

The attached DRAFT document (provided here for historical purposes), released on August 7,
2017, has been superseded by the following publication:

Publication Number: NIST Special Publication (SP) 800-56A Revision 3

Title: Recommendation for Pair-Wise Key-Establishment
Schemes Using Discrete Logarithm Cryptography

Publication Date: April 2018

• Final Publication: https://doi.org/10.6028/NIST.SP.800-56Ar3 (which links to
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf).

• Related Information on CSRC:
Final: https://csrc.nist.gov/publications/detail/sp/800-56A/rev-3/final

https://doi.org/10.6028/NIST.SP.800-56Ar3
https://csrc.nist.gov/publications/detail/sp/800-56A/rev-3/final

Draft NIST Special Publication 800-56A 1

Revision 3 2
 3

Recommendation for Pair-Wise Key- 4

Establishment Schemes Using 5

Discrete Logarithm Cryptography 6

 7
 8
 9

Elaine Barker 10
Lily Chen 11

Sharon Keller 12
Allen Roginsky 13

Apostol Vassilev 14
Richard Davis 15

 16
 17

 18
 19

C O M P U T E R S E C U R I T Y 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

Draft NIST Special Publication 800-56A 30

 Revision 3 31

Recommendation for Pair-Wise Key-32

Establishment Schemes Using Discrete 33

Logarithm Cryptography 34

 35
Elaine Barker 36

Lily Chen 37
Sharon Keller 38

Allen Roginsky 39
Apostol Vassilev 40

Computer Security Division 41
Information Technology Laboratory 42

 43
Richard Davis 44

National Security Agency 45
 46
 47
 48

August 2017 49
 50
 51

 52
 53
 54

U.S. Department of Commerce 55
Wilbur L. Ross, Jr., Secretary 56

 57
National Institute of Standards and Technology 58

Kent Rochford, Acting NIST Director and Under Secretary of Commerce for Standards and Technology 59

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

i

Authority 60

This publication has been developed by NIST in accordance with its statutory responsibilities under 61
the Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., 62
Public Law (P.L.) 113-283. NIST is responsible for developing information security standards and 63
guidelines, including minimum requirements for federal information systems, but such standards and 64
guidelines shall not apply to national security systems without the express approval of appropriate 65
federal officials exercising policy authority over such systems. This guideline is consistent with the 66
requirements of the Office of Management and Budget (OMB) Circular A-130. 67

Nothing in this publication should be taken to contradict the standards and guidelines made 68
mandatory and binding on federal agencies by the Secretary of Commerce under statutory authority. 69
Nor should these guidelines be interpreted as altering or superseding the existing authorities of the 70
Secretary of Commerce, Director of the OMB, or any other federal official. This publication may be 71
used by nongovernmental organizations on a voluntary basis and is not subject to copyright in the 72
United States. Attribution would, however, be appreciated by NIST. 73

National Institute of Standards and Technology Special Publication 800-56A Revision 3 74
Natl. Inst. Stand. Technol. Spec. Publ. 800-56A Rev. 3, 170 pages (August 2017) 75

CODEN: NSPUE2 76

 77
 78
 79
 80
 81
 82

 83
 84

 85
 86

 87
 88
 89
 90

Public comment period: August 7, 2017 through November 6, 2017 91
National Institute of Standards and Technology 92

Attn: Computer Security Division, Information Technology Laboratory 93
100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930 94

Email: SP800-56a_comments@nist.gov95

Certain commercial entities, equipment, or materials may be identified in this document in order to
describe an experimental procedure or concept adequately. Such identification is not intended to imply
recommendation or endorsement by NIST, nor is it intended to imply that the entities, materials, or
equipment are necessarily the best available for the purpose.

There may be references in this publication to other publications currently under development by NIST
in accordance with its assigned statutory responsibilities. The information in this publication, including
concepts and methodologies, may be used by Federal agencies even before the completion of such
companion publications. Thus, until each publication is completed, current requirements, guidelines,
and procedures, where they exist, remain operative. For planning and transition purposes, Federal
agencies may wish to closely follow the development of these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and
provide feedback to NIST. Many NIST cybersecurity publications, other than the ones noted above, are
available at http://csrc.nist.gov/publications.

http://csrc.nist.gov/publications

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

ii

Reports on Computer Systems Technology 96

The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology 97
(NIST) promotes the U.S. economy and public welfare by providing technical leadership for the 98
Nation’s measurement and standards infrastructure. ITL develops tests, test methods, reference data, 99
proof of concept implementations, and technical analyses to advance the development and productive 100
use of information technology. ITL’s responsibilities include the development of management, 101
administrative, technical, and physical standards and guidelines for the cost-effective security and 102
privacy of other than national security-related information in Federal information systems. The 103
Special Publication 800-series reports on ITL’s research, guidelines, and outreach efforts in 104
information system security, and its collaborative activities with industry, government, and academic 105
organizations. 106

 107

Abstract 108

This Recommendation specifies key-establishment schemes based on the discrete logarithm 109
problem over finite fields and elliptic curves, including several variations of Diffie-110
Hellman and Menezes-Qu-Vanstone (MQV) key establishment schemes. 111
 112

Keywords 113
Diffie-Hellman; elliptic curve cryptography; finite field cryptography; key agreement; key 114
confirmation; key derivation; key establishment; key transport; MQV. 115
 116

Acknowledgements 117

The authors gratefully acknowledge the contributions on previous versions of this 118
document by Mike Hopper, Don Johnson, Laurie Law, and Miles Smid. 119
 120

Conformance Testing 121

Conformance testing for implementations of this Recommendation will be conducted within 122
the framework of the Cryptographic Algorithm Validation Program (CAVP) and the 123
Cryptographic Module Validation Program (CMVP). The requirements of this 124
Recommendation are indicated by the word “shall.” Some of these requirements may be out-125
of-scope for CAVP or CMVP validation testing, and thus are the responsibility of entities 126
using, implementing, installing or configuring applications that incorporate this 127
Recommendation. 128
 129
 130

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

iii

 131
Notes to Reviewers 132

Significant changes in this revision of SP 800-56A include: 133

1. The approval of specific safe-prime groups and the associated “safe” FFC domain 134
parameters (see Section 5.5.1.1). These groups are named in Appendix E. The 135
previously defined FFC parameter-size sets, FB and FC, are now referred to as “FIPS 136
186-type” parameter-size sets. (Parameter-size set FA is no longer approved for use.) 137

2. ECC parameter-size sets are no longer identified (see Section 5.5.1.2), Approved
ECC domain parameters will be those associated with either the recommended
elliptic curves now found in FIPS 186-4 or (eventually) other specifically approved
elliptic curves, which will be named in a future publication: SP 800-186. The
specifications of the elliptic curves now found in FIPS 186-4 will be moved to SP
800-186.

3. Routines for generating FFC and ECC key pairs have been added to the document 138
instead of referring to the key-pair generation routines in FIPS 186-4 (see Section 139
5.6.1). The included FFC routines permit some flexibility in the generation of FFC 140
key pairs associated with safe-prime groups, but retain the FIPS 186-specified 141
methods for generating FFC key pairs using FIPS 186-type domain parameters. The 142
FIPS 186-specified methods for generating ECC key pairs are also included. 143

4. When using an approved safe-prime group for key-establishment purposes, 144
assurance of another party’s possession of the private key corresponding to a received 145
static public key shall be obtained by the recipient either directly, by engaging in a 146
key-agreement transaction as specified in Section 5.6.2.2.3.2, or indirectly, from a 147
trusted third party (e.g., a CA) who has obtained the assurance directly. Assurance of 148
possession of the FIPS 186-type domain parameters (specified in Section 5.5.1.1 and 149
in the previous version of this Recommendation) may also by initially obtained using 150
the private key to sign a certificate request (see Section 5.6.3.2). However, the 151
provision of a signed certificate request to a CA (or any other signature-based 152
technique) is not approved as a means of providing assurance of private-key 153
possession when the static public key is an element of an approved safe-prime group. 154

5. A simple partial public-key validation will be permitted for ephemeral FFC public
keys selected from an approved safe-prime group (see Section 5.6.2.3.2).

6. A more detailed list of revisions is provided at the end of Appendix D.

Questions: 155

1. Is there a case to be made for using elliptic curves defined over GF(2m)? If not, is
there any objection to restricting ECC key-agreement schemes to the use of elliptic
curves defined over GF(p), where p is an odd prime?

2. Which of the currently approved key-agreement schemes are actually used (and by
what protocols)? Are there any schemes in Section 6 that should no longer be

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

iv

approved for use (e.g., FFC MQV, which is specified in Sections 6.1.1.3 and
6.2.1.3)?

3. Should Section 7 be removed, expanded or reduced in content? Two versions of 156
Section 7 are provided for your consideration. Please compare with the current 157
version (revision 2) and tell us what would be preferred. Revision 2 is available at: 158

 http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf 159

4. Are the FIPS 186-type domain parameters actually being used anywhere (rather 160
than just available in an implementation in order to be validated)? 161

162

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

v

Table of Contents 163

1. Introduction 1 164

2. Scope and Purpose 1 165

3. Definitions, Symbols and Abbreviations 2 166

3.1 Definitions..2 167

3.2 Symbols and Abbreviations ...7 168

4. Overview of Key-Establishment Schemes 13 169

4.1 Key Establishment Preparations ..14 170

4.2 Key-Agreement Process ...16 171

4.3 DLC-based Key-Transport Process ...18 172

5. Cryptographic Elements 20 173

5.1 Cryptographic Hash Functions ..20 174

5.2 Message Authentication Code (MAC) Algorithm ...20 175

5.2.1 MAC Tag Computation for Key Confirmation ...20 176

5.2.2 MAC Tag Verification for Key Confirmation ...21 177

5.3 Random Number Generation ...21 178

5.4 Nonce ..21 179

5.5 Domain Parameters ..22 180

5.5.1 Domain-Parameter Selection/Generation ..23 181

5.5.1.1 FFC Domain Parameter Selection/Generation23 182

5.5.1.2 ECC Domain-Parameter Selection ...24 183

5.5.2 Assurances of Domain-Parameter Validity ...25 184

5.5.3 Domain Parameter Management ..26 185

5.6 Key-Establishment Key Pairs ..26 186

5.6.1 Key-Pair Generation ..26 187

5.6.1.1 FFC Key-Pair Generation ...27 188

5.6.1.1.1 Using the Approved Safe-Prime Groups27 189

5.6.1.1.2 Using the FIPS 186-Type FFC Parameter-size Sets27 190

5.6.1.1.3 Key-Pair Generation Using Extra Random Bits27 191

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

vi

5.6.1.1.4 Key-Pair Generation by Testing Candidates28 192

5.6.1.2 ECC Key-Pair Generation ...29 193

5.6.1.2.1 Key Pair Generation Using Extra Random Bits30 194

5.6.1.2.2 Key Pair Generation by Testing Candidates31 195

5.6.2 Required Assurances ..32 196

5.6.2.1 Assurances Required by the Key Pair Owner33 197

5.6.2.1.1 Owner Assurance of Correct Generation34 198

5.6.2.1.2 Owner Assurance of Private-Key Validity35 199

5.6.2.1.3 Owner Assurance of Public-Key Validity35 200

5.6.2.1.4 Owner Assurance of Pair-wise Consistency36 201

5.6.2.1.5 Owner Assurance of Possession of the Private Key37 202

5.6.2.2 Assurances Required by a Public Key Recipient37 203

5.6.2.2.1 Recipient Assurance of Static Public-Key Validity39 204

5.6.2.2.2 Recipient Assurance of Ephemeral Public-Key Validity205
 39 206

5.6.2.2.3 Recipient Assurance of the Owner’s Possession of a 207
Static Private Key ..39 208

5.6.2.2.4 Recipient Assurance of the Owner’s Possession of an 209
Ephemeral Private Key ..41 210

5.6.2.3 Public Key Validation Routines ..42 211

5.6.2.3.1 FFC Full Public-Key Validation Routine43 212

5.6.2.3.2 FFC Partial Public-Key Validation Routine43 213

5.6.2.3.3 ECC Full Public-Key Validation Routine....................44 214

5.6.2.3.4 ECC Partial Public-Key Validation Routine45 215

5.6.3 Key Pair Management ..46 216

5.6.3.1 Common Requirements on Static and Ephemeral Key Pairs46 217

5.6.3.2 Specific Requirements on Static Key Pairs46 218

5.6.3.3 Specific Requirements on Ephemeral Key Pairs47 219

5.7 DLC Primitives ..47 220

5.7.1 Diffie-Hellman Primitives ...48 221

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

vii

5.7.1.1 Finite Field Cryptography Diffie-Hellman (FFC DH) Primitive 48 222

5.7.1.2 Elliptic Curve Cryptography Cofactor Diffie-Hellman (ECC 223
CDH) Primitive ...49 224

5.7.2 MQV Primitives ...49 225

5.7.2.1 Finite Field Cryptography MQV (FFC MQV) Primitive49 226

5.7.2.1.1 MQV2 Form of the FFC MQV Primitive50 227

5.7.2.1.2 MQV1 Form of the FFC MQV Primitive51 228

5.7.2.2 ECC MQV Associate Value Function ..51 229

5.7.2.3 Elliptic Curve Cryptography MQV (ECC MQV) Primitive51 230

5.7.2.3.1 Full MQV Form of the ECC MQV Primitive52 231

5.7.2.3.2 One-Pass Form of the ECC MQV Primitive................52 232

5.8 Key-Derivation Methods for Key-Agreement Schemes ..53 233

5.8.1 Performing the Key Derivation ..53 234

5.8.2 FixedInfo ..54 235

5.8.2.1 One-step Key Derivation ..55 236

5.8.2.1.1 The Concatenation Format for FixedInfo56 237

5.8.2.1.2 The ASN.1 Format for FixedInfo57 238

5.8.2.2 Two-step Key-Derivation (Extraction-then-Expansion)57 239

5.8.2.3 Other Formats for FixedInfo ...57 240

5.9 Key Confirmation ...57 241

5.9.1 Unilateral Key Confirmation for Key-Agreement Schemes58 242

5.9.2 Bilateral Key Confirmation for Key-Agreement Schemes61 243

5.9.3 Selecting the MAC and Other Key-Confirmation Parameters61 244

6. Key Agreement 64 245

6.1 Schemes Using Two Ephemeral Key Pairs, C(2e) ..66 246

6.1.1 C(2e, 2s) Schemes ..67 247

6.1.1.1 dhHybrid1, C(2e, 2s, FFC DH) Scheme68 248

6.1.1.2 (Cofactor) Full Unified Model, C(2e, 2s, ECC CDH) Scheme ..70 249

6.1.1.3 MQV2, C(2e, 2s, FFC MQV) Scheme72 250

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

viii

6.1.1.4 Full MQV, C(2e, 2s, ECC MQV) Scheme74 251

6.1.1.5 Incorporating Key Confirmation into a C(2e, 2s) Scheme75 252

6.1.1.5.1 C(2e, 2s) Scheme with Unilateral Key Confirmation 253
Provided by Party U to Party V75 254

6.1.1.5.2 C(2e, 2s) Scheme with Unilateral Key Confirmation 255
Provided by Party V to Party U76 256

6.1.1.5.3 C(2e, 2s) Scheme with Bilateral Key Confirmation77 257

6.1.2 C(2e, 0s) Schemes ..78 258

6.1.2.1 dhEphem, C(2e, 0s, FFC DH) Scheme79 259

6.1.2.2 (Cofactor) Ephemeral Unified Model, C(2e, 0s, ECC CDH) 260
Scheme ..81 261

6.1.2.3 Key Confirmation for C(2e, 0s) Schemes82 262

6.2 Schemes Using One Ephemeral Key Pair, C(1e) Schemes82 263

6.2.1 C(1e, 2s) Schemes ..82 264

6.2.1.1 dhHybridOneFlow, C(1e, 2s, FFC DH) Scheme84 265

6.2.1.2 (Cofactor) One-Pass Unified Model, C(1e, 2s, ECC CDH) 266
Scheme ..86 267

6.2.1.3 MQV1, C(1e, 2s, FFC MQV) Scheme89 268

6.2.1.4 One-Pass MQV, C(1e, 2s, ECC MQV) Scheme91 269

6.2.1.5 Incorporating Key Confirmation into a C(1e, 2s) Scheme93 270

6.2.1.5.1 C(1e, 2s) Scheme with Unilateral Key Confirmation 271
Provided by Party U to Party V93 272

6.2.1.5.2 C(1e, 2s) Scheme with Unilateral Key Confirmation 273
Provided by Party V to Party U94 274

6.2.1.5.3 C(1e, 2s) Scheme with Bilateral Key Confirmation95 275

6.2.2 C(1e, 1s) Schemes ..96 276

6.2.2.1 dhOneFlow, C(1e, 1s, FFC DH) Scheme98 277

6.2.2.2 (Cofactor) One-Pass Diffie-Hellman, C(1e, 1s, ECC CDH) 278
Scheme ..100 279

6.2.2.3 Incorporating Key Confirmation into a C(1e, 1s) Scheme102 280

6.2.2.3.1 C(1e, 1s) Scheme with Unilateral Key Confirmation 281
Provided by Party V to Party U102 282

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

ix

6.3 C(0e, 2s) Schemes ..103 283

6.3.1 dhStatic, C(0e, 2s, FFC DH) Scheme ..105 284

6.3.2 (Cofactor) Static Unified Model, C(0e, 2s, ECC CDH) Scheme107 285

6.3.3 Incorporating Key Confirmation into a C(0e, 2s) Scheme108 286

6.3.3.1 C(0e, 2s) Scheme with Unilateral Key Confirmation Provided by 287
Party U to Party V ...109 288

6.3.3.2 C(0e, 2s) Scheme with Unilateral Key Confirmation Provided by 289
Party V to Party U ...110 290

6.3.3.3 C(0e, 2s) Scheme with Bilateral Key Confirmation111 291

7. DLC-Based Key Transport (Alternative 1) 113 292

7.1 Key Transport Scheme ...114 293

7.1.1 Key-Wrapping using AES-CCM ...115 294

7.1.2 Key-Unwrapping using AES-CCM ...117 295

7.1.3 Key Wrapping Using KW or KWP ...118 296

7.1.4 Key Unwrapping Using KW or KWP ...119 297

7.2 Key Confirmation for Transported Keying Material ...120 298

7. DLC-Based Key Transport (Alternative 2) 122 299

7.1 Assumptions ...122 300

7.2 Key-Transport Scheme ..123 301

7.3 Key Confirmation for Transported Keying Material ...124 302

8. Rationale for Selecting a Specific Scheme 125 303

8.1 Rationale for Choosing a C(2e, 2s) Scheme ...126 304

8.2 Rationale for Choosing a C(2e, 0s) Scheme ...127 305

8.3 Rationale for Choosing a C(1e, 2s) Scheme ...128 306

8.4 Rationale for Choosing a C(1e, 1s) Scheme ...130 307

8.5 Rationale for Choosing a C(0e, 2s) Scheme ...131 308

8.6 Choosing a Key-Agreement Scheme for use in Key Transport132 309

9. Key Recovery 137 310

10. Implementation Validation 138 311

Appendix A: References 140 312

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

x

A.1 Normative References ...140 313

A.2 Informative References ...142 314

Appendix B: Rationale for Including Identifiers and other Context-specific 315
Information in the KDM Input (Informative) 143 316

C.1 Integer-to-Byte String Conversion ...144 317

C.2 Field-Element-to-Byte String Conversion ...144 318

C.3 Field-Element-to-Integer Conversion ..145 319

C.4 Conversion of a Bit String to an Integer ..145 320

Appendix D: Revisions (Informative) 146 321

Appendix E: Approved ECC Curves and FCC Safe-prime Groups 154 322

 323

324

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

xi

List of Figures 325
Figure 1: Owner key-establishment preparations ...16 326

Figure 2: Key-agreement process. ..17 327

Figure 3: Key-transport process ..19 328

Figure 4: C(2e, 2s) schemes: each party contributes a static and an ephemeral key pair67 329

Figure 5: C(2e, 2s) scheme with unilateral key confirmation from party U to party V........76 330

Figure 6: C(2e, 2s) scheme with unilateral key confirmation from party V to party U77 331

Figure 7: C(2e, 2s) scheme with bilateral key confirmation ...78 332

Figure 8: C(2e, 0s) schemes: each party contributes only an ephemeral key pair79 333

Figure 9: C(1e, 2s) schemes: party U contributes a static and an ephemeral key pair while 334
party V contributes only a static key pair ..83 335

Figure 10: C(1e, 2s) scheme with unilateral key confirmation from party U to party V94 336

Figure 11: C(1e, 2s) scheme with unilateral key confirmation from party V to party U95 337

Figure 12: C(1e, 2s) scheme with bilateral key confirmation ...96 338

Figure 13: C(1e, 1s) schemes: party U contributes an ephemeral key pair, and party V 339
contributes a static key pair ...97 340

Figure 14: C(1e, 1s) scheme with unilateral key confirmation from party V to party U103 341

Figure 15: C(0e, 2s) schemes: each party contributes only a static key pair104 342

Figure 16: C(0e, 2s) scheme with unilateral key confirmation from party U to party V109 343

Figure 17: C(0e, 2s) scheme with unilateral key confirmation from party V to party U110 344

Figure 18: C(0e, 2s) scheme with bilateral key confirmation ...111 345

 346

347

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

xii

List of Tables 348
Table 1: FIPS 186-type FFC parameter-size sets...24 349

Table 2: Initial assurances required by the key-pair owner...33 350

Table 3: Optional renewal of assurances by the key-pair owner..34 351

Table 4: Optional renewal of assurances by the key-pair owner..38 352

Table 5: Approved MAC algorithms..61 353

Table 6: Key-agreement scheme categories...63 354

Table 7: Key-agreement scheme subcategories...63 355

Table 8: Key-agreement schemes...64 356

Table 9: dhHybrid1 key-agreement scheme summary...68 357

Table 10: Full unified model key-agreement scheme summary...70 358

Table 11: MQV2 key-agreement scheme summary...72 359

Table 12: Full MQV key-agreement scheme summary...74 360

Table 13: dhEphem key-agreement scheme summary...79 361

Table 14: Ephemeral unified model key-agreement scheme..80 362

Table 15: dhHybridOneFlow key-agreement scheme summary..85 363

Table 16: One-pass unified model key-agreement scheme summary..................................87 364

Table 17: MQV1 Key-agreement scheme summary..89 365

Table 18: One-pass MQV model key-agreement scheme summary....................................92 366

Table 19: dhOneFlow key-agreement scheme summary..99 367

Table 20: One-pass Diffie-Hellman key-agreement scheme summary..............................101 368

Table 21: dhStatic key-agreement scheme summary..105 369

Table 22: Static unified model key-agreement scheme summary......................................107 370

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

1

1. Introduction 371

Many U.S. Government Information Technology (IT) systems need to employ well-372
established cryptographic schemes to protect the integrity and confidentiality of the data that 373
they process. Algorithms such as the Advanced Encryption Standard (AES) as defined in 374
Federal Information Processing Standard (FIPS) 197, and HMAC as defined in FIPS 198 375
make attractive choices for the provision of these services. These algorithms have been 376
standardized to facilitate interoperability between systems. However, the use of these 377
algorithms requires the establishment of keying material between the participating entities in 378
advance. Trusted couriers may manually distribute this secret keying material. However, as 379
the number of entities using a system grows, the work involved in the distribution of the 380
secret keying material could grow rapidly. Therefore, it is essential to support the 381
cryptographic algorithms used in modern U.S. Government applications with automated key-382
establishment schemes. 383

A key-establishment scheme can be characterized as either a key-agreement scheme or a key-384
transport scheme. The asymmetric-key-based key-establishment schemes in this 385
Recommendation are based on the Diffie-Hellman (DH) and Menezes-Qu-Vanstone (MQV) 386
algorithms. Asymmetric-key-based key-establishment schemes are also specified in SP 800-387
56B, Recommendation for Pair-Wise Key-establishment Schemes Using Integer 388
Factorization Cryptography. The selection of schemes specified in this Recommendation is 389
based on standards for key-establishment schemes developed by the Accredited Standards 390
Committee (ASC) X9, Inc.: ANS X9.42, Agreement of Symmetric Keys using Discrete 391
Logarithm Cryptography, and ANS X9.63, Key Agreement and Key Transport using Elliptic 392
Curve Cryptography. 393

2. Scope and Purpose 394

This Recommendation provides the specifications for key-establishment schemes that are 395
appropriate for use by the U.S. Federal Government and is intended for use in conjunction 396
with NIST Special Publication (SP) 800-57, Recommendation for Key Management [SP 800-397
57]. This Recommendation (i.e., SP 800-56A) and SP 800-57 are intended to provide 398
sufficient information for a vendor to implement secure key establishment using asymmetric 399
algorithms in FIPS 140 validated modules. 400

A scheme may be a component of a protocol, which in turn provides additional security 401
properties not provided by the scheme when considered by itself. Note that protocols, per se, 402
are not specified in this Recommendation. 403

 404

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

2

3. Definitions, Symbols and Abbreviations 405

3.1 Definitions 406

AES-CCM The CCM block cipher mode specified in SP 800-38C for the AES
algorithm specified in FIPS 197 for key sizes of either 128, 192 or
256 bits.

AES-CMAC The CMAC block cipher mode specified in SP 800-38B for the AES
algorithm specified in FIPS 197 for key sizes of either 128, 192 or
256 bits.

Approved FIPS-approved or NIST-Recommended. An algorithm or technique
that is either 1) specified in a FIPS or NIST Recommendation, or 2)
adopted in a FIPS or NIST Recommendation and specified either (a)
in an appendix to the FIPS or NIST Recommendation, or (b) in a
document referenced by the FIPS or NIST Recommendation.

Assumption Used to indicate the conditions that are required to be true when an
approved key-establishment scheme is executed in accordance with
this Recommendation.

Assurance of
private-key
possession

Confidence that an entity possesses a private key corresponding to a
public key.

Assurance of
validity

Confidence that either a key or a set of domain parameters is
arithmetically correct.

Big-endian The property of a byte string having its bytes positioned in order of
decreasing significance. In particular, the leftmost (first) byte is the
most significant byte (containing the most significant eight bits of the
corresponding bit string) and the rightmost (last) byte is the least
significant byte (containing the least significant eight bits of the
corresponding bit string).

For the purposes of this Recommendation, it is assumed that the bits
within each byte of a big-endian byte string are also positioned in
order of decreasing significance (beginning with the most significant
bit in the leftmost position and ending with the least significant bit in
the rightmost position).

Binding Assurance of the integrity of an asserted relationship between items
of information that is provided by cryptographic means. Also see
Trusted association.

Bit length The length in bits of a bit string.

Bit string An ordered sequence of 0’s and 1’s. Also known as a binary string.

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

3

Byte A bit string consisting of eight bits.

Byte string An ordered sequence of bytes.

Certification
Authority (CA)

The entity in a Public-Key Infrastructure (PKI) that is responsible for
issuing public key certificates and exacting compliance to a PKI
policy.

Cofactor The order of the elliptic curve group divided by the (prime) order of
the generator point (i.e., the base point) specified in the domain
parameters.

Critical security
parameter (CSP)

Security-related information whose disclosure or modification can
compromise the security of a cryptographic module. Domain
parameters, secret or private keys, shared secrets, key-derivation
keys, intermediate values and secret salts are examples of quantities
that may be considered CSPs in this Recommendation. See FIPS 140.

Cryptographic
module

The set of hardware, software and/or firmware that implements
approved security functions (including cryptographic algorithms and
key generation). See FIPS 140.

Destroy In this Recommendation, an action applied to a key or a piece of secret
data. After a key or a piece of secret data is destroyed, no information
about its value can be recovered. Also known as zeroization in FIPS
140.

Domain
parameters

The parameters used with a cryptographic algorithm that are common
to a domain of users.

Entity An individual (person), organization, device, or process. “Party” is a
synonym.

Ephemeral key
pair

A key pair, consisting of a public key (i.e., an ephemeral public key)
and a private key (i.e., an ephemeral private key) that is intended for
a very short period of use. The key pair is ordinarily used in exactly
one transaction of a cryptographic scheme; an exception to this is
when the ephemeral key pair is used in multiple transactions for a key-
transport broadcast. Contrast with a static key pair.

Fresh Newly established keying material that is statistically independent of
any previously established keying material.

Hash function A function that maps a bit string of arbitrary length to a fixed-length
bit string. Approved hash functions are expected to satisfy the
following properties:

1. One-way: It is computationally infeasible to find any input
that maps to any pre-specified output, and

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

4

2. Collision resistant: It is computationally infeasible to find any
two distinct inputs that map to the same output.

Identifier A bit string that is associated with a person, device or organization. It
may be an identifying name or a nickname, or may be something more
abstract (for example, a string consisting of an IP address).

Integrity A property whereby data has not been altered in an unauthorized
manner since it was created, transmitted or stored.

Key agreement A (pair-wise) key-establishment procedure in which the resultant
secret keying material is a function of information contributed by both
participants so that neither party can predetermine the value of the
secret keying material independently from the contributions of the
other party. Contrast with key-transport.

Key-agreement
transaction

An execution of a key-agreement scheme.

Key confirmation A procedure to provide assurance to one party (the key-confirmation
recipient) that another party (the key-confirmation provider)
possesses the correct secret keying material and/or shared secret from
which that keying material is derived.

Key-confirmation
provider

The party that provides assurance to the other party (the recipient) that
the two parties have indeed established a shared secret or shared
keying material.

Key-derivation
function

A function used to derive keying material from a shared secret (or a
key) and other information.

Key-derivation
method

A method to derive keying material from a shared secret and other
information. A key-derivation method may use a key-derivation
function or a key-derivation procedure.

Key-derivation
procedure

A multi-step process that uses an approved MAC algorithm to derive
keying material from a shared secret and other information.

Key
establishment

The procedure that results in keying material that is shared among
different parties.

Key-
establishment
key pair

 A private/public key pair used in a key-establishment scheme. It can
be a static key pair or an ephemeral key pair.

Key-
establishment
transaction

An instance of establishing secret keying material using a key-
agreement or key-transport transaction.

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

5

Key-transport A (pair-wise) key-establishment procedure whereby one party (the
sender) selects a value for the secret keying material and then securely
distributes that value to another party (the receiver). Contrast with key
agreement.

Key-transport
transaction

An execution of a key-transport scheme.

Key-wrapping A method of protecting keying material (along with associated
integrity information) that provides both confidentiality and integrity
protection by using symmetric-key algorithms.

Key-wrapping
key

In this Recommendation, a key-wrapping key is a symmetric key
established during a key-agreement transaction and used with a key-
wrapping algorithm to protect the keying material to be transported.

Keying material Data that is represented as a binary string such that any non-
overlapping segments of the string with the required lengths can be
used, for example, as symmetric cryptographic keys. In this
Recommendation, keying material is derived from a shared secret
established during an execution of a key-establishment scheme or
generated by the sender in a key-transport scheme. As used in this
Recommendation, secret keying material may include keys, secret
initialization vectors, and other secret parameters.

MAC tag Data obtained from the output of a MAC algorithm (possibly by
truncation) that can be used by an entity to verify the integrity and the
origination of the information used as input to the MAC algorithm.

Message
Authentication
Code (MAC)
algorithm

A family of cryptographic functions that is parameterized by a
symmetric key. Each of the functions can act on input data (called a
“message”) of variable length to produce an output value of a
specified length. The output value is called the MAC of the input
message. An approved MAC algorithm is expected to satisfy the
following property (for each of its supported security levels):

It must be computationally infeasible to determine the (as yet
unseen) MAC of a message without knowledge of the key, even
if one has already seen the results of using that key to compute the
MACs of other (different) messages.

A MAC algorithm can be used to provide data-origin authentication
and data-integrity protection. In this Recommendation, a MAC
algorithm is used for key confirmation; the use of MAC algorithms
for key derivation is addressed in SP 800-56C.

Nonce A time-varying value that has at most an acceptably small chance of
repeating. For example, the nonce may be a random value that is

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

6

generated anew for each use, a timestamp, a sequence number, or
some combination of these.

Owner For a static public key, static private key and/ or the static key pair
containing those components, the owner is the entity that is authorized
to use the static private key corresponding to the static public key,
whether that entity generated the static key pair itself or a trusted party
generated the key pair for the entity.

For an ephemeral key pair, ephemeral private key or ephemeral public
key, the owner is the entity that generated the ephemeral key pair and
is authorized to use the ephemeral private key of the key pair.

Party See entity.

Public-key
certificate

A data structure that contains an entity’s identifier(s), the entity's
public key (including an indication of the associated set of domain
parameters) and possibly other information, along with a signature on
that data set that is generated by a trusted party, i.e., a certificate
authority, thereby binding the public key to the included identifier(s).

Random nonce A nonce containing a random-value component that is generated
anew for each nonce.

Receiver The party that receives secret keying material via a key-transport
transaction. Contrast with sender.

Recipient A party that (1) receives a public key; or (2) obtains assurance from
an assurance provider (e.g., assurance of the validity of a candidate
public key or assurance of possession of the private key
corresponding to a public key); or (3) receives key confirmation from
a key-confirmation provider.

Scheme A set of unambiguously specified transformations that provide a
(cryptographic) service when properly implemented and maintained.
A scheme is a higher-level construct than a primitive and a lower-
level construct than a protocol.

Security strength
(Also “Bits of
security”)

A number associated with the amount of work (that is, the number of
operations) that is required to break a cryptographic algorithm or
system.

Sender The party that sends secret keying material to the receiver in a key-
transport transaction. Contrast with receiver.

Shall This term is used to indicate a requirement that needs to be fulfilled
to claim conformance to this Recommendation. Note that shall may
be coupled with not to become shall not.

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

7

3.2 Symbols and Abbreviations 407

General: 408

Shared secret A secret value that has been computed during a key-establishment
scheme, is known by both participants, and is used as input to a key-
derivation method to produce keying material.

Should This term is used to indicate an important recommendation. Ignoring
the recommendation could result in undesirable results. Note that
should may be coupled with not to become should not.

Static key pair A key pair, consisting of a private key (i.e., a static private key) and a
public key (i.e., a static public key) that is intended for use for a
relatively long period of time and is typically intended for use in
multiple key-establishment transactions. Contrast with an ephemeral
key pair.

Store-and-
forward

A telecommunications technique in which information is sent to an
intermediate station where it is kept and later sent to the final
destination or to another intermediate station.

Symmetric-key
algorithm

A cryptographic algorithm that uses a single secret key that is shared
between authorized parties.

Targeted security
strength

The maximum security strength that is intended to be supported by
one or more implementation-related choices (such as algorithms,
primitives, auxiliary functions, parameter sizes and/or actual
parameters) for the purpose of instantiating a cryptographic
mechanism.

In this Recommendation, it is assumed that the targeted security
strength of any instantiation of an approved key-establishment
scheme has a value greater than or equal to 112 bits and less than or
equal to 256 bits.

Trusted
association

Assurance of the integrity of an asserted relationship between items
of information that may be provided by cryptographic or non-
cryptographic (e.g., physical) means. Also see Binding.

Trusted party A party that is trusted by an entity to faithfully perform certain
services for that entity. An entity could be a trusted party for itself.

Trusted third
party

A third party, such as a CA, that is trusted by its clients to perform
certain services. (By contrast, in a key-establishment transaction, the
participants, parties U and V, are considered to be the first and second
parties.)

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

8

AES Advanced Encryption Standard (as specified in [FIPS 197]).

ASC The American National Standards Institute (ANSI) Accredited
Standards Committee.

ANS American National Standard.

ASN.1 Abstract Syntax Notation One.

C(ie) Notation for a category of key-establishment schemes in which i
ephemeral key pairs are used, where i ∈ {0, 1, 2}.

C(ie, js) Notation for a subcategory of key-establishment schemes in which
i ephemeral key pairs and j static key pairs are used. In this
Recommendation, schemes in the subcategories C(0e, 2s), C(1e,
2s), C(1e, 1s), C(2e, 0s), and C(2e, 2s) are defined.

CA Certification Authority.

CDH The cofactor ECC Diffie-Hellman key-agreement primitive.

CSP Critical Security Parameter.

DH The (non-cofactor) FFC Diffie-Hellman key-agreement primitive.

DLC Discrete Logarithm Cryptography, which is comprised of both
Finite Field Cryptography (FFC) and Elliptic Curve Cryptography
(ECC).

EC Elliptic Curve.

ECC Elliptic Curve Cryptography; the public-key cryptographic
methods using operations in an elliptic curve group.

FF Finite Field.

FFC Finite Field Cryptography; the public-key cryptographic methods
using operations in a multiplicative group of a finite field.

ID The bit string denoting the identifier associated with an entity.

KC Key Confirmation.

KDM Key-Derivation Method.

KM Keying Material.

KWK Key-Wrapping Key.

len(x) The bit length of the shortest base-two representation of the
positive integer x, i.e., len(x) = log2(x)+1.

MAC Message Authentication Code.

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

9

MAC(MacKey,
MacData)

A MAC algorithm with MacKey as the key, and MacData as the
data.

MacTag A MAC tag.

MacTagLen The length of the MacTag in bits.

MQV The Menezes-Qu-Vanstone key-agreement primitive.

Null The empty bit string

RBG Random Bit Generator.

SHA Secure Hash Algorithm (as specified in FIPS 180 and FIPS 202).

TbitLen(X) A truncation function that outputs the most significant (i.e.,
leftmost) bitLen bits of the input bit string, X, when the bit length
of X is greater than bitLen; otherwise, the function outputs X. For
example, T2(1011) = 10, T3(1011) = 101, T4(1011) = 1011, and
T5(1011) = 1011.

TTP Trusted Third Party.

U, V Represents the two parties in a (pair-wise) key-establishment
scheme.

{ } In this Recommendation, the curly braces { } are used in the
following three situations: (1) {x} is used to indicate that the
inclusion of x is optional; for example, the notation “Input: w {, x},
y, and z” implies that the inclusion of x as an input is optional. (2)
If both X and Y are binary strings, the notation of binary string
“Y{||X}” implies that the concatenation of string X is optional. (3)
{x1, x2, …, xk} indicates a set with elements x1, x2, …, xk.

X || Y The concatenation of two bit strings X and Y. For example, 11001
|| 010 = 11001010.

[a, b] The set of integers x, such that a ≤ x ≤ b.

x The ceiling of x; the smallest integer ≥ x. For example, 5 = 5,
5.3 = 6.

x The floor of x; the greatest integer that does not exceed x. For
example, ⌊2.1⌋= 2, and ⌊4⌋= 4.

Z A shared secret (represented as a byte string) that is used to derive
secret keying material using a key-derivation method.

Ze A component of the shared secret (represented as a byte string) that
is computed using ephemeral keys in a Diffie-Hellman primitive.

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

10

Zs A component of the shared secret (represented as a byte string) that
is computed using static keys in a Diffie-Hellman primitive.

The following notations are used for FFC and ECC in this Recommendation. Note that the 409
notation sometimes differs between the two scheme types due to the differing notations used 410
in the two standards on which this Recommendation is based (i.e., ANS X9.42 and ANS 411
X9.63). 412

 413

FFC: 414
GF(p) The finite field with p elements, where p is an (odd) prime number. The

elements of GF(p) can be represented by the set of integers {0, 1, …, p−1}.
The addition and multiplication operations for GF(p) can be realized by
performing the corresponding integer operations and reducing the results
modulo p.

GF(p)* The multiplicative group of non-zero field elements in GF(p).

g An FFC domain parameter; the selected generator of the multiplicative
subgroup of prime order q in GF(p)*.

k mod p The modular reduction of the (arbitrary) integer k by the (positive) integer
p (the modulus). For the purposes of this Recommendation, j = k mod p is
the unique integer satisfying the following two conditions:
0 ≤ j < p, and k − j is a multiple of p. In short, j = k – k/p p.

p An FFC domain parameter; an odd prime number that determines the size
of the finite field GF(p).

counter An optional FFC domain parameter; a value that may be output during
domain parameter generation to provide assurance at a later time that the
resulting domain parameters were generated using a canonical process.

q When used as an FFC domain parameter, q is the (odd) prime number
equal to the order of the multiplicative subgroup of GF(p)* generated by
g. Note that q is a divisor of p – 1.

rU, rV The ephemeral private keys of party U and party V, respectively. These
are integers in the interval [1, q − 1]. (In some instances, rU, and/or rV may
be restricted to a subinterval of the form [1, 2N − 1]; see Section 5.6.1.1.1.)

tU, tV The ephemeral public keys of party U and party V, respectively. These are
integers in the interval [2, p − 2].

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

11

SEED An FFC domain parameter; an initialization value that is used during
domain parameter generation that can also be used later to provide
assurance that the resulting domain parameters were generated using an
approved process.

xU, xV The static private keys of party U and party V, respectively. These are
integers in the interval [1, q − 1]. (In some instances, xU, and/or xV may be
restricted to a subinterval of the form [1, 2N − 1]; see Section 5.6.1.1.1.)

yU, yV The static public keys of party U and party V, respectively. These are
integers in the interval [2, p − 2].

 415
ECC: 416
a, b ECC domain parameters; two elements in the finite field GF(q) that define

the (Weierstrass) equation of an elliptic curve, y2 = x3 + ax + b when q is an
odd prime or y2 + xy = x3 + ax2 + b when q = 2m for some prime integer m.

avf(Q) The associate value of the elliptic curve point Q.

de,U, de,V The ephemeral private keys of party U and party V, respectively. These are
integers in the interval [1, n − 1].

ds,U, ds,V The static private keys of party U and party V, respectively. These are
integers in the interval [1, n − 1].

FR Field Representation indicator (an ECC domain parameter); an indication of
the basis used for representing field elements. FR is Null if the field has odd
prime order or if a Gaussian normal basis is used. If a polynomial basis
representation is used for a field of order 2m, then FR indicates the reduction
polynomial (a trinomial or a pentanomial).

G An ECC domain parameter, which is a distinguished (affine) point in an
elliptic curve group that generates a subgroup of prime order n.

GF(q) The finite field with q elements, where either q is an odd prime p, or q is
equal to 2m for some prime integer m. The elements of GF(q) are represented
by the set of integers {0, 1, …, p−1} in the case that q is an odd prime p, or
as bit strings of length m bits in the case that q = 2m.

h An ECC domain parameter; the cofactor, a positive integer that is equal to
the order of the elliptic curve group, divided by the order of the cyclic
subgroup generated by the distinguished point G. That is, nh is the order of
the elliptic curve, where n is the order of the cyclic subgroup generated by
the distinguished point G.

n An ECC domain parameter; a prime that is the order of the cyclic subgroup
generated by the distinguished point G.

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

12

Ø The (additive) identity element of an elliptic curve group; also called the
 "neutral point" of that group. Ø is the unique element satisfying Q + Ø =
 Ø + Q = Q for each Q in the group. For the (Weierstrass) elliptic curve groups
considered in this Recommendation, a special “point at infinity” serves as Ø.

q When used as an ECC domain parameter, q is the field size. It is either an
odd prime p, or equal to 2m for some prime integer m.

Qe,U, Qe,V The ephemeral public keys of party U and party V, respectively. These are
points on the elliptic curve that is defined by the domain parameters.

Qs,U, Qs,V The static public keys of party U and party V, respectively. These are points
on the elliptic curve that is defined by the domain parameters.

SEED An optional ECC domain parameter; an initialization value that is used
during domain parameter generation that can also be used later to provide
assurance that the resulting domain parameters were generated using an
approved process.

xP, yP Elements of the finite field GF(q) representing the x and y coordinates,
respectively, of a point P.

 417
 418

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

13

4. Overview of Key-Establishment Schemes 419

Secret cryptographic keying material may be electronically established between parties by 420
using a key-establishment scheme, that is, by using either a key-agreement scheme or a key-421
transport scheme. 422

During a pair-wise key-agreement scheme, the secret keying material to be established is not 423
sent directly from one entity to another. Instead, the two parties exchange information from 424
which they each compute a shared secret that is used (along with other exchanged/known 425
data) to derive the secret keying material. The method used to combine the information made 426
available to both parties provides assurance that neither party can control the output of the 427
key-agreement process. 428

The key-agreement schemes described in this Recommendation employ public-key 429
techniques utilizing Discrete Logarithm Cryptography (DLC). The security of these DLC-430
based key-agreement schemes depends upon the intractability of the discrete logarithm 431
problem in certain settings. 432

In this Recommendation, the approved key-agreement schemes are described in terms of 433
the roles played by parties “U” and “V.” These are specific labels that are used to distinguish 434
between the two participants engaged in key agreement – irrespective of the actual labels 435
that may be used by a protocol employing a given approved key-agreement scheme. 436

To be in conformance with this Recommendation, a protocol employing any of the approved 437
pair-wise key-agreement schemes shall unambiguously assign the roles of party U and party 438
V to the participants by clearly defining which participant performs the actions ascribed by 439
this Recommendation to party U, and which performs the actions ascribed herein to party V. 440

During key-transport, one party selects the secret keying material to be transported. The 441
secret keying material is then wrapped using a shared key-wrapping key and an approved 442
key-wrapping algorithm (in particular, the key is encrypted with integrity protection) and 443
sent to the other party. The party that selects, wraps, and sends the secret keying material is 444
called the “sender,” and the other party is called the “receiver.” The key-transport techniques 445
described in this Recommendation combine a DLC key-agreement scheme with a key-446
wrapping technique. First, an approved key-agreement scheme is used to establish a key-447
wrapping key that is shared between party U and party V. Then, party U (now acting as the 448
key-transport sender) wraps the keying material that will be transported, using an approved 449
key-wrapping algorithm; party V (acting as the key-transport receiver) later uses the same 450
key-wrapping key to unwrap the transported keying material. (See Section 7 for details, 451
including restrictions on the key-agreement schemes that are approved for such key-452
transport applications.) 453

This Recommendation specifies several processes that are associated with key establishment 454
(including processes for generating domain parameters and for deriving secret keying 455
material from a shared secret). Some of these processes are used to provide assurance (for 456
example, assurance of the arithmetic validity of a public key or assurance of the possession 457
of a private key associated with a public key). The party that provides the assurance is called 458
the “provider” (of the assurance), and the party that obtains the assurance is called the 459

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

14

“recipient” (of the assurance). For any of the specified processes, equivalent processes may 460
be used. Two processes are equivalent if, when the same values are input to each process 461
(either as input parameters or as values made available during the process), the same output 462
is produced. 463

The security of a key-establishment scheme depends on its implementation, and this 464
document includes several practical recommendations for implementers. For example, good 465
security practice dictates that implementations of procedures employed by primitives, 466
operations, schemes, etc. include steps that destroy any potentially sensitive locally stored 467
data that is created (and/or copied for use) during the execution of a given procedure, and 468
whose continued local storage is not required after the procedure has been exited. The 469
destruction of such locally stored data ideally occurs prior to or during any exit from the 470
procedure. This is intended to limit opportunities for unauthorized access to sensitive 471
information that might compromise a key-establishment process and to prevent its use for 472
any other purpose. 473

Explicit instructions for the destruction of certain potentially sensitive values that are likely 474
to be locally stored by procedures are included in the specifications found in this 475
Recommendation. Examples of such values include local copies of any portions of secret or 476
private keys that are employed or generated during the execution of a procedure, intermediate 477
results produced during computations, and locally stored duplicates of values that are 478
ultimately output by a procedure. However, it is not possible to anticipate the form of all 479
possible implementations of the specified primitives, operations, schemes, etc., making it 480
impossible to enumerate all potentially sensitive data that might be locally stored by a 481
procedure employed in a given implementation. Nevertheless, the destruction of any 482
potentially sensitive locally stored data is an obligation of all implementations. 483

Sections 4.1, 4.2, and 4.3 describe the various steps that may be performed to establish secret 484
keying material. 485

4.1 Key Establishment Preparations 486

The owner of a private/public key pair is the entity that is authorized to use the private key 487
of that key pair. The precise steps required may depend upon the key-establishment scheme 488
and the type of key pair (static or ephemeral). 489

The first step is to obtain appropriate domain parameters, as specified in Section 5.5.1 from 490
an approved list (see Appendix E) or (in the FFC case) generated as specified in Section 5.5 491
by a trusted party. These parameters will determine the type of arithmetic used to generate 492
key pairs and compute shared secrets. The owner must have assurance of the validity of these 493
domain parameters; approved methods for obtaining this assurance are provided in Section 494
5.5.2. 495

If the owner will be using a key-establishment scheme that requires that the owner have a 496
static key pair, the owner obtains this key pair. Either the owner or a trusted third party 497
generates the key pair as specified in Section 5.6.1. If the key pair is generated by a trusted 498
third party, then the key pair shall be transported to the owner in a protected manner 499
(providing source authentication and integrity protection for the entire key pair, and 500
confidentiality protection of (at least) the private key). If the key-establishment scheme 501

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

15

requires an ephemeral key pair, the owner generates it (as close to the time of use as possible) 502
as specified in Section 5.6.1. Before using a static or ephemeral key pair in a key-503
establishment transaction, its owner is required to confirm its validity by obtaining the 504
assurances specified in Section 5.6.2.1. 505

An identifier is used to label the entity that owns a static key pair used in a key-establishment 506
transaction; an identifier may also be used to label the owner of an ephemeral key pair. This 507
label may uniquely distinguish the owner from all other entities, in which case it could 508
rightfully be considered an identity. However, the label may be something less specific – an 509
organization, nickname, etc. – hence, the term identifier is used in this Recommendation, 510
rather than the term identity. For example, an identifier could be “NIST123”, rather than an 511
identifier that names a given person. A key pair’s owner (or an agent trusted to act on the 512
owner’s behalf) is responsible for ensuring that the identifier associated with its static public 513
key is appropriate for the applications in which it will be used. 514

For each static key pair, this Recommendation assumes that there is a trusted association 515
between the intended owner’s identifier(s) and the intended owner’s static public key. The 516
association may be provided using cryptographic mechanisms or by physical means. The use 517
of cryptographic mechanisms may require the use of a binding authority (i.e., a trusted 518
authority) that binds the information in a manner that can be verified by others; an example 519
of such a trusted authority is a registration authority working with a CA who creates a 520
certificate containing both the static public key and the identifier. The binding authority shall 521
verify the owner’s intent to associate a specific identifier chosen for the owner and the public 522
key; the means for accomplishing this is beyond the scope of this Recommendation. The 523
binding authority shall also obtain assurance of the validity of the domain parameters 524
associated with the owner’s key pair, the arithmetic validity of the owner’s static public key, 525
and the owner’s possession of the static private key corresponding to that static public key 526
(see Section 5.5.2, Section 5.6.2.2.1 [method 1], and Section 5.6.2.2.3, respectively.) 527

As an alternative to reliance upon a binding authority, trusted associations between 528
identifiers and static public keys may be established by the direct exchange of this 529
information between entities using a mutually trusted method (e.g., a trusted courier or a 530
face-to-face exchange). In this case, each entity receiving an identifier and the associated 531
static public key shall be responsible for obtaining the same assurances that would have been 532
obtained on their behalf by a binding authority (see the previous paragraph). Entities shall 533
also be responsible for maintaining (by cryptographic or other means) the trusted associations 534
between any identifiers and static public keys received through such exchanges. 535

If an entity engaged in a key-establishment transaction owns a static key pair that is employed 536
during the transaction, then the identifier used to label that party shall be one that has a 537
trusted association with the static public key of that key pair. If an entity engaged in a key-538
establishment transaction contributes only an ephemeral public key during the transaction, 539
but an identifier is still desired/required for that party, then a non-null identifier shall be 540
selected/assigned in accordance with the requirements of the protocol relying upon the 541
transaction. 542

Figure 1 depicts the steps that may be required of an owner to obtain its key pair(s) in 543
preparation for key establishment. 544

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

16

 545
Figure 1: Owner key-establishment preparations 546

4.2 Key-Agreement Process 547

A key-agreement process specified in this Recommendation consists of a sequence of 548
ordered steps. Figure 2 depicts the steps that may be required of an entity when establishing 549
secret keying material with another entity using one of the key-agreement schemes described in 550
this Recommendation. Some discrepancies in the order of the steps may occur, depending 551
upon the communication protocol in which the key-agreement process is performed. 552
Depending on the key-agreement scheme and the available keys, the party whose actions are 553
described could be either of the two participants in the key-agreement scheme (i.e., either 554
party U or party V). 555

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

17

 556
Figure 2: Key-agreement process. 557

Figure 2 depicts the steps that may be required of an entity when establishing secret keying 558
material with another entity by using one of the key-agreement schemes described in this 559
Recommendation. 560

Note that some of the actions shown in Figure 2 may be absent from certain schemes. The 561
specifications of this Recommendation indicate when an action is required. 562
If required by the key-agreement scheme, a party that requires the other entity’s static public 563
key acquires that key (as well as the associated identifier) and obtains assurance of its 564
validity. Approved methods for obtaining assurance of the validity of the other entity’s static 565
public key are provided in Section 5.6.2.2.1. Assurance that the other entity is in possession 566

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

18

of the corresponding static private key must also be obtained prior to using the derived keying 567
material for purposes beyond those of the key-agreement transaction itself. (Note: this 568
restriction above does not prohibit the use of derived keying material for key confirmation 569
performed during the key-agreement transaction.) See Section 5.6.2.2.3 for approved 570
methods for obtaining this assurance. 571

If a party receives an ephemeral public key from the other entity for use in the key-agreement 572
transaction, that party must obtain assurance of its validity. Approved methods for obtaining 573
assurance of the validity of the other entity’s ephemeral public key are provided in Section 574
5.6.2.2.2. 575
If required by the key-agreement scheme, a party generates an ephemeral key pair (in 576
accordance with Section 5.6.1) and provides the ephemeral public key of that key pair to the 577
other entity; the ephemeral private key is not provided to the other party. 578

If required or desired for use in the key-agreement transaction, a party generates a nonce (as 579
specified in Section 5.4) and provides it to the other party. 580

Depending upon the circumstances, additional public information (e.g., a party’s static public 581
key, an identifier, etc.) may be provided to or obtained from the other party. 582

If either of the participants in the key-agreement transaction requires evidence that the other 583
participant has computed the same shared secret and/or derived the same secret keying 584
material, (unilateral or bilateral) key confirmation may be performed as specified in Section 585
5.9. 586

4.3 DLC-based Key-Transport Process 587

The key-transport process begins by establishing a key-wrapping key using an appropriate 588
key-agreement scheme (see Sections 6 and 7), with the intended key-transport sender acting 589
as party U, and the intended key-transport receiver acting as party V. Key confirmation may 590
optionally be performed at the end of the key-agreement process to provide assurance that 591
both parties possess the same key-wrapping key. Party U then selects secret keying material 592
to be transported, wraps the keying material using the key-wrapping key, and sends the 593
wrapped keying material to party V. After receiving and unwrapping the transported keying 594
material, party V may optionally perform key confirmation to provide assurance to party U 595
that the transported keying material has been received and correctly unwrapped. Figure 3 596
depicts the steps that are performed when transporting secret keying material from one party 597
to another using a key-transport scheme; the preceding key-agreement portion of the 598
transaction is discussed in Section 4.2 and shown in Figure 2. 599

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

19

 600
Figure 3: Key-transport process 601

 602

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

20

5. Cryptographic Elements 603

This section describes the basic computations that are performed and the assurances that need 604
to be obtained when performing DLC-based key establishment. The schemes described in 605
Section 6 are based upon the correct implementation of these computations and assurances. 606

5.1 Cryptographic Hash Functions 607

In this Recommendation, cryptographic hash functions may be used in key derivation and in 608
MAC tag computation during key confirmation. An approved hash function shall be used 609
when a hash function is required. FIPS 180 and FIPS 202 specify approved hash functions. 610

5.2 Message Authentication Code (MAC) Algorithm 611

A Message Authentication Code (MAC) algorithm defines a family of cryptographic 612
functions that is parameterized by a symmetric key. It is computationally infeasible to 613
determine the MAC of a (newly formed) MacData value without knowledge of the MacKey 614
value (even if one has seen the MACs corresponding to other MacData values that were 615
computed using that same MacKey value). 616

The input to a MAC algorithm includes a symmetric key, called MacKey and a binary data 617
string called MacData that serves as the “message.” That is, a MAC computation is 618
represented as MAC(MacKey, MacData). In this Recommendation, a MAC algorithm is used 619
if key confirmation is performed during key establishment (see Section 5.9); a (possibly 620
different) MAC algorithm may be used for the required key-derivation process (see SP 800-621
56C). 622

Key confirmation requires the use of an approved MAC algorithm, i.e., HMAC, AES-623
CMAC or KMAC. HMAC is specified in FIPS 198 and requires the use of an approved hash 624
function. AES-CMAC is specified in SP 800-38B for the AES block cipher algorithm 625
specified in FIPS 197. KMAC is specified in SP 800-185. 626

When used for key confirmation, an entity is required to compute a MAC tag on received or 627
derived data using a MAC algorithm with a MacKey that is derived from a shared secret. The 628
MAC tag is sent to the other entity participating in the key-establishment scheme in order to 629
provide assurance that the shared secret or derived keying material was correctly computed. 630
MAC tag computation and verification are defined in Sections 5.2.1 and 5.2.2. 631

If a MAC algorithm is employed in key derivation, an approved MAC algorithm shall be 632
selected and used in accordance with SP 800-56C. 633

5.2.1 MAC Tag Computation for Key Confirmation 634
Key confirmation can be performed as part of a key-agreement scheme, following key 635
transport or during both processes. 636

The computation of a MAC tag (denoted MacTag) is represented as follows: 637

MacTag = TMacTagLen[MAC(MacKey, MacData)]. 638

To compute a MacTag: 639

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

21

1. The agreed-upon MAC algorithm (see Section 5.2) is used with MacKey to compute 640
the MAC of MacData, where MacKey is a symmetric key, and MacData represents 641
the input “message” data. The minimum length of MacKey is specified in Table 6 642
and Table 7 of Section 5.9.3. 643

MacKey is obtained from the DerivedKeyingMaterial (when a key-agreement scheme 644
employs key confirmation), as specified in Section 5.9.1.1, or obtained from the 645
transported keying material, KM (when a key-transport scheme employs key 646
confirmation), as specified in Section 7.2. 647

The output of the MAC algorithm is a bit string whose length is MacOutputLen bits.” 648

2. Those MacOutputLen bits are input to the truncation function TMacTagLen, which returns 649
the leftmost (i.e., initial) MacTagLen bits to be used as the value of MacTag. 650
MacTagLen shall be less than or equal to MacOutputLen. (When MacTagLen equals 651
MacOutputLen, TMacTagLen acts as the identity function.) The minimum value for 652
MacTagLen is 64, as specified in Section 5.9.3. 653

5.2.2 MAC Tag Verification for Key Confirmation 654
To verify a received MacTag (i.e., received during key confirmation), a new MAC tag, 655
MacTag′ is computed using the values of MacKey, MacTagLen, and MacData possessed by 656
the recipient (as specified in Section 5.2.1). MacTag′ is compared with the received MacTag. 657
If their values are equal, then it may be inferred that the same MacKey, MacTagLen, and 658
MacData values were used in the two MAC tag computations. 659

5.3 Random Number Generation 660

Whenever this Recommendation requires the use of a randomly generated value (for 661
example, for obtaining keys or nonces), the values shall be generated at an appropriate 662
security strength using an approved random bit generator (see the SP 800-90 series of 663
publications). 664

5.4 Nonce 665

A nonce is a time-varying value that has an acceptably small chance of repeating (where the 666
meaning of “acceptably small” may be application specific). In certain schemes specified in 667
this Recommendation, a party may be required to provide a (public) nonce that is used for 668
key-agreement and/or key-confirmation purposes. This circumstance arises when a scheme 669
does not require that a party provide an ephemeral public key to the other party as part of the 670
key-establishment process. 671

This Recommendation requires the use of a nonce (supplied by Party U) in the C(0e, 2s) key-672
agreement schemes specified in Section 6.3. A nonce (supplied by party V) is also required 673
by the C(1e, 2s) and C(0e, 2s) schemes when party V obtains key confirmation from party U 674
in conformance with this Recommendation (see Section 6.2.1.5 and Section 6.3.3, 675
respectively). 676

A nonce may be composed of one (or more) of the following components (other components 677
may also be appropriate): 678

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

22

1. A random bit string that is generated anew for each nonce, using an approved 679
random bit generator. A nonce containing a component of this type is called a random 680
nonce. 681

2. A timestamp of sufficient resolution so that it is different each time it is used. 682

3. A monotonically increasing sequence number, or 683

4. A combination of a timestamp and a monotonically increasing sequence number, 684
such that the sequence number is reset when and only when the timestamp changes. 685
(For example, a timestamp may show the date but not the time of day, so a sequence 686
number is appended that will not repeat during a particular day.) 687

The specified use of a nonce in key-derivation and/or key-confirmation computations does 688
not provide the same benefits as the use of an ephemeral key pair in a key-agreement scheme. 689
(For example, party U’s contribution of a public nonce during the execution of a C(0e, 2s) 690
scheme does not protect the secrecy of derived keying material against a future compromise 691
of party U’s static private key, but the use of an ephemeral key pair by party U during the 692
execution of a C(1e, 2s) scheme can provide such protection.) Still, the contribution of an 693
appropriately formed nonce can support some of the security goals (e.g., assurance of the 694
freshness of derived keying material) that might otherwise be supported by the contribution 695
of an ephemeral public key generated (and used) in conformance with this Recommendation. 696
Whenever a nonce is required for key-agreement and/or key-confirmation purposes as 697
specified in this Recommendation, it should be a random nonce. The security strength 698
supported by the instantiation of the random bit generator and the bit length of the random 699
bit string shall be equal to or greater than the targeted security strength of the key-agreement 700
scheme in which it is used. However, the bit length of the random bit string should be (at 701
least) twice the targeted security strength. 702

For details concerning the security strength supported by an instantiation of a random bit 703
generator, see SP 800-90. 704

As part of the proper implementation of this Recommendation, system users and/or agents 705
trusted to act on their behalf should determine that the components selected for inclusion in 706
any required nonces meet their security requirements. The application tasked with 707
performing key establishment on behalf of a party should determine whether to proceed with 708
a key-establishment transaction, based upon the perceived adequacy of the method(s) used 709
to form the required nonces. Such knowledge may be explicitly provided to the application 710
in some manner, or may be implicitly provided by the operation of the application itself. 711

5.5 Domain Parameters 712

Discrete Logarithm Cryptography (DLC), which includes Finite Field Cryptography (FFC) 713
and Elliptic Curve Cryptography (ECC), requires that the public and private key pairs be 714
generated with respect to a set of domain parameters. 715

Both parties executing a key-establishment scheme shall have assurance of domain-716
parameter validity prior to using them (e.g., to generate key pairs). Although domain 717
parameters are public information, they shall be managed so that the correct correspondence 718
between a given key pair and its set of domain parameters is maintained for all parties that 719

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

23

use the key pair. Domain parameters may remain fixed for an extended period, and one set 720
of domain parameters may be used with multiple key pairs and with multiple key-721
establishment schemes. 722

For this Recommendation, only one set of domain parameters shall be used during any key-723
establishment transaction. That is, when a key-establishment scheme uses both a static key 724
pair and an ephemeral key pair, they shall be generated using the same set of domain 725
parameters. 726

5.5.1 Domain-Parameter Selection/Generation 727

5.5.1.1 FFC Domain Parameter Selection/Generation 728

If p is a prime number, then GF(p) denotes the finite field with p elements, which can be 729
represented by the set of integers {0, 1, …, p−1}. The addition and multiplication operations 730
for GF(p) can be realized by performing the corresponding integer operations and reducing 731
the results modulo p. The multiplicative group of non-zero field elements is denoted by 732
GF(p)*. In this Recommendation, an FFC key-establishment scheme requires the use of 733
public keys that are restricted to a (unique) cyclic subgroup of GF(p)* with prime order q 734
(where q divides p – 1). If g is a generator of this cyclic subgroup, then its elements can be 735
represented as {1, g mod p, g2 mod p, …, gq-1 mod p}, and 1 = gq mod p. 736

Domain parameters for an FFC scheme are of the form (p, q, g{, SEED, counter}), where p 737
is the (odd) prime field size, q is an (odd) prime divisor of p – 1, and g is a generator of the 738
cyclic subgroup of GF(p)* of order q. The optional parameters, SEED and counter, are 739
described below. 740

Two classes of domain parameters are approved for FFC key agreement: the class of “safe” 741
domain parameters that are associated with approved safe-prime groups, and the class of 742
“FIPS 186-type” domain parameters that conform to one of the FIPS 186-type parameter-743
size sets that are listed in Table 1. 744

The safe-prime groups approved for use by U.S. Government applications are listed in 745
Appendix E. The associated domain parameters have the form (p, q = (p – 1)/2, g = 2) for 746
specific choices of p. (There are no SEED or counter values required for these groups as 747
there are for the FIPS 186-type groups; see below.) Appendix E specifies the security 748
strengths that can be supported by the approved safe-prime groups. 749

The generation of FIPS 186-type domain parameters conforming to parameter-size set FB or 750
FC from Table 1 shall be performed as specified in FIPS 186. The resulting domain 751
parameters are of the form (p, q, g{, SEED, counter}), where SEED and counter are 752
parameters used in an approved process for generating and validating p, q, and possibly g 753
(depending on the method of generation). The party that generated the domain parameters 754
should retain SEED and counter and make them available upon request for domain-755
parameter validation. 756

When the targeted security strength for key establishment is greater than 112 bits, an 757
approved safe-prime group capable of supporting that security strength shall be used. When 758
the targeted security strength is 112 bits, an approved safe-prime group should be used. The 759

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

24

use of FIPS 186-type domain parameters should only be used when the targeted security 760
strength is 112 bits for backward compatibility with existing applications that cannot be 761
upgraded to use the approved safe-prime groups. 762

 763

Table 1: FIPS 186-type FFC parameter-size
sets1

FB FC

Targeted security strength (in bits) 112 112
Bit length of field size p (i.e., len(p)) 2048 2048
Bit length of subgroup order q (i.e., len(q)) 224 256

 764
In the binary representation of each of the odd primes p and q, both the leftmost bit and the 765
rightmost bit shall be a 1 (i.e., no padding is permitted to artificially increase the bit lengths 766
of their representations). 767

The (safe or FIPS 186-type) domain parameters used for FFC key agreement shall be 768
selected in accordance with the targeted security strength of the relying key-establishment 769
scheme. SP 800-57 provides guidance on determining security strengths that are 770
appropriate for various applications. 771

5.5.1.2 ECC Domain-Parameter Selection 772

For ECC, let GF(q) denote the finite field with q elements, where either q is an odd prime p, 773
or q is equal to 2m for some prime integer m. For the purposes of this Recommendation, an 774
elliptic curve defined over GF(q) is assumed to be defined by either an equation of the form 775
y2 = x3+ax+b (when q = p) or by an equation of the form y2+xy = x3+ax2+b (when q = 2m), 776
where a and b are (appropriately chosen) elements of GF(q). In such an equation, the 777
indicated arithmetic is performed in GF(q). (See [SECG] or Annexes A.2, G.1, and G.2 of 778
ANS X9.62 for further information concerning arithmetic in finite fields.) For the purposes 779
of this Recommendation, an affine point P on the corresponding elliptic curve is one that can 780
be represented as an ordered pair (xP, yP) whose coordinates are elements of GF(q) that 781
satisfy the given equation. The set of elliptic curve points forms a group, given an appropriate 782
binary operation “+” (elliptic-curve addition, as defined by the well-known secant-and-783
tangent rules) and the introduction of a special "point at infinity" to serve as “Ø” (the additive 784
identity element). (See [SECG] or ANS X9.62 for the details of elliptic-curve group 785
operations.) 786

As specified in this Recommendation, an ECC key-establishment scheme requires the use of 787
public keys that are affine elliptic-curve points chosen from a specific cyclic subgroup with 788
prime order n. Suppose that the point G is a generator for this cyclic subgroup. If, for each 789
positive integer d, dG denotes 790

G + G +…+ G, 791

1 An additional parameter-size set (FA) that provides a maximum security strength of 80 bits is no longer
approved for use (see SP 800-57 and SP 800-131A).

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

25

d terms 792

where “+” is the elliptic-curve addition operation, then the elements of the cyclic subgroup 793
can be represented as {Ø, G, 2G,…, (n – 1)G}. Note that nG = Ø. The full elliptic-curve 794
group has order nh, where the integer h is called a cofactor of the cyclic subgroup generated 795
by G. 796

Domain parameters for an ECC scheme have the form (q, FR, a, b{, SEED}, G, n, h). The 797
parameter q is the field size. As noted above, q may be an odd prime p, or q may be equal to 798
2m for some prime integer m. The field representation parameter FR is used to provide 799
additional information (as specified in ANS X9.63 or SECG) concerning the method used to 800
represent elements of the finite field GF(q). FR is Null if q is equal to an odd prime p. In this 801
case, the elements of the finite field are represented by the integers 0 through p – 1. When q 802
= 2m, the elements of GF(2m) are represented by bit strings of length m, with each bit 803
indicating the coefficient (0 or 1) of a specific element of a particular basis for GF(2m) viewed 804
as a vector space over GF(2). FR is Null if q = 2m and the representation of field elements 805
corresponds to a Gaussian normal basis for GF(2m) (as specified in Annex A.2.3.3 of ANS 806
X9.62, and further described in Annexes G.2.4, G.2.5, and H.1 of that document). If q = 2m, 807
and the representation of field elements corresponds to a polynomial basis (as specified in 808
[SECG] or Annex A.2.3.2 of ANS X9.62, and further described in Annexes G.2.2, G.2.3, 809
H.2, and H.3 of that document), then FR specifies the reduction polynomial – either a 810
trinomial or a pentanomial. The parameters a and b are elements of GF(q) that define the 811
equation of an elliptic curve. G = (xG, yG) is an affine point on the elliptic curve determined 812
by a and b that is used to generate a cyclic subgroup of prime order n. The parameter h is the 813
cofactor of the cyclic subgroup generated by G. The bit string SEED is an optional parameter 814
used an approved process for generating and validating a, b, and possibly G (depending on 815
the method of generation). 816

The ECC domain parameters for U.S. Government applications shall be selected from the 817
recommended elliptic-curve domain parameters in SP 800-1862. The names of these curves 818
are also listed in Appendix E, along with the security strengths that can be supported by each 819
curve. The curves to be used for ECC key agreement shall be selected in accordance with 820
the targeted security strength of the relying key-establishment scheme. SP 800-57 provides 821
guidance on determining the security-strength requirements that are appropriate for various 822
applications. 823

5.5.2 Assurances of Domain-Parameter Validity 824
Secure key establishment depends on the arithmetic validity of the domain parameters used 825
by the parties. Therefore, each party shall have assurance of the validity of candidate domain 826
parameters before they are used for key establishment. Each party shall obtain assurance that 827
the candidate domain parameters are valid in one of the following ways: 828

1. The domain parameters correspond to a specifically approved group: 829

2 The recommended elliptic curves now listed in FIPS 186 will be moved to SP 800-186. Until SP 800-186 is
published, the recommended elliptic curves should be taken from FIPS 186-4.

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

26

a. For FFC: An approved safe-prime group, as listed in Appendix E. 830

b. For ECC: An elliptic-curve group approved for use by the key-establishment 831
schemes specified in this Recommendation, as listed in SP 800-186. 832

2. For FFC domain parameters that conform to a FIPS 186-type parameter-size set (see 833
Table 1): 834

a. The party has generated the domain parameters using a method specified in FIPS 835
186, and/or 836

b. The party has performed an explicit domain-parameter validation as specified in 837
FIPS 186, using the provided SEED and counter values. 838

(Method b can be used by the party that generated the FFC domain parameters to 839
obtain renewed assurance of their validity, as necessary.) 840

3. A trusted third party (for example, a CA) has obtained assurance that the domain 841
parameters are valid in accordance with one of the methods above, and has 842
communicated that fact through a trusted channel. 843

As part of the proper implementation of this Recommendation, system users and/or agents 844
trusted to act on their behalf should determine which of the methods above meet their 845
security requirements. The application tasked with performing key establishment on behalf 846
of a party should determine whether to proceed with a key-establishment transaction, based 847
upon the perceived adequacy of the method(s) used to obtain assurance of domain-parameter 848
validity. Such knowledge may be explicitly provided to the application in some manner, or 849
may be implicitly provided by the operation of the application itself. 850

5.5.3 Domain Parameter Management 851
The set of domain parameters used shall be protected against modification or substitution 852
until the set is deactivated (if it is no longer needed). Each private/public key pair shall be 853
correctly associated with its specific set of domain parameters. 854

5.6 Key-Establishment Key Pairs 855

This section specifies requirements for the generation of key pairs to be used in key-856
establishment transactions, provides methods for obtaining assurances that valid key pairs 857
are used during key establishment, and specifies key-management requirements for the static 858
and ephemeral key pairs used in key establishment. 859

5.6.1 Key-Pair Generation 860
These generation methods assume the use of valid domain parameters (see Section 5.5). Prior 861
to performing key-pair generation with the selected domain parameters, the party generating 862
the key pair shall obtain assurance of domain-parameter validity in accordance with Section 863
5.5.2. 864

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

27

 5.6.1.1 FFC Key-Pair Generation 865

Each FFC static and ephemeral key pair shall be generated using an approved method (see 866
Section 5.6.1.1.3 or 5.6.1.1.4) and the selected valid domain parameters (p, q, g{, SEED, 867
counter}). 868

5.6.1.1.1 Using the Approved Safe-Prime Groups 869
When the domain parameters (p, q = (p – 1)/2, g = 2) correspond to an approved safe-prime 870
group (named in Appendix E), private keys are integers in [1, q – 1] whose binary 871
representations require no more than N bits, for an appropriate choice of N, and the 872
corresponding public keys are in [2, p – 2]. For the key-pair generation methods in Sections 873
5.6.1.1.3 and 5.6.1.1.4, the value of the input parameter s shall be the largest security strength 874
that can be supported by the named safe-prime group, and the value for the input parameter 875
N (the requested maximum bit length of the private key) shall satisfy the inequalities 2s ≤ N 876
≤ len(q). The generated key pairs shall be used only for key-establishment purposes (see 877
Sections 6 and 7 for the approved key-establishment schemes). 878

5.6.1.1.2 Using the FIPS 186-Type FFC Parameter-size Sets 879
When the domain parameters (p, q, g{, SEED, counter}) conform to a FIPS 186-type FFC 880
parameter-size set (see Table 1), private keys are generated in [1, q – 1], and the 881
corresponding public keys are in [2, p – 2]. For the key-pair generation methods in Sections 882
5.6.1.1.3 and 5.6.1.1.4, the value used for the input parameter N shall be len(q), i.e., the bit 883
length of the domain parameter q, and the value used for the input parameter s shall be 112, 884
which is the security strength that can be supported by the FIPS 186-type FFC parameter-885
size set that was used to generate the domain parameters (see Table 1). The generated key 886
pairs shall be used only for key-establishment purposes (see Sections 6 and 7 for the 887
approved key-establishment schemes), with the possible exception discussed in item 5 of 888
Section 5.6.3.2. 889

5.6.1.1.3 Key-Pair Generation Using Extra Random Bits 890
In this method, 64 more bits are requested from the random bit generator (RBG) than are 891
needed for the private key so that bias produced by the mod function in process step 5 is 892
negligible. 893

The following process or its equivalent may be used to generate an FFC key pair. 894

Input: 895
1. (p, q, g) The FFC domain parameters used by this process. p, q and g shall 896

either be provided as integers during input, or shall be converted to 897
integers prior to use. 898

2. N The (maximum) bit length of the private key to be generated. 899

3. s The maximum security strength to be supported by the key pair. 900

Output: 901
1. status The status returned from the key-pair generation process. The status 902

will indicate SUCCESS or an ERROR. 903

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

28

2. (x, y) The generated private and public keys. If an error is encountered 904
during the generation process, invalid values for x and y should be 905
returned, as represented by Invalid_x and Invalid_y in the following 906
specification; for example, both Invalid_x and Invalid_y could be 0. 907
Otherwise, x and y are returned as integers. The generated private key 908
x is in [1, min(2N − 1, q − 1)], and the public key y is in the interval [2, 909
p – 2]. 910

Process: 911
1. If s is not the maximum security strength that can be supported by (p, q, g), then 912

return an ERROR indication as the status and (Invalid_x, Invalid_y) as the key 913
pair; then exit the process without performing the remaining steps. 914

2. If ((N < 2s) or (N > len(q)), then return an ERROR indication as the status and 915
(Invalid_x, Invalid_y) as the key pair; then exit the process without performing 916
the remaining steps. 917

3. Obtain a string of N + 64 returned_bits using an RBG with a security strength of 918
s bits or more (see Section 5 in SP 800-133). If an ERROR indication is returned, 919
then return an ERROR indication as the status and (Invalid_x, Invalid_y) as the 920
key pair; then exit the process without performing the remaining steps. 921

4. Convert returned_bits to the (non-negative) integer c in the interval 922
[0, 2(N+64) – 1] (see Appendix C.4). 923

5. Set M = min(2N, q), the minimum of 2N and q. 924
6. Set x = (c mod (M – 1)) + 1. 925

7. Set y = gx mod p. 926

8. Return SUCCESS as the status and (x, y) as the key pair. 927

Output: SUCCESS and (x, y), or 928

an ERROR indication and (Invalid_x, Invalid_y). 929

5.6.1.1.4 Key-Pair Generation by Testing Candidates 930
In this method, a random number is obtained and tested to determine whether it will produce 931
a value for the private key in the correct interval. If the private key would be outside the 932
interval, then another random number is obtained (i.e., the process is iterated until an 933
acceptable value for the private key is obtained). 934

The following process or its equivalent may be used to generate an FFC key pair. 935

Input: 936
1. (p, q, g) The FFC domain parameters used by for this process. p, q and g shall 937

either be provided as integers during input, or shall be converted to 938
integers prior to use. 939

2. N The (maximum) bit length of the private key to be generated. 940

3. s The maximum security strength to be supported by the key pair. 941

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

29

Output: 942
1. status The status returned from the key-pair generation process. The status 943

will indicate SUCCESS or an ERROR. 944

2. (x, y) The generated private and public keys. If an error is encountered 945
during the generation process, invalid values for x and y should be 946
returned, as represented by Invalid_x and Invalid_y in the following 947
specification; for example, both Invalid_x and Invalid_y could be 0. 948
Otherwise, x and y are returned as integers. The generated private key 949
x is in [1, min(2N − 1, q − 1)], and the public key y is in the interval [2, 950
p – 2]. 951

Process: 952
1. If s is not the maximum security strength that can be supported by (p, q, g), then 953

return an ERROR indication as the status and (Invalid_x, Invalid_y) as the key 954
pair; then exit the process without performing the remaining steps. 955

2. If ((N < 2s) or (N > len(q)), then return an ERROR indication as the status and 956
(Invalid_x, Invalid_y) as the key pair; then exit the process without performing 957
the remaining steps. 958

3. Obtain a string of N returned_bits using an RBG with a security strength of s bits 959
or more (see Section 5 of SP 800-133). If an ERROR indication is returned, then 960
return an ERROR indication as the status and (Invalid_x, Invalid_y) as the key 961
pair; then exit the process without performing the remaining steps. 962

4. Convert returned_bits to the (non-negative) integer c in the interval 963
[0, 2N – 1] (see Appendix C.4). 964

5. Set M = min(2N, q), the minimum of 2N and q. 965

6. If (c > M – 2), then go to step 3. 966

7. x = c + 1. 967

8. y = gx mod p. 968

9. Return SUCCESS as the status and (x, y) as the key pair. 969

Output: SUCCESS and (x, y), or 970

an ERROR indication and (Invalid_x, Invalid_y). 971

5.6.1.2 ECC Key-Pair Generation 972

For the ECC schemes, each static and ephemeral private key d and public key Q shall be 973
generated using an approved method (see Section 5.6.1.2.1 and 5.6.1.2.2) and domain 974
parameters that have been selected in accordance with Section 5.5.1.2. For the key-pair 975
generation methods in Sections 5.6.1.2.1 and 5.6.1.2.2, the value of the input parameter s 976
shall be the maximum security strength that can be supported by the corresponding elliptic-977
curve group, as specified in Appendix E. 978

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

30

Given valid domain parameters, each valid private key d is an integer that is randomly 979
selected in the interval [1, n−1]. Whether static or ephemeral, each valid public key Q is 980
related to the corresponding (valid) private key d by the following formula: Q = (xQ, yQ) = 981
dG. 982

5.6.1.2.1 Key Pair Generation Using Extra Random Bits 983
In this method, 64 more bits are requested from the RBG than are needed for d so that bias 984
produced by the mod function in step 6 is negligible. 985

The following process or its equivalent may be used to generate an ECC key pair. 986

Input: 987
1. (q, FR, a, b {, domain_parameter_seed}, G, n, h) 988

The ECC domain parameters that are used for this process. n is a prime 989
number, and G is a point on the elliptic curve (with additive order n). 990

2. s The maximum security strength to be supported by the key pair. 991

Output: 992
1. status The status returned from the key-pair generation procedure. The status 993

will indicate SUCCESS or an ERROR. 994

2. (d, Q) The generated private and public keys. If an error is encountered during 995
the generation process, invalid values for d and Q should be returned, as 996
represented by Invalid_d and Invalid_Q in the following specification; for 997
example, Invalid_d and Invalid_Q could be a point that is not on the 998
elliptic curve defined by the domain parameters. The private key d is an 999
integer in the interval [1, n–1], and Q is an elliptic curve point. 1000

Process: 1001
1. If the domain parameters are not approved, then return an ERROR indication as 1002

the status and (Invalid_d, Invalid_Q) as the key pair; then exit the process without 1003
performing the remaining steps. 1004

2. If s is not the maximum security strength that can be supported by the domain 1005
parameters, then return an ERROR indication as the status and (Invalid_d, 1006
Invalid_Q) as the key pair; then exit the process without performing the remaining 1007
steps. 1008

3. L = len(n) + 64. 1009

4. Obtain a string of L returned_bits using an RBG with a security strength of s bits 1010
or more (see Section 5 in SP 800-133). If an ERROR indication is returned, then 1011
return an ERROR indication as the status and (Invalid_d, Invalid_Q) as the key 1012
pair; then exit the process without performing the remaining steps. 1013

5. Convert returned_bits to the (non-negative) integer c in the interval 1014
[0, 2L – 1] (see Appendix C.4). 1015

6. d = (c mod (n–1)) + 1. 1016

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

31

7. Q = dG. 1017

8. Return SUCCESS as the status and (d, Q) as the key pair. 1018

Output: SUCCESS and (d, Q), or 1019

an ERROR indication and (Invalid_d, Invalid_Q). 1020

5.6.1.2.2 Key Pair Generation by Testing Candidates 1021
In this method, a random number is obtained and tested to determine whether or not it will 1022
produce a value of d in the correct interval. If d would be outside the interval, another random 1023
number is obtained (i.e., the process is iterated until an acceptable value of d is obtained. 1024

The following process or its equivalent may be used to generate an ECC key pair. 1025

Input: 1026
1. (q, FR, a, b {, domain_parameter_seed}, G, n, h) 1027

The ECC domain parameters that are used for this process. n is a prime 1028
number, and G is a point on the elliptic curve (with the additive order n). 1029

2. s The maximum security strength to be supported by the key pair. 1030

Output: 1031
1. status The status returned from the key pair generation procedure. The status 1032

will indicate SUCCESS or an ERROR. 1033

2. (d, Q) The generated private and public keys. If an error is encountered during 1034
the generation process, invalid values for d and Q should be returned, as 1035
represented by Invalid_d and Invalid_Q in the following specification; for 1036
example, Invalid_d and Invalid_Q could be a point that is not on the 1037
elliptic curve defined by the domain parameters. d is an integer in the 1038
interval [1, n–1], and Q is an elliptic curve point. 1039

Process: 1040
1. If the domain parameters are not approved, then return an ERROR indication as 1041

the status and (Invalid_d, Invalid_Q) as the key pair; then exit the process without 1042
performing the remaining steps. 1043

2. If s is not the maximum security strength that can be supported by the domain 1044
parameters, then return an ERROR indication as the status and (Invalid_d, 1045
Invalid_Q) as the key pair; then exit the process without performing the remaining 1046
steps. 1047

3. L = len(n). 1048

4. Obtain a string of L returned_bits using an RBG with a security strength of s bits 1049
or more (see Section 5 in SP 800-133). If an ERROR indication is returned, then 1050
return an ERROR indication as the status and (Invalid_d, Invalid_Q) as the key 1051
pair; then exit the process without performing the remaining steps. 1052

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

32

5. Convert returned_bits to the (non-negative) integer c in the interval 1053
[0, 2L – 1] (see Appendix C.4). 1054

6. If (c > n–2), then go to step 4. 1055

7. d = c + 1. 1056

8. Q = dG. 1057

9. Return SUCCESS as the status and (d, Q) as the key pair. 1058
Output: SUCCESS and (d, Q), or 1059

an ERROR indication and (Invalid_d, Invalid_Q). 1060

5.6.2 Required Assurances 1061
To explain the assurance requirements associated with key-establishment key pairs, some 1062
terminology needs to be introduced. The owner of a static key pair is defined as the entity 1063
that is authorized to use the private key that corresponds to the public key; this is independent 1064
of whether or not the owner generated the key pair. The recipient of a static public key is 1065
defined as the entity that is participating in a key-establishment transaction with the owner 1066
and obtains the key before or during the current transaction. The owner of an ephemeral 1067
public key is the entity that generated the key as part of a key-establishment transaction. The 1068
recipient of an ephemeral public key is the entity that receives that public key during a key-1069
establishment transaction with its owner. 1070

Secure key establishment depends upon the use of valid key-establishment keys. Prior to 1071
obtaining the assurances described in this section, the owner of a key pair and the recipient 1072
of the public key of that key pair shall obtain assurance of the validity of the associated 1073
domain parameters (see Section 5.5.2). 1074

The security of key-agreement schemes also depends on limiting knowledge of the private 1075
keys to those who have been authorized to use them (i.e., their respective owners) and to the 1076
trusted third party that may have generated them. In addition to preventing unauthorized 1077
entities from gaining access to private keys, it is also important that owners have access to 1078
their private keys. 1079

Note that as time passes, an owner may lose possession of the correct value of the private 1080
key component of their key pair, either by choice or due to an error; for this reason, current 1081
assurance of possession of a static private key can be of value for some applications, and 1082
renewing assurance of possession may be necessary. See Section 5.6.2.2.3.2 for techniques 1083
that the recipient of a static public key can use to directly obtain more current assurance of 1084
the owner’s possession of the corresponding private key. 1085

Prior to or during a key-establishment transaction, the participants in the transaction (i.e., 1086
parties U and V) shall obtain the appropriate assurances about the key pairs used during that 1087
transaction. The types of assurance that may be sought by one or both of the parties (U and/or 1088
V) concerning the components of a key pair (i.e., the private key and public key) are 1089
discussed in Sections 5.6.2.1 and 5.6.2.2. The methods that will be specified to 1090
provide/obtain these assurances presuppose the validity of the domain parameters associated 1091
with the key pair (see Section 5.5). 1092

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

33

The following sections include tables that summarize the types of assurance that are required 1093
by the parties to a key-establishment transaction. Table 3 in Section 5.6.2.1 summarizes 1094
assurances that a key-pair owner may want to renew periodically. The shaded table entries 1095
indicate a type of key pair (static or ephemeral) and a type of assurance that might be sought 1096
for such a key pair. The unshaded table entries indicate who can perform the actions 1097
necessary to obtain the assurance. 1098

5.6.2.1 Assurances Required by the Key Pair Owner 1099

Prior to the use of a static or ephemeral key pair in a key-establishment transaction, the key-1100
pair owner shall confirm the validity of the key pair by obtaining the following assurances: 1101

• Assurance of correct generation – assurance that the key pair was generated as 1102
specified in Section 5.6.1 (see Section 5.6.2.1.1 for the methods for obtaining this 1103
assurance). 1104

• Assurance of private-key validity – assurance that the private key is an integer in the 1105
correct interval, as determined by the domain parameters (see Section 5.6.2.1.2 for 1106
the methods for obtaining this assurance). 1107

• Assurance of public-key validity – assurance that the public key has the correct 1108
representation for a non-identity element of the correct cryptographic subgroup, as 1109
uniquely determined by the domain parameters (see Section 5.6.2.1.3 for the methods 1110
for obtaining this assurance). 1111

• Assurance of pair-wise consistency – assurance that the private key and public key 1112
have the correct mathematical relationship to each other (see Section 5.6.2.1.4 for the 1113
methods for obtaining this assurance). 1114

Table 2 indicates the assurances to be obtained by the owner of a key pair for both static and 1115
ephemeral keys, identifies who can perform the actions necessary for the owner to obtain 1116
each assurance, and indicates the sections of this document where further information is 1117
provided. 1118

Table 2: Initial assurances required by the key-pair owner 1119

 Types of assurance
Key-pair

type
Correct

generation
Private-key
validation

Public-key
validation

Pair-wise
consistency

Static Ownera or
TTPb

Ownerc Ownerd or
TTPe

Ownerf

Ephemeral Ownera Ownerc Ownerd Ownerf

a See Section 5.6.2.1.1, method a. 1120
b See Section 5.6.2.1.1, method b 1121
c See Section 5.6.2.1.2 1122
d See Section 5.6.2.1.3, methods a and b. 1123
e See Section 5.6.2.1.3, method c. 1124
f See Section 5.6.2.1.4. 1125

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

34

A static key-pair owner may optionally renew certain assurances regarding its key pair at any 1126
time. Table 3 indicates which of the assurances obtained by the owner of a static key pair 1127
can be renewed and indicates the sections of this document where further information is 1128
provided. Note that for ephemeral key pairs, only initial assurances are required; renewed 1129
assurance for ephemeral key pairs is not applicable, since ephemeral key pairs are short-1130
lived. Also, note that assurance of the correct generation of a static key pair is not renewable 1131
since, after the fact, it is not feasible to verify that its private component was randomly 1132
selected. 1133

Table 3: Optional renewal of assurances by the key-pair owner 1134

 Types of assurance
Key-pair

type
Correct

generation
Private-key
validation

Public-key
validation

Pair-wise
consistency

Static Infeasible Ownera Ownerb Ownerc

a. See Section 5.6.2.1.2. 1135
b. See Section 5.6.2.1.3. 1136
c. See Section 5.6.2.1.4. 1137

Note that the methods used to obtain the required assurances are not necessarily independent. 1138
For example, the key-pair owner may employ a key-generation routine that is consistent with 1139
the criteria of Section 5.6.1 and also incorporates the actions required to provide (initial) 1140
assurance of the validity and consistency of the private and public components of the 1141
resulting key pair. 1142

As part of the proper implementation of this Recommendation, system users and/or agents 1143
trusted to act on their behalf should determine which of the methods above meet their 1144
security requirements. The application tasked with performing key establishment on behalf 1145
of a party should determine whether to proceed with a key-establishment transaction, based 1146
upon the perceived adequacy of the method(s) used to obtain the above assurances. 1147

5.6.2.1.1 Owner Assurance of Correct Generation 1148
Prior to the use of a key pair in a key-establishment transaction, the owner of a static or 1149
ephemeral key-establishment key pair shall obtain an initial assurance that the key pair has 1150
been correctly formed (in a manner that is consistent with the criteria of Section 5.6.1) using 1151
one of the following methods: 1152

a. For both a static and ephemeral key pair: The owner generates the key pair as 1153
specified in Section 5.6, or 1154

b. For a static key pair (only): A trusted third party (TTP) (trusted by the owner and any 1155
recipient of the public key) generates the key pair as specified in Section 5.6.1 and 1156
provides it to the owner. Note that, in this case, the TTP needs to be trusted by both 1157
the owner and any public-key recipient to generate the key pair as specified in Section 1158
5.6.1 and not to use the owner’s private key to masquerade as the owner. This method 1159
is not appropriate for ephemeral key pairs, since the owner generates ephemeral keys. 1160

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

35

5.6.2.1.2 Owner Assurance of Private-Key Validity 1161
Prior to the use of a key pair in a key-establishment transaction, the owner of a static or 1162
ephemeral key-establishment key pair shall obtain an initial assurance that the private key is 1163
an integer in the correct interval, which depends on the type of domain parameters that are 1164
used to generate key pairs. 1165

• When FFC domain parameters (p, q, g{, SEED, counter}) are used that conform to a 1166
FIPS 186-type FFC parameter-size set from Table 1, private keys are in the interval 1167
[1, q – 1]. 1168

• When an approved safe-prime group is used (see Section 5.5.1.1), and the 1169
corresponding FFC domain parameters are (p, q = (p – 1)/2, g = 2), the private keys 1170
are in the interval [1, M – 1], where M = min(2N, q), and N is the agreed-upon 1171
(maximum) bit length, satisfying 2s ≤ N ≤ len(q), where s is the maximum security 1172
strength that can be supported by the safe-prime group, as specified in Appendix E. 1173

• When an approved elliptic-curve group is used, and the corresponding ECC domain 1174
parameters are (q, FR, a, b{, SEED}, G, n, h), the private keys are in the interval [1, 1175
n – 1]. 1176

The owner of a static or ephemeral key-establishment key pair shall obtain an initial 1177
assurance that the private key is an integer in the correct interval by using one of the 1178
following methods: 1179

a. For both a static and ephemeral key pair: The owner generates the key pair as 1180
specified in Section 5.6.1, or 1181

b. For a static key pair (only): After receiving a static key pair from a trusted third party 1182
(trusted by the owner), the owner performs a separate check to determine that the 1183
private key is in the correct interval. (While an entity can accept ownership of a static 1184
key pair that was generated by a TTP, an ephemeral key pair shall only be generated 1185
by its owner.) 1186

To renew this assurance for a static key pair (if desired), the owner shall perform a separate 1187
check to determine that the private key is in the correct interval as determined by the domain 1188
parameters. 1189

5.6.2.1.3 Owner Assurance of Public-Key Validity 1190
Prior to a key-establishment transaction, the owner of a key pair shall obtain an initial 1191
assurance that the public key has the expected representation for a non-identity element of 1192
the correct cryptographic subgroup, as determined by the domain parameters, using one of 1193
the following methods: 1194

a. For either a static key pair or an ephemeral key pair: The owner generates the key 1195
pair as specified in Section 5.6.1 and performs a full public-key validation or an 1196
equivalent procedure as part of its generation process (see Sections 5.6.2.3.1 for FFC 1197
and 5.6.2.3.3 for ECC); or 1198

b. For either a static key pair or an ephemeral key pair: The owner performs a full 1199
public-key validation as a separate process from the key-pair generation process (see 1200

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

36

Sections 5.6.2.3.1 and 5.6.2.3.3) (either the owner or a TTP could have generated a 1201
static key pair; only the owner can generate an ephemeral key pair); or 1202

c. For a static key pair (only): A trusted third party (TTP) (trusted by the owner) 1203
performs a full public-key validation (see Sections 5.6.2.3.1 and 5.6.2.3.3) and 1204
provides the validation result to the owner. This TTP could, for example, be a binding 1205
authority (see Section 4.1) and/or a TTP that generated the key pair (see method b in 1206
Section 5.6.2.1.1). In the case of TTP generation, the TTP shall either employ a key-1207
generation routine that performs a full public-key validation (or an equivalent 1208
procedure) as part of its key-pair generation process, or perform a full public-key 1209
validation as a separate process, following its key-pair generation process. 1210

To renew this assurance for a static public key (if desired), the owner shall perform a 1211
successful full public-key validation (see Sections 5.6.2.3.1 for FFC and 5.6.2.3.3 for ECC). 1212
Note that renewed assurance of validity for an ephemeral public key is not applicable, since 1213
ephemeral key pairs are short-lived. 1214

5.6.2.1.4 Owner Assurance of Pair-wise Consistency 1215
Prior to a key-establishment transaction, the owner of a key pair shall obtain an initial 1216
assurance that the private key and public key have the correct mathematical relationship to 1217
each other by using one of the following methods: 1218

a. For either a static key pair or an ephemeral key pair: The owner generates the key 1219
pair as specified in Section 5.6.1, or 1220

b. For a static key pair (only): Subsequent to the generation of a static key pair by the 1221
owner or a trusted third party as specified in Section 5.6.1, the owner performs one 1222
of the following consistency tests (as appropriate for the FCC or ECC domain 1223
parameters used during the generation process). 1224

• For an FFC key pair (x, y): Use the private key, x, along with the generator g and 1225
prime modulus p included in the domain parameters associated with the key pair 1226
to compute gx mod p. Compare the result to the public key, y. If gx mod p is not 1227
equal to y, then the pair-wise consistency test fails. 1228

• For an ECC key pair (d, Q): Use the private key, d, along with the generator G 1229
and other domain parameters associated with the key pair, to compute dG 1230
(according to the rules of elliptic-curve arithmetic). Compare the result to the 1231
public key, Q. If dG is not equal to Q, then the pair-wise consistency test fails. 1232

The static public key shall be successfully recomputed from the private key and the 1233
domain parameters to obtain assurance (via method b) that the private and public keys 1234
are consistent. If this pair-wise consistency test fails, the tested key pair shall not be 1235
used. 1236

To renew assurance of pair-wise consistency for a static key pair (if desired), method b shall 1237
be employed by the owner. Note that renewed assurance for ephemeral key pairs is not 1238
applicable, since ephemeral key pairs are short-lived. 1239

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

37

5.6.2.1.5 Owner Assurance of Possession of the Private Key 1240
Prior to a key-establishment transaction, the owner of a key pair shall obtain an initial 1241
assurance of possession of the private key using one of the following methods: 1242

a. For either a static key pair or an ephemeral key pair: The owner generates the key pair as 1243
specified in Section 5.6.1, or 1244

b. For a static key pair (only): When a trusted third party (trusted by the owner) generates a 1245
static key pair and provides it to the owner, the owner performs the appropriate pair-wise 1246
consistency test in method b of Section 5.6.2.1.4; if the pair-wise consistency test fails, 1247
the tested key pair shall not be used. 1248

To renew this assurance for a static private key (if desired), the appropriate pair-wise 1249
consistency tests in method b of Section 5.6.2.1.4 shall be employed by the owner. Note that 1250
renewed assurance of the possession of an ephemeral private key is not applicable, since 1251
ephemeral key pairs are short-lived. 1252

5.6.2.2 Assurances Required by a Public Key Recipient 1253

To successfully employ any of the schemes specified in this Recommendation, each 1254
participant in a key-establishment transaction must receive at least one public key owned by 1255
the other participant. The public key(s) may be received during the transaction (which is 1256
usually the case for an ephemeral public key) or prior to the transaction (as is sometimes the 1257
case for a static public key). Regardless of the timing, a transaction participant is said to be 1258
acting as a “public-key recipient” when it receives the other participant's public key(s). Note 1259
that besides the participants (i.e., party U and party V), a binding authority (e.g., a CA) may 1260
be a public key recipient (e.g., when obtaining assurance of possession). 1261

Prior to or during a key-establishment transaction, the recipient of a public key shall obtain 1262
assurance of public-key validity and/or private-key possession as required below: 1263

• Assurance of public-key validity – assurance that the public key of the other party 1264
(i.e., the claimed owner of the public key) has the (unique) correct representation for 1265
a non-identity element of the correct cryptographic subgroup, as determined by the 1266
domain parameters. Recipients of static public keys are required to obtain this 1267
assurance (see Section 5.6.2.2.1). Recipients of ephemeral public keys are also 1268
required to obtain this assurance. 1269

• Assurance of private-key possession – assurance that the claimed owner of a public 1270
key-establishment key (i.e., the other party) actually has the (correct) private key 1271
associated with that public key. Recipients of static public keys are required to obtain 1272
this assurance (see Section 5.6.2.2.3). Recipients of ephemeral public keys are 1273
encouraged (but not required) to obtain this assurance; (optional) methods for 1274
obtaining this assurance are discussed in Section 5.6.2.2.4. 1275

Table 4 summarizes the assurances required by a public-key recipient for both the static and 1276
ephemeral public keys of the other party, identifying the party that may perform the actions 1277
necessary for the recipient to obtain the assurance and indicating the sections in this 1278
document where further information is provided. 1279

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

38

Table 4: Assurances required by a public-key recipient 1280

 Type of assurance

Key-pair
type

Public-key
validation

Private-key
possession

Static Recipienta or TTPb Recipientd or TTPe

Ephemeral Recipientc Not Requiredf

a See Section 5.6.2.2.1, method 1. 1281
b See Section 5.6.2.2.1, method 2. 1282
c See Section 5.6.2.2.2. 1283
d. See Section 5.6.2.2.3.2. 1284
e. See Section 5.6.2.2.3.1. 1285
f However, see Section 5.6.2.2.4. 1286

As part of the proper implementation of this Recommendation, system users and/or agents 1287
trusted to act on their behalf should determine which of the indicated methods for obtaining 1288
the required (and/or desired) assurances meet their security requirements. The application 1289
tasked with performing key establishment on behalf of the recipient should determine 1290
whether to proceed with a key-establishment transaction, based upon the perceived adequacy 1291
of the method(s) used to obtain the assurances described above. 1292

Once the necessary steps have been taken to provide the recipient of a static public key with 1293
assurance of its validity, the assurance obtained by the recipient may endure for a protracted 1294
period without the need to reconfirm the validity of that public key. The same may be true 1295
of assurance provided to the recipient that the owner of the static public key possesses the 1296
corresponding static private key. This could be the case, for example, when the source of the 1297
assurance is a trusted CA whose (valid) signature on a certificate containing the static public 1298
key indicates to the recipient that the arithmetic validity of the static public key has been 1299
confirmed by the CA and that the owner’s possession of the corresponding static private key 1300
has been established to the CA’s satisfaction. Alternatively, a party could maintain a record 1301
(i.e., an integrity-protected record) of previously received static public keys whose validity 1302
was confirmed and/or whose owners have provided assurance of private-key possession. 1303

On the other hand, the recipient of a static public key may choose to obtain renewed 1304
assurance of its validity and/or choose to obtain renewed assurance that the owner of the 1305
static public key (i.e., the other party) possesses the corresponding static private key. 1306
Deciding how often (if at all) to seek renewed assurance is a determination that should be 1307
made by the recipient (or an agent trusted to act on the recipient’s behalf), based on the 1308
recipient’s security needs. 1309

Renewed assurance of the validity of a received ephemeral public key and renewed assurance 1310
that the other party is in possession of the corresponding ephemeral private key are not 1311
addressed in this Recommendation, since ephemeral key pairs are short-lived. 1312

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

39

5.6.2.2.1 Recipient Assurance of Static Public-Key Validity 1313
The recipient of another party’s static public key shall obtain assurance of the validity of that 1314
public key in one or more of the following ways: 1315

1. The recipient performs a successful full public-key validation of the received public key 1316
(see Sections 5.6.2.3.1 for FFC and 5.6.2.3.3 for ECC). 1317

2. The recipient receives assurance that a trusted third party (trusted by the recipient) has 1318
performed a successful full public-key validation of the received public key (see Sections 1319
5.6.2.3.1 and 5.6.2.3.3). This TTP could, for example, be a binding authority, such as a 1320
CA (see Section 4.1). 1321

5.6.2.2.2 Recipient Assurance of Ephemeral Public-Key Validity 1322
The recipient of another party’s ephemeral public key shall obtain assurance of its validity 1323
by using one of the following methods: 1324

1. When an approved FFC safe-prime group or an approved elliptic curve group is 1325
used by the key-establishment scheme: 1326

• The recipient performs a successful partial public-key validation on the received 1327
public key (see Section 5.6.2.3.2 for FFC domain parameters and Section 1328
5.6.2.3.4 for ECC domain parameters); or 1329

• The recipient performs a successful full public-key validation on the received 1330
public key (see Section 5.6.2.3.1 for FFC domain parameters and Section 1331
5.6.2.3.3 for ECC domain parameters). 1332

(As part of the proper implementation of this Recommendation, system users and/or 1333
agents trusted to act on their behalf should determine whether a partial validation of 1334
ephemeral public keys is sufficient to meet their security requirements. If it is 1335
determined that partial public-key validation is insufficient, then full public-key 1336
validation shall be performed.) 1337

2. When FIPS 186-type FFC domain parameters are used in the key-establishment 1338
scheme: The recipient performs a successful full public-key validation on the 1339
received public key (see Section 5.6.2.3.1 for FFC domain parameters). 1340

 5.6.2.2.3 Recipient Assurance of the Owner’s Possession of a Static Private Key 1341
The recipient of another party’s static public key shall obtain an initial assurance that the 1342
other party (i.e., the claimed owner of the public key) possesses the associated private key, 1343
either prior to or concurrently with performing a key-agreement transaction with that other 1344
party. Assurance of the validity of the corresponding public key shall be obtained prior to 1345
obtaining this assurance (unless the assurance of public-key validity and assurance of private-1346
key possession are obtained simultaneously from a trusted third party). 1347

As part of the proper implementation of this Recommendation, system users and/or agents 1348
trusted to act on their behalf should determine which of the methods for obtaining assurance 1349
of possession meet their security requirements. The application tasked with performing key 1350
establishment on behalf of a party should determine whether to proceed with a key-1351

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

40

establishment transaction, based upon the perceived adequacy of the method(s) used. Such 1352
knowledge may be explicitly provided to the application in some manner, or may be 1353
implicitly provided by the operation of the application itself. 1354

A binding authority can be used to bind the key-pair owner’s identifier to his static public 1355
key. In this case, at the time of binding an owner’s identifier to his static public key, the 1356
binding authority (i.e., a trusted third party, such as a CA) shall obtain assurance that the 1357
owner is in possession of the correct static private key. This assurance shall either be 1358
obtained using one of the methods specified in Section 5.6.2.2.3.2 (e.g., with the binding 1359
authority acting as the public-key recipient) or (only if using the FIPS 186-type domain 1360
parameters or the approved ECC domain parameters) by using an approved alternative (see 1361
SP 800-57, Sections 5.2 and 8.1.5.1.1.2). Note that the use of the signature-based alternative 1362
described in SP 800-57 is not approved for the safe-prime domain parameters. 1363

Recipients not acting in the role of a binding authority shall obtain this assurance – either 1364
through a trusted third party (see Section 5.6.2.2.3.1) or directly from the owner (i.e., the 1365
other party) (see Section 5.6.2.2.3.2) before using the derived keying material for purposes 1366
beyond those required during the key-agreement transaction itself. If the recipient chooses 1367
to obtain this assurance directly from the other party (i.e., the claimed owner of that public 1368
key), then to comply with this Recommendation, the recipient shall use one of the methods 1369
specified in Section 5.6.2.2.3.2. 1370

5.6.2.2.3.1 Recipient Obtains Assurance from a Trusted Third Party 1371
The recipient of a static public key may receive assurance that its owner (i.e., the other party 1372
in the key-agreement transaction) is in possession of the correct static private key from a 1373
trusted third party (trusted by the recipient), either before or during a key-agreement 1374
transaction that makes use of that static public key. The methods used by a third party trusted 1375
by the recipient to obtain that assurance are beyond the scope of this Recommendation 1376
(however, see the discussion in Section 5.6.2.2.3 above). 1377

5.6.2.2.3.2 Recipient Obtains Assurance Directly from the Claimed Owner (i.e., the Other 1378
Party) 1379

When two parties engage in a key-agreement transaction, there is (at least) an implicit claim 1380
of ownership made whenever a static public key is provided on behalf of a given party. That 1381
party is considered to be a claimed owner of the corresponding static key pair – as opposed 1382
to being a true owner – until adequate assurance can be provided that the party is actually 1383
the one authorized to use the static private key. The claimed owner can provide such 1384
assurance by demonstrating its knowledge of that private key. 1385

If all the following conditions are met during a key-agreement transaction that incorporates 1386
key confirmation as specified in this Recommendation, then while establishing keying 1387
material, the recipient of a static public key may be able to directly obtain (initial or renewed) 1388
assurance of the claimed owner’s (i.e., the other party’s) current possession of the 1389
corresponding static private key: 1390

1. The recipient of the static public key contributes an ephemeral public key to the key-1391
agreement process, one that is intended to be arithmetically combined with the 1392
claimed owner’s (i.e., the other party’s) static private key in computations performed 1393

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

41

by the claimed owner. (If an appropriate key-agreement scheme is employed, the 1394
claimed owner will be challenged to demonstrate current knowledge of his static 1395
private key by successfully performing those computations during the transaction.) 1396

2. The recipient of the static public key is also a key-confirmation recipient, with the 1397
claimed owner (i.e., other party) serving as the key-confirmation provider. (By 1398
successfully providing key confirmation, the claimed owner can demonstrate 1399
ownership of the received static public key and current knowledge of the 1400
corresponding static private key.) 1401

There are several key-agreement schemes specified in this Recommendation that can be used 1402
while satisfying both of the conditions above. To claim conformance with this 1403
Recommendation, the key-agreement transaction during which the recipient of a static public 1404
key seeks to obtain assurance of its owner’s current possession of the corresponding static 1405
private key shall employ one of the following approved key-agreement schemes, 1406
incorporating key confirmation as specified in the indicated sections, with the recipient of that 1407
static public key acting as party U and serving as a key-confirmation recipient: 1408

• dhHybridOneFlow (see Section 6.2.1.1, and either Section 6.2.1.5.2 or Section 1409
6.2.1.5.3), 1410

• (Cofactor) One-Pass Unified Model (see Section 6.2.1.2, and either Section 6.2.1.5.2 1411
or Section 6.2.1.5.3), 1412

• MQV1 (see Sections 6.2.1.3, and either Section 6.2.1.5.2 or Section 6.2.1.5.3), 1413

• One-Pass MQV (see Section 6.2.1.4, and either Section 6.2.1.5.2 or Section 1414
6.2.1.5.3), 1415

• dhOneFlow (see Sections 6.2.2.1 and 6.2.2.3.1), or 1416

• (Cofactor) One-Pass Diffie-Hellman (see Sections 6.2.2.2 and 6.2.2.3.1). 1417

5.6.2.2.4 Recipient Assurance of the Owner’s Possession of an Ephemeral Private 1418
Key 1419

This Recommendation does not require the recipient of an ephemeral public key to obtain 1420
assurance of the possession of the corresponding ephemeral private key by its claimed owner 1421
(i.e., the other participant in a key-establishment transaction). However, such assurance may 1422
be desired by the recipient, insisted upon by the recipient’s organization, and/or required by 1423
an application. Assurance of the validity of the ephemeral public key shall be obtained prior 1424
to obtaining assurance of possession of the private key. 1425

Ephemeral key pairs are generated by their owner when needed (typically for a single use), 1426
and their private components are destroyed shortly thereafter (see Section 5.6.3.3 for details). 1427
Thus, the opportunity for the recipient of an ephemeral public key to obtain assurance that 1428
its claimed owner is in possession of the corresponding ephemeral private key is limited to 1429
the (single) key-establishment transaction during which it was received. 1430

If all the following conditions are met during a key-agreement transaction that incorporates 1431
key confirmation as specified in this Recommendation, then in the course of establishing 1432
keying material, the recipient of an ephemeral public key may be able to obtain assurance 1433

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

42

that the other participant (i.e., the claimed owner of that ephemeral public key) is in 1434
possession of the corresponding ephemeral private key: 1435

 1. The recipient of the ephemeral public key also receives a static public key that is 1436
presumed to be owned by the other party and is used in the key-agreement 1437
transaction. (Therefore, the other party is the claimed owner of both the received 1438
static public key and the received ephemeral public key.) 1439

2. The recipient of the static and ephemeral public keys contributes its own (distinct) 1440
ephemeral public key to the key-agreement process, one that is intended to be 1441
arithmetically combined with the private key corresponding to the received 1442
ephemeral public key in computations performed by the claimed owner of the 1443
received static and ephemeral public keys. (If an appropriate key-agreement scheme 1444
is employed, the claimed owner of the received public keys will be challenged to 1445
demonstrate current knowledge of his ephemeral private key by successfully 1446
performing those computations during the transaction.) 1447

3. The recipient of the static and ephemeral public keys is also a key confirmation 1448
recipient, with the claimed owner of the received public keys serving as the key-1449
confirmation provider. (By successfully providing key confirmation, the claimed 1450
owner of the received public keys can demonstrate that he is the owner of the received 1451
static public key and that he knows the ephemeral private key corresponding to the 1452
received ephemeral public key.) 1453

There are a limited number of key-agreement schemes specified in this Recommendation 1454
that can be used while satisfying all three of the conditions above. To claim conformance 1455
with this Recommendation, the key-agreement transaction during which the recipient of 1456
an ephemeral public key seeks to obtain assurance of the claimed owner’s possession of 1457
the corresponding ephemeral private key shall employ one of the following approved 1458
key-agreement schemes, incorporating key confirmation as specified in the indicated 1459
sections, with the recipient of the ephemeral public key serving as a key-confirmation 1460
recipient: 1461

• dhHybrid1 (see Section 6.1.1.1 and Section 6.1.1.5) or 1462

• (Cofactor) Full Unified Model (see Section 6.1.1.2 and Section 6.1.1.5). 1463

Note: If key confirmation is provided in both directions in a key-agreement transaction 1464
employing one of the schemes above, then each party can obtain assurance of the other 1465
party’s possession of their ephemeral private key. 1466

5.6.2.3 Public Key Validation Routines 1467

Public-key validation refers to the process of checking the arithmetic properties of a 1468
candidate public key. Both full and partial validation routines are provided for public keys 1469
that are associated with either FFC or ECC domain parameters. Public-key validation does 1470
not require knowledge of the associated private key and so may be done at any time by 1471
anyone. However, these routines assume a prior validation of the domain parameters 1472

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

43

5.6.2.3.1 FFC Full Public-Key Validation Routine 1473
FFC full public-key validation refers to the process of checking the arithmetic properties of 1474
a candidate FFC public key to ensure that it has the expected representation and is in the 1475
correct subgroup of the multiplicative group of the finite field specified by the associated 1476
FFC domain parameters. 1477

This routine shall be used when assurance of full public-key validity is required (or desired) 1478
for a static or ephemeral FFC public key. 1479

Input: 1480
1. (p, q, g{, SEED, counter}): A valid set of FFC domain parameters, and 1481

2. y: A candidate FFC public key. 1482

Process: 1483

1. Verify that 2 ≤ y ≤ p − 2. 1484

Success at this stage ensures that y has the expected representation for a nonzero field 1485
element (i.e., an integer in the interval [1, p – 1]) and that y is in the proper range for 1486
a properly generated public key. 1487

2. Verify3 that 1= yq mod p. 1488

Success at this stage ensures that y has the correct order and thus, is a non-identity 1489
element in the correct subgroup of GF(p)*. 1490

Output: If any of the above verifications fail, immediately output an error indicator and exit 1491
without further processing. Otherwise, output an indication of successful validation. 1492

5.6.2.3.2 FFC Partial Public-Key Validation Routine 1493
FFC partial public-key validation refers to the process of performing only the first step of a 1494
full public-key validation, omitting the check that determines whether the candidate FFC 1495
public key is in the correct subgroup. 1496

This routine shall only be used with ephemeral FFC public keys generated using the 1497
approved safe-prime groups when assurance of the partial validity of such keys is to be 1498
obtained as specified in Section 5.6.2.2.2. 1499

Input: 1500
1. (p, q = (p –1)/2, g = 2) A valid set of "safe" FFC domain parameters corresponding 1501

to a safe-prime group (see Section 5.5.1.1), and 1502

2. y: A candidate FFC public key. 1503

Process: 1504

3 When the FFC domain parameters correspond to a safe-prime group, 1= yq mod p if and only if y is a
(nonzero) quadratic residue modulo p, which can be verified by computing the value of the Legendre symbol
of y with respect to p.

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

44

Verify that 2 ≤ y ≤ p − 2. 1505

Success at this stage ensures that y has the expected representation for a nonzero field 1506
element (i.e., an integer in the interval [1, p – 1]) and that y is in the proper range for 1507
a properly generated public key. 1508

Output: If the above verification fails, output an error indicator. Otherwise, output an 1509
indication of successful validation. 1510

5.6.2.3.3 ECC Full Public-Key Validation Routine 1511
ECC full public-key validation refers to the process of checking all the arithmetic properties 1512
of a candidate ECC public key to ensure that it has the expected representation for a non-1513
identity element of the correct subgroup of the appropriate elliptic-curve group, as specified 1514
by the associated ECC domain parameters. 1515

This routine shall be used when assurance of full public-key validity is required (or desired) 1516
for a static or ephemeral ECC public key. 1517

Input: 1518
1. (q, FR, a, b{, SEED}, G, n, h): A valid set of ECC domain parameters, and 1519
2. Q = (xQ, yQ): A candidate ECC public key. 1520

Process: 1521
1. Verify that Q is not the identity element Ø. 1522
 Success at this stage ensures that Q is not the identity element of the elliptic-curve 1523

group (which would never be the value of a properly generated public key). 1524

2. Verify that xQ and yQ are integers in the interval [0, p−1] in the case that q is an odd 1525
prime p, or that xQ and yQ are bit strings of length m bits in the case that q = 2m. 1526

 Success at this stage ensures that each coordinate of the public key has the expected 1527
representation for an element in the underlying field, GF(q). 1528

3. Verify that Q is on the curve. In particular, 1529

• If q is an odd prime p, verify that (yQ)2 = ((xQ)3 + axQ + b) mod p. 1530

• If q = 2m, verify that (yQ)2 + xQ yQ = (xQ)3 + a(xQ)2 + b in GF(2m), where the 1531
arithmetic is performed as dictated by the field representation parameter FR. 1532

 Success at this stage ensures that the public key is a point on the correct elliptic curve. 1533

4. Compute nQ (using elliptic curve arithmetic), and verify that nQ = Ø. 1534

 Success at this stage ensures that the public key has the correct order. Along with the 1535
successful verifications in the previous steps, this step ensures that the public key is 1536
in the correct elliptic-curve subgroup and is not the identity element. 1537

Output: If any of the above verifications fail, immediately output an error indicator and 1538
exit without further processing. Otherwise, output an indication of successful validation. 1539

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

45

5.6.2.3.4 ECC Partial Public-Key Validation Routine 1540
ECC partial public-key validation refers to the process of checking some (but not all) of the 1541
arithmetic properties of a candidate ECC public key to ensure that it has the expected 1542
representation for a non-identity element of the correct elliptic-curve group, as specified by 1543
the associated ECC domain parameters. ECC partial public-key validation omits the 1544
validation of subgroup membership4, and therefore, is usually faster than ECC full public- 1545
key validation. 1546

This routine shall only be used when assurance of partial public-key validity is acceptable 1547
for an ephemeral ECC public key. 1548

Input: 1549
1. (q, FR, a, b{, SEED}, G, n, h): A valid set of ECC domain parameters, and 1550
2. Q = (xQ, yQ): A candidate ECC public key. 1551

Process: 1552
1. Verify that Q is not the identity element Ø. 1553

 Success at this stage ensures that Q is not the identity element of the elliptic-curve 1554
group (which would never be the value of a properly generated public key). 1555

2. Verify that xQ and yQ are integers in the interval [0, p−1] in the case that q is an odd 1556
prime p, or that xQ and yQ are bit strings of length m bits in the case that q = 2m. 1557

Success at this stage ensures that each coordinate of the public key has the expected 1558
representation for an element in the underlying field, GF(q). 1559

3. Verify that Q is on the curve. In particular, 1560

• If q is an odd prime p, verify that (yQ) 2 = ((xQ)3 + axQ + b) mod p. 1561

• If q = 2m, verify that (yQ)2 + xQ yQ = (xQ)3 + a(xQ)2 + b in GF(2m), where the 1562
arithmetic is performed as dictated by the field representation parameter FR. 1563

 Together with the successful verifications in the previous steps, success at this stage 1564
ensures that the public key is a (finite) point on the correct elliptic curve. 1565

 (Note: Since its order is not verified, there is no check that the public key is in the 1566
correct elliptic curve subgroup. The cofactor multiplication employed by the ECC 1567
primitives used to compute a shared secret is intended to compensate for this 1568
omission.) 1569

Output: If any of the above verifications fail, immediately output an error indicator and exit 1570
without further processing. Otherwise, output an indication of validation success. 1571

4 In this Recommendation, co-factor multiplication is included in the ECC primitives for Diffie-Hellman and
MQV, which forces the computed group element into the appropriate subgroup.

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

46

5.6.3 Key Pair Management 1572

5.6.3.1 Common Requirements on Static and Ephemeral Key Pairs 1573

The following are common requirements on static and ephemeral ECC key pairs (see SP 1574
800-57): 1575

1. Each private/public key pair shall be correctly associated with its corresponding 1576
specific set of domain parameters. A key pair shall not be used with more than one 1577
set of domain parameters. 1578

2. Each key pair shall be generated as specified in Section 5.6.1. 1579

3. Private keys shall be protected from unauthorized access, disclosure, modification 1580
and substitution. 1581

4. Public keys shall be protected from unauthorized modification and substitution. This 1582
is often accomplished for static public keys by using public-key certificates that have 1583
been signed by a Certification Authority (CA). Ephemeral public keys may be 1584
protected during communication using digital signatures or other protocol-specific 1585
methods. 1586

5.6.3.2 Specific Requirements on Static Key Pairs 1587

The additional specific requirements for static key pairs are as follows: 1588
1. The owner of a static key pair shall confirm the validity of the key pair by obtaining 1589

assurance of the correct generation of the key pair, private and public-key validity, 1590
and pair-wise consistency. The owner shall know the methods used to provide/obtain 1591
these assurances. See Section 5.6.2.1 for further details. 1592

2. A recipient of a static public key shall be assured of the integrity and correct 1593
association of (a) the public key, (b) the set of domain parameters for that key, and 1594
(c) an identifier for the entity that owns the key pair (that is, the party with whom the 1595
recipient intends to establish a key). This assurance is often provided by verifying a 1596
public-key certificate that was signed by a trusted third party (for example, a CA), 1597
but may be provided by direct distribution of the keying material from the owner, 1598
provided that the recipient trusts the owner to do this. See Section 4.1. 1599

3. A recipient of a static public key shall obtain assurance of the validity of the public 1600
key. This assurance may be provided, for example, through the use of a public-key 1601
certificate if the CA obtains sufficient assurance of public-key validity as part of its 1602
certification process. See Section 5.6.2.2.1. 1603

4. A recipient of a static public key shall have assurance of the owner’s possession of 1604
the corresponding private key (see Section 5.6.2.2.3). The recipient shall know the 1605
method used to provide assurance to the recipient of the owner’s possession of the 1606
private key. This assurance may be provided, for example, using a public-key 1607
certificate if the CA obtains sufficient assurance of possession as part of its 1608
certification process. 1609

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

47

5. A static key pair may be used in more than one key-establishment scheme. However, 1610
one static public/private key pair shall not be used for different purposes (for 1611
example, a digital-signature key pair is not to be used for key establishment or vice 1612
versa; key-usage restrictions could be by a CA when generating certificates) with the 1613
following possible exception for ECC and FIPS 186-type FFC domain parameters: 1614
when requesting the (initial) certificate for a public static key-establishment key, the 1615
key-establishment private key associated with the public key may be used to sign the 1616
certificate request. See SP 800-57 on Key Usage for further information. A key-1617
establishment key pair generated using safe-prime domain parameters shall not ever 1618
be used for the generation of a digital signature. 1619

5.6.3.3 Specific Requirements on Ephemeral Key Pairs 1620

The additional specific requirements on ephemeral key pairs are as follows: 1621
1. An ephemeral private key shall be used in exactly one key-establishment transaction, 1622

with one exception: an ephemeral private key may be used in multiple DLC key-1623
transport transactions that are transporting identical secret keying material 1624
simultaneously (or within a short period of time; see the broadcast scenario in Section 1625
7). In either case, after its use, an ephemeral private key shall be destroyed as soon 1626
as possible. Until the private key is destroyed, its confidentiality shall be protected. 1627
An ephemeral private key shall not be backed up or archived. 1628

2. An ephemeral key pair should be generated as close to its time of use as possible. 1629
Ideally, an ephemeral key pair is generated just before the ephemeral public key is 1630
transmitted. 1631

3. The owner of an ephemeral key pair shall confirm the validity of the key pair by 1632
obtaining assurance of correct generation, private- and public-key validity, and pair-1633
wise consistency. The owner shall know the methods used to provide/obtain these 1634
assurances. These assurances can be obtained by the technique used by the owner to 1635
generate the ephemeral key pair. See Section 5.6.2.1 for further details. 1636

4. A recipient of an ephemeral public key shall have assurance of the full or partial 1637
validity of the public key as specified in Section 5.6.2.2.2. 1638

5. If a recipient of an ephemeral public key requires assurance that the claimed owner 1639
of that public key has possession of the corresponding private key, then, to obtain 1640
that assurance in compliance with this Recommendation, such assurance shall be 1641
obtained as specified in Section 5.6.2.2.4. Although other methods are sometimes 1642
used to provide such assurance, this Recommendation makes no statement as to their 1643
adequacy. 1644

5.7 DLC Primitives 1645

A primitive is a relatively simple operation that is defined to facilitate implementation in 1646
hardware or in a software subroutine. Each key-establishment scheme shall use exactly one 1647
DLC primitive. Each scheme in Section 6 shall use an appropriate primitive from the 1648
following list: 1649

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

48

1. The FFC DH primitive (see Section 5.7.1.1): This primitive shall be used by the 1650
dhHybrid1, dhEphem, dhHybridOneFlow, dhOneFlow and dhStatic schemes, which 1651
are based on finite field cryptography and the Diffie-Hellman algorithm. 1652

2. The ECC CDH primitive (called the Modified Diffie-Hellman primitive in ANS 1653
X9.63; see Section 5.7.1.2 below): This primitive shall be used by the Full Unified 1654
Model, Ephemeral Unified Model, One-Pass Unified Model, One-Pass Diffie-1655
Hellman and Static Unified Model schemes, which are based on elliptic curve 1656
cryptography and the Diffie-Hellman algorithm. 1657

3. The FFC MQV primitive (see Section 5.7.2.1): This primitive shall be used by the 1658
MQV2 and MQV1 schemes, which are based on finite field cryptography and the 1659
MQV algorithm. 1660

4. The ECC MQV primitive (see Section 5.7.2.3): This primitive shall be used by the 1661
Full MQV and One-Pass MQV schemes, which are based on elliptic curve 1662
cryptography and the MQV algorithm. 1663

The shared secret output from these primitives shall be used as input to a key-derivation 1664
method (see Section 5.8). 1665

5.7.1 Diffie-Hellman Primitives 1666

5.7.1.1 Finite Field Cryptography Diffie-Hellman (FFC DH) Primitive 1667

A shared secret Z is computed using the domain parameters (p, q, g{, SEED, counter}), the 1668
other party’s public key and one’s own private key. This primitive is used in Section 6 by 1669
the dhHybrid1, dhEphem, dhHybridOneFlow, dhOneFlow and dhStatic schemes. Assume 1670
that the party performing the computation is party A, and the other party is party B. Note that 1671
party A could be either party U or party V. 1672

Input: 1673
1. (p, q, g{, SEED, counter}): Domain parameters, 1674

2. xA : One’s own private key, and 1675

3. yB : The other party’s public key . 1676

Process: 1677

1. . 1678

2. If ((z ≤ 1) OR (z = p – 1)), destroy all intermediate values used in the attempted 1679
computation of Z (including z), then output an error indicator, and exit this process 1680
without further processing. 1681

3. Else, convert z to Z using the integer-to-byte-string conversion routine defined in 1682
Appendix C.1. 1683

pyz Ax
B mod=

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

49

4. Destroy the results of all intermediate calculations used in the computation of Z 1684
(including z). 1685

5. Output Z. 1686

Output: The shared secret Z or an error indicator. 1687

5.7.1.2 Elliptic Curve Cryptography Cofactor Diffie-Hellman (ECC CDH) 1688
Primitive 1689

A shared secret Z is computed using the domain parameters (q, FR, a, b{, SEED}, G, n, h), 1690
the other party’s public key, and one’s own private key. This primitive is used in Section 6 1691
by the Full Unified Model, Ephemeral Unified Model, One-Pass Unified Model, One-Pass 1692
Diffie-Hellman and Static Unified Model schemes. Assume that the party performing the 1693
computation is party A, and the other party is party B. Note that party A could be either party 1694
U or party V. 1695

Input: 1696
1. (q, FR, a, b{, SEED}, G, n, h): Domain parameters, 1697
2. dA : One’s own private key, and 1698

3. QB : The other party’s public key . 1699

Process: 1700
1. Compute the point P = hdAQB. 1701

2. If P = Ø, destroy all intermediate values used in the attempted computation of P, then 1702
output an error indicator, and exit this process without further processing. 1703

3. Else, set z = xP, where xP is the x-coordinate of P, and convert z to Z, using the field-1704
element-to-byte string conversion routine defined in Appendix C.2. 1705

4. Destroy the results of all intermediate calculations used in the computation of Z 1706
(including P and z). 1707

5. Output Z. 1708

Output: The shared secret Z or an error indicator. 1709

5.7.2 MQV Primitives 1710

5.7.2.1 Finite Field Cryptography MQV (FFC MQV) Primitive 1711

A shared secret Z is computed using the domain parameters (p, q, g{, SEED, pgenCounter}), 1712
the other party’s public keys and one’s own public and private keys. Assume that the party 1713
performing the computation is party A, and the other party is party B. Note that party A could 1714
be either party U or party V. 1715

Input: 1716
1. (p, q, g{, SEED, counter}): Domain parameters, 1717

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

50

2. xA : One’s own static private key, 1718

3. yB : The other party’s static public key, 1719

4. rA : One’s own second private key,5 1720

5. tA : One’s own second public key, and 1721

6. tB : The other party’s second public key. 1722

Process: 1723

1. . 1724

2. . 1725

3. . 1726

4. . 1727

5. . 1728

6. If ((z ≤ 1) OR (z = p – 1)), destroy all intermediate values (including TA, SA, and TB) 1729
used in the attempted computation of z, then output an error indicator, and exit this 1730
process without further processing. 1731

7. Else, convert z to Z using the integer-to-byte-string conversion routine defined in 1732
Appendix C.1. 1733

8. Destroy the results of all intermediate calculations used in the computation of Z 1734
(including TA, SA, TB, and z). 1735

9. Output Z. 1736

Output: The shared secret Z or an error indicator. 1737

5.7.2.1.1 MQV2 Form of the FFC MQV Primitive 1738
This form of invoking the FFC MQV primitive is used in Section 6.1.1.3 by the MQV2 1739
scheme. In this form, each party uses both a static key pair and an ephemeral key pair. 1740
Assume that the party performing the computation is party A, and the other party is party B. 1741
Note that party A could be either party U or party V. 1742

In this form, one’s own second private and public keys (items 4 and 5 of the input list in 1743
Section 5.7.2.1) are one’s own ephemeral private and public keys (rA and tA), and the other 1744
party’s second public key (item 6 in Section 5.7.2.1) is the other party’s ephemeral public 1745
key (tB). 1746

5 In the FFC MQV primitive, a second key may be either ephemeral or static, depending on which form of the
primitive is being used; see Sections 5.7.2.1.1 and 5.7.2.1.2.





= qw 2log
2
1

ww
AA tT 2)2mod(+=

qxTrS AAAA mod)(+=

ww
BB tT 2)2mod(+=

pytz AB ST
BB mod)))(((=

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

51

5.7.2.1.2 MQV1 Form of the FFC MQV Primitive 1747
This form of invoking the FFC MQV primitive is used in Section 6.2.1.3 by the MQV1 1748
scheme. In this form, party U uses a static key pair and an ephemeral key pair, but party V 1749
uses only a static key pair. One-Pass MQV uses the MQV primitive with party V’s static key 1750
pair as the second key pair (as party V has no ephemeral key pair). 1751

Party U uses party V’s static public key for the other party’s second public key; that is, when 1752
party U uses the algorithm in Section 5.7.2.1, item 6 of the input list is party V’s static public 1753
key (yB). 1754

Party V uses his/her static private key for the second private key; that is, when party V uses 1755
the algorithm in Section 5.7.2.1, item 4 of the input list is party V’s static private key xA, and 1756
item 5 becomes his static public key (yA). 1757

5.7.2.2 ECC MQV Associate Value Function 1758

The associate value function is used by the ECC MQV family of key-agreement schemes to 1759
compute an integer that is associated with an elliptic curve point. This Recommendation 1760
defines avf(Q) to be the associate value function of a public key Q using the domain 1761
parameters (q, FR, a, b{, SEED}, G, n, h). 1762

Input: 1763
1. (q, FR, a, b{, SEED}, G, n, h): Domain parameters, and 1764
2. Q: A public key (that is, Q is a point in the subgroup of order n and not equal to the 1765

identity element Ø). 1766

Process: 1767
1. Convert xQ to an integer xqi using the convention specified in Appendix C.3. 1768

2. Calculate 1769

xqm = xqi mod (where f =). 1770

3. Calculate the associate value function 1771

avf(Q) = xqm + . (See footnote6). 1772

Output: avf(Q), the associate value of Q. 1773

5.7.2.3 Elliptic Curve Cryptography MQV (ECC MQV) Primitive 1774

The ECC MQV primitive is computed using the domain parameters (q, FR, a, b{, SEED}, 1775
G, n, h), the other party’s public keys, and one’s own public and private keys. Assume that 1776
the party performing the computation is party A, and the other party is party B. Note that 1777
party A could be either party U or party V. 1778

Input: 1779

6 Note that avf(Q) can be computed using only bit operations.

 2/2 f  n2log

 2/2 f

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

52

1. (q, FR, a, b{, SEED}, G, n, h): Domain parameters, 1780
2. ds,A : One’s own static private key, 1781

3. Qs,B : The other party’s static public key, 1782

4. de,A : One’s own second private key,7 1783

5. Qe,A : One’s own second public key, and 1784

6. Qe,B : The other party’s second public key. 1785

Process: 1786
1. implicitsigA = (de,A + avf(Qe,A)ds,A) mod n. 1787

2. P = h(implicitsigA)(Qe,B + avf(Qe,B)Qs,B). 1788

3. If P = Ø, destroy all intermediate values used in the attempted computation of P, then 1789
output an error indicator, and exit this process without further processing. 1790

4. Else, set z = xP, where xP is the x-coordinate of P, and convert z to Z, using the field-1791
element-to-byte string conversion routine defined in Appendix C.2.” 1792

5. Destroy the results of all intermediate calculations used in the computation of Z 1793
(including P and z). 1794

6. Output Z. 1795

Output: The shared secret Z or an error indicator. 1796

5.7.2.3.1 Full MQV Form of the ECC MQV Primitive 1797
This form of invoking the ECC MQV primitive is used in Section 6.1.1.4 by the Full MQV 1798
scheme. In this form, each party has both a static key pair and an ephemeral key pair. Assume 1799
that the party performing the computation is party A, and the other party is party B. Note that 1800
party A could be either party U or party V. 1801

In this form, one’s own second private and public keys (item 4 and 5 of the input list in 1802
Section 5.7.2.3) are one’s own ephemeral private and public keys (de,A and Qe,A), and the 1803
other party’s second public key (item 6 of the input list in Section 5.7.2.3) is the other party’s 1804
ephemeral public key (Qe,B). 1805

5.7.2.3.2 One-Pass Form of the ECC MQV Primitive 1806
This form of invoking the ECC MQV primitive is used in Section 6.2.1.4 by the One-Pass 1807
MQV scheme. In this form, party U has a static key pair and an ephemeral key pair, but party 1808
V has only a static key pair. One-Pass MQV uses the MQV primitive with party V’s static 1809
key pair as the second key pair (as party V has no ephemeral keys). 1810

7 In the ECC MQV primitive, a second key may be either ephemeral or static, depending on which form of
the primitive is being used; see Sections 5.7.2.3.1 and 5.7.2.3.2.

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

53

Party U uses party V’s static public key as the other party’s second public key. When party 1811
U uses the algorithm in Section 5.7.2.3, item 6 of the input list is party V’s static public key 1812
(Qs,B). 1813

Party V uses his static private key as his second private key. When party V uses the algorithm 1814
in Section 5.7.2.3, item 4 of the input list is V’s static private key ds,A, and item 5 is his static 1815
public key (Qs,A). 1816

5.8 Key-Derivation Methods for Key-Agreement Schemes 1817

An approved key-derivation method shall be used to derive keying material from the shared 1818
secret, Z, that is computed during the execution of a key-agreement scheme specified in this 1819
Recommendation. The shared secret shall be used only by an approved key-derivation 1820
method and shall not be used for any other purpose. 1821

When employed during the execution of a key-agreement scheme as specified in this 1822
Recommendation, the agreed-upon key-derivation method uses input that includes a freshly 1823
computed shared secret Z, along with other information. The derived keying material shall 1824
be computed in its entirety before outputting any portion of it, and (each copy of) Z shall be 1825
treated as a critical security parameter and destroyed immediately following its use. 1826

The output produced by a key-derivation method using input that includes the shared secret 1827
computed during the execution of any key-agreement scheme specified in this 1828
Recommendation shall only be used as secret keying material – such as a symmetric key 1829
used for data encryption or message integrity, a secret initialization vector, or, perhaps, a 1830
key-derivation key that will be used to generate additional keying material (possibly using a 1831
different process – see SP 800-108). The derived keying material shall not be used as a key 1832
stream for a stream cipher. Non-secret keying material (such as a non-secret initialization 1833
vector) shall not be generated using a key-derivation method that includes the shared secret, 1834
Z, as input (this restriction applies to all one-step and two-step key-derivation methods). 1835

5.8.1 Performing the Key Derivation 1836
Approved methods for key derivation from a shared secret are specified in SP 800-56C. 1837
These methods can be accessed using the following call: 1838

KDM(Z, OtherInput), 1839

where 1840
1. Z is a byte string that represents the shared secret, 1841
2. OtherInput consists of additional input information that may be required by a given 1842

key-derivation method, for example: 1843

• L − an integer that indicates the length (in bits) of the secret keying material to be 1844
derived. 1845

• salt − a byte string. 1846

• IV – a bit string used as an initialization value. 1847

• FixedInfo – a bit sting of context-specific data (see Section 5.8.2). 1848

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

54

See SP 800-56C for details concerning the appropriate form of OtherInput. 1849

5.8.2 FixedInfo 1850
The bit string FixedInfo should be used to ensure that the derived keying material is 1851
adequately “bound” to the context of the key-agreement transaction. Although other methods 1852
may be used to bind keying material to the transaction context, this Recommendation makes 1853
no statement as to the adequacy of these other methods. Failure to adequately bind the 1854
derived keying material to the transaction context could adversely affect the types of 1855
assurance that can be provided by certain key-agreement schemes. 1856

Context-specific information that may be appropriate for inclusion in FixedInfo: 1857

• Public information about parties U and V, such as their identifiers. 1858

• The public keys contributed by each party to the key-agreement transaction. (In the 1859
case of a static public key, one could include a certificate that contains the public 1860
key.) 1861

• Other public and/or private information shared between parties U and V before or 1862
during the transaction, such as nonces or pre-shared secrets. 1863

• An indication of the protocol or application employing the key-derivation method. 1864

• Protocol-related information, such as a label or session identifier. 1865

• Agreed-upon encodings (as bit strings) of the values of one or more of the other 1866
parameters used as additional input to the KDM (e.g., L, salt, and/or IV). 1867

• An indication of the key-agreement scheme and/or key-derivation method used. 1868

• An indication of the domain parameters associated with the asymmetric key pairs 1869
employed for key establishment. 1870

• An indication of other parameter or primitive choices (e.g., the agreed-upon 1871
hash/MAC algorithms, the bit lengths of any MAC tags used for key confirmation, 1872
etc.). 1873

• An indication of how the derived keying material should be parsed, including an 1874
indication of which algorithm(s) will use the (parsed) keying material. 1875

For rationale in support of including entity identifiers, scheme identifiers, and/or other 1876
information in FixedInfo, see Appendix B. 1877

When FixedInfo is used, the meaning of each information item and each item’s position 1878
within the FixedInfo bit string shall be specified. In addition, each item of information 1879
included in FixedInfo shall be unambiguously represented. For example, each item of 1880
information could take the form of a fixed-length bit string, or, if greater flexibility is needed, 1881
an item of information could be represented in a Datalen || Data format, where Data is a 1882
variable-length string of zero or more (eight-bit) bytes, and Datalen is a fixed-length, big-1883
endian counter that indicates the length (in bytes) of Data. These requirements can be 1884
satisfied, for example, by using ASN.1 DER encoding for FixedInfo, as specified in Section 1885
5.8.2.1.2. 1886

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

55

SP 800-56C specifies both one-step key-derivation methods (i.e., key-derivation functions) 1887
and two-step key-derivation methods (i.e., key-derivation procedures). The following 1888
subsections discuss possibilities for the form and format of FixedInfo when it is used by those 1889
approved key-derivation methods. 1890

5.8.2.1 One-step Key Derivation 1891

Recommended formats for FixedInfo when used by a one-step key-derivation method are 1892
specified in Sections 5.8.2.1.1 and 5.8.2.1.2. One of those two formats should be used by a 1893
one-step key-derivation method specified in SP 800-56C when the auxiliary function 1894
employed is H = hash. 1895

When FixedInfo is included during the key-derivation process, and the recommended formats 1896
are used, the included items of information shall be divided into (three, four, or five) 1897
subfields as defined below. 1898

AlgorithmID: A required non-null subfield that indicates how the derived keying material 1899
will be parsed and for which algorithm(s) the derived secret keying material will be used. 1900
For example, AlgorithmID might indicate that bits 1-112 are to be used as a 112-bit 1901
HMAC key and that bits 113-240 are to be used as a 128-bit AES key. 1902

PartyUInfo: A required non-null subfield containing public information about party U. 1903
At a minimum, PartyUInfo shall include IDU, an identifier for party U, as a distinct item 1904
of information. This subfield could also include information about the public key(s) 1905
contributed to the key-agreement transaction by party U. The nonce provided by party U 1906
as required in a C(0e, 2s) scheme (see Section 6.3) shall be included in this subfield. 1907

PartyVInfo: A required non-null subfield containing public information about party V. 1908
At a minimum, PartyVInfo shall include IDV, an identifier for party V, as a distinct item 1909
of information. This subfield could also include information about the public key(s) 1910
contributed to the key-agreement transaction by party V. The nonce provided by party V 1911
when acting as a key-confirmation recipient in a C(1e, 2s) scheme or a C(0e, 2s) scheme 1912
shall be included in this field (see Sections 6.2.1.5 and 6.3.3). 1913

SuppPubInfo: An optional subfield that contains additional, mutually known public 1914
information (e.g., L, the domain parameters associated with the keys used to derive the 1915
shared secret, an identifier for the particular key-agreement scheme that was used to form 1916
Z, an indication of the protocol or application employing that scheme, a session identifier, 1917
etc.; this is particularly useful if these aspects of the key-agreement transaction can vary 1918
– see Appendix B for further discussion). While an implementation may be capable of 1919
including this subfield, the subfield may be null for a given transaction. 1920

SuppPrivInfo: An optional subfield that contains additional, mutually known private 1921
information (e.g., a shared secret symmetric key that has been communicated through a 1922
separate channel or established by other means). While an implementation may be 1923
capable of including this subfield, the subfield may be Null for a given transaction. 1924

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

56

 5.8.2.1.1 The Concatenation Format for FixedInfo 1925
This section specifies the concatenation format for FixedInfo. This format has been designed 1926
to provide a simple means of binding the derived keying material to the context of the key-1927
agreement transaction, independent of other actions taken by the relying application. Note: 1928
When the one-step key-derivation method specified in SP 800-56C is used with H = hash as 1929
the auxiliary function and this concatenation format for FixedInfo, the resulting key-1930
derivation method is the Concatenation Key-Derivation Function specified in the original 1931
version of SP 800-56A. 1932

For this format, FixedInfo is a bit string equal to the following concatenation: 1933

 AlgorithmID || PartyUInfo || PartyVInfo {|| SuppPubInfo }{|| SuppPrivInfo }, 1934

where the five subfields are bit strings comprised of items of information as described in 1935
Section 5.8.2. 1936

Each of the three required subfields AlgorithmID, PartyUInfo, and PartyVInfo shall be the 1937
concatenation of a pre-determined sequence of substrings in which each substring represents 1938
a distinct item of information. Each such substring shall have one of these two formats: either 1939
it is a fixed-length bit string, or it has the form Datalen || Data – where Data is a variable-1940
length string of zero or more (eight-bit) bytes, and Datalen is a fixed-length, big-endian 1941
counter that indicates the length (in bytes) of Data. (In this variable-length format, a null 1942
string of data shall be represented by a zero value for Datalen, indicating the absence of 1943
following data.) A protocol using this format for FixedInfo shall specify the number, 1944
ordering and meaning of the information-bearing substrings that are included in each of the 1945
subfields AlgorithmID, PartyUInfo, and PartyVInfo, and shall also specify which of the two 1946
formats (fixed-length or variable-length) is used by each such substring to represent its 1947
distinct item of information. The protocol shall specify the lengths for all fixed-length 1948
quantities, including the Datalen counters. 1949

Each of the optional subfields SuppPrivInfo and SuppPubInfo (when allowed by the protocol 1950
employing the one-step key-derivation method) shall be the concatenation of a pre-1951
determined sequence of substrings representing additional items of information that may be 1952
used during key derivation upon mutual agreement of parties U and V. Each substring 1953
representing an item of information shall be of the form Datalen || Data, where Data is a 1954
variable-length string of zero or more (eight-bit) bytes and Datalen is a fixed-length, big-1955
endian value that indicates the length (in bytes) of Data; the use of this form for the 1956
information allows parties U and V to omit an information item without confusion about the 1957
meaning of the other information that is provided in the SuppPrivInfo or SuppPubInfo 1958
subfield. The substrings representing items of information that parties U and V choose not 1959
to contribute are set equal to Null, and are represented in this variable-length format by 1960
setting Datalen equal to zero. If a protocol allows the use of the SuppPrivInfo and/or 1961
SuppPubInfo subfield(s), then the protocol shall specify the number, ordering and meaning 1962
of additional items of information that may be used in the allowed subfield(s) and shall 1963
specify the fixed-length of the Datalen values. 1964

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

57

5.8.2.1.2 The ASN.1 Format for FixedInfo 1965
The ASN.1 format for FixedInfo provides an alternative means of binding the derived keying 1966
material to the context of the key-agreement transaction, independent of other actions taken 1967
by the relying application. Note: When the one-step key-derivation method specified in SP 1968
800-56C is used with H = hash as the auxiliary function and this ASN.1 format for FixedInfo, 1969
the resulting key-derivation method is the ASN.1 Key-Derivation Function specified in the 1970
original version of SP 800-56A. 1971
For the ASN.1 format, FixedInfo is a bit string resulting from the ASN.1 DER encoding (see 1972
ISO/IEC 8825-1) of a data structure comprised of a sequence of three required subfields 1973
AlgorithmID, PartyUInfo, and PartyVInfo, and, optionally, a subfield SuppPubInfo and/or a 1974
subfield SuppPrivInfo – as described in Section 5.8.2. A protocol using this format for 1975
FixedInfo shall specify the type, ordering and number of distinct items of information 1976
included in each of the (three, four, or five) subfields employed. 1977

5.8.2.2 Two-step Key-Derivation (Extraction-then-Expansion) 1978

For the two-step key-derivation method specified in SP 800-56C, FixedInfo is a bit string 1979
that contains component data fields such as a Label, Context information, and [L]2, where: 1980

• Label is a binary string that identifies the purpose of the derived keying material. The 1981
encoding method for the label is defined in a larger context, for example, in a protocol 1982
using the derivation method. 1983

• Context is a binary string containing information relating to the derived keying 1984
material. Section 5.8.2 provides a list of context-specific information that may be 1985
appropriate for the inclusion in this string. 1986

• [L]2 is a binary string that specifies the length (in bits) of the keying material to be 1987
derived. 1988

Different orderings of the component data fields of FixedInfo may be used, and one or more of 1989
the data fields may be combined (or omitted under certain circumstances). See Section 5 in SP 1990
800-56C, and Sections 5, 7.4, 7.5 and 7.6 in SP 800-108 for details 1991

5.8.2.3 Other Formats for FixedInfo 1992

Formats other than those provided in Sections 5.8.2.1 and 5.8.2.2 (e.g., those providing the 1993
items of information in a different arrangement) may be used for FixedInfo, but context-1994
specific information should be included (see the discussion in Section 5.8.2). This 1995
Recommendation makes no statement as to the adequacy of other formats. 1996

5.9 Key Confirmation 1997

The term key confirmation (KC) refers to actions taken to provide assurance to one party (the 1998
key-confirmation recipient) that another party (the key-confirmation provider) is in 1999
possession of a (supposedly) shared secret and/or confirm that the other party has the correct 2000
version of keying material that was derived or transported during a key-establishment 2001
transaction. (Correct, that is, from the perspective of the key-confirmation recipient.) Such 2002
actions are said to provide unilateral key confirmation when they provide this assurance to 2003

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

58

only one of the participants in the key-establishment transaction; the actions are said to 2004
provide bilateral key confirmation when this assurance is provided to both participants (i.e., 2005
when unilateral key confirmation is provided in both directions). 2006

Oftentimes, key confirmation is obtained (at least implicitly) by some means external to the 2007
key-establishment scheme employed during a transaction (e.g., by using a symmetric key 2008
that was established during the transaction to decrypt an encrypted message sent later by the 2009
key-confirmation provider), but this is not always the case. In some circumstances, it may be 2010
appropriate to incorporate the exchange of explicit key-confirmation information as an 2011
integral part of the key-establishment scheme itself. The inclusion of key confirmation may 2012
enhance the security services that can be offered by a key-establishment scheme. For 2013
example, when certain key-agreement schemes incorporate key confirmation (as described 2014
in this Recommendation), they can be used to provide the recipient with assurance that the 2015
provider is in possession of the private key corresponding to a particular public key, from 2016
which the recipient may infer that the provider is the owner of that key pair (see Sections 2017
5.6.2.2.3 and 5.6.2.2.4). 2018

For key confirmation to comply with this Recommendation, key confirmation shall be 2019
incorporated into an approved key-establishment scheme as specified in Sections 5.9.1 and 2020
5.9.2 for keying material derived during the execution of a key-agreement scheme, and in 2021
Section 7.2 for keying material transported during a key-transport scheme. 2022

5.9.1 Unilateral Key Confirmation for Key-Agreement Schemes 2023
As specified in this Recommendation, unilateral key confirmation occurs when one 2024
participant in the execution of a key-agreement scheme (the key-confirmation “provider”) 2025
demonstrates to the satisfaction of the other participant (the key-confirmation “recipient”) 2026
that both the provider and the recipient have possession of the same secret MacKey. 2027

MacKey is a symmetric key derived using the (shared) secret Z that was computed by each 2028
party during that particular execution of the key-agreement scheme (see Section 5.8 for key-2029
derivation methods). MacKey and certain context-specific MacData (see step 2 below) are 2030
used by the provider as input to an approved MAC algorithm to obtain a MacTag that is sent 2031
to the recipient. The recipient performs an independent computation of the MacTag. If the 2032
MacTag value computed by the key-confirmation recipient matches the MacTag value 2033
received from the key-confirmation provider, then key confirmation is successful. See 2034
Section 5.2 for MacTag generation and verification, and Section 5.9.3 for a MacTag security 2035
discussion. 2036

Successful key confirmation provides assurance to the recipient that the same Z value has 2037
been computed by both parties and that the two parties have used Z in the same way to derive 2038
shared keying material. 2039

Unilateral key confirmation is an optional feature that can be incorporated into any key-2040
agreement scheme in which the key-confirmation provider is required to own a static key-2041
establishment key pair that is used in the key-establishment process. If the intended key-2042
confirmation recipient is not required to contribute an ephemeral public key to the key-2043
establishment process, then the recipient shall instead contribute a nonce that is used as part 2044

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

59

of the input to the key-derivation method employed by the scheme. Each party shall have an 2045
identifier, chosen in accordance with the assumptions stated for the key-agreement scheme. 2046

To include unilateral key confirmation from a provider (who has a static key pair) to a 2047
recipient, the following steps shall be incorporated into the scheme. Additional details will 2048
be provided for each scheme in the appropriate subsections of Section 6. In the discussion 2049
that follows, the key-confirmation provider, P, may be either party U or party V, as long as 2050
P has a static key pair. The key-confirmation recipient, R, is the other party. 2051

1. If the recipient, R, is not required to generate an ephemeral key pair as part of the 2052
key-agreement scheme, then R shall contribute a random nonce to be used (in 2053
addition to the shared secret Z) as input to the key-derivation method employed by 2054
the scheme; that nonce will also be used as part of the ephemeral data input to the 2055
MAC tag computations performed during key conformation. See Section 5.4 for a 2056
discussion of the length and security strength required for the nonce. 2057

2. The provider, P, computes 2058

 MacDataP = message_stringP || IDP || IDR || EphemDataP || EphemDataR {|| TextP} 2059

where 2060

- message_stringP is a six byte string with a value of “KC_1_U” when party U is 2061
providing the MacTag, or “KC_1_V” when party V is providing the MacTag. 2062
(Note that these values will be changed for bilateral key confirmation, as specified 2063
in Section 5.9.2.) 2064

- IDP is the identifier used to label the key-confirmation provider. 2065

- IDR is the identifier used to label the key-confirmation recipient. 2066

- EphemDataP and EphemDataR are ephemeral values (corresponding to 2067
ephemeral public keys or nonces) contributed by the provider and recipient, 2068
respectively. The ephemeral data is specified in the subsections of Section 6 that 2069
describe how key confirmation can be incorporated into the particular schemes 2070
included in this Recommendation. 2071

o EphemDataP is Null only in the case that the provider has contributed neither 2072
an ephemeral public key nor a nonce during the scheme. For example, in a 2073
C(1e, 2s) scheme with unilateral key confirmation from party V to party U as 2074
introduced in Section 6.2.1.5.2, party V only contributes a static key pair; in 2075
this case, EphemDataV can be Null. 2076

o When EphemDatai, (where i is P or R) is an ephemeral public key, the public 2077
key EphemPubKeyi is a byte string determined as follows: 2078

For FFC schemes, i’s ephemeral public key, ti, is converted from a field 2079
element in GF(p) to a byte string by representing the field element as an 2080
integer in the interval [2, p − 2], and then converting the integer to a byte 2081
string as specified in Appendix C.1. 2082

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

60

For ECC schemes, the coordinates of i’s ephemeral public key, Qe,i, are 2083
converted from field elements to byte strings as specified in Appendix C.2 2084
and concatenated (with the x coordinate first) to form a single byte string. 2085

- TextP is an optional bit string that may be used during key confirmation and that 2086
is known by both parties. 2087

The content of each of the components that are concatenated to form MacDataP shall 2088
be precisely defined and unambiguously represented. A component’s content may be 2089
represented, for example, as a fixed-length bit string or in the form Datalen || Data, 2090
where Data is a variable-length string of zero or more (eight-bit) bytes, and Datalen 2091
is a fixed-length, big-endian counter that indicates the length (in bytes) of Data. 2092
These requirements could also be satisfied by using a specific ASN.1 DER encoding 2093
of each component. It is imperative that the provider and recipient have agreed upon 2094
the content and format that will be used for each component of MacDataP. 2095

3. After computing the shared secret Z and applying the key-derivation method to obtain 2096
DerivedKeyingMaterial (see Section 5.8 and SP 800-56C), the provider uses agreed-2097
upon bit lengths to parse DerivedKeyingMaterial into two parts, MacKey and 2098
KeyData, of the pre-agreed lengths: 2099

 MacKey || KeyData = DerivedKeyingMaterial. 2100

4. Using an agreed-upon bit length MacTagLen, the provider computes MacTagP (see 2101
Sections 5.2.1 and 5.9.3): 2102

 MacTagP = TMacTagLen[MAC (MacKey, MacDataP)], 2103

and sends it to the recipient. 2104

5. The recipient forms MacDataP, determines MacKey, computes MacTagP in the same 2105
manner as the provider, and then verifies that the computed MacTagP is equal to the 2106
value received from the provider. If the values are equal, then the recipient is assured 2107
that the provider has derived the same value for MacKey and that the provider shares 2108
the recipient’s value of MacDataP. The assurance of a shared value for MacKey 2109
provides assurance to the recipient that the provider also shares the secret value (Z) 2110
from which MacKey and KeyData are derived. Thus, the recipient also has assurance 2111
that the provider could compute KeyData correctly. 2112

Both parties shall destroy the MacKey once it is no longer needed to provide or obtain key 2113
confirmation. 2114

If, during a key-agreement transaction, it happens that MacTagP cannot be verified by the 2115
recipient, then key confirmation has failed, and all of the derived keying material (MacKey 2116
and KeyData) shall be destroyed by each participant. In particular, DerivedKeyingMaterial 2117
shall not be revealed by either participant to any other party (not even to the other 2118
participant), and the derived keying material shall not be used for any further purpose. In the 2119
case of a key-confirmation failure, the key-agreement transaction shall be discontinued. 2120

Unilateral key confirmation may be added in either direction to any of the C(2e, 2s), C(1e, 2121
2s) and C(0e, 2s) schemes; it may also be added to the C(1e, 1s) schemes, but only when 2122

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

61

party V (the party contributing the static key pair) is the key-confirmation provider, and party 2123
U is the key-confirmation recipient. See the relevant subsections of Section 6. 2124

5.9.2 Bilateral Key Confirmation for Key-Agreement Schemes 2125
Bilateral key confirmation is an optional feature that can be incorporated into any key-2126
agreement scheme in which each party is required to own a static key-establishment key pair 2127
that is used in the key-establishment process. Bilateral key confirmation is accomplished by 2128
performing unilateral key confirmation in both directions (with party U providing MacTagU 2129
to recipient party V, and party V providing MacTagV to recipient party U) during the same 2130
key-agreement transaction. If a party is not also required to contribute an ephemeral public 2131
key to the key-establishment process, then that party shall instead contribute a random nonce 2132
that is used as part of the input to the key-derivation method employed by the scheme; the 2133
nonce will also be used as part of the ephemeral data input to the MAC tag computations 2134
performed during key conformation. See Section 5.4 for a discussion of the length and 2135
security strength required for the nonce. Each party is required to have an identifier, chosen 2136
in accordance with the assumptions stated for the key-agreement scheme. 2137

To include bilateral key confirmation, two instances of unilateral key confirmation (as 2138
specified in Section 5.9.1.1, subject to the modifications listed below) shall be incorporated 2139
into the scheme, once with party U as the key-confirmation provider (i.e., P = U and R = V) 2140
and once with party V as the provider (i.e., P = V and R = U). Additional details will be 2141
provided for each scheme in the appropriate subsections of Section 6. 2142

In addition to setting P = U and R = V in one instance of the unilateral key-confirmation 2143
procedure described in Section 5.9.1.1 and setting P = V and R = U in a second instance, the 2144
following changes/clarifications apply when using the procedure for bilateral key 2145
confirmation: 2146

1. When computing MacTagU, the value of the six-byte message_stringU that forms the 2147
initial segment of MacDataU is “KC_2_U”. 2148

2. When computing MacTagV, the value of the six-byte message_stringV that forms the 2149
initial segment of MacDataV is “KC_2_V”. 2150

3. If used at all, the value of the (optional) byte string TextU used to form the final 2151
segment of MacDataU can be different than the value of the (optional) byte string 2152
TextV used to form the final segment of MacDataV, provided that both parties are 2153
aware of the value(s) used. 2154

Bilateral key confirmation may be added to the C(2e, 2s), C(1e, 2s) and C(0e, 2s) schemes, 2155
as specified in the relevant subsections of Section 6. 2156

5.9.3 Selecting the MAC and Other Key-Confirmation Parameters 2157
Key confirmation as specified in this Recommendation requires that a MacKey of an 2158
appropriate length be generated as part of the derived keying material (see Section 5.9.1). 2159
The MacKey is then used with a MAC algorithm to generate a MAC; the length of the MAC 2160
output by the MAC algorithm is MacOutputLen bits. The MAC is subsequently used to form 2161
a MAC tag (see Section 5.9.1 for the generation of the MAC and Section 5.2.1 for the 2162
formation of the MAC tag from the MAC). 2163

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

62

Table 5 provides a list of approved MAC algorithms for key confirmation and the security 2164
strengths that each can support, along with the corresponding value of MacOutputLen and 2165
permissible MacKey lengths for each MAC algorithm. 2166

Table 5: Approved MAC Algorithms for Key Confirmation. 2167

MAC Algorithm MacOutputLen
(in bits)

Permissable
MacKey Lengths

(µ bits)

Supported Security
Strengths for Key

Conformation
HMAC(SHA-1) 160

112 ≤ µ ≤ 512
(µ ≥ s is

recommended)

112, 128, 192, 256

HMAC(SHA-224) 224
HMAC(SHA-256) 256
HMAC(SHA-512/224) 224
HMAC(SHA-512/256) 256
HMAC(SHA-384) 384
HMAC(SHA-512) 512
HMAC(SHA3-224) 224
HMAC(SHA3-256) 256
HMAC(SHA3-384) 384
HMAC(SHA3-512) 512
KMAC128 Choose

MacOutputLen
L,

L ≤ 22040 – 1 (see
* below)

112, 128
KMAC256 112, 128, 192, 384,

256

AES-128-CMAC 128 µ = 128 112, 128
AES-192-CMAC 128 µ = 192 112, 128, 192
AES-256-CMAC 128 µ = 256 112, 128, 192, 256

* Although KMAC128 and KMAC256 can accommodate MacOutputLen values as 2168
large as 22040 − 1, practical considerations dictate that the lengths of transmitted MAC 2169
tags be limited to sizes that are more realistic and commensurate with the actual 2170
performance/security requirements of the relying applications. 2171

Note that Table 5 requires a minimum MacKey length of 112 bits, but recommends that a 2172
MacKey length of at least s bits be used, where s is the targeted security strength of the 2173
preceding steps of the key-establishment scheme. The lower bound for the MacKey length is 2174
set to 112 bits even when the targeted security strength for the key-establishment transaction 2175
is greater than 112 bits because, for key confirmation, each MacKey is used only once, and 2176
offline attacks are not considered to be a threat. Note that upper bounds have been placed on 2177
the MacKey lengths that are stricter than those appearing in the MAC algorithm 2178
specifications. In the case of HMAC, if MacKey is longer than the input block length, it 2179
would be hashed down to MacOutputLen bits during the HMAC computation (see step 2 in 2180
Table 1 of FIPS 198); making MacKey longer than the input block length would not be an 2181
efficient way of using the derived keying material, from which MacKey is obtained. 2182

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

63

For the same reason, any approved MAC algorithm is allowed for key confirmation for the 2183
range of acceptable security strengths. However, the MAC algorithm shall be selected from 2184
among those capable of supporting a security strength that is at least as strong as the targeted 2185
key-establishment security strength s. 2186

The length of the MAC tag also needs to be selected for key confirmation. Note that in many 2187
cases, the length of the MAC tag (MacTagLen) has been selected by the protocol in which 2188
the key-establishment is conducted. This Recommendation requires that MacTagLen be at 2189
least 64 bits, and its maximum length be no more than the MacOutputLen for the MAC 2190
algorithm selected for key confirmation. The 64-bit minimum for the MAC tag length 2191
assumes that the protocol imposes a limit on the number of retries for key confirmation. 2192

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

64

6. Key Agreement 2193

This Recommendation provides three categories of key-agreement schemes (see Table 6). 2194
The classification of the categories is based on the number of ephemeral keys used by the 2195
two parties to the key-agreement process, parties U and V. In category C(ie), parties U and 2196
V have a total of i ephemeral key pairs. The first category, C(2e), consists of schemes 2197
requiring the generation of ephemeral key pairs by both parties; a C(2e) scheme is suitable 2198
for an interactive key-establishment protocol. The second category, C(1e), consists of 2199
schemes requiring the generation of an ephemeral key pair by only one party; a C(1e) scheme 2200
is suitable for a store-and-forward scenario, but may also be used in an interactive key-2201
establishment protocol. The third category, C(0e), consists of schemes that do not use 2202
ephemeral keys. 2203

Key confirmation may be added to many of these schemes to provide assurance that the 2204
participants share the same keying material; see Section 5.9 for details on key confirmation. 2205
Each party should have such assurance. Although other methods are often used to provide 2206
this assurance, this Recommendation makes no statement as to the adequacy of these other 2207
methods. 2208

Table 6: Key-agreement scheme categories. 2209

Category Comment

C(2e): Two ephemeral key pairs Each party generates an ephemeral key pair.

C(1e): One ephemeral key pair Only party U generates an ephemeral key pair.

C(0e): Zero ephemeral key pairs No ephemeral keys are used.

Each category is comprised of one or more subcategories that are classified by the use of 2210
static keys by the parties (see Table 7). In subcategory C(ie, js), parties U and V have a total 2211
of i ephemeral key pairs and j static key pairs. The suitability for interactive or store-and-2212
forward protocols of each subcategory is discussed in Section 8. 2213

Table 7: Key-agreement scheme subcategories. 2214

Category Subcategory

C(2e): Two ephemeral key
pairs

C(2e, 2s): Each party generates an ephemeral key pair and
uses a static key pair.

C(2e, 0s): Each party generates an ephemeral key pair; no
static key pairs are used.

C(1e): One ephemeral key
pair

C(1e, 2s): Party U generates an ephemeral key pair and uses
a static key pair; party V uses only a static key pair.

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

65

Category Subcategory

 C(1e, 1s): Party U generates an ephemeral key pair, but
uses no static key pair; party V uses only a static key pair.

C(0e): Zero ephemeral key
pairs

C(0e, 2s): Each party uses only a static key pair.

The schemes may be further classified by whether they use finite field cryptography (FFC) 2215
or elliptic curve cryptography (ECC). A scheme may use either Diffie-Hellman or MQV 2216
primitives (see Section 5.7). Thus, for example, notation C(2e, 2s, FFC DH) completely 2217
classifies the dhHybrid1 scheme of Section 6.1.1.1 as a scheme with two ephemeral keys and 2218
two static keys that uses finite field cryptography and a Diffie-Hellman primitive (see Table 2219
8). The names of these schemes are taken from ANS X9.42 and ANS X9.63. 2220

Table 8: Key-agreement schemes. 2221

Category Subcategory Primitive Scheme Notation

C(2e) C(2e, 2s) FFC DH dhHybrid1 C(2e, 2s, FFC DH)

C(2e) C(2e, 2s) ECC CDH (Cofactor) Full Unified
Model

C(2e, 2s, ECC CDH)

C(2e) C(2e, 2s) FFC MQV MQV2 C(2e, 2s, FFC
MQV)

C(2e) C(2e, 2s) ECC MQV Full MQV C(2e, 2s, ECC
MQV)

C(2e) C(2e, 0s) FFC DH dhEphem C(2e, 0s, FFC DH)

C(2e) C(2e, 0s) ECC CDH (Cofactor) Ephemeral
Unified Model

C(2e, 0s, ECC CDH)

C(1e) C(1e, 2s) FFC DH dhHybridOneFlow C(1e, 2s, FFC DH)

C(1e) C(1e, 2s) ECC CDH (Cofactor) One-Pass
Unified Model

C(1e, 2s, ECC CDH)

C(1e) C(1e, 2s) FFC MQV MQV1 C(1e, 2s, FFC
MQV)

C(1e) C(1e, 2s) ECC MQV One-Pass MQV C(1e, 2s, ECC
MQV)

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

66

Category Subcategory Primitive Scheme Notation

C(1e) C(1e, 1s) FFC DH dhOneFlow C(1e, 1s, FFC DH)

C(1e) C(1e, 1s) ECC CDH (Cofactor) One-Pass
Diffie-Hellman

C(1e, 1s, ECC CDH)

C(0e) C(0e, 2s) FFC DH dhStatic C(0e, 2s, FFC DH)

C(0e) C(0e, 2s) ECC CDH (Cofactor) Static Unified
Model

C(0e, 2s, ECC CDH)

Each party in a key-agreement process shall use the same set of valid domain parameters. 2222
These parameters shall be established, and assurance of their validity shall be obtained prior 2223
to the generation of key pairs and the initiation of the key-agreement process. See Section 2224
5.5 for a discussion of domain parameters. 2225

If party U uses a static key pair in a key-agreement transaction, then party U shall have an 2226
identifier, IDU, that has an association with the static key pair that is known (or discoverable) 2227
and trusted by party V (i.e., there shall be a trusted association between IDU and party U’s 2228
static public key). If party U does not contribute a static public key as part of a key-agreement 2229
transaction, then IDU (if required for that transaction) is a non-null identifier selected in 2230
accordance with the relying application/protocol. Similar rules apply to Party V’s identifier, 2231
IDV. 2232

A general flow diagram is provided for each subcategory of schemes. The dotted-line arrows 2233
represent the distribution of static public keys that may be distributed by the parties 2234
themselves or by a third party, such as a Certification Authority (CA). The solid-line arrows 2235
represent the distribution of ephemeral public keys or nonces that occur during the key-2236
agreement or key-confirmation process. Note that the flow diagrams in this Recommendation 2237
omit explicit mention of various validation checks that are required. The flow diagrams and 2238
descriptions in this Recommendation assume a successful completion of the key-2239
establishment process. The error conditions are handled in the process text. 2240

For each scheme, there are conditions that must be satisfied to enable proper use of that 2241
scheme. These conditions are listed as the assumptions. Failure to meet all such conditions 2242
could yield undesirable results, such as the inability to communicate or the loss of security. 2243
As part of the proper implementation of this Recommendation, system users and/or agents 2244
trusted to act on their behalf (including application developers, system installers, and system 2245
administrators) are responsible for ensuring that all assumptions are satisfied at the time a 2246
key-establishment transaction takes place. 2247

6.1 Schemes Using Two Ephemeral Key Pairs, C(2e) 2248

In this category, each party generates an ephemeral key pair and sends the ephemeral public 2249
key to the other party. This category consists of two subcategories that are determined by the 2250
static keys used by the parties. In the first subcategory, each party contributes both static and 2251

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

67

ephemeral keys (see Section 6.1.1), while in the second subcategory, each party contributes 2252
only ephemeral keys (see Section 6.1.2). 2253

6.1.1 C(2e, 2s) Schemes 2254
Figure 4 depicts a typical flow for a C(2e, 2s) scheme. For these schemes, each party (U and 2255
V) contributes a static key pair and generates an ephemeral key pair during the key-2256
agreement process. All key pairs shall be generated using the same domain parameters. Party 2257
U and party V obtain each other’s static public keys, which have been generated prior to the 2258
key-establishment process. Both parties generate ephemeral private/public key pairs and 2259
exchange the ephemeral public keys. Using the static and ephemeral keys, both parties 2260
generate a shared secret. The secret keying material is derived from the shared secret. 2261

 2262
Figure 4: C(2e, 2s) schemes: each party contributes a static and an ephemeral key 2263

pair 2264
Assumptions: In order to execute a C(2e, 2s) key-establishment scheme in compliance with 2265
this Recommendation, the following assumptions shall be true. 2266

1. Each party has an authentic copy of the same set of domain parameters, D, that are 2267
approved for use (see Section 5.5.1). For FFC schemes, D = (p, q, g{, SEED, 2268
counter}); for ECC schemes, D = (q, FR, a, b{, SEED}, G, n, h). Furthermore, each 2269
party has obtained assurance of the validity of these domain parameters as specified 2270
in Section 5.5.2. 2271

2. Each party has been designated as the owner of a static key pair that was generated 2272
as specified in Section 5.6.1 using the set of domain parameters, D. For FFC schemes, 2273
the static key pair is (x, y); for ECC schemes, the static key pair is (ds, Qs). Each party 2274
has obtained assurance of the validity of its own static public key as specified in 2275
Section 5.6.2.1.3 and has obtained assurance of its possession of the correct value for 2276
its own private key as specified in Section 5.6.2.1.5. 2277

U V

 U’s Static Public Key

V’s Static Public Key

U’s Ephemeral Public Key

V’s Ephemeral Public Key

Exchange
ephemeral
public keys

Obtain static public
keys

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

68

3. The parties have agreed upon an approved key-derivation method, as well as an 2278
approved algorithm to be used with that method (e.g., a hash function) and other 2279
associated parameters to be used for key derivation (see Section 5.8). 2280

4. If key confirmation is used, the parties have also agreed upon an approved MAC and 2281
associated parameters, including the lengths of MacKey and MacTag, as specified in 2282
Section 5.9.3). 2283

5. Prior to or during the key-agreement process, each party receives the other party’s 2284
static public key in a trusted manner (e.g., from a certificate signed by a trusted CA 2285
or directly from the other party, who is trusted by the recipient). Each party has 2286
obtained assurance of the validity of the other party’s static public key as specified in 2287
Section 5.6.2.2. 2288

6. The recipient of a static public key has obtained assurance that its (claimed) owner is 2289
(or was) in possession of the corresponding static private key, as specified in Section 2290
5.6.2.2.3. 2291

7. When an identifier is used to label a party during the key-agreement process, that 2292
identifier has a trusted association to that party’s static public key. (In other words, 2293
whenever both the identifier and static public key of one participant are employed in 2294
the key-agreement process, they are associated in a manner that is trusted by the other 2295
participant.) When an identifier is used to label a party during the key-agreement 2296
process, both parties are aware of the identifier employed for that purpose. 2297

6.1.1.1 dhHybrid1, C(2e, 2s, FFC DH) Scheme 2298

This section describes the dhHybrid1 scheme. Assurance of secure key establishment using 2299
this scheme can only be obtained when the assumptions in Section 6.1.1 are true. In 2300
particular, it is assumed that party U has obtained the static public key yV of party V, and 2301
party V has obtained the static public key yU of party U. 2302

With the exception of key derivation, the dhHybrid1 scheme is “symmetric” in the actions 2303
of parties U and V. Only the actions performed by party U are specified here; a specification 2304
of the actions performed by party V may be obtained by systematically replacing the letter 2305
“U” by “V” (and vice versa) in the description of the key-agreement transformation. Note, 2306
however, that parties U and V must use identical orderings of the bit strings that are input to 2307
the key-derivation method. 2308

Party U shall execute the following key-agreement transformation to a) establish a shared 2309
secret value Z with party V, and b) derive secret keying material from Z. 2310

Actions: Party U generates a shared secret and derives secret keying material as follows: 2311

1. Generate an ephemeral key pair (rU, tU) from the domain parameters D as specified 2312
in Section 5.6.1.1. Send the public key tU to party V. Receive an ephemeral public 2313
key tV (purportedly) from party V. If tV is not received, destroy the ephemeral private 2314
key rU, then output an error indicator, and exit this process without performing the 2315
remaining actions. 2316

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

69

2. Verify that tV is a valid public key for the parameters D as specified in Section 5.6.2.3. 2317
If assurance of public key validity cannot be obtained, destroy the ephemeral private 2318
key rU; then, output an error indicator, and exit this process without performing the 2319
remaining actions. 2320

3. Use the FFC DH primitive in Section 5.7.1.1 to derive a shared secret Zs from the set 2321
of domain parameters D, party U’s static private key xU, and party V’s static public 2322
key yV. If the call to the FFC DH primitive outputs an error indicator, destroy the 2323
ephemeral private key rU, and destroy the results of all intermediate calculations used 2324
in the attempted computation of Zs; then output an error indicator, and exit this 2325
process without performing the remaining actions. 2326

4. Use the FCC DH primitive to derive a shared secret Ze from the set of domain 2327
parameters D, party U’s ephemeral private key rU, and party V’s ephemeral public 2328
key tV. If this call to the FFC DH primitive outputs an error indicator, destroy Zs and 2329
the ephemeral private key rU, , and destroy the results of all intermediate calculations 2330
used in the attempted computation of Ze; then, output an error indicator, and exit this 2331
process without performing the remaining actions. 2332

5. Compute the shared secret Z = Ze || Zs. Destroy Ze and Zs. 2333

6. Use the agreed-upon key-derivation method to derive secret keying material with the 2334
specified length from the shared secret value Z and other input (see Section 5.8). If 2335
the key-derivation method outputs an error indicator, destroy all copies of Z and the 2336
ephemeral private key rU, then output an error indicator, and exit this process without 2337
performing the remaining actions. 2338

7. If the ephemeral private key rU will not be used in a broadcast scenario (see Section 2339
7) for subsequent key-establishment transactions using this scheme, then destroy rU. 2340

8. Destroy all copies of the shared secret Z and output the derived keying material. 2341

Output: The derived keying material or an error indicator. 2342

Note 1: Key confirmation can be incorporated into this scheme. See Section 6.1.1.5 for 2343
details. 2344

Note 2: If the ephemeral key pair is used in a broadcast scenario by party U (see Section 7) 2345
for subsequent key-establishment transactions using this scheme, then the same ephemeral 2346
key pair (rU, tU) may be used in other key-establishment transactions occurring during the 2347
same broadcast (i.e., step 1 above would not be repeated). After the final broadcast 2348
transaction, the ephemeral private key rU shall be destroyed (see step 7 above). 2349

dhHybrid1 is summarized in Table 9. 2350

Table 9: dhHybrid1 key-agreement scheme summary 2351

 Party U Party V

Domain
parameters

D = (p, q, g{, SEED, counter}) D = (p, q, g{, SEED, counter})

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

70

6.1.1.2 (Cofactor) Full Unified Model, C(2e, 2s, ECC CDH) Scheme 2352

This section describes the Full Unified Model scheme. Assurance of secure key 2353
establishment using this scheme can only be obtained when the assumptions in Section 6.1.1 2354
are true. In particular, it is assumed that party U has obtained the static public key Qs,V of 2355
party V, and party V has obtained the static public key Qs,U of party U. 2356

With the exception of key derivation, the Full Unified Model scheme is “symmetric” in the 2357
actions of parties U and V. Only the actions performed by party U are specified here; a 2358
specification of the actions performed by party V may be obtained by systematically 2359
replacing the letter “U” by “V” (and vice versa) in the description of the key-agreement 2360
transformation. Note, however, that parties U and V must use identical orderings of the bit 2361
strings that are input to the key-derivation method. 2362

Party U shall execute the following key-agreement transformation to a) establish a shared 2363
secret value Z with party V, and b) derive secret keying material from Z. 2364

Actions: Party U generates a shared secret and derives secret keying material as follows: 2365

1. Generate an ephemeral key pair (de,U, Qe,U) from the domain parameters D as 2366
specified in Section 5.6.1.2. Send the public key Qe,U to party V. Receive an 2367
ephemeral public key Qe,V (purportedly) from party V. If Qe,V is not received, destroy 2368
the ephemeral private key de,U; then output an error indicator, and exit this process 2369
without performing the remaining actions. 2370

2. Verify that Qe,V is a valid public key for the parameters D as specified in Section 2371
5.6.2.3. If assurance of public key validity cannot be obtained, destroy the ephemeral 2372
private key de,U, then output an error indicator, and exit this process without 2373
performing the remaining actions. 2374

Static Data

Static private key xU

Static public key yU

Static private key xV

Static public key yV

Ephemeral Data
Ephemeral private key rU

Ephemeral public key tU

Ephemeral private key rV

Ephemeral public key tV

Computation

1. Compute Zs by calling FFC
DH using xU and yV

2. Compute Ze by calling FFC
DH using rU and tV

3. Compute Z = Ze || Zs

1. Compute Zs by calling FFC DH
using xV and yU

2. Compute Ze by calling FFC DH
using rV and tU

3. Compute Z = Ze || Zs

Derive Secret
Keying Material

1. Compute
DerivedKeyingMaterial

2. Destroy Z

1. Compute
DerivedKeyingMaterial

2. Destroy Z

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

71

3. Use the ECC CDH primitive in Section 5.7.1.2 to derive a shared secret Zs from the 2375
set of domain parameters D, party U’s static private key ds,U, and party V’s static 2376
public key Qs,V. If the call to the ECC CDH primitive outputs an error indicator, 2377
destroy the ephemeral private key de,U, and destroy the results of all intermediate 2378
calculations used in the attempted computation of Zs; then output an error indicator, 2379
and exit this process without performing the remaining actions. 2380

4. Use the ECC CDH primitive to derive a shared secret Ze from the set of domain 2381
parameters D, party U’s ephemeral private key de,U, and party V’s ephemeral public 2382
key Qe,V. If this call to the ECC CDH primitive outputs an error indicator, destroy Zs 2383
and the ephemeral private key de,U, and destroy the results of all intermediate 2384
calculations used in the attempted computation of Ze; then output an error indicator, 2385
and exit this process without performing the remaining actions. 2386

5. Compute the shared secret Z = Ze || Zs. Destroy Ze and Zs. 2387

6. Use the agreed-upon key-derivation method to derive secret keying material with the 2388
specified length from the shared secret value Z and other input (see Section 5.8). If 2389
the key-derivation method outputs an error indicator, destroy all copies of Z and the 2390
ephemeral private key de,U; then output an error indicator, and exit this process 2391
without performing the remaining actions. 2392

7. If the ephemeral private key de,U will not be used in a broadcast scenario (see Section 2393
7) for subsequent key-establishment transactions using this scheme, then destroy de,U. 2394

8. Destroy all copies of the shared secret Z and output the derived keying material. 2395

Output: The derived keying material or an error indicator. 2396

Note 1: Key confirmation can be incorporated into this scheme. See Section 6.1.1.5 for 2397
details. 2398

Note 2: If the ephemeral key pair is used in a broadcast scenario by party U (see Section 7) 2399
for subsequent key-establishment transactions using this scheme, then the same ephemeral 2400
key pair (de,U, Qe,U) may be used in other key-establishment transactions occurring during 2401
the same broadcast (i.e., step 1 above would not be repeated). After the final broadcast 2402
transaction, the ephemeral private key de,U shall be destroyed (see step 7 above). 2403
The Full Unified Model is summarized in Table 10. 2404

Table 10: Full unified model key-agreement scheme summary 2405

 Party U Party V

Domain
parameters

D = (q, FR, a, b{, SEED}, G, n, h) D = (q, FR, a, b{, SEED}, G, n, h)

Static data

Static private key ds,U

Static public key Qs,U

Static private key ds,V

Static public key Qs,V

Ephemeral data Ephemeral private key de,U Ephemeral private key de,V

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

72

6.1.1.3 MQV2, C(2e, 2s, FFC MQV) Scheme 2406

This section describes the MQV2 scheme. Assurance of secure key establishment using this 2407
scheme can only be obtained when the assumptions in Section 6.1.1 are true. In particular, it 2408
is assumed that party U has obtained the static public key yV of party V, and party V has 2409
obtained the static public key yU of party U. 2410

With the exception of key derivation, MQV2 is “symmetric” in the actions of parties U and 2411
V. Only the actions performed by party U are specified here; a specification of the actions 2412
performed by party V may be obtained by systematically replacing the letter “U” by “V” 2413
(and vice versa) in the description of the key-agreement transformation. Note, however, that 2414
parties U and V must use identical orderings of the bit strings that are input to the key-2415
derivation method. 2416

Party U shall execute the following key-agreement transformation to a) establish a shared 2417
secret value Z with party V, and b) derive secret keying material from Z. 2418

 Actions: Party U generates a shared secret and derives secret keying material as follows: 2419

1. Generate an ephemeral key pair (rU, tU) from the domain parameters D as specified 2420
in Section 5.6.1.1. Send the public key tU to party V. Receive an ephemeral public 2421
key tV (purportedly) from party V. If tV is not received, destroy the ephemeral private 2422
key rU; then output an error indicator, and exit this process without performing the 2423
remaining actions. 2424

2. Verify that tV is a valid public key for the parameters D as specified in Section 5.6.2.3. 2425
If assurance of public key validity cannot be obtained, destroy the ephemeral private 2426
key rU; then output an error indicator, and exit this process without performing the 2427
remaining actions. 2428

3. Use the MQV2 form of the FFC MQV primitive in Section 5.7.2.1 to derive a shared 2429
secret Z from the set of domain parameters D, party U’s static private key xU, party 2430
V’s static public key yV, party U’s ephemeral private key rU, party U’s ephemeral 2431
public key tU, and party V’s ephemeral public key tV. If the call to the FFC MQV 2432
primitive outputs an error indicator, destroy the ephemeral private key rU, and destroy 2433

 Ephemeral public key Qe,U Ephemeral public key Qe,V

Computation

1. Compute Zs by calling ECC
CDH using ds,U and Qs,V

2. Compute Ze by calling ECC
CDH using de,U and Qe,V

3. Compute Z = Ze || Zs

1. Compute Zs by calling ECC
CDH using ds,V and Qs,U

2. Compute Ze by calling ECC
CDH using de,V and Qe,U

3. Compute Z = Ze || Zs

Derive secret
keying material

1. Compute
DerivedKeyingMaterial

2. Destroy Z

1. Compute
DerivedKeyingMaterial

2. Destroy Z

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

73

the results of all intermediate calculations used in the attempted computation of Z; 2434
then output an error indicator, and exit this process without performing the remaining 2435
actions. 2436

4. Use the agreed-upon key-derivation method to derive secret keying material with the 2437
specified length from the shared secret value Z and other input (see Section 5.8). If 2438
the key-derivation method outputs an error indicator, destroy all copies of Z and the 2439
ephemeral private key rU; then output an error indicator, and exit this process without 2440
performing the remaining actions. 2441

5. If the ephemeral private key rU will not be used in a broadcast scenario (see Section 2442
7) for subsequent key-establishment transactions using this scheme, then destroy rU. 2443

6. Destroy all copies of the shared secret Z and output the derived keying material. 2444

Output: The derived keying material or an error indicator. 2445

Note 1: Key confirmation can be incorporated into this scheme. See Section 6.1.1.5 for 2446
details. 2447

Note 2: If the ephemeral key pair is used in a broadcast scenario by party U (see Section 7) 2448
for subsequent key-establishment transactions using this scheme, then the same ephemeral 2449
key pair (rU, tU) may be used in other key-establishment transactions occurring during the 2450
same broadcast (i.e., step 1 above would not be repeated). After the final broadcast 2451
transaction, the ephemeral private key rU shall be destroyed (see step 5 above). 2452

MQV2 is summarized in Table 11. 2453

Table 11: MQV2 key-agreement scheme summary 2454

 Party U Party V

Domain
parameters

D = (p, q, g{, SEED, counter}) D = (p, q, g{, SEED, counter})

Static data
Static private key xU

Static public key yU

Static private key xV

Static public key yV

Ephemeral
data

Ephemeral private key rU

Ephemeral public key tU

Ephemeral private key rV

Ephemeral public key tV

Computation Compute Z by calling FFC MQV
using xU, yV, rU, tU, and tV

Compute Z by calling FFC MQV
using xV, yU, rV, tV, and tU

Derive secret
keying
material

1. Compute
DerivedKeyingMaterial

2. Destroy Z

1. Compute
DerivedKeyingMaterial

2. Destroy Z

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

74

6.1.1.4 Full MQV, C(2e, 2s, ECC MQV) Scheme 2455

This section describes the Full MQV scheme. Assurance of secure key establishment using 2456
this scheme can only be obtained when the assumptions in Section 6.1.1 are true. In 2457
particular, it is assumed that party U has obtained the static public key Qs,V of party V, and 2458
party V has obtained the static public key Qs,U of party U. 2459

With the exception of key derivation, the Full MQV scheme is “symmetric” in the actions of 2460
parties U and V. Only the actions performed by party U are specified here; a specification of 2461
the actions performed by party V may be obtained by systematically replacing the letter “U” 2462
by “V” (and vice versa) in the description of the key-agreement transformation. Note, 2463
however, that parties U and V must use identical orderings of the bit strings that are input to 2464
the key-derivation method. 2465

Party U shall execute the following key-agreement transformation to a) establish a shared 2466
secret value Z with party V, and b) derive secret keying material from Z. 2467

Actions: Party U generates a shared secret and derives secret keying material as follows: 2468

1. Generate an ephemeral key pair (de,U, Qe,U) from the domain parameters D as 2469
specified in Section 5.6.1.2. Send the public key Qe,U to party V. Receive an 2470
ephemeral public key Qe,V (purportedly) from party V. If Qe,V is not received, destroy 2471
the ephemeral private key de,U; then output an error indicator, and exit this process 2472
without performing the remaining actions. 2473

2. Verify that Qe,V is a valid public key for the parameters D as specified in Section 2474
5.6.2.3. If assurance of public key validity cannot be obtained, destroy the ephemeral 2475
private key de,U; then output an error indicator, and exit this process without 2476
performing the remaining actions. 2477

3. Use the Full MQV form of the ECC MQV primitive in Section 5.7.2.3.1 to derive a 2478
shared secret value Z from the set of domain parameters D, party U’s static private 2479
key ds,U, party V’s static public key Qs,V, party U’s ephemeral private key de,U, party 2480
U’s ephemeral public key Qe,U, and party V’s ephemeral public key Qe,V. If the call 2481
to the ECC MQV primitive outputs an error indicator, destroy the ephemeral private 2482
key de,U, and destroy the results of all intermediate calculations used in the attempted 2483
computation of Z; then output an error indicator, and exit this process without 2484
performing the remaining actions. 2485

4. Use the agreed-upon key-derivation method to derive secret keying material with the 2486
specified length from the shared secret value Z and other input (see Section 5.8). If 2487
the key-derivation method outputs an error indicator, destroy all copies of Z and the 2488
ephemeral private key de,U; then output an error indicator, and exit this process 2489
without performing the remaining actions. 2490

5. If the ephemeral private key de,U will not be used in a broadcast scenario (see Section 2491
7) for subsequent key-establishment transactions using this scheme, then destroy de,U. 2492

6. Destroy all copies of the shared secret Z and output the derived keying material. 2493

Output: The derived keying material or an error indicator. 2494

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

75

Note 1: Key confirmation can be incorporated into this scheme. See Section 6.1.1.5 for 2495
details. 2496

Note 2: If the ephemeral key pair is used in a broadcast scenario by party U (see Section 7) 2497
for subsequent key-establishment transactions using this scheme, then the same ephemeral 2498
key pair (de,U, Qe,U) may be used in other key-establishment transactions occurring during 2499
the same broadcast (i.e., step 1 above would not be repeated). After the final broadcast 2500
transaction, the ephemeral private key de,U shall be destroyed (see step 5 above). 2501

The Full MQV is summarized in Table 12. 2502

Table 12: Full MQV key-agreement Scheme Summary 2503

6.1.1.5 Incorporating Key Confirmation into a C(2e, 2s) Scheme 2504
The subsections that follow illustrate how to incorporate key confirmation (as described in 2505
Section 5.9) into the C(2e, 2s) key-agreement schemes described above. 2506

The flow depictions separate the key-establishment flow from the key-confirmation flow. 2507
The depictions and accompanying discussions presume that the assumptions of the scheme 2508
have been satisfied, that the key-agreement transaction has proceeded successfully through 2509
key derivation, and that the received MacTags are successfully verified as specified in 2510
Section 5.2.2. 2511

6.1.1.5.1 C(2e, 2s) Scheme with Unilateral Key Confirmation Provided by Party U to 2512
Party V 2513

Figure 5 depicts a typical flow for a C(2e, 2s) scheme with unilateral key confirmation from 2514
party U to party V. In this scenario, party U and party V assume the roles of key-confirmation 2515
provider and recipient, respectively. The successful completion of this process provides party 2516

 Party U Party V

Domain
parameters

D = (q, FR, a, b{, SEED}, G, n, h) D = (q, FR, a, b{, SEED}, G, n, h)

Static data

1. Static private key ds,U

2. Static public key Qs,U

1. Static private key ds,V

2. Static public key Qs,V

Ephemeral data

1. Ephemeral private key de,U

2. Ephemeral public key Qe,U

1. Ephemeral private key de,V

2. Ephemeral public key Qe,V

Computation Compute Z by calling ECC MQV
using ds,U, Qs,V, de,U, Qe,U, and Qe,V

Compute Z by calling ECC MQV
using ds,V, Qs,U, de,V, Qe,V, and Qe,U

Derive secret
keying material

1. Compute
DerivedKeyingMaterial

2. Destroy Z

1. Compute
DerivedKeyingMaterial

2. Destroy Z

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

76

V with a) assurance that party U has derived the same secret Z value, and b) assurance that 2517
party U has actively participated in the process. 2518

 2519

 2520

Figure 5: C(2e, 2s) scheme with unilateral key confirmation from party U to party V 2521

To provide (and receive) key confirmation (as described in Section 5.9.1.1), party U (and 2522
party V) set 2523

 EphemDataU = EphemPubKeyU, and EphemDataV = EphemPubKeyV. 2524
 2525
Party U provides MacTagU to party V (as specified in Section 5.9.1.1, with P = U and R = 2526
V), where MacTagU is computed (as specified in Section 5.2.1) using 2527

 MacDataU = “KC_1_U” || IDU || IDV || EphemPubKeyU || EphemPubKeyV {|| TextU}. 2528

Party V (the key-confirmation recipient) uses the same format for MacDataU to compute its 2529
own version of MacTagU, and then verifies that the newly computed MacTagU matches the 2530
value provided by party U. 2531

6.1.1.5.2 C(2e, 2s) Scheme with Unilateral Key Confirmation Provided by Party V to 2532
Party U 2533

Figure 6 depicts a typical flow for a C(2e, 2s) scheme with unilateral key confirmation from 2534
party V to party U. In this scenario, party V and party U assume the roles of key-confirmation 2535
provider and recipient, respectively. The successful completion of the key-confirmation 2536
process provides party U with a) assurance that party V has derived the same secret Z value, 2537
and b) assurance that party V has actively participated in the process. 2538

U V

 U’s Static Public Key

V’s Static Public Key

U’s Ephemeral Public Key

V’s Ephemeral Public Key

MacTagU

Exchange
ephemeral
public keys

U’s key-
confirmation

Obtain static
public keys

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

77

 2539
Figure 6: C(2e, 2s) scheme with unilateral key confirmation from party V to party U 2540

To provide (and receive) key confirmation (as described in Section 5.9.1.1), party V (and 2541
party U) set 2542

 EphemDataV = EphemPubKeyV, and EphemDataU = EphemPubKeyU. 2543
 2544
Party V provides MacTagV to party U (as specified in Section 5.9.1.1, with P = V and R = 2545
U), where MacTagV is computed (as specified in Section 5.2.1) using 2546

 MacDataV = “KC_1_V” || IDV || IDU || EphemPubKeyV || EphemPubKeyU {|| TextV}. 2547

Party U (the key-confirmation recipient) uses the same format for MacDataV to compute its 2548
own version of MacTagV and then verifies that the newly computed MacTagV matches the 2549
value provided by party V. 2550

Note that in Figure 6, party V’s ephemeral public key (EphemPubKeyV) and the MacTag 2551
(MacTagV) are depicted as being sent in the same message (to reduce the number of passes 2552
in the combined key-agreement/key-confirmation process). They may also be sent 2553
separately. 2554

6.1.1.5.3 C(2e, 2s) Scheme with Bilateral Key Confirmation 2555
Figure 7 depicts a typical flow for a C(2e, 2s) scheme with bilateral key confirmation. In this 2556
method, party U and party V assume the roles of both the provider and the recipient in order 2557
to obtain bilateral key confirmation. The successful completion of the key-confirmation 2558
process provides each party with a) assurance that the other party has derived the same secret 2559
Z value, and b) assurance that the other party has actively participated in the process. 2560

U V
 U’s Static Public Key

V’s Static Public Key

U’s Ephemeral Public Key

V’s Ephemeral Public Key, MacTagV

U sends an
ephemeral
public key

V sends an
ephemeral public
key with key
confirmation

Obtain static
public keys

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

78

 2561

Figure 7: C(2e, 2s) scheme with bilateral key confirmation 2562

To provide bilateral key confirmation (as described in Section 5.9.2.1), party U and party V 2563
exchange and verify MacTags that have been computed (as specified in Section 5.2.1) using 2564

 EphemDataU = EphemPubKeyU, and EphemDataV = EphemPubKeyV. 2565

Party V provides MacTagV to party U (as specified in Sections 5.9.1.1 and 5.9.2.1, with P = 2566
V and R = U); MacTagV is computed by party V (and verified by party U) using 2567

 MacDataV = “KC_2_V” || IDV || IDU || EphemPubKeyV || EphemPubKeyU {|| TextV}. 2568

Party U provides MacTagU to party V (as specified in Sections 5.9.1.1 and 5.9.2.1, with P = 2569
U and R = V); MacTagU is computed by party U (and verified by party V) using 2570

 MacDataU = “KC_2_U” || IDU || IDV || EphemPubKeyU || EphemPubKeyV {|| TextU}. 2571

Note that in Figure 7, party V’s ephemeral public key (EphemPubKeyV) and the MacTag 2572
(MacTagV) are depicted as being sent in the same message (to reduce the number of passes 2573
in the combined key-agreement/key-confirmation process). They may also be sent 2574
separately, and if sent separately, then the order in which the MacTags are sent could be 2575
reversed. 2576

6.1.2 C(2e, 0s) Schemes 2577
For this category, only Diffie-Hellman schemes are specified. Each party generates 2578
ephemeral key pairs with the same domain parameters. The two parties exchange ephemeral 2579

U V

 U’s Static Public Key

V’s Static Public Key

U’s Ephemeral Public Key

V’s Ephemeral Public Key, MacTagV

MacTagU

U sends an ephemeral
public key

V sends an ephemeral
public key with key
confirmation

U’s key
confirmation

Obtain static public
keys

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

79

public keys and then compute the shared secret. The secret keying material is derived using 2580
the shared secret (see Figure 8). 2581

 2582
Figure 8: C(2e, 0s) schemes: each party contributes only an ephemeral key pair 2583

Assumptions: In order to execute a C(2e, 0s) key-establishment scheme in compliance with 2584
this Recommendation, the following assumptions shall be true. 2585

1. Each party has an authentic copy of the same set of domain parameters, D. These 2586
parameters are either approved for use in the intended application (see Section 2587
5.5.1). For FFC schemes, D = (p, q, g{, SEED, counter}); for ECC schemes, D = (q, 2588
FR, a, b{, SEED}, G, n, h). Furthermore, each party has obtained assurance of the 2589
validity of these domain parameters as specified in Section 5.5.2. 2590

2. The parties have agreed upon an approved key-derivation method, as well as an 2591
approved algorithm to be used with that method (e.g., a hash function) and other 2592
associated parameters to be used (see Section 5.8). 2593

3. When an identifier is used to label a party during the key-agreement process, it has 2594
been selected/assigned in accordance with the requirements of the protocol relying 2595
upon the use of the key-agreement scheme, and its value is known to both parties. 2596

6.1.2.1 dhEphem, C(2e, 0s, FFC DH) Scheme 2597

This section describes the dhEphem scheme. Assurance of secure key establishment using 2598
this scheme can only be obtained when the assumptions in Section 6.1.2 are true. 2599

With the exception of key derivation, the dhEphem scheme is “symmetric” in the actions of 2600
parties U and V. Only the actions performed by party U are specified here; a specification of 2601
the actions performed by party V may be obtained by systematically replacing the letter “U” 2602
by “V” (and vice versa) in the description of the key-agreement transformation. Note, 2603
however, that parties U and V must use identical orderings of the bit strings that are input to 2604
the key-derivation method. 2605

Party U shall execute the following key-agreement transformation to a) establish a shared 2606
secret value Z with party V, and b) derive secret keying material from Z. 2607

Actions: Party U generates a shared secret and derives secret keying material as follows: 2608

U V

U’s Ephemeral Public Key

V’s Ephemeral Public Key

Exchange
ephemeral
public keys

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

80

1. Generate an ephemeral key pair (rU, tU) from the domain parameters D as specified 2609
in Section 5.6.1.1. Send the public key tU to party V. Receive an ephemeral public 2610
key tV (purportedly) from party V. If tV is not received, destroy the ephemeral private 2611
key rU; then output an error indicator, and exit this process without performing the 2612
remaining actions. 2613

2. Verify that tV is a valid public key for the parameters D as specified in Section 5.6.2.3. 2614
If assurance of public key validity cannot be obtained, destroy the ephemeral key rU; 2615
then output an error indicator, and exit this process without performing the remaining 2616
actions. 2617

3. Use the FCC DH primitive in Section 5.7.1.1 to derive a shared secret Z from the set 2618
of domain parameters D, party U’s ephemeral private key rU, and party V’s 2619
ephemeral public key tV. Then destroy the ephemeral private key rU. If the call to the 2620
FFC DH primitive outputs an error indicator, destroy the results of all intermediate 2621
calculations used in the attempted computation of Z; then output an error indicator, 2622
and exit this process without performing the remaining actions. 2623

4. Use the agreed-upon key-derivation method to derive secret keying material with the 2624
specified length from the shared secret value Z and other input (see Section 5.8). If 2625
the key-derivation method outputs an error indicator, destroy all copies of Z; then 2626
output an error indicator, and exit this process without performing the remaining 2627
action. 2628

5. Destroy all copies of the shared secret Z and output the derived keying material. 2629

Output: The derived keying material or an error indicator. 2630

dhEphem is summarized in Table 13. 2631

Table 13: dhEphem key-agreement scheme summary 2632

 Party U Party V

Domain
parameters

(p, q, g{, SEED, counter}) (p, q, g{, SEED, counter})

Static data N/A N/A

Ephemeral data
Ephemeral private key rU

Ephemeral public key tU

Ephemeral private key rV

Ephemeral public key tV

Computation Compute Z by calling FFC DH
using rU and tV

Compute Z by calling FFC DH
using rV and tU

Derive secret
keying material

1. Compute
DerivedKeyingMaterial

2. Destroy Z

1. Compute
DerivedKeyingMaterial

2. Destroy Z

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

81

6.1.2.2 (Cofactor) Ephemeral Unified Model, C(2e, 0s, ECC CDH) Scheme 2633

This section describes the Ephemeral Unified Model scheme. Assurance of secure key 2634
establishment using this scheme can only be obtained when the assumptions in Section 6.1.2 2635
are true. 2636

With the exception of key derivation, the Ephemeral Unified Model scheme is “symmetric” 2637
in the actions of parties U and V. Only the actions performed by party U are specified here; 2638
a specification of the actions performed by party V may be obtained by systematically 2639
replacing the letter “U” by “V” (and vice versa) in the description of the key-agreement 2640
transformation. Note, however, that parties U and V must use identical orderings of the bit 2641
strings that are input to the key-derivation method. 2642

Party U shall execute the following key-agreement transformation to a) establish a shared 2643
secret value Z with party V, and b) derive secret keying material from Z. 2644

Actions: Party U generates a shared secret and derives secret keying material as follows: 2645

1. Generate an ephemeral key pair (de,U, Qe,U) from the domain parameters D as specified 2646
in Section 5.6.1.2. Send the public key Qe,U to party V. Receive an ephemeral public 2647
key Qe,V (purportedly) from party V. If Qe,V is not received, destroy the ephemeral 2648
private key de,U; then output an error indicator, and exit this process without 2649
performing the remaining actions. 2650

2. Verify that Qe,V is a valid public key for the parameters D as specified in Section 2651
5.6.2.3. If assurance of public key validity cannot be obtained, destroy the ephemeral 2652
private key de,U; then output an error indicator, and exit this process without 2653
performing the remaining actions. 2654

3. Use the ECC CDH primitive in Section 5.7.1.2 to derive a shared secret Z from the set 2655
of domain parameters D, party U’s ephemeral private key de,U, and party V’s ephemeral 2656
public key Qe,V. Then destroy the ephemeral private key de,U. If the call to the ECC CDH 2657
primitive outputs an error indicator, destroy the results of all intermediate calculations used 2658
in the attempted computation of Z, then output an error indicator, and exit this process without 2659
performing the remaining actions. 2660

4. Use the agreed-upon key-derivation method to derive secret keying material with the 2661
specified length from the shared secret value Z and other input (see Section 5.8). If 2662
the key-derivation method outputs an error indicator, destroy all copies of Z; then 2663
output an error indicator, and exit this process without performing the remaining 2664
action. 2665

5. Destroy all copies of the shared secret Z and output the derived keying material. 2666

Output: The derived keying material or an error indicator. 2667

The Ephemeral Unified Model is summarized in Table 14. 2668
 2669
 2670
 2671

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

82

Table 14: Ephemeral unified model key-agreement scheme 2672

6.1.2.3 Key Confirmation for C(2e, 0s) Schemes 2673

In a C(2e, 0s) key-agreement scheme, none of the parties contributes a static key pair. Only 2674
ephemeral key pairs are used to derive the secret value Z. Without a trusted association with 2675
an identifier of either party, key confirmation cannot achieve the expected purposes. 2676
Therefore, in this Recommendation, key confirmation is not incorporated for the C(2e, 0s) 2677
key-agreement schemes. 2678

6.2 Schemes Using One Ephemeral Key Pair, C(1e) Schemes 2679

This category consists of two subcategories that are determined by the use (or non-use) of a 2680
static key pair by each of the parties. Only party U generates an ephemeral key pair. In the 2681
first subcategory, both party U and party V use a static key pair, and party U also generates 2682
an ephemeral key pair (see Section 6.2.1). In the second subcategory, party U generates an 2683
ephemeral key pair, but uses no static key pair; party V uses only a static key pair (see Section 2684
6.2.2). 2685

6.2.1 C(1e, 2s) Schemes 2686
Figure 9 depicts a typical flow for a C(1e, 2s) scheme. For these schemes, party U uses both 2687
static and ephemeral private/public key pairs. Party V uses only a static private/public key 2688
pair. Party U and party V obtain each other’s static public keys in a trusted manner. Party U 2689
also sends its ephemeral public key to party V. A shared secret is generated by both parties 2690
using the available static and ephemeral keys. The secret keying material is derived using the 2691
shared secret. 2692

 Party U Party V

Domain
parameters

(q, FR, a, b{, SEED}, G, n, h) (q, FR, a, b{, SEED}, G, n, h)

Static data N/A N/A

Ephemeral data

Ephemeral private key de,U

Ephemeral public key Qe,U

Ephemeral private key de,V

Ephemeral public key Qe,V

Computation Compute Z by calling ECC CDH
using de,U and Qe,V

Compute Z by calling ECC CDH
using de,V and Qe,U

Derive secret
keying material

1. Compute
DerivedKeyingMaterial

2. Destroy Z

1. Compute
DerivedKeyingMaterial

2. Destroy Z

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

83

 2693
Figure 9: C(1e, 2s) schemes: party U contributes a static and an ephemeral key pair 2694
while party V contributes only a static key pair 2695
Assumptions: In order to execute a C(1e, 2s) key-establishment scheme in compliance with 2696
this Recommendation, the following assumptions shall be true. 2697

1. Each party has an authentic copy of the same set of domain parameters, D. These 2698
parameters are either approved for use in the intended application (see Section 2699
5.5.1). For FFC schemes, D = (p, q, g{, SEED, counter}); for ECC schemes, D = (q, 2700
FR, a, b{, SEED}, G, n, h). Furthermore, each party has obtained assurance of the 2701
validity of these domain parameters as specified in Section 5.5.2. 2702

2. Each party has been designated as the owner of a static key pair that was generated 2703
as specified in Section 5.6.1 using the set of domain parameters, D. For FFC schemes, 2704
the static key pair is (x, y); for ECC schemes, the static key pair is (ds, Qs). Each party 2705
has obtained assurance of the validity of its own static public key as specified in 2706
Section 5.6.2.1.3. Each party has also obtained assurance of its possession of the 2707
correct value for its own private key as specified in Section 5.6.2.1.5. 2708

3. The parties have agreed upon an approved key-derivation method, as well as an 2709
approved algorithm to be used with that method (e.g., a hash function) and other 2710
associated parameters to be used for key derivation (see Section 5.8). 2711

4. If key confirmation is used, the parties have also agreed upon an approved MAC and 2712
associated parameters, including the lengths of MacKey and MacTag (see Section 2713
5.9.3). If party V provides key confirmation to party U, the parties have agreed upon 2714
the form of NonceV, which should be a random nonce (see Section 5.4). 2715

5. Prior to or during the key-agreement process, each party receives the other party’s 2716
static public key in a trusted manner (e.g., from a certificate signed by a trusted CA 2717
or directly from the other party, who is trusted by the recipient). Each party has 2718
obtained assurance of the validity of the other party’s static public key as specified in 2719
Section 5.6.2.2.1. 2720

U V
 U’s Static Public Key

V’s Static Public Key

U’s Ephemeral Public Key

Obtain static public
keys

U sends an ephemeral
public key

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

84

6. The recipient of a static public key has obtained assurance that its (claimed) owner is 2721
(or was) in possession of the corresponding static private key, as specified in Section 2722
5.6.2.2.3. 2723

7. When an identifier is used to label a party during the key-agreement process, that 2724
identifier has a trusted association to that party’s static public key. (In other words, 2725
whenever both the identifier and static public key of one participant are employed in 2726
the key-agreement process, they are associated in a manner that is trusted by the other 2727
participant.) When an identifier is used to label a party during the key-agreement 2728
process, both parties are aware of the particular identifier employed for that purpose. 2729

6.2.1.1 dhHybridOneFlow, C(1e, 2s, FFC DH) Scheme 2730

This section describes the dhHybridOneFlow scheme. Assurance of secure key establishment 2731
using this scheme can only be obtained when the assumptions in Section 6.2.1 are true. In 2732
particular, it is assumed that party U has obtained the static public key yV of party V, and 2733
party V has obtained the static public key yU of party U. 2734

In this scheme, each party has different actions, which are presented separately below. 2735
However, note that parties U and V must use identical orderings of the bit strings that are 2736
input to the key-derivation method. 2737

Party U shall execute the following key-agreement transformation to a) establish a shared 2738
secret value Z with party V, and b) derive secret keying material from Z. 2739

Actions: Party U generates a shared secret and derives secret keying material as follows: 2740

1. Generate an ephemeral key pair (rU, tU) from the domain parameters D as specified 2741
in Section 5.6.1.1. Send the public key tU to party V. 2742

2. Use the FFC DH primitive in Section 5.7.1.1 to derive a shared secret Zs from the set 2743
of domain parameters D, party U’s static private key xU, and party V’s static public 2744
key yV. If the call to the FFC DH primitive outputs an error indicator, destroy the 2745
ephemeral private key rU, and destroy the results of all intermediate calculations used 2746
in the attempted computation of Zs; then output an error indicator, and exit this 2747
process without performing the remaining actions. 2748

3. Use the FCC DH primitive to derive a shared secret Ze from the set of domain 2749
parameters D, party U’s ephemeral private key rU, and party V’s static public key yV. 2750
If this call to the FFC DH primitive outputs an error indicator, destroy Zs and the 2751
ephemeral private key rU, and destroy the results of all intermediate calculations used 2752
in the attempted computation of Ze; then output an error indicator, and exit this 2753
process without performing the remaining actions. 2754

4. Compute the shared secret Z = Ze || Zs. Destroy Ze and Zs. 2755

5. Use the agreed-upon key-derivation method to derive secret keying material with the 2756
specified length from the shared secret value Z and other input (see Section 5.8). If 2757
the key-derivation method outputs an error indicator, destroy all copies of Z and the 2758
ephemeral private key rU; then output an error indicator, and exit this process without 2759
performing the remaining actions. 2760

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

85

6. If the ephemeral private key rU will not be used in a broadcast scenario (see Section 2761
7) for subsequent key-establishment transactions using this scheme, then destroy rU. 2762

7. Destroy all copies of the shared secret Z and output the derived keying material. 2763

Output: The derived keying material or an error indicator. 2764

Note: If the ephemeral key pair is used in a broadcast scenario by party U (see Section 7) for 2765
subsequent key-establishment transactions using this scheme, then the same ephemeral key 2766
pair (rU, tU) may be used in other key-establishment transactions occurring during the same 2767
broadcast (i.e., step 1 above would not be repeated). After the final broadcast transaction, the 2768
ephemeral private key rU shall be destroyed (see step 6 above). 2769

Party V shall execute the following key-agreement transformation to a) establish a shared 2770
secret value Z with party U, and b) derive secret keying material from Z. 2771

Actions: Party V derives secret keying material as follows: 2772

1. Receive an ephemeral public key tU (purportedly) from party U. If tU is not received, 2773
then output an error indicator, and exit this process without performing the remaining 2774
actions. 2775

2. Verify that tU is a valid public key for the parameters D as specified in Section 5.6.2.3. 2776
If assurance of public key validity cannot be obtained, then output an error indicator, 2777
and exit this process without performing the remaining actions. 2778

3. Use the FFC DH primitive in Section 5.7.1.1 to derive a shared secret value Zs from 2779
the set of domain parameters D, party V’s static private key xV, and party U’s static 2780
public key yU. If the call to the FFC DH primitive outputs an error indicator, destroy 2781
the results of all intermediate calculations used in the attempted computation of Zs; 2782
then output an error indicator, and exit this process without performing the remaining 2783
actions. 2784

4. Use the FCC DH primitive to derive a shared secret Ze from the set of domain 2785
parameters D, party V’s static private key xV, and party U’s ephemeral public key tU. 2786
 If this call to the FFC DH primitive outputs an error indicator, destroy Zs, and destroy 2787
the results of all intermediate calculations used in the attempted computation of Ze; 2788
then output an error indicator, and exit this process without performing the remaining 2789
actions. 2790

5. Compute the shared secret Z = Ze || Zs. Destroy Ze and Zs. 2791

6. Use the agreed-upon key-derivation method to derive secret keying material with the 2792
specified length from the shared secret value Z and other input (see Section 5.8). If 2793
the key-derivation method outputs an error indicator, destroy all copies of Z; then 2794
output an error indicator, and exit this process without performing the remaining 2795
action. 2796

7. Destroy all copies of the shared secret Z and output the derived keying material. 2797

Output: The derived keying material or an error indicator. 2798

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

86

Note: Key confirmation can be incorporated into this scheme. See Section 6.2.1.5 for 2799
details. 2800

dhHybridOneFlow is summarized in Table 15. 2801

Table 15: dhHybridOneFlow key-agreement scheme summary 2802

6.2.1.2 (Cofactor) One-Pass Unified Model, C(1e, 2s, ECC CDH) Scheme 2803

This section describes the One-Pass Unified Model scheme. Assurance of secure key 2804
establishment using this scheme can only be obtained when the assumptions in Section 6.2.1 2805
are true. In particular, it is assumed that party U has obtained the static public key Qs,V of 2806
party V, and party V has obtained the static public key Qs,U of party U. 2807

In this scheme, each party has different actions, which are presented separately below. 2808
However, note that parties U and V must use identical orderings of the bit strings that are 2809
input to the key-derivation method. 2810

Party U shall execute the following key-agreement transformation to a) establish a shared 2811
secret value Z with party V, and b) derive secret keying material from Z. 2812

Actions: Party U generates a shared secret and derives secret keying material as follows: 2813

1. Generate an ephemeral key pair (de,U, Qe,U) from the domain parameters D as 2814
specified in Section 5.6.1.2. Send the public key Qe,U to V. 2815

 Party U Party V

Domain
parameters

(p, q, g{, SEED, counter}) (p, q, g{, SEED, counter})

Static data
Static private key xU

Static public key yU

Static private key xV

Static public key yV

Ephemeral data
Ephemeral private key rU

Ephemeral public key tU

N/A

Computation

1. Compute Zs by calling FFC
DH using xU and yV

2. Compute Ze by calling FFC
DH using rU and yV

3. Compute Z = Ze || Zs

1. Compute Zs by calling FFC
DH using xV and yU

2. Compute Ze by calling FFC
DH using xV and tU

3. Compute Z = Ze || Zs

Derive secret
keying material

1. Compute
DerivedKeyingMaterial

2. Destroy Z

1. Compute
DerivedKeyingMaterial

2. Destroy Z

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

87

2. Use the ECC CDH primitive in Section 5.7.1.2 to derive a shared secret Zs from the 2816
set of domain parameters D, party U’s static private key ds,U, and party V’s static 2817
public key Qs,V. If the call to the ECC CDH primitive outputs an error indicator, 2818
destroy the ephemeral private key de,U, and destroy the results of all intermediate 2819
calculations used in the attempted computation of Zs; then output an error indicator, 2820
and exit this process without performing the remaining actions. 2821

3. Use the ECC CDH primitive to derive a shared secret Ze, from the set of domain 2822
parameters D, party U’s ephemeral private key de,U, and party V’s static public key 2823
Qs,V. If this call to the ECC CDH primitive outputs an error indicator, destroy Zs and 2824
the ephemeral private key de,U, and destroy the results of all intermediate calculations 2825
used in the attempted computation of Ze; then output an error indicator, and exit this 2826
process without performing the remaining actions. 2827

4. Compute the shared secret Z = Ze || Zs. Destroy Ze and Zs. 2828

5. Use the agreed-upon key-derivation method to derive secret keying material with the 2829
specified length from the shared secret value Z and other input (see Section 5.8). If 2830
the key-derivation method outputs an error indicator, destroy all copies of Z and the 2831
ephemeral private key de,U; then output an error indicator, and exit this process 2832
without performing the remaining actions. 2833

6. If the ephemeral private key de,U will not be used in a broadcast scenario (see Section 2834
7) for subsequent key-establishment transactions using this scheme, then destroy de,U. 2835

7. Destroy all copies of the shared secret Z and output the derived keying material. 2836

Output: The derived keying material or an error indicator. 2837

Note: If the ephemeral key pair is used in a broadcast scenario by party U (see Section 7) for 2838
subsequent key-establishment transactions using this scheme, then the same ephemeral key 2839
pair (de,U, Qe,U) may be used in other key-establishment transactions occurring during the 2840
same broadcast (i.e., step 1 above would not be repeated). After the final broadcast 2841
transaction, the ephemeral private key de,U shall be destroyed (see step 6 above). 2842

Party V shall execute the following key-agreement transformation to a) establish a shared 2843
secret value Z with party U, and b) derive secret keying material from Z. 2844

Actions: Party V derives secret keying material as follows: 2845

1. Receive an ephemeral public key Qe,U (purportedly) from party U. If Qe,U is not 2846
received, then output an error indicator, and exit this process without performing the 2847
remaining actions. 2848

2. Verify that Qe,U is a valid public key for the parameters D as specified in Section 2849
5.6.2.3. If assurance of public key validity cannot be obtained, then output an error 2850
indicator, and exit this process without performing the remaining actions. 2851

3. Use the ECC CDH primitive in Section 5.7.1.2 to derive a shared secret Zs from the 2852
set of domain parameters D, party V’s static private key ds,V, and party U’s static 2853
public key Qs,U. If the call to the ECC CDH primitive outputs an error indicator, 2854

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

88

destroy the results of all intermediate calculations used in the attempted computation 2855
of Zs; then output an error indicator, and exit this process without performing the 2856
remaining actions. 2857

4. Use the ECC CDH primitive to derive a shared secret Ze from the set of domain 2858
parameters D, party V’s static private key ds,V, and party U’s ephemeral public key 2859
Qe,U. If this call to the ECC CDH primitive outputs an error indicator, destroy Zs, and 2860
destroy the results of all intermediate calculations used in the attempted computation 2861
of Ze; then output an error indicator, and exit this process without performing the 2862
remaining actions. 2863

5. Compute the shared secret Z = Ze || Zs. Destroy Ze and Zs. 2864

6. Use the agreed-upon key-derivation method to derive secret keying material with the 2865
specified length from the shared secret value Z and other input (see Section 5.8). If 2866
the key-derivation method outputs an error indicator, destroy all copies of Z; then 2867
output an error indicator, and exit this process without performing the remaining 2868
action. 2869

7. Destroy all copies of the shared secret Z and output the derived keying material. 2870

Output: The derived keying material or an error indicator. 2871

Note: Key confirmation can be incorporated into this scheme. See Section 6.2.1.5 for 2872
details. 2873

The One-Pass Unified Model is summarized in Table 16. 2874

Table 16: One-pass unified model key-agreement scheme summary 2875

 Party U Party V

Domain
parameters

(q, FR, a, b{, SEED}, G, n, h) (q, FR, a, b{, SEED}, G, n, h)

Static data
Static private key ds,U

Static public key Qs,U

Static private key ds,V

Static public key Qs,V

Ephemeral data

Ephemeral private key de,U

Ephemeral public key Qe,U

N/A

Computation

1. Compute Zs by calling ECC
CDH using ds,U and Qs,V

2. Compute Ze by calling ECC
CDH using de,U and Qs,V

3. Compute Z = Ze || Zs

1. Compute Zs by calling ECC
DH using ds,V and Qs,U

2. Compute Ze by calling ECC
DH using ds,V and Qe,U

3. Compute Z = Ze || Zs

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

89

 Party U Party V

Derive secret
keying material

1. Compute
DerivedKeyingMaterial

2. Destroy Z

1. Compute
DerivedKeyingMaterial

2. Destroy Z

6.2.1.3 MQV1, C(1e, 2s, FFC MQV) Scheme 2876

This section describes the MQV1 scheme. Assurance of secure key establishment using this 2877
scheme can only be obtained when the assumptions in Section 6.2.1 are true. In particular, it 2878
is assumed that party U has obtained the static public key yV of party V, and party V has 2879
obtained the static public key yU of party U. 2880

In this scheme, each party has different actions, which are presented separately below. 2881
However, note that parties U and V must use identical orderings of the bit strings that are 2882
input to the key-derivation method. 2883

Party U shall execute the following key-agreement transformation in order to a) establish a 2884
shared secret value Z with party V, and b) derive secret keying material from Z. 2885

Actions: Party U generates a shared secret and derives secret keying material as follows: 2886

1. Generate an ephemeral key pair (rU, tU) from the domain parameters D as specified 2887
in Section 5.6.1.1. Send the public key tU to V. 2888

2. Use the MQV1 form of the FFC MQV primitive in Section 5.7.2.1.2 to derive a 2889
shared secret Z from the set of domain parameters D, party U’s static private key xU, 2890
party V’s static public key yV, party U’s ephemeral private key rU, party U’s 2891
ephemeral public key tU, and (for a second time) party V’s static public key yV. If the 2892
call to the FFC MQV primitive outputs an error indicator, destroy the ephemeral 2893
private key rU, and destroy the results of all intermediate calculations used in the 2894
attempted computation of Z; then output an error indicator, and exit this process 2895
without performing the remaining actions. 2896

3. Use the agreed-upon key-derivation method to derive secret keying material with the 2897
specified length from the shared secret value Z and other input (see Section 5.8). If 2898
the key-derivation method outputs an error indicator, destroy all copies of Z and the 2899
ephemeral private key rU; then output an error indicator, and exit this process without 2900
performing the remaining actions. 2901

4. If the ephemeral private key rU will not be used in a broadcast scenario (see Section 2902
7) for subsequent key-establishment transactions using this scheme, then destroy rU. 2903

5. Destroy all copies of the shared secret Z and output the derived keying material. 2904

Output: The derived keying material or an error indicator. 2905

Note: If the ephemeral key pair is used in a broadcast scenario by party U (see Section 7) for 2906
subsequent key-establishment transactions using this scheme, then the same ephemeral key 2907
pair (rU, tU) may be used in other key-establishment transactions occurring during the same 2908

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

90

broadcast (i.e., step 1 above would not be repeated). After the final broadcast transaction, the 2909
ephemeral private key rU shall be destroyed (see step 4 above). 2910

Party V shall execute the following key-agreement transformation to a) establish a shared 2911
secret value Z with party U, and b) derive secret keying material from Z. 2912

Actions: Party V derives secret keying material as follows: 2913

1. Receive an ephemeral public key tU (purportedly) from party U. If tU is not received, 2914
then output an error indicator, and exit this process without performing the remaining 2915
actions. 2916

2. Verify that tU is a valid public key for the parameters D as specified in Section 5.6.2.3. 2917
If assurance of public key validity cannot be obtained, then output an error indicator, 2918
and exit without performing the remaining actions. 2919

3. Use the MQV1 form of the FFC MQV primitive in Section 5.7.2.1.2 to derive a 2920
shared secret Z from the set of domain parameters D, party V’s static private key xV, 2921
party U’s static public key yU, party V’s static private key xV (for a second time), 2922
party V’s static public key yV, and party U’s ephemeral public key tU. If the call to 2923
the FFC MQV primitive outputs an error indicator, destroy the results of all 2924
intermediate calculations used in the attempted computation of Z; then output an error 2925
indicator, and exit this process without performing the remaining actions. 2926

4. Use the agreed-upon key-derivation method to derive secret keying material with the 2927
specified length from the shared secret value Z and other input (see Section 5.8). If 2928
the key-derivation method outputs an error indicator, destroy all copies of Z; then 2929
output an error indicator, and exit this process without performing the remaining 2930
action. 2931

5. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial. 2932

Output: The bit string DerivedKeyingMaterial of length L bits or an error indicator. 2933

Note: Key confirmation can be incorporated into this scheme. See Section 6.2.1.5 for 2934
details. 2935

MQV1 is summarized in Table 17. 2936

Table 17: MQV1 Key-agreement scheme summary. 2937

 Party U Party V

Domain
parameters

(p, q, g{, SEED, counter}) (p, q, g{, SEED, counter})

Static data
Static private key xU

Static public key yU

Static private key xV

Static public key yV

Ephemeral data Ephemeral private key rU N/A

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

91

6.2.1.4 One-Pass MQV, C(1e, 2s, ECC MQV) Scheme 2938

This section describes the One-Pass MQV scheme. Assurance of secure key establishment 2939
using this scheme can only be obtained when the assumptions in Section 6.2.1 are true. In 2940
particular, it is assumed that party U has obtained the static public key Qs,V of party V, and 2941
party V has obtained the static public key Qs,U of party U. 2942

In this scheme, each party has different actions, which are presented separately below. 2943
However, note that party U and party V must use identical orderings of the bit strings that 2944
are input to the key-derivation method. 2945

Party U shall execute the following key-agreement transformation to a) establish a shared 2946
secret value Z with party V, and b) derive secret keying material from Z. 2947

Actions: Party U generates a shared secret and derives secret keying material as follows: 2948

1. Generate an ephemeral key pair (de,U, Qe,U) from the domain parameters D as specified 2949
in Section 5.6.1.2. Send the public key Qe,U to party V. 2950

2. Use the One-Pass MQV form of the ECC MQV primitive in Section 5.7.2.3.2 to 2951
derive a shared secret value Z from the set of domain parameters D, party U’s static 2952
private key ds,U, party V’s static public key Qs,V, party U’s ephemeral private key de,U, 2953
party U’s ephemeral public key Qe,U, and (for a second time) party V’s static public 2954
key Qs,V. If the call to the ECC MQV primitive outputs an error indicator, destroy the 2955
ephemeral private key de,U, and destroy the results of all intermediate calculations 2956
used in the attempted computation of Z; then output an error indicator, and exit this 2957
process without performing the remaining actions. 2958

3. Use the agreed-upon key-derivation method to derive secret keying material with the 2959
specified length from the shared secret value Z and other input (see Section 5.8). If 2960
the key-derivation method outputs an error indicator, destroy all copies of Z and the 2961
ephemeral private key de,U; then output an error indicator, and exit this process 2962
without performing the remaining actions. 2963

4. If the ephemeral private key de,U will not be used in a broadcast scenario (see Section 2964
7) for subsequent key-establishment transactions using this scheme, then destroy de,U. 2965

5. Destroy all copies of the shared secret Z and output the derived keying material. 2966

Output: The derived keying material or an error indicator. 2967

Ephemeral public key tU

Computation

C

Compute Z by calling FFC MQV
using xU, yV, rU, tU, and yV (again)

Compute Z by calling FFC MQV
using xV, yU, xV (again), yV, and tU

Derive secret
keying material

1. Compute
DerivedKeyingMaterial

2. Destroy Z

1. Compute
DerivedKeyingMaterial

2. Destroy Z

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

92

Note: If the ephemeral key pair is used in a broadcast scenario by party U (see Section 7) for 2968
subsequent key-establishment transactions using this scheme, then the same ephemeral key 2969
pair (de,U, Qe,U) may be used in other key-establishment transactions occurring during the 2970
same broadcast (i.e., step 1 above would not be repeated). After the final broadcast 2971
transaction, the ephemeral private key de,U shall be destroyed (see step 4 above). 2972

Party V shall execute the following key-agreement transformation to a) establish a shared 2973
secret value Z with party U, and b) derive shared secret keying material from Z. 2974

Actions: Party V derives secret keying material as follows: 2975

1. Receive an ephemeral public key Qe,U (purportedly) from party U. If Qe,U is not 2976
received, then output an error indicator, and exit this process without performing the 2977
remaining actions. 2978

2. Verify that Qe,U is a valid public key for the parameters D as specified in Section 2979
5.6.2.3.2 or 5.6.2.3.3. If assurance of public key validity cannot be obtained, then 2980
output an error indicator, and exit without performing the remaining actions. 2981

3. Use the One-Pass MQV form of the ECC MQV primitive in Section 5.7.2.3.2 to 2982
derive a shared secret value Z from the set of domain parameters D, party V’s static 2983
private key ds,V, party U’s static public key Qs,U, party V’s static private key ds,V (for 2984
a second time), party V’s static public key Qs,V, and party U’s ephemeral public key 2985
Qe,U. If the call to the ECC MQV primitive outputs an error indicator, destroy the 2986
results of all intermediate calculations used in the attempted computation of Z; then 2987
output an error indicator, and exit this process without performing the remaining 2988
actions. 2989

4. Use the agreed-upon key-derivation method to derive secret keying material with the 2990
specified length from the shared secret value Z and other input (see Section 5.8). If 2991
the key-derivation method outputs an error indicator, destroy all copies of Z; then 2992
output an error indicator, and exit this process without performing the remaining 2993
action. 2994

5. Destroy all copies of the shared secret Z and output the derived keying material. 2995

Output: The derived keying material or an error indicator. 2996

Note: Key confirmation can be incorporated into this scheme. See Section 6.2.1.5 for 2997
details. 2998

The One-Pass MQV scheme is summarized in Table 18. 2999

 3000

 3001

 3002

 3003

 3004

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

93

Table 18: One-pass MQV model key-agreement scheme summary 3005

 Party U Party V

Domain
parameters

(q, FR, a, b{, SEED}, G, n, h) (q, FR, a, b{, SEED}, G, n, h)

Static data
Static private key ds,U

Static public key Qs,U

Static private key ds,V

Static public key Qs,V

Ephemeral data

Ephemeral private key de,U

Ephemeral public key Qe,U

N/A

Computation
Compute Z by calling ECC MQV
using ds,U, Qs,V, de,U, Qe,U, and
Qs,V (again)

Compute Z by calling ECC MQV
using ds,V, Qs,U, ds,V (again), Qs,V, and
Qe,U

Derive secret
Keying material

1. Compute
DerivedKeyingMaterial

2. Destroy Z

1. Compute
DerivedKeyingMaterial

2. Destroy Z

6.2.1.5 Incorporating Key Confirmation into a C(1e, 2s) Scheme 3006

The subsections that follow illustrate how to incorporate key confirmation (as described in 3007
Section 5.9) into the C(1e, 2s) key-agreement schemes described above. Note that party V 3008
cannot act as a key-confirmation recipient unless a nonce (NonceV) is provided by party V to 3009
party U and is used (in addition to the shared secret Z) as input to the key-derivation method 3010
employed by the scheme. This would be accomplished by including (a copy of) NonceV in 3011
the OtherInput provided to the KDM, as part of the FixedInfo (see Section 5.8), in addition 3012
to using (a copy of) NonceV as the EphemDataV employed in the MacTag computations for 3013
key confirmation. 3014

The flow depictions separate the key-establishment flow from the key-confirmation flow. 3015
The depictions and accompanying discussions presume that the assumptions of the scheme 3016
have been satisfied, that the key-agreement transaction has proceeded successfully through 3017
key derivation, and that the received MacTags are successfully verified as specified in 3018
Section 5.2.2. 3019

6.2.1.5.1 C(1e, 2s) Scheme with Unilateral Key Confirmation Provided by Party U to 3020
Party V 3021

Figure 10 depicts a typical flow for a C(1e, 2s) scheme with unilateral key confirmation from 3022
party U to party V. In this situation, party U and party V assume the roles of key-confirmation 3023
provider and recipient, respectively. Since party V does not contribute an ephemeral public 3024
key during the key-agreement process, a nonce (NonceV) shall be provided by party V to 3025
party U and used (in addition to the shared secret Z) as input to the key-derivation method 3026

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

94

employed by the scheme. NonceV is also used as EphemDataV during MacTag computations. 3027
The successful completion of the key-confirmation process provides party V with assurance 3028
that party U has derived the same secret Z value. If NonceV is a random nonce, then party V 3029
also obtains assurance that party U has actively participated in the process; see Section 5.4 3030
for a discussion of the length and security strength required for the nonce. 3031

 3032

Figure 10: C(1e, 2s) scheme with unilateral key confirmation from party U to party V 3033

To provide (and receive) key confirmation (as described in Section 5.9.1.1), party U (and 3034
party V) set 3035

 EphemDataU = EphemPubKeyU, and EphemDataV = NonceV. 3036
 3037
Party U provides MacTagU to party V (as specified in Section 5.9.1.1, with P = U and R = 3038
V), where MacTagU is computed (as specified in Section 5.2.1) using 3039

 MacDataU = “KC_1_U” || IDU || IDV || EphemPubKeyU || NonceV {|| TextU}. 3040

Party V (the key-confirmation recipient) uses the same format for MacDataU to compute 3041
its own version of MacTagU and then verifies that the newly computed MacTag matches 3042
the value provided by party U. 3043

6.2.1.5.2 C(1e, 2s) Scheme with Unilateral Key Confirmation Provided by Party V to 3044
Party U 3045

Figure 11 depicts a typical flow for a C(1e, 2s) scheme with unilateral key confirmation from 3046
party V to party U. In this scenario, party V and party U assume the roles of key-confirmation 3047
provider and recipient, respectively. The successful completion of the key-confirmation 3048

U V

 U’s Static Public Key

V’s Static Public Key

U’s Ephemeral Public Key

NonceV

MacTagU

Obtain static public
keys

U sends an ephemeral
public key

V sends a nonce

U’s key
confirmation

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

95

process provides party U with a) assurance that party V has derived the same secret Z value, 3049
and b) assurance that party V has actively participated in the process. 3050

 3051
Figure 11: C(1e, 2s) scheme with unilateral key confirmation from party V to party U 3052

To provide (and receive) key confirmation (as described in Section 5.9.1.1), both parties set 3053

 EphemDataV = Null, and EphemDataU = EphemPubKeyU. 3054
 3055
Party V provides MacTagV to party U (as specified in Section 5.9.1.1, with P = V and R = 3056
U), where MacTagV is computed (as specified in Section 5.2.1) using 3057

 MacDataV = “KC_1_V” || IDV || IDU || Null || EphemPubKeyU {|| TextV}. 3058

Party U (the key-confirmation recipient) uses the same format for MacDataV to compute its 3059
own version of MacTagV, and then verifies that the newly computed MacTag matches the 3060
value provided by party V. 3061

6.2.1.5.3 C(1e, 2s) Scheme with Bilateral Key Confirmation 3062
Figure 12 depicts a typical flow for a C(1e, 2s) scheme with bilateral key confirmation. In 3063
this method, party U and party V assume the roles of both the provider and the recipient to 3064
obtain bilateral key confirmation. Since party V does not contribute an ephemeral public key 3065
during the key-agreement process, a nonce (NonceV) shall be provided by party V to party 3066
U and used (in addition to the shared secret Z) as input to the key-derivation method 3067
employed by the scheme. NonceV is also used as the EphemDataV during MacTag 3068
computations. The successful completion of the key-confirmation process provides each 3069
party with assurance that the other party has derived the same secret Z value. Party U obtains 3070
assurance that party V has actively participated in the process; if NonceV is a random nonce, 3071

U V

 U’s Static Public Key

V’s Static Public Key

U’s Ephemeral Public Key

MacTagV

Obtain static public
keys

U sends an ephemeral
public key

V’s key-
confirmation

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

96

then party V also obtains assurance that party U has actively participated in the process; see 3072
Section 5.4 for a discussion of the length and security strength required for the nonce. 3073

 3074
Figure 12: C(1e, 2s) scheme with bilateral key confirmation 3075

To provide bilateral key confirmation (as described in Section 5.9.2.1), party U and party V 3076
exchange and verify MacTags that have been computed (as specified in Sections 5.2.1) using 3077

 EphemDataU = EphemPubKeyU and EphemDataV = NonceV. 3078

Party V provides MacTagV to party U (as specified in Sections 5.9.1.1 and 5.9.2.1, with P = 3079
V and R = U); MacTagV is computed by party V (and verified by U) using 3080

 MacDataV = “KC_2_V” || IDV || IDU || NonceV || EphemPubKeyU {|| TextV}. 3081

Party U provides MacTagU to party V (as specified in Sections 5.9.1.1 and 5.9.2.1, with P = 3082
U and R = V); MacTagU is computed by party U (and verified by party V) using 3083

 MacDataU = “KC_2_U” || IDU || IDV || EphemPubKeyU || NonceV {|| TextU}. 3084

Note that in Figure 12 party V’s nonce (NonceV) and the MacTag (MacTagV) are depicted as 3085
being sent in the same message (to reduce the number of passes in the combined key-3086
agreement/key-confirmation process). They may also be sent separately (as long as NonceV 3087
is sent before the MacTags are exchanged). The MacTagV and MacTagU can be sent in any 3088
order, as long as NonceV is available to generate and verify both MAC tags. 3089

6.2.2 C(1e, 1s) Schemes 3090
For each of the C(1e, 1s) schemes, party U generates an ephemeral key pair, but uses no 3091
static key pair; party V has only a static key pair. Party U obtains party V’s static public key 3092
in a trusted manner (for example, from a certificate signed by a trusted CA or directly from 3093

U V
 U’s Static Public Key

V’s Static Public Key

U’s Ephemeral Public Key

NonceV, MacTagV

MacTagU

Obtain static public
keys

U sends an ephemeral
public key

V’s key confirmation
with a nonce

U’s key confirmation

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

97

party V, who is trusted) and sends its ephemeral public key to party V. The parties compute 3094
a shared secret using their private keys and the other party’s public key. Each party uses the 3095
shared secret to derive secret keying material (see Figure 13). 3096

 3097
Figure 13: C(1e, 1s) schemes: party U contributes an ephemeral key pair, and party V 3098
contributes a static key pair 3099
Assumptions: In order to execute a C(1e, 1s) key-establishment scheme in compliance with 3100
this Recommendation, the following assumptions shall be true. 3101

1. Each party has an authentic copy of the same set of domain parameters, D. These 3102
parameters are either approved for use in the intended application (see Section 3103
5.5.1). For FFC schemes, D = (p, q, g{, SEED, counter}); for ECC schemes, D = (q, 3104
FR, a, b{, SEED}, G, n, h). Furthermore, each party has obtained assurance of the 3105
validity of these domain parameters as specified in Section 5.5.2. 3106

2. Party V has been designated as the owner of a static key pair that was generated as 3107
specified in Section 5.6.1 using the set of domain parameters, D. For FFC schemes, 3108
the static key pair is (x, y); for ECC schemes, the static key pair is (ds, Qs). Party V 3109
has obtained assurance of the validity of its own static public key as specified in 3110
Section 5.6.2.1. Party V has obtained assurance of its possession of the correct value 3111
of its own private key as specified in Section 5.6.2.1.5. 3112

3. The parties have agreed upon an approved key-derivation method, as well as an 3113
approved algorithm to be used with that method (e.g., a hash function) and other 3114
associated parameters to be used (see Section 5.8). 3115

4. If key confirmation is used, the parties have also agreed upon an approved MAC and 3116
associated parameters, including the lengths of MacKey and MacTag (see Section 3117
5.9.3). 3118

5. Prior to or during the key-agreement process, party U receives party V’s static public 3119
key in a trusted manner (e.g., from a certificate signed by a trusted CA or directly 3120
from party V, who is trusted by the recipient) Party U has obtained assurance of the 3121
validity of party V’s static public key as specified in Section 5.6.2.2.1. 3122

U V
 V’s Static Public Key

U’s Ephemeral Public Key

U obtains V’s static
public key

U sends an ephemeral
public key

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

98

6. When an identifier is used to label either party during the key-agreement process, 3123
both parties are aware of the identifier employed for that purpose. In particular, when 3124
an identifier is used to label party V during the key-agreement process, that identifier 3125
has a trusted association to party V’s static public key. (In other words, whenever 3126
both the identifier and static public key of one participant are employed in the key-3127
agreement process, they are associated in a manner that is trusted by the other 3128
participant.) When an identifier is used to label party U during the key-agreement 3129
process, it has been selected/assigned in accordance with the requirements of the 3130
protocol relying upon the use of the key-agreement scheme. 3131

The following is an assumption for using the derived keying material for purposes beyond 3132
the C(1e,1s) scheme itself. 3133

Party U has obtained assurance that party V is (or was) in possession of the 3134
appropriate static private key, as specified in Section 5.6.2.2.3. 3135

6.2.2.1 dhOneFlow, C(1e, 1s, FFC DH) Scheme 3136

This section describes the dhOneFlow scheme. Assurance of secure key establishment using 3137
this scheme can only be obtained when the assumptions in Section 6.2.2 are true. In 3138
particular, it is assumed that party U has obtained the static public key yV of party V. 3139

In this scheme, each party has different actions, which are presented separately below. 3140
However, note that parties U and V must use identical orderings of the bit strings that are 3141
input to the key-derivation method. 3142

Party U shall execute the following key-agreement transformation to a) establish a shared 3143
secret value Z with party V, and b) derive secret keying material from Z. 3144

Actions: Party U generates a shared secret and derives secret keying material as follows: 3145

1. Generate an ephemeral key pair (rU, tU) from the domain parameters D as specified 3146
in Section 5.6.1.1. Send the public key tU to party V. 3147

2. Use the FCC DH primitive in Section 5.7.1.1 to derive a shared secret Z from the set 3148
of domain parameters D, party U’s ephemeral private key rU, and party V’s static 3149
public key yV. If the call to the FFC DH primitive outputs an error indicator, destroy 3150
the ephemeral private key rU, and destroy the results of all intermediate calculations 3151
used in the attempted computation of Z; then output an error indicator, and exit this 3152
process without performing the remaining actions. 3153

3. Use the agreed-upon key-derivation method to derive secret keying material with the 3154
specified length from the shared secret value Z and other input (see Section 5.8). If 3155
the key-derivation method outputs an error indicator, destroy all copies of Z and the 3156
ephemeral private key rU; then output an error indicator, and exit this process without 3157
performing the remaining actions. 3158

4. If the ephemeral private key rU will not be used in a broadcast scenario (see Section 3159
7) for subsequent key-establishment transactions using this scheme, then destroy rU. 3160

5. Destroy all copies of the shared secret Z and output the derived keying material. 3161

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

99

Output: The derived keying material or an error indicator. 3162

Note: If the ephemeral key pair is used in a broadcast scenario by party U (see Section 7) for 3163
subsequent key-establishment transactions using this scheme, then the same ephemeral key 3164
pair (rU, tU) may be used in other key-establishment transactions occurring during the same 3165
broadcast (i.e., step 1 above would not be repeated). After the final broadcast transaction, the 3166
ephemeral private key rU shall be destroyed (see step 4 above). 3167

Party V shall execute the following key-agreement transformation to a) establish a shared 3168
secret value Z with party U, and b) derive secret keying material from Z. 3169

Actions: Party V derives secret keying material as follows: 3170

1. Receive an ephemeral public key tU (purportedly) from party U. If tU is not received, 3171
then output an error indicator, and exit this process without performing the remaining 3172
actions. 3173

2. Verify that tU is a valid public key for the parameters D as specified in Section 5.6.2.3. 3174
If assurance of public key validity cannot be obtained, then output an error indicator, 3175
and exit this process without performing the remaining actions. 3176

3. Use the FCC DH primitive in Section 5.7.1.1 to derive a shared secret Z from the set 3177
of domain parameters D, party V’s static private key xV, and party U’s ephemeral 3178
public key tU. If the call to the FFC DH primitive outputs an error indicator, destroy 3179
the results of all intermediate calculations used in the attempted computation of Z; 3180
then output an error indicator, and exit this process without performing the remaining 3181
actions. 3182

4. Use the agreed-upon key-derivation method to derive secret keying material with the 3183
specified length from the shared secret value Z and other input (see Section 5.8). If 3184
the key-derivation method outputs an error indicator, destroy all copies of Z; then 3185
output an error indicator, and exit this process without performing the remaining 3186
action. 3187

5. Destroy all copies of the shared secret Z and output the derived keying material. 3188

Output: The derived keying material or an error indicator. 3189

3190

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

100

Note: Key confirmation can be incorporated into this scheme. See Section 6.2.2.3 for 3191
details. 3192

dhOneFlow is summarized in Table 19. 3193

Table 19: dhOneFlow key-agreement scheme summary 3194

6.2.2.2 (Cofactor) One-Pass Diffie-Hellman, C(1e, 1s, ECC CDH) Scheme 3195

This section describes the One-Pass Diffie-Hellman scheme. Assurance of secure key 3196
establishment using this scheme can only be obtained when the assumptions in Section 6.2.2 3197
are true. In particular, it is assumed that party U has obtained the static public key Qs,V of 3198
party V. 3199

In this scheme, each party has different actions, which are presented separately below. 3200
However, note that parties U and V must use identical orderings of the bit strings that are 3201
input to the key-derivation method. 3202

Party U shall execute the following key-agreement transformation to a) establish a shared 3203
secret value Z with party V, and b) derive secret keying material from Z. 3204

Actions: Party U generates a shared secret and derives secret keying material as follows: 3205

1. Generate an ephemeral key pair (de,U, Qe,U) from the domain parameters D as 3206
specified in Section 5.6.1.2. Send the public key Qe,U to party V. 3207

2. Use the ECC CDH primitive in Section 5.7.1.2 to derive a shared secret Z from the 3208
set of domain parameters D, party U’s ephemeral private key de,U, and party V’s static 3209
public key Qs,V. If this call to the ECC CDH primitive outputs an error indicator, 3210
destroy the ephemeral private key de,U, and destroy the results of all intermediate 3211

 Party U Party V

Domain
parameters

(p, q, g{, SEED, counter}) (p, q, g{, SEED, counter})

Static data
N/A Static private key xV

Static public key yV

Ephemeral data
Ephemeral private key rU

Ephemeral public key tU

N/A

Computation Compute Z by calling FFC DH
using rU and yV

Compute Z by calling FFC DH using
xV and tU

Derive secret
material

1. Compute
DerivedKeyingMaterial

2. Destroy Z

1. Compute
DerivedKeyingMaterial

2. Destroy Z

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

101

calculations used in the attempted computation of Z; then output an error indicator, 3212
and exit this process without performing the remaining actions. 3213

3. Use the agreed-upon key-derivation method to derive secret keying material with the 3214
specified length from the shared secret value Z and other input (see Section 5.8). If 3215
the key-derivation method outputs an error indicator, destroy all copies of Z and the 3216
ephemeral private key de,U; then output an error indicator, and exit this process 3217
without performing the remaining actions. 3218

4. If the ephemeral private key de,U will not be used in a broadcast scenario (see Section 3219
7) for subsequent key-establishment transactions using this scheme, then destroy de,U. 3220

5. Destroy all copies of the shared secret Z and output the derived keying material. 3221

Output: The derived keying material or an error indicator. 3222

Note: If the ephemeral key pair is used in a broadcast scenario by party U (see Section 7) for 3223
subsequent key-establishment transactions using this scheme, then the same ephemeral key 3224
pair (de,U, Qe,U) may be used in other key-establishment transactions occurring during the 3225
same broadcast (i.e., step 1 above would not be repeated). After the final broadcast 3226
transaction, the ephemeral private key de,U shall be destroyed (see step 4 above). 3227

Party V shall execute the following key-agreement transformation to a) establish a shared 3228
secret value Z with party U, and b) derive secret keying material from Z. 3229

Actions: Party V derives secret keying material as follows: 3230

1. Receive an ephemeral public key Qe,U (purportedly) from party U. If Qe,U is not 3231
received, then output an error indicator, and exit this process without performing the 3232
remaining actions. 3233

2. Verify that Qe,U is a valid public key for the parameters D as specified in Section 3234
5.6.2.3. If assurance of public key validity cannot be obtained, then output an error 3235
indicator, and exit without performing the remaining actions. 3236

3. Use the ECC CDH primitive in Section 5.7.1.2 to derive a shared secret Z from the 3237
set of domain parameters D, party V’s static private key ds,V, and party U’s ephemeral 3238
public key Qe,U. If this call to the ECC CDH primitive outputs an error indicator, 3239
destroy the results of all intermediate calculations used in the attempted computation 3240
of Z; then output an error indicator, and exit this process without performing the 3241
remaining actions. 3242

4. Use the agreed-upon key-derivation method to derive secret keying material with the 3243
specified length from the shared secret value Z and other input (see Section 5.8). If 3244
the key-derivation method outputs an error indicator, destroy all copies of Z; then 3245
output an error indicator, and exit this process without performing the remaining 3246
action. 3247

6. Destroy all copies of the shared secret Z and output the derived keying material. 3248

Output: The derived keying material or an error indicator. 3249

3250

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

102

Note: Key confirmation can be incorporated into this scheme. See Section 6.2.2.3 for 3251
details. 3252

The One-Pass Diffie-Hellman is summarized in Table 20. 3253

Table 20: One-pass Diffie-Hellman key-agreement scheme summary 3254

6.2.2.3 Incorporating Key Confirmation into a C(1e, 1s) Scheme 3255

The subsection that follows illustrates how to incorporate key confirmation (as described in 3256
Section 5.9) into the C(1e, 1s) key-agreement schemes described above. Note that only 3257
unilateral key confirmation from party V to party U is specified, since only party V has a 3258
static key pair that is used in the key-establishment process. 3259

The flow depiction separates the key-establishment flow from the key-confirmation flow. 3260
The depiction and accompanying discussion presumes that the assumptions of the scheme 3261
have been satisfied, that the key-agreement transaction has proceeded successfully through 3262
key derivation, and that the received MacTag is successfully verified as specified in Section 3263
5.2.2. 3264

6.2.2.3.1 C(1e, 1s) Scheme with Unilateral Key Confirmation Provided by Party V to 3265
Party U 3266

Figure 14 depicts a typical flow for a C(1e, 1s) scheme with unilateral key confirmation from 3267
party V to party U. In this scenario, party V and party U assume the roles of the key-3268
confirmation provider and recipient, respectively. The successful completion of the key-3269
confirmation process provides party U with a) assurance that party V has derived the same 3270
secret Z value, and b) assurance that party V has actively participated in the process. 3271

 Party U Party V

Domain
parameters

(q, FR, a, b{, SEED}, G, n, h) (q, FR, a, b{, SEED}, G, n, h)

Static data
N/A Static private key ds,V

Static public key Qs,V

Ephemeral data

Ephemeral private key de,U

Ephemeral public key Qe,U

N/A

Computation Compute Z by calling ECC CDH
using de,U and Qs,V

Compute Z by calling ECC CDH
using ds,V and Qe,U

Derive secret
keying material

1. Compute
DerivedKeyingMaterial

2. Destroy Z

1. Compute
DerivedKeyingMaterial

2. Destroy Z

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

103

 3272
Figure 14: C(1e, 1s) scheme with unilateral key confirmation from party V to party U 3273

To provide (and receive) key confirmation (as described in Section 5.9.1.1), both parties set 3274

 EphemDataV = Null, and EphemDataU = EphemPubKeyU. 3275
 3276
Party V provides MacTagV to party U (as specified in Section 5.9.1.1, with P = V and R = 3277
U), where MacTagV is computed (as specified in Section 5.2.1) using 3278

 MacDataV = “KC_1_V” || IDV || IDU || Null || EphemPubKeyU {|| TextV}. 3279

Party U (the key-confirmation recipient) uses the same format for MacDataV to compute its 3280
own version of MacTagV and then verifies that the newly computed MacTag matches the 3281
value provided by V. 3282

6.3 C(0e, 2s) Schemes 3283

In this category, the parties use only static key pairs. Each party obtains the other party’s 3284
static public key. A nonce, NonceU, is sent by party U to party V to ensure that the derived 3285
keying material is different for each key-establishment transaction. This would be 3286
accomplished by including (a copy of) NonceU in the OtherInput provided to the KDM, as 3287
part of the FixedInfo (see Section 5.8). The parties calculate the shared secret using their own 3288
static private key and the other party’s static public key. Secret keying material is derived 3289
using the key-derivation method, the shared secret, and the nonce (see Figure 15). 3290

U V

V’s Static Public Key

U’s Ephemeral Public Key

MacTagV

U obtains V’s static
public key

U sends an ephemeral
public key

V’s key-confirmation

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

104

 3291
Figure 15: C(0e, 2s) schemes: each party contributes only a static key pair 3292

Assumptions: In order to execute a C(0e, 2s) key-establishment scheme in compliance with 3293
this Recommendation, the following assumptions shall be true. 3294

1. Each party has an authentic copy of the same set of domain parameters, D. These 3295
parameters are either approved for use in the intended application (see Section 3296
5.5.1). For FFC schemes, D = (p, q, g{, SEED, counter}); for ECC schemes, D = (q, 3297
FR, a, b{, SEED}, G, n, h). Furthermore, each party has assurance of the validity of 3298
these domain parameters as specified in Section 5.5.2. 3299

2. Each party has been designated as the owner of a static key pair that was generated 3300
as specified in Section 5.6.1 using the set of domain parameters, D. For FFC schemes, 3301
the static key pair is (x, y); for ECC schemes, the static key pair is (ds, Qs). Each party 3302
has obtained assurance of the validity of its own static public key as specified in 3303
Section 5.6.2.1. Each party has obtained assurance of its possession of the correct 3304
value for its own private key as specified in Section 5.6.2.1.5. 3305

3. The parties have agreed upon an approved key-derivation method (see Section 5.8), 3306
as well as an approved algorithm used with the method (e.g., a hash function) and 3307
other associated parameters to be used. In addition, the parties have agreed on the 3308
form of the nonce (see Section 5.4), which should be a random nonce. 3309

4. If key confirmation is used, the parties have also agreed upon an approved MAC and 3310
associated parameters, including the lengths of MacKey and MacTag (see Section 3311
5.9.3). If party V provides key confirmation to party U, the parties have agreed upon 3312
the form of NonceV, which should be a random nonce. 3313

5. Prior to or during the key-agreement process, each party receives the other party’s 3314
static public key in a trusted manner (e.g., from a certificate signed by a trusted CA 3315
or directly from the other party, who is trusted by the recipient). Each party has 3316
obtained assurance of the validity of the other party’s static public key as specified in 3317
Section 5.6.2.2. 3318

U V
 U’s Static Public Key

V’s Static Public Key

NonceU

Obtain static public
keys

U sends a nonce

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

105

6. The recipient of a static public key has obtained assurance that its (claimed) owner is 3319
(or was) in possession of the corresponding static private key, as specified in Section 3320
5.6.3.2. 3321

7. When an identifier is used to label a party during the key-agreement process, that 3322
identifier has a trusted association with that party’s static public key. (In other words, 3323
whenever both the identifier and static public key of one participant are employed in 3324
the key-agreement process, they are associated in a manner that is trusted by the other 3325
participant.) When an identifier is used to label a party during the key-agreement 3326
process, both parties are aware of the particular identifier employed for that purpose. 3327

6.3.1 dhStatic, C(0e, 2s, FFC DH) Scheme 3328
This section describes the dhStatic scheme. Assurance of secure key establishment using this 3329
scheme can only be obtained when the assumptions in Section 6.3 are true. In particular, it 3330
is assumed that party U has obtained the static public key yV of party V, and party V has 3331
obtained the static public key yU of party U. 3332

In this scheme, each party has different actions, which are presented separately below. 3333
However, note that parties U and V must use identical orderings of the bit strings that are 3334
input to the key-derivation method. 3335

Party U shall execute the following key-agreement transformation to a) establish a shared 3336
secret value Z with party V, and b) derive secret keying material from Z. 3337

Actions: Party U generates a shared secret and derives secret keying material as follows: 3338

1. Obtain a nonce, NonceU (see Section 5.4). Send NonceU to party V. 3339

2. Use the FFC DH primitive in Section 5.7.1.1 to derive a shared secret Z from the set 3340
of domain parameters D, party U’s static private key xU, and party V’s static public 3341
key yV. If the call to the FFC DH primitive outputs an error indicator, destroy NonceU, 3342
and destroy the results of all intermediate calculations used in the attempted 3343
computation of Z; then output an error indicator, and exit this process without 3344
performing the remaining actions. 3345

3. Use the agreed-upon key-derivation method to derive secret keying material with the 3346
specified length from the shared secret value Z, NonceU and other input (see Section 3347
5.8). If the key-derivation method outputs an error indicator, destroy all copies of Z; 3348
then output an error indicator, and exit this process without performing the remaining 3349
actions. 3350

4. Destroy all copies of the shared secret Z and output the derived keying material. 3351

Output: The derived keying material bits or an error indicator. 3352

Note: If NonceU is used in a broadcast scenario by party U (see Section 7) for subsequent 3353
key-establishment transactions using this scheme, then the same NonceU may be used in 3354
other key-establishment transactions occurring during the same broadcast (i.e., step 1 above 3355
would not be repeated). 3356

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

106

Party V shall execute the following key-agreement transformation to a) establish a shared 3357
secret value Z with party U, and b) derive secret keying material from Z. 3358

Actions: Party V derives secret keying material as follows: 3359

1. Obtain party U’s nonce, NonceU, from party U. If NonceU is not available, then output 3360
an error indicator, and exit this process without performing the remaining actions. 3361

2. Use the FFC DH primitive in Section 5.7.1.1 to derive a shared secret from the set of 3362
domain parameters D, party V’s static private key xV, and party U’s static public key 3363
yU. If the call to the FFC DH primitive outputs an error indicator, destroy the results 3364
of all intermediate calculations used in the attempted computation of Z; then output 3365
an error indicator, and exit this process without performing the remaining actions. 3366

3. Use the agreed-upon key-derivation method to derive secret keying material with the 3367
specified length from the shared secret value Z, NonceU, and other input (see Section 3368
5.8). If the key-derivation method outputs an error indicator, destroy all copies of Z; 3369
then output an error indicator, and exit this process without performing the remaining 3370
action. 3371

4. Destroy all copies of the shared secret Z and output the derived keying material. 3372

Output: The derived keying material or an error indicator. 3373

Note: Key confirmation can be incorporated into this scheme. See Section 6.3.3 for details. 3374

dhStatic is summarized in Table 21. 3375

Table 21: dhStatic key-agreement scheme summary 3376

 Party U Party V

Domain
parameters

(p, q, g{, SEED, counter}) (p, q, g{, SEED, counter})

Static data
Static private key xU

Static public key yU

Static private key xV

Static public key yV

Ephemeral
data

NonceU

Computation Compute Z by calling FFC DH
using xU, and yV

Compute Z by calling FFC DH
using xV, and yU

Derive secret
keying material

1. Compute
DerivedKeyingMaterial using
Z and NonceU

2. Destroy Z

1. Compute
DerivedKeyingMaterial using
Z and NonceU

2. Destroy Z

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

107

6.3.2 (Cofactor) Static Unified Model, C(0e, 2s, ECC CDH) Scheme 3377
This section describes the Static Unified Model scheme. Assurance of secure key 3378
establishment using this scheme can only be obtained when the assumptions in Section 6.3 3379
are true. In particular, it is assumed that party U has obtained the static public key Qs,V of 3380
party V, and party V has obtained the static public key Qs,U of party U. 3381

In this scheme, each party has different actions, which are presented separately below. 3382
However, note that parties U and V must use identical orderings of the bit strings that are 3383
input to the key-derivation method. 3384

Party U shall execute the following key-agreement transformation to a) establish a shared 3385
secret value Z with party V, and b) derive secret keying material from Z. 3386

Actions: Party U generates a shared secret and derives secret keying material as follows: 3387

1. Obtain a nonce, NonceU (see Section 5.4). Send NonceU to party V. 3388

2. Use the ECC CDH primitive in Section 5.7.1.2 to derive a shared secret Z from the 3389
set of domain parameters D, party U’s static private key ds,U, and party V’s static 3390
public key Qs,V. If the call to the ECC CDH primitive outputs an error indicator, 3391
destroy the results of all intermediate calculations used in the attempted computation 3392
of Z; then output an error indicator, and exit this process without performing the 3393
remaining actions. 3394

3. Use the agreed-upon key-derivation method to derive secret keying material with the 3395
specified length from the shared secret value Z, NonceU, and other input (see Section 3396
5.8). If the key-derivation method outputs an error indicator, destroy all copies of Z; 3397
then output an error indicator, and exit this process without performing the remaining 3398
actions. 3399

4. If NonceU will not be used in a broadcast scenario (see Section 7) for subsequent key-3400
establishment transactions using this scheme, then destroy NonceU. 3401

5. Destroy all copies of the shared secret Z and output the derived keying material. 3402

Output: The derived keying material or an error indicator. 3403

Note: If NonceU is used in a broadcast scenario by party U (see Section 7) for subsequent 3404
key-establishment transactions using this scheme, then the same NonceU may be used in 3405
other key-establishment transactions occurring during the same broadcast (i.e., step 1 above 3406
would not be repeated). 3407

Party V shall execute the following key-agreement transformation to a) establish a shared 3408
secret value Z, with party U, and b) derive secret keying material from Z. 3409

Actions: Party V derives secret keying material as follows: 3410

1. Obtain party U’s nonce, NonceU, from party U. If NonceU is not available, then output 3411
an error indicator, and exit this process without performing the remaining actions. 3412

2. Use the ECC CDH primitive in Section 5.7.1.2 to derive a shared secret Z from the 3413
set of domain parameters D, party V’s static private key ds,V, and party U’s static 3414
public key Qs,U. If the call to the ECC CDH primitive outputs an error indicator, 3415

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

108

destroy the results of all intermediate calculations used in the attempted computation 3416
of Z; then output an error indicator, and exit this process without performing the 3417
remaining actions. 3418

3. Use the agreed-upon key-derivation method to derive secret keying material with the 3419
specified length from the shared secret value Z, NonceU, and other input (see Section 3420
5.8). If the key-derivation method outputs an error indicator, destroy all copies of Z; 3421
then output an error indicator, and exit this process without performing the remaining 3422
action. 3423

4. Destroy all copies of the shared secret Z and output the derived keying material. 3424

Output: The derived keying material or an error indicator. 3425

Note: Key confirmation can be incorporated into this scheme. See Section 6.3.3 for details. 3426

Static Unified Model is summarized in Table 22. 3427

Table 22: Static unified model key-agreement scheme summary 3428

 Party U Party V

Domain
parameters

(q, FR, a, b{, SEED}, G, n, h) (q, FR, a, b{, SEED}, G, n, h)

Static data
Static private key ds,U

Static public key Qs,U

Static private key ds,V

Static public key Qs,V

Ephemeral data NonceU

Computation Compute Z by calling ECC CDH
using ds,U, and Qs,V

Compute Z by calling ECC
CDH using ds,V, and Qs,U

Derive secret
keying material

1. Compute DerivedKeyingMaterial
using NonceU

2. Destroy Z

1. Compute
DerivedKeyingMaterial
using NonceU

2. Destroy Z

6.3.3 Incorporating Key Confirmation into a C(0e, 2s) Scheme 3429
The subsections that follow illustrate how to incorporate key confirmation (as described in 3430
Section 5.9) into the C(0e, 2s) key-agreement schemes described above. Note that party V 3431
cannot act as a key confirmation unless a nonce (NonceV) is provided by party V to party U 3432
and is used (in addition to the shared secret Z) as input to the key-derivation method 3433
employed by the scheme. This would be accomplished by including (a copy of) NonceV in 3434
the OtherInput provided to the KDM, as part of the FixedInfo (see Section 5.8), in addition 3435
to using (a copy of) NonceV as the EphemDataV employed in the MacTag computations for 3436
key confirmation. 3437

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

109

The flow depictions separate the key-establishment flow from the key-confirmation flow. 3438
The depictions and accompanying discussions presume that the assumptions of the scheme 3439
have been satisfied, that the key-agreement transaction has proceeded successfully through 3440
key derivation, and that the received MacTags are successfully verified as specified in 3441
Section 5.2.2. 3442

6.3.3.1 C(0e, 2s) Scheme with Unilateral Key Confirmation Provided by Party 3443
U to Party V 3444

Figure 16 depicts a typical flow for a C(0e, 2s) scheme with unilateral key confirmation from 3445
party U to party V. In this scenario, party U and party V assume the roles of key-confirmation 3446
provider and recipient, respectively. A nonce (NonceV) shall be provided by party V to party 3447
U and used (in addition to the shared secret Z and the nonce provided by party U) as input to 3448
the key-derivation method employed by the scheme. NonceV is also used as the EphemDataV 3449
during MacTag computations. The successful completion of the key-confirmation process 3450
provides party V with assurance that party U has derived the same secret Z value. If NonceV 3451
is a random nonce, then party V also obtains assurance that party U has actively participated 3452
in the process; see Section 5.4 for a discussion of the length and security strength required 3453
for the nonce. 3454

 3455
Figure 16: C(0e, 2s) scheme with unilateral key confirmation from party U to party V 3456

To provide (and receive) key confirmation (as described in Section 5.9.1.1), party U (and 3457
party V) set 3458

 EphemDataU = NonceU, and EphemDataV = NonceV. 3459
 3460

U V
 U’s Static Public Key

V’s Static Public Key

NonceU

NonceV

MacTagU

Obtain static
public keys

U sends a nonce

V sends a nonce

U’s key confirmation

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

110

Party U provides MacTagU to party V (as specified in Section 5.9.1.1, with P = U and R = 3461
V), where MacTagU is computed (as specified in Section 5.2.1) using 3462
 MacDataU = “KC_1_U” || IDU || IDV || NonceU || NonceV {|| TextU}. 3463

Party V (the key-confirmation recipient) uses the same format for MacDataU to compute its 3464
own version of MacTagU and then verifies that the newly computed MacTag matches the 3465
value provided by party U. 3466

6.3.3.2 C(0e, 2s) Scheme with Unilateral Key Confirmation Provided by Party 3467
V to Party U 3468

Figure 17 depicts a typical flow for a C(0e, 2s) scheme with unilateral key confirmation from 3469
party V to party U. In this situation, party V and party U assume the roles of key-confirmation 3470
provider and recipient, respectively. The successful completion of the key-confirmation 3471
process provides party U with assurance that party V has derived the same secret Z value; if 3472
NonceU is a random nonce, then party U also obtains assurance that party V has actively 3473
participated in the process; see Section 5.4 for a discussion of the length and security strength 3474
required for the nonce. 3475

 3476
Figure 17: C(0e, 2s) scheme with unilateral key confirmation from party V to party U 3477

To provide (and receive) key confirmation (as described in Section 5.9.1.1), both parties set 3478

 EphemDataV = Null, and EphemDataU = NonceU. 3479
 3480
Party V provides MacTagV to party U (as specified in 5.9.1.1, with P = V and R = U), 3481
where MacTagV is computed (as specified in Section 5.2.1) using 3482

 MacDataV = “KC_1_V” || IDV || IDU || Null || NonceU {|| TextV}. 3483

U V
 U’s Static Public Key

V’s Static Public Key

NonceU

MacTagV

Obtain static public
keys

U sends a nonce

V’s key confirmation

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

111

Party U (the key-confirmation recipient) uses the same format for MacDataV to compute its 3484
own version of MacTagV, and then verifies that the newly computed MacTag matches the 3485
value provided by party V. 3486

6.3.3.3 C(0e, 2s) Scheme with Bilateral Key Confirmation 3487

Figure 18 depicts a typical flow for a C(0e, 2s) scheme with bilateral key confirmation. In 3488
this method, party U and party V assume the roles of both the provider and the recipient in 3489
order to obtain bilateral key confirmation. A nonce (NonceV) shall be provided by party V 3490
to party U and used (in addition to the shared secret Z and the nonce, NonceU, provided by 3491
party U) as input to the key-derivation method employed by the scheme. NonceV is also used 3492
as the EphemDataV during MacTag computations. The successful completion of the key-3493
confirmation process provides each party with assurance that the other party has derived the 3494
same secret Z value. If NonceU is a random nonce, then party U obtains assurance that party 3495
V has actively participated in the process; if NonceV is a random nonce, then party V obtains 3496
assurance that party U has actively participated in the process. See Section 5.4 for a 3497
discussion about the length and security strength required for the nonce. 3498

 3499
Figure 18: C(0e, 2s) scheme with bilateral key confirmation 3500

To provide bilateral key confirmation (as described in Section 5.9.2.1), party U and party V 3501
exchange and verify MacTags that have been computed (as specified in Section 5.2.1) using 3502

 EphemDataU = NonceU, and EphemDataV = NonceV. 3503

Party V provides MacTagV to party U (as specified in Sections 5.9.1.1 and 5.9.2.1, with P = 3504
V and R = U); MacTagV is computed by party V (and verified by party U) using 3505

 MacDataV = “KC_2_V” || IDV || IDU || NonceV || NonceU {|| TextV}. 3506

U V
 U’s Static Public Key

V’s Static Public Key

NonceU

NonceV, MacTagV

MacTagU

Obtain static public
keys

U sends a nonce

V sends a nonce with
key-confirmation

U’s key-confirmation

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

112

Party U provides MacTagU to party V (as specified in Sections 5.9.1.1 and 5.9.2.1, with P = 3507
U and R = V); MacTagU is computed by party U (and verified by party V) using 3508

 MacDataU = “KC_2_U” || IDU || IDV || NonceU || NonceV {|| TextU}. 3509

Note that in Figure 18, party V’s nonce (NonceV) and the MacTag (MacTagV) are depicted 3510
as being sent in the same message (to reduce the number of passes in the combined key-3511
agreement/key-confirmation process). They can also be sent in other orders and 3512
combinations (as long as NonceU and NonceV are available to generate and verify both MAC 3513
tags). 3514
 3515

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

113

7. DLC-Based Key Transport (Alternative 1) 3516

A DLC-based key-transport scheme uses both a key-agreement scheme and a key-wrapping 3517
algorithm in a single transaction to establish keying material. During this transaction, a key-3518
wrapping key shall be established using an approved DLC-based key-agreement scheme. 3519
This key shall be used by party U to wrap secret keying material using an approved key-3520
wrapping algorithm, based on the use of AES-128, AES-192 or AES-256. Three methods of 3521
key wrapping are approved for DLC-based key transport: CCM, KW and KWP; CCM is 3522
specified in SP 800-38C, while KW and KWP are specified in SP 800-38F. 3523

The wrapped keying material is sent to party V (i.e., party U in the key-agreement scheme 3524
will be the key-transport sender, and party V will be the key-transport receiver). 3525

To comply with this Recommendation, the key-transport transaction shall use only 3526
approved key-agreement schemes that employ party V’s static key pair8 and require an 3527
ephemeral contribution by party U9. In particular, a C(2e, 2s), C(1e, 2s), C(1e, 1s) or C(0e, 3528
2s) key-agreement scheme shall be used in which party U is the intended key-transport 3529
sender; a C(2e, 0s) scheme shall not be used to establish the key-wrapping key (regardless 3530
of which party is the intended key-transport sender). Although other methods may be used 3531
by protocols that incorporate key transport (e.g., the use of C(2e, 0s) schemes with or without 3532
signed ephemeral pubic keys), this Recommendation makes no statement as to the adequacy 3533
of those methods. 3534

Key confirmation may optionally be provided by party V following the unwrapping of 3535
the received keying material, either instead of or in addition to any key confirmation 3536
that may be performed as part of the key-agreement scheme. 3537
Assumptions: In order to execute a DLC key-transport scheme in compliance with this 3538
Recommendation, the following assumptions shall be true: 3539

1. All assumptions for the key-agreement scheme used shall be true (see Sections 6.1.1, 3540
6.2.1, 6.2.2 and 6.3). 3541

2. The sender and receiver have agreed upon an approved AES variant (i.e., AES-128, 3542
AES-192 or AES-256) and key-wrapping method (i.e., either CCM, KW or KWP). 3543
The key-wrapping method shall protect the transported keying material at a security 3544
strength that is equal to or greater than the target security strength of the applicable 3545
key-establishment scheme. 3546

If the CCM mode is used during key wrapping, the sender and receiver have agreed 3547
on the counter-generation function, the formatting function, and TLen, the bit length 3548
of the CBC-MAC tag to be produced during the key-wrapping operation (see Sections 3549
7.1.1 and 7.1.2). 3550

8 To prevent receiver identifier spoofing; since the receiver has used a static key pair during key-agreement,
the sender has assurance of the identifier of the intended receiver.
9 To provide the key-transport sender with assurance of the freshness of the key-wrapping key.

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

114

If the KW or KWP mode is used for key wrapping, the sender and receiver have 3551
agreed on the valid plaintext lengths to be used during key wrapping (see Sections 3552
7.1.3 and 7.1.4). 3553

3. If the CCM mode will be used for key wrapping, prior to or during the key-3554
establishment process, the parties have either agreed upon the format and content of 3555
the additional input A (a string to be cryptographically bound to the transported 3556
keying material so that the cipher is a cryptographic function of both values), or 3557
agreed that A will be the empty string. Note that for the KW and KWP modes, 3558
additional input is not accommodated. 3559

4. If the CCM mode is used for key wrapping, either party U and party V shall have 3560
agreed on the MAC-tag length (Tlen) for the key-wrapping process, or party U shall 3561
send the CBC-MAC-tag length to party V, along with the wrapped keying material. 3562

5. The sender and receiver have agreed on whether or not key confirmation will be used 3563
following the transport of the wrapped keying material. If key confirmation is used, 3564
the parties have also agreed upon an approved MAC algorithm and associated 3565
parameters, including the lengths of MacKey and MacTag, as specified in Section 3566
5.9.3). 3567

6. Prior to or during the key-establishment process, the keying material to be transported 3568
has been (or will be) determined. 3569

7.1 Key Transport Scheme 3570
The DLC-based key-transport scheme is as follows: 3571

1. An agreed-upon C(2e, 2s), C(1e, 2s), C(1e, 1s) or C(0e, 2s) key-agreement scheme 3572
is used between party U and party V to establish DerivedKeyingMaterial, which 3573
includes a key-wrapping key KWK that will subsequently be used by party U for key 3574
transport. Key confirmation (as specified in Section 5.9 and Section 6) may optionally 3575
be incorporated in the key-agreement scheme to provide assurance that the 3576
DerivedKeyingMaterial is the same for both parties. 3577

2. Party U obtains KWK from the DerivedKeyingMaterial. 3578

3. Party U selects secret keying material, KM, to transport to party V, the receiver. If 3579
key confirmation is to be performed following key transport, this KM shall include a 3580
fresh (i.e., not previously used) MacKey to be used for key confirmation and the 3581
KeyData to be used subsequent to key transport (see Section 7.2). 3582

4. Party U calculates WrappedKM = KWA.WRAP(KWK, KM, OtherKWAInput) using 3583
an approved key-wrapping algorithm; see Sections 7.1.1 and 7.1.3. 3584

5. Party U sends WrappedKM to party V, along with any other necessary information 3585
(e.g., OtherKWAInput). 3586

6. Party V receives WrappedKM and OtherKWAInput from party U. 3587

7. Party V obtains the KWK from the DerivedKeyingMaterial. 3588

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

115

8. Party V calculates KM = KWA.UNWRAP(KWK, WrappedKM, OtherKWAInput) 3589
using the key-unwrapping algorithm that corresponds to the key wrapping algorithm 3590
used in step 4; see Sections 7.1.2 and 7.1.4. 3591

9. If key confirmation is to be performed subsequent to key transport to provide 3592
assurance to party U that the correct plaintext keying material KM has been obtained 3593
by party V, then both parties U and V shall proceed as specified in Section 7.2. 3594

Note that if the key-agreement scheme used in step 1 is such that party V does not contribute 3595
an ephemeral key pair to the calculation of the shared secret (that is, a C(1e, 2s), C(1e, 1s), 3596
or C(0e, 2s) scheme has been used) and key confirmation is not included in the key-3597
agreement scheme, then steps 1 through 5 can be performed by party U without direct 3598
involvement of party V. This can be useful in a store-and-forward environment, such as e-3599
mail. 3600

Key-transport schemes can be used in broadcast scenarios. In a broadcast scenario, an 3601
exception is made to the rule in this Recommendation that ephemeral keys shall not be 3602
reused (see Section 5.6.3.3). That is, party U may use the same ephemeral key pair in step 1 3603
above in multiple instances of DLC-based key agreement (employing the same scheme) if 3604
the same secret keying material is being transported to multiple entities for use following key 3605
transport10, and if all these instances of key transport occur “simultaneously” (or within a 3606
short period of time). However, the security properties of the key-establishment scheme may 3607
be affected by reusing the ephemeral key in this manner. 3608

7.1.1 Key-Wrapping using AES-CCM 3609
The input to the CCM mode specified in SP 800-38C includes a nonce, Nonce, additional 3610
input11 A and the keying material to be wrapped12, KM; the additional input could be a null 3611
string. See Appendix A.1 in SP 800-38C for restrictions on the (individual and combined) 3612
lengths of the nonce, the additional input and the keying material to be wrapped. 3613

Also required for the CCM mode is TLen, the bit length of the MAC tag, T, to be produced; 3614
see Appendix B.2 in SP 800-38C for guidance on the selection of TLen. The wrapping 3615
operation uses a key-wrapping key13 KWK to produce the ciphertext, WrappedKM, based on 3616
the input (i.e., a nonce, any additional input, A, and the keying material KM to be wrapped). 3617
Note that WrappedKM includes the MAC tag. 3618

The chosen Nonce, the value of TLen and the additional input, A, shall be available to both 3619
party U and party V (e.g., by an exchange of information and/or using information already 3620
known by both parties). For recommendations concerning the types of information that may 3621
be appropriate for inclusion in the additional input A, see Section 5.8.2. That section 3622

10 Note that when key confirmation is performed after key transport, the MacKey is different for each instance
of key confirmation, but KeyData is the same for each key-transport receiver participating in the broadcast
(see Section 7.2).
11 Called associated data in SP 800-38C.
12 Called the payload P in SP 800-38C.
13 Called K in SP 800-38C.

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

116

discusses the content of FixedInfo, whose role in key derivation is analogous to the role 3623
played by A in this key-wrapping variant (namely, binding the established keying material to 3624
the context of the key-establishment transaction). 3625

Party U, who wraps the keying material, shall provide the nonce to the receiving party, party 3626
V. 3627

The key-wrapping operation using CCM is: 3628

Function call: KWA.WRAP(KWK, KM, OtherKWAInput) 3629
Input: 3630

1. KWK: The key-wrapping key; a 128-, 192- or 256-bit key. 3631

2. KM: The keying material to be wrapped; a bit string. 3632

3. OtherKWAInput: 3633

a) Nonce: A nonce, as specified in Section 5.4; a bit string. 3634

b) TLen: The bit length of the MAC tag T to be generated; an integer. 3635

c) A: Additional input; a (possibly empty) byte string. 3636

Process: 3637
1. Check that the following conditions are satisfied: 3638

• The length of the KWK is the agreed-upon length (see assumption 2), 3639

• The value of TLen is valid for AES-CCM, and 3640

• The lengths of KM, Nonce, and A are valid for the CCM mode14. 3641

If any of these conditions is not satisfied, then return an error indicator, and exit 3642
without further processing. 3643

2. WrappedKM = CCM.Encrypt(KWK, TLen, Nonce, KM, A). 3644

3. Return WrappedKM. 3645

Output: 3646
The ciphertext WrappedKM (a bit string) or an error indicator. 3647

Note that the inputs to the CCM.Encrypt operation in process step 2 do not exactly match 3648
the specification of the Generation-Encryption process in SP 800-38C, in which (the 3649
equivalents of) KWK and TLen are listed as prerequisites, while the nonce, additional input 3650
and keying material to be wrapped are listed as inputs. 3651

A routine that implements this operation shall destroy any local copies of sensitive input 3652
values (including KWK, KM, and any sensitive portions of A), as well as any other potentially 3653
sensitive locally stored values used or produced during its execution. (The CCM.Encrypt 3654
routine should do the same.) Their destruction shall occur prior to or during any exit from 3655

14 As specified in SP 800-38C.

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

117

the routine – whether exiting because of an error, or exiting normally, with the output of 3656
WrappedKM. 3657

7.1.2 Key-Unwrapping using AES-CCM 3658
When party V receives WrappedKM and OtherKWAInput, the plaintext keying material KM 3659
may be recovered from WrappedKM using the key-wrapping key KWK; the received or 3660
agreed-upon MAC-tag length, TLen; the received nonce Nonce; and the received and/or 3661
previously known portions of any additional input A in the decryption-verification process 3662
for the CCM mode of AES. The unwrapping operation recovers the keying material KM from 3663
WrappedKM (the encrypted keying material, concatenated with a MAC tag) using the key-3664
wrapping key KWK, Nonce and A, then verifies the integrity of KM and A by using the KWK, 3665
the Nonce, and the MAC tag. 3666

Restrictions on the nonce Nonce;; the ciphertext WrappedKM; the additional input A; and the 3667
MAC-tag length, TLen, are provided in SP 800-38C. 3668

Function: KWA.UNWRAP(KWK, WrappedKM, OtherKWAInput) 3669
Input: 3670

1. KWK: The key-wrapping key; a 128-, 192- or 256-bit string. 3671

2. WrappedKM: The ciphertext to be unwrapped; a bit string. 3672

3. OtherKWAInput: 3673

a) Nonce: A nonce, as specified in Section 5.4; a bit string. 3674

b) TLen: The bit length of the MAC tag to be generated; an integer. 3675

c) A: The additional input (see Section 5.8.2); a byte string. 3676

Process: 3677
1. Check that the following conditions are satisfied: 3678

• The length of the KWK is the agreed-upon length (see assumption 2), 3679

• The value of TLen is valid for AES-CCM15, 3680

• KM is valid for AES-CCM, 3681

• Nonce is valid for AES-CCM, and 3682

• A is valid for AES-CCM20. 3683

If any of these conditions is not satisfied, return an error indicator, and exit without 3684
further processing. 3685

2. (status, KM) = CCM.Decrypt(KWK, TLen, Nonce, A, WrappedKM). 3686

3. If (status indicates an error), return status, and exit without further processing. 3687

15 The validity of TLen, KM and Nonce are discussed in Section 5.4 of SP 800-38C.

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

118

4. Return KM. 3688

Output: 3689
The plaintext keying material KM (a bit string), or an error indicator. 3690

Note that the inputs to the CCM.Decrypt operation in process step 2 do not exactly match 3691
the specification of the Decryption-Verification process in SP 800-38C, in which (the 3692
equivalents of) KWK and TLen are listed as prerequisites, while the nonce, the additional 3693
input and WrappedKM are listed as inputs. 3694

A routine that implements this operation shall destroy any local copies of sensitive input 3695
values (including KWK and any sensitive portions of A), any locally stored portions of KM, 3696
and any other potentially sensitive locally stored values used or produced during its 3697
execution. (The CCM.Decrypt routine should do the same.) Their destruction shall occur 3698
prior to or during any exit from the routine – whether exiting early, because of an error, or 3699
exiting normally, with the output of KM. Note that the requirement for destruction includes 3700
any locally stored portions of the unwrapped (i.e., plaintext) keying material KM. 3701

7.1.3 Key Wrapping Using KW or KWP 3702
The KW and KWP modes of AES used for key wrapping do not include methods for handling 3703
additional input; therefore, these methods shall not be used when additional input needs to 3704
be included with the keying material KM (i.e., the OtherKWAInput parameter is not used). 3705

The keying material to be wrapped16, KM, is input to the KW or KWP modes of AES 3706
specified in SP 800-38F. The wrapping operation encrypts and integrity protects the keying 3707
material using a key-wrapping key17 KWK. Limitations on the length of KM are provided in 3708
Section 5.3.1 of SP 800-38F. 3709

Function: KWA.WRAP(KWK, KM) 3710

Input: 3711
1. KWK: The key-wrapping key. 3712

2. KM: The keying material to be wrapped; a semi-block string for KW, or a byte 3713
string for KWP (see SP 800-38F for details). 3714

Process: 3715
1. If the length of KM is not valid, then return an error indicator and exit without further 3716

processing. 3717

2. WrappedKM = Wrap(KWK, KM). 3718

3. Return WrappedKM. 3719

Output: Ciphertext WrappedKM. 3720

In process step 2, Wrap is either KW-AE or KWP-AE, as specified in SP 800-38F. 3721

16 Called the plaintext P in SP 800-38F.
17 Called K in SP 800-38C.

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

119

Also, note that the inputs to the Wrap operation in step 2 do not exactly match the 3722
specification for the KW and KWP wrapping methods in SP 800-38F, in which KWK is listed 3723
as a prerequisite, while KM is listed as an input. 3724

A routine that implements this operation shall destroy any local copies of the input values 3725
KWK and KM, as well as any other potentially sensitive locally stored values used or 3726
produced during its execution. (The Wrap routine should do the same.) Their destruction 3727
shall occur prior to or during any exit from the routine – whether exiting because of an error, 3728
or exiting normally, with the output of WrappedKM. 3729

7.1.4 Key Unwrapping Using KW or KWP 3730
The unwrapping operation recovers the keying material KM from the ciphertext WrappedKM 3731
using the key-wrapping key KWK. Limitations on the length of WrappedKM are provided in 3732
Section 5.3.1 of SP 800-38F. 3733

Function: KWA.UNWRAP(KWK, WrappedKM) 3734

Input: 3735

1. KWK: The key-wrapping key. 3736

2. WrappedKM: The ciphertext to be unwrapped; a byte string. 3737

Process: 3738
1. If the length of WrappedKM is not valid, then return an error indicator, and exit 3739

without further processing. 3740

2. (status, KM) = Unwrap(KWK, WrappedKM). 3741

3. If (status indicates an error), return status, and exit without further processing. 3742

4. Return KM. 3743

Output: 3744
The plaintext keying material KM, or an indication of an error. 3745

In process step 2, Unwrap is either KW-AD or KWP-AD, as specified in SP 800-38F. 3746

Note that in process step 2, the returned values have been slightly altered from those specified 3747
in SP 800-38F. In SP 800-38F, either the plaintext keying material or a “FAIL” indicator is 3748
returned, whereas process step 2 is specified with two return values: an indication of the 3749
status of the operation (e.g., SUCCESS or FAIL) and the plaintext keying material if the 3750
Unwrap operation does not indicate “FAIL.”. 3751

In addition, the inputs to the Unwrap operation in process step 2 do not exactly match the 3752
specification in SP 800-38F, in which KWK is listed as a prerequisite, while WrappedKM is 3753
listed as an input. 3754

A routine that implements this operation shall destroy any local copies of the input value 3755
KWK, any locally stored portions of KM, and any other potentially sensitive locally stored 3756
values used or produced during its execution (the Unwrap routine should do the same.) 3757
Their destruction shall occur prior to or during any exit from the routine – whether exiting 3758

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

120

early because of an error, or exiting normally, with the output of KM. Note that the 3759
requirement for destruction includes any locally stored portions of the unwrapped (i.e., 3760
plaintext) keying material KM. 3761

7.2 Key Confirmation for Transported Keying Material 3762

If key confirmation is to be provided in compliance with this Recommendation following the 3763
transport of keying material (as specified in Section 7.1), party U shall generate a fresh 3764
MacKey and include it as part of the keying material KM to be wrapped and transported (see 3765
Section 7.1). The transported MacKey shall be used for the computation and verification of 3766
the MacTag provided by party V to party U. 3767

For each instance of key confirmation following key transport, this MacKey shall be 3768
generated anew using an approved random bit generator that is instantiated at or above the 3769
security strength required for the key-establishment transaction. In broadcast scenarios, a 3770
different MacKey shall be included in the transported keying material KM for each key-3771
transport receiver that is expected to provide key confirmation to party U. 3772

The minimum lengths of the MacKey and the MacTag shall be selected as specified in 3773
Section 5.9.3. 3774

The transported keying material KM shall be formatted as follows: 3775

KM = MacKey || KeyData. 3776

The KeyData may be Null, or may contain keying material to be used after key transport. 3777
The MacKey shall be used during key confirmation and then immediately destroyed by both 3778
party U and party V. 3779

The MacKey portion of KM and an approved MAC algorithm (see Sections 5.2 and 5.9.3) 3780
are used by each party to compute a MacTag (of an appropriate length) on the MacData 3781
(see Section 5.9.1.1) represented as 3782
 3783

MacData = “KC_KT” || IDV || IDU || EphemDataV || EphemDataU || 3784
WrappedKM { || Text}, 3785

where IDV is the identifier associated with party V, and IDU is the identifier associated with 3786
party U. These identifiers shall be the same as those used to label parties U and V during 3787
the key-agreement portion of the key-transport transaction. EphemDataV is the ephemeral 3788
public key or nonce contributed by party V during the establishment of the key-wrapping 3789
key used for key transport; if no ephemeral data was contributed by party V, then Null shall 3790
be used. EphemDataU is the ephemeral public key or nonce that was contributed by party U 3791
during the establishment of the key-wrapping key. WrappedKM is the ciphertext of the 3792
keying material that has been transported, and Text is an optional bit string that may be 3793
used during key confirmation that is known by both parties. 3794

Party V (the MacTag sender) computes a MacTag (using the MacKey obtained from KM, 3795
and MacData formed as described above) and provides it to Party U. Party U (the MacTag 3796
receiver) computes a MacTag (using the MacKey that was included in the transported keying 3797

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

121

material KM and the MacData formed as described above). Party U then verifies that this 3798
newly computed MacTag matches the MacTag value provided by party V. 3799

 3800

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

122

7. DLC-Based Key Transport (Alternative 2) 3801

A DLC-based key-transport scheme uses both a key-agreement scheme and a key-wrapping 3802
algorithm in a single transaction to establish keying material. During this transaction, a 3803
key-wrapping key (KWK) shall be established using either a C(2e, 2s), C(1e, 2s), C(1e, 1s) 3804
or C(0e, 2s) key-agreement scheme; a C(2e, 0s) scheme shall not be used to establish the 3805
key-wrapping key. 3806

KWK shall then be used by party U to wrap secret keying material using an approved key-3807
wrapping algorithm, based on the use of AES. Three methods of key wrapping are 3808
approved for DLC-based key transport: CCM, KW and KWP; CCM is specified in SP 3809
800-38C, while KW and KWP are specified in SP 800-38F. Note that for DLC-based key 3810
transport, party U in the key-agreement scheme is the key-transport sender, and party V is 3811
the receiver. 3812

Key confirmation may optionally be provided by party V following the unwrapping of the 3813
received keying material, either instead of or in addition to any key confirmation that may 3814
be performed as part of the key-agreement scheme. 3815

7.1 Assumptions 3816

In order to execute a DLC-based key-transport scheme in compliance with this 3817
Recommendation, the following assumptions shall be true: 3818

1. All assumptions for the key-agreement scheme used shall be true (see Sections 6.1.1, 3819
6.2.1, 6.2.2 and 6.3). 3820

2. The sender and receiver have agreed upon an approved AES variant (i.e., AES-128, 3821
AES-192 or AES-256) and key-wrapping method (i.e., either CCM, KW or KWP). 3822
The key-wrapping method shall protect the transported keying material at a security 3823
strength that is equal to or greater than the target security strength of the applicable 3824
key-establishment scheme. 3825

If the CCM mode is used during key wrapping, the sender and receiver have agreed 3826
on the counter-generation function, the formatting function, and TLen, the bit length 3827
of the CBC-MAC tag to be produced during the key-wrapping operation. 3828

If the KW or KWP mode is used for key wrapping, the sender and receiver have 3829
agreed on the valid plaintext lengths to be used during key wrapping. 3830

3. If the CCM mode will be used for key wrapping, prior to or during the key-3831
establishment process, the parties have either agreed upon the format and content of 3832
the additional input A (a string to be cryptographically bound to the transported 3833
keying material so that the cipher is a cryptographic function of both values), or 3834
agreed that A will be the empty string. Note that for the KW and KWP modes, 3835
additional input is not accommodated. 3836

4. If the CCM mode is used for key wrapping, either party U and party V shall have 3837
agreed on the MAC-tag length (Tlen) for the key-wrapping process, or party U shall 3838
send the CBC-MAC-tag length to party V, along with the wrapped keying material. 3839

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

123

5. The sender and receiver have agreed on whether or not key confirmation will be used 3840
following the transport of the wrapped keying material. If key confirmation is used, 3841
the parties have also agreed upon an approved MAC algorithm and associated 3842
parameters, including the lengths of MacKey and MacTag, as specified in Section 3843
5.9.3). 3844

6. Prior to or during the key-agreement process, the keying material to be transported 3845
has been (or will be) determined. 3846

7.2 Key-Transport Scheme 3847

The DLC-based key transport scheme is as follows: 3848

1. A key agreement scheme is used between party U and party V to establish a shared 3849
secret and derive keying material that includes KWK. Key confirmation (as specified 3850
in Sections 5.9 and 6) may optionally be performed. 3851

2. The sender (party U) selects secret keying material, KM, to transport to the receiver 3852
(party V). If key confirmation is to be performed following key transport, KM shall 3853
include a fresh (i.e., not previously used) MacKey to be used for key confirmation 3854
and the KeyData to be used subsequent to key transport. 3855

4. The sender calculates WrappedKey = KeyWrap(KWK, KM, other_inputs), where 3856
other_inputs are any additional inputs needed for the selected, approved key-3857
wrapping algorithm KeyWrap(). 3858

5. The sender sends WrappedKey to the receiver. 3859

6. The receiver receives WrappedKey from the sender. 3860

7. The receiver obtains KWK from the derived keying material that is computed by 3861
applying the key derivation function to the shared secret. 3862

8. The receiver calculates KM = KeyUnwrap(KWK, WrappedKey, other_inputs), where 3863
other_inputs are any additional inputs needed for the appropriate approved key-3864
unwrapping algorithm KeyUnwrap(). 3865

9. If key confirmation is to be performed following key transport, then both the sender 3866
and receiver shall proceed as specified in Section 7.3. 3867

Note that if the key agreement scheme used in Step 1 is such that the party V does not 3868
contribute an ephemeral key pair to the calculation of the shared secret (that is, either a C(1, 3869
2), C(1, 1), or C(0, 2) scheme has been used), then Steps 1 through 5 can be performed by 3870
party U (the key-transport sender) without direct involvement of the receiver (party V). This 3871
can be useful in a store-and-forward environment, such as e-mail. 3872

A default “rule” of this Recommendation is that ephemeral keys shall not be reused (see 3873
Section 5.6.3.3). An exception to this rule is that the sender may use the same ephemeral key 3874
pair in step 1 above in multiple DLC-based key-transport transactions if the same secret 3875
keying material is being transported in each transaction and if all these transactions occur 3876

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

124

“simultaneously” (or within a short period of time). However, the security properties of the 3877
key-establishment scheme may be affected by reusing the ephemeral key in this manner. 3878

7.3 Key Confirmation for Transported Keying Material 3879

If key confirmation is to be provided in compliance with this Recommendation following the 3880
transport of keying material, party U shall generate a fresh MacKey and include it as part of 3881
the keying material KM to be wrapped and transported (see Section 7.1). The transported 3882
MacKey shall be used for the computation and verification of the MacTag provided by party 3883
V to party U. 3884

For each instance of key confirmation following key transport, this MacKey shall be 3885
generated anew using an approved random bit generator that supports the security strength 3886
required for the key-establishment transaction. In broadcast scenarios, a different MacKey 3887
shall be included in the transported keying material KM for each key-transport receiver that 3888
is expected to provide key confirmation to party U. 3889

The minimum lengths of the MacKey and the MacTag shall be selected as specified in 3890
Section 5.9.3. 3891

The transported keying material KM shall be formatted as follows: 3892

KM = MacKey || KeyData. 3893

The KeyData may be Null, or may contain keying material to be used subsequent to key 3894
transport. The MacKey shall be used during key confirmation and then immediately 3895
destroyed by both party U and party V. 3896

The MacKey portion of KM and an approved MAC algorithm (see Sections 5.2 and 5.9.3) 3897
are used by each party to compute a MacTag (of an appropriate length) on the MacData 3898
represented as 3899
 3900

MacData = “KC_KT” || IDV || IDU || EphemDataV || EphemDataU || 3901
WrappedKM { || Text}, 3902

where IDV is the identifier associated with party V (the receiver), and IDU is the identifier 3903
associated with party U (the sender). These identifiers shall be the same as those used to 3904
label parties U and V during the key-agreement portion of the key-transport transaction. 3905
EphemDataV is the ephemeral public key or nonce contributed by party V during the 3906
establishment of the key-wrapping key used for key transport; if no ephemeral data was 3907
contributed by party V, then Null shall be used. EphemDataU is the ephemeral public key 3908
or nonce that was contributed by party U during the establishment of the key-wrapping key. 3909
WrappedKM is the ciphertext of the keying material that has been transported, and Text is 3910
an optional bit string that may be used during key confirmation that is known by both 3911
parties. 3912

Party V (the MacTag sender) computes a MacTag (using the MacKey obtained from KM, 3913
and MacData formed as described above) and provides it to Party U. Party U (the MacTag 3914
receiver) computes a MacTag (using the MacKey that was included in the transported keying 3915

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

125

material KM and the MacData formed as described above). Party U then verifies that this 3916
newly computed MacTag matches the MacTag value provided by party V. 3917

 3918

8. Rationale for Selecting a Specific Scheme 3919

The subsections that follow present possible justifications for selecting schemes from each 3920
subcategory, C(ie, js). The proffered rationales are intended to provide the user and/or 3921
developer with some information that may help when deciding key-agreement scheme to be 3922
used. The rationales include brief discussions of basic security properties, but do not 3923
constitute an in-depth analysis of all possible security properties of all schemes under all 3924
adversary models. The specific security properties that are cited will depend on such 3925
considerations as whether a static key is used, whether an ephemeral key is used, how the 3926
shared secret is calculated, and whether key confirmation can be incorporated into a scheme. 3927
In general, the security properties cited for a subcategory of schemes are exhibited by each 3928
scheme within that subcategory; when this is not the case, the exceptions are identified. 3929

A scheme should not be chosen based solely on the number of security properties it may 3930
possess. Rather, a scheme should be selected based on how well the scheme fulfills system 3931
requirements. For instance, if messages are exchanged over a large-scale network where each 3932
exchange consumes a considerable amount of time, a scheme with fewer exchanges during 3933
a single key-agreement transaction might be preferable to a scheme with more exchanges, 3934
even though the latter may possess more security benefits. It is important to keep in mind 3935
that a key-agreement scheme may be a component of a larger protocol that offers additional 3936
security-related assurances beyond those provided by the key-agreement scheme alone. For 3937
example, the protocol may include specific features that limit opportunities for accidental or 3938
intentional misuse of the key-agreement component of the protocol. Protocols, per se, are not 3939
specified in this Recommendation. 3940

Important Note: In order to provide concise descriptions of security properties possessed 3941
by the various schemes, it is necessary to make some assumptions concerning the format and 3942
type of data that is used as input during key derivation. These assumptions are made solely 3943
for the purposes of Sections 8.1 through 8.6; they are not intended to preclude the options 3944
specified elsewhere in this Recommendation. When discussing the security properties of a 3945
subcategory of schemes, it is assumed that the FixedInfo input to a key-derivation method 3946
employed during a particular key-agreement transaction uses either the concatenation format 3947
or the ASN.1 format (see Sections 5.8.2.1 and 5.8.2.2). It is also assumed that FixedInfo 3948
includes sufficiently specific identifiers for the participants in the transaction, an identifier 3949
for the key-agreement scheme being used during the transaction, and additional input (e.g., 3950
a nonce, ephemeral public key, and/or session identifier) that may provide assurance to one 3951
or both participants that the derived keying material will reflect the specific context in which 3952
the transaction occurs (see Section 5.8.2 and Appendix B for further discussion concerning 3953
context-specific information that may be appropriate for inclusion in FixedInfo). In general, 3954
FixedInfo may include pre-shared secrets, but that is not assumed to be the case in the 3955
analysis of security properties that follows. In cases where an approved extraction-then-3956
expansion key-derivation procedure is employed (see SP 800-56C), it is assumed that this 3957

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

126

FixedInfo is used as the Context input during the key-expansion step. Finally, it is assumed 3958
that all required nonces employed during the transaction are random nonces that contain a 3959
component consisting of a random bit string formed in accordance with the recommendations 3960
of Section 5.4. 3961

8.1 Rationale for Choosing a C(2e, 2s) Scheme 3962

These schemes require each participant to own a static key pair that is used in their key-3963
agreement transaction. Static key pairs can provide the participants with some level of 3964
assurance that they have correctly identified the party with whom they will be establishing 3965
keying material if the transaction is successfully completed. 3966

In the case of a key-agreement transaction based on the Full Unified model or dhHybrid1 3967
scheme, each participant has assurance that no unintended entity (i.e., no entity other than 3968
the owners of the static key pairs involved in the transaction) could employ a Diffie-Hellman 3969
primitive (see Section 5.7.1) to compute Zs, the static component of the shared secret Z 3970
without knowledge of one of the static private keys employed during the transaction. Absent 3971
the compromise of Zs or one of those static private keys, each participant can be confident 3972
of correctly identifying the other participant in the key-establishment transaction. The level 3973
of confidence is commensurate with the specificity of the identifiers that are associated with 3974
the static public keys (and are used as input during the key-derivation process), the degree of 3975
trust in the association between those identifiers and static public keys, the assurance of 3976
validity of the domain parameters and static public keys, and the availability of evidence that 3977
the keying material has been correctly derived. 3978

Similarly, in the case of a key-agreement transaction based on Full MQV or MQV2, each 3979
participant has assurance that no unintended entity could use a DLC primitive to compute 3980
the shared secret Z without knowledge of either a static private key or a private-key-3981
dependent implicit signature employed during the transaction. (The term “implicit signature” 3982
refers to those quantities denoted SA and implicitsigA in the descriptions of the MQV 3983
primitives in Section 5.7.2.1 and Section 5.7.2.3, respectively.) Absent the compromise of Z, 3984
a static private key, or an implicit signature, each participant can be confident of correctly 3985
identifying the other participant in the key-establishment transaction. As above, the level of 3986
confidence is commensurate with the specificity of the identifiers that are associated with the 3987
static public keys (and are used as input during the key-derivation process), the degree of 3988
trust in the association between those identifiers and static public keys, the assurance of 3989
validity of the domain parameters and static public keys, and the availability of evidence that 3990
the keying material has been correctly derived. 3991

These schemes also require each participant to generate an ephemeral key pair that is used 3992
in their transaction, providing each participant with assurance that the resulting shared secret 3993
(and the keying material derived from it) will vary from one of their C(2e, 2s) transactions 3994
to the next. 3995

Each participant in a C(2e, 2s) transaction has assurance that the value of the resulting shared 3996
secret Z will not be completely revealed to an adversary who is able to compromise (only) 3997
their static private keys at some time after the transaction is completed. (The adversary 3998
would, however, be able to compute Zs, the static component of the shared secret, if the key-3999

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

127

agreement transaction was based on the Full Unified model or dhHybrid1 scheme.) This 4000
assurance is commensurate with the confidence that a participant has that neither of the 4001
ephemeral private keys employed in the transaction will be compromised. By generating 4002
their ephemeral key pairs as close to the time of use as possible and destroying the ephemeral 4003
private keys after their use, the participants reduce the risk of such a compromise. 4004

If a particular entity’s static private key is acquired by an adversary, then the adversary could 4005
masquerade as that entity while engaging in any C(2e, 2s) key-agreement transaction that 4006
permits the use of the compromised key pair. If an MQV scheme (MQV2 or Full MQV) will 4007
be employed during a transaction with an adversary who is in possession of a compromised 4008
static private key (or a compromised implicit signature corresponding to that static private 4009
key), the adversary is limited to masquerading as the owner of the compromised key pair (or 4010
as the owner of the static key pair corresponding to the compromised implicit signature). The 4011
use of the Full Unified model or dhHybrid1 scheme, however, offers the adversary additional 4012
opportunities for masquerading: If an adversary compromises an entity’s static private key, 4013
then the adversary may be able to impersonate any other entity during a Full Unified model- 4014
or dhHybrid1-based key-agreement transaction with that entity. Also, the compromise of Zs, 4015
the static component of a shared secret that was (or would be) formed by two parties using 4016
the Full Unified Model or dhHybrid1 scheme will permit an adversary to masquerade as 4017
either party to the other party in key-agreement transactions that rely on the same scheme 4018
and the same two static key pairs. 4019

Key confirmation can be provided in either or both directions as part of a C(2e, 2s) scheme 4020
by using the methods specified in Section 6.1.1.5. This allows the key confirmation recipient 4021
to obtain assurance that the key-confirmation provider has possession of the MacKey derived 4022
from the shared secret Z and has used it with the appropriate MacData to compute the 4023
received MacTag. In the absence of some compromise of secret information (e.g., a static 4024
private key or a static component of Z), a key-confirmation recipient can obtain assurance 4025
that the appropriate identifier has been used to label the key-confirmation provider and that 4026
the provider is the owner of the static public key associated with that identifier. A key-4027
confirmation recipient can also receive assurance of active (and successful) participation by 4028
the key-confirmation provider in the key-agreement transaction. 4029

8.2 Rationale for Choosing a C(2e, 0s) Scheme 4030

These schemes require each participant to generate an ephemeral key pair that is used in their 4031
key-agreement transaction. No static key pairs are employed. Because the ephemeral private 4032
keys used in the computation of their shared secret are destroyed immediately after use, these 4033
schemes offer assurance to each party that the shared secret Z computed during a legitimate 4034
C(2e, 0s) transaction (i.e., one that involves two honest parties and is not influenced by an 4035
adversary) is protected against any compromise of shared secrets and/or private keys 4036
associated with other (prior or future) transactions. 4037

Unlike a static public key, which is assumed to have a trusted association with an identifier 4038
for its owner, there is no assumption of a trusted association between an ephemeral public 4039
key and an identifier. Thus, these schemes, by themselves, offer no assurance to either party 4040
of the accuracy of any identifier that may be used to label the entity with whom they have 4041
established a shared secret. The use of C(2e, 0s) schemes may be appropriate in applications 4042

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

128

where any trusted association desired/required between an identifier and an ephemeral public 4043
key is enforced by methods external to the scheme (e.g., in the protocol incorporating the 4044
key-agreement scheme). 4045

This Recommendation does not specify the incorporation of key confirmation in a C(2e, 0s) 4046
scheme. 4047

8.3 Rationale for Choosing a C(1e, 2s) Scheme 4048

These schemes require each participant to own a static key pair that is used in their key-4049
agreement transaction; in addition, the participant acting as party U is required to generate 4050
and use an ephemeral key pair. Different assurances are provided to the participants by the 4051
utilization of a C(1e, 2s) scheme, depending upon which one acts as party U and which one 4052
acts as party V. 4053

The use of static key pairs in the key-agreement transaction can provide the participants with 4054
some level of assurance that they have correctly identified the party with whom they will be 4055
establishing keying material if the transaction is successfully completed. 4056

In the case of a transaction based on the One-Pass Unified model or dhHybridOneflow 4057
scheme, each participant has assurance that no unintended entity (i.e., no entity other than 4058
the owners of the static key pairs involved in the key-establishment transaction) could 4059
employ a Diffie-Hellman primitive (see Section 5.7.1) to compute Zs, the static component 4060
of the shared secret Z, without knowledge of one of the static private keys employed during 4061
the transaction. Absent the compromise of Zs or one of those static private keys, each 4062
participant can be confident of correctly identifying the other participant in the key-4063
establishment transaction. The level of confidence is commensurate with the specificity of 4064
the identifiers that are associated with the static public keys (and are used as input during the 4065
key-derivation process), the degree of trust in the association between those identifiers and 4066
static public keys, the assurance of validity of the domain parameters and static public keys, 4067
and the availability of evidence that the keying material has been correctly derived. 4068

Similarly, in the case of a key-agreement transaction based on the One-Pass MQV or MQV1 4069
scheme, each participant has assurance that no unintended entity could use a DLC primitive 4070
to compute the shared secret Z without knowledge of either the static private key of one of 4071
the participants in the transaction or the private-key dependent implicit signature employed 4072
by party U during the transaction. (The term “implicit signature” refers to those quantities 4073
denoted SA and implicitsigA in the descriptions of the MQV primitives in Section 5.7.2.1 and 4074
Section 5.7.2.3, respectively.) Absent the compromise of Z, a static private key, or party U’s 4075
implicit signature, each participant can be confident of correctly identifying the other 4076
participant in the key-establishment transaction. As above, the level of confidence is 4077
commensurate with the specificity of the identifiers that are associated with the static public 4078
keys (and are used as input during the key-derivation process), the degree of trust in the 4079
association between those identifiers and static public keys, the assurance of validity of the 4080
domain parameters and static public keys, and the availability of evidence that the keying 4081
material has been correctly derived. 4082

Party U, whose ephemeral key pair is used in the computations, has assurance that the 4083
resulting shared secret will vary from one C(1e, 2s) transaction to the next such transaction 4084

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

129

with the same party V. The participant acting as party V cannot obtain such assurance, in 4085
general, since party V’s contribution to the computation of Z is static. Party V can, however, 4086
obtain assurance that the derived keying material will vary if, for example, party V 4087
contributes a nonce that is used as input to the key-derivation method employed during these 4088
transactions (as is required when party V is a recipient in a key-confirmation process 4089
performed as specified in this Recommendation). The assurance of freshness of the derived 4090
keying material that can be obtained in this way by the participant acting as party V is 4091
commensurate with the participant’s assurance that a different nonce will be contributed 4092
during each such transaction. 4093

The compromise of the static private key used by party U does not, by itself, compromise 4094
the shared secret computed during any legitimate C(1e, 2s) transaction (i.e., a transaction 4095
involving two honest parties). Likewise, the compromise of only the ephemeral private key 4096
used by party U would not compromise the shared secret Z for that transaction. However, the 4097
compromise of an entity’s static private key may lead to the compromise of the shared secrets 4098
computed during past, current, and future C(1e, 2s) transactions in which that entity acts as 4099
party V (regardless of the static or ephemeral keys used by the entity acting as party U); to 4100
compromise those shared secrets, the adversary must also acquire the public keys contributed 4101
by whomever acts as party U in those transactions. 4102

If an adversary learns a particular entity’s static private key, then, in addition to 4103
masquerading as that particular entity, the adversary may be able to impersonate any other 4104
entity while acting as party U in a C(1e, 2s) transaction in which the owner of the 4105
compromised static private key acts as party V. Similarly, the compromise of the static 4106
component, Zs, of a shared secret formed by two entities using the One-Pass Unified Model 4107
or dhHybrid1OneFlow scheme will permit an adversary to masquerade as either entity (while 4108
acting as party U) to the other entity (acting as party V) in future key-agreement transactions 4109
that rely on the same scheme and the same two static key pairs. If the MQV1 or One-Pass 4110
MQV scheme will be employed during a key-agreement transaction with an adversary who 4111
is in possession of a compromised implicit signature corresponding to a static private key, 4112
the adversary may be able to masquerade as the owner of that static key pair while acting as 4113
party U (provided that the static key pair is compatible with the domain parameters employed 4114
during the transaction). 4115

Key confirmation can be provided in either or both directions as part of a C(1e, 2s) scheme 4116
by using the methods specified in Section 6.2.1.5. This allows the key confirmation recipient 4117
to obtain assurance that the key-confirmation provider has possession of the MacKey derived 4118
from the shared secret Z and has used it with the appropriate MacData to compute the 4119
received MacTag. In the absence of a compromise of secret information (e.g., a static private 4120
key or a static component of Z), a key-confirmation recipient can obtain assurance that the 4121
appropriate identifier has been used to label the key confirmation provider and that the 4122
provider is the owner of the static public key associated with that identifier. A key-4123
confirmation recipient can also receive assurance of active (and successful) participation by 4124
the key-confirmation provider in the key-agreement transaction. 4125

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

130

8.4 Rationale for Choosing a C(1e, 1s) Scheme 4126

In these schemes, the participant acting as party U is required to generate and use an 4127
ephemeral key pair, while the participant acting as party V is required to own a static key 4128
pair that is used in the key-agreement transaction. Different assurances are provided to the 4129
participants by the utilization of a C(1e, 1s) scheme, depending upon which one acts as party 4130
U and which one acts as party V. 4131

The use of a static public key attributed to party V can provide the participant acting as party 4132
U with some level of assurance that he has correctly identified the party with whom he will 4133
be establishing keying material if the transaction is successfully completed. 4134

Whether the transaction is based on the One-Pass Diffie-Hellman or dhOneflow scheme, the 4135
participant acting as party U has assurance that no unintended entity (i.e., no entity other than 4136
himself and the owner of the static public key attributed to party V) could employ a Diffie-4137
Hellman primitive (see Section 5.7.1) to compute the shared secret Z without knowledge of 4138
one of the private keys employed during the transaction. Absent the compromise of Z or one 4139
of those private keys, the participant acting as party U can be confident of correctly 4140
identifying the other participant in the key-establishment transaction as the owner of the 4141
static public key attributed to party V. The level of confidence is commensurate with the 4142
specificity of the identifier that is associated with the static public key attributed to party V 4143
(and is used as input during the key-derivation process), the degree of trust in the association 4144
between that identifier and the static public key, the assurance of validity of the domain 4145
parameters and static public key, and the availability of evidence that the keying material has 4146
been correctly derived. 4147

The participant acting as party V has no such assurance, in general, since he has no assurance 4148
concerning the accuracy of any identifier that may be used to label party U (unless the 4149
protocol using this scheme includes additional elements that establish a trusted association 4150
between an identifier for party U and the ephemeral public key that party U contributes to 4151
the transaction). 4152

The participant acting as party U, whose ephemeral key pair is used in the computations, has 4153
assurance that the resulting shared secret will vary from one C(1e, 1s) transaction to the next. 4154
The participant acting as party V has no such assurance, since party V’s contribution to the 4155
computation of Z is static. 4156

There is no assurance provided to either participant that the security of the shared secret is 4157
protected against the compromise of a private key. A compromise of the ephemeral private 4158
key used in a C(1e, 1s) transaction only compromises the shared secret resulting from that 4159
particular transaction (and by generating the ephemeral key pair as close to the time of use 4160
as possible and destroying the ephemeral private key after its use, the participant acting as 4161
party U reduces the risk of such a compromise). However, the compromise of an entity’s 4162
static private key may lead to the compromise of shared secrets resulting from past, current, 4163
and future C(1e, 1s) transactions in which that entity acts as party V (no matter what party 4164
plays the role of party U); to compromise those shared secrets, the adversary must also 4165
acquire the ephemeral public keys contributed by whomever acts as party U in those 4166
transactions. In addition, if an adversary learns a particular entity’s static private key, the 4167

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

131

adversary may be able to impersonate that particular entity while acting as party V in a C(1e, 4168
1s) transaction that employs compatible domain parameters. 4169

The participant acting as party V may provide key confirmation to party U as specified in 4170
Section 6.2.2.3. This allows the participant acting as party U (who is the key confirmation 4171
recipient) to obtain assurance that party V has possession of the MacKey derived from the 4172
shared secret Z and has used it with the appropriate MacData to compute the received 4173
MacTag. In the absence of a compromise of secret information (e.g., a private key), the 4174
participant acting as party U can obtain assurance that the appropriate identifier has been 4175
used to label party V, and that the participant acting as party V is indeed the owner of the 4176
static public key associated with that identifier. Under such circumstances, the participant 4177
acting as party U can also receive assurance of the active (and successful) participation in 4178
the key-agreement transaction by the owner of the static public key attributed to party V. 4179

This Recommendation does not specify the incorporation of key confirmation from party U 4180
to party V in a C(1e, 1s) scheme. 4181

8.5 Rationale for Choosing a C(0e, 2s) Scheme 4182

These schemes require each participant to own a static key pair that is used in their key-4183
agreement transaction; in addition, the participant acting as party U is required to generate a 4184
nonce, which is sent to party V and used (by both participants) as input to their chosen key-4185
derivation method. 4186

The use of static key pairs in the key-agreement transaction can provide the participants with 4187
some level of assurance that they have correctly identified the party with whom they will be 4188
establishing keying material if the transaction is successfully completed. 4189

Whether the transaction is based on the Static Unified Model or dhStatic scheme, each 4190
participant has assurance that no unintended entity (i.e., no entity other than the owners of 4191
the static key pairs employed in the transaction) could employ a Diffie-Hellman primitive 4192
(see Section 5.7.1) to compute the static shared secret Z without knowledge of one of the 4193
static private keys employed during the transaction. Absent the compromise of Z or one of 4194
those static private keys, each participant can be confident of correctly identifying the other 4195
party in the key-establishment transaction. The level of confidence is commensurate with the 4196
specificity of the identifiers that are associated with the static public keys (and are used as 4197
input during the key-derivation process), the degree of trust in the association between those 4198
identifiers and static public keys, the assurance of validity of the domain parameters and 4199
static public keys, and the availability of evidence that the keying material has been correctly 4200
derived. 4201

Although the value of Z is the same in all C(0e, 2s) key-establishment transactions between 4202
the same two parties (as long as the two participants employ the same static key pairs), the 4203
participant acting as party U, whose (required) nonce is used in the key-derivation 4204
computations, has assurance that the derived keying material will vary from one of their 4205
C(0e, 2s) transactions to the next. In general, the participant acting as party V has no such 4206
assurance – unless, for example, party V also contributes a nonce that is used as input to the 4207
key-derivation method employed during the transaction (as is required when party V is a 4208
recipient of key confirmation performed as specified in this Recommendation). The 4209

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

132

assurance of freshness of the derived keying material that can be obtained by a participant in 4210
a C(0e, 2s) transaction is commensurate with the participant’s assurance that a different 4211
nonce will be contributed during each such transaction. 4212

If the static Z value formed by the two participants is ever compromised, then all of the 4213
keying material derived in past, current, and future C(0e, 2s) key-agreement transactions 4214
between these same two entities that employ these same static key pairs may be compromised 4215
as well, since the same Z value is used to derive keying material in each instance. However, 4216
to compromise the keying material from a particular transaction, the adversary must also 4217
acquire (at least) the nonce contributed by the participant that acted as party U in that 4218
transaction. The compromise of the static Z value may also permit an adversary to 4219
masquerade as either entity to the other entity in future C(0e, 2s) key-agreement transactions. 4220

If a particular entity’s static private key is compromised, then shared secrets resulting from 4221
current, prior and future C(0e, 2s) transactions involving that entity’s static key pair may be 4222
compromised, irrespective of the role (whether party U or party V) played by the 4223
compromised entity. Regardless of what entity acts in the other role when interacting with 4224
the compromised entity, the adversary may be able to compute the shared secret Z and 4225
proceed to compromise the derived keying material, as described above. To complete the 4226
attack against a transaction, the adversary must acquire (at least) the static public key 4227
contributed by the other entity participating in that transaction with the compromised entity, 4228
as well as the nonce contributed by whichever entity acted as party U during the transaction. 4229

Of course, if a static private key has been compromised by an adversary, then (if the 4230
compromised key pair is of the type permitted by the scheme and domain parameters) the 4231
adversary may masquerade as the owner of the compromised static key pair in key-agreement 4232
transactions with any other party. In addition, the adversary may masquerade as any entity 4233
(whether acting as party U or party V) while engaging in a C(0e, 2s) key-agreement 4234
transaction with the owner of the compromised key pair. 4235

Key confirmation can be provided in either or both directions as part of a C(0e, 2s) scheme 4236
by using the methods specified in Section 6.3.3.1. This allows the key confirmation recipient 4237
to obtain assurance that the key-confirmation provider has possession of the MacKey derived 4238
from the shared secret Z and has used it with the appropriate MacData to compute the 4239
received MacTag. In the absence of a compromise of private information (e.g., a static private 4240
key or the static shared secret, Z), a key-confirmation recipient can obtain assurance that the 4241
appropriate identifier has been used to label the key-confirmation provider, and that the 4242
provider is the owner of the static public key associated with that identifier. A key-4243
confirmation recipient can also receive assurance of active (and successful) participation by 4244
the key-confirmation provider in the key-agreement transaction. 4245

8.6 Choosing a Key-Agreement Scheme for use in Key Transport 4246

The key-agreement scheme employed while performing DLC-based key transport as 4247
specified in this Recommendation is required to be a C(2e, 2s), C(1e, 2s), C(1e, 1s) or C(0e, 4248
2s) scheme in which the intended key-transport sender acts as party U, and the intended key-4249
transport receiver acts as party V. The basic security properties of these schemes have been 4250
described in the previous sections. The following discussion emphasizes the effects that the 4251

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

133

properties of the key-agreement scheme used to establish a key-wrapping key may have on 4252
assurances that can be provided to the sender and/or receiver of the wrapped keying material. 4253

Note: Unless it is explicitly stated otherwise, the analysis that follows is restricted to key-4254
transport transactions that involve only two parties – the sender (acting as party U) and one 4255
receiver (acting as party V). The broadcast scenario (involving multiple receivers) will be 4256
addressed briefly in the last paragraph of this section.) 4257

Each of the schemes that can be used during the key-agreement phase of the transaction 4258
requires the use of a static public key owned by the participant acting as party V. Unless 4259
there is a compromise of some secret information (e.g., a static component of Z or a private 4260
key), the key-transport sender (who acts as party U) has assurance that no unintended entity 4261
(i.e., no parties other than himself and the owner of the static public key attributed to party 4262
V) could employ a DLC primitive to compute the shared secret Z that is used to derive the 4263
key-wrapping key used during the key-transport process. Absent such a compromise, the 4264
key-transport sender can be confident that he has correctly identified the key transport 4265
receiver (assumed to have been acting as party V). The level of confidence is commensurate 4266
with the specificity of the identifier that is associated with the static public key attributed to 4267
party V, the degree of trust in the association between that identifier and that static public 4268
key, the assurance of validity of the domain parameters and public keys employed during the 4269
key-agreement phase of the transaction, and the availability of evidence that the key-4270
wrapping key has been correctly derived by the key-transport receiver. 4271

When a C(2e, 2s), C(1e, 2s), or C(1e, 1s) scheme is employed during the key-agreement 4272
portion of the transaction, the key-transport sender (i.e., party U) generates an ephemeral key 4273
pair that is used in the computation of Z. This provides assurance to party U (the key-transport 4274
sender) that both the shared secret and the derived key-wrapping key will vary from one key-4275
transport transaction to the next. Assurance of the freshness of the derived key-wrapping key 4276
may also be obtained by party U when a C(0e, 2s) scheme is employed. In that case, party U 4277
is required to contribute a nonce (see Section 5.4) that is used in the derivation of the key-4278
wrapping key; the assurance of freshness that party U (the key-transport sender) can obtain 4279
is commensurate with the probability that the contributed nonce has not been previously 4280
employed in the key-derivation process of the key-agreement portion of some other 4281
transaction. Assurance that a fresh key-wrapping key is used during each instance of key 4282
transport provides commensurate assurance to party U (the key-transport sender) that the 4283
confidentiality of the wrapped keying material transported during a transaction with party V 4284
will not be threatened by the possibility that the key-wrapping key has been (or will be) 4285
compromised as a result of its use in some other transaction and/or application. 4286

Assuming that no key pairs and/or static Z values are compromised, the required use of a 4287
static public key attributed to party V (the intended key-transport receiver) during the key-4288
agreement portion of the transaction, together with each scheme’s required ephemeral 4289
contribution from party U, provides assurance to party U (the key-transport sender) that the 4290
owner of the static private key attributed to party V is the only other party who will be able 4291
to acquire the (fresh) key-wrapping key and use it to unwrap the transported keying material. 4292

If a C(2e, 2s), C(1e, 2s), or C(0e, 2s) scheme is employed during the key-agreement portion 4293
of the transaction, the use of a static public key attributed to party U (the key-transport 4294

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

134

sender) provides the participant acting as party V (the key-transport receiver) with a means 4295
of identifying the entity with whom he will be establishing keying material if the transaction 4296
is successfully completed. The trusted association of an identifier with a static public key 4297
attributed to party U provides party V with a method for accurately labeling the (purported) 4298
key-transport sender (i.e., party U). Absent the compromise of some secret information (e.g., 4299
a static component of Z or a private key), party V can be confident that no unintended entity 4300
(i.e., no parties other than himself and the owner of the static public key attributed to party 4301
U) could employ a DLC primitive to compute the shared secret Z, from which the key-4302
wrapping key is derived. Party V’s confidence is commensurate with the specificity of the 4303
identifier that is associated with the static public key attributed to party U, the degree of trust 4304
in the association between that identifier and that static public key, the assurance of validity 4305
of the domain parameters and public keys employed during the transaction, and the evidence 4306
available to party V that party U has derived the correct key-wrapping key (i.e., the key used 4307
by party U to wrap the transported keying material). 4308

On the other hand, if a C(1e, 1s) scheme is employed during the key-agreement portion of 4309
the transaction, party U (the key-transport sender) is only required to provide an ephemeral 4310
public key to party V. Since there is no assumption of a trusted association between an 4311
ephemeral public key and an identifier, the use of a C(1e, 1s) scheme (in and of itself) offers 4312
no assurance to the party V (the key-transport receiver) of the accuracy of any identifier that 4313
may be associated with party U. Any trusted association desired/required between an 4314
identifier and the (purported) key-transport sender (party U) would have to be provided by 4315
methods external to the key-establishment scheme. 4316

When a C(2e, 2s) scheme is employed during the key-agreement portion of the transaction, 4317
the key-transport receiver (acting as party V) generates an ephemeral key pair that is used in 4318
the computation of Z. This provides assurance to party V that both the shared secret and the 4319
key-wrapping key derived from it will vary from one key-transport transaction to the next. 4320
Assurance of the freshness of the key-wrapping key may also be obtained by party V when 4321
a C(1e, 2s), C(1e, 1s) or C(0e, 2s) scheme is employed and party V contributes a nonce (see 4322
Section 5.4) that is used in the derivation of the key-wrapping key. The assurance of freshness 4323
that party V can obtain in this way is commensurate with the probability that the contributed 4324
nonce has not been previously employed in a key-derivation process. Assurance that a fresh 4325
key-wrapping key is used during each instance of a key-transport transaction provides 4326
commensurate assurance to party V that the confidentiality of the wrapped keying material 4327
transported during a transaction with party U will not be threatened by the possibility that 4328
the key-wrapping key has been (or will be) compromised as a result of the use of an identical 4329
key in some other transaction and/or application. 4330

Key confirmation from party V (the intended key-transport receiver) to party U (the intended 4331
key-transport sender) can be incorporated into a C(2e, 2s), C(1e, 2s), C(1e, 1s) or C(0e, 2s) 4332
key-agreement scheme (as specified in Section 6.1.1.5.2, Section 6.2.1.5.2, Section 6.2.2.3, 4333
or Section 6.3.3.2, respectively) following the derivation of the key-wrapping key. This 4334
enables party U (the intended key-transport sender) to obtain assurance that party V (the 4335
intended key-transport receiver) has derived the correct key-wrapping key. A key-4336
confirmation failure would alert party U that party V may not be able to unwrap the 4337

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

135

transported keying material, and the key-transport transaction could be discontinued before 4338
the keying material is wrapped and sent. 4339

Key confirmation from party U (the intended key-transport sender) to party V (the intended 4340
key-transport receiver) can be incorporated into a C(2e, 2s), C(1e, 2s), or C(0e, 2s) key-4341
agreement scheme (as specified in Section 6.1.1.5.1, Section 6.2.1.5.1, or Section 6.3.3.1, 4342
respectively) prior to the key-transport portion of the transaction; in the case of a C(1e, 2s) 4343
or C(0e, 2s) scheme, party V would be required to contribute a nonce that is used as input to 4344
the key-derivation method when the key-wrapping key is derived. Key confirmation 4345
provided in this direction (from party U to party V) enables party V to obtain assurance that 4346
he has derived the same key that party U will employ to wrap the transported keying material. 4347
A key-confirmation failure may, for example, prompt party V to discontinue the current key-4348
transport transaction (without attempting to unwrap any transported keying material) and 4349
notify party U that they must try again to establish a shared key-wrapping key. 4350

As specified in Section 7.2, key confirmation can also be performed following the transport 4351
of the wrapped keying material, allowing party U (the key-transport sender) to obtain 4352
assurance that party V (the intended key-transport receiver) has successfully employed the 4353
derived key-wrapping key to unwrap the transported keying material. Confirming party V’s 4354
success in unwrapping the transported keying material also confirms that party V has 4355
correctly derived the key-wrapping key during the key-agreement portion of the transaction. 4356
Therefore, at the risk of transporting keying material that cannot be unwrapped, key 4357
confirmation following the transport of wrapped keying material (as specified in Section 7.2) 4358
provides an alternative to incorporating key confirmation (from party V to party U) in the 4359
key-agreement portion of the transaction. 4360

The use of a C(1e, 2s), C(1e, 1s) or C(0e, 2s) key-agreement scheme to establish the key-4361
wrapping key allows for one-pass implementations of key transport (in cases where key 4362
confirmation is not required). If the static public key attributed to party V (the intended key-4363
transport receiver) has been obtained previously, party U (the key-transport sender) can 4364
include the wrapped keying material and all of the data required for party V to derive the 4365
key-wrapping key in a single message. On the other hand, the use of a C(2e, 2s) scheme 4366
necessitates the exchange of two or more messages, since each party must (at least) provide 4367
an ephemeral public key to the other party in the key-agreement portion of the transaction. 4368

There are additional considerations that apply to the broadcast scenario, in which one sender 4369
(acting as party U) transports the same keying material “simultaneously” (or within a short 4370
period of time) to multiple receivers (i.e., multiple entities acting as party V) for use 4371
following the key-transport transaction(s). 4372

As noted in Section 7.1, this Recommendation’s general prohibition against the reuse of an 4373
ephemeral key pair is relaxed in broadcast scenarios, permitting (but not requiring) the key-4374
transport sender (acting as party U in the key-agreement portion of the transaction) to use the 4375
same ephemeral key pair when establishing key-wrapping keys with the multiple key-4376
transport receivers. However, the parties must proceed with caution when engaging in such 4377
practices (e.g., see “On Reusing Ephemeral Keys in Diffie-Hellman Key Agreement 4378
Protocols,” by A. Menezes and B. Ustaoglu, which is available at the following url: 4379
http://cacr.uwaterloo.ca/techreports/2008/cacr2008-24.pdf). 4380

http://cacr.uwaterloo.ca/techreports/2008/cacr2008-24.pdf

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

136

As part of the proper implementation of this Recommendation, the key-transport sender 4381
(acting as party U) should not reuse an ephemeral public key when establishing key-4382
wrapping keys for key transport in a broadcast scenario unless all parties involved and/or 4383
agents trusted to act on their behalf have determined the conditions (including the choice of 4384
key-agreement scheme) under which this practice meets the security requirements of the 4385
sender and the various receivers. 4386

If, in a broadcast scenario, the key-transport sender (i.e., party U) requires multiple key-4387
transport receivers to provide evidence that they have successfully unwrapped the keying 4388
material sent to them using key confirmation as specified in Section 7.2, it is imperative for 4389
the sender to transport a different MAC key to each receiver (as required by this 4390
Recommendation). In the absence of the compromise of any key-wrapping keys, this will 4391
deter one receiver from masquerading as another when returning a key confirmation MacTag 4392
to the sender. 4393

 4394

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

137

9. Key Recovery 4395

For some applications, the secret keying material used to protect data may need to be 4396
recovered (for example, if the normal reference copy of the secret keying material is lost or 4397
corrupted). In this case, either the secret keying material or sufficient information to 4398
reconstruct the secret keying material needs to be available (for example, the keys, domain 4399
parameters and other inputs to the scheme used to perform the key-establishment process). 4400

Keys used during the key-establishment process shall be handled in accordance with the 4401
following: 4402

1. A static key pair may be saved. 4403

2. An ephemeral public key may be saved. 4404

3. An ephemeral private key shall be destroyed after use and, therefore, shall not be 4405
recoverable. 4406

4. A symmetric key may be saved. 4407

Note: This implies that keys derived from schemes where both parties generate ephemeral 4408
key pairs (i.e., the C(2e, 2s) and C(2e, 0s) schemes) cannot be made recoverable by 4409
reconstruction of the secret keying material by parties requiring the ephemeral private key in 4410
their calculations. For those schemes where only party U generates an ephemeral key pair 4411
(i.e., the C(1e, 2s) and C(1e, 1s schemes), only party V can recover the secret keying material 4412
by reconstruction. 4413

General guidance on key recovery and the protections required for each type of key is 4414
provided in SP 800-57. 4415

 4416

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

138

10. Implementation Validation 4417

When the NIST Cryptographic Algorithm Validation Program (CAVP) and the 4418
Cryptographic Module Validation Program (CMVP) have established a validation program 4419
for this Recommendation, a vendor shall have its implementation tested and validated by the 4420
CAVP and CMVP to claim conformance to this Recommendation. Information on the CAVP 4421
and the CMVP is available at http://csrc.nist.gov/cryptval/. 4422

An implementation claiming conformance to this Recommendation shall include one or 4423
more of the following capabilities: 4424

• Domain parameter generation or selection as specified in Section 5.5.1. 4425

• Explicit domain parameter validation as specified in Section 5.5.2, item 2. 4426

• Key pair generation as specified in Section 5.6.1; documentation shall include how 4427
assurance of domain parameter validity is expected to be achieved by the key pair 4428
owner. 4429

• Explicit public-key validation as specified in Sections 5.6.2.3.1 and 5.6.2.3.2 for FFC 4430
or as specified in Sections 5.6.2.3.3 or 5.6.2.3.4 for ECC. 4431

• A key-agreement scheme from Section 6, together with an approved key-derivation 4432
method from SP 800-56C. If key confirmation is also claimed, the appropriate key-4433
confirmation technique from Section 5.9 shall be used. Documentation shall include 4434
how assurance of private-key possession and assurance of domain-parameter and 4435
public-key validity are expected to be achieved by both the owner and the recipient. 4436

• A key-transport scheme as specified in Section 7. 4437

An implementer shall also identify the appropriate specifics of the implementation, 4438
including: 4439

• The security strength(s) of supported cryptographic algorithms, 4440

• The domain parameter generation method or the selected domain parameters (see 4441
Section 5.5.1), 4442

• The hash function(s) used, if appropriate (see Section 5.1), 4443

• The MAC algorithm(s) used, if appropriate (see Section 5.2), 4444

• The MAC key length(s) (see Section 5.9.3), 4445

• The MAC tag length(s) (see Section 5.9.3). 4446

• The type of cryptography: FFC or ECC, 4447

• The key-establishment schemes available (see Sections 6 and 7), 4448

• The key-derivation method to be used, including the format of FixedInfo (see Section 4449
5.8 and SP 800-56C), 4450

• The type of nonces to be generated (see Section 5.4), 4451

http://csrc.nist.gov/cryptval/

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

139

• The NIST-Recommended elliptic curve(s) available (if appropriate), 4452

• The key-wrap algorithm used for key transport (see Section 7), if appropriate, and 4453

• The key-confirmation scheme, if appropriate (see Section 5.9). 4454

 4455

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

140

Appendix A: References 4456

A.1 Normative References 4457

[FIPS 140] Federal Information Processing Standard 140-2, Security requirements for 4458
Cryptographic Modules, May 25, 2001. 4459

[FIPS 140 Annex A] 4460

Approved Security Functions, Draft, April 2016. 4461

[FIPS 140 Annex D] 4462

Approved Key Establishment Techniques. Draft, October 2014. 4463

[FIPS 140 IG] 4464

Federal Information Processing Standard 140-2 Implementation Guidance, 4465
Available at http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-4466
2/FIPS1402IG.pdf . 4467

[FIPS 180] Federal Information Processing Standard 180-4, Secure Hash Standard, 4468
August, 2015. 4469

[FIPS 186] Federal Information Processing Standard 186-4, Digital Signature Standard, 4470
July 2013. 4471

[FIPS 197] Federal Information Processing Standard 197, Advanced Encryption 4472
Standard, November 2001. 4473

[FIPS 198] Federal Information Processing Standard 198-1, The Keyed-Hash Message 4474
Authentication Code (HMAC), July 2008. 4475

[FIPS 202] Federal Information Processing Standard 202, SHA-3 Standard: Permutation-4476
Based Hash and Extendable-Output Functions, August 2015. 4477

[SP 800-38B] Special Publication 800-38B, Recommendation for Block Cipher Modes of 4478
Operation: The CMAC Mode for Authentication, May 2005, with updates 4479
dated October 2016. 4480

[SP 800-38C] Special Publication 800-38C, Recommendation for Block Cipher Modes of 4481
Operation: the CCM Mode for Authentication and Confidentiality, May 2004, 4482
with updates dated July 2007. 4483

[SP 800-38F] Special Publication 800-38F, Recommendation for Block Cipher Modes of 4484
Operation: Methods for Key Wrapping, December, 2012. 4485

[SP 800-52] Guidelines for the Selection, Configuration, and Use of Transport Layer 4486
Security (TLS) Implementations, April 2014. 4487

[SP 800-56B] Special Publication 800-56B, Recommendation for Pair-Wise Key-4488
Establishment Schemes Using Integer Factorization Cryptography, Revision 4489
1, September 2014. 4490

http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

141

[SP 800-56C] Special Publication 800-56C, Recommendation for Key Derivation Methods 4491
in Key Establishment Schemes (DRAFT), November 2017. 4492

[SP 800-57] Special Publication 800-57, Part 1: Recommendation for Key Management, 4493
Revision 4, January 2016. 4494

[SP 800-67] Special Publication 800-67, Recommendation for the Triple Data Encryption 4495
Algorithm (TDEA) Block Cipher, Revision 1, January 2012. 4496

[SP 800-90] Special Publication 800-90 series: 4497

Special Publication 800-90A, Recommendation for Random Number 4498
Generation Using Deterministic Random Bit Generators, Revision 1, June 4499
2015. 4500

Special Publication 800-90B, DRAFT Recommendation for the Entropy 4501
Sources Used for Random Bit Generation, January 2016. 4502

Special Publication 800-90C, DRAFT Recommendation for Random Bit 4503
Generator (RBG) Constructions, April 2016. 4504

 [SP 800-108] Special Publication 800-108, Recommendation for Key Derivation Using 4505
Pseudorandom Functions, October 2009. 4506

[SP 800-131A] Special Publication 800-131A, Transitions: Recommendation for 4507
Transitioning the Use of Cryptographic Algorithms and Key Lengths, 4508
Revision 1, November 2015. 4509

[SP 800-133] Special Publication 800-133, Recommendation for Cryptogrsphic Key 4510
Generation, December 2012. 4511

[SP 800-135] Special Publication 800-135, Recommendation for Existing Application-4512
Specific Key Derivation Functions, Revision 1, December 2011. 4513

SP 800-185] Special Publication 800-185, SHA-3 Derived Functions: cSHAKE, KMAC, 4514
TupleHash, and ParallelHash, December 2016. 4515

[ANS X9.42] American National Standard X9.42-2003, Public Key Cryptography for the 4516
Financial Services Industry: Agreement of Symmetric Keys Using Discrete 4517
Logarithm Cryptography, withdrawn. 4518

[ANS X9.62] American National Standard X9.62-2005, Key Cryptography for the Financial 4519
Services Industry: Elliptic Curve Digital Signature Algorithm (ECDSA). 4520

[ANS X9.63] American National Standard X9.63-2011, Key Cryptography for the Financial 4521
Services Industry: Public Key Cryptography for the Financial Services 4522
Industry: Key Agreement and Key Transport Using Elliptic Curve 4523
Cryptography. 4524

[RFC 3526] More Modular Exponential (MODP) Diffie-Hellman groups for Internet Key 4525
Exchange (IKE), May 2003, see https://www.ietf.org/rfc/rfc3526.txt. 4526

[RFC 4492] Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer 4527
Security (TLS), May 2006, see https://www.ietf.org/rfc/rfc4492.txt. 4528

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

142

[RFC 5903] Elliptic Curve Groups Modulo a Prime (ECP Groups) for IKE and IKEv2, 4529
June 2010, see https://tools.ietf.org/html/rfc5903. 4530

[RFC 7919] Negotiated Finite Field Diffie-Hellman Ephemeral Parameters, August 2016, 4531
see https://tools.ietf.org/html/rfc7919. 4532

[SECG] Standards for Efficient Cryptography Group, see http://www.secg.org/. 4533

[SEC2] Standards for Efficient Cryptography, SEC 2: Recommended Elliptic Curve 4534
Domain Parameters, September 2000, see http://www.secg.org/SEC2-Ver-4535
1.0.pdf. 4536

 4537

A.2 Informative References 4538

[BM 1998] S. Blake-Wilson, A. Menezes, Unknown Key-Share Attacks on the Station-4539
to-Station (STS) Protocol, Technical Report CORR 98-42, University of 4540
Waterloo, 1998. Available at: http://cacr.math.uwaterloo.ca. 4541

[CMU 2009] S. Chatterjee, A. Menezes, and B. Ustaoglu,Reusing Static Keys in Key 4542
Agreement Protocols, INDOCRYPT 2009, LNCS Vol. 5922, pp. 39–56, 4543
Springer-Verlag, 2009. Available at: 4544
http://www.cacr.math.uwaterloo.ca/techreports/2009/cacr2009-36.pdf . 4545

[CBH 2005] K. R. Choo, C. Boyd, and Y. Hitchcock, On Session Key Construction in 4546
Provably-Secure Key Establishment Protocols, LNCS, Vol. 3715, pp. 116-4547
131, Springer-Verlag, 2005. Extended version available at: 4548
http://eprint.iacr.org/2005/206.pdf. 4549

[ISO/IEC 8825-1] 4550

Information technology -- ASN.1 encoding rules: Specification of Basic 4551
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished 4552
Encoding Rules (DER), 2008. 4553

 [Menezes 2007] A. Menezes, Another look at HMQV. Journal of Mathematical Cryptology, 4554
Vol.1(1), pp. 47-64, 2007 4555

 [RBB 2001] P. Rogaway, M. Bellare, D. Boneh, Evaluation of Security Level of 4556
Cryptography: ECMQVS (from SEC 1), Jan. 2001. Available at: 4557
http://www.ipa.go.jp/security/enc/CRYPTREC/fy15/doc/1069_ks-4558
ecmqv.pdf. 4559

 4560

http://www.secg.org/
http://cacr.math.uwaterloo.ca/
http://www.cacr.math.uwaterloo.ca/techreports/2009/cacr2009-36.pdf

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

143

Appendix B: Rationale for Including Identifiers and other Context-4561
specific Information in the KDM Input (Informative) 4562

It is strongly recommended that identifiers for both parties to a key-agreement transaction be 4563
included among the data input to the key-derivation method – as a simple and efficient means 4564
of binding those identifiers to the derived keying material (see Sections 5.8). 4565

The inclusion of sufficiently-specific identifiers for party U and party V provides assurance 4566
that the keying material derived by those parties will be different from the keying material 4567
that is derived by other parties (or by the same parties acting in opposite roles). As a result, 4568
key-agreement schemes gain resilience against unknown-key-share attacks and/or other 4569
exploitation techniques that depend on some type of confusion over the role played by each 4570
party (e.g., party U versus party V). See, for example, references [CBH 2005], [Menezes 4571
2007], [RBB 2001], [BM 1998], and [CMU 2009], which all recommend the inclusion of 4572
identifiers in the key-derivation method as a means of eliminating certain vulnerabilities. 4573

In addition to identifiers, the inclusion of other context-specific information in the key-4574
derivation input data can be used to draw finer distinctions between key-agreement 4575
transactions, providing assurance that parties will not derive the same keying material unless 4576
they agree on all of the included information. This can protect against attacks that rely on 4577
confusion concerning the context in which key-establishment takes place and/or how the 4578
derived keying material is to be used, see [CMU 2009]. Examples of additional context-4579
specific information include (but are not limited to) the protocol employing the key-4580
derivation method, protocol-defined session numbers, the key-agreement scheme that was 4581
employed to produce the shared secret Z, any ephemeral public keys and/or nonces 4582
exchanged during the key-agreement transaction, the bit length of the derived keying 4583
material, and its intended use. 4584

Protocols employing an approved key-agreement scheme may employ alternative methods 4585
to bind participant identifiers (and/or other context-specific data) to the derived keying 4586
material or otherwise provide assurance that the participants in a key-agreement transaction 4587
share the same view of the context in which the keying material was established (including 4588
their respective roles and identifiers). However, this Recommendation makes no statement 4589
as to the adequacy of these other methods. 4590

 4591
4592

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

144

Appendix C: Data Conversions (Normative) 4593

C.1 Integer-to-Byte String Conversion 4594

Input: A non-negative integer C and the intended length n of the byte string 4595
satisfying 4596

 28n > C. 4597
When called from an FFC Scheme, n = t / 8 bytes, where t = log2 p and p 4598
is the large prime field order. 4599

Output: A byte string S of length n bytes. 4600

1. Jn+1 = C. 4601

2. For i = n to 1 by -1 4602

2.1 Ji = (Ji+1)/256. 4603

2.2 Ai = Ji+1 − (Ji • 256). 4604

2.3 Si = (ai1, ai2, ai3, ai4, ai5, ai6, ai7, ai8), 4605
The 8-bit binary representation of the non-negative integer 4606
Ai = ai1 27+ai2 26+ai3 25+ai4 24+ai5 23+ai6 22+ai7 2+ai8. 4607

3. Let S1, S2, …, Sn be the bytes of S from leftmost to rightmost. 4608

4. Output S. 4609

C.2 Field-Element-to-Byte String Conversion 4610

Input: An element α in the field Fq. 4611

Output: A byte string S of length n = t / 8 bytes, where t = log2 q. 4612

1. If q is an odd prime, then α must be an integer in the interval [0, q − 1]; α shall be 4613
converted to a byte string of length n bytes using the technique specified in Appendix 4614
C.1 above. 4615

2. If q = 2m, then it is assumed that α is (already) represented as a bit string of length m, 4616
with each bit indicating the coefficient (0 or 1) of a specific element of a particular 4617
basis for GF(2m) viewed as a vector space over GF(2). 4618

Let s1, s2, …, sm be the bits of α from leftmost to rightmost. Let S1, S2, …, Sn be the 4619
bytes of S from leftmost to rightmost. 4620

The rightmost bit sm shall become the rightmost bit of the last byte Sn, and so on 4621
through the leftmost bit s1, which shall become the (8n − m + 1)th bit of the first byte 4622
S1. The leftmost (8n − m) bits of the first byte S1 shall be zero. 4623

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

145

C.3 Field-Element-to-Integer Conversion 4624

Input: An element α in the field Fq. 4625

Output: An integer x. 4626

1. If q is an odd prime, then x = α (no conversion is required). 4627

2. If q = 2m, then α must be a bit string of length m bits. Let s1, s2, …, sm be the bits of 4628
α from leftmost to rightmost. α shall be converted to an integer x satisfying: 4629

x = Σ2(m−i) si for i = 1 to m. 4630

C.4 Conversion of a Bit String to an Integer 4631

An n-long sequence of bits { x1, …, xn } is converted to an integer by the rule 4632

{ x1, … , xn } → (x1 ∗ 2n–1) + (x2 ∗ 2n–2) + … + (n1 ∗ 2) + xn . 4633

Note that the first bit of a sequence corresponds to the most significant bit of the 4634
corresponding integer, and the last bit corresponds to the least significant bit. 4635

Input: 4636

1. b1, b2, … , bn The bit string to be converted. 4637

Output: 4638
1. C The requested integer representation of the bit string. 4639

Process: 4640

1. Let (b1, b2, … , bn) be the bits of b from leftmost to rightmost. 4641

2. 𝐶𝐶 = ∑ 2(𝑛𝑛−𝑖𝑖)𝑛𝑛
𝑖𝑖=1 𝑏𝑏𝑖𝑖. 4642

3. Return C. 4643

The binary length of an integer C is defined as the smallest integer n satisfying C < 2n. 4644

 4645

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

146

Appendix D: Revisions (Informative) 4646

The original version of this document was published in March, 2006. In March, 2007, the 4647
following revision was made to allow the dual use of keys during certificate requests: 4648

In Section 5.6.4.2, the second item was originally as follows: 4649
“A static key pair may be used in more than one key-establishment scheme. However, 4650
one static public/private key pair shall not be used for different purposes (for 4651
example, a digital signature key pair is not to be used for key establishment or vice 4652
versa).” 4653

The item was changed to the following, where the changed text is indicated in italics: 4654
“A static key pair may be used in more than one key-establishment scheme. However, 4655
one static public/private key pair shall not be used for different purposes (for 4656
example, a digital signature key pair is not to be used for key establishment or vice 4657
versa) with the following possible exception: when requesting the (initial) certificate 4658
for a public static key-establishment key, the key establishment private key associated 4659
with the public key may be used to sign the certificate request. See SP 800-57, Part 1 4660
on Key Usage for further information.” 4661

 4662

In May 2013, the following revisions were made; 4663

• Abstract – The March 2007 version cites ANS X9.42 and X9.63; this version directly 4664
provides information on the key establishment schemes (DH, MQV) and the 4665
underlying mathematics structure (discrete logs on finite field, elliptic curve). 4666

• Section 3.1 – Added definitions of assumption, binding, bit string, byte, byte string, 4667
destroy, key-establishment pair, key-wrapping key, trusted association; removed 4668
definitions on assurance of identifier, initiator, responder, (instead initiator and 4669
responder, all the schemes are defined in terms of party U and party V, see revision 4670
in Section 4), extended keying material to derived keying material (derived from the 4671
shared secret) and transported keying material (generated by the sender in a key-4672
transport scheme.) 4673

• Section 3.2 – The notations, C(ie), C(ie, js), MAC(MacKey, MacData), MacTag, 4674
T_bitlen(X), were introduced; the notation |x | is removed. 4675

• Section 3.2 – Notations Z, Ze, Zs are used for both FFC and ECC and therefore moved 4676
up as general notations. 4677

• Section 3.2 – The terms GF(p), GF(p)* were introduced for FFC. 4678

• Section 4 – Used party U and party V to name the parties, rather than user the initiator 4679
and responder as the parties. Discussions about identifiers vs. identity and binding 4680
have been moved to Section 4.1. 4681

• Section 4.1 – Added discussions on the concept of a trusted association; 4682

• Section 5 – Table 1 in March 2007 version has been removed; the information is now 4683
provided in Tables 6 and 7 in Section 5.8.1, and Tables 8 and 9 in Section 5.9.3. 4684

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

147

• Section 5.2 – Provided more details on MAC inputs (MacKey and MacData). Added 4685
text that MACs can be used for key derivation, as well as key confirmation. Added 4686
SP 800-38B (CMAC) as an approved MAC. Refers to the new Tables 6 and 7. 4687

• Section 5.2.1 - MacLen now is a parameter, rather than an input variable. Refers to 4688
new Tables 8 and 9, instead of old Tables 1 and 2. Discusses the truncation of the 4689
MAC output. 4690

• Section 5.4 – More discussion has been added about the use of nonces, including new 4691
requirements and recommendations. 4692

• Section 5.5.1.1 – Added the requirement that the leftmost bit of p and q be a 1. Table 4693
1 has been shortened to address just the values of p and q; information about the hash 4694
function is now provided in Tables 6 and 7 of Section 5.8.1, and in Tables 8 and 9 of 4695
Section 5.9.3. 4696

• Section 5.5.1.2 – More information is provided about elliptic curves. More details 4697
are provided on parameter values. Table 2 has been shorted to just address n and h; 4698
information about the hash function is now provided in Tables 6 and 7 of Section 4699
5.8.1, and in Tables 8 and 9 of Section 5.9.3. 4700

• Section 5.5.2 – A note about parameters generated by using SHA-1has been removed. 4701
The validation methods are referred to other documents (FIPS 186 and ANS X9.62). 4702
It is not a right place for such statement. 4703

• Section 5.6 has been reorganized to make it clearer to understand key generation and 4704
obtaining the required assurances. 4705

• Section 5.6.1.1 – FFC key-pair generation has been revised to require a randomly 4706
selected integer in the interval [2, q−2], rather than requiring a private key for FFC 4707
key pair generation to be unpredictable and generated by an approved RNG. 4708
Generation in accordance with FIPS 186-3 (as referenced therein) fulfills these 4709
requirements. 4710

• Section 5.6.1.2 – ECC key-pair generation has been revised to require a randomly 4711
selected integer in the interval [2, n−2], rather than requiring a private key for ECC 4712
key pair generation to be unpredictable and generated by an approved RNG. 4713
Generation in accordance with FIPS 186-3 (as referenced therein) fulfills these 4714
requirements. 4715

• New Section 5.6.2 – Discusses assurances and why they are required. Added Tables 4716
3, 4, and 5 which summarize types of assurance. 4717

• New Section 5.6.2.1 – Discusses the assurances required by a key-pair owner about 4718
its own key pair, including owner assurance of correct generation, static and 4719
ephemeral public-key validity, pair-wise consistency and private-key possession. 4720

• New Section 5.6.2.2 – Discusses the assurances required by a public-key recipient, 4721
including static and ephemeral public-key validity, and static and ephemeral private-4722
key possession. 4723

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

148

• New Sections 5.6.3.2 and 5.6.3.3 – Different requirements are included for static and 4724
ephemeral key pairs. Included a case that an agent may act on behalf of a system 4725
user. 4726

• Section 5.7 – Added requirements to destroy all values if there is an error and to 4727
destroy intermediate calculations have been added for each FFC and ECC primitive. 4728
Conversion calls have been added to convert to a string. Note that this removed such 4729
statements for the action steps for each scheme in Section 6. 4730

• Section 5.8 – Key derivation has been divided into one-step key-derivation methods 4731
(Section 5.8.1), an extract-then-expand key-derivation procedure (Section 5.8.2) and 4732
application-specific key-derivation methods (Section 5.8.3). 4733

• Section 5.8.1 – Instead of using a hash function, the one-step method is now defined 4734
with a function H, which can be a hash function or an HMAC with an approved hash 4735
function. Added tables defining minimum length for the hash functions with regard 4736
to each parameter set; and added more complete discussions about OtherInfo, 4737
including the concatenation and ASN.1 formats included in the previous version. 4738
HMAC with an approved hash function is now approved for key derivation, in 4739
addition to the hash function specified in the previous version. 4740

• Section 5.8.1 – Split Table 1 (for FFC) to Table 1 (Section 5.5.1.1), Table 6 (Section 4741
5.8.1) and Table 8 (Section 5.9.3), where Table 1 is for FFC parameter-size sets, 4742
Table 6 is for the function H used for key derivation and Table 8 is about the MAC 4743
key length and MAC tag length. In the new tables, added row on “Maximum security 4744
strength supported”. 4745

• Section 5.8.1 – In Table 6, changed the minimum output length for function H from 4746
128 to 112 for FFC parameter set. 4747

• Section 5.8.1 - Split Table 2 (for ECC) to Table 2 (Section 5.5.1.2), Table 7 (Section 4748
5.8.1) and Table 9 (Section 5.9.3), where Table 2 is for ECC parameter-size sets, 4749
Table 7 is for the function H used for key derivation, and Table 9 is about the MAC 4750
key length and MAC tag length. In the new tables, added row on “Maximum security 4751
strength supported”. 4752

• Section 5.8.2 – Added reference to an approved two-step method – an extraction-4753
then-expansion method – that is specified in SP 800-56C. 4754

• Section 5.8.3 – Added reference to the application-specific key-derivation methods 4755
provided in SP 800-135. 4756

• Moved general introduction of key confirmation to Section 5.9 – Incorporates the 4757
material from Section 8 (with additional introductory material). 4758

• New Section 5.9.1.1 – Emphasizes more clearly that a nonce is required if there is no 4759
ephemeral key; added guidance on what to do if key confirmation fails. 4760

• New Section 5.9.2 – Emphasizes that if no ephemeral key is used, then a nonce is 4761
required. 4762

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

149

• New Section 5.9.3 – Discussions about the security strength of the MacTag are 4763
provided, along with tables on the minimum MacKey length and MacLen values. 4764

• New Section 5.9.3 – Table 8, changed the minimum MacLen, that is, MacTag length 4765
to 64 bits for all the parameter sets of FFC. 4766

• New Section 5.9.3 – Table 9, changed the minimum MacLen, that is, MacTag length 4767
to 64 bits for all the parameter sets of ECC. 4768

• Section 6 – The notation C(ie) replaces C(i), and C(ie, js) replaces C(i, j). If party U 4769
does not contribute a static key, then the requirement for a non-null identifier is now 4770
transaction dependent, rather than required. Rationale for choosing the C(ie, js) 4771
schemes has been moved to a new Section 8, instead of after each class of schemes. 4772
Assumptions are specified for each type of scheme, rather than prerequisites. 4773

• Section 6.1.1 (and similarly for Sections 6.2.1, 6.2.2 and 6.3) –Added a new 4774
assumption that if an identifier is used as a label, then the identifier must have a 4775
trusted association to that party’s static key. The discussion on the need for a trusted 4776
association has been added. 4777

• Section 6.1.1.1 (dhHybrid1) – More guidance is provided about error handling. 4778
Specifically allows the reuse of an ephemeral key pair in a broadcast scenario. This 4779
is also provided in Sections 6.1.1.2, 6.1.1.3 and 6.1.1.4. 4780

• New Section 6.1.1.5 (and similarly in new Sections 6.1.2.3, 6.2.1.5, 6.2.2.3 and 6.3.3) 4781
– Key confirmation is incorporated to each applied subcategory of schemes. This 4782
material was previously provided in Section 8.4 of the previous version. 4783

• Section 6.2.1 (C(1e,2s) schemes) – Added additional assumptions which were 4784
included in the previous prerequisites. This includes obtaining assurance of static 4785
public key validity and private keys possession of the key-pair owner. 4786

• Section 7 – Has been revised to specify DLC-based key-agreement and key transport 4787
in the same key-establishment transaction, with party U acting as the key-transport 4788
sender. In addition, optional key confirmation from party V to party U following the 4789
key-transport process has been specified. 4790

• Section 8 – The rationale for choosing each scheme type has been moved from 4791
Section 6 of the previous version. A new section on the rationale associated with key 4792
transport has been included. 4793

• All figures are replaced to reflect the content, text, and terminology changes. 4794

• Old Appendix A, Summary of Differences between this Recommendation and ANS 4795
X9 Standards, was removed. Note that X9.42 was withdrawn, while X9.63 has 4796
modified to be consistent with this Recommendation. 4797

• Appendix B – The requirement of including identifiers as part of the OtherInfo is 4798
replaced with text that. it is strongly recommended that identifiers for both parties to a 4799
key-agreement transaction be included among the data input to a key-derivation 4800
method. A paragraph has been added stating that there may be other ways to bind 4801

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

150

identifiers to derived keying material, but the recommendation makes no statement on 4802
the adequacy of this. 4803

• The new Appendix A includes all the informative references, which was in Appendix 4804
D in March 2007 version. 4805

• The old Appendix E becomes Appendix D and the changes on March 2007 version 4806
are added as listed here. 4807

In 2017, the following revisions were made: 4808

1. Inserted hyperlinks for sections, references and definitions. 4809

2. Tables 1, 2 6 and 7: Changed column 1, row 1 to "Targeted security strength" instead 4810
of "Maximum security strength supported" 4811

3. Section 3.1: Added definitions for critical security parameter and cryptographic 4812
module. Updated the definition of destroy, integrity, key-derivation procedure, key-4813
establishment transaction, key wrapping, MacTagLen, message authentication code, 4814
shared secret symmetric key algorithm, store-and-forward and targeted security 4815
strength. Modified the definition for fresh, key confirmation, Mac tag and message 4816
authentication code. 4817

3. Section 3.2: Inserted CSP, len(x) and RBG. Removed H and HMAC-hash. Modified 4818
MAC tag. 4819

4. Section 4: Inserted additional paragraphs the security of a key-establishment scheme 4820
and explicit instructions for the destruction of certain potentially sensitive values. 4821
Inserted a requirement that values explicitly required to be destroyed when leaving a 4822
routine (i.e., potentially sensitive locally stored data) shall not be used or reused for any 4823
additional purpose. 4824

5. Section 4.1, paragraph 2, mentioned that domain prametrs may be from an approved list. 4825
Paragraph 3: Explained what is meant by transporting in a "protected manner." 4826

6. Section 5.1: Inserted a reference to FIPS 202. 4827

7. Section 5.2: Paragraph 2 − added KMAC to the list of approved MACs. Paragraph 3 − 4828
referred to SP 800-56C for the case where a MAC is used for key derivation. MacLen 4829
has been renamed to be MacTagLen for clarity. 4830

8. Section 5.2.1, item 2: Changed “is required to” to “shall”. Added KMAC as a MAC 4831
algorithm. 4832

9. Section 5.5: Revised wording. 4833

10. Section 5.5.1.1: Certain FFC groups defined in other standards are now approved for 4834
use, which are encouraged for use. The old parameter-size sets in Table 1 are now 4835
addressed as FIPS 186-type sets and recommended for use only in legacy applications. 4836
Parameter-size set FA was removed. Table 1 has been shortened to address just the 4837
values of p and q; information about the hash function is now provided in Section 5.8.1 4838
and Section 5.9.3. For the FIPS 186-type parameter-size sets, a requirement was added 4839
that the leftmost bit of p and q be a 1. 4840

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

151

11. Section 5.5.1.2: Removed the table of parameter-size sets. Elliptic curves will be 4841
specified in SP 800-186 (when available; will continue to be available in FIPS 186 until 4842
then). 4843

12. Section 5.5.2: Inserted an assurance method that allows approved safe-prime groups of 4844
domain parameters. 4845

13. Section 5.6.1.1: Added discussions about the generation of key pairs for both the 4846
approved safe-prime groups and the FIPS 186-type parameter-size sets. The FFC key-4847
pair generation routines from FIPS 186-4 were added (with some modifications). A 4848
reference to SP 800-133 is included for generating the keys. 4849

14. Section 5.6.1.2: The ECC key-pair generation routines from FIPS 186-4 were added 4850
(with some modifications). 4851

15. Section 5.6.2.1.2: Revised to accommodate the safe-prime groups. 4852

16. Sections 5.6.2.1.3, 5.6.2.1.4 and 5.6.2.1.5: Revised for further clarity. 4853

17. Section 5.6.2.1.4: The alternative test in method b was removed. 4854

18. Section 5.6.2.2.2: Revised to accommodate the safe-prime groups. 4855

19. Section 5.6.2.3: Introductory text added. 4856

20. Section 5.6.2.3.1: Now specified as a method for FFC full public-key validation. The 4857
comment on process step 1 has been revised for clarity. 4858

21. Section 5.6.2.3.2: New section added on FFC partial public-key validation. 4859

22. Sections 5.6.2.3.1, 5.6.2.3.2 and 5.6.2.3.3: Added text to say that when an error is found, 4860
the routine should be exited immediately without further processing. 4861

23. Section 5.6.2.2.2: Changed “The recipient of another party’s ephemeral public key is 4862
required to obtain assurance…” to “The recipient of another party’s ephemeral public 4863
key shall obtain assurance…”. 4864

24. Section 5.6.2.2.4, items 2 and 3: Added further clarifications. 4865

25. Section 5.6.3.2: Public keys generated using the approved safe primes shall not be used 4866
for digital signatures. 4867

26. Section 5.6.3.3: Added further clarification to item 1 to state that the private key needs 4868
to be protected until destroyed and is not to be backed up, archived or escrowed. 4869

27. Section 5.7.1.1: Clarified error handling in step 2, and added checks for z = p − 1 and z 4870
= 0. 4871

28. Section 5.7.1.2: Clarified error handling in step 2. 4872

29. Section 5.7.2.1: Clarified error handling in step 6. 4873

30. Section 5.7.2.3: Clarified error handling in step 3. 4874

31. Section 5.8: Inserted a requirement that he shared secret shall be used only by an 4875
approved key-derivation method and shall not for any other purpose. Inserted an 4876

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

152

explicit statement that SP800-56A approves the key-derivation methods only for the 4877
derivation of keys from a shared secret. 4878

Moved all key-derivation methods to SP 800-56C. Inserted a new section (Section 5.8.1) 4879
to describe how to call a key-derivation method and reorganized Section 5.8. 4880

To avoid confusion between the use of OtherInput and OtherInfo in the previous version 4881
of this document, OtherInfo was changed to FixedInfo; this information is used as fixed 4882
input to the key-derivation method. keydatalen was changed to L for (eventual) 4883
consistency between SP 800-56A/B/C and SP 800-108. 4884

32. In the new Section 5.8.2.1, inserted text in SuppPubInfo and SuppPrivInfo that states that, 4885
while an implementation may be capable of including these subfields, the subfields may 4886
be null for a given transaction. 4887

33. Section 5.8.2.2 clarifies the interaction with the two-step key-derivation procedure in SP 4888
800-56C. 4889

34. Section 5.9.1: Changed “Each party is required to have an identifier…” to “Each party 4890
shall have an identifier…”. Also, inserted text that discusses the EphemPubKeyi string 4891
and conversions to FCC and ECC schemes. 4892

35. Section 5.9.1.1: Appended to Section 5.9.1, since there was no Section 5.9.1.2. Text was 4893
added to clarify the use of an ephemeral public key in the MacData. 4894

36. Section 5.9.3: Modified text to approve the use of KMAC as a MAC algorithm. 4895
Removed the domain parameter-size sets, referring to Section 5.5.1 for the domain 4896
parameter information. Provided text specifying that the MacKey length needs to be at 4897
least the supported security strength of the domain parameters and the Mac tag length 4898
needs to be at least 64 bits. Also, added text and a table that identifies the approved 4899
MAC algorithms, MacOutputLens and the security strengths that they can support. 4900

37. Section 6.1.1: Modified the first assumption to refer to Section 5.5.1 for the domain 4901
parameter information. Now refer to Section 5.9.3 for the minimum MacKey and Mac 4902
tag lengths. 4903

38. Section 6.1.1.1-6.1.1.4: Clarified error handling. 4904

39. Section 6.1.2: Modified the first assumption to refer to Section 5.5.1 for the domain 4905
parameter information. Now refer to Section 5.9.3 for the minimum MacKey and Mac 4906
tag lengths. 4907

40. Section 6.1.2.1-6.1.2.2: Clarified error handling. 4908

41. Section 6.2.1: Modified the first assumption to refer to Section 5.5.1 for the domain 4909
parameter information. Now refer to Section 5.9.3 for the minimum MacKey and Mac 4910
tag lengths. 4911

42. Section 6.2.1.1-6.2.1.4: Clarified error handling. 4912

43. Section 6.2.2: Modified the first assumption to refer to Section 5.5.1 for the domain 4913
parameter information. Now refer to Section 5.9.3 for the minimum MacKey and Mac 4914
tag lengths. 4915

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

153

44. Section 6.2.2.1-6.2.2.2: Clarified error handling. 4916

45. Section 6.3: Modified the first assumption to refer to Section 5.5.1 for the domain 4917
parameter information. Now refer to Section 5.9.3 for the minimum MacKey and Mac 4918
tag lengths. 4919

46. Section 6.31-6.3.2: Clarified error handling. 4920

47. Section 7: Specified that the allowed methods for key wrapping are CCM, KW and 4921
KWP, and included subsections describing how to interface with them. 4922

Renamed KeyWrappinKey to KWK, TransportedKeyingMaterial to KM and 4923
WrappedKeyingMaterial to WrappedKM. 4924

Assumptions for DLC-based key-transport have been added. 4925

Added sections for using CCM (Sections 7.1 and 7.2), KW and KWP (Sections 7.1.3 4926
and 7.1.4). 4927

48. Section 10: Modified to refer to SP 800-56C for key-derivation methods. 4928

49. Appendix A: Updated the FIPS and SP references. 4929

50. Appendix B: Changed the title. 4930

51. Appendix C.1: Changed the routine to specify the technique used in SP 800-56B; the 4931
same results should be obtained. 4932

52. Appendix C.4: Added a bit string to integer conversion routine. 4933

53. Appendix E: Inserted an appendix listing the approved safe-prime groups and a table 4934
providing various names for the NIST-recommended elliptic curves currently specified 4935
in FIPS 186-4. The curves will be moved to SP 800-186. The supported security 4936
strengths for the curves and the safe-prime groups is included in the tables. 4937

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

154

Appendix E: Approved ECC Curves and FCC Safe-prime Groups 4938

NIST will be providing lists of approved elliptic curves and FCC mod p groups in the 4939
FIPS 140 Implementation Guidance document, Section D.13 (IG D.13). 4940
 4941
Elliptic Curves (EC) for Key Establishment: At this time, IG D.13 includes the 4942
following list of curves for use in the ECC DH and MQV key-establishment primitives, but 4943
does not include the associated targeted security strengths for which the use of each curve 4944
is appropriate. 4945
 4946
Note: entries in the same row refer to the same EC under different names. Absence of 4947
equivalent entries is indicated by “-”. 4948

 4949

Referenced
in: FIPS 186-4

SP 800-56A
TLS (RFC 4492)

(SP 800-52)
IPsec w/ IKE v2

(RFC 5903)

Targeted
Security

Strengths
that can be
Supported

Specified in: SP 800-18618 SEC 2 RFC 5903
 P-224 secp224r1 - s = 112

P-256 secp256r1 secp256r1 112 ≤ s ≤ 128
P-384 secp384r1 secp384r1 112 ≤ s ≤ 192
P-521 secp521r1 secp521r1 112 ≤ s ≤ 256
K-233 sect233k1 - 112 ≤ s ≤ 128
K-283 sect283k1 - 112 ≤ s ≤ 128
K-409 sect409k1 - 112 ≤ s ≤ 192
K-571 sect571k1 - 112 ≤ s ≤ 256
B-233 sect233r1 - 112 ≤ s ≤128
B-283 sect283r1 - 112 ≤ s ≤ 128
B-409 sect409r1 - 112 ≤ s ≤ 192
B-571 sect571r1 - 112 ≤ s ≤ 256

 4950
 4951
Finite Field Cryptography Groups for Key Establishment: The following safe-prime 4952
groups are defined in RFC 3526 and RFC 7919 for use with key-establishment schemes 4953
that employ either the FFC DH or FFC MQV primitives. IG D.13 currently lists the groups 4954
from RFC 3526, but does not list the groups from RFC 7919. The IG also does not identify 4955
the associated targeted security strengths for which the use of each group is appropriate. 4956

The domain parameters for these groups have the form (p, q = (p − 1)/2, g = 2); the 4957
explicit values for p are provided in the RFCs. 4958
 4959

18 Specified in FIPS 186-4 until SP 800-186 is available.

NIST SP 800-56A REV. 3 (DRAFT) PAIR-WISE KEY ESTABLISHMENT USING
 DISCRETE LOGARITHM CRYPTOGRAPHY

155

 4960

IKE v2
(RFC 3526)

Targeted Security
Strengths that can be

Supported
MODP-2048 (ID=14) s = 112
MODP-3072 (ID=15) 112 ≤ s ≤ 128
MODP-4096 (ID=16) 112 ≤ s ≤ 152*
MODP-6144 (ID=17) 112 ≤ s ≤ 176*
MODP-8192 (ID=18) 112 ≤ s ≤ 200*

 4961

TLS (RFC 7919)
Targeted Security

Strengths that can be
Supported

ffdhe2048 (ID = 256) s = 112
ffdhe3072 (ID = 257) 112 ≤ s ≤ 128
ffdhe4096 (ID = 258) 112 ≤ s ≤ 152*
ffdhe6144 (ID = 259) 112 ≤ s ≤ 176*
ffdhe8192 (ID = 260) 112 ≤ s ≤ 200*

* The maximum security strength estimates were calculated using formula in Section 7.5 of 4962
the FIPS 140 IG and rounded to the nearest multiple of eight bits. 4963

	Draft NIST SP 800-56A Rev. 3, Recommendation for Pair-Wise Key-Establishement Schemes Using Discrete Log Crypto
	Notes to Reviewers
	1. Introduction
	2. Scope and Purpose
	3. Definitions, Symbols and Abbreviations
	3.1 Definitions
	3.2 Symbols and Abbreviations

	4. Overview of Key-Establishment Schemes
	4.1 Key Establishment Preparations
	4.2 Key-Agreement Process
	4.3 DLC-based Key-Transport Process

	5. Cryptographic Elements
	5.1 Cryptographic Hash Functions
	5.2 Message Authentication Code (MAC) Algorithm
	5.2.1 MAC Tag Computation for Key Confirmation
	5.2.2 MAC Tag Verification for Key Confirmation

	5.3 Random Number Generation
	5.4 Nonce
	5.5 Domain Parameters
	5.5.1 Domain-Parameter Selection/Generation
	5.5.1.1 FFC Domain Parameter Selection/Generation
	5.5.1.2 ECC Domain-Parameter Selection

	5.5.2 Assurances of Domain-Parameter Validity
	5.5.3 Domain Parameter Management

	5.6 Key-Establishment Key Pairs
	5.6.1 Key-Pair Generation
	 5.6.1.1 FFC Key-Pair Generation
	5.6.1.2 ECC Key-Pair Generation

	5.6.2 Required Assurances
	5.6.2.1 Assurances Required by the Key Pair Owner
	5.6.2.2 Assurances Required by a Public Key Recipient
	5.6.2.2.3.1 Recipient Obtains Assurance from a Trusted Third Party
	5.6.2.2.3.2 Recipient Obtains Assurance Directly from the Claimed Owner (i.e., the Other Party)

	5.6.2.3 Public Key Validation Routines
	Process:

	5.6.3 Key Pair Management
	5.6.3.1 Common Requirements on Static and Ephemeral Key Pairs
	5.6.3.2 Specific Requirements on Static Key Pairs
	5.6.3.3 Specific Requirements on Ephemeral Key Pairs

	5.7 DLC Primitives
	5.7.1 Diffie-Hellman Primitives
	5.7.1.1 Finite Field Cryptography Diffie-Hellman (FFC DH) Primitive
	5.7.1.2 Elliptic Curve Cryptography Cofactor Diffie-Hellman (ECC CDH) Primitive

	5.7.2 MQV Primitives
	5.7.2.1 Finite Field Cryptography MQV (FFC MQV) Primitive
	5.7.2.2 ECC MQV Associate Value Function
	5.7.2.3 Elliptic Curve Cryptography MQV (ECC MQV) Primitive

	5.8 Key-Derivation Methods for Key-Agreement Schemes
	5.8.1 Performing the Key Derivation
	5.8.2 FixedInfo
	5.8.2.1 One-step Key Derivation
	5.8.2.2 Two-step Key-Derivation (Extraction-then-Expansion)
	5.8.2.3 Other Formats for FixedInfo

	5.9 Key Confirmation
	5.9.1 Unilateral Key Confirmation for Key-Agreement Schemes
	5.9.2 Bilateral Key Confirmation for Key-Agreement Schemes
	5.9.3 Selecting the MAC and Other Key-Confirmation Parameters

	6. Key Agreement
	6.1 Schemes Using Two Ephemeral Key Pairs, C(2e)
	6.1.1 C(2e, 2s) Schemes
	6.1.1.1 dhHybrid1, C(2e, 2s, FFC DH) Scheme
	6.1.1.2 (Cofactor) Full Unified Model, C(2e, 2s, ECC CDH) Scheme
	6.1.1.3 MQV2, C(2e, 2s, FFC MQV) Scheme
	6.1.1.4 Full MQV, C(2e, 2s, ECC MQV) Scheme
	6.1.1.5 Incorporating Key Confirmation into a C(2e, 2s) Scheme

	6.1.2 C(2e, 0s) Schemes
	6.1.2.1 dhEphem, C(2e, 0s, FFC DH) Scheme
	6.1.2.2 (Cofactor) Ephemeral Unified Model, C(2e, 0s, ECC CDH) Scheme
	6.1.2.3 Key Confirmation for C(2e, 0s) Schemes

	6.2 Schemes Using One Ephemeral Key Pair, C(1e) Schemes
	6.2.1 C(1e, 2s) Schemes
	6.2.1.1 dhHybridOneFlow, C(1e, 2s, FFC DH) Scheme
	6.2.1.2 (Cofactor) One-Pass Unified Model, C(1e, 2s, ECC CDH) Scheme
	6.2.1.3 MQV1, C(1e, 2s, FFC MQV) Scheme
	6.2.1.4 One-Pass MQV, C(1e, 2s, ECC MQV) Scheme
	6.2.1.5 Incorporating Key Confirmation into a C(1e, 2s) Scheme

	6.2.2 C(1e, 1s) Schemes
	6.2.2.1 dhOneFlow, C(1e, 1s, FFC DH) Scheme
	6.2.2.2 (Cofactor) One-Pass Diffie-Hellman, C(1e, 1s, ECC CDH) Scheme
	6.2.2.3 Incorporating Key Confirmation into a C(1e, 1s) Scheme

	6.3 C(0e, 2s) Schemes
	6.3.1 dhStatic, C(0e, 2s, FFC DH) Scheme
	6.3.2 (Cofactor) Static Unified Model, C(0e, 2s, ECC CDH) Scheme
	6.3.3 Incorporating Key Confirmation into a C(0e, 2s) Scheme
	6.3.3.1 C(0e, 2s) Scheme with Unilateral Key Confirmation Provided by Party U to Party V
	6.3.3.2 C(0e, 2s) Scheme with Unilateral Key Confirmation Provided by Party V to Party U
	6.3.3.3 C(0e, 2s) Scheme with Bilateral Key Confirmation

	7. DLC-Based Key Transport (Alternative 1)
	7.1 Key Transport Scheme
	7.1.1 Key-Wrapping using AES-CCM
	7.1.2 Key-Unwrapping using AES-CCM
	7.1.3 Key Wrapping Using KW or KWP
	7.1.4 Key Unwrapping Using KW or KWP

	7.2 Key Confirmation for Transported Keying Material

	7. DLC-Based Key Transport (Alternative 2)
	7.1 Assumptions
	7.2 Key-Transport Scheme
	7.3 Key Confirmation for Transported Keying Material

	8. Rationale for Selecting a Specific Scheme
	8.1 Rationale for Choosing a C(2e, 2s) Scheme
	8.2 Rationale for Choosing a C(2e, 0s) Scheme
	8.3 Rationale for Choosing a C(1e, 2s) Scheme
	8.4 Rationale for Choosing a C(1e, 1s) Scheme
	8.5 Rationale for Choosing a C(0e, 2s) Scheme
	8.6 Choosing a Key-Agreement Scheme for use in Key Transport

	9. Key Recovery
	10. Implementation Validation
	Appendix A: References
	A.1 Normative References
	A.2 Informative References

	Appendix B: Rationale for Including Identifiers and other Context-specific Information in the KDM Input (Informative)
	Appendix C: Data Conversions (Normative)
	C.1 Integer-to-Byte String Conversion
	C.2 Field-Element-to-Byte String Conversion
	C.3 Field-Element-to-Integer Conversion
	C.4 Conversion of a Bit String to an Integer

	Appendix D: Revisions (Informative)
	Appendix E: Approved ECC Curves and FCC Safe-prime Groups

