
1

Public Comments on the
Draft Federal Information Processing Standard (FIPS)

for the Advanced Encryption Standard (AES)

 [in response to a notice in the February 28, 2001 Federal Register
(Volume 66, Number 40; pages 12762-12763)]

Commenter (#) (MM/DD/YYYY) Page

Commenter (#) (MM/DD/YYYY) Page ... 1
1. John Savard (02/28/01) ... 2
2. Don Johnson, Certicom Corporation (03/01/01) .. 3
3. Jean-Luc Cooke #1 (03/01/01)... 4
4. Jean-Luc Cooke #2 (03/01/01)... 5
5. John Myre, Sandia National Labs (03/01/01) ... 6
6. David Scott (03/01/01).. 7
7. Harald von Fellenberg, Sun Microsystems (03/02/01) ... 9
8. Jean-Luc Cooke #3 (03/04/01).. 10
9. Jaechul Sung, CIST, Korea University (03/13/01) ... 11
10. Kevin McGowan (04/06/01) ... 12
11. Miles Smid, CygnaCom Solutions (04/17/01).. 13
12. Juan Asenjo, Thales e-Security (04/20/01) ... 14
13. Hideo Shimizu, Toshiba Corporation (04/24/01) ... 15
14. François Rousseau (04/25/01)... 16
15. Sheeri Kritzer #1 (05/07/01) ... 18
16. Sheeri Kritzer #2 (05/08/01) ... 19
17. Paulo Barreto (05/09/01)... 20
18. Miles Smid (05/17/01) .. 22
19. N-W Wang et. Al. (05/22/01) ... 23
20. Paul Kocher (05/22/01)... 28
21. Dino Eliades (5/22/01) .. 29
22. Carol Widmayer (5/22/01) .. 30
23. William Harbison (5/23/01) .. 31
24. Jakob Jonsson and Matt Robshaw (5/29/01) .. 32
25. K.Y. Chen et. Al. (5/29/01)... 33
26. Alan Chickinsky (5/29/01).. 38

2

1. John Savard (02/28/01)

Date: Wed, 28 Feb 2001 17:12:42 -0700
To: AEScomments@nist.gov
From: John Savard <jsavard@powersurfr.com>
Subject: Key Sizes

By analogy with other block ciphers, I believe that Rijndael may be somewhat more
secure for certain combinations of block sizes and key lengths than others.

For the 128-bit block size, the security "sweet spot" appears to be a 224-bit key.

Thus, I think it would be desirable to include the 160-bit and 224-bit key sizes in the
standard at the least.

Note also that the availability of a 160-bit block size would assist interoperability with
some hash function standards.

The reasons why I believe that a 224 bit key may possibly be more secure with Rijndael
are these:

1) With a 224-bit key, the number of Mix Column steps in the cipher is a multiple of four.
For Rijndael, this is almost like a Feistel cipher having an even number of rounds, rather
than an odd number of rounds.

2) With a 224-bit key, there are seven 32-bit words in the key, while the block size is four
32-bit words. This makes the length of the shift register producing the subkeys as
different as possible from the size of the subkey for each round, thus making the key
schedule slightly less regular.

While there is no evidence of a weakness in Rijndael that a 224-bit key avoids, including
it in the standard would enable that key length to be generally used in the event such a
weakness were discovered, and the general arguments from the basic structure of
Rijndael make that at least a plausible possibility.

John Savard

3

2. Don Johnson, Certicom Corporation (03/01/01)

From: "Don Johnson" <djohnson@certicom.com>
To: AEScomments@nist.gov
Date: Thu, 1 Mar 2001 11:42:53 -0500
Subject: Don Johnson on AES FIPS

NIST,
Thank you for your efforts in developing the AES FIPS and for selecting RIJNDAEL.
Thank you also for specifying that the AES algorithms that meet the FIPS have a specific
blocksize, keysize and rounds, as this will help ensure interoperability. Thank you again
for continuing this effort with the modes of operation workshops which are intended to
produce a modes of operation document that include various good ways of using AES.

I do see a use for yet another document on AES. Given that there are three AES
keysizes and two Triple DES keysizes, it would seem very helpful for a (short) guidance
document to aid users on various considerations for selecting among the keysizes and
algorithms. I do not think this would need to be a standard, but it would be helpful if it
were (at least) an official NIST published paper.

For example, at first blush, one might think that one would never need more than AES
128 bit keys, so some may say that is all that will ever be needed. However, the
realization of significant size quantum computers (for example) could change that due to
the square root attack which effectively halves the keysize. Others say that since the
performance cost difference is (apparently) small in many cases, one should simply
always use AES 256 bit keys and be done with it. As another example, the 64-bit
blocksize of Triple DES can be a concern, but how much should this affect any decision
to move to/use AES? I know there is a hope and expectation that new uses will use AES
and old uses will transition to AES.

Such a guidance paper would also be a valuable input to the ANSI X9 effort to discuss
keysize considerations and/or perhaps could tie into it. Food for thought. I am willing to
assist with such a paper in any manner requested, but do believe that the most
acceptance and benefit accrues if it is an official NIST guidance paper.

Don B. Johnson
Director of Cryptographic Standards
Certicom

4

3. Jean-Luc Cooke #1 (03/01/01)

Date: Thu, 1 Mar 2001 16:20:47 -0500
From: Jean-Luc Cooke <jlcooke@jlcooke.ca>
To: AEScomments@nist.gov
Subject: 4.2.1 typo
X-Mailer: Mutt 1.0i

3rd sentence.

If b_7=0, ... Should be b_8=0.

JLC
--
101 ways to get in touch with me:
http://jlcooke.net/contact

5

 4. Jean-Luc Cooke #2 (03/01/01)

Date: Thu, 1 Mar 2001 16:23:02 -0500
From: Jean-Luc Cooke <jlcooke@jlcooke.ca>
To: AEScomments@nist.gov
Subject: 4.2.1 typo (corr.)
X-Mailer: Mutt 1.0i

B_7=0 is correct. My applogies.

JLC
--
101 ways to get in touch with me:
http://jlcooke.net/contact

6

5. John Myre, Sandia National Labs (03/01/01)

Date: Thu, 01 Mar 2001 16:27:38 -0700
From: "John Myre" <jmyre@sandia.gov>
Organization: Sandia National Labs
X-Mailer: Mozilla 4.61 [en]C-CCK-MCD SNL4.x (WinNT; U)
X-Accept-Language: en,pdf
To: AEScomments@nist.gov
Subject: Unclear notation in algorithm pseudo-code
X-WSS-ID: 16800560184432-01-01

Sirs,

In the draft AES FIPS, in figures 6, 13, and 16 (which have the pseudo-code for the
encryption, decryption, and alternate decryption algorithms), the calls to AddRoundKey
utilize a "C" idiom, pointer arithmetic, in selecting the subset of keys to add. While clear
to C programmers, this is not likely to be clear to anyone else.

I would suggest some alternate notation. Perhaps the key schedule could be a 2-
dimensional array, as in

word w [Nr+1, Nb]
...
AddRoundKey(state, w [round,*])

or some such thing. Alternately, if the key schedule is kept as a single dimension array,
one might use

AddRoundKey(state, w [(round * Nb) .. (round * (Nb+1) - 1)])

Thank you for your AES efforts -

John Myre
Sandia National Labs
jmyre@sandia.gov

7

6. David Scott (03/01/01)

Date: Thu, 01 Mar 2001 17:00:30 -0700
From: David Scott <dscott@elpasonet.net>
Organization: retired
X-Mailer: Mozilla 4.72 [en] (Win98; I)
X-Accept-Language: en
To: AEScomments@nist.gov
Subject: Padding modes for AES

Dear Sir
below is text on RFC1423
"
http://www-users.aston.ac.uk/Connected/RFC/1423/rfc1423.txt
Balenson [Page 2]
RFC 1423 PEM: Algorithms, Modes and Identifiers February 1993

DES is defined in FIPS PUB 81 [3], and is equivalent to those provided
in ANSI X3.106 [4] and in ISO IS 8372 [5]. The character string "DES-
CBC" within an encapsulated PEM header field indicates the use of this
algorithm/mode combination.

The input to the DES CBC encryption process shall be padded to a
multiple of 8 octets, in the following manner. Let n be the length in
octets of the input. Pad the input by appending 8-(n mod 8) octets to the
end of the message, each having the value 8-(n mod 8), the number of
octets being added. In hexadecimal, the possible paddings are: 01,
0202, 030303, 04040404, 0505050505, 060606060606,
07070707070707, and 0808080808080808. All input is padded with 1
to 8 octets to produce a multiple of 8 octets in length. The padding can
be removed unambiguously after decryption.

"
The above is similar to the kind of padding we may be stuck with for the new AES. It has
some major weaknesses that are easy to fix. The main weakness is that allows an
attacker to throw away many
keys when trying to break a file since most keys will not lead to a file of the above form
when using the wrong key for decyrption.

I would like to propose a better solution that does not weaken the encryption like the
current standard method. I would be willing to present this type of padding if needed.
Since I am a retired GS-13 engineer. My government service was at China Lake.

The concept is very simple. And involves a few very simple steps.

1) the starting file is an arbitrary 8-bit byte type of file. Convert it to an infinite file that is
"finitely odd". An easy method of doing this is to look at each 8 bit byte in the file. If the
trailing bytes are not (all values in HEX) "00" or "00" followed by one or more "80" then
leave file alone and pretend it is followed by an infinite number of "zeroes". If the file

8

does have a trailing "00" or "00" followed by one or more "80" then add a trailing byte of
"80" and then follow that by an infinte number of zeros.

Examples:
00 00 becomes 0000800000000000...
80 becomes 800000000...
00 80 becomes 0080800000000000...
30 80 becomes 3080000000000000...
40 00 becomes 4000800000000000...
23 12 becomes 23120000000000000...

note all files at this point have a last one "bit" followed by a tail of an infinite number of
zeros.

2) convert this to a normal file the block size of the encryption. Lets assume the 16 byte
block of the AES method. To convert group the infinte finitely odd file into blocks of 128
bits. Then ignore the infinite number of zero blocks that trail at end. At this point the last
block can not be all zeros. So the next step is to look at the last block remaining. If it is of
form "80 00 00 rest of block zero " at this poiint if last block is this check the next to last
block until either you reach the start of file or a block that is not of form "80 00 00 rest of
block zero" If the block your at is a totally "zero block" you drop the last block. If not you
dont.

Examples here "zz" means rest of 16 byte block zero:
80 00 zz 80 00 zz 0000000000000000000...
becomes 80 00 zz 80 00 zz
00 00 zz 80 00 zz 0000000000000000000...
becomes 00 00 zz
23 00 zz 78 00 zz 0000000000000000000...
becomes 23 00 zz 78 00 zzzz

3) since all files have been "1 to 1" mapped to the desired block size do the encryption.

4) Now the files are encrypted and in the correct block size. At this point convert them
back to finitely odd files. This is like step 1 but instead of 8 bit bytes you use 128 bit
chunks. The token equaivalent to "00" is the block of 128 bits all zero. And the one
equivalent to "80" is the block of 128 bits all zero except the first bit (left most) is a one.

5) convert this file doing the exact opposite of step one. This gives the final encrypted
output file.

ONE SPECIAL PROPERTY of this kind of padding. Is that any 8-bit binary file can be
thought of as an output file to the AES encryption. And encryption key test for any binary
file. Will lead to a decrypted file that when encrypted with the method above goes back
to the same file. I am willing to give a presentation on this if more explanation is needed.

Thank You
David A. Scott

9

7. Harald von Fellenberg, Sun Microsystems (03/02/01)

Date: Fri, 02 Mar 2001 13:49:49 +0100
From: Harald von Fellenberg <harald.von-fellenberg@Sun.COM>
Organization: Sun Microsystems
X-Mailer: Mozilla 4.75 [en] (X11; U; SunOS 5.7 sun4u)
X-Accept-Language: en
To: AEScomments@nist.gov, Harald.Von-Fellenberg@Sun.COM
Subject: typo p 17

Hello AES team:

I am only a physicist, but in my humble opinion the title of paragraph
4.2.1 in page 17 of the .pds document should read

4.2.1 Multiplication by x

and not

4.2.1 Multiplication by y

Reason: there is no mention of y in the paragraph

Please consider
thanks and regards

Harald von Fellenberg
--
**
Dr. Harald von Fellenberg
Senior Consultant Technology Strategy Office
Tel: ++41 1 908 9230 Sun Microsystems (Schweiz) AG
Fax: ++41 1 908 9001 Javastr. 2
Mobile: ++41 79 349 0393 CH-8604 Volketswil
mailto:harald.von-fellenberg@sun.com

10

8. Jean-Luc Cooke #3 (03/04/01)

Date: Sun, 4 Mar 2001 21:05:59 -0500
From: Jean-Luc Cooke <jlcooke@jlcooke.ca>
To: AEScomments@nist.gov
Subject: Round 2 vs. FIPS
X-Mailer: Mutt 1.0i

Can you explain the inconsistancy between:
Authors:
[1] (http://www.esat.kuleuven.ac.be/~rijmen/rijndael/rijndaeldocV2.zip, p.14)
NIST:
[2] (http://csrc.nist.gov/publications/drafts/dfips-AES.pdf, p.26)
[2] is not was we agreed to.
JLC
--
101 ways to get in touch with me:
http://jlcooke.net/contact

11

9. Jaechul Sung, CIST, Korea University (03/13/01)

From: "AshTray" <sjames@cist.korea.ac.kr>
To: <AEScomments@nist.gov>
Subject: Some errata in the draft of AES document
Date: Tue, 13 Mar 2001 14:16:02 +0900
X-Mailer: Microsoft Outlook Express 5.50.4133.2400

Hello.
I found some errata.

(1) In the Fig.13 of page 23, for round=Nr-1 step -1 to 1 should be replaced by for
round=Nr-1 step Nr-1 to 1.

(1) In the Fig.16 of page 27, for round=Nr-1 step -1 to 1 should be replaced by for
round=Nr-1 step Nr-1 to 1.

That's I found all.

Best Regards,
Jaechul Sung,
CIST, Korea Univ.,
SEOUL,KOREA

12

10. Kevin McGowan (04/06/01)

From: "Kevin McGowan" <kevinmcg3@hotmail.com>
To: AEScomments@nist.gov
Subject: AES algorithm
Date: Fri, 06 Apr 2001 13:19:27 -0500
X-OriginalArrivalTime: 06 Apr 2001 18:19:27.0820 (UTC)
FILETIME=[1DBE80C0:01C0BEC6]

I have recently been following the progress and developement of the new AES standard
and although Rijndael is a very impressive pick, I feel that one much stronger algorithm
has been overlooked. TecSec Inc., a Vienna,VA based cryptography company,
produces an extremely high performance cryptographic algorithm called P2. P2 was
developed by Ed Scheidt, the former CIA cheif of cryptography, with the utmost regard
for producing a cutting edge algorithm. I strongly feel that P2 would outperform Rijndael,
and highly recommend that P2 be tested before announcing Rijndael as the standard. I
believe P2 to be a much stronger product and I believe the government would greatly
benefit by looking into P2. - Kevin

Get your FREE download of MSN Explorer at http://explorer.msn.com

13

11. Miles Smid, CygnaCom Solutions (04/17/01)

From: "Miles Smid" <masmid@erols.com>
To: <AEScomments@nist.gov>
Cc: "Santosh Chokhani" <santosh.chokhani@entrust.com>
Subject: AES Comments
Date: Tue, 17 Apr 2001 19:02:55 -0400
X-Mailer: Microsoft Outlook IMO, Build 9.0.2416 (9.0.2910.0)
Importance: Normal

Attached you will find my comments on your Draft AES.
Miles Smid

Comments on the Proposed
Advanced Encryption Standard (AES)

Miles E. Smid
CygnaCom Solutions

April 17, 2001

Overall, the standard is very well written. My comments are editorial in nature.

1. (Section 3.4, p10, last paragraph and Figure 4) It does not seem as though the text
beginning with “Note that the four bytes…” and Figure 4 impart any new
information beyond what was already covered by Figure 3 and is again covered in
Section 3.5. I suggest eliminating the text beginning with “Note … and also
Figure 4. Section 3.5 would then need to be modified to reference Figure 3
instead of Figure 4 and the ai’s changed to ini’s.

2. (Section 4.2, p12, hex representation of m(x)) I suggest representing m(x) as
{01}{1b} instead of 1{1b}.

3. (Section 4.2, p13, line 11) Change “Moreover, it holds that” to “Moreover for any
a(x), b(x), and c(x) in the field, it holds that”.

4. (Section 4.2.1, p13) Change title of section from “Multiplication by y” to
“Multiplication by x”.

5. (Section 5.1.1, p17, item 1.) Change “Sec. 4” to “Sec. 4.2”.
6. (Section 5.1.3, p20, line 2 and line 5) Change “Sec. 4.2” to “Sec. 4.3” in both

places.
7. (Section 5.2, p22, Figure 12) Should “word temp = w[i– 1]” be written as temp =

w[i– 1]”?
8. (Section 5.3.3, p25, line 3 and line 6) Change “Sec. 4.2” to “Sec. 4.3” in both

places.
9. (Appendix B, p30, line 1) Change “key schedule using” to “key expansion using”

and eliminate the use of “key schedule”.
10. (Appendix B, p30, column 4 of table) Change “After SubByte()” to “After

SubWord()”.

14

12. Juan Asenjo, Thales e-Security (04/20/01)

From: "Asenjo, Juan" <Juan.Asenjo@thales-esecurity.com>
To: "'AEScomments@nist.gov'" <AEScomments@nist.gov>
Cc: "Epstein, Sandy" <Sandy.Epstein@thales-esecurity.com>,
"Jackson, Paul"
<Paul.Jackson@thales-esecurity.com>
Subject: Certification of AES Implementation
Date: Fri, 20 Apr 2001 18:38:02 -0400
X-Mailer: Internet Mail Service (5.5.2650.21)

NIST Representatives,
As an information systems security professional, I am writing to respectfully comment on
the "Draft AES Algorithm Implementation" document posted in your web site. My
concerns deals with the certification of AES algorithm implementations. The recently
published Draft FIPS for AES states under Item 8. "Implementation:"

"Cryptographic modules that implement the algorithm specified in this standard shall
conform to the requirements of FIPS 140-2."

Given that FIPS 140-2 is also in Draft, it is not clear how this affect the implementation of
AES within a platform already certified under FIPS 140-1. The statement I quoted above
appears to indicates that the algorithm must be implemented and evaluated in
accordance with FIPS 140-2 before it can be offered as a certified product. If FIPS 140-2
is not yet available, how can a vendor insure availability of a compliant implementation
by the time AES is formally published?

After discussing this issue with Mr. Jim Foti in your organization, I understand that the
statement in the AES draft, was included in anticipation that 140-2 would have been
approved by the time that AES was published. However, that not being the case, it does
not take into account a window that will allow vendors accredited under FIPS 140-1 to
receive 140-2 validations.

Given the statements made in the draft and the comments mentioned above, I believe
clarification is in order, so that the validation process of AES implementations is clear to
vendors.

I look forward to further guidance and thank you for the opportunity to comment on this
important standard.

Sincerely,
Juan C. Asenjo
Product Marketing Manager
Network Security
Thales e-Security
tel: 954 846-5040
Fax: 954 846-3935
e-mail: juan.asenjo@thales-esecurity.com
web: www.thales-esecurity.com

15

13. Hideo Shimizu, Toshiba Corporation (04/24/01)

Date: Tue, 24 Apr 2001 15:43:12 +0900
From: Hideo Shimizu <hideo.shimizu@toshiba.co.jp>
X-Mailer: Mozilla 4.75 [ja] (Win98; U)
X-Accept-Language: ja,en,pdf
To: AEScomments@nist.gov
Subject: comment for draft of fips

Dear fips editor
I feel description of decoding is rather short than encoding.

- In page 25, we need inverse matrix of (5.2).
- We need description of inverse key expansion.

I think both items are useful for hardware implementer.
thanks

Hideo Shimizu, Toshiba Corporation

16

14. François Rousseau (04/25/01)

From: "Francois Rousseau" <frousseau58@hotmail.com>
To: AEScomments@nist.gov
Subject: Comments on Draft FIPS for AES
Date: Wed, 25 Apr 2001 11:32:42 -0400
X-OriginalArrivalTime: 25 Apr 2001 15:32:42.0863 (UTC)
FILETIME=[F82C77F0:01C0CD9C]

This message is in response to your request for comments on this draft Federal
Information Processing Standard (FIPS) for the Advanced Encryption Standard (AES).

Here are some technical and editorial comments on this draft FIPS for AES:

a. Announcement, this draft FIPS for AES only briefly mentions the AES modes of
operation in Appendix A when listing the current AES Object Identifiers (OIDs). Although
it is recognized that NIST is expected to issue a guideline or recommendation in the
spring of 2001 on the AES modes of operation, the final version of the FIPS for AES
should explicitly be referring to this guideline or recommendation on the AES modes of
operation. This would be similar to FIPS 46-3 about the Data Encryption Standard (DES)
and the Triple Data Encryption Algorithm (TDEA), which explicitly refers to FIPS 81 on
the DES Modes of Operations in its announcement section.

b. Announcement, Section 8 on Patents, with NIST effort to ensure that AES would be
available royalty free worldwide, this section should only indicate that implementations of
the algorithm specified in this standard are not expected to be encumbered by U.S. and
foreign patents. However, in the event that NIST had recently uncovered patents or
patents applications covering the Rijndael algorithm, this section would then have to
indicate that NIST has obtained worldwide, nonexclusive, royalty-free rights under these
patents for vendors to make, use and sell apparatus which complies with this standard.

c. Sections 1, 2.1, 2.2, 3.4, and 5, although this draft FIPS for AES only briefly mentions
the Equivalent Inverse Cipher under Section 5.3.5 and Appendix D, it should probably be
mentioned throughout in every instances where the Inverse Cipher is mentioned.

d. Section 2.1 or 2.2 should probably contain the expression "Rcon" from Figure 12.

e. Section 2.2, it should indicate that the transformation InvMixColumns() is also used in
the Key Expansion routine as per Figure 16 on the Equivalent Inverse Cipher.

f. Section 2.2, the title of this section should be "Algorithm Parameters, Symbols,
Transformations and Functions" since "Transformations" are covered under this section
and "Terms" are already covered under Section 2.1. Note that this title change will also
impact the brief description of Section 2.2 under Section 1. In addition, this section
should also have a sentence similarly to Section 2.1 introducing these algorithm
parameters, symbols, transformations and functions. Finally, the transformations
SubBytes() and InvSubBytes() are not presented in the appropriate alphabetical order.

17

g. Section 5, the first two paragraphs of this section discuss the possible representations
of the block size (Nb) and the key length (Nk) for the AES algorithm, however a
comparable paragraph discussing the possible representations of the number of rounds
(Nr) for the AES algorithm is missing. This additional paragraph should also explain why
the currently specified possible representations of the number of rounds (Nr) (i.e. 10, 12
and 14) were determined to be adequate.

h. Figure 16, the additional equivalent inverse cipher pseudo code for the key expansion
routine should probably use the term "round" instead of "rnd".

i. Section 6.3, except for the second sentence of Section 1, there seems to be general
impression from this draft FIPS for AES that only the block size (Nb) could be modified in
future reaffirmations of this standard, but not the key length (Nk) and/or the number of
rounds (Nr). This is due to the fact that all the explicit references to Section 6.3 (i.e. in
Sections 2.2, 3.4 and 5) are only made for the block size (Nb) and not the other two
parameters. Similar references to Section 6.3, but for the key length (Nk) and/or the
number of rounds (Nr) should be added in Sections 2.2, 3.1 and 5.

j. Section 6.3, the second sentence should indicate that future reaffirmations of this
standard could include additions to the allowed values for those parameters but not
"changes". Although the current values for the key length (Nk), block size (Nb), and
number of rounds (Nr) explicitly allowed by this standard could be deprecated in future
reaffirmations of this standard, for interoperability reasons they should never be
changed. This section should also explicitly indicate if new values were allowed in future
reaffirmations of this standard that new Object Identifiers (OIDs) would then be
registered to explicitly identify them.

k. Appendix A should also include the Object Identifiers (OIDs) for the AES Counter
mode since NIST has previously announced that the first version of its guideline or
recommendation on AES modes of operation would include the four "basic" modes of
operation and a counter mode.

l. Appendix D, the first sentence wrongly refers to "Nr" for the three AES key lengths
instead of "Nk". In addition, the reference [6] for example vectors seems incorrect.

m. Appendix E, the footnote for reference [1] also refers to reference [1]. To avoid this
circular reference, the footnote should read "...etc. - is available from this site."

I thank you for the opportunity to review this draft FIPS for AES. If you would like to
discuss any of these comments, please feel free to contact me.

Best regards,
Francois Rousseau
__
Get Your Private, Free E-mail from MSN Hotmail at http://www.hotmail.com.

18

15. Sheeri Kritzer #1 (05/07/01)

Hello there,

While working through the Draft FIPS for the AES, in Section 4.2,
Multiplication, you state that

"For example, {57} * {83} = {c1}, because

(x^6 + x^4 + x^2 + x + 1)(x^7 + x + 1) = x^13 + x^11 + x^9 + x^8 + x^7
+

 x^7 + x^5 + x^3 + x^2 + x +
 x^6 + x^4 + x^2 + x + 1 "

which is correct. however, you then go on to state that that is equal
to

"x^13 + x^11 + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1"

which is incorrect. In fact,
x^13 + x^11 + x^9 + x^8 + x^7 + x^7 + x^5 + x^3 + x^2 + x +
 x^6 + x^4 + x^2 + x + 1

actually equals x^13 + x^11 + x^10 + x^7 + x^2 + 1

which, mod (x^8 + x^4 + x^3 + x + 1)

equals

x^6 + x^3 + x^2 + 1

Respectfully yours,

Sheeri Kritzer

19

16. Sheeri Kritzer #2 (05/08/01)

Hi there!

I previously erroneously stated that Section 4.2 of the AES standard
was incorrect. I was mistakenly doing decimal addition, not the XOR
addition specified in Section 4.1.

-Sheeri Kritzer

20

17. Paulo Barreto (05/09/01)

On efficient implementation of InvMixColumns

Dear NIST AES team,

I would like to describe a technique to efficiently implement the InvMixColumns
transform in storage-constrained, byte-oriented environments like smart cards (and
possibly also hardware). Though straightforward, it’s likely that most implementors will
miss the technique and, hence the opportunity to produce optimized code.

Section 5.1 of the specification of RIJNDAEL submitted to NIST by its authors describes
an efficient implementation of function MixColumns for 8-bit platforms. It benefits
from the coefficients of the matrix used in MixColumns, which are as simple as
possible, namely:

2113

3211

1321

1132

Contrary to MixColumns, though, InvMixColumns involves quantities that make
multiplication over GF(28) rather cumbersome, apparently implying that storage-
consuming tables are needed (at least two 256-byte tables, namely, exponential and
logarithm tables). In other words, it’s difficult to implement multiplication by the matrix:

edb

bed

dbe

dbe

9

9

9

9

However, this matrix can be written as:

•

=

2113

3211

1321

1132

5040

0504

4050

0405

9

9

9

9

edb

bed

dbe

dbe

The right factor of the above product is the same matrix used in MixColumns, and the
left factor can be efficiently implemented, as illustrated below for one column:

21

⊕
⊕
⊕
⊕

⊕

=

⊕⊕
⊕⊕
⊕⊕
⊕⊕

=

•

)(4

)(4

)(4

)(4

)(4

)(4

)(4

)(4

5040

0504

4050

0405

wy

zx

wy

zx

w

z

y

x

wyw

zxz

wyy

zxx

w

z

y

x

Making use of the xtime() function described in the RIJNDAEL specification and in the
FIPS draft, this amounts to the following pseudo-code:

tmp1 = xtime(xtime(x ⊕ z))
tmp2 = xtime(xtime(y ⊕ w))
x = x ⊕ tmp1
y = y ⊕ tmp2
z = z ⊕ tmp1
w = w ⊕ tmp2

This technique gets rid of any additional tables; it means that InvMixColumns can be
implemented with the same resources as MixColumns, plus six exclusive-OR
operations and four xtime() calls. Hardware implementations could further slightly
benefit from combining the double xtime() above into a dedicated function x2time().

Best regards,

Paulo S. L. M. Barreto.
Chief Cryptographer
Scopus Tecnologia S. A.

22

18. Miles Smid (05/17/01)

This is a small point but I noticed that in Section 5.1.4 of AES where
AddRoundKey () is defined, the function is defined for each round but
not for the initial whitening. I believe that this could be easily
corrected by changing the last line of the first paragraph of the
section to state the bounds on "round" as

0 <= round <= Nr instead of 1 <= round <= Nr.

There are Nr rounds but the variable "round" has to cover Nr + 1 values
in order for AddRoundKey () to be defined for all its applications.

Miles Smid
CygnaCom Solutions

23

19. N-W Wang et. Al. (05/22/01)

Concerns about the efficiency of data access and ambiguity
in the AES Proposal

 Neng-Wen Wang Yueh-Min Huang Chi-Sung Laih
 Department of Engineering Science Department of Engineering Science Department of Electrical Engineering
 National Cheng Kung University National Cheng Kung University National Cheng Kung University
 Taiwan,R.O.C. Taiwan,R.O.C. Taiwan,R.O.C.

Abstract

NIST(National Institute of standards and Technology) announced that Rijndael
was selected as the proposed AES(Advanced Encryption Standard) on Dec 2, 2000.
Several Versions of programs have been proposed for AES implementation. However,
there exist some concerned problems in section 4.1 of the AES proposal. One problem is
that some paragraphs in this section are inconsistent, which may confuse the
programmers, and the other one is the inefficient data access for the original matrix.
Hence, we suggest the AES standard should adopt the transposed state matrix and
transposed key matrix to eliminate this inconsistency problem and improve the efficiency
of data access for the matrix.

1. Concern about efficiency of data access and ambiguity in AES
Proposal

The Rijndael cipher is suited to be implemented efficiently on a wide range of
processors and in dedicated hardware. However, there are some concerned problems on
the efficiency of the data access and some ambiguity existed in the AES proposal. We
will define the terminology in following paragraph, then describe our concerns in
Rijndael Algorithm implementation.

1.1 The state and the cipher key

 The different transformations operated on the intermediate cipher result are called the
state. The state can be pictured as a rectangular array of bytes. This array has four rows,
the number of columns is denoted by Nb and is equal to the block length divided by 32.
 The cipher key is similarly pictured as a rectangular array with four rows. The number
of columns of the cipher key is denoted by Nk which is equal to the key length divided by
32. These representations are illustrated in Fig 1.

a0,0 a0,1 a0,2 a0,3 a0,4 a0,5

a1,0 a1,1 a1,2 a1,3 a1,4 a1,5

a2,0 a2,1 a2,2 a2,3 a2,4 a2,5

a3,0 a3,1 a3,2 a3,3 a3,4 a3,5

24

k0,0 k0,1 k0,2 k0,3

k1,0 k1,1 k1,2 k1,3

k2,0 k2,1 k2,2 k2,3

k3,0 k3,1 k3,2 k3,3

Fig 1 Examples of state with Nb=6 and key with Nk=4

 The input and output used by Rijndael at its external interface are considered to be one-
dimensional arrays of 8-bit bytes numbered upwards from 0 to the 4*Nb-1. These blocks
hence have lengths of 16,24, or 32 bytes and array indices in the ranges 0..15, 0..23, or
0..31. The cipher key is considered to be one-dimensional arrays of 8-bit bytes numbered
upwards from 0 to the 4*Nk-1. These blocks hence have lengths of 16,24, or 32 bytes and
array indices in the ranges 0..15, 0..23, or 0..31.
 The cipher input bytes are mapped onto the state bytes in the order a0,0, a1,0, a2,0, a3,0,

a0,1,a1,1,a2,1,a3,1, a0,2,a1,2,a2,2,a3,2, …, and The cipher key input bytes are mapped onto the
state bytes in the order k0,0,k1,0,k2,0,k3,0, k0,1,k1,1,k2,1,k3,1, k0,2,k1,2,k2,2,a3,2, …. At the
end of the cipher operation, the cipher output is extracted from the state by taking the
state bytes in the same order.

1.2 Using Transpose Matrix to enhance the efficiency of data access

The Rijdael algorithm uses matrix to store the state and cipher key. All the
encryption/decryption operations will be performed on these two matrices. For the
implementation, if we use the original matrix orientation in Fig 1, the sequential word-
access will become slow. To enhance the efficiency in data access, we can transpose the
matrix as the one in Fig 2. We will give the explanation in the next paragraph.

a0,0 a1,0 a2,0 a3,0

a 0,1 a 1,1 a 2,1 a 3,1

a 0,2 a 1,2 a 2,2 a 3,2

a 0,3 a 1,3 a 2,3 a 3,3

a 0,4 a 1,4 a 2,4 a 3,4

a 0,5 a 1,5 a 2,5 a 3,5

Fig. 2 Transpose matrix

For most of high level programming languages (such as. C), the allocation of
elements in the array is row-major. In other words, array elements are placed in the
memory with a sequential order of row by row. If the CPU manipulates data in another

25

fashion of column by column, the column elements (such as a00, a10, a20, a30) are not in
the consecutive location. The access time for nonconsecutive data is always much slower
than the consecutive data. Figure 3 shows the architecture of classical DRAM. To access
data in a location, the row address should be decoded before the column address. Figure 4
and Figure 5 show the difference of time required between consecutive and
nonconsecutive byte-access. For consecutive-byte access, the row address is decoded
only one time, followed by four- column address. while the row address should be
decoded for each nonconsecutive-byte. Because of this drawback, our algorithm will
arrange data access in a fashion of row by row.

 Fig. 3 Classical DRAM architecture

 Fig. 4 Nonconsecutive bytes access

26

 Fig. 5 Consecutive bytes access

1.3 Using word (4 bytes)-manipulation in Transposed Matrix

The original matrix suffers the efficiency problem as described in section 1.2,
hence the modified algorithm will always use the transpose matrix. This can also benefit
the word manipulation in the row since there is always 4 bytes in each row on the
transposed matrix. The original state matrix and cipher key matrix are not uniform in the
row. In the original matrix, there are 4, 6, and 8 elements in a row each for 128, 192 and
256 bit data, hence we can not handle the row by word manipulation for all cases.
 In the original matrix, there is always four elements in a column for all cases (128,
192 and 256 bits data). After transposing, the new matrix has always 4 elements in the
row. Instead of 4 continuous byte-access in the row, our algorithm manipulates it as one
word-access. For most of modern computers with 32-bit (or above) CPU, it takes only
one access for one word in the row. In C language, it can treat the word (four-byte) data
as the type of long integer. The word-manipulation (such as additions) can be performed
in this data of long integer type. It will take less than one-fourth of time compared with
the byte-manipulation.

1.4. Some ambiguity in the AES proposal

 In the section 4.1 of AES proposal, there are some ambiguous descriptions for the state
matrix and key matrix. First, we list these paragraphs as follows:

 The input and output used by Rijndael at its external interface are considered to be one-
dimensional arrays of 8-bit bytes numbered upwards from 0 to the 4*Nb-1. These blocks
hence have lengths of 16,24 or 32 bytes and array indices in the ranges 0..15, 0..23
or0..31. The cipher key is considered to be one-dimensional arrays of 8-bit bytes
numbered upwards from 0 to the 4*Nk-1. These blocks hence have lengths of 16,24 0r 32
bytes and array indices in the ranges 0..15, 0..23 or0..31.
 The cipher input bytes are mapped onto the state bytes in the order a0,0, a1,0, a2,0, a3,0,

a0,1,a1,1,a2,1,a3,1, …, and The cipher key input bytes are mapped onto the state bytes in
the order k0,0,k1,0,k2,0,k3,0, k0,1,k1,1,k2,1,k3,1, …. At the end of the cipher operation, the
cipher output is extracted from the state by taking the state bytes in the same order.

 However, there is inconsistent description in another paragraph as follows:

27

 In some instances, these blocks are also considered as one-dimensional arrays of 4-
byte vectors, where each vector consists of the corresponding column in the rectangular
array representation. These arrays hence have lengths of 4,6 or 8 respectively and
indices in the ranges 0..3,0..5 or 0..7. 4-byte vectors will sometimes be referred as words.

 The matrix blocks can be considered as one-dimensional arrays of 4-byte (words)
vectors, where each vector consists of the corresponding column. These arrays hence
have indices in the ranges 0..3, 0..5, 0..7 for 128,192,256 bits block respectively. For C
programming language, the column vectors ([00a 10a 20a 30a] t , [01a 11a 21a 31a] t ,

etc.…) are never allocated in the consecutive location. These vectors can not be directly
treated as words. Except that there are other temporary variables or arrays used for
storing the transposed column vectors. The transposed vectors are original from the
column vectors. The transposed vectors will be [00a 10a 20a 30a], [01a 11a 21a 31a],

etc…. This additional procedure needs to be handled for the implementation in row-
major programming languages such as C. There will be another overhead in transposing
vectors and additional variables or arrays. It will be better that the AES standard should
provide another technique note to explain this additional procedure for programmers.

 Because of this drawback, we suggest the AES proposal adopt the transposed matrices
as indicated in Fig 2. In addition to benefit the efficiency of data access (as explained in
section 1.2), it will also resolve the ambiguity problem. If the transposed matrices are
adopted in the AES proposal, no additional transposing procedure is needed.

1.5 Related modifications in the Rijndael Algorithm

 If the matrix is transposed, the row vectors and column vectors are actually
interchanged.
Hence, some modifications should be needed for the Rijndael Algorithm. First, Shiftrow
should be modified as Shiftcolumn, Second, Mixcolumn should be modified as Mixrow.
After this modification, the Rijndael Algorithm will be clearly understood by both the
system designer and the programmer.

2. Conclusion

 The Rijndael Algorithm will soon become the standard of AES in summer 2001. Since
most of the computer languages are row-major in the matrices, we suggest that NIST
should make a transposition to the original state matrix and key matrix to improve the
efficiency for the Rijndael Algorithm. If the final standard does not adopt transposed
matrix for some reasons, we suggest the AES standard should provide another technique
note to explain the ambiguity problem in the AES proposal Section 4.1(as our description
in section 1.4). No matter what the final AES standard will be, we suggest programmers
should use the transposed matrix in order to achieve better efficiency.

28

20. Paul Kocher (05/22/01)

The proposed algorithm for AES (Rijndael) is an excellent choice, but
support for operation with a larger number of rounds is needed.

The round counts in the draft AES FIPS have been chosen to meet
aggressive performance targets. While all evidence suggests that the
current proposal is adequate to resist current cryptanalytic methods,
the safety margin against possible new attacks is relatively small.

This is of serious concern to designers of systems that are expensive
to upgrade or must provide extremely long-term security. For example,
it is estimated that the cost to upgrade the existing banking
infrastructure from DES/3DES to AES would be several billion dollars.
For such systems, long-term durability of the algorithm is vastly more
important than raw performance, particularly because Moore's Law will
compensate for any performance limits.

The round count issue is of the greatest significance for the 256-bit
variant (AES-256). Ideally, the 256-bit variant should be 2^128 times
harder to break than the 128-bit form. While this is true with respect
to exhaustive search, the 256-bit cipher has only 4 extra rounds. Even
with these additional rounds, the proposed AES-256 not necessarily more
resistant to cryptanalytic attack than AES-128, since the 256-bit
cipher is more susceptible to some attacks such as related key attacks.
Historically, the greatest error made by cipher designers has been to
assume incorrectly that exhaustive search is the easiest attack against
an algorithm, and it is important to make sure that this error is not
made with AES.

Experience has shown that block ciphers with more rounds are more
resistant to cryptanalysis. As a result, I am requesting that NIST
standardize an operational mode with a greatly increased round count
(such as 128 rounds) for use in conservative designs and applications
where performance is of minimal concern. In terms of a specific
recommendations, any of the following would provide a suitable
conservative mode:

(a) Change the round count for AES-256 from 14 to 128.

(b) Add an additional mode "AES-256B" that is identical to the existing
AES-256 except that Nr is 128.

(c) Add an operational mode with 256-bit blocks (Nb=8), 256-bit keys
(Nk=8), and 128 rounds (Nr=128).

Thank you for your consideration.

Paul Kocher
President & Chief Scientist
Cryptography Research, Inc.

Paul Kocher President, Cryptography Research, Inc.
Tel: 415-397-0123 (FAX: -0127) 607 Market St., 5th Floor
E-mail: paul@cryptography.com San Francisco, CA 94105

29

21. Dino Eliades (5/22/01)

My only comment for the draft is that as you have a step by step
example of the 128-bit round key, it wound be nice to have an example
of the round key process when 192 and 256 bit cipher keys are used in
"Appendix C - Cipher Example."

Sincerely,
Dino Eliades

30

22. Carol Widmayer (5/22/01)

The comments from the Department of the Treasury are:

1. Announcement, paragraph 6. Interpretation of this paragraph is that
agencies may use AES, triple DES, DES, and SKIPJACK for encryption even
though DES has been cracked). Is this a correct interpretation?

2. The announcement references FIPS 140-2. However, the publication
list indicates that this document is still draft. Will it be published
prior to or at the same time as this standard?

3. Web page URL's change frequently as web pages are redesigned. The
references to web pages in this document may be the first items to be
out-of-date.

4. Section 1. There are three key lengths defined. Will there be
guidance to Federal agencies on key lengths and when to use them?

Please contact me should you have any questions.

Carol Ann Widmayer
Department of the Treasury
CIO
Office of Information Systems Security
(202) 622-1110

31

23. William Harbison (5/23/01)

<x-html><html>
AES Draft FIPS Comment:

The original Rijndael AES proposal (Daemen & Rijmen version 2,
3/09/99)

provided extensions for cypher block sizes between 128 and 256 bits
with increments of 32 bits. The Draft FIPS for AES currently
circulating for comments, however, has only adopted the 128-bit block
cypher and apparently offers no provisions for the other block
sizes. To maximize the utility of the AES, it may be beneficial
for the algorithm to support cypher block sizes other than 128
bits. This will be especially true when AES is employed to
provide cover for orderwire communications. Orderwire
communications typically are comprised of short messages (often less
than 200 bits) to minimize overhead. If they are required to be
padded out to meet the 128-bit fixed block size the overhead will be
increased substantially. This may negate the utility of AES for
these types of applications.

As an example, consider SATCOM applications that utilize orderwire
message signalling for earth terminal control and status. For
these applications, bandwidth efficiency is critical and a restrictive
cipher block size requires a large number of fill (or pad) bits to be
appended to each message. A specific example of this type of
application is the SHF SATCOM Interoperability and Performance Standard
for SHF SATCOM Link Control (MIL-STD-188-166) being developed for the
US Army (CECOM). In this standard, relatively small orderwire
messages (hundreds of bits) are transmitted over relatively low data
rate satellite links (1.2 to 76.8 kbps). With a fixed cypher
block size of 128 bits, the maximum message pad is 127 bits, which in
some cases can be a large percentage of the overall message
length. Alternatively, with a cypher block size that has
increments of 32 bits, the maximum message pad would be 31 bits,
resulting in a significantly more efficient network. To support
this claim, the current MIL-STD-188-166 has a return orderwire channel
operating at 76.8 kbps with 64 TDMA slots supporting 160-bit messages
from 64 earth terminals. In order for this network to conform to
the fixed 128-bit AES cypher block, the orderwire messages would have
to be padded out to 256 bits, which would reduce the number of TDMA
time slots and supported earth terminals to 51. Therefore, for
applications similar to this, it is requested that the FIPS for AES
adopt the cypher block size extensions offered by the original Rijndael
proposal.

<div>***</div>
<div>William Harbison</div>
<div>Linkabit, A Titan Systems Company</div>
<div>Phone: (858) 597-9102</div>
<div>Fax: (858) 552-9660</div>

</html>
</x-html>

32

24. Jakob Jonsson and Matt Robshaw (5/29/01)

Dear NIST AES team,

We would like to congratulate NIST on what appears to be a clear
description of the Rijndael cipher.

However we would like to take this opportunity to raise some specific
issues about the choice of some of the parameters for the Rijndael
cipher and its support within the proposed FIPS document.

First, we are somewhat disappointed to see that only three key sizes
are covered within the FIPS document and further, that only one block
size is considered. One of the attractive features of Rijndael is the
range and flexibility to the user in how these important block cipher
parameters are chosen. It seems, however, that much of this flexibility
will be lost in a FIPS-compliant implementation of the AES. This lack
of support for larger block sizes, such as the 256-bit block size,
seems unfortunate when the cipher was designed to explicitly support
such choices, and when there is a clear use for such block sizes in
modes of use such as hashing.

Second, we would like to echo the comments of many contributors to the
AES process, and to observe that the number of rounds in Rijndael
appears to allow little margin for security against future
developments. It might be observed that the design of the cipher is new
to many cryptanalysts, and while the cipher has been elegantly
optimized against differential and linear cryptanalysis, there remains
considerable mathematical structure within the cipher, the effect of
which is unknown and as yet unexplored. While Rijndael was a very
popular choice for the AES, there were many who coupled this support
with an additional recommendation that more rounds be added to the
cipher. We would also like to make this recommendation. Specifically,
we suggest adding two extra rounds for each of the three key sizes.

Finally, we would like to point out a minor misprint:

Section 4.2.1, heading:
Replace "Multiplication by y" with "Multiplication by x"

Yours faithfully,

RSA Laboratories

Jakob Jonsson (jjonsson@rsasecurity.com)
Matt Robshaw (mrobshaw@supanet.com)

33

25. K.Y. Chen et. Al. (5/29/01)

Speeding up AES with the Modification of ShiftRow Table

K.Y. Chen, P.D. Chen and C.S. Laih
Department of Electrical Engineering, National Cheng Kung University, Tainan

TAIWAN, ROC.
{peder�ccbruce}@crypto.ee.ncku.edu.tw�laihcs@eembox.ee.ncku.edu.tw

TEL�2-886-6-2757575-62302
FAX�2-886-6-2761204

Abstract
Recently, NIST has announced that Rijndael has selected to be the Advanced Encryption
Standard (AES) and it will be used to replace DES for the following 30 years. In this
paper, we proposed a novel method to speed up the implementation of AES with block
length 128 bits (Nb=4). It is shown that the proposed method is faster than the original
method published in NIST web site about 15.6% with the memory cost of 256KB. The
proposed method cannot be applied to block length 192 and 256 bits (Nb=6 and Nb=8)
directly. However, with a slight modification on ShiftRow table. Our scheme can be
applied to both the block length 192 and 256 bits without decreasing its security. Thus,
we suggest NIST adjust the original ShiftRow table to the table we suggest for the
consideration of performance.

I. Introduction
The AES standard, Rijnadel Algorithm, was proposed on Oct. 2 2000 by NIST. This
algorithm is a symmetry block cipher with 128, 192 and 256-bit key and block length. In
[1,2], there are several implemented techniques for speeding up the performance of
encryption/decryption. There are some test result tables about AES algorithm in [3]. In
this paper, we proposed a novel method to speed up the implementation of AES with
block length 128 bits. It is shown that the proposed method can faster than the original
method published in NIST web site about 15.6% with the memory of 256KB. The
proposed method cannot be applied to block length 192 and 256 bits directly. However,
with a slight modification on ROW-SHIFT table. Our scheme can be applied to both the
block length 192 and 256 without decreasing its security and the performance. Thus, we
suggest NIST should be adjust the original ROW-SHIFT table to the table we suggest
due to the performance consideration.

This paper is organized by four sections. Section 2 described the speeding
modification and the security of proposed algorithm. The enhanced modification is
interpreted in Section 3. Conclusion is finally summarized in section 4.

II. The new algorithm
2.1 The original AES implementation
In order to implement the Rijnadel Algorithm, the AES proposal [1] has the following
steps:

34

Calculating the S-Box values by a lookup table, and this processed step is
interpreted by Eq. 1. We assume that the readers are familiar with AES algorithm and the
following parameters are the same as of that in [1], unless denoted otherwise.

[] [] [] []

⊕

⊕

⊕

⊕

=

−−−

j

j

j

j

CjCjCjj

j

j

j

j

k

k

k

k

pSpSpSpS

c

c

c

c

,3

,2

,1

,0

,3,2,1,0

,3

,2

,1

,0

02

03

01

01

01

02

02

01

01

01

02

03

03

01

01

02

321 …………………(1)

To speed up, we have to build a 4KB table that is presented in Eq.2 for getting more
efficient enciphering.

[] []

[] []

•
•

•
=

•
•

=

•
•

=

•

•

=

02][

03][

][

][

,

][

02][

03][

][

][

][

02][

03][

,

03][

][

][

02][

32

10

pS

pS

pS

pS

pL

pS

pS

pS

pS

pL

pS

pS

pS

pS

pL

pS

pS

pS

pS

pL

……………………….………………...(2)

If we have the 0L , 1L , 2L and 3L table, then we should do the enciphering step through the

following equation.

[] [] [] []
321 ,33,22,11,00 CjCjCjjj pLpLpLpLe −−− ⊕⊕⊕=

………..………….(3)

2.2 Our Implementation
To interpret easily, we describe the data arranged by Table 1(a), the number in Table 1
shows the order of the data store in the memory per block. Due to the communicated law
of 'XOR' operation, we can switch the row 2 and row 4 without affecting the processing
result. The result is shown in Table 1(b). Since the continuous bytes are arranged (shown
by the gray color), we can build up a new lookup table for pre-calculated these two
continuous bytes that the processed steps are shown in Eq.s (4) , (5), and (6).

Table 1. the table for speeding up by switching the second and fourth row.
(a). Original (b). After switching

0 4 8 12 0 4 8 12
5 9 13 1 15 3 7 11
10 14 2 6 10 14 2 6
15 3 7 11 5 9 13 1

35

[] [] [] []

⊕

⊕

⊕

⊕

=

−−−

j

j

j

j

CjCjCjj

j

j

j

j

k

k

k

k

pSpSpSpS

c

c

c

c

,3

,2

,1

,0

,2,1,3,0

,3

,2

,1

,0

01

02

02

01

01

01

02

03

02

03

01

01

03

01

01

02

213
…………………(4)

or
[] []
[] []
[] []
[] []

[] []

⊕

⊕

⊕

•⊕•
•⊕•
•⊕•
•⊕•

=

−−

−−

−−

−−

−−

j

j

j

j

CjCj

CjCj

CjCj

CjCj

CjCj

j

j

j

j

k

k

k

k

pSpS

pSpS

pSpS

pSpS

pSpS

c

c

c

c

,3

,2

,1

,0

,2,1

,3,0

,3,0

,3,0

,3,0

,3

,2

,1

,0

01

02

02

01

01

01

02

03

0203

0301

0101

0102

21

33

33

33

33

…………………(5)

If we let

[]

[] []
[] []
[] []
[] []

•⊕•
•⊕•
•⊕•
•⊕•

=

0203

0301

0101

0102

'

10

10

10

10

100

pSpS

pSpS

pSpS

pSpS

ppL …………………………………………(6)

then the result of calculating cipher is shown by following equation.

[] [] [] [] jCjCjCjjj kpLpLpLpLe ⊕⊕⊕⊕= −−− 321 ,33,22,11,00

……………….(7)

2.3 Performance analysis
If we consider a basic operation (XOR operation or a table-lookup) as a CPU clock, then
16 table-lookup and 16 XOR operations will waste 32 CPU clocks. In our proposed
scheme, we just need 13 table-lookup and 14 XOR operations in Eq.(7). In the 128-bit
block case, we reduce the 5 CPU clocks per enciphering operation. Judging from this
viewpoint, the operation increases 15.6% performance. Note that the output result in
Eq.(7) is the same as that in Eq.(3).

III. Modification of ShiftRow table
3.1 Discussion in the case of block length 192 and 256
In the Nb=4 condition, we have the continuous bytes for speeding up the Rijndael
encipher calculating. But in the Nb=6 and Nb=8 condition, the continuous bytes have
disappeared so we cannot get more improvable performance. To solve this problem, our
solution is shown as follows:

The Table 2 shows the original ShiftRow parameters. We suggest the modified
table be shown in Table 3. The difference between these two tables is the change of the
parameter C3. The results of the shifting row operation are shown in Table 4, 5. In this
case, we have got 20.8% and 21.8% improvement separately.

Table 2. The shift row parameter
Nb C1 C2 C3
4 1 2 3
6 1 2 3
8 1 3 4

Table 3. The modified shift row parameter

36

Nb C1 C2 C3
4 1 2 3
6 1 2 5
8 1 3 7

Table 4. The result of Nb=6 rows that shifted by Table 3.
(a). The original elements.

D0 D 4 D 8 D 12 D 16 D 20

D1 D 5 D 9 D 13 D 17 D 21

D 2 D 6 D 10 D 14 D 18 D 22

D 3 D 7 D 11 D 15 D 19 D 23

(b). The elements after row shift.
D0 D 4 D 8 D 12 D 16 D 20

D5 D 9 D 13 D 17 D 21 D 1

D 10 D 14 D 18 D 22 D 2 D 6

D 23 D 3 D 7 D 11 D 15 D 19

(c). The elements after row communicate.
D0 D 4 D 8 D 12 D 16 D 20

D 23 D 3 D 7 D 11 D 15 D 19

D5 D 9 D 13 D 17 D 21 D 1

D 10 D 14 D 18 D 22 D 2 D 6

Table 5. The result of Nb=8 rows that is shifted by Table 3.
(a). The original elements.

D0 D 4 D 8 D 12 D 16 D 20 D 24 D 28

D1 D 5 D 9 D 13 D 17 D 21 D 25 D 29

D 2 D 6 D 10 D 14 D 18 D 22 D 26 D 30

D 3 D 7 D 11 D 15 D 19 D 23 D 27 D 31

(b). The elements after row shift.
D0 D 4 D 8 D 12 D 16 D 20 D 24 D 28

D5 D 9 D 13 D 17 D 21 D 25 D 29 D 1

D 10 D 14 D 18 D 22 D 26 D 30 D 2 D 6

D 31 D 3 D 7 D 11 D 15 D 19 D 23 D 27

(c). The elements after row communicate.
D0 D 4 D 8 D 12 D 16 D 20 D 24 D 28

D 31 D 3 D 7 D 11 D 15 D 19 D 23 D 27

D5 D 9 D 13 D 17 D 21 D 25 D 29 D 1

D 10 D 14 D 18 D 22 D 26 D 30 D 2 D 6

37

3.2 Security analysis
To analyze the security of our scheme, we define a "diffusion set" to observe diffusion.
The set is defined as follows:
 { }rr

l
r
l

r
l CCCS ln21 ,..,,≅

Where r
lC is recursive diffusion set, r is the round number and l is row number. And the

recursive diffusion set is defined as follows:
{ }
{ }

>
=

= −−− 0 ,...,,

0 ,...,,
1

ln
1

2
1

1

ln21

rCCC

rDDD
C rr

l
r
l

llr
li

If we have all elements in r
lS , then we can say r

lS has the full diffusive property.

For Example: In Nb=4 case, we observe on the column 2 and row 1’s element, and we
have view on the round 1, then we get a confusion set (by looking up in table 1(a))

},,,{ 31494
1
4 DDDDC = that has four confusion elements 31494 ,,, DDDD . In the round 2,

the confusion set

},,,,,,,,,,,,,,,{

}},,,{},,,,{},,,,{},,,,{{

},,,{

1514131211109876543210

1510501161127213831494

1
3

1
14

1
9

1
4

2
4

DDDDDDDDDDDDDDDD

DDDDDDDDDDDDDDDD

CCCCC

=
=
=

done the full diffusion that it mixed by the total 16 data elements. So we can call the
Nb=4 case cause the full diffusion in Round 2. Similarly, in original AES case of Nb=6
and Nb=8, r is equals to 3 and 4 respectively. In our scheme, the full confusion round
number is also the same as the AES done.

3.3 8-bit and 16-bit processor implementation
In our proposed scheme, it slightly communicates two rows for speed up the processing
data performance. This modification does not affect the original encrypted processes.
Then using the previous methods, the encrypting data step also does not increase any
computing power.

IV. Conclusion
In this paper, we suggest a simply row shift method for Rijndael algorithm. With a slight
modification on ShiftRow table, our scheme can be applied to both the block length 192
and 256 without decreasing its security and the performance. We get a performance
improved by 15.6%. help of 256KB memory. The proposed method is used when AES is
implemented in 16-bit processor or about. Besides it does not decrease its security and
the performance in 8-bit processor.

Reference
 [1] Advanced Encryption Standard proposal,
http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf
[2] Advanced Encryption Standard, http://csrc.nist.gov/encryption/aes/
[3] Lawrence E. Bassham III, Efficiency Testing of ANSI C Implementations of Round 2

Candidate Algorithms for the Advanced Encryption Standard, The Third Advanced
Encryption Standard Candidate Conference, April 2000.

38

26. Alan Chickinsky (5/29/01)

Sir:

In the "Draft Federal Information Processing Standard (FIPS) for the
Advanced Encryption Standard (AES)" the data contained in Figure 8
appears to be inconsistant with equations 5.1 and 5.2. Below is the
proof showing one inconsistancy.

Figure 8 shows the S-Box translation for Hexadecimal CF to be
Hexadecimal 8A. Using equations 5.1 and 5.2 the S-Box translation for
Hexadecimal CF results in Hexadecimal 8E not the Hexadecimal 8A in
Figure 8.

In the following equations, the symbol "x" stands for the logical XOR
function.

Given -

B7 = 1
B6 = 1
B5 = 0
B4 = 0
B3 = 1
B2 = 1
B1 = 1
B0 = 1

Using equation 5.2 we get-

B7' = B7xB6xB5xB4xB3x0 = 1x1x0x0x1x0 = 1
B6' = B6xB5xB4xB3xB2x1 = 1x0x0x1x1x1 = 0
B5' = B5xB4xB3xB2xB1x1 = 0x0x1x1x1x1 = 0
B4' = B4xB3xB2xB1xB0x0 = 0x1x1x1x1x0 = 0
B3' = B7xB3xB2xB1xB0x0 = 1x1x1x1x1x0 = 1
B2' = B7xB6xB2xB1xB0x0 = 1x1x1x1x1x0 = 1
B1' = B7xB6xB5xB1xB0x1 = 1x1x0x1x1x1 = 1
B0' = B7xB6xB5xB4xB0x1 = 1x1x0x0x1x1 = 0

which generates an 8E.

The difference between 8E and 8A is an inverted bit 2.

Using equation 5.1, for B2' we get

B2' = B2 x B[(2+4) mod8] x B[(2+5) mod8] x B[(2+6) mod8] x B[(2+7)
mod8] x
C2

 = B2 x B6 x B7 x B0 x B1 x C2

 = B7xB6xB2xB1xB0xC2

since C2 = 0,

39

B2' = B7xB6xB2xB1xB0x0 = 1x1x1x1x1x0 = 1

Which is identical to the values found in the equations generated above
from
equation 5.2.

Therefore I conclude that the data in the S-Box is incorrect.

Alan Chickinsky
Litton/Tasc
703-633-8300 x 8554

