

The attached DRAFT document (provided here for historical purposes), originally posted on July
13, 2017, has been superseded by the following publication:

Publication Number: NIST Special Publication (SP) 800-190

Title: Application Container Security Guide

Publication Date: September 2017

• Final Publication: https://doi.org/10.6028/NIST.SP.800-190 (direct link:
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf).

• Information about the attached Draft publication can be found at:
https://csrc.nist.gov/publications/detail/sp/800-190/archive/2017-07-13

• Information on other NIST Computer Security Division publications and programs can be
found at: https://csrc.nist.gov/publications

https://doi.org/10.6028/NIST.SP.800-190
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf
https://csrc.nist.gov/publications/detail/sp/800-190/archive/2017-07-13
https://csrc.nist.gov/publications

Draft (2nd) NIST Special Publication 800-190 1

 2

Application Container Security Guide 3

 4

 5

Murugiah Souppaya 6
John Morello 7

Karen Scarfone 8
 9

 10

 11

 12

 13

 14

C O M P U T E R S E C U R I T Y 15

 16

 17

Draft (2nd) NIST Special Publication 800-190 18

Application Container Security Guide 19

 20
 21

Murugiah Souppaya 22
Computer Security Division 23

Information Technology Laboratory 24
 25

John Morello 26
Twistlock 27

Baton Rouge, Louisiana 28
 29

Karen Scarfone 30
Scarfone Cybersecurity 31

Clifton, Virginia 32
 33
 34
 35

July 2017 36
 37
 38

 39
 40
 41

U.S. Department of Commerce 42
Wilbur L. Ross, Jr., Secretary 43

 44
National Institute of Standards and Technology 45

Kent Rochford, Acting Under Secretary of Commerce for Standards and Technology and Acting Director 46

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

i

Authority 47

This publication has been developed by NIST in accordance with its statutory responsibilities under the 48
Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law 49
(P.L.) 113-283. NIST is responsible for developing information security standards and guidelines, 50
including minimum requirements for federal information systems, but such standards and guidelines shall 51
not apply to national security systems without the express approval of appropriate federal officials 52
exercising policy authority over such systems. This guideline is consistent with the requirements of the 53
Office of Management and Budget (OMB) Circular A-130. 54

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory 55
and binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should 56
these guidelines be interpreted as altering or superseding the existing authorities of the Secretary of 57
Commerce, Director of the OMB, or any other federal official. This publication may be used by 58
nongovernmental organizations on a voluntary basis and is not subject to copyright in the United States. 59
Attribution would, however, be appreciated by NIST. 60

National Institute of Standards and Technology Special Publication 800-190 61
Natl. Inst. Stand. Technol. Spec. Publ. 800-190, 62 pages (July 2017) 62

CODEN: NSPUE2 63

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an 64
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or 65
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best 66
available for the purpose. 67
There may be references in this publication to other publications currently under development by NIST in 68
accordance with its assigned statutory responsibilities. The information in this publication, including concepts and 69
methodologies, may be used by federal agencies even before the completion of such companion publications. Thus, 70
until each publication is completed, current requirements, guidelines, and procedures, where they exist, remain 71
operative. For planning and transition purposes, federal agencies may wish to closely follow the development of 72
these new publications by NIST. 73
Organizations are encouraged to review all draft publications during public comment periods and provide feedback 74
to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at 75
http://csrc.nist.gov/publications. 76

Public comment period: July 13, 2017 through August 11, 2017 77
National Institute of Standards and Technology 78

Attn: Computer Security Division, Information Technology Laboratory 79
100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930 80

Email: 800-190comments@nist.gov 81

 82

 All comments are subject to release under the Freedom of Information Act (FOIA). 83
 84

http://csrc.nist.gov/publications
mailto:800-190comments@nist.gov

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

ii

Reports on Computer Systems Technology 85

The Information Technology Laboratory (ITL) at the National Institute of Standards and 86
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 87
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 88
methods, reference data, proof of concept implementations, and technical analyses to advance 89
the development and productive use of information technology. ITL’s responsibilities include the 90
development of management, administrative, technical, and physical standards and guidelines for 91
the cost-effective security and privacy of other than national security-related information in 92
federal information systems. The Special Publication 800-series reports on ITL’s research, 93
guidelines, and outreach efforts in information system security, and its collaborative activities 94
with industry, government, and academic organizations. 95

 96

Abstract 97

Application container technologies, also known as containers, are a form of operating system 98
virtualization combined with application software packaging. Containers provide a portable, 99
reusable, and automatable way to package and run applications. This publication explains the 100
potential security concerns associated with the use of containers and provides recommendations 101
for addressing these concerns. 102

 103

Keywords 104

application; application container; application software packaging; container; container security; 105
isolation; operating system virtualization; virtualization 106

 107

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

iii

Acknowledgements 108

The authors wish to thank their colleagues who have reviewed drafts of this document and 109
contributed to its technical content during its development, in particular Raghuram Yeluri from 110
Intel Corporation, Paul Cichonski from Cisco Systems, Inc., and Michael Bartock and Jeffrey 111
Cichonski from NIST. The authors also acknowledge the organizations that provided feedback 112
during the public comment period, including Docker, Motorola Solutions, United States 113
Citizenship and Immigration Services (USCIS), and the US Army. 114

 115

Audience 116

The intended audience for this document is system and security administrators, security program 117
managers, information system security officers, application developers, and others who have 118
responsibilities for or are otherwise interested in the security of application container 119
technologies. 120

This document assumes that readers have some operating system, networking, and security 121
expertise, as well as expertise with virtualization technologies (hypervisors and virtual 122
machines). Because of the constantly changing nature of application container technologies, 123
readers are encouraged to take advantage of other resources, including those listed in this 124
document, for more current and detailed information. 125

 126

Trademark Information 127

All registered trademarks or trademarks belong to their respective organizations. 128

 129

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

iv

Executive Summary 130

Operating system (OS) virtualization provides a separate virtualized view of the OS to each 131
application, thereby keeping each application isolated from all others on the server. Each 132
application can only see and affect itself. Recently, OS virtualization has become increasingly 133
popular due to advances in its ease of use and a greater focus on developer agility as a key 134
benefit. Today’s OS virtualization technologies are primarily focused on providing a portable, 135
reusable, and automatable way to package and run applications (apps). The terms application 136
container or simply container are frequently used to refer to these technologies. 137

The purpose of the document is to explain the security concerns associated with container 138
technologies and make practical recommendations for addressing those concerns when planning 139
for, implementing, and maintaining containers. Many of the recommendations are specific to a 140
particular component or tier within the container technology architecture, which is depicted in 141
Figure 1. 142

Figure 1: Container Technology Architecture Tiers and Components 143

Organizations should follow these recommendations to help ensure the security of their container 144
technology implementations and usage: 145

Tailor the organization’s processes to support the new way of developing, running, and 146
supporting applications made possible by containers. 147

The introduction of container technologies might disrupt the existing culture and software 148
development methodologies within the organization. Traditional development practices, patching 149
techniques, and system upgrade processes might not directly apply to a containerized 150
environment, and it is important that employees are willing to adapt to a new model. New 151
processes can consider and address any potential culture shock that is introduced by the 152
technology shift. Education and training can be offered to anyone involved in the software 153
development lifecycle. 154

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

v

Use container-specific host OSs instead of general-purpose ones to reduce attack surfaces. 155

A container-specific host OS is a minimalist OS explicitly designed to only run containers, with 156
all other services and functionality disabled, and with read-only file systems and other hardening 157
practices employed. When using a container-specific host OS, attack surfaces are typically much 158
smaller than they would be with a general-purpose host OS, so there are fewer opportunities to 159
attack and compromise a container-specific host OS. Accordingly, whenever possible, 160
organizations should use container-specific host OSs to reduce their risk. However, it is 161
important to note that container-specific host OSs will still have vulnerabilities over time that 162
require remediation. 163

Only run containers with the same purpose, sensitivity, and threat posture on a single host 164
OS kernel for additional defense in depth. 165

While most container platforms do an effective job of isolating containers from each other and 166
from the host OS, in some cases it may be an unnecessary risk to run apps of different sensitivity 167
levels together on the same host OS. Segmenting containers by purpose, sensitivity, and threat 168
posture provides additional defense in depth. By grouping containers in this manner, it will be 169
much more difficult for an attacker who compromises one of the groups to expand that 170
compromise to other groups. This approach also ensures that any residual data, such as caches or 171
local volumes mounted for temp files, stays within its security zone. 172

In larger-scale environments with hundreds of hosts and thousands of containers, this grouping 173
must be automated to be practical to operationalize. Fortunately, container technologies typically 174
include some notion of being able to group apps together, and container security tools can use 175
attributes like container names and labels to enforce security policies across them. 176

Adopt container-specific vulnerability management tools and processes for images to 177
prevent compromises. 178

Traditional vulnerability management tools make many assumptions about host durability and 179
app update mechanisms and frequencies that are fundamentally misaligned with a containerized 180
model. These tools are often unable to detect vulnerabilities within containers, leading to a false 181
sense of safety. Organizations should use tools that take the pipeline-based build approach and 182
immutable nature of containers and images into their design to provide more actionable and 183
reliable results. 184

These tools and processes should take both image software vulnerabilities and configuration 185
settings into account. Organizations should adopt tools and processes to validate and enforce 186
compliance with secure configuration best practices for images. This should include having 187
centralized reporting and monitoring of the compliance state of each image, and preventing non-188
compliant images from being run. 189

Consider using hardware-based countermeasures to provide a basis for trusted computing. 190

Security should extend across all tiers of the container technology. The current way of 191
establishing trusted computing for all tiers is to use a hardware root of trust. Within this trust is 192

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

vi

stored measurements of the host’s firmware, software, and configuration data. Validating the 193
current measurements against the stored measurements before booting the host provides 194
assurance that the host can be trusted. The chain of trust rooted in hardware can be extended to 195
the OS kernel and the OS components to enable cryptographic verification of boot mechanisms, 196
system images, container runtimes, and container images. Trusted computing provides the most 197
secure way to build, run, orchestrate, and manage containers. 198

 199

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

vii

 200
Table of Contents 201

Executive Summary ... iv 202

1 Introduction .. 1 203

1.1 Purpose and Scope .. 1 204

1.2 Document Structure .. 1 205

2 Introduction to Application Containers .. 3 206

2.1 Basic Concepts for Application Virtualization and Containers 3 207

2.2 Containers and the Host Operating System .. 5 208

2.3 Container Technology Architecture ... 7 209

2.3.1 Image Creation, Testing, and Accreditation .. 8 210

2.3.2 Image Storage and Retrieval .. 9 211

2.3.3 Container Deployment and Management ... 10 212

2.4 Container Uses ... 11 213

3 Major Risks for Core Components of Container Technologies 13 214

3.1 Image Risks .. 13 215

3.1.1 Image vulnerabilities ... 13 216

3.1.2 Image configuration .. 13 217

3.1.3 Embedded malware .. 14 218

3.1.4 Embedded secrets.. 14 219

3.1.5 Image trust ... 14 220

3.2 Registry Risks ... 14 221

3.2.1 Insecure connections to registries .. 14 222

3.2.2 Stale images in registries ... 14 223

3.2.3 Insufficient authentication and authorization restrictions 14 224

3.3 Orchestrator Risks .. 15 225

3.3.1 Unbounded administrative access .. 15 226

3.3.2 Unauthorized access .. 15 227

3.3.3 Poorly separated inter-container network traffic 15 228

3.3.4 Mixing of workload sensitivity levels ... 16 229

3.3.5 Orchestrator node trust ... 16 230

3.4 Container Risks .. 16 231

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

viii

3.4.1 Vulnerabilities within the runtime software .. 16 232

3.4.2 Unbounded network access from containers 16 233

3.4.3 Insecure container runtime configurations .. 17 234

3.4.4 Application vulnerabilities ... 17 235

3.5 Host OS Risks .. 17 236

3.5.1 Large attack surface ... 17 237

3.5.2 Shared kernel ... 17 238

3.5.3 Host OS component vulnerabilities .. 18 239

3.5.4 Improper user access rights ... 18 240

3.5.5 Host OS file system tampering ... 18 241

4 Countermeasures for Major Risks .. 19 242

4.1 Image Countermeasures .. 19 243

4.1.1 Image vulnerabilities ... 19 244

4.1.2 Image configuration .. 19 245

4.1.3 Embedded malware .. 20 246

4.1.4 Embedded secrets.. 20 247

4.1.5 Image trust ... 20 248

4.2 Registry Countermeasures ... 21 249

4.2.1 Insecure connections to registries .. 21 250

4.2.2 Stale images in registries ... 21 251

4.2.3 Insufficient authentication and authorization restrictions 21 252

4.3 Orchestrator Countermeasures .. 22 253

4.3.1 Unbounded administrative access .. 22 254

4.3.2 Unauthorized access .. 22 255

4.3.3 Poorly separated inter-container network traffic 22 256

4.3.4 Mixing of workload sensitivity levels ... 22 257

4.3.5 Orchestrator node trust ... 23 258

4.4 Container Countermeasures ... 24 259

4.4.1 Vulnerabilities within the runtime software .. 24 260

4.4.2 Unbounded network access from containers 24 261

4.4.3 Insecure container runtime configurations .. 24 262

4.4.4 Application vulnerabilities ... 25 263

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

ix

4.5 Host OS Countermeasures ... 26 264

4.5.1 Large attack surface ... 26 265

4.5.2 Shared kernel ... 26 266

4.5.3 Host OS component vulnerabilities .. 26 267

4.5.4 Improper user access rights ... 26 268

4.5.5 Host file system tampering ... 27 269

4.6 Hardware Countermeasures ... 27 270

5 Container Threat Scenario Examples ... 29 271

5.1 Exploit of a Vulnerability within an Image .. 29 272

5.2 Exploit of the Container Runtime .. 29 273

5.3 Running a Poisoned Image ... 29 274

6 Container Technology Life Cycle Security Considerations 31 275

6.1 Initiation Phase ... 31 276

6.2 Planning and Design Phase .. 31 277

6.3 Implementation Phase .. 32 278

6.4 Operations and Maintenance Phase ... 33 279

6.5 Disposition Phase ... 34 280

7 Conclusion ... 35 281

 282
List of Appendices 283

Appendix A— NIST Resources for Securing Non-Core Components 37 284

Appendix B— NIST SP 800-53 and NIST Cybersecurity Framework Security 285
Controls Related to Container Technologies ... 38 286

Appendix C— Acronyms and Abbreviations .. 45 287

Appendix D— Glossary .. 47 288

Appendix E— References ... 49 289

 290

List of Tables and Figures 291

Figure 1: Container Technology Architecture Tiers and Componentsiv 292

Figure 2: Virtual Machine and Container Deployments ... 5 293

Figure 3: Container Technology Architecture Tiers, Components, and Lifecycle Phases 8 294

Table 1: NIST Resources for Securing Non-Core Components 37 295

file://Users/karen/Documents/NIST%20Files/Application%20Container/sp800-190-draft2-KAS.docx#_Toc487552558

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

x

Table 2: Security Controls from NIST SP 800-53 for Container Technology Security ... 38 296

Table 3: NIST SP 800-53 Controls Supported by Container Technologies 42 297

Table 4: NIST Cybersecurity Framework Subcategories Supported by Container 298
Technologies .. 42 299

 300

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

1

1 Introduction 301

1.1 Purpose and Scope 302

The purpose of the document is to explain the security concerns associated with application 303
container technologies and make practical recommendations for addressing those concerns when 304
planning for, implementing, and maintaining containers. Some aspects of containers may vary 305
among technologies, but the recommendations in this document are intended to apply to most or 306
all application container technologies. 307

All forms of virtualization other than application containers, such as virtual machines, are 308
outside the scope of this document. 309

In addition to application container technologies, the term “container” is used to refer to concepts 310
such as software that isolates enterprise data from personal data on mobile devices, and software 311
that may be used to isolate applications from each other on desktop operating systems. While 312
these may share some attributes with application container technologies, they are out of scope for 313
this document. 314

This document assumes readers are already familiar with securing the technologies supporting 315
and interacting with application container technologies. These include the following: 316

• The layers under application container technologies, including hardware, hypervisors, 317
and operating systems; 318

• The administrative tools that use the applications within the containers; and 319
• The administrator endpoints used to manage the applications within the containers and 320

the containers themselves. 321

Appendix A contains pointers to resources with information on securing these technologies. 322
Sections 3 and 4 offer additional information on security considerations for container-specific 323
operating systems. All further discussion of securing the technologies listed above is out of scope 324
for this document. 325

1.2 Document Structure 326

The remainder of this document is organized into the following sections and appendices: 327

• Section 2 introduces containers, including their technical capabilities, technology 328
architectures, and uses. 329

• Section 3 explains the major risks for the core components of application container 330
technologies. 331

• Section 4 recommends countermeasures for the risks identified in Section 3. 332
• Section 5 defines threat scenario examples for containers. 333
• Section 6 presents actionable information for planning, implementing, operating, and 334

maintaining container technologies. 335
• Section 7 provides the conclusion for the document. 336

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

2

• Appendix A lists NIST resources for securing non-core components of container 337
technologies. 338

• Appendix B lists the NIST Special Publication 800-53 security controls and NIST 339
Cybersecurity Framework subcategories that are most pertinent to application container 340
technologies, explaining the relevancy of each. 341

• Appendix C provides an acronym and abbreviation list for the document. 342
• Appendix D presents a glossary of selected terms from the document. 343
• Appendix E contains a list of references for the document. 344

 345

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

3

2 Introduction to Application Containers 346

This section provides an introduction to containers for server applications. First, it defines the 347
basic concepts for application virtualization and containers needed to understand the rest of the 348
document. Next, this section explains how containers interact with the operating system they run 349
on top of. The next portion of the section illustrates the overall architecture of container 350
technologies, defining all the major components typically found in a container implementation 351
and explaining the workflows between components. The last part of the section describes 352
common uses for containers. 353

2.1 Basic Concepts for Application Virtualization and Containers 354

NIST Special Publication (SP) 800-125 [1] defines virtualization as “the simulation of the 355
software and/or hardware upon which other software runs.” Virtualization has been in use for 356
many years, but it is best known for enabling cloud computing. In cloud environments, hardware 357
virtualization is used to run many instances of operating systems (OSs) on a single physical 358
server while keeping each instance separate. This allows more efficient use of hardware and 359
supports multi-tenancy. 360

In hardware virtualization, each OS instance interacts with virtualized hardware. Another form of 361
virtualization known as operating system virtualization has a similar concept; it provides 362
multiple virtualized OSs above a single actual OS kernel. This approach is often called an OS 363
container, and various implementation of OS containers have existed since the early 2000s, 364
starting with Solaris Zone and FreeBSD jails.1 Support initially became available in Linux in 365
2008 with the Linux Container (LXC) technology built into nearly all modern distributions. OS 366
containers are different from the application containers that are the topic of this guide because 367
OS containers are designed to provide an environment that behaves much like a normal OS in 368
which multiple apps and services may co-exist. 369

Recently, application virtualization has become increasingly popular due to advances in its ease 370
of use and a greater focus on developer agility as a key benefit. In application virtualization, the 371
same shared OS kernel is exposed virtually to multiple discrete applications. OS components 372
keep each application instance isolated from all others on the server. In this case, each app sees 373
only the OS and itself, and is isolated from other apps that may be running on this same OS. 374

The key difference between OS virtualization and application virtualization is that with app 375
virtualization, each virtual instance typically runs only a single application. Today’s application 376
virtualization technologies are primarily focused on providing a portable, reusable, and 377
automatable way to package and run apps. The terms application container or simply container 378
are frequently used to refer to these technologies. The term is meant as an analogy to shipping 379
containers, which provide a standardized way of grouping disparate contents together while 380
isolating them from each other. 381

1 For more information on the concept of jails, see https://www.freebsd.org/doc/handbook/jails.html.

https://www.freebsd.org/doc/handbook/jails.html

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

4

Unlike traditional application architectures, which divide an application into a few tiers and have 382
a component for each tier, container architectures often have an app divided into many more 383
components, each with a single well-defined function. Each app component runs in a separate 384
container. In application container technologies, sets of containers that work together to compose 385
an application are referred to as microservices. With this approach, app deployment is more 386
flexible and scalable. Development is also simpler because functionality is more self-contained. 387
However, there are many more objects to manage and secure, which may cause problems for app 388
management and security tools and processes. 389

Most application container technologies implement the concept of immutability. In other words, 390
the containers themselves should be operated as stateless entities that are deployed but not 391
changed.2 When a running container needs to be upgraded or have its contents changed, it is 392
simply destroyed and replaced with a new container that has the updates. This enables 393
developers and support engineers to make and push changes to applications at a much faster 394
pace. Organizations may go from deploying a new version of their app every quarter, to 395
deploying new components weekly or daily. Immutability is a fundamental operational 396
difference between containers and hardware virtualization. Traditional VMs are typically run as 397
stateful entities that are deployed, reconfigured, and upgraded throughout their life. Legacy 398
security tools and processes often assume largely static operations and may need to be adjusted 399
to adapt to the rate of change in containerized environments. 400

The immutable nature of containers also has implications for data persistence. Rather than 401
intermingling the app with the data it uses, containers stress the concept of isolation. Data 402
persistence should be achieved not through simple writes to the container root file system, but 403
instead by using external, persistent data stores such as databases or cluster-aware persistent 404
volumes. The data containers use should be stored outside of the containers themselves so that 405
when the next version of an app replaces the containers running the existing version, all data is 406
still available to the new version. 407

Modern container technologies have largely emerged along with the adoption of development 408
and operations (DevOps) practices that seek to increase the integration between building and 409
running apps, emphasizing close coordination between development and operational teams.3 The 410
portable and declarative nature of containers is particularly well suited to these practices because 411
they allow an organization to have great consistency between development, test, and production 412
environments. Organizations often utilize continuous integration processes to put their apps into 413
containers directly in the build process itself, such that from the very beginning of the app’s 414
lifecycle, there is guaranteed consistency of its runtime environment. Container images are 415
typically designed to be portable across machines and environments, so that an image created in 416
a development lab can be easily moved to a test lab for evaluation, then copied into a production 417
environment to run without needing to make any modifications. The downside of this is that the 418
security tools and processes used to protect containers should not make assumptions about 419
specific cloud providers, host OSs, network topologies, or other aspects of the container runtime 420

2 Note that while containers make immutability practical and realistic, they do not require it, so organizations need to adapt
their operational practices to take advantage of it.

3 This document refers to tasks performed by DevOps personas. The references to these personas are focused on the types of
job tasks being performed, not on strict titles or team organizational structures.

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

5

environment which may frequently change. Even more critically, security should be consistent 421
across all these environments and throughout the application lifecycle from development to test 422
to production. 423

Recently, projects such as Docker [2] and rkt [3] have provided additional functionality designed 424
to make OS component isolation features easier to use and scale. Container technologies are also 425
available on the Windows platform beginning with Windows Server 2016. The fundamental 426
architecture of all these implementations is consistent enough so that this document can discuss 427
containers in detail while remaining implementation agnostic. 428

2.2 Containers and the Host Operating System 429

Explaining the deployment of apps within containers is made easier by comparing it with the 430
deployment of apps within virtual machines (VMs) from hardware virtualization technologies, 431
which many readers are already familiar with. Figure 2 shows the VM deployment on the left, a 432
container deployment without VMs (installed on “bare metal”) in the middle, and a container 433
deployment that runs within a VM on the right. 434

Figure 2: Virtual Machine and Container Deployments 435

Both VMs and containers allow multiple apps to share the same physical infrastructure, but they 436
use different methods of separation. VMs use a hypervisor that provides hardware-level isolation 437
of resources across VMs. Each VM sees its own virtual hardware and includes a complete guest 438
OS in addition to the app and its data. VMs allow different OSs, such as Linux and Windows, to 439
share the same physical hardware. 440

With containers, multiple apps share the same OS kernel instance but are segregated from each 441
other. The OS kernel is part of what is called the host operating system. The host OS sits below 442
the containers and provides OS capabilities to them. Containers are OS-family specific; a Linux 443
host can only run containers built for Linux, and a Windows host can only run Windows 444
containers. Also, a container built for one OS family should run on any recent OS from that 445
family. 446

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

6

There are two general categories of host OSs used for running containers. General-purpose OSs 447
like Red Hat Enterprise Linux, Ubuntu, and Windows Server can be used for running many 448
kinds of apps and can have container-specific functionality added to them. Container-specific 449
OSs, like CoreOS Container Linux [4], Project Atomic [5], and Google Container-Optimized OS 450
[6] are minimalistic OSs explicitly designed to only run containers. They typically do not come 451
with package managers, they have only a subset of the core administration tools, and they 452
actively discourage running applications outside containers. Often, a container-specific OS uses 453
a read-only file system design to reduce the likelihood of an attacker being able to persist data 454
within it, and it also utilizes a simplified upgrade process since there is little concern around 455
application compatibility. 456

Every host OS used for running containers has binaries that establish and maintain the 457
environment for each container, also known as the container runtime. The container runtime 458
coordinates multiple OS components that isolate resources and resource usage so that each 459
container sees its own dedicated view of the OS and is isolated from other containers running 460
concurrently. Effectively, the containers and the host OS interact through the container runtime. 461
The container runtime also provides management tools and application programming interfaces 462
(APIs) to allow DevOps personnel and others to specify how to run containers on a given host. 463
The runtime eliminates the need to manually create all the necessary configurations and 464
simplifies the process of starting, stopping, and operating containers. Examples of runtimes 465
include Docker [2], rkt [3], and the Open Container Initiative Daemon [7]. 466

Examples of technical capabilities the container runtime ensures the host OS provides include 467
the following: 468

• Namespace isolation, which limits which resources a container may interact with. This 469
includes file systems, network interfaces, interprocess communications, host names, user 470
information, and processes. Namespace isolation ensures that applications and processes 471
inside a container only see the physical and virtual resources allocated to that container. 472
For example, if you run ‘ps –A’ inside a container running Apache on a host with many 473
other containers running other apps, you would only see httpd listed in the results. 474
Namespace isolation provides each container with its own networking stack, including 475
unique interfaces and IP addresses. Containers on Linux use technologies like masked 476
process identities to achieve namespace isolation, whereas on Windows, object 477
namespaces are used. 478

• Resource allocation, which limits how much of a host’s resources a given container can 479
consume. For example, if your host OS has 10 gigabytes (GB) of total memory, you may 480
wish to allocate 1 GB each to nine separate containers. No container should be able to 481
interfere with the operations of another container, so resource allocation ensures that each 482
container can only utilize the amount of resources assigned to it. On Linux, this is 483
accomplished primarily with control groups (cgroups)4, whereas on Windows job objects 484
serve a similar purpose. 485

4 cgroups are collections of processes that can be managed independently, giving the kernel the software-based ability to
meter subsystems such as memory, processor usage, and disk I/O. Administrators can control these subsystems either
manually or programmatically.

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

7

• Filesystem virtualization, which allows multiple containers to share the same physical 486
storage without the ability to access or alter the storage of other containers. While 487
arguably similar to namespace isolation, filesystem virtualization is called out separately 488
because it also often involves optimizations to ensure that containers are efficiently using 489
the host’s storage through techniques like copy on write. For example, if multiple 490
containers using the same image are running Apache on a single host, filesystem 491
virtualization ensures that there is only one copy of the httpd binary stored on disk. If one 492
of the containers modifies files within itself, only the specifically changed bits will be 493
written to disk, and those changes will only be visible to the container that executed 494
them. On Linux, these capabilities are provided by technologies like the Advanced Multi-495
Layered Unification Filesystem (AUFS), whereas on Windows they are an extension of 496
the NT File System (NTFS). 497

The technical capabilities of containers vary by host OS. Containers are fundamentally a 498
mechanism to give each app a unique view of a single OS, so the tools for achieving this 499
separation are largely OS family-dependent. For example, the methods used to isolate processes 500
from each other differ between Linux and Windows. However, while the underlying 501
implementation may be different, commonly used container runtimes provide a common 502
interface format that largely abstracts these differences from users. 503

While containers provide a strong degree of isolation, they do not offer as clear and concrete of a 504
security boundary as a VM. Because containers share the same kernel and can be run with 505
varying degrees of capability and privilege on a host, the degree of segmentation between them 506
is far less than that provided to VMs by a hypervisor. Thus, carelessly configured environments 507
can result in containers having the ability to interact with each other and the host far more easily 508
and directly than multiple VMs on the same host. 509

Although containers are sometimes thought of as the next phase of virtualization, surpassing 510
hardware virtualization, the reality for most organizations is less about revolution than evolution. 511
Containers and hardware virtualization not only can, but very frequently do, coexist well and 512
actually enhance each other’s capabilities. VMs provide many benefits, such as strong isolation, 513
OS automation, and a wide and deep ecosystem of solutions. Organizations do not need to make 514
a false choice between containers and VMs. Instead, organizations can continue to use VMs to 515
deploy, partition, and manage their hardware, while using containers to package their apps and 516
utilize each VM more efficiently. 517

2.3 Container Technology Architecture 518

Figure 3 shows the five tiers of the container technology architecture: 519

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

8

1. Developer systems (generate images and send them to testing and accreditation) 520
2. Testing and accreditation systems (validate and verify the contents of images, sign 521

images, and send images to the registry) 522
3. Registries (store images and distribute images to the orchestrator upon request) 523
4. Orchestrators (convert images into containers and deploy containers to hosts) 524
5. Hosts (run and stop containers as directed by the orchestrator) 525

It also depicts administrator systems for the internal registry and the orchestrator. 526

The systems in gray (developer systems, testing and accreditation system, and administrator 527
systems) are outside the scope of the container technology architecture, but they do have 528
important interactions with it. The systems in green (internal registry, external registry, and 529
orchestrator) are core components of a container technology architecture. Finally, the systems in 530
orange (hosts with containers) are where the containers are used. 531

Another way to understand the container technology architecture is to consider the container 532
lifecycle phases, which are depicted at the bottom of Figure 3. The three phases are discussed in 533
more detail below. 534

Because organizations are typically building and deploying many different apps at once, these 535
lifecycle phases often occur concurrently within the same organization and should not be seen as 536
progressive stages of maturity. Instead, think of them as cycles in an engine that is continuously 537
running. In this metaphor, each app is a cylinder within the engine, and different apps may be at 538
different phases of this lifecycle at the same time. 539

2.3.1 Image Creation, Testing, and Accreditation 540

In the first phase of the container lifecycle, an app’s components are built and placed into an 541
image. An image is a package that contains all the files required to run a container. For example, 542

Figure 3: Container Technology Architecture Tiers, Components, and Lifecycle Phases

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

9

an image to run Apache would include the httpd binary, along with associated libraries and 543
configuration files. An image should only include the executables and libraries required by the 544
app itself; all other OS functionality is provided by the OS kernel within the underlying host OS. 545
Images often use techniques like layering and copy on write (in which shared master images are 546
read only and changes are recorded to separate files) to minimize their size on disk and improve 547
operational efficiency. 548

Because images are built in layers, the underlying layer upon which all other components are 549
added is often called the base layer. Base layers are typically minimalistic distributions of 550
common OSs like Ubuntu and Windows Nano Server with the OS kernel omitted. Users begin 551
building their full images by starting with one of these base layers, then adding application 552
frameworks and their own custom code to develop a fully deployable image of their unique app. 553
Container runtimes support using images from within the same OS family, even if the specific 554
host OS version is dissimilar. For example, a Red Hat host running Docker can run images 555
created on any Linux base layer, such as Alpine or Ubuntu. However, it cannot run images 556
created with a Windows base layer. 557

Image creation is mostly driven by developers who are working on creating or updating apps and 558
packaging them. Image creation typically uses build management and automation tools, such as 559
Jenkins [8] and TeamCity [9], to assist with what is called the “continuous integration” process. 560
These tools take the various libraries, binaries, and other components of an application, perform 561
testing on them, and then assemble images out of them based on the developer-created manifest 562
that describes how to build an image for the app. 563

Most container technologies have a declarative way of describing the components and 564
requirements for the app. For example, an image for a web server would include not only the 565
executables for the web server, but also some parseable data to describe how the web server 566
should run, such as the ports it listens on or the configuration parameters it uses. 567

After image creation, organizations typically perform testing and accreditation. For example, 568
testers would use the images built to validate the functionality of the final form application and 569
security teams would perform accreditation on these same images. The consistency of building, 570
testing, and accrediting exactly the same artifacts for an app is one of the key operational and 571
security benefits of containers. 572

2.3.2 Image Storage and Retrieval 573

Images are typically stored in central locations to make it easy to share, find, and reuse them 574
across hosts. Registries are services that allow developers to easily store images as they are 575
created, tag and catalog images for identification and version control to aid in discovery and 576
reuse, and find and download images that others have created. Registries may be self-hosted or 577
consumed as a service. Examples of registries include Amazon EC2 Container Registry [10], 578
Docker Hub [11], Docker Trusted Registry [12], and Quay Container Registry [13]. 579

Registries provide APIs that enable automating common image-related tasks. For example, 580
organizations may have triggers in the image creation phase that automatically push images to a 581
registry once tests pass. The registry may have further triggers that automate the deployment of 582

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

10

new images once they have been added. This automation enables faster iteration on projects with 583
more consistent results. 584

Once stored in a registry, images can be easily pulled and then run by DevOps personas across 585
any environment in which they run containers. This is another example of the portability benefits 586
of containers; image creation may occur in a public cloud provider, which pushes an image to a 587
registry hosted in a private cloud, which is then used to distribute images for running the app in a 588
third location. 589

2.3.3 Container Deployment and Management 590

Tools known as orchestrators enable DevOps personas or automation working on their behalf to 591
pull images from registries, deploy those images into containers, and manage the running 592
containers. This deployment process is what actually results in a usable version of the app, 593
running and ready to respond to requests. When an image is deployed into a container, the image 594
itself is not changed, but instead a copy of it is placed within the container and transitioned from 595
being a dormant set of app code to a running instance of the app. Examples of orchestrators are 596
Kubernetes [14], Mesos [15], and Docker Swarm [16]. 597

Note that a small, simple container implementation could omit a full-fledged orchestrator. 598
Orchestrators may also be circumvented or unnecessary in other circumstances. For example, a 599
host could directly contact a registry in order to pull an image from it for a container runtime. To 600
simplify the discussions in this publication, the use of an orchestrator will be assumed. 601

The abstraction provided by an orchestrator allows a DevOps persona to simply specify how 602
many containers need to be running a given image and what resources, such as memory, 603
processing, and disk need to be allocated to each. The orchestrator knows the state of each host 604
within the cluster, including what resources are available for each host, and determines which 605
containers will run on which hosts. The orchestrator then pulls the required images from the 606
registry and runs them as containers with the designated resources. 607

Orchestrators are also responsible for monitoring container resource consumption, job execution, 608
and machine health across hosts. Depending on its configuration, an orchestrator may 609
automatically restart containers on new hosts if the hosts they were initially running on failed. 610
Many orchestrators enable cross-host container networking and service discovery. Most 611
orchestrators also include a software-defined networking (SDN) component known as an overlay 612
network that can be used to isolate communication between apps that share the same physical 613
network. 614

When apps in containers need to be updated, the existing containers are not changed, but rather 615
they are destroyed and new containers created from updated images. This is a key operational 616
difference with containers in that the baseline software from the initial deployment should not 617
change over time, and the atomicity of updates is the entire image at once. This approach has 618
significant potential security benefits because it enables organizations to build, test, validate, and 619
deploy exactly the same software in exactly the same configuration in each phase. As updates are 620
made to apps, organizations can ensure that the most recent versions are used, typically by 621
leveraging orchestrators. Orchestrators are usually configured to pull the most up-to-date version 622

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

11

of an image from the registry so that the app is always up-to-date. This “continuous delivery” 623
automation enables developers to simply build a new version of the image for their app, test the 624
image, push it to the registry, and then rely on the automation tools to deploy it to the target 625
environment. 626

This means that all vulnerability management, including patches and configuration settings, must 627
be taken care of by the developer before building a new image version. With containers, 628
developers are largely responsible for the security of apps and images instead of the operations 629
team. This change in responsibilities often requires much greater coordination and cooperation 630
among personnel than was previously necessary. 631

Container management includes security management and monitoring. Unfortunately, security 632
controls designed for non-container environments are often not well suited for use with 633
containers. For example, consider security controls that take IP addresses into account. This 634
works well for VMs and bare metal servers with static IP addresses that remain the same for 635
months or years. Conversely, containers are typically allocated IP addresses by orchestrators, and 636
because containers are created and destroyed much more frequently than VMs, these IP 637
addresses change frequently over time as well. This makes it difficult or impossible to protect 638
containers using security techniques that rely on static IP addresses, such as firewall rulesets 639
filtering traffic based on IP address. Additionally, a container network can include 640
communications between containers on the same node, across different nodes, and even across 641
clouds. 642

2.4 Container Uses 643

Like any other technology, containers are not a panacea. They are a valuable tool for many 644
scenarios, but are not necessarily the best choice for every scenario. For example, an 645
organization with a large base of legacy off-the-shelf software is unlikely to be able to take 646
advantage of containers for running most of that software since the vendors may not support it. 647
However, most organizations will have multiple valuable uses for containers. Examples include: 648

• Agile development, where apps are frequently updated and deployed. The portability and 649
declarative nature of containers makes these frequent updates more efficient and easier to 650
test. This allows organizations to accelerate their innovation and deliver software more 651
quickly. This also allows vulnerabilities in application code to be fixed and the updated 652
software tested and deployed much faster. 653

• ‘Scale out’ scenarios, where an app may need to have many new instances deployed or 654
decommissioned quickly depending on the load at a given point in time. The 655
immutability of containers makes it easier to reliably scale out instances, knowing that 656
each instance is exactly like all the others. Further, because containers are typically 657
stateless, it is easier to decommission them when they are no longer needed. 658

• Net new apps, where developers can build for a microservices architecture from the 659
beginning, ensuring more efficient iteration of the app and simplified deployment. 660

Containers provide additional benefits; for example, they can increase the effectiveness of build 661
pipelines due to the immutable nature of container images. Containers shift the time and location 662
of production code installation. In non-container systems, application installation happens in 663

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

12

production (i.e., at server runtime), typically by running hand-crafted scripts that manage 664
installation of application code (e.g., programming language runtime, dependent third-party 665
libraries, init scripts, and OS tools) on servers. This means that any tests running in a pre-666
production build pipeline (and on developers’ workstations) are not testing the actual production 667
artifact, but a best-guess approximation contained in the build system. This approximation of 668
production tends to drift from production over time, especially if the teams managing production 669
and the build system are different. This scenario is the embodiment of the “it works on my 670
machine” problem. 671

With container technologies, the build system installs the application within the image it creates 672
(i.e., at compile-time). The image is an immutable snapshot of all userspace requirements of the 673
application (i.e., programming language runtime, dependent third-party libraries, init scripts, and 674
OS tools). In production the container image constructed by the build system is simply 675
downloaded and run. This solves the “works on my machine” problem since the developer, build 676
system, and production all run the same immutable artifact. 677

Modern container technologies often also emphasize reuse, such that a container image created 678
by one developer can be easily shared and reused by other developers, either within the same 679
organization or among other organizations. Registry services provide centralized image sharing 680
and discovery services to make it easy for developers to find and reuse software created by 681
others. This ease of use is also leading many popular software vendors and projects to use 682
containers as a way to make it easy for customers to find and quickly run their software. For 683
example, rather than directly installing an app like MongoDB on the host OS, a user can simply 684
run a container image of MongoDB. Further, since the container runtime isolates containers from 685
one another and the host OS, these apps can be run more safely and reliably, and users do not 686
have to worry about them disturbing the underlying host OS. 687

 688

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

13

3 Major Risks for Core Components of Container Technologies 689

This section identifies and analyzes major risks for the core components of container 690
technologies—images, registries, orchestrators, containers, and host OSs. Because the analysis 691
looks at core components only, it is applicable to most container deployments regardless of 692
container technology, host OS platform, or location (public cloud, private cloud, etc.) Two types 693
of risks are considered: 694

1. Compromise of an image or container. This risk was evaluated using the data-centric 695
system threat modeling approach described in NIST SP 800-154 [17]. The primary “data” 696
to protect is the images and containers, which may hold application files, data files, etc. 697
The secondary data to protect is container data within shared host resources such as 698
memory, storage, and network interfaces. 699

2. Misuse of a container to attack other containers, the host OS, other hosts, etc. 700

All other risks involving the core components, as well as risks involving non-core container 701
technology components, including developer systems, testing and accreditation systems, 702
administrator systems, and host hardware and virtual machine managers, are outside the scope of 703
this document. Appendix A contains pointers to general references for securing non-core 704
container technology components. 705

3.1 Image Risks 706

3.1.1 Image vulnerabilities 707

Because images are effectively static archive files that include all the components used to run a 708
given application, components within an image may be missing critical security updates or are 709
otherwise outdated. An image created with fully up-to-date components may be free of known 710
vulnerabilities for days or weeks after its creation, but at some time vulnerabilities will be 711
discovered in one or more image components, and thus the image will no longer be up-to-date. 712

Unlike traditional operational patterns in which deployed software is updated ‘in the field’ on the 713
hosts it runs on, with containers these updates must be made upstream in the images themselves, 714
which are then redeployed. Thus, a common risk in containerized environments is deployed 715
containers having vulnerabilities because the version of the image used to generate the containers 716
has vulnerabilities. 717

3.1.2 Image configuration 718

In addition to software defects, images may also have configuration defects. For example, an 719
image may not have a user defined and thus not take advantage of the defense in depth provided 720
by user namespaces. As another example, an image may include an SSH daemon, which exposes 721
the container to unnecessary network risk. Much like in a traditional server or VM, where a poor 722
configuration can still expose a fully up-to-date system to attack, so too can a poorly configured 723
image increase risk even if all the included components are up-to-date. 724

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

14

3.1.3 Embedded malware 725

Because images are just collections of files packaged together, malicious files could be included 726
intentionally or inadvertently within them. Such malware would have the same capabilities as 727
any other component within the image and thus could be used to attack other containers or hosts 728
within the environment. A possible source of embedded malware is the use of base layers and 729
other images provided by third parties of which the full provenance is not known. 730

3.1.4 Embedded secrets 731

Many applications require secrets to enable secure communication between components. For 732
example, a web application may need a username and password to connect to a backend 733
database. Other examples of embedded secrets include connection strings, SSH private keys, and 734
X.509 private keys. When an app is packaged in a container, these secrets can be embedded 735
directly into the image. However, this practice creates a security risk because anyone with access 736
to the image file can easily parse it to learn these secrets. 737

3.1.5 Image trust 738

One of the most common high-risk scenarios in any environment is the execution of untrusted 739
software. The portability and ease of reuse of containers increase the temptation for teams to run 740
images from external sources that may not be well validated or trustworthy. For example, when 741
troubleshooting a problem with a web application, a user may find another version of that 742
application available in an image provided by a third party. Using this externally provided image 743
results in the same types of risks that external software traditionally has, such as introducing 744
malware, leaking data, or including components with vulnerabilities. 745

3.2 Registry Risks 746

3.2.1 Insecure connections to registries 747

Images often contain sensitive components like an organization’s proprietary software and 748
embedded secrets. If connections to registries are performed over insecure channels, the contents 749
of images are subject to the same confidentiality risks as any other data transmitted in the clear. 750
There is also an increased risk of man-in-the-middle attacks that could intercept network traffic 751
intended for registries and steal developer or administrator credentials, provide fraudulent or 752
outdated images to orchestrators, etc. 753

3.2.2 Stale images in registries 754

Because registries are typically the source location for all the images an organization deploys, 755
over time the set of images they store can include many vulnerable, out-of-date versions. While 756
these vulnerable images do not directly pose a threat simply by being stored in the registry, they 757
increase the likelihood of accidental deployment of a known-vulnerable version. 758

3.2.3 Insufficient authentication and authorization restrictions 759

Because registries may contain images used to run sensitive or proprietary applications and to 760
access sensitive data, insufficient authentication and authorization requirements can lead to 761

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

15

intellectual property loss and expose significant technical details about an application to an 762
attacker. Even more critically, because registries are typically trusted as a source of valid, 763
approved software, compromise of a registry can potentially lead to compromise of downstream 764
containers and hosts. 765

3.3 Orchestrator Risks 766

3.3.1 Unbounded administrative access 767

Historically, many orchestrators were designed with the assumption that all users interacting 768
with them would be administrators and those administrators should have environment-wide 769
control. However, in many cases, a single orchestrator may run many different apps, each 770
managed by different teams, and with different sensitivity levels. If the access provided to users 771
and groups is not scoped to their specific needs, a malicious or careless user could affect or 772
subvert the operation of other containers managed by the orchestrator. 773

3.3.2 Unauthorized access 774

Orchestrators often include their own authentication directory, which may be separate from the 775
typical directories already in use within an organization. This can lead to weaker account 776
management practices and ‘orphaned’ accounts in the orchestrator because these systems are less 777
rigorously managed. Because many of these accounts are highly privileged within the 778
orchestrator, compromise of them can lead to systemwide compromise. 779

Another concern regarding unauthorized access is the misuse of credentials, such as an attacker 780
getting access to a password through social engineering or other means, then reusing that 781
password to access the orchestrator. 782

3.3.3 Poorly separated inter-container network traffic 783

In most containerized environments, traffic between individual nodes is routed over a virtual 784
overlay network. This overlay network is typically managed by the orchestrator and is often 785
opaque to existing network security and management tools. For example, instead of seeing 786
database queries being sent from a web server container to a database container on another host, 787
traditional network filters would only see encrypted packets flowing between two hosts, with no 788
visibility into the actual container endpoints, nor the traffic being sent. This can create a security 789
‘blindness’ scenario in which organizations are unable to effectively monitor traffic within their 790
own networks. 791

Potentially even more critical is the risk of traffic from different applications sharing the same 792
virtual networks. If apps of different sensitivity levels, such as a public-facing web site and an 793
internal treasury management app, are using the same virtual network, sensitive internal apps 794
may be exposed to greater risk from network attack. For example, if the public-facing web site is 795
compromised, attackers may be able to use shared networks to attack the treasury app. 796

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

16

3.3.4 Mixing of workload sensitivity levels 797

Orchestrators are typically focused primarily on driving the scale and density of workloads. This 798
means that, by default, they can place workloads of differing sensitivity levels on the same host. 799
For example, in a default configuration, an orchestrator may place a container running a public-800
facing web server on the same host as one processing sensitive financial data, simply because 801
that host happens to have the most available resources at the time of deployment. In the case of a 802
critical vulnerability in the web server, this can put the container processing sensitive financial 803
data at significantly greater risk of compromise. 804

3.3.5 Orchestrator node trust 805

Many orchestrators exist and each supports a wide variety of configurations. Weak orchestrator 806
configurations can expose the orchestrator and all other container technology components to 807
increased risk. Examples of possible consequences include: 808

• Unauthorized hosts joining the cluster and running containers 809
• The compromise of a single cluster host implying compromise of the entire cluster—for 810

example, if the same key pairs used for authentication are shared across all nodes 811
• Communications between the orchestrator and DevOps personnel, administrators, and 812

hosts being unencrypted and unauthenticated 813

3.4 Container Risks 814

3.4.1 Vulnerabilities within the runtime software 815

While relatively uncommon, vulnerabilities within the runtime software are particularly 816
dangerous if they allow ‘container escape’ scenarios in which malicious software can attack 817
resources in other containers and the host OS itself. An attacker may also be able to exploit 818
vulnerabilities to compromise the runtime software itself, and then alter that software so it allows 819
the attacker to access other containers, monitor container-to-container communications, etc. 820

3.4.2 Unbounded network access from containers 821

By default in most container runtimes, individual containers are able to access each other and the 822
host OS over the network. If a container is compromised and acting maliciously, allowing this 823
network traffic may expose other resources in the environment to risk. For example, a 824
compromised container may be used to scan the network it is connected to in order to find other 825
weaknesses for an attacker to exploit. This risk is related to that from poorly separated virtual 826
networks, as discussed in Section 3.3.3, but different because it is focused more on flows from 827
containers to any outbound destination, not on app “cross talk” scenarios. 828

Egress network access is more complex to manage in a containerized environment because so 829
much of the connection is virtualized between containers. Thus, traffic from one container to 830
another may appear simply as encapsulated packets while in motion on the network without an 831
understanding of the ultimate source, destination, or payload. Tools and operational processes 832
that are not container aware are not able to inspect this traffic or determine whether it represents 833
a threat. 834

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

17

3.4.3 Insecure container runtime configurations 835

Container runtimes typically expose many configurable options to administrators. Setting them 836
improperly can lower the relative security of the system. For example, on Linux container hosts, 837
the set of allowed system calls is often limited by default to only those required for safe 838
operation of containers. If this list is widened, it may expose containers and the host OS to 839
increased risk from a compromised container. Similarly, if a container is run in privileged mode, 840
it has access to all the devices on the host, thus allowing it to essentially act as part of the host 841
OS and impact all other containers running on it. 842

Another example of an insecure runtime configuration is allowing containers to mount sensitive 843
directories on the host. Containers should rarely make changes to the host OS file system and 844
should almost never make changes to locations like /boot or /etc that control the basic 845
functionality of the host OS. If a compromised container is allowed to make changes to these 846
paths, it could be used to elevate privileges and attack the host itself as well as other containers 847
running on the host. 848

3.4.4 Application vulnerabilities 849

Even when organizations are taking the precautious recommended in this guide, containers may 850
still be compromised due to flaws in the apps within them. This is not a problem with containers 851
themselves, but instead is just the manifestation of typical software flaws within a container 852
environment. For example, a containerized web app may be vulnerable to cross-site scripting 853
vulnerabilities, and a database front end container may be subject to Structured Query Language 854
(SQL) injection. When a container is compromised, it can be misused in many ways, such as 855
granting unauthorized access to sensitive information or enabling attacks against other containers 856
or the host OS. 857

3.5 Host OS Risks 858

3.5.1 Large attack surface 859

Every host OS has an attack surface, which is the collection of all ways attackers can attempt to 860
access and exploit the host OS’s vulnerabilities. For example, any network-accessible service 861
provides a potential entry point for attackers, adding to the attack surface. The larger the attack 862
surface is, the better the odds are that an attacker can find and access a vulnerability, leading to a 863
compromise of the host OS and the containers running on top of it. 864

3.5.2 Shared kernel 865

Container-specific OSs have a much smaller attack surface than that of general-purpose OSs. For 866
example, they do not contain libraries and package managers that enable a general-purpose OS to 867
directly run database and web server apps. However, although containers provide strong 868
software-level isolation of resources, the use of a shared kernel invariably results in a larger 869
inter-object attack surface than seen with hypervisors, even for container-specific OSs. In other 870
words, the level of isolation provided by container runtimes is not as high as that provided by 871
hypervisors. 872

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

18

3.5.3 Host OS component vulnerabilities 873

All host OSs, even container-specific ones, provide foundational system components—for 874
example, the cryptographic libraries used to authenticate remote connections and the kernel 875
primitives used for general process invocation and management. Like any other software, these 876
components can have vulnerabilities and, because they exist low in the container technology 877
architecture, they can impact all the containers and applications that run on these hosts. 878

3.5.4 Improper user access rights 879

Container-specific OSs are typically not optimized to support multiuser scenarios since 880
interactive user logon should be rare. Organizations are exposed to risk when users log on 881
directly to hosts to manage containers, rather than going through an orchestration layer. Direct 882
management enables wide-ranging changes to the system and all containers on it, and can 883
potentially enable a user that only needs to manage a specific app’s containers to impact many 884
others. 885

3.5.5 Host OS file system tampering 886

Insecure container configurations can expose host volumes to greater risk of file tampering. For 887
example, if a container is allowed to mount sensitive directories on the host OS, that container 888
can then change files in those directories. These changes could impact the stability and security 889
of the host and all other containers running on it. 890

 891

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

19

4 Countermeasures for Major Risks 892

This section recommends countermeasures for the major risks identified in Section 3. 893

4.1 Image Countermeasures 894

4.1.1 Image vulnerabilities 895

There is a need for container technology-specific vulnerability management tools and processes. 896
Traditional vulnerability management tools make many assumptions about host durability and 897
app update mechanisms and frequencies that are fundamentally misaligned with a containerized 898
model. These tools are often unable to detect vulnerabilities within containers, leading to a false 899
sense of safety. 900

Organizations should use tools that take the pipeline-based build approach and immutable nature 901
of containers and images into their design to provide more actionable and reliable results. Key 902
aspects of effective tools and processes include: 903

1. Integration with the entire lifecycle of images, from the beginning of the build process, to 904
whatever registries the organization is using, to runtime. 905

2. Visibility into vulnerabilities at all layers of the image, not just the base layer of the 906
image but also application frameworks and custom software the organization is using. 907
Visibility should be centralized across the organization and provide flexible reporting and 908
monitoring views aligned with organizations’ business processes. 909

3. Policy-driven enforcement; organizations should be able to create “quality gates” at each 910
stage of the build and deployment process to ensure that only images that meet the 911
organization’s vulnerability and configuration policies are allowed to progress. For 912
example, organizations should be able to configure a rule in the build process to prevent 913
the progression of images that include vulnerabilities with Common Vulnerability 914
Scoring System (CVSS) [18] ratings above a selected threshold. 915

4.1.2 Image configuration 916

Organizations should adopt tools and processes to validate and enforce compliance with secure 917
configuration best practices. For example, images should be configured to run as non-privileged 918
users. Tools and processes that should be adopted include: 919

1. Validation of image configuration settings, including vendor recommendations and third-920
party party best practices. 921

2. Centralized reporting and monitoring of image compliance state to identify weaknesses 922
and risks at the organizational level. 923

3. Enforcement of compliance requirements by optionally preventing the running of non-924
compliant images. 925

4. Use of base layers from trusted sources only, frequent updates of base layers, and 926
selection of base layers from minimalistic technologies like Alpine Linux and Windows 927
Nano Server to reduce attack surface areas. 928

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

20

A final recommendation for image configuration is that SSH and other remote administration 929
tools designed to provide remote shells to hosts should never be enabled within containers. 930
Containers should be run in an immutable manner to derive the greatest security benefit from 931
their use. Enabling remote access to them via these tools implies a degree of change that violates 932
this principle and exposes them to greater risk of network-based attack. Instead, all remote 933
management of containers should be done through the container runtime APIs, which may be 934
accessed via orchestration tools or by creating remote shell sessions to the host on which the 935
container is running. 936

4.1.3 Embedded malware 937

Organizations should continuously monitor all images for embedded malware. The monitoring 938
processes should include the use of malware signature sets and behavioral detection heuristics 939
based largely on actual “in the wild” attacks. 940

4.1.4 Embedded secrets 941

Secrets should be stored outside of images and provided dynamically at runtime as needed. Most 942
orchestrators, such as Docker Swarm and Kubernetes, include secret management natively. 943
These orchestrators not only provide secure secret storage and ‘just in time’ injection to 944
containers, but also make it much simpler to integrate secret management into the build and 945
deployment processes. For example, an organization could use these tools to securely provision 946
the database connection string into a web app container. The orchestrator would ensure that only 947
the web app container had access to this secret, that it is not persisted to disk, and that anytime 948
the web app is deployed, the secret is provisioned into it. 949

Organizations may also integrate their container deployments with existing enterprise secret 950
management systems that are already in use for storing secrets in non-container environments. 951
These tools typically provide APIs to retrieve secrets securely as containers are deployed, which 952
eliminates the need to persist them within images. 953

Regardless of the tool chosen, organizations should ensure that secrets are only provided to the 954
specific containers that require them, based on a pre-defined and administrator-controlled setting, 955
and that secrets are always encrypted at rest. 956

4.1.5 Image trust 957

Organizations should enforce a set of trusted images and registries and ensure that only images 958
from this set are allowed to run in their environment, thus mitigating the risk of untrusted or 959
malicious components being deployed. 960

To mitigate these risks, organizations should take a multilayered approach that includes: 961

• Capability to centrally control exactly what images and registries are trusted in their 962
environment; 963

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

21

• Discrete identification of each image by cryptographic signature, using a NIST-validated 964
implementation5; 965

• Enforcement to ensure that all hosts in the environment only run images from these 966
approved lists; 967

• Validation of image signatures before image execution to ensure images are from trusted 968
sources and have not been tampered with; and 969

• Ongoing monitoring and maintenance of these repositories to ensure images within them 970
are maintained and updated as vulnerabilities and configuration requirements change. 971

4.2 Registry Countermeasures 972

4.2.1 Insecure connections to registries 973

Organizations should configure their development tools, orchestrators, and container runtimes to 974
only connect to registries over encrypted channels. The specific steps vary between tools, but the 975
key goal is to ensure that all data pushed to and pulled from a registry occurs between trusted 976
endpoints and is encrypted in transit. 977

4.2.2 Stale images in registries 978

The risk of using stale images can be mitigated through two primary methods. First, 979
organizations can prune registries of unsafe, vulnerable images that should no longer be used. 980
This process can be automated based on time triggers and labels associated with images. 981
Second, operational practices should emphasize accessing images using immutable names that 982
specify discrete versions of images to be used. For example, rather than configuring a 983
deployment job to use the image called my-app, configure it to deploy specific versions of the 984
image, such as my-app:2.3 and my-app:2.4 to ensure that specific, known good instances of 985
images are deployed as part of each job. 986

Another option is using a “latest” tag for images and referencing this tag in deployment 987
automation. However, because this tag is only a label attached to the image and not a guarantee 988
of freshness, organizations should be cautious to not overly trust it. Regardless of whether an 989
organization chooses to use discrete names or to use a “latest” tag, it is critical that processes be 990
put in place to ensure that either the automation is using the most recent unique name or the 991
images tagged “latest” actually do represent the most up-to-date versions. 992

4.2.3 Insufficient authentication and authorization restrictions 993

All access to registries that contain proprietary or sensitive images should require authentication. 994
Any write access to a registry should require authentication to ensure that only images from 995
trusted entities can be added to it. In both cases, organizations should consider federating with 996
existing accounts, such as their own or a cloud provider’s directory service to take advantage of 997

5 For more information on NIST-validated cryptographic implementations, see the Cryptographic Module Validation Program
(CMVP) page at http://csrc.nist.gov/groups/STM/cmvp/.

http://csrc.nist.gov/groups/STM/cmvp/

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

22

security controls already in place for those accounts. All write access to registries should be 998
audited and any read actions for sensitive images should similarly be logged. 999

4.3 Orchestrator Countermeasures 1000

4.3.1 Unbounded administrative access 1001

Especially because of their wide-ranging span of control, orchestrators should use a least 1002
privileged access model in which users are only granted ability to perform the specific actions on 1003
the specific hosts, containers, and images their job role requires. For examples, members of the 1004
test team should only be given access to the images used in testing and the hosts used for running 1005
them, and should only be able to manipulate the containers they created. Test team members 1006
should have limited or no access to containers used in production. 1007

4.3.2 Unauthorized access 1008

Access to cluster-wide administrative accounts should be tightly controlled as these accounts 1009
provide ability to affect all resources in the environment. Organizations should use strong 1010
authentication methods, such as requiring multifactor authentication instead of just a password. 1011

Organizations should implement single sign-on to existing directory systems where applicable. 1012
Single sign-on simplifies the orchestrator authentication experience, makes it easier for users to 1013
use strong authentication credentials, and centralizes auditing of access, making anomaly 1014
detection more effective. 1015

4.3.3 Poorly separated inter-container network traffic 1016

Orchestrators should be configured to separate network traffic into discrete virtual networks by 1017
sensitivity level. While per-app segmentation is also possible, for most organizations and use 1018
cases, simply defining networks by sensitivity level provides sufficient mitigation of risk with a 1019
manageable degree of complexity. For example, public-facing apps can share a virtual network, 1020
internal apps can use another, and communication between the two should occur through a small 1021
number of well-defined interfaces. 1022

4.3.4 Mixing of workload sensitivity levels 1023

Orchestrators should be configured to isolate deployments to specific sets of hosts by sensitivity 1024
levels. The particular approach for implementing this varies depending on the orchestrator in use, 1025
but the general model is to define rules that prevent high sensitivity workloads from being placed 1026
on the same host as those running lower sensitivity workloads. This can be accomplished 1027
through the use of host ‘pinning’ within the orchestrator or even simply by having separate, 1028
individually managed clusters for each sensitivity level. 1029

While most container runtime environments do an effective job of isolating containers from each 1030
other and from the host OS, in some cases it may be an unnecessary risk to run apps of different 1031
sensitivity levels together on the same host OS. Segmenting containers by purpose, sensitivity, 1032
and threat posture provides additional defense in depth. Concepts such as application tiering and 1033
network and host segmentation should be taken into consideration when planning app 1034

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

23

deployments. For example, suppose a host is running containers for both a financial database and 1035
a public-facing blog. While normally the container runtime will effectively isolate these 1036
environments from each other, there is also a shared responsibility amongst the DevOps teams 1037
for each app to operate them securely and eliminate unnecessary risk. If the blog app were to be 1038
compromised by an attacker, there would be far fewer layers of defense to protect the database if 1039
the two apps are running on the same host. 1040

Thus, a best practice is to group containers together by relative sensitivity and to ensure that a 1041
given host kernel only runs containers of a single sensitivity level. This segmentation may be 1042
provided by using multiple physical servers, but modern hypervisors also provide strong enough 1043
isolation to effectively mitigate these risks. From the previous example, this may mean that the 1044
organization has two sensitivity levels for their containers. One is for financial apps and the 1045
database is included in that group. The other is for web apps and the blog is included in that 1046
group. The organization would then have two pools of VMs that would each host containers of a 1047
single severity level. For example, the host called vm-financial may host the containers running 1048
the financial database as well as the tax reporting software, while a host called vm-web may host 1049
the blog and the public website. 1050

By segmenting containers in this manner, it will be much more difficult for an attacker who 1051
compromises one of the segments to expand that compromise to other segments. This approach 1052
also ensures that any residual data, such as caches or local volumes mounted for temp files, stays 1053
within its security zone. From the previous example, this zoning would ensure that any financial 1054
data cached locally and residually after container termination would never be available on a host 1055
running an app at a lower sensitivity level. 1056

In larger-scale environments with hundreds of hosts and thousands of containers, this 1057
segmentation must be automated to be practical to operationalize. Fortunately, common 1058
orchestration platforms typically include some notion of being able to group apps together, and 1059
container security tools can use attributes like container names and labels to enforce security 1060
policies across them. In these environments, additional layers of defense in depth beyond simple 1061
host isolation may also leverage this segmentation. For example, an organization may implement 1062
separate hosting zones or networks to not only isolate these containers within hypervisors but 1063
also to isolate their network traffic more discretely such that traffic for apps of one sensitivity 1064
level is separate from that of other sensitivity levels. 1065

4.3.5 Orchestrator node trust 1066

Orchestration platforms should be configured to provide features that create a secure 1067
environment for all the apps they run. Orchestrators should ensure that nodes are securely 1068
introduced to the cluster, have a persistent identity throughout their lifecycle, and can also 1069
provide an accurate inventory of nodes and their connectivity states. Organizations should ensure 1070
that orchestration platforms are designed specifically to be resilient to compromise of individual 1071
nodes without compromising the overall security of the cluster. A compromised node must be 1072
able to be isolated and removed from the cluster without disrupting or degrading overall cluster 1073
operations. Finally, organizations should choose orchestrators that provide mutually 1074
authenticated network connections between cluster members and end-to-end encryption of intra-1075
cluster traffic. Because of the portability of containers, many deployments may occur across 1076

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

24

networks organizations do not directly control, so a secure-by-default posture is particularly 1077
important for this scenario. 1078

4.4 Container Countermeasures 1079

4.4.1 Vulnerabilities within the runtime software 1080

The container runtime must be carefully monitored for vulnerabilities and when problems are 1081
detected, they must be remediated quickly. A vulnerable runtime exposes all containers it 1082
supports, as well as the host itself, to potentially significant risk. Organizations should use tools 1083
to look for Common Vulnerabilities and Exposures (CVEs) vulnerabilities in the runtimes 1084
deployed, to upgrade any instances at risk, and to ensure that orchestrators only allow 1085
deployments to properly maintained runtimes. 1086

4.4.2 Unbounded network access from containers 1087

Organizations should control the egress network traffic sent by containers. At minimum, these 1088
controls should be in place at network borders, ensuring containers are not able to send traffic 1089
across networks of differing sensitivity levels, such as from an environment hosting secure data 1090
to the internet, similar to the patterns used for traditional architectures. However, the virtualized 1091
networking model of inter-container traffic poses an additional challenge. 1092

Because containers deployed across multiple hosts typically communicate over a virtual, 1093
encrypted network, traditional network devices are often blind to this traffic. Additionally, 1094
containers are typically assigned dynamic IP addresses automatically when deployed by 1095
orchestrators, and these addresses change continuously as the app is scaled and load balanced. 1096
Thus, ideally, organizations should use a combination of existing network level devices and 1097
more application-aware network filtering. App-aware tools should be able to not just see the 1098
inter-container traffic, but also to dynamically generate the rules used to filter this traffic based 1099
on the specific characteristics of the apps running in the containers. This dynamic rule 1100
management is critical due to the scale and rate of change of containerized apps, as well as their 1101
ephemeral networking topology. 1102

Specifically, app-aware tools should provide the following capabilities: 1103

• Automated determination of proper container networking surfaces, including both 1104
inbound ports and process-port bindings; 1105

• Detection of traffic flows both between containers and other network entities, over both 1106
‘on the wire’ traffic and encapsulated traffic; and 1107

• Detection of network anomalies, such as unexpected traffic flows within the 1108
organization’s network, port scanning, or outbound access to potentially dangerous 1109
destinations. 1110

4.4.3 Insecure container runtime configurations 1111

Organizations should automate compliance with container runtime configuration standards. 1112
Documented technical implementation guidance, such as the Center for Internet Security Docker 1113
Benchmark [19], provides details on options and recommended settings, but operationalizing this 1114

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

25

guidance depends on automation. Organizations can use a variety of tools to “scan” and assess 1115
their compliance at a point in time, but such approaches do not scale. Instead, organizations 1116
should use tools or processes that continuously assess configuration settings across the 1117
environment and actively enforce them. 1118

Additionally, mandatory access control (MAC) technologies like SELinux [20] and AppArmor 1119
[21] provide enhanced control and isolation for containers running Linux OSs. For example, 1120
these technologies can be used to provide additional segmentation and assurance that containers 1121
should only be able to access specific file paths, processes, and network sockets, further 1122
constraining the ability of even a compromised container to impact the host or other containers. 1123
MAC technologies provide protection at the host OS layer, ensuring that only specific files, 1124
paths, and processes are accessible to containerized apps. Organizations are encouraged to use 1125
the MAC technologies provided by their host OSs in all container deployments. 1126

Secure computing (seccomp)6 profiles are another mechanism that can be used to constrain the 1127
system-level capabilities containers are allocated at runtime. Common container runtimes like 1128
Docker include default seccomp profiles that drop system calls that are unsafe and typically 1129
unnecessary for container operation. Additionally, custom profiles can be created and passed to 1130
container runtimes to further limit their capabilities. At a minimum, organizations should ensure 1131
that containers are run with the default profiles provided by their runtime and should consider 1132
using additional profiles for high-risk apps. 1133

4.4.4 Application vulnerabilities 1134

Existing host-based intrusion detection processes and tools are often unable to detect and prevent 1135
attacks within containers due to the differing technical architecture and operational practices 1136
previously discussed. Organizations should implement additional tools that are container aware 1137
and designed to operate at the scale and change rate typically seen with containers. These tools 1138
should be able to automatically profile containerized apps using behavioral learning and build 1139
security profiles for them to minimize human interaction. These profiles should then be able to 1140
detect anomalies at runtime, including events such as: 1141

• Invalid or unexpected process execution, 1142
• Invalid or unexpected system calls, 1143
• Changes to protected configuration files and binaries, 1144
• Writes to unexpected locations and file types, 1145
• Creation of unexpected network listeners, 1146
• Traffic sent to unexpected network destinations, and 1147
• Malware storage or execution. 1148

Containers should also be run in a read-only mode, in which changes are not allowed to their root 1149
filesystems. This approach isolates writes to specifically defined directories, which can then be 1150
more easily monitored by the aforementioned tools. Furthermore, using read-only filesystems 1151

6 For more information on seccomp, see https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt.

https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

26

makes the containers more resilient to compromise since any tampering is isolated to these 1152
specific locations and can be easily separated from the rest of the app. 1153

4.5 Host OS Countermeasures 1154

4.5.1 Large attack surface 1155

For organizations using container-specific OSs, the threats are typically more minimal to start 1156
with since the OSs are specifically designed to host containers and have other services and 1157
functionality disabled. Further, because these optimized OSs are designed specifically for 1158
hosting containers, they typically feature read-only file systems and employ other hardening 1159
practices by default. Whenever possible, organizations should use these minimalistic OSs to 1160
reduce their attack surfaces and mitigate the typical risks and hardening activities associated with 1161
general-purpose OSs. 1162

4.5.2 Shared kernel 1163

In addition to grouping container workloads onto hosts by sensitivity level, organizations should 1164
not mix containerized and non-containerized workloads on the same host instance. For example, 1165
if a host is running a web server container, it should not also run a web server (or any other app) 1166
as a regularly installed component directly within the host OS. Keeping containerized workloads 1167
isolated to container-specific hosts makes it simpler and safer to apply countermeasures and 1168
defenses that are optimized for protecting containers. 1169

4.5.3 Host OS component vulnerabilities 1170

Organizations should implement management practices and tools to validate the versioning of 1171
components provided for base OS management and functionality. Even though container-1172
specific OSs have a much more minimal set of components than general-purpose OSs, they still 1173
do have vulnerabilities and still require remediation. Organizations should use tools provided by 1174
the OS vendor or other trusted organizations to regularly check for and apply updates to all 1175
software components used within the OS. The OS should be kept up to date not only with 1176
security updates, but also the latest component updates recommended by the vendor. This is 1177
particularly important for the kernel and container runtime components as newer releases of 1178
these components often add additional security protections and capabilities beyond simply 1179
correcting vulnerabilities. 1180

Host OSs should be operated in an immutable manner with no data or state stored uniquely and 1181
persistently on the host and no application-level dependencies provided by the host. Instead, all 1182
application components and dependencies should be packaged and deployed in containers. This 1183
enables the host to be operated in a nearly stateless manner with a greatly reduced attack surface 1184
and a more trustworthy way to identify anomalies and configuration drift. 1185

4.5.4 Improper user access rights 1186

Though most container deployments rely on orchestrators to distribute jobs across hosts, 1187
organizations should still ensure that all authentication to the OS is audited, login anomalies are 1188
monitored, and any escalation to performed privileged operations is logged. This makes it 1189

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

27

possible to identify anomalous access patterns such as an individual logging on to a host directly 1190
and running privileged commands to manipulate containers. 1191

4.5.5 Host file system tampering 1192

Ensure that containers are run with the minimal set of file system permissions required. Very 1193
rarely should containers mount local file systems on a host. Instead, any file changes that 1194
containers need to persist to disk should be made within storage volumes specifically allocated 1195
for this purpose. In no case should containers be able to mount sensitive directories on a host’s 1196
file system, especially those containing configuration settings for the operating system. 1197
Organizations should use tools that can monitor what directories are being mounted by 1198
containers and prevent the deployment of containers that violate these policies. 1199

4.6 Hardware Countermeasures 1200

Software-based security is regularly defeated, as acknowledged in NIST SP 800-164 [22]. NIST 1201
defines trusted computing requirements in NIST SPs 800-147 [23], 800-155 [24], and 800-164. 1202
To NIST, “trusted” means that the platform behaves as it is expected to: the software inventory is 1203
accurate, the configuration settings and security controls are in place and operating as they 1204
should, and so on. “Trusted” also means that it is known that no unauthorized person has 1205
tampered with the software or its configuration on the hosts. Hardware root of trust is not a 1206
concept unique to containers, but container management and security tools can leverage 1207
attestations for the rest of the container technology architecture to ensure containers are being 1208
run in secure environments. 1209

The currently available way to provide trusted computing is to: 1210

1. Measure firmware, software, and configuration data before it is executed using a Root of 1211
Trust for Measurement (RTM). 1212

2. Store those measurements in a hardware root of trust, like a trusted platform module 1213
(TPM). 1214

3. Validate that the current measurements match the expected measurements. If so, it can be 1215
attested that the platform can be trusted to behave as expected. 1216

TPM-enabled devices can check the integrity of the machine during the boot process, enabling 1217
protection and detection mechanisms to function in hardware, at pre-boot, and in the secure boot 1218
process. This same trust and integrity assurance can be extended beyond the OS and the boot 1219
loader to the container runtimes and applications. Note that while standards are being developed 1220
to enable verification of hardware trust by users of cloud services, not all clouds expose this 1221
functionality to their customers. In cases where technical verification is not provided, 1222
organizations should address hardware trust requirements as part of their service agreements with 1223
cloud providers. 1224

The increasing complexity of systems and the deeply embedded nature of today’s threats means 1225
that security should extend across all container technology components, starting with the 1226
hardware and firmware. This would form a distributed trusted computing model and provide the 1227
most trusted and secure way to build, run, orchestrate, and manage containers. 1228

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

28

The trusted computing model should start with measured/secure boot, which provides a verified 1229
system platform, and build a chain of trust rooted in hardware and extended to the bootloaders, 1230
the OS kernel, and the OS components to enable cryptographic verification of boot mechanisms, 1231
system images, container runtimes, and container images. For container technologies, these 1232
techniques are currently applicable at the hardware, hypervisor, and host OS layers, with early 1233
work in progress to apply these to container-specific components. 1234

As of this writing, NIST is collaborating with industry partners to build reference architectures 1235
based on commercial off-the-shelf products that demonstrate the trusted computing model for 1236
container environments.7 1237

 1238

7 For more information on previous NIST efforts in this area, see NIST IR 7904, Trusted Geolocation in the Cloud: Proof of
Concept Implementation [28].

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

29

5 Container Threat Scenario Examples 1239

To illustrate the effectiveness of the recommended mitigations from Section 4, consider the 1240
following threat scenario examples for containers. 1241

5.1 Exploit of a Vulnerability within an Image 1242

One of the most common threats to a containerized environment is application-level 1243
vulnerabilities in the software within containers. For example, an organization may build an 1244
image based on a common web application. If that application has a vulnerability, it may be used 1245
to subvert the application within the container. Once compromised, the attacker may be able to 1246
map other systems in the environment, attempt to elevate privileges within the compromised 1247
container, or abuse the container for use in attacks on other systems (such as acting as a file 1248
dropper or command and control endpoint). 1249

Organizations that adopt the recommendations would have multiple layers of defense in depth 1250
against such threats: 1251

1. Detecting the vulnerable image early in the deployment process and having controls in 1252
place to prevent vulnerable images from being deployed would prevent the vulnerability 1253
from being introduced into production. 1254

2. Container-aware network monitoring and filtering would detect anomalous connections 1255
to other containers during the attempt to map other systems. 1256

3. Container-aware process monitoring and malware detection would detect the running of 1257
invalid or unexpected malicious processes and the data they introduce into the 1258
environment. 1259

5.2 Exploit of the Container Runtime 1260

While an uncommon occurrence, if a container runtime were compromised, an attacker could 1261
utilize this access to attack all the containers on the host and even the host itself. 1262

Relevant mitigations for this threat scenario include: 1263

1. The usage of mandatory access control capabilities can provide additional barriers to 1264
ensure that process and file system activity is still segmented within the defined 1265
boundaries. 1266

2. Segmentation of workloads ensures that the scope of the compromise would be limited to 1267
applications of a common sensitivity level that are sharing the host. For example, a 1268
compromised runtime on a host only running web applications would not impact 1269
runtimes on other hosts running containers for financial applications. 1270

3. Security tools that can report on the vulnerability state of runtimes and prevent the 1271
deployment of images to vulnerable ones can prevent workloads from running there. 1272

5.3 Running a Poisoned Image 1273

Because images are easily sourced from public locations, often with unknown provenance, an 1274
attacker may embed malicious software within images known to be used by a target. For 1275

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

30

example, if an attacker determines that a target is active on a discussion board about a particular 1276
project and uses images provided by that project’s web site, the attacker may seek to craft 1277
malicious versions of these images for use in an attack. 1278

Relevant mitigations include: 1279

1. Ensuring that only trusted images are allowed to run, which will prevent images from 1280
external, unvetted sources from being used. 1281

2. Automatically scanning images for vulnerabilities and malware, which may detect 1282
malicious code such as rootkits embedded within an image. 1283

3. Implementing runtime controls that limit the container's ability to abuse resources, 1284
escalate privileges, and run executables. 1285

4. Using container-level network segmentation to limit the “blast radius” of what the 1286
poisoned image might do. 1287

5. Validating a container image's runtime operates following least-privilege and least-access 1288
principles. 1289

6. Building a threat profile of the container's runtime. This includes, but is not limited to, 1290
processes, network calls, and filesystem changes. 1291

7. Leveraging the use of digitally hashed or signed images to validate images before 1292
runtime as integrity and tampering checks. 1293

 1294

 1295

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

31

6 Container Technology Life Cycle Security Considerations 1296

It is critically important to carefully plan before installing, configuring, and deploying container 1297
technologies. This helps ensure that the container environment is as secure as possible and is in 1298
compliance with all relevant organizational policies, external regulations, and other 1299
requirements. 1300

There is a great deal of similarity in the planning and implementation recommendations for 1301
container technologies and virtualization solutions. Section 5 of NIST SP 800-125 [1] already 1302
contains a full set of recommendations for virtualization solutions. Instead of repeating all those 1303
recommendations here, this section points readers to that document and states that, besides the 1304
exceptions listed below, organizations should apply all the NIST SP 800-125 Section 5 1305
recommendations in a container technology context. For example, instead of creating a 1306
virtualization security policy, create a container technology security policy. 1307

This section of the document lists exceptions and additions to the NIST SP 800-125 Section 5 1308
recommendations, grouped by the corresponding phase in the planning and implementation life 1309
cycle. 1310

6.1 Initiation Phase 1311

Organizations should consider how other security policies may be affected by containers and 1312
adjust these policies as needed to take containers into consideration. For example, policies for 1313
incident response (especially forensics) and vulnerability management may need to be adjusted 1314
to take into account the special requirements of containers. 1315

The introduction of container technologies might disrupt the existing culture and software 1316
development methodologies within the organization. To take full advantage of the benefits 1317
containers can provide, the organization’s processes should be tailored to support this new way 1318
of developing, running, and supporting applications. Traditional development practices, patching 1319
techniques, and system upgrade processes might not directly apply to a containerized 1320
environment, and it is important that the employees within the organization are willing to adapt 1321
to a new model. New processes can consider and address any potential culture shock that is 1322
introduced by the technology shift. Education and training can be offered to anyone involved in 1323
the software development lifecycle to allow people to become comfortable with the new way to 1324
build, ship, and run applications. 1325

6.2 Planning and Design Phase 1326

The primary container-specific consideration for the planning and design phase is forensics. 1327
Because containers mostly build on components already present in OSs, the tools and techniques 1328
for performing forensics in a containerized environment are mostly an evolution of existing 1329
practices. The immutable nature of containers and images can actually improve forensic 1330
capabilities because the demarcation between what an image should do and what actually 1331
occurred during an incident is clearer. For example, if a container launched to run a web server 1332
suddenly starts a mail relay, it is very clear that the new process was not part of the original 1333

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

32

image used to create the container. On traditional platforms, with less separation between the OS 1334
and apps, making this differentiation can be much more difficult. 1335

Organizations that are familiar with process, memory, and disk incident response activities will 1336
find them largely similar when working with containers. However, there are some differences to 1337
keep in mind as well. 1338

Containers typically use a layered file system that is virtualized from the host OS. Directly 1339
examining paths on the hosts typically only reveals the outer boundary of these layers, not the 1340
files and data within them. Thus, when responding to incidents in containerized environments, 1341
users should identify the specific storage provider in use and understand how to properly 1342
examine its contents offline. 1343

Containers are typically connected to each other using virtualized overlay networks. These 1344
overlay networks frequently use encapsulation and encryption to allow the traffic to be routed 1345
over existing networks securely. However, this means that when investigating incidents on 1346
container networks, particularly when doing any live packet analysis, the tools used must be 1347
aware of these virtualized networks and understand how to extract the embedded IP frames from 1348
within them for parsing with existing tools. 1349

Process and memory activity within containers is largely similar to that which would be observed 1350
within traditional apps, but with different parent processes. For example, container runtimes may 1351
spawn all processes within containers in a nested fashion in which the runtime is the top-level 1352
process with first-level descendants per container and second-level descendants for each process 1353
within the container. For example: 1354

├─containerd─┬───┬───[container1─┬─bash] 1355
│ │ │ └─8*[{thread}]] 1356
│ │ ├─container2────┬─start.sh─┬─mongod───22*[{mongod}] 1357
│ │ │ │ └─node─┬─4*[{V8 WorkerThread}] 1358
│ │ │ │ └─5*[{node}] 1359
│ │ │ └─8*[{thread}] 1360
│ │ ├─container3────┬─mysqld───28*[{mysqld}] 1361
│ │ │ └─8*[{thread}] 1362

6.3 Implementation Phase 1363

After the container technology has been designed, the next step is to implement and test a 1364
prototype of the design before putting the solution into production. Be aware that container 1365
technologies do not offer the types of introspection capabilities that VM technologies do. 1366

NIST SP 800-125 [1] cites several aspects of virtualization technologies that should be evaluated 1367
before production deployment, including authentication, connectivity and networking, 1368
application functionality, management, performance, and the security of the technology itself. In 1369
addition to those, it is important to also evaluate the container technology’s isolation capabilities. 1370
Ensure that processes within the container can access all resources they are permitted to and 1371
cannot view or access any other resources. 1372

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

33

Implementation may also require altering the configuration of other security controls and 1373
technologies, such as security event logging, network management, code repositories, and 1374
authentication servers. 1375

When the prototype evaluation has been completed and the container technology is ready for 1376
production usage, containers should initially be used for a small number of applications. 1377
Problems that occur are likely to affect multiple applications, so it is helpful to identify these 1378
problems early on so they can be addressed before further deployment. A phased deployment 1379
also provides time for developers and IT staff (e.g., system administrators, help desk) to be 1380
trained on its usage and support. 1381

6.4 Operations and Maintenance Phase 1382

Operational processes that are particularly important for maintaining the security of container 1383
technologies, and thus should be performed regularly, include updating all images and 1384
distributing those updated images to containers to take the place of older images. Other security 1385
best practices, such as performing vulnerability management and updates for other supporting 1386
layers like hosts and orchestrators, are also key ongoing operational tasks. Container security and 1387
monitoring tools should similarly be integrated with existing security information and event 1388
management (SIEM) tools to ensure container-related events flow through the same tools and 1389
processes used to provide security throughout the rest of the environment. 1390

If and when security incidents occur within a containerized environment, organizations should be 1391
prepared to respond with processes and tools that are optimized for the unique aspects of 1392
containers. The core guidance outlined in NIST SP 800-61, Computer Security Incident 1393
Handling Guide [25], is very much applicable for containerized environments as well. However, 1394
organizations adopting containers should ensure they enhance their responses for some of the 1395
unique aspects of container security. 1396

• Because containerized apps may be run by a different team than the traditional operations 1397
team, organizations should ensure that whatever teams are responsible for container 1398
operations are brought into the incident response plan and understand their role in it. 1399

• As discussed throughout this document, the ephemeral and automated nature of container 1400
management may not be aligned with the asset management policies and tools an 1401
organization has traditionally used. Incident response team must be able to know the 1402
roles, owners, and sensitivity levels of containers, and be able to integrate this data into 1403
their process. 1404

• Clear procedures should be defined to response to container related incidents. For 1405
example, if a particular image is being exploited, but that image is in use across hundreds 1406
of containers, the response team may need to shut down all of these containers to stop the 1407
attack. While single vulnerabilities have long been able to cause problems across many 1408
systems, with containers, the response may require rebuilding and redeploying a new 1409
image widely, rather than installing a patch to existing systems. This change in response 1410
may involve different teams and approvals and should be understood and practiced ahead 1411
of time. 1412

• As discussed previously, logging and other forensic data may be stored differently in a 1413
containerized environment. Incident response teams should be familiar with the different 1414

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

34

tools and techniques required to gather data and have documented processes specifically 1415
for these environments. 1416

6.5 Disposition Phase 1417

The ability for containers to be deployed and destroyed automatically based on the needs of an 1418
application allows for highly efficient systems but can also introduce some challenges for 1419
records retention, forensic, and event data requirements. Organizations should make sure that 1420
appropriate mechanisms are in place to satisfy their data retention policies. Example of issues 1421
that should be addressed are how containers and images should be destroyed, what data should 1422
be extracted from a container before disposal and how that data extraction should be performed, 1423
how cryptographic keys used by a container should be revoked or deleted, etc. 1424

Data stores and media that support the containerized environment should be included in any 1425
disposal plans developed by the organization. 1426

 1427

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

35

7 Conclusion 1428

Containers represent a transformational change in the way apps are built and run. They do not 1429
necessitate dramatically new security best practices; on the contrary, most important aspects of 1430
container security are refinements of well-established techniques and principles. This document 1431
has updated and expanded general security recommendations to take the risks particular to 1432
container technologies into account. 1433

This document has already discussed some of the differences between securing containers and 1434
securing the same apps in VMs. It is useful to summarize the guidance in this document around 1435
those points. 1436

In container environments there are many more entities, so security processes and tools must be 1437
able to scale accordingly. Scale does not just mean the total number of objects supported in a 1438
database, but also how effectively and autonomously policy can be managed. Many 1439
organizations struggle with the burden of managing security across hundreds of VMs. As 1440
container-centric architectures become the norm and these organizations are responsible for 1441
thousands or tens of thousands of containers, their security practices should emphasize 1442
automation and efficiency to keep up. 1443

With containers there is a much higher rate of change, moving from updating an app a few times 1444
a year to a few times a week or even a day. What used to be acceptable to do manually no longer 1445
is. Automation is not just important to deal with the net number of entities, but also how 1446
frequently those entities change. Being able to centrally express policy and have software 1447
manage enforcement of it across the environment is vital. Organizations that adopt containers 1448
should be prepared to manage this frequency of change. This may require fundamentally new 1449
operational practices and organizational evolution. 1450

The use of containers shifts much of the responsibility for security to developers, so 1451
organizations should ensure their developers have all the information, skills, and tools they need 1452
to make sound decisions. Also, security teams should be enabled to actively enforce quality 1453
throughout the development cycle. Organizations that are successful at this transition gain 1454
security benefit in being able to respond to vulnerabilities faster and with less operational burden 1455
than ever before. 1456

Security must be as portable as the containers themselves, so organizations should adopt 1457
techniques and tools that are open and work across platforms and environments. Many 1458
organizations will see developers build in one environment, test in another, and deploy in a third, 1459
so having consistency in assessment and enforcement across these is key. Portability is also not 1460
just environmental but also temporal. Continuous integration and deployment practices erode the 1461
traditional walls between phases of the development and deployment cycle, so organizations 1462
need to ensure consistent, automated security practices across creation of the image, storage of 1463
the image in registries, and running of the images in containers. 1464

Organizations that navigate these changes can begin to leverage containers to actually improve 1465
their overall security. The immutability and declarative nature of containers enables 1466
organizations to begin realizing the vision of more automated, app-centric security that requires 1467

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

36

minimal manual involvement and that updates itself as the apps change. Containers are an 1468
enabling capability in organizations moving from reactive, manual, high-cost security models to 1469
those that enable better scale and efficiency, thus lowering risk. 1470

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

37

Appendix A—NIST Resources for Securing Non-Core Components 1471

This appendix lists NIST resources for securing non-core container technology components, 1472
including developer systems, testing and accreditation systems, administrator systems, and host 1473
hardware and virtual machine managers. Many more resources are available from other 1474
organizations. 1475

Table 1: NIST Resources for Securing Non-Core Components 1476

Resource Name and URI Applicability
SP 800-40 Revision 3, Guide to Enterprise Patch Management Technologies
https://doi.org/10.6028/NIST.SP.800-40r3

All IT products and systems

SP 800-46 Revision 2, Guide to Enterprise Telework, Remote Access, and Bring
Your Own Device (BYOD) Security
https://doi.org/10.6028/NIST.SP.800-46r2

Client operating systems,
client applications

SP 800-53 Revision 4, Security and Privacy Controls for Federal Information
Systems and Organizations
https://doi.org/10.6028/NIST.SP.800-53r4

All IT products and systems

SP 800-70 Revision 3, National Checklist Program for IT Products: Guidelines for
Checklist Users and Developers
http://dx.doi.org/10.6028/NIST.SP.800-70r3

Server operating systems,
client operating systems,
server applications, client
applications

SP 800-83 Revision 1, Guide to Malware Incident Prevention and Handling for
Desktops and Laptops
https://doi.org/10.6028/NIST.SP.800-83r1

Client operating systems,
client applications

SP 800-123, Guide to General Server Security
https://doi.org/10.6028/NIST.SP.800-123

Servers

SP 800-124 Revision 1, Guidelines for Managing the Security of Mobile Devices in
the Enterprise
https://doi.org/10.6028/NIST.SP.800-124r1

Mobile devices

SP 800-125, Guide to Security for Full Virtualization Technologies
https://doi.org/10.6028/NIST.SP.800-125

Hypervisors and virtual
machines

SP 800-125A, Security Recommendations for Hypervisor Deployment
http://csrc.nist.gov/publications/drafts/800-125a/sp800-125a_draft.pdf

Hypervisors and virtual
machines

SP 800-125B, Secure Virtual Network Configuration for Virtual Machine (VM)
Protection
https://doi.org/10.6028/NIST.SP.800-125B

Hypervisors and virtual
machines

SP 800-147, BIOS Protection Guidelines
https://doi.org/10.6028/NIST.SP.800-147

Client hardware

SP 800-155, BIOS Integrity Measurement Guidelines
http://csrc.nist.gov/publications/drafts/800-155/draft-SP800-155_Dec2011.pdf

Client hardware

SP 800-164, Guidelines on Hardware-Rooted Security in Mobile Devices
http://csrc.nist.gov/publications/drafts/800-164/sp800_164_draft.pdf

Mobile devices

 1477

 1478

https://doi.org/10.6028/NIST.SP.800-40r3
https://doi.org/10.6028/NIST.SP.800-46r2
https://doi.org/10.6028/NIST.SP.800-53r4
http://dx.doi.org/10.6028/NIST.SP.800-70r3
https://doi.org/10.6028/NIST.SP.800-83r1
https://doi.org/10.6028/NIST.SP.800-123
https://doi.org/10.6028/NIST.SP.800-124r1
https://doi.org/10.6028/NIST.SP.800-125
http://csrc.nist.gov/publications/drafts/800-125a/sp800-125a_draft.pdf
https://doi.org/10.6028/NIST.SP.800-125B
https://doi.org/10.6028/NIST.SP.800-147
http://csrc.nist.gov/publications/drafts/800-155/draft-SP800-155_Dec2011.pdf
http://csrc.nist.gov/publications/drafts/800-164/sp800_164_draft.pdf

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

38

Appendix B—NIST SP 800-53 and NIST Cybersecurity Framework Security Controls 1479
Related to Container Technologies 1480

The security controls from NIST SP 800-53 Revision 4 [26] that are most important for container 1481
technologies are listed in Table 2. 1482

Table 2: Security Controls from NIST SP 800-53 for Container Technology Security 1483

NIST SP 800-53 Control Related Controls References
AC-2, Account
Management

AC-3, AC-4, AC-5, AC-6, AC-10, AC-17, AC-19, AC-20,
AU-9, IA-2, IA-4, IA-5, IA-8, CM-5, CM-6, CM-11, MA-3,
MA-4, MA-5, PL-4, SC-13

AC-3, Access Enforcement AC-2, AC-4, AC-5, AC-6, AC-16, AC-17, AC-18, AC-19,
AC-20, AC-21, AC- 22, AU-9, CM-5, CM-6, CM-11, MA-3,
MA-4, MA-5, PE-3

AC-4, Information Flow
Enforcement

AC-3, AC-17, AC-19, AC-21, CM-6, CM-7, SA-8, SC-2,
SC-5, SC-7, SC-18

AC-6, Least Privilege AC-2, AC-3, AC-5, CM-6, CM-7, PL-2
AC-17, Remote Access AC-2, AC-3, AC-18, AC-19, AC-20, CA-3, CA-7, CM-8,

IA-2, IA-3, IA-8, MA-4, PE-17, PL-4, SC-10, SI-4
NIST SPs 800-46, 800-77,
800-113, 800-114, 800-
121

AT-3, Role-Based Security
Training

AT-2, AT-4, PL-4, PS-7, SA-3, SA-12, SA-16 C.F.R. Part 5 Subpart C
(5C.F.R.930.301); NIST
SPs 800-16, 800- 50

AU-2, Audit Events AC-6, AC-17, AU-3, AU-12, MA-4, MP-2, MP-4, SI-4 NIST SP 800-92;
https://idmanagement.gov/

AU-5, Response to Audit
Processing Failures

AU-4, SI-12

AU-6, Audit Review,
Analysis, and Reporting

AC-2, AC-3, AC-6, AC-17, AT-3, AU-7, AU-16, CA-7, CM-
5, CM-10, CM-11, IA-3, IA-5, IR-5, IR-6, MA-4, MP-4, PE-
3, PE-6, PE-14, PE-16, RA-5, SC-7, SC-18, SC-19, SI-3,
SI-4, SI-7

AU-8, Time Stamps AU-3, AU-12
AU-9, Protection of Audit
Information

AC-3, AC-6, MP-2, MP-4, PE-2, PE-3, PE-6

AU-12, Audit Generation AC-3, AU-2, AU-3, AU-6, AU-7
CA-9, Internal System
Connections

AC-3, AC-4, AC-18, AC-19, AU-2, AU-12, CA- 7, CM-2,
IA-3, SC-7, SI-4

CM-2, Baseline
Configuration

CM-3, CM-6, CM-8, CM-9, SA-10, PM-5, PM-7 NIST SP 800-128

CM-3, Configuration
Change Control

CA-7, CM-2, CM-4, CM-5, CM-6, CM-9, SA-10, SI- 2, SI-
12

NIST SP 800-128

CM-4, Security Impact
Analysis

CA-2, CA-7, CM-3, CM-9, SA-4, SA-5, SA-10, SI-2 NIST SP 800-128

CM-5, Access Restrictions
for Change

AC-3, AC-6, PE-3

CM-6, Configuration
Settings

AC-19, CM-2, CM-3, CM-7, SI-4 OMB Memoranda 07-11,
07-18, 08-22; NIST SPs
800-70, 800-128;
https://nvd.nist.gov;
https://checklists.nist.gov;
https://www.nsa.gov

https://idmanagement.gov/
https://nvd.nist.gov/
https://checklists.nist.gov/
https://www.nsa.gov/

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

39

NIST SP 800-53 Control Related Controls References
CM-7, Least Functionality AC-6, CM-2, RA-5, SA-5, SC-7 DoD Instruction 8551.01
CM-9, Configuration
Management Plan

CM-2, CM-3, CM-4, CM-5, CM-8, SA-10 NIST SP 800-128

CP-2, Contingency Plan AC-14, CP-6, CP-7, CP-8, CP-9, CP-10, IR-4, IR-8, MP-
2, MP-4, MP-5, PM-8, PM-11

Federal Continuity
Directive 1; NIST SP 800-
34

CP-9, Information System
Backup

CP-2, CP- 6, MP-4, MP-5, SC-13 NIST SP 800-34

CP-10, Information System
Recovery and
Reconstitution

CA-2, CA-6, CA-7, CP-2, CP-6, CP-7, CP-9, SC-24 Federal Continuity
Directive 1; NIST SP 800-
34

IA-2, Identification and
Authentication
(Organizational Users)

AC-2, AC-3, AC-14, AC-17, AC-18, IA-4, IA-5, IA-8 HSPD-12; OMB
Memoranda 04-04, 06-16,
11-11; FIPS 201; NIST
SPs 800-63, 800-73, 800-
76, 800-78; FICAM
Roadmap and
Implementation Guidance;
https://idmanagement.gov/

IA-4, Identifier
Management

AC-2, IA-2, IA-3, IA-5, IA-8, SC-37 FIPS 201; NIST SPs 800-
73, 800-76, 800-78

IA-5, Authenticator
Management

AC-2, AC-3, AC-6, CM-6, IA-2, IA-4, IA-8, PL-4, PS-5,
PS-6, SC-12, SC-13, SC-17, SC-28

OMB Memoranda 04-04,
11-11; FIPS 201; NIST
SPs 800-63, 800-73, 800-
76, 800-78; FICAM
Roadmap and
Implementation Guidance;
https://idmanagement.gov/

IR-1, Incident Response
Policy and Procedures

PM-9 NIST SPs 800-12, 800-61,
800-83, 800-100

IR-4, Incident Handling AU-6, CM-6, CP-2, CP-4, IR-2, IR-3, IR-8, PE-6, SC-5,
SC-7, SI-3, SI-4, SI-7

EO 13587; NIST SP 800-
61

MA-2, Controlled
Maintenance

CM-3, CM-4, MA-4, MP-6, PE-16, SA-12, SI-2

MA-4, Nonlocal
Maintenance

AC- 2, AC-3, AC-6, AC-17, AU-2, AU-3, IA-2, IA-4, IA-5,
IA-8, MA-2, MA-5, MP-6, PL-2, SC-7, SC-10, SC-17

FIPS 140-2, 197, 201;
NIST SPs 800-63, 800-88;
CNSS Policy 15

PL-2, System Security
Plan

AC-2, AC-6, AC-14, AC-17, AC-20, CA-2, CA-3, CA-7,
CM-9, CP-2, IR-8, MA-4, MA-5, MP-2, MP-4, MP-5, PL-7,
PM-1, PM-7, PM-8, PM-9, PM-11, SA-5, SA-17

NIST SP 800-18

PL-4, Rules of Behavior AC-2, AC-6, AC-8, AC-9, AC-17, AC-18, AC-19, AC-20,
AT-2, AT-3, CM-11, IA-2, IA-4, IA-5, MP-7, PS-6, PS-8,
SA-5

NIST SP 800-18

RA-2, Security
Categorization

CM-8, MP-4, RA-3, SC-7 FIPS 199; NIST SPs 800-
30, 800-39, 800-60

RA-3, Risk Assessment RA-2, PM-9 OMB Memorandum 04-
04; NIST SPs 800-30,
800-39;
https://idmanagement.gov/

SA-10, Developer
Configuration
Management

CM-3, CM-4, CM-9, SA-12, SI-2 NIST SP 800-128

https://idmanagement.gov/
https://idmanagement.gov/
https://idmanagement.gov/

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

40

NIST SP 800-53 Control Related Controls References
SA-11, Developer Security
Testing and Evaluation

CA-2, CM-4, SA-3, SA-4, SA-5, SI-2 ISO/IEC 15408; NIST SP
800-53A;
https://nvd.nist.gov;
http://cwe.mitre.org;
http://cve.mitre.org;
http://capec.mitre.org

SA-15, Development
Process, Standards, and
Tools

SA-3, SA-8

SA-19, Component
Authenticity

PE-3, SA-12, SI-7

SC-2, Application
Partitioning

SA-4, SA-8, SC-3

SC-4, Information in
Shared Resources

AC-3, AC-4, MP-6

SC-6, Resource
Availability

SC-8, Transmission
Confidentiality and
Integrity

AC-17, PE-4 FIPS 140-2, 197; NIST
SPs 800-52, 800-77, 800-
81, 800-113; CNSS Policy
15; NSTISSI No. 7003

SI-2, Flaw Remediation CA-2, CA-7, CM-3, CM-5, CM-8, MA-2, IR-4, RA-5, SA-
10, SA-11, SI-11

NIST SPs 800-40, 800-
128

SI-4, Information System
Monitoring

AC-3, AC-4, AC-8, AC-17, AU-2, AU-6, AU-7, AU-9, AU-
12, CA-7, IR-4, PE-3, RA-5, SC-7, SC-26, SC-35, SI-3,
SI-7

NIST SPs 800-61, 800-83,
800-92, 800-137

SI-7, Software, Firmware,
and Information Integrity

SA-12, SC-8, SC-13, SI-3 NIST SPs 800-147, 800-
155

 1484

The list below details the NIST Cybersecurity Framework [27] subcategories that are most 1485
important for container technology security. 1486

• Identify: Asset Management 1487
o ID.AM-3: Organizational communication and data flows are mapped 1488
o ID.AM-5: Resources (e.g., hardware, devices, data, and software) are prioritized 1489

based on their classification, criticality, and business value 1490
• Identify: Risk Assessment 1491

o ID.RA-1: Asset vulnerabilities are identified and documented 1492
o ID.RA-3: Threats, both internal and external, are identified and documented 1493
o ID.RA-4: Potential business impacts and likelihoods are identified 1494
o ID.RA-5: Threats, vulnerabilities, likelihoods, and impacts are used to determine risk 1495
o ID.RA-6: Risk responses are identified and prioritized 1496

• Protect: Access Control 1497
o PR.AC-1: Identities and credentials are managed for authorized devices and users 1498
o PR.AC-2: Physical access to assets is managed and protected 1499
o PR.AC-3: Remote access is managed 1500

https://nvd.nist.gov/
http://cwe.mitre.org/
http://cve.mitre.org/
http://capec.mitre.org/

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

41

o PR.AC-4: Access permissions are managed, incorporating the principles of least 1501
privilege and separation of duties 1502

• Protect: Awareness and Training 1503
o PR.AT-2: Privileged users understand roles & responsibilities 1504
o PR.AT-5: Physical and information security personnel understand roles & 1505

responsibilities 1506
• Protect: Data Security 1507

o PR.DS-2: Data-in-transit is protected 1508
o PR.DS-4: Adequate capacity to ensure availability is maintained 1509
o PR.DS-5: Protections against data leaks are implemented 1510
o PR.DS-6: Integrity checking mechanisms are used to verify software, firmware, and 1511

information integrity 1512
• Protect: Information Protection Processes and Procedures 1513

o PR.IP-1: A baseline configuration of information technology/industrial control 1514
systems is created and maintained 1515

o PR.IP-3: Configuration change control processes are in place 1516
o PR.IP-6: Data is destroyed according to policy 1517
o PR.IP-9: Response plans (Incident Response and Business Continuity) and recovery 1518

plans (Incident Recovery and Disaster Recovery) are in place and managed 1519
o PR.IP-12: A vulnerability management plan is developed and implemented 1520

• Protect: Maintenance 1521
o PR.MA-1: Maintenance and repair of organizational assets is performed and logged 1522

in a timely manner, with approved and controlled tools 1523
o PR.MA-2: Remote maintenance of organizational assets is approved, logged, and 1524

performed in a manner that prevents unauthorized access 1525
• Protect: Protective Technology 1526

o PR.PT-1: Audit/log records are determined, documented, implemented, and reviewed 1527
in accordance with policy 1528

o PR.PT-3: Access to systems and assets is controlled, incorporating the principle of 1529
least functionality 1530

• Detect: Anomalies and Events 1531
o DE.AE-2: Detected events are analyzed to understand attack targets and methods 1532

• Detect: Security Continuous Monitoring 1533
o DE.CM-1: The network is monitored to detect potential cybersecurity events 1534
o DE.CM-7: Monitoring for unauthorized personnel, connections, devices, and software 1535

is performed 1536
• Respond: Response Planning 1537

o RS.RP-1: Response plan is executed during or after an event 1538
• Respond: Analysis 1539

o RS.AN-1: Notifications from detection systems are investigated 1540
o RS.AN-3: Forensics are performed 1541

• Respond: Mitigation 1542
o RS.MI-1: Incidents are contained 1543
o RS.MI-2: Incidents are mitigated 1544
o RS.MI-3: Newly identified vulnerabilities are mitigated or documented as accepted 1545

risks 1546

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

42

• Recover: Recovery Planning 1547
o RC.RP-1: Recovery plan is executed during or after an event 1548

 1549

Table 3 lists the security controls from NIST SP 800-53 Revision 4 [26] that can be 1550
accomplished partially or completely by using container technologies. The rightmost column 1551
lists the sections of this document that map to each NIST SP 800-53 control. 1552

Table 3: NIST SP 800-53 Controls Supported by Container Technologies 1553

NIST SP 800-53
Control

Container Technology Relevancy Related Sections of
This Document

CM-3, Configuration
Change Control

Images can be used to help manage change control for
applications.

2.1, 2.2, 2.3, 2.4, 4.1

SC-2, Application
Partitioning

Separating user functionality from administrator functionality can
be accomplished in part by using containers or other virtualization
technologies so that the functionality is performed in different
containers.

2 (introduction), 2.3,
4.5.2

SC-3, Security
Function Isolation

Separating security functions from non-security functions can be
accomplished in part by using containers or other virtualization
technologies so that the functions are performed in different
containers.

2 (introduction), 2.3,
4.5.2

SC-4, Information in
Shared Resources

Container technologies are designed to restrict each container’s
access to shared resources so that information cannot
inadvertently be leaked from one container to another.

2 (introduction), 2.2,
2.3, 4.4

SC-6, Resource
Availability

The maximum resources available for each container can be
specified, thus protecting the availability of resources by not
allowing any container to consume excessive resources.

2.2, 2.3

SC-7, Boundary
Protection

Boundaries can be established and enforced between containers
to restrict their communications with each other.

2 (introduction), 2.2,
2.3, 4.4

SC-39, Process
Isolation

Multiple containers can run processes simultaneously on the
same host, but those processes are isolated from each other.

2 (introduction), 2.1,
2.2, 2.3, 4.4

SI-7, Software,
Firmware, and
Information Integrity

Unauthorized changes to the contents of images can easily be
detected and the altered image replaced with a known good copy.

2.3, 4.1, 4.2

SI-14, Non-
Persistence

Images running within containers are replaced as needed with
new image versions, so data, files, executables, and other
information stored within running images is not persistent.

2.1, 2.3, 4.1

 1554

Similar to Table 3, Table 4 lists the NIST Cybersecurity Framework [27] subcategories that can 1555
be accomplished partially or completely by using container technologies. The rightmost column 1556
lists the sections of this document that map to each Cybersecurity Framework subcategory. 1557

Table 4: NIST Cybersecurity Framework Subcategories Supported by Container Technologies 1558

Cybersecurity Framework
Subcategory

Container Technology Relevancy Related Sections
of This Document

PR.DS-4: Adequate capacity to ensure
availability is maintained

The maximum resources available for each
container can be specified, thus protecting the
availability of resources by not allowing any
container to consume excessive resources.

2.2, 2.3

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

43

Cybersecurity Framework
Subcategory

Container Technology Relevancy Related Sections
of This Document

PR.DS-5: Protections against data
leaks are implemented

Container technologies are designed to restrict
each container’s access to shared resources so
that information cannot inadvertently be leaked
from one container to another.

2 (introduction), 2.2,
2.3, 4.4

PR.DS-6: Integrity checking
mechanisms are used to verify
software, firmware, and information
integrity

Unauthorized changes to the contents of images
can easily be detected and the altered image
replaced with a known good copy.

2.3, 4.1, 4.2

PR.DS-7: The development and testing
environment(s) are separate from the
production environment

Using containers makes it easier to have
separate development, testing, and production
environments because the same image can be
used in all environments without adjustments.

2.1, 2.3

PR.IP-3: Configuration change control
processes are in place

Images can be used to help manage change
control for applications.

2.1, 2.2, 2.3, 2.4, 4.1

 1559

Information on these controls and guidelines on possible implementations can be found in the 1560
following NIST publications: 1561

• FIPS 140-2, Security Requirements for Cryptographic Modules 1562
• FIPS 197, Advanced Encryption Standard (AES) 1563
• FIPS 199, Standards for Security Categorization of Federal Information and Information 1564

Systems 1565
• FIPS 201-2, Personal Identity Verification (PIV) of Federal Employees and Contractors 1566
• SP 800-12 Rev. 1, An Introduction to Information Security 1567
• Draft SP 800-16 Rev. 1, A Role-Based Model for Federal Information 1568

Technology/Cybersecurity Training 1569
• SP 800-18 Rev. 1, Guide for Developing Security Plans for Federal Information Systems 1570
• SP 800-30 Rev. 1, Guide for Conducting Risk Assessments 1571
• SP 800-34 Rev. 1, Contingency Planning Guide for Federal Information Systems 1572
• SP 800-39, Managing Information Security Risk: Organization, Mission, and Information 1573

System View 1574
• SP 800-40 Rev. 3, Guide to Enterprise Patch Management Technologies 1575
• SP 800-46 Rev. 2, Guide to Enterprise Telework, Remote Access, and Bring Your Own 1576

Device (BYOD) Security 1577
• SP 800-50, Building an Information Technology Security Awareness and Training 1578

Program 1579
• SP 800-52 Rev. 1, Guidelines for the Selection, Configuration, and Use of Transport 1580

Layer Security (TLS) Implementations 1581
• SP 800-53 Rev. 4, Security and Privacy Controls for Federal Information Systems and 1582

https://dx.doi.org/10.6028/NIST.FIPS.140-2
https://dx.doi.org/10.6028/NIST.FIPS.197
https://dx.doi.org/10.6028/NIST.FIPS.199
https://dx.doi.org/10.6028/NIST.FIPS.199
https://dx.doi.org/10.6028/NIST.FIPS.201-2
https://dx.doi.org/10.6028/NIST.SP.800-12r1
https://csrc.nist.gov/publications/drafts/800-16-rev1/sp800_16_rev1_3rd-draft.pdf
https://csrc.nist.gov/publications/drafts/800-16-rev1/sp800_16_rev1_3rd-draft.pdf
https://dx.doi.org/10.6028/NIST.SP.800-18r1
https://dx.doi.org/10.6028/NIST.SP.800-30r1
https://dx.doi.org/10.6028/NIST.SP.800-34r1
https://dx.doi.org/10.6028/NIST.SP.800-39
https://dx.doi.org/10.6028/NIST.SP.800-39
https://dx.doi.org/10.6028/NIST.SP.800-40r3
https://dx.doi.org/10.6028/NIST.SP.800-50
https://dx.doi.org/10.6028/NIST.SP.800-50
https://dx.doi.org/10.6028/NIST.SP.800-52r1
https://dx.doi.org/10.6028/NIST.SP.800-52r1
https://dx.doi.org/10.6028/NIST.SP.800-53r4

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

44

Organizations 1583
• SP 800-53A Rev. 4, Assessing Security and Privacy Controls in Federal Information 1584

Systems and Organizations: Building Effective Assessment Plans 1585
• SP 800-60 Rev. 1 Vol. 1, Guide for Mapping Types of Information and Information 1586

Systems to Security Categories 1587
• SP 800-61 Rev. 2, Computer Security Incident Handling Guide 1588
• SP 800-63 Rev. 3, Digital Identity Guidelines 1589
• SP 800-70 Rev. 3, National Checklist Program for IT Products: Guidelines for Checklist 1590

Users and Developers 1591
• SP 800-73-4, Interfaces for Personal Identity Verification 1592
• SP 800-76-2, Biometric Specifications for Personal Identity Verification 1593
• SP 800-77, Guide to IPsec VPNs 1594
• SP 800-78-4, Cryptographic Algorithms and Key Sizes for Personal Identification 1595

Verification (PIV) 1596
• SP 800-81-2, Secure Domain Name System (DNS) Deployment Guide 1597
• SP 800-83 Rev. 1, Guide to Malware Incident Prevention and Handling for Desktops and 1598

Laptops 1599
• SP 800-88 Rev. 1, Guidelines for Media Sanitization 1600
• SP 800-92, Guide to Computer Security Log Management 1601
• SP 800-100, Information Security Handbook: A Guide for Managers 1602
• SP 800-113, Guide to SSL VPNs 1603
• SP 800-114 Rev. 1, User's Guide to Telework and Bring Your Own Device (BYOD) 1604

Security 1605
• SP 800-121 Rev. 2, Guide to Bluetooth Security 1606
• SP 800-128, Guide for Security-Focused Configuration Management of Information 1607

Systems 1608
• SP 800-137, Information Security Continuous Monitoring (ISCM) for Federal 1609

Information Systems and Organizations 1610
• SP 800-147, BIOS Protection Guidelines 1611
• Draft SP 800-155, BIOS Integrity Measurement Guidelines 1612

 1613

 1614

https://dx.doi.org/10.6028/NIST.SP.800-53r4
https://dx.doi.org/10.6028/NIST.SP.800-53Ar4
https://dx.doi.org/10.6028/NIST.SP.800-53Ar4
https://dx.doi.org/10.6028/NIST.SP.800-60v1r1
https://dx.doi.org/10.6028/NIST.SP.800-60v1r1
https://dx.doi.org/10.6028/NIST.SP.800-61r2
https://dx.doi.org/10.6028/NIST.SP.800-63-3
https://dx.doi.org/10.6028/NIST.SP.800-70r3
https://dx.doi.org/10.6028/NIST.SP.800-70r3
https://dx.doi.org/10.6028/NIST.SP.800-73-4
https://dx.doi.org/10.6028/NIST.SP.800-76-2
https://dx.doi.org/10.6028/NIST.SP.800-77
https://dx.doi.org/10.6028/NIST.SP.800-78-4
https://dx.doi.org/10.6028/NIST.SP.800-78-4
https://dx.doi.org/10.6028/NIST.SP.800-81-2
https://dx.doi.org/10.6028/NIST.SP.800-83r1
https://dx.doi.org/10.6028/NIST.SP.800-83r1
https://dx.doi.org/10.6028/NIST.SP.800-88r1
https://dx.doi.org/10.6028/NIST.SP.800-92
https://dx.doi.org/10.6028/NIST.SP.800-100
https://dx.doi.org/10.6028/NIST.SP.800-113
https://dx.doi.org/10.6028/NIST.SP.800-114r1
https://dx.doi.org/10.6028/NIST.SP.800-114r1
https://dx.doi.org/10.6028/NIST.SP.800-121r2
https://dx.doi.org/10.6028/NIST.SP.800-128
https://dx.doi.org/10.6028/NIST.SP.800-128
https://dx.doi.org/10.6028/NIST.SP.800-137
https://dx.doi.org/10.6028/NIST.SP.800-137
https://dx.doi.org/10.6028/NIST.SP.800-147
https://csrc.nist.gov/publications/drafts/800-155/draft-SP800-155_Dec2011.pdf

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

45

Appendix C—Acronyms and Abbreviations 1615

Selected acronyms and abbreviations used in this paper are defined below. 1616

AES Advanced Encryption Standard

API Application Programming Interface

AUFS Advanced Multi-Layered Unification Filesystem

BIOS Basic Input/Output System

BYOD Bring Your Own Device

cgroup Control Group

CIS Center for Internet Security

CMVP Cryptographic Module Validation Program

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

DevOps Development and Operations

DNS Domain Name System

FIPS Federal Information Processing Standards

FIRST Forum for Incident Response and Security Teams

FISMA Federal Information Security Modernization Act

FOIA Freedom of Information Act

GB Gigabyte

I/O Input/Output

IP Internet Protocol

IT Information Technology

ITL Information Technology Laboratory

LXC Linux Container

MAC Mandatory Access Control

NIST National Institute of Standards and Technology

NTFS NT File System

OMB Office of Management and Budget

OS Operating System

PIV Personal Identity Verification

RTM Root of Trust for Measurement

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

46

SDN Software-Defined Networking

seccomp Secure Computing

SIEM Security Information and Event Management

SP Special Publication

SQL Structured Query Language

SSH Secure Shell

SSL Secure Sockets Layer

TLS Transport Layer Security

TPM Trusted Platform Module

URI Uniform Resource Identifier

US United States

USCIS United States Citizenship and Immigration Services

VM Virtual Machine

VPN Virtual Private Network

 1617

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

47

Appendix D—Glossary 1618

Application
virtualization

A form of virtualization that exposes a single shared operating system
kernel to multiple discrete application instances, each of which is kept
isolated from all others on the host.

Base layer The underlying layer of an image upon which all other components are
added.

Container A method for packaging and securely running an application within an
application virtualization environment. Also known as an application
container or a server application container.

Container runtime The environment for each container; comprised of binaries coordinating
multiple operating system components that isolate resources and resource
usage for running containers.

Container-specific
operating system

A minimalistic host operating system explicitly designed to only run
containers.

Filesystem
virtualization

A form of virtualization that allows multiple containers to share the same
physical storage without the ability to access or alter the storage of other
containers.

General-purpose
operating system

A host operating system that can be used to run many kinds of
applications, not just applications in containers.

Host operating
system

The operating system kernel shared by multiple applications within an
application virtualization architecture.

Image A package that contains all the files required to run a container.

Isolation The ability to keep multiple instances of software separated so that each
instance only sees and can affect itself.

Microservice A set of containers that work together to compose an application.

Namespace
isolation

A form of isolation that limits the resources a container may interact with.

Operating system
virtualization

A virtual implementation of the operating system interface that can be
used to run applications written for the same operating system. [from [1]]

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

48

Orchestrator A tool that enables DevOps personas or automation working on their
behalf to pull images from registries, deploy those images into containers,
and manage the running containers. Orchestrators are also responsible for
monitoring container resource consumption, job execution, and machine
health across hosts.

Overlay network A software-defined networking component included in most orchestrators
that can be used to isolate communication between applications that share
the same physical network.

Registry A service that allows developers to easily storage images as they are
created, tag and catalog images for identification and version control to
aid in discovery and reuse, and find and download images that others have
created.

Resource
allocation

A mechanism for limiting how much of a host’s resources a given
container can consume.

Virtual machine A simulated environment created by virtualization. [from [1]]

Virtualization The simulation of the software and/or hardware upon which other
software runs. [from [1]]

 1619

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

49

Appendix E—References 1620

[1] NIST Special Publication (SP) 800-125, Guide to Security for Full Virtualization
Technologies, National Institute of Standards and Technology, Gaithersburg,
Maryland, January 2011, 35pp. https://doi.org/10.6028/NIST.SP.800-125.

[2] Docker, https://www.docker.com/

[3] rkt, https://coreos.com/rkt/

[4] CoreOS Container Linux, https://coreos.com/os/docs/latest

[5] Project Atomic, http://www.projectatomic.io

[6] Google Container-Optimized OS, https://cloud.google.com/container-optimized-
os/docs/

[7] Open Container Initiative Daemon (OCID), https://github.com/kubernetes-
incubator/cri-o

[8] Jenkins, https://jenkins.io

[9] TeamCity, https://www.jetbrains.com/teamcity/

[10] Amazon EC2 Container Registry (ECR), https://aws.amazon.com/ecr/

[11] Docker Hub, https://hub.docker.com/

[12] Docker Trusted Registry, https://hub.docker.com/r/docker/dtr/

[13] Quay Container Registry, https://quay.io

[14] Kubernetes, https://kubernetes.io/

[15] Apache Mesos, http://mesos.apache.org/

[16] Docker Swarm, https://github.com/docker/swarm

[17] NIST Special Publication (SP) 800-154, Guide to Data-Centric System Threat
Modeling (Draft), National Institute of Standards and Technology, Gaithersburg,
Maryland, March 2016, 25pp. http://csrc.nist.gov/publications/drafts/800-
154/sp800_154_draft.pdf.

[18] Common Vulnerability Scoring System v3.0: Specification Document, Forum for
Incident Response and Security Teams (FIRST).
https://www.first.org/cvss/specification-document.

https://doi.org/10.6028/NIST.SP.800-125
https://www.docker.com/
https://coreos.com/rkt/
https://coreos.com/os/docs/latest
http://www.projectatomic.io/
https://cloud.google.com/container-optimized-os/docs/
https://cloud.google.com/container-optimized-os/docs/
https://github.com/kubernetes-incubator/cri-o
https://github.com/kubernetes-incubator/cri-o
https://jenkins.io/
https://www.jetbrains.com/teamcity/
https://aws.amazon.com/ecr/
https://hub.docker.com/
https://hub.docker.com/r/docker/dtr/
https://quay.io/
https://kubernetes.io/
http://mesos.apache.org/
https://github.com/docker/swarm
http://csrc.nist.gov/publications/drafts/800-154/sp800_154_draft.pdf
http://csrc.nist.gov/publications/drafts/800-154/sp800_154_draft.pdf
https://www.first.org/cvss/specification-document

NIST SP 800-190 (2ND DRAFT) APPLICATION CONTAINER SECURITY GUIDE

50

[19] CIS Docker Benchmark, Center for Internet Security (CIS).
https://www.cisecurity.org/benchmark/docker/.

[20] Security Enhanced Linux (SELinux), https://selinuxproject.org/page/Main_Page

[21] AppArmor, http://wiki.apparmor.net/index.php/Main_Page

[22] NIST Special Publication (SP) 800-164, Guidelines on Hardware-Rooted Security in
Mobile Devices (Draft), National Institute of Standards and Technology,
Gaithersburg, Maryland, October 2012, 33pp.
http://csrc.nist.gov/publications/drafts/800-164/sp800_164_draft.pdf.

[23] NIST Special Publication (SP) 800-147, BIOS Protection Guidelines, National
Institute of Standards and Technology, Gaithersburg, Maryland, April 2011, 26pp.
https://doi.org/10.6028/NIST.SP.800-147.

[24] NIST Special Publication (SP) 800-155, BIOS Integrity Measurement Guidelines
(Draft), National Institute of Standards and Technology, Gaithersburg, Maryland,
December 2011, 47pp. http://csrc.nist.gov/publications/drafts/800-155/draft-SP800-
155_Dec2011.pdf.

[25] NIST Internal Report (IR) 7904, Trusted Geolocation in the Cloud: Proof of Concept
Implementation, National Institute of Standards and Technology, Gaithersburg,
Maryland, December 2015, 59 pp. https://dx.doi.org/10.6028/NIST.IR.7904

[26] NIST Special Publication (SP) 800-61 Revision 2, Computer Security Incident
Handling Guide, National Institute of Standards and Technology, Gaithersburg,
Maryland, August 2012, 79 pp. https://dx.doi.org/10.6028/NIST.SP.800-61r2.

[27] NIST Special Publication (SP) 800-53 Revision 4, Security and Privacy Controls for
Federal Information Systems and Organizations, National Institute of Standards and
Technology, Gaithersburg, Maryland, April 2013 (including updates as of January
15, 2014), 460pp. https://doi.org/10.6028/NIST.SP.800-53r4.

[28] Framework for Improving Critical Infrastructure Cybersecurity Version 1.0,
National Institute of Standards and Technology, Gaithersburg, Maryland, February
12, 2014. https://www.nist.gov/document-3766.

 1621

https://www.cisecurity.org/benchmark/docker/
https://selinuxproject.org/page/Main_Page
http://wiki.apparmor.net/index.php/Main_Page
http://csrc.nist.gov/publications/drafts/800-164/sp800_164_draft.pdf
https://doi.org/10.6028/NIST.SP.800-147
http://csrc.nist.gov/publications/drafts/800-155/draft-SP800-155_Dec2011.pdf
http://csrc.nist.gov/publications/drafts/800-155/draft-SP800-155_Dec2011.pdf
https://dx.doi.org/10.6028/NIST.IR.7904
https://dx.doi.org/10.6028/NIST.SP.800-61r2
https://doi.org/10.6028/NIST.SP.800-53r4
https://www.nist.gov/document-3766

	Draft (2nd) NIST SP 800-190, Application Container Security Guide
	Executive Summary
	1 Introduction
	1.1 Purpose and Scope
	1.2 Document Structure

	2 Introduction to Application Containers
	2.1 Basic Concepts for Application Virtualization and Containers
	2.2 Containers and the Host Operating System
	2.3 Container Technology Architecture
	2.3.1 Image Creation, Testing, and Accreditation
	2.3.2 Image Storage and Retrieval
	2.3.3 Container Deployment and Management

	2.4 Container Uses

	3 Major Risks for Core Components of Container Technologies
	3.1 Image Risks
	3.1.1 Image vulnerabilities
	3.1.2 Image configuration
	3.1.3 Embedded malware
	3.1.4 Embedded secrets
	3.1.5 Image trust

	3.2 Registry Risks
	3.2.1 Insecure connections to registries
	3.2.2 Stale images in registries
	3.2.3 Insufficient authentication and authorization restrictions

	3.3 Orchestrator Risks
	3.3.1 Unbounded administrative access
	3.3.2 Unauthorized access
	3.3.3 Poorly separated inter-container network traffic
	3.3.4 Mixing of workload sensitivity levels
	3.3.5 Orchestrator node trust

	3.4 Container Risks
	3.4.1 Vulnerabilities within the runtime software
	3.4.2 Unbounded network access from containers
	3.4.3 Insecure container runtime configurations
	3.4.4 Application vulnerabilities

	3.5 Host OS Risks
	3.5.1 Large attack surface
	3.5.2 Shared kernel
	3.5.3 Host OS component vulnerabilities
	3.5.4 Improper user access rights
	3.5.5 Host OS file system tampering

	4 Countermeasures for Major Risks
	4.1 Image Countermeasures
	4.1.1 Image vulnerabilities
	4.1.2 Image configuration
	4.1.3 Embedded malware
	4.1.4 Embedded secrets
	4.1.5 Image trust

	4.2 Registry Countermeasures
	4.2.1 Insecure connections to registries
	4.2.2 Stale images in registries
	4.2.3 Insufficient authentication and authorization restrictions

	4.3 Orchestrator Countermeasures
	4.3.1 Unbounded administrative access
	4.3.2 Unauthorized access
	4.3.3 Poorly separated inter-container network traffic
	4.3.4 Mixing of workload sensitivity levels
	4.3.5 Orchestrator node trust

	4.4 Container Countermeasures
	4.4.1 Vulnerabilities within the runtime software
	4.4.2 Unbounded network access from containers
	4.4.3 Insecure container runtime configurations
	4.4.4 Application vulnerabilities

	4.5 Host OS Countermeasures
	4.5.1 Large attack surface
	4.5.2 Shared kernel
	4.5.3 Host OS component vulnerabilities
	4.5.4 Improper user access rights
	4.5.5 Host file system tampering

	4.6 Hardware Countermeasures

	5 Container Threat Scenario Examples
	5.1 Exploit of a Vulnerability within an Image
	5.2 Exploit of the Container Runtime
	5.3 Running a Poisoned Image

	6 Container Technology Life Cycle Security Considerations
	6.1 Initiation Phase
	6.2 Planning and Design Phase
	6.3 Implementation Phase
	6.4 Operations and Maintenance Phase
	6.5 Disposition Phase

	7 Conclusion
	Appendix A— NIST Resources for Securing Non-Core Components
	Appendix B— NIST SP 800-53 and NIST Cybersecurity Framework Security Controls Related to Container Technologies
	Appendix C— Acronyms and Abbreviations
	Appendix D— Glossary
	Appendix E— References

