
Go Ahead, Visit Those Websites,
You Can’t Get Hurt ... Can You?

June 3, 1997

James S. Rothfuss Jeffrey W. Parrett
rothfuss1@llnl.gov jeff_parrett@peoplesoft.com
Lawrence Livermore National Laboratory PeopleSoft
P.O. Box 808 L-315 4305 Hacienda Drive
Livermore, CA 94550 Pleasanton, CA 94588

This work was performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under contract no. W-7405-Eng-48

UCRL-JC-126433

ABSTRACT
Browsing (surfing) the World Wide Web (the web) has exploded onto the Internet
with an unprecedented popularity. Fueled by massive acceptance, the web
client/server technology is leaping forward with a speed that competes with no other
software technology. The primary force behind this phenomenon is the simplicity of
the web browsing experience. People who have never touched a computer can now
perform sophisticated network tasks with a simple point-and-click. Unfortunately, this
simplicity gives many, if not most, web wanderers the impression that the web
browser is risk free; nothing more than a high powered television. This misconception
is dangerous. It creates the myth that a user visiting a website is immune from
subversive or malicious intent. While many want you to believe that surfing the web
is as simple as using any other household appliance, it is not like surfing television
channels, it is bi-directional. You can learn a lot of useful information from websites,
but, either directly or indirectly, websites can also learn quite a bit about you. Of even
more concern is a website's potential ability to exert control over the local computer.
This paper tries to consolidate some of the current concerns that you should consider
as you jump into the surf.

WHO IS THE BAD GUY: SERVER VS. CLIENT
In the past, most network computing was done between two consenting parties with some level
of trust between the parties (there are a few exceptions, such as anonymous ftp). With the web
architecture the model has changed radically. In any web interaction there are two sides: the
client (your browser) and the server (the website). In most normal web configurations, websites
open themselves to some or all of the network population without any authentication or
authorization. Likewise, the web browser often connects to the server with limited knowledge of
who owns or operates the web server. Both must exist to make the web work, but both should be
concerned about the intentions of the other.
The website owner must protect himself from those members of the internet community intent on
doing harmful or embarrassing things to the server. There have been many cases where
infiltration into websites of high-profile agencies has resulted in damage and great
embarrassment. These website break-ins tend to be well covered by both the conventional and

internet news media. Perhaps not so well publicized are the threats to you when you are
browsing the web.
The browser is the software that you run on your local computer, enabling it to access
information from a website. Currently the two premier browsers are the Netscape Navigator and
the Microsoft Internet Explorer. The individual using the browser is often under the delusion
that their web connections are completely anonymous and free from any intrusion into their local
computing environment.
Web connections have another distinction over older network connections. It is the reason that
website Universal Resource Locators (URLs) appear on television, magazines, and product labels
while ftp addresses never got beyond the "computer geek" stage. Web surfing is easy. You do
not have to know about directory structures, filename syntax, ftp commands, and so on. The bad
news is that you do not have to know about Java, JavaScript, JScript, downloading, plug-ins,
helper applications, compiling, CGI, or the connected host. You do not have to know where you
are, where you are going, what is happening, or what is going to happen with the next click.
There may or may not be visual clues. Even if visual clues are presented, you cannot always trust
them. It is easy to wander the web in reckless abandon. Unfortunately, the safety of the client is
not insured and your lack of awareness may be subjecting your local computing environment to
great risk. Even if you are attentive, the current browsers' lack of adequate logging and security
options often make it difficult to take a cautious route. The remainder of this paper will focus on
educating you about the threats, concerns, and protections on the client side of a web interaction.

TOOLS AND ATTACKS
As the desire to increase the web server capabilities gains momentum, the interactions between
the client and web server becomes more complex. As the complexity grows, so does the risk.
Following is a discussion of some of the more popular technologies, and associated threats,
which are being incorporating into the web.

CGI: Can Get Information
The Common Gateway Interface (CGI) is a standard for interfacing external applications with
information servers, such as web servers [1]. The programs can be written in any programming
or scripting language. The CGI program communicates to the web browser by creating HTML
text "on the fly" and sending it across the network to the browser. In effect, a CGI program can
create a dynamic HTML page. Certain browser and server environment information is made
available to the CGI. Refer to Table 1 for an example of this information. The CGI program also
can obtain information from the browser user via an HTML forms dialog. As with any program,
the information gathered by a CGI program can be processed immediately, or stored indefinitely
at the website for some future use.
A great deal has been written about the perils of using the CGI. However, most of the risks
associated with the CGI are to the web server [2][3]. From the browser perspective a URL has
been requested and a page was returned. While a program cannot mount a direct attack on the
browser through the CGI, dynamic execution of programs can enhance the server's ability to
obtain sensitive information or to mount tertiary real-time attacks on other vulnerabilities of the
client operating system.
An example of a unique attack that CGI makes possible might be called "cyber social
engineering." With CGI comes the ability to produce an automatic process which, through the
use of seductive web pages and non-threatening questions, lures the victim into divulging
valuable information. CGI allows the website to dynamically customize the sequence of web

pages and form questions with each phase building on the victim's past website interactions.
With this stored information, a website could build visitor dossiers and eventually, through days,
weeks, or months of seemingly innocuous question/answer sessions, piece together damaging
information.
While CGI scripts cannot directly manipulate files on a client system; they can, along with help
from HTML forms, upload files with the browser user's consent. Fortunately, the CGI script
cannot be pre-loaded with a defined file name and therefore requires the browser user to select
the input file from their local system. However, once again through the use of cyber social
engineering, the victim could be tricked into consenting to an undesired file upload.

Table 1
Information Available From The Server

The following table was generated by a facility at
http://hoohoo.ncsa.uiuc.edu/cgi/examples.html. Anyone
can go to this server and trigger the cgi script from their
browser. The server will return the information the server is
able to obtain from the client.

CGI/1.1 test script report:

argc is 0. argv is .

SERVER_SOFTWARE = NCSA/1.5.2
SERVER_NAME = hoohoo.ncsa.uiuc.edu
GATEWAY_INTERFACE = CGI/1.1
SERVER_PROTOCOL = HTTP/1.0
SERVER_PORT = 80
REQUEST_METHOD = POST
HTTP_ACCEPT = image/gif, image/x-xbitmap,
image/jpeg, image/pjpeg, */*
HTTP_USER_AGENT = Mozilla/3.01 (Macintosh; U;
68K)
HTTP_REFERER =
http://hoohoo.ncsa.uiuc.edu/cgi/examples.html
PATH_INFO = /foo
PATH_TRANSLATED = /u/Web/foo
SCRIPT_NAME = /cgi-bin/test-cgi
QUERY_STRING =
REMOTE_HOST = cso.llnl.gov
REMOTE_ADDR = 128.115.85.123
REMOTE_USER =
AUTH_TYPE =
CONTENT_TYPE = application/x-www-form-urlencoded
CONTENT_LENGTH = 9
ANNOTATION_SERVER =

Another harmful aspect of CGI programming is that an automated real-time attack can be
mounted against the client. The CGI does not inform the website visitor that it has started a
program unless specifically programmed to do so. The visitor may be lead to believe that they are
looking at a passive HTML page when, in reality, a program has been triggered that is actively
attacking the client through one or more of the other network facilities (i.e. sendmail, ftp).

Beware Of Servers Bearing Gifts
Have you ever clicked on a website URL and sat back as a file was downloaded and opened by
another local application? Through the use of MIME types, servers can tag files in a fashion
which enables the browser to recognize them and open the proper application, "helper", or "plug-
in". These applications usually reside on the client before the website was visited, so they are all
assumed to be trusted programs. If they do not exist you will often be given instructions on how
to obtain them.
Envision the following scenario: you arrive at a website called www.sexygirls.com which
advertises several seductive documents. When you click on the URL, the document is
downloaded and you are presented with the instructional pop-up "Cannot open document, please
install the document viewer". Of course, you do not know where to get the viewer, but those
courteous folks who prepared the website have supplied a URL that will download the viewer
onto your client. Wanting to get a look at the document as soon as possible, you click on the
download URL and then click on the document. The document is easily opened by the locally
running viewer. What is not expected is that while you are viewing the document your modem
sound is turned off, the connection to your internet service provider (isp) is dropped, and your
modem dials up another isp using a 900 phone number. From the time this switch takes place
until the time you disconnect, the new isp will be charging $3.00 per minute for their
connection. This scenario is real. A civil action is currently in the courts against the owners of
www.sexygirls.com [4][5][6].
Caution must be taken in downloading seemingly valuable extras. You are essentially
downloading native code to run on your system and trusting the author not to do bad things. The
most common defense is to limit your helpers and plug-ins to reputable companies.
Even some reputable helpers will help you in ways you never imagined. The ShockWave web
browser plug-in from Macromedia provides the ability to play multimedia presentations created
with their Director application which are downloaded via the web. The creator of a ShockWave
multimedia presentation can include custom code in their presentation using the Lingo language.
So even if Macromedia is conscientious in their creation of the ShockWave plug-in, they have no
control over what developers do in their documents with Lingo. The danger is further
compounded by the fact that early versions of Lingo could be extended by the developer to the
point of making local system calls based on the platform on which it is running[7]. While to date
there are no recorded incidents of malicious code being downloaded as part of a ShockWave
document, there is a concern that a virus or trojan horse could be created as part of a downloaded
document, similar to the Microsoft Word macro virus[8].
Once this was brought to the attention of Macromedia, they responded by adding security
features ShockWave. Two sentences are offered by Macromedia to describe their enhancements:

The new security-enhanced Shockwave player is now available. This
version fixes the potential security issues recently reported that relate to
Shockwave and Netscape.[9]

This meager explanation does not inspire confidence that Macromedia has adequately covered all
the security issues. Even if the new version is “safe”, thousands of users of the older versions of
ShockWave are still vulnerable. This same attack can be applied to any helper or plug-in that
uses a macro language to enhance their capabilities.

Java, It's More Than A Cup Of Coffee
Java is a new programming language created by Sun Microsystems to correct many of the
annoyances found in the C++ language and to take advantage of a new "network paradigm" of
computing. An application written in the Java language and delivered over the web is called an
applet. An applet written in Java is compiled into bytecode. Bytecode is a machine-independent
code that is downloaded to the browser where it is either run on a "virtual machine" that is
embedded in the client's browser or is converted by a Just In Time (JIT) compiler into native
machine code. In either case it runs locally on your computer. With a simple point-and-click
operation, a remote website can download and run a program on your client with no prior
indication. Java is not always looked upon as a positive advancement by those concerned with
security.
Sun did attempt to build some amount of security into Java Having the history of C and C++ to
draw upon, the developers of Java made several improvements that keep the less-than-vigilant
programmer from creating security holes. Most of these improvements stem from moving
memory management from the programmer's hands and into run-time and the implementation of
the “virtual machine”.

Table 2
Security Related Java Flaws

Date Browser
effected

Vulnerability Details Corrected Ref.

Nov.
95

HotJava 1.0a3 Arbitrary host connections from
client if covert channel is
established.

No restrictions on
accept() system call.

In JDK 1.0 and
Navigator 2.0

HotJava 1.0a3 Covert channel SMTP/e-mail In JDK 1.0 and
Navigator 2.0

[10]
[11]

HotJava 1.0a3 Covert channel DNS Navigator 2.0
+ patch

[10]
[11]

HotJava 1.0a3 Read files in public_html and
/TEMP(Windows)

Bad default ACL In JDK 1.0 and
Navigator 2.0

[10]
[11]

HotJava 1.0a3 Read access to
username,machine name, and
all environment variables

Via System.getenv() In JDK 1.0 and
Navigator 2.0

[10]
[11]

all Measure real time on client Part of Java features [10]
all Denial of Service Consume CPU [10]
HotJava 1.0a3 Denial of Service Acquire locks on

browser
[10]

HotJava 1.0a3
JDK 1.0
Navigator 2.0

Intercept network traffic if
proxy server is used.

Change the browser's
HTTP and FTP proxy
server

Navigator 2.0 [10]
[11]

Feb.
96

JDK 1.0
Navigator 2.0

Arbitrary host connections from
client

DNS spoofing attack JDK 1.0 1 and
Navigator 2.01

[12]
[13]
[14]
[15]
[16]

Feb.
96

JDK 1.0
Navigator 2.0

Execute arbitrary code on client Stack overflow using
Javap

JDK 1.0 1 and
Navigator 2.01

[12]

Mar
96

JDK 1.0
Navigator 2.0

Bypass all Java security Load package with /
(absolute path name)

JDK 1.0 1 and
Navigator 2.01

[17]
[18]
[16]

Mar
96

JDK 1.0
Navigator 2.0

Expose internal memory
mapping of Java applet on
client

hashCode() method [18]

Mar
96

JDK 1.0
Navigator 2.0

An applet can detect and effect
the execution of another applet

Handle of the
ThreadGroup, stop(), and
setPriority(0)

[18]

Mar
96

JDK 1.0.1
Navigator 2.01

Allow file deletion and other
damage

Java language restricts
calling of ClassLoader,
bytecode does not.

JDK 1.0.2
Navigator 2.02

[18]
[19]
[20]
[16]

Mar
96

JDK 1.0.1
Navigator
1.0.1

Allows TCP/IP connections to
hosts other than the host from
which the Applet was
loaded

JDK 1.0.2
Navigator 2.02

[21]
[16]

Apr
96

all Denial of Service attacks [22]
[16]

May
96

JDK 1.0.1
Navigator 2.02
Explorer 3.0b1

Allowed an applet to execute
arbitrary machine code

Create a classloader JDK 1.0.2
Navigator
3.0b4
Explorer 3.0b2

[23]
[16]

Table 2 (continued)
Security Related Java Flaws

Jun.
96

Navigator
3.0b4

Allowed an applet to execute
arbitrary machine code

Illegal type cast attack JDK 1.1
Navigator
3.0b5
Navigator
3.0b6 on PCs

[23]
[16]

Aug.
96

Explorer 3.0b2 Allows full file and network
access

Code packages
can set certain security-
critical variables such as
the access control lists

Explorer 3.0 [24]

Aug.
96

Explorer 3.0 Allows arbitrary execution of
DOS commands

Bypasses warning notice Explorer 3.1 [25]

Aug.
96

Navigator
3.0b5

Circumvent Java's security
mechanisms

Define class as a special
name

Navigator
3.0b6

[26]

Dec.
96

JDK 1.1b1 Allow untrusted applets to run Signature checking failed JDK 1.1b2 [16]

Although the language helps restrict creation of security holes, a devious programmer can bypass
the high level Java language by manipulating the bytecode, either directly or through a "custom"
bytecode compiler. Through bytecode manipulation, unauthorized actions can be attempted on
the client machine. To guard against such an attack, the browser is required to do a bytecode
verification pass that checks that the bytecode is within the bounds of the Java language.
The browser also places restrictions on file and network access which can be performed by an
applet. The degree of restriction depends on the browser. Netscape Navigator 3.0 does not allow
any client side access to local files (no read, write, or delete) and only allows the applet to make
network connections to the server from which the applet was downloaded. Microsoft Internet
Explorer 3.0 file access is dependent on its configuration settings. It can allow unrestricted file
access, access after an affirmative reply is given to a pop-up window, or no access at all.
It is easy to see that the responsibility for strict enforcement of language restrictions lies within
the browser. Sun initially created a proof-of-concept browser called HotJava. Sun released full
source code for HotJava (which was written in Java) and a group of industrious researchers at
Princeton immediately set out to discover any security flaws that might exist in this new
technology. An examination of Table 2 shows that they were successful.
Sun has licensed the Java technology to other browser manufacturers (most notably Netscape,
and later Microsoft) and replaced HotJava with the Appletviewer in the Java Development Kit
(JDK) [27]. The Appletviewer's primary purpose is to aid in writing and debugging Java applets,
leaving the creation of commercial browsers to the licensees. Since the commercial browsers
base their Java implementations on the JDK, most of the flaws that have been found in the JDK
can be found in all Java-capable browsers, and the JDK has had its share of problems (see Table
2).
Sun and the other browser manufacturers have been very responsive and have taken steps to
correct all of the known Java problems (however, some problems, such as denial of service
attacks, are not fixable[22]). As of this writing, no fixable outstanding problems remain. Some
have concluded that there is a lack of a formality in the development of Java security which may

result in future problems. If this conclusion proves to be true, we are likely to see a continuous
flow of Java patches, much like the UNIX patch situation we now experience.
To Sun's credit, most of the scrutiny Java has received has been encouraged by their own
willingness to release the JDK source code. The open question remains as to how many security
flaws might be found if the other web browser manufacturers where to expose their source code
to the same scrutiny.

JavaScript And JScript
Realizing that many programmers prefer to write in an interpreted scripting language (such as
basic, perl, or tcl), Sun and Netscape Communications Corporation decided to collaborate,
combining Java and LiveScript technology to create JavaScript. Not wanting to be left out
Microsoft Corporation created the JScript technology [28]. Unlike Java, JavaScript and JScript
are not compiled into bytecode before being sent to the browser, nor are they verified or executed
on the “virtual machine.” Scripts are embedded directly in an HTML document and delivered to
the browser as part of the document. Like Java, JavaScript and JScript are being executed locally
on your computer.
It is not clear what security restrictions are in place on these scripts once they are running on your
machine. For example, JScript can execute ActiveX capabilities which raises many concerns
(described in the next section). Flaws discovered in the implementation of JavaScript have not
been as serious as many of those found in Java. Whereas some Java bugs have allowed active
exploitations such as execution of arbitrary code, writing/deletion of files, and connection to
arbitrary hosts; all of the problems in JavaScript have been related to the passive ability to obtain
information from the client that is supposedly off limits [29].
While Sun has total control over the Java programming language, the web browser developers
appear to be the driving force behind JavaScript and JScript. The method of converting the script
to native machine code is done within the browser at the discretion of the browser manufacturer.
As with most commercial software the browser manufacturers have kept a tight lid on the source
code for the script interpreters. This means the scripts have not been subjected to the intense
scrutiny that Java has undergone. A real concern is the complete lack of any published security
model for either scripting language.

ActiveX Is Very Active
Microsoft has introduced ActiveX into the market as their approach to web based computing
[30]. ActiveX is not a programming language. It is better described as a set of client side
capabilities designed to be download and locally run by different applications. Currently
ActiveX supports several application types:

ActiveX Controls Microsoft describes these as "interactive objects." These
controls have taken the place of the old OLE controls.
They can be written in almost any popular language.

Documents Desktop documents such as Excel or Word files.
ActiveX allows them to be downloaded and viewed
through the Web browser.

Java Accepts and runs Java applets.
JScript Microsoft's rendition of JavaScript (The same...but a

little different).

VBScript The Visual Basic language embedded directly into
HTML documents.

ActiveX is supported in the Microsoft Internet Explorer 3.0 Browser. Netscape also has plans to
support a subset of the ActiveX suite of capabilities [31].
With the exception of Java applets, the security structure of ActiveX is totally dependent on the
trustworthiness of the downloaded object [32][33][34]. Java applets are subjected to the same
bytecode verification described earlier, but any other object, if determined to be trustworthy, is
executed by the ActiveX engine with no security restrains other than what is enforced by the
local operating system. The trust of an object may be determined by cryptographic signatures
that are optionally attached to downloaded objects [35]. If you are running an insecure operating
system (such as Windows 95 or Macintosh System 7) and insist on allowing ActiveX objects to
run on your browser without signature verification, you are leaving your machine open to total
control by the web server. This vulnerability was demonstrated by an ActiveX control developed
by the Chaos Computer Club that, when downloaded from the server, will determine if the
Quicken financial software exists on the client, open Quicken, and start making money transfers
between Quicken accounts. This is done without any visible clues given to the client owner [36]
.

The Magic Cookie Jar
Did you know that any website can read and write to your disk through your browser and that you
cannot stop them? They can. But the area that is available to them is very small and the
read/write action is severely restricted. The file they can write to is called the magic cookie file.
A magic cookie is information deposited on your system by the web server. The exact number
and content of a magic cookie is determined by the server. The server can write a maximum of
300 magic cookies into the file. Each cookie is associated with a domain name and may be given
an expiration date. When you return to the server at a later time all the magic cookies that you
were given on your previous visit are returned to the server. This is a very simple description of
the magic cookie mechanism, for a more detailed description, refer to the Netscape Persistent
Client State HTTP Cookies documentation[37].
The following is an excerpt from that documentation:

This simple mechanism provides a powerful new tool which enables a host
of new types of applications to be written for web-based environments.
Shopping applications can now store information about the currently
selected items, for fee services can send back registration information and
free the client from retyping a user-id on next connection, sites can store
per-user preferences on the client, and have the client supply those
preferences every time that site is connected to.

The disturbing part of this capability is that information can be stored on your computer and
passed around to other web servers (with domain restrictions) at the discretion of the server that
creates the magic cookie. The action does not need your consent and is routinely done without
your knowledge. Combine this with the “cyber social engineering” concerns described within the
CGI section and you now have to be concerned with information gathering on an unlimited time
scale. From a paranoid security standpoint it might allow covert information channels through
your computer and it might allow detailed user profiles to be built about an unsuspecting target.
(Whoops! That's not a security problem, it's a marketing feature!)

With Netscape V3.0 and higher, the browser can be set to notify the user when an attempt to set a
cookie is being made. The user can then reject the cookie. The bad news is that for each request
to the server you will receive the same notification and have to reject it. This can be rather
annoying as each document, image, sound, etc. is considered to be a separate request to the
server!
As an alternative, you can allow them to set the cookie and take action after you depart the site. If
you are concerned about cookies you can examine the contents of the cookie file using your web
browser. Cookies are kept in memory for a given run session of the web browser. To force it to
save the cookies quit the browser and restart. You can then use the Open File feature of the
browser to examine the cookie file. This file is usually located in a preferences directory for the
browser. Searching for "cookie" or "magic" should reveal the name and location on your system.
Once open you will see all the cookies on your system. Reference [37] describes the format of
cookie entries in the magic cookie file.
Removing the magic cookies from your system is a simple matter of deleting the magic cookie
file. Deleting the cookie file does not effect how the browser will operate. The cookie file is
recreated each time you quit the browser. But remember, you must quit your browser before you
delete the file or the browser will store the cookies that are currently in memory in the newly
recreated cookie file.
One trick you can use to limit what a site can do with cookies is to replace the magic cookie file
with an empty, read-only text file. The browser will be able to use cookies in memory for a given
run session but it will be unable to save them in the cookie file for later sessions.

Being Spoofed In Virtual Reality
Have you ever watched Mission Impossible? One of the IM force's favorite tricks was to place
the evil spy into a familiar environment and manipulate the environment to the IM force's
advantage. The spy would think he was flying at 20,000 feet in a private jet, but in reality, the
turbulence he was experiencing was Barney and Willie shaking a wingless fuselage inside a big
warehouse. As the plane was tipped up to simulate a climactic death crash, Jim Phelps would
pressure the spy to divulge his "top secret code". Of course, the Spy would blurt out the code.
Then, with the suddenness of a commercial break, Jim would step out of the fuselage, jump into
a waiting car, and speed off down the deserted streets. The spy was left in his bewilderment to
sort out what had happened.
The same ploy can be used in the “virtual reality” of the web, but it is a lot easier and cheaper to
do. All that has to be simulated is a browser screen. The Secure Internet Programming team at
Princeton has proposed a scenario [38] where a trojan URL is slipped into a legitimate website.
Instead of sending your browser to the expected web server, it sends you to a spoof web server.
You think you are in an airplane, but you are really in a warehouse. Once caught in the spoof
website, all other URL references can be spoofed, turning the whole browser expedition into a
charade. Of course the whole game can be exposed simply by watching the location and status
lines on your browser...except if JavaScript or JScript is enabled. A script program can replace
both of those lines to keep the charade alive.
Is this a simple playful trick, or can it be dangerous? Think about these instances:

• Downloading security patches from vendor site.
• Downloading “plug-in” or “helper” applications for your browser.
• Financial transactions over the web.

• Changing your password on a web server that requires a password.
In some cases, the damage may only be the embarrassment of accepting misinformation as fact.
In other cases, actual losses of time and money can occur.

Welcome To My Parlor
One might ask "How are these threats any different than the threats that have existed on the
Internet for years?" In the past, the typical attacker used semi-random attacks to locate
vulnerable hosts. Perhaps the attacker narrowed the boundary of attacks by looking for
interesting domain names or by collecting interesting IP addresses mentioned in netnews, ftp
sites, or other network information sources. A really sophisticated attacker might automate much
of the assault using scanners like SATAN[39] or ISS [40] to find unprepared victims. The
intruder had to do a lot of work and never had any assurance that, once broken, the victim's host
would hold anything of value. With the advent of the web, the stalker no longer has to stalk. A
website with a theme that will attract a particular crowd can be created and advertised. Soon
those who seek and store information that is valuable to the intruder will be declaring themselves
as potential targets by following their own curiosity.
Let us assume that the intruder wants to narrow the hit list even further. By making web page
content on a particular subject more detailed and intense with each descending link, the victim
not only declares his interest, but also his affinity for the subject. Adding in other easily
obtainable information such as time between page changes and the number of times each page is
"hit" could be used to further define the profile. Finally, well written "cyber-social" CGI or Java
programs could top off an information assault, targeting those hosts and users that have a keen
interest in the subject that the intruder is trying to obtain. Once a suitable target has been
identified the website can start a vulnerability scan on the victim host. Also, if so desired, an
immediate or delayed automated attack can begin (note that neither the scan nor the attack has to
come from the website host).
There are two important differences between this scenario and earlier conventional attacks. The
victims are "screened" for their potential value to the attacker; and the victim, not the attacker,
initiates the entire attack sequence by clicking into an seemingly innocuous website. Once the
website has been properly built, the attacker does nothing except review the results of his trap.
"Maybe the analogy of the web is more accurate than you think" said the spider to the fly.

SAFE SURF'N: A PRACTICAL APPROACH
Let us summarize. As browser functionality becomes more complex, risks are increased. As the
browser interface becomes simpler, the actual control you retain to compensate for risks is
reduced and you must rely more on the integrity of the browser. Browser design is not always
done in your best interest. Anytime any type of executable code downloads to your computer,
the potential for receiving “a mite”, the web equivalent of a virus, does exist. In short, the use of
the new web paradigm presents you, the network surfer, with some scary prospects. However, no
matter how scary, the technology is too valuable to dismiss as an "unacceptable risk." So what
can be done? Here are some suggestions.

Know Thy Browser
Here are some critical misconceptions to avoid:

1. The browsers will always protect my computer.
2. All browsers are all alike.
3. The browser will come configured with the most secure settings.

4. The browser will not let me do unsafe things.
There is only one way to protect against these misconceptions and that is to learn about the
browser. The motto of the industry at this time seems to be "Let the browser beware".

Stay Out Of Bad Neighborhoods
Its not always possible to know a bad site from a good site, but often it is! If they tell you they
are hackers, BELIEVE THEM! (i.e., www.Legion_of_Doom.org). If you find yourself in a site
that seems to deal in illegal or immoral material, the chances are that their attitude toward you is
probably illegal or immoral. GET OUT FAST.
Leave the dangerous exploratory stuff to the professionals. If you must explore, be prepared.
Back up your files, remove confidential information, and set your browser settings in the most
conservative modes. Know your browser well enough that you can spot unusual activity.
In a corporate atmosphere, policy or guidance may be needed to determine how far from home
one can stray or what browser features are safe. Future releases of browsers from Netscape and
Microsoft promise to offer the ability to lock certain configuration settings so a novice user can
not change them.

There’s No Such Thing As A Free Lunch
Beware of anything a website wants to give you for free. Some freebies may be legitimate, some
may not. Not everyone out there shares your ethical beliefs, so as a guide, remember:

1. Cookies have a purpose.
2. Understand the meaning of all data you provide in Forms.
3. Examine the information about a link before clicking it. If you’re not sure

what’s being sent to you, get advice.
4. Don’t download helper/plug-ins applications indiscriminately.

Remember, You Are Not Necessarily Talking To A Friend
Even friendly sites can be spoofed. Keep an eye on the location and status line on your browser.
If you travel with Java/JavaScript/JScript enabled, turn it off occasionally or check the history
logs to make sure you are really where you think you are.
Commercial sites, by the definition of commercial, want something from you. They may only
want to pique your interest in a product or service, or they may be collecting (and selling) your
personal information. You have no way of knowing. The situation is not new. Is the salesman
with the big smile really a friendly person who is sincerely glad to meet you, or is he a shyster
interested in separating you from your money? Use discretion when visiting such websites.
Many websites may ask you to register by providing a username and password. Be cautious, do
not use a username and password which you use on other computer systems you access;
otherwise you’ve just given it to the owner of the web server.
Remember, you do not have to answer all the questions or click on all the buttons just because
the web server requests you to do so. All browsers, even with their flaws, still offer the ultimate
control of being able to disconnect at the client’s whim. You can leave at any time. You can be
a guest or victim...the choice is yours.

Be Careful Out There
The main thrust of this paper has been to point out possible security pitfalls that may arise from
web browsing. Hence, the paper takes on a what might be perceived as a negative slant toward
browsers. This is not our intent. As you may notice from the bibliography, most of the research

for this paper took place through the window of a browser. However, we fear that too many
people are randomly jumping across the Internet under the motto "ignorance is bliss." There are
dangers, and, depending on the circumstance, precautions should be taken.

BIBLIOGRAPHY
[1] National Center for Supercomputing Applications, The

Common Gateway Interface
http://hoohoo.ncsa.uiuc.edu/cgi/

[2] Paul Phillips, CGI Security http://www.go2net.com/people/paulp/cgi-security

[3] NCSA. Writing secure CGI scripts http://hoohoo.ncsa.uiuc.edu/cgi/security.html

[4] FTC Says Internet Scam Re-Routes “Surfers” to
International Telephone Lines, February 19, 1997

http://www.ftc.com/opa/9702/audiotex.htm

[5] Statement of Jodie Bernstein, Director, FTC Bureau of
Consumer Protection, February 19, 1997

http://www.ftc.com/opa/9702/audiotex1.htm

[6] Civil Action Against Audiotex Connection, Inc http://www.ftc.com/os/9702/audiotex.htm

[7] David de Vitry, Shockwave Security Alert, March 10
1997

http://www.webcomics.com/shockwave

[8] Microsoft Word Virus http://ciac.llnl.gov/ciac/virdb/VIRS0844.TXT

[9] Macromedia Inc., New Security Enhanced Shockwave http://www.macromedia.com/shockzone/info/sec
urity.html

[10] Drew Dean, Dan S. Wallach. Security Flaws in the
HotJava Web Browser, Princeton CS Tech Report
501-95

ftp://ftp.cs.princeton.edu/reports/1995/501.ps.Z

[11] Marianne Mueller. Sun' Response to the HotJava
Security Flaws

http://www.cs.princeton.edu/sip/news/sun-11-09-
95.html

[12] Steve Gibbon. postings to firewalls mailing list http://www.aztech.net/~steve/java/

[13] February 1996: DNS-based Attack on Java http://www.cs.princeton.edu/sip/news/dns-
spoof.html

[14] Java Security: DNS Attack Scenario http://www.cs.princeton.edu/sip/news/dns-
scenario.html

[15] Marianne Mueller.Sun's Reponse to the DNS Spoofing
Attack

http://www.cs.princeton.edu/sip/news/sun-02-22-
96.html#DNS

[16] Sun Press Release. Frequently Asked Questions -
Applet Security

http://java.sun.com/sfaq/

[17] David Hopwood. Java security bug (applets can load
native methods)

http://catless.ncl.ac.uk/Risks/17.83.html#subj13

[18] Drew Dean, Ed Felten, Dan Wallach. Java Security:
From HotJava to Netscape and Beyond

http://www.cs.princeton.edu/sip/pub/secure96.ht
ml

[19] Sun Press Release. Verifier implementation bug http://www.javasoft.com/sfaq/960327.html

[20] Netscape Press Release. POTENTIAL
VULNERABILITY IN JAVA VERIFIER
REPORTED

http://home.netscape.com/newsref/std/verifier_re
sp.html

[21] Eric R Williams. Java Applet Security: Sockets http://www.sky.net/~williams/java/javasec.html

[22] Sun Press Release. Denial of service May 10, 1996 http://java.sun.com/sfaq/denialOfService.html

[23] Safe Internet Programming: News http://www.cs.princeton.edu/sip/News.html

[24] August 1996 Security Flaw: Brief Description http://www.cs.princeton.edu/sip/news/Aug96-
microsoft.html

[25] August 1996 Internet Explorer Security Flaw: Brief
Description

http://www.cs.princeton.edu/sip/news/Aug96-
2.html

[26] August 1996 Security Flaw: Brief Description http://www.cs.princeton.edu/sip/news/Aug96-
netscape.html

[27] CERT(sm) Advisory CA-96.07 ftp://info.cert.org/pub/cert_advisories/

[28] Microsoft Corporation, Microsoft JScript and the
ECMA standards

http://www.microsoft.com/jscript/us/techinfo/stan
dards.htm

[29] John Robert LoVerso. JavaScript Problems I've
Discovered

http://www.osf.org/~loverso/javascript/

[30] Microsoft Corporation, ActiveX Resources Area http://www.microsoft.com/activex/

[31] Information Week. Netscape Reverses Position;
Embraces ActiveX, October 16, 1996

http://techweb.cmp.com/iw/newsflash/nf601/101
6_st1.htm

[32] David Chappell, Component Software Meets the Web:
Java Applets vs. ActiveX Controls, May 1996

http://www.chappellassoc.com/JavaActX.htm

[33] Dan Meriwether, A simple six step process for
certifying your Microsoft® ActiveX® control.

http://www.delux.com/Thoughts/ActiveX.html

[34] Don McGregor, ActiveX: Threat or Menace? http://www.stl.nps.navy.mil/~mcgredo/ActiveX.h
tml

[35] Paul Johns, Signing and Marking ActiveX Controls,
October 1996

http://www.microsoft.com/intdev/controls/signma
rk.htm

[36] ActiveX used as hacking tool http://www.news.com/News/Item/0,4,7761,00.ht
ml

[37] Netscape Communications Corporation. Persistent
Client State HTTP Cookies

http://www.netscape.com/newsref/std/cookie_spe
c.html

[38] Edward W. Felten, Dirk Balfanz, Drew Dean, Dan S.
Wallach. Web Spoofing: An Internet Con Game,
Princeton CS Tech Report 540-96

http://www.cs.princeton.edu/sip/pub/spoofing.ht
ml

[39] Security Administrator's Tool for Analyzing Networks http://www.fish.com/satan

[40] Internet Security Systems home page http://www.iss.net

