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Abstract 97 

Application container technologies, also known as containers, are a form of operating system 98 
virtualization combined with application software packaging. Containers provide a portable, 99 
reusable, and automatable way to package and run applications. This publication explains the 100 
potential security concerns associated with the use of containers and provides recommendations 101 
for addressing these concerns. 102 

 103 

Keywords 104 

application; application container; application software packaging; container; container security; 105 
isolation; operating system virtualization; virtualization 106 

  107 



NIST SP 800-190 (2ND DRAFT)  APPLICATION CONTAINER SECURITY GUIDE 
    

iii 

Acknowledgements 108 

The authors wish to thank their colleagues who have reviewed drafts of this document and 109 
contributed to its technical content during its development, in particular Raghuram Yeluri from 110 
Intel Corporation, Paul Cichonski from Cisco Systems, Inc., and Michael Bartock and Jeffrey 111 
Cichonski from NIST. The authors also acknowledge the organizations that provided feedback 112 
during the public comment period, including Docker, Motorola Solutions, United States 113 
Citizenship and Immigration Services (USCIS), and the US Army. 114 

 115 

Audience 116 

The intended audience for this document is system and security administrators, security program 117 
managers, information system security officers, application developers, and others who have 118 
responsibilities for or are otherwise interested in the security of application container 119 
technologies. 120 

This document assumes that readers have some operating system, networking, and security 121 
expertise, as well as expertise with virtualization technologies (hypervisors and virtual 122 
machines). Because of the constantly changing nature of application container technologies, 123 
readers are encouraged to take advantage of other resources, including those listed in this 124 
document, for more current and detailed information.  125 

 126 

Trademark Information 127 

All registered trademarks or trademarks belong to their respective organizations. 128 

  129 



NIST SP 800-190 (2ND DRAFT)  APPLICATION CONTAINER SECURITY GUIDE 
  
   

iv 

Executive Summary 130 

Operating system (OS) virtualization provides a separate virtualized view of the OS to each 131 
application, thereby keeping each application isolated from all others on the server. Each 132 
application can only see and affect itself. Recently, OS virtualization has become increasingly 133 
popular due to advances in its ease of use and a greater focus on developer agility as a key 134 
benefit. Today’s OS virtualization technologies are primarily focused on providing a portable, 135 
reusable, and automatable way to package and run applications (apps). The terms application 136 
container or simply container are frequently used to refer to these technologies. 137 

The purpose of the document is to explain the security concerns associated with container 138 
technologies and make practical recommendations for addressing those concerns when planning 139 
for, implementing, and maintaining containers. Many of the recommendations are specific to a 140 
particular component or tier within the container technology architecture, which is depicted in 141 
Figure 1. 142 

Figure 1: Container Technology Architecture Tiers and Components 143 

Organizations should follow these recommendations to help ensure the security of their container 144 
technology implementations and usage: 145 

Tailor the organization’s processes to support the new way of developing, running, and 146 
supporting applications made possible by containers. 147 

The introduction of container technologies might disrupt the existing culture and software 148 
development methodologies within the organization. Traditional development practices, patching 149 
techniques, and system upgrade processes might not directly apply to a containerized 150 
environment, and it is important that employees are willing to adapt to a new model. New 151 
processes can consider and address any potential culture shock that is introduced by the 152 
technology shift. Education and training can be offered to anyone involved in the software 153 
development lifecycle. 154 
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Use container-specific host OSs instead of general-purpose ones to reduce attack surfaces. 155 

A container-specific host OS is a minimalist OS explicitly designed to only run containers, with 156 
all other services and functionality disabled, and with read-only file systems and other hardening 157 
practices employed. When using a container-specific host OS, attack surfaces are typically much 158 
smaller than they would be with a general-purpose host OS, so there are fewer opportunities to 159 
attack and compromise a container-specific host OS. Accordingly, whenever possible, 160 
organizations should use container-specific host OSs to reduce their risk. However, it is 161 
important to note that container-specific host OSs will still have vulnerabilities over time that 162 
require remediation. 163 

Only run containers with the same purpose, sensitivity, and threat posture on a single host 164 
OS kernel for additional defense in depth. 165 

While most container platforms do an effective job of isolating containers from each other and 166 
from the host OS, in some cases it may be an unnecessary risk to run apps of different sensitivity 167 
levels together on the same host OS. Segmenting containers by purpose, sensitivity, and threat 168 
posture provides additional defense in depth. By grouping containers in this manner, it will be 169 
much more difficult for an attacker who compromises one of the groups to expand that 170 
compromise to other groups. This approach also ensures that any residual data, such as caches or 171 
local volumes mounted for temp files, stays within its security zone. 172 

In larger-scale environments with hundreds of hosts and thousands of containers, this grouping 173 
must be automated to be practical to operationalize. Fortunately, container technologies typically 174 
include some notion of being able to group apps together, and container security tools can use 175 
attributes like container names and labels to enforce security policies across them. 176 

Adopt container-specific vulnerability management tools and processes for images to 177 
prevent compromises. 178 

Traditional vulnerability management tools make many assumptions about host durability and 179 
app update mechanisms and frequencies that are fundamentally misaligned with a containerized 180 
model. These tools are often unable to detect vulnerabilities within containers, leading to a false 181 
sense of safety. Organizations should use tools that take the pipeline-based build approach and 182 
immutable nature of containers and images into their design to provide more actionable and 183 
reliable results. 184 

These tools and processes should take both image software vulnerabilities and configuration 185 
settings into account. Organizations should adopt tools and processes to validate and enforce 186 
compliance with secure configuration best practices for images. This should include having 187 
centralized reporting and monitoring of the compliance state of each image, and preventing non-188 
compliant images from being run. 189 

Consider using hardware-based countermeasures to provide a basis for trusted computing. 190 

Security should extend across all tiers of the container technology. The current way of 191 
establishing trusted computing for all tiers is to use a hardware root of trust. Within this trust is 192 
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stored measurements of the host’s firmware, software, and configuration data. Validating the 193 
current measurements against the stored measurements before booting the host provides 194 
assurance that the host can be trusted. The chain of trust rooted in hardware can be extended to 195 
the OS kernel and the OS components to enable cryptographic verification of boot mechanisms, 196 
system images, container runtimes, and container images. Trusted computing provides the most 197 
secure way to build, run, orchestrate, and manage containers. 198 

  199 
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1 Introduction 301 

1.1 Purpose and Scope 302 

The purpose of the document is to explain the security concerns associated with application 303 
container technologies and make practical recommendations for addressing those concerns when 304 
planning for, implementing, and maintaining containers. Some aspects of containers may vary 305 
among technologies, but the recommendations in this document are intended to apply to most or 306 
all application container technologies.   307 

All forms of virtualization other than application containers, such as virtual machines, are 308 
outside the scope of this document. 309 

In addition to application container technologies, the term “container” is used to refer to concepts 310 
such as software that isolates enterprise data from personal data on mobile devices, and software 311 
that may be used to isolate applications from each other on desktop operating systems. While 312 
these may share some attributes with application container technologies, they are out of scope for 313 
this document. 314 

This document assumes readers are already familiar with securing the technologies supporting 315 
and interacting with application container technologies. These include the following:  316 

• The layers under application container technologies, including hardware, hypervisors, 317 
and operating systems; 318 

• The administrative tools that use the applications within the containers; and 319 
• The administrator endpoints used to manage the applications within the containers and 320 

the containers themselves. 321 

Appendix A contains pointers to resources with information on securing these technologies. 322 
Sections 3 and 4 offer additional information on security considerations for container-specific 323 
operating systems. All further discussion of securing the technologies listed above is out of scope 324 
for this document. 325 

1.2 Document Structure 326 

The remainder of this document is organized into the following sections and appendices:  327 

• Section 2 introduces containers, including their technical capabilities, technology 328 
architectures, and uses. 329 

• Section 3 explains the major risks for the core components of application container 330 
technologies. 331 

• Section 4 recommends countermeasures for the risks identified in Section 3. 332 
• Section 5 defines threat scenario examples for containers. 333 
• Section 6 presents actionable information for planning, implementing, operating, and 334 

maintaining container technologies. 335 
• Section 7 provides the conclusion for the document. 336 
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• Appendix A lists NIST resources for securing non-core components of container 337 
technologies. 338 

• Appendix B lists the NIST Special Publication 800-53 security controls and NIST 339 
Cybersecurity Framework subcategories that are most pertinent to application container 340 
technologies, explaining the relevancy of each. 341 

• Appendix C provides an acronym and abbreviation list for the document. 342 
• Appendix D presents a glossary of selected terms from the document. 343 
• Appendix E contains a list of references for the document. 344 

  345 
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2 Introduction to Application Containers  346 

This section provides an introduction to containers for server applications. First, it defines the 347 
basic concepts for application virtualization and containers needed to understand the rest of the 348 
document. Next, this section explains how containers interact with the operating system they run 349 
on top of. The next portion of the section illustrates the overall architecture of container 350 
technologies, defining all the major components typically found in a container implementation 351 
and explaining the workflows between components. The last part of the section describes 352 
common uses for containers. 353 

2.1 Basic Concepts for Application Virtualization and Containers 354 

NIST Special Publication (SP) 800-125 [1] defines virtualization as “the simulation of the 355 
software and/or hardware upon which other software runs.” Virtualization has been in use for 356 
many years, but it is best known for enabling cloud computing. In cloud environments, hardware 357 
virtualization is used to run many instances of operating systems (OSs) on a single physical 358 
server while keeping each instance separate. This allows more efficient use of hardware and 359 
supports multi-tenancy.  360 

In hardware virtualization, each OS instance interacts with virtualized hardware. Another form of 361 
virtualization known as operating system virtualization has a similar concept; it provides 362 
multiple virtualized OSs above a single actual OS kernel. This approach is often called an OS 363 
container, and various implementation of OS containers have existed since the early 2000s, 364 
starting with Solaris Zone and FreeBSD jails.1 Support initially became available in Linux in 365 
2008 with the Linux Container (LXC) technology built into nearly all modern distributions. OS 366 
containers are different from the application containers that are the topic of this guide because 367 
OS containers are designed to provide an environment that behaves much like a normal OS in 368 
which multiple apps and services may co-exist. 369 

Recently, application virtualization has become increasingly popular due to advances in its ease 370 
of use and a greater focus on developer agility as a key benefit. In application virtualization, the 371 
same shared OS kernel is exposed virtually to multiple discrete applications. OS components 372 
keep each application instance isolated from all others on the server. In this case, each app sees 373 
only the OS and itself, and is isolated from other apps that may be running on this same OS.   374 

The key difference between OS virtualization and application virtualization is that with app 375 
virtualization, each virtual instance typically runs only a single application. Today’s application 376 
virtualization technologies are primarily focused on providing a portable, reusable, and 377 
automatable way to package and run apps. The terms application container or simply container 378 
are frequently used to refer to these technologies. The term is meant as an analogy to shipping 379 
containers, which provide a standardized way of grouping disparate contents together while 380 
isolating them from each other. 381 

                                                 

1  For more information on the concept of jails, see https://www.freebsd.org/doc/handbook/jails.html.  

https://www.freebsd.org/doc/handbook/jails.html
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Unlike traditional application architectures, which divide an application into a few tiers and have 382 
a component for each tier, container architectures often have an app divided into many more 383 
components, each with a single well-defined function. Each app component runs in a separate 384 
container. In application container technologies, sets of containers that work together to compose 385 
an application are referred to as microservices. With this approach, app deployment is more 386 
flexible and scalable. Development is also simpler because functionality is more self-contained. 387 
However, there are many more objects to manage and secure, which may cause problems for app 388 
management and security tools and processes. 389 

Most application container technologies implement the concept of immutability. In other words, 390 
the containers themselves should be operated as stateless entities that are deployed but not 391 
changed.2 When a running container needs to be upgraded or have its contents changed, it is 392 
simply destroyed and replaced with a new container that has the updates. This enables 393 
developers and support engineers to make and push changes to applications at a much faster 394 
pace. Organizations may go from deploying a new version of their app every quarter, to 395 
deploying new components weekly or daily. Immutability is a fundamental operational 396 
difference between containers and hardware virtualization. Traditional VMs are typically run as 397 
stateful entities that are deployed, reconfigured, and upgraded throughout their life. Legacy 398 
security tools and processes often assume largely static operations and may need to be adjusted 399 
to adapt to the rate of change in containerized environments.  400 

The immutable nature of containers also has implications for data persistence. Rather than 401 
intermingling the app with the data it uses, containers stress the concept of isolation. Data 402 
persistence should be achieved not through simple writes to the container root file system, but 403 
instead by using external, persistent data stores such as databases or cluster-aware persistent 404 
volumes. The data containers use should be stored outside of the containers themselves so that 405 
when the next version of an app replaces the containers running the existing version, all data is 406 
still available to the new version. 407 

Modern container technologies have largely emerged along with the adoption of development 408 
and operations (DevOps) practices that seek to increase the integration between building and 409 
running apps, emphasizing close coordination between development and operational teams.3 The 410 
portable and declarative nature of containers is particularly well suited to these practices because 411 
they allow an organization to have great consistency between development, test, and production 412 
environments. Organizations often utilize continuous integration processes to put their apps into 413 
containers directly in the build process itself, such that from the very beginning of the app’s 414 
lifecycle, there is guaranteed consistency of its runtime environment. Container images are 415 
typically designed to be portable across machines and environments, so that an image created in 416 
a development lab can be easily moved to a test lab for evaluation, then copied into a production 417 
environment to run without needing to make any modifications. The downside of this is that the 418 
security tools and processes used to protect containers should not make assumptions about 419 
specific cloud providers, host OSs, network topologies, or other aspects of the container runtime 420 
                                                 

2  Note that while containers make immutability practical and realistic, they do not require it, so organizations need to adapt 
their operational practices to take advantage of it. 

3  This document refers to tasks performed by DevOps personas. The references to these personas are focused on the types of 
job tasks being performed, not on strict titles or team organizational structures. 
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environment which may frequently change. Even more critically, security should be consistent 421 
across all these environments and throughout the application lifecycle from development to test 422 
to production. 423 

Recently, projects such as Docker [2] and rkt [3] have provided additional functionality designed 424 
to make OS component isolation features easier to use and scale. Container technologies are also 425 
available on the Windows platform beginning with Windows Server 2016. The fundamental 426 
architecture of all these implementations is consistent enough so that this document can discuss 427 
containers in detail while remaining implementation agnostic. 428 

2.2 Containers and the Host Operating System 429 

Explaining the deployment of apps within containers is made easier by comparing it with the 430 
deployment of apps within virtual machines (VMs) from hardware virtualization technologies, 431 
which many readers are already familiar with. Figure 2 shows the VM deployment on the left, a 432 
container deployment without VMs (installed on “bare metal”) in the middle, and a container 433 
deployment that runs within a VM on the right. 434 

Figure 2: Virtual Machine and Container Deployments 435 

Both VMs and containers allow multiple apps to share the same physical infrastructure, but they 436 
use different methods of separation. VMs use a hypervisor that provides hardware-level isolation 437 
of resources across VMs. Each VM sees its own virtual hardware and includes a complete guest 438 
OS in addition to the app and its data. VMs allow different OSs, such as Linux and Windows, to 439 
share the same physical hardware. 440 

With containers, multiple apps share the same OS kernel instance but are segregated from each 441 
other. The OS kernel is part of what is called the host operating system. The host OS sits below 442 
the containers and provides OS capabilities to them. Containers are OS-family specific; a Linux 443 
host can only run containers built for Linux, and a Windows host can only run Windows 444 
containers. Also, a container built for one OS family should run on any recent OS from that 445 
family. 446 
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There are two general categories of host OSs used for running containers. General-purpose OSs 447 
like Red Hat Enterprise Linux, Ubuntu, and Windows Server can be used for running many 448 
kinds of apps and can have container-specific functionality added to them. Container-specific 449 
OSs, like CoreOS Container Linux [4], Project Atomic [5], and Google Container-Optimized OS 450 
[6] are minimalistic OSs explicitly designed to only run containers. They typically do not come 451 
with package managers, they have only a subset of the core administration tools, and they 452 
actively discourage running applications outside containers. Often, a container-specific OS uses 453 
a read-only file system design to reduce the likelihood of an attacker being able to persist data 454 
within it, and it also utilizes a simplified upgrade process since there is little concern around 455 
application compatibility. 456 

Every host OS used for running containers has binaries that establish and maintain the 457 
environment for each container, also known as the container runtime. The container runtime 458 
coordinates multiple OS components that isolate resources and resource usage so that each 459 
container sees its own dedicated view of the OS and is isolated from other containers running 460 
concurrently. Effectively, the containers and the host OS interact through the container runtime. 461 
The container runtime also provides management tools and application programming interfaces 462 
(APIs) to allow DevOps personnel and others to specify how to run containers on a given host. 463 
The runtime eliminates the need to manually create all the necessary configurations and 464 
simplifies the process of starting, stopping, and operating containers. Examples of runtimes 465 
include Docker [2], rkt [3], and the Open Container Initiative Daemon [7]. 466 

Examples of technical capabilities the container runtime ensures the host OS provides include 467 
the following: 468 

• Namespace isolation, which limits which resources a container may interact with. This 469 
includes file systems, network interfaces, interprocess communications, host names, user 470 
information, and processes. Namespace isolation ensures that applications and processes 471 
inside a container only see the physical and virtual resources allocated to that container. 472 
For example, if you run ‘ps –A’ inside a container running Apache on a host with many 473 
other containers running other apps, you would only see httpd listed in the results. 474 
Namespace isolation provides each container with its own networking stack, including 475 
unique interfaces and IP addresses. Containers on Linux use technologies like masked 476 
process identities to achieve namespace isolation, whereas on Windows, object 477 
namespaces are used. 478 

• Resource allocation, which limits how much of a host’s resources a given container can 479 
consume. For example, if your host OS has 10 gigabytes (GB) of total memory, you may 480 
wish to allocate 1 GB each to nine separate containers. No container should be able to 481 
interfere with the operations of another container, so resource allocation ensures that each 482 
container can only utilize the amount of resources assigned to it. On Linux, this is 483 
accomplished primarily with control groups (cgroups)4, whereas on Windows job objects 484 
serve a similar purpose. 485 

                                                 

4  cgroups are collections of processes that can be managed independently, giving the kernel the software-based ability to 
meter subsystems such as memory, processor usage, and disk I/O. Administrators can control these subsystems either 
manually or programmatically. 
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• Filesystem virtualization, which allows multiple containers to share the same physical 486 
storage without the ability to access or alter the storage of other containers. While 487 
arguably similar to namespace isolation, filesystem virtualization is called out separately 488 
because it also often involves optimizations to ensure that containers are efficiently using 489 
the host’s storage through techniques like copy on write. For example, if multiple 490 
containers using the same image are running Apache on a single host, filesystem 491 
virtualization ensures that there is only one copy of the httpd binary stored on disk. If one 492 
of the containers modifies files within itself, only the specifically changed bits will be 493 
written to disk, and those changes will only be visible to the container that executed 494 
them. On Linux, these capabilities are provided by technologies like the Advanced Multi-495 
Layered Unification Filesystem (AUFS), whereas on Windows they are an extension of 496 
the NT File System (NTFS).  497 

The technical capabilities of containers vary by host OS. Containers are fundamentally a 498 
mechanism to give each app a unique view of a single OS, so the tools for achieving this 499 
separation are largely OS family-dependent. For example, the methods used to isolate processes 500 
from each other differ between Linux and Windows. However, while the underlying 501 
implementation may be different, commonly used container runtimes provide a common 502 
interface format that largely abstracts these differences from users. 503 

While containers provide a strong degree of isolation, they do not offer as clear and concrete of a 504 
security boundary as a VM. Because containers share the same kernel and can be run with 505 
varying degrees of capability and privilege on a host, the degree of segmentation between them 506 
is far less than that provided to VMs by a hypervisor. Thus, carelessly configured environments 507 
can result in containers having the ability to interact with each other and the host far more easily 508 
and directly than multiple VMs on the same host. 509 

Although containers are sometimes thought of as the next phase of virtualization, surpassing 510 
hardware virtualization, the reality for most organizations is less about revolution than evolution. 511 
Containers and hardware virtualization not only can, but very frequently do, coexist well and 512 
actually enhance each other’s capabilities. VMs provide many benefits, such as strong isolation, 513 
OS automation, and a wide and deep ecosystem of solutions. Organizations do not need to make 514 
a false choice between containers and VMs. Instead, organizations can continue to use VMs to 515 
deploy, partition, and manage their hardware, while using containers to package their apps and 516 
utilize each VM more efficiently. 517 

2.3 Container Technology Architecture 518 

Figure 3 shows the five tiers of the container technology architecture: 519 



NIST SP 800-190 (2ND DRAFT)  APPLICATION CONTAINER SECURITY GUIDE 
    

8 

1. Developer systems (generate images and send them to testing and accreditation) 520 
2. Testing and accreditation systems (validate and verify the contents of images, sign 521 

images, and send images to the registry) 522 
3. Registries (store images and distribute images to the orchestrator upon request) 523 
4. Orchestrators (convert images into containers and deploy containers to hosts) 524 
5. Hosts (run and stop containers as directed by the orchestrator) 525 

It also depicts administrator systems for the internal registry and the orchestrator. 526 

The systems in gray (developer systems, testing and accreditation system, and administrator 527 
systems) are outside the scope of the container technology architecture, but they do have 528 
important interactions with it. The systems in green (internal registry, external registry, and 529 
orchestrator) are core components of a container technology architecture. Finally, the systems in 530 
orange (hosts with containers) are where the containers are used. 531 

Another way to understand the container technology architecture is to consider the container 532 
lifecycle phases, which are depicted at the bottom of Figure 3. The three phases are discussed in 533 
more detail below. 534 

Because organizations are typically building and deploying many different apps at once, these 535 
lifecycle phases often occur concurrently within the same organization and should not be seen as 536 
progressive stages of maturity. Instead, think of them as cycles in an engine that is continuously 537 
running. In this metaphor, each app is a cylinder within the engine, and different apps may be at 538 
different phases of this lifecycle at the same time.    539 

2.3.1 Image Creation, Testing, and Accreditation 540 

In the first phase of the container lifecycle, an app’s components are built and placed into an 541 
image. An image is a package that contains all the files required to run a container. For example, 542 

Figure 3: Container Technology Architecture Tiers, Components, and Lifecycle Phases 
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an image to run Apache would include the httpd binary, along with associated libraries and 543 
configuration files. An image should only include the executables and libraries required by the 544 
app itself; all other OS functionality is provided by the OS kernel within the underlying host OS. 545 
Images often use techniques like layering and copy on write (in which shared master images are 546 
read only and changes are recorded to separate files) to minimize their size on disk and improve 547 
operational efficiency. 548 

Because images are built in layers, the underlying layer upon which all other components are 549 
added is often called the base layer. Base layers are typically minimalistic distributions of 550 
common OSs like Ubuntu and Windows Nano Server with the OS kernel omitted. Users begin 551 
building their full images by starting with one of these base layers, then adding application 552 
frameworks and their own custom code to develop a fully deployable image of their unique app. 553 
Container runtimes support using images from within the same OS family, even if the specific 554 
host OS version is dissimilar. For example, a Red Hat host running Docker can run images 555 
created on any Linux base layer, such as Alpine or Ubuntu. However, it cannot run images 556 
created with a Windows base layer. 557 

Image creation is mostly driven by developers who are working on creating or updating apps and 558 
packaging them. Image creation typically uses build management and automation tools, such as 559 
Jenkins [8] and TeamCity [9], to assist with what is called the “continuous integration” process. 560 
These tools take the various libraries, binaries, and other components of an application, perform 561 
testing on them, and then assemble images out of them based on the developer-created manifest 562 
that describes how to build an image for the app.  563 

Most container technologies have a declarative way of describing the components and 564 
requirements for the app. For example, an image for a web server would include not only the 565 
executables for the web server, but also some parseable data to describe how the web server 566 
should run, such as the ports it listens on or the configuration parameters it uses. 567 

After image creation, organizations typically perform testing and accreditation. For example, 568 
testers would use the images built to validate the functionality of the final form application and 569 
security teams would perform accreditation on these same images. The consistency of building, 570 
testing, and accrediting exactly the same artifacts for an app is one of the key operational and 571 
security benefits of containers. 572 

2.3.2 Image Storage and Retrieval 573 

Images are typically stored in central locations to make it easy to share, find, and reuse them 574 
across hosts. Registries are services that allow developers to easily store images as they are 575 
created, tag and catalog images for identification and version control to aid in discovery and 576 
reuse, and find and download images that others have created. Registries may be self-hosted or 577 
consumed as a service. Examples of registries include Amazon EC2 Container Registry [10], 578 
Docker Hub [11], Docker Trusted Registry [12], and Quay Container Registry [13]. 579 

Registries provide APIs that enable automating common image-related tasks. For example, 580 
organizations may have triggers in the image creation phase that automatically push images to a 581 
registry once tests pass. The registry may have further triggers that automate the deployment of 582 
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new images once they have been added. This automation enables faster iteration on projects with 583 
more consistent results. 584 

Once stored in a registry, images can be easily pulled and then run by DevOps personas across 585 
any environment in which they run containers. This is another example of the portability benefits 586 
of containers; image creation may occur in a public cloud provider, which pushes an image to a 587 
registry hosted in a private cloud, which is then used to distribute images for running the app in a 588 
third location.   589 

2.3.3 Container Deployment and Management 590 

Tools known as orchestrators enable DevOps personas or automation working on their behalf to 591 
pull images from registries, deploy those images into containers, and manage the running 592 
containers. This deployment process is what actually results in a usable version of the app, 593 
running and ready to respond to requests. When an image is deployed into a container, the image 594 
itself is not changed, but instead a copy of it is placed within the container and transitioned from 595 
being a dormant set of app code to a running instance of the app. Examples of orchestrators are 596 
Kubernetes [14], Mesos [15], and Docker Swarm [16].  597 

Note that a small, simple container implementation could omit a full-fledged orchestrator. 598 
Orchestrators may also be circumvented or unnecessary in other circumstances. For example, a 599 
host could directly contact a registry in order to pull an image from it for a container runtime. To 600 
simplify the discussions in this publication, the use of an orchestrator will be assumed.  601 

The abstraction provided by an orchestrator allows a DevOps persona to simply specify how 602 
many containers need to be running a given image and what resources, such as memory, 603 
processing, and disk need to be allocated to each. The orchestrator knows the state of each host 604 
within the cluster, including what resources are available for each host, and determines which 605 
containers will run on which hosts. The orchestrator then pulls the required images from the 606 
registry and runs them as containers with the designated resources. 607 

Orchestrators are also responsible for monitoring container resource consumption, job execution, 608 
and machine health across hosts. Depending on its configuration, an orchestrator may 609 
automatically restart containers on new hosts if the hosts they were initially running on failed. 610 
Many orchestrators enable cross-host container networking and service discovery. Most 611 
orchestrators also include a software-defined networking (SDN) component known as an overlay 612 
network that can be used to isolate communication between apps that share the same physical 613 
network.  614 

When apps in containers need to be updated, the existing containers are not changed, but rather 615 
they are destroyed and new containers created from updated images. This is a key operational 616 
difference with containers in that the baseline software from the initial deployment should not 617 
change over time, and the atomicity of updates is the entire image at once. This approach has 618 
significant potential security benefits because it enables organizations to build, test, validate, and 619 
deploy exactly the same software in exactly the same configuration in each phase. As updates are 620 
made to apps, organizations can ensure that the most recent versions are used, typically by 621 
leveraging orchestrators. Orchestrators are usually configured to pull the most up-to-date version 622 
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of an image from the registry so that the app is always up-to-date. This “continuous delivery” 623 
automation enables developers to simply build a new version of the image for their app, test the 624 
image, push it to the registry, and then rely on the automation tools to deploy it to the target 625 
environment.  626 

This means that all vulnerability management, including patches and configuration settings, must 627 
be taken care of by the developer before building a new image version. With containers, 628 
developers are largely responsible for the security of apps and images instead of the operations 629 
team. This change in responsibilities often requires much greater coordination and cooperation 630 
among personnel than was previously necessary. 631 

Container management includes security management and monitoring. Unfortunately, security 632 
controls designed for non-container environments are often not well suited for use with 633 
containers. For example, consider security controls that take IP addresses into account. This 634 
works well for VMs and bare metal servers with static IP addresses that remain the same for 635 
months or years. Conversely, containers are typically allocated IP addresses by orchestrators, and  636 
because containers are created and destroyed much more frequently than VMs, these IP 637 
addresses change frequently over time as well. This makes it difficult or impossible to protect 638 
containers using security techniques that rely on static IP addresses, such as firewall rulesets 639 
filtering traffic based on IP address. Additionally, a container network can include 640 
communications between containers on the same node, across different nodes, and even across 641 
clouds. 642 

2.4 Container Uses 643 

Like any other technology, containers are not a panacea. They are a valuable tool for many 644 
scenarios, but are not necessarily the best choice for every scenario. For example, an 645 
organization with a large base of legacy off-the-shelf software is unlikely to be able to take 646 
advantage of containers for running most of that software since the vendors may not support it. 647 
However, most organizations will have multiple valuable uses for containers. Examples include: 648 

• Agile development, where apps are frequently updated and deployed. The portability and 649 
declarative nature of containers makes these frequent updates more efficient and easier to 650 
test. This allows organizations to accelerate their innovation and deliver software more 651 
quickly. This also allows vulnerabilities in application code to be fixed and the updated 652 
software tested and deployed much faster. 653 

• ‘Scale out’ scenarios, where an app may need to have many new instances deployed or 654 
decommissioned quickly depending on the load at a given point in time. The 655 
immutability of containers makes it easier to reliably scale out instances, knowing that 656 
each instance is exactly like all the others. Further, because containers are typically 657 
stateless, it is easier to decommission them when they are no longer needed. 658 

• Net new apps, where developers can build for a microservices architecture from the 659 
beginning, ensuring more efficient iteration of the app and simplified deployment. 660 

Containers provide additional benefits; for example, they can increase the effectiveness of build 661 
pipelines due to the immutable nature of container images. Containers shift the time and location 662 
of production code installation. In non-container systems, application installation happens in 663 
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production (i.e., at server runtime), typically by running hand-crafted scripts that manage 664 
installation of application code (e.g., programming language runtime, dependent third-party 665 
libraries, init scripts, and OS tools) on servers. This means that any tests running in a pre-666 
production build pipeline (and on developers’ workstations) are not testing the actual production 667 
artifact, but a best-guess approximation contained in the build system. This approximation of 668 
production tends to drift from production over time, especially if the teams managing production 669 
and the build system are different. This scenario is the embodiment of the “it works on my 670 
machine” problem. 671 

With container technologies, the build system installs the application within the image it creates 672 
(i.e., at compile-time). The image is an immutable snapshot of all userspace requirements of the 673 
application (i.e., programming language runtime, dependent third-party libraries, init scripts, and 674 
OS tools). In production the container image constructed by the build system is simply 675 
downloaded and run. This solves the “works on my machine” problem since the developer, build 676 
system, and production all run the same immutable artifact. 677 

Modern container technologies often also emphasize reuse, such that a container image created 678 
by one developer can be easily shared and reused by other developers, either within the same 679 
organization or among other organizations. Registry services provide centralized image sharing 680 
and discovery services to make it easy for developers to find and reuse software created by 681 
others. This ease of use is also leading many popular software vendors and projects to use 682 
containers as a way to make it easy for customers to find and quickly run their software. For 683 
example, rather than directly installing an app like MongoDB on the host OS, a user can simply 684 
run a container image of MongoDB. Further, since the container runtime isolates containers from 685 
one another and the host OS, these apps can be run more safely and reliably, and users do not 686 
have to worry about them disturbing the underlying host OS. 687 

 688 
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3 Major Risks for Core Components of Container Technologies  689 

This section identifies and analyzes major risks for the core components of container 690 
technologies—images, registries, orchestrators, containers, and host OSs. Because the analysis 691 
looks at core components only, it is applicable to most container deployments regardless of 692 
container technology, host OS platform, or location (public cloud, private cloud, etc.) Two types 693 
of risks are considered: 694 

1. Compromise of an image or container. This risk was evaluated using the data-centric 695 
system threat modeling approach described in NIST SP 800-154 [17]. The primary “data” 696 
to protect is the images and containers, which may hold application files, data files, etc. 697 
The secondary data to protect is container data within shared host resources such as 698 
memory, storage, and network interfaces. 699 

2. Misuse of a container to attack other containers, the host OS, other hosts, etc. 700 

All other risks involving the core components, as well as risks involving non-core container 701 
technology components, including developer systems, testing and accreditation systems, 702 
administrator systems, and host hardware and virtual machine managers, are outside the scope of 703 
this document. Appendix A contains pointers to general references for securing non-core 704 
container technology components.  705 

3.1 Image Risks 706 

3.1.1 Image vulnerabilities 707 

Because images are effectively static archive files that include all the components used to run a 708 
given application, components within an image may be missing critical security updates or are 709 
otherwise outdated. An image created with fully up-to-date components may be free of known 710 
vulnerabilities for days or weeks after its creation, but at some time vulnerabilities will be 711 
discovered in one or more image components, and thus the image will no longer be up-to-date. 712 

Unlike traditional operational patterns in which deployed software is updated ‘in the field’ on the 713 
hosts it runs on, with containers these updates must be made upstream in the images themselves, 714 
which are then redeployed. Thus, a common risk in containerized environments is deployed 715 
containers having vulnerabilities because the version of the image used to generate the containers 716 
has vulnerabilities.  717 

3.1.2 Image configuration 718 

In addition to software defects, images may also have configuration defects. For example, an 719 
image may not have a user defined and thus not take advantage of the defense in depth provided 720 
by user namespaces. As another example, an image may include an SSH daemon, which exposes 721 
the container to unnecessary network risk. Much like in a traditional server or VM, where a poor 722 
configuration can still expose a fully up-to-date system to attack, so too can a poorly configured 723 
image increase risk even if all the included components are up-to-date.  724 
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3.1.3 Embedded malware 725 

Because images are just collections of files packaged together, malicious files could be included 726 
intentionally or inadvertently within them. Such malware would have the same capabilities as 727 
any other component within the image and thus could be used to attack other containers or hosts 728 
within the environment. A possible source of embedded malware is the use of base layers and 729 
other images provided by third parties of which the full provenance is not known. 730 

3.1.4 Embedded secrets 731 

Many applications require secrets to enable secure communication between components. For 732 
example, a web application may need a username and password to connect to a backend 733 
database. Other examples of embedded secrets include connection strings, SSH private keys, and 734 
X.509 private keys. When an app is packaged in a container, these secrets can be embedded 735 
directly into the image. However, this practice creates a security risk because anyone with access 736 
to the image file can easily parse it to learn these secrets.  737 

3.1.5 Image trust 738 

One of the most common high-risk scenarios in any environment is the execution of untrusted 739 
software. The portability and ease of reuse of containers increase the temptation for teams to run 740 
images from external sources that may not be well validated or trustworthy. For example, when 741 
troubleshooting a problem with a web application, a user may find another version of that 742 
application available in an image provided by a third party. Using this externally provided image 743 
results in the same types of risks that external software traditionally has, such as introducing 744 
malware, leaking data, or including components with vulnerabilities. 745 

3.2 Registry Risks 746 

3.2.1 Insecure connections to registries 747 

Images often contain sensitive components like an organization’s proprietary software and 748 
embedded secrets. If connections to registries are performed over insecure channels, the contents 749 
of images are subject to the same confidentiality risks as any other data transmitted in the clear. 750 
There is also an increased risk of man-in-the-middle attacks that could intercept network traffic 751 
intended for registries and steal developer or administrator credentials, provide fraudulent or 752 
outdated images to orchestrators, etc. 753 

3.2.2 Stale images in registries 754 

Because registries are typically the source location for all the images an organization deploys, 755 
over time the set of images they store can include many vulnerable, out-of-date versions. While 756 
these vulnerable images do not directly pose a threat simply by being stored in the registry, they 757 
increase the likelihood of accidental deployment of a known-vulnerable version. 758 

3.2.3 Insufficient authentication and authorization restrictions 759 

Because registries may contain images used to run sensitive or proprietary applications and to 760 
access sensitive data, insufficient authentication and authorization requirements can lead to 761 
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intellectual property loss and expose significant technical details about an application to an 762 
attacker. Even more critically, because registries are typically trusted as a source of valid, 763 
approved software, compromise of a registry can potentially lead to compromise of downstream 764 
containers and hosts. 765 

3.3 Orchestrator Risks 766 

3.3.1 Unbounded administrative access 767 

Historically, many orchestrators were designed with the assumption that all users interacting 768 
with them would be administrators and those administrators should have environment-wide 769 
control. However, in many cases, a single orchestrator may run many different apps, each 770 
managed by different teams, and with different sensitivity levels. If the access provided to users 771 
and groups is not scoped to their specific needs, a malicious or careless user could affect or 772 
subvert the operation of other containers managed by the orchestrator. 773 

3.3.2 Unauthorized access  774 

Orchestrators often include their own authentication directory, which may be separate from the 775 
typical directories already in use within an organization. This can lead to weaker account 776 
management practices and ‘orphaned’ accounts in the orchestrator because these systems are less 777 
rigorously managed. Because many of these accounts are highly privileged within the 778 
orchestrator, compromise of them can lead to systemwide compromise. 779 

Another concern regarding unauthorized access is the misuse of credentials, such as an attacker 780 
getting access to a password through social engineering or other means, then reusing that 781 
password to access the orchestrator.  782 

3.3.3 Poorly separated inter-container network traffic 783 

In most containerized environments, traffic between individual nodes is routed over a virtual 784 
overlay network. This overlay network is typically managed by the orchestrator and is often 785 
opaque to existing network security and management tools. For example, instead of seeing 786 
database queries being sent from a web server container to a database container on another host, 787 
traditional network filters would only see encrypted packets flowing between two hosts, with no 788 
visibility into the actual container endpoints, nor the traffic being sent. This can create a security 789 
‘blindness’ scenario in which organizations are unable to effectively monitor traffic within their 790 
own networks.  791 

Potentially even more critical is the risk of traffic from different applications sharing the same 792 
virtual networks. If apps of different sensitivity levels, such as a public-facing web site and an 793 
internal treasury management app, are using the same virtual network, sensitive internal apps 794 
may be exposed to greater risk from network attack. For example, if the public-facing web site is 795 
compromised, attackers may be able to use shared networks to attack the treasury app. 796 
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3.3.4 Mixing of workload sensitivity levels 797 

Orchestrators are typically focused primarily on driving the scale and density of workloads. This 798 
means that, by default, they can place workloads of differing sensitivity levels on the same host.  799 
For example, in a default configuration, an orchestrator may place a container running a public-800 
facing web server on the same host as one processing sensitive financial data, simply because 801 
that host happens to have the most available resources at the time of deployment. In the case of a 802 
critical vulnerability in the web server, this can put the container processing sensitive financial 803 
data at significantly greater risk of compromise. 804 

3.3.5 Orchestrator node trust 805 

Many orchestrators exist and each supports a wide variety of configurations. Weak orchestrator 806 
configurations can expose the orchestrator and all other container technology components to 807 
increased risk. Examples of possible consequences include: 808 

• Unauthorized hosts joining the cluster and running containers 809 
• The compromise of a single cluster host implying compromise of the entire cluster—for 810 

example, if the same key pairs used for authentication are shared across all nodes 811 
• Communications between the orchestrator and DevOps personnel, administrators, and 812 

hosts being unencrypted and unauthenticated 813 

3.4 Container Risks 814 

3.4.1 Vulnerabilities within the runtime software 815 

While relatively uncommon, vulnerabilities within the runtime software are particularly 816 
dangerous if they allow ‘container escape’ scenarios in which malicious software can attack 817 
resources in other containers and the host OS itself. An attacker may also be able to exploit 818 
vulnerabilities to compromise the runtime software itself, and then alter that software so it allows 819 
the attacker to access other containers, monitor container-to-container communications, etc. 820 

3.4.2 Unbounded network access from containers 821 

By default in most container runtimes, individual containers are able to access each other and the 822 
host OS over the network. If a container is compromised and acting maliciously, allowing this 823 
network traffic may expose other resources in the environment to risk. For example, a 824 
compromised container may be used to scan the network it is connected to in order to find other 825 
weaknesses for an attacker to exploit. This risk is related to that from poorly separated virtual 826 
networks, as discussed in Section 3.3.3, but different because it is focused more on flows from 827 
containers to any outbound destination, not on app “cross talk” scenarios. 828 

Egress network access is more complex to manage in a containerized environment because so 829 
much of the connection is virtualized between containers. Thus, traffic from one container to 830 
another may appear simply as encapsulated packets while in motion on the network without an 831 
understanding of the ultimate source, destination, or payload. Tools and operational processes 832 
that are not container aware are not able to inspect this traffic or determine whether it represents 833 
a threat. 834 
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3.4.3 Insecure container runtime configurations 835 

Container runtimes typically expose many configurable options to administrators. Setting them 836 
improperly can lower the relative security of the system. For example, on Linux container hosts, 837 
the set of allowed system calls is often limited by default to only those required for safe 838 
operation of containers. If this list is widened, it may expose containers and the host OS to 839 
increased risk from a compromised container. Similarly, if a container is run in privileged mode, 840 
it has access to all the devices on the host, thus allowing it to essentially act as part of the host 841 
OS and impact all other containers running on it. 842 

Another example of an insecure runtime configuration is allowing containers to mount sensitive 843 
directories on the host. Containers should rarely make changes to the host OS file system and 844 
should almost never make changes to locations like /boot or /etc that control the basic 845 
functionality of the host OS. If a compromised container is allowed to make changes to these 846 
paths, it could be used to elevate privileges and attack the host itself as well as other containers 847 
running on the host.  848 

3.4.4 Application vulnerabilities 849 

Even when organizations are taking the precautious recommended in this guide, containers may 850 
still be compromised due to flaws in the apps within them. This is not a problem with containers 851 
themselves, but instead is just the manifestation of typical software flaws within a container 852 
environment. For example, a containerized web app may be vulnerable to cross-site scripting 853 
vulnerabilities, and a database front end container may be subject to Structured Query Language 854 
(SQL) injection. When a container is compromised, it can be misused in many ways, such as 855 
granting unauthorized access to sensitive information or enabling attacks against other containers 856 
or the host OS. 857 

3.5 Host OS Risks 858 

3.5.1 Large attack surface  859 

Every host OS has an attack surface, which is the collection of all ways attackers can attempt to 860 
access and exploit the host OS’s vulnerabilities. For example, any network-accessible service 861 
provides a potential entry point for attackers, adding to the attack surface. The larger the attack 862 
surface is, the better the odds are that an attacker can find and access a vulnerability, leading to a 863 
compromise of the host OS and the containers running on top of it. 864 

3.5.2 Shared kernel 865 

Container-specific OSs have a much smaller attack surface than that of general-purpose OSs. For 866 
example, they do not contain libraries and package managers that enable a general-purpose OS to 867 
directly run database and web server apps. However, although containers provide strong 868 
software-level isolation of resources, the use of a shared kernel invariably results in a larger 869 
inter-object attack surface than seen with hypervisors, even for container-specific OSs. In other 870 
words, the level of isolation provided by container runtimes is not as high as that provided by 871 
hypervisors. 872 
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3.5.3 Host OS component vulnerabilities 873 

All host OSs, even container-specific ones, provide foundational system components—for 874 
example, the cryptographic libraries used to authenticate remote connections and the kernel 875 
primitives used for general process invocation and management. Like any other software, these 876 
components can have vulnerabilities and, because they exist low in the container technology 877 
architecture, they can impact all the containers and applications that run on these hosts. 878 

3.5.4 Improper user access rights 879 

Container-specific OSs are typically not optimized to support multiuser scenarios since 880 
interactive user logon should be rare. Organizations are exposed to risk when users log on 881 
directly to hosts to manage containers, rather than going through an orchestration layer. Direct 882 
management enables wide-ranging changes to the system and all containers on it, and can 883 
potentially enable a user that only needs to manage a specific app’s containers to impact many 884 
others. 885 

3.5.5 Host OS file system tampering 886 

Insecure container configurations can expose host volumes to greater risk of file tampering. For 887 
example, if a container is allowed to mount sensitive directories on the host OS, that container 888 
can then change files in those directories. These changes could impact the stability and security 889 
of the host and all other containers running on it. 890 

 891 
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4 Countermeasures for Major Risks 892 

This section recommends countermeasures for the major risks identified in Section 3. 893 

4.1 Image Countermeasures 894 

4.1.1 Image vulnerabilities 895 

There is a need for container technology-specific vulnerability management tools and processes. 896 
Traditional vulnerability management tools make many assumptions about host durability and 897 
app update mechanisms and frequencies that are fundamentally misaligned with a containerized 898 
model. These tools are often unable to detect vulnerabilities within containers, leading to a false 899 
sense of safety.  900 

Organizations should use tools that take the pipeline-based build approach and immutable nature 901 
of containers and images into their design to provide more actionable and reliable results. Key 902 
aspects of effective tools and processes include: 903 

1. Integration with the entire lifecycle of images, from the beginning of the build process, to 904 
whatever registries the organization is using, to runtime. 905 

2. Visibility into vulnerabilities at all layers of the image, not just the base layer of the 906 
image but also application frameworks and custom software the organization is using.  907 
Visibility should be centralized across the organization and provide flexible reporting and 908 
monitoring views aligned with organizations’ business processes. 909 

3. Policy-driven enforcement; organizations should be able to create “quality gates” at each 910 
stage of the build and deployment process to ensure that only images that meet the 911 
organization’s vulnerability and configuration policies are allowed to progress. For 912 
example, organizations should be able to configure a rule in the build process to prevent 913 
the progression of images that include vulnerabilities with Common Vulnerability 914 
Scoring System (CVSS) [18] ratings above a selected threshold. 915 

4.1.2 Image configuration 916 

Organizations should adopt tools and processes to validate and enforce compliance with secure 917 
configuration best practices. For example, images should be configured to run as non-privileged 918 
users. Tools and processes that should be adopted include: 919 

1. Validation of image configuration settings, including vendor recommendations and third-920 
party party best practices. 921 

2. Centralized reporting and monitoring of image compliance state to identify weaknesses 922 
and risks at the organizational level. 923 

3. Enforcement of compliance requirements by optionally preventing the running of non-924 
compliant images. 925 

4. Use of base layers from trusted sources only, frequent updates of base layers, and 926 
selection of base layers from minimalistic technologies like Alpine Linux and Windows 927 
Nano Server to reduce attack surface areas. 928 
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A final recommendation for image configuration is that SSH and other remote administration 929 
tools designed to provide remote shells to hosts should never be enabled within containers. 930 
Containers should be run in an immutable manner to derive the greatest security benefit from 931 
their use. Enabling remote access to them via these tools implies a degree of change that violates 932 
this principle and exposes them to greater risk of network-based attack. Instead, all remote 933 
management of containers should be done through the container runtime APIs, which may be 934 
accessed via orchestration tools or by creating remote shell sessions to the host on which the 935 
container is running. 936 

4.1.3 Embedded malware 937 

Organizations should continuously monitor all images for embedded malware. The monitoring 938 
processes should include the use of malware signature sets and behavioral detection heuristics 939 
based largely on actual “in the wild” attacks. 940 

4.1.4 Embedded secrets 941 

Secrets should be stored outside of images and provided dynamically at runtime as needed. Most 942 
orchestrators, such as Docker Swarm and Kubernetes, include secret management natively. 943 
These orchestrators not only provide secure secret storage and ‘just in time’ injection to 944 
containers, but also make it much simpler to integrate secret management into the build and 945 
deployment processes. For example, an organization could use these tools to securely provision 946 
the database connection string into a web app container. The orchestrator would ensure that only 947 
the web app container had access to this secret, that it is not persisted to disk, and that anytime 948 
the web app is deployed, the secret is provisioned into it.   949 

Organizations may also integrate their container deployments with existing enterprise secret 950 
management systems that are already in use for storing secrets in non-container environments.  951 
These tools typically provide APIs to retrieve secrets securely as containers are deployed, which 952 
eliminates the need to persist them within images. 953 

Regardless of the tool chosen, organizations should ensure that secrets are only provided to the 954 
specific containers that require them, based on a pre-defined and administrator-controlled setting, 955 
and that secrets are always encrypted at rest. 956 

4.1.5 Image trust 957 

Organizations should enforce a set of trusted images and registries and ensure that only images 958 
from this set are allowed to run in their environment, thus mitigating the risk of untrusted or 959 
malicious components being deployed. 960 

To mitigate these risks, organizations should take a multilayered approach that includes: 961 

• Capability to centrally control exactly what images and registries are trusted in their 962 
environment; 963 
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• Discrete identification of each image by cryptographic signature, using a NIST-validated 964 
implementation5; 965 

• Enforcement to ensure that all hosts in the environment only run images from these 966 
approved lists;  967 

• Validation of image signatures before image execution to ensure images are from trusted 968 
sources and have not been tampered with; and 969 

• Ongoing monitoring and maintenance of these repositories to ensure images within them 970 
are maintained and updated as vulnerabilities and configuration requirements change. 971 

4.2 Registry Countermeasures 972 

4.2.1 Insecure connections to registries 973 

Organizations should configure their development tools, orchestrators, and container runtimes to 974 
only connect to registries over encrypted channels. The specific steps vary between tools, but the 975 
key goal is to ensure that all data pushed to and pulled from a registry occurs between trusted 976 
endpoints and is encrypted in transit.  977 

4.2.2 Stale images in registries 978 

The risk of using stale images can be mitigated through two primary methods. First, 979 
organizations can prune registries of unsafe, vulnerable images that should no longer be used.  980 
This process can be automated based on time triggers and labels associated with images.  981 
Second, operational practices should emphasize accessing images using immutable names that 982 
specify discrete versions of images to be used. For example, rather than configuring a 983 
deployment job to use the image called my-app, configure it to deploy specific versions of the 984 
image, such as my-app:2.3 and my-app:2.4 to ensure that specific, known good instances of 985 
images are deployed as part of each job. 986 

Another option is using a “latest” tag for images and referencing this tag in deployment 987 
automation. However, because this tag is only a label attached to the image and not a guarantee 988 
of freshness, organizations should be cautious to not overly trust it. Regardless of whether an 989 
organization chooses to use discrete names or to use a “latest” tag, it is critical that processes be 990 
put in place to ensure that either the automation is using the most recent unique name or the 991 
images tagged “latest” actually do represent the most up-to-date versions. 992 

4.2.3 Insufficient authentication and authorization restrictions 993 

All access to registries that contain proprietary or sensitive images should require authentication.  994 
Any write access to a registry should require authentication to ensure that only images from 995 
trusted entities can be added to it. In both cases, organizations should consider federating with 996 
existing accounts, such as their own or a cloud provider’s directory service to take advantage of 997 

                                                 

5  For more information on NIST-validated cryptographic implementations, see the Cryptographic Module Validation Program 
(CMVP) page at http://csrc.nist.gov/groups/STM/cmvp/.  

http://csrc.nist.gov/groups/STM/cmvp/
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security controls already in place for those accounts. All write access to registries should be 998 
audited and any read actions for sensitive images should similarly be logged. 999 

4.3 Orchestrator Countermeasures 1000 

4.3.1 Unbounded administrative access 1001 

Especially because of their wide-ranging span of control, orchestrators should use a least 1002 
privileged access model in which users are only granted ability to perform the specific actions on 1003 
the specific hosts, containers, and images their job role requires. For examples, members of the 1004 
test team should only be given access to the images used in testing and the hosts used for running 1005 
them, and should only be able to manipulate the containers they created. Test team members 1006 
should have limited or no access to containers used in production. 1007 

4.3.2 Unauthorized access 1008 

Access to cluster-wide administrative accounts should be tightly controlled as these accounts 1009 
provide ability to affect all resources in the environment. Organizations should use strong 1010 
authentication methods, such as requiring multifactor authentication instead of just a password.  1011 

Organizations should implement single sign-on to existing directory systems where applicable. 1012 
Single sign-on simplifies the orchestrator authentication experience, makes it easier for users to 1013 
use strong authentication credentials, and centralizes auditing of access, making anomaly 1014 
detection more effective. 1015 

4.3.3 Poorly separated inter-container network traffic 1016 

Orchestrators should be configured to separate network traffic into discrete virtual networks by 1017 
sensitivity level. While per-app segmentation is also possible, for most organizations and use 1018 
cases, simply defining networks by sensitivity level provides sufficient mitigation of risk with a 1019 
manageable degree of complexity. For example, public-facing apps can share a virtual network, 1020 
internal apps can use another, and communication between the two should occur through a small 1021 
number of well-defined interfaces. 1022 

4.3.4 Mixing of workload sensitivity levels  1023 

Orchestrators should be configured to isolate deployments to specific sets of hosts by sensitivity 1024 
levels. The particular approach for implementing this varies depending on the orchestrator in use, 1025 
but the general model is to define rules that prevent high sensitivity workloads from being placed 1026 
on the same host as those running lower sensitivity workloads. This can be accomplished 1027 
through the use of host ‘pinning’ within the orchestrator or even simply by having separate, 1028 
individually managed clusters for each sensitivity level. 1029 

While most container runtime environments do an effective job of isolating containers from each 1030 
other and from the host OS, in some cases it may be an unnecessary risk to run apps of different 1031 
sensitivity levels together on the same host OS. Segmenting containers by purpose, sensitivity, 1032 
and threat posture provides additional defense in depth. Concepts such as application tiering and 1033 
network and host segmentation should be taken into consideration when planning app 1034 
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deployments. For example, suppose a host is running containers for both a financial database and 1035 
a public-facing blog. While normally the container runtime will effectively isolate these 1036 
environments from each other, there is also a shared responsibility amongst the DevOps teams 1037 
for each app to operate them securely and eliminate unnecessary risk. If the blog app were to be 1038 
compromised by an attacker, there would be far fewer layers of defense to protect the database if 1039 
the two apps are running on the same host.  1040 

Thus, a best practice is to group containers together by relative sensitivity and to ensure that a 1041 
given host kernel only runs containers of a single sensitivity level. This segmentation may be 1042 
provided by using multiple physical servers, but modern hypervisors also provide strong enough 1043 
isolation to effectively mitigate these risks. From the previous example, this may mean that the 1044 
organization has two sensitivity levels for their containers. One is for financial apps and the 1045 
database is included in that group. The other is for web apps and the blog is included in that 1046 
group. The organization would then have two pools of VMs that would each host containers of a 1047 
single severity level. For example, the host called vm-financial may host the containers running 1048 
the financial database as well as the tax reporting software, while a host called vm-web may host 1049 
the blog and the public website.  1050 

By segmenting containers in this manner, it will be much more difficult for an attacker who 1051 
compromises one of the segments to expand that compromise to other segments. This approach 1052 
also ensures that any residual data, such as caches or local volumes mounted for temp files, stays 1053 
within its security zone. From the previous example, this zoning would ensure that any financial 1054 
data cached locally and residually after container termination would never be available on a host 1055 
running an app at a lower sensitivity level. 1056 

In larger-scale environments with hundreds of hosts and thousands of containers, this 1057 
segmentation must be automated to be practical to operationalize. Fortunately, common 1058 
orchestration platforms typically include some notion of being able to group apps together, and 1059 
container security tools can use attributes like container names and labels to enforce security 1060 
policies across them. In these environments, additional layers of defense in depth beyond simple 1061 
host isolation may also leverage this segmentation. For example, an organization may implement 1062 
separate hosting zones or networks to not only isolate these containers within hypervisors but 1063 
also to isolate their network traffic more discretely such that traffic for apps of one sensitivity 1064 
level is separate from that of other sensitivity levels. 1065 

4.3.5 Orchestrator node trust 1066 

Orchestration platforms should be configured to provide features that create a secure 1067 
environment for all the apps they run. Orchestrators should ensure that nodes are securely 1068 
introduced to the cluster, have a persistent identity throughout their lifecycle, and can also 1069 
provide an accurate inventory of nodes and their connectivity states. Organizations should ensure 1070 
that orchestration platforms are designed specifically to be resilient to compromise of individual 1071 
nodes without compromising the overall security of the cluster. A compromised node must be 1072 
able to be isolated and removed from the cluster without disrupting or degrading overall cluster 1073 
operations. Finally, organizations should choose orchestrators that provide mutually 1074 
authenticated network connections between cluster members and end-to-end encryption of intra-1075 
cluster traffic. Because of the portability of containers, many deployments may occur across 1076 



NIST SP 800-190 (2ND DRAFT)  APPLICATION CONTAINER SECURITY GUIDE 
    

24 

networks organizations do not directly control, so a secure-by-default posture is particularly 1077 
important for this scenario. 1078 

4.4 Container Countermeasures 1079 

4.4.1 Vulnerabilities within the runtime software 1080 

The container runtime must be carefully monitored for vulnerabilities and when problems are 1081 
detected, they must be remediated quickly. A vulnerable runtime exposes all containers it 1082 
supports, as well as the host itself, to potentially significant risk. Organizations should use tools 1083 
to look for Common Vulnerabilities and Exposures (CVEs) vulnerabilities in the runtimes 1084 
deployed, to upgrade any instances at risk, and to ensure that orchestrators only allow 1085 
deployments to properly maintained runtimes. 1086 

4.4.2 Unbounded network access from containers 1087 

Organizations should control the egress network traffic sent by containers. At minimum, these 1088 
controls should be in place at network borders, ensuring containers are not able to send traffic 1089 
across networks of differing sensitivity levels, such as from an environment hosting secure data 1090 
to the internet, similar to the patterns used for traditional architectures. However, the virtualized 1091 
networking model of inter-container traffic poses an additional challenge.   1092 

Because containers deployed across multiple hosts typically communicate over a virtual, 1093 
encrypted network, traditional network devices are often blind to this traffic. Additionally, 1094 
containers are typically assigned dynamic IP addresses automatically when deployed by 1095 
orchestrators, and these addresses change continuously as the app is scaled and load balanced.  1096 
Thus, ideally, organizations should use a combination of existing network level devices and 1097 
more application-aware network filtering. App-aware tools should be able to not just see the 1098 
inter-container traffic, but also to dynamically generate the rules used to filter this traffic based 1099 
on the specific characteristics of the apps running in the containers. This dynamic rule 1100 
management is critical due to the scale and rate of change of containerized apps, as well as their 1101 
ephemeral networking topology.  1102 

Specifically, app-aware tools should provide the following capabilities: 1103 

• Automated determination of proper container networking surfaces, including both 1104 
inbound ports and process-port bindings; 1105 

• Detection of traffic flows both between containers and other network entities, over both 1106 
‘on the wire’ traffic and encapsulated traffic; and 1107 

• Detection of network anomalies, such as unexpected traffic flows within the 1108 
organization’s network, port scanning, or outbound access to potentially dangerous 1109 
destinations. 1110 

4.4.3 Insecure container runtime configurations 1111 

Organizations should automate compliance with container runtime configuration standards. 1112 
Documented technical implementation guidance, such as the Center for Internet Security Docker 1113 
Benchmark [19], provides details on options and recommended settings, but operationalizing this 1114 
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guidance depends on automation. Organizations can use a variety of tools to “scan” and assess 1115 
their compliance at a point in time, but such approaches do not scale. Instead, organizations 1116 
should use tools or processes that continuously assess configuration settings across the 1117 
environment and actively enforce them. 1118 

Additionally, mandatory access control (MAC) technologies like SELinux [20] and AppArmor 1119 
[21] provide enhanced control and isolation for containers running Linux OSs. For example, 1120 
these technologies can be used to provide additional segmentation and assurance that containers 1121 
should only be able to access specific file paths, processes, and network sockets, further 1122 
constraining the ability of even a compromised container to impact the host or other containers.  1123 
MAC technologies provide protection at the host OS layer, ensuring that only specific files, 1124 
paths, and processes are accessible to containerized apps. Organizations are encouraged to use 1125 
the MAC technologies provided by their host OSs in all container deployments. 1126 

Secure computing (seccomp)6 profiles are another mechanism that can be used to constrain the 1127 
system-level capabilities containers are allocated at runtime. Common container runtimes like 1128 
Docker include default seccomp profiles that drop system calls that are unsafe and typically 1129 
unnecessary for container operation. Additionally, custom profiles can be created and passed to 1130 
container runtimes to further limit their capabilities. At a minimum, organizations should ensure 1131 
that containers are run with the default profiles provided by their runtime and should consider 1132 
using additional profiles for high-risk apps. 1133 

4.4.4 Application vulnerabilities 1134 

Existing host-based intrusion detection processes and tools are often unable to detect and prevent 1135 
attacks within containers due to the differing technical architecture and operational practices 1136 
previously discussed. Organizations should implement additional tools that are container aware 1137 
and designed to operate at the scale and change rate typically seen with containers. These tools 1138 
should be able to automatically profile containerized apps using behavioral learning and build 1139 
security profiles for them to minimize human interaction. These profiles should then be able to 1140 
detect anomalies at runtime, including events such as: 1141 

• Invalid or unexpected process execution, 1142 
• Invalid or unexpected system calls, 1143 
• Changes to protected configuration files and binaries, 1144 
• Writes to unexpected locations and file types, 1145 
• Creation of unexpected network listeners, 1146 
• Traffic sent to unexpected network destinations, and 1147 
• Malware storage or execution. 1148 

Containers should also be run in a read-only mode, in which changes are not allowed to their root 1149 
filesystems. This approach isolates writes to specifically defined directories, which can then be 1150 
more easily monitored by the aforementioned tools. Furthermore, using read-only filesystems 1151 

                                                 

6  For more information on seccomp, see https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt.  

https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
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makes the containers more resilient to compromise since any tampering is isolated to these 1152 
specific locations and can be easily separated from the rest of the app. 1153 

4.5 Host OS Countermeasures 1154 

4.5.1 Large attack surface  1155 

For organizations using container-specific OSs, the threats are typically more minimal to start 1156 
with since the OSs are specifically designed to host containers and have other services and 1157 
functionality disabled. Further, because these optimized OSs are designed specifically for 1158 
hosting containers, they typically feature read-only file systems and employ other hardening 1159 
practices by default. Whenever possible, organizations should use these minimalistic OSs to 1160 
reduce their attack surfaces and mitigate the typical risks and hardening activities associated with 1161 
general-purpose OSs.  1162 

4.5.2 Shared kernel 1163 

In addition to grouping container workloads onto hosts by sensitivity level, organizations should 1164 
not mix containerized and non-containerized workloads on the same host instance. For example, 1165 
if a host is running a web server container, it should not also run a web server (or any other app) 1166 
as a regularly installed component directly within the host OS. Keeping containerized workloads 1167 
isolated to container-specific hosts makes it simpler and safer to apply countermeasures and 1168 
defenses that are optimized for protecting containers. 1169 

4.5.3 Host OS component vulnerabilities 1170 

Organizations should implement management practices and tools to validate the versioning of 1171 
components provided for base OS management and functionality. Even though container-1172 
specific OSs have a much more minimal set of components than general-purpose OSs, they still 1173 
do have vulnerabilities and still require remediation. Organizations should use tools provided by 1174 
the OS vendor or other trusted organizations to regularly check for and apply updates to all 1175 
software components used within the OS. The OS should be kept up to date not only with 1176 
security updates, but also the latest component updates recommended by the vendor. This is 1177 
particularly important for the kernel and container runtime components as newer releases of 1178 
these components often add additional security protections and capabilities beyond simply 1179 
correcting vulnerabilities. 1180 

Host OSs should be operated in an immutable manner with no data or state stored uniquely and 1181 
persistently on the host and no application-level dependencies provided by the host. Instead, all 1182 
application components and dependencies should be packaged and deployed in containers. This 1183 
enables the host to be operated in a nearly stateless manner with a greatly reduced attack surface 1184 
and a more trustworthy way to identify anomalies and configuration drift. 1185 

4.5.4 Improper user access rights 1186 

Though most container deployments rely on orchestrators to distribute jobs across hosts, 1187 
organizations should still ensure that all authentication to the OS is audited, login anomalies are 1188 
monitored, and any escalation to performed privileged operations is logged. This makes it 1189 
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possible to identify anomalous access patterns such as an individual logging on to a host directly 1190 
and running privileged commands to manipulate containers. 1191 

4.5.5 Host file system tampering 1192 

Ensure that containers are run with the minimal set of file system permissions required. Very 1193 
rarely should containers mount local file systems on a host. Instead, any file changes that 1194 
containers need to persist to disk should be made within storage volumes specifically allocated 1195 
for this purpose. In no case should containers be able to mount sensitive directories on a host’s 1196 
file system, especially those containing configuration settings for the operating system.  1197 
Organizations should use tools that can monitor what directories are being mounted by 1198 
containers and prevent the deployment of containers that violate these policies. 1199 

4.6 Hardware Countermeasures 1200 

Software-based security is regularly defeated, as acknowledged in NIST SP 800-164 [22]. NIST 1201 
defines trusted computing requirements in NIST SPs 800-147 [23], 800-155 [24], and 800-164. 1202 
To NIST, “trusted” means that the platform behaves as it is expected to: the software inventory is 1203 
accurate, the configuration settings and security controls are in place and operating as they 1204 
should, and so on. “Trusted” also means that it is known that no unauthorized person has 1205 
tampered with the software or its configuration on the hosts. Hardware root of trust is not a 1206 
concept unique to containers, but container management and security tools can leverage 1207 
attestations for the rest of the container technology architecture to ensure containers are being 1208 
run in secure environments. 1209 

The currently available way to provide trusted computing is to:  1210 

1. Measure firmware, software, and configuration data before it is executed using a Root of 1211 
Trust for Measurement (RTM). 1212 

2. Store those measurements in a hardware root of trust, like a trusted platform module 1213 
(TPM). 1214 

3. Validate that the current measurements match the expected measurements. If so, it can be 1215 
attested that the platform can be trusted to behave as expected. 1216 

TPM-enabled devices can check the integrity of the machine during the boot process, enabling 1217 
protection and detection mechanisms to function in hardware, at pre-boot, and in the secure boot 1218 
process. This same trust and integrity assurance can be extended beyond the OS and the boot 1219 
loader to the container runtimes and applications. Note that while standards are being developed 1220 
to enable verification of hardware trust by users of cloud services, not all clouds expose this 1221 
functionality to their customers. In cases where technical verification is not provided, 1222 
organizations should address hardware trust requirements as part of their service agreements with 1223 
cloud providers. 1224 

The increasing complexity of systems and the deeply embedded nature of today’s threats means 1225 
that security should extend across all container technology components, starting with the 1226 
hardware and firmware. This would form a distributed trusted computing model and provide the 1227 
most trusted and secure way to build, run, orchestrate, and manage containers.  1228 
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The trusted computing model should start with measured/secure boot, which provides a verified 1229 
system platform, and build a chain of trust rooted in hardware and extended to the bootloaders, 1230 
the OS kernel, and the OS components to enable cryptographic verification of boot mechanisms, 1231 
system images, container runtimes, and container images. For container technologies, these 1232 
techniques are currently applicable at the hardware, hypervisor, and host OS layers, with early 1233 
work in progress to apply these to container-specific components. 1234 

As of this writing, NIST is collaborating with industry partners to build reference architectures 1235 
based on commercial off-the-shelf products that demonstrate the trusted computing model for 1236 
container environments.7 1237 

 1238 

                                                 

7  For more information on previous NIST efforts in this area, see NIST IR 7904, Trusted Geolocation in the Cloud: Proof of 
Concept Implementation [28].  
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5 Container Threat Scenario Examples 1239 

To illustrate the effectiveness of the recommended mitigations from Section 4, consider the 1240 
following threat scenario examples for containers. 1241 

5.1 Exploit of a Vulnerability within an Image 1242 

One of the most common threats to a containerized environment is application-level 1243 
vulnerabilities in the software within containers. For example, an organization may build an 1244 
image based on a common web application. If that application has a vulnerability, it may be used 1245 
to subvert the application within the container. Once compromised, the attacker may be able to 1246 
map other systems in the environment, attempt to elevate privileges within the compromised 1247 
container, or abuse the container for use in attacks on other systems (such as acting as a file 1248 
dropper or command and control endpoint). 1249 

Organizations that adopt the recommendations would have multiple layers of defense in depth 1250 
against such threats: 1251 

1. Detecting the vulnerable image early in the deployment process and having controls in 1252 
place to prevent vulnerable images from being deployed would prevent the vulnerability 1253 
from being introduced into production. 1254 

2. Container-aware network monitoring and filtering would detect anomalous connections 1255 
to other containers during the attempt to map other systems. 1256 

3. Container-aware process monitoring and malware detection would detect the running of 1257 
invalid or unexpected malicious processes and the data they introduce into the 1258 
environment.  1259 

5.2 Exploit of the Container Runtime 1260 

While an uncommon occurrence, if a container runtime were compromised, an attacker could 1261 
utilize this access to attack all the containers on the host and even the host itself. 1262 

Relevant mitigations for this threat scenario include: 1263 

1. The usage of mandatory access control capabilities can provide additional barriers to 1264 
ensure that process and file system activity is still segmented within the defined 1265 
boundaries. 1266 

2. Segmentation of workloads ensures that the scope of the compromise would be limited to 1267 
applications of a common sensitivity level that are sharing the host. For example, a 1268 
compromised runtime on a host only running web applications would not impact 1269 
runtimes on other hosts running containers for financial applications. 1270 

3. Security tools that can report on the vulnerability state of runtimes and prevent the 1271 
deployment of images to vulnerable ones can prevent workloads from running there. 1272 

5.3 Running a Poisoned Image 1273 

Because images are easily sourced from public locations, often with unknown provenance, an 1274 
attacker may embed malicious software within images known to be used by a target. For 1275 
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example, if an attacker determines that a target is active on a discussion board about a particular 1276 
project and uses images provided by that project’s web site, the attacker may seek to craft 1277 
malicious versions of these images for use in an attack. 1278 

Relevant mitigations include: 1279 

1. Ensuring that only trusted images are allowed to run, which will prevent images from 1280 
external, unvetted sources from being used. 1281 

2. Automatically scanning images for vulnerabilities and malware, which may detect 1282 
malicious code such as rootkits embedded within an image. 1283 

3. Implementing runtime controls that limit the container's ability to abuse resources, 1284 
escalate privileges, and run executables. 1285 

4. Using container-level network segmentation to limit the “blast radius” of what the 1286 
poisoned image might do. 1287 

5. Validating a container image's runtime operates following least-privilege and least-access 1288 
principles. 1289 

6. Building a threat profile of the container's runtime. This includes, but is not limited to, 1290 
processes, network calls, and filesystem changes. 1291 

7. Leveraging the use of digitally hashed or signed images to validate images before 1292 
runtime as integrity and tampering checks. 1293 

 1294 

 1295 
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6 Container Technology Life Cycle Security Considerations  1296 

It is critically important to carefully plan before installing, configuring, and deploying container 1297 
technologies. This helps ensure that the container environment is as secure as possible and is in 1298 
compliance with all relevant organizational policies, external regulations, and other 1299 
requirements. 1300 

There is a great deal of similarity in the planning and implementation recommendations for 1301 
container technologies and virtualization solutions. Section 5 of NIST SP 800-125 [1] already 1302 
contains a full set of recommendations for virtualization solutions. Instead of repeating all those 1303 
recommendations here, this section points readers to that document and states that, besides the 1304 
exceptions listed below, organizations should apply all the NIST SP 800-125 Section 5 1305 
recommendations in a container technology context. For example, instead of creating a 1306 
virtualization security policy, create a container technology security policy. 1307 

This section of the document lists exceptions and additions to the NIST SP 800-125 Section 5 1308 
recommendations, grouped by the corresponding phase in the planning and implementation life 1309 
cycle. 1310 

6.1 Initiation Phase 1311 

Organizations should consider how other security policies may be affected by containers and 1312 
adjust these policies as needed to take containers into consideration. For example, policies for 1313 
incident response (especially forensics) and vulnerability management may need to be adjusted 1314 
to take into account the special requirements of containers. 1315 

The introduction of container technologies might disrupt the existing culture and software 1316 
development methodologies within the organization. To take full advantage of the benefits 1317 
containers can provide, the organization’s processes should be tailored to support this new way 1318 
of developing, running, and supporting applications. Traditional development practices, patching 1319 
techniques, and system upgrade processes might not directly apply to a containerized 1320 
environment, and it is important that the employees within the organization are willing to adapt 1321 
to a new model. New processes can consider and address any potential culture shock that is 1322 
introduced by the technology shift. Education and training can be offered to anyone involved in 1323 
the software development lifecycle to allow people to become comfortable with the new way to 1324 
build, ship, and run applications. 1325 

6.2 Planning and Design Phase 1326 

The primary container-specific consideration for the planning and design phase is forensics. 1327 
Because containers mostly build on components already present in OSs, the tools and techniques 1328 
for performing forensics in a containerized environment are mostly an evolution of existing 1329 
practices. The immutable nature of containers and images can actually improve forensic 1330 
capabilities because the demarcation between what an image should do and what actually 1331 
occurred during an incident is clearer. For example, if a container launched to run a web server 1332 
suddenly starts a mail relay, it is very clear that the new process was not part of the original 1333 
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image used to create the container. On traditional platforms, with less separation between the OS 1334 
and apps, making this differentiation can be much more difficult. 1335 

Organizations that are familiar with process, memory, and disk incident response activities will 1336 
find them largely similar when working with containers. However, there are some differences to 1337 
keep in mind as well. 1338 

Containers typically use a layered file system that is virtualized from the host OS. Directly 1339 
examining paths on the hosts typically only reveals the outer boundary of these layers, not the 1340 
files and data within them. Thus, when responding to incidents in containerized environments, 1341 
users should identify the specific storage provider in use and understand how to properly 1342 
examine its contents offline. 1343 

Containers are typically connected to each other using virtualized overlay networks. These 1344 
overlay networks frequently use encapsulation and encryption to allow the traffic to be routed 1345 
over existing networks securely. However, this means that when investigating incidents on 1346 
container networks, particularly when doing any live packet analysis, the tools used must be 1347 
aware of these virtualized networks and understand how to extract the embedded IP frames from 1348 
within them for parsing with existing tools. 1349 

Process and memory activity within containers is largely similar to that which would be observed 1350 
within traditional apps, but with different parent processes. For example, container runtimes may 1351 
spawn all processes within containers in a nested fashion in which the runtime is the top-level 1352 
process with first-level descendants per container and second-level descendants for each process 1353 
within the container.  For example: 1354 

├─containerd─┬───┬───[container1─┬─bash] 1355 
│            │   │               └─8*[{thread}]] 1356 
│            │   ├─container2────┬─start.sh─┬─mongod───22*[{mongod}] 1357 
│            │   │               │          └─node─┬─4*[{V8 WorkerThread}] 1358 
│            │   │               │                 └─5*[{node}] 1359 
│            │   │               └─8*[{thread}] 1360 
│            │   ├─container3────┬─mysqld───28*[{mysqld}] 1361 
│            │   │               └─8*[{thread}] 1362 

6.3 Implementation Phase 1363 

After the container technology has been designed, the next step is to implement and test a 1364 
prototype of the design before putting the solution into production. Be aware that container 1365 
technologies do not offer the types of introspection capabilities that VM technologies do. 1366 

NIST SP 800-125 [1] cites several aspects of virtualization technologies that should be evaluated 1367 
before production deployment, including authentication, connectivity and networking, 1368 
application functionality, management, performance, and the security of the technology itself. In 1369 
addition to those, it is important to also evaluate the container technology’s isolation capabilities. 1370 
Ensure that processes within the container can access all resources they are permitted to and 1371 
cannot view or access any other resources. 1372 
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Implementation may also require altering the configuration of other security controls and 1373 
technologies, such as security event logging, network management, code repositories, and 1374 
authentication servers. 1375 

When the prototype evaluation has been completed and the container technology is ready for 1376 
production usage, containers should initially be used for a small number of applications. 1377 
Problems that occur are likely to affect multiple applications, so it is helpful to identify these 1378 
problems early on so they can be addressed before further deployment. A phased deployment 1379 
also provides time for developers and IT staff (e.g., system administrators, help desk) to be 1380 
trained on its usage and support. 1381 

6.4 Operations and Maintenance Phase 1382 

Operational processes that are particularly important for maintaining the security of container 1383 
technologies, and thus should be performed regularly, include updating all images and 1384 
distributing those updated images to containers to take the place of older images. Other security 1385 
best practices, such as performing vulnerability management and updates for other supporting 1386 
layers like hosts and orchestrators, are also key ongoing operational tasks. Container security and 1387 
monitoring tools should similarly be integrated with existing security information and event 1388 
management (SIEM) tools to ensure container-related events flow through the same tools and 1389 
processes used to provide security throughout the rest of the environment. 1390 

If and when security incidents occur within a containerized environment, organizations should be 1391 
prepared to respond with processes and tools that are optimized for the unique aspects of 1392 
containers. The core guidance outlined in NIST SP 800-61, Computer Security Incident 1393 
Handling Guide [25], is very much applicable for containerized environments as well. However, 1394 
organizations adopting containers should ensure they enhance their responses for some of the 1395 
unique aspects of container security. 1396 

• Because containerized apps may be run by a different team than the traditional operations 1397 
team, organizations should ensure that whatever teams are responsible for container 1398 
operations are brought into the incident response plan and understand their role in it. 1399 

• As discussed throughout this document, the ephemeral and automated nature of container 1400 
management may not be aligned with the asset management policies and tools an 1401 
organization has traditionally used.  Incident response team must be able to know the 1402 
roles, owners, and sensitivity levels of containers, and be able to integrate this data into 1403 
their process. 1404 

• Clear procedures should be defined to response to container related incidents.  For 1405 
example, if a particular image is being exploited, but that image is in use across hundreds 1406 
of containers, the response team may need to shut down all of these containers to stop the 1407 
attack.  While single vulnerabilities have long been able to cause problems across many 1408 
systems, with containers, the response may require rebuilding and redeploying a new 1409 
image widely, rather than installing a patch to existing systems.  This change in response 1410 
may involve different teams and approvals and should be understood and practiced ahead 1411 
of time. 1412 

• As discussed previously, logging and other forensic data may be stored differently in a 1413 
containerized environment.  Incident response teams should be familiar with the different 1414 
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tools and techniques required to gather data and have documented processes specifically 1415 
for these environments. 1416 

6.5 Disposition Phase 1417 

The ability for containers to be deployed and destroyed automatically based on the needs of an 1418 
application allows for highly efficient systems but can also introduce some challenges for 1419 
records retention, forensic, and event data requirements. Organizations should make sure that 1420 
appropriate mechanisms are in place to satisfy their data retention policies. Example of issues 1421 
that should be addressed are how containers and images should be destroyed, what data should 1422 
be extracted from a container before disposal and how that data extraction should be performed, 1423 
how cryptographic keys used by a container should be revoked or deleted, etc.  1424 

Data stores and media that support the containerized environment should be included in any 1425 
disposal plans developed by the organization. 1426 

  1427 
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7 Conclusion 1428 

Containers represent a transformational change in the way apps are built and run. They do not 1429 
necessitate dramatically new security best practices; on the contrary, most important aspects of 1430 
container security are refinements of well-established techniques and principles. This document 1431 
has updated and expanded general security recommendations to take the risks particular to 1432 
container technologies into account. 1433 

This document has already discussed some of the differences between securing containers and 1434 
securing the same apps in VMs. It is useful to summarize the guidance in this document around 1435 
those points. 1436 

In container environments there are many more entities, so security processes and tools must be 1437 
able to scale accordingly. Scale does not just mean the total number of objects supported in a 1438 
database, but also how effectively and autonomously policy can be managed. Many 1439 
organizations struggle with the burden of managing security across hundreds of VMs. As 1440 
container-centric architectures become the norm and these organizations are responsible for 1441 
thousands or tens of thousands of containers, their security practices should emphasize 1442 
automation and efficiency to keep up. 1443 

With containers there is a much higher rate of change, moving from updating an app a few times 1444 
a year to a few times a week or even a day. What used to be acceptable to do manually no longer 1445 
is. Automation is not just important to deal with the net number of entities, but also how 1446 
frequently those entities change. Being able to centrally express policy and have software 1447 
manage enforcement of it across the environment is vital. Organizations that adopt containers 1448 
should be prepared to manage this frequency of change. This may require fundamentally new 1449 
operational practices and organizational evolution. 1450 

The use of containers shifts much of the responsibility for security to developers, so 1451 
organizations should ensure their developers have all the information, skills, and tools they need 1452 
to make sound decisions. Also, security teams should be enabled to actively enforce quality 1453 
throughout the development cycle. Organizations that are successful at this transition gain 1454 
security benefit in being able to respond to vulnerabilities faster and with less operational burden 1455 
than ever before. 1456 

Security must be as portable as the containers themselves, so organizations should adopt 1457 
techniques and tools that are open and work across platforms and environments. Many 1458 
organizations will see developers build in one environment, test in another, and deploy in a third, 1459 
so having consistency in assessment and enforcement across these is key. Portability is also not 1460 
just environmental but also temporal. Continuous integration and deployment practices erode the 1461 
traditional walls between phases of the development and deployment cycle, so organizations 1462 
need to ensure consistent, automated security practices across creation of the image, storage of 1463 
the image in registries, and running of the images in containers. 1464 

Organizations that navigate these changes can begin to leverage containers to actually improve 1465 
their overall security. The immutability and declarative nature of containers enables 1466 
organizations to begin realizing the vision of more automated, app-centric security that requires 1467 
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minimal manual involvement and that updates itself as the apps change. Containers are an 1468 
enabling capability in organizations moving from reactive, manual, high-cost security models to 1469 
those that enable better scale and efficiency, thus lowering risk. 1470 
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Appendix A—NIST Resources for Securing Non-Core Components 1471 

This appendix lists NIST resources for securing non-core container technology components, 1472 
including developer systems, testing and accreditation systems, administrator systems, and host 1473 
hardware and virtual machine managers. Many more resources are available from other 1474 
organizations. 1475 

Table 1: NIST Resources for Securing Non-Core Components 1476 

Resource Name and URI Applicability 
SP 800-40 Revision 3, Guide to Enterprise Patch Management Technologies  
https://doi.org/10.6028/NIST.SP.800-40r3  

All IT products and systems 

SP 800-46 Revision 2, Guide to Enterprise Telework, Remote Access, and Bring 
Your Own Device (BYOD) Security 
https://doi.org/10.6028/NIST.SP.800-46r2  

Client operating systems, 
client applications 

SP 800-53 Revision 4, Security and Privacy Controls for Federal Information 
Systems and Organizations 
https://doi.org/10.6028/NIST.SP.800-53r4  

All IT products and systems 

SP 800-70 Revision 3, National Checklist Program for IT Products: Guidelines for 
Checklist Users and Developers 
http://dx.doi.org/10.6028/NIST.SP.800-70r3  

Server operating systems, 
client operating systems, 
server applications, client 
applications 

SP 800-83 Revision 1, Guide to Malware Incident Prevention and Handling for 
Desktops and Laptops 
https://doi.org/10.6028/NIST.SP.800-83r1  

Client operating systems, 
client applications 

SP 800-123, Guide to General Server Security  
https://doi.org/10.6028/NIST.SP.800-123  

Servers 

SP 800-124 Revision 1, Guidelines for Managing the Security of Mobile Devices in 
the Enterprise 
https://doi.org/10.6028/NIST.SP.800-124r1  

Mobile devices 

SP 800-125, Guide to Security for Full Virtualization Technologies 
https://doi.org/10.6028/NIST.SP.800-125  

Hypervisors and virtual 
machines 

SP 800-125A, Security Recommendations for Hypervisor Deployment 
http://csrc.nist.gov/publications/drafts/800-125a/sp800-125a_draft.pdf  

Hypervisors and virtual 
machines 

SP 800-125B, Secure Virtual Network Configuration for Virtual Machine (VM) 
Protection  
https://doi.org/10.6028/NIST.SP.800-125B  

Hypervisors and virtual 
machines 

SP 800-147, BIOS Protection Guidelines 
https://doi.org/10.6028/NIST.SP.800-147  

Client hardware 

SP 800-155, BIOS Integrity Measurement Guidelines 
http://csrc.nist.gov/publications/drafts/800-155/draft-SP800-155_Dec2011.pdf  

Client hardware 

SP 800-164, Guidelines on Hardware-Rooted Security in Mobile Devices 
http://csrc.nist.gov/publications/drafts/800-164/sp800_164_draft.pdf  

Mobile devices 

 1477 

  1478 
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Appendix B—NIST SP 800-53 and NIST Cybersecurity Framework Security Controls 1479 
Related to Container Technologies  1480 

The security controls from NIST SP 800-53 Revision 4 [26] that are most important for container 1481 
technologies are listed in Table 2. 1482 

Table 2: Security Controls from NIST SP 800-53 for Container Technology Security 1483 

NIST SP 800-53 Control Related Controls References 
AC-2, Account 
Management 

AC-3, AC-4, AC-5, AC-6, AC-10, AC-17, AC-19, AC-20, 
AU-9, IA-2, IA-4, IA-5, IA-8, CM-5, CM-6, CM-11, MA-3, 
MA-4, MA-5, PL-4, SC-13 

 

AC-3, Access Enforcement AC-2, AC-4, AC-5, AC-6, AC-16, AC-17, AC-18, AC-19, 
AC-20, AC-21, AC- 22, AU-9, CM-5, CM-6, CM-11, MA-3, 
MA-4, MA-5, PE-3 

 

AC-4, Information Flow 
Enforcement 

AC-3, AC-17, AC-19, AC-21, CM-6, CM-7, SA-8, SC-2, 
SC-5, SC-7, SC-18 

 

AC-6, Least Privilege AC-2, AC-3, AC-5, CM-6, CM-7, PL-2  
AC-17, Remote Access AC-2, AC-3, AC-18, AC-19, AC-20, CA-3, CA-7, CM-8, 

IA-2, IA-3, IA-8, MA-4, PE-17, PL-4, SC-10, SI-4 
NIST SPs 800-46, 800-77, 
800-113, 800-114, 800-
121 

AT-3, Role-Based Security 
Training 

AT-2, AT-4, PL-4, PS-7, SA-3, SA-12, SA-16 C.F.R. Part 5 Subpart C 
(5C.F.R.930.301); NIST 
SPs 800-16, 800- 50 

AU-2, Audit Events AC-6, AC-17, AU-3, AU-12, MA-4, MP-2, MP-4, SI-4 NIST SP 800-92; 
https://idmanagement.gov/  

AU-5, Response to Audit 
Processing Failures 

AU-4, SI-12  

AU-6, Audit Review, 
Analysis, and Reporting 

AC-2, AC-3, AC-6, AC-17, AT-3, AU-7, AU-16, CA-7, CM-
5, CM-10, CM-11, IA-3, IA-5, IR-5, IR-6, MA-4, MP-4, PE-
3, PE-6, PE-14, PE-16, RA-5, SC-7, SC-18, SC-19, SI-3, 
SI-4, SI-7 

 

AU-8, Time Stamps AU-3, AU-12  
AU-9, Protection of Audit 
Information 

AC-3, AC-6, MP-2, MP-4, PE-2, PE-3, PE-6  

AU-12, Audit Generation AC-3, AU-2, AU-3, AU-6, AU-7  
CA-9, Internal System 
Connections 

AC-3, AC-4, AC-18, AC-19, AU-2, AU-12, CA- 7, CM-2, 
IA-3, SC-7, SI-4 

 

CM-2, Baseline 
Configuration 

CM-3, CM-6, CM-8, CM-9, SA-10, PM-5, PM-7 NIST SP 800-128 

CM-3, Configuration 
Change Control 

CA-7, CM-2, CM-4, CM-5, CM-6, CM-9, SA-10, SI- 2, SI-
12 

NIST SP 800-128 

CM-4, Security Impact 
Analysis 

CA-2, CA-7, CM-3, CM-9, SA-4, SA-5, SA-10, SI-2 NIST SP 800-128 

CM-5, Access Restrictions 
for Change 

AC-3, AC-6, PE-3  

CM-6, Configuration 
Settings 

AC-19, CM-2, CM-3, CM-7, SI-4 OMB Memoranda 07-11, 
07-18, 08-22; NIST SPs 
800-70, 800-128; 
https://nvd.nist.gov; 
https://checklists.nist.gov; 
https://www.nsa.gov  

https://idmanagement.gov/
https://nvd.nist.gov/
https://checklists.nist.gov/
https://www.nsa.gov/
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NIST SP 800-53 Control Related Controls References 
CM-7, Least Functionality AC-6, CM-2, RA-5, SA-5, SC-7 DoD Instruction 8551.01 
CM-9, Configuration 
Management Plan 

CM-2, CM-3, CM-4, CM-5, CM-8, SA-10 NIST SP 800-128 

CP-2, Contingency Plan AC-14, CP-6, CP-7, CP-8, CP-9, CP-10, IR-4, IR-8, MP-
2, MP-4, MP-5, PM-8, PM-11 

Federal Continuity 
Directive 1; NIST SP 800-
34 

CP-9, Information System 
Backup 

CP-2, CP- 6, MP-4, MP-5, SC-13 NIST SP 800-34 

CP-10, Information System 
Recovery and 
Reconstitution 

CA-2, CA-6, CA-7, CP-2, CP-6, CP-7, CP-9, SC-24 Federal Continuity 
Directive 1; NIST SP 800-
34 

IA-2, Identification and 
Authentication 
(Organizational Users) 

AC-2, AC-3, AC-14, AC-17, AC-18, IA-4, IA-5, IA-8 HSPD-12; OMB 
Memoranda 04-04, 06-16, 
11-11; FIPS 201; NIST 
SPs 800-63, 800-73, 800-
76, 800-78; FICAM 
Roadmap and 
Implementation Guidance; 
https://idmanagement.gov/  

IA-4, Identifier 
Management 

AC-2, IA-2, IA-3, IA-5, IA-8, SC-37 FIPS 201; NIST SPs 800-
73, 800-76, 800-78 

IA-5, Authenticator 
Management 

AC-2, AC-3, AC-6, CM-6, IA-2, IA-4, IA-8, PL-4, PS-5, 
PS-6, SC-12, SC-13, SC-17, SC-28 

OMB Memoranda 04-04, 
11-11; FIPS 201; NIST 
SPs 800-63, 800-73, 800-
76, 800-78; FICAM 
Roadmap and 
Implementation Guidance; 
https://idmanagement.gov/ 

IR-1, Incident Response 
Policy and Procedures 

PM-9 NIST SPs 800-12, 800-61, 
800-83, 800-100 

IR-4, Incident Handling AU-6, CM-6, CP-2, CP-4, IR-2, IR-3, IR-8, PE-6, SC-5, 
SC-7, SI-3, SI-4, SI-7 

EO 13587; NIST SP 800-
61 

MA-2, Controlled 
Maintenance 

CM-3, CM-4, MA-4, MP-6, PE-16, SA-12, SI-2  

MA-4, Nonlocal 
Maintenance 

AC- 2, AC-3, AC-6, AC-17, AU-2, AU-3, IA-2, IA-4, IA-5, 
IA-8, MA-2, MA-5, MP-6, PL-2, SC-7, SC-10, SC-17 

FIPS 140-2, 197, 201; 
NIST SPs 800-63, 800-88; 
CNSS Policy 15 

PL-2, System Security 
Plan 

AC-2, AC-6, AC-14, AC-17, AC-20, CA-2, CA-3, CA-7, 
CM-9, CP-2, IR-8, MA-4, MA-5, MP-2, MP-4, MP-5, PL-7, 
PM-1, PM-7, PM-8, PM-9, PM-11, SA-5, SA-17 

NIST SP 800-18 

PL-4, Rules of Behavior AC-2, AC-6, AC-8, AC-9, AC-17, AC-18, AC-19, AC-20, 
AT-2, AT-3, CM-11, IA-2, IA-4, IA-5, MP-7, PS-6, PS-8, 
SA-5 

NIST SP 800-18 

RA-2, Security 
Categorization 

CM-8, MP-4, RA-3, SC-7 FIPS 199; NIST SPs 800-
30, 800-39, 800-60 

RA-3, Risk Assessment RA-2, PM-9 OMB Memorandum 04-
04; NIST SPs 800-30, 
800-39; 
https://idmanagement.gov/  

SA-10, Developer 
Configuration 
Management 

CM-3, CM-4, CM-9, SA-12, SI-2 NIST SP 800-128 

https://idmanagement.gov/
https://idmanagement.gov/
https://idmanagement.gov/
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NIST SP 800-53 Control Related Controls References 
SA-11, Developer Security 
Testing and Evaluation 

CA-2, CM-4, SA-3, SA-4, SA-5, SI-2 ISO/IEC 15408; NIST SP 
800-53A; 
https://nvd.nist.gov; 
http://cwe.mitre.org; 
http://cve.mitre.org; 
http://capec.mitre.org  

SA-15, Development 
Process, Standards, and 
Tools 

SA-3, SA-8  

SA-19, Component 
Authenticity 

PE-3, SA-12, SI-7  

SC-2, Application 
Partitioning 

SA-4, SA-8, SC-3  

SC-4, Information in 
Shared Resources 

AC-3, AC-4, MP-6  

SC-6, Resource 
Availability 

  

SC-8, Transmission 
Confidentiality and 
Integrity 

AC-17, PE-4 FIPS 140-2, 197; NIST 
SPs 800-52, 800-77, 800-
81, 800-113; CNSS Policy 
15; NSTISSI No. 7003 

SI-2, Flaw Remediation CA-2, CA-7, CM-3, CM-5, CM-8, MA-2, IR-4, RA-5, SA-
10, SA-11, SI-11 

NIST SPs 800-40, 800-
128 

SI-4, Information System 
Monitoring 

AC-3, AC-4, AC-8, AC-17, AU-2, AU-6, AU-7, AU-9, AU-
12, CA-7, IR-4, PE-3, RA-5, SC-7, SC-26, SC-35, SI-3, 
SI-7 

NIST SPs 800-61, 800-83, 
800-92, 800-137 

SI-7, Software, Firmware, 
and Information Integrity 

SA-12, SC-8, SC-13, SI-3 NIST SPs 800-147, 800-
155 

 1484 

The list below details the NIST Cybersecurity Framework [27] subcategories that are most 1485 
important for container technology security.  1486 

• Identify: Asset Management 1487 
o ID.AM-3: Organizational communication and data flows are mapped 1488 
o ID.AM-5: Resources (e.g., hardware, devices, data, and software) are prioritized 1489 

based on their classification, criticality, and business value 1490 
• Identify: Risk Assessment 1491 

o ID.RA-1: Asset vulnerabilities are identified and documented 1492 
o ID.RA-3: Threats, both internal and external, are identified and documented 1493 
o ID.RA-4: Potential business impacts and likelihoods are identified 1494 
o ID.RA-5: Threats, vulnerabilities, likelihoods, and impacts are used to determine risk 1495 
o ID.RA-6: Risk responses are identified and prioritized 1496 

• Protect: Access Control 1497 
o PR.AC-1: Identities and credentials are managed for authorized devices and users 1498 
o PR.AC-2: Physical access to assets is managed and protected 1499 
o PR.AC-3: Remote access is managed 1500 

https://nvd.nist.gov/
http://cwe.mitre.org/
http://cve.mitre.org/
http://capec.mitre.org/
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o PR.AC-4: Access permissions are managed, incorporating the principles of least 1501 
privilege and separation of duties 1502 

• Protect: Awareness and Training 1503 
o PR.AT-2: Privileged users understand roles & responsibilities 1504 
o PR.AT-5: Physical and information security personnel understand roles & 1505 

responsibilities 1506 
• Protect: Data Security 1507 

o PR.DS-2: Data-in-transit is protected 1508 
o PR.DS-4: Adequate capacity to ensure availability is maintained 1509 
o PR.DS-5: Protections against data leaks are implemented 1510 
o PR.DS-6: Integrity checking mechanisms are used to verify software, firmware, and 1511 

information integrity 1512 
• Protect: Information Protection Processes and Procedures 1513 

o PR.IP-1: A baseline configuration of information technology/industrial control 1514 
systems is created and maintained 1515 

o PR.IP-3: Configuration change control processes are in place 1516 
o PR.IP-6: Data is destroyed according to policy 1517 
o PR.IP-9: Response plans (Incident Response and Business Continuity) and recovery 1518 

plans (Incident Recovery and Disaster Recovery) are in place and managed 1519 
o PR.IP-12: A vulnerability management plan is developed and implemented 1520 

• Protect: Maintenance 1521 
o PR.MA-1: Maintenance and repair of organizational assets is performed and logged 1522 

in a timely manner, with approved and controlled tools 1523 
o PR.MA-2: Remote maintenance of organizational assets is approved, logged, and 1524 

performed in a manner that prevents unauthorized access 1525 
• Protect: Protective Technology 1526 

o PR.PT-1: Audit/log records are determined, documented, implemented, and reviewed 1527 
in accordance with policy 1528 

o PR.PT-3: Access to systems and assets is controlled, incorporating the principle of 1529 
least functionality 1530 

• Detect: Anomalies and Events 1531 
o DE.AE-2: Detected events are analyzed to understand attack targets and methods 1532 

• Detect: Security Continuous Monitoring 1533 
o DE.CM-1: The network is monitored to detect potential cybersecurity events 1534 
o DE.CM-7: Monitoring for unauthorized personnel, connections, devices, and software 1535 

is performed 1536 
• Respond: Response Planning 1537 

o RS.RP-1: Response plan is executed during or after an event 1538 
• Respond: Analysis 1539 

o RS.AN-1: Notifications from detection systems are investigated 1540 
o RS.AN-3: Forensics are performed 1541 

• Respond: Mitigation 1542 
o RS.MI-1: Incidents are contained 1543 
o RS.MI-2: Incidents are mitigated 1544 
o RS.MI-3: Newly identified vulnerabilities are mitigated or documented as accepted 1545 

risks 1546 
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• Recover: Recovery Planning 1547 
o RC.RP-1: Recovery plan is executed during or after an event 1548 

 1549 

Table 3 lists the security controls from NIST SP 800-53 Revision 4 [26] that can be 1550 
accomplished partially or completely by using container technologies. The rightmost column 1551 
lists the sections of this document that map to each NIST SP 800-53 control. 1552 

Table 3: NIST SP 800-53 Controls Supported by Container Technologies 1553 

NIST SP 800-53 
Control 

Container Technology Relevancy Related Sections of 
This Document 

CM-3, Configuration 
Change Control 

Images can be used to help manage change control for 
applications. 

2.1, 2.2, 2.3, 2.4, 4.1 

SC-2, Application 
Partitioning 

Separating user functionality from administrator functionality can 
be accomplished in part by using containers or other virtualization 
technologies so that the functionality is performed in different 
containers. 

2 (introduction), 2.3, 
4.5.2 

SC-3, Security 
Function Isolation 

Separating security functions from non-security functions can be 
accomplished in part by using containers or other virtualization 
technologies so that the functions are performed in different 
containers. 

2 (introduction), 2.3, 
4.5.2 

SC-4, Information in 
Shared Resources 

Container technologies are designed to restrict each container’s 
access to shared resources so that information cannot 
inadvertently be leaked from one container to another. 

2 (introduction), 2.2, 
2.3, 4.4 

SC-6, Resource 
Availability 

The maximum resources available for each container can be 
specified, thus protecting the availability of resources by not 
allowing any container to consume excessive resources. 

2.2, 2.3 

SC-7, Boundary 
Protection 

Boundaries can be established and enforced between containers 
to restrict their communications with each other. 

2 (introduction), 2.2, 
2.3, 4.4 

SC-39, Process 
Isolation 

Multiple containers can run processes simultaneously on the 
same host, but those processes are isolated from each other. 

2 (introduction), 2.1, 
2.2, 2.3, 4.4 

SI-7, Software, 
Firmware, and 
Information Integrity 

Unauthorized changes to the contents of images can easily be 
detected and the altered image replaced with a known good copy. 

2.3, 4.1, 4.2 

SI-14, Non-
Persistence 

Images running within containers are replaced as needed with 
new image versions, so data, files, executables, and other 
information stored within running images is not persistent. 

2.1, 2.3, 4.1 

 1554 

Similar to Table 3, Table 4 lists the NIST Cybersecurity Framework [27] subcategories that can 1555 
be accomplished partially or completely by using container technologies. The rightmost column 1556 
lists the sections of this document that map to each Cybersecurity Framework subcategory. 1557 

Table 4: NIST Cybersecurity Framework Subcategories Supported by Container Technologies 1558 

Cybersecurity Framework 
Subcategory 

Container Technology Relevancy Related Sections 
of This Document 

PR.DS-4: Adequate capacity to ensure 
availability is maintained 

The maximum resources available for each 
container can be specified, thus protecting the 
availability of resources by not allowing any 
container to consume excessive resources. 

2.2, 2.3 
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Cybersecurity Framework 
Subcategory 

Container Technology Relevancy Related Sections 
of This Document 

PR.DS-5: Protections against data 
leaks are implemented 

Container technologies are designed to restrict 
each container’s access to shared resources so 
that information cannot inadvertently be leaked 
from one container to another. 

2 (introduction), 2.2, 
2.3, 4.4 

PR.DS-6: Integrity checking 
mechanisms are used to verify 
software, firmware, and information 
integrity 

Unauthorized changes to the contents of images 
can easily be detected and the altered image 
replaced with a known good copy. 

2.3, 4.1, 4.2 

PR.DS-7: The development and testing 
environment(s) are separate from the 
production environment 

Using containers makes it easier to have 
separate development, testing, and production 
environments because the same image can be 
used in all environments without adjustments. 

2.1, 2.3 

PR.IP-3: Configuration change control 
processes are in place 

Images can be used to help manage change 
control for applications. 

2.1, 2.2, 2.3, 2.4, 4.1 

 1559 

Information on these controls and guidelines on possible implementations can be found in the 1560 
following NIST publications: 1561 

• FIPS 140-2, Security Requirements for Cryptographic Modules 1562 
• FIPS 197, Advanced Encryption Standard (AES) 1563 
• FIPS 199, Standards for Security Categorization of Federal Information and Information 1564 

Systems 1565 
• FIPS 201-2, Personal Identity Verification (PIV) of Federal Employees and Contractors  1566 
• SP 800-12 Rev. 1, An Introduction to Information Security 1567 
• Draft SP 800-16 Rev. 1, A Role-Based Model for Federal Information 1568 

Technology/Cybersecurity Training 1569 
• SP 800-18 Rev. 1, Guide for Developing Security Plans for Federal Information Systems 1570 
• SP 800-30 Rev. 1, Guide for Conducting Risk Assessments 1571 
• SP 800-34 Rev. 1, Contingency Planning Guide for Federal Information Systems 1572 
• SP 800-39, Managing Information Security Risk: Organization, Mission, and Information 1573 

System View 1574 
• SP 800-40 Rev. 3, Guide to Enterprise Patch Management Technologies 1575 
• SP 800-46 Rev. 2, Guide to Enterprise Telework, Remote Access, and Bring Your Own 1576 

Device (BYOD) Security 1577 
• SP 800-50, Building an Information Technology Security Awareness and Training 1578 

Program 1579 
• SP 800-52 Rev. 1, Guidelines for the Selection, Configuration, and Use of Transport 1580 

Layer Security (TLS) Implementations 1581 
• SP 800-53 Rev. 4, Security and Privacy Controls for Federal Information Systems and 1582 

https://dx.doi.org/10.6028/NIST.FIPS.140-2
https://dx.doi.org/10.6028/NIST.FIPS.197
https://dx.doi.org/10.6028/NIST.FIPS.199
https://dx.doi.org/10.6028/NIST.FIPS.199
https://dx.doi.org/10.6028/NIST.FIPS.201-2
https://dx.doi.org/10.6028/NIST.SP.800-12r1
https://csrc.nist.gov/publications/drafts/800-16-rev1/sp800_16_rev1_3rd-draft.pdf
https://csrc.nist.gov/publications/drafts/800-16-rev1/sp800_16_rev1_3rd-draft.pdf
https://dx.doi.org/10.6028/NIST.SP.800-18r1
https://dx.doi.org/10.6028/NIST.SP.800-30r1
https://dx.doi.org/10.6028/NIST.SP.800-34r1
https://dx.doi.org/10.6028/NIST.SP.800-39
https://dx.doi.org/10.6028/NIST.SP.800-39
https://dx.doi.org/10.6028/NIST.SP.800-40r3
https://dx.doi.org/10.6028/NIST.SP.800-50
https://dx.doi.org/10.6028/NIST.SP.800-50
https://dx.doi.org/10.6028/NIST.SP.800-52r1
https://dx.doi.org/10.6028/NIST.SP.800-52r1
https://dx.doi.org/10.6028/NIST.SP.800-53r4
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Organizations   1583 
• SP 800-53A Rev. 4, Assessing Security and Privacy Controls in Federal Information 1584 

Systems and Organizations: Building Effective Assessment Plans 1585 
• SP 800-60 Rev. 1 Vol. 1, Guide for Mapping Types of Information and Information 1586 

Systems to Security Categories 1587 
• SP 800-61 Rev. 2, Computer Security Incident Handling Guide 1588 
• SP 800-63 Rev. 3, Digital Identity Guidelines 1589 
• SP 800-70 Rev. 3, National Checklist Program for IT Products: Guidelines for Checklist 1590 

Users and Developers 1591 
• SP 800-73-4, Interfaces for Personal Identity Verification  1592 
• SP 800-76-2, Biometric Specifications for Personal Identity Verification 1593 
• SP 800-77, Guide to IPsec VPNs 1594 
• SP 800-78-4, Cryptographic Algorithms and Key Sizes for Personal Identification 1595 

Verification (PIV) 1596 
• SP 800-81-2, Secure Domain Name System (DNS) Deployment Guide 1597 
• SP 800-83 Rev. 1, Guide to Malware Incident Prevention and Handling for Desktops and 1598 

Laptops 1599 
• SP 800-88 Rev. 1, Guidelines for Media Sanitization 1600 
• SP 800-92, Guide to Computer Security Log Management 1601 
• SP 800-100, Information Security Handbook: A Guide for Managers 1602 
• SP 800-113, Guide to SSL VPNs 1603 
• SP 800-114 Rev. 1, User's Guide to Telework and Bring Your Own Device (BYOD) 1604 

Security 1605 
• SP 800-121 Rev. 2, Guide to Bluetooth Security 1606 
• SP 800-128, Guide for Security-Focused Configuration Management of Information 1607 

Systems 1608 
• SP 800-137, Information Security Continuous Monitoring (ISCM) for Federal 1609 

Information Systems and Organizations 1610 
• SP 800-147, BIOS Protection Guidelines 1611 
• Draft SP 800-155, BIOS Integrity Measurement Guidelines 1612 

 1613 

  1614 

https://dx.doi.org/10.6028/NIST.SP.800-53r4
https://dx.doi.org/10.6028/NIST.SP.800-53Ar4
https://dx.doi.org/10.6028/NIST.SP.800-53Ar4
https://dx.doi.org/10.6028/NIST.SP.800-60v1r1
https://dx.doi.org/10.6028/NIST.SP.800-60v1r1
https://dx.doi.org/10.6028/NIST.SP.800-61r2
https://dx.doi.org/10.6028/NIST.SP.800-63-3
https://dx.doi.org/10.6028/NIST.SP.800-70r3
https://dx.doi.org/10.6028/NIST.SP.800-70r3
https://dx.doi.org/10.6028/NIST.SP.800-73-4
https://dx.doi.org/10.6028/NIST.SP.800-76-2
https://dx.doi.org/10.6028/NIST.SP.800-77
https://dx.doi.org/10.6028/NIST.SP.800-78-4
https://dx.doi.org/10.6028/NIST.SP.800-78-4
https://dx.doi.org/10.6028/NIST.SP.800-81-2
https://dx.doi.org/10.6028/NIST.SP.800-83r1
https://dx.doi.org/10.6028/NIST.SP.800-83r1
https://dx.doi.org/10.6028/NIST.SP.800-88r1
https://dx.doi.org/10.6028/NIST.SP.800-92
https://dx.doi.org/10.6028/NIST.SP.800-100
https://dx.doi.org/10.6028/NIST.SP.800-113
https://dx.doi.org/10.6028/NIST.SP.800-114r1
https://dx.doi.org/10.6028/NIST.SP.800-114r1
https://dx.doi.org/10.6028/NIST.SP.800-121r2
https://dx.doi.org/10.6028/NIST.SP.800-128
https://dx.doi.org/10.6028/NIST.SP.800-128
https://dx.doi.org/10.6028/NIST.SP.800-137
https://dx.doi.org/10.6028/NIST.SP.800-137
https://dx.doi.org/10.6028/NIST.SP.800-147
https://csrc.nist.gov/publications/drafts/800-155/draft-SP800-155_Dec2011.pdf
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Appendix C—Acronyms and Abbreviations 1615 

Selected acronyms and abbreviations used in this paper are defined below. 1616 

AES Advanced Encryption Standard 

API Application Programming Interface 

AUFS Advanced Multi-Layered Unification Filesystem 

BIOS Basic Input/Output System 

BYOD Bring Your Own Device 

cgroup Control Group 

CIS Center for Internet Security 

CMVP Cryptographic Module Validation Program 

CVE Common Vulnerabilities and Exposures 

CVSS Common Vulnerability Scoring System 

DevOps Development and Operations 

DNS Domain Name System 

FIPS Federal Information Processing Standards 

FIRST Forum for Incident Response and Security Teams 

FISMA Federal Information Security Modernization Act 

FOIA Freedom of Information Act 

GB Gigabyte 

I/O Input/Output 

IP Internet Protocol 

IT Information Technology 

ITL Information Technology Laboratory 

LXC Linux Container 

MAC Mandatory Access Control 

NIST National Institute of Standards and Technology 

NTFS NT File System 

OMB Office of Management and Budget 

OS Operating System 

PIV Personal Identity Verification 

RTM Root of Trust for Measurement 
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SDN Software-Defined Networking 

seccomp Secure Computing 

SIEM Security Information and Event Management 

SP Special Publication 

SQL Structured Query Language 

SSH Secure Shell 

SSL Secure Sockets Layer 

TLS Transport Layer Security 

TPM Trusted Platform Module 

URI Uniform Resource Identifier 

US United States 

USCIS United States Citizenship and Immigration Services 

VM Virtual Machine 

VPN Virtual Private Network 

  1617 
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Appendix D—Glossary 1618 

Application 
virtualization 

A form of virtualization that exposes a single shared operating system 
kernel to multiple discrete application instances, each of which is kept 
isolated from all others on the host. 

Base layer The underlying layer of an image upon which all other components are 
added. 

Container A method for packaging and securely running an application within an 
application virtualization environment. Also known as an application 
container or a server application container. 

Container runtime The environment for each container; comprised of binaries coordinating 
multiple operating system components that isolate resources and resource 
usage for running containers. 

Container-specific 
operating system 

A minimalistic host operating system explicitly designed to only run 
containers. 

Filesystem 
virtualization 

A form of virtualization that allows multiple containers to share the same 
physical storage without the ability to access or alter the storage of other 
containers. 

General-purpose 
operating system 

A host operating system that can be used to run many kinds of 
applications, not just applications in containers. 

Host operating 
system 

The operating system kernel shared by multiple applications within an 
application virtualization architecture. 

Image A package that contains all the files required to run a container. 

Isolation The ability to keep multiple instances of software separated so that each 
instance only sees and can affect itself. 

Microservice A set of containers that work together to compose an application. 

Namespace 
isolation 

A form of isolation that limits the resources a container may interact with. 

Operating system 
virtualization 

A virtual implementation of the operating system interface that can be 
used to run applications written for the same operating system. [from [1]] 
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Orchestrator A tool that enables DevOps personas or automation working on their 
behalf to pull images from registries, deploy those images into containers, 
and manage the running containers. Orchestrators are also responsible for 
monitoring container resource consumption, job execution, and machine 
health across hosts. 

Overlay network A software-defined networking component included in most orchestrators 
that can be used to isolate communication between applications that share 
the same physical network. 

Registry A service that allows developers to easily storage images as they are 
created, tag and catalog images for identification and version control to 
aid in discovery and reuse, and find and download images that others have 
created. 

Resource 
allocation 

A mechanism for limiting how much of a host’s resources a given 
container can consume. 

Virtual machine A simulated environment created by virtualization. [from [1]] 

Virtualization The simulation of the software and/or hardware upon which other 
software runs. [from [1]] 

  1619 
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