, the
definition of security must incorporate all attributes simultaneously to guard effectively against
any adversary who can (and likely will) switch from one goal to another in attacking a system.
The information security community must reach agreement on generally accepted models and
develop prototypes for integrated attribute system policies before evaluation criteria at the level
ofTCSEC and ITSEC can be successful.

Should integrity include authenticity, as current practice assumes? The primary reason for not
doing so is that events could occur in which integrity could be preserved and authenticity lost (or
the converse) in a way that has security implications. If the two exist in combination, the loss of
one aspect of integrity or of authenticity would cause the entire attribute to be lost. Therefore,
the two attributes must be separate. Similarly, should availability include utility? The answer is
the same; usefulness and usability are different, and one can exist without the other.

Priority Treatment of Attributes

A listing of the five attributes in order from most to least attention received would show
confidentiality first, and then availability, authenticity, integrity, and utility. Confidentiality is
fmt because ofthe massive efforts by the U.S. NSA to preserve military and diplomatic secrecy,
which resulted in the Orange Book and TCSEC evaluation program. In addition, civil rights
advocates have worked intensively to preserve personal privacy, thus increasing the need for
confidentiality. Availability is next because of the great efforts of users and the service industry
to provide recovery of information and information services. Although these availability efforts
may be of poor quality in many cases, they are quite widespread. Authenticity, integrity, and
utility are mostly achieved in application controls that derive from traditional accounting
practices, and many security practitioners consider them routine and mundane. This is
unfortunate and short sighted.

487

Security attributes should appear in the order of general importance to encourage more prudent
attention. This order would be availability, authenticity, integrity, utility, and confidentiality,
even for military and diplomatic purposes. If information and services are unavailable, all else is
immaterial, and no other security problem exists. Therefore, the frrst order of business of any
information security effort is at least to provide adequate backup copies of information, alternate
services, and contingency plans for unavailability of services. Next, information and services
must be genuine, then complete, and then useful in that order. If information and services are not
available and genuine, then whether they are complete is immaterial. The user can often make
information complete and restore it to usefulness by increasing the effort or using additional
means; the loss of these attributes is therefore often retrievable.

After all these attributes are achieved and preserved, the relatively small amount of information
that is secret is worthy of and could benefit from confidentiality controls. This order of
importance is as applicable to personal information and military and diplomatic information as to
other information. The value of the small amount of secret information is often not totally lost if
confidentiality is lost, although in some cases the consequences of lost confidentiality could be
devastating.

Many examples of information and services require a different order of priority of security
attributes than the canonical one proposed above. However, for general applicability and in the
absence of special conditions, the proposed order makes sense at least from the intrinsic security
perspective as an end in itself.

The Security of Security

No information or mechanism in a system is more sensitive than the security controls.
Therefore, in addition to the usual performance goals such as applicability, throughput, cost
effectiveness,. reliability, and speed of calculation, security controls must meet the security
attribute requirements as well. For example, the reuse of residual information control that
invokes confidentiality and has an impact on availability and utility must itself possess the
security attributes in its design, development, implementation, use, and maintenance. It must be
available at the proper time and place, have utility for all its purposes and for no unauthorized
purposes, be complete in meeting all its specifications correctly (have integrity and authenticity),
and satisfy any secrecy of mechanism and applicability requirements. These attributes also apply
to the entire information security activity in an organization, including its loss experience
information files, security standards, and security meetings. Security controls do not represent a
level of abstraction in terms of information, applications, operating system, hardware, and users
since controls exist at aU of these levels. Therefore, their inclusion as another column in Table 1
is not appropriate, which is why the need for the security of security controls appears here as a
separate topic.

TYPES OF. LOSS

Loss is as complex as all human thought and action that might occur accidentally or intentionally
to cause the loss; it is the stuff of human history as well as of detective fiction. Means of causing
loss can be categorized only incompletely in ways that always leave the next possible
uncategorized means of causing the next loss a mysteryll. While technologists were trying to
solve the Trojan horse attack problem, the virus variation became the next problem, followed by
the worm. What new intensely publicized, intellectually stimulating crimoid will appear next,
the weasel? There will always be a new problem to facel2.

488

Security is most often defined as protection from specific threats of modification, destruction
disclosure, and use (or denial of use) that cause losses. However, security must also addres;
many threats not included in or not obviously derived from these four acts. Repudiation,
replacement, misrepresentation, taking, failure to act, malicious conformance, intimidation,
renaming, delay or prolongation of use, and inference are also threats. Dangerous
suboptimization occurs when security is restricted to defense against only four of the possible
threats. Security practitioners attempt to relate each of these four threats to each of the three to
five attributes preserved by secUrity. Unfortunately, this also fails (e.g., modification can destroy
confidentiality and availability as well as integrity and authenticity). The four threats have
internal redundancy as well (e.g., modification could be destruction and vice versa).

The only comprehensive and unambiguous way to state all types of losses is in terms of the loss
of availability, authenticity, integrity, utility, and confidentiality of information. ·We must
abandon the current limited description of losses in terms of modification, destruction,
disclosure, and use.

The Coverage of Threats Problem

The most difficult and critical problem in protection of information systems is how to specify
prudent controls that reduce all material threats to acceptably low levels of likelihood of
occurrence-the coverage problem. Controls must cover all material threats, because adversaries
will tend to cause losses where coverage is the weakest or does not exist, since their objective is
to make desired gain (cause loss) in the most effective and safe ways they can with minimal or
most attractive type of effort. Therefore, coverage will be measured by its single greatest
deficiency rather than the sum of its weaknesses, because the purpose of security is to prevent
any intolerable single loss. (Many tolerable losses could occur where protection is not worth the
effort, constraints, or cost.)

The best way of reducing the coverage problem is to know as much as possible about threats and
about controls, in order to match them up to achieve best coverage. The objective is to discover
coverage deficiencies (vulnerabilities) before any adversaries take advantage of them. Some
deficiencies can also be discovered and corrected before some adversaries with limited
capabilities act, thus reducing the number of effective adversaries. Identifying a consistent and
complete set of threats and a complete and well-ordered set of controls is the most critical aspect
of achieving coverage. This can best be done by having a complete and consistent set of security
attributes and by labeling the threats with the same attribute names as the categories of controls
(e.g., authenticity loss and authenticity controls).

INDEPENDENCE AND COMPLETENESS OF ATTRWUIES

This expansion of the information security foundation advances independence of meaning among
all five attributes and absence of any overlap or obvious incompleteness (leaving vulnerabilities
unaddressed at any level of abstraction). Each attribute can be applied independently, but all
should be present where general risks of loss exist (e.g., authenticity can be lost whether integrity
is preserved or not). However, preserving one attribute may preclude, at least partially, the
preserving of another. For example, the requirements for data base authenticity may be in
conflict with the requirements for confidentiality. Confidentiality requires that users be denied
read access to data for which they have no authorization. However, authenticity constraints can
be defined over data in different security access classes in such a way that information from one
class may leak over into another. For example, if an authenticity constraint requires that changes
to data at one class reflect indirectly in the value of data at another class, then the authenticity
constraint mechanism could be used as a covert channel (because varying data in one class could

489

make detectable changes to data in another class). The solution requires a compromise in the
security policy or a redefinition of the security requiremems13.14.

Synonyms for the attributes help to demonstrate their relationships:

Availability presence
Authenticity genuineness
Integrity completeness
Utility usefulness
Confidentiality s~crecy

Examples of how the loss of a single attribute could occur without the loss of the others provide
further insights. A loss of each attribute ofmy birth date (10-9-29) could be as follows:

Attribute Loss Comments

Availability
Authenticity
Integrity
Utility
Confidentiality

111 8 301
110 291
no 94627
10 9 29

110 9

1

291 Misplaced
Wrong
Incomplete
Partly useless
Visible

The enclosures indicate thaf secrecy controls apply. The usual U.S. rules apply to the format and
coding. The year 4627 is valid in the Chinese lunar calendar.

Do other attributes require preservation for security? Accuracy and precision come under
authenticity. Auditability might be a candidate; however, auditing as in monitoring, analyzing
performance, or testing seems to be a second-order function or control acting to preserve the five
attributes rather than being another one. Also, all of the attributes seem necessary in achieving
auditability. Continuity .seems crucial in achieving and. preserving each attribute; timeliness and
veracity are aspects of authenticity. I initially chose functionality, the state of being usable, as an
attribute, but finally it seems to be a part of availability, whereas utility, the state of being useful,
seems to be distinct from availability.

A difficulty in adding authenticity to the list of attributes is that this term already has a traditional
use. Authenticity has referred exclusively to authentication of users. However, nothing
precludes its application to new uses in security. Authenticity still applies to identity of users,
but it now will also apply to applications, operating systems, controls, and information. All
levels must be authentic as well as possess intrinsic values of integrity and utility, and security
must preserve all five attributes to achieve protection from accidental or intentional loss.

MEASURING INFORMATION SECURITY

Security is said to be for reducing loss and the risks of loss. Security actions can also be
functionalized to avoid, deter, prevent, mitigate, detect, recover from, apply sanctions against,
transfer (insure against), and correct loss and the risk of loss. In addition, security has the
equally important objective of meeting a standard of due care, although this may be argued to be
the reduction of the risk of negligence. Meeting a standard of due care is at least as important as
reduction of risk, when risk of loss exists in both cases. Due care (or diligence) means that one
has employed controls deemed prudent by a sufficient number of others in similar circumstances
or employed controls that are sufficiently available, low in cost, and meet intended objectives. In
addition the standard of due care includes the option of bypassing the use of accepted controls by
establishing prudent reasons before the fact.

490

http:requiremems13.14

At least four different standards of due care exist for legal, professional, insurance, and
functional purposes. The functional purpose is a catchall that could include avoidance of
embarrassment, avoidance of ~ial or business dysfunction, or avoidance of economic or human
loss. Meeting the legal standard of due care means winning or avoiding negligence or liability
litigation and avoiding government penalties. The professional standard of due care exceeds
legal requirements and requires meeting a code of ethical conduct as stated by a professional
society or association or employer. The insurance standard of due care means ability to transfer
loss to an insurance company.

Measuring security by risk of loss is less important than meeting a standard of due care (avoiding
negligence) in achieving security and justifying adoption of controls and systems of controls.
The quantification of risk for security purposes is generally not possible anyway, since sufficient
loss experience is lacking for valid statistically based prediction and its application to a specific
instance. "We don't know what we don't know."

CONCLUSIONS

At the earliest opportunity, all organizational policies, standards, guidelines, reports, and training
materials should change to reflect the new foundation. The new five attributes are easier to
remember when expressed as three, with only one small compromise of priority: 1) availability
and utility, 2) integrity and authenticity, and 3) confidentiality corresponding roughly to control
of existence, change, and access. Information security reviews or audits should test for each
vulnerability coming from a lost attribute individually in this order (e.g., lack of controls to
adequately preserve availability, especially while the remainder of the review or audit effort is
going on, then authenticity, and so on). This process will encounter absence or presence of many
of the same controls repeatedly, but that is expected since a vulnerability or a control will have
direct or indirect impacts on the preservation of all five attributes. In fact the same vulnerability
or control can have a negative impact on preserving one attribute and a positive impact on
preserving another (e.g., encryption can preserve confidentiality but preclude utility or obscure
the determination of whether integrity or authenticity has been preserved).

Determination of the full value of a control feature, control product, or system of controls is not
possible until its contribution to or detraction from preservation of all five attributes has been
considered. Otherwise, the values of controls are not fully realized and an injustice to both
supplier and user would result. Therefore, the TCSEC and ITSEC single functionality (attribute
preservation) approaches to evaluation are flawed unless only one functionality is desired.
However, preserving only one functionality such as confidentiality makes no sense in view of
adversaries' strategies.

Evaluation procedures for each control feature or product and system of controls should be on
the basis of the full range of functional values (attributes.) A set of statements of functional
values is necessary for all five attributes for each object of evaluation. However, this still leaves
unanswered the question of how to achieve overall protection from all material threats. Not all
threats and their impacts leading to a loss of one or more attributes are known. For example,
failure to act as required when processing information is a common form of sabotage, an.d all
threats in terms of failures and results of failures will never be known. Secondly, no one-to-one
relationship exists among threats, information assets, and safeguards or controls. Therefore, we
do not know how to cover or counter all material, likely threats with controls. And finally, we do
not know the extent of constraints and cost of controls the stakeholders will be willing to tolerate.

Finally, losses are so diverse and resistant to complete identification that their definitions are
better left as simply the failure to preserve each of the five attributes (i.e. loss of confidentiality
rather than disclosure, since other forms of loss of confidentiality, such as inference, exist).

491

Categorizing .loss in sufficiently complete fashion has never been achieved on the basis of
functional acts that cause loss, except at levels of great generality [e.g., reading, writing,
appending at the lowest level to fraud, larceny, conspiracy, espionage at the highest (criminal)
level] 11, In summary, security practitioners must address the achievement of a standard of due
care and reduction of loss and the risk of loss of availability and utility, authenticity and
integrity, and confidentiality by avoiding, deterring, preventing, detecting, mitigating, recovering
from, sanctioning against, transferring, and correcting information losses.

ACKNOWLEDGEMENTS

A growing number of people have been contributing ideas for this paper either through
wholehearted support for its objectives or out of frustration from or disagreement with my
approach to the problems and solutions. A few I can recall include William Murray from
Deloitte and Touche, Robert Courtney, Dr. Willis Ware from the RAND Corporation, Dr. Peter
Neumann at SRI International, Dr. Paul Karger from the Open Software Foundation, Dr. Fred
Cohen, Bruce Shiotsu at Lockheed, and Will Ozier from Ozier Perry and Associates. All have
been helpful.

REfERENCES

1. "Trusted Computer Systems Evaluation Criteria," DOD 5200.28-STD, U.S. Department of
Defense, December 1985.

2. "Federal Information Processing Standard Publication 73, Guidelines for Security of
Computer Applications," U.S. Department of Commerce, National Institute of Standards and
Technology, June 1980.

3. "Draft #2 July 23, 1990, Guidelines and Recommendations on Integrity" prepared for the
Third Integrity Workshop, NIST, September 26, 1990.

4. David Clark and David Wilson, "A Comparison of Commercial and Military Security
Policies," Proceedings ofthe 1987 IEEE Symposium on Security and Privacy, April 1987.

5. D. E. Bell and L. J. La Padula, "Secure Computer Systems: Unified Exposition and Multics
Interpretation." EDS-TR-75-306, The MITRE Corporation, Bedford, MA, March 1976.

6. ISO International Standards Organization, "Security Architecture," Part 2 of 4,Information
Processing Systems Open System Interconnection Basic Reference Model, IS0-7498-2, available
from the American National Standards Institute, New York, 1989.

7. "Draft Information Technology Security Evaluation Criteria," Herausgeber: Der
Bundesmenester des Innern, Bonn, May 1990.

8. P. A. Karger, "Implementing Commercial Data Integrity with Secure Capabilities,"
Proceedings ofthe 1988 IEEE Symposium on Security and Privacy.

9. T. M.P. Lee, "Using Mandatory Integrity to Enforce 'Commercial Security'," Proceedings of
the 1988IEEE Symposium on Security and Privacy, Oakland, California, April1988.

10. W. R. Shockly, "Implementing the Clark/Wilson Integrity Policy Using Current
Technology," Proceedings of the NIST!NCSC 11th National Computer Security Conference,
Washington, D.C., October 1988.

492

11. Peter G. Neumann, "Rainbows and Arrows: How Security Criteria Address Computer
Misuse," Proceedings of the NISTINCSC 13TH National Computer Security Conference,
Washington, D.C., October 1990.

12. Donn B. Parker, "Trojan Horses, Viruses, and Other Crimoids," Third Annual Computer
Virus Clinic, Data Processing Management Association, New York, March 1990.

13. Private note from Bruce Shlotsu to Donn B. Parker, December 1990.

14. Sushi! Jajodia, "Tough Issues: Integrity and Auditing in Multilevel Secure Databases"
(Executive Summary), Proceedings. of the .NIST/NCSC 13th National Computer Security
Conference, Washington, D. C., October 1990.

493

THE ROLE OF NETWORK SECURITY IN A METHODOLOGY FOR

INFORMATION SECURITY DESIGN AND IMPLEMENTATION.

Prof. J.H.P. Eloff. Department of Computer Science. Rand Afrikaans University

P.0. Box 524. Johannesburg South Africa.

FAX : 27-11-489-2138. TEL : 27-11-489-2842.

Mr. A.J. Nel. Department of Computer Science. Rand Afrikaans University

P.O. Box 524. Johannesburg. South Africa.

FAX : 27-11-489-2138. TEL : 27-11-482-2190. E-MAIL : Awie.Nel. f1.n71 01.z5.fidonet.org.

ABSTRACT

This paper aims to address the complicated issue of network security. Network security is approached in
this paper from a functional and more specifically from a methodical point of view. A network can be seen
as a collection of nodes that are connected by communication media in such a way that information can
be transferred between nodes. The connection must be such, that recources like databases and printers
may be shared between the nodes. A node can be any computer hardware component and may even be
another network like a local area network or a wide area network. Network security needs to be addressed
from a technical as well as from an application systems perspective. The technological issues on network
security addresses the broader concepts such as the provision of a variety of network security services and
mechanisms for example authentication and traffic analyses. Applications network security assures that a
network oriented application system be designed to adhere to the computer security policy of the
organization in general.

Keywords : computer security, network security, methodology, computer security
management.

0. INTRODUCTION.

Network security should be Included in the scope of the information security policy of an
organization. lnterconnectivity is. one of the most widely used computer buzzwords today,
however very few organizations attempt to take a reliable and security consistent approach in
implementing interconnectlvity. Practical experience of the authors manifested the following
problems:

• 	 In cases where network security has been addressed it Is the authors' experience that
it happened at a too low or heavy technical oriented level.

• 	 A number of organizations are not sure what is really meant by the term "Network",
furthermore they had problems in addressing the complete scope of network security
[6].

e 	 Senior managements' comprehension of network security at the majority of organiza
tions lacks an understanding of the technical details thereof. They also have difficulty
in understanding the concept of addressing network security specifically in the informa
tion security policy for the organization.

494 copyright 1991 J.H.P Eloff & A.J. Nel.

http:01.z5.fidonet.org

e Organizations experience difficulty in addressing the implementation of measures for
both network security and information security. This approach Is costing organizations
large sums of money due to the fact that synchronized and combined countermeasures
have a much more powerful effect on the displacement of risks as opposed to the
implementation of individual countermeasures.

e Very few organizations take a methodical approach towards the implementation of
Information security (including network security) counter measures.

The authors very strongly believe that a methodical approach towards the implementation of
Information and network security will address the above-mentioned problems. However,
following a literature study undertaken by the project team it became evident that very little
attention has been paid to this subject. Current literature regarding such an approach could
be briefly summarized as follows [2], [3], [4], [6]:

e methodology for the design for a secure network oriented application system

e methodology for the implementation of Information security.

The objectives of this paper are to address both the abovementioned Issues within the
framework of a methodology, the so-called Information Security(IS)-Methodology.

1. INFORMATION SECURITY METHODOLOGY: IS-METHODOLOGY.

The basis of the IS-Methodology was developed at the Rand Afrikaans University by Prof.
J.H.P. Eloff and K.P. Badenhorst. The reason for the development is to provide a structured
approach for the specification and implementation of information security In an organization.

Fig 1. shows a high-level view of the IS-Methodology. Fig 2. gives a synopsis of the 5 main
phases of the methodology. The IS-Methodology is addressing all aspects of information
security and forms the framework for the remainder of this paper. Due to length and scope
limitations of this paper we will only discuss the concept of technological network security as
described In the installation phase I.e. phase 4 of the IS-Methodology. Further reading matter
regarding the other phases of the IS-Methodology can be obtained from [3][4][5].

INITIATION I PLANNING INSTAllATION MAINTENANCE

-FUATION 1II ~
INFORMATION RISK ANALYSIS ON-GOING

INITIATION
__,

AND -
MAINTENANCESECURITY POUCY.

PROJECT DEFINmON

J IT

IPHASE1 I IPHASE2 I IPHASE3 I IPHASE4 I IPHASE5 I

FIG 1. IS-METHODOlOGY: A HIGH-lEVEl VIEW.

495

(1) PHASE 1 • INITIATION : Senior management needs to be made aware of the risks involved when
too little or no Information security exists In the company. A specially selected steering committee
needs to be established to guide the Information security plan through its phases. The manager
responsible for data communications and networks needs to be represented on this committee.

(2) PHASE 2 - INFORMATION SECURITY POliCY: The establishment of a formal information security
policy, which is in line with organizational strategies and company mission, forms an essential basis
from which to launch a risk analysis study. This policy contains the definition, framework of terminol
ogy, with special reference to network terminology, as well as a matrix depicting responsibility and
accountability functions within such a framework. These will also include responsibilities for network
security. The information security policy should address the very important issue of network security
perimeters, which will be discussed in paragraph 4.

(3) PHASE 3 • RISK ANALYSIS AND PROJECT DEFINITION: Information security risks and associated
potential losses need to be quantified and weighed against factors such as productivity, user satis
faction, network response times, cost of controls, and the like. This action will result In cost effective
countermeasures and the compilation of a well-defined project plan for the instal.lation of these
measures. The compilation of a project plan at this stage of the process will force the integration
of countermeasures planned for network security and other projects related to information security
such as procedures for access control on mainframes.

(4) PHASE 4- INSTALLATION: The timely installation of information security countermeasures as
depicted in the project plan. It is during this phase that an organization has to Implement security
services and mechanisms. This Is especially true in the network environment where implementation
of technologies such as gateways, inter-network protocols and communication links will take place.

(5) PHASE 5 - MAINTENANCE: The on-going maintenance includes a regular review of the information
security status and requirements as well as the on-going implementation of controls within the
development of application systems. This phase also provides for design procedures to implement
application systems running in a network environment. These concepts will not be discussed in the
context of this paper, the reader is referred to [2] for further reading matter.

FIG 2. OVERVIEW OF THE IS-METHODOLOGY.

Because we continually refer to Fig 3 and Fig 4 throughout this article, it is important that the
reader be Informed of the basic structure of the diagrams as depicted in the IS-Methodology.
The arrangement of tasks and steps, depicted as boxes in the diagrams, form the basic
components of the methodology. The connecting lines between them constitute a precedence
structure, i.e. certain tasks and/or steps can occur in parallel with others, whereas other
tasks/steps require Inputs from preceding tasks. A reference structure Is used where, for
example,

P4.T4.S1

refers to phase 4, task 4, step 1.

2. IS-METHODOlOGY PHASE 4 : INSTAllATION.

Fig 3. shows the main tasks In phase 4 of the IS-Methodology. Phase four of the
IS-Methodology addresses all the aspects of technological information security such as
physical and logical access, cryptography, disaster recovery, planning, and the like.

496

http:P4.T4.S1

The Installation phase of the IS-Methodology turned out to be one of the most critical because
of the variety of specialized skills and line personnel involved. Some of the more Important
tasks in phase 3 are the following:

• 	 PHYSICAL ACCESS (P4.T1): Physical Access to computer terminals and communica
tions equipment is a very Important aspect of network security. These terminals and
equipment are mostly situated outside the organization itself where strict physical
security is difficult. An example is the use of Automatic Teller Machines (ATMs) of
banking organizations which are Installed in public areas where the equipment cannot
be protected by measures like security guards and strongrooms.

• 	 COMMUNICATION NETWORKS AND CRYPTOGRAPHY. (P4.T4): This Is the part of the
IS-Methodology that Includes technological network security and that will receive more
attention in the rest of this paper.

• 	 CONTINGENCY PLANNING (P4.T5): Because of the high level of resource sharing, that
is one of the main features In the use of computer and communications networks, the
possibility of destruction or corruption of these resources is very high. This leads to the
need and increased importance of well-developed contingency planning especially for
interconnected networks.

• 	 COMPUTER PERSONNEL (P4.TI): An important aspect of network security often over
looked, is the proper training of personnel in the organization. When security includes
network security, it will be Important that the personnel are also trained in aspects of
network communications, as well as the special aspects of network security. Examples
here are the use of modems and the need for safe password and key management
procedures.

FIG 3. PHASE 4. INSTAllATION.

497

3. ACHIEVING NETWORK SECURilY • IS-METHODOlOGY : PHASE 4, TASK 4.

Fig 4. shows the main steps In Phase 4, Task 4, of the IS-Methodology regarding technological
network security. We will not discuss all of the steps mentioned, but only the most important.
There are a variety of security measures that are only applicable to computer and
communications networks. These measures need special attention when they are planned and
implemented.

A few steps (those shaded In the above diagram) prom P4.T4. will now be discussed.

P4.T4.S1. Identify and select standards.

The first step will be to Identify applicable standards for the Implementation of network
security In the organization, and to select the standards that will be used. There are quite
a few international organizations that develop standards for communications networks.
The problem with the majority of standards Is that they are developed with Interconnection
in mind and not with security.

TO F4.Te.

fiG 4. PHASE 4. TASK 4. COMMUNICATIONS NETWORKS AND CIWPTOGRAPHY ..

498

http:P4.T4.S1

This makes It very Important that the lmplementors evaluate the standards with security
as their main criterion.

To 	name only a few of the standards :

• 	 INTERNATIONAL STANDARDS ORGANIZATION(ISO). The ISO is a voluntary standards
body consisting of national standardization bodies in each member country. ANSI is the
main US representative in the ISO. The ISO developed the Open Systems Interconnecting
model (OSI- model) IS-7498 as well as a security architecture IS 7498-2 . [1][[9][10].
Most large organizations in South Africa are moving towards ISO standards.

• 	 INTERNATIONAL CONSULTATIVE COMMITTEE FOR TELEPHONE AND TELEGRAPH
(CCITT). The CCITT is a member of the International Telecommunications Union, and
makes recommendations on telecommunications and data networks. [9] Countries are
represented at a national level at CCITT and the US State Department Is the voting
member for the US With large private operating companies like regional BELL com
panies represented at lower levels of membership. In countries like South Africa where
the government Is in total control of telecommunications matters, It is even more impor
tant to adhere to CCITT standards.

• 	 AMERICAN NATIONAL STANDARDS INSTITUTE(ANSI). ANSI Is a coordinating agency
for standards Implemented In the U.S.A. on a voluntary basis. [9] One of the most
Important security related standards that ANSI approved, was the Data Encryption
Standard or DES. ANSI is also a member of ISO and tries to adhere to ISO standards as
far as possible but may sometimes have to adapt the standards to suit the unique aspects
of North American systems.

It may at times be necessary to customize standards for a specific application. The most
important factor to consider in the selection process for standards, Is the attention given
to security in the standard. If the ISO standards are selected, security Is already included
in the OSI models' security architecture [1 0]. For the rest of this paper it is assumed that
the OSI-model and security architecture were selected were standards.

P4.T4.S2. Identify and select security services.

The next step will be to decide what security services will be needed. The OSI security
addendum[1 0] recommends a. number of services but not all of them may be necessary. For
the rest of the discussion only the following services are selected :

• 	 DATA CONFIDENTIALITY, to protect against unauthorized disclosure of data.. The data
can be any information or messages that are transmitted over the network.

• 	 AUTHENTICATION, used for authenticating the identity of a communicating peer entity
and the source of received Information. This service will be used to make sure that the
two entities that are communicating with each other, are who they claim to be.

• 	 DATA INTEGRITY. These services counter the threat of accidental or intentional corrup
tion of data. Accidental corruption may be the loss of a message or part thereof owing
to a break in the transmission media. or faulty equipment. Intentional corruption may be
the intentional duplication, modification or deletion of entire messages or parts of
messages by unauthorized intruders.

499

http:P4.T4.S2

~ NON-REPUDIATION. Uses to protect against denial of receipt, or origin of data and
messages. This service ensures that a sender of a message cannot deny sending the
message or deny the contents of the message. It also ensures that the receiver cannot
deny receiving the message or the contents of the message.

~ ACCESS CONTROl. Used for the protection against unauthorized
accessible through a network.

use of resources

In this step a decision must also be made on what security mechanisms will be used to
implement the selected security services. Once again, a range of mechanisms are available.
Not all of these mechanisms need to be selected.[10] Only three are needed to implement
the majority of the services, namely cryptography, electronic signatures and access control
mechanisms. It Is also suggested that physical security forms a component of this group
of mechanisms.

Only Electronic signatures will be dissussed.

P4.T4.S6. Electronic signatures.

An electronic signature, also known as a digital signature, Is a protocol that In effect, has
the same use as an ordinary manual signature. This Is a mark or sign that only the sender
can make, but that the receiver and other users can easily recognize as the senders
electronic signature. Just like a ordinary signature, the electronic signature is used to
confirm a message or agree with a document.

The most important conditions that an electronic signature must meet are the following:

~ 	 It must be totally unforgeable.

~ 	 It must be authentlcatable. This means that it must be possible to prove that the sender
made the signature and that he Is the owner of the signature.

Electronic signatures are a very interesting field but rather more study Is needed before
electronic signatures will be accepted as fall-safe.

P4.T4.SS. Design of security perimeters.

A security perimeter is a logical boundary around an area In a network that can be trusted.
It is not necessary to implement security services in these areas since security Is assured
by trusted personnel and equipment.[2] Those parts of the network o.utside the perimeters
must be protected by security services as discussed under P4.T4.S2.

500

http:P4.T4.S2
http:P4.T4.SS
http:P4.T4.S6

r-·-·-·-·-·-·-·-·-·-·-·-·-·-·--·-·-·-·-·-·-·-·-·-·-·-·-r-·1

i ~m~~ I
!
!

i
'

! i
L.-·---------------------·---·-----------·---------·-------·-·-·---·-----j

FIG 5.A. PERIMETER WHOLE NElWORK.

! i
;
;
/
;

I
;
;
;

r-·----------------------------1

I 1------.,ERIMITER
. !

;

FIG 5.8. PERIMETER AROUND TOP lAYERS OF OSI-ARCHITECTURE

FIG 5. SECURITY PERIMETERS.

Security perimeters can be used in three ways:

Perimeter around the whole network as seen In fig 5.1. Here the whole network is
trusted and no special services need to be implemented.

Perimeter around each application. In this case the whole network can not be
trusted. Each application must therefore Implement its own security services.

Perimeter around top layers of architecture as seen in fig 5.B. In this case only
parts of the network are trusted. The perimeters are drawn around the trusted
layers of the network architecture. An example is a network that uses a router to
transfer data between two sub-networks. If the routers cannot be trusted the
perimiter can only be drawn around the top five layers, that includes the
application, presentation, session and transport layers. This means that security
mechanisms like encryption must be implemented at least in the transport layer
to protect any data moving outside the perimeter.

P4.T4.S10. Communications media.

In this step a deslsion must be made about the type of transmission media that will be used,
or are used already in the network. The most commonly used criterion for selecting
transmission media has always been the cost of the media. This approach can lead to a
number of problems when one tries to Implement security measures. Tables 1 and 2 give
an overview of the most important characteristics of some of the most used transmission
media. Both these tables attempt to show the importance of security related characteristics.

501

TABlE 1. RADIATED MEDIA.

RADIO MICROWAVE SATELLITE CELLULAR
TELEPHONE

COST LOW HIGH VERY HIGH HIGH
BANDWIDTH LOW AVERAGE HIGH AVERAGE
RADIATION VERY HIGH LOW HIGH LOW
INFLUENCE ON
SURROUNDINGS

VERY HIGH LOW lOW HIGH

INTEGRITY LOW AVERAGE GOOD AVERAGE
THREAT OF
TAPPING

VERY HIGH HIGH HIGH VERY HIGH

EASE OF
TAPPING

VERY EASY DIFFICULT DIFFICULT VERY EASY

EXTENDABIUTY HIGH HIGH H I G
!(EXPENSIVE)

H LOW (FEW
FREQUENCIES)

TABlE 2. CONDUCTED MEDIA.

STED PAIR
NPROTECTED)

TWISTED PAIR
!(PROTECTED)

COAXIAL CABLE OPTICAL CABLE

COST VERY LOW LOW EXPENSIVE VERY EXPENSIVE
BANDWIDTH LOW LOW HIGH VERY HIGH
INSOLATION NONE NONE-GOOD GOOD GOOD
RADIATION VERY HIGH AVERAGE LOW NONE
INFLUENCE ON
SURROUNDINGS

VERY HIGH HIGH (VARYING
DEGREES}

LOW NONE

INTEGRITY BAD BAD -AVERAGE GOOD VERY GOOD
CABLE WEIGHT VERY HIGH HIGH HIGH LOW
DANGER OF
TAPPING

VERY HIGH VERY HIGH HIGH VERY LOW

EASE OF
TAPPING

VERY EASY EASY DIFFICULT VERY DIFFICULT

MAINTENANCE
!(FREQUENCY)

FREQUENTLY FREQUENTLY L E s s
FREQUENTLY

LOW

P4.T4.S11.1nter-network connection and P4.T4.S12. Inter-network rights.

Because of the Increase In network usage, It has become necessary to share resources on
different networks. This leads to the need for connecting different networks to each other.

This interconnection between planned and existing networks can lead to unexpected effects
on network security. Special attention should be given in the planning and design of the
connection point between the networks, particularly regarding the use of Inter-network
access rights, also discussed in the IS-Methodology under F4.T4.S11. Very important work
In this area was done on "baggage collection". This system is based on the "Path Context
Modei"(PCM) developed by Von Solms and Boshoff at the Rand Afrikaans University in
South Africa [11]. It should be noted that this is new research and the original intention was
not to set or implement any standards regarding network security.

502

The idea of "baggage collection" works as follows: any subject that wants to get access to
an object needs certain software and hardware components to satisfy the request. These
components may for example be operating system software, networking software, cryp
tographic software, storage media or communications links. This means that there are
certain allowable "access paths" between the subject and the object.

In terms of the discussion of PCM , a subject is the user who wants to send a message to
a receiver, the object, by using the network, and not an ISO-type of object. The route that
the message must follow through the network is the access path. There may be a number
of different access paths the subject can use. The object is the receiver or any network
component that must be manipulated to gain access to the final object.

If the subject's access to any of the objects In the access path can be controlled, he can
be forced to use a specific path or even be denied access to the object. By associating with
each object one or more selected paths, access to the object can be controlled by allowing
only access to the object If the right access path Is used.

The access paths associated with each object can be called the objects "Security profile".
The software and hardware components making up the access path is called the "Baggage".
If a subject tries to access a object, baggage is collected all along the access path. If the
request reaches the object, the baggage Is validated by the object's security profile, and
access can be granted or refused.

The system to date is only implemented on a microcomputer environment under the MS
DOS operating system. The next phase of development will be to utilize PCM In networks
and In an !SO-network environment. The authors are of the opinion that the PCM system
can be valuable In the field of Inter-network rights but it will be necessary to conform to
some standard.

P4.T4.S14. Implement access control mechanisms and P4.T4.S7. Select access

control mechanisms.

Computer and communications networks are complex systems that consist of a variety of
different components like shared directories, programs, data and the like. These com
ponents needs to be protected and it is essential that access to these components is
strictly controlled. Any access control measure depends heavily on the positive identifica
tion and verification of the Identity of the user trying to access the network. There are
various Identification methods that range from traditional passwords to more modern and
sophisticated methods like retina-pattern recognition and voice recognition.

It can be very difficult to decide which of the different identification methods Is the best
and the most useful. It is important that the user or organizations who want to make use of
these methods, are fully informed about the characteristics, advantages and disadvantages
of these methods.

A few of the most important factors to take into consideration when evaluating identification
methods, are the following : [8]

• How effective are the methods?
• How acceptable are the methods to the public?
• Is it possible to successfully Implement the method?
• Cost of the method.
• Duration of the identification process.

503

http:P4.T4.S7

5. CONCLUSION

The development and implementation of security requirements in organizations around the
world have became major issues. One of the main problems is that technology as well as the
abilities of intruders are developing at an alarming rate. This means that security measures
will not give protection for an indefinite time.

This paper only covered the communication and network security specific parts of a
methodology for information security design and implementation. The fact that the other
aspects of the methodology were not covered here, does not mean that they are in any way
unnecessary or less Important. The aim of this paper was to show that communications and
network security need additional attention if security measures are planned and implemented.
For this purpose special attention was paid to the place of network security in the context of
a well structured methodology.

BIBLIOGRAPHY.

[1] Barnstad O.K. Considerations for security in the OSI architecture. IEEE Network Magazine,
April 1987. Vol. 2. No 1.

[2] 	Graft D, Pabrai M. Methodology for Network Security Design. IEEE Communications
Magazine. NOV. 1990. Vol. 28. No 11.

[3] 	Badenhorst K.P, Eloff J.H.P. Framework of a Methodology for the Life Cycle of Computer

Security in an Organisation. Computers & Security. 8(1989}. Elsivier Publishers LTD ,
England.

[4] 	Badenhorst K.P, Eloff J.H.P. Managing Computer Security: Methodology and Policy.
Information Age. Vol. i 2 No 4. OCT 1990. Butterworth-Heinemann Ltd.

[51 	Badenhorst K.P, Eloff J.H.P. Computer Security Methodology.: Risk Analysis and Project
Definition. Computers & Security. 9(1990).

[6] 	Lobel J. Proactive Network Risk Management. IFIP/SEC'90 Proceedings. Elsivier
Publishers LTD , (North Holland) 1990

[7} Pfleeger C.P. Security in Computing. Prentice-Hall lnt Editions 1989.
[8] 	Davies D.W. Price W.L. Security for Computer Networks: An Introduction to Data Security
In Teleprocessing and EFT. John Wiley & Sons. 2987.

[9] 	Black U. Data Networks : Concepts, Theory and Practice. Prentice-Hall. 1989.
[10] International Standard ISO 7498-2. First Edition 1989-02-15. Information Processing

Systems- Open Systems Interconnection-Basic Referance Model. Part 2. Security Arhitec
cture.

[11] 	Boshoff W.H, Von Solms S.H. A Path Context Model for Addressing Security in Potentially
Non-secure Environments. Computers & Security. 8(1989). Elsivier Publishers LTD ,
England.

[12] Fitzgerald K. "Ouest for intruder-proof computer systems". IEEE Spectrum August 1989.

504

A Secure European System for Applications in a Multi-vendor Environment

(The SESAME Project)

T.A.Parker

, ICL secure Systems
Eskdale Road, Winnemh, Wokingham

Berkshire, England

Reporting on a Joint Bull, ICL and SNI* Project

The wort of the European SFSAME Project is described in
outline. SESAME provides distributed access c::ootrol involving
single log-on using a mixture of symmetric ed asymmetric
~ograpmc teclmiques. Differences from Kerberos ud SPX are
identified.

1. Background

The large distributed systems of the present day have
usem who access many different applications residing in
different end systems supplied by different vendom. The
identity and access rights of these usem need to be able
to be established, communicated and managed in a way
which enables these disparate components to interwork
in a secure and standard manner.

For the last three yem, work has been underway in
Europe under the aegis of ·the European Computer
Manufacturem Association (ECMA) to develop a
standard security framework within which these
objectives can be achieved, paralleling the more product
oriented work being done in the USA on Kerberos [1],
[2] and SPX [3]. The ECMA work is documented in [4]
and [5], and has been described in various public fora in
[6], (7] and [8].

This work soon reached sufficient maturity to make it
important that it be validated in real distn'buted
computer systems. To tlLs end, project SESAME was
created.

2. The Project

Project SESAME is a development and demonstrator
project jointly being undertaken by Bull, ICL and
SNI/Siemens, three European computer manufacturers
who all consider it vital that strong and workable
security across Europe-wide multi-vendor distributed
systems can be provided in a standard manner. The

project has to date been partly funded by the European
Commission (CEC) under the Research on Advanced
Communications in Europe ·(RACE) programme. It is
being conducted in two major stages:

Stage 1: 	 The production of a simple demonstrator
which shows the feasibility of the ECMA
security framework across the systems of
the three companies.

Stage2: 	 Further development of the security features
of the demonstrator, moving towards true
self-contained security, and implementing a
real-life security policy. The working
system of Stage 2 will contain proprietary
prototype product components,
interworking according to standards being
laid down within ECMA and ISO. It will
also be able to interwork with OSF DCE
Kerberos systems. All of these features will
be demonstrated.

Parallel activities are also being undertaken. These take
the form of studies, and contributions to further the work
of International Standards bodies.

Stage 1 is complete, and a successful demonstration was
mounted for the European Commission (CEC) in March
1991. The full security architecture for Stage 2 is
complete, and the three companies are at the time of
writing working towards a Stage 2 implementation.

505

3. Scope and Objectives

The technical scope of the SESAME Project covers a
wide area including:

- management and distribution of cryptographic keys,

- distributed authentication and access control,

- provision of cryptographic services for non-
repudiation,

-	 the integration of Referenced Data Transfer [9),

-	 aspects of security management, recovery and audit.

It is only the first two of these ·topics that are described
in this paper.

The SESAME architecture aims at providing single log
on over different operating systems and platforms on
both large and small. networks. Implementations based
on the architecture should be tailorable to a variety of
customer policy requirements and investment levels.
The security features should be provided in a way which
can be transparent to applications which have been
developed in ignorance of SESAME. The architecture
should be capable of being implemented at high levels
of assurance;· the levels achievable under established
international evaluation criteria should not be limited by
the architecture.

There are parallels with Kerberos, but also important
differences; however the SESAME development
recognises and caters for the need to interwork with OSF
DCE Kerberos. The main technical differences are:

- SESAME provides greatly improved user
authentication with proper administrative control
over re-tries, time-outs and simultaneous log-ons by
the same user;

- it supports off-the-shelf standard applications that
are unaware of the underlying security regime, as
well as applications which wish to use SESAME
security data in the exercise of their own access
controls;

- it bandies access control attributes of all types,
including capabilities, group memberships,
organisational roles and security labels, in a unified
way;

- a. user can make late but securely enforceable
decisions on how his or her access rights are to be
used and refined, without further recourse to a
security server. This brings both performance and
security benefits;

- it is possible to include the security properties of
software components, and their location, in access
control decisions. In particular the security properties

of the user's point of access to the distributed system
can be included, and a software entity such as an
application can be given access rights of its own;

- it does not require encryption of any data except
cryptographic keys and similarly sized control
values. This removes some constraints on its
applicability that might be imposed by some
Governments;

- it makes optimum use of both· asymmetric and
symmetric cryptographic techniques.

4. Technical Deacrlpth:m

Sections 4.1 and 4.2 give overviews of the approach
taken in the SESAME Stage 2 architecture for key
distribution and for authentication and access control.
These are followed by a description in 4.3 of the
contents of the SESAME security certificates (the
Authentication Certificate and the Privilege Attribute
Certificate) which are central to the whole approach.
Section 4.4 describes the different ways in which the
cryptographic capabilities described in 4.1, and other
techniques, are used to control the use of these
certificates. Section 4.5 ·describes how the architecture
of the target application machine is constructed in a way
which helps security evaluation. Section 4.6 describes
how the PAC can be qualified in terms of the access
rights it carries, and its validity time.

4.1 	Key Distribution

The SESAME architecture treats cryptographic key
distribution separately from authentication and access
control. There are two stages:

1. 	 Two communicating entities obtain a symmetric
"Basic Key" with which they will be able to
communicate. This can be obtained either by using a
Key Distribution Service (KDS), employing
conventional symmetric cryptographic techniques, or
by using public key technology and Directory
Certificates. Apart from the enhancement described
for security certificate protection in Section 4.4.3
below, the techniques are well known. It is a positive
feature of the scheme that standard key distribution
methods can be used.

In the KDS case, if one of the entities is a
workstation, it may not be directly known to a KDS.
However since any human user who is using the
workstation will be known (if not, the user will not
be using the system at all), the Authentication
Service at which the user is authenticated can be
used to obtain keys for the workstation. It may
simply provide the workstation with a key for the
KDS, leaving it to obtain further keys from the KDS,

506

or it may provide some keys directly. The protocol
for the first of these options is used in 4.4.3.

Similarly, if public key technology is in use, the
user's Authentication Service can be used to return
the public key of a Certification Authority which can
then be used to verify user Certificates fetched from
a Directory.

2. 	 The Basic Key may or may not be the actual
cryptographic key used to protect all conversations,
and there may be a stage in which one or more
"Dialogue" keys are derived from the Basic Key. It
will be seen in Section 4.5 that there are advantages
to be had in doing this. The method of derivation is
defmed: specified one-way functions, seeded by a
time-based unique numberl.

4.2 Authentication and Access Control

In any distributed system, if the point at which a security
subject2 authenticates itself to the system is not co•
located with the point(s) at which it will subsequently be
accessing the system's resources, the . fact of
authentication must be communicated to the accessed
targets in a manner that is credible to them. The aim of
both Kerberos and SESAME is to provide that
credibility through the appropriate use of security
certificates and associated cryptographic techniques.

The SESAME architecture uses two types of security
certificate as the vehicles of communication: the
Authentication Certificate (AUC) and the Privilege
Attribute Certificate (PAC)3. Their means of protection
is the same (see Sections 4.4.1 to 4.4.6), and the
certificates themselves are syntactically very similar.
The main difference is that the PAC contains "Privilege
Attributes" describing the PAC subject's access
privileges, and the AUC merely certifies· the fact that its
subject has been authenticated.

The main functional components and access steps for a
subject to authenticate and obtain a PAC to access a
target are illustrated in Figure 1. The preparatory key
distribution functions are omitted. The sequence below

1 One Dialogue key would be used for integrity purposes, the
other for confidentiality if required. To satisfy Goverrment
requirementS, the confidentiality key could be arranged to
be weaker than the integrity key.

2 This general term, abbreviated to •subject• from here on, Is
used to signify either a human user or a software system
component in an active role.

3 Not to be confused with the OSF DCE PAC

may have been preceded by a similar sequence by which
the Subject Sponsor itself was authenticated.

The software acting as a human user's or hosted software
entity's agent in making the requests for security
certificates is known as a Subject Sponsor. A human
user's Subject Sponsor will typically reside in the user's
workstation. The point of authentication is a server of
the Authentication Service (A-Service) from which an
AUC for the authenticated subject can be obtained. The
point(s) at which a subject's access privileges are

AUthenticate
1-------t~Auth~ntication I

ana get AUC Serv1ce J

Subject Present AUC !Privilege

Subject L
 Sponsor !-------;Attribute j·r ana get PAC !service

'
Present PAC

1-------tTarqet I
~...--_ _. ana ao actions IApplication

Figure 1. Functional Components

managed and authorised are servers of the Privilege
Attribute Service (PA-Service), which supplies PACs on
the presentation of a suitable AUC. The process is
similar to the MIT Kerberos process of obtaining a TGT
followed by a Service Ticket4. In the SESAME
architecture however a single PAC can be used for
multiple targets (if policy permits) and can contain a
variety of access control attributes; also the two
SESAME security services can be implemented together
as a Combined Authentication and Privilege Attribute
Service (CAP A-Service) and no AUC is then needed.

Any of the SESAME security services can be
implemented distributed over a number of physical
servers. The SESAME Stage 1 demonstration had a
single CAP A-Service distributed over three servers.

A Subject Sponsor can itself be authenticated and be
associated with access control privileges which, if
security policy dictates, can be used to temper the
contents of the security certificates of subjects sponsored
by it.

An important feature of the SESAME implementation is
that the Privilege Attributes in the PAC are globally
scoped. A PAC would not contain for example a UNIX
user-id or group-id for a particular target end-system,
instead the values in it would be such things as a global

4 	 Indeed, SESAME permits the Authentication Service to
supply a Kerberos TGT whloh can then be used by the
Subject Sponeor to aooess servers of Kerberos ticket
granting services.

507

access identity, an organisational role (understood
from an enterprise view of the system) or a
government clearance. It is the responsibility of the
target end-system to provide the mapping between
these incoming global values and the local access
control environment In this way the management
responsibility for access control can be devolved to
the parts of the distributed system that are most
natural from the enterprise viewpoint: global
attributes of subjects being managed in the A- and
PA-Services, their impact being managed in the
end-systems they are accessing.

4.3 AUC and PAC Contents

There are a number of fields common to both
AUCs and P ACs. They serve to control and
monitor the ways in whlch they are used. These are
outlined below, foUowed by descriptions of fields
unique to the AUC and PAC respectively. For a full
ASN.l specification see [10]. Notice SESAME's
use of different types of identity:

Certificate Identifier
for audit and revocation purposes.

CreationNalidity Times
for expiry control (see 4.4.2).

Initiator Qualification
for controHing who may use the security
certificate (see 4.4.3 to 4.4.5).

Target Qualification
for controlling the targets for whlch the security
certificate is valid (see 4.4.6).

Check Value
the integrity seal or signature, including
information about the authority that signed or
sealed ·the security certificate, and the method
used.

Audit Identity
an identity of the subject suitable for audit
purposes.

In addition, an AUC may contain:

Authenticated Identity
the authenticated identity of the subject of the
AUC.

SS Information
if the AUC is not for a Subject Sponsor, it may
contain information about the Subject Sponsor
via whlch the subject of the AUC was

authenticated. This enables the PA-Service to
set correctly the privileges in subsequent PACs
for this subject.

Authentication Level
an indication of the quality of authentication
performed in order to get thls AUC.

and a PAC may contain:

Other PACS/ref PACs
for future extension of the proxy concept, and as
a means of linking PACs together (the use of
these is for further study. They are merely a
gleam in SESAME's eye).

Charging Identity
for billing purposes.

PAC Type
indicates whether the PAC is for a subject, a
Subject Sponsor or for a subject but having been
tempered by the Subject Sponsor via whlch the
subject is accessing the system.

Privilege Attributes
the access privileges that the PAC represents.
These may include various identities,
clearances, group membershlps and so on, as
defined in [5].

4.4 Protection of Certificates in Use

of the techniques described below apply
equally to AUCs and P ACs unless explicitly
specified, and the general term "security
certificate" is used to denote either of them.
SESAME supports the following protection
features, any of whlch can be used either
individually or in combination:

- stopping undetected tampering

- constraining when and how many times the
certificate may be used

- confining the use of a security certificate to be
from the point to whlch it was issued,

- confining the use of proxiable security
certificates to identified groups of targets (e.g.
only servers of a particular distributed
service),

- linking specific actions with a security
certificate

- confining the use of proxiable or non-proxiable
security certificates to identified specific targets.

Each or these is now described in tum.

508

4.4.1 Tamperprooflng

An AUC may be sealed by a symmetric key (for
performance reasons) or signed. Sealing is appropriate
when an A-Service's server shares secret keys with a
single, or only a few servers from PA-Services and the
specific single server of the PA-Service with which an
AUC is to be usable is known.

A PAC is signed by the PA-Service server that issues it
using its private keyS. Use of asymmetric cryptographic
technology permits a security certificate to be sent to
multiple targets for validation without those targets
being able to tamper with it6.

4.4.2 Constraining When and How Many Times the
Certificate May be Used

Each security certificate contains time expiry
information. It can also optionally contain a count field
nominating the number of times (e.g. once) that the
security certificate may be offered for use. This provides
a degree of extra protection for example for long-lived
PACs for use in overnight remote job entry situations,
where the time of use may not' be accurately known, but
once it is used it is to be no longer valid: It also enables
security certificates to be used for limited access
purposes, akin to an admission ticket being collected at
the door. Depending on the scope of use of the security
certificate, policing the count field may require that it be
presented by the target to a validation authority common
to all of the targets for which the certificate is valid (see
4.5).

4.4.3 Non-proxlable Security Certificates

To make a security certificate usable only from the point
to which it was originally issued (we shall call this· the
Issue Point) the certificate is linked to the cryptographic
keys used for communicating from the Issue Point. This
is done by associating an "identity" of the Issue Point
with both the certificate and with the keys7. Protocols
have been defined to support this functionality, either
when secret keys or private/public keys are used. A
simplified version of the secret key protocol is presented
below. It is based on the use of a conventional Key
Distribution Service and incorporates an extended

5 The terms "private• and 'seoret• are used here as defined

In [11] to differentiate between asymmetric: and symmetric:

technologies.

6 	 SESAME may later be extended to permit the use of

symmetric: PAC seals in limited clroumstanoes, for example

If a PAC Is targeted at one specific: target. The PAC would

then have similarities with a Kerberos Service Tloket.
7 In ECMA the "Identity" idea Is generalised to permit the use

of other attributes, see Appendix A.1 of [1 OJ

Nee<mam Schroeder protocol [12]. In the example below
we assume that tlie Subject Sponsor is unknown to th~
system and does not contain any long term secret key8.
Replay protection fields and informative, but
cryptographically non-relevant fields have been omitted
for clarity.

In Figure 2 below, the following notation is used:

"APA-Server" is used in this example to denote a
server of a SESAME security service which supplies
Security Certificates. It could be an Authentication .
Service or a Combined Service. In the first case, the
certificate would be an AUC and the target a
Privilege Attribute Service. In the second case, the
certificate would be a PAC and the target an
application.

(xxx)K means encrypted under key K

[xxx]K means sealed under key K

Long Term Keys:

KAK is a key shared between the APA-Server and
theKDS
KTK is a key shared between the target and the KDS

Keys Established During the Protocol:

KAI is a key shared between the APA-Server and the
Issue Point
KIK is a key shared between the Issue Point and the
KDS
KIT is a key shared between the Issue Point and the
target

(1) Authenticate, APA
get Key and Certificate Server

(EIK) DI
<-- (Issue-id,lUE) Klllt <-

Certificate containing L-----1
IIIIIUe•id

Issue (21 Get Basic ltey- Key
Point (IIIIIUe•Id,Kilt)K!Ut -----> Distr'n

Service
(!tiT) ElK (KDS)

<-- (IIIIIUe-Id,ltiT) K'l.'1t

(3) 	Establish Basic Eey
(Issue-Id,ltiT) K'l.'1t ---->

Target

[Action,
Certificate containing
Issue-Id] !tiT

Figure 2. Symmetric Key Protocol for Non-proxiable

Certificates

509

(1) The Subject Sponsor at the Issue Point sponsors the
authentication of its subject to tb.e APA-Server and
asks for a key with which. to communicate with the
KDS. It also asks for a security certificate that is not
to be proxiable. The authentication method used
establishes a temporary secret key KAI between the
APA-Server and tb.e Issue Point; in SESAME, if tb.e
subject is authenticating using a password, KAI is a
one way function of tb.e password seeded by a time
based unique number. Three things are returned:

a Key KIK encrypted under KAI to be
deciphered at tb.e Issue Point and w!J.icb. will
be used there to talk to tb.e KDS,

a Key Package for the KDS encrypted under a
master key KAK shared between tb.e APA
Server and the KDS. This package serves to
link Issue-Id with. KIK. Whenever KIK is
used the KDS knows it is to be associated
with Issue-Id. Only a trusted and authorised
server such. as this A-Server can establish a
KDS key linked to an identity in this manner.
The KDS recognises KAK as a key of such. a
server,

a security certificate for the subject,
containing (among other things) Issue-Id as a
control field. In this case since tb.e Subject
Sponsor and therefore the Issue Point is
unknown, Issue-Id is an arbitrary value
unique to tb.e APA-Server.

(2) The subject now chooses a target to which. it will be
presenting tb.e certificate. The Subject Sponsor asks
the KDS for a Basic Key with which. it can
communicate with. the targe~ passing tb.e Key
Package to the KDS. The KDS replies with.:

tb.e requested Basic Key KIT, encrypted
under KIK for use from the Issue Point,

a Key Package for tb.e target, encrypted under
a key KTK shared between tb.e KDS and the
target. Because KIK was used in tb.e request,
this package links Issue-Id with KIT.
Whenever KIT is used tb.e target will know it
is to be associated with Issue-Id.

(3) The subject establishes tb.e Basic Key with. the target
by sending it tb.e Key Package just received. The
target now associates KIT with. Issue-Id.

(4) Actions by the subject from tb.e Issue Point, and tb.e
security certificate to authorise tb.em are sent sealed
under tb.e protection of KIT. The target sees that the
certificate contains Issue-Id as a control field and
checks that it is the same as tb.e Issue-Id associated

with KIT. If so, tb.e certificate was offered from the
valid Issue Point.

Note that the target is unable to use tb.e security
certificate itself with other targets as it cannot obtain
from tb.e KDS a Basic Key linked to Issue-Id for
communicating with. tb.e other target; it is not a trusted
server in this respect. When a server (or workstation)
whlcb. shares a long term key with a KDS requests a
Basic Key, the key will be supplied associated with a
known and managed identity value whlcb. b.as been
associated with that long term key.

If public key technology is in use for key distribution,
tb.e APA_ Server can be used to generate a short term
private key and create the corresponding public key
certificate linked to Issue-Id, for the workstation to use
to set up Basic Keys. Space does not permit a full
description of this protocols.

4.4.4 Control of Proxy by lnitlator{farget Grouping

Real systems increasingly contain distributed application
services, each. of wb.icb. is distributed over a number of
physical servers. A subject using such a service may not
know precisely whlcb. server of the service can support
its requests. The subject will in such cases simply make
a request oil a convenient server, and expect hls security
certificate to be passed on as necessary. The certificate
may therefore be required to be used by proxy by one
server of the service with another, but nowhere else.
Other target groupings can aiso be envisaged. The
necessary controls are provided as follows:

- targets can be grouped into trust groups. Each target
knows wb.icb. trust group(s) it belongs to,

- a security certificate can be created so as to be usable
only withln one or more nominated trust groups. For
each trust group, for thls method of protection, such.
a certificate contains a pair of fields: a Protection
Value and tb.e trust group Identifier,

- tb.e Protection Value is a one way function of a secret
value (the Control Value for this trust group) initially
only known to tb.e Issue Point whlcb. requested the
certificate,

- whenever tb.e certificate is offered to a target, it is
accompanied by the Control Value for tb.e target's
trust group encrypted under the Basic Key used to
communicate with tb.e target.

8 It would be interesting to Investigate poeslble extensions to
SPX to do this.

510

- on receipt of such a certificate, after decrypting the
Control Value, a target makes the following checks:

am I in a trust group named in this certificate?

if so, does the one way function applied to the
Control Value match the Protection Value for
this trust group in the certificate?

if so, the certificate is valid for me for use
with actions sealed under that Basic Key.

The target is now in the same position as the original
Issue Point with respect to the trust group used: it knows
the Control Value, and can use it with the security
certificate to perform actions on another target in the
same trust group. Targets outside the trust group reject
the certificate (motivated by self protection). The proxy
scheme is secure provided that the members of the trust
group do not reveal the Control Value to maliciously
inclined targets outside the group.

Note that although Kerberos and DECs SPX provide for
proxy, they provide no way for the original initiator tO
control the subsequent propagation of proxy rights.

4.4.5 	 Unking Specific Actions with a Security
Certificate

SESAME also permits the use of a different kind of
Protection Value, a public key corresponding to a
Control Value which is the private key. In this
protection method, the Control Value is not sent to the
target; instead the security certificate is valid within the
trust group for actions signed by the Control Value,
i.e. issued from the original Issue Point. A similarity
with the SPX approach is noticeable, though in
SESAME this method, which is computationally
significantly more expensive than the method described
in 4.4.4, is used only when it is important to prevent the
modification of particular actions. Otherwise, the 4.4.4
method is to be preferred9. Note that both methods can
be used in combination if required.

4.4.6 	 Confining the use of Security Certificates to
Specified Targets

A SESAME security certificate can be arranged to be
usable only at targets which possess particular attributes.
These attributes are entered in control fields in the
certificate. When a certificate containing these controls
is offered to a target, the target compares the attributes
found, with its own attributes. If there is no match, the
target rejects the PAC. Normally it is expected that this

9 Though It should be noted that the uee of signed operations

requlree no encryption for oomldentiallty in workstations, a

feature which may pleue some national authorities.

form of control will be used with attributes which are
identities, for PACs targeted at individually named
target application servers; however generalisation to
target groups and types is possible (e.g. this PAC is
valid for all ICL electronic mail servers).

4.5 Target Machine Structure

The description so far has treated the PAC handling
logic at the target as a single unit, but in reality in
SESAME it is structured as shown in figure 3. belowlO.

Figure 3: Target Machine Structure

Secure associations between end-systems are handled by
an Association Management (AM) subsystem. There are
two components of AM involved in an association:
Initiator Association management (lAM) and Target
association management (TAM). A PAC is transmitted
to a target end-system using AM. When it arrives there;
the TAM passes the PAC to a'separate component, the
PAC Validation Facility (PVF), which validates the
PAC and establishes the cryptographic context within
which TAM and lAM will converse. It also indicates to
TAM the Privilege Attributes that apply in this use of
the PAC (see 4.6 below). TAM is responsible for
organising the necessary mapping between the incoming
attribute values and their local equivalents; this may
involve establishing an appropriate execution
environment for the application.

The PVF may or may not be co-located with the TAM.
More than one TAM, and more than one target
application may share the use of one PVF, though each
application may use only one PVF. Conversely there
may be as many PVFs as TAMs or applications. These
are configuration options.

The Basic Key described in Section 4.1 is shared not
with the TAM or Target Application but with their PVF.

1 0 	 In faot this structure is also preeent in Privilege Attribute

SeiVioee, to handle the receipt of AUCs, but the struotural

benefits are not so significant since the PA-SeiVioe Is a

trusted security eeNice.

511

It is with PVFs that Key Distribution is performed. The
"Dialogue" key used between IAM and TAM is derived
from the Basic Key in a manner which (!.oes not reveal
the Basic Key to TAM.

Naturally the link between the TAM and its PVF needs
to be protected. Commonly this will not be a problem:
the PVF will be co-located with TAM. Otherwise
cryptographic techniques may be needed depending on
the physical security of the connection11, and the same
key distribution method as is used for normal Basic Key
establishment is used.

Authentication of individual target applications is done
by the PVF, either by means of the protocol across the
link between the TAM and the PVF, or directly if the
PVF is in the same end-system as the TAM, the PVF
having itself been authenticated by means of its master
key shared with the KDS12.

In this way control over communication is vested in the
PVFs. A TAM only obtains the correct communication
key(s) if the PAC is deemed valid by the PVF. By using
keys derived from Basic Keys for communication, it is
possible to provide a key for encryption for
confidentiality purposes which is separate from that used
for integrity. The key for integrity can be as strong as
necessary to provide the required assurance for access
control purposes; the key for confidentiality can be
either as weak as prevailing government legislation
requires, or as strong as an actual government customer
might want!

PVFs have relatively simple functionality and require
minimal management. By logically separating the PVF
from TAM and its applications, the major functions of
PAC validation and control are confined to the PVFs,
with consequent evaluation benefits. The ability to share
PVFs eases manageability of the distributed system. A
KDS needs only to share keys with PVFs, Security
Servers and authenticatable Subject Sponsors. Indeed
one of the roles of a PVF can be seen to be that of a kind
of local KDS for the applications it supports.·

4.6 PAC Qualification

Although an individual PAC can be used with more than
one target, it may be required that a subject operates
with different privileges with different targets. For

11 	 One can Imagine many commercial configurations however

in which this link would have a sufficiently low risk of wire

taps to not require encryption. This is In contrast to links to

users' workstations, whose physical security would be
much harder to guarantee.

12 	 Or via Its private key and a Directory Certificate If this

technology is being used for key distribution

example a user may be cleared to SECRET and obtain a
PAC which contains that clearance, but may wish to use
the PAC at a particular target using a lower operating
clearance of CONFIDENTIAL. In order to avoid the
subject having to obtain different PACs for these uses,
the SESAME architecture permits the subject to
"qualify" ~s PAC, when it is offered to the target. The
qualifier maysubset the privileges in the PAC for this
use, and/or may reduce the time period over which it is
to be considered valid for this use.

Naturally if security policy dictated, separate PACs
could have been obtained.

5. Summary and Conclusion

This paper has given an overview of the work of the
SESAME project. It has identified a number of points of
difference with other schemes, and the consequent
benefits obtained. SESAME is not complete; Stage 2,
which is just beginning, will provide the first properly
secure implementation using components of product
quality, but the work done in Stage 1 has already
demonstrated the feasibility of the basic principles
underlying the architecture.

Acknowledgements:

The development of this architecture was a joint effort
by members of the SESAME architecture team from
Buil, ICL and SNI/Siemens, building on work done in
ECMA TC32/I'G9.

The individual SESAME contributors were: Philippe
came, Belinda Fairthome, Per Kaijser, Tom Parker,
Denis Pinkas and Michael Steinacker. Particular thanks
are due to Per Kaijser and Denis Pinkas for their
extensive comments and suggestions on drafts of this
paper.

References:

1. 	 J.G.Steiner, C.Neumann & J.I.Schiller, "Kemeros:
an Authentication Service for Open Network
Systems", USENIX Winter Conference 1988,
pp.191-201.

2. 	 J.Kohl, C.Neumann & J.G.Steiner, "Kerberos VS
Protocol Specification", MIT Request for Comments
(RFC) 2nd Draft, Nov 1989.

3. 	 "SPX: Global Authentication Using Public Key
Certificates", Joseph J. Tardo and Kannan
Alagappan, Proc. 1991 IEEE Symposium on

· Security and Privacy

512

4. ECMA TR/46 "Security in Open Systems - A
Security Framework", July 1988.

S. 	 ECMA-138 "Security in Open Systems - Data
Elements and Service Definitions", December 1989.

6. 	 "Security in Open Systems - A Report on the
Standaids Work of ECMA's TC32/I'G9",
T .A.Parker, 10th U.S. National Security Conference,
21-24th December 1987.

7. 	 "ECMA and Security in Open Systems, the Second
Step", J.Kruys, 14 Workshop, Copenhagen,
September 1989.

8. 	 "A Model for Security In Distnbuted Systems",
R.Cole, Computers and Security, 1990 No.9, Pages
319-330.

9. 	 ISO/IEC CD 10740, Parts 1 and 2 "Referenced Data
Transfer" 2nd Jan 1991

10.Authentication and Privilege Attribute Security
Application", draft issue 7.1., an ECMA TC32/I'G9
working document.

ll.ISO/IEC CD 10181-2.2 "Information Technology 	
Security Framework for Open Systems - Part 2:
Authentication Framework."

12."Using 	 Encryption for Authentication in Large
Networks of Computers", R.M. Needham and M.D.
Shroeder, CACM Vo1.21, No. 12, December 1978.

513

A SECURE QUORUM PROTOCOL

Masaaki Mizuno* Mitchell L. Neilsen

Department-of Computing and Information Sciences

Kansas State University

Manhattan, Kansas 66506

Abstract

In a distributed database system, several replicas (copies) of a data object may be maintained
at different sites to improve reliability. However, maintaining replicas may also affect the security of
the system in terms of secrecy and integrity. Thus, it is natural to integrate reliability and security
issues within a replica control protocol.

In this paper, we present a secure quorum protocol which integrates a quorum protocol to attain
consistency of replicated data and a. cryptographic technique to attain security of data.. We present
two efficient methods for generating quorums which are best suited for the secure quorum protocol.
Then, we present an algorithm, called the join algorithm, which is very useful for constructing a
large set of quorums and show that the join algorithm may be used to improve the overall security
of the secure quorum protocol.

1 Introduction

In a distributed database system, several copies (replicas) of a data object may be maintained at
different sites to improve fault tolerance (reliability). Maintaining several replicas allows the system to
gracefully tolerate node and communication line failures. A replica control protocol is used to ensure
that different copies of a data object appear to the user as a single nonreplicated object, i.e., objects
are one-copy equivalent [1, 3). One well known protocol is based on weighted voting [6]. Agrawal and
El Abbadi generalized weighted voting in terms of read and write quorums [1]. Associated with each
data object, (several) read and write quorums are formed, each of which is a subset of copies of the data
object. A read operation accesses all of the copies in a read quorum, and a copy with the largest version
number is returned. A write operation writes to aU of the copies in a write quorum and assigns each
copy the version number that is one more than the maximum version number encountered in the write
quorum. Let R and W be sets of read and write quorums, respectively. In order to ensure one-copy
equivalence, the read and write quorums must satisfy the following two intersection properties:

1. Write-write: G, HEW=> G n H :j:. 0.
2. Read-write : G E R, H E W => G n H :j:. 0.

Maintaining replicas may affect not only the reliability, but also the security of the system. Security is
concerned with the following two principal issues [4]:

e secrecy (privacy) - to prevent unauthorized disclosure of data, and

o integrity (authenticity) - to prevent unauthorized modification of data.

*This work was supported in part by the National Science Foundation under Grant CCR-8822378.

514

Maintaining replicas may improve the integrity of the data object. As long as an intruder has not
modified all of the copies and an authorized user can detect which copies have been modified by the
intruder, the user may still access a correct copy of the data object. However, maintaining replicas may
decrease the secrecy of the data. In order to obtain confidential data, an intruder may access any copy
of the data object.

Since reliability and security are closely related in a replicated database system, it is natural to
integrate one-copy equivalence and security issues in a replica control protocol. However, relatively few
such attempts have been made. Two such protocols have been proposed by {1) Herlihy and Tygar [7]
and (2) Agrawal and El Abbadi [2].

This paper presents a secure quorum protocol (SQP) which integrates a quorum protocol to attain
one-copy equivalence and a cryptographic technique to attain data security. By appropriately choosing
certain parameters, SQP does not increase the number of accesses required to perform a read or write
operation. The secure quorum protocol is best suited for a set of quorums which are all the same size,
called symmetric quorums. We present two methods for generating symmetric quorums.

We have proposed an algorithm, called the join algorithm, which takes sets of quorums as input
and returns a new set of quorums [8]. The join algorithm is very useful for constructing large sets of
quorums. In this paper, we extend the join algorithm to generate quorums which may be used in SQP.
Such quorums may be used to improve the overall security.

The organization of the paper is as follows: Section 2 briefly reviews Herlihy and Tygar's protocol
and Agrawal and El Abbadi's protocol. We also present an overview of SQP. Cryptographic systems
and Shamir's secret sharing algorithm on which SQP is based are reviewed in Section 3. Section 4
presents the secure quorum protocol (SQP). Section 5 describes two methods for generating symmetric
quorums. Section 6 presents the join algorithm applied to SQP and a simple security analysis.

2 Review and Overview
In this section, we review Herlihy and Tygar's protocol and Agrawal and El Abbadi's protocol. Then, we
present an overview of the secure quorum protocol (SQP). By reviewing these protocols, we informally
introduce some important terminology.

2.1 Herlihy and Tygar's protocol

Herlihy and Tygar's protocol uses a quorum protocol to achieve one-copy equivalence and a crypto
graphic technique to attain security. Each replica is encoded by using a secret key. Shamir's secret
sharing algorithm may be used to break the key into n pieces (called shadows), and each shadow is
distributed to a different site. In Shamir's algorithm, at least tout of n shadows (t $ n) are needed to
recover the key, where tis called the threshold [10]. To read a data object, any t shadows are retrieved
to determine the key, and then a read quorum of copies are read and decrypted using the key. The
value of a copy with the largest sequence number is the current value of the object. To write a data
object, the new value and the new sequence number are encrypted using the key, and then distributed
to a write quorum of copies.

Herlihy and Tygar also proposed a protocol which uses two keys: one for encoding the data and
another one for decoding the data. In this method, n shadows are created and distributed to n sites
for each key. The thresholds, called the encryption threshold (tE) and the decryption threshold (tD),
may be defined separately. However, compromising a key may be done by obtaining any combination
of a threshold number of shadows. Thus, if tE 2;: tD, compromising the encryption key also discloses
the decryption key.

Note that the integrity achieved by the secrecy of the encryption key (or just the secret key in case
of a single key system) is only to prevent an intruder from creating false data in the valid data domain.
Herlihy and Tygar discuss another type of integrity: preventing an intruder from destroying valid data

515

by overwriting the data by garbage or an old copy of the data. The system can only guarantee the
preservation of this type of integrity against an intruder who can modify less than t1 replicas, where t 1
is called the integrity threshold. If each quorum, after the attack, contains at least one uncompromised
replica with the current value of the data, authorized users can still obtain the correct data. This is
achieved by requiring that quorum intersections have cardinality at least t1.

2.2 Agrawal and El Abbadi's protocol

Agrawal and El Abbadi's protocol integrates weighted voting to attain one-copy equivalence and a secret
sharing algorithm to attain security. A secret sharing algorithm, called Rabin's splitting algorithm [9),
is used to divide a data object into n pieces and distribute the pieces to n different sites. Like Shamir's
algorithm, Rabin's splitting algorithm requires at least t out of n pieces to reconstruct the original
data. However, unlike Shamir's algorithm, Rabin's algorithm requires a total of only (nft)* lxl space to
store data object x, where lxl denotes the size of data object x. The secrecy of the data is attained by
requiring an intruder to obtain any t copies ofthe split data. In order to attain one-copy equivalence,
overlap between two quorums must contain at least t replicas. Thus, a larger number of copies must
be accessed, when compared with regular quorum protocols. For example, if the size of read quorums
is t, the size of the write quorum must ben.

Agrawal and El Abbadi proposed a method to reduce the overlap between quorums from t to 1. In
this method, at certain points in time, complete information about a data object is held in a log at a
site. This may be a security problem.

2.3 A Secure Quorum Protocol (SQP)

Our secure quorum protocol (SQP) integrates a quorum protocol to attain one-copy equivalence and
a cryptographic technique to attain data security. Like Herlihy and Tygar's protocol, each replica
is encoded by using a secret key, and Shamir's secret sharing algorithm is used to divide the key(s)
into shadows. Unlike Herlihy and Tygar's protocol, distribution of the shadows is integrated with the
quorum protocol.

The secure quorum protocol may be used with different encryption, decryption, and integrity thresh
olds. By appropriately choosing the size of quorums and thresholds, SQP does not increase the number
of accesses required to perform a read or write operation. This guarantees that the following improved
protocol may be implemented without increasing the number of accesses:

1. 	 For better security, the secret key may be erased after each read or write operation has completed;
therefore, the key is reconstructed for each operation.

2. 	 Each data object may be encrypted and decrypted using different keys to further improve security.

The real strength of SQP comes from the join algorithm, which is very useful for constructing a
large set of quorums which have the required thresholds. Furthermore, the join algorithm improves the
overall security of the key.

3 Security

In this section, we briefly review cryptographic systems and Shamir's secret sharing algorithm on which
SQP is based.

516

3.1 Cryptographic system

An encryption transformation EK is defined by an encryption algorithm, E, and an encryption key, K.
Similarly, a decryption transformation DK' is defined by a decryption algorithm, D, and a decryption
key, K'. Transformation DK' is an inverse of EK; that is, DK'(EK(M)) = M, for any data object
M. There are two types of cryptosystems: symmetric (also called "single-key" or "conventional") and
asymmetric (or "two-key"). In symmetric cryptosystems, K = K', and in asymmetric cryptosystems,
K#K'.

3.2 Shamir's secret sharing algorithm

In this section, We review Shamir's algorithm and define some terminology which is used for formally

describing SQP.

In SQP, each secret key K is broken into n pieces (shadows), K1, K2, · · ·, Kn such that:

1. 	with knowledge of any t shadows, computing K is easy, and
2. 	 with knowledge of fewer than t shadows, computing K is impossible.

One such scheme was proposed by Shamir (10]. The scheme is based on Lagrange interpolating poly
nomials. The shadows are derived from a random polynomial h (with integer coefficients) of degree
t- 1, where h(O) = K. The shadows are generated by evaluating h(x) at n distinct non-zero integer
values Xt, · · ·, Xn. Thus, Ki = h(xi) for 1 :::; i:::; n. We assume that each shadow Ki is stored as a pair,
Ki = (xi, h(xi)).

We define an encryption shadow assignment to be a function SE : U -+ N, where U is a set of
replicas and N is the set of all non-zero integers. For instance, Ki = (sE(i), h(sE(i))) is the encryption
shadow assigned to replica i. Similarly, a decryption shadow assignment is a function SD : U-+ N.
In a single-key system, SE =SD.

The encryption threshold tE is the number of different shadows needed to reconstruct KE.
Similarly, the decryption threshold tD is the number of different shadows needed to reconstruct KD.

4 Secure Quorum Protocol
In this section, we present a secure quorum protocol (SQP). For simplicity, we assume that a single
replica is stored at each site. Several variations of SQP may be possible based on

1. 	whether a secret key is associated with the whole database, a certain set of data objects, or each
data object; and

2. 	whether each secret key is reconstructed for each operation, or is kept in volatile storage for a
certain length of time.

Here, we present the most secure, but least efficient protocol, i.e., a separate key is associated with each
data object, and a secret key is reconstructed for each operation.

Three keys are associated with each data object: a pair of asymmetric keys, called an encryption
key KE and a decryption key KD, and a conventional key, called a writer key K ww. The data
object Dis encrypted using KE (the encrypted data is denoted by EKE(D)), i.e., EKE(D) can only be
decrypted by using KD. Two encrypted copies of the version number V are associated with each data
object. One copy is encrypted using KE (denoted by EKE(V)) and the other copy is encrypted using
Kww (denoted by EKww(V)), i.e., EKE(V) can only be decrypted by using KD, and EKww(V) can
only be decrypted by using Kww. Copy EKE(V) is used for passing the version number from a writer
to a reader. Copy EKww(V) is used for passing the version number from a writer to another writer.
Thus, we assume that associated with each data object, the system maintains areas to store the two
encrypted version numbers and the three shadows of the keys.

The shadows of the keys are distributed among the replicas so that

517

1. 	if a site can read shadows from the replicas in a read quorum, it can reconstruct KD, and

2. 	if a site can read shadows from the replicas in a write quorum, it can reconstruct KE and Kww.

Construction of such quorums is described in Section 5.

The secure quorum protocol, which is executed at each site, is described as follows:

1. Data object initialization:
The site creating a data object randomly chooses three keys KE, Kv, and Kww. The site uses Shamir's
secret sharing algorithm to divide KE and Kww into shadows such that any tE shadows may be used
to reconstruct KE and Kww. The shadow assignment for Kww is the same as the shadow assignment
for KE. Similarly, Kv is divided into shadows such that any tv shadows may be used to reconstruct
Kv. The data object is encrypted using KE. The version number is encrypted using both KE and
Kww. The encrypted data and version numbers are distributed to each site, along with the shadows
assigned to the site.

2. Operation execution:

• 	Read operation: In the first step, the site reads the encrypted replica, the encrypted version
number (for readers), and the shadow of KD from each of the sites in a read quorum. Then, the
site reconstructs KD from the shadows. The site decrypts all of the version numbers using Kv
and determines which replica has the largest version number. Then, the site decrypts this replica
using Kv and returns it. Finally, the site discards Kv.

• 	 Write operation: In the first step, the site reads both of the encrypted version numbers and the
shadows of KE and Kww from each of the sites in a write quorum. Then, the site reconstructs
KE and Kww from the shadows, and determines the maximum version number by using K ww.
The copy to be written is assigned a new version number that is one more than the maximum
version number. The site encrypts the new version number using both KE and Kww and the data
using KE. Then, the site writes the encrypted data and both of the encrypted version numbers
to all of the sites in a write quorum. Finally, the site discards KE and Kww.

5 Secure Quorum Generation

First, we formally define the integrity threshold t1 as follows: Let W1 and W2 be write quorums and
Rl be a read quorum. If I wl n w2 ~~ tl and I wl n Rl I~ tl, then the quorums have integrity
threshold tJ. If an intruder destroys fewer than t1 copies, then each quorum will still contain at least
one uncompromised copy.

Let tE and tD denote the encryption and decryption thresholds, respectively. Assuming an integrity
threshold of t 1, in order to obtain at least tv and t E different shadows, read and write quorums must
contain at least tE + t1- 1 and tv+ t1- 1 different shadows, respectively. Such sets of read and write
quorums are said to have decryption threshold tv and encryption threshold tE, respectively. Read and
write quorums which have a predefined integrity threshold t1, encryption threshold iE, and decryption
threshold tD are called secure quorums.

The highest level of security is obtained if the sizes of all secure write and read quorums are equal
totE+ t1- 1 and tD + t1- 1, respectively, and each replica contains a different shadow. This is why
symmetric sets of quorums are well suited for SQP.

Note that if tv ::; tE, shadow assignments may be defined such that any write quorum will contain
at least tv different read shadows. Then, a separate writer key Kww is not necessary because a writer
may obtain Kv from any write quorum and decrypt the version number using KD.

518

In this section, we present two methods for constructing symmetric secure quorums. These methods
may be easily modified to be used with Herlihy and Tygar's protocol and Agrawal and El Abbadi's
protocol.

5.1 Weighted voting

One well-known method for generating read and write quorums is to use weighted voting [1, 5, 6]. In
this section, we show how weighted voting may be modified to generate sets of read and write quorums
with given thresholds. Suppose that each replica is assigned a single vote. Let U ={0, 1, 2, · · ·, N- 1}
be a set of N replicas. Each replica is assigned a different shadow. For example, we could let SE(i) =
sv(i)=i+l.

Given a write threshold qw 2:: max(f(N+ti)/21, tE+ti-1), the corresponding set of write quorums
is given by W ={GIG~ U, IGI = qw} . Given a read threshold qR 2:: max((N +ti)- qw, tv +ti-l),
the corresponding set of read quorums is given by R = {G IG ~ U, IGI = qR} . For example, let
N = 13, tv = tE = 4, and U = {0, 1, · · ·, 12}. Possible read and write thresholds, for different values
of ti, are given in Table 1.

Table 1. Read and Write Thresholds

ti qw qR ii qw qR ti qw qR
1 7

8
9
10
11

7
6
5
4
4

2 8
9
10
11
12

7
6
5
5
5

3 8
9
10
11
12

8
7
6
6
6

5.2 Cyclic read and write quorums

We have developed a new method for generating symmetric sets of read and write quorums using
modular arithmetic.

Let U = {0, 1, · · ·, N- 1} denote a set of N replicas. Each replica is assigned a different shadow.
Suppose the read quorums are to have size k, where max(tv + ii- 1,ti) ~ k ~ N. Let GR =
{a1. a2, · · ·, ak}, where ai = i - 1. The set GR is called a read generator. The corresponding set of
read quorums is given by

R ={{x{, x~, .. ·, x{} Ixi::::, (ai + j) mod N, 1 ~ i ~ k, 0 ~ j < N}

Lets= k-ii and let Gw =GRU(U~~T(U}~~r-l{(ik+s+j)modN})), where m =f(N +ti-2k)/kl
Suppose Gw = {a1>a2, ···,aM}· The set Gw is called a write generator. IftE +ti -1 > M, then
we can add arbitrary elements to Gw so that M = iE +ti-l. The corresponding set of write quorums
is given by

W = { { x{, x~, · · ·, x~} Ix{ = (ai + j) mod N, 1 ~ i :5 M, 0 ~ j < N}

Since IGRI = k, we obtain IGwl = max(k+mti- [(m + 1)k- Nj+, iE+ti-1), where x+ = x if x > 0
and 0 otherwise.

For example, let N = 13, tv = tE = 4, and U = {0, 1, · · ·, 12}. Generators for different values of k
and ii are given in Table 2.

Table 2. Generators

k ii GR Gw
4
5
5

1
1
2

{0,1,2,3}
{0,1,2,3,4}
{0,1,2,3,4}

{0,1,2,3,7,11}
{0,1,2,3,4,9}

{0,1,2,3,4,8,9}

519

For example, let k = 5 and ti = 2. Then, GR = {0,1,2,3,4} and Gw = {0,1,2,3,4,8,9}. The
corresponding set of read quorums is given by

R ={	{0,1,2,3,4}, {1,2,3,4,5}, {2,3,4,5,6}, {3,4,5,6,7}, {4,5,6,7,8}, {5,6,7,8,9}, {6,7,8,9,10},
{7,8,9,10,11}, {8,9,10,11,12}, {9,10,11,12,0}, {10,11,12,0,1}, {11,12,0,1,2}, {12,0,1,2,3}}

The corresponding set of write quorums is given by

w = { {0,1,2,3,4,8,9}, {1,2,3,4,5,9,10}, {2,3,4,5,6,10,11}, {3,4,5,6,7,11,12}, {4,5,6,7,8,12,0},
{5,6,7,8,9,0,1}, {6,7,8,9,10,1,2}, {7,8,9,10,11,2,3}, {8,9,10,11,12,3,4}, {9,10,11,12,0,4,5},
{10,11,12,0,1,5,6}, {11,12,0,1,2,6,7}, {12,0,1,2,3,7,8} }

6 Join Algorithm

The join algorithm provides a simple and inexpensive way of combining nonempty sets of read and
write quorums to form new, larger sets of read and write quorums [8]. In this section, we first review
the join algorithm. Then, we extend the join algorithm to generate secure quorums. The extended join
algorithm preserves all three thresholds: tE, tD, and ti. Finally, we show that application of the join
algorithm to SQP may improve the overall security of the keys.

6.1 	 Algorithm

Let U be a nonempty set of replicas and let x E U. Let V be a nonempty set of replicas such that
U nV = 0. Let Cu denote the collection of all non empty sets of read or write quorums under U. Define
a function, T:c: Cu X Cv-+ c(U-{x})uv, by

(Gl -	 {X}) u G2 if X E Gl }
Tx (Ct, G2) = {Ga IG1 E C1, G2 E G2, Ga= G 	 th ·{ 1 o erw1se

The join algorithm is to apply the above functions to generate sets of read and write quorums. By
using the join algorithm, a set of write quorums and the corresponding set of read quorums may be
obtained efficiently, even for large N.

We extend the join algorithm to generate secure quorums. Let Ca = Tx(Cl, C2). The shadow
assignments of Ca are defined in the following manner: Let s1 denote a decryption or encryption
shadow assignment for C1. Then, define a function, sa: (U- {x}) U V-+ N, by

()-{st(Y) ifyEU-{x}
ssy- s1(x) ifyEV

Then, ss denotes a decryption or encryption shadow assignment for Ca. The following theorem proves
that the join algorithm, along with the above shadow assignments, generates secure quorums that
preserve the thresholds.

Theorem 1: Let U be a nonempty set of replicas and let x E U. Let V be a nonempty set of replicas
such that U n V = 0. Let W1 be a nonempty set of secure write quorums under U and let W2 be
a nonempty set of secure write quorums under V. Let Rt and R2 denote the corresponding sets of
secure read quorums. Then, Ws = Tx(Wl, W2) is a set of write quorums under (U- {x}) U V and
Rs =Tx(Rl, R2) is a set ofread quorums under (U- {x}) UV. If W1 and R1 have integrity threshold
t I, then Ws and Ra also have integrity threshold t I. Let tE be the encryption threshold of W1 and t D
be the decryption threshold of R1. Let. sa be defined as above. Then, the encryption threshold of Wa
and the decryption threshold ·of Rs are t E and tD, respectively.

520

Proof: First, we will show that Wa and Ra have integrity threshold t1. Since W1 and R 1 have integrity
threshold t1, IG1 n Htl2: t1 for all Gt E Rt U W1 and all Ht E Wt. Let Ga ERa u Wa and Ha E W3.
There are four cases to consider:

1. 	Suppose Ga =Gl for some Gt E Rt UWt and Ha =Ht for some Ht E wl. Then, IGanHsl2: i[
because W 1 and Rt have integrity threshold t1.

2. 	Suppose Ga = G1 for some G1 E Rt UW1 and Ha = (Ht- {x})UH2 for some H1 E W1 and some
H2 E w2. Then, IGt n (Ht- {x})l2: i[because X¢ Gt. Thus, IGa n Hal2: i[.

3. 	Suppose Ga = (Gt- {x}) UG2 for some G1 E Rt and some G2 E R2 or for some Gt E W1 and
some G2 E W2 and Ha = H1 for some H 1 E W 1. This case is essentially the same as the above
case.

4. 	Suppose Ga = (Gt- {x}) U G2 for some Gt E Rt and some G2 E R2 or for some G1 E Wt
and G2 E W2, and Ha = (Ht- {x}) U H2 for some Ht E W1 and some H2 E W2. Then,
l(Gt- {x }) n (Ht- {x })I;:::: (ii- 1). Also, IG2 n H21;:::: 1. Therefore, IGa n Hsl2: i[.

Therefore, W3 and Ra have integrity threshold tJ.

Next, we will show that Wa has encryption threshold tE. Let Ga E W3. There are two cases to consider:

1. 	SupposethatGa = Gt forsomeG1 E W1. Then, !sE(Ga)l2: tE+ii-1 because W1 has encryption
threshold tE.

2. 	Suppose that Ga =(Gt- {x}) UG2 for some Gt E W1 and some G2 E W2. Then, sE(Y) = sE(x)
for ally E G2 and G2 :j:. 0. Thus, sE(Ga) = sE(Gt- {x}) U sE(G2) = sE(Gt)· Therefore,
!sE(Gs)l = isE(Gt)l 2:: tE + i1- 1.

A similar argument shows that Rs has decryption threshold tn.D

6.2 Example

Consider the following example, where A, B, C, and Dare sets of write, as well as read, quorums.

A= { {1,2}, {2,3}, {3,1} } B = { {4,5}, {5,6}, {6,4} }

c ={{7,8}, {8,9}, {9,7} } D = { {a,b}, {b,c}, {c,a}}

Suppose that the initial sets of both write and read quorums are D and that tn = tE = 2 and t1 = 1.
Since three different sites appear in D, n = 3. Assume that the encryption shadow assignment for
D is defined by sE(a) = 1, SE(b) = 2, and SE(c) = 3. Further assume that the decryption shadow
assignment for D is the same; that is, sn = SE. Note that any quorum in D will contain exactly two
different shadows.

We may construct a new set of quorums by combining two of the above sets of quorums as follows:

e Let E = Ta(D,A). Then E is given by:

E= { {1,2,b}, {2,3,b}, {3,1,b}, {b,c}, {c,1,2}, {c,2,3}, {c,3,1}}

In this case, since node a is assigned shadow (1, h(1)), all nodes appearing in set A are also
assigned shadow (1, h(1)).

• Let F = Tb(E, B). Then F is given by:

F = { {1,2,4,5}, {1,2,5,6}, {1,2,6,4}, {2,3,4,5}, {2,3,5,6}, {2,3,6,4}, {3,1,4,5},
{3,1,5,6}, {3,1,6,4}, {4,5,c}, {5,6,c}, {6,4,c}, {c,1,2}, {c,2,3}, {c,3,1}}

In this case, since node b is assigned shadow (2, h(2)), all nodes appearing in set B are also
assigned shadow (2, h(2)).

521

• Let G = Tc(F, C). Then G is given by:

G = { {1,2,4,5}, {1,2,5,6}, {1,2,6,4}, {2,3,4,5}, {2,3,5,6}, {2,3,6,4}, {3,1,4,5},
{3,1,5,6}, {3,1,6,4}, {4,5,7,8}, {4,5,8,9}, {4,5,9,7}, {5,6,7,8}, {5,6,8,9},
{5,6,9,7}, {6,4,7,8}, {6,4,8,9}, {6,4,9,7}, {7,8,1,2}, {8,9,1,2}, {9,7,1,2},
{7,8,2,3}, {8,9,2,3}, {9,7,2,3}, {7,8,3,1}, {8,9,3,1}, {9,7,3,1} }

In this case, since node c is assigned shadow (3, h(3)), all nodes appearing in set C are also
assigned shadow (3, h(3)).

By Theorem 1, the resulting quorums in G aU contain at least two different shadows, and the integrity
threshold t1 = 1 is maintained.

6.3 Analysis

In this section, we will give a. brief analysis to prove that SQP applied with the join algorithm (called
SQPJ) yields a higher level of security than other protocols in which each replica is assigned a different
shadow, such as SQP or Herlihy and Tygar's protocol.

For example, suppose tD =tE =2 and the total number of replicas N =9. In the other protocols,
there are 9 distinct shadows, each of which is assigned to a different replica. If any two replicas are
compromised, the key is compromised. However, in SQPJ using the example in Section 6.2, even if two
replicas are compromised, the key may not be compromised. Thus, SQPJ is more secure than the other
protocols.

Table 4 compares the number of ways in which the key may be compromised if m replicas are
compromised.

Table 4. Example

m Other (Ct(m)) SQPJ (C2(m))
1 0 0
2 36 27
3 84 81
4 126 126
5 126 126
6 84 84
7 36 36
8 9 9
9 1 1

Let c denote the probability that a single replica is compromised. Then, the probability that the key is
compromised by the other protocols is given by:

9

P1(c) = L(Ct(m)(c)m(l- c)9-m)
m=l

Similarly, the probability that the key is compromised by SQPJ is given by:

9

P2(c) = L(C2(m)(c)m(l- c)9-m)
m=l

Some values for P1(c) and P2(c) are shown below in Table 5.

522

Table 5. Example

c Other (P1(c)) SQPJ (P2(c))
0.02 0.0131149 0.0099684
0.04 0.0477658 0.0367946
0.06 0.0978380 0.0763803
0.08 0.1583211 0.1252577
0.10 0.2251590 0.1805180

In aU cases, SQPJ provides a higher level of security.

7 Conclusion
In this paper, we presented a secure quorum protocol (SQP) and two methods for generating symmetric
quorums which may be used by SQP. The first method uses weighted voting and the second method
uses modular arithmetic. Then, we presented an extension of the join algorithm for combining existing
quorums and shadows. Application of the join algorithm to SQP may improve the overall security.

References

[1] 	 D. Agrawal and A. El Abbadi. Exploiting logical structures in replicated databases. Information
Processing Letters, 33:255-260, 1990.

[2] 	 D. Agrawal and A. El Abbadi. Integrating security with fault-tolerant distributed databases. The
Computer Journal, 33(1):71-78, 1990.

[3] 	 P. A. Bernstein, V. Radzilacos, and N. Goodman. Concurrency Control and Recovery in Database
Systems. Addison-Wesley Publishing Co., 1987.

[4] 	 D. E. Denning. Cryptography and Data Security. Addison-Wesley Publishing Co., 1982.

[5] 	 H. Garcia-Molina and D. Barbara. Row to assign votes in a distributed system. Journal of the
ACM, 32(4):841-860, 1985.

[6] 	 D. K. Gifford. Weighted voting for replicated data. In Proc. 7th ACM Symposium on Operating
Systems Principles, pages 150-162, 1979.

[7] 	 M. Herlihy and J. D. Tygar. How to make replicated data secure. Lecture Notes in Computer
Science, 293:379-391, 1987.

[8] 	 M.L. Neilsen and M. Mizuno. Coterie join algorithm. IEEE Transactions on Parallel and Dis
tributed Systems, to appear.

[9] 	 M. 0. Rabin. Efficient dispersal of information for security, load balancing, and fault tolerance.
Journal ofthe ACM, 36(2):335-348, 1989.

[10] A. Sha.mir. How to share a secret. Communications of the ACM, 22(11):612-614, 1979.

523

SECURITY GUIDANCE FOR.

VAX/VMS SYSTEMS

Debra L. Banning

Sparta, Inc.

3440 Carson Street

Snite 300

Torrance, CA 90503

The VAX/VMS environment provides unique built-in security control features for implementation by
a system administrator. However, if the necessary controls are not in place, any or all the
VAX/VMS security mechanisms can be easily bypassed. The DEC "Guide to VAX/VMS System
Security" manual provides security-related information to increase security on VMS systems, but
this manual is over 250 pages long and is difficult for the novice system administrator to follow.
Therefore, to assist both novices and experienced system administrators in providing at least the
minimal security for their VMS systems, SPARTA developed the "VMS System Security
Guideline." This paper summarizes the contents of the guideline that is currently being used
throughout the Department of Energy (DOE).

INTRODUCTION

This paper describes the "VMS System Security Guideline" prepared under contract to Lawrence Livermore
National Laboratory and sponsored by the DOE Office of Safeguards and Security (OSS) classified computer
security program. The purpose of this guideline is to provide guidance to VMS system administrators in
establishing and maintaining a secure environment on VMS-based systems. To keep the guideline from duplicating
the DEC manuals, the reader is assumed to understand the basic VMS concepts.

The purpose of this paper is to describe the important aspects of the guideline, so that the reader can determine the
utility of the guideline in his/her environment. The guideline is divided into three main sections:

1. System Administrator Checklist
2. Primary Security Preparation
3. Additional Security Considerations

The System Administrator Checklist is to be used by experienced system administrators as a method for checking
the security implemented on a system. Sections 2 and 3 together cover most of the security topics applicable to
most environments. Initially intended for use within DOE, the guideline includes information on meeting the
minimum security requirements defined in DOE's computer security regulation [7]. Command sequences to
implement security features described within this paper are provided in the guideline such that the system
administrator does not need to consult additional documentation to provide bask security. In addition, since the
body of the guideline addresses security mechanisms implemented in VMS version 4.7 and before, additional
appendices describe modifications to security mechanisms for versions 5.0 and 5.2.

SYSTEM ADMINISTRATOR. CHECKLIST

The System Administrator Checklist should be used to periodically verify that the necessary security features have
been implemented. The checklist is 7 pages long and summarizes the topics covered in the guideline. In most cases
a YES/NO format is used with section references into the body of the guideline for locating additional

524

information. For example, the following questions, extracted from the guideline's checklist, summarize the advice
given for setting up VMS Accounts and providing security for users.

Questions asked concerning setting up VMS Accounts are:

1. 	 Have passwords delivered with the standard VMS accounts SYSTEM, FIELD, SYSTEST,
SYSTEST_CLIG and DECNET been changed? (Sec. 4.1) YES_ NO_

2. 	 Have the FIELD, SYSTEST, and SYSTEST_CLIG accounts been disabled? (Sec. 4.1) YES_
NO_

3. 	 If your system is a Micro V ax, have the accounts USER and USERP been checked for the use of
simple passwords? (Sec. 4.1) NO__

4. 	 Have the accounts ALLINl, MRGATE, and MRMANAGER been checked for the use of simple
passwords? (Sec. 4.1) YES_ NO_

5. 	 Is the valueofMAXSYSGRP less than or equal to 10 (octal)? (Sec. 4.2.1) YES __ NO__

Questions asked concerning providing adequate user security are:

6. 	 Are the following restrictions used in the DEFAULT UAF: (Sec. 4.2.2)

a. 	 Is PWDMINIMUM greater than or equal to 8? YES__ NO__
b. 	 Is PWDLIFETIME less than or equal to 180 days? YES__ NO__
c. 	 Are default and authorized privileges only TMPMBX and NETMBX? YES __ NO__

7. 	 If a CAPTIVE account is used, does it have the following restrictions: (Sec. 4.2.3)

a. 	 Have the flags CAPTIVE and DISCTRL Y been set in the captive account? YES __
NO_

b. 	 Has the login command file, LGICMD, been defined in the captive account? YES __
NO_

c. Does process limit equal zero (i.e., PRCLM = 0)? YES __ NO__

d Is the group UIC for the captive account unique? YES__ NO__

e. 	 Have the LOCKPWD, DEFCLI, DISWELCOME, DISMAIL AND DISNEWMAIL been

set? YES __ NO__

8. 	 If a captive account is used, does its login command procedure have the following restrictions:
(Sec. 4.2.3)

a. 	 Is the READ/PROMPT command used instead of the INQUIRE command? YES__
NO_

b. 	 Is the captive command procedure restricted from using the TECO editor? YES__
NO_

c. Is F$LOCA TE used to search for input symbols? YES__ NO__

d Has the use of LOGOUT been verified? YES __ NO__

e. 	 Does the command procedure handle an error conditions? YES __
f. 	 Does the command procedure file and its directory have only execute access? YES__

NO_
g. 	 Is the command "STOP PROC/ID=O" used upon exiting the captive account? YES __

NO_

525

A NO answer to a question in the checklist, does not necessarily mean that the security implementation is
insufficient.. However, it should prompt the system administrator to verify that the security provided is
appropriate for his/her particular environment.

PRIMARY SECURITY PREPARATION

This section describes security features that are considered to be important considerations for most VMS systems.

YMS Accounts

The standard software distribution kit comes with 5 default accounts with commonly known passwords. These
accounts are: SYSTEM, FIELD, SYSTEST, SYSTEST_CLIG, and DECNET. Several instances of unauthorized
access to a VMS system have occurred because the passwords on these accounts were not changed after delivery. Of
particular concern is allowing access to the SYSTEM account. Access to the SYSTEM account grants a user
SYSTEM privileges that allow him/her to make any modifications to the system that he/she desires. In addition to
changing passwords, the system administrator should disable those accounts not frequently used (i.e., FIELD,
SYSTEST and SYSTEST_CLIG).

Security for Users

There are three important considerations for user security covered in the guideline: (1) assigning User
Identification Codes (UIC), (2) using a default User Authorization File (UAF), and (3) using captive accounts.

User Identification Codes OJIC)

The UICs on a system should be controlled to assure that a unique UIC is assigned to each user. The UIC consists
of a group number and a member number in the format [group,member). The SYSGEN parameter MAXSYSGRP is
used to define the set of UIC group numbers which would be used to grant the user system privileges. Any UIC
group number less than or equal to MAXSYSGRP has system privileges. The value of MAXSYSGRP should
range from 1 - 10 (octal) for most systems.

User Autboriza.tion File (].JAF)

The UAF contains a record for each user account. The default UAF is used as a template for defining all user
accounts. When the ADD command is used to create a new account, the default UAF is automatically used. For
this reason the careful definition of the default UAF is very importo.nt to assure that users are not granted
unnecessary privileges. The default UAF record should be reviewed to ensure that qualifiers that could pose a
security problem do not exist (e.g., /PRIVILEGES=SYSPRV). Those parameters of interest to security and
suggested values are:

LOGIN FLAGS: GENPWD NODISREPORT PWD_EXPIRED

PWDMINIMUM: 8

PWDLIFETIME: 180 (days)

PWDCHANGE: preexpired

AUTHORIZED PRIVILEGES: TMPMBX NETMBX

DEFAULT PRIVILEGES: TMPMBX NETMBX

The login flags used above indicate that the user's password will be machine generated, that a description of the
user's last access to the account will be displayed upon login, and that the user's original password set by the
system administrator is pre-expired and must be changed upon the first login. The privileges granted (i.e.,
TMPMBX, NETMBX) allow the user to perform basic VMS functions (e.g., create files, check on process status),
perform functions related to a DECnet computer environment, and create a temporary mailbox to facilitate
interprocess communication. These privileges are sufficient for the majority of VMS users.

526

http:importo.nt

Users who no longer require access to the system should be removed via the removal of the appropriate UAF entry.
If possible, system administrators should not reuse the UICs of removed users. If a UIC is reused, the new user
could inherit some or all of the access rights of the old user through existing Access Control Lists (ACL) entries.

IIsin~r Captive Accmmts

Captive accounts can be used to limit a user's abilities and control access to the underlying VMS operating system
by restricting them to a particular command procedure upon login. To make an account captive:

1. 	 The flags CAPTIVE and DISCTRL Y must be set in order to disable the CTRL-Y interrupt.

2. 	 In addition to the above-flags, the flags LOCKPWD (only system administrator can change
password), DEFCLI (user must use default command interpreter), DISWELCOME (disables
welcome message), DISMAIL (disables mail delivery), and DISNEWMAIL (disables
notification of new mail) should be set.

3. 	 The login command file, LGICMD, that will be used must be specified (e.g.,

LGICMD=OPER.COM).

4. 	 The number of subprocesses that can be spawned should be limited by setting the parameter
PRCLM to 0 (i.e., /PRCLM=O).

5. 	 The group UIC for the account should be unique.

An integral part of the captive account is its login command procedure. The login command procedure defmes the
functions that the user will be allowed to perform. Suggestions for preparing a captive command procedure are
included in the guideline.

In most environments normal users should only have TMPMBX and NETMBX for privileges. A system
administrator should be extremely cautious in granting additional privileges to a user. Below is a list of privileges
considered outside the perview of normal users:

BYPASS - Allows a user to read, write, execute or delete any file on the system.

CMKRNL - Allows a user's process to change its access mode to kernel, execute a specified routine, and
then return to the access mode that was originally in effect.

GRPPRV - Allows a user's process access to all files whose group number matches the group number of
the process. With this privilege a user can indirectly acquire privileges granted to other group members.

LOG_IO and PHY_10 - These privileges allow a user to read and write directly to devices. Users with
these privileges could destroy information on the system device, destroy user data, intercept user
passwords, and expose information to unauthorized persons.

PFNMAP - Allows a user's process to map to specific physical pages of memory no matter who is using
those pages.

READALL - Permits a user to bypass existing restrictions placed on files allowing the file to be READ
and the protections on the file changed. Allowing the modification of file protections could lead to
deletion or modification of the file.

527

http:LGICMD=OPER.COM

SETPRV - Allows the user to grant himself/herself any privilege using the SET

PROCESS/PRIVll..EGES command.

SYSNAM - Allows a user to insert names into and delete names from the system logical name table.
With this privilege the user could redefine critical system logical names, such as SYS$SYS1EM and
SYSUAF, thus gaining control of the system.

SYSPRV - Gives a user the privileges of a system UIC when accessing files.

Protectioo of System Files

DEC-supplied system files are provided with default protection. The protections for these files should be
reviewed periodically to ensure that no tampering has occurred. Since the list of files is lengthy, it should be
printed out and compared to the list in Appendix C of the "DEC Guide to VAX/VMS System Security" [1].

Several of the system files (e.g., NETUAF.DAT, SYSUAF.DAT, AUTHORIZE.EXE) should be accessible only
by system-level users and therefore, SYS1EM and OWNER should have read, write, execute and delete access and
GROUP and WORLD should have no access (i.e., S:RWED,O:RWED,G,W) [2]. In addition, DEC has identified
several system files (e.g., SYSHUTDWN.COM, SYSTARTUP.COM, STARTNET.COM) that should not be
granted WORLD WRITE access since it would allow an intruder to modify the file to perform unauthorized
activity when run by the user. Complete lists of these files are provided within the guideline.

Break-in Ayoidance/Detedion

The VMS system provides several SYSGEN parameters that can be used to enable the detection and subsequent
action of a possible break-in attempt. The VMS system is delivered with the default values set. These parameters
should be changed as soon as possible. In particular, the default values of LGI_BRK_LIM and LGI_BRK_TMO
should be changed periodically. If these values are learned, an outsider can modify his break-in technique to adapt to
the set conditions. The LGI parameters, their default values and suggested changes to the values are shown in Table
1.

TABLE 1. LGI BREAK-IN PARAMETERS

BREAK-IN PURPOSE DEFAULT VALUE SUGGESTED VALUE PARAMETER

LGI_BRK_LIM NUMBER OF LOGIN FAILURES ALLOWED 5 <=3BEFORE BREAK-IN ATTEMPT ASSUMED

LGI_BRK_TMO
HOW LONG VMS WILL REMEMBER A

300SECONDS <= 300 SECONDSLOGIN FAILURE

LGI_BRK_DISUSER
LOCKS OUT ACCOUNT WHEN LOGIN

0 1ATTEMPT LIMIT IS EXCEEDED

LGI_B:RK_TERM ASSOCIATES TERMINAL NAME WITH A
1 1USER NAME TO COUNT LOGIN FAILURES

LGI_HID_TIM HOW LONG EVASIVE ACTION WILL BE
300SECONDS <= 300 SECONDSUSED

LGI_RETRY...LIM
NUMBEROFRETRY ATTEMPTS FOR LOGIN

3 2OVER DIALUP LINES

LGI_RETRY_TMO
HOW LONG BETWEEN LOGIN RETRY

20SECONDS <20SECONDSATTEMPTS OVER DIALUP LINES

It is usually not feasible to audit all events that occur on a system due to the additional resources required.
However, a limited amount of auditing should be enabled that will aid the. system administrator in tracking
system events from a security perspective. Some suggestions for useful areas to audit are:

528

http:STARTNET.COM
http:SYSTARTUP.COM
http:SYSHUTDWN.COM

1. successful logins

2~ unsuccessful login attempts

3. use of sensitive system utilities (e.g., AUTHORIZATION utility)
4. locking of user account (e.g., setting DISUSER flag in user's account)
5. break-in attempts, as defmed by LGI parameters
6. changes to audit events (e.g., using SET AUDIT)
7. attempted access to audit records (e.g., accessing OPERATOR.LOG)

Audit information is printed to the operator's log file. The SECAUDIT command with five optional positional
parameters can be used to selectively extract information from the operator's log file.

In addition to having the audit information written to an audit log, an alarm can be set such that an alarm message
is written to a security operator's terminal. If the /ALARM flag is used, it is necessary to designate the terminal
to which the alarm messages will be printed. The commands needed to audit and/or set alarms for the events
mentioned above are given in the guideline.

DECnet Network Security

This section of the guideline addresses additional concerns for a system administrator implementing V AXNMS
systems in a network environment

DECnet Accmmt

It is important to control access to the DECnet account to minimize the possibility of remote users gaining
unauthorized access to local system resources. The DECnet-VAX account currently does not have a requirement
for a privileged default account. Therefore, only a non-privileged DECnet account should be created that has
NETMBX and TMPMBX privileges. In most cases, the DECnet account should be restricted to NETWORK
access only.

The delivered password for the DECnet account should be changed as mentioned earlier. In addition to modifying
the password within the DECnet account, it must also be modified in the DECnet-VAX volatile and permanent
databases.

File Access Listener (FALl Accgunt;

The system administrator should create the F AL account to provide authorized access to the file system of a
DECnet node on behalf of processes executing on any node in the network. When a FAL account is needed, the
system administrator should create a restricted account and assign the F AL network object to that account. The
guideline gives suggestions for creating this account.

The default DECnet account and the TASK 0 object together enable an outsider to become a non-privileged user on
your system [8]. The TASK 0 object can be accessed using the syntax: NODE::"TASK=com_file" or
NODE::"O=com_file", where com_ file is a command procedure on the remote node. A command procedure on the
remote node can be activated using the TYPE command with the above specification. A user can get a command
procedure to the remote node using the COPY command with a node-name specification. Under the standard setup,
this means a user can COPY a command procedure to a remote node and immediately cause it to execute with the
TYPE command. This method has been used in the past for virus attacks.

To prevent remote access. to your system using the TASK 0 object the task object should be removed from the
system. The command used to remove TASK 0 must be issued after the network has been started since TASK 0 is

529

recreated every time DECnet starts. This command can be included in the startup file to be performed
automatically when DECnet is started.

Many system administrators find TASK 0 to be very useful (e.g., for managing multiple systems). If you do not
remove TASK 0, there are steps that can be taken to increase its protection. These steps are described in the
guideline.

Proxy Accounts

Proxy accounts are provided in VMS as an alternative to direct DECnet access which requires gtvmg user name
and password information in the DECnet command line which, in tum, travels across the network in clear ASCII
form. Proxy login permits a user who is logged in at a remote node to be logged in automatically to a specific
account at a local node, without having to supply any access control (e.g., user id/password) information. The
remote user must have a proxy account on the remote node that maps to a local user account. The remote user
assumes the same file access rights and default privileges of the local account. The local account for the remote
proxy user should only have normal privileges (i.e., NETMBX and TMPMBX) to limit access.

Though the use of proxy accounts are the recommended method for allowing user/process access to remote nodes,
the system administrator should be aware that if an intruder gains access to a system with proxy accounts, it is
possible to gain access to multiple systems through the use of proxy accounts on each system. Restricting proxy
account access and minimizing privileges granted to proxy accounts should minimize this threat.

Ethernet Connections

System administrators should be aware that all systems connected to an Ethernet are susceptible to the
monitoring of all traffic, including cleartext passwords, across the Ethernet. This can be accomplished by putting
a system connected to the Ethernet into "Promiscuous" mode.

Maintaining Data Ipkgrity

There is an undocumented CHECKSUM command [4] that provides the means for verifying the integrity of a file.
The checksum calculated by this command is not a cryptographic checksum and therefore it is possible to modify
the file in such a manner that the checksum is not changed. However, if a cryptographic checksum procedure is not
available this command should be used on sensitive files to provide a means for detecting file modification. The
value provided by the CHECKSUM command should be encrypted if maintained on the system or recorded and
maintained off the system (in a secure location).

ADDITIONAL SECURITY CONSIDERATIONS

This section describes other security features that are useful in certain environments, depending upon the system
configuration.

Restrictipg Logips

Logins can be restricted by using a secure terminal server or system password. A "secure terminal server" can be
used on VMS terminals to protect against password grabbing programs. The purpose of the secure server is to
ensure that the VAX/VMS login program is the only program able to receive a user's login. The secure server can
be invoked on any terminal but is especially necessary for terminals, directly wired or remote, located in unsecured
areas. Once the terminal has been set up in this manner, the user must press the BREAK key followed by the
RETURN key to initiate a login. The login then proceeds as usual. Some uses of terminals may be incompatible
with the secure server. Some applications that use the terminal as a communications line mayneed to use the
BREAK key for their own purposes. For example, terminal servers are incompatible with autobaud handling used

530

on switched or dialup terminals. The modem handling on such terminals performs the equivalent of secure server
functions.

Most VMS systems provide password control at the terminal/port level (except LAT-11 Digital terminal
concentrators) through the use of a system password. This additional protection is typically used to provide more
stringent access control for publicly accessible ports/terminals. The commands necessary to set the system
password for a terminal require the SECURITY privilege to execute.

Protection of User Qwped Files

It is important that proper file protection attributes be associated with user-created directories and files. A
system administrator can define default protection access control list entries (ACE) [3] that are associated with
the directory within which the files are created. Since there may be more than one entry for a directory or file,. an
Access Control List (ACL) [3] of all entries is used. In an ACL, users are specified by identifiers that can be: (1)
UIC, (2) an identifier established by the system administrator, or (3) system-defined identifier. "Identifier"
ACEs can be used to restrict access for a particular user or group of users. In addition, using a ~ ACE on a
specific user directory ensures that the UIC, identifier, and alarm protection attributes are associated with all files
created within the given directory. Though it is important to protect user files, ACLs should not be used
indiscriminately since they require additional processing time and dynamic memory.

Deyice Protection

In many environments it may be important to restrict user access to certain devices (e.g., disk packs, printers, tape
drives, terminals). User access to these devices may be controlled via the use of ACLs and identifier ACEs. To use
identifier ACEs with objects other than directories or flies the /OBJECT_TYPE qualifier must be used in the SET
ACL command.

VMS C2 Security Features

Some of the security features provided by VAX/VMS are directed toward the requirements designated by a DOD
Class C2 rating for computer systems [6]. Currently, only VMS Version 4.3 has been evaluated by NCSC and
therefore is the only version given the C2 rating. A system maintaining C2 protection must provide discretionary
access control, individual accountability, auditing of security-related events, and resource isolation [6]. C2
protection for VMS systems can be accomplished through the use of user identification, user authentication,
protected audit trails, and object protection and reuse. In order for the system to provide C2 protection, all of the
necessary mechanisms must be properly implemented.

VMS provides discretionary access control mechanisms for access to named objects in the form of UIC-based
protection and ACLs. Individual accountability is provided by enforcing restrictions on user accounts. These
restrictions include: use of unique UICs, use of a password for each account, assignment of unique user accounts,
and restricting the use of the autologin feature since it associates an account with a terminal instead of a user.
Auditing is provided on VMS systems through the use of ACLs and the SET AUDIT command. The audit trail
produced is written to the operator.log file and can be protected through the use of an ACL. Object reuse is not
allowed in C2 systems. Reuse of system memory pages is protected by the memory management subsystem. Reuse
of disk blocks is protected by the highwater marking and erase-on-delete features. The guideline provides further
description of the mechanisms used for C2 protection and gives the necessary commands to provide this protection.

DEC Security Updates

This section of the guideline describes three security updates that have been released over the years to fix security
problems found in different versions of VMS. If your system is operating under one of the VMS versions
mentioned in this section of the guideline, the corresponding security update package should be installed
immediately. If you have not received the updates appropriate for your system, you should notify your DEC

531

representative immediately. If the required security updates are not installed, your VMS system may be at risk to
unauthorized use.

SUMMARY

This paper gave only brief descriptions of important VMS security issues. However, the guideline is available
from the author:

Debra L. Banning
213/542-6090

dlb@sparta.com

The guideline provides all command sequences necessary to implement the security features described within this
paper. It also provides references to VMS documents to obtain additional information about broad topics (e.g.,
developing an ACL).

REFERENCES

[1] 	 "Guide to VAXNMS System Security," VAXNMS Version 4.2, Digital Equipment Corporation,
Maynard, Mass., Order #AA-Y510B-TE, July 1985.

[2] 	 Memorandum from M. Morgan, DEC, to P. Siebert, DOE HQ, Subject: VMS Security Action Plan
Additional Guidelines, dated 16 February 1988.

[3] 	 "Guide to VMS Security," VAXNMS Version 5.0, Digital Equipment Corporation, Maynard, Mass.,
Order #AA-LA40A-TE, April 1988.

[4] 	 "Security for the New VAX Manager," Robert Hansen, DEC Professional, June 1988, pp. 58- 63;

[5] 	 "Digital Software News and Views - VMS Security Patch #3," Allan Van Lehn, SDE NewsLetter,
Lawrence Livermore National Laboratory, Dec. 1988.

[6] 	 Department of Defense Standard, "Department of Defense Trusted Computer System Evaluation", DOD
5200.28-SID, December 1985.

[7] 	 U.S. Department of Energy, Washington, D.C., Office of Safeguards and Security, "Classified Computer
Security Program," Order 5637.1, dated 1-29-88.

[8] Sharp, Nigel, "Default DECnet Accounts- A Boon for Security?," Views on VAX, 1989.

532

mailto:dlb@sparta.com

SNEAKERNET: GETTING A GRIP ON THE WORLD'S LARGEST NETWORK

Captain James B. Hiller

Chief, Network Software Security

Space and Warning systems Center

Stop 32

Peterson AFB, CO 80914-5001

Abstract

This paper explores the issues of SneakerNet (S-Net), the term often used to
describe the transfer of removable media from system to system. It offers a
description of S-Net, examples of how and why it exists, and types of problems which
can result. S-Net identification, threat analysis and negation, and documentation is
developed. Finally, results and conclusions of a case study using a single large
computer facility are shown.

Introduction

Our computing environments have come a long way in ten years. We've left the
safety of the large computer center and placed virtually the same computing power
of an older mainframe on the desktop in every type of workplace- office, home,
laboratory, airplane, tractor trailer, tent. Electronic networks have blossomed and
created a spider's web around the globe.

The security community has responded to the challenge by identifying, analyzing,
and reducing every risk imaginable, normally just after each one is exploited for the
first time. This is another application of Murphy's law.

We have a complex array of countermeasures predicated on identification, from
the Orange book right on down to add-on packages that can make a microcomputer
just about impenetrable. Network security products and measures have also begun
to proliferate, and we're tackling the issues of international security standards. It
looks like we're on top of the problem.

Are we?

What about that little urchin, the floppy disk? A review of products shows that
we have a myriad of solutions, from colored disks to theft-deterrent shipping
pouches. Unfortunately, none of these high-tech solutions will protect against a
low-tech security problem: SneakerNet (S-Net).

What Is SneakerNet?

S-Net is the virtual network that links every computer in the world via an infinite
resistance, abundantly available medium-air. the link between systems is completed
and broken very fast, in the time it takes to insert a piece of media and read data.

S-Net exists in just about every conceivable computing environment, provided the
environment allows use of some type of removable media. Media type is
unimportant. Floppies, tapes, removable disks and cartridges, and the CD format all
provide the opportunity for a computer to useS-Net.

533

Specific Examples

Mainframes- Any large system which has a removable disk or tape drive. One
frequent situation: software is developed and used at two different sites. It may be
tested at either site, or at both to some degree. Chances are, even if no testing is
done at the operational site, compilers and editors are available "just in case." This
provides opportunities to leave trojan horses that can use data imported by the
S-Net connection. Consider too that most large systems are cold-booted from tape
drive or floppies at the console.

Minicomputers- Most minicomputers or workstations have the same types of 1/0
devices as mainframes. This is the system of choice for most uses where even limited
funds are available for computing resources. Electronic networks are used when
possible as they are faster than media transfer. However, these systems still have
some capability to use removable media. This is often the source of"extra" (pirated)
and malicious software.

Microcom uters- S-Net is normally the first network used with a new micro. It is
cheap an availa le. The last time you moved a file to another system to use its
printer, S-Net connectivity was achieved. What about the freeware you brought to
the office from home? Or the vendor-provided source disk with the latest word
processing package? Each is an example of S-Net.

To sink the point, let's look at a hypothetical situation. While imaginary here,
odds are strong that it exists somewhere.

Hypothetical S-Net Scenario

Ajax Software uses a commonly available suite of mainframes from Wasp for
software development and testing. Upon development acceptance of each version,
the executable code is bonded, sealed with a checksum, and taken to the user site via
removable disk by two employees. Once there, it is loaded on the operational Wasps
for acceptance test and user implementation.

Ajax uses a contractor, SureSoft, as well as in-house personnel to develop and test
its software. They have a versatile, properly controlled development facility.
Modem use is prohibited. Sure Soft personnel come to this facility to do their work
alongside Ajax employees.

Several factors have converged over the years to make this impractical. Software
change requirements have escalated rapidly. Software engineering has emerged
which requires Ajax and SureSoft to spend as much time on design documentation as
on actual code. Both have a larger staff than in the past to handle this. local travel
is a huge expense. A tightening budget forces Ajax management to reconsider ways
of doing business.

Modem and direct lines are rejected due to the obvious threat of malicious
mischief and deterioration of configuration control. The best answer which
preserves the almighty air gap is for SureSoft to develop source in its facility and
bring it to Ajax.

534

SureSoft buys an Analog Equipment minicomputer, popular for its universal
market and vendor support. The company already has a large investment in ABC
microcomputers. These will be used by employees rather than Analog Equipment
terminals, most of which are more costly than inherently flexible microcomputers.
Word processing software is suitable for code development. SureSoft will install a
local area network in the future, but currently employees can bring floppies to the
Analog Equipment machine and run a utility to transfer source developed on the
ABC Micros to the Analog equipment system. The code is then provided as a
deliverable to Ajax, which has a transfer utility for the Wasps.

As Ajax' contractor, SureSoft has a standard security program and policies. Most
of these are collecting dust, but employees still wear their badges and supervisors
watch their staff closely. SureSoft has a profit to make as well, and encourages staff
creativity and cost-cutting. While pirated software is prohibited and employees are
aware of viruses through education by the security staff, SureSoft permits employees
to use personally owned systems in its facility. Controls on these systems are
encouraged but not required. Modems are prohibited.

Since many employees are using their own machines and can work around the
dock, it is virtually impossible to enforce controls. Built-in modems add to this
problem.

While unlikely, it is quite possible for someone with knowledge of this set-up to
exploit it using S-Net. The obvious way would be for the individual to place
malicious code on each of the machines in the process. This is simple to do and can
be disastrous for Ajax' customer. As the code runs across systems, it only transfers
code which will run on the current machine plus the systems down the road. When
the post-mortem is conducted, it will take months, if not years, to trace the problem.

There's a very big hole in the process which can be easily plugged. Before
proposing a solution, we should examine the factors that lead to use of S-Net and
categorize the problems which result from its use.

Reasons for S-Net

Reasons people transfer media among machines cover a broad spectrum. This
includes operational necessity, perceived security, flexibility, compatibility, logistics,
cost, availability of other media, and simplicity. The number of possibilities is
endless.

The hypothetical situation is a good example of operational necessity. Two
different companies with individual platforms need to transfer information
routinely but have not developed a wire connection. Media transfer is the most
expedient solution.

Perceived security is another reason that media transfer is preferred. The"air
gap" has always been viewed as a superb protective measure. We will see that this is
not always true.

535

flexibility, especially in the microcomputer environment, is a large contributorto
the use of S-Net. Invariably, all but the simplest of micro collections have an array of
peripherals with different capabilities. In lieu of hard connections, either due to cost
or poor planning, S-Net is a fast, economical way to move data between machines to
take advantage of various peripherals. It is also used to overcome incompatibilities
between connected systems. In most cases, media formats are identical. Copying is
the fastest approach.

Compatibility between systems, or lack thereof, is another inspiration for S-Net.
While microcomputers boast a high degree of compatibility in communications,
there are many instances where this is not the case. for example, when several
classes of systems, such as micros under MS-DOS and minis under UNIX, exist in the
same office, it may be easier to transfer media than to purchase software and
interconnections. it may only take a few minutes to write a format conversion
routine, while it could take months to acquire communications assets. The more
heterogenity in a mission environment, the more this becomes true.

Another factor may be logistics issues. Considering the Ajax example, if the
development and user site are miles apart and the transfer rate between the two is
low or infrequent, it may take years of travel reimbursement to two people to equal
the cost of installation of a secure, dedicated line between the two sites.

Cost is an underlying theme. The cost of electronic connections, regardless of
medium, escalates very quickly in proportion to the distance covered. Physical media
transfer costs are relatively low in comparison, regardless of the distance. The
primary factor which increases physical transfer costs is frequency. When combined
with distance, high use rates may make the electronic path more cost-effective.
However, this only occurs when both distance and frequency are high. In many
cases, this will not be the case.

Availability of other media is similar to cost as a causative factor. Connectivity
requirements are often overlooked in planning or simply not recognized until a
system is in use. New requirements are developed during the operational phase.
Until the requirements become a real installation, physical transfer is often the only
available means to get the job done. This is accented by the need to "get the job
done NOW." While such needs are often overstated, they appear to be real at the
time. Physical transfer is used as the only method available.

Simplicity may be the biggest cause for use of S-Net. Most users fall into the
novice category. While a vast array of connectivity capabilities may be available,
most novices will hesitate to use them, preferring instead to issue the almighty
"copy" command as the path of least resistance. Until a novice is trained in
electronic transfer, physical transfer will often be the method of choice.

Problems Caused Q.y S-Net Use

Various studies have shown that most system problems stem from unintentional
human actions, such as keystroke errors or poorly implemented procedures. Since
S-Net is merely a non-real-time, off-line version of a network interface, human error
can exploit a system as easily viaS-Net as it can via an electronic connection. Any
type of problem that can occur from a mistake during on-line use can also affect the
system viaS-Net. fortunately, many errors are caught by error-handling
mechanisms.

536

Intentional acts can also useS-Net as an exploitation medium. The primary
example is the virus. This can be generalized to include tfY anomalous software or
data that causes a system to behave in ways other than t ose expected.

The primary difference between malicious activity using an electronic network
and using S-Net is that, with S-Net, there is no network monitor which can track
activities leading up to and occuring after the a no moly is introduced. The only
indicator might be an audit record which shows the mounting of a media volume.
On microcomputers, it is unlikely that this type of event will be audited. Even on
systems that do record media use, it would still be virtually impossible to trace the
source of the problem unless media use had been very low prior to the problem. An
aggravating factor is that the problem may be brought to bear over a very long time,
such as is the case in viral infections. Had an electronic path been used, the
perpetrator would have been likely to cause the problem over a short period of time.
Use of media can be made piece-meal over an extended time frame, avoiding
detection. When combined with the fact that media use is often "userless," the
result can be an anonymous disaster.

SneakerNet Solution

S-Net is not a tough problem requiring a highly technical solution. The most
effective solution is probably one of the least expensive measures available. Our
solution includes three activities--identification, threat analysis and negation, and
documentation. To enforce requirements for media transfer, a method of positive
control has also been devised.

Identification

During system accreditation, each authorized data path should be identified. For
system~with a documented system security policy, t~e p~ths sh<?uld be identifi~d in
the policy and documented to users through operatmg mstructaons. The secunty
officer should also make this data part of initial user training so that each user is
aware of what is and is not permitted. Training should include the possible impacts
associated with S-Net to motivate the user to comply with procedures. For smaller
systems, it may suffice to have the user identify paths that will be operationally
necessary.

Threat Analysis and Negation

Once each path is identified, the security officer can view details of the path and
its use. Specific countermeasures, usually procedural, can be developed and
employed.

For example, media transfer of baselined software from the test facility to the
operational site may require absolute assurance of integrity of information from
creation through final loading. Thus, a checksum may be needed for data
preservation and change detection. If the software or media is classified,
appropriate precedural controls may also be needed. In most cases, documenting
the presence of the path is sufficient. Measures should be based on the sensitivity
and criticality of the information being transferred and of the systems involved.

537

Documentation

The accreditation for each system should document all data paths which do not
use an electronic connection. Those that do use electronic means are usually already
covered. A format for this would include a path description, medium, medium
classification, and a list of procedural controls.

The main benefit of this information is to assist the security officer in recognizing
paths when trouble develops. Thus, the investigation will not overlook these
sources. This would be easy to do when they are not identified. The documentation
should be included in the accreditation package, filed for historical purposes, and
updated as it changes.

The information required is fairly straightfoward. In addition to documenting the
presence of the path, the information can be used by the security officer to identify
other issues to be resolved prior to occurrence of a problem. Examples include
shortcomings in procedures and future problems that may occur.

One item which could be added to the worksheet is an approval block. This would
force management to be aware of and approve each path. We have seen several
instances in which the user chose any means available to complete a task, and
management was pleased as long as the product was suitable. Management
understanding never included the task method. When management was shown
how the task was done, it found that the media use was unacceptable due to
security or configuration control concerns.

Positive Control

To ensure that all paths are identified, and to enforce media control overall, a
central point on the room or facility perimeter should be used for passage of all
media.

The next step is to develop a written form upon which media transfer approval is
requested and approved by the security officer responsible for the system on which
the media will be used or from which it was removed. To provide complete control,
one approval should only be valid for a single pass by the entry point. Allowing a
single round trip can reduce the administrative workload. However, there should be
NO allowance for media to be transported as desired over a period of time. In
essence, the responsible security officer should have to approve every transit of
media past the control point. This way, complete control and cognizance over
activities is maintained.

Use of the form and required approval by the security officer serves several
purposes. It validates identified S-Net paths and allows new ones to be discovered.
Further, security policy often requires the security officer to review and approve£!.!
system changes, including software changes, for security impact assessment. Since
the security officer is often not in the loop as changes are made, the paper trail
provides a way for him to be aware of activity on the system. The paper trail also
helps identify maintenance activities which routinely include vendor diagnostic
routines that the technician introduces via media.

538

Since entry controllers are of ten not aware of who is responsible for each system,
a list of security officers can be developed and given to the controller for reference.
This way, the authority of the approving official can be verified. In time-critical
environments, there may be a need to have provisions for others to approve the
transfer. This reduces the likelihood of required, spur-of-the-moment activities
being aborted but still provides a trail for review after the fact.

For contractors, we have also required that their sponsoring government activity
request the transaction. We have many contractors working for other agencies who
must use our systems. We have no contractual capability to ensure that the activities
occurring are necessary or valid. We normally do not know what kinds of activities
have been required of the contractor. Thus, we are able to put the onus on the
proper activity to ensure the propriety of the contractual action. This has also been
useful as we have found that many times, other agencies do no maintain rigid
control over the activities of their contractors. This forces them to maintain a higher
level of awareness.

The final step is to collect the forms as the transactions occur. They are validated
by the entry controller to ensure compliance with content requirements. They are
periodically sent to the organizational computer security manager for general
quality control checks and analysis, and finally forwarded back to the responsible
security officer for his use and filing.

S-Net Identification Case Study

After beginning to use the techniques described, it became dear that a
phenomenal amount of media was traversing our entry points. In reviewing the
transaction forms, we also found that agencies conducting transfers were not always
aware of the need to protect output media at the same level of classification as the
system on which it was created. We also found that input-only media was not being
physically write-protected.

To determine the detailed nature of the media flow past the entry points, we
commissioned a study by the organization responsible for the flow. The results were
eye-opening.

This environment involves a contractor facility for development and analysis; our
own three facilities (referenced as"our facility"), used for development, integration,
and development testing; and another related facility which is the customer of all
developed software and data. The source of media implied in the results is the
contractor facility.

Within our facility we have a multitude of systems, from microcomputers and test
devices to mainframes. The mainframes use about two dozen removable and fixed
disk drives along with about a dozen magnetic tape drives. Several of the larger
systems are directly connected to one another. All can be interfaced through local
patch panels.

System interface devices range from dumb terminals to fully-configured
minicomputers. These in dude and array of fixed and removable media devices.

539

By design, S-Net connections exist between most of these systems. Connections
also exist with external development and testing agencies as well as with the end
user of software systems developed, integrated, and tested in our facility.

The case study includes only one of several agencies with which we interface. This
particular study involves media associated with only five of our projects handled by
that agency.

Case Study Results: Data Paths

1. Tapes containing complete source code modules or source code changes are
brought into our facility for installation on our systems. The source code is
generated on microcomputers, transferred to a minicomputer using vendor or quasi
public domain software, and finally transferred again to the target system.

2. Blank tapes are loaded in our facility. Source code records, system performance
data, and system analysis scenarios are copied and removed from our facility for
transfer to and use on mini and microcomputers.

3. Tapes containing mission scenarios are generated, moved to our facility, used
for analysis, and then may be moved back to the origination point.

4. Data generated on tape for use in stress testing is brought to and used in our
facility. These tapes are degaussed.

5. Floppy disks (3.5" and 5.25") are brought into our facil as a consequence of
other business. These are not intended for use on our systems, but such use is not
precluded.

6. Floppy disks (3.5" and 5.25") containing source code are generated in our
facility, taken out, and then returned to the same or another facility for analysis on
systems within.

7. Non-standard format floppy disks (3.5") are generated and brought into our
facility for use on test equipment. These normally contain source and executable
code as well as data.

8. Floppy disks {3.5", 5.25", and 8") containing system documentation, system
data used for analysis, and system data resulting from analysis are brought into our
facility.

9. Floppy disks (5.25") and removable disk cartridges (10MB) which contain
backup files, executable developed software, data files, vendor software, and system
documentation are brought into our facility for system testing and final version
release.

10. Floppy disks (5.25") containing various types of data are received from world
wide locations, sent to another facility, brought back to our facility after analysis,
and redistributed to the original locations.

11. Floppy disks (5.25") containing executable communications software and
related data are brought into our facility for use in testing and then transported to
another related facility for testing and eventual operational use.

540

12. Tapes containing modified executable code are generated in our facility and
transported to another related facility for operational use.

13. Tapes containing mission analysis and system performance data are generated
in a related facility and transported to our facility for use in analysis. These tapes are
then degaussed.

14. Tapes and removable disk packs are transported both ways between our
facility and a non-related facility for use in disaster recovery testing. This occurs very
infrequently.

15. laptop computers used in system analysis, software development and testing,
and system documentation are brought into our facility and removed.

Case Study Results- Numerical Study

A complete study of individual transactions to determine specific trends and
problems is ongoing. However, a brief overview of the individual transactions
associated only with the flows shown above, covering one month, finds that 55
media transportation requests occurred, moving 272 pieces of media past the entry
point.

These figures do not show the amount of computer equipment which may contain
data storage devices, such as EPROMs, laptop computers, hard disk devices, and
other forms of permanent storage. They also do not show processing devices of any
sort, a basis for an entirely different study.

A:>suming a 50% frequency of 5.25" floppy disks and a 50% frequency of 6250 bpi,
700 foot magnetic tapes, this is approximately 1256MB of data or storage capacity
moving past the entry point in one month. This does not account for extremely high
density media that also moves to and from the facility.

How much data moves in and out of your facility or office?

Analysis

The numbers alone show an urgent need for some sort of identification and
control of media flow. More than that, the diverse types of media flow discovered,
related to only a fragment of the operations in our organization, show several
situations worthy of closer examination:

Path 1 is similar to the hypothetical situation. It is a potential path of attack for
malicious or inadvertantly fouled software or data. Paths 2, 3, 6, 10 are examples of
how security procedures are ignored when operationally expedient methods are
developed. Since there is no convenient way to verify that media created which is
intended to be non-sensitive is in fact non-sensitive, it may be at risk in a less vigilant
environment where all data is assumed to be non-sensitive. Conversely, path 4
shows that security measures may be properly exercised when expediency is not a
concern.

541

Paths 7-10 exemplify a direct opportunity for introduction of unknown data or
software. Path 5 shows that fortuitous sources of potential problems routinely
transit the facility. These are normally not exploited due to lack of intent rather
than to prevention measures. Paths 11, 12, show it is possible for problems
encountered in our facility through introduction from other sources to be
transferred to other related facilities. Finally, path 15 is a situation that requires very
special attention in any case.

Conclusion

The high volume of media transfer results in the likelihood of serious problems
should unknown or unintended information be transmitted through these channels.
lack of attention to this problem can result in stymied attempts to prevent or detect
malfunctions. In a software production environment, or any situation in which there
is a reliance on computer systems, it is extremely important to recognize this
problem and solve it. Positive entry control techniques are crucial to the effort.

While there may be useful, automated solutions to this problem in the future,
there does not seem to be one now. The easiest, most economical solution currently
available is the identification, documentation and control technique. While not
perfect, use of this method promises to reduce unforeseen problems to a minimum.
In addition to providing a catch for unintended problems, the method establishes a
means for identification of related security issues and system changes which should
be evaluated from a security perspective. Finally, the very presence of a viable
procedure will serve to deter malicious activity in much the same way that even a
simple car alarm will cause the thief to move along before ruining your day.

542

A SOCIO-TECBNICAL ANALYSIS

OF A U.S.A. NATIONAL COMPUTER SECURITY CONFERENCEl

Stewm:tKowaJski

Project for System Integrity andInformation Security

Dept. ofComputer andSystems Sciences

Umvenity ofStookhoJm & Royal InstituteofTechnology

Electrum 230

S-164 40 Kista Sweden
Phone : +46-8-161611 Fu : +46-8-703 00 25

e-mail: stewart@dsv .su.se

Abstract

The United States computer security community is one of the most influential
forces in the international computer security arena. It has achieved this position
by investing massive amounts of resources. Just the man/hours spent attending
their annual national computer security conference often amounts to a yearly 35
man/years investment by the community. This massive investment has produced
a socio-:-technical infra structure that is dynamic and vibrant but also very
confusing for observers outside the Unites States. This confusion is often
detrimental for the acceptance of U.S. standards by the international computer
security community. This paper attempts to shed light on the socio-technical infra
structure of the United States computer security community by analyzing the
proceedings of the 12th. United States National Computer Security Conference
using the SBC socio-technical analysis methodology. The papers presented at the
conference are classified using the SBC national-supranational analysis
methodology. Once the papers are classified the SBC methodology is used to
suggest trends and tendencies within the United States' computer security
community socio-technical infra structure.

Introduction
The annual U.S. National Computer Security Conference has become the
"mecca" for individuals involved in computer security. The conference covers a
broad range of computer security topics and the 12 th. conference was organized
into five tracks:

a) Research and Development

b) Systems

b) Management and Administration

c) Education and Ethics

e) Alternate Papers

1 A version of this paper was originally published in Computers & Security Volume 10
No 3 1991 and is being published here with the full permission of the publishers,
Elsevier Advanced Technology, Mayfield House, 256 Banbury Road, Oxford, OX2 7DH,
UK. This paper has been funded by the Swedish IT4 Programme.

543

The 12 th. conference attracted dose to 2300 delegates. The delegates come from a
broad selection of different interest groups involved in computer security issues in
the United States. Computer security vendors and computer security users from
both the public and private sector attended. About 5 % - 10 % of the delegates at the
12 th. conference came from outside North America.
To many observers the National Computer Security Conference is a bit like a four
ring circus [4]. The problem is that a great deal is happening in the United States
in the area of computer security and it is very difficult to put all of it together at
one conference. Consequentially it is also very difficult to understand what
direction the United States computer security community is taking after attending
one of these conferences. To attempt to overcome this difficulty the conference was
analyzed using the SBC socio-technical analysis methodology being developed at
Stockholm University [9,10,171.

SBC Analysis Metbodology.

The Security By Consensus (SBC) socio-technical analysis methodology consists of
a dynamic and a static classification scheme. The static scheme divides the
computer security problem and solution space into five classes, or subsystems.
These five subsystems are; ethical, legal/political, administrative/managerial,
operational and technical (Figure 1). The dynamic classes, or class states, are
taken from the traditional design life cycle model and include; principles
development , policy decision making, requirement specification, implementation
and testing/evaluating (Figure 2).

Ethical
Cultural

Legal
Political

Adminstrative
Managerial

Operational

Technical

Principles

Development

l

Policy

Decison Making

l

Requirement

Specification

l

I Implementation I
l

Testing

Evaluating

SBC Static Classes SBC Dynamic States
Figure 1 Figure 2

544

The dynamic model and static model are then integrated together (Figure 3).

Ethical
Cultural ~

t-----------1

Legal
Political :

Adminstrative ~
Managerial :

Operational~
1------------------------------~'

Technical

-----------·lilj Ethical Principles

IEthical Policies
.....

~ IEthical Codes I

............ IEthical Practices I
..

ical Tests

,'ff ITechnical Principles

,-•'" ITechnical Policy ,,
,," ITechnical Specification ,

ITechnical Implementation

-----------•1 Technical Testing

Figure 3
Combined Static Classes & Dynamic States

The general thesis of the SBC analysis methodology is that problems at the
national and supranational level can be understood by examining the delays and
inconsistencies in the material and information feedback cycles between the
different classes or subsystems. For a more detailed explanation of the SBC
analysis methodology at the national and supranational level please see reference
[9,10]. What follows is a SBC analysis of the conference using the static classes of;
ethics, legal political, administrative and managerial, operational, and technical
as headings.

EthicalLayer
Although it is not the first time that ethical papers have been presented at the
conference [7] it is the first time that ethics have been presented in a separate
track. It should be noted that in a 1988 SBC analysis of the United States [10], the
ethical subsystem in the US was their slowest and most undeveloped subsystem.
It appears that from a dynamic perspective the computer ethical subsystem in
the United States seems to be moving from the policy state into the principle and
requirement states. That is to say that there has been a general policy decision in
the United States that ethical controls are important and this has caused activity
in the principles and requirement subsystems.

545

Figure 4 is a SBC flow diagram of the computer ethical subsystem of the United
States from a review of the reports presented at the conference.

Principles Education"" Ethics -------------------· ~
3b

NCSCPolicies Ethical controls are
important! 1 •t 1990-1991 ''\

n~:.......~~·
rE[I"""'-..............,......,1008
Have ethical
oonoornings needs oftrack: at

....o.'L!computer~conference. 2 education in schools. •
".... - - -- ...1.... - - ,.1+

Codes ofethics and
'-

II
1

I u

papers conoom.ingImplementation
computer published

in proceedings. 3

Survey ofstudent's ____ .-.---------- -•
Testing ethical attitudes.

Sa

Figure4

In figure 4 the policy decision that ethical issues are important (Step 1) is shown
leading to an ethical track at the conference (Step 2), which in turn leads to
research and debate on ethics and ethical principles(Step 3a,3b) Unfortunately not
much new in the way of principles where presented at the conference. Two of the
papers presented results from surveys of ethical attitudes among students [3,11].
The survey were similar in nature to SIIS survey of Swedish students [8] but were
however relatively small in size with only 100 to 120 subjects. It is difficult to say
how relevant these surveys are for a US population of over 220 million. The
Swedish students surveyed by the SIIS project do not appear to differ from the
American students. However, there is not enough information in the papers
presented at the conference to make a comparison of the Swedish and American
students.

546

What was of interest in the presentations of the papers given at the conference
was the strong coupling of educational principles and ethical principles. Also in
figure 4 there is an indication that in the U.S. ethical control subsystem there are
some activities in the requirement/implementation and testing states. In the
presentation "Information Ethics, A Practical Approach" [6] the issue of
computer security ethics is examined from an implementation perspective. Thus
it appears that the ethical control subsystem is moving through the different life
cycle stages and there are individuals trying to take the codes of ethics and use
and test them. In figure 4 the dotted lines point to an hypothesis that was made
when this paper was drafted in January of 1990 that the issue of education and
ethics would become a "hot topic" in the United States.The fact that an ethical
track was not included in the next years conference and that education became a
session at the conference rather then a track indicates that this hypothesis has
been proven false.

Figure 4a is an explanation using the SBC methodology as to why this may have
occurred. There is a tendency in the ethical control subsystem that policy
decisions do not have enough momentum to complete the full lifecyle process.
Codes of ethics are written and discussed in universities and perhaps every now
and then at conferences but they are never really implemented or tested in the
larger system.

547

At the 12 th. annual conference the flag had been raised in the United States on
the importance of ethical control to the computer security problem. Only time will
tell if it has been raised high enough for the individuals in the computer security
community to take notices and bring the ethical control subsystem into stability.

LepJ/PolitimJ Layer
The computer security Act of 1987 is beginning to have some effect on the
computer security situation and many of the speakers referred to the act in their
presentations. Of particular importance are section 5 and section 6 of the Act.
Section 5 of the act requires that federal agencies, processing classified and above
material, have mandatory periodic training on computer security for their
personal and section 6 requires that federal agencies develop a computer security
plan.
The legal/ political subsystem is clear in the implementation and testing state
(Figure 5). The security plans of over 15000 federal agencies have been and are
being reviewed by the computer security section of NSA and NIST. It will be
interesting to see what will be the result of the reviews.
It is difficult to say how long this control subsystem will be staying in the testing
state. In the legal/ political subsystem the state cycle shift is influenced to a great
extent by the news media and popular opinion. If computer viruses and worms no
longer make headlines there is a good chance that the politicians will not
introduce new laws.

New laws
needed

? II • Principles

~1ST over NSA
Security

4 Crltera?
I~

Computer
Security
Act 1987

1

y

Section 6
Security Plan

2

Policies

Requirements

Sc.veral nations
have own national
computer seeurU)

dlrltera
1

More U.S.

~ International
8 1nvolvement.

lllo.

y
1500
Plans

II
Implementation

4

Increase
Eh.1dget
NIST?

......

y

Review
NIST NSA

4
-

Testing
........_

ll1o. ...
Deereaee

.
2

Market
Share +

IIICYIDIIIII41

figure 5 figure 6

548

There was a great deal of complaining among the computer security vendors
attending the conference. The computer security Act has created a great deal of
interest in computer security in the United States but not necessary a great deal of
demand for computer security products. Computer security vendors are not sure
that the C2 in 1992 bandwagon, will be large enough to carry all of them. The
United States vendors want and need to be able to market their security products
and knowledge outside the U.S. markets. This message was also emphasized by a
congressman's keynote speech which urged for greater internationalization of
the computer security effort.
Figure 6 is a SBC flow diagram of the possible future political situation (legal
situation excluded). In step 1 several nations create their own computer security
criteria. This creates concern among U.S. vendors over possible loss of market
share in the international arena (Step 2). For example, vendors based in Britain
will dominate the British market, French based vendors will dominate the French
market etc. This has lead to market requiring that the U.S. have more
international involvement in computer security criteria development (Step 3). The
figure suggests that then next step, step 4, will bring about a change in principles
and implementation in the subsystem. That is, the general principle that United
States National Institute of Standards and Technology rather than the United
States National Security Agency will play a more active role in defining
national/international computer security standards. As to whether the political
subsytem will stay this configuration will depend on to what extent the United
States computer security vendors have succeeded in maintaining and penetrating
international markets with their computer security products and knowledge or
inversely to what extent internationalization of security standards will enable non
United States vendors to penetrate the U.S. markets.
In summary it could be said that the information obtained at conference when
presented in the SBC framework suggests that the legal and political control
subsystems for computer security in the United States is currently very dynamic
and stable. The concept of dynamic stability within the SBC analysis methodology
means that there is sufficient material and information flow for the system to
maintain simultaneously all life cycle states from principles to testing. It will be
interesting to see how internationalization of the computer security effort will
effect this stability.

Admipi!¢rntive Mapagement Layer
The papers presented this conference track clearly indicates that this control
subsystem is in the implementation and testing state. Federal agencies in the
United States have a long list of requirements that they must fulfil. The
requirements can be found in such documents as the Orange book and the
National Bureau of Standard's , (now NIST's), Guide-lines for Computer Security
Certification and Accreditation.
The tone of the papers presented in this track are not radical in the sense that
there are no statements indicating that the Orange Book and the rainbow series
are sometimes difficult use the administration and management of a secure
computer system. general the attitudes appear to be that everyone is aware of
the short comings of the Orange Book and rainbow series for administration and
management of but it is better to use these models until something better
comes along. One of major short comings of the Orange Book and Rainbow

549

series that received much attention is that they did not deal explicitly with the
problem of software development [1,13,15]. Figure 7 is a SBC block diagram of the
papers presented in the administrative and managerial track. In the block
diagram the size of the block is proportional to the number of papers that
discussed some aspect of that subsystem dynamic class state. For example 7 of the
11 papers in this track presented experiences from the implementation of
management models and thus the implementation block is roughly 65% of the
total block.

Principles

Policy Developement

Requirements

Implementation

Testing

Principles

Policies

Requirements

Implementation

Testing

Operntiopal Layer
The conference did not have a specific track dealing with operational practises.
But there where a number of papers in the "Systems" track which dealt with
some very practical issues of computer security. William Neugent's paper on
"Guidelines for Specifying Security Guides [12] and M.H.Brothers' paper "A How
to Guide for Computer Virus Protection in Ms Dos"[2] are good examples. Most
of the papers that dealt with security from an operational perspective are of the
cook book approach. That is to say they list recipes for secure operational
practises. It is interesting to note that of those papers that dealt with the
operational problem most of their cited references are from dates 1986 to 1988.
What this shows , in a SBC analysis, is that the operational subsystem in the
United States is in a dynamic state. A quotation from Neugent's paper seems
however to indicate that even though the system is dynamic it does not seem to be
operating properly.

At least four major efforts to produce guards for the military have
failed , in the sense that the guards were not used
[12].

What this would indicate a SBC framework analysis is the principles and
policies are poorly coupled to the requirement and implementation subsystems
(Figure 8 above). weak coupling between principles policies, and
requirements and implementation, means that what is on paper at .
headquarter or in the head office is not practised the

550

Toobpjpl Layer

The conference and the entire computer security community in the USA is
basically oriented to the technical problems and aspects of computer security. To
cite from the first page of the conference proceedings:

The dominant theme in the literature appears to be entirely
dependent on technology to provide security. But long before there
were computers we had management controls, principles of good
system designing, and procedural security [14].

It is beyond the scope of this summary to do a complete SBC analysis of the
technological nature of the papers presented at the conference. A rough analysis
indicates that of the 17 papers presented in the "Research and Development"
track, 8 were classified as belonging to the principle state, 7 were classified as
belonging to the implementation/testing state, 1 was classified as belonging to the
requirement state, and 1 was classified as belonging to the policy state (Figure 9).

Prinelplu

Policy Developement

Requirements

Implementation

Figure 9

The emphasis in the technical p p a ers presented at the conference was on
problems in database security , communication security and distributed systems
security. It appears that the United States computer security community believes
that they have good technical bases in operating system security and are starting
to attack other technical problems in security from this base. Many papers
contain expressions that can be paraphrased as "given a Trusted Computing
Base this security function can be developed" [5,17]. Trusted Computing Base
(TCB) is Orange Book terminology for secure operating system. This rather
primitive SBC analysis seems to indicate that the technical subsystem in the
United States is relatively stable. That is to say that activities are going on in all
states from principles to testing. The United States has the technical expertise
and well developed research infrastructure to deal with computer security as a
technical problem.

CouclusWn
In this paper the SBC analysis methodology has been used to classify and analyze
over six hundred pages of documentation, approximately 24 hours of
presentation and approximately 24 hours of informal discussions. The objective
for the classification and analysis of such a large quantity of data was to see ifany
major trends within the U.S. computer security community could be observed.

551

The SBC analysis of the 1989 conferences indicates three major shifts within the
United States computer security community. These are;

1) A great acceptance/awareness of the importance of non
technical solutions to the computer security problem.

2) A shift away from the military computer security perspective.
3) A great acceptance/awareness of the need for international

cooperation in dealing with the problem of computer security.

References
[1] 	 Benzel Vickers, Integrating Security Requirements and Software Development Standards,

Proceedings 12th National Computer Security Conference, 1989.

[2] 	 Brothers, M. H., A "How to" Guide for Computer Virus Protections in MS-DOS, Proceedings
12th National Computer Security Conference, 1989.

[3] 	 Blopmbeck Buck J, Trends in Computer Abuse/Misuse,Proceedings 12th National Computer
Security Conference, 1989.

[4] 	 Carroll, John M., Conference Report, Computers & Security ,Vol9 , 45-49, 1990

[5] 	 Danner, Bonnie P, Initial Approach for a TRW Secure Communications Processor,
Proceedings 12th National Computer Security Conference, 1989.

[6] 	 DeMaio, H., Informaton Ethics, A Practical Approach, Proceedings 12th National Computer
Security Conference, 1989

11.1 	 Denning ,Dorthy, et al , Social Aspects of Computer Security, Proceedings 10th National
Computer Security Conference 1987.

[8] 	 Kowalski S., Computer Ethics and Computer Abuse: A longitudinal Study of Swedish
University Students, IFIPS TC11 Conference , May 1990.Elsevier Science.

[9] 	 Kowalski S.,Creating Confidence Through Consensus:Using the SBC Model as Framework
for Security In Open Systems, IFIPS TC11 Conference ,May 1991.Elsevier Science.o

[10] 	 Kowalski S., Cybernetic Analysis of National Computer Security, Computers & Security,
Vol10, No 3.,1991, Elsevier.

[11] 	 Miller James E., Computer Abuse: An Academic Perspective,Proceedings 12th National
Computer Security Conference, 1989.

[12] 	 Neugent, William, Guidelines for Specifying Security Guards, Proceedings 12th National
Computer Security Conference, 1989.

[13] 	 Novell, William, Integration of Security into the Acquisition Life Cycle, Proceedings 12th
National Computer Security Conference, 1989.

[14] 	 Smith,Gary,W, Going Beyond Technology to Meet the Challenges of Multilevel Database
Security, Proceedings 12th National Computer Security Conference, 1989.

[15] 	 Theofanos, Mary, A Systematic Approach to Software Security Evaluations, Proceedings
12th National Computer Security Conference, 1989.

[16] 	 Wong Raymond et al The SDOS System: A Secure Distributed Operating System Prototype,
Proceedings 12th National Computer Security Conference, 1989

[17] 	 Yngstrom, L., et al, Forstudie GrundUiggande Informationssikerhet Modeller, SIIS Report
89-2, DSV, University of Stockholm, Sweden

552

STANDARDIZED CERTIFICATION

Captain Charles R. Pierce

Air Force Cryptologic Support Center (AFCSC/SRM)

San Antonio Texas 78243-5000

ABSTRACT

The purpose of this paper is to discuss the process of computer security
certification. It begins with an overview of the inconsistencies of
certification as encountered in the Department of Defense and indeed throughout
the Federal government. It discusses part of the variety of certification
definitions, a general overview of the certification process, some prevalent
problems with the process and some recommendations for possibly alleviating
these problems. The paper's intent is to provide a basis for creating
certification standards for computer systems developed or acquired by Program
Management Offices (PMO) within the US Air Force. It also intends to inform
Designated Approving Authorities (DAA) who place those systems into operational
environments about what certification should be. By systems, I mean a computer
component or subsystem, either that typically understood to be an Automated
Information System or one embedded as part of a larger system. This does not
include larger, more widely dispersed computer entities commonly called
networks. In some cases the system will stand by itself, such as a stand-alone
mainframe system. In others, it will be part of a larger complex system, such
as the Advanced Tactical Fighter (ATF) Information Management System, which is
part of the overall ATF Weapon System. This paper focuses on the stand-alone
or sublevel component system. Policy, standards and implementation guidance
for more complex systems is still under development and it is not yet feasible
to provide definitive guidance in that arena. That does not mean that the
principles in this paper do not apply if the situation warrants.

WHAT IS CERTIFICATION?

Certification and accreditation are parts of a process that leads to the
secure implementation and operation of a computer system in a specific
environment. Certification is usually understood to be a technically oriented
process while accreditation is a management function. Certification has as
many definitions as there are agencies that issue certification guidance.
Perhaps the most often used, and involving the broadest audience, is that in
DOD Directive 5200.28:

"The technical evaluation of an AIS's security features and other
safeguards, made in support of the accreditation process, which
establishes the extent that a particular design and implementation
meet a set of specified security requirements. 11 [1]

The military services and the National Computer Security Center (NCSC)
have their own somewhat different, yet similar, definitions [2,3] as do other
DOD agencies and the government's civil sector, the primary one being the
Department of Commerce's National Institute of Standards and Technology (NIST).
Most definitions agree that the system is to be evaluated in some manner as to
how well its security measures meet a set of security requirements or
specifications. They usually agree that certification supports accreditation.

553

In reality, discussions involving system developers and security experts on
certification usually center on how well technical security measures,
particularly those in operating systems, have been implemented to meet stated
requirements. Other areas requiring certification, such as facilities and
applications software, are not usually discussed during development unless the
system's users become involved or they are a part of the development.

Although there are also language differences in the definitions for
accreditation, there is consistent agreement that it is a management process
that uses certification results and risk acceptance to issue the approval to
operate a system in a designated environment. [2,3] The problem, and resulting
corrective goal, is the implementation of a certification process that
accurately evaluates a system's security posture and provides reasonable
assurances that security is sufficient to its accreditor, the Designated
Approving Authority (DAA).

CERTIFICATION FLOW

The general flow from the beginning of a system's development to
accreditation is not standard but somewhat parallels the following typical
steps.

Requirements

A user who needs the system defines security requirements based on an
analysis of mission capabilities and shortfalls in these capabilities. If
security is a critical issue, that information and security's possible effects
on mission performance is included in the system's Mission Need Statement
(MNS). Risk analysis (sometimes called threat analysis) is used. to define
threats and vulnerabilities to the system. The risk analysis is initiated
early in the system's life cycle and continues throughout the syst~m's

existence. Risk analysis is the first phase of an overall risk management
program, with certification and accreditation being the other phases. [2] The
requiring user will use the downward directed requirements from existing policy
(e.g., DODD 5200.28 [1], DOD 5200.28-STD [4], and AFR 205-16 (AFR 56-30 and AFR
56-31 [5])) and other mission particular operational requirements for
initiating the risk analysis process. The output of this first round of risk
analysis should be a set of security requirements, including the proposed
Trusted Computing Base (TCB) level.

Mission Need Statement Preparation

The MNS preparation, review, and validation can include defining
deficiencies in mission performance, including those due partially to computer
security and existing hardware and software provisions. The MNS states
acceptable performance of mission tasks and functions, but does not state
specific hardware and software solutions. The system developer's review of the
user's MNS will include, as much as possible, an assessment of program
technical risks, including those induced by security. Finally, the MNS will be
evaluated and validated if existing systems or improving an existing system
cannot meet the user's requirement.

554

Policy Definition

The major intent of the requirements analysis, needs definition and first
round of risk analysis is to produce a security policy at the system level.
The security policy will be the "guiding light" or road map for all subsequent
development actions. This system security policy should not be confused with
the security policy described in DOD 5200.28-STD. That policy is explicitly
for the TCB, not the entire system. The system policy will describe
requirements for computer security, communications security, physical security,
etc.

Security Development

Countermeasures are implemented during the system's development life cycle
to meet the requirements generated by risk analysis results, just as other
features meet other requirements. The various reviews and audits described in
MIL-STD-1521B [6] include security much as they would any other operational
issues. As a minimum, the risk analysis should be reviewed or reperformed at
each formal development milestone. Any identified deficiencies or shortcomings
must be evaluated for their impact on the intended security implementation.
Serious problems could cause changes affecting proposed operating modes, TCB
levels, or other security requirements and residual risks. In the later phases
of development, various tests and evaluations determine if countermeasures meet
requirements. The system developer, usually a contractor, performs
Developmental Test and Evaluation (DT&E) as the system is being built to
determine if the design has been properly implemented. DT&E normally looks at
the system from a somewhat isolated, technical view and minimally considers the
operating environment. Some organization independent of the system developer,
contractor, or the user performs Operational Test and Evaluation (OT&E) to
evaluate the system in its operating environment. OT&E considers active users
and the system's final facility. Security Test and Evaluation (ST&E) is
defined as an examination of the system's security measures. [2] Since both
DT&E and OT&E can also evaluate security, there may be significant overlap
between them and ST&E. ST&E's requirements may be completely included in DT&E
and OT&E or it may be performed solely as a stand-alone process. In any case,
ST&E is the final step in the risk analysis process and therefore the last
opportunity before certification to identify residual risks.

Certification

After the system is developed, when it is installed at the users facility,
and after the risk analysis is completed, the program manager certifies the
system. If there is no program manager, as when a system is bought off the
shelf, the purchaser has certification responsibility. In any case, whoever
delivers the product to the user is usually the certifier. The completed risk
analysis is the primary input for the certification package. The risk analysis
package may actually be composed of multiple risk analyses, the primary one
being that discussed above, i.e., for the system. Other analyses may examine
the operational facility, various applications software, collocated equipment
(such as secure network gateways), or other interfaced systems. The level of
detail, or amount of information in the package, must be agreed upon by the
certifier and the DAA.

555

Accreditation

The DAA takes the certification package and any other recommendations into
consideration with the operating environment and makes an accreditation
decision. The DAA may approve final operations as recommended, a more
restrictive mode of operation, or disapprove operations until residual risks
are reduced. The DAA may also provide an interim approval to operate the
system as is with risk reducing measures required within a set time period.
Recertification and reaccreditation are required on fixed schedule, e.g., three
years, upon system modifications, or when security deficiencies are discovered.

Existing systems which did not go through the entire risk management
process use as much of it as needed to reach certification and accreditation.
Since they do not go through the development process, the early stages of ri.sk
management do not easily apply. The resulting accreditation decision usually
involves more acceptance of risks.

CURRENT PROBLEMS

Terminology

Although similar certification definitions are provided in multiple policy
directives, their process application is inconsistent. Many people confuse a
NCSC term, "evaluation, 11 as meaning certification. In fact, NCSC sometimes
uses "certification" when they speak of evaluation. Specifically, DOD
5200 .• 28-STD states that evaluations can be delineated into two types: (a) an
evaluation can be performed on a computer product from a perspective that
excludes the application environment; or (b) it can be done to assess whether
appropriate security measures have been taken to permit the system to be used
operationally in a specific environment. The first type of evaluation is that
done by NCSC on a commercial product. The second type, done to assess a
system's security attributes in a specific environment, is known as a
certification evaluation [4]. Some civilian organizations use "certification"
when they mean "accreditation." This is a minor point because there are many
pressing problems that need attention more than developing a standard
definition. These problems continue to occur regardless of who's definition is
used and would not likely be solved by a common definition. Nevertheless,
definition commonality would be an improvement on the road to any standards.

Responsibilities

Certification responsibilities are not firmly defined. Whatever agency or
individual is responsible for certification can depend on such variables as the
particular type of system being developed or the type of agency doing the
development. Multiple versions of a "standard" system consisting of primarily
off-the-shelf software and hardware are usually certified by a "Standard System
Manager." Systems composed of developmental software or hardware usually have
Program Managers who certify what they develop against its stated requirements.
Responsibility problems are even more compounded when a developmental system is
partially built of off-the-shelf items. Systems built of components acquired
by multiple developers can have an equal number of certifiers who may feed a
wide variety of inconsistent certification products to a single DAA.

556

Responsibility Transfer

Currently, developmental system certification responsibility resides with
the system acquisition or development agency until the system management
transfer (SMT) to the system's supporting agency or user. The supporting
agency's (e.g., Air Force Logistics Command) life cycle responsibilities are
usually not clearly understood and are seldom implemented properly or
consistently. Where standard acquisition or development guidance is lacking,
supporting or maintenance guidance is almost nonexistent. Agencies, such as
the original evaluators, cannot be tasked to maintain those evaluations as
parts of certification throughout the life cycle. For example, once NCSC
completes a TCB evaluation its agreement for maintaining that evaluation is
with the system's commercial developer, not its purchaser or user. If
economically feasible, and the TCB level is low enough, a commercial developer
can enter NCSC's Rating Maintenance Phase (RAMP) [7] to ensure a product's TCB
rating is maintained when system changes are made. The RAMP is a relatively
new program with little experience and bears monitoring. It also does not
address higher level TCBs, i.e., B2 and higher. In any case, reevaluations
will probable not coincide with recertification schedules, in fact it is
unlikely the user system will be reevaluated, but instead replaced.

Certification Sharing

Resources for maintaining central certification activities, such as the
Air Force Cryptologic Support Center (AFCSC), NCSC or NIST are not available.
Therefore no central repository of certification lessons learned or experience
information exists. Nor is there a central pool of certification skills. NCSC
does maintains a pool of evaluators and AFCSC, for example, is developing this
capacity at its Product Assessment and Certification Center (PACC). A program
management office must form and educate a new certification team for each
system. The education process will probably not be able to benefit from any
other system's lessons learned, partially because of this lack of central
sharing. Broad level mission or organizational realignments to free resources
to provide a central certification capability seems unlikely in the near
future. Required capabilities range from the current advice and assistance
provided by the Air Force, to expertise centers or central certifying agencies
and information repositories. Currently provided advice and assistance is much
like that provided by an Independent Verification and Validation (IV&V) agent
or contractor.

Unclear Requirements

A normal system certification is typically based on a subset of the
potential users' requirements. If users were surveyed before development
began, it is unlikely that all potential users provided requirements. A system
originally planned for a single user, such as the Air Force Space Command, may
have addition users identified, such as the Strategic Air Command, while it is
still under development. Any number of new factors, e.g., access controls,
could induce stricter requirements than those against which the system is
design to be certified. Unclear requirements are difficult to combat when the
system is acquired or developed under a "requirements contract." If the
available "requirements contract" system meets a user's stated requirements,
the user must purchase that system and not one specifically tailored to his
needs. The certifier for this type of system is faced with gathering a

557

complete set of requirements that could possibly satisfy all potential users.
This is neither practical or reasonably possible. Invariably the "standard"
certification for the available system will leave residual risks for some
users. DAAs will now be faced with undesirable risk acceptance, acquiring
additional security measures or justifying the system's non-suitability based
on security deficiencies. On the other end of the scale some users will have
excess security measures to implement, e.g., security label management, even
though the measure exceed their requirements.

Excessive Security

Should a system developer try to implement a complete set of security
measures to meet all possible environments or user requirements the cost would
be prohibitive and seldom justifiable. In most cases where more than one
sensitivity level of information is to be run, a requirements analysis would
probable indicate the need for a B2, B3 or Al TCB. [4] Properly applied risk
analysis principles can prevent over-specification, but only if valid
requirements are available. The DAA must decide on the most cost-efficient
implementation of security measures. There is no guidance available on how to
obtain equivalent levels of security by trading administrative or procedural
security measures for technical security features. Additionally there is
little or no life cycle cost experience or guidance available for implementing
trusted features.

Embedded Systems

One major shortcoming of current certification methodologies is that they
do not apply well to embedded weapon systems. Certifications are not often
done for embedded systems or else they typically overlook embedde~ components
of larger systems. Standard criteria like those for TCBs [4], do not: exist for
embedded systems. Many of the features or assurances of the TCB classes in DOD
5200.28-STD are not relevant to embedded systems. For example, there is little
need for an audit trail feature on a taC!tical missile with embedded processors.
Besides, who would analyze it after the missile is fired?

DAA Capability

Many senior accreditors (DAA) do not have sufficient knowledge or
capabilities to make credible approval decisions. They seldom have been
involved in computer security during their careers. In the DOD environment
they typically spend the major portion of their careers in the prime area of
operations for their parent service, e.g., ship captains. Even if they have
participated in system development or operations, it has not been with secure
systems or from a security point of view. Security guidelines for the DAA have
not been completed.

Integrity and Service Assurance

Current certification methodologies do not adequately address the critical
issues of service assurance and data or system integrity. This is natural
because there is little available policy in this area. There are also no
standards such as DOD 5200.28-STD or DOD-STD-2167A [8] that address security
relevant criticality in systems or software development. The Trusted Network
Interpretation of DOD 5200.28-STD [9] does minimally address network integrity

558

and service assurance, but does not provide firm criteria such as those for
stand-alone systems. Some security features are described but their evaluation
is based on qualitative estimates of effectiveness. What other applicable
guidance there is provides for safety issues, typically nuclear or medical
safety.

EXISTING REMEDIES?

Standard Certification Process

It may be advantageous to produce a "standard" certification process.
This process would contain ALL potential stages and actions required for the
most complex SYSTEM certification. An all inclusive process would be very
large and applicable in whole to only the most complex system. By necessity
the process would include tailoring directions, with examples, for various
types of systems, e.g., micros, stand-alones, networked, embedded, complex
combinations, etc. Not all steps in a tailored process would necessitate
following a "standard" step, thus there must allowances for unique variations.
When used, risk analysis methodologies could vary. For example, a package such
as the Automated Risk Evaluation System (ARES). could be used for a one. time run
for a small or large scale system. A multi-disciplined approach could be used
for a complex system, particularly if developmental components mix with those
off the shelf. Other unforeseen elements could also have major impacts.

Life Cycle Guidance

The Air Force is producing a complete set of life cycle oriented guidance
as Air Force System Security Instructions and Memoranda (AFSSis and AFSSMs) •
These provide guidance leading to system certification and accreditation plus
other services. Most are currently under development. The topics involved
include Security Policy Generation [10], acquisition guidance [11], Source
Selection guidance [12], ST&E [13], applications.software development [14], DAA
Guide [15] and more. NCSC is also providing life cycle guidance applicable to
the certification process, such as its procurements guide. [16]

Certification Consulting

The Air Force also provides life cycle oriented consultation services to
both program managers and standard off-the-shelf system managers. These
services include: defining security requirements, as derived from mission and
downward directed requirements; developing security specifications, including
those for TCBs, certification and accreditation supporting documents; providing
Contract Data Requirements Lists (CDRL) and Data Item Descriptions (DID) for
security deliverables; ST&E assistance; and operational guidance. The level .of
involvement in a particular program varies from telephone and correspondence to
nearly full time "hand holding, 11 if the security implications of the project
merit it.

Certification Analysis

The Air Force's Product Assessment and Certification Center (PACC)
evaluates computer security products for their applicability to Air Force
acquired systems. The PACC's as~essments are not .the equivalent of NCSC' s TCB
evaluations, but intend to determine if products work as advertised on Air

559

Force systems, currently small systems such as the Z-248 microcomputer. These
assessments are useful for determining if an available product can help meet a
certification requirement or reduce a residual risk. They are not centralized
"certifications" but can be referenced or included in a certification package
much as can be a NCSC evaluated product report. Reviews of product assessments
are published in the Air Force Assessed Products List (APL), not to be confused
with NCSC's Evaluated Products List (EPL).

U:COMMENDATIONS

A Standard Certification Process

Because certification is a complicated endeavor, an initial action should
be to formulate a strategy for developing a standard certification process.
The strategy should include plans for developing the process, acquiring the
resources to implement it, education and training for personnel with
certification responsibilities, proficiency standards for some of those
personnel, and operational implementation guidance. An effort in this vein was
recently begun under the auspices of the Computer Security Implementation
Management Panel (CIMP) of the Joint Commanders Group for Communications
Electronics, a Joint Logistics Commanders subgroup.

The process should encompass all types of systems. It must include
variations and subsets for small, embedded, and other "unique," etc., types of
systems. If these are not included, users may decide the process does not
apply to them.

The process should also highlight when user or developer decisions must be
made as to strictly applying the process or that a point has been reached where
a user risk assumption decision must be made. Embedded and like types of
systems must be considered.

It must clearly define who each step applies to (user, developer, both,
etc.). The process should contain some specifics not currently addressed, such
as logistics and maintenance of trusted software.

The process must describe where within itself various guidance such as
AFSSis and AFSSMs or NCSC Technical Guidelines is to be applied and how.

It must describe how, why, when, and where to use and accept other-agency
evaluations and certifications, such as NCSC evaluations, Air Force
assessments, or certifications from other military components done under other
regulations, e.g., Army Regulation 380-19. This may be quite difficult
considering there are also no standards for measuring certification equivalence
between agencies.

The process must also define when such outside products are required, such
as NCSC evaluated TCBs. Also included would be advice as to what documentation
to use or require from those other evaluations. The commercial documents
produced as part of a NCSC TCB evaluation may be sufficient. In other cases
system unique documents may be required, particularly if dedicated application
software is involved.

Although it appears obvious on the surface, the process must describe the

560

applicability of DOD documents, service regulations and technical guidelines.
This is particularly critical if the system development is contracted. If a
document's applicability is not stated specifically in a contract it normally
will not be legally enforceable. It will be impractical for all documents to
apply all the time. For example, a network guide would be impractical for a
stand-alone system.

The resources for implementing the process must come from those currently
available. It is unlikely that any new personnel or any increased funding will
become available to formalize what we are already suppose to be doing. Current
security people must become more expert in the non-computer security
disciplines and more customer service oriented. The inability to be fully DOD
customer oriented has become a perceived failing of the NCSC. The process must
not be so complicated that these existing resources will be overloaded to the
point of duplicating this perception.

The process must be mandated as a standard for all systems. Include this
mandate in agency policy and regulations. Include the process in certification
and accreditation management and technical guidelines. [17] Each program,
standard system, etc., must include a system-tailored process description in
their security plan. The plan must define roles and responsibilities,
including those in other organizations such as AFCSC. It must also include
rules for including external agency evaluations.

Other guidance must be completed. This would include the applicability or
inclusion of other agency (e.g., NCSC, AFCSC, etc.) evaluations as supporting
certification documentation, the acceptability of EPL or APL reports without
further testing, and responsibilities for recurrent life cycle reviews or
recertifications. Standard criteria for evaluations beyond DOD 5200.28-STD are
desperately needed. This involves embedded systems, complex systems, real time
systems, the Trusted Database Interpretation (TDI) [18], the Trusted Network
Interpretation (TNI) [9], and applications software. A subsequent activity is
to complete translation of these criteria into acquisition specifications
formats and operational implementation guidance.

As service organizations, the services and comparable agencies must
improve their capabilities to provide consultive support to both existing
systems and those under development or acquisition. A first step must be to
develop a program to educate all applicable personnel in multiple security
disciples, i.e., COMSEC, TEMPEST, etc. A NIST or NCSC personnel certification
program could be possibility, or perhaps one developed by industry or the
educational community.

Finally, if possible, the process should include as many of the
recommendations of the National Research Council's "Computers at Risk" [19]
panel as practical. Not all of the panel's recommendations can or will be
implemented in the DOD environment. However, we must seek the maximum
commonality between the DOD as commercial communities, if for no other reason
than cost savings. The certification standard should be flexible enough to do
this.

561

REFERENCES

1. Department of Defense Directive 5200.28, Security Requirements for
Automated Information Systems (AIS), 21 March 1988.

2. AFR 205-16, Computer Security Policy, 28 April 1989 (To become AFR 56-30,
same title).

3. NCSC-TG-004, Glossary of £omputer Terms, 21 October 1988.

4. Department of Defense Trusted Computer System Evaluation Criteria,
26 December 1985.

5. AFR 56-31, Security Policy and Requirements in the Development and
Acquisition of Computer Systems, (Draft), 8 January 1991.

6. MIL-STD-1521B, Technical Reviews and Audits for Systems, Equipments, and
Computer Software, 4 June 1985.

7. NCSC-TG-013, Ratings Maintenance Phase Program Document, 23 June 1990.

8. DOD-STD-2167A, Defense System Software Development, 29 February 1988.

9. NCSC-TG-005, Trusted Network Interpretation of Trusted Computer System
Evaluation Criteria, 31 July 1987.

10. AFSSM 5001, System Security Policy Generation Guide, (Draft)
21 December 90.

11. AFSSM 5024, Computer Security Considerations in the Acquisition of
Computer Systems, (Draft), 10 June 1990.

12. AFSSM 5002, System Selection Technical Evaluation, (Draft}.

13. AFSSM 5025, Security Test and Evaluation (ST&E) Guide, (Draft)
2 November 1990.

14. AFSSM 5011, Computer Security in Software Development, (Draft),
23 Jan 1991.

15. AFSSM 5003, DAA Guide, (Draft), 31 October 1989.

16. Using the Department of Defense Trusted Computer System Evaluation
Criteria in DOD Procurement, (Draft), NCSC, 13 May 1991.

17. AFSSI 5026, Certification·and Accreditation Guide, (Draft).

18. NCSC-TG-21, Trusted Database Management System Interpretation of Trusted
Computer System Evaluation Criteria, 22 August 1990.

19. National Research Council, Computers at Risk: Safe Computing in the
Information Age, Computer Science and Technology Board, National Academy Press,
Washington, DC, 1991

562

A STRATEGIC FRAMEWORK FOR INFORMATION SECURITY MANAGEMENT

Rolf Moulton, CDP, CISA, CSP

Senior Regional Information Security Representative

BP America

200 Public Square, Suite 6-K

Cleveland, OH 44114

Santosh Misra, DBA

Associate Professor

Computer and Information Science Department

Cleveland State University

2400 Euclid Avenue

Cleveland, Ohio 44114

Abstract

This paper proposes a reference framework to help improve
the effectiveness of information security management. The
framework is intended as a standardized vehicle that can be
used by both business and security managements to identify
and prioritize information security requirements on the
basis of the intended use of the information, the value
priority of the information, and the critical security
factors for that information. The paper also suggests that
a serendipitous benefit resulting from the use of the
proposed framework could be a better understanding of the
present and potential use of an organization's information
assets for competitive advantage.

Keywords

CRITICAL SECURITY FACTORS, INFORMATION SECURITY MANAGEMENT,
INTENDED USE OF INFORMATION, RISK MANAGEMENT, SECURITY
PLANNING, VALUE PRIORITY OF INFORMATION

Acknowledgement

The authors would like to express their appreciation and
thanks to Dr. Bruce Baker, Robert Courtney and Donn Parker
for their comments and suggestions during the preparation
of this paper.

563

A STRATEGIC FRAMEWORK FOR INFORMATION SECURITY MANAGEMENT

BY

ROLF MOULTON, CDP, CISA, CSP

SANTOSH MISRA, DBA

1. INTRODUCTION

There is no standard definition of information security, nor are
there generally accepted criteria for measuring or prioritizing
information security requirements. There is a wide variance in
understanding security priorities, vulnerabilities, threats and
safeguards among information users, providers and regulators.
[4,6,19] And, there are significant differences in the sources of
security concerns expressed by managers in the United States, as
well as by managers in other countries.[26] Consequently, an
organization's management may have considerable difficulty in its
efforts to define security requirements and to prioritize res.ource
allocations for security.

Information value has been a major factor for developing priorities
as part of some security management programs. However, defining the
value of information for the purpose of setting security priorities
continues to be as difficult as defining its value for competitive
advantage. [4,27,28] That may be the result of examining information
value in too limited a context.

This paper seeks to place information into the broader context of
intended use, value and the factors which may have an adverse impact
on it. It examines principles associated with information security
management (ISM) and proposes a strategic framework for ISM that has
three major components. They are:

Intended Use of Information (IUI)
Value Priority of Information (VPI)
Critical Security Factors (CSF)

The remainder of this paper is organized into four sections.
Section 2 examines some existing methods of ISM. Section 3
discusses the components of the framework that is proposed in this
paper. The paper concludes in Section 4 with suggestions of future
research.

564

SECTION 2. METHODS OF ISM

The most widely known criteria for managing information systems
security may be those defined by the U.S. Department of Defense
(DOD) in its "Orange Book." [29] The DOD approach emphasizes
information confidentiality, but does not stress integrity,
availability or authenticity of information, all of which are
significant for business users.[3] Many security professionals,
especially those in Europe, also find the security criteria
specified in the Orange Book lacking in terms of the needs of a
networked society [26]. Consequently, several countries and
organizations, individually and collectively, have begun efforts to
harmonize their criteria for information security as a means to
define and prioritize their information security requirements. [8]

Some security professionals favor a quantitative risk assessment
method(s) to help prioritize information security requirements.
Using this method, the value of information loss is quantified as
the probable frequency of loss due to adverse action occurrences.
[10] This approach appears to be better accepted by government

agencies than by private industry.[l2]

Establishing information security priorities with qualitative risk
assessments is another technique used by security professionals.[21]
This method may be used to establish baselines of risk and prudence,
which in turn lead to the prioritization of security needs.
Qualitative techniques do not usually develop a monetary value for
information; according to some security professionals, qualitative,
relative ranking of information value for security purposes is
perhaps quite sufficient for business needs.[23] Variations of both
quantitative and qualitative approaches have found favor in some
organizations, but concerns have been expressed about the work
effort required to obtain results that are meaningful.[5,12]

Assigning a value to information either for determining security
priorities or for calculating a return on investment has proved to
be difficult.[27,28] Without general agreement on the basis for
establishing the value of information, or other measures to be used
in place of value, there is little surprise that risk assessment
advocates have yet to come to terms with each other, or with the

.problem of defining security priorities. The U.S. National
Institute of Standards and Technology (NIST) has established a forum
and procedural mechanism which, it hopes, will lead to a
standardization of terminologies and techniques for information
management.[2,13,15,18]

565

SECTION 3. A FRAMEWORK FOR INFORMATION SECURITY MANAGEMENT

It is difficult to assess the 'essentiality' of information to an
organization unless the relationship of the information to the
organization's functions is clearly understood.[7] Building on this
contextual nature of information, a three dimensional framework is
proposed for use within ISM. These dimensions respectively provide
definition for the locatiorr, value and structural context of
information security requirements. Each is discussed below.

3.1 IUI

Information may be located within four overlapping general strata
that are based on the intended use of the information. The strata
are STRATEGIC, TACTICAL, TRANSITORY, and CHATTER.

STRATEGIC information is used by an organization's executive
management to develop major business strategies and decisions,
such as acquisitions, mergers and new business ventures.
Strategic information is likely to be acquired and managed with
a great deal of attention to the needs of the executives who
use it, rather than on the basis of standard cost/benefit
considerations. There may not be a great volume of this
information maintained on a regular basis; it may or may not be
handled within executive support information systems. Some of
this information is likely to be very valuable and would
require a high degree of protection, while other strategic
information may be in wide public use with relatively low
overall protection. Most of the high-risk strategic
information and its related protection mechanisms would
probably not be subjected to formal accounting controls audits.

TACTICAL information is primarily created and used by the
operating and administrative managements of an organization.
It may include operational information from various
organizational functions, such as sales, finance, production,
marketing, research and human resources management; it would
also include the backup and archival copies of this
information. Tactical information may be provided to executive
management in detailed or summarized form as strategic
information. The volume of tactical information is likely to
be large. Cost/benefit ratios and regulatory compliance would
be key considerations in the acquisition and management of
tactical information. Tactical information can be expected to
comply with financial or other standardized accounting auditing
practices.

TRANSITORY information may be considered as information in the
processing pipeline. When consolidated and evaluated it may
become tactical or strategic information. It may include

566

information from the multitude of computer programs (including
undocumented information bases and spread sheets) that people
develop and use to analyze information from internal and
external sources. Transitory information may or may not be
subject to cost/benefit controls or standardized audits.

CHATTER is the remainder of information that flows through an
organization, with or without management's knowledge, consent
or control.

3.2 VPI

VPI is defined as a value ranking assigned to information by its
owners and users within the context of the intended use of the
information. The VPI may be established using a rank order scheme,
or it may be a quantitative monetary value, or it may be set using
some other system that is based on the requirements and practices of
the information owners and users. The VPI is clearly subjective
unless the users are able to establish a quantitative real dollar
value. The full value priority of its information to an
organization can then be considered as a weighted sum of individual
VPI values.

VPI, as envisaged in this paper, helps move the current security
valuation emphasis beyond tactical information to other categories
of information. The VPI concept of information value deviates from
classic approaches to information valuation. For example, value of
information has been presented using descriptions such as NORMATIVE
[14, 16] , REALISTIC [17, 11, 9 J , and SUBJECTIVE [22, 25] . While those
methods are theoretically interesting, they have limited practical
application from a security perspective.

VPI and IUI may vary considerably within an organization. As an
example, information that is critical to an organization's executive
management may be significantly different from information that is
used principally by the organization's operating and staff
managements. This use difference may also require a different scale
basis (monetary, subjective rank, or other) to define a value
priority that is acceptable to the organization. The Information
Systems Security Association (ISSA), Newport Beach, California, USA,
has initiated a long term study of information valuation that may be
extremely helpful in this regard.

VPI can also be used to address opportunity costs and losses
associated with information, including information that the
organization plans to obtain at some time in the future. This would
help to resolve a limitation of risk management strategies that
focus on existing information use, but ignore future information
opportunities.

567

3.3 CSF

The third dimension. of the proposed strategic framework for ISM
examines the structural context of information. This structure of
information helps to establish critical CSFs that are needed for
effective ISM. It is suggested that the six CSFs be used to help
determine the level of information risk. They are modified
extensions of Donn Parker's five security attributes,[23] which are
expanded to include the factor of TIMELINESS.

The CSFs are defined as follows:

AVAILABILITY is the state of being present, accessible, or
obtainable for a specific purpose.

UTILITY is the state of being useful or fit for some purpose.
Utility can be lost, yet availability preserved, when
information is encrypted and the intended user is not provided
with the decryption key.

TIMELINESS of information refers to the state the information
at an instant in time. The relevancy of timeliness of
information to the utility of information is well established.
However, timeliness is isolated as a CSF because of the
rapidity with which information may gain or lose its real or
potential utility value, and hence become or cease to be a
security concern. As an example of extremely rapid transition
of utility, a company's confidential quarterly earnings
information could be extremely valuable information to a
person(s) wishing to invest in that company up to the time at
which it is released to the public. Once the information is
made public, instantly, it then no longer requires protection
from disclosure, modification or availability. (There is some
disagreement with the authors' use of timeliness as a CSF.[l]

INTEGRITY of information exists when all information is present
and accounted for. It does not represent that the information
is correct or is otherwise a true representation of some
condition. It is consistent with the ISO (International
Standards Organization) communications concept that information
is received as sent, with nothing added, deleted or modified.

AUTHENTICITY of information refers to its extrinsic correct or
valid representation of that which it is intended to represent.
As an example, a program is authentic if its pedigree can be
traced back to include the original copy and all changes have
been properly authorized. An electronic mail. note is authentic
if it can be demonstrated that it was sent by the sender, who
in turn can not repudiate having sent the note. An inventory
quantity is authentic if it accurately represents the actual
number of items on hand or available for sale.

568

CONFIDENTIALITY of information refers to the information being
maintained as secret or private to only those permitted to know
it or have access to it.

SECTION 4. CONCLUSION

The goal of effective ISM is simply

.... to lessen either the probability that something
undesirable will happen (or the frequency with which it is
known to be happening) or the severity of the consequences
when it does happen, or both.[7]

Meeting this goal requires considerable knowledge of the assets that
are at risk and the undesirable events that may occur to those
assets. And, it requires that both the business and security
managements of an organization take prioritized actions to achieve a
prudent level of comfort with regard to them. Towards meeting this
goal, the proposed strategic framework for ISM establishes terms of
reference for defining information security requirements in a
context that would facilitate the use of varying risk management
strategies to help prioritize the allocation of security resources.

There may be a supplemental, perhaps even serendipitous, benefit
from the use of the proposed strategic framework for ISM. The
framework may be directly applicable to setting priorities for
overall information management, as well as possibly deriving
supplemental productivity improvements during the process.[20] It
addresses both the current and future information requirements and
opportunities of the organization. It builds on the critical
success factor approach used to identify information needed by chief
executive officers to support the attainment of organizational goals
[24], and such an approach to both information management and ISM
could be developed with future research.

The authors would welcome comments and suggestions towards
developing a model to validate the proposed framework. Please send
them to:

Rolf Moulton
Senior Regional Information Security Representative
Regional Center Security
BP America
200 Public Square, Suite 6-K
Cleveland, OH 44114

569

REFERENCES

[1] 	 Baker, Bruce and Parker, Donn, comments on draft of this paper,
4/8/91

[2] 	 Browne, Peter, "A Descriptive Risk Management Framework-Draft,"
Computer Security Risk~anagement Model Builders Workshop, May,
1989

[3] 	 Clark, D. &Wilson, D., "A Comparison of Commercial and
Military Computer Security Policies," Proceedings of the 1987
IEEE Symposium on Security and Privacy, IEEE Computer Society,
1987

[4] 	 Competitive Intelligence Gathering: Friend or Foe, Cris R.
Castro; SRI International, September 17, 1991

[5] 	 Computer Security Handbook: Strategies and Techniques for
Preventing Data Loss and Theft, Rolf Moulton, Prentice Hall,
1986

[6] 	 Computers at Risk, National Research Council, National Academy
of Sciences, 1991.

[7] 	 Courtney, Robert, Robert Courtney, Inc, Port Ewen, NY, limited
circulation draft on risk assessment, and personal interview on
2/6/91.

[8] 	 Cutler, K. & Jones, F., Commercial International Security
Requirements, Draft 15 January, 1991, I4 Forum #12, January,
1991

[9] 	 Edstrom, 0., Man-Computer Decision Making, Gothenberg Studies
in Business Administration, 1973, Gothenborg, Sweden,

[10] 	 FIPS PUB 65: Guideline for Automatic D~ta Processing Risk
Analysis, National Bureau of Standards,' 1979

[11] 	Hedberg, B., Man-Computer Decision Making, Gothenberg Studies
in Business Administration, 1973, Gothenberg, Sweden

[12] 	 I4 Forum #10, SRI, International, discussion of risk management
tools and strategies, May, 1990, London, UK

[13] Katzke, Stuart, "A Framework for Comput.er Security Risk
Management," National Institute of Standards, May, 1989
(Computer Security Risk Management Model Builders Workshop)

[14] 	Marschak,J., "Economics of Information Systems"' Journal of the
American Statistical Association, 66, 1971, Pl92-219

570

http:Comput.er

[15] 	Mayerfeld, Harold, "Framework for Risk Management," Computer
Security Risk Management Model Builders Workshop, May, 1989

[16] McGuire, 	 C.B. & Radner, R, Decision and Organization,
North-Holland, 1972, Amsterdam

[17] Mock, 	 T.J., "The Evaluation of Alternative Information
Structures", PhD Dissertation, University of California,
Berkley, 1969

[18] Mosleh, 	Ali, "Mapping Between a Risk Management Methodology and
the Proposed Conceptual Framework", Computer Security Risk
Management Model Builders Workshop, May, 1989

[19] 	Moulton, Rolf, "A Survey of User Attitudes and Practices
Towards Information Ownership and Protection in an End User
Environment", ISPNews, (July/August '91 - tentative)

[20] 	Moulton, Rolf, "A By-Product of Effective Security- Improved
Organizational Productivity," Computer Security Journal,V5 #l.
1988

[21] 	Moulton, Rolf, "Data Security is A Management Responsibility",
Computers & Security, vol 3, 1984

[22] Munro, 	 M.C. & Davis, G.B, "Determining the Manager's
Information Needs", Journal of Systems Management 29, #6, 6/78,
34-39

[23] 	 Parker, Donn B., "Restating the Foundation of Information
Security," SRI International, Applied Research Note 10,
October,l990 & revised 1/91)

[24] 	Rockart, John F, "Chief Executives Define Their Own Data
Needs," Harvard Business Review, Mar-Apr 79.

[25] Ronan, 	 J. & Falk, G, "Accounting Aggregation and the Entrophy
Measure: An experimental Approach," The Accounting Review 28,
10/73

[26] 	 Schwartau, Winn, "Terrorism, Privacy & Standards: Marketing
Infosecurity in the New Europe," ISPNews, Jan/Feb, 1991

[27] 	 Terdoslavich, William, "Payback Puzzler", Computer Systems

News, 6/11/90, pl4

[28] 	Tinsley & Power, "Why IS Should Matter to CEOs."(Datamation,
9/1/90, v36, p85)

[29} 	 Trusted Computer Systems Evaluation Criteria, Department of

Defense, 1985.

571

A SYSTEM SECURITY ENGINEERING PROCESS

J.D. Weiss

AT&TBell~
Whippany, New Jersey 07981

ABSTRACT

This paper describes a formal MIL-STD-1785-rompliant, tool-supported System Security Engineering
(SSE) process that can be used in a variety of government and commercial environments. The objective
of SSE is to derive a cost-effective system security architecture and integrate it into the system design
process. The security architecture, like other system attributes, must be evaluable and justifiable.
AT&T SSE is also designed to provide a well-defined framewodt for security requirement evaluation
and justification.

INTRODUCTION

There are a number of areas that compete for budget dollarn in the design of any system. Security,
perfonmmce. reliability, interoperability. and a full nmge of other engineering concerns impose
requirements that must be addressed from the pool of resow:ces allocated to system design and
development. For each of these engineering areas, analyses are required to demonstrate that the
resoorces associmed with meeting the requirements are well spent. Analyses generally show the costs
and effectiveness of the associated requirements versus their alternatives across the system lli'ecycle.

Techniques for analysis in some areas of system design are more established than in others. In the area
of communications system performance, for example, one can calculate bandwidth required for message
communication pMhs by establishing message attributes (i.e., size and frequency). Candidate networking
technologies that support the necessary bandwidths may then be identified and their ttade-offs analyzed
[1].

In the area of security, however, few techniques are available to provide analytical support for
requirements. Many current systems base their security requirements on global policies (e.g., the federal
government's Orange Book [2]), previous experience in othec environments, and/or the advice of
knowledgeable security experts. While these requirements may be argued to be effective and
economical. such arguments may only be made on an intuitive level. Still other systems do not address
security in their designs at an. opting to retroactively apply protections as the systems are broken.
Security often becomes an uncontrolled expense in such cases.

The purpose of this paper is to present a uniform process for providing analytical support for system
security requirements. The defined process is AT&T's System Security Engineering (SSE) approach.
SSE is being applied on a variety of government, and commercial systems. The sections that follow
will provide background and an overview of SSE, while subsequent sections will discuss me individual
SSE operations. Finally, a description of a prototype tool-set will be provided, and the paper will
conclude with a discussion of SSE obstacles.

BACKGROUND

The SSE process was originally designed by AT&T Bell Laboratories for use on the Strategic Defense
Initiative (SDI) System Engineering and Integration conttact. SSE was established to be a formal
implementation of MIL-STD-1785, "System Security Engineering" [3]. and has been successfully used
to evaluate key SDI subsystem archltecwral alternatives. SSE is also being applied on cmrent AT&T
prodncts and services.

572

Security Vulnerability Analysis (SVA) is 1M analytiul engine of SSE. SV A has its teclmical
foundations in:

• risk management theory [4],

• sttuctured analysis [5],

• fault tree constructs used in reliability engineering [6], and

• empirical risk fonnulas widely applied within AT&T [1].

In addition to SVA, SSE consists of an automated toolset and a security requirements integration
process.

SSE OVERVIEW

The SSE process is designed to apply finite resources to mitigate those vulnerabilities that represent the
greatest risk to the system. Figure 1 illustrates the goal of SSE: to identify security architectures that
fall on the curve of optimal reduction of security risks1 (vulnerabilities) for applied security dollars.

Securi!Y
Cost($)

Residual Risk
Figure 1. SSE Goal: Security Dollars Spent on Key Security Risks

In order to build the cwve in Figure 1, the following ten steps are required:

1. 	 Baseline Architecture Identification - The baseline requirements and components of the system to
be analyzed must be characterized from a security perspective as the basis for all stepS to follow.

2. 	 Threat Identification - The assets at risk in the system, and the overall objectives of attacks to
which they are subject (threats) must be identified.

3. 	 Threat Analysis and Decomposition - High4evel threat objectives must then be broken down into
intennediate objectives. and, ultimately, into the individual activities that comprise an attack
scenario.

4. 	 Risk Assessment - Risks must be calculated for the various objectives and activities defined in
the previous stepS.

573

S. 	 Prioritization of Vulnenbilities - Areas of wmerability must be prioritized based on the
calculated ri.W. The tey risk drivers for the system must then be selected for application of
security resomces.

6. 	 Identification of Candidate Safeguards -For the sclected key wlnerabilines. a set of candidate
safeguards must be selected from a variety of disciplines.

7. 	 Safeguard Trade-off Analysis- Candidate safeguards must then be assessed against the baseline
system architecture for effectiveness and Hfecyde oosts.

"'
8. 	 Security Architecture Selection - Based on the trade-off analysis. an optimal set of safeguards

must be identified. along with an assessment of their effectiveness and coots.

9. 	 Security Architecture Integration - The selected safeguards must then be integrated into the
system design to become part of the new baseline an::rutecmre.

10. 	 Iteration - The SSE process may be repeated until residual security riW versus dollars spent are
within the desired thresholds.

The above steps are supported the SV A model in Figure 2. The following sections will descn'be the
individual steps of the SSE process and will relate them to the elements of the SV A model.

2. SVA Model

1. Baseline M!TI"""'''"''"r" lfk'flitf'tcaltton

Ideally. SSE should oommence the very of a However. more
often than oot a system architecture baseline already that needs to be secured. The system
architecture is generally from a performance perspecthre, with system security characteristics (if
any) interspersed system design details.

574

The first step in SSE is to identify the elements and components of the baseline system architecture that
~ security relevant. These elements Md components constitute the "system valued assets" in Figure 2.
The characterization of system valued assets is used in SSE for identifying Md evaluating their existing
levels of protection against potential threats, as well as the viability and oosts of analyzed safeguards.

System valued assets ~ represented as critical functions and information elements of the system and
their attributes (see Figure 2). Attributes of functions include their pwpose, criticality, where they are
performed, inputs, outputs, initiators, and subfunctions. Attributes of information elements include size,
criticality, using functions, subelements, where they reside, and how they are communicated. Note that
facilities, documents, communication links, software, and personnel may all be represented within this
framework.

Esaablished system analysis and specification techniques (e.g., structured analysis) are recommended to
ensure that all security relevant elements have been represented. For specific SSE efforts, modeling or
specification tools may be used to represent the valued assets of the system. SSE on SDI, for example,
used the Requirements Driven Design (RDD)® tool provided by Ascent Logic C~on to model a
pomoo of the system architecture. On other commercial efforu. simple prose descriptions have been
deemed sufficient.

2. Threatldentiftcadon

Ooce the valued assets have been extracted from the baseline architecture, potential threats to those
assets may be identified By "potential threats" we mean those adversary-initiated occurrences that can
adversely affect the system through compromise of valued assets. Compromise can occur in the form of
Joss, disclosure, modification and destruction of system elements, or denial of system services.

3. Threat Analysis and Decomposition

High-level potential threats serve as the starting point for further decomposition. Threat decomposition
is performed using "threat logic trees," a structure required in [3] Md similar to decision trees in oilier
forms of risk management [4] and reliability engineering [6].

Figure 3 provides an example of a threat logic tree for System V/MLS, an AT&T Bl secure UNIX®
System design effort.

In this computer-oriented example, the ovemll threat objective is to obtain administrative privileges on a
UNIX system. This high level objective breaks down into alternative objectives of obtaining the
administrative password or gaining physical access to the system console. The intermediate objectives
decompose further, until eventually we reach the set of individual steps to achieve the primary objective.

Note that in each stage of the decomposition, an intermediate node is either the "AND" of its children,
or the "OR." An "AND" node is an objective that requires the successful completion of all of its
children (sub-objectives) in order to be achieved. An "OR" node requires the successful completion of
any of its children to be successful. As we shall see in the next section, an "AND" oode and an "OR"
node inherit risks from their children in different ways. The notions of Risk, System Weighted Penalty
(SWP), Md Level of Adversary Effort (LAE) will be defined in the next section.

For each node in the threat logic tree, there is a corresponding entry in an SVA threat database (see
Figure 2) that defines the threai in greater detail The attributes of threat information include a
description, its objective, its targeted assets, success criteria. type (Signal Inteltigence, Sabotage, etc.).
and risk attributes (Risk, SWP, LAE). The output of this database and the threat logic trees serve to
document the results of the threat analysis. The database also serves as a repository of accumulated
threat knowledge that may be applied to future SSE efforts.

4. Risk Assessment

When high-level threat objectives have been sufficiently decomposed, the next step is to assess the risks
~ with the threat. Traditional formulas employed in risk management are based oo the
probability of a particular event times the Joss assoc~t;1with that event [4]. The difficulty in applying

1.2.1l.U

:&t«
Camput«

Caii.ar 	

TrojanLoait0vllf ConuptComipt Guess s111.Admiri HmNSA SAOperator Password ~ ~

SWP=7SWP=7 	 SWP::6
I...AE:=6I..AE:::6 	 LAE=2
RISK= 8.16 RISK= 8.16 	 RISK= 111.00

1.2.1.1u.u
B-'tm u~
110 Canp. GuestCent«

SWP::6

ObiaiD
~

File

SWP'=6 SWP=:Z 	 SWP=S
LAE=2l..AE=2 LAE=3 	 LAE=3
RISK= 111.00RISK=!U3IUSK=lS.OO RISK= 1.33

Figure 3. Threat Logic Tree Example - UNIX System Design

such a formula to SSE is that security "losses" are generally associated with adversary actioos.
Probability of loss is thus the product of the probabilities of attack and attack success. Probability of
attack is often impossible to estimate for the following reasons:

• UnboWD Adversaey - A system designer does not necessarily know who will be trying to subvert
his system. Thus, it is exceedingly difficult to predict the types, frequencies, and degrees of
motivation that comprise the probability of attack.

• 	UnknoWD Attributes of Adversary - In cases where the adversary is known, the system designer
often still lacks insight into the capabilities, dispositions. and resources available to the attacker.
Within the fedeml government, for example, to the extent that this information is available at all, it
is protected to the highest levels of secrecy within multiple compartments, and is difficult to
integrate into the system design process.

• UnboWD 	Future - Time favors the attacker. A.n adversary can succeed by exploiting a single
weakness. while the defender must protect against aU avenues of attack. When a technological
advance adds new potency to a particular attack, the old risk assessments oo longer apply.
Furthermore, an adversary who is currently unmotivated to employ a particular attack may later
become motivated on the basis of opportunity. Thus, it is difficult to predict if and when a low
probability attack will become much more likely and effective.

For the reasons described above, it was necessary to derive a risk formula that does not require so
accurate an assessment of the adversary psyche. Work within AT&T on product and service security
assessments [7] was adapted to yield the following empirical formula:

Risk =S~ILAE
576

http:IUSK=lS.OO

where:

SWP =System Weighted Penalty, and

LAE =Level of Adversary Effort.

System Weighted Penalty (SWP) is the expected impact to the system of successful execution of the
associated threat. Level of Adversary Effort (LAE) is an assessment of the resources required by an
imelligent adversary in order to execute the associated threat. SWP is qwmti.fied on a scale of 0 to 10
with 10 representing the greatest penalty to the system. LAE is represented on a logarithmic scale of 1
to 10 constituting ascending orders of magnitude in level of effort. SWP is squared because in oor
experience, we have found that if a particular attack has an especially severe impact on the operations of
the system, a motivated adversary will often be willing to spend the additional resoorces.

Figure 4. Risk Formula Elements

I.ruuitively, this formula states that an intelligent adversary is interested in achieving a maximum
negative impact on the system for a minimum number of attack dollars spent.

An advantage of this formula is that by default, it assumes the worst case scenario of an adversary who
applies available resources intelligently. Thus, there is oo need to suppose specific adversaries and
assess individual motivations. Furthermore, since SWP is the primacy driver in the risk formula, a
severe vulnerability that is difficult to exploit today will still be addressed, with the assumption that its
presence will induce a future threat.

Whlle the SSE risk formula does not depend on availability of data about the adversary, if such data are
available, it may be applied toward an accurate calculation of LAE. Figure 4 shows a breakout of
subcomponents of SWP and LAE. Estimation of these subcomponents on a scale of High, Medium, and
Low have been applied in specific SSE efforts to derive SWP and LAE. For these specific efforts, a
calculus for combining the subcomponents has been represented in tabular form.

'The assumption of an intelligent adversary has not only influenced the derivation of the risk formula, but
bas also dictated the means by which risks propagate up the threat logic tree hierarchy. In the previoos
section, we discussed the two types of threat logic tree intermediate nodes, the "AND" and the "OR";
these nodes demonstrate different behaviors in inheriting risk attributes from their children.

Fm an "AND" node, risks are not directly inherited from a child. Instead, the LAE of the parent
l'q)resents the sum of efforts of the children. That is, the effort associated with achieving an objective
that requires aU of a set of subobjectives to be achieved is the sum of the efforts of achieving all
subobjectives. Because LAE is on a logarithmic scale, the sum of efforts for a parent is reflected as the
maximum of its children's LAEs. The SWP for an "AND" node must be assessed and input
independent of the SWP of its children, since it is often the case that the penalty of a set of successful
actions is greater than the sum of the individual pieces.

'The risk associated with a parent "OR" node is the maximum of the risks associated with its children.
This means that we assume our adversary will choose the alternative attack that offers the greatest return
oo the dollar in achieving a higher-level threat objective.

577

Risk Calculations
AND OR

SWP I swp~

LAE li

Max lae,
i=l

lae~

.

where:
I : independently assessed value;

swp, : system weighted penalty for child i;

lae, : level of adversary effort for child i;

n : number of children of the parent mission objective;

maxR: the child witll the maximum associated risk.

mom UNIX system example in the previous section, node 1.2.1, "Guess Password" is the "AND" of its
children. Therefore, its SWP has been assessed independently to be 8, while its LAE of 5 is the sum of
its children's LAEs. Node 1.1.1, "Enter Computer Center" oo the other hand, is the OR of its children.
Its Risk, SWP, and LAE are those of its child with the greatest risk, "Break In to Comp. Center." The
values are 18, 6, and 2, respectively.

5. Prioritization of Vulnerabilities

With the risks quantified in the framework of the threat logic trees, summary reports may be produced
that rank the driving vulnerabilities of the system by risk. For the purpose of this process, a
vulnerability may be thought of as a high-risk threat. A vulnerability analysis summary report for our
UNIX system example would look as follows:

Vulnerability Analysis Summary Report
ID Threat Name Risk SWP LAE

1.2.1 Guess Password 21.33 8 3
l.l.U Break In to Comp. Center 18.00 6 2
1.2.1.2 Encounter Guessable Password 18.00 6 2
1.2.3 Trojan Horse SA Account 18.00 6 2
1.2.2 Look Over Sys. Admin Shoulder 8.33 s 3
1.2.1.1 Obtain Password File 8.33 s 3
1.1.2 Corrupt Operator 8.16 1 6
1.2.4 Corrupt SA 8.16 1 6
1.1.1.2 Unattended Guest 1.33 2 3

Note that intermediate "OR" nodes (1 - "Oblain Admin. Privileges", 1.1 - "Access System Console",
1.1.1 -"Enter Computer Center", and 1.2- "Obtain Admin. Password") are not included in this summary
report. These nodes are left out because their risk values depend directly on the values of their
descendent "AND" and leaf nodes. Thus, as the risks of the "AND" and leaf nodes are managed, the
risks of the associated "OR" nodes will be automatically reduced.

We are now ready to take each vulnerability in priority order and apply safeguards.

6. ldemificatitm of Candidate Safeguards

Safeguards for selected vulnerabilities are chosen from a safeguard and countermeasures database (see
Figure 2) that represents a variety of security disciplines. These disciplines include:

578

• Computet Security (COMPUSEC).

• Communications Security (COMSEC),

• Physical Security (PHYSEC).

• Operations Security (OPSEC),

• Penoooel Security (PERSEC), and

• Administrative Security.

Often, a particular vulnerability may be addressed by alternatives that span disciplines. For e:wnple, if
we look at the highest-risk vulnerability mour example, "Guess Password" there is a range of
altetntiives for mitigation. We can apply a COMPUSEC solution of implementing machine generated
passwords that are difficult to guess (as m [8]), or we can apply a more PERSEC or administrative
approach of developing a tmming program for system users on the selection of unguessable passwords.
The ultimate choice of safeguards, as will be shown in the next section, depends on relative
effectiveness versus cost of the alternatives.

7. Sofegwud Trade-off Analysis

The effectiveness of a particular safeguard candidate in a given environment may be quantified as an
effect on the risk value of the safeguard's targeted vulnerability or vulnerabilities. Its costs may be
quantified through standard cost estimation techniques (e.g., previous project data, cost models,
si.mulatioo, prototyping). The following fields of information in the safeguards and countermeasures
database support assessments of effectiveness and costs:

• safeguard description,

• safeguard type (e.g., COMPUSEC, COMSEC),

• safeguard alternatives,

• implementation costs,

• special life-cycle cost concerns (technology risks, reliability, maintainability, survivability, etc.).

A project-specific SSE management program must establish the means and interfaces through which
costing of candidate architectures may be done in concert with other specialty engineering activities.
This will be addressed mgreater detail in step 10.

8. Security ArchitechUe Selection

The output of the analysis process is a recommended security architecture, an assessment of associated
costs, and a list of remaining vulnerabilities and their associated risks. The format for specification of
die security architecture is dependent on the conventions of the project in which SSE is being applied.
The security architecture may include a security policy, requirements specification, and/or design
document (see Figure 2).

SVA outputs may be reviewed by the system providers or users to determine whether residual risks are
acc::eptable or additional reductions through SSE iteration is required.

9. Security Architecture Integration

Integration of the recommended security architecture into the system design is a key issue in SSE.
Integration is primarily a management and planning function, and requires allocation of suitable
resources and identification of organizational structures and interfaces. Figure 5 illustrates some of the
engineering area interfaces required for incorporation of security requirements into overall system
design. In this diagram, security engineering has been placed mme center as the focus of this paper. In
reality, a similar diagram could be generated around any engineering specialty area of emphasis.

579

~c

SUPPORT
Test ENGINEERING

SOF1WARE and DISCIPUNESENGINEERING Evaluation -
sw ~= Reqsfl'hreats Security Procedures andGuidance Measures

~I
Reqs, Feedbaclt Regwmg
Specs, of Security Req. Impact
Threats Perform-

Security Threau ance

m!Reqs. 1-
Allocation ~ COMMUN·SYS'I'EMSYSTEMS SECURITY Arcliliecture !CATIONS

ENGINEERING ENGINEERING ENGINEERING
Symm

Architecture Security

+ I
+Reqs. A Threau

Coofig.

HW
Managem

WSecurity Reqs., 'lllrel!u A Guidance Conligtmation Ilems t Control
sign

HARDWARE CONFIG

URA~ENGINEERING ~AG

Figure 5. Example System Security Engineering Interfaces

In order to implement the integration function and interfaces represented in Figure S, it is necessary to
establish a detailed SSE management plan. The SSE management plan shoold address staffing,
!!!Chedules, budget, avenues of interaction (e.g., meetings, womng groups), and points of contact within
related disciplines. The SSE management plan must be endorsed and supported within the framework
of an overall. system design effort in order to be effective.

10. Iteration

Like any other engineering task, SSE needs to be applied continuously throughout the system design
process. As archltectwal changes are made, SSE must be applied to assess the impact of those changes
oo the security attributes and vulnerabilities of the system. Strict configuration management and version
c:ontrol of the databases, threat logic trees, and outputs of the SVA model must be maintained to track
shifting architectures, allow "what-if' analyses, and return to a previous baseline.

AUTOMATED TOOLSET

A prototype Automated SSE Toolset (ASSET) has been developed by AT&T Bell Laboratories to
implement the SSE process described above. It runs on an AT&T 630 Multi-Tasting Graphics terminal
a supports the following features:

• efficient threat logic tree generation and management,
• automated risk calculation and recalculation capabilities,
• risk parameter and subpammeter input forms,
• automated report generation of hardcopy threat logic trees and summary reports,
• automated threat and safeguard databases,
• integrated configuration management, .and

• on-line help capabilities.

580

Future capabilities for me tool include:

• critical risk path highlighting for threat logic trees,
• generation of wall chan threat logic tree reports,
• incorporation of threat subtree libraries,
• automated safeguard trade-off analyses,
• integrated cost models,
• integrated system modeling capabilities, and
• support for non-expert users.

CONCLUSIONS

'The SSE process descn'bed in this paper is designed to provide analytical support for security
requirements. It applies sound engineering and risk management principles to administer security
resources effectively. 'The toolset and underlying databases of me SSE process are evolving as me
methodology is applied to a broader problem set.

Our primary obstacle in widely implementing SSE commercially, internally. and within me government
has been in our inability to quantify me costs of NOT applying SSE. It is generally understood that
security constitutes a risk to me current state of me art in information systems, and mere has been
anecdotal evidence of break-ins and viruses and their adverse effects. There remains, however, a general
skepticism in me market that security is an important element against which design resources must be
applied.

This is me primary issue to be resolved in broadening the application of SSE.

ACKNOWLEDGEMENTS

This paper represents me efforts of members of AT&T Bell Laboratories' System Security Engineering
Group: Cheri Dowell, Doo Gazwe, Dan Goddard, and Lilla So. The author also wishes to acknowledge
me thoughtful review of Ed Amoroso, Thu Nguyen, Howard Israel, Dave Schreiber, Pete Dinsmore, and
Bill Leighton.

REFERENCES

[1] 	 Kleinrock, L., Queueing Systems, John Wiley and Sons, 1975, Volumes I and II.

[2] 	 Department of Defense, Department of Defense Trusted Computer System Evaluation Criteria,
DoD 5200.28-STD, December 1985.

[3] 	 Department of Defense, System Security Engineering Program Management Requirements, MIL
STD-1785, June 20, 1988.

[4] 	 Boehm, B. W., "Software Risk Management Principles and Practices," IEEE Software, January
1991, pp. 32-41.

[5] 	 DeMarco, R., Structured Analysis and System Specification, Prentice Hall, 1978.

[6] 	 Musa, 1.• Ianino, A., and Okumow, K., Software Reliability Measurement, Prediction, and
Application, MacGmw-Hill Company, 1987.

[7] 	 Chancer, R., Charney, J., Kolchmeyer, P., and Mayer, W., "Security Assessment of Services,
Products, and Architectures," AT&T Bell Laboratories Technical Memorandum, 55131
87008.01TM, October 8, 1987.

[8] 	 Amoroso, E., Heiland, D., and Israel, H., "Unified Password Generation," Proceedings of the 3rd
Annual Canadian Computer Security Symposium, Ottawa, Canada, May 1991.

581

TEACHING COMPUTER SYSTEMS SECURITY IN AN UNDERGRADUATE COMPUTER

SCIENCE CURRICULUM

ALFRED W. ARSENAULT

and

CAPTAIN GREGORY B. WHITE, USAF

Department of Computer Science,

u. s. Air Force Academy

USAFA, CO 80840

arsenaul@usafa.af.mil

white@usafa.af.mil*

ABSTRACT

This paper examines how Computer Security should be taught
in an undergraduate Computer Science curriculum. we will
examine: (i) why a Computer Security course should be offered as
an elective to undergraduate Computer Science majors; (ii) what
should be the prerequisites for that course; and (iii) what
should be the content of that course.

INTRODUCTION

As Higgins described at this conference in 1989[HIGG], and
as an informal survey conducted by the authors this year seems to
confirm, most university Computer Science programs do not offer a
course in Computer Security designed for undergraduate Computer
Science majors. We believe that this is an oversight that will
only result in the continual problems with Computer Systems
Security we see today. All undergraduate students majoring in
Computer Science (and related fields) should have the opportunity
to be exposed to topics and issues in Computer Security.

Many of the institutions that do offer a Computer Security
course concentrate on the 'non-technical' aspects of the field.
Others combine cryptography with other topics in their Computer
Security courses. This paper will show that a course covering
the non-cryptographic technical aspects of Computer Security

*The development of this paper was supported by the United States
Government. Sponsoring Organization: United States Air Force
HQ USAFA/DFCS

582

mailto:white@usafa.af.mil
mailto:arsenaul@usafa.af.mil

what we refer to as Computer Systems Security would be
beneficial for students, for universities, and for the computing
community as a whole.

This paper consists of four sections and two appendices. We
first define our terminology - what we mean when we describe a
course in •computer systems Security•. We then describe why we
believe a course in Computer Systems Security should be taught,
and then describe what the prerequisites for such a course should
be. Finally, we discuss the content of the course itself.

The first appendix describes the results of an informal
survey conducted by the authors as to what Computer Science
departments offer undergraduate Computer Security courses, and
some of the details (textbooks, prerequisites, etc.) of those
courses.

The second appendix proposes a course schedule for a one
semester, fifteen-week Computer System Security course.

WHAT IS 'COMPUTER SYSTEMS SECURITY'?

Before we can discuss why a course on Computer systems
Security should be taught in any curriculum, we must define our
terminology. According to the NCSC's Glossary of Computer
Security .Terms, Computer Security is synonymous with Automated
Information System (AIS) Security, which is

."Measures and controls that protect an AIS against denial
of service and unauthorized (accidental or intentional)
disclosure, modification, or destruction of AISs and data.
• • • includes all hardware and/or software functions,
characteristics and/or features; operational procedures,
accountability procedures, and access controls ••• ;
management constraints; physical structures and devices; and
personnel and communication controls needed to provide an
acceptable level of risk for the AIS and for the data and
information contained in the AIS •... "[GLOS]

A course which addressed in detail all of the topics
indicated by this definition would include too much material t~
cover in a one-semester, undergraduate Computer Science course.
Additionally, much of Computer Security is either site-specific
(e.g., physical security at a particular facility) or too system-
specific (e.g. , proper administrative procedures for specific
releases of operating systems) to adequately cover in more than

1 Higgins suggested that a survey course in Computer Security be
offered as a first course, to be followed by courses in systems
security and cryptanalysis. [HIGG] The course we are describing
combines the survey course with the systems security course,
since we do not believe it likely that many departments will
develop three separate courses on security.

583

passing depth. It seems appropriate, then, to limit the scope of
the course, and to cover a subset of the topics of 'Computer
Security• in more depth.

We refer to the subset of topics to be covered as •computer
Systems Security,• and concentrate on the hardware and software
aspects of Computer Security. We also include sections on Risk
Analysis as it relates to computer systems, and some other short
security-related topics. This is not intended to indicate that
other areas of Computer Security are not worthy of study, but
only to narrow the scope of a course to that which is appropriate
for a single semester.

WHY SHOULD A COURSE ON 'COMPUTER SYSTEMS SECURITY' BE OFFERED?

We believe it is important for people receiving Bachelor of
Science (or equivalent) degrees in Computer Science to have the
opportunity to become familiar with the field of Computer Systems
Security. Computer Systems Security is a key part of the overall
effort to develop :more trustworthy computer systems. As the
recent publication Computers at Risk: Safe Computing in the
Information Age ("the NRC report") stated:

"Security, Safety, and Reliability together are elements of
system trustworthiness - which inspires the confidence that
a system will do what it is expected to do."[COMP]

Computer Systems Security must be thoroughly intertwined
with all aspects of system and software development if we are to
reach the point where we have a reasonable level of confidence
that our computers are doing only what we want them to do.

The NRC report also proposed a research agenda for Computer
Security - a list of areas in which research is desperately
needed if our Computer Security posture is to improve. Whether
the posture needs to improve or not should no longer be a subject
for debate. Quoting from the NRC report again:

"Without more responsible design and use, system disruptions
will increase, with harmful consequences for society. They
will also result in lost opportunities from the failure to
put computer and communications systems to their best use.

In order to reach the point where "more responsible design
and use" of computers is realized will require an effort by
everyone involved in the computer field--especially the colleges
and universities which have traditionally been excellent places
to conduct research.

Potentially significant amounts of research funding seem to
be available for work in co:r.:puter systems security. [VAUG] The
NRC report calls for significantly increased Government funding
of computer security research. [COMP] It is to the advantage of
departments interested in doing research in this field if their

584

graduate students have some familiarity with Computer Systems
Security. If these students have taken courses in Computer
Systems Security as undergraduates, they will constitute a base
on which further research can more easily proceed.

It is in the computer industry's best interests to have
software and system developers knowledgeable in computer systems
security techniques and fundamental concepts. In fact, it is
reasonable for them to assume that a system developer they hire
understands the fundamentals of system security. Security has
been shown many times to be significantly cheaper and more
effective to design into a system than to try to add on later
(see, for example, [NEUM]). Unfortunately, this is a lesson that
has too often been omitted in the education of graduates from
most computer science programs. Is it not logical to have
colleges and universities offer Computer System Security courses
that will teach this basic lesson before their .graduates enter
the work force?

The students themselves will find it advantageous to study
Computer Systems Security since it is an area that can greatly
affect their careers. Developers and designers of future
software and systems will need to understand the roles of
security in developing reliable, trustworthy systems and
software. Additionally, since viruses, Trojan horses, worms, and
other malicious logic are becoming more common, it is imperative
that all graduates of computer science programs be familiar with
techniques to detect, prevent, andjor limit the damage that such
malicious logic can cause.

Given this, we believe that Computer Science departments
should offer courses in Computer Systems Security.
Unfortunately, as the results of our informal survey showed, this
is not the case. In fact, the norm is probably what one of the
respondents to our survey stated--that no undergraduate Computer
Security Course was offered because the topic is addressed in
other courses such as Operating systems, Data Base, and Networks.
While at first glance this might appear to be sufficient, it does
not provide the in-depth study necessary to further research.
Additionally, we do not believe that incorporating the
fundamentals of Computer Systems Security inot other courses will
cover the subject in sufficient detail. There is a need for a
focused course that looks at the history, the experiences that we
have learned from, the design techniques, work examples, and
other topics. Quoting from the NRC report again:

"Working on secure software requires yet more skills.. Most
notably, one must be trained to understand the potential for
attack, for software in general and for the specific
application domain in particular."([COMP], p. 117)

While we agree that other courses should discuss security as
it relates to that course's material, it is not enough to rely on
them solely in order to obtain the skills mentioned in the NRC
report. A useful analogy to illustrate this point can be drawn

585

between Computer Systems Security and Operating Systems.
Operating systems are addressed in many courses; however, most
institutions offer at least one course dedicated to Operating
Systems. The material covered in other courses usually relates
to how an operating system is used to support other computer
programs. A course dedicated to operating systems usually
addresses how they work, and describes many of the design issues
involved in writing an operating system. In a similar manner,
computer security, when addressed in other courses, deals with
how security affects that topic, while a course dedicated to
Computer Systems Security would address the fundamental design
issues and the details involved in security. What then are the
topics that would be covered and what are the prerequisites of
such a course?

WHAT SHOULD BE THE PREREQUISITES FOR SUCH A COURSE?

The course content (described in detail in the next section)
is fairly technical. Many of the ideas extend foundational
concepts established in other courses. Therefore, it is
appropriate that students enrolled in the course be expected to
have a good working knowledge of computers and software before
the course begins.

Detailed knowledge of at least one high-level programming
language should be required. Pascal, C, C++, and Ada are all
acceptable; others would be as well.

Knowledge of operating systems and how they work (including
some familiarity with computer architecture) should be required
prior to taking this course. (Some instructors may find it
acceptable if students are taking an Operating Systems course
concurrently.) Much of the course is illustrated by showing how
operating systems protect (or fail to protect) their various
resources; it is therefore necessary for students to understand
the basic concepts being relied upon.

Knowledge of database management systems (DBMS) and/~r
networks should not necessarily be required, although it ~s
helpful in covering those units if students have some general
familiarity with the topics. Additionally, knowledge of software
engineering and software specification and verification would be
helpful.

WHAT SHOULD BE THE CONTENTS OF SUCH A COURSE?

This section will discuss in detail what we believe the
contents of a Computer Systems Security course should be.
(Appendix II of this paper lists a suggested class schedule that
describes how and in what order we believe the topics should be
covered.) Again, this is not intended to be a 'hard and fast•
syllabus, to be followed by everyone, but instead a set of topics
that we feel, based on our experiences, are appropriate for a

586

course of this type. We welcome suggested changes and other
comments.

We begin with a caveat about cryptography. Cryptography is
an important topic, as it is an important mechanism in Computer
Security. It would be very helpful if students in the course had
an understanding of how this mechanism worked, and what its. uses
and limitations were. We believe, however, that Cryptography is
such an important topic and should be addressed in such detail
that it should not be covered in this course. It should instead
be covered in a separate course, devoted to Cryptography and
related topics. (One of the authors has experience with such a
division, and was very pleased with the results.)

Therefore, in the rest of this section, we will assume that
Cryptography is offered as a separate course. It will only be
covered here where it is an appropriate mechanism, and then only
in the context of its uses to provide security services, without
providing details of 'how Cryptography works'. If it is not the
case at a particular institution that cryptography is offered
separately, then it should be added to the materials ~isted in
this section, and other material may have to be deleted.

(It is not necessary for students to have taken a
Cryptography course by the time they enroll in Computer Systems
Security. For many students, cryptography can/will be best
described as a 'black box' - something goes in, something else
comes out, and we can reasonably assume that certain security
services are provided. We are much more interested in the uses
and limitations of Cryptography in this course than in the
technical details of implementations.)

Note that, at present, there is no textbook that exists that
matches the course we describe. There are only a few Computer
Security textbooks in print (they are identified in Appendices I
and II). Each book has its strengths and weaknesses; however, we
do not believe that any of them cover all of the topics we
suggest in sufficient detail.

As with most courses, we believe that it is appropriate to
start off with an introduction to the course and an overview of
the material to be presented. Thus, we recommend spending some
time early in the course describing Computer Systems Security and
why it is important, and then discussing the three goals of
Confidentiality, Integrity and Availability of data. A
discussion of some of the major privacy concerns is appropriate
at this time, as is at least a brief discussion of computer
ethics.

2 We leave it to the instructor•s discretion as to what material
to delete. Some may choose to compress other topics, so that all
suggested topics are covered, but in less detail; others may
choose to delete one or t wo topics altogether.

587

We think that it is important to place much of the course
material in its proper context. Thus, we recommend that Risk
Analysis be the next major topic covered. This discussion should
include a general discussion of threats to computer systems,
vulnerabilities in computer systems, and countermeasures
available to thwart some of the threats and close some of the
vulnerabilities. If possible, the instructor may want to discuss
threats/vulnerabilities; countermeasures relating to specific
systems, such as those the university's academic computing center
uses. We have found that this tends to raise students•
interests, since it is something to which they can directly
relate.

Once this unit has been completed, the next topic should be
a discussion of a specific threat: malicious code. Addressing
this topic early in the course provides motivation to the
students. They can see and understand some of the specific
problems, they can relate it to what they have been seeing (or
maybe even experiencing), an~ they can relate each countermeasure
discussed during the course back to this topic, to help determine
the effectiveness of the countermeasure.

There is admittedly a potential problem here. We do n:ot
wish to provide students with a roadmap describing how to break
into any specific system. On the other hand, there are several
articles in the technical literature that describe generic (and
sometimes specific) vulnerabilities in systems. Many times these
vulnerabilities have not been fixed in university-owned computer
systems. Thus, the instructor will have to make a decision about
how much detail to go into - here and throughout the course. The
authors• best recommendation is to try to gauge the level of the
students, and di~cuss material in a depth appropriate for the
particular class.

We recommend next describing when and how to build 'secure•
computer systems. The instructor should cover the importance of
deciding what security measures are important, given the intended
uses of the system. When technical security measures are

3 One of the authors was faced with an interesting situation
because of this issue. The 'dictionary attack • on UNIX (Tm)
systems has been discussed in the literature many times. A 1979
paper by Morris and Thompson[MORR] describes it in sufficient
detail, as do many of the papers that have been written about the
'Internet worm' of November 1988 (e.g., [EICH]). After
discussing some of the technical literature during the semester
(replete with admonitions to •not try this yourself'), the author
was presented with a short program, written in C, and a list of
user identifiers and corresponding passwords for one of the
university's computer systems, obtained by using a dictionary
attack.

Tm UNIX is a registered trademark of UNIX System Laboratories,
Inc.

588

appropriate, the instructor should address the importance of
designing security into a system from the beginning - including
the benefits of doing so, and the consequences of not doing so.
A description of the differences between security mechanisms and
security assurances should follow next and then a description of
each of the important security mechanisms. We recommend
beginning with authentication, then moving onto access controls
and information flow controls, and finishing up with auditing.
It is important to discuss each of these mechanisms in the
context of providing confidentiality, integrity, and availability
of data - we do not think that any of the three should be singled
out as 'most important•.

The next major unit is a discussion of security assurances.
This material should be tied in with software safety and
reliability, and discussed in the context of developing
trustworthy software.

The specific topics we recommend covering include: program
and system correctness; minimization of security-relevant
hardware and software; security models; system, subsystem, and
program specification; consistency among models, specifications,
and implementations: and the reference monitor concept.[ANDE]

After completion of the security assurance unit, we
recommend that the instructor take time to cover one or case
studies. These case studies would be discussions of security
(or lack thereof) provided by specific operating systems. The
choice of which operating systems to cover would be up to the
instructor; ideally, would be systems students
are familiar.

The final major unit of the course should cover network and
applications security. The network security lectures should
address security issues relevant to the International Standards
Organization 1 s Open Systems Interconnection Protocol Reference
Model, as well as other protocol reference models. The
applications security unit could include such topics as database
management system (DBMS) security, virtual machine monitors, and
embedded systems. If DBMS security is chosen as an appropriate
application to study, the unit should address differences between
operating system security and DBMS security, as well as the
problems of inference and aggregation. Although is not a
great deal of detail that can be provided in these areas,
students should at a minimum be made aware of the problems, and
some limited solutions.

We recommend concluding the course one or more case
studies of system security (as distinct from operating system
security). Appropriate topics might include or
other malicious code attacks; systems to

4 Note that, in this course,
we recommend appropriate.

589

provide security, and how well they provided it; and networks
with which the instructor is familiar.

If time permits, the instructor may also wish to provide an
overview of some of the computer security efforts ongoing in both
the government and private industry. Appropriate topics here
might include the DoD Trusted Computer system Evaluation Criteria
[TCSE], the European Information Technology Security Evaluation
Criteria (also called the Harmonised Criteria), various FIPS
pubs, the IEEE POSIX (1 Portable Operating System Interface for
Computer Environments') effort, and other security efforts.

CONCLUSIONS

In this paper, we have argued that most undergraduate
Computer Science programs should offer at least one course in
Computer Security. Unfortunately, as shown by the results of
both our informal survey (see Appendix I) and the survey
conducted by Higgins in 1989, relatively few colleges currently
offer any courses in Computer Security. We believe that this is
an error that must be rectified.

We have provided reasons why a course in Computer Systems
Security should be offered. We have described what we consider
to be appropriate prerequisites for the course. We have also
suggested a set of topics to be addressed in the course. (In
Appendix II, we provide a suggested schedule for the course.)
Again, we emphasize that there are currently no textbooks in
print that adequately cover the list of topics we propose.

our primary reason for proposing this course schedule is to
foster discussion. We welcome suggested changes to and other
comments on this proposal.

ACKNOWLEDGEMENTS

We would like to thank all of those who helped us in the
preparation of this paper, and in the gathering of information in
our survey. In particular, we thank Lt. Col. Lawrence Jones,
USAFA, Dr. Lionel Deimel of SEI, Dr. John Higgins of BYU, COL Ray
Vaughn of the U. s. Naval Academy, and all of those who responded
to our informal survey.

REFERENCES

(ANDE) Anderson, James P., Computer Security Technology Planning
Study, ESD-TR-73-51, Volume 1, Hanscom AFB, MA, October 1972.

[COHE] Cohen, Fred, "Computer Viruses: Theory and Experiments",
in Proceedings of the 7th DoD/NBS Computer Security Conference,
Gaithersburg, MD, 24-26 September 1984.

[COMP] National Research Council,
Computing in the Information Age,
Washington, DC, 1991.

Computers
National

at
Ac

Risk:
ademy

Safe
Press,

590

[DENN] Denning, Dorothy E., Cryptography and Data Security,
Addison-Wesley, Reading, MA, 1982.

[EICH] Eichin, Mark w., and Rochlis, Jon A., "With Microscope
and Tweezers: An Analysis of the Internet Virus of November
1988", in Proceedings of the 1989 IEEE Computer Society Symposium
on Security and Privacy, Oakland, CA, May 1-3, 1989.

[GASS] Gasser, Morrie, Building a Secure Computer System, Van
Nostrand Reinhold, New York, 1988.

[GLOS] National Computer Security Center, Glossary of Computer
Security Terms, NCSC-TG-004, Version 1, 21 october 1988.

[HIGG] Higgins, John c., "Information Security as a Topic in
Undergraduate Education of Computer Scientists", in Proceedings
of the 12th National Computer Security Conference, Baltimore, MD,
10-13 October 1989.

[LAMP] Lampson, Butler W., "A Note on the Confinement Problem",
in Communications of the ACM, Volume 16, No. 10, october 1973.

[LOBE] Lobel, Jerome, Foiling the System Breakers: Computer
Security and Access Control

[MART] Martin, James, Security. Accuracy and Privacy in Computer
Systems

[MORR] Morris, Robert, and Ken Thompson, "Password Security: A
Case History", in Communications of the ACM, Volume 22, Number
11, November 1979.

[NEUM] Neumann, Peter G., "Computer Security Evaluation", in
AFIPS Conference Proceedings, Vol. 47, 1978.

[PFLE] Pfleeger, Charles, Security in Computing, Prentice-Hall,
1987.

[SEED] Software Engineering Institute, Software Engineering
Education Directory, Technical Report CMU/SEI-90-TR-4,
April 1990.

[TCSE] Department of Defense Trusted Computer System Evaluation
Criteria, DoD Standard 5200.28-STD, 26 December 1985.

[THOM] Thompson, Ken, "Reflections on Trusting Trust", in
Communications of the ACM, Volume 27, No. 8, August 1984.

[VAUG] Vaughn 1 Ray, private communication, 12 March 1991.

APPENDIX I: RESULTS OF AN INFORMAL SURVEY OF UNDERGRADUATE
COMPUTER SECURITY COURSES

In December, 1990, and January, 1991, the authors conducted
an informal survey of colleges and universities to determine what

591

was being offered in the way of Computer Security courses of the
type we describe.

We used several different methods to collect data for this
survey. Messages asking for information were broadcast on
several Internet newsgroups. We consulted college catalogs
available to us in the u. s. Air Force Academy Library, looking
for offerings of Computer Security courses. We consulted the
Software Engineering Education Directory[SEED], published by the
Software Engineering Institute, to determine which universities
listed Computer Security Courses as part of their Software
Engineering curriculum. And finally, we contacted some
universities directly.

Note that, at the time of this writing, the survey is still
ongoing. Thus the results below should be regarded as
preliminary.

In the survey, we requested answers to several questions:

(1) Does your school offer a course in Computer Security as
part of its undergraduate Computer Science curriculum? If so,
what is the title of that course?

RESULTS: Five departments reported no course in Computer
Security. {Certainly, there are many other departments without
Computer Security courses that did not respond to our requests
for information.)

Four departments - the u. s. Naval Academy, the University
of Maryland-Baltimore County, the University of Maryland
University College, and California State University at Northridge
reported Computer Security courses specifically designed for
undergraduates.

Ten departments - the University of California at Davis, uc
Berkeley, California State University at Hayward, Brigham Young
University, Arizona State University, George Mason University,
George Washington University, the University of Seattle, Lehigh
University, and Carnegie Mellon University - list graduate
courses in Computer Security which may also be taken by qualified
undergraduate students.

The University of Toronto offers a graduate course in
Computer Security that is not open to undergraduates.

Texas Christian University is developing a course in
"Security, Reliability and Safety••, with a first offering
scheduled for the 1991-1992 academic year.

Names of the courses varied widely, with no discernable
trend.

we are not certain at this time why more schools offered
Computer Security courses at the graduate level than at the

592

undergraduate level. Possibly, this is a result.of graduate
programs being more inclined to focus on the •research topics• in
Computer Science in an effort to make a contribution to the
discipline. Certainly there are many unsolved security problems
and therefore the security discipline is still worthy of graduate
research. However, the discipline is now about twenty years old
and enough has been learned and documented to make this an
interesting and useful topic for undergraduates [VAUG], and we
are somewhat disappointed that there are not more departments
offering undergraduate Computer Systems Security courses.

(2) If so, is the course required or an elective for
Computer Science majors?

RESULTS: In all cases, Computer Security courses are
electives.

(3) What textbook is being used, if any?

RESULTS: (n. b. In several cases, we have thus far been
unable to determine what if any textbook is being used for a
particular course.) There seems to be no clear consensus here.
Many instructors use their own notes to teach, and do not use a
textbook. Five different books were each mentioned by at least
one department:

Pfleeger's Security in Computing[PFLE];

Gasser's Building a Secure Computer System[GASS]:

Denning's Cryptography and Data Security[DENN];

Lobel's Foiling the System Breakers: Computer Security and
Access Control[LOBE]; and

Martin's Security. Accuracy, and Privacy in Computer
Systems [MART] •

(4) What are the prerequisites for the Computer Security
course?

RESULTS: Prerequisites generally include upper-division
standing, plus at least one programming course. Many departments
also require Data Structures, and some require Operating systems.

Departments whose Computer Security Course includes
Cryptography generally also required one or more advanced
Mathematics courses, with Number Theory being a fairly common
requirement.

(5) Is the course offered once a year, or every
semesterjquarter?

RESULTS: In all cases where we could verify the offering,
the Computer Security course is offered at most once a year. In

593

http:result.of

many departments, the course is offered less frequently than once
a year, and some departments that list a course in Computer
Security report going several years without offering it.

(6) Approximately how many students typically enroll in the
course?

RESULTS: This varied widely by department, with a low of 10
and a high of about 40 students being reported. (Note: in most
instances, student count included both graduate and undergraduate
students.)

(7) If your institution does not offer an undergraduate
Computer Security course, is there a particular reason (e.g., no
faculty interest in teaching such a course; not enough students
interested in taking such a course; no room in the undergraduate
Computer Science curriculum for another course)?

RESULTS: Few departments responded to this question. Those
that did provide reasons included two departments where there is
no room in the undergraduate curriculum, one department with no
faculty member qualified to teach the course, and one department
that believe they adequately cover Computer Security in other
courses.

In summary, one can see that there are not departments
that currently offer Computer Security courses. When one
combines this with Higgins' findings (only 26 of the 102
departments he surveyed in 1989 offered computer security
courses), one sees that there is not yet the significant trend
toward Computer Security as a legitimate academic topic that one
might hope for.

APPENDIX II: A RECOMMENDED CLASS SCHEDULE FOR A COURSE IN
COMPUTER SYSTEMS SECURITY

This Appendix contains a class schedule that the authors
believe is appropriate for an undergraduate course in Computer
Security. This is a minor modification of a course that has been
taught at the University of Maryland-Baltimore County by one of
the authors.

This course does not assume the use of any particular book.
It can make use of an appropriate textbook (e.g. , Pfleeger' s
Security in Computing[PFLE], Denning's Cryptography and Data
Security[DENN] , or Gasser 1 s Building a Secure Computer
System[GASS]) along with supplemental material, or it can use
only material from the technical literature, without a central
textbook.

Among the materials which can used supplement any
textbook are: Anderson's Computer Security Technology Planning
Study[ANDE], Cohen's "Computer Viruses: Theory and Experiments"
[COHE]; Lampson 1 s "A Note on the [LAMP];

594

Thompson • s "Reflections on Trusting Trust" [THOM]: and the DoD
Trusted Computer System Evaluation Criteria [TCSE].

Discussion of the Schedule

This schedule starts with an overview of the field of
Computer Systems Security, and discusses each of the three major
parts: Confidentiality, Integrity, and Availability. It then
moves into a short unit on Risk Analysis. Following this, there
is a one-week unit on malicious code, and the various types of
malicious code that exist. The rest of the time prior to the
first examination is spent discussing some of the fundamentals of
computer system security.

Between the first and second examinations, we cover several
popular security mechanisms. We begin with authentication
mechanisms (passwords, biometric devices, etc.), follow with
various access control mechanisms, and conclude with audit
mechanisms and audit trail analysis.

Between the second and third examinations, we address
security assurances, and then move to case studies of two
particular operating systems.

After the third examination, we move to other aspects of
Computer Systems Security. We begin by addressing network
security. We then move to Database Management System (DBMS)
security issues, including such topics as inference and
aggregation. We conclude the course with two more case studies.

Assumptions

We should point out that there are some assumptions built
into this class schedule. First, we assume that the course in
question meets 45 times (three meetings per week, for fifteen
weeks) over the course of a semester, and that there are 50
minutes per course meeting. We assume that there will be three
examinations (in addition to the final) given in the course, and
that there will be some time spent reviewing for each of them.
And, as stated in the paper, we assume that Cryptography is
addressed in a separate course.

Lesson # Topic to be addressed

INTRODUCTORY MATERIAL
1 Introduction - Course overview and rules;

What is Computer System Security?
Confidentiality, Integrity, Availability

2 Computer Systems Security, Privacy, and
Ethics

RISK ANALYSIS
3 Risk Analysis - Threats, Vulnerabilities, and

Countermeasures
Risk Analysis

595

4

5

10

15

20

25

30

THREATS, VULNERABILITIES, AND COUNTERMEASURES
Threats and Vulnerabilities: Malicious code

6 Malicious Code: Trojan Horses, Time Bombs,
Trap Doors

7 Malicious Code: Worms and Viruses

SECURE COMPUTER SYSTEMS: OVERVIEW
8 The Parts of a Secure Computer System
9 Designing a System for Security

The Current Security Status of Computer
Systems

11 Summary of Material Covered to Date and
Review for Exam #1

12 Examination # 1

SECURITY MECHANISMS
13 Authentication - Spoofing, Trusted Path,

Password-based Authentication Systems
14 Authentication - Mechanisms Other

Passwords
Access controls: Discretionary Access

Controls, Access Matrices, and 'Safe'
Systems

16 Access Control Mechanisms: Access Control
Lists, Protection Bits and Capabilities

17 Information Flow Controls: Mandatory Access
Controls and the Lattice Model

18 Information Flow Control Mechanisms
19 Information Flow Control Limitations and

Covert Channels
Extensions to Conventional Controls: Access

Controls to Meet Specific Security
Requirements

21 Auditing Events
22 Auditing and Audit Trail Analysis
23 Audit Trail Analysis and Review for Exam #2
24 Examination #2

SECURITY ASSURANCE
Security Assurances: Overview and Importance

26 Correctness of Programs and Systems
Minimization of Security Relevant
Hardware;software

27 Security Models: Bell-LaPadula, Clark-
Wilson, Goguen-Meseguer

28 System and Subsystem Specifications
29 Consistency Among Models and Specifications

Coding the System - Correctness and
Consistency Considerations

31 Security Kernels and other Reference Monitor
Implementations

32 Hardware Security Requirements and Issues
33 Case Study: Operating System #1
34 Case Study: Operating System #2

596

35 Other Assurance Techniques and Review for
Exam #3

36 Examination #3

NETWORK AND DATABASE SECURITY
37 Network Security - What is a network?
38 The ISO Protocol Reference Model and its

Security Addendum
39
40

41

Other Protocol Suites and Security Issues
DBMS Security - Differences from Operating

Systems
Inference and Aggregation

42 Case Study #1
43 Case Study #2

WRAP-UP AND SUMMARY
44 Government and Other Computer Security

Efforts - A Summary
45 Course Wrap-up and Review for Final Exam

597

TOWARD CERTIFICATION, A SURVEY OF THREE METHODOLOGIES

Captain Charles R. Pierce

Air Force Cryptologic Support Center

San Antonio, Texas 78243-5000

ABSTRACT

The purpose of this paper is to provide an overview of three computer
security certification methodologies and their applicability. The
applicability of each methodology to a particular system depends somewhat on
the system's stage of development in the computer systems life cycle.

INTRODUCTION

NCSC-TG-004, Glossary of Computer Terms [1], defines certification as,
"The comprehensive evaluation of the technical and nontechnical security
features of an AIS and other safeguards, made in support of the accreditation
process, that establishes the extent to which a particular design and
implementation meet a specified set of security requirements." Terms such as
"comprehensive," "technical and nontechnical," and "other" imply that there is
a large amount of inexactness to the science (art?) of computer security
certification. The definition also implies that there likely is no firm
certification target, since the goal is to only measure the "extent" to which
security requirements are met. Nebulous terms and moving targets. Given this
situation, it is quite easy to see why certification may not readily lend
itself to standard methodologies and measures of success. Adding to these
frustrations is a time factor, i.e., when was the certification begun (before
system design or after it was built). This time factor can affect who does
the certification, the system developer or system implementor.

There is veritably a different certification methodology for every
system, either existing or developmental. There are no DOD standards for
performing certification during system development or acquisition. The DODD
5200.28 [2] directs that certification be done but provides no criteria
methodology. Each of the military services requires system certification in
their implementing regulations but provide no standard. In the Air Force,
both the AFR 700 (for AISs) and 800 (for embedded resources) series
publications reference AFR 205-16 [3] for computer security certification
guidance. AFR 205-16 (soon to be replaced by a series of three other
regulations) divides certification requirements into three subsets, hardware
and system software, applications software, and the operating facility, but
also provides no standard methodology. This can lead one to the belief that
either a standard methodology can not apply to certification or else using
differing situational methodologies may be the best approach. This paper
examines three methodologies with some annotation as their usability, but
leaves the reader with deciding "will this work for me?" On the other hand,
there are proposals for standardizing certification [4], and the reader can
contemplate "will these methodologies fit into any standard?"

598

MITRE. "MANAGEMENT PLAN FOR COMPUTER SECURITY CERTIFICATION

OF AIR FORCE SYSTEMS."

The Mitre Management Plan for Computer Systems Certification [5], done
under contract with the Rome Air Development Center for the Air Force
Cryptologic Support Center (AFCSC), uses DOD-STD-2167A, Defense System
Software Development [6], as its basis. It uses the AFR 800-14, Life Cycle
Management of Computer Resources in Systems [7], and AFR 205-16, Computer
Security Policy [3], implementations of the DOD standard, including roles and
responsibilities, adding the Air Force's certification process. It introduces
the term "Certification Manager" to provide a single name for those different
positions indicated as "certifying authorities" in AFR 205-16.

The Process

Security engineering tasks and products are placed in appropriate
locations alongside standard system reviews (as defined in MIL-STD-1521B [8])
or developmental products. Certification tasks are also matched to the
standard system development life cycle. A System Program Office (SPO) or
Program Management Office (PMO) structure is assumed for the developing agency
and most tasks and products are contractor deliverables. The certification
tasks consists of SPO review, evaluation, or validation of these products.
The user is limited to providing the initial set of security requirements.
Actions reserved for the SPO are performing risk assessments and providing the
actual certification. The Plan does not provide any accreditation specific
activities that are not part of the certification process.

Since it is primarily concerned with contractor developed systems, the
Plan concentrates on the engineering and manufacturing development (EMD) phase
of the life cycle. However, for completeness the concept exploration and
definitions actions required to generate system requirements (mission need
statement (MNS) and concepts of operation (CONOPS)) and the related security
products (security CONOPs and security policy) are included. Certification
Manager actions include reviewing requirements and planning for certification.
All other actions are in EMD except for final certification which occurs
during production and deployment.

The tasks are sequential in nature as they are tied to the system
development schedule. Each task description includes a list of inputs (from
the contractor) required for performing the task, a description of the
specific certification task actions, and expected outputs (from the SPO
analysts) (see Figure 1 for a sample task). User and Computer Security
Working Group (CSWG) interactions are not extensively covered since the Plan's
target audience and certification task performers are to be program office
personnel (who will normally be members of the CSWG). The end product of the
task sequence ~s tte certification. Certification maintenance, to occur every
three years, is a part of the operations and support phase of the life cycle
and is not specifically addressed. This maintenance would be highly dependent
on certification support products developed according to the Plan however.
Therefore, maintaining these products, within established risk management
boundaries, would constitute a significiant portion of certification
maintenance. Although not originally written as such, the Plan is a fairly
complete life cycle oriented document, from a program office or contractor
developmental point of view.

599

Task 4.3 - Evaluate Detailed Security Design

Task Inputs

Software Requirements Specification
Design Review Presentations
Security Audit Trade Study
Top Level Design Documentation
Detailed Design Documentation

Task Description

This task continues the on-going process of evaluating the security
design. It includes an analysis of the security engineering efforts to
correlate the requirements, as identified in the system/segment specification
and appropriate regulations, with the design provisions as described in the
design documentation. Assuming that the security architecture and general
framework has already been found acceptable (as a result of Task 4.1), this
evaluation is directed towards the design details that will provide the
detailed functional and protective requirements. This activity starts at the
time of the system Preliminary Design Review (PDR). The analysis and
reporting required by this task is significant, and as the design progresses
and matures this work also needs to be continued and updated. It must analyze
all changes or updates to the SRS/IRS and include a review of the Design
Documentation or C-level specifications. As the review progresses, potential
security vulnerabilities should be promptly identified and communicated to the
developers for corrective action.

The Security Audit Trade Study needs to be evaluated as part of this
task, in order to ascertain that it contains the proper trade-off analysis,
and it identifies the elements and circumstances that will be audited
including the rationale for their selection based on security requirements,
performance impacts, costs, etc.

The security Working Group provides a convenient forum in which the certifier
can request clarifications and address the issues at requirements
interpretations and possible conflicts among requirements.

Task Outputs

Evaluated Security Design
Risk Assessment Results

Figure 1. Sample Task Description

AFR 56-31, COMPUTER SECURITY IN THE AIR FORCE ACQUISITION SYSTEM

The Air Force is developing a series of regulations and guidelines for
certifying systems. A new regulation AFR 56-31, Computer Security in the Air

600

Force Acquisition System [9], defines development life cycle activities that
leads to system certification. Primarily, Air Force System Security
Memorandum (AFSSM) 5010, Computer Security in the Acquisition Life Cycle [10],
takes the DOD-STD-2167A life cycle as its basic foundation and adds to the
process those security actions that must occur. The goal is provide full life
cycle guidance for certification and accreditation. The AFSSM activities
actually begin before the DOD-STD-2167A defined life cycle by including
considerations for mission needs analysis. User requirements and the risk
management process are the main drivers of the proposed methodology. Each
phase of the standard life cycle is then broken down with guidance for
including security relevant activities. Key points in the process where
Designated Approving Authority (DAA) decisions or interactions are required
are specially indicated. Certifying authority decision points (as could
likely result from risk analyses) are provided. These points indicate where
trade-offs may be required or where the developer should check to see that the
system is still being developed to meet requirements. If the process is
followed and key certifier and accreditor decisions have been made and
documented it follows that both certification and accreditation should be
complete, from the management prospective. Viewing both from only
management's perspective is not sufficient however. Therefore, detailed
guidance on technical activities and product development during each life
cycle phase is also provided. Contractor reviews, deliverable products, and
schedules with resulting program office actions are covered, but the
methodology concentrates on a test and evaluation (T&E) point of view as T&E
is the life cycle activity most likely to be performed by purchaser
(government) resources. The guideline also provides some experienced based
information on pitfalls that may be encountered, some organizational
responsibilities within the Air Force, and some tools or methodologies that
can be used to aid in certification. Where and how to apply these tools in
the life cycle, be they for verification, risk analysis, or testing, is
provided. Unlike some other methodologies this one does not end with
certification, in fact it does not end at all. The final action described is
the reentering of earlier life cycle process phases when recertification and
reaccreditation are required. The only final action that occurs in a system's
security life cycle is its destruction or disposal without it having been
replaced or updated. Complete detailed guidance for each life cycle phase,
intended for the action officer level, is not provided. The nuances of each
system development are such that detailed guidance for each possible action
would fill volumes. This task is left to an entire series of other documents
related to AFSSM 5010, two of which are AFSSM 5011 for applications software
and AFSSM 5024 for program managers.

AFSSM 5011

Among this implementing series of documents is AFSSM 5011, Security
Certification Guideline for Application Software [11], which provides the
certifier with a checklist approach for certifying applications software.
Individual checklists target software developed on either C2 or B1 TCB
systems, meeting AFR 56-31 requirements, meeting DOD-STD-2167A requirements,
or evaluating commercial-off-the-shelf software. The methodology is not as
thorough as those mentioned elsewhere in this paper because it is intended for
the system user community, not system developers. It does not assume the
guideline user is either a system or security engineer or analyst. In fact,
one of its main proposed users is the individual developing software on a

601

microcomputer for later use on a larger system. Its results should be added
to those provided by the developing program office and presented to the
operational DAA for final system accreditation.

AFSSM 5024

AFSSM 5024, Computer Security in Acquisitions [12], focuses primarily on
the generation of system specifications for a host of security disciplines.
It discusses each security discipline, e.g., computer security, TEMPEST,
physical, etc., and provides appropriate Contract Data Requirements Lists
(CDRL) and Data Item Description (DID) language that the program could
require. The goal is to produce an appropriate Request for Proposal (RFP)
that will lead to certification. The process doesn't stop with RFP release,
but continues with guidance as to how the contract deliverables should lead to
certification, much like the Mitre methodology, and accreditation. The
guideline covers the timing of product delivery and the probable size of each,
thus enabling planning for the effort required to review and manage each
product.

ETA TECHNOLOGIES CORPORATION

The ETA certification effort [13] began after some of the affected
systems (for munitions storage and management) were actually installed. The
system's developers had begun certification itself much before, but this
particular effort was performed by a contractor brought in during the full
scale development phase. Rather than continue existing certification actions
the contractor, ETA, chose to employ a step-by-step procedure that validated
existing products and then continued with needed tasks which would compose the
bulk of the certification. The process is composed of four phases closely
related to the development life cycle. A series of 18 tasks, spread over the
phases, are required. Most of the tasks, see Figure 2, occurred after the
time the effort began. Relatively few tasks were required to validate
previous work. The basic concept is to certify in stages, not all at once.
This concept was also carried over to an accreditation methodology for the
system, see Figure 3.

Certification Phases

Each of the certification phases were matched to the basic process of
system development; define the system concept based on user requirements,
translate these requirements into system development requirements
(specifications, statements of work), validate that the system is being built
to requirements through the review process, and finally test that the
implementation meets the user requirements. The certification phases closely
match the first four phases of the development life cycle (Figure 2).
Certification during the production/operation phase is the responsibility of
the user or maintaining agency and was not part of this particular effort.
However, modifying the process should yield a subset of the tasks which the
user can then use for recertification maintenance.

602

Task Phases

Each of the tasks consist of a purpose statement or goal. Actions
required to meet goal follow, including the development or publishing of
needed support documents. In this case, early tasks consisted of reviewing
and validating previous certification activities. When needed activities had
not been performed or products not developed, the actions were much like those
of later tasks where the required actions were more performance oriented.
Each task completion is documented by a validation letter or document to the
certifying authority that the task was complete. The formal performance of
each task is tracked by a standard set of action items. Each task action was

CONCEPT DEFINITION
Concept of Operations
Security Policy

Task 1

REQUIREMENTS DEFINITION
Statement of Work I

Contract Data Rqmt List Task 2

Security Class Guide Task 3
I

I

I
ICertification Plan

Accreditation Plan

Task 4
Task 5

REQUIREMENT VALIDATION Task 6
System Readiness Review Task 7 I
System Design Review Task 8
Prelim Design Review Task 9

Critical Design Review
 Task 10

Task 11

TESTING
QT&E
ST&E
QOT&E

Task 12
Task 13
Task 14

Task 15
Task 16
Task 17
Task 18

Figure 2. Certification Overview

603

researched as to its basis in requirements and current status. The status and
subsequent actions are analyzed to determine if the task's goal has been met.
The results of each task provided either the location of products which meet
the goal or needed updates or modifications that would meet the goal. Each
task completion requires coordination by every member of the system
Certification and Accreditation Working Group (C&AWG), a subset of the larger
Computer Security Working Group (CSWG). The C&AWG was set up to specifically
work certification and accreditation issues within the overall security
process which involved more widespread issues, e.g., TEMPEST, facilities
design and implementation, etc. The final task action is certification
authority approval of task completion. Thus, when all tasks are

CONCEPT DEFINITION
Concept of Operations
Security Policy

REQUIREMENTS DEFINITION
Statement of Work
Contract Data Rqmt List

I Computer Sec Work Group
I Certification Plan

! Accreditation Plan

REQUIREMENT VALIDATION Task 1
System Rqmts Review Task 2
System Design Review Task 3
Prelim Design Review Task 4
Critical Design Review Task 5

Task 6

TESTING
QT&E
ST&E Task 7
QOT&E

Task 8
Task 9
Task 10
Task 11

Figure 3. Accreditation .Overview

604

completed, certification is complete without the certifier having to review
the entire process at one time.

Observations

Although most of the later tasks involve validating development
contractor actions or products, many involve actions and plans to be produced
by the system's developing agency. In fact some are products to be produced
by ETA themselves in their support role to the developing agency. The C&AWG
coordination becomes important as this group is composed of major users of the
system and representations from independent certification support agencies.
This provides an extra degree of assurance that the certifier has not
overlooked anything by being too close to the action.

Tracking the tasks includes producing briefing aids for each task to present
each task's status to the certifier or at each C&AWG meeting. A typical task
status appears at Figure 4. This particular task involves validating that
appropriate security procedures are being developed according to SOW and user
requirements. The actions required must ensure preliminary procedures (the
system is still in the development phase) allocate security functions based on
cost-benefit analyses done in risk analysis. Research and analysis of
completed activities of needed actions have been completed and activities

Task 6: Validate Security Procedures

Develop preliminary security procedures based on the evaluation of the
security requirements, in accordance with the SOW. Validate these procedures
and evaluate the allocation of security functions between technical
enforcement and procedural enforcement.

a. Action: Ensure preliminary security procedures adequately allocate
security functions and features between technical enforcement (internal
controls TCB, TCM, Trusted Processes) and procedural enforcement (external
controls-- Physical Security, Communications Security, et al).

b. Documentation: Security Procedures Validation Letter.

c. 	 Action Item Status:

Research Complete

Analysis Complete

Resolution Complete

Trusted Facility Manual Supplement.
Security Features Users Guide

Supplement.
Users Manual Revision Needed.

C&AWG Coordination
Certifier Approval

Figure 4. Sample Task Status

605

needed to resolve the action provided. The resolving activities involve
modifying or supplementing vendor provided documents to meet the specific
application and the production of a specific product by the development
agency. As these are not yet done, C&AWG coordination has not yet begun nor
has the certifier approved the task as complete.

At first glance task performance appears to match the development life
cycle, but this is not necessarily so. In reality many tasks are being
performed at once. For example, Task 17, Conduct Certification Readiness
Review, is performed when a task is completed or at appropriate standard
development reviews. Tasks 15 and 16 involve vulnerability and risk analysis
and are constantly performed and will continue until the system is accredited.

Although much of this certification effort was performed when the system
was already in operation, the process itself is easily applicable to a system
not yet past concept definition. By fully matching the process to the
development life cycle and matching tasks to schedule and performance
responsibilities, the largest part of the developing agency's certification
plan is provided. Minimal efforts, e.g., inserting the system's security
policy, regulatory requirements, product specifics, etc., would complete the
plan. For a relatively simple system the process is not overly complicated.
For a more complex system, with multiple interfaces or embedded applications,
other tasks may be needed and retroapplicability may not be possible.

ISSUES

As you can see, each of these methodologies, as well as many others,
provide somewhat thorough but different views of the certification process.
Their guidance is at such a level that the user must have some knowledge of
the certification process as well as being an experienced system developer.
The detailed guidance for each activity in each life cycle phase is being
developed at many sources but is not currently available. Some topics which
must be addressed include translating user requirements and mission needs into
a system security policy (of which TCB policy is only a portion) and then
deriving a user/program office produced CONOPS and maintenance policy from
this policy. Specification, SOW, and RFP production is an area frequently
addressed but how to evaluate responses to them are not. This includes both
source selection activities and models or prototype developed during
demonstration and validation. Configuration management for prototypes is
usually less restrictive than for EMD systems, a situation that can impede
certification, particularly for trusted products. Several approaches address
certification during system development and early production and deployment
when final, baselined products are available for test and evaluation.
Security testing guidance, especially for TCBs, is available but not widely.
Much work needs to be done in defining how certification is to be transitioned
to users or maintainers. Incremental changes, patches, distribution and
storage, maintenance interfaces, and a myriad of other issues arise during
system operation that did not occur or were not a concern to the developer.
Often the user is faced with not having the original certification methodology
or the certification tools used. Certification must then be performed by
another methodology with no assurance that results similar to the original
will be realized. Any certification process that is used must consider the
entire life cycle, since the requirement may be to enter the process at any
point in the life cycle.

606

REFERENCES

1. NCSC-TG-004, Glossary of Computer Terms, 21 October 1988.

2. Department of Defense Directive 5200.28, Security Requirements for
Automated Information Systems (AIS), 21 March 1988.

3. AFR 205-16, Computer Security Policy, 28 April 1989.

4. Pierce, Charles R., Standardized Certification, Proceedings of the 14th
National Computer Security Conference, 1 October 1991.

5. Proposed Management Plan for Computer Security Certification of Air Force
Systems, Draft Mitre Technical Report, RADC Project 4610.

6. DOD-STD-2167A, Defense System Software Development, 29 February 1988.

7. AFR 800-14, Lifecycle Management of Computer Resources in Systems, 29
September 1986.

8. MIL-STD-1521B, Technical Reviews and Audits for Systems, Equipments, and
Computer Software, 4 June 1985.

9. AFR 56-31, Computer Security in the Air Force Acquisition System, (Draft),
9 May 1991.

10. AFSSM 5010, Computer Security in the Acquisition Life Cycle, (Draft), 3
June 1991.

11. AFSSM S011, Computer Security in Software Development, (Draft),
23 Jan 1991.

12. AFSSM 5024, Computer Security Considerations in the Acquisition of
Computer Systems, (Draft), 10 May 1991.

13. Technical Report, Combat Ammunition System-Base, SETA Contract
F11624-88-D-0002, Delivery Order 6K-03, ETA Technologies Corporation.

607

TRUSTED DISTRIBUTED COMPUTING:

USING UNTRUSTED NETWORK SOFTWARE

E. John Sebes, Richard J. Feiertag
Trusted Information Systems, Inc.

444 Castro Street, Suite 800
Mountain View, CA 94041

Abstract

The Distributed Trusted Mach Concept Exploration resulted in a design that extends the Trusted Mach
design, to support transparent network communication between several nodes in a B3 trusted distributed
system. A key feature of this trusted network communication is the use of existing network protocol
software in a manner which allows this software to be untrusted.
Keywords: Distributed systems, Trusted systems, Network Protocols

Introduction
The Distributed Trusted Mach (DTMach) Concept Exploration1 resulted in a design (!]that builds on
Trusted Mach (TMach) to provide a trusted distributed system intended to meet the TCSEC B3 trust
requirements [2]. TMach [3] [4] [5] is a trusted operating system being developed in conjunction with
Mach, to provide Mach operating system services in a manner consistent with the B3 requirements. Mach
[6] is a portable multi-programming, message-passing operating system being developed at Carnegie
Mellon University.

This paper describes a part of the design of DTMach which deals with providing communication
between the various nodes in a trusted distributed system. In particular, this communication is by means
of the same trusted inter-process communication (IPC) used on a single TMach node, but transparently
extended over the network to other nodes. A key feature of the design for distributed IPC is that existing
network communication protocol software is used without modification; and this software is not included
in the Trusted Computing Base (TCB).

This is an important result because a more usual approach to trusted networks is to include net
work protocol code in the TCB, frequently by developing new trusted protocols or by extending and
re-engineering existing ones to meet trust requirements [7] [8]. For DTMach, however, the B3 trust
requirements make these approaches difficult. Development or re-engineering can be a significant tasks,
particularly in light of the requirements placed on B3 trusted code. Additionally, the development of B3
systems must include significant effort to minimize the size of the TCB by excluding from it non-security
critical functionality. For DTMach, network protocols represent a significant area of functionality that
can be so excluded using the techniques here described. Therefore, and important part of the DTMach
development will be integrating existing network protocol implementations into this architecture.

This paper first provides an overview of Mach and TMach, followed by a description of the relevant
functionality of DTMach. Then we give the architecture and high-level design for this functionality,
discussing the various alternative means to implement it.

1 This work was funded by Rome Air Development Center~ontract number F306Q2-87-D-0093/0006.

608

Mach, TMach, and DTMach

Both Mach and TMach consist of a kernel, which implements the basic abstractions of a multi
programming, message-passing system, and a number of system servers which use the kernel primitives
to provide most of the conventional operating system services such as devices, directories, files, a name
space, and so on.

Among the kernel abstractions are tasks and threads. The task is both an execution environment and
also the basic unit of resource allocation. The thread is the basic unit of execution in the system; a task
may contain multiple threads, executing with common access to the resources in the task's environment.

A task may communicate with another task by sending a message over a port. This message passing,
or IPC, is the primary form of communication not only between tasks, but also between tasks and the
kernel. A message is simply a typed collection of data that is sent on a port. A port is a channel for
messages.

A task's ability to use a. port is governed by possession of port rights, which can be sent in messages,
in addition to message data. Among the port rights are the right to send a message over a port, and
the right to receive a. message from a. port. There is only one receive right to a port, and the holder of
that right is called the receiver of the port. There may be several senders for one port. Possession of
a. right to a port can also be the capability to create and/or send a right to that port, subject to some
restrictions.

Both Mach and TMach use the client/server model of system operation. With respect to a given type
of service, a task may be a client (a user of the service) or a. server (a provider of the service). In order
to obtain a. service, the client task and server task communicate via ports; in other words, the port is the
entry into a. server task for obtaining a service. In Mach and TMach each system object is considered a
separate service and is accessed via its own port. The port associated with a particular object becomes
the representation for that object. For example, in TMach, the File Server is the task that manages files.
For each file it manages, the File Server creates at least one port. It creates rights to send messages to
that port, and sends those rights to each client task that requests and is allowed access to the file. The
client task's representation of the file is its right to send a message to the port associated with the file.

Ports are therefore the fundamental means for accessing objects, and port rights are the fundamental
means for controlling access to objects. The TMach security policy is implemented by controlling the
creation and dissemination of port rights. This control is one of the main functions of the TMach kernel:
it enforces the security policy by implementing security-relevant re~trictions on the use of ports and the
passing of port rights between tasks. The TMach trusted system servers also enforce the security policy
by implementing access control on the objects represented by ports.

One of the important differences between Mach and TMach (besides the essential addition of trust
features in TMach) is that TMach was originally designed to address the trust issues of a single Mach
system running on an isolated machine. Mach, on the other hand, supports network communication
between nodes, including IPC that is transparent across the network. Thus, one of the two essential
purposes of DTMach is to unify the distributed IPC of Mach and the trusted IPC of TMach to make
a distributed trusted IPC that can be the foundation of a trusted distributed system. The other main
purpose is to adapt the TMach system servers to utilize DTMach IPC to provide true distributed service.

In distributing IPC, DTMach must enforce the kernel's policy on ports: because the use of ports
is transparently extended over the network, their use must follaw the same rules as local use of ports.
Rather than altering the kernel to do this, the DTMach design calls for a new trusted server, the Network
Server, to distribute IPC in a trusted manner. In this regard, DTMach follows Mach, which also has
a. Network Server. The remainder of this article describes the DTMach Network Server, and its use of
existing network protocols.

Network Server Overview
This section gives an overview of the basic functionality of the Network Server, without going into
particular design details. This basic function is distributing IPC by transmitting IPC messages between
nodes, while maintaining the kernel's security policy on ports. The Network Server distributes IPC by
holding rights to local ports on each node; as a result, it can associate ports on different nodes to create

609

NODEAlpha 	 NODE Betai'------------------- -,~--------------------
I 	 I

taskA taskB :

0 	
label=•••
node=Beta
netportid=93
sender=taskA
data= •••

message

sender=ta.skA
data= .•.

I

messa e

NElWORK I
I

Network Server 	 • Network Server
II I 	 I

I

'--------------------~ '--------------------~
Figure 1: DTMach Message Scenario

a. virtual circuit between tasks on different nodes. How this arrangement is set up and maintained it
described in detail in [1].

The essence of DTMach distributed IPC is that it allows a. task to send a. message over a. port
and the message will be delivered to a task on another node- without either the sender or receiver
being aware of the fact they are on different nodes. This is accomplished by having a. Network Server
on each node in the distributed system; or to use the terminology of distributed systems, the Network
Server is a. distributed server with a.n instance on each node in the system. Each Network Server instance
communicates with others via. network communication protocols; and each communicates via local IPC
with the kernel and with other tasks on its node.

The Network Server's role on each node is characterised by two essential stra.tegems: first, the Network
Server is the receiver of every local port with a.n ultimate receiver on another node; and second, the
Network Server is a sender of every local port with an ultimate sender on another node. As a result, the
Network Server receives every message bound for another node, and it can locally deliver any message
that it gets from another node. Thus, the Network Server provides a global IPC service that transparently
transmits messages between ports on different nodes.

This global IPC service typically follows the sequence of events illustrated in Figure 1:

1. 	A user task taskA on node Alpha sends a message to another task taskB on node Beta, by sending
the message over a port port37 that taskA assumes taskB is the receiver for. In fact, the port is
networked, so the local receiver for port port37 is actually the Network Server.

2. 	 The Network Server receives the message on port37, already knowing that Beta is the node with
the ultimate receiver for messages sent over port37; therefore Alpha's Network Server instance
sends the message over the network to Beta's Network Server instance.

3. 	Beta's Network Server instance receives the message from from the network, already knowing that
the local port portiS is the destination for messages originating from Alpha's port37.

4. So, Beta's Network Server instance sends the message to the over po:rt18 to taskB, a.nd does so in
such a way that it appears the message was actually sent over porUS by task task!.

5. Finally, taskB receives the message from task!, and neither of them knows about the intervention
of the two instances of the Network Server.

610

In order to correctly forward and deliver messages, Network Server instances must have a mechanism
for "knowing that Beta is the [receiving] node ... for port37" and "knowing that the local port port18 is
the destination" as mentioned above. The mechanism is a set of mappings between local ports and global
identifiers called net-port-ids. One such mapping is shown in the lower left of the figure as "port37 =
netport93". This indicates that port37, over which the message came, is associated with the net-port-id
netport93; and this net-port-id is recognized by other instances of the Network Server on other such
nodes.

Also shown in the lower left is another mapping/ between netport93 and node Beta; this node is
the one which has the task that is the destination for all messages on port port37, and all other ports
associated with netport93. Note that since a. port may have multiple send rights, there may be several
local ports which have the same remote destination; and furthermore, since these rights may be sent in
messages across nodes, there may be several nodes with local ports all of which have the same remote
destination. Each of these is associated with the same net-port-id.

As a result of consulting these mappings, the Network Server instance shown on node Alpha knows
which other Network Server instance to send the message to, in this case that on node Beta. Before doing
so, however, Alpha's instance must add various kinds of control information to the message. One of these
is the net-port-id, which Beta's instance uses to determine how to locally deliver the message. So, when
the Network Server receives the message on Beta, it consults a similar mapping between net-port-ids and
local ports (shown on the lower right in the figure). In this case it finds that port18 is the local port
over which to send messages originating from remote ports associated with netport93.

Other control information included in the message is the security label of the local port it was
originally sent over, and various data about the sender. This sender information (schematically illustrated
as "sender=tasltA") includes the user identity and security label or range of the sending task. This
and other data. are of vital importance to Beta's Network Server instance, because it must convey the
information to Beta's kernel, as part of the message sent over port18. The kernel uses this information
to mediate the reception of the message, in accordance with the security policy. The transmission and
use of this security-critical data is one of the primary trust-relevant functions of the Network Server,
in helping enforce the kernel's policy on ports. In other words, the Network Server acts as the local
representative to the kernel for the remote task that sent the message; and in order for the kernel's
policy to be enforced, the Network Server must correctly represent remote tasks.

Besides maintaining port mappings and transmitting security-critical data about each message, the
other key function of the Network Server is to track the movement of port rights across nodes, and
update and disseminate the changing port mappings that result from such movements. This enables the
Network Server to continue to efficiently deliver messages, even as port rights move through the system.

Architecture
The main feature of the architecture of the Network Server is its partition into separate functional
components. The reasons for this partition derive from the TCSEC architectural requirements. Primary
among these requirements at the B3level of trust is that of minimality, which mandates significant effort
for the removal from the TCB of non-security-critical functionality. It turns out that a. large part of
the functionality of the Network Server is in fact not security-critical, and can easily be implemented
outside of the TCB, in a. component called the NetProtocol Server. Therefore, the first task in describing
the architecture of the Network Server is to describe both the NetProtocol Server itself, and also how
the Network Server interacts with it. Then, we can describe the further functional split of the Network
Server into two components, the NetMessage Server and the NetLine Server.

NetProtocol Server

The DTMach NetProtocol Server (NPS) implements the network protocols used by the Network Server,
including TCP/IP, among several others. If the network protocol software can be controlled so that
it is unable to violate the security policy of the system and it cannot compromise the integrity of the
TCB, then it is not protection critical and, in keeping with the TCSEC B3 requirement for minimality,

2 Both of these mappings are needed, because both can change independently of one another.

611

can be removed from the DTMach TCB. This is especially important, in light of the large amount of
network protocol code and its intricate nature, which would make it a major undertaking to implement
this functionality in adherence with the TCSEC requirements.

Therefore, the entire function of this untrusted server is to take IPC messages from the Network
Server, and to create network packets from them (and the inverse); these packets contain the content of
the message in a form ready tobe sent over the network.

Since the NPS is untrusted, however, there is a set of issues concerning how it can be used by the
TCB, while not effecting MAC or DAC, and while maintaining the integrity of the data it handles,
particularly TCB data. In other words, the TCB must take measures that ensure the non-disclosure and
integrity of the data. given to the NPS. This is because of three factors:

e 	enforcement of both MAC and DAC depend on the integrity of the TCB MAC and DAC data that
the Network Server puts in each network message;

e 	disclosure of TCB MAC and DAC data could result in undermining the enforcement of policy;

e 	improper disclosure of any data. could itself constitute a violation of policy.

The general approach to integrity is for the Network Server to implement an end-to-end integrity check
on each message. More details on this, and on the various alternative methods of accomplishing non
disclosure, are given in the last section.

The overall interface between the Network Server and the NPS is this:

1. 	 The Network Server receives a. message to be sent over the the network, and embeds MAC infor
mation, DAC information, and integrity-checking data.

2. 	 The Network Server sends this annotated message to the NPS, which breaks the messages into
packets in whatever way is appropriate for the network protocol used.

3. 	 The NPS sends the packets back to the Network Server, which sends the packets over the network.

4. 	The receiving Network Server instance passes packets to the NPS, which re-assembles the messages
and passes them back to the Network Server.

5. When 	the Network Server receives a re-assembled message, it checks the integrity of the message
to ensure that it was received without tampering. The intact MAC and DAC information is passed
to the kernel so that it can perform its mediation of the message-receive by the intended recipient.

One last important feature of the NPS is that it is for the sole use of the Network Server. This is
not to deny that user tasks may wish to use a service that implements network protocols- such a service
would be provided by untrusted servers in many systems. However, the NPS is not such a service; rather
it will not be available to any other system component besides the Network Server, so that the latter
can use the NPS without any interference from other tasks.

In other words, the NPS is best conceived of as a private part of the Network Server, which is
implemented as a separate, untrusted task for trust engineering reasons.

In any case, the NPS is not exactly the service that clients need. Although the NPS's set of protocols
includes some that are generally useful, it also includes some that are not, and omits some that are.
Therefore, one can envision other untrusted servers, for example a TCP server, a UDP server, and an IP
server, and perhaps others for ISO protocols. In such cases, the NetLine Server (see below) would accept
the traffic from these untrusted servers at various levels, multiplex it onto the network, and de-multiplex
it based on packet labels.

NetLine Server
Besides separating out the functionality of the NPS, the Network is also broken into two further com
ponents, the NetLine Server (NLS), and the NetMessage Server (NMS). This separation arises from the
fact that part of the Network Server's functionality- moving messages over the network- is unrelated
to the functionality of managing IPC, which is the main function of the Network Server. Therefore, this
additional, unrelated function is implemented in the NLS, while the NMS implements the bulk of the
Network Server functionality as described in the rest of this report.

The separation of the NMS and NLS is only partly motivated by modularity. Certainly, since the
functions are quite distinct, modular separation is possible. But another TCSEC architecture requirement

612

also comes into play- that of least privilege. The NMS requires special privilege from the kernel, but
this privilege is not needed by the NLS. Likewise, the NLS's access to network devices constitutes a
functional ability not needed by the NMS. If the two were implemented in one task, then the NLS code
would have more privilege than it needs, and the NMS code would as welL Therefore, the separation of
the NMS and the NLS increases compliance with the least privilege requirement as well as the modularity
requirement.

The function of the NLS is, quite simply, to manage the network devices in the distributed system.
Its access to these devices is through the use of other TCB components, such as the kernel and the Device
Server. Of course, the use of these devices is simply to write packets onto them, and to read packets
from them. Since these devices may carry multi-level data, the management of them must be done by
the TCB, rather than by components which actually generate the packets, such as the NPS. Therefore,
data from IPC messages of all labels flow from sending tasks through the NMS and then the NPS, to
the NLS and over the network; and of course, the reverse flow happens as welL

The main trust-relevant task of the NLS is to label each out-going packet. This is necessary for
preservation of the label of the data throughout the message transfer. The receiving NLS instance uses
the label to ensure that for each packet, the the protocol service that handles it is actually permitted to
handle information with the packet's label. Additionally, the NLS must implement an integrity check on
each packet, to ensure that it has not been corrupted or damaged in transit- not least to ensure that
the label on the received packet is the same as the label it was sent with.

In summary, the NLS is a trusted multi-level device manager which labels the data passing through
it, to or from the devices. One further point of note is that the NLS may provide service to tasks other
than the NetProtocol Server- for example, an untrusted TCP/IP server will certainly have packets for
the NLS to put onto the network.

NetMessage Server
The NetMessage Server implements the main functionality of the Network Server- that of distributing
IPC- rather than implementing the underlying network protocols (done by the NPS), or the management
of the network devices and data (done by the NLS). In this respect its functionality is essentially similar
to the Mach NetMessage Server. In fact, the DTMach NetMessage Server may be based on the Mach
NetMessage Server, in many respects.

The overall function of the NetMessage Server can be summarized as follows. It must:

1. 	receive from local tasks all messages intended for remote destinations;

2. 	 forward each such message to a remote NetMessage Server instance;

3. after receiving such a message from an originating NetMessage Server instance, send it to the correct
local task as intended by the sender.

It is in (2) that the services of the NPS and NLS are used. At this level of functionality, the NMS must be
trusted to correctly deliver messages, since incorrect delivery might violate security policy. Additionally,
the NMS must also uphold security policy by performing these functions:

4. 	 include in each message some information about the sender, which is necessary both for policy
checks and correct delivery;

5. co-operate with the kernel by aiding in carrying out IPC policy checks;

6. 	 provide data-integrity for the messages it sends via the NPS, in order to facilitate the exclusion
from the TCB of the NPS (see above).

One additional architectural point is it might be possible to split out into an untrusted component
much of the detail involved in (2) above, in accordance with the minimality and least privilege require
ments.

613

Design

This section addresses various design issues of the Network Server previously raised. The high-level
design of this IPC-related functionality is best given as a detailed description of message transmission.
Many of the details of the design of the Network Server are described by explaining the way these three
components- NMS, NPS, and NLS- work together to move a message from a client task on one node
to another client task on another node. This is illustrated in Figure 2.

The figure shows two nodes, each with the three Network Server components, the kernel, and a
client. The shaded box shows the TCB, which includes the NMS, NLS, and kernel of both nodes,
together with the network. The dotted box encloses the components of the Network Server; the NPS
is shown as instantiated at each level, as in one of the architectural alternatives described below. Each
arrow indicates one step in the the journey of a message from the client on node Alpha to the client on
node Beta.

The first step occurs when the client on Alpha sends a message over a networked port, and the
message is received by the NMS instance on Alpha. Then, the NMS must annotate the message with a
variety of data:

Label Foremost among these is the label of the port over which the message came. This will be needed
by Beta's NMS instance, to ensure that MAC policy for the message is upheld. For example, Beta's
NMS instance should ensure that when the message is sent on a port on Beta, the label of the port
is the same as that of the Alpha port that the message was originally sent on.

User Profile Another kind of data added to the message is the user information about the sender: its
user identity and label or range. These are used by the kernel for both MAC and DAC enforcement.

Net-Port-Id In addition to these data used for policy enforcement, Alpha's NMS instance must also
include the net-port-id of the sender's port, so that Beta's NMS instance can correctly deliver the
message to the proper recipient. This is security-critical data as well, since maintaining a secure
state requires correct delivery.

Integrity Data Another very important function of the NMS is to protect the above data (and the
message contents) from tampering by the untrusted NPS. One way to do this is simply to encrypt the
entire annotated message. Alternatively, the NMS may compute a less computationally expensive
message digest of the entire annotated message. Then only the message digest need be protected
by encryption; the encrypted message digest would become the last component of the annotated
message. Detailed treatment of encryption and data-integrity issues is given in [1].

The second step is when the NMS sends the annotated message to the NPS, along with some
indication of which other NMS instance to send the message to. This indication will be protocol
dependent. For example, if TCP/IP were used, a TCP connection would be specified; setting up this
connection would be part of initialization. The NPS computes a sequence of network packets which will
convey the message to the requested destination.

The third step is when the NPS sends a sequence of packets to the NLS. The NLS must write each
packet on the appropriate network device. Before doing so, however, the NLS must label the packet.
Additionally, the packet must be protected from corruption in network transmission. At the very least,
the label should protected, although the integrity of the message as a whole may be of issue well.

The fourth step is when the NLS sends a packet to the network device's driver in the kernel. The
device driver actually puts the data on the wire. Here the message begins to reverse its path through
the system components. When the packet is available at node Beta, the driver has the data ready for
the NLS.

The fifth step is when Beta's NLS instance gets a packet off of a network device. Then, the NLS
must undo whatever integrity measures it applied on Alpha, and ensure that the packet arrived intact.
The packet will be destined for some protocol-implementing task, such as an NPS. If the packet was
intact, then it must examine the label and ensure that the port to the protocol-implementing task has
the same label as the packet, which was the label of protocol-implementing task that created the packet.
This ensures that the packet is moved between protocol-implementing tasks in accordance with MAC
policy.

The sixth step is when the NLS sends a packet to the NPS, which accepts packets, and re-assembles
them into the original message.

614

NODE Beta

NETWORK SERVER

Figure 2: Message Transmission

615

The seventh step is when the NMS receives a reassembled message from the NPS. The NMS uses
the various annotations put on the message by the originating NMS instance. First, the integrity check
must be made. If this passes, then the NMS must verify that it is the intended receiver. Then, the
net-port-id must be checked. The normal case is when the net-port-id maps to a local port. If the local
label of the port is that of the message, then the message is sent over the local part.

The eighth and last step is sending the message to the receiving client. This is a special message
send, however; the NMS uses its special kernel privilege (described in detail [1]) to inform the kernel of
the user profile of the sender. The kernel uses this in its policy enforcement decisions. Assuming the
message may be delivered, the kernel also uses this information to give the appearance to the receiver
that the message was sent by a task with the identity of the original sender, rather than by the NMS.

A last note of this scenario concerns what happens when the normal case in step seven does not
occur: when the net-port-id of the message does not correspond to a local port. In such cases, the NMS
must determine what to do with the message. There are a variety of cases, but we describe one. The
usual way that such a circumstance would arise is if the receive right to the networked port was originally
held by a task on Beta, and then was passed to a task on another node. In that case, the Beta's NMS
instance knows where to forward the message: to that other node. Beta's NMS instance should also send
an administrative message to Alpha's NMS instance to inform it of the change of affairs.

These messages- forwarding messages, and administrative advisory messages- are purely between
NMS instances themselves, rather than sent on behalf of IPC clients. As such, they are examples of kinds
of messages sent in a protocol between NMS instances. There are other kinds as well, mostly pertaining
to the NMS's attempts to keep net-port-id mappings reasonably up to date throughout the system. This
protocol, for the Mach NMS, was described in detail in [9] and [10). The protocol for the DTMach NMS
will be based on this.

NetProtocol Server Alternatives
There are four different alternatives to the implementation of the NetProtocol Server, each of which is a
different approach to the requirement to protect the data passing through the NPS. Each can be feasibly
implemented, and would meet the requirements. However, we describe each because the decision involves
several issues, and the results effect the architecture somewhat.

The four alternatives are based on two pairs of alternatives to the implementation of the NPS. One
pair is two variations on the multiple single-level (MSL) NPS, in which data is protected from disclosure
by being separated by label into different tasks. The other pair is two variations on the single NPS,
an untrusted, system-low NPS from which data is protected by other means. Each of these has two
variations, accounting for the four alternatives. These are illustrated in Figure 3.

The MSL NPS would consist of a set of single-level tasks, one for each label in the system; these are
shown in Figure 3 in the upper two examples, as linked ellipses, noted as MSL. When using the transport
services of the the NPS, the NetMessage Server would use the particular NPS task with the same label
as the IPC message being sent. Likewise, when the NetLine server gets a packet that is part of an IPC
message, it would send the packet to the NPS task with the same label as the packet. Although some
complexity in the management of these MSL tasks is introduced by the approach, it is nevertheless a
feasible alternative to the inclusion in the TCB of the NPS, which is probably insupportable because of
the B3 minimality requirement.

To sum up, non-disclosure is achieved by the separation of labeled data, by using the existing kernel
services: data is separated by label into distinct tasks, and the MAC enforcement of the kernel prevents
this data from flowing in a way that violates mandatory policy.

In addition to protecting the data from improper disclosure, the integrity of the data must also be
ensured. That is, the data must be protected from tampering, because such tampering could affect
data which is used in MAC and DAC enforcement. There are two alternatives: full encryption3 (on the
right side of Figure 3, with solid arrows), and message authentication (on the left side of Figure 3, with
dashed arrows. Of the two alternatives, full encryption of the data ensures nondisclosure and integrity,

3Jt should be noted in passing that the architt:dural issues of including, encryption in the system (including
the encryption of classified data sent over unprotected networks) turned out to be entirely orthogonal to the
encryption-related issues discussed here. The issues of network data protection are beyond the scope of this
paper, but [1] gives details.

616

0-®
isolation & Message Autio E11Cryption

Figure 3: Four NPS Architectures

while message authentication of the data. ensures integrity only. Full encryption is unnecessary because
disclosure is already prevented by the use of single-level NPSs. Message authentication is sufficient to
protect the integrity of the data. a.s it passes through the untrusted NPS. Since message authentication
can be less computation intensive, i.e., faster and more efficient, it is the preferred alternative for the
MSL NPS.

For the single NPS approach, there a.re a.ga.in two choices. One of them is to encrypt all traffic
through the NPS, ensuring both non-disclosure and integrity. The other approach is to ensure integrity
with message authentication, and to ensure non-disclosure by isolation of the NPS. That is, we ensure
that the NPS can communicate only with the TCB- in particular, the N etMessa.ge and N etLine servers
and not with any other other tasks. In other words, policy-violating disclosure is prevented by preventing
the NPS from disclosing anything outside of the TCB. This results in a. requirement (which we expect
will be easy to fulfill) that the system be capable of enforcing such isolation.

Of the two alternatives, the isolation approach is preferable again because message authentication is
more efficient than encryption. These alternatives are illustrated in the lower two examples in Figure 3.
On the lower left, the thick ellipses around the NPS indicate isolation, and the dashed arrows indicate
message authentication. On the lower right, the solid arrows indicate encrypted messages.

Having narrowed the four alternatives down to two, we can now say that we favor the isolated single
NPS approach over the MSL approach, because of two observations:

• The MSL approach is somewhat more complex, because of the management of the multiple tasks.

e Both approaches offer similar levels of assurance.

Although the MSL approach may appear at first glance to offer higher assurance, it is nevertheless the
case that both rely on the kernel's control over the NPS's IPC. In the MSL approach, the kernel is relied
upon to enforce mandatory policy on the NPS's IPC; in the isolation approach, the kernel is relied upon
to enforce isolation on the NPS's IPC, namely that it only communicate with the NMS and NLS. Since
all kernel mechanisms may be regarded as having fundamentally the same amount of assurance, these
two approaches have essentially similar assurance.

In each of the above alternatives, the data being protected cannot be disclosed or modified by the
NPS. The worst that the NPS can do is deny service by not routing message, or mis-routing. Although
there are no trust implications stemming from this denial-of-service possibility, there will of course be

617

http:etMessa.ge

measures taken in the interest of system robustness that will protect the integrity of the legitimate NPS
in order to ensure system service.

Conclusion
We have described the security architecture and high-level design for the distributed IPC of DTMach.
The important result shown by this description is that a trusted distributed operating system can be built
without requiring invention or re-engineering of network protocols due to trust requirements. This result
is particularly apt for DTMach: Mach includes the facility for network-transparent IPC, while TMach
provides for trusted local IPC; DTMach therefore combines these two to provide trusted distributed IPC.
That the network protocol implementation can be so separated is an indication both of the flexibility and
modularity of the Mach architecture, and also of the fundamental way that security policy enforcement
was incorporated into TMach.

One further positive result for DTMach IPC is that in combining these two essential features of
Mach and TMach, neither was changed in any fundamental way. That is, the Mach approach to IPC
over the network was augmented to deal with trust issues, but not changed. Likewise, the TMach
kernel's enforcement of the security policy on ports was unchanged, save for addition of an interface
for the Network Server to provide information from remote nodes. Thus, the port access control is
still centralized in the kernel, with the Network Server acting in a supporting role; and the network
management for IPC is centralized in the Network Server, without the kernel having to be directly aware
of events on other nodes.

Finally, DTMach IPC provides a straightforward base for the implementation of trusted distributed
servers which provide operating system features in a truly distributed, network-transparent way. Most
of the trust issues of these trusted distributed servers derive from distributed database issues and/or
particular TSCEC functional requirements (e.g., audit), rather than any concerns over security arising
from network communication and IPC.

References
[1] 	 Trusted Information Systems, "Distributed Trusted Mach Concept Exploration Final Report,"

Rome Air Development Center, 1990; TIS Rep. 374.

[2] 	 National Computer Security Center, "Trusted Computer System Evaluation Criteria," DoD
5200.28.STD, December 1985.

[3] 	 M. Branstad, H. Tajalli, F. Mayer, "Security Issues ofthe Trusted Mach System," Rep. 138, Trusted
Information Systems, January 1988.

[4] 	 M. Branstad, H. Tajalli, "Security Policy for the Trusted Mach Kernel," Rep. 179, Trusted Infor
mation Systems, September 1988.

[5] 	 M. Branstad, H. Tajalli, F. Mayer, D. Dalva, J. Graham, "Access Mediation in Trusted Mach,"
Rep. 203, Trusted Information Systems, March 1989.

[6] 	 Avadis Tevanian, Jr. and Ben Smith, "Mach: the Model for Future Unix," Byte, November 1989.

[7] 	 D. D. Schnakenberg, "Applying the Orange Book to an MLS LAN," Proceedings of the 10th National
Computer Security Conference, September 1987.

[8] 	 Greg King, "Considerations for VSLAN™ Integrators and DAAs," Proceedings of the 13th National
Computer Security Conference, October 1990.

[9] 	 R. D. Sansom, et al, "Extending a Capability Based System into a Distributed Environment,"
Communication of the ACM, February 1986.

[10) 	 R. D. Sansom, "Building a Secure Distributed Computer System," Carnegie-Mellon University Rep.
CMU-CS-88-141, 1988.

618

TRUSTING X: ISSUES IN BUILDING TRUSTED X WINDOW SYSTEMS

-OR

WHAT'S NOT TRUSTED ABOUT X?

Jeremy Epstein Jeffrey Picciotto
TRW Systems Division The MITRE Corporation

1 Federal Systems Park Drive Burlington Road
Fairfax, Virginia 22033-4417 Bedford, MA 01730
(epstein@trwacs.fp.trw.com) (jpicc@mbunix.mitre.org)

Abstract

Keywords: Graphical User Interfaces, X Window System, multi level secure, industry standards.
The MIT X Window System1 (X) has become a. de-facto windowing system standard that is widely used

throughout the computer industry. In many ways X is as important in the 1990s as standard operating systems
were in the 1980s. Just as trusted versions of UNIX2 operating systems (from C2 systems such as Gould's
UTX/32S to B2 systems such as AT&T System V Release 4/ES) are critical to bringing trusted systems into
widespread use, trusted versions of X are necessary in order to make the full power of those trusted systems
available to users operating in today's workstation environments.

Adaptation of commercial systems to trusted systems generally involves tradeoff's between functionality and
trust. X is no exception to this rule. Most commercial multi-user systems (such as UNIX and VMS3) implement
mechanisms that enforce various security policies, such as access control and privilege policies, although those
mechanisms are often relatively primitive (e.g., permission bits and super:..user in UNIX). In contrast, X was
explicitly designed to avoid enforcing any policies and, in fact, provides many mechanisms that tend to promote
the sharing of data and resources among X applications. As a result, the fradeoffs between trust and functionality
are far greater for X than typically encountered in operating systems.

This paper surveys the issues and outlines various solutions to problems encountered in designing and building
trusted X systems. The paper focuses on issues that appear both at the B1 and B3 levels of trust specified
in the Trusted Computer System Evaluation Criteria, and in The Security Requirements for System High and
Compartmented Mode Workstations. 4

1 Introduction

In the past few years, the X Window System has become the de-facto industry standard windowing system. As the
use of X proliferates and vendor application support for X rises, the trusted computer systems user community will
increasingly demand X for use on their trusted systems. There is, therefore, an immediate and significant interest
in the security implications of running X. The most visible example of this phenomenon is the Defense Intelligence
Agency's (DIA) Compartmented Mode Workstation (CMW[lO]) program. Of the vendors currently u~der evaluation
by DIA for a CMW rating, all have indicated their intent to use X as the basis for their trusted windowing system.

The X philosophy promotes cooperation among applications, including the sharing of data. and resources. This is
in fundamental conflict with the aim of trusted systems which requires some degree of isolation. The primary goal in
building trusted X systems is to retain as much of the X functioilality as feasible while providing the required degree
of trust. The functionality goal is often stated as "well behaved clients should run unchanged."

1 X Window System is a trademark of the Massachusetts Institute of Technology.

2UNIX is a registered trademark of AT&T.

3VMS is a trademark of Digital Equipment Corporation.

"The TRW portion of this work is sponsored by the Defense Advanced Research Projects Agency under Contract No. MDA 972-89

C0029. The MITRE portion of this work was internally sponSored by MITRE's Information Security $;::enter. Reproduction of this paper
is pennitted without charge except if copies are sold. :"'

619

In this paper, we first describe the architecture and philosophy of X. Next, we describe the requirements for
trusted X systems. We then survey the security issues, presenting various solutions and describing the functionality
required both by different TCSEC levels [9} (specifically B1 and B3) and by the CMW requirements [10]. Finally,
we describe some of the ongoing work in this area.

Note that this paper does not provide a cookbook solution to the problems of trusted X. Rather, it describes
the issues that are critical to balancing the needs of X functionality and trust. Furthermore, we do not address
assurance issues such as modeling or testing; the scope of this paper is limited to consideration of the impact of
required security mechanisms on the functionality provided by X.

Throughout this paper, use of the term "X" refers specifically to the MIT X Window System, while "TXS" refers
to any trusted X system.

2 X Architecture

The X architecture is based on the client/server model of distributed computing. As shown in Figure 1, the X server
manages the screen(s), keyboard, and pointing device (typically a mouse).

X clients and the X server communicate via. the X protocol [1]. Clients send requests to the server over a bi
directional communications channel using any reliable byte-stream protocol (for example, TCP/IP or DECnet), and
receive events and responses. Errors are a. particular kind of response. Protocol requests are typically asynchronous,
since most of them have no reply. Protocol requests include administrative requests, requests to create and destroy
resources (defined below), and drawing requests.

Window
Manager

Client #1 Client #2 Client #3

DD

Figure 1: X Architecture

The X server manages X resources on behalf of the clients. Resources include windows, pixmaps, fonts, cursors,
graphics contexts, atoms, and properties. X resources are data containers created by clients. The lifetime of a
resource is generally (but not always) tied to the lifetime of the client that creates it. Resources are referred to
by resource IDs that are associated by clients (and not the server) with the newly created resource. In addition. to
client-created resources, there are several global resources (such as the search path for fonts and the keyboard and
pointer characteristics) that are created by the server when it is first started, and that clients may change but not
destroy.

The X server manages resources in a manner analogous to how operating systems manage files. However, in a
traditional file system, files are opened and subsequent operations use a file handle or descriptor. This allows access
control to be checked only when a file is opened. In contrast, each X protocol request refers to required resources via
their resource IDs. As will be seen later, this means that access control must be enforced on every protocol operation.

620

X clients can generate protocol requests directly. However, the Xlib library (described in [2]) provides a slightly
higher level view of the protocol, including a subroutine interface that provides generation of the required byte stream
for each protocol request, and some abstractions. Applications are more commonly written using even higher-level
abstractions, such as a toolkit (e.g., Xt, described in (3]) and a widget set (e.g., Athena, or OSF/Moti£5 [4) [5]). All
of these libraries and widget sets are simply abstractions built on top of the protocol. Consequently, their use is
invisible to the server.

X has no concept of privilege, and a minimal notion of protection. Protection is provided at connection time only.
The X server maintains a host access list which identifies those computers from which connections will be accepted.
In addition, an optional authentication mechanism allows the server to demand some form of authentication from the
client (e.g., an MIT magic cookie or a Kerberos [6) authentication ticket). Once a client has connected to the server,
it may perform any request, including a request to turn off authentication for clients that attempt to connect in the
future. Clients can also directly impact other clients (e.g., by killing them), although such behavior is considered
undesirable (see [7]).

Management of windows on the screen is performed by a window manager. There are many existing window
managers, each of which provides a different look-and-feel. Because there is no notion of privilege in X, the window
manager is simply another client. The conventions described in [7) are used to define an environment where "well
behaved" clients can interact cooperatively.

The MIT X Consortium distributes the source code for X free of charge. The release includes a sample server,
widget libraries, window managers, and other clients which work on many systems.6 The Sun version of the X sample
server is about 90,000 lines of C source code.

3 What is Trusted X?

A Trusted X System (henceforth referred to as TXS) typically involves an X Window System appropriately mod
ified to provide functionality at multiple sensitivity labels. Specifically, a TXS should allow untrusted clients at
different sensitivity levels to interact only in accordance with its security policies. TXS security policies usually
include a mandatory access control policy (MAC), frequently a restrictive version of the Bell-LaPadula policy [14],
a discretionary access control policy (DAC) and, in some cases, an information labeling policy [10].

The most easily implemented solution to building a TXS is to completely isolate clients from one another. This
solution suffers from several rather severe problems:

e 	In order to fully isolate clients, other information channels must also be dosed. Some of these channels (e.g.,
one client signaling to a second client by generating a series of expose events) are extremely difficult to close
this way.

• 	 Cut and paste no longer works. In X, unlike other windowing systems, cut and paste is a client-to-client
operation, with the server simply acting as a passive intermediary. Client isolation prevents inter-client com
munications and therefore prevents successful cut-and-paste operations.

e 	Distributed applications no longer work. X's model encourages development of distributed applications, where
processes running on several computers in a network may work together on a problem. For example, a weather
system might use a workstation to handle the menu processing, while a supercomputer performs the compu
tation and makes the X requests to display the results. While these applications can be rearchitected, it is
undesirable to prevent this programming paradigm.

Variations of the complete isolation policy have been proposed (e.g., the LINX project from Sun Microsystems)
which provide limited interaction between clients. Other systems provide MAC and DAC policies to allow controlled
sharing among clients at the same sensitivity level. Such compromise solutions tend to alleviate many of the difficulties
associated with total client isolation, nevertheless, these solutions still curtail X's flexibility and functionality beyond
what is required by existing security requirements.

For this reason, this paper presents the issues and selected solutions that arise in a maximally flexible trusted X
implementation. That is, in a trusted X system where the only restrictions imposed are those that are necessary and

5 0SF/Motif is a trademark of the Open Software Foundation.
6 Vendors can, and do, enhance the sample server (or reimplement it entirely) to suit their competitive needs. As previously noted,

there are also various toolkits and window managers available.

621

sufficient to enforce the required policies. Solutions that impose additional constraints merely for expedience (e.g.,
total client isolation) are not considered.

Unfortunately, because X provides no rules and imposes no constraints on how the X protocol may be used, any
change can potentially break existing X clients. Thus, the choice of what mechanism is used to enforce a particular
policy must be made with extreme care. Our goal, then, is that well-behaved single level clients should run as
they did before, without modification. Specifically, any changes to the X specification that would break commercial
off-the-shelf software are considered undesirable.

One of the key difficulties in building a TXS is the lack of window system-specific TCSEC interpretations. While
the CMW requirements [10] specify many of the characteristics of a multi-level secure windowing system, we are not
aware of any National Computer Security Center-sanctioned criteria effort in the windowing area. Thus, there has
been no official acceptance of the authors' interpretations of the TCSEC with respect to window systems.

4 Security Issues

In this section we describe some of the security issues associated with the X Window System, and present some
solutions. We also explain which solutions are appropriate for Bl, CMW, and B3 implementations. (We specifically
omit B2 because we feel that the issues are adequately addressed by focusing on Bl and B3.)

4.1 Authentication

Authentication is the most obvious security problem with X. X provides a host access list. Any client on a remote
host listed in the host access list can connect to the X server. The mechanism enforces no policy based on the
identity of the user on whose behalf the remote client is operating, nor on the identity of the user logged into the
local host. Once the client has connected to the X server, it can make any X protocol request it chooses (e.g., it
may destroy arbitrary windows or lock the server). In hostile environments (e.g., university campuses) this X feature
allows students to send requests to other servers to spy on or interfere with other users.

The X server does provide the "MIT magic cookie" authentication, that uses a secret shared between clients and
the server. The magic cookie relies on the underlying operating system to store the secret, which is then passed
(in clear text) from the client to the server. Access to the server is therefore governed by access to the operating
system-provided storage container. The X server also includes hooks to allow additional authentication methods.

Fortunately, the general authentication problem has been the subject of a great deal of research and is a well
understood problem. In X, the most common solution is to use Kerberos [6]. Another method is to require the
network to perform authentication, such as by having a name server which mediates access to the TXS server (as
in the TRW TXS), or for systems that implement DNSIX [13), embedding the desired constraints in the Session
Request Control Module (SRCM). In each of these solutions, authentication and identification is supported down to
the granularity of a particular user on a particular remote host.

Authentication is an issue at all TCSEC levels and for CMWs. Use of Kerberos, or a name server is appropriate
for Bl, CMW, and B3. DNSIX (with appropriate constraints enforced by the SRCM) is additionally acceptable for
CMWs.

4.2 Privileges

X lacks any notion of privileges. There is no mechanism to limit the X functionality available to clients on a per
client basis. As a result, all clients are treated equally and all are capable of performing any X function. Thus, for
example, the window manager operates just as any other client, although it is explicitly manipulating other clients'
resources. The Inter-Client Communication Conventions Manual (ICCCM) [7] specifies certain protocol requests
that should only be used by window managers, however, since these are only conventions they are not enforced, and
are sometimes ignored by clients.

Implementing a privilege mechanism in X raises several issues. These include:

e 	What privileges are necessary and reasonable to permit adherence to the least privilege principle within a
window system. Depending on the granularity of privileges selected, it is feasible to define anywhere from
a handful to several dozen TXS privileges. For example, changing the keyboard mapping (which affects the

622

meaning of the keys) is typically a privileged operation, but changing the font search path might not be. There
is currently no agreement among vendors on what an appropriate set of privileges might be.

• 	 How are these privileges communicated from the clients to the server. Several models exist (e.g., privileges are
communicated once during connection startup and remain in force throughout the life of the client, or privileges
are communicated by the underlying operating system with each X request). Currently there is no accepted
way for a server to determine the privileges associated with a particular client.

• 	 How are these privileges interpreted in a networked environment? Because there is no generally-accepted
notion of domain-specific (e.g., TXS) privileges, each host may choose a different set of privileges. How a TXS
might interpret these privileges, or map them into a common base set, is not well-understood.

• 	 Finally, systems where clients enable and disable privileges (privilege bracketing) cause problems for a TXS
because TXS's almost invariably buffer requests (to improve performance over networks). Indeed, the server
and the standard libraries (including Xlib, Xt and widget sets) all implement buffering for requests, replies
and events. How privileges are correctly maintained with buffered protocol elements is an issue that must be
addressed.

At Bl, privileges are not a major issue, as a single privilege is sufficient. For CMW and B3 (where adherence
to least privilege is a greater concern), more sophisticated schemes are needed. CMW systems currently under
development are implementing a wide range of solutions, from a single privilege passed only at client connection
time, to fine-grained privileges passed with every protocol element. The divergence between these implementations,
and the lack of consensus on a network privilege representation, are indicative of current uncertainty of the most
appropriate model to adopt. We believe that until the problem is better understood, separate privileges should be
defined for each class of X operation, and that each protocol element should be individually tagged with privileges
(if the underlying transport layer supports this). Such an approach meets the least privilege requirements and does
not impose limitations that may later become an impediment to the development of trusted applications.

4.3 Mandatory Access Control

X provides unlimited sharing of resources between clients. A window created by one client may be drawn in, or
deleted by, any other client. This model simplifies the implementation of distributed applications. However, it is
unacceptable in a trusted system.

X maintains two general classes of objects that differ only in their intended use. Local resources refer to those
resources that are usually created, manipulated, and destroyed by a single client. Global resources refers to those
resources that are intended to be shared among multiple (or all) clients. As described below, a flexible TXS generally
treats the two types somewhat differently.

4.3.1 Local Resources

Enforcing mandatory access control in a TXS is relatively straightforward: each local X resource must be labeled
with a a sensitivity label, and mediation of a client's access to a resource can be performed in accordance with the
Bell-LaPadula model based on a comparison of the client's and the resource's labels.

Although most TXSs treat local resources as described above, it is worth noting that in X the simple act of
reading from, or writing to, a resource may cause events to be generated and sent to other clients (e.g., the creator
of the resource). Thus an arbitrary read-down policy contains an information channel in that reading a window, for
example, can cause the creator of that window to be notified under certain conditions. More seriously, write-up must
be entirely prohibited because a client can detect whether a given resource exists by the results of the write-up.7

Since clients choose resource IDs, it is possible to use write-up as a broad signaling channel.8 For this reason, most
TXSs typically support read and write equal, and a slightly constrained read down policy on their local resources.

7 We believe, and industry consensus supports the view, that allowing write-up but always returning an error (or never returning an
error) for the operation is of negligible utility in X.

8 Consider a high client A that creates resources nl, n2, n3, ... Then low client B attempts to write to A's resources. By noting which
requests give an error, B can detect which resources exist. Since A chooses the values nl, n2, n3, they can be used as a binary Hag.
Other, more sophisticated, schemes based on the same principle can be implemented that provide significantly higher bandwidth. If the
server always returns an error for write-up, then this channel disappears, but the value of write-up is virtually eliminated.

623

4.3.2 Global Resources

Global resources are often treated either by polyinstantiation or by restricting access via privileges. The former
technique is generally used only with resources that are not represented in some fashion to the user. If the resource
is represented to the user, as is the case, for example, with pointer location, then polyinstantiation is too confusing,
and the resource may be protected by requiring a client to possess a privilege in order to write to the resource.

Since most clients do not need to change the values of many global X resources (such as the keyboard mappings
(e.g., QWERTY or Dvorak), keyboard characteristics (e.g., repeat rate), pointer characteristics (e.g., acceleration
rate), and the host access list), requiring a privilege or making them fixed values does not significantly impair
functionality. Other global resources (e.g., font path) can safely be polyinstantiated without unduly confusing the
user. While some implementations might allow polyinstantiating the keyboard mapping, we believe the user confusion
would be far too great.

Some global resources are frequently shared by multiple untrusted clients, yet do not fit well with polyinstantiation.
Such resources include the root window (which covers the entire screen) and the default colormap (shared by most
clients).

The root window is shared in several ways, such as setting its background, selecting its cursor, and attaching
properties (arbitrary data values) to it, which can then be read or modified by other clients. Polyinstantiating the
root window works to some extent, but several problems remain. For example, the window manager places properties
on the r.oot window to inform clients of icon sizes. If the root window is polyinstantiated, then the window manager
must place the property at all levels, even though it cannot know ahead of time what the levels are. Polyinstantiating
the background pattern and color is useless. Therefore, privilege seems to be a more workable solution for sharing
the root window.

The default colormap is created when the TXS server starts, and initially contains black and white only. 9 Clients
then fill in colors as needed. However, clients can see and/or modify the entire colormap. Solutions include perforii1ing
MAC on individual colormap entries or creating a fixed palette from which any client can select, thus treating the
display as StaticColor or TrueColor. Note that the former solution introduces a covert channel pertaining to the
number of unassigned colormap entries in a particular table.

At Bl and CMW, enforcing a standard Bell-LaPadula mandatory access control policy on local resources, with
either polyinstantiation or privilege protection on global resources suffices. Read-down and write-up can be allowed
by noting the existence of the covert channel. At B3, the same fundamental solutions apply, except the constraints
must be somewhat tighter: typically a read and write equal policy is adopted and, when polyinstantiation is not a
viable solution, global resources are forced to be static or are strictly protected for access by privileged clients only.

4.4 Discretionary Access Control

The issues surrounding discretionary access control (DAC) fall into two categories. First, if a TXS server is accessible
to a single user at a time (e.g., on a standalone workstation) then DAC is unnecessary since aU resources belong to
the same user. However, some in the trusted X community believe that clients belonging to the same user should be
able to protect their resources even from each other. This is based on a belief that X resources are more akin to data
structures in a program (which the program can protect) than to files in a file system (which the program cannot
protect).

Second, if clients operating on behalf of different users can simultaneously connect to the TXS server, what form
of DAC must be implemented? Are permission-bit equivalents sufficient? Are access control lists (ACLs) necessary?
If ACLs are necessary should they apply on a per-client or per-user basis? Are read, write, and execute permissions
necessary, or should more window system-specific permissions be devised that logically address the functions that
clients may apply to X objects? Finally, since TXS resources are ephemeral, and no existing clients expect DAC
constraints, the default DAC value must be carefully crafted to support backward compatibility while providing some
measure of security.

For Bl and CMW, permission bits (minimally read and write) indicating users' abilities to access particular
resources are sufficient. At B3, a user-based ACL scheme is required. At any level, however, it is likely that per
client DAC (ACL or permission bits) will prove useful to future security-cognizant applications. Furthermore, TXS
developers have generally agreed that partitioning particular attributable permissions into more that just read and

9 This discussion applies to so--{;alled PseudoColor displays, which are the most common type of color displays.

624

write, provides valuable functionality that will help security-cognizant applications perform more controlled sharing
of resources.

4.5 Object Reuse

Object reuse is not a. major issue in X. The designers were generally careful to specify the initial contents of X
resources, and in those cases where initial contents are not explicitly specified, the X specification states that the
contents are undefined (e.g., the creation of pixmaps and colormaps). Thus, in most cases, specifying initial values
should not affect the operation of existing clients.

There is one case where the need to address object reuse affects the basic X functionality: the creation of windows
having no specified background pattern. When such a window is mapped (i.e., made visible on the display), the
X specification states that the window inherits the content of the screen enclosed within its boundary. Thus, for
example, if a window, A, with no background, is mapped in such a fashion to overlay an existing window B, the
contents of B would, in effect, be copied into A.

For Bl, CMW, and B3, in all cases where the X specification states that initial values are undefined, the initial
values must be set to some known value. In addition, the creation of windows where no background pattern is
specified must be addressed. Typically this is done by limiting this functionality to trusted applications possessing
appropriate privilege.

4.6 Secure Networking

The X protocol requires a reliable bi-directional byte stream as its transport layer. For a TXS, the transport
layer must also be trusted, and must provide several special features. Specifically, the network must provide the
message receiver (the TXS server) the ability to determine the security-relevant attributes of the message sender
(the TXS client). These attributes must minimally include its sensitivity level. However, they may additionally
include information pertaining to privileges, DAC, and for CMWs, information labels.

While the issue of trusted networks is outside the scope of trusted X, it is important that system engineers ensure
that the network supports the functionality required by their implementation of trusted X. Thus far, no known
protocols support the functionality required by a maximally flexible trusted X implementation. Work towards
developing such protocols is ongoing in industry-sponsored groups. No firm results are expected in the immediate
future.

4.7 Visible Labeling

In a TXS, the TCSEC is typically interpreted to require some sort of labeling of windows. Because windows can
be arbitrarily nested, typically only top level windows (which enclose all child windows) are labeled. This approach
is justified on two grounds: (1) labeling all X windows would lead to a visually incomprehensible screen, and (2) X
defines a window as simply a data structure in the TXS, whereas the labeling definitions apply to windows as defined
from a user perspective. From a user's perspective, top-level X windows are precisely those that should be labeled.

Pop-up windows are a particular problem in TXS. X clients can state that a window is a pop-up to avoid the
overhead of window manager tracking (i.e., so the special borders and other "window dressing" window managers
usually apply to windows is not applied to menus, dialogue boxes, etc). However, a client can claim a window is a
pop-up and then uses it for any purpose it desires (e.g., a terminal emulation window). In this way, the client can
very easily avoid visible window labeling. While solutions exist to label even pop-up windows, they are inelegant
and have somewhat poor performance.

CMWs are subject to specific visible labeling requirements. These can be easily met in a variety of ways,
usually by modifying a window manager to provide the necessary labeling in the same manner it already provides its
existing functionality. These window managers can be further enhanced to properly address pop-up windows using
functionality provided by unmodified X servers. For Bl and B3 systems, appropriate visible labeling policies are not
immediately obvious. Alternatives are discussed in [11].

Spoofing of window labels appears to be unavoidable in a windowing system except by enforcing a tiling policy.
Because tiling is generally unacceptable to users, further research is needed in this area.

625

4.8 Trusted Path

Trusted path in TXS might appear to be a non-issue: the TXS need only rely on the system-provided trusted path
mechanism. There are two problems with relying on a non-windowing trusted path mechanism: it destroys the
uniformity of the interface, and it may not provide needed functionality.

A trusted path implementation which bypasses a TXS will write directly on the user's screen, and not within a
window. Any data which is on the screen is destroyed. Thus, once the trusted path operation is complete, the screen
must be refreshed. While not a horrible problem, this is at least undesirable.

More importantly, a special trusted path client is needed for a TXS to provide X-specific functionality. For
example, CMWs are required to provide .a mechanism to determine the sensitivity and information labels of a
window from the trusted path. This requires that the trusted path be implemented as some sort of an X client (or
at a minimum, be highly integrated with X), so it can detect which window the user selected. Other required TXS
trusted path functions, such as changing the input information label, require the same degree of integration with X
for similar reasons.

A final major issue with a TXS trusted path is what to do with other clients while the trusted path is being used.
Some implementations allow them to continue generating output, while others refuse any operations. The key issue
is whether a client could seek to "hide" itself from the trusted path.

For Bl, trusted path is not an issue. For CMW and B3, some notion of a TXS trusted path is required. For the
reasons given above, most CMW systems either implement a special trusted path client, or integrate that functionality
into a window manager.

4.9 Auditing

As a part of the TCB, a TXS server must audit certain actions. Auditing within a window system requires careful
thought. The primary issue is that the NCSC auditing guidelines [12] are inappropriate for a TXS system. The
CMW auditing requirements are very similar to, if somewhat more specific than, the TCSEC auditing criteria. As
such they suffer from the same problems: both were written before the advent of window systems, and as a result,
neither address the particular issues associated with window systems. The issues lie in two. main areas: which actions
must be audited, and how to identify and characterize those actions in a useful manner.

The first issue (which events must be audited) can best be explained using the following example. Both the
TCSEC and the CMW requirements specify that making an object available is an auditable event. Yet, X resources
are not explicitly opened or dosed; they are simply referenced, so it is difficult to audit those actions. (Possible
solutions are to audit every reference to the resource, audit each client's first reference to the resource, or simply
audit the creation and destruction of the resource.) Other similar types of ambiguities exist in the requirements. Thus
any TXS will need to make a window system-specific interpretation of the NCSC and CMW auditing requirements.

The second issue concerns how to identify the relevant subjects and objects being audited. For example, from
the window system perspective, the active entities (i.e., subjects) are clients not processes. Therefore, one possible
interpretation might be to audit client's actions. Although the CMW requirements explicitly state that processes
must be audited, thought should be devoted to careful interpretation of the security requirements to window systems.

Because auditing is not an interoperability issue for TXS, no attempt has been made to reach an industry
consensus on auditing.

4.10 Cut and Paste

As previously described, cut and paste is a client-to-client protocol in X. Furthermore, it is a two-way protocol.
The pasting client tells the cutting client the desired format (e.g., text, graphics) and the cutting client responds by
providing the data in the desired format. Although a TXS MAC policy will ensure that no information will flow
directly from a client at a high sensitivity level to one at a low sensitivity level, additional mediation of cut and paste
operations is required for two reasons. First, the CMW requirements call for a mechanism that permits a user to
perform certain operations during a cut and paste (e.g., review the data, relabel it, etc). Second, B3 implementations
must address the convert channels inherent in the ICCCM-specified protocol. ·

The covert channel arises when the cutting client is at a low sensitivity level and the pasting client is at a high
sensitivity level. In this case, the reverse information flow (high to low) is roughly 50 bits per operation, depending
on the options selected. Since these operations are not necessarily initiated by the user, the covert channel is of great
concern at the B3 level.

626

Many solutions to these two problems have been proposed, including (1) requiring a trusted intermediary that
supplies the CMW-required functionality then either limits the flow of data or asks for authorized user approval,
(2) closing the covert information flow by limiting the formats and other data passed from the pasting client to
the cutting client (dramatically reduces functionality), (3) designing a new cut and paste method (breaks existing
software), and (4) building untrusted intermediaries which use operating system features to perform write-ups, and
avoid needing write-downs (fairly complex). At Bl and CMW, the first solution is typically used. The last solution
is best for B3, and is the method used in TRW's prototype.

4.11 Denial of Service

Denial of service problems are endemic in X. It is probably impossible to build a system which bears any resemblance
to X that cannot be successfully subject to denial of service attacks. For example, clients can flood the server
with graphics requests. Although the server attempts to service all clients in a round-robin fashion, service is
not particularly "fair." Also, X clients are able to seize control of the pointer (in order to provide pop-up menu
processing). Malicious clients could seize control of the pointer and never allow the user to regain control via the
mouse. A tremendous array of other, similar, types of attacks exist.

One solution is to provide a trusted path function that allows the user to kill rogue clients, and in this way limit
denial of service. In order to invoke the trusted path, some means of communicating with the TCB must be available
regardless of client activities. The only generally accepted solution is to provide a secure attention key that is always
delivered to the TCB and is not subject to the TXS normal processing.

Denial of service is not a concern that must be addressed at the Bl level or by CMWs. While appropriate at the
B3 level, there appears to be no common resolution to this issue.

4.12 Input Processing

X allows clients to specify receipt of events (signals) upon various input conditions. For example, a client can request
receipt of keyboard or pointer activity in its own, or other, windows. Additionally, clients can change the pointer
(e.g., by warping it to another position on the screen). The interactions among the input processing requests are
normally invisible to the user, and even to well-behaved clients. However, in a multi-level secure environment, the
interactions become sources for both covert channels and user confusion.

The CMW requirements state that all user input must be labeled with an information label. A mechanism
available through trusted path must be supplied to label input devices (i.e., keyboard and mouse). At any given
time, therefore, an input device will have associated with it a sensitivity and information label. MAC checks must
be performed to ensure that input events are not delivered to clients that do not have the appropriate sensitivity
level, or are privileged. (In such cases, it would appear to the client as if no key were typed.) While existing systems
tend to label the mouse and keyboard with the same label, since the mouse is typically unclassified (even when the
keyboard is not), and is the source of many delivered events, the use of dual input labels (one for the mouse and one
for the keyboard) is being considered. This type of solution also addresses most B3 concerns.

A similar solution which is appropriate for B3 is to have an input MAC label which is changed using the trusted
path. Clients at other MAC labels cannot see or change the pointer or keyboard. To meet the requirements of the
X protocol, they can simply appear "grabbed" (reserved for exclusive use of another client).

4.13 Overlapping Windows

Of all the covert chann~ls in X, the hardest to solve is management of overlapping windows. Clients are responsible
for redrawing themselves whenever they are uncovered. To optimize such redrawing, the X server sends the client
notifications (expose events) which describe the size and position of the area uncovered. Because clients are uncovered
as a result of the action of other clients, there is inherent flow between MAC labels.

Solutions to the problem are many, but all have significant problems. Typical solutions include:

• 	 Doing nothing, and ignoring the large covert~channel.

• 	 Using backing storage so the server maintains a complete image, thus removing the responsibility from the
client (requires potentially unlimited memory).

627

o Always having 	the client redraw the entire window, rather than just the required portion (slows down the
covert channel, but at the price of greater computational effort by both the client and server).

• 	 Using a tiling policy (instead of overlapping) to avoid the problem (doesn't work well with pop-ups; also reduces
the usability of the system).

At B1 and CMW, this problem is frequently ignored. At B3, backing store appears to be the most effective
solution.

4.14 Window Managers

Every project that investigates the design and implementation of a TXS begins with the laudable goal of not requiring
a trusted window manager. Such an architecture minimizes the TCB size, and allows the user to substitute any look
and feel desired. However, the window manager's job is to manage all windows on the screen, regardless of their
sensitivity level. Since the management of windows requires both read and write access to the windows, it appears
likely that window managers must be trusted.

As described earlier, X clients (including window managers) are typically written using libraries, toolkits, and
widget sets. For example, the mwm window manager uses the Motif widget set, the Xt toolkit, and the Xlib library.
Because the window manager is trusted, the library, toolkit, and widget set must also be trusted to operate correctly.

At B1 and CMW, the window manager, libraries, toolkit, and widget set are typically inside the TCB. At B3, the
window manager should be rearchitected to remove as much as possible from the TCB. For example, that portion
of the window manager that decorates windows could be outside the TCB. Also, the portion that starts other
clients could be a separate process (a session manager) that might not need to be trusted. Rearchitecting a window
manager is a costly and time consuming process. However, it appears to be the only solution at B3 which maintains
functionality without vastly increasing the TCB size.

4.15 TCB Size and Structure

The MIT X server consists of roughly 90,000 lines of sparsely documented C code (depending on the hardware
platform and options selected). Window managers, widget sets, toolkits, and libraries vary in size from 10,000 to
300,000 lines. If the entire system were inside the TCB, this could easily total 400,000 lines (including enhancements
to support security, the trusted path client, etc.).

The MIT X server is a single task. While it has well-defined internal interfaces, it is an extremely complex
body of code. Understanding it well enough to make a convincing argument of its trust characteristics is a major
undertaking.

For B1 and CMW, the addition of the entire X system to the TCB is typically acceptable. For B3, the increased
complexity and size of the TCB resulting from the addition of 400,000 lines of code (over and above the underlying
operating system and network) is unacceptable. TRW's B3 prototype moves the entire window manager outside the
TCB, as well as the vast majority of the X server code.

4.16 Other issues

The above descriptions do not list all of the issues in designing a TXS; other issues include enhancements to the
XDMCP login protocol [8], use of classified fonts, and X extensions such as non-rectangular windows.

5 Current work

There are several projects currently ongoing to build TXSs, including MITRE's proof-of-concept prototype Trusted
X design and implementation [15], CMW. efforts by Sun, DEC, SecureWare, IBM, and Addamax (all aimed at
commercial systems), and the TRW/TIS/CLI research prototype of a B3 TXS. Others reportedly looking at or
working on TXSs include AT&T, IBM, Hewlett-Packard, S:ilicqn Graphics, and Data General. Because X is a
distributed system, it is desirable that different TXSs be interoperable, so a client targetted for one TXS will function
properly on a different TXS. An informal group, the Trusted Systems Interoperability Group (TSIG), is working
to define various trusted system interoperability specifications and serves as a working group where implementors
discuss common concerns. The TSIG X subgroup has been working towards specifying the minimal functionality

628

a TXS must support (e.g., write equal), as well as trying to standardize on new interfaces to security functionality
(e.g., getting and setting discretionary access control information). This is the only ongoing work on standardizing
trusted X of which we are aware.

6 Conclusions

Many in the security community believe that X is inherently untrustable. While there are many problems, there are ,
also solutions. By using some of the solutions presented here, with careful analysis and appropriate development
techniques, it is possible to build TXS's at the B1, CMW, and B3 levels which still maintain a high degree of X
compatibility and functionality.

7 Acknowledgements

The authors particularly appreciate the insights provided by the members of the Trusted Systems Interoperability
Group (TSIG) X group. We would especially like to thank Jeff Glass for his patient explanation of many of the
subtler X security issues.

References

[1) 	 X Window System Protocol, MIT X Consortium Standard, X Version 11, Release 4, Robert Scheifier, 1988.

[2) 	 Xlib - C Language Interface, MIT X Consortium Standard, X Version 11, Release 4, James Gettys, Robert
Scheifier, and Ron Newman, 1989.

[3] 	 X Toolkit Intrinsics - C Language Interface, MIT X Consortium Standard, X Version 11, Release 4, Paul
Asente and Ralph Swick, 1988.

[4) 	 X Athena Widget Set - C Language Interface, MIT X Consortium Standard, X Version 11, Release 4, Chris
Peterson, 1989.

[5] 	 OSF/Motif Programmer's Reference, Open Software Foundation, Prentice-Hall, 1990.

(6] 	 Jennifer Steiner, Clifford Newman, and Jeffrey Schiller, "Kerberos: An Authentication Service for Open Network
Systems" in Proceedings of the Winter USENIX 198 8 Conference.

[7) 	 Inter-Client Communication Conventions Manual, Version 1.0, MIT X Consortium Standard, 1989.

[8] 	 X Display Manager Control Protocol, MIT X Consortium Standard, Version 1.0, 1989.

[9] 	 National Computer Security Center, Fort Meade, MD, Trusted Computer Systems Evaluation Criteria, DoD
5200.28-STD, December 1985.

[10) 	 Security Requirements for System High and Compartmented Mode Workstations, DIA Document Number DDS
2600-5502-87; John P. L. Woodward (MITRE), November 1987.

[11] 	 Jeremy Epstein, A Prototype for Trusted X Labeling Policies, in Proceedings of the Sixth Annual Security Ap
plications Conference, Tucson AZ, December 1990.

[12] 	 National Computer Security Center, Fort Meade, MD, A Guide to Understanding Audit in Trusted Systems,
NCSC-TG-001, June 1988.

[13] 	 DNSIX Detailed Design Specification, Version 2, DIA Document Number DDS-2600-5985-90, L. J. L. LaPadula,
J. E. LeMoine, D. F. Vukelich, J.P. L. Woodward, April1990.

[14] 	 Secure Computer Systems: Unified Exposition and Multics Interpretation, MTR 2997, The MITRE Corporation,
D. E. Bell, L. J. La Padula, July 1985.

[15) 	 Trusted X Window System, MTP 288, The MITRE Corporation, J. Picciotto, February 1990.

629

USING EXISTING MANAGEMENT PROCESSES TO
EFFECTIVELY MEET THE SECURITY PLAN REQUIREMENT OF
THE COMPUTER SECURITY ACT: THE IRS EXPERIENCE.

Richard A. Stone & Joseph Scherer
Internal Revenue Service ISM:S:R
1111 Constitution A venue NW ARFB 2402
Washington, DC 20224

INTRODUCTION

This paper presents information about how IRS has implemented the sensitive systems inventory
and security plan requirements of the Computer Security Act. It covers those activities related to
the identification of sensitive systems and the writing of security plans. Security activities outside
of writing security plans, which are part of the normal development of all systems at IRS, are not
addressed in this paper. The IRS approach seeks to implement active management involvement in
security planning as it relates to the specific requirements of the Act, i.e. a sensitive systems
inventory and security plan preparation. We believe that the successful completion of a security
plans for each sensitive system in our agency is the result of a carefully coordinated attempt to take
advantage of existing organizational structures and processes.

BACKGROUND

The Internal Revenue Service (IRS) is a large, organizationally complex federal agency. IRS is the
custodian of very sensitive information -- people's tax accounts -- and has traditionally had a
strong awareness of and concern for security. Major databases are centrally controlled and until
recently isolated from other systems. The agency's automation environment is currently
undergoing major change due to:

•planning and implementation of a modernized tax processing and information system,
•aging existing systems and the transition to a modernized system,
•a large and growing field automation effort, with decentralized control,
•increasing connectivity in both the existing and. the conceptual system, and
•a climate which encourages innovation in developing automated applications.

These changes create a challenge for security. Security planning is basic to controlling these
changes. IRS has developed procedures and tools to assure that security issues are identified and
proper safeguards developed.

The IRS Security Program

Security program responsibility is shared by several organizational components. A central
program office is supplemented by field and functional security components. Security staffs exist
at several levels:

• the Information Systems Risk Management Branch in the Systems Management Division
National Office), responsible for the security program, support of the field operations,
agency-wide continuity ofoperations planning and privacy issues.
• field staff in each of approximately 80 offices nationwide, part of the local information
systems organization.
• functional security staffs within operational organizations.
• physical, personnel and disclosure security operations.

The program emphasizes user responsibility for secUrity implementation. The Information

630

Systems Risk Management Branch supports users in this responsibility through training,
consulting, distribution of information and technical knowledge.

In addition, a management level Security Council has been established to coordinate security
activity throughout the agency.

Summary

Given the background of strong security emphasis in IRS, the challenge was to meet the spirit of
the Act, ie. active management involvement in security plan development, and to avoid any
potential for viewing the Computer Security Act requirements as a paper exercise.

THE IRS SECURITY PLANNING PROCESS

The security planning process consists of several phases, culminating in a complete sensitive
systems inventory and a security plan for each sensitive system.

Phase 1:

Plan ~:eneration. This phase was intended to identify the majority of our sensitive systems and
coordinate preparation of a security plan for each. It was in this phase that we determined our
approach and first identified the need to look to our organizational structure and processes for
strategic help. Questions we asked at this time included:

•what internal IRS authority is the appropriate level to initiate this activity?
•who will decide what is a system?
•who will make the sensitivity decision?
•who will review these decisions?
•what will the security plans look like?

Enabling the process. To establish and define the process, information would have to be
communicated to all organizations, describing the requirement, fixing responsibility for
implementation, and establishing procedures and time-frames. We decided to use an internal
memorandum to communicate this information. We asked the Chief Information Officer (CIO)to
sign this memo. The CIO is the senior information resources executive in IRS, and has security
responsibilities to Treasury. He also oversees both the information systems operational and design
functions. Organizationally he is at the deputy commissioner level. He is also chairman of the
Information Systems Policy Board (ISPB), the senior decision making body for all major new
systems. The memorandum was addressed to the next lower level of organization, the Assistant
Commissioners. One value of communication at this level is that the correspondence is controlled
and responses come through this same assistant commissioner level for signature. Thus we began
an awareness process at a high level through this memorandum/response process. Of course,
subsequent comments, calls for clarification or additional information now can follow this same
route, allowing reinforcement of management's part in the security planning process.

Sensitive system identification. Each year sponsors of budget initiatives must provide input
to a report called the Information Systems Plan. This input provides a description of the initiative,
its intent, what information systems are part of it, as well as a multi-year development plan, budget
information and project status report. It is a major annual submission, forwarded to Treasury to
become part of annual submissions to OMB. The detail provided by this plan and the fact that it
identified responsible parties for named systems, led us to use it for purposes of identifying

631

sensitive systems. Sponsors of ADP initiatives were asked to identify the sensitive systems
contained in each of their budget initiatives, using the OMB "definitions" for systems and
applications. Sponsors were assured that they had authority to make sensitivity determinations.
The security function was available to discuss the implications of a decision, or to help draw
logical lines around systems, but in the end would not dictate what was and what was not sensitive;
Information Systems Risk Management Branch analysts prepared briefings about what constitutes
sensitivity, including the need for confidentiality, integrity and/or availability. Many managers, we
discovered, had considered only the confidentiality issue and were surprised to learn that a system
can be sensitive for other reasons. The system names, along with a contact name and phone, were
forwarded to the Information Systems Information Systems Risk Management Branch for review.

By responding with a sensitive system name, sponsors assumed a de facto responsibility to create
a security plan for each identified system.

Creating a standard security plan format. OMB Bulletin 90-08 communicated an outline of
information to be included in a security plan. This guidance was the basis for the form we created.
However, Treasury had created a security planning form, with input from its bureaus, before
OMB guidance was distributed. We had distributed the Trea&ury format in several documents
prior to OMB 90-08 guidance. Considering possible reviews of plans by either Treasury or OMB
at some future time, and the usefulness of a standard format for our own plan development and
review procedures, we created a new form using both OMB and Treasury-requested information.
We incorporated the OMB guidelines for reporting control measures into two worksheets, one for
applications and one for support systems. We have made this form available in hard copy, DOS
text or database screen version. The Information Systems Risk Management Branch provides
training and consultant services to those responsible for writing of security plans.

Phm review. approyal and follow up. Identifying the plan approval process required some
strategic planning. Approval is an act of validation and even when done at the branch level stands
for agency validation. Since OMB A-130 and the Computer Security Act are very clear in making
the information system or application user/ management responsible for security, we felt that an
approval mechanism limited to the Information Systems Risk Management Branch would be
inconsistent with the intent of those documents. Thus we made the Information Systems Risk
Management Branch review of plans a technical evaluation of the plan's completeness and had it
focus on missing information and unresolved security issues. With this we reinforced the
assurance we had given earlier to plan preparers, that user organizations could make valid security
decisions.

A newly formed executive-level Security Council provided us with a way to again involve
management in the planning process, and make agency approval of plans be at a high
organizational level. The Security Council consists of directors from divisions having some major
security responsibility, and include a field representative. Its charter is to foster a climate of
security within the agency, among other activities. We approached the council, emphasizing not
plan approval, but concurrence. We showed them how plan review by the council would give
them a very quick picture of security within the agency and help them prioritize their concerns.
This concurrence also assures high level management support for security planning activities and
provides independent support to the functionally approved Security Plan.

Our current process then is to have draft security plans reviewed by the Information Systems Risk
Management Branch for completeness and to identify the need for any additional training or
technical assistance. After clarifications and additions are complete, the plan is given a further
technical review by Risk Management Branch analysts. In addition, selected plans are reviewed
by an independent third party, to validate the internal review process. This review leads to a
recommendation to the Security Council to concur with the plan, concur with caveats or to reject
the plan.

632

The Information Systems Risk Management Branch has created a database to contain plan
information. It is intended that this database will provide information needed for any Treasury or
OMB call, without going back to the users to ask for another piece of paper. However, the most
valuable part of the database will be the tracking of "planned for" safeguards, pending and planned
reviews, and risk analyses and other timed events. We anticipate using reminder notices and
offerings of help from the Branch, to keep the users active in plan updating and implementation.

Timetables. The following schedule of phase one activities is currently being completed.

-November 5, 1990- Memorandum from Chief Information Officer
-November 15, 1990- Contact Point designated
-November 30, 1990- Sensitive System names due
-November 27, 1990- Help Session for developing Security Plans
-February, 1991 -Security Council review of sensitive systems inventory
-March 12, 1991 -completed security plans due to System Management Division
-April/July, 1991 -plan review
-September, 1991- concurrence by Security Council

IRS expects to have a security plan completed for the majority of its sensitive systems by
September 30, 1991.

Phase 2:

Field systems. Although Phase 1 will account for the majority of IRS systems, it will not
account for them all. Field components will be asked to review the fmal Phase 1 sensitive systems
inventory. They will be asked to identify any of their systems which do not appear on the
inventory. They will then follow the same procedures for security plan preparation. Field visits
by Information Systems Risk Management Branch will communicate the security planning process
and address the field role. Field security analysts are already involved in the planning for Phase 2.

Phase 3:

Plan implementation. Implementation of security plans is most significant part of the planning
process. As mentioned above, plan information will be entered into a database maintained by the
Information Systems Risk Management Branch. This will be used to:

-facilitate reporting to Treasury and internally to IRS (e.g. Security Council);
-allow monitoring of implementation;
-reveal timetables for future reviews and risk analysis:

-advance notice to functions,
-opportunity to prioritize needed actions;

-make update easy.

Plans will be retained by users. However, there will be a need to involve the Security Council and
the Chief Information Officer in some reporting mechanism, to continue their involvement in the
planning process. The details of this involvement are now being organized.

SUMMARY

The IRS implementation of the security planning and sensitive systems inventory requirements of
the Computer Security Act use organizational structure and processes to bring about a larger
acceptance of and responsibility for security planning at management levels. We feel that security
planning activity has reinforced the role of everyone in securing sensitive information.

633

VIRUSES IN AN OS/2 ENVIRONMENT: REMEMBRANCES OF

THINGS PAST AND A HARBINGER OF THINGS TO COME

by Kevin Haney

National Institutes of Health

Division of Computer Research and Technology

Building 12A, Room 3039

Bethesda, Maryland 20892

Internet Address: khv%nihcr31.bitnet@cu.nih.gov

ABSTRACT

To date, there have been no confirmed incidents of a computer virus
that specifically targets OS/2 systems. However, the many DOS
viruses loose in the land do present a real and present danger for OS/2
users since most OS/2 systems are capable ofrunning DOS programs,
including DOS programs that have been infected by a virus. This paper
describes the danger to OS/2 systems posed by DOS viruses and
suggests countermeasures that may be employed against viruses in the
future. The information presented is based on a series ofexperiments
conducted with various DOS viruses in a controlled OS/2 environment.
Some prognosications are also offered as to the form OS/2 viruses may
take when they are eventually created. A plea is made for the notion
that security and antiviral features should be built into OS/2 and other
advanced microcomputer operating systems as an integral component.

With the current hype SI.UTOl.mding Windows
3.0, the subsequent defection of many OS/2 appli
cation developers to the Windows camp, and the
delay of new versions ofOS/2, the small but faithful
band ofOS/2 users have had few things to be thank
ful for recently. But, while we do not have the huge
installed base of DOS or the flood of new applica
tions that are becoming available for Windows, we
do have at least one thing over the hordes of DOS
and Windows users-to date, there have been no
incidents in the general computing community of a
computer virus that specifically targets OS/2 sys
tems. That will no doubt change as the installed
base of OS/2 grows and, in the belief that to be
forewarned is to be forearmed, the present paper
will offer some prognostications as to the form that
OS/2 viruses may take when they are eventually
created. In the meantime, however, the many DOS
viruses loose in the land do present a real and pre
sent danger for OS/2 users. The primary purpose
of this paper is to describe that danger and suggest
countermeasures that may be employed by both the
developers and users of OS/2. The information pre

sented is based on a series ofexperiments conducted
with various DOS viruses in a controlled OS/2 en
vironment. The primary conclusion will be that,
along with DOS compatibility, OS/2 has inherited
the virus problems and security vulnerabilities in
herent in DOS as well.

BASIC CHARACTERISTICS
OF OS/2 VERSES DOS

The Disk Operating System (DOS), which was
introduced with the first IBM PC in 1981, is a
singletasking, real-mode operating system based on
the Intel 8088/86 microprocessor instruction set. It
is designed to run one application at a time in the 1
megabyte real-mode address space of an Intel 8088
or compatible processor. Its user interface is char
acter-based and command-driven, although graphi
cal shells such as Windows can be substituted for
the command line interface. Since DOS is at heart
a singletasking. operating system, DOS programs
operate on the assumptions that they are the only

634

mailto:khv%nihcr31.bitnet@cu.nih.gov

program in memory and that they exercise complete
control over the system hardware. In today's world
of terminate-and-stay-resident programs and DOS
program switchers, these assumptions may in fact
be incorrect and, as a result, well-known compati
bility problems may occur.

In 1987, IBM introduced Operating System/2
(OS/2), an advanced, multitasking, multithreaded,
graphical operating system for machines based on
the Intel 80286 and above processors. The fact that
OS/2 is multitasking means that you may run two
or more OS/2 programs simultaneously, and the fact
that OS/2 is multithreaded means that each program
may concurrently run two or more separate proc
esses or threads of program execution. OS/2 has
full preemptive multitasking where applications can
intelligently request CPU cycles which are then as
signed on a priority basis by a scheduler process
which is a part of the operating system kernel. This
is a more advanced and efficient mode than the
more usual time-slicing as seen in Windows 3.0 and
the Macintosh operating system. Under Presenta
tion Manager (the graphical interface of OS/2), up
to sixteen OS/2 programs can run concurrently.

OS/2 is a protected-mode operating system.
Memory protection mechanisms are built into the
Intel 286, 386, and 486 processors and are utilized
by OS/2 so that concurrently executing programs or
tasks cannot bring down the whole system as a
result of a crash. DOS, on the other hand, offers no
such protection. Any DOS program can modify
any other program in memory and can also modify
the operating system itself, for example, by chang
ing the interrupt vector table to intercept keystrokes
or disk accesses. There is nothing to stop any exe
cuting DOS program from accessing and changing
the value of any physical memory location within
the address range of the processor. OS/2, on the
other hand, uses a system of local and global de
scriptor tables (i.e., listings of what parts ofphysical
memory each program is allowed to access) so that
programs can be prevented from either reading or
writing to any memory address outside of their al
located memory space. If an application attempts
to do this, either purposely or because of a program
ming error, a protection violation will be produced
and the offending applkation may be cleanly termi
nated without affecting other applications or the
operating system. In effect, the use of descriptor
tables creates a logical address space so that the
application is insulated from having to deal with
physical memory addresses. Also, since OS/2 is
based on the 80286 processor, it implements the

four-level hardware protection scheme of that proc
essor to isolate programs from each other and from
the operating system. These features provide for a
much more stable operating environment than DOS
could ever provide.

A feature of OS/2 that will become important
when we discuss program-infecting viruses is the
High Performance File System (HPFS). Before
HPFS, operating systems used a single file system
which was fixed and unchangeable. Support for
installable file systems was introduced with OS/2
version 1.2. A me system is that part of the oper
ating system that translates "logical'' file requests
from an application program, such as requests to
open, create, read, or write to a file or directory, into
sector-oriented requests that the disk controller can
understand. Anyone can write a device driver to
support a file system for a non-standard storage
device such as a CD-ROM drive and have it in
stalled as part of the OS/2 system. IBM supplied
the High Performance File System in at attempt to
address the problems and limitations of DOS's File
Allocation Table (FAT) file system. HPFS pro
vide~ faster access to large disk partitions of up to
2 gigabytes, support for up to 16 partitions on a
drive, file names up to 255 characters long with case
preservation, extended attribute support, and built
in directory and disk caching.

HPFS maintains compatibility with the FAT
file system at the Application Programming Inter
face (API) level. This means that all DOS or OS/2
programs that use the standard API disk and file
calls will have access to HPFS partitions. This in
cludes DOS programs running in the DOS compati
bility box (see below). The FAT file system is still
embedded in the OS/2 kernel and can be used con
currently with HPFS. All disk partitions may be
configured as either FAT or HPFS, or the primary
partition may be configured as a boatable FAT par
tition with one or more extended HPFS partitions
(or vice versa). OS/2 includes a dual-boot facility
which enables a system to boot up either DOS or
OS/2. If an OS/2-DOS dual-boot system is booted
under DOS, programs cannot access an HPFS par
tition or any FAT partition that comes after an
HPFS partition. Only fixed disks may be formatted
for use with the HPFS-diskettes are not supported.

Another difference between OS/2 and DOS
that is important when discussing program-infect
ing viruses concerns the structure ofexecutable files
within each operating system. In order to manage
simultaneously executing programs within a limited

635

amount of physical memory, OS/2 must be able to
move programs around in memory to take advan
tage of the memory blocks that are available. Thus,
since every OS/2 program must be relocatable
within memory, there is no OS/2 analog to the DOS
.COM fde, i.e., a program ftle that is an image of
the program as it exists in a certain location in
memory. All OS/2 programs are .EXE programs,
with me headers that contain the information nec
essary to relocate the program to any part of mem
ory. Any OS/2 .COM files which may be present
on an OS/2 system really have the .EXE format;
even though their extension is .COM.

OS/2 retains compatibility with DOS pro
grams by providing a "DOS compatibility box,"
which is an emulated DOS environment in which a
single DOS program can run (OS/2 version 2.0 adds
the capability to run multiple emul~:tted DOS ses
sions simultaneously). The compatibility environ
ments of OS/2 versions 1.2 and 1.3 are really a
subset ofDOS 4.0. Only one DOS program can run
at a time, and it will run only when it is in the
foreground-when switched to the background, it
ceases to execute. However, when a DOS program
is being run in the foreground, other OS/2 programs
can be executing simultaneously in the background.
Most DOS programs will run in the DOS box and
this includes DOS programs that have been infected
by a virus. Those programs that might not run
properly in the DOS box include programs that are
timing-dependent, such as communications pro

grams, those that require special device drivers, and
those programs, such as low-level disk utilities, that
attempt to directly control the system hardware by
bypassing the normal system device drivers.

DOS VIRUSES ON AN OS/2 SYSTEM

The classic definition of a computer virus is by
Cohen and states that "a computer virus is a pro
gram that can 'infect' ~ther programs by m~fyi?§
them to include a posstbly evolved copy of 1tself.
While not a precise definition, it nevertheless does
provide a good working notion of what a virus is.
An essential part of this defmition is that a virus
must be a piece of executable code, i.e., a program.
A plain data file cannot contain a virus, although if
that data file also contains embedded executable
instructions, such as a spreadsheet or word process
ing macro, then those instructions may indeed har
bor a virus.

We can therefore divide the total class of vi
ruses into different types depending on the kind of
executable code they can infect. I propose the fol
lowing taxonomy. What I will call Type I viruses
infect the boot sector of hard disks and diskettes.
Such viruses can infect only boot sectors, but there
are two subtypes in this category that can also
infect hard disk partition tables and program mes.
Type II viruses only infect executable program files.
Type III viruses infect program overlay (.OVL) fdes

Table 1 · Virus Types

Type 1 - Boot Sector Infectors

1. Only lnf~ boot eeetore

2. AIH Infect• partition taabiM

3. AIH Infects •xeolrtlilblo filM

1. Infect~~~ .ICXE proGrams

1\'pe II - Program Infectors 2. Infects .co~ proaram•

3. lnfect!D .CO~ 1!. .IEXE I)I'Ogi'IIIMIII

l'ype m - External Routine Infectors
1. DLI.. Infectors (OS/2 111M DOS)

2. OVl infectora~ (DOS)

Type IV - Device Driver Infectors
1. Infect• DOS device drlvont

2. lnf~ OS/2 d4111vice drlvere

Type V - Macro Infectors
1, l1'1f~ lll;»I"Mdsi'!Ht MIIIOI'OII

2. lnf~ word proM~~~S~Ino macroa

636

and dynamic link libraries (.DLL's), or any other
type of code that is not executable by itself, but is
called from other programs. Type IV viruses in
dude those viruses that infect device drivers (.SYS
ftles), since device drivers are a different kind of
executable code than anything in the other types.
Type V viruses infect macro instructions or other
executable code found in data files. Such viruses
are not really operating system-specific but rather
application-specific. Since examples of Type m,
IV and V viruses are currently very rare, we will
concentrate our discussion on viruses of Type I and
Type II.

Type I Viruses -Boot Sector Infectors

The first thing that should be understood about
most boot sector viruses is that the primary way for
a machine to become infected with such a virus
(e.g., the Brain virus) is for it to be booted up from
an infected floppy diskette. Accessing files on an
infected diskette after the system has booted up
from another clean hard disk or diskette cannot
spread a normal boot sector virus infection. 2 The
boot sector is a good virus infiltration vector be
cause one is present on every disk or diskette for
matted with the DOS or OS/2 FORMAT command.
The DOS and OS/2 boot sectors do differ slightly,
but their essential mode of functioning is the same.
Another infiltration point for Type I viruses is the
partition table of hard disks. A partition table, or
Master Boot Record (MBR), is present on every
microcomputer hard disk no matter what operating
system the disk has been formatted for.

In order to understand how Type I viruses
infect boot sectors and partition tables, it is neces
sary to understand the process that occurs when a
PC is booted up. After a powered-up PC has run
its initial diagnostic tests, it will read track 0, sector
1, side 0 of the floppy disk in the A drive if one is
present If the A drive is empty, it will read that
same location on the hard disk, which contains the
MBR. The MBR is a single sector which indicates
how the hard disk is divided into partitions, which
partition is the boatable one, and a name designa
tion that indicates what operating system the parti
tion is formatted for. After this information is read,
code in the MBR is executed that reads the boot
sector of the boatable partition, which then goes on
to load the operating system into memory. This
short piece of executable code in the MBR can be
infected by a virus. Examples ofType I viruses that
target the MBR are the Stoned-B, Anthrax, EDV,
and Joshi viruses.

Since boatable partitions on hard disks do not
normally have access to other boatable partitions,
viruses that infect the MBR must also have some
other medium of transmission, usually either the
boot sector of diskettes or program files, i.e., no
viable virus can infect just the MBR. It is also
important to note that since the MBR code is exe
cuted before the operating system is loaded, MBR
viruses are operating system-independent in that
they do not rely on services provided by the oper
ating system in order to load and execute. How
ever, since all of the MBR viruses to date are written
to propagate in a DOS environment, they all assume
that DOS will be the operating system that will be
loaded. We will see what happens when that as
sumption turns out to be incorrect.

ID BYTE$

OliY I!Mollii AND VliRSIDII

BYTIIII 1'1111 !lECTOR

!lECTORS 1'1111 Cl.lm'llll

IIUI!IIVED !lECTORS

NIIMIDIIII Ill' M'lll

NUMIDI!III Ill' IIDOT DIIII!CTOIW INTIIII!S

TOTAl. IIECTOIIID 1'1111 LOGIICAI. WLIIMI!

MEDIA DUCIIII'TOII IM'I!

MUIAIII!II Ill' III!CTOIIII 11'1!111 MT

SI!CTOIIID 11'1!11 TIIACit

MIIMIIII!II Ill' HI!ADI

MUI41111!111 Ill' HIDOIEM III!CTOM

IIOCITimiAI' 110\mNI!

}

BIOS - Parameter
Block

BootstrapJ- Program

ID Block

Diagram 1 - Layout of a DOS Boot Sector

To return to the role of the boot sector in the
boot process, after the MBR has been read and the
boatable partition identified, control is passed from
the code in the MBR to the code in the boot sector
of the boatable partition. The first part of the boot
sector is the ID block, which contains some identi
fication bytes and the OEM name and version num
ber. The next part is the BIOS parameter block
(BPB) which contains information needed by the
device drivers on the physical format of the hard
disk or diskette. After the information in the BPB
is read, a short executable program, the "bootstrap"
program, is run to load the primary operating sys
tem files into memory. These files are IBM

637

BIO.COM and IBMDOS.COM for PC-DOS,
IO.SYS and MSDOS.SYS for MS-DOS, and
OS2LDR and OS2KRNL for OS/2.

This bootstrap routine is the point at which a
boot sector virus infects a system. Such a virus
will typically hide its viral code in hidden sectors
that have been marked as bad in the ftle allocation
table, which makes them inaccessible by normal
means. The virus will then insert a jump instruction
at the front of the bootstrap routine that points to
this hidden code. When executed, the bootstrap
routine will jump to the viral code and execute it,
then return to the original bootstrap program and

In an experiment conducted on an IBM AT
using IBM OS/2 Standard Edition 1.2, the Stoned-B
virus, a variant of the original Stoned virus that is
able to infect hard disks as well as diskettes, was
able to successfully infect the MBR of the hard disk
when booted up from an infected diskette. This was
confirmed by inspecting the MBR with a sector
editor program. However, when the newly-infected
machine was booted up, OS/2 was still able to load
and function normally. A memory scan was per
formed in the DOS compatibility box with the Nor
ton AntiVirus program. It identified the Stoned
virus as being present in memory at the top of the
conventional DOS memory space (hex address

t t

Extenclod Memory

ROM&\ Vlcloo
Dleplay

DOS Program Area

Device Drivers

DOS Syatem

Interrupt Vectors

Protected Mode
User Speoe

Upper OS/2 Space

ROM&\ V1deo
Dlepley

Reel Mode
Uaer Space

Device Drlvera

lower OS/2 Space

DMOrlptor Tallln

OS/2 Program
SpiiiC&

}

1MB

- Stoned-Iii 114410Virus
Location

DOS Program
S~aoe

"DOS Box"}

00

DOS OS/2

Diagram 2 - Generalized DOS and OS/2 Memory Maps

proceed to load the operating system files into mem
ory. In the meantime, the virus program may have
infected other disks or become resident in memory,
allowing it to infect diskettes as they are accessed
by the system. If the bad sectors into which the
viral code was copied happen to have been part of
a file, that file will be corrupted and at least part of
its data will be lost. Viruses that infect the MBR
also use this general redirection strategy.

9F81:0005-see diagram 2). In a parallel experi
ment, exactly the same results were achieved when
the machine's hard disk was formatted as an HPFS
partition. This is to be expected since the Stoned-B
virus, when it has infected the partition table on a
hard disk, is activated before any operating system
is loaded and thus is not dependent on any particular
file system which the operating system may em
ploy. Therefore, not even using a non-DOS file
system like HPFS is enough to prevent infection by
insidious viruses such as Stoned-B.

638

http:IBMDOS.COM

The situation is not as bleak as it may sound,
however, because in neither of the above experi
ments was the virus active nor could it infect any
diskettes or spread any further. To understand why
the virus was not active, we need to understand how
the virus normally installs itself into memory and
activates, and also understand the concept of an
interrupt. An interrupt is a facility of the micro
processor that enables it to suspend whatever it is
doing, respond to some system event or program
request, and then continue the task that was sus
pended. Interrupts issued by a physical device like
a keyboard or disk drive are called hardware inter
rupts. An interrupt issued by a program requesting
some system service is called a software interrupt.
When the Stoned-B virus is initially activated,
either through the MBR on a hard disk or the boot
sector on a diskette, it reserves about 2 kilobytes of
memory for itself and changes the interrupt vector
table address for interrupt 13H, which is used to
control disk services, to point to the viral code in
memory. After DOS is loaded, the virus will inter
cept any requests for a disk read or write via inter
rupt 13H, check the hard disk or diskette, copy itself
to the accessed disk if it is uninfected, then perform

. . 3
the requested read or wnte operation.

The addresses for the interrupt handling rou
tines in the interrupt vector table are initially set by
the ROM BIOS during the initial system boot proc
ess. However, the operating system may change
any of the interrupt vectors once it is loaded. The
fact that lets the Stoned-B virus operate is that DOS
does not reset interrupt 13H when the DOS kernel
is loaded. OS/2, on the other hand, does reset in
terrupt 13H when it is loaded because it uses its own
interrupt handling routines instead of the ROM
BIOS routines. This resetting of the interrupt vec
tor table causes the virus to lose its "activation
hook." The area of memory to which the Stoned-B
virus copied itself is part of the memory space used
by OS/2 for the DOS compatibility box. This mem
ory area is not overwritten when OS/2 is loaded,
thus the virus scanner found the hex string corre
sponding to the Stoned virus in memory. The virus
was "dead," so to speak, because its hook into in
terrupt 13H had been overwritten. It can be ex
pected that any virus that operates similarly to the
Stoned-B virus will suffer the same fate.

In another experiment with the Stoned-B vi
rus, an infected hard disk on an OS/2-DOS dual
boot system was able to successfully infect the OS/2
installation diskette, which is a bootable diskette,
when the machine was booted under DOS and the

diskette was accessed. When this infected diskette
was booted on a clean OS/2 machine. it was able to
infect the MBR on the hard disk. The message
"Your PC is now Stoned!" appeared and the OS/2
installation program attempted to load, but the sys
tem hung up after the copyright message was dis
played, requiring a cold boot. It is good security
practice to never under normal circumstances boot
a hard disk system from a floppy diskette. How
ever, when OS/2 is installed, you must boot up from
the installation diskette in order to run the installa
tion program. This requirement introduces a poten
tial virus infiltration point for Type I viruses.
Unfortunately, it may not be possible to eliminate
the boot requirement since OS/2 must be installed
under a common, fixed operating environment.

Type II Viruses- Program Infectors

More numerous than boot sector viruses, are
viruses that infect executable program files, i.e.,
.EXE and .COM flles. These are what I call Type
II viruses. There are several subtypes in this cate
gory. Some viruses of this type specifically target
the operating system files. For example, the Lehigh
virus only infects COMMAND.COM. These vi
ruses are known as system infectors. However,
most program-infecting viruses will infect any exe
cutable program, although some are restricted to
just .COM files or just .EXE files. Many viruses
remain resident in memory so that they have access
to programs and disks that are accessed by the sys
tem during normal operations. These viruses are
known as TSR (terminate-and-stay-resident) vi
ruses. Many, if not most, Type I viruses are also
TSR viruses.

Following Stubbs and Hoffman4
, we may

draw a further distinction between overwriting and
nonoverwriting program-infecting viruses. Over
writing viruses are the simplest to create-they just
overwrite the first part of the program with their
own viral code. When an attempt is made to exe
cute the infected program, the viral code is executed
instead and the virus may attempt to spread or do
its damage at this time. If the part of the original
file that was overwritten contains essential instruc
tions, the program will either not run. behave abnor
mally, or crash the entire system. However, since
a problem is then apparent, overwriting viruses are
usually discovered early and their spread is thus
greatly reduced. . Some examples of viruses in this
category are the AIDS and Kamikazi viruses.

639

http:COMMAND.COM

Nonoverwriting viruses (also known as para
sitic viruses) are a far more serious threat. They
retain all of the functionality of the original program
and add. their code to it. They do this by either
increasing the fl.le size or by hiding in unused space
within the original flle, such as stack or data space.
Most nonoverwriting viruses that attack .EXE flies
will append their viral code onto the end of the
program me and insert a jump instruction at the
beginning of the program which points to the viral
code. Mter the viral code is executed, the virus will
then jump back to the original program and allow it
to run. No abnormal symptoms are usually pro
duced by these types of viruses until they do what
ever destructive thing their author programmed
them to do. As most viruses of this type have a

Many Type II viruses remain memory-resi
dent after their initial invocation. It is important to
note that these TSR viruses can function in OS/2's
DOS compatibility box as it supports the normal
TSR calls that the program would make under DOS,
allowing the virus to be active when other DOS
programs are running. If the DOS session is sus
pended, the virus will likewise be suspended, but
while the DOS session is active, a TSR v:irus can
function normally and spread to other programs or
disks.

A series of experiments was conducted with
various Type II viruses on an IBM P70 running
IBM OS/2 Standard Edition 1.2. In these experi
ments, the Devil' s Dance, Yankee Doodle, Cascade,

Original Prolllrlllm

Diagram 3 - Structure of a Nonoverwriting Virus

built-in delay until the destructive portion of their
code is activated, their detection usually takes a
longer time with a result that the virus has a chance
to spread widely. Some of the most common ex
amples of nonoverwriting viruses are the Jerusalem,
Devil's Dance, and Cascade viruses.

The analogy between computer viruses and
human viruses has perhaps been over emphasized,
but it is appropriate here. If a virus (biologic or
electronic) proves immediately destructive to its
host (a person or a computer), the virus will not
have a chance to spread and most likely will quickly
die out. It is the viruses that allow their host to go
about their normal activities that are able to spread
widely, even though the host, and therefore the vi
rus, may be killed in the end.

and Sunday viruses were all able to install them
selves in memory when DOS programs infected
with these viruses were run. The viruses were then
able to infect a DOS memory mapping utility
(MAPMEM.COM) when it was run, as well as vari
ous other DOS programs. This was found to occur
on both FAT partitions and HPFS partitions. The
infections were confirmed through the use of the
IBM Virus Scanning Program, version 1.3.

It is very important to note that when a Type
II virus is run in the DOS compatibility box, it can
infect files on an HPFS partition as well as a FAT
partition, since OS/2 routes the disk and fdes re
quests through the appropriate file system driver.
However, if a virus were to attempt to infect a me
on an HPFS partition by directly reading or modi

640

http:MAPMEM.COM

fying the FAT or root directory, unpredictable re
sults will occur since there is in fact no FAT or root
directory on an HPFS partition. The sectors nor
mally occupied by the FATs and root directory
serve other functions on an HPFS partition. If an
area which is attacked by a virus happens to be used
by a file, that file will of course become corrupted.

When a Type ll virus looks for an executable
file to infect, it does not know or care if that file is
a DOS program or an OS/2 program. If a virus
infects .EXE files and identifies its potential targets
not by the file extension but by looking for the
normal .EXE signature of 4D 5A (MZ) as the first
two bytes, then that virus will infect both DOS and
OS/2 .EXE flles as wen as OS/2 .COM flies, which
have the .EXE format. In another experiment, both
the Devil's Dance virus and a strain of the 1260 or
V2P2 virus were able to infect the OS/2 system
editor (E.EXE) when it was placed in the same
subdirectory as an infected DOS program and the
infected program was run in the DOS compatibility
box. In both cases, when the system editor was
subsequently invoked from the OS/2 command line,
the editor would not run and a SYS2070 error mes
sage was produced. This error message indicates
that the system could not demand load the applica
tion's segment, which is a general.indication of a
corrupted program flle. The Sunday virus was also
able to infect the system editor. When the editor
was invoked, a SYSOl93 error message was pro
duced. This means that the specified program is
either a DOS mode program or is not compatible
with OS/2. The Sunday virus was dms able to over
write the information in the header of E.EXE that
OS/2 uses to identify the program as an OS/2 pro
gram. We can therefore conclude that OS/2 pro
grams are as susceptible to damage by a DOS virus
infection as are DOS programs.

OS/2 VIRUSES OF THE FUTURE

It is inevitable that in the not-too-distant fu
ture, someone will write the f:trst OS/2 virus. Since
OS/2 is an advanced operating system with many
more features and capabilities than DOS, it provides
a virus creator with more resources, as well as a
greater programming challenge because it is many
times harder to write an OS/2 program than it is to
write a DOS program. This is one reason why we
have yet to see an OS/2 virus. Mirroring the devel
opment of OS/2 applications themselves, we will
most likely first see basic DOS viruses ported to

OS/2, followed by viruses targeted specifically at
OS/2 systems.

One aspect of OS/2 that provides additional
opportunities for virus infiltration is OS/2's use of
dynamic link libraries (.DLL flles). DLL's perform
the same function in OS/2 that overlay (.OVL) ftles
do in DOS-they provide a library of programming
routines that can be stored externally to the program
flle itself, and that can be linked at run time instead
of when the program is originally compiled. This
provides a means for different programs to use a
common set of routines, thereby reducing the size
of the program file and saving disk space. It also
provides for more efficient memory management
since a routine does not have to be loaded into
memory until it is actually used.

.DLL files are executable code. Thus, it is
possible for a Type III virus to insert itself into such
a file and be activated whenever the DLL is called
by an application program. Since it is probably not
very common to carry around .DLL files on ordi
nary diskettes, a DLL-infecting virus would most
likely have a difficult time propagating. When the
use of dynamic link libraries becomes more com
mon for OS/2 programs, the danger of a DLL virus
will increase. DLL's are also beginning to be used
for DOS programs. Windows 3.0, for example,
makes extensive use of them.

Two means of protection from DLL-infecting
viruses suggest themselves. Programs can (and
should) include code that can check a .DLL me to
make sure it has not been modified before it is
loaded. This is a simple extension of the self
checking ability that is increasingly being built into
DOS programs, and it makes just as much sense in
an OS/2 environment. The second method of pro
tection is that virus scanning programs should be
able to scan .DLL files for the presence of viruses,
without having to scan every me on a disk. It is
now common for scanning programs, besides scan
ning for viruses in .COM and .EXE files, to also
scan .OVL, .SYS, and even Windows .PIF files.
With the numbers of dual DOS-OS/2 systems in
creasing and the increased use of DLL's in DOS
programs, manufacturers of virus scanning pro
grams should include at least the option of scanning
.DLL files.

There is another feature of OS/2 that lends
itself to exploitation by virus authors. The basic
feature of a computer system that determines the
form of the programming code that can be written

641

for it is called the Application Programming Inter
face (API). The API for a particular operating sys
tem specifies the form and conventions of the coded
instructions that application programs use to com
municate with the operating system and hardware.
Besides the normal protected-mode OS(2 API, OS(2
includes another API called the Family Application
Programming Interface, or F API. The FAPI is a
subset of the regular OSfl, API that roughly corre
sponds to the basic system functions provided by
DOS. These services are essentially the non-multi
tasking, system API functions such as low-level
video, keyboard, file I/0, and device management
services. Programs written to the FAPI will run
under both DOS and OS(2. This means that the
same .EXE file can run in both environments. Al
though hardly any application developers have
taken advantage of this basic level of DOS-OS(2
compatibility, the possibility exists that a virus
could be written using the FAPI that would run
under both DOS and OS(2. Needless to say, such a
virus would be equally destructive in both environ
ments.

Since FAPI programs are .EXE files, virus
scanning programs will check them for a possible
virus infection and no extra security measures are
called for besides those that are normally followed
for executable programs. The potential existence of
a F API virus does mean that we cannot divide pro
grams into the two mutually exclusive categories of
DOS programs and OS(2 programs and treat them
differently with regard to the possibility of them
being infected by a virus. Rather, all executable
program files have to be considered to be potential
virus infiltration vectors and treated with the appro
priate caution.

WHAT CAN BE DONE?

Generally speaking, OS/2, even though it is
one of the most advanced operating systems yet
developed for microcomputers, is no more secure
than DOS. Security in the microcomputer world
has hitherto been confined mainly to virus scanning
programs and the protection and encryption of clas
sified data and has been provided by add-on prod
ucts that are not a part of the operating system itself.
This will change. The notion that security should
be an integral part of a microcomputer operating
system is rapidly gaining acceptance. Built-in se
curity and antiviral features will come to be ex
pected as a matter of course for any advanced
operating system in the next decade. Organizations

who entrust mission-critical applications to an ad
vanced operating system have a right to expect
built-in security and data protection features. As
increased corporate downsizing results in applica
tions that were formerly being run on a mainframe
now being run on microcomputer systems, some of
the security features of mainframe operating sys
tems will have to be provided for microcomputer
operating systems as well. Thus, microcomputer op
erating systems will start to take on more and more
of the characteristics of mainframe operating sys
tems, a process that the multitasking nature of OSfl,
seems to exemplify today.

There are two basic reasons that would lead
one to the conclusion that security features which
are built into the operating system would be more
desirable than having to rely on add-on security
products. First, such built-in security measures,
since they would be developed by the developers of
the operating system itself, would be more tightly
integrated with the operating system than any add
on product could ever be. This would hopefully
result in a more efficient and better performing se
curity subsystem. The second, and probably the
more important reason, is that if the security sub
system was an integral part of the operating system,
everyone who had a copy of the operating system
would also possess a copy of the security subsystem
and its use would therefore be much more wide
spread. No matter how cheap, effective, and easy
to use a security product is, if you have to buy,
install, and operate it separately, fewer people will
go to the trouble to do so. And after all, the only
way to effectively reduce the proliferation of viruses
is for a large percentage of the computing commu
nity to use effective antiviral and security products.

As we have said, when OS(2 workstations and
networks running mission-critical applications be
come more common, it will be necessary for the
operating system (and hardware) to have built in
safeguards against viral infections, data loss, data
corruption, and unauthorized tampering. What an
tiviral features could a true security subsystem for
future versions of OS(2 contain? Here are some
suggestions.

1. System Self-check -When OS(2 is initially
loaded, it should perform a self-check of all of its
essential files to ensure that they have not been
modified, employing a secure cryptological algo
rithm. Many DOS application programs do this
now and it is even more important for operating

642

system files to be checked since these files provide
a very common infiltration point for viruses.

2. DLL Self-check- A self-check should be
performed on any dynamic link library that is called
to ensure that it has not been modified. The oper
ating system should check its own DLL's and ap
plication programs should check any DLL's which
they call.

3. Disk Check- When OS/2 is loaded, an
integrity check should be performed on the hard
disk partition table and boot sector to detect any
viral code since, as we have seen, the successful
loading of OS/2 is not enough to ensure that the
hard disk is not infected by a virus. ROM BIOS
support might be required for the sucessful imple
mentation of this capability.

4. Monitoring Program- Since OS/2 is a mul
titasking operating system, it could contain a moni
toring process that could execute in the background
and would monitor programs and intercept any at
tempts to do something destructive, such as write to
an .EXE file or change the hard disk boot sector.
Such a monitoring process could also use a check
sum-type algorithm to compare the current state of
the program to a previously recorded state to deter
mine if it had been modified in any way, before the
program is allowed to execute. This corresponds to
Hruska's idea of an "integrity shell," difficult to
implement securely in a DOS environment but per
fectly suited to a protected-mode, multitasking op
erating system such as OS/2. 5 This should be a
user-selectable option so that it could be disabled in
cases where it is not needed, or where system per
formance is critical.

5. System Utilities -Built-in OS/2 system
utilities should include utilities that could make a
backup of the system areas on a disk (i.e., partition
table, boot sector, FAT's and root directory), which
could then be restored in case of a viral attack or
disk corruption. A utility for file undeletion should
also be included to aid in recovery after a viral
attack. There are programs, such as the Norton
Utilities, that perform these functions in the DOS
environment Yet, four years after the introduction
of OS/2, there are still no commercially available
utilities that can perform these functions in OS/2.

What can OS/2 users do to protect themselves
against viral infections? Exactly the same things
that DOS users should do, e.g., make backups, scan

all new programs, write-protect diskettes, don't
boot up from a diskette, don't run a program of
unknown origin, etc. In addition, if you do not need
the ability to run DOS programs, you can configure
OS/2 to operate in protected mode only. However,
with the current dearth of OS/2 application pro
grams, it will likely be a long time before most users
can afford to give up the DOS compatibility box. If
the DOS box will run an the DOS programs you
need to run and you do not need a DOS dual-boot
capability, formatting your entire hard disk for the
high performance flle system provides some meas
ure of protection against viruses that wipe out
FAT's and root directories, as well as providing
much better performance. However, if you do have
disk problems, there are as yet no disk utilities that
can work with HPFS partitions.

One would have hoped that with the advent of
a new, advanced operating system for personal
computers, the risks associated with computing
could be reduced. That has yet to happen, however.
Let us hope that the developers of OS/2 will take to
heart the notion that security should be an integral
part of a microcomputer operating system and in
clude a true security subsystem in future versions of
OS/2. In today' s perilous world of viruses, worms,
and Trojan horses, we need all the help we can get.

Cited references and notes

1. Fred Cohen, "Computer Viruses-Theory and Experi
ments," Computers & Security, Volwne 6 (1987), Nwnber
1, pp. 22-35.

2. However, there are now some viruses, such as the
Invader or Plastique Boot virus, that attack both boot
sectors and executable flles. These are sometimes referred
to as "flip-flop viruses."

3. For a more detailed description ofhow the Stoned virus
functions, see Computer Virus Handbook by Dr. H. J.
Highland, pp. 63-66, Elsevier Science Publishers, Ltd.,
1990.

4. Brad Stubbs and Lance Hoffman, "Mapping the Virus
Battlefield: An Overview of Personal Computer Vulner
abilities to Virus Attack," reprinted in Hoffman, ed.,
Rogue Programs: Viruses, Worms, andTrojanHorses, pp.
143-158.

5. Jan Hruska, Computer Viruses and Anti-Virus War
fare, p. 76, Ellis Horwood, Ltd., 1990.

643

WHY DOES TRUSTED COMPUTING COST SO MUCH?

Susan Heath Phillip Swanson Daniel Gambel

Grumman Data Systems

2411 Dulles Corner Park

Herndon, Va. 22071

Abstract

This paper discusses the relationship between the high cost of
trusted computing and the way security requirements are stated in
Request for Proposals (RFPs). This is done by introducing four
types of trusted computer systems: Evaluated, Accredited, Tailored
and Customized. These types of trusted systems along with their
associated costs are discussed in detail and it is shown how
systems transition from one type to the next. Finally, examples
are given of how misstated or conflicting security requirements in
RFPs lead to the development of each of these types of systems,
thus driving up the cost .of trusted system acquisition.

Introduction

During the 197 0 1 s and early 1980 1 s, procurements of computer
systems requiring security tended to be one-of-a-kind efforts.
Acquisition was done via the standard Request For Proposal (RFP)
process, and security requirements were developed from scratch for
each effort. This process was both ineffective and inefficient.

It was ineffective because it soon became apparent that security
requirements could not be met by adding on features to an existing
Commercial-Off-The-Shelf (COTS) system. In order to provide the
security that was needed, the system had to be designed from the
beginning with security in mind and that meant a complete software
design and development effort.

The process was inefficient because each major program became, in
effect, another security research and development effort. There
was little or no carry over from one program to another, and, since
the products were not COTS, the entire effort became expensive.

This lead to the development of the Trusted Computer System
Evaluation Criteria (TCSEC) [1], followed by RFPs which now require
that integrators meet the security requirements with TCSEC
evaluated COTS products. While this is an excellent concept and
could prove to be very cost effective, it is not usually achieved.
This is because the requirements for a trusted system in a specific
operational environment, as written in current RFPs, are usually
over specific, generally in conflict with the TCSEC in some
manner, and are seldom fully met by any generic COTS evaluated
product.

While there are cases where legitimate operational requirements
contradict TCSEC security requirements, most of the problem stems
only from the wording used in RFPs. First, RFP's tend to contain

644

very specific security implementation requirements which are
misstatements or contradictions to security design principles, due
to lack of understanding of those security principles. Second,
RFP' s have begun to mandate compliance with multiple security
policies, security functionalities, security guidelines and
security methodologies which often contain conflicting security
principles. This conflict arises due to the dynamic state of
security technology and concepts between policy authors acquiring
experience and the actual policy formulation. These two
occurrences make it impossible for integrators to use COTS products
to meet the requirements of RFPs.

A further negative outcome of this occurrence is that the specific
methodologies contained in RFPs are, at best, based on the
perceived current state-of-the-art and, often, are based on
technology which is already considered outdated in the highl;y
dynamic world of trusted system development. This ties the hands
of the integrator from using the newest, lowest cost and best
feasible solution.

In this paper we define four different types of trusted computer
systems: evaluated, accreditable, tailored and customized and
explain how system implementations require conceptual transition
from one type to the next. Based on these definitions, we
illustrate how the problems with RFPs, as stated above, lead to
excess costs in providing trusted systems for secure environments.
Examples are given from existing RFPs to reinforce the points being
made.

Definitions

The following terms are used throughout the paper, in accordance
with the National Computer Security Center (NCSC) definitions.

Certification Process. "The comprehensive examination of the
technical and nontechnical security features of an automated
information system and other safeguards, made in support of the
accreditation process, that establishes the extent to which a
particular design and implementation meet a specified set of
security requirements."[2] The certifications support the
accreditation process by establishing the extent to which
particular designs and implementations meet security standards.
Certifications are typically made for each aspect of the system
including: Administrative, Procedural, Physical, Personnel,
Communications, Emanations, and computer Based (i.e. hardware,
software, firmware).

Accreditation Process. "A formal declaration by the DAA that the
AIS is approved to operate in a particular security mode using a
prescribed set of safeguards. Accreditation is the official
management authorization for operation of an AIS and is based on
the certification process as well as other management
considerations. " [2] The accreditation process is intended to
evaluate the adequacy of the security solution against the mission

645

need. This process includes an evaluation of the cost
effectiveness of implementing additional safeguards deemed
necessary by the DAA.

Evaluation Process. The evaluation of the technical protection
capabilities of COTS computer security products performed by the
NCSC to establish conformance to a specific level (C2, Bl, B2,
etc.) of the TCSEC.[3]

Based on these terms, the following four systems are defined.

Evaluated System. An automated information system including
hardware, software, andjor firmware that has been evaluated
against, and found to be technically compliant, at a particular
level of trust, with the TCSEC by the NCSC. Such systems are
usually general purpose in nature and normally designed to provide
the vendor with the widest possible market and are independent of
specific environment.

Accredited System. An accredited system is an automated
information system installed in a secure environment that is
certified as meeting the computer security policy for a given mode
of operation, in that specific environment, based upon the security
requirements established by the DAA. The evaluation of policy
adherence is based on various certifications of the system,
supported by testing and additional DAA evaluation of the mission
need versus residual risk.

Tailored System. The term tailored system is used to mean a TCSEC
evaluated system that is changed by adding trusted processes to the
COTS Trusted Computing Base (TCB). Since Evaluated systems are
designed for general use, they may not meet specialized security
and unique operational requirements. They can, however, be
modified, with some additional risk, by adding trusted processes
to the TCB to meet the user specific requirements. This is the
simplest and therefore, the most cost effective means to meet
increased functional security requirements. If evaluation is
required for a tailored system, these enhancements must meet the
same documentation and engineering standards as required for the
evaluation class of the original system. Normally, the additional
evaluation need focus only on the trusted process and its interface
to the TCSEC evaluated TCB.

Customized System. The term customized system is used to mean an
evaluated system that has been significantly changed by modifying
the implementation of the security model of the COTS TCB. In this
case, an evaluated system is used as the starting point to develop
a significantly revised system for which the operational
requirements may contradict the TCSEC standards to which the
original evaluated system was built. This customization requires
modification to the implementation of the TCB as well as adding
trusted processes.

Two additional terms are used throughout this paper, customer and

646

integrator. The term customer is used to signify the organization
responsible for the daily operation and maintenance of the
automated information system. This is the organization which will
present the certification evidence to the DAA for accreditation to
operate. The term integrator is used to signify the organization
responsible for delivery and installation. This organization may
be a government entity, a vendor, a manufacturer or a systems
integrator.

Using these definitions we will examine how transitions are made
from one system type to another and provide examples of why the
transitions are necessary. ·

Transitions

Evaluated to Accredited. In order for an automated information
system to process sensitive information within the government, it
must be accredited. Therefore, while an integrator can start with
a TCSEC evaluated system (or more likely a combination of TCSEC
evaluated systems) , the conceptual transition to an accredited
system is required to specifically meet the mission of any customer
processing sensitive information.

From the trusted system integrator's perspective, the transition
from evaluated to accredited is essentially a documentation issue.
The NCSC evaluation of a product states that it meets a specified
level of trust when configured, installed, implemented and operated
in accordance with the manufacturer • s documentation set. This
documentation may include but is not limited to the following:
Security Policy, Security Model, Covert Channel Analysis, Security
Features User• s Guide, Trusted Facilities Manual, and Security Test
documentation. These documents are generic in nature and provide
only a starting point for the system specific documentation needed
to meet the accreditation requirement. They do not address the
operational environment of the system and they do not address the
"glue" that holds a network system together. This includes the
hardware andjor software used to connect the individual components
together. In addition, these documents do not take into account
the interface between the TCB and any nonsecure applications which
may be added.

Therefore, supplementary documentation must be written which
translates the generic COTS information from each component into
the site specific system level implementation. This documentation
set may include site specific versions of the above as well as the
following additional documentation: System Security Plan,
Configuration Management Plan, Risk Analysis, and Security Concept
of Operations. This documentation must account for the integrators
recommendations for secure operation and the customers operational
constraints and requirements.

Naturally, there is cost involved with this documentation which can
be incurred in one of two methods, explicit or implicit. Explicit
refers to documentation that is generated by the integrator and is

647

considered deliverable under the original contract (and therefore
included in the original cost). Implicit refers to documentation
that is self-generated by the customer and is therefore, not part
of the integrator delivery. The appearance is that by using the
integrator to provide the system and developing the accreditation
documentation with in house resources, a cheaper overall price tag
is obtained. This appearance is very deceiving.

Implicit procurement of security documentation is similar to buying
a VCR without an owner's manual. You may be able to figure out how
to operate it, but you probably will not be taking advantage of all
it's capabilities and you may even damage it by using it
incorrectly. Additionally, it would take months of investigation
to be able to write your own owner's manual. As a user of the
system you do not know the precise details of operation and
therefore are at a disadvantage over the manufacturer who actually
assembled the components of the system.

This is particularly true in a secure data processing environment,
where a mistake could be costly to national security. In most
cases, the customer will realize their inability to produce the
documentation after an initial attempt and then be forced to
procure the documentation from an outside source, anyway. At this
point, the cost will be higher than if procured with the product
while in competition and will appear as an overrun which will be
attributed to security. In reality, this additional cost could and
should have been avoided up front by including the documentation
in the original contract.

Evaluated to Tailored. In some cases, an evaluated system cannot
meet all of the specified operational requirements. This occurs
either because the evaluated system is too generic and doesn't
support the required application or because there is an operational
requirement for features or capability which is not foreseen by the
security policy of the TCSEC generically evaluated system.

For example, if a TCSEC evaluated system uses a strict enforcement
of the Bell-LaPadula model, information theoretically cannot be
passed in any form from a higher to lower classification level.
Information can however be passed from the lower level up to any
higher level. This means that while the data can be passed up, the
higher level user cannot request it, or acknowledge receipt,
(electronically, at least) because nothing (including the request)
can be sent from the higher level to the lower level. The solution
to this problem is to develop a trusted process to perform the
write down of the request. This trusted process then becomes part
of the TCB and is trusted to perform write down only if the write
is a specific type of information request.

A tailored system requires accreditation just as an accredited
system did, but the accreditation process will be more extensive.
This is because the evaluation given under the TCSEC applies only
to the specific implementation on the specific hardware that was
used by the NCSC during the evaluation. Therefore, the assurances

648

provided by the evaluation carry less weight due to the
uncertainties surrounding the modification and the accreditor will
want a more extensive review of the system.

A tailored system has an analogous documentation problem to an
accredited system. However, more extensive documentation
modifications will be needed to incorporate the functionality of
the additional trusted software implementation. Also design
documentation for the software modification and affected components
may be required, as well as for the "glue" hardware and software.

In addition to the documentation costs, there are the costs of
developing the new software which include design, configuration
control, integration and test. The addition of trusted processes
may require that the entire system be retested to ensure the new
software does not hamper the original security mechanisms.

All of this adds up to a significant increase in overall cost for
a tailored system. The cost escalation is based on two components.
The first is the cost to tailor the evaluated system including
configuration control and the second is the cost of documentation.

Evaluated to Customized. As with the tailored system, a customized
system is one in which the operational requirements could not be
met by a COTS evaluated system. In this case, however, in addition
to adding trusted processes, the operational requirements
necessitate modification of the evaluated system security kernel.
Examples of such modifications are: a change to the label
structure; the addition or modification of the implementation of
an integrity model~ or the addition of multilevel device drivers
to handle hardware configurations other than those envisioned by
the vendor (such as a network).

The accreditation process for a customized system will most likely
be very extensive. While with a tailored system, there was some
assurance because the changes were only additions to the TCB, a
customized system involves a change to the foundation on which the
original evaluation was based. The resulting system is just too
different to place much reliance on the original evaluation.

The costs of developing new software escalate at an alarming rate
due to the essential resources involved and of course the entire
system has to undergo extensive testing. It does not take much
imagination to see how this type of system becomes extremely
expensive.

Examples

The previous discussion has shown how costs escalate in designing,
managing and developing trusted systems. The documentation effort
will be more extensive including more design and development
specifications, rigorous configuration management, and a nearly
complete rewrite of the manufacturer's documentation set. Given
this information, why would an integrator propose anything other

649

than an evaluated system? In some cases there are legitimate
operational requirements which make a tailored system necessary.
In most cases, however, integrators are forced to propose
customized systems due to poorly written, over explicit RFP
requirements as stated earlier. The following examples illustrate
this problem.

Example One

Problem: The RFP adds to an Orange Book requirement such as
explicitly stating that a C2 system is required, but also stating
that categories of information must be. protected or labels are
required.

Discussion: These are conflicting requirements. A C2 system does
not provide for protection of categories of information or labels.
These things are not provided until the Bl level of evaluation.
In order to have a compliant proposal, an integrator must propose
a C2 evaluated system and customize it to provide protection of
categories of information or labels. In general, proposing a Bl
system would be considered non-compliant and "gold-plated". The
C2 customized system will, however, be much more expensive than
the Bl evaluated system in terms of software development,
documentation development, accreditation effort and time, all of
which amount to more dollars.

Resolution: The Orange Book is not a chinese menu type document
and is not meant to be invoked with explicit implementation policy
requirements. You cannot take requirements from different levels
of evaluation or conflicting policies and stick them together.
They must be taken in general and in order. The RFP should state
the requirements in terms of operational environment and let the
integrator determine which level meets them. If a specific level
is required then it should be stated in terms of "at least C2 11 •

Example Two

Problem: The RFP requires that the system use only evaluated
products or that the successful bidder submit the system to the
NCSC for evaluation.

Discussion: This is a requirement which could possibly preclude
the use of the most technologically advanced solution. Because the
evaluation process takes years, there may be a more cost effective,
security enhanced solution nearing completion of evaluation or the
evaluated version may have been replaced by a better (not yet
evaluated) release. This requirement will also be extremely
expensive in terms of time and money for the integrator and
therefore for the government. In most cases, if a COTS evaluated
product is not used, it is because one is not available. This is
usually because there is a specialized function needed to meet the
requirement. Vendors who submit products to the NCSC for
evaluation, plan to amortize the evaluation costs over time by
selling the product in large quantities. Integrators are not in

650

that business and would not be able to amortize the costs. The
full cost of having that product evaluated will be passed on to the
Government.

Resolution: The RFP should require the specific evaluated product
only where it makes sense. Products in the evaluation queue or
updated versions of evaluated products should be acceptable
substitutes, where necessary. The evaluation requirement should
be left out all together.

Example Three

In addition to NCSC evaluated product rating requirements, the RFP
specifies the security requirements, including implementation
techniques, in explicit detail and in such a way that they conflict
with DoD security policy or the Orange Book such as:

Provide system generation features such that operating system
and TCB elements can be inserted, deleted or replaced on-line
without requiring a complete regeneration of the system or the
TCB.

Discussion: These features are inconsistent with a trusted
operating system. One of the Orange Book criteria is system
Integrity which is required at all levels of evaluation. Even at
the Cl level, the requirement for System Integrity is "The TCB
shall maintain a domain for its own execution that protects it from
external interference or tampering (e.g. by modification of..its
code or data structures)"[l]. Clearly the RFP requirement above
is in violation of this. A COTS TCB. would have to be broken at
great cost to customer to provide this functionality. It makes no
sense to require a trusted system. and then require that its
trustability be rendered useless.

Resolution: It is best not to specify security implementation
details because problems like the above often occur. The Orange
Book is very specific about how trusted systems must function, yet
it does not specify a solution. This allows the integrator to
review all existing technology and come up with the best solution
for the particular environment. Again, security requirements
should be stated in terms of the Orange Book.

Example Four

Problem: The RFP requires evaluation of the proposed system by
NCSC, requires this within a certain amount of time after contract
award, and requires a monetary penalty for not meeting this
requirement.

Discussion: There are several problems with this. The first is
similar to example two above. The NCSC evaluates vendor products,
not unique applications of trusted products. Second, committing
to having a product evaluated within a certain time frame is
playing Russian Roulette. To a large extent the evaluation

651

schedule is government controlled. This represents great risk for
the integrator because it requires them to be responsible for a
process over which they have only partial control. The only way
to be certain of meeting this requirement is to propose components
which are already evaluated. Finally, the government controls
which products are accepted for evaluation rendering the vendor
helpless to control penalties.

Resolution: There are several possible resolutions. The first is
to eliminate requirement that the system be evaluated within a
certain time frame. Second it could be stated that the integrator
will not be held accountable for government controlled action or
third the requirement could be changed such that an Memorandum of
Understanding (MOU) is required to be initiated within a certain
time frame.

Example Five

Problem: The RFP has requirements which conflict with each other
such as requiring a B2 system operating in the System High mode.

Discussion: A B2 system is considered synonymous with the
multilevel mode of operation although it can be configured to run
in the System High mode. The additional cost and assurance of a
B2 system may be wasted on a System High implementation.

Resolution: Again, specify the operational requirements and let
the integrator decide which level of system meets these
requirements.

Example Six

Problem: The RFP contradicts itself by having different security
requirements in different parts such as specifying System High mode
one place and Multilevel mode another place or requires these modes
in a phased approach, such as System High in phase one and
Multilevel in phase two.

Discussion: The only way to meet this is to propose a system which
can support the more stringent requirement, multilevel (i.e. B2
level) because a system cannot migrate from one evaluation class
to another. If multilevel operations are not required, this
represents a significant cost escalation over what is needed.

Resolution: Ensure the RFP does not contain conflicting security
requirements.

Conclusion

Trusted computer systems are to some extent more expensive than
nontrusted computer systems. There is no way to get around this.
However, the cost of trusted system implementation does not have
to be. uncontrolled or exorbitant. The Orange Book provides a
method of standardizing trusted computer system design but its

652

principles must be followed exactly or their advantages are
reduced. System integrators are in the business of understanding
this process and knowing the intricacies of trusted systems. They
must be given the leeway to provide.an architecture that is the
most cost effective, state of the art solution. RFPs which contain
conflicting security principles, very specific design details, and
conformance with multiple security guidelines undermine the
integrators ability to do this and invariably drive up the cost.

References

1. Department of Defense Trusted Computer System Evaluation
Criteria, DoD 5200.28-STD, December 1985.

2. Glossary of Computer Terms, National Computer Security Center
Trusted Guideline 004 (NCSC-TG-004), Version-1, October 21, 1988,
National Computer Security Center, 9800 Savage Road, Fort George
G. Meade, MD 200755-6000.

3. Information Systems Security Products and services Catalogue,
National Security Agency, April 1990

653

http:provide.an

Executive Summary
Panel: Acquiring Computer Security Services and Integrating

Computer Security and ADP Procurement

Dennis Gilbert, NIST, co-Moderator

Barbara Guttman, NIST, co-Moderator

Panel Participants

Nickilyn Lynch, NIST

Nander Brown, RTC

Gary Oran, FEMA

Merv Stuckey, Census

Victor Marshall, Booz-Allen & Hamilton/NASA

E. Taylor Landrum, Grumman Data Systems

The Computer Security Act of 1987 and other federal regulations place responsibility on
federal organizations to protect automated information and the means of processing it.
Accordingly, agencies must perform many computer security functions throughout the
system life cycle. They must also in,corporate compute security as early as possible in
the system development and system acquisition processes. However, agencies lack a
general understanding ofhow to describe these activities. Federal organizations could
more effectiv~ly carry out computer security responsibilities if they had access to such
descriptions. To provide support, NIST sponsored two interagency working groups of
federal and industry specialists to develop two documents with the descriptions. The
groups represented the fields of computer security, procurement, and information
resources management.

The session presents the results of the two working groups efforts: the first effort
addresses descriptions ofcomputer security services resources; the second effort
addresses computer security and ADP procurement.

The document from the first group presents sample statements of work (SOWs) for
several computer security activities. Organization staff and government contractors
can use these as a basis for understanding each described activity. The sample SOWs
should promote more consistent, high-quality computer security services. Agencies
could use the descriptions to either contract for the services or get them frorn within the
organization.

The document form the second group addresses computer security in automated data
processing procurements. It describes how to integrate computer security in all four
phases of the procurement cycle: planning, solicitation, source selection, and contract
administration and closeout. Its use helps in acquiring information processing
resources with the most cost-effective security.

Both documents are intended to be used with agency or GSA guidance on procurement
and computer security.

In this session, working group members place the documents in context, describe the
contents, discuss the more significant issues, and give advice on how to use them. The
session presents a unique opportunity to explore an area that is often a source of
confusion.

654

Executive Summary
Compartmented Mode Workstation (CMW)

Program Overview
Mr. Steven T. Schanzer, Moderator

Defense Intelligence Agency
Panelists:

Dr. Stuart Milner Defense Intelligence Agency
Mr. Scott Wiegel . ADDAMAX
Mr. Paul Cummings . DEC
Mr. Gary Luckenbaugh . IBM
Mr. David Arnovitz Secureware
Mr. Gary Winiger Sun Microsystems

What is a CMW? (see figure 1J
A Trusted Operating System with a Trusted Window Management System
(i.e., X Window System)

A Workstation capable of supporting Compartmented Mode Operations
(Not all persons with access to the system are "read-on" for all
compartments processed)

A CMW will provide separation ofSensitive Compartmented Information
(SCI) compartments, subcompartments, Special Access Programs, etc.

AGMW will provide the Trusted Computing Base upon which to access
information on hosts that operate at different security levels

Who needs a CMW?

• 	 Users who require a workstation with a Trusted Computing Base

• 	 Users who require the ability to reliably separate different levels of
information on a single workstation

Users who require simultaneous access to hosts operating at different security
levels

Users who require sanitization, decompartmentation, and/or downgrading
capabilities

"One Analyst, One Secure Workstation

with Multiple Connections

at Different Security Categories"

655

The following Information Is
provided regarding the
capabilities or L. Slobovlan
aircrart:

Length: 72ft.
Wingspan: 62ft
Engine
Output: 18,500
Crew:2
Weapon Systems: 2000 rounds

Keyboard Input Label (Level of data entered by users on the keyboard)

.

Unclassified Example- Classifications for example_ purposes only .

.· 	 ·. . •.::
Window Information Label Window Sensitivity Label

(Security level or data In window) . (Highest security level
capable In window)

Figure 1
CMWProgram

Technical:

• 	 Meets or exceeds all requirements for compartmented mode operations
specified in DDS-2600-5502-87

Meets or exceeds all requirements for ((Labeled Protection" (Bl) criteria under
DoD5200.28STD (TCSEC)

A Trusted Window Management System, providing user interfaces (windows)
at multiple security levels

Programmatic:

• 	 Currently, five DIA contracts to develop commercial CMWs:

ADDAMAX (Zenith 386, System V, OPENLOOK)

DEC . (VAXStations, ULTRIX, MOTIF)

IBM . (RS 6000, AIX, MOTIF)

Secure ware . (Macintosh Ilx, AIUX, MOTIF)

Sun Microsystems (SP ARC, SUNOS, OPENLOOK)

Joint DIA- NSA Evaluation against both the DIA CMW Requirements
and the TCSEC

656

CMW Program Extensions

Department of Defense Intelligence Information System (DoDIIS)
Network Security for Information Exchange (DNSIX):

• 	 Meets or exceeds all requirements for compartmented mode network
operations on SCI networks

CMWs provide security separation on the workstation, DNSIX provides
security separation over the network

System High workstation Compartmented Mode
with connection to the Workstation with

network at a single multiple "connections"
security level at different security I

Ilevels
' ' ' '

I

I

I

I

I
I

I
I

'

DNSIX permits
both types of systems

------to interact on the same----
network securely

Trusted Applications:

• 	 A CMW will provide a programming interface for augmenting the Trusted
Computing Base

• 	 Trusted Applications will provide additional security functionality to users

Additional Information:
Defense Intelligence Agency
ATTN: DS0-3A
Washington DC 20340-3434

657

Executive Summary
THE COMPUTER EMERGENCY RESPONSE TEAM SYSTEM

(CERT SYSTEM)

E. Eugene Schultz Richard Pethia
lawrence livermore National laboratory Software Engineering Institute

P.O. Box 808, l-303 Carnegie-Mellon University
livermore, CA 94550 Pittsburgh PA 15213-3890

gschultz at CHEETAH.llNLGOV rdp@cert.sei.cmu.edu

Abstract

This paper describes CERT System, an international affiliation of computer security
response teams. This affiliation's purpose is to provide a forum for ideas about
incident response and computer security, share information, solve common
problems, and develop strategies for responding to threats, incidents, etc. The
achievements and advantages of participation in CERT System are presented along
with suggested growth areas for this affiliation. The views presented in this paper
are the views of one member, and do not necessarily represent the views of others
affiliated with CERT System.

The Formation of CERT System

Following the Internet worm in 1988, a number of organizations created, or
expanded their existing security groups to create, computer security incident
response teams. Each team focused on a particular user community and worked
with its community to respond to incidents when they occurred. Some teams also
became proactive and worked with their communities to raise the awareness of
security issues, provide guidance on improving the security of operational systems,
and identify and eliminate vulnerabilities to lower risk.

Even in the early weeks of operation, it became apparent that cooperation,
collaboration and coordination across the various teams would be necessary to
effectively deal with the global problem: intruders taking advantage of the
international meta-network of connected computer networks, conferendng
systems, and communications systems. While individual teams focused on their own
communities and provided support that was sensitive to the culture, needs, policies
and regulations of those communities, they were faced with intruders who ignored
the boundaries and used multiple attack vehicles to exploit vulnerabilities that were
common across the networks.

The model that emerged presumed the creation of multiple emergency response
teams with each team focused on a particular user community. The various teams
would collaborate and pool resources when necessary to respond to incidents, share
vulnerability information, and develop tools and techniques that would benefit all

658

groups. This distributed model was tacitly accepted by several groups and various
teams began cooperating with others on an as-needed basis. For example, during
the WANK-OilZ worm attack in 1989, the Department of Energy's Computer
Incident Advisory Capability (CIAC) cooperated extensively with NASA's Space
Physics Analysis Network (SPAN) and the Defense Research Projects Agency's
sponsored Computer Emergency Response Team Coordination Center {CERT/CC) to
deal with the problem. As the CIAC and SPAN teams worked to develop
immunization and eradication scripts to combat this worm, the CERT/CC team
worked to prepare advisory and status information and to alert members of the
network communities that were potentially under attack.

At a post-mortem meeting on the WANK-OilZ incident several weeks after the
cessation of the worm attacks, representatives from the CIAC, SPAN, SPAN-France,
and CERT/CC teams determined to take additional steps to strenghten the
cooperative effort to share information among these response teams, and, if
needed, to mutually aid one another during incidents. Interest in this cooperative
arrangement spread rapidly among other response teams.

In November, 1990 an operational framework for an affiliation of 11 incident
response teams(ten from the U.S.A., one from France) was approved by every
representative of each response team. This affiliation, presently called CERT System,
was formed for a number of purposes. One was to provide a forum for participating
response teams where ideas, methods of responding to incidents, etc. could be
exchanged and evaluated by peers with similar job responsibilities and experiences.
Another purpose was to share information about current attacks, vulnerabilities, etc.
Still another purpose was to solve common problems, such as obtaining cooperation
from vendors in dosing vulnerabilities in vendor products. Finally, this organization
was formed to plan future strategies for dealing with computer security threats,
coordinating with U.S. Government investigative agencies, etc.

An operational framework specifying goals, types of participation, organization of
CERT System, meetings to be held, requirements, and operational activities,
procedures and policies was approved last year. Structured as a cooperative activity,
there is no lead organization. Members of the CERT System are accepted through a
nomination and acceptance procedure and, once accepted, are able to vote for
candidates for a steering committee and secretariat. The steering committee is
responsible for general operating policy and procedures, and is supported by the
Secretariat that assumes additional coordinating activities. Other activities are
carried out by working groups that are created by the steering committee as needed
to work on priority projects or deal with specific problems.

Issues to Be Addressed

This paper addresses a number of issues concerning CERT System and its activities.
What has this organization of response teams accomplished so far? Where, if
anywhere, has this organization fallen short of its goals, and what must it do to

659

accomplish all of the purposes enumerated in the CERT System operational
framework?

Accomplishments

Forming an affiliation of response teams has been, in and of itself, a major
accomplishment. The 11 response teams in this affiliation work for a wide variety of
agencies and/or institutions, have a diversity of purposes and operating
environments, and have differing expectations with respect to CERT System
involvement. The effort of individuals from the National Institute of Standards and
Technology in preparing the CERT System Operational Framework (1990) has
resulted in an excellent structure and effective procedures for participation in CERT
System.

During its short existence, CERT System has already established a useful role in the
incident handling community. First, this organization has been an impetus for
establishing communication among the many incident response teams. Whathas
resulted is a forum for discussing a wide variety of issues, including working with
vendors, dealing with vulnerabilities, determining what specific sites/organizations
constitute a particular response team's constituency, recognizing signatures of
current network intrusions, etc. This forum has also helped new teams learn about
forming and operating an incident response effort on the basis of other teams'
lessons learned communicated through this forum. In at least one instance, there
was cooperation between at least four response teams in a series of sensitive
intrusions involving several Government agencies and other academic and
commercial sites. CERT System helped pave the way for cooperation by providing a
way for members of the different response teams to become acquainted and
establish communication before the crisis situation arose. Also, because there were
agreed upon procedures within CERT System for sharing sensitive information, there
appeared to be very little resistance in sharing information between response teams.

CERT System also has become a vehicle for sharing vulnerability information and
information about network intrusions and probes. There is a mechanism for
distributing information through CERT System before a response team releases this
information to its own constituent community. This gives response teams an early
alert about issues (e.g., network intrusions and vulnerabilities) that may possibly
require action. This aspect of CERT System operations seems especially
advantageous to response teams with smaller constituencies; these teams often
receive less information from technical personnel within their constituencies than do
teams with larger constituencies.

Growth Areas

CERT System is a fledgling organization with numerous areas in which it must grow
to provide leadership and direction to computer security incident response efforts.
Interaction across member teams has been effective in many cases, but more work
must be done to develop fast, secure channels of communication. In addition,

660

efforts must be made to develop a better understanding of the roles and
jurisdictions of various law enforcement agencies to allow working relationships
that are effective at dealing with even international problems. In addition, a critical
next step involves incresed interaction with vendor communities. Many vendors
have enhanced their ability to correct reported system vulnerabilities and provide
their customers with corrected software, but additional work must be done to
develop software correction and distribution mechanisms that are even more timely
and cost effective. CERT System must initiate and continue these dialogues as a first
step for facilitating the interaction across these communities who must cooperate in
responding to computer security incidents.

A second growth area concerns sharing information within CERT System. Response
teams freely exchange bulletins which warn of some threats or announce the
availability of software that eliminates vulnerabilities, but more work must be done
to build mechanisms for more timely exchange of information about vulnerabilities,
threats, and network attacks. Exchange of vulnerability information is a very
troubling area. As individual teams identify problems and drive forward for
solutions, their narrowing focus sometimes excludes the communication that could
assist other groups. This leads to duplication of effort and frustration as teams
discover they are chasing problems that are already being worked. To resolve these
problems, the CERT System must set up a mechanism to assign responsiblity for
resolution of particular problems and to communicate the assignment to all
members. To facilitate this exchange, the CERT System should adopt a secure mail
facility that authenticates the sender of the message and assures the integrity and
protection of the sensitive data. It is also important to improve the interaction with
the classified community and to insure that all vulnerabilities found in the
unclassified community are reported to the classified world.

CERT System members have become painfully aware of the difficulty of building and
maintaining trust across organziations when dealing with security issues; especially
with actual incidents. While all CERT System members recognize the importance and
utility of sharing incident data, they each face a reluctance on the part of their
communities to release data as incidents are in progress. Witholding information
lowers the likelihood that an investigation will be compromised or that an
organization will be embarassed, but raises the probability that additional sites will
be affected. The tension between the need to disseminate information and the
desire to withhold it will only be resolved over time as individual groups take the risk
of releasing the information and CERT System members demonstrate their ability to
handle it discretely. Each CERT System member must be especially sensitive to the
fragility of trust and must be vigilant to insure none of its actions deminish it.

Another challenge CERT System faces concerns the current level of participation
within this organization; participation by existing members as well as the addition
of new members. Most of the affiliation's steering committee members attend
steering committee meetings, but, with some notable exceptions, very little activity
occurs between meetings. Individual members, focused on meeting the needs of
their constituents, have difficulty devoting the time and resource necessary to

661

further the cooperative effort. In addition, the organization does not yet have
enough representation from the commercial sector to allow it to develop effective
solutions to certain problems. Even more important, there is only very limited
representation from outside the United States. Many networks and communications
systems are expanding rapidly outside the United States with dramatic increases in
levels of connectivity. International representation is vital to allow the organization
to deal with threats and attacks that are international in scope. Also, international
representatives would have the ability to bring the response team perspective to the
policy makers who are sure to emerge as the networks grow in importance and size.
Although initially comprised of representatives from response teams that have
proven to be effective in their arenas, CERT System needs to more actively promote
greater membership and participation, and should examine mechanisms it might use
to insure resources are available to work the cooperative efforts.

Finally, CERT System must strive to accurately represent the nature and constituency
of this organization to others, and must actively work to remove misconceptions
surrounding this organization. For example,contrary to what the media has
sometimes depicted, CERT- System is not an organization of Government agencies.
Although some response teams within this organization represent Government
agencies, others, such as CIAC and CERT/CC, do not. Another widely spread
misconception results from the name "CERT System." This name too often leaves the
impression that the CERT/CC team from Carnegie Mellon University somehow directs
the efforts of the other response teams. Still another misconception to correct is
that this organization exists to regulate the activity of response teams. Through
timely press releases and a careful choice of a name for this affiliation, CERTSystem
can remove these misunderstandings, and become a more effective agent for
disseminating accurate and useful information to the computer security arena as
well as others.

Summary

In summary, CERT System is an affiliation of incident response teams formed for
purposes such as promoting cooperation and information sharing within teams,
facilitating problem solving, and providing a forum for discussing issues. Although
new, this affiliation has already realized success in a number of areas, but especially
by raising the level of communication between the various response teams. CERT
System must also address a number of problems associated with its existence to
provide bona fide leadership to the incident handling community.

Note
Work performed under the auspices of the U.S. Department of Energy by the
lawrence livermore National Laboratory under contract W-7405-Eng-48.

Reference

CERT System, CERT System Operational Framework, 1990.

662

Executive Summary
PANEL:

Computer Security Management and Planning

Christopher Bythewood, NCSC, Moderator

Jon Arneson, NIST

Richard Carr, NASA

Dennis Gilbert, NIST

Irene Gilbert, NIST

Barbara Guttman, NIST

Gerald Lang, DVA

Ed Springer, OMB

The Computer Security Act of 1987 (the Act) places major emphasis on computer
security management and planning. This session focuses on this subject from several
perspectives.

The Act directs federal agencies to establish minimum acceptable security practices for
federal computer systems that contain sensitive unclassified information. Initially
under the Act, federal agencies identified such systems and submitted security plans to
a joint NIST/National Security Agency (NSA) review team for advice and comment.
Based on this experience, OMB, NIST, and NSA evolved a strategy for guiding federal
agencies in identifying and protecting sensitive information systems. This strategy
emphasizes implementing computer security plans. Current OMB instructions on the
Act provide for agency assistance visits by OMB, NIST, and NSA staff to provide direct
comments, advice, and technical assistance about how the agency is implementing the
Act. Several agency assistance visits have taken place. This session reports on the
agency assistance visits and the learnings gained from them, from both central agency
and visited agency perspectives.

Federal agencies, and other organizations, increasingly accept that computer security
must be addressed in the earliest stages of system development and system acquisition.
In fact, these concerns must be attended to throughout the system life cycle. Two recent
NIST-sponsored interagency working group efforts looked at these areas: one covers
integrating computer security and ADP procurements; the other covers how to obtain
computer security services, either by contracting out or from within the agency's
resources. The working groups consisted of federal and industry specialists in the fields
of computer security, procurement, and information resources management. The
session will present the results of the two working groups.

Computer security awareness and training is another area ofmanagement
responsibility identified in the Act. The session also covers the management of and
planning for this vital area.

Commercial organizations can also learn and benefit from federal management and
planning experience in implementing the Act. While federal managers must satisfy
specific regulatory conditions, significant elements of their data processing and security
requirements and perspectives are similar, or directly analogous to their commercial
counterparts.

663

Executive Summary

Cracking the Cracker Problem

Dorothy E. Denning, Moderator

Georgetown University

Panelists:

John Perry Barlow, Electronic Frontier Foundation

Matt Bishop, Dartmouth College

Donald P. Delaney, New York State Police

Mitchell Kapor, Electronic Frontier Foundation

Donn B. Parker, SRI International

This panel will address the problem of hackers who break into
computer systems. The questions to be addressed include: How serious
is the problem? What will the problem look like in the future? What can
be done about it? To what extent can technology solve the problem
through better security, including systems that are designed to be
secure, security checkers, intrusion detection systems, and strong
authentication? To what extent do the DoD criteria for trusted systems
lead to systems that cannot be cracked? To what extent can law
enforcement help solve the problem? Are strong penalties an effective
deterrent? What should be done about teaching ethics and how effective
is it likely to be?

664

Executive Summary
The Role of Technology in the Cracker Problem

Matt Bishop

Department of Mathematics and Computer Science

Dartmouth College

Hanover, NH 03755

The "cracker problem" isthe problem of young computer crackers breaking into
computer systems. To solve this problem, computers must be better protected than
they are now, and crackers must be discouraged from cracking systems. There are
two aspects to this, the technical and the human.

Technologically, excellent mechanisms (such as strong authentication techniques,
security checkers, and intrusion detection systems) and strong criteria (such as the
Trusted Computer Security Evaluation Criteria) exist to improve the security of
computer systems; while they are by no means perfect, when installed and used
correctly, they will either foil or detect most attacks-- and all those that fall into the
class of "cracker" attacks.

The catch is that they must be installed, maintained, and used correctly. This aspect
of the cracker problem is often overlooked. If the security mechanisms are too
cumbersome for users, if they are difficult or time- consuming to install and too
complex to maintain, they will either not be used or will be used incorrectly, leading
to non-secure sites. The more dangerous situation is when the tools are installed,
maintained, or used incorrectly, as their existence will give management and users a
false sense of security.

When an attacker attacks a secure system, the simple lines of attack will fail. In this
case, an attacker could either abandon the attack, deciding other sites would be
more fruitful for the effort, or could take the challenge of trying to crack such a
secure system. The first possibility suggests that the technology has not solved the
cracker problem, but merely shifted the sphere of attack; the second argues that the
problem may not have abated at aiL

Thus, human issues must be factored into the development and deployment of
computer security mechanisms. For this reason, the technology should not be seen
as a solution to the cracker problem. It should be seen as an aid to implementing a
human solution.

Acknowledgement: Thanks to Maria Gallagher for very helpful discussions.

665

Executive Summary
PANEL: ELECTRONIC DISSEMINATION OF

COMPUTER SECURITY INFORMATION

Marianne Swanson, Moderator, NIST

Abstract
Computer security vulnerabilities and remedies are routinely provided to the public
through computer security bulletin boards and electronic forums. Computer security
managers should be aware of the oasis of computer security related information
that is available through their standard ASCII terminal or their personal computer
with communications capability.

Introduction
The purpose of this panel is to inform the audience of several sources of computer
security related information that are available to the public. The types of informa
tion that are on the systems as well as how to subscribe or obtain the information is
discussed by the panel members.

Panel Members
Marianne Swanson Systems Operator

NIST Computer Security Bulletin Board
The National Institute of Standards and Tedinology's Computer Security Division
maintains an electronic bulletin board system (BBS) focusing on information systems
security issues. The security bulletin board is intended to encourage sharing of
information that will help users and managers better protect their data and systems.

Cindy Hash System Administrator
DOCK MASTER

The National Computer Security Center has developed an unclassified system,
DOCKMASTER, which provides a focal point for interacting and exchanging
computer security related ideas amongst its users. DOCKMASTER provides online
access to the Information Systems Security Products and Services Catalogue and
offers "forums" where users can attend online meetings. The "MAIL" feature allows
users to send or receive message to and from users of government networks.

Peter G. Neumann Moderator

Forum on Risks to the Public in Computers and Related Systems

(RISKS FORUM)

RISKS FORUM is an electronic publication located on the Internet that is generally
about risks that pertain to use of high technology. Much space is dedicated to risks
with computers, such as with the use of computer technology in aviation, medicine,
the military, credit agencies, and so forth. The discussions are usually entertaining
and often include interesting (and sometimes frightening) anecdotes about
problems encountered with the use of computer technology in society.

Kenneth van Wyk Moderator
VIRUS-L

VIRUS-Lis a moderated mailing list with approximately 1600 direct subscribers world
wide. The mailing list is dedicated to information about computer viruses, including
Macintosh, PC, Amiga, and Apple, as well as others. VIRUS-L is an e-mail forum for
Internet users that generally inc'udes useful information such as references to
repositories of anti-viral software, publications, and other items.

666

WHAT CAN DOCKMASTER OFFER YOU?

Cindy Hash

9800 Savage Road

Ft. Meade, MD 20755-6000

(301) 859-4509

TheNational Computer Security Center established DOCKMASTER in 1985 to
disseminate computer security information to a variety of interest groups. These
groups include Government organizations, industry, academe, as well as individuals
who have an interest in computer security. In the last 6 years, the user population
has grown from 400 users to over 2500 users. Several factors have been attributed to
the rapid growth: EMAIL, forums, an interest in how security is practiced, and cost
free access to other computer security professionals.

DOCKMASTER was designed to be and is a Computer Security Showcase. We strive
to be a leader in implementing security features. The operating system is MUL TICS,
an evaluated B2-product. One.subsystem is the Watchword Generator, which
provides additional identification and authentication. The DOCKMASTER
administration group provides many services to users. Security is a serious
responsibility to both the administration and operations group. Audit trails are
reviewed daily. Users are called ifany anomalies are found. We also encourage users
to call us on an 800 number to report security problems or to ask questions. Our
actions have caused us to be written in Cliff Stoll's book, '~The Cuckoo's Egg.~~ Some
people have called DOCKMASTER the most secure system on the Internet.

Several mechanisms are used for access to DOCKMASTER; users in the National
Computer Security Center are connected directly; users in the Baltimore, Maryland
area can call through the local C&P Telephone Company; users on the MILNET
can also use TYMNET (paid by theNational Computer Security Center) and the
Internet to connect to DOCKMASTER. Users can also use TAC (Terminal Access
Cards) where TAC Access is available.

Due to the '~free" connectivity, the operations staff also reviews users every 6 months
for continued access to DOCKMASTER. We have removed over 3500 users in the last
6 years as well. Users are removed if their accounts are inactive; they are removed if
they change jobs without revalidating their continued need for access to
DOCKMASTER.

667

DOCKMASTER disseminates information through electronic bulletin boards called
FORUMs. A FORUM can be described as a public mail box facility. There are over
60 public FORUMs which cover a vast number of computer security related topics.
Examples of the public FORUMs are: .

Bulletin Board General discussion
Comms Electronic Communications Questions
EPL The Evaluated Products List
Questions Help with the Multics Operating System
Conferences Information Security Courses and Conferences

announcements
INFO SEC A compendium of bulletin boards providing

information on the Industrial TEMPEST Program,
the Endorsed Cryptographic Products, Endorsed
DES Products, Protected Services, and General
INFOSEC Information

RISKS ACM sponsored out of Stanford Research Institute
VIRUS-L CERT sponsored from Carnegie Mellon Institute
Security Discussions General discussion of security related issues.

Some of the FORUMs, like RISKS and VIRUS-L are read-only and are sent to us by
the moderator. Some are generated by the National Computer Security Center, like
EPL. Others are fully interactive with all the users ofDOCKMASTER. Subgroups
ofusers also have the ability to limitaccess to FORUMs allowing private ''bulletin
boards".

DOCKMASTER also provides an .electronic mail (Email) facility which allows the
exchange ofinformation among professionals in the Computer Security field. Email
can be exchanged with not only other DOCKMASTER users but other users on the
MILNET and many Internet sites.

Users ofDOCKMASTER can be designated as restricted users or unrestricted users.
Restricted users can choose between a limited menu subsystem (INFOSEC), or a
limited subsystem (Catwalk). INFOSEC users remain in a tightly controlled menu
driven environment. Catwalk users have complete access to the Email facilities, to
public forums, and certain features like the editors. These users may not execute
software which has not been approved by the DOCKMASTER Staff. Non-restricted
users are users who are not on INFOSEC or Catwalk. These users have the above
privileges as well as the ability to program and execute non-system programs.
Project Administrators provide system related assistance to the non-restricted users.
Restricted users account for approximately 55% ofthe user community on
DOCKMASTER.

Our goal is to provide service 24 hours a day. Our facility is manned from 7:00AM to
5:00PM Monday through Friday and from 8:00AM to 4:00PM on the weekends. Staff
can be reached during normal duty hours at (301) 859-4360 or (301) 850-4446, or for
those outside the Maryland area, (800) 336-DOCK. Requests for a user account on
DOCKMASTER can be handled at these numbers.

668

Executive Summary
TOWARDS MUTUAL RECOGNITION OF SECURITY EVALUATIONS

c/o VDMA
Andrea Arnold 	 Attn: Hans-Joachim Bierschenk
Cornelia Persy 	 Lyoner Strasse 18
Gottfried Sedlak 	 W-6000 Frankfurt 71

Germany

Abstract
We work towards mutual recognition of security evaluations that are performed under different
criteria. The approach is:

• 	 to modularize different criteria to a level of granularity that allows their comparison
• 	 to compare the modularized criteria
• 	 to merge them into a superset.

We demonstrate the feasibility of our concept with examples taken from the Trusted Computer
System Evaluation Criteria TCSEC and the Information Technology Security Evaluation Criteria ITSEC.

BACKGROUND
Security evaluation criteria for information technology systems have been developed in the United

States and Europe since the early 80s. The Trusted Computer System Evaluation Criteria TCSEC,
known as the Orange Book, was published by the US Department of Defense in 1983 (updated in
1985). Other countries followed the example set. In 1990, France, Germany, the Netherlands, and the
United Kingdom in a concerted effort published the Information Technology Security Evaluation
Criteria ITSEC, known as the Harmonised Criteria. We concentrate on these two criteria catalogs.

Although we assume that the reader is familiar with both sets of criteria, we list the major
differences:

• 	 TCSEC cover confidentiality primarily- ITSEC include integrity and availability

• 	 TCSEC combine classes of functionality and assurance- ITSEC define functionality and assurance
independently

• 	 TCSEC focus on operating systems primarily -ITSEC address products and systems.

Currently, evaluations are still done separately in different countries with no mutual recognition of
the resulting certificates.

OBJECTIVE
We developed a concept to support mutual recognition of security evaluations that are performed

under different criteria schemes. The concept is independent from criteria catalogs. It supports
evaluation consistency and improves objectivity for evaluations done by different evaluation
authorities. This work was done by the VDMAIZVEP Working Group based on a suggestion by the
EUROBIT2 Industrial Policy Group. ·

1.VDMA (Verband Deutscher Maschinen- und Anlagenbau) and ZVEI (Zentralverband
Elektrotechnik- und Elektronikindustrie) are German business associations.

2.EUROBIT (European Association of Manufacturers of Business Machines and Information
Technology Industry)

669

••
••

The concept describes a pi-directional mapping between the TCSEC and the ITSEC criteria catalogs.
The criteria catalogs were taken as is, redefining them was not an objective. The concept is applicable
to other criteria catalogs as well and allows for extension to more than two criteria catalogs.

CONCEPT DESCRIPTION
Building a superset of the criteria catalogs seemed to be the best way to support mutual

recognition. Each catalog's profile can be mapped easily to the superset. We modularized the
functionality and assurance aspects of each catalog, compared, and finally merged them into a
superset (see Figure 1).

TCSEC I TSEC

JJ.uodularil:lionJJ.

~

•
'

.

~nion

• ' '

Superset
F~""' I. Conc"''t

Our superset example was developed in four steps:

1. MODULARIZATION Of TCSEC:

The TCSEC, in part, were modularized to a level of granularity that allows comparison with
the ITSEC.

Functionality:

We modularized the security function group Audit TCSEC.

Assurance:

Although the TCSEC separate the assurance and documentation aspects TCSEC, Summary

Chart, p. 109we treated both as assurance, as is done in the ITSEC, and modularized them

completely.

2. MODULARIZATION Of ITSEC:

The ITSEC, in part, were modularized to a level of granularity that can be compared with the
TCSEC.

670

Functionality:

We modularized the security function groups Accountability and Audit ITSEC. Both

together correspond to Audit TCSEC.

Assurance:

The ITSEC distinguish two assurance aspects, the correctness and the effectiveness. We

completely modularized the correctness ITSEC, Assurance- Correctness, pp. 23. But we did not

consider the effectiveness, which still needs to be addressed.

3. COMPARISON:

The modularized criteria were compared to find the differences in meaning.

We compared functionality and assurance aspects of TCSEC and ITSEC. The comparison was
easier for functionality than for assurance. For assurance it was sometimes difficult to find the
corresponding aspects.

Functionality:

We used Audit TCSEC I Accountability and Audit ITSEC of steps 1 and 2.

Assurance:

Due to resource constraints only a subset of the modularizations of step 1 and step 2 was

considered for the assurance comparison:

~~t Covert Channel Analysis TCSEC/ Vulnerability Analysis ITSEC

~~t Configuration Management TCSEC/ Configuration ControiiTSEC

e Security Features User's Guide TCSEC/ User Documentation ITSEC

e Trusted Facility Manual Guide TCSEC/ Administration Documentation ITSEC

We discovered that for some aspects, e.g. documentation, the level of granularity in the
modularization was either too high or too low. This needs further investigation.

4. SUPERSET:

The modularized criteria were merged to build the superset.

In the superset we reduced the aspects further in order to keep the resulting matrix
representation easy to understand.

Functionality:

We used a subset of Audit TCSEC I Accountability and Audit ITSEC of step 3.

Assurance:

We used the following subset of step 3.

e Covert Channel Analysis TCSEC I Vulnerability Anal;sis ITSEC

e Security Features User's Guide TCSEC I User Documentation ITSEC

The superset consists of three parts. The first part associates the functionality aspects of TCSEC and
ITSEC (see Figure 2). The second part associates the assurance- correctness aspects (see Figure 3). We
chose the most appropriate wording from either TCSEC or ITSEC. In few cases minor modifications
were made. In the third part we visualized the result in form of a superset matrix, where the rows
represent functionality and the columns represent assurance (see Figure 4).

As an example, the superset matrix in Figure 4 is filled with scores forTCSEC class 82 in the left part
and ITSEC class F4 with evaluation level E4 in the right part of the matrix cells.

671

Appending the score to the chapter number of the assurance aspect results in the subchapter
number. E.g. the upper left cell contains the score 1 for '2.1 Covert Channel Identification' and this
results in subchapter '2.1.1 Covert Storage Channel Identification'. There the assurance aspect for
this score is defined. See Figures 3 and 4.

Detailed results are available in TMRSE.

OUTLOOK
Our results show that a mapping between the TCSEC and ITSEC cannot be done with a simple
correspondence table ITSEC, p. 114. A mutual recognition requires there-fore detailed and precise
work on this subject. The superset example shown above demonstrates the feasi bi Iity of the method.
It was not our intention to define the entire superset matrix with ail criteria aspects in detail. We
wanted to show the method's feasibility, that it can be done and how it can be done.

A complete detailed work on this subject may generate valuable feedback for the responsible
evaluation authorities. Some problems that were discovered by our working group are mentioned
here:

ct The separation between functionality and assurance aspects sometimes seems to be
inconsistent within ITSEC (e.g. covert channel should be functionality not assurance).

~ The ITSEC chapter effectiveness cannot easily be mapped on the notion of Trusted Computing
Base (TCB) in TCSEC.

~ There is a risk of adopting wrong interpretations. Additional inputs (interpretation
documents, evaluator manuals, etc.) may be needed to create the superset matrix.

In the next step a detailed and complete superset matrix must be defined and agreed upon.
Furthermore, the results should be adapted to new releases of criteria catalogs.

CONCLUSION
The mapping of criteria catalogs via modularization, comparison, and merging into a superset is
feasible. We recommend to complete this work. We propose to establish an international group
working full-time on this subject. Support and recognition by the official authorities is required to
get the results accepted and agreed upon. Finally, we suggest that tools should be developed to
reduce paper work and increase efficiency.

MEMBERS OF THE WORKING GROUP
Andrea Arnold (Digital Equipment, chair) Wolfgang Schaefer (DATEV)
Hans-Joachim Bierschenk (VDMA) Siegfried Schall (AEG)
Ulrich van Essen (GISA, advisor for ITSEC) Hans-Dieter Schaupp (ZVEI)
Siegfried Gerber (PCS) Dr. Gottfried Sedlak (IBM)
Cornelia Persy (Siemens AG) Manfred Sielemann (Mannesmann

Kienzle)

REFERENCES
TCSEC Trusted Computer System Evaluation Criteria (TCSEC), Department of Defense DoD

5200.28-STD. December 1985.

ITSEC 	 Information Technology Security Evaluation Criteria (ITSEC) Harmonised Criteria of
France- Germany- the Netherlands- the United Kingdom Herausgeber: Der
Bundesminister des lnnern, Bonn. Mai 1990.

TMRSE 	 Towards Mutual Recognition of Security Evaluations (TMRSE) VDMA/ZVEI Working Group
Editor: do VDMA, FG BIT, Lyoner Strasse 18, W-6000 Frankfurt 71, Germany. October
1991.

672

1. Functionality

1.1 Accountability, object access
The system shall contain an
accountability component which ...

1.1.1 Date

ITSEC F2, F6. Annex A, 1. F1- FS (TCSEC Classes).

Page 97.

TCSEC C2- A 1. 2.2.2.2 Audit. Page 16.

1.1.2 Time

ITSEC F2, F6. Annex A, 1. F1- FS (TCSEC Classes).

Page 97.

Figure 2.
Superset: Functionality

Figure 4.

Superset matrix with scores for

TCSEC 82 and ITSEC F4/E4

2. Assurance - Correctness

2.1 Covert Channel identification

2.1.1 Covert Storage Channel Identification
The system developer shall conduct a
thorough search for covert storage
channels....
TCSEC 82. 3.2.3. 1.3 Covert Channel
Analysis. Page 30
ITSEC none

2.1.2 Covert Channel Identification
The system developer shall conduct a
thorough search for covert channels.
TCSEC 83. 3.3.3.1.3 Covert Channel
Analysis. Page 39
ITSEC E4- ES. 3.5.1.1.4.b Detailed Design.
Page 57.

Figure 3.

Superset: Assurance- Correctness

funtionality Assurance

2.1 Covert Channel
Identification
{1 ... 3}

2.2 Covert Channel
Bandwidth
{1 ... 3}

TCSEC 82 ITSEC
F4/E4

TCSEC 82 ITSEC
F4/E4

1.1 Accountability, object access

1.1.1 Date 1 2 1
- -

1.1.2 Time 1 2 1 -

1.1.3 User Identity 1 2 1 -

1. 1.x Object Name - 2 - -

...

Accountabi I ity

...

System as a whole

673

Executive Summary
Fielding COTS Multilevel Security

Solutions: The Next Step

James P. litchko,Trusted Information Systems, Inc., Moderator

Lorraine Dunn-Martin, Unisys Defense Systems, Inc.

Mindy E. Rudell, The MITRE Corporation

George R. Mundy, Trusted Information Systems, Inc.

As a result of the 1989 Joint Multilevel Security (MLS) Initiative, MLS requirements
for DoD C41 systems were formally identified by JCS. At the same time, the initiative
determined that there were no commercial-off-the-shelf (COTS) solutions available
to support the MLS requirements identified. In the past two years, many new NSA
approved COM SEC and trusted COTS products have become available. System
integrators have been actively working with these INFOSEC products and developing
MLS system solutions to support the identified requirements. During these efforts,
many questions were asked and continue to be asked:

What approved INFOSEC products support MLS?
How do we integrate these products to develop a MLS system?
What problems are involved when using COTS to develop MLS system?
What other COTS products are necessary to improve the availability of MLS?

This panel of experienced MLS professionals will offer their personal insights on all
of these questions based on their recent experiences involved with integrating
INFOSEC products. Based on Mindy Rudell's involvement with MLS testbeds and
development of the MLS Target Architecture and Implementation Strategy for the
Joint MLS Technology Insertion Program, she will identify the availability and
applicability of COTS INFOSEC products to support DoD MLS requirements. lorraine
Dunn-Martin and George Mundy will provide a brief review of several methods used
to integrate these products using actual development examples using operating
systems rated at the B level of trust. Using these presentations as a foundation, the
panel will spend the majority of the time discussing the issues related to developing
MLS systems from COTS products and concepts on how to migrate to the effective
MLS system development.

Through interactive discussions with the audience and the panel, integrators and
program/system managers will be provided the opportunity to gain the panels
recommendations and perspectives on issues and concerns as they relate to their
own MLS system development.

Issues and topics developed during this session are expanded
upon in the Trusted Appiications in the Real World
which occurs 0900-1030 on 4 October 1991 in the Palladian Room.

674

INFERENCE AND AGGREGATION IN

MULTILEVEL DATABASES:

RESEARCH DIRECTIONS

Teresa F. Lunt, Panel Chair

Computer Science Laboratory

SRI International

333 Ravenswood A venue

Menlo Park, California 94025

Panelists:
Thomas D. Garvey, SRI

Bhavani Thuraisingham, MITRE

Cathy Meadows, NRL

Cristi Garvey, TRW

Gary Smith, National Defense University

The inference problem is when some set of data with a low access class can be used to.infer
data with a high access class. Some researchers have approached the problem from a data design
viewpoint, attempting to find techniques for defining data structures and assigning classifications
to these structures in such a way that inference problems are minimized. Other researchers have
proposed to develop techniques and mechanisms for detecting inference problems during query
processing. These mechanisms would evaluate each query in the context of previous information
returned to that user and make a decision to accept the query or withhold the results, based on a
set of classification rules. Each of these approaches has advantages and disadvantages. Each can be
evaluated in terms of its complexity, performance costs, degree of assurance achievable, and degree
of assurance attainable.

Following are remarks by each of the panelists.

675

Detecting and Evaluating Inference Channels

Thomas D. Garvey

Artificial Intelligence Center

SRI International

333 Ravenswood A venue

Menlo Park, California 94025

Introduction

The inference problem is when some set of data classified at a low level (or low data) can be
used to infer data classified at a high level (high data). That is, there is a direct inference path
(possibly including external data) from the low data to the high data.

Inferential security remains one of the most critical and challenging problems to the database
community. We have begun work toward developing a formalism for characterizing inferential
problems of different types based on formal logical reasoning and theories for approximate reasoning.
We believe the essence of inferential security problems are well captured by these formalisms.

Logical Formalisms for the Inference Problem

We characterize inferential security problems as belonging to one of three distinct types, based
on the degree to •vhich high data may be inferred from low data. The most restrictive type of
channel occurs when a formal deductive proof of the high data can be derived from the low data
when this is the case, we say that a logical inference channel (or a logical channel) exists. A slightly
weakened requirement for a channel is when a deductive proof may not be possible, but a proof
could be completed by assumption of certain axioms. In this case, an abductive proof is possible,
and we will term the channel an abductive inference channel (or an abductive channel). The third
situation is when it is possible to determine likelihoods that assumed axioms might be knowable by
a user with legitimate access to low data that would enable the inference of high data with some
measure of belief greater than an acceptable limit. In this case, we will (loosely) call the channel a
probabilistic inference channel or just a probabilistic channel.

Logical channels can be described by standard propositional logic (PL) or first-order predi
cate logic (FOL). If PL is applicable, determining whether a logical channel exists is a decidable
proposition, but may be quite expensive. In the more general case of FOL, the question is not
decidable. This means that there is no way of knowing whether a logical channel exists until one
is found. Since, in general, logical channels must not involve assumptions of facts, they must be
based entirely on data found within the database.

Abductive reasoning is a distinctly different form of reasoning than deduction, that is not limited
to demonstrating that a formula is a consequence of a theory. In abductive reasoning, the objective
is to find assumptions A such that T U A 1- Q even though Q may not be provable from T alone.
Abduction has traditionally been applied to diagnostic tasks that reason from events to causes. If
Q is observed and P ::) Q is known, then P can be offered as a possible explanation of Q.

Abductive channels represent a much more serious issue, since most inferential channels exist
due to knowledge that a normal user might be expected to contribute to the problem but that
is not an explicit part of the data or knowledge base. An abductive proof, however, can include

676

assumptions and can consider the degree to which a user is likely to know some fact necessary to
the completion of a proof. Since abduction involves assumptions about the user's belief structure,
it involves modal logics, particularly epistemic logics.

In using an abductive theorem prover (ATP) for inference channel detection, high facts would
become theorems to be proved. The ATP would back-chain through inference rules to low data
(which would become the proof axioms) or to assumptions. No assumption would be permitted
that was already present as a high fact. Acceptable assumptions proposed for a proof would need
to be evaluated by the database security manager to determine the degree to which they may be
known to low users.

A variety of schemes have been devised to determine the cost of an abductive proof. These
typically include a cost for each additional proof step and a cost associated with an assumption.
SRI has developed an abductive theorem prover (ATP) as an extension to Prolog that allows one
to set these weights as appropriate for the problem of interest. Setting assumption costs high
relative to proof steps leads the ATP to prefer deeper proofs with fewer assumptions. Setting the
assumption costs to infinity leads to standard theorem proving. Setting them low causes the ATP
to prefer assumptions.

From an informal point of view, an abductive theorem prover used for detecting inference
channels should have a cost for proof steps chosen to cause it to search moderately deeply for
logical channels (i.e., channels that do not require assumptions), but not too deeply, as the deeper
the proof required, the more work a user will have to put into the deduction, and therefore, the
less likely (or the lower the bandwidth of) the channel.

One means of setting these costs is to consider the likelihood that a particular user might know
the assumed facts. Assumption costs could be related to these likelihoods, and the overall cost
of the proof would then be a function of these probabilities. A variety of computational schemes,
based on classical probabilities, belief functions, or fuzzy logic could be considered for the task
·of determining the cost of an abductive proof incorporating beliefs. Using a formal theory for
approximate reasoning would allow the computed cost to reflect the likelihood that high data could
be inferred by a low user with ordinary or particular knowledge.

Our investigations of this formalism will, we hope, lead to the development of database design
tools so that a proposed database design can be analyzed for inference channels and restructured
so that the problems are eliminated or minimized.

Approximate Reasoning for Evaluating Inference Channels

Inferential security problems arise when it is possible for a user to use low data to infer the
truth of high data with some degree of probability. For example, flight destination airports may be
sensitive data, while aircraft range, payloads, and departure fields may be stored at a low security
level. By combining information about range, payloads, and departure fields, a user may be able
to greatly narrow the set of possible destination airports, and in so doing increase the likelihood
that an aircraft's destination is among the reduced set. Further information (say, data about the
aircraft-handling capabilities of the airfields in the reduced set), may serve to reduce the space of
possibilities even more.

Such probabilistic channels are related to abductive channels because the assumptions and
logical rules used in an abductive proof may have degrees of belief associated with them which
represent the likelihood that they may be known to a user. These degrees of belief can then be
propagated through the abductive proof tree to determine the degree to which the user is likely to
be able to infer the high data in question. In effect, the ATP can be used to uncover the existence

677

of a. channel and approximate reasoning methods used to evaluate the relative seriousness of the
channel.

We are investigating the use of evidential reasoning in evaluating the seriousness of a.n inference
channel. Evidential reasoning departs from classical probability theory in that it permits beliefs to
be attached to disjunctions of statements, rather than requiring they be assigned to singletons in
the universe of discourse (the set of mutually exclusive and exhaustive statements that form the
"vocabulary" for the problem statement).

For example, we may know that a. particular aircraft, due to its range and location, may be able
to fly to a. set of airports. When considering which airport it is really going to fly to, we can identify
it only as a member of this set. Therefore, we may assign our belief about the plane's destination to
the set of possibilities. When beliefs of components are later needed, they are underconstrained as
a. result of the disjunction, and a.n interval representation is needed to capture the true constraints.
This interval enables the explicit modeling of both what is known (although with uncertainty) and
what is unknown.

For inference control, an abductive proof structure combined with information about the like
lihood that a. user might know facts assumed in the proof can be used to calculate the likelihood
that the user could infer high data.. Furthermore, sensitivity analyses can be carried out over the
information structure in order to determine which information has had the greatest impact on the
inference. This information might then be a.n initial candidate for upgrading in order to eliminate
the channel.

Evidential reasoning techniques have been automated in SRI's Gister system.

Summary

The application of abductive reasoning offers a. computational mechanism for detecting inference
channels in databases. We feel that as a. logical formalism, abduction is the most appropriate model
for most inference channels involving strictly logical inferences. We identified probabilistic channels
a.s another important class of inference channels, those associated with the likelihood of inferring
high data. from low data. that a. user might be likely to know with· some probability. We offer
e~dential reasoning as a. candidate technology that could be linked with abduction to provide a.n
effective computational framework for reasoning about such probabilities.

678

Inference Prevention in Databases:

Data Design vs. Query Processing

Catherine Meadows

Code 5543

Naval Research Laboratory

Washington, DC 20375

Recently, researchers have proposed two methods for the prevention of inferences in database. One
of these is to detect potential inference problems beforehand and to then design the database so that
unwanted inferences can be prevented. This may require the use of specialized semantic modeling
techniques. The other is to keep a record of past accesses, and whenever a new access is requested,
to compare the query against the past access history to determine whether or not any unwanted
inferences can be drawn. We will refer to these two approaches as the data design approach and
the query processing approach.

Clearly, the data design approach has its attractions. Instead of having to check for inferences
during each query, one checks only once, at the time the database is being built. However, before
rejecting the query processing approach out of hand, we should ask the following questions:

1. 	How easy is it to protect against all future inferences? Will we be able to predict the future
history of the database? What if we discover new inferences? Will we have to redesign the
database?

2. 	How does the complexity of examining an entire database for inferences compare against the
complexity of examining an access history or set of access histories?

3. How well do our semantic modeling techniques capture the kinds of inferences possible? Can
we develop a measure of the effectiveness of these techniques? Are there inferences that can't
be prevented by semantic modeling techniques?

4. 	What do we do when the sensitivity of data decreases? How hard is it to build inference
prevention mechanisms that take this into account into data design versus building them into
the query processor?

Finally, we should investigate the possibility of augmenting the data design approach with the
query processing approach. It may be that certain kinds of information are best protected by one
approach, and certain kinds by another. For example, information whose sensitivity is relatively
static might be best protected by the data design approach. On the other hand, information whose
sensitivity might change, either because it may later be augmented by new information later on
from which sensitive inferences might be drawn, or because its sensitivity decreases over time, might
be better protected by the query processing approach.

679

Challenges in Addressing Inference and Aggregation

Gary' Smith

Information Resources Management College

National Defense University

Washington, DC

This paper identifies some of the issues that must be considered (and questions to be asked)
when evaluating different approaches for addressing inference and aggregation in multilevel secure
database systems.

In one sense, inference and aggregation are the same problem - they both refer to the ability to
obtain data/information that is classified high from data/information classified low. In fact, in most
instances of aggregation, high data is normally inferred (rather than explicitly revealed) when the
low data is combined. Thus inference and aggregation have several challenges in common. First, the
primary consideration for understanding, and therefore solving, these problems is the requirement
to explicitly identify the data/information that must be protected. Unfortunately, this requirement
is not always easy. Moreover, the answers are dependent on the data/information/knowledge that
forms a part of the application domain (i.e., the piece of the real world that the automated sys
tem supports). Approaches to providing automated support for inference and aggregation must
be able to handle all the generic types of problems. Unfortunately, a comprehensive taxonomy
of generic inference and aggregation problems is yet to be formulated. (What types of generic
inference and aggregation problems can an approach handle?) The second challenge relates ·-to
the invalidity of a closed world assumption (i.e., an assumption that the database contains all
data/information/knowledge needed to infer high data). The closed world assumption is not prac
tical because humans possess great cognitive powers for deducing new facts (i.e., inference). Often,
facts that are external to the database are combined with data from the database to allow a user to
infer new data/information. (How, and to what extent, does an approach to solving the inference
and aggregation problem incorporate data/information/knowledge that is not in the database?)
The third challenge relates to the identification of possible inference paths. Relying solely on the
designers and domain experts to exhaustively identify inference paths may not result in all possible
paths being identified. Providing automated reasoning capabilities for identifying possible infer
ences over complex application domains is essential. (How robust are the reasoning capabilities
being provided?)

On the other hand, aggregation presents additional challenges. Tom Hinke made an important
characterization of two types of aggregation: inference aggregation (combination of two different
types of data objects is classified higher than the classification of either object) and cardinal aggre
gation (when multiple instances of the same data object are classified higher than each instance).
The distinction between these two types of aggregation is important for two reasons. First, infer
ence aggregation can be effectively handled through good database design; it is the real aggregation
problem that is most difficult and requires research for further understanding. The second reason
involves the soundness of an aggregation security policy. At the 3rd RADC Database Security
Workshop, Roger Schell asserted that (cardinal) aggregation security policies are inherently un
sound; therefore, we should not expect to find acceptable mechanisms to implement those policies.
Often artificial constraints are suggested (e.g., a user can retrieve only ten records). (What facilities
are prov: .led to deal with cardinal aggregation?)

680

Approaches to Handling the Inference Problem

Bhavani Thuraisingham

The MITRE Corporation

Burlington Road

Bedford, MA 01730

Introduction

It is possible for users of a database management system to draw inferences from the information
that they obtain from the database. The inference process can be harmful if the inferred knowledge
is something that the user is not authorized to acquire. That is, a user acquiring information which
he is not authorized to know has come to be known as the inference problem in database security.
We are particularly interested in the inference problem which occurs in a multilevel operating
environment. In such an environment, the users are cleared at different security levels and they
access a multilevel database where the data is classified at different sensitivity levels. A multilevel
secure database management system (MLS/DBMS) manages a multilevel database where its users
cannot access data to which they are not authorized. However, providing a solution to the inference
problem, where users issue multiple requests and consequently infer unauthorized knowledge, is
beyond the capability of currently available MLS/DBMSs.

We believe that a triple approach to research is needed to combat the inference problem; one is
to build inference controllers which act during transaction processing, the other is to build inference
controllers for database design, and the third is to build inference controllers to act as advisors to
the Systems Security Officer (SSO). This is because the inference problem is a complex one and
therefore an integrated approach is necessary to handle it.

Summary of Effort

Our preliminary investigation of the inference problem included the following. (i) Identify
ing various inference strategies that users could utilize to draw unauthorized inferences. These
strategies included inference by deduction, inference by induction, inference by heuristic reason
ing, inference by semantic association, inference by analogical reasoning, and statistical inference.
(ii) Designing techniques for handling certain inference strategies during query processing. (iii)
Analyzing the complexity of the inference problem.

Later, we focussed on developing techniques for handling inferences during query processing,
update processing, and database design. We utilized security constraints to assign security levels to
data and information. The inference controller, which functions during query, update, and database
design operations, processes these security constraints in such a way that security violations with
respect to certain types of inferences do not occur. We also carried out an investigation on the use
of conceptual structures to represent and reason about multilevel applications as well as the issues
involved in designing a knowledge-based inference controller. We discuss some of our approaches
briefly in this paper.

681

Security Constraint Processing

Security constraints play an important role in our approach to handling the inference problem.
They are rules that assign security levels to the data. In our approach security constraints are spec
ified as horn clauses. Therefore techniques developed for verifying and validating lqgic programs
could be utilized for checking the consistency of the constrains. We have defined various types of
security constraints. They include (i) simple constraints that classify a database, relation or an
attribute, (ii) content-based constraints that classify any part of the database depending on the
value of some data, (iii) event-based constraints that classify any part of the database depending
on the occurrence of some real-world event, (iv) association-based constraints that classify associ
ations between attributes and relations, (v) release-'based constraints that classify any part of the
database depending on the information that has been previously released, (vi) aggregate constraints
that classify collections of data, (vii) logical constraints that specify implications, (viii) level-based
constraints that classify any part of the database depending on the security level of some data, and
(ix) fuzzy constraints that assign fuzzy values to their classifications.

Our approach is to process certain security constraints during query processing, certain con
straints during database updates and certain constraints during database design. The first step was
to decide whether a particular constraint should be processed during the query, update or database
design operation. After some consideration, we felt that it was important for the query processor
to have the ability to handle all of the security constraints. This is because most users usually
build their reservoir of knowledge from responses that they receive by querying the database. It
is from this reservoir of knowledge that they infer unauthorized information. Moreover, no matter
how securely the database has been designed, or the data in the database is accurately labeled,
users could eventually violate security by inference because they are continuously updating their
reservoir of knowledge as the world evolves. It is not feasible to have to re-design the database or
re-classify the data continuously.

The next step was to decide which of the security constraints should be handled during database
updates. After some consideration, we felt that except for some types of constraints such as the
release and aggregate constraints, the ·others could be processed during the update operation.
However, techniques for handling constraints during database updates could be quite complex
as the security levels of the data already in the database could be affected by the data being
updated. Therefore, initially our algorithms handle only the simple and content-based constraints
during database updates. The constraints that seemed appropriate to be handled during the
database design operation were those that classified an attribute or collections of attributes taken
together. These include the simple and association-based constraints. For exampleJ association
based constraints classify the relationships between attributes. Such relationships are specified by
the schema and therefore such constraints could be handled when the schema is specified. Since a
logical constraint is a rule which specifies the implication of an attribute from a set of attributes,
it can also be handled during database design.

We have developed a query processor prototype and an update processor prototype. We have
also developed techniques for handling certain constraints during database design. The update pro
cessor and the database design tool could be used off-line while the query processor must augment
the MLS/DBMS and is used on-line. Our ultimate goal is to combine the solutions that we have
developed to process security constraints during query, update, and database design operations, and
subsequently develop an integrated tool for processing security constraints. The update processor
and the database design tool should ensure that the database as well as the schema are consistent
with the constraints. However, if the real-world is dynamic, and the database and/or the schema
are at any time inconsistent, then there must be a mechanism to trigger the query processor to

682

process all of the relevant constraints.

Conceptual Structures

The integrated tool discussed above assumes that an initial set of security constraints and
schema are available. However, generating these schemas and constraints from the specification
of the multilevel application is by no means a straightforward task. A tool to aid the application
specialist and/or the SSO for constraint and schema generation from the application spedficafli.on
would be desirable. One can envisage this tool to be a front-end to the integrated tool discussed
above. Our approach to developing such a tool is to first develop a conceptual data/knowledge
model to represent the multilevel application and then develop techniques for reasoning about the
application in order to detect potential security violations and inconsistencies. We have investigated
the use of conceptual structu{~S to represent and reason about the multilevel application. The
particular conceptual structures that we have investigated are semantic networks and conceptual
graphs. We have developed multilevel semantic nets and multilevel conceptual graphs and showed
how multilevel applications could be represented by these structures. We also showed how an SSO
could reason and consequently detect security violations via inference.

Knowledge-based Inference Control

The prototypes that we have developed handle only logical inferences that users could utilize
to deduce unauthorized information. As discussed earlier, in reality users could utilize several in
ference strategies. Therefore for an inference controller to be effective, it should be able to use
various types of reasoning techniques in order to handle the users' inference strategies. We have
carried out a preliminary high level design of a knowledge-based inference controller called XIN
CON (eXper INferen.'ce CONtroller). XINCON uses frames and rules to represent knowledge. The
major components include an inference engine which handles logical as well as fuzzy inferences, a
truth maintenance system which ensures that the beliefs are consistent, a knowledge manager, and
a conflict resolution module which determines the actions to be taken in a conflicting situation.
XINCON could augment an MLS/DBMS and/or it could act as an advisor to the SSO.

Acknowledgements

We gratefully acknowledge the Department of the Navy (SPAWAR) for sponsoring our work on the Inference
Problem under contract F19628-89-C-0001. We thank Marie Collins a.nd William Ford for their contributions
to the work described in this paper.

683

http:spedficafli.on

Executive Summary

MILITARY AND TELECOM SECURITY:

SPECIALIZED METHODS

Richard lefkon, New York University, Moderator

PANELISTS

Debra Banning, Sparta

Myron Cramer, Booz Allen & Hamilton

Ed Fulford, Northern Telecom

Each speaker makes a formal presentation with questions and answers,
and a general symposium concludes the session.

The four presentations explore potential defense security threats posed
by unfriendly computer programs such as viruses and Trojan Horses.

Ed Fulford discusses some of the current limitations to security public
networks and proposes awareness programs and other solutions.

Myron Cramer discusses computer viruses, their insinuation and
execution.

Debra Banning and Gail Ellingwood discuss the need to protect
embedded computer system critical functions. They propose pervasive
anti-virus measures.

Dick Lefkon discusses the implications of a Millennium Trojan Horse. He
proposes that software be examined and tested for calendar
dependencies.

Speaker presentations are followed immediately by a moderated
discussion between the panel and attendees.

684

Executive Summary
MALICIOUS CODE PREVENTION FOR

EMBEDDED COMPUTER weAPONS SYSTEMS

Debra L. Banning

Gail M. Ellingwood

SPARTA, Inc.

3440 Carson Street

Torrance, CA 90503

ABSTRACT

With the recent virus infection for personal computers being shipped to the Persian
Gulf during Operation Desert Storm, the vulnerability of our military defenses to
malicious code attacks has been highlighted. Modern weapon systems make
extensive use of embedded computer systems for such critical functions as weapon
aiming, weapon sensor processing and guidance, safe and arming, and real-time
control. Concern has been raised over the potential for sabotage of weapons by the
insertion of malicious code, either directly into the weapon's application code or
indirectly via the application software development environment. This paper
summarizes the results of a recent study1 that examined Embedded Weapon System
{EWCS) vulnerability to malicious code.

INTRODUCTION

The study of ECWS vulnerability was performed in three phases: The development
of a taxonomy of malicious code; a weapon system vulnerability analysis; and
identification of a suitable defense methodology for protecting against malicious
code attacks. This paper will briefly focus on the results of the vulnerability analysis
and the definition of a Malicious Code Resistant Security Architecture (MCRSA) for
defending against malicious code attacks.

MALICIOUS CODE THREATS TO WEAPON SYSTEMS

To understand how malicious code could affects ECWSs it is important to understand
the functions of a typical weapon system. An ECWS is a computer or group of
computers that is a component of a larger system used to perform a specific military
mission. The ECWS is most likely to be a part of a distributed computer system
architecture, where other remotely located computers interact in some fashion with
the computers residing on-board the weapon. One embedded computer may also
cooperatively act with several other embedded computers as in a military aircraft.
Figure 1 depicts general weapon system functions.

Malicious code may affect weapon system functions in both obvious and more subtle
attacks. Obvious attacks may result in destruction of the weapon or failure at a criti
cal time. When the malicious code triggers in this manner, it would be easy to deter
mine that the wE'apon system software has been infected. However, if a more subtle
attack is used {e.g., performing a modification inns aiming functions to slightly miss
the target) the malfunction may be initially attributed to some other cause. In many
cases a detailed understanding of the functions of a weapon system is necessary for
the writing of a malicious program that would affect its functiqns. However, some

1. The study was performed by SPARTA, Inc., with support from UC Davis, for Pkatinny Arsenal.

685

defined a Malicious Code Resistant Security Architecture (MCRSA). The MCRSA
consists of three primary components:

• 	 Malicious code prevention mechanisms incorporated within· the software

development system.

• 	 A malicious code detection system, called the Malicious Code TestBed (MCTB),
used to test the weapon system software and the utilities used within the
development system to create the software.

• 	 Weapon system defenses in the ECWS itself.

The MCRSA is supplemented by a set of administrative controls incorporated within
each of the above three components. This includes strict configuration management
and methods to provide a reasonable assurance that malicious code is not carelessly
and needlessly introduced into the ECWS life cycle. The MCRSA is shown in Figure 3.

Weapon
Aoaiieation Code

Static Runti
Analyze,.,.._Monilor

Blessed
Application

Code

Administrative
ControlsAdministrative

Controls

Figure 3. Malicious Code Resistant Security Architecture (MCRSA)

Most software development environments provide administrative controls and
technical mechanisms that assist in preventing malicious code infection. However,
these have proven to be unsuccessful in completely preventing infection. Therefore,
the definition of a MCTB which would be used to test software prior to
incorporation into a weapon system is a very important aspect of the MCRSA.

Due to in-field programmability, maintenance updates and the use of communi
cation links by weapon systems, it is not sufficient to provide defenses only while the
software is being developed. Previous to this study weapon systems did not provide
a means for detecting malicious activity once the weapon system was deployed. This
led to the definition of a Weapon System Security Monitor (WSSM) that can be
added to a weapon system bus as an additional co-processor to detect unusual
activity that could indicate malicious code infection during the system's operation.

686

functions (e.g., ballistic computations) use common library routines (e.g., square,
square root) that may be affected by malicious code that has been developed with
very little knowledge of the specific weapon system.

DIRECTS MISSilE
TO TARGET

ROCKET UUNCHiiR DETECTS MONITORS Iff
TARGETS TARG6TS

Figure 1. General Weapon System Functions

Prior to this study it was assumed that the primary means of malicious code infection
was during the weapon system software development state. Furthermore, Trojan
Horse programs or Trap Doors were considered more of a threat to an operational
system than viruses. Viruses were not considered a primary threat since, once the
software was burned-in and included in the weapon system, they would be unable
to propagate. This may not be the case. Several weapon systems have the capability
for in-field programmability and maintenance updates which would allow viruses to
further propagate. In addition, current research indicates it may be possible to
infect weapon systems with viruses via radio links which many complex weapon
systems use for communication between components. Figure 2 shows that malicious
code can affect software throughout its life cycle.

INSERT;

TRAPDOOR

tf.~UJ\:1J~?cRi~MB
VmUSIWOR!\1

Figure 2. Software life Cycle Vulnerability

MAliCIOUS CODE RESISTANT SECURITY ARCHITECTURE (MCRSA)

To minimize the threat caused by malicious code, security controls must be provided
for all phases of the weapon system software life cycle. In order to do this, we have

687

MALICIOUS CODE TEST BED {MCTB)

The Malicious Code Test Bed {MCTB) is a stand-alone system in which the develop
ment software can be loaded for malicious code detection. Weapon system soft
ware is loaded onto the MCTB and tested using a variety of tools directly prior to
downloading for the ECWS build process. The MCTB can also be used to provide
assurance that utilities (e.g., compilers, debuggers) used to develop the software do
not contain malicious code. The tools used on the MCTB should be capable of
detecting a variety of malicious code, particularly Trojan Horse and virus programs.
The tools recommended for incorporation into the MCTB consist of research tools
that are in line with the state-of-the-art of malicious code detection and can be
adapted to the general development environment.

Given the nature of malicious code writers and their proclivity to adapt a virus
rapidly once a defense if provided, it is important for an effective malicious code
detection system to have the potential to detect malicious code of the future.
Therefore, the MCTB should include a learning capability such that the system's
knowledge base would be modified as new types of malicious code are detected.

WEAPON SYSTEM SECURITY MONITOR {WSSM)

Weapon systems that provide maintenance update capabilities while deployed or
are in-field programmable, are susceptible to infection from malicious code that may
not have been previously detected. More importantly, recent investigation has·
shown that it is feasible that adversaries may attempt to infect weapon systems via
the communications links. Given these possibilities; it is important to provide
defenses against malicious code in the weapon system itself

Generally, a weapon-system is a distributed system consisting of hosts, shared
storage, a shared 110 controller, a simple distributed operating system on each host
and static allocation tasks to processors. It is not feasible to propose handcrafting
operating systems for existing weapon systems. Therefore, security must be retro
fitted to the existing equipment. Commercially available security mechanisms are
not successful in detecting many types of malicious code on other than PC operating
systems. However, malicious code can be detected by adding a monitoring
capability within the weapon system that monitors the actions of the processes and
detects suspicious activity.

POSITION IN BRIEF

Malicious code attacks are continuing to evolve. New avenues for infection,
methods for disguising code and methods for evading detection are being
discovered. To protect our weapon systems from these attacks it is important to
provide mechanisms that are not geared towards one type of malicious code but
instead have the ability to adapt to the malicious code evolution.

These mechanisms must be incorporated at all stages of the software life cycle to
provide the necessary protection for the weapon system. It is our intention that the
MCRSA defined under this study provides a method for accomplishing this goal. The
use of the MCTB in the development environment and the WSSM within the weapon
system itself should provide an effective defense against present and future
malicious code attacks.

688

Executive Summary
COMPUTER VIRUSES AS ELECTRONIC WARFARE

Myron L. Cramer

Booz, Allen & Hamilton Inc.

4330 East West Highway

Bethesda, MD 20804

(30 1) 951-2228

ABSTRACT

This position paper introduces the concept for a new type of electronic warfare
based upon the capabilities of computer viruses. These capabilities include the
ability of viruses to infect a military computer's software and to propagate through
enemy tactical data networks.

DISCUSSION

The purposes of electronic warfare are to deny an adversary the effective use of his
electronic systems. This is accomplished through the use of electronic jamming of
radio links. Deception jamming techniques can often be more effective than simple
noise jamming, since they deny an adversary the opportunity to respond to the
action. As electronic systems have become increasingly computerized, the functions
of these systems are becoming increasingly implemented in software. Thus, attacks
against this software can provide the ultimate form of deception jamming by
manipulating an adversary's data systems.

The basic argument runs as follows:

• 	 Computer viruses can be electronically injected into digital radio links.

• 	 There are mechanisms for viruses thus injected, to be caused to execute.

• 	 The existence of potential threats of this type significantly undermines the
protection provided through normal Software Quality Assurance and through
physical security measures.

• 	 Consequently, a new approach is needed to assess vulnerabilities and to design
protective measures.

• 	 Viewing this problem from the perspective of Electronic Warfare provides a
structure to evaluate these issues.

POSITION IN BRIEF

Current trends in the development of military electronic systems have created the
opportunity for a new form of electronic warfare using computer viruses spread
through radio transmission. The potential for this type of electronic attack
significantly changes the nature of the computer virus problem beyond the elements
controllable by software assurance and physical security.

689

Executive Summary
PREVENTING VIRUS INSERTION THROUGH SWITCHES

Ed Fulford

Manager, Information Security, Northern Telecom

ABSTRACT

Once, telephone switch vendors and users felt switch architecture was the primary
deterrent to placing viruses inside the public network. Now, the availability of
digital technology has increased the potential for virus attacks on switches, and has
highlighted the need for improving user and resource management to negate these
attacks.

CURRENT SYMPTOMS-- INDUSTRY-WIDE ISSUES

The implementation of aggressive virus detective and preventive measures within
public networks is still hampered by the following:

t1 	 User awareness training on switch security software and practices has not
been proactive. In the past, the common approach was to cover up possible
security concerns, rather than address them with the user in order to enhance
the overall network control and maintenance procedures.

• 	 Telecommunications vendors have not fully standardized security controls
based on governmental and industry requirements. These standards are only
now being widely publicized, and vendors are dedicating more resources in
their design and development areas to ensure compliance with these standards
by implementing them in product security software and procedures.

• 	 User access control is still based primarily on the reusable password. This
control technique can be easily compromised and does little to provide actual
user authentication.

• 	 Use ofencryption for protection for sensitive files and programs has not been
readily adopted. Once access controls are breached, (through ((social
engineering((or some other method) it is often relatively easy to find out
system management passwords and/or capabilities, due to the lack of
additional safeguards.

• 	 Software management tools, similar to those for identifying viruses in the
personal computer environment, are largely non-existent. In the past, vendors
may have assumed that the complexity of the switch's architecture and
programming was a sufficient obstacle to the propagation ofviruses; this is no
longer a valid assumption.

690

SEEKING THE CURE-- ONE APPROACH

From a vendor's perspective, the threat of a virus within a product is terrifying and
raises numerous questions. Why didn't we detect the virus when it infiltrated the
switch? Can we find it? Can we identify who put it there? Can we remove it and fix
any problems? Can we assure the user that this will not re-occur? These initial
questions will surely lead to more complex and expensive questions. If the vendor can
only react to this type of problem, the cost of a solution will quickly outstrip available
resources, and will most likely alienate the users.

However, the scenario described above need not always be the norm. The appropriate
response is pro-active; the vendor and user working in concert to identify and resolve
these issues. The approach advocated to address this problem has several integral
components:

1). User Awareness. Vendors must continue to stress the proper installation and
management of the security tools provided with the switch. They can do this in a
number of ways: by training user technical personnel on switch security, by pre
configuring the security software, by consulting with the user on security after the
switch has been installed, and by sponsoring security awareness symposiums with
user groups. While these are not all the techniques that could be used, a combination
of them would help the vendor and user develop aggressive resource management
practices, and provide warnings about the threat ofviruses.

2). Product Security Standards. Since many of the switches in use today are digital
computers and now extremely susceptible to virus attacks, computer security
standards should be applied where appropriate. In reviewing computer security
guidelines that have been published (by BELLCORE, the U.S. Government, and the
telephone companies), many of the security requirements are consistent, and all
address virus detection and prevention. A matrix of switch security standards can be
developed by vendors, for us in standardizing security software and procedures across
all telephone equipment products where applicable. Users would then be able to
deploy and administer security on all products more efficiently, because of the comon
design functionality.

3). User Authentication. The technology to identify and verify users is available
today, and will help limit the possibility ofvirus attacks on switches. Voice recogni
tion is being tested by vendors to authenticate users by speech patterns and dialects
(largely overcoming prior security concerns that a tape recording of a user's voice
could be used to ~(fool" the security system). Encryption ofpasswords, using public
key cryptography, is being developed by vendors to make reusable passwords more

691

secure. Time based access control algorithms and ttone timett passwords can be used
to provide gateways to the public switched network, which will also provide addition
al constraints to unauthorized access and virus attack. Vendors could provide any or
all of these controls, within the constructs of the standards mentioned above.

4). Virus Detection Tools. Telephone switch architecture and software, while being
based on the digital computer, is rather specialized. The programming languages
used in switches are designed only for developing telecommunications applications,
and relatively few people in the user population has access to them. As such, there
were few virus attacks on switch operating systems. Now, many vendors are
investigating the use of more generalized operating and programming systems (such
as the UNIX operating environment and the C programming language) for the nest
generation of switches. The availability of these more widely used tools will make
switches more susceptible to viruses. Vendors are now investigating image
inventories, patch control systems and check sum audits on load modules. This will
enable review ofcurrently active software to determine if any unauthorized access or
changes have taken place. This will also provide the basis for more sophisticated
software management and tracking software for future deployment.

5). Partnerships. The most critical part of this process, however, is how cooperative
efforts are formed. Vendors need to make sure that key parties- Research and
Development, Marketing, Technical Support, and Manufacturing- embrace the need
for security and are willing to devote the time and resources required to implement a
corporate security direction. Users must do basically the same thing, but with
government and industry groups. Finally, vendors and users must openly address
common problems and have a defined strategy to solve them. Formal unauthorized
telecommunication access programs and product security task forces will go far to
ensure that both vendor and user needs and concerns are addressed.

As this approach is phased in, virus attacks on the public switch network will most
likely decrease. This should not be seen as any more than a small triumph in a much
larger battle. Technology and software will become more sophisticated and less
expensive, and security controls will be more at risk. It is up to the vendors and
users, together, to push the boundaries of switch security and provide and
environment that significantly enhances detection and prevention ofvirus attacks in
the face of these advances.

692

Executive Summary

Nuclear Disaster and the Millennium Trojan Horse

Richard G. Lefkon

Assistant Professor, New York University

609 West 114th Street, New York, NY 10025

dklefkon@well.sf.ca.us

(212) 663-2315

ABSTRACT

As the Millennium is approached, military installations on all sides are urged to test
the date dependencies of internal software in order to identify and address a
possible date-related Trojan Horse.

EARLY MILITARY COMPUTING

In the beginning of the computer age, business applications and home amusements
were the farthest thing from the major users' minds. Eniac and its siblings were used
primarily for making trigonometric computations. The precise sines, cosines and
tangents resulting from their calculating loops, went into plotting projectile
trajectories.

The projectiles generally were artillery shells, with explosives, in warfare. Some sub
sequent early use of computers took place for what today are referred to as nuclear
missile silos. Movies such as "Dr. Strangelove" may not have been far from the truth
in depicting rocketry launches triggered in part by computer decision-making.

Historically, most programs did their logical reasoning by arithmetic comparison: Is
A greater than B; if so, do such-and-such. Reverse the sign of the numbers, and of
course the outcome would change as welL

It is hypothesized that some nuclear missile silos of early construction are present in
much their original form today, including the original computer decision-making
programs. Further, that at least some of these programs use the current date in part
of their reasoning.

693

mailto:dklefkon@well.sf.ca.us

DATES AND THE MILLENNIUM TROJAN HORSE

Many of today's LANs and PCs ask the user to input the date in the form YYMMDD.
This conference begins on 911001 and ends on 911004. It lasts (B-A) + 1, or 3 + 1,
which equals four days. The Thirteenth NCS Conference took place in 1990, one year
ago: 1991- 1990 = 1 year.

A surprising computational result occurs between the 23rd and 22nd NCS
Conference: 2000- 1999 equals 1 year. But using the standard YYMMDD format,
001001-991001 = -[negative} 990000. The date difference is negative, and
wherever it occurs all the decisions may be backwards- including the decision to arm
and launch.

This idea is not so farfetched as it may seem. Recently a financial company's business
users discovered to their chagrin that, say, bonds held in 1991 but maturing in 2011
had a profit/loss calculation exactly four times as large -and backwards- the twenty
year span results expected. That even happened using programs written in the
1980's, not the 1950's.

liMITATIONS Of SOfTWARE QUAUTY ASSURANCE

It is a commonplace in commercial programming, that the older a system is, the more
likely its source code has been lost or otherwise does not match the stored
executable binary. Thus while source code scans and analyses may be helpful they
do not constitute a complete solution.

Ballistics launch software, in either well-known or obscure weapons systems and
locations, needs to be exercised judiciously to determine its usage of the calendar
date.

POSITION IN BRIEF

An appeal is made to defense ministries around the world to seek out the full
spectrum of computers in their nuclear weapons installations. As each computer is
identified, a controlled test of software can be made, such as bringing the date
forward in steps, to observe what happens as the Millennium line is crossed.

694

Executive Summary
REDUCED DEFENSE SPENDING

INCREASES THE NEED FOR TRUSTED SYSTEMS

Carole S. Jordan

Defense investigative Service

Industrial Security Directorate

1900 Half Street SW

Washington D.C. 20324-1700

Department of Defense budget cuts are increasing the need for defense contractors to use trusted
computer systems in their facilities. The Defense Industrial Security Program includes nearly 12,000
contractors that are qualified to work on contracts that use government classified information.
Several thousand of these contractors process classified information on automated information
systems (AISs) that have been accredited for such processing.

Large defense contractors typically perform on several dozen contracts at any one time. The greater
the number of accredited AISs that are used for processing, the more opportunity there is to separate
the processing so that data belonging to several different, unrelated contracts do not have to reside
on the same AIS. Contracts involving Special Access Program (SAP) data, often have a specific
requirement to isolate SAP processing from other processing. For these reasons, most accredited AISs
in contractor facilities have operated in the dedicated security mode. (In this mode, all users have a
personnel security clearance and a need"-to-know for all of the classified information in the AIS). In
the dedicated mode of processing, there is very little risk of unauthorized disclosure of classified
information, therefore, there is no requirement to meet a level of trust per DoD 5200.28-STD, "DoD
Trusted Computer System Evaluation Criteria".

However, broad defense cuts as well as specific budget reductions in DoD procurement are having an
impact on companies that contract wi.th the Department of Defense. Fewer contracts are being let,
and several large contracts for weapon systems have been cancelled. Defense contractors have
reacted to these changes through personnel cutbacks, reorganizations, and in some instances office
closings. In some segments of the industry the adjustments have been extreme, underscoring the
need for cost-effective solutions.

Along with contractor work force reductions, there have been significant consolidations in their
computer operations. Consolidating both operating locations and AIS systems may save money
initially, however, moving classified processing onto a smaller number of remaining A!Ss can have an
adverse impact on AIS security.

The trend to reduce the numbers of AISs and combine the processing of unrelated contracts on a
remaining AIS can greatly increase the risk of unauthorized disclosure of classified information. The
increased risk comes from the result of having some users who are not authorized to access all of the
data, once it has been combined on one AIS. E.G., consolidating two dedicated-mode AISs can result
in the need for a system high, partitioned or multilevel mode AIS. Each of these modes requires a
particular level of trust to be met.

The use of new or existing technology to reduce more effectively costs is increasingly important to
contractors who must control operational expenditures. Contractors need precise security solutions
in the form of trusted products and subsystems in circumstances of serious vulnerability. Computer
hardware and software vendors need to meet the increased demand by continuing to produce a wide
variety of cost-effective trusted products and subsystems.

695

1991: A YEAR OF PROGRESS

IN TRUSTED DATABASE SYSTEMS

John R. Campbell

National Security Agency

9800 Savage Road

Fort George G. Meade, Maryland 20755-6000

(30 1) 859-4387

1991 has seen some significant gains in database security. This
panel will discuss some of these gains. Because of the number of these
gains, and the limited time for this panel, the presentations will be
short. However, the panelists will enjoy discussing these topics further
with you after the panel is completed.

The first significant gain is the availability of commercial
products. By the time of this panel, the user should be able to choose
systems designed to the TCSEC C2 and B 1 levels from a variety of
vendors. These vendors include ARC, lnformix, Oracle, Sybase and
Teradata. Other trusted systems are being developed. We are
fortunate to have panelists from three leading companies to discuss
some of these products. All three led the security efforts in their
respective companies. Jim Pierce of Teradata Corporation will discuss his
modular, massively parallel database machines and will share with you
future security plans of his company. Linda Vetter of Oracle Corporation
will talk about her highly flexible products designed for the TCSEC C2
and B 1 levels and of the two architectures of the B 1 systems. She will
also briefly discuss the distributed features of Version 7. Helena
Winkler-Parenty of Sybase Corporation II discuss her client- server
architecture and Sybase's future security plans.

A second significant gain in 1991 is the completion of the
Trusted Database Management System Interpretation of the Trusted
Computer System Evaluation Criteria. This completion required five
years of work and precipitated m3ny good debates on key issues in

696

database security. The lavender or near-purple color of the cover of the
Interpretation is appropriate as the writers did much penance to
complete this quality work. Mario Tinto, who lead the final effort and
was active throughout the development of the Interpretation will
discuss this work.

Gain #3 is that the evaluation of trusted database systems has
been started by the National Computer Security Center. As of this
writing, two products were under evaluation; others are in preparation
for evaluation. It is my experience that users want trusted database
systems that the Center has approved. Mike Hale, Chief of the Branch
responsible for these evaluations, will discuss these evaluations.

Gain #4 is that database security is maturing somewhat as a
discipline. Some very tough issues are being examined and understood.
For example, we know a lot more about the causes of, the problems
associated with and the potential solutions for polyinstantiation now,
than when we put it in a contract to force people to look at the
problem. An international panel, composed of the top researchers in
this area, was held at the Workshop on the Foundations of Computer
Security at Franconia, to argue this subject. Catherine Meadows, of the
Naval Research Laboratory, who chaired this lively panel, will discuss the
results with you

To make database security a success, we need good research
and development in this area. There has been such research and
development in 1991 and this is the last Gain that we wish to discuss. For
example, Rome Labs is sponsoring the development of a 82 system,
Oracle is examining the relationship between integrity and
confidentiality and we are supporting the development of a trusted
database system with A 1 MAC. Bhavani Thuraisingham, of MITRE, will
bring us up to date on such topics as distributed, multimedia, and
object-oriented database systems.

697

RECENT DEVELOPMENTS IN SOME

TRUSTED DATABASE MANAGEMENT SYSTEMS

Bhavani Thuraisingham, Ph.D.

The MITRE Corporation, Burlington Road, Bedford, MA

INTRODUCTION

Applications such as C3I, multimedia information processing, AI, CAD/CAM, and process control are becoming an
essential part of many military operations. While relational database management systems have been adequate for
present-day applications, complex operations of the future would require the power of representation of object-oriented
database management systems as well as the reasoning power of deductive database systems. In addition, many military
applications are being used in an increasingly distributed environment, requiring the operation of distributed database
management systems. Due to the sensitivity of the data processed by military applications, it is essential to provide
multilevel security for the database systems that are used in such applications. Distributed database systems, object
oriented database systems, and deductive database systems that are currently available have yet to incorporate multilevel
security.

Some of our recent work in database security has been focussed on investigating multilevel security issues for these
new generation database systems. Our other activities include research on trusted distributed database management
systems. The ultimate objective of our research is to be able to develop intelligent database management systems which
can operate in a multilevel secure distributed environment.

In this paper is given a brief overview of our work in trusted deductive database management systems, trusted object
oriented/multimedia database systems, and trusted distributed database systems. The motivation for this work as well as
the background are also given.

TRUSTED DEDUCTIVE DATABASE MANAGEMENT SYSTEMS

Ever since Colmerauer and Kowalski pioneered the use of predicate logic as a programming language, Mathematical
Logic has been applied to various areas of computer science such as database systems. It has not only been used as a
framework to study their properties, it has also been used as a basis for developing powerful intelligent database systems.
The frrst workshop on Logic and Databases held in France in 1977 discussed the formalisms of first order logic for
database systems, which subsequently led to the formalization of relational database concepts using the proof and model
theoretic results of first order logic. Further research activities contributed significantly to the development of advanced
logic programming languages, inference engines for database systems, treatment of integrity constraints, and in handling
negative, partial, and uncertain information. As a result, complex deduction and decision making processes have been
incorporated into commercial intelligent data/knowledge base management systems available today. Such systems are
called deductive database systems.

In the meantime, the recommendations of the Air Force Summer Study led to the design and development of
multilevel secure relational database management systems. In such database systems, users cleared at different security
levels can access and share a database with data at different sensitivity levels without violating security. Despite these
advances, logic programming language research and research activities in multilevel secure database management systems
remained largely separate. That is, a logic for reasoning in a multilevel environment or a logic programming system for
multilevel environments is not currently available. Thus, multilevel secure database management systems lack several
important features that have been successfully incorporated into conventional database management systems. They include
constraint processing, deductive reasoning, and handling efficient proof procedures.

We made an early attempt in 1988 to view multilevel databases through first-order logic. Although not entirely
successful, this approach helped gain an insight into utilizing formal logic to develop multilevel systems. That is,
classical frrst-order logic, being monotonic, was found to be an inappropriate tool for formalizing concepts in multilevel
databases. This is because it is possible for users at different security levels to have different views of the same entity. In
other words, statements that are assumed to be true at one security level can very well be false at a different security level.
Another contention is that first-order logic deals with only one universe (or world). In a multilevel database environment,
there is a world corresponding to each security level. In other words, the universe in a multilevel environment is

698

decomposed into multiple-worlds, one for each security level. Considerations such as these have led us to believe that a
special logic is needed for reasoning in a multilevel environment. From an examination of the various nonstandard logics
described in the literature, none appeared capable of being used for multilevel systems. Therefore, during the past year, we
have developed a logic for not only formalizing multilevel database concepts, but also for developing multileveldeductive
database systems [1].

The logic that we have developed for multilevel databases is called Nonmonotonic Typed Multilevel Logic
(NTML). It extends typed first-order logic to support reasoning in a multilevel environment We have also formalized
multilevel databases using NTML. In particular, the proof theoretic and model theoretic approaches for viewing
multilevel databases have been studied. We have regarded security constraints, that are rules which assign security levels
to the data, as integrity constraints for multilevel database systems. Techniques for integrity constraint processing have
been adapted for security constraint processing. Also, the essential points towards developing a logic programming
language based on NTML for developing intelligent multilevel database systems have been investigated. In addition,
extensions to NTML for knowledge-based applications have also been proposed. We believe that this work provides the
foundations for developing trusted deductive database management systems.

TRUSTED OBJECT-ORIENTED/MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

Object-oriented systems are gaining increasing popularity due to their inherent ability to represent conceptual entities
as objects, which is similar to the way humans view the world. This power of representation has led to the development
of new generation applications such as CAD/CAM, Multimedia information processing, Artificial Intelligence and
Process control systems. However, the increasing popularity of object-oriented database management systems should not
obscure the need to maintain security of operation. That is, it is important that such systems operate securely in order to
overcome any malicious corruption of data as well as to prohibit unauthorized access to and use of classified data. For
many applications, it is also important to provide multilevel security. Consequently, multilevel database management
systems are needed in order to ensure that users cleared to different security levels access and share a database with data at
different security levels in such a way that they obtain only the data classified at or below their level.

Much of the research on trusted object-oriented database management systems has focussed on developing multilevel
secure object-oriented data models. However, the data models that have been developed consider only the simple attributes
of an object. For example, the title, author, publisher, and date of publication are simple attributes of a book. Such
attributes can also be easily represented by a relational model. In contrast, the book cover, preface, introduction, various
chapters, and references form the components of a book and cannot be treated as simple attributes of an object The book,
consisting of these components, has to be collectively treated instead as a composite object. Composite objects involve
the IS-PART -OF relationship between objects. This relationship is based on the notion that an object is part of another
object Note that it is not possible to treat composite objects using a relational model without placing a tremendous
burden on the application program in order to maintain the structure of the complex structures, thus conferring upon the
object model another advantage over the relational model.

Multimedia systems, CAD/CAM systems, and knowledge-based systems are inherently more complex by their very
nature and, therefore, can be handled effectively only if their components are treated using composite objects. For
example, in multimedia systems, each document is a collection of text, graphics, images, and voice, and needs to be
treated as a composite object. In a CAD/CAM system, the design of a vehicle consists of designs of its components,
such as chassis, body, trunk, engine, and doors. Knowledge-based systems are being applied to a wide variety of
applications in medicine, law, engineering, manufacturing, process control, library information systems, and education.
These applications need to process complex structures. Therefore, support for composite objects in complex applications
is essential.

Another feature that needs to be supported by an object-oriented data model is versioning, which has been neglected
until now in secure models. In many object-oriented applications, such as multimedia ~ystems and CAD/CAM, it is
necessary to maintain documents and designs that evolve over time. In addition, alternate designs of an entity should also
be represented because of the need for choice. If security has to be provided for these applications, then some form of
version control should be supported by the model. Another advantage to providing version· control for secure applications
is the uniform treatment of 'cover stories' and versioning. Note that for many secure applications it may be necessary to
support cover stories where users at different security levels have different views of the same entity. The version control
feature supported by the model could be extended to support cover stories also.

699

Our recent work in trusted object-oriented database management systems is involved with developing a multilevel
secure object-oriented data model with support for composite objects and versioning. In addition, we have also
investigated issues on concurrency control and security constraints for trusted object-oriented systems [2]. We have
specified extensions to the multilevel object-oriented data model for supporting multimedia data such as voice, text,
graphics, images, and video. While the work that we have carried out is only the first step towards the development of
trusted object-oriented database systems with multimedia data handling capability, it has incorporated all of the essential
features of the object-oriented approach which will enable a useful trusted object-oriented database system to be developed.

TRUSTED DISTRIBUTED DATABASE MANAGEMENT SYSTEMS

The rapid growth of the networking and information processing industries has led to the development of distributed
database management system prototypes and commercial distributed database management systems. In such a system, the
database is stored in several computers which are interconnected by some communication media. The aim of a distributed
database management system (DDBMS) is to process and communicate data in an efficient and cost-effective manner. It
has been recognized that such distributed systems are vital for the efficient processing required in military as well as
commercial applications. For many of these applications, it is especially important that the DDBMS should operate in a
secure manner. For example, the DDBMS should allow users who are cleared at different levels access to the database
consisting of data at a variety of sensitivity levels without compromising security. DDBMSs that provide multilevel
user/data handling capability are called trusted distributed database systems (fDDBMS).

Recently we have been conducting research and development activities in trusted distributed database management
systems based on the relational data model. Much of our work has been focussed on a homogeneous environment [3].
This work includes (i) the design of a system architecture for a TDDBMS, (ii) the development of a mandatory security
policy for a TDDBMS, (iii) designing approaches for multilevel data distribution, (iv) designing strategies for secure
distributed query processing, (v) implementing a prototype secure distributed query processor, (vi) research on secure
distributed transaction management, (vii) simulation of secure distributed concurrency control algorithms, and (viii) design
and development of a prototype distributed security constraint processor.

We have also conducted a preliminary investigation on security issues for heterogeneous (also called federated)
database systems. Our focus here has mainly been on schema integration issues [4]. We are also investigating other
types of heterogeneity, such as handling different accreditation ranges and security policies

ACKNOWLEDGEMENTS

We gratefully acknowledge NSA, Rome Labs, SPAWAR, and CECOM for sponsoring our work in trusted deductive
database systems, trusted object-oriented/multimedia database systems, and trusted distributed database systems.

REFERENCES

[1] Thuraisingham, B., "A Nonmonotonic Typed Multilevel Logic for Secure Data/Knowledge Base Management
Systems," MTR 10935, The MITRE Corporation, Bedford, MA June 1990 (a version is published in the proceedings of
the 4th IEEE Computer Security Foundations Workshop, Franconia, NH, June 1991) ·

[2] Thuraisingham, B., "Issues on Developing a Multilevel Secure Object-Oriented Data Model," M1P 384, The MITRE
Corporation, Bedford, MA, October 1990 (a version has been accepted for publication in the Journal ofObject-Oriented
Programming)

[3] Thuraisingham, B., "Multilevel Security Issues in Distributed Database Management Systems," MTP 297, The
MITRE Corporation, Bedford, MA, July 1990 (a version has been accepted for publication in Computers and Security
Journal).

[4] Thuraisingham, B., "Schema Integration in Secure Heterogeneous Database Systems," Accepted for publication in
Database Programming and Design, 1991.

700

EXEOJl'IVE SUM.'1ARX .

Oracle and Security: Year in Review 1990-91
Linda l. Vetter, Director, Oracle Secure Systems

Oracle Secure Systems, formed in February 1989, is chartered with spearheading Oracle Corporation's
efforts to research, design, build and deliver high security relational database management system
(A DBMS) products and services to commercial and government organizations worldwide. The past year
for the Secure Systems division has been marked by a number of major milestones. During the year,
Oracle made substantial progress in improving and refining its multilevel secure (MLS) relational database
management system, Trusted ORACLE ADBMS Version 1.0, in preparation for its upcoming commercial
release. In addition, Oracle Secure Systems contributed significantly in the area of standards creation,
MLS application development, and other areas.

Research and Development Contracts

Oracle Corporation continues to participate in a number of secure ADBMS projects within the federal
government. Oracle is working with Gemini Computers of Monterey, California, to complete its MLS
ADBMS contract with the NCSC. Oracle and Gemini are in the process of porting Trusted ORACLE to the
Gemini A 1-targeted platform. Work is progressing satisfactorily on this challenging task. In conjunction
with this contract with the NCSC, Oracle's MLS RDBMS was the focus of a day long Technical Review
Group (TAG) meeting in Bethesda, Maryland, in January 1991. Updated versions of MLS Oracle systems,
documentation, and test facilities have been delivered to NCSC during the year.

Oracle, SRI, and Gemini also have continued efforts related to their Air Force RADC SeaView contract.
This effort was publicly presented at a peer review meeting in Oakland in May 1991. This work also has
been proceeding well with various interim defiverables completed during the year.

Standards, Portability and lnteroperabllity

1991 has been a noteworthy year for the development of standards for multilevel secure database
management systems. The Trusted Database Interpretation (TDI) of the Trusted Computer System
Evaluation Criteria was published in April1991. Oracle played an active role during the development of
the TDI by participating in the various TDI working groups and fora over the past few years. In addition,
Oracle has actively participated in the review of the Information Technology Security Evaluation Criteria
(ITSEC), the harmonized criteria of France, Germany, Holland and the United Kingdom through the
submission of written comments on each draft and attendance at ITSEC workshops in Brussels, Belgium.

The Secure Systems group also currently participates in standards committees concerned with multilevel
secure DBMS application portability and interoperability issues. Primary among these is the POSIX 1003.6
Security Working Group and the Trusted Systems lnteroperability Group (TSIG). The POSIX 1003.6 effort
defines an interface for security functions for a portable operating system. The TSIG focuses on
interoperability issues in trusted network environments. Oracle also closely follows and contributes to
other standards initiatives in order to conform with as many standards as possible. For example, Oracle's
submission of a group access control feature called "roles" has been accepted as a part of a future ANSI
SOL standard.

Market Requirements

The acceptance of advanced security software products on a broad basis will require products that are
easy to use while providing high functionality and security. Oracle has spent substantial effort trying to
gauge the needs of potential users of MLS DBMS products to identify the requisite mix of functionality

701

and security needed by the marketplace.

The Oracle Security Advisory Committee (ORASAC) was formed this year to provide a channel of
communication between Oracle and potential users of MLS RDBMS products. ORASAC is a committee
composed of members of Oracle Secure Systems and representatives from government and industry
who meet on a periodic basis to exchange information on the development and implementation of
Trusted ORACLE RDBMS and related applications. ORASAC has proven to be a successful vehicle for
requirement gathering, implementation analysis, and educational exchange for both Oracle Corporation
and ORASAC members.

Evaluation

Trusted ORACLE RDBMS Version 1.0 (target Class B1) and ORACLE RDBMS Version 7.0 (target Class
C2) were accepted into the NCSC's Trusted Product Evaluation Program in June of 1991. Oracle
Corporation is pleased to be participating in the program and is proud to have two products under
evaluation. The initial evaluation platform is Hewlett-Packard's HP-UX BLS 8.04 multilevel secure UNIX
operating system. Multiple meetings between Oracle Secure Systems and the NCSC evaluation team
already have been held and extensive documentation delivered to team members.

Technology

Development of Trusted ORACLE V1.0 has progressed tremendously over the past year as it prepares to
enter its beta testing phase. Users will have the option of implementing Trusted ORACLE database
applications using one of two modes: operating system constrained mandatory access control (MAC)
enforcement or RDBMS/trusted subject-enforced MAC.

Trusted ORACLE RDBMS has many advantages regardless of which run-time mode is chosen, and in
both cases users see data classifications maintained at the individual row leveL Trusted ORACLE
minimizes redundancies between the operating system (OS) and RDBMS, for example, user identification
and authentication is defined at the OS level and is not duplicated within the RDBMS. In addition, valid
sensitivity labels and their dominance relations are defined and modified via MLS OS facilities, thus
eliminating the need to re-define or re-implement such functions within the RDBMS. In general, Trusted
ORACLE provides efficient integration with OS security mechanisms, maximum portability, hardware
configuration flexibility, standards compliance, and functionality.

The OS MAC mode requires explicit isolation of each component of the system, the secure operating
system, DBMS, or network for example, with each component enforcing a specific portion of the overall
security policy. This implementation requires that the security mechanisms of a component be
constrained from bypassing or re-implementing any of the security mechanisms of any more primitive
(underlying) component of the secure system- i.e., the DBMS must run without any special OS security
privileges. This mode is designed to meet the TDI requirements for "Two TCB Subsets Which Meet the
Conditions."

There are certain environments in which the OS MAC mode can be particularly advantageous: where
there is a high proportion of low-level to high-level data; where there is a high proportion of single-level
applications or users; where there is a small number of data sensitivity labels; where requirements for high
assurance MAC apply; and/or where pre-certified, heterogeneous hardware configurations exist.

Trusted ORACLE RDBMS Version 1.0 also provides selective MAC enforcement within the RDBMS itself.
Trusted ORACLE must operate as a "trusted subject" when configured to run in this mode; that is,
Trusted ORACLE must operate with one or more OS security privileges enabled (e.g., to allow apparent
"down-grades").

702

In this mode, the data sensitivity labels are physically stored within the database and are provided by
Trusted ORACLE upon subsequent use of the data. Trusted ORACLE still enforces discretionary access
controls on database named objects as before, but it uses the data sensitivity labels to enforce mandatory
access controls itself, only relying on the secure operating system to provide label and dominance
definitions. Trusted ORACLE logical database storage objects still map directly to one or more physical
storage objects, however, when running in this mode the storage objects may contain multilevel data; OS
storage objects (e.g., entire files) are labeled at the highest level of data contained within the object. In
other words, a "database high" file will contain multilevel labeled data, for example rows at secret,
confidential and unclassified.

There are certain environments in which the DB MAC mode will be particularly advantageous: where large
numbers of data sensitivity labels are needed; where numerous applications or users require multiple
levels of data simultaneously; and/or where multilevel referential and entity integrity enforcement justifies
partial relaxation of strict MAC enforcement.

Application Development Analysis and Technology Transfer

Oracle Secure Systems this year also continued analysis of the considerations and implications of
application development in an MLS RDBMS environment. One example of this effort was well received in
a research paper presented at the Fourth RADC Workshop in Database Security which described the
conflicts between enforcing strict mandatory access controls and enforcing multilevel integrity in an MLS
RDBMS. Topics discussed included entity integrity, referential integrity, transaction integrity and value
constraints enforcement and tradeoffs to consider between integrity and strict MAC security enforcement
Information of this type should help application developers achieve more satisfactory results in initial MLS
application design.

Oracle has been developing multiple ways to ensure the successful transfer of new MLS RDBMS
technology to users. Secure Systems has created and taught introductory courses on Trusted ORACLE
RDBMS and on MLS application design to internal staff and customers around the world during the past
year. In addition, new requirements for support staff involved in sensitive security work are being
addressed.

Overall, Oracle Corporation has continued its multi-faceted approach to database security, making
significant progress during the year in addressing research and development, standards, requirements,
product evaluations, and technology transfer issues.

703

1991 SYBASE Secure Products:

Executive Summary

Helena B. Winkler-Parenty

Sybase, Inc.

6475 Christie Avenue

Emeryville, CA 94608

Overview
During the past year Sybase has continued its long standing commitment to building trusted pro
ducts. In addition to supporting the Bl-targeted SYBASE Secure SQL Server™ and SYBASE
Secure SQL Toolset™, which have been generally available for two years, Sybase has been
developing two other secure products. Sybase is currently working on both a C2~targeted upgrade
to the standard SYBASE SQL Server™ and a second and considerably more powerful release of
the Bl-targeted Secure SQL Server.

C2 Targeted DBMS
Sybase is currently modifying its standard SQL Server to comply with the Trusted Database
Interpretation (TDI) at the C2 level. The standard SQL Server already contains a mechanism
which allows users to define Discretionary Access Controls on objects that they own. Database
owners can grant or revoke the privilege to use a database or create tables in it. Table and view
owners can grant and revoke the privilege to Select, Update, Insert or. Delete rows from a table.
In addition, Select and Update protections can be appliedto individual columns within a table.
Owners of stored procedures determine who has execute permission on their stored procedures.
The DBMS validates each user's request against the permissions that appear in the access control
lists that are associated with each database, table, view, and stored procedure.

SYBASE provides three distinct roles: System Security Officer (SSO), System Administrator
(SA), and Operator (Oper). These roles allow multiple users to be given SSO, SA, or Oper
privileges, without loosing individual accountability. By dividing the system privileges into three
categories, viz. security relevant, system administration, and backup, SYBASE allows for more
finely grained control than is traditionally provided.

Auditing is an important component of a trusted system. An auditing mechanism is being incor
porated into the SQL Server that is tailored to the requirements of a relational DBMS. Through
this, security relevant system activity is recorded in an audit trail, which can be used to detect
attempted misuse or penetration of the system. The SQL Server and the Secure SQL Server have
extensive auditing capabilities. Events are audited at the discretion of the SSO, permitting audit
ing to be customized to the needs of individual installations. Examples of auditable events are:
specific user's queries, and all user access to specified databases or tables. The SSO can employ
the full power of Transact-SQL™, Sybase's extended SQL language, and the Secure SQL Toolset
to review the audit trail, greatly reducing the effort usually associated with this task.

704

Bl Targeted DBMS
The next release of the Secure SQL Server will provide aU of the capabilities of the standard
SQL Server plus the additional requirements of the B1level of trust. This release builds on
Sybase's customer experience with the previous release of the Secure SQL Server, and provides
significantly more powerful capabilities. The next release of the Secure SQL Server will contain
all of the features discussed above for the C2 targeted SQL Server, in addition to the B1 specific
features mentioned in this section.

SYBASE augments a multilevel secure (MLS) operating system's Trusted Computing Base
(TCB) with the trusted subject Secure SQL Server. The Secure SQL Server enforces DBMS
mandatory access control by labeling aU DBMS subjects (processes) and storage objects (rows),
and mediating all accesses between DBMS subjects and objects based on their security labels.
The MLS operating system, on which the Secure SQL Server is running, provides mandatory
access control for operating system objects, typically files or segments and protects the DBMS
itself.

The Secure SQL Server's security policy is based on the widely accepted Bell-LaPadula Model.
In order to select data, the user's security level must dominate the security level of the rows being
accessed, otherwise they will not be retrieved. Updated and inserted rows inherit the security
level of the user performing the operation. Sybase's mandatory access control goes beyond the
B1 level and applies to all objects, even the data dictionary, so that authorized users will not even
be aware of the existence of tables or databases that they are not authorized to see.

The auditing mechanism of the SQL Server is enhanced in the B1-targeted product with the
inclusion of security labels and mandatory access control. Row access can be audited based on
either the identity of the user performing the access or the table in which they are contained. To
minimize the number of rows that are audited a minimum row security level can be specified and
only the access to rows with at least this classification will be audited.

Conclusion
Sybase has pioneered the Client/Server Architecture, Server Enforced Integrity, and the Trusted
Subject Architecture. In 1991 Sybase is developing trusted products at two different levels of
trust, the standard SQL Server and the Secure SQL Sever. These are designed to meet the C2
and B1 levels of trust respectively. Sybase is expanding upon its original Secure SQL Server pro
duct to better meet the needs of industry and government.

Copyrighted e Sybase, Inc., 1991. All rights reserved. SYBASE is a registered trademarks of Sybase, Inc. SYBASE Secure SOL
Server, SYBASE Secure SOL Toolset and SYBASE SQL Server are trademarks of Sybase, Inc.

705

Executive Summary

Panel: Requirements and Experiences

Dennis Gilbert, Moderator

National Institute of Standards and Technology

Panel Members:

Kenneth Cutler, American Express

David Ferraiolo, NIST

Michael Ressler, Bellcore

Aylen Hasagawa, Allstate

Hal Tipton, Rockwell International

Until recently, the U.S. government's view of((trusted((technology for computer
and communications systems related largely to preserving national security. The
view heavily emphasized the security requirement ofconfidentiality--preventing
unauthorized disclosure. Recently, however, the government is paying increasing
attention to other computer security requirements, such as integrity and availability.
In addition, trusted technology is being explored for protection ofunclassified
information ofvarious types in civil agencies. Efforts are in progress to further
broaden the notion of trust to include safety and reliability. There are signs that such
requirements are increasingly important to users ofboth government and
commercial systems.

System users need standards and guidance that move beyond the current DoD
Trusted Computer System Evaluation Criteria (TCSEC or Orange Book) approval.
They look for standards and guidance which support the production ofmore robust,
trustworthy systems which address the full range of security requirements.

NIST conducted a study to help it better understand and meet federal needs for
protecting computer-based information. In the project, which involved the
cooperative effort ofpeople from over two dozen government and industry
organizations, NIST looked at technical information protection methods used in
computers or application systems. The study explored organizations' experience in
developing trust or reliance on information systems which are important to the
organization's mission, including safety-critical systems. Participants represented a
wide variety of perspectives, environments, application, and system architectures.

706

A primary goal of the project was to identify requirements for new federal
standards and guidance documents on protection of sensitive and critical information
in systems of the 1990's. The project drew upon the significant experiences ofmany
organizations in specifying, implementing, and using computer-based information
system protection mechanisms. These experiences are helping NIST identify
security requirements and develop near-term guidance on the effective use of
commercial security products. NIST expects that commercial and other private
sector organizations, having given significant input to the requirements, will
consider adoption of the standards when they are developed.

Another primary aim of the project was to determine whether a core set of
broadly-applicable information protection objectives and technical requirements
exists. These requirements would form the basis for trusting the security capabilities
of systems and products that implement them. This is true when the requirements
are implemented in commercial products and federal systems and supported by
appropriate methods for determining their correctness and effectiveness.

In a similar vein, the National Research Council's System Study Committee, in its
report ..Computers at Risk,t• recommended the promulgation of comprehensive
generally accepted system security principles (GSSP). The GSSP would be ..a basic
set ofsecurity-related principles that are so broadly applicable and effective for the
design and use'ofsystems that they ought to be part of any system with significant
operational requirements.•• Efforts by NIST and others are underway to explore
these and related issues, and to coordinate these activities.

This session presents the results of the NIST study of organizations' requirements
and experiences described above. It also brings together several participants actively
attempting to define the core set of information protection requirements. They
present a status report and discuss the significant issues and challenges.

707

Executive Summary

Panel: Risk Management

Irene Gilbert, Moderator

National Institute of Standards and Technology

Panel Speakers

Suzanne Smith, Los Alamos National Laboratory

Deb Bodeau, The MITRE Corporation

H. Carol Bernstein, IBM Laboratory Council

The operation, protection, and management of automated information
systems has become critical in the 1990's. Business and organizations are
increasingly recognizing the importance of protecting information systems
as evidenced by recent laws, policy, directives, and guidelines. We must not
only ensure that appropriate security controls are in place, we must also
address business categories that have a large impact on the survivability of
our organizations.

This panel will discuss the legal aspects of computer security, general
liability concerns, and insurance issues in the 90s. The greatest return on
limited financial resources and manpower can be realized only when we
carefully select and implement appropriate controls as they apply to the
following business categories:

• Legal
Compliance

Policy

Directives

Federal law

State and Local statutes

• Liability
Financial

Safety

Reliability

• 	Insurance

Hardware

Facility

Warranties

Operation

Service

Availability

708

PANEL: Specifying, Procuring, and Accrediting MLS System Solutions

Joel E. Sachs

Area Systems, Inc.

2841 Junction Ave., Suite 201

San Jose, CA 95134

408-434-6633

Panel Overview

Both the availability of MLS products and attempts at procuring MLS system solutions have
increased in recent years. Several of these procurements have already been deemed less than
successful. A number of reasons have been suggested: integration of these products is not straight
forward, defining and mapping solution requirements to them is difficult, and certification and
accreditation are hard and not uniform. Procuring an MLS system solution that results in an
accreditable secure solution is not simple; moreover, there is debate and confusion as to what
should be specified during the initial phases of a procurement that will help aU parties involved
throughout the life of the program. This panel will explore issues associated with developing a
specification, statement of work, and evaluation criteria for procuring an MLS System Solution
successfully. The critical deliverables and their role in certification and accreditation will also
be examined.

The panel will explore these issues by role playing the various parties in the procurement process,
as opinions vary depending on one's position within the process. Each of the seven panelists will
act on the behalf of an identified role. These roles are: End-User Organization, Program
Management Office, Advising Security Agency (and also Certification Body), Designated
Approving Authority, Systems Integrator, Security Engineering Subcontractor, Vendor. The
panel will discuss the issues associated with the pre-draft RFP, pre-RFP, pre-award, and post
award phases of an MLS System Solution procurement. A specific example problem will be used as
a case study. The panelists will discuss and debate their needs and concerns regarding the
development of a MLS System Solution, with respect to the role that they are playing. Specific
questions will be asked of the panel relative to each procurement phase.

Information is provided in the following sections to aid the audience with a preliminary
understanding of the topics and issues of specifying, procuring, and accrediting MLS System
Solutions. These Sections include a description of the example MLS problem to be considered by
the panel, example issues and concerns of the various parties, example critical questions for the
panel, as well as a paper entitled "A Framework For Developing Accreditable MLS AISs".

MLS Case Study Problem Description

The panel will consider the following problem: An end-user organization would like to have
automated support for their analysis, planning, and operations activities. The users are
distinguished by the jobs they are authorized to perform, i.e., analysts, planners, and operations
personnel. All users have at least a Secret clearance; some have a Top Secret clearance. This
system is to be developed and fielded in two phases. In the first phase, these three activities are to be
done using segregated processing in order to keep these activities and their results separated from
one another. The analysis data is Top Secret. The planning and operations data are Secret but
must be kept separate.

The various users are spread throughout a closed facility. The majority of the data lends itself to
be handled by a DBMS. Moreover, the data content usually stays constant as it evolves from the
analysis to the operations stage. However, some data does not move to the next stage and other data
is added at the next stage. In addition, the system must support the ability to make external
connections to Top Secret systems to allow the import ofTop Secret information for analysis.

709

The second phase of this system is to provide the capability for a single user to simultaneously do
either a) analysis and planning, or b) planning and operations, but to disallow both analysis and
operations to be conducted together in a single session. The purpose here is to permit selected
planners to review new analysis information to update current plans and to allow selected
operations personnel to update plans based on operational status. In addition to these changes, the
second phase must also support bidirectional communications on external connections to permit
the export of plans and operations as well as the import of analysis data.

As additional considerations, i.e., options, the end-user organization is interested in two things.
One is a simplified downgrading process, e.g., a "single button" to move a developed analysis
stripped of strictly Top Secret data into a plan. The other is to utilize existing ADP resources in the
new system.

Panel Roles, Descriptions, and Areas ofConcern

End-User Organization

The end user organization has a requirement for a system solution. The results of this
procurement will be delivered to this organization for their use.

Their main concerns are how to .ensure that they get what they want, that it will be accreditable,
and how much will it cost? They usually understand functional requirements reasonably well but
often do not understand security and assurance requirements and security issues.

Program Manager's Office [PMO]

The PMO is responsible for writing the RFP, awarding the contract, and superv1smg its
execution. (Typically, a separate organization might be used to develop a system specification for
the SOW. For the purposes of this panel, the specifier will be considered merged with the PMO.)

The PMO's main concerns are system specification, cost, schedule, accreditation, and measuring
the prime contractor's progress and compliance. The PMO understands the functional
requirements as communicated by the end-users, but may not fully understand the security
requirements, issues, and assurance needs that result from the mission and threat context.

Advising Security Agency I Certification Body

The Advising Security Agency is the End-User's and/or PMO's security arm that helps monitor
the progress of the program to ensure that security within the program is adequately addressed.
The Certification Body gathers the assurance evidence and performs risk analyses on the system.
(For the purposes of this panel, these two roles have been combined as often happens in practice.)

Their main concern is whether the delivered system meets the security requirements specified in
the RFP, security functionality and assurance. The certification body must provide enough
evidence to allow the DAA to make a proper decision regarding its accreditation.

Designated ApprovingAuthority {DAA}

The DAA is the individual responsible for the operational aspects of the system. It is this
individual's responsibility to approve the system for operation.

The DAA's main concern is whether the system meets its operational requirements and its
operational risk has been reduced to an acceptable level. Based on the evidence provided during
the certification process, the DAA must make a decision whether the operational risk is acceptable
given the evidence provided and the system's mission, and accredit or fail the system for

710

operation. The DAA's accreditation of the system is his indication that he feels the risk is low
enough or the operational need is so high to allow the system to operate.

Systems Integrator

The Systems Integrator is responsible for the development and integration of the end-system as
well as the management of all the subcontractors involved in the effort.

Their main concerns are how to provide the required functionality, security, and assurance
within the budgetary and time constraints stipulated in the integrator's proposal. Other areas of
concern include how to manage the security engineering effort to produce a functional and useable
system and how to handle requested changes to the end-system.

Security Engineering Group/Subcontractor

Security Engineering is responsible for the security portion of the overall system development.
This team is composed of internal systems integrator personnel, a security subcontractor, or a
combination of both.

This team's main concerns are: how to relate component policies to the overall system policy, the
trust requirements for each component, how to integrate trusted and untrusted systems, how to
integrate multiple products into a single secure solution, and how to provide required assurance
evidence. They may also be involved in determining the security requirements and policy,
determining the appropriate assurance level, and how to provide assurance evidence.

Vendor

Vendors provide products that are used as part of end-user system solutions.

Their main issues are: how to relate their product features to the desired functionality and
assurances needed within an MLS system solution and how to advise the systems integrator on the
best use of these features.

Example Questions for Panel

Pre-Draft RFP Questions:

1) Should SOW explicitly state detailed security requirements, e.g., require either a
compartment for the planning data or DAC, or just simply state need to segregate planning
from operations data?

2) How should the SOW handle the migration of analysis data to planning data to operational
data (i.e, the downgrading I transmission issue)? Should a trusted application be explicitly
required?

3) What can be done at this stage to ease the certification I accreditation process? Who should do
it? How should it be requested?

4) How should threats be determined and documented?
be provided to prospective bidders?

What information about threats should

5) Who should identify or develop the following

• Assurance Requirements

• Security Architecture

• Assurance Deliverable Schedule

• MLS Concept of Operations

711

• System-Wide Security Policy • System-Wide Security Policy Model

• Certification and Accreditation Plan • System Threat List and Risk Analysis

Who provides inputs, who writes, who reviews, who is the intended audience? When should
these be done? Should the SOW be explicit? What should the DIDs require?

Considerations: a) It's more work for either the Specifier, PMO, Certification Body, or
Systems Integrator; b) Not everything is known upfront; c) If not done up front, bidders get to
decide what is required, and some may use this flexibility to undercut other bidders by
potentially deriving insufficient requirements.

Pre-RFP Questions:

6) 	 Who should develop/determine the MLS Concept of Operations? The PMO, Advising Security
Agency, or Systems Integrator? When?

7) 	 What steps can be taken to ensure that an MLS system solution is proposed, not just an MLS
operating system?

8) 	 When should the Advising Security Agency, Certification Body, or DAA become involved?
How and to what degree? At different stages who are they helping and to whom are they
responsible? Should this be reflected in the RFP and SOW? How?

9) 	 How and when should the overall assurance requirements be given? How should they be
determined?

10) 	 Should a Certification and Acreditation Plan be included in the RFP? If not, when should it be
developed? How should it be specified that the system must be certifiable or accreditable?

Pre-Award Questions:

11) 	 Should Certification and Accreditation be addressed in the Proposal? How?

12) Which factors should be considered in the proposal evaluation criteria?

a) the Technical approach? methodologies? architectures? trade-offs?

b) the Assurance I Certification and Accreditation approach?

c) the Participating Personnel?

13) 	 As engineering process capability testing becomes routine, should security tests and exercises
be administered as part of the evaluation ofthe bidders? If so, how should tests be given? If so,
who should take the test? Should it be a group test?

Post-Award Questions:

14) 	 How should the DAAs of the external systems to which the proposed system connects be dealt
with?

15) 	 How should the detailed security requirements be determined? How and when should they be
delivered?

16) 	 At what times within the development I certification process should assurance evidence be
provided? Who is to review this evidence? How should it be developed?

17) 	 How should component policies be related to an overall system policy?

712

18) 	 How should assurance evidence be generated for an MLS System Solution that is composed of
multiple trusted and untrusted products?

19) 	 How can vendors provide functional capability to assist in the integration of their products
into the system solution?

20) 	 What assurance evidence can a vendor provide that enhances a product's appeal for use in a
secure system solution for the System Integrator, Security Subcontractor, or Certifier I DAA?

713

Executive Summary

TRUSTED APPLICATIONS

IN THE REAL RLD

Stephen T. Walker, Moderator

Trusted Information Systems, Inc.

3060 Washington Road (Rt. 97)

Glenwood, MD 21738

(301) 854-6889

Panelists

Sam Doncaster, Digital Equipment Corporation

Mal Fordham, Grumman Data Systems

Helmut Stiegler, Siemens Nixdorf

Clark Weissman, Unisys

After ten years of trusted system development by computer vendors and
system integrators, it is time to gather together our thoughts and
experiences into a set of lessons learned and common sense guidance.

This session will highlight the practical insight of a highly experienced
set of system implementors and vendors from the U.S. and Europe and
identify where things have gone well or badly and why. The session will
begin with short summaries of each speaker's experiences and will then
move to a panel discussion with questions and comments from the
audience to highlight our collective wisdom from efforts of the past ten
years.

Individuals seeking insight into practical experiences with applying
trusted systems and those with experiences to contribute are
encouraged to attend this session.

This session expands upon the issues and topics developed in the
fielding COTS Multilevel Security Solutions: The Next Step
which occurs 1400-1530 on 4 October 1991 in the Blue Room.

714

Executive Summary

WINNING STRATEGIES IN INFORMATION SYSTEMS SECURITY

EDUCATION, TRAINING, AND AWARENESS

A panel digcussion of programs which have met with success in implementing the

education, training and awareness provisions of Pl100-235, the Computer Security

Act of 1987.

Moderator: W.V. Maconachy, Ph.D.

Chairman, National Computer Security Educators' Group

Program Summary

This program is sponsored by The National Computer Security Educators' Group

(NCSEG). The program will serve as a forum for practitioners in computer security

education, training, and awareness (ETA) to present their views on workforce ETA.

The panel participants represent a cross section of government and private sector

experts who are implementing ETA programs in their organizations. During the

discussions, the panel members will illustrate how they are reaching their respective

workforce with COMPUSEC ETA programs. The discussions will be open to the

audience for debate, additional information, and other points of view.

Discussion

It has been several years since the passage of the Computer Security Act of 1987.

The act prescribes certain measures be taken by federal agencies to ensure the

security of computers and computer systems which contain government information.

This mandate from Congress has resulted in plethora of activity by federal agencies as

they each, independently, respond to the spirit as well as the letter of the law.

However, lots of activity may not equate to movement; or at least movement in a

specified direction. One of those unspecified directions is the area of providing

COMPUSEC ETA to the federal workforce. This program is one of a series of activities

sponsored by the NCSEG that strives to provide the thread of continuity needed in

the federal community to guide those implementing the ETA requirements of Pl100

235.

715

