

Draft NIST Special Publication 800-56B
Revision 2

Recommendation for Pair-Wise
Key Establishment Using Integer

Factorization Cryptography

Elaine Barker
Lily Chen

Allen Roginsky
Apostol Vassilev

Richard Davis
Scott Simon

C O M P U T E R S E C U R I T Y

August 2, 2018

This draft has been modified very slightly from the version originally posted on July 10, 2018: 1) In the
Notes to Reviewers (p. iii), item 2 has been updated and item 3 has been deleted; 2) In Appendix E, items
16 and 17 identify specific changes in Section 6.4.1.

Draft NIST Special Publication 800-56B
 Revision 2

Recommendation for Pair-Wise
Key Establishment Using Integer

Factorization Cryptography

Elaine Barker
Lily Chen

Allen Roginsky
Apostol Vassilev

Computer Security Division
Information Technology Laboratory

Richard Davis

Scott Simon
National Security Agency

July 2018

U.S. Department of Commerce
Wilbur L. Ross, Jr., Secretary

National Institute of Standards and Technology

Walter Copan, NIST Director and Under Secretary of Commerce for Standards and Technology

Authority

This publication has been developed by the National Institute of Standards and Technology (NIST) in
accordance with its statutory responsibilities under the Federal Information Security Modernization Act
(FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law (P.L.) 113-283. NIST is responsible for developing
information security standards and guidelines, including minimum requirements for federal information
systems, but such standards and guidelines shall not apply to national security systems without the express
approval of appropriate federal officials exercising policy authority over such systems. This guideline is
consistent with the requirements of the Office of Management and Budget (OMB) Circular A-130.

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and
binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these
guidelines be interpreted as altering or superseding the existing authorities of the Secretary of Commerce,
Director of the OMB, or any other federal official. This publication may be used by nongovernmental
organizations on a voluntary basis and is not subject to copyright in the United States. Attribution would,
however, be appreciated by NIST.

National Institute of Standards and Technology Special Publication 800-56B Revision 2
Natl. Inst. Stand. Technol. Spec. Publ. 800-56B Rev. 2, 126 pages (July 2018)

CODEN: NSPUE2

Public comment period: July 9, 2018 through October 5, 2018

National Institute of Standards and Technology
Attn: Computer Security Division, Information Technology Laboratory

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930
Email: SP800-56b_comments@nist.gov

All comments are subject to release under the Freedom of Information Act (FOIA).

Certain commercial entities, equipment, or materials may be identified in this document in order to
describe an experimental procedure or concept adequately. Such identification is not intended to imply
recommendation or endorsement by NIST, nor is it intended to imply that the entities, materials, or
equipment are necessarily the best available for the purpose.

There may be references in this publication to other publications currently under development by NIST
in accordance with its assigned statutory responsibilities. The information in this publication, including
concepts and methodologies, may be used by Federal agencies even before the completion of such
companion publications. Thus, until each publication is completed, current requirements, guidelines,
and procedures, where they exist, remain operative. For planning and transition purposes, Federal
agencies may wish to closely follow the development of these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and
provide feedback to NIST. Many NIST cybersecurity publications, other than the ones noted above, are
available at https://csrc.nist.gov/publications.

mailto:SP800-56b_comments@nist.gov
https://csrc.nist.gov/publications

ii

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology
(NIST) promotes the U.S. economy and public welfare by providing technical leadership for the Nation’s
measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of concept
implementations, and technical analyses to advance the development and productive use of information
technology. ITL’s responsibilities include the development of management, administrative, technical, and
physical standards and guidelines for the cost-effective security and privacy of other than national security-
related information in Federal information systems. The Special Publication 800-series reports on ITL’s
research, guidelines, and outreach efforts in information system security, and its collaborative activities
with industry, government, and academic organizations.

Abstract

This Recommendation specifies key-establishment schemes using integer factorization cryptography (in
particular, RSA). Both key-agreement and key transport schemes are specified for pairs of entities, and
methods for key confirmation are included to provide assurance that both parties share the same keying
material. In addition, the security properties associated with each scheme are provided.

Keywords

assurances; integer factorization cryptography; key agreement; key confirmation; key derivation;
key establishment; key management; key recovery; key transport.

Acknowledgements

NIST thanks the many contributions by the public and private sectors whose thoughtful and
constructive comments improved the quality and usefulness of this publication. The authors also
acknowledge the contributions by Dustin Moody, Andrew Regenscheid and Miles Smid made to
previous versions of this Recommendation.

Conformance Testing

Conformance testing for implementations of this Recommendation will be conducted within the
framework of the Cryptographic Algorithm Validation Program (CAVP) and the Cryptographic
Module Validation Program (CMVP). The requirements of this Recommendation are indicated by
the word “shall.” Some of these requirements may be out-of-scope for CAVP or CMVP validation
testing, and thus are the responsibility of entities using, implementing, installing or configuring
applications that incorporate this Recommendation.

iii

Notes to Reviewers

Please refer to Appendix E for a detailed list of changes for this revision. In particular, note the
following:

1. The RSA-KEM-KWS key transport scheme that was included in the previous version of this
document has been removed. A preliminary search for its inclusion in FIPS-140-validated
modules indicated that it was sometimes implemented, but additional research did not indicate
that the scheme was actually used (e.g., in protocols). If this is incorrect, please advise us.

2. The key-pair validation routines in Section 6.4.1 now include a requirement regarding the error
rate on the primality test.

iv

Table of Contents
1. Introduction ... 1

2. Scope and Purpose .. 1

3. Definitions, Symbols and Abbreviations ... 2

3.1 Definitions... 2

3.2 Symbols and Abbreviations .. 9

4 Key-Establishment Schemes Overview ... 15

4.1 Key-Establishment Preparations ... 16

4.2 Key-Agreement Process.. 18

4.3 Key-Transport Process .. 20

5 Cryptographic Elements .. 22

5.1 Cryptographic Hash Functions ... 22

5.2 Message Authentication Code (MAC) Algorithms .. 22

5.2.1 MacTag Computation for Key Confirmation ... 23

5.2.2 MacTag Verification for Key Confirmation .. 23

5.3 Random Bit Generators... 23

5.4 Nonces... 24

5.5 Key-Derivation Methods for Key-Establishment Schemes .. 24

5.5.1 Performing the Key Derivation .. 25

5.5.2 FixedInfo .. 25

5.5.2.1 One-step Key Derivation .. 26

5.5.2.1.1 The Concatenation Format for FixedInfo 27

5.5.2.1.2 The ASN.1 Format for FixedInfo .. 28

5.5.2.2 Two-step Key-Derivation (Extraction-then-Expansion) 28

5.5.2.3 Other Formats for FixedInfo .. 29

5.6 Key Confirmation ... 29

5.6.1 Unilateral Key Confirmation for Key-Establishment Schemes 29

5.6.2 Bilateral Key Confirmation for KAS2 Schemes .. 33

5.6.3 Selecting the MAC and Other Key-Confirmation Parameters 33

v

6 RSA Key Pairs ... 35

6.1 General Requirements ... 35

6.2 Criteria for RSA Key Pairs for Key Establishment .. 36

6.2.1 Definition of a Key Pair ... 36

6.2.2 Formats ... 37

6.3 RSA Key-Pair Generators ... 37

6.3.1 RSAKPG1 Family: RSA Key-Pair Generation with a Fixed Public Exponent 38

6.3.1.1 rsakpg1-basic .. 38

6.3.1.2 rsakpg1-prime-factor .. 40

6.3.1.3 rsakpg1-crt .. 40

6.3.2 RSAKPG2 Family: RSA Key-Pair Generation with a Random Public Exponent . 41

6.3.2.1 rsakpg2-basic .. 41

6.3.2.2 rsakpg2-prime-factor .. 43

6.3.2.3 rsakpg2-crt .. 43

6.4 Required Assurances ... 44

6.4.1 Assurances Required by the Key-Pair Owner .. 44

6.4.1.1 Obtaining Owner Assurance of Key-Pair Validity..................................... 45

6.4.1.2 RSAKPV1 Family: RSA Key-Pair Validation with a Fixed Public
Exponent 46

6.4.1.2.1 rsakpv1-basic ... 46

6.4.1.2.2 rsakpv1-prime-factor ... 48

6.4.1.2.3 rsakpv1-crt ... 49

6.4.1.3 RSAKPV2 Family: RSA Key-Pair Validation (Random Public Exponent)
 50

6.4.1.3.1 rsakpv2-basic ... 50

6.4.1.3.2 rsakpv2-prime-factor ... 50

6.4.1.3.3 rsakpv2-crt ... 51

6.4.1.4 RSA Key-Pair Validation (Exponent-Creation Method Unknown)........... 52

6.4.1.4.1 basic-pkv .. 52

6.4.1.4.2 prime-factor-pkv .. 53

vi

6.4.1.4.3 crt_pkv ... 54

6.4.1.5 Owner Assurance of Private-Key Possession .. 55

6.4.2 Assurances Required by a Public-Key Recipient ... 56

6.4.2.1 Obtaining Assurance of Public-Key Validity for a Received Public Key . 56

6.4.2.2 Partial Public-Key Validation for RSA .. 57

6.4.2.3 Recipient Assurances of an Owner’s Possession of a Private Key 57

6.4.2.3.1 Recipient Obtains Assurance from a Trusted Third Party 58

6.4.2.3.2 Recipient Obtains Assurance Directly from the Claimed Owner
(i.e., the Other Party) ... 58

7 Primitives and Operations ... 59

7.1 Encryption and Decryption Primitives.. 60

7.1.1 RSAEP.. 60

7.1.2 RSADP ... 60

7.1.2.1 Decryption with the Private Key in the Basic Format................................ 61

7.1.2.2 Decryption with the Private Key in the Prime Factor Format 61

7.1.2.3 Decryption with the Private Key in the CRT Format 61

7.2 Encryption and Decryption Operations .. 62

7.2.1 RSA Secret-Value Encapsulation (RSASVE) .. 62

7.2.1.1 RSASVE Components ... 62

7.2.1.2 RSASVE Generate Operation (RSASVE.GENERATE) 62

7.2.1.3 RSASVE Recovery Operation (RSASVE.RECOVER) 63

7.2.2 RSA with Optimal Asymmetric Encryption Padding (RSA-OAEP) 64

7.2.2.1 RSA-OAEP Components ... 65

7.2.2.2 The Mask Generation Function (MGF).. 65

7.2.2.3 RSA-OAEP Encryption Operation (RSA-OAEP.ENCRYPT) 66

7.2.2.4 RSA-OAEP Decryption Operation (RSA-OAEP.DECRYPT) 69

8 Key-Agreement Schemes .. 73

8.1 Common Components for Key Agreement .. 73

8.2 KAS1 Key Agreement .. 74

vii

8.2.1 KAS1 Assumptions .. 74

8.2.2 KAS1-basic .. 75

8.2.3 KAS1 Key Confirmation .. 77

8.2.3.1 KAS1 Key-Confirmation Components .. 77

8.2.3.2 KAS1-Party_V-confirmation ... 77

8.3 KAS2 Key Agreement .. 78

8.3.1 KAS2 Assumptions .. 79

8.3.2 KAS2-basic .. 79

8.3.3 KAS2 Key Confirmation .. 81

8.3.3.1 KAS2 Key-Confirmation Components .. 81

8.3.3.2 KAS2-Party_V-confirmation ... 82

8.3.3.2 KAS2-Party_U-confirmation ... 83

8.3.3.3 KAS2-bilateral-confirmation.. 84

9 Key-Transport Schemes ... 85

9.1 Additional Input .. 85

9.2 KTS-OAEP: Key-Transport Using RSA-OAEP .. 86

9.2.1 KTS-OAEP Assumptions ... 87

9.2.2 Common components ... 87

9.2.3 KTS-OAEP-basic ... 87

9.2.4 KTS-OAEP Key Confirmation .. 89

9.2.4.1 KTS-OAEP Common Components for Key Confirmation 89

9.2.4.2 KTS-OAEP-Party_V-confirmation .. 89

9.3 Hybrid Key-Transport Methods .. 90

10 Rationale for Selecting a Specific Scheme .. 91

10.1 Rationale for Choosing a KAS1 Key-Agreement Scheme .. 92

10.2 Rationale for Choosing a KAS2 Key-Agreement Scheme .. 94

10.3 Rationale for Choosing a KTS-OAEP Key-Transport Scheme 96

10.4 Summary of Assurances Associated with Key-Establishment Schemes 98

11 Key Recovery ... 101

viii

12 Implementation Validation .. 101

Appendix A: References ... 103

A.1 Normative References ... 103

A.2 Informative References ... 104

Appendix B: Data Conversions (Normative) .. 105

B.1 Integer-to-Byte String (I2BS) Conversion .. 105

B.2 Byte String to Integer (BS2I) Conversion .. 105

Appendix C: Prime-Factor Recovery (Normative) .. 106

C.1 Probabilistic Prime-Factor Recovery .. 106

C.2 Deterministic Prime-Factor Recovery .. 107

Appendix D: Maximum Security Strength Estimates for IFC Modulus Lengths 112

Appendix E: Revisions (Informative) ... 113

ix

Figures
Figure 1: Owner Key-establishment Preparations ...16

Figure 2: Key-Agreement Process ...19

Figure 3: Key-transport Process...21

Figure 4: RSA-OAEP Encryption Operation ...69

Figure 5: RSA-OAEP Decryption Operation ..72

Figure 6: RSA-KEM-KWS Encryption Operation ..73

Figure 7: RSA-KEM-KWS Decryption Operation ..74

Figure 8: KAS1-basic Scheme ...77

Figure 9: KAS1-Party_V-confirmation Scheme (from Party V to Party U)79

Figure 10: KAS2-basic Scheme ...80

Figure 11: KAS2-Party_V-confirmation Scheme (from Party V to Party U)81

Figure 12: KAS2-Party_U-confirmation Scheme (from Party U to Party V)85

Figure 13: KAS2-bilateral-confirmation Scheme ..86

Tables
Table 1: Approved MAC Algorithms for Key Confirmation ..33
Table 2: Security Strengths Provided by Commonly Used Modulus Lengths36

Table 3: Summary of Assurances ..97

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

1

1. Introduction 1

Many U.S. Government Information Technology (IT) systems need to employ strong 2
cryptographic schemes to protect the integrity and confidentiality of the data that they process. 3
Algorithms such as the Advanced Encryption Standard (AES), as defined in Federal Information 4
Processing Standard (FIPS) 197,1 and HMAC, as defined in FIPS 198,2 make attractive choices 5
for the provision of these services. These algorithms have been standardized to facilitate 6
interoperability between systems. However, the use of these algorithms requires the establishment 7
of secret keying material that is shared in advance. Trusted couriers may manually distribute this 8
secret keying material, but as the number of entities using a system grows, the work involved in 9
the distribution of the secret keying material grows rapidly. Therefore, it is essential to support the 10
cryptographic algorithms used in modern U.S. Government applications with automated key-11
establishment schemes. 12

This Recommendation provides the specifications of key-establishment schemes that are 13
appropriate for use by the U.S. Federal Government, based on a standard that was developed by 14
the Accredited Standards Committee (ASC) X9, Inc: ANS X9.44.3 A key-establishment scheme 15
can be characterized as either a key-agreement scheme or a key-transport scheme. This 16
Recommendation provides key-agreement and key-transport schemes that are based on the Rivest 17
Shamir Adleman (RSA) asymmetric-key algorithm. 18

2. Scope and Purpose 19

This Recommendation is intended for use in conjunction with NIST Special Publication (SP) 800-20
57.4 This key-establishment Recommendation, SP 800-57, and FIPS 1865 are intended to provide 21
information for a vendor to implement secure key-establishment using asymmetric algorithms in 22
FIPS 1406 validated modules. 23

Note that a key-establishment scheme is a component of a protocol that may provide security 24
properties not provided by the scheme when considered by itself; protocols, per se, are not 25
specified in this Recommendation. 26

1 FIPS 197, Advanced Encryption Standard (AES).
2 FIPS 198, Keyed-hash Message Authentication Code (HMAC).
3 ANS X9.44, Key Establishment using Integer Factorization Cryptography.
4 SP 800-57, Recommendation for Key Management, Part 1: General.
5 FIPS 186, Digital Signature Standard (DSS).
6 FIPS 140, Security Requirements for Cryptographic Modules.

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

2

3. Definitions, Symbols and Abbreviations 27

3.1 Definitions 28

Additional input Information known by two parties that is cryptographically bound to
the secret keying material being protected using the encryption
operation.

Algorithm A clearly specified mathematical process for computation; a set of
rules that, if followed, will give a prescribed result.

Approved Federal Information Processing Standards (FIPS)-approved or
NIST-recommended. An algorithm or technique that is either 1)
specified in a FIPS or NIST Recommendation, 2) adopted in a FIPS
or NIST Recommendation or 3) specified in a list of NIST-
approved security functions.

Assumption Used to indicate the conditions that are required to be true when an
approved key-establishment scheme is executed in accordance with
this Recommendation.

Assurance of private
key possession

Confidence that an entity possesses a private key associated with a
given public key.

Assurance of validity Confidence that an RSA key pair is arithmetically correct.

Big-endian The property of a byte string having its bytes positioned in order of
decreasing significance. In particular, the leftmost (first) byte is the
most significant byte (containing the most significant eight bits of
the corresponding bit string) and the rightmost (last) byte is the least
significant byte (containing the least significant eight bits of the
corresponding bit string).

For the purposes of this Recommendation, it is assumed that the bits
within each byte of a big-endian byte string are also positioned in
order of decreasing significance (beginning with the most significant
bit in the leftmost position and ending with the least significant bit
in the rightmost position).

Binding Assurance of the integrity of an asserted relationship between items
of information that is provided by cryptographic means. Also see
Trusted association.

Bit length A positive integer that expresses the number of bits in a bit string.

Bit string An ordered sequence of 0’s and 1’s. Also known as a binary string.

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

3

Byte A bit string consisting of eight bits.

Byte length A positive integer that expresses the number of bytes in a byte string.

Byte string An ordered sequence of bytes.

Certificate Authority
(CA)

The entity in a Public Key Infrastructure (PKI) that is responsible
for issuing public-key certificates and exacting compliance to a PKI
policy. Also known as a Certification Authority.

Ciphertext Data in its enciphered form.

Confidentiality The property that sensitive information is not disclosed to
unauthorized entities.

Critical security
parameter (CSP)

Security-related information whose disclosure or modification can
compromise the security of a cryptographic module. Domain
parameters, secret or private keys, shared secrets, key-derivation
keys, intermediate values and secret salts are examples of quantities
that may be considered critical security parameters in this
Recommendation. See FIPS 140.

Cryptographic key
(Key)

A parameter used with a cryptographic algorithm that determines its
operation.

Decryption The process of transforming ciphertext into plaintext using a
cryptographic algorithm and key.

Destroy In this Recommendation, an action applied to a key or a piece of
secret data. After a key or a piece of secret data is destroyed, no
information about its value can be recovered. Also known as
zeroization in FIPS 140.

Encryption The process of transforming plaintext into ciphertext using a
cryptographic algorithm and key.

Entity An individual (person), organization, device, or process. “Party” is
a synonym.

Fresh Newly established secret keying material that is statistically
independent of any previously established keying material.

Greatest common
divisor

The largest positive integer that divides each of two or more positive
integers without a remainder.

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

4

Hash function A function that maps a bit string of arbitrary length to a fixed-length
bit string. Approved hash functions are expected to satisfy the
following properties:

1. One-way: It is computationally infeasible to find any input
that maps to any pre-specified output, and

2. Collision resistant: It is computationally infeasible to find
any two distinct inputs that map to the same output.

Hash value The fixed-length bit string produced by a hash function.

Identifier A bit string that is associated with a person, device or organization.
It may be an identifying name, or may be something more abstract
(for example, a string consisting of an Internet Protocol (IP) address
and timestamp).

Integrity A property whereby data has not been altered in an unauthorized
manner since it was created, transmitted or stored.

In this Recommendation, the statement that a cryptographic
algorithm "provides data integrity" means that the algorithm is used
to detect unauthorized alterations.

Key agreement A (pair-wise) key-establishment procedure where the resultant
secret keying material is a function of information contributed by
two participants so that no party can predetermine the value of the
secret keying material independently from the contributions of the
other party. Contrast with key-transport.

Key-agreement
transaction

An execution of a key-agreement scheme.

Key confirmation A procedure to provide assurance to one party (the key-confirmation
recipient) that another party (the key-confirmation provider)
possesses the correct secret keying material and/or shared secret
from which that secret keying material is derived.

Key-confirmation
provider

The party that provides assurance to the other party (the recipient)
that the two parties have indeed established a shared secret or shared
keying material.

Key-derivation function As used in this Recommendation, a function used to derive secret
keying material from a shared secret (or a key) and other
information.

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

5

Key-derivation method As used in this Recommendation, a method by which secret keying
material is derived from a shared secret and other information. A
key-derivation method may use a key-derivation function or a key-
derivation procedure.

Key-derivation
procedure

As used in this Recommendation, a multi-step process to derive
secret keying material from a shared secret and other information.

Key establishment A procedure that results in establishing secret keying material that is
shared among different parties.

Key-establishment key
pair

A private/public key pair used in a key-establishment scheme.

Key-establishment
transaction

An instance of establishing secret keying material using a key-
agreement or key-transport transaction.

Key pair See key-establishment key pair.

Key transport A (pair-wise) key-establishment procedure whereby one party (the
sender) selects a value for the secret keying material and then
securely distributes that value to another party (the receiver).
Contrast with key agreement.

Key-transport
transaction

An execution of a key-transport scheme.

Key wrapping A method of protecting secret keying material (along with associated
integrity information) that provides both confidentiality and
integrity protection when using symmetric-key algorithms.

Key-wrapping key In this Recommendation, a key-wrapping key is a symmetric key
established during a key-transport transaction and used with a key-
wrapping algorithm to protect the secret keying material to be
transported.

Keying material Data that is represented as a binary string such that any non-
overlapping segments of the string with the required lengths can be
used as secret keys, secret initialization vectors and other secret
parameters.

Least common multiple The smallest positive integer that is divisible by two or more positive
integers without a remainder. For example, the least common
multiple of 2 and 3 is 6.

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

6

MAC tag Data obtained from the output of a MAC algorithm (possibly by
truncation) that can be used by an entity to verify the integrity and
the origination of the information used as input to the MAC
algorithm.

Message Authentication
Code (MAC) algorithm

A family of cryptographic functions that is parameterized by a
symmetric key. Each of the functions can act on input data (called
a “message”) of variable length to produce an output value of a
specified length. The output value is called the MAC of the input
message. An approved MAC algorithm is expected to satisfy the
following property (for each of its supported security levels):

It must be computationally infeasible to determine the (as yet
unseen) MAC of a message without knowledge of the key, even
if one has already seen the results of using that key to compute
the MACs of other (different) messages.

A MAC algorithm can be used to provide data-origin authentication
and data-integrity protection. In this Recommendation, a MAC
algorithm is used for key confirmation; the use of MAC algorithms
for key derivation is addressed in SP 800-56C.7

Nonce A time-varying value that has an acceptably small chance of
repeating. For example, a nonce is a random value that is generated
anew for each use, a timestamp, a sequence number, or some
combination of these.

Owner For a key pair, the owner is the entity that is authorized to use the
private key associated with a public key, whether that entity
generated the key pair itself or a trusted party generated the key pair
for the entity.

Party See entity.

Prime number An integer greater than 1 that has no positive integer factors other
than 1 and itself.

Primitive A low-level cryptographic algorithm that is used as a basic building
block for higher-level cryptographic operations or schemes.

Private key A cryptographic key that is kept secret and is used with a public-key
cryptographic algorithm. A private key is associated with a public
key.

7 SP 800-56C, Recommendation for Key-Derivation Methods in Key-Establishment Schemes.

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

7

Protocol A set of rules used by two or more communicating entities that
describe the message order and data structures for information
exchanged between the entities.

Provider A party that provides (1) a public key (e.g., in a certificate); (2)
assurance, such as an assurance of the validity of a candidate public
key or assurance of possession of the private key associated with a
public key; or (3) key confirmation. Contrast with recipient.

Public key A cryptographic key that may be made public and is used with a
public-key cryptographic algorithm. A public key is associated with
a private key.

Public-key algorithm A cryptographic algorithm that uses two related keys: a public key
and a private key. The two keys have the property that determining
the private key from the public key is computationally infeasible.

Public-key certificate A data structure that contains an entity’s identifier(s), the entity's
public key (including an indication of the associated set of domain
parameters) and possibly other information, along with a signature
on that data set that is generated by a trusted party, i.e., a certificate
authority, thereby binding the public key to the included
identifier(s).

Public-key cryptography A form of cryptography that uses two related keys, a public key and a
private key; the two keys have the property that, given the public key,
it is computationally infeasible to derive the private key.

For key establishment, public-key cryptography allows different
parties to communicate securely without having prior access to a
secret key that is shared, by using one or more pairs (public key and
private key) of cryptographic keys.

Public-key validation The procedure whereby the recipient of a public key checks that the
key conforms to the arithmetic requirements for such a key in order
to thwart certain types of attacks.

Random nonce A nonce containing a random-value component that is generated
anew for each nonce.

Receiver The party that receives secret keying material via a key-transport
transaction. Contrast with sender.

Recipient A party that either (1) receives a public key; or (2) obtains assurance
from an assurance provider (e.g., assurance of the validity of a
candidate public key or assurance of possession of the private key

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

8

corresponding to a public key); or (3) receives key confirmation
from a key-confirmation provider.

Relatively prime Two positive integers are relatively prime if their greatest common
divisor is 1.

Scheme A set of unambiguously specified transformations that provide a
(cryptographic) service when properly implemented and maintained.
A scheme is a higher-level construct than a primitive and a lower-
level construct than a protocol.

Security properties The security features (e.g., replay protection, or key confirmation)
that a cryptographic scheme may, or may not, provide.

Security strength (also,
“Bits of security”)

A number associated with the amount of work (that is, the number
of operations) that is required to break a cryptographic algorithm or
system.

Sender The party that sends secret keying material to the receiver using a
key-transport transaction. Contrast with receiver.

Shall This term is used to indicate a requirement that needs to be fulfilled
to claim conformance to this Recommendation. Note that shall may
be coupled with not to become shall not.

Shared secret A secret value that has been computed during the execution of a key-
establishment scheme, is known by both participants, and is used as
input to a key-derivation method to produce secret keying material.

Should This term is used to indicate an important recommendation. Ignoring
the recommendation could result in undesirable results. Note that
should may be coupled with not to become should not.

Support (a security
strength)

A security strength of s bits is said to be supported by a particular
choice of algorithm, primitive, auxiliary function, parameters (etc.)
for use in the implementation of a cryptographic mechanism if that
choice will not prevent the resulting implementation from attaining
a security strength of at least s bits.

In this Recommendation, it is assumed that implementation choices
are intended to support a security strength of 112 bits or more (see
[SP 800-57]8 and [SP 800-131A]9).

8 SP 800-57 Rev. 4, Recommendation for Key Management Part1: General.
9 SP 800-131A, Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms and Key
Lengths.

http://en.wikipedia.org/wiki/Greatest_common_divisor
http://en.wikipedia.org/wiki/Greatest_common_divisor

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

9

Symmetric key A cryptographic key that is shared between two or more entities and
used with a cryptographic application to process information.

Symmetric-key
algorithm

A cryptographic algorithm that uses secret keying material that is
shared between authorized parties.

Targeted security
strength

The security strength that is intended to be supported by one or more
implementation-related choices (such as algorithms, primitives,
auxiliary functions, parameter sizes and/or actual parameters) for the
purpose of instantiating a cryptographic mechanism.

In this Recommendation, it is assumed that the targeted security
strength of any instantiation of an approved key-establishment
scheme has a value greater than or equal to 112 bits and less than or
equal to 256 bits.

Trusted association Assurance of the integrity of an asserted relationship between items
of information that may be provided by cryptographic or non-
cryptographic (e.g., physical) means. Also see Binding.

Trusted party A party that is trusted by an entity to faithfully perform certain
services for that entity. An entity may choose to act as a trusted party
for itself.

Trusted third party A third party, such as a CA, that is trusted by its clients to perform
certain services. (By contrast, the two participants in a key-
establishment transaction are considered to be the first and second
parties.)

3.2 Symbols and Abbreviations 29

A Additional input that is bound to the secret keying material; a byte
string.

[a, b] The set of integers x such that a ≤ x ≤ b.

AES Advanced Encryption Standard (as specified in FIPS 197).

ANS American National Standard.

ASC The Accredited Standards Committee of the American National
Standards Institute (ANSI).

ASN.1 Abstract Syntax Notation One.

BS2I Byte String to Integer conversion routine.

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

10

c Ciphertext (expressed as an integer).

C, C0, C1 Ciphertext (expressed as a byte string).

CA Certification Authority.

CRT Chinese Remainder Theorem.

d RSA private exponent; a positive integer.

Data A variable-length string of zero or more (eight-bit) bytes.

DerivedKeyingMaterial Derived keying material; a bit string.

dP RSA private exponent for the prime factor p in the CRT format,
i.e., d mod (p − 1); an integer.

dQ RSA private exponent for the prime factor q in the CRT format,
i.e., d mod (q − 1); an integer.

e RSA public exponent; a positive integer.

eBits The bit length of the RSA exponent e.

GCD(a, b) Greatest Common Divisor of two positive integers a and b. For
example, GCD(12, 16) = 4.

HMAC Keyed-hash Message Authentication Code (as specified in FIPS
198).

HMAC-hash Keyed-hash Message Authentication Code (as specified in FIPS
198) with an approved hash function hash.

I2BS Integer to Byte String conversion routine.

ID The bit string denoting the identifier associated with an entity.

IDP, IDR, IDU, IDV Identifier bit strings for parties P, R, U, and V, respectively.

IFC Integer Factorization Cryptography.

K Keying material; a byte string.

KBits The bit length of the secret keying material.

KAS Key-Agreement Scheme.

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

11

KAS1-basic The basic form of Key-Agreement Scheme 1.

KAS1-Party_V-
confirmation

Key-Agreement Scheme 1 with confirmation by party V.
Previously known as KAS1-responder-confirmation.

KAS2-basic The basic form of Key-Agreement Scheme 2.

KAS2-bilateral-
confirmation

Key-Agreement Scheme 2 with bilateral confirmation.

KAS2-Party_V-
confirmation

Key-Agreement Scheme 2 with confirmation by party V.
Previously known as KAS2-responder-confirmation.

KAS2-Party_U-
confirmation

Key-Agreement Scheme 2 with confirmation by party U.
Previously known as KAS2-initiator-confirmation.

KC Key Confirmation.

KDM Key-Derivation Method.

KeyData Keying material other than that which is used for the MacKey
employed in key confirmation.

KTS Key-transport Scheme.

KTS-OAEP-basic The basic form of the key-transport Scheme with Optimal
Asymmetric Encryption Padding.

KTS-OAEP-Party_V-
confirmation

Key-transport Scheme with Optimal Asymmetric Encryption
Padding and key confirmation provided by party V. Previously
known as KTS-OAEP-receiver-confirmation.

KWK Key-Wrapping Key; a byte string.

LCM(a, b) Least Common Multiple of two positive integers a and b. For
example, LCM(4, 6) = 12.

len(x) The bit length of the non-negative integer x. For integer x > 0,
len(x) = log2(x)+1. (In the case of 0, len(0) = 1.)

MAC Message Authentication Code.

MacData A byte string input to the MacTag computation.

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

12

MacDataU, (or MacDataV) MacData associated with party U (or party V, respectively), and
used to generate MacTagU (or MacTagV, respectively). Each is a
byte string.

MacKey Key used to compute the MAC; a byte string.

MacKeyBits The bit length of MacKey such that MacKeyBits = 8 ×
MacKeyLen.

MacKeyLen The byte length of the MacKey.

MacOutputBits The bit length of the MAC output block such that MacOutputBits
= 8 × MacOutputLen.

MacOutputLen The byte length of the MAC output block.

MacTag A byte string that allows an entity to verify the integrity of the
information. MacTag is the output from the MAC algorithm
(possibly after truncation). The literature sometimes refers to
MacTag as a Message Authentication Code (MAC).

MacTagV, (MacTagU) The MacTag generated by party V (or party U, respectively).
Each is a byte string.

MacTagBits The bit length of the MAC tag such that MacTagBits = 8 ×
MacTagLen.

MacTagLen The byte length of MacTag.

Mask Mask; a byte string.

MGF Mask Generation Function.

mgfSeed String from which a mask is derived; a byte string.

 n RSA modulus. n = pq, where p and q are distinct odd primes.

(n, d) RSA private key in the basic format.

(n, e) RSA public key.

(n, e, d, p, q, dP, dQ, qInv) RSA private key in the Chinese Remainder Theorem (CRT)
format.

NV Nonce contributed by party V; a byte string.

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

13

nBits The bit length of the RSA modulus n.

nLen The byte length of the RSA modulus n. (Note that in FIPS 186,
nlen refers to the bit length of n.)

Null The empty bit string.

OtherInput Other information for key derivation; a bit string.

p First prime factor of the RSA modulus n.

(p, q, d) RSA private key in the prime-factor format.

PrivKeyU, PrivKeyV Private key of party U or V, respectively.

PubKeyU, PubKeyV Public key of party U or V, respectively.

q Second prime factor of the RSA modulus n.

qInv Inverse of q modulo p in the CRT format, i.e., q−1 mod p; an
integer.

RBG Random Bit Generator.

RSA Rivest-Shamir-Adleman algorithm

RSASVE RSA Secret Value Encapsulation.

RSA-OAEP RSA with Optimal Asymmetric Encryption Padding.

S String of bytes.

s Security strength in bits.

S(nBits) The estimated maximum security strength for an RSA modulus
of length nBits.

SHA Secure Hash Algorithm.

SKW Symmetric-Key-Wrapping.

TMacTagBits(X) A truncation function that outputs the most significant (i.e.,
leftmost) MacTagBits bits of the input string, X, when the bit
length of X is greater than MacTagBits; otherwise, the function
outputs X. For example, T2(1011) = 10, T3(1011) = 101, and
T4(1011) = 1011.

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

14

TransportedKeyingMaterial Transported keying material.

TTP A Trusted Third Party.

U One party in a key-establishment scheme.

V Another party in a key-establishment scheme.

X Byte string to be converted to or from an integer; the output of
conversion from an ASCII string.

X =? Y Check for the equality of X and Y.

x mod n The modular reduction of the (arbitrary) integer x by the positive
integer n (the modulus). For the purposes of this
Recommendation, y = x mod n is the unique integer satisfying the
following two conditions: 1) 0 ≤ y < n, and 2) x − y is divisible
by n.

x −1 mod n The multiplicative inverse of the integer x modulo the positive
integer n. This quantity is defined if and only if x is relatively
prime to n. For the purposes of this Recommendation, y = x−1 mod
n is the unique integer satisfying the following two conditions:
1) 0 ≤ y < n, and 2) 1 = (xy) mod n.

{X} Indicates that the inclusion of X is optional.

{x, y} A set containing the integers x and y.

x × y
The product of x and y.

xy

X || Y Concatenation of two strings X and Y.

x The ceiling of x; the smallest integer ≥ x. For example, 5 = 5
and 5.3 = 6.

x The floor of x; the greatest integer that does not exceed x. For
example, 2.1 = 2, and 4 = 4.

x  The absolute value of x.

Z A shared secret that is used to derive secret keying material using
a key-derivation method; a byte string.

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

15

λ(n) Lambda function of the RSA modulus n, i.e., the least positive
integer i such that 1= ai mod n for all a relatively prime to n.
When n = p × q, λ(n) = LCM(p − 1, q − 1).

⊕ Exclusive-Or (XOR) operation, defined as bit-wise modulo 2
arithmetic with no carry.

4 Key-Establishment Schemes Overview 30

Secret cryptographic keying material may be electronically established between parties by using a 31
key-establishment scheme, that is, by using either a key-agreement scheme or a key-transport 32
scheme. Key-establishment schemes may use either symmetric-key techniques or asymmetric-key 33
techniques or both. The key-establishment schemes described in this Recommendation use 34
asymmetric-key techniques. 35
In this Recommendation, the approved key-establishment schemes are described in terms of the roles 36
played by parties “U” and “V.” These are specific labels that are used to distinguish between the two 37
participants engaged in key establishment – irrespective of the actual labels that may be used by a 38
protocol employing a particular approved key-establishment scheme. 39
During key agreement, the derived secret keying material is the result of contributions made by both 40
parties. To be in conformance with this Recommendation, a protocol employing any of the approved 41
pair-wise key-agreement schemes shall unambiguously assign the roles of U and V to the participants 42
by clearly defining which participant performs the actions ascribed by this Recommendation to party 43
U, and which performs the actions ascribed herein to party V. 44
During key transport, one party selects the secret keying material to be transported. The secret 45
keying material is then encrypted using RSA, and sent to the other party. The party that sends the 46
secret keying material is called the sender, and the other party is called the receiver. 47

The security of the Integer Factorization Cryptography (IFC) schemes in this Recommendation 48
relies on the intractability of factoring integers that are products of two sufficiently large, distinct 49
prime numbers. All IFC schemes in this Recommendation are based on RSA. 50

The security of an IFC scheme also depends on its implementation, and this document includes a 51
number of practical recommendations for implementers. For example, good security practice 52
dictates that implementations of procedures employed by primitives, operations, schemes, etc., 53
include steps that destroy any potentially sensitive locally stored data that is created (and/or copied 54
for use) during the execution of a particular procedure, and whose continued local storage is not 55
required after the procedure has been exited. The destruction of such locally stored data ideally 56
occurs prior to or during any exit from the procedure. This is intended to limit opportunities for 57
unauthorized access to sensitive information that might compromise a key-establishment process. 58

Explicit instructions for the destruction of certain potentially sensitive values that are likely to be 59
locally stored by procedures are included in the specifications found in this Recommendation. 60
Examples of such values include local copies of any portions of secret or private keys that are 61
employed or generated during the execution of a procedure, intermediate results produced during 62
computations, and locally stored duplicates of values that are ultimately output by a procedure. 63
However, it is not possible to anticipate the form of all possible implementations of the specified 64

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

16

primitives, operations, schemes, etc., making it impossible to enumerate all potentially sensitive 65
data that might be locally stored by a procedure employed in a particular implementation. 66
Nevertheless, the destruction of any potentially sensitive locally stored data is an obligation of all 67
implementations. 68

Error handling can also be an issue. Section 7 cautions implementers to handle error messages in 69
a manner that avoids revealing even partial information about the decryption/decoding processes 70
that may be performed during the execution of a particular procedure. 71

For compliance with this Recommendation, equivalent processes may be used. Two processes are 72
equivalent if, whenever the same values are input to each process (either as input parameters or as 73
values made available during the process), each process produces the same output as the other. 74

Some processes are used to provide assurance (for example, assurance of the arithmetic validity 75
of a public key or assurance of possession of a private key associated with a public key). The party 76
that provides the assurance is called the provider (of the assurance), and the other party is called 77
the recipient (of the assurance). 78

Several steps are performed to establish secret keying material as described in Sections 4.1, 4.2, 79
and 4.3. 80

4.1 Key-Establishment Preparations 81

The owner of a private/public key pair is the entity that is authorized to use the private key of that 82
key pair. Figure 1 depicts the steps that may be required of that entity when preparing for a key-83
establishment process (i.e., either key agreement or key transport). 84

 85
Figure 1: Owner Key-establishment Preparations 86

Owner obtains
Assurance of

Key Pair Validity
(6.4.1)

Obtain
Key Pair

(6.3)

Owner Ready for Key Establishment

Owner
generates

TTP
generates

Provide
Assurance of Possession

and Identifier to a
Binding Authority

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

17

The first step in the preparation is for the entity to obtain a key pair. Either the entity (i.e., the 87
owner) generates the key pair as specified in Section 6.3, or a trusted third party (TTP) generates 88
the key pair as specified in Section 6.3 and provides it to the owner. If the key pair is generated by 89
a trusted third party, then the key pair shall be transported to the owner in a protected manner 90
(providing source authentication and integrity protection for the entire key pair, and confidentiality 91
protection for (at least) the private key). The owner obtains assurance of key-pair validity and, as 92
part of the process, obtains assurance that it actually possesses the (correct) private key. Approved 93
methods for obtaining assurance of key-pair validity by the owner are provided in Section 6.4.1. 94

An identifier is used to label the entity that owns a key pair used in a key-establishment transaction. 95
This label may uniquely distinguish the entity from all others, in which case it could rightfully be 96
considered an identity. However, the label may be something less specific – an organization, 97
nickname, etc. – hence, the term identifier is used in this Recommendation, rather than the term 98
identity. For example, an identifier could be “NIST123,” rather than an identifier that names a 99
particular person. A key pair’s owner (or an agent trusted to act on the owner’s behalf) is 100
responsible for ensuring that the identifier associated with its public key is appropriate for the 101
applications in which the public key will be used. 102

For each key pair, this Recommendation assumes that there is a trusted association between the 103
owner’s identifier(s) and the owner’s public key. The association may be provided using 104
cryptographic mechanisms or by physical means. The use of cryptographic mechanisms may 105
require the use of a binding authority (i.e., a trusted authority) that binds the information in a 106
manner that can be verified by others; an example of such a trusted authority is a registration 107
authority working with a CA who creates a certificate containing both the public key and the 108
identifier(s). The binding authority shall verify the owner’s intent to associate the public key with 109
the specific identifier(s) chosen for the owner; the means for accomplishing this is beyond the 110
scope of this Recommendation. The binding authority shall obtain assurance of both the arithmetic 111
validity of the owner’s public key and the owner’s possession of the private key corresponding to 112
that public key. (Approved techniques that can be employed by the binding authority to obtain 113
these assurances are described in Section 6.4.2.1 [method 1], Section 6.4.2.2, Section 6.4.2.3 and 114
Section 6.4.2.3.2.) 115

As an alternative to reliance upon a binding authority, trusted associations between identifiers and 116
public keys may be established by the direct exchange of this information between entities, using 117
a mutually trusted method (e.g., a trusted courier or a face-to-face exchange). In this case, each 118
entity receiving a public key and associated identifier(s) shall be responsible for obtaining the 119
same assurances that would have been obtained on the entity’s behalf by a binding authority (see 120
the previous paragraph). Entities shall also be responsible for maintaining (by cryptographic or 121
other means) the trusted associations between any identifiers and public keys received through 122
such exchanges. 123

If an entity engaged in a key-establishment transaction owns a key pair that is employed during 124
the transaction, then the identifier used to label that party shall be one that has a trusted association 125
with the public key of that key pair. If an entity engaged in a key-establishment transaction does 126
not employ a key pair during the transaction, but an identifier is still desired/required for that party, 127
then a non-null identifier shall be selected/assigned in accordance with the requirements of the 128
protocol relying upon the transaction. 129

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

18

After the above steps have been performed, the key-pair owner is ready to enter into a key-130
establishment process. 131

4.2 Key-Agreement Process 132

Figure 2 depicts the steps implemented by an entity when establishing secret keying material with 133
another entity using one of the key-agreement schemes described in Section 8 of this 134
Recommendation. (Some discrepancies in ordering may occur in practice, depending on the 135
communication protocol in which the key-agreement process is performed.) Depending on the 136
key-agreement scheme, the party whose actions are described could be either of the two 137
participants in the key-agreement scheme (i.e., either party U or party V). Note that some of the 138
actions shown may not be a part of every scheme. For example, key confirmation is not provided 139
in the basic key-agreement schemes (see Sections 8.2.2 and 8.3.2). The specifications of this 140
Recommendation indicate when a particular action is required. 141

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

19

 142
Figure 2: Key-Agreement Process 143

Each participant that is required to do so by the key-agreement scheme or the relying 144
application/protocol obtains an identifier associated with the other entity, and verifies that the 145
identifier of the other entity corresponds to the entity with whom the participant wishes to establish 146
secret keying material. 147

Each entity that requires the other entity’s public key for use in the key-agreement scheme obtains 148
a public key that has a trusted association with the other party’s identifier, and obtains assurance 149
of the validity of the public key. Approved methods for obtaining assurance of the validity of 150
another entity’s public key are provided in Section 6.4.2. 151

Each entity generates either a (random) secret value or a nonce, as required by the particular key-152
agreement scheme. If the scheme requires an entity to generate a secret value, that secret value is 153

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

20

generated as specified in Section 5.3 and encrypted using the other entity's public key. The 154
resulting ciphertext is then provided to the other entity. If the key-agreement scheme requires that 155
an entity provide a nonce, that nonce is generated as specified in Section 5.4 and provided (in 156
plaintext form) to the other party. (See Sections 8.2 and 8.3 for details). 157

Each participant in the key-agreement process uses the appropriate public and/or private keys to 158
establish a shared secret (Z) as specified in Section 8.2.2 or 8.3.2. Each participant then derives 159
secret keying material from the shared secret (and other information), as specified in Section 5.5. 160

If the key-agreement scheme includes key confirmation provided by one or both of the participants, 161
then key confirmation is performed as specified in Section 8.2.3 or 8.3.3. When performed in 162
accordance with those sections, successful key confirmation may also provide assurance that a 163
key-pair owner possesses the (correct) private key (see Section 6.4.2.3.2). 164

The owner of any key pair used during the key-agreement transaction is required to have assurance 165
that the owner is in possession of the correct private key. Likewise, the recipient of another entity’s 166
public key is required to have assurance that its owner is in possession of the corresponding private 167
key. Assurance of private-key possession is obtained prior to using the derived keying material for 168
purposes beyond those of the key-agreement transaction itself. This assurance may be 169
provided/obtained either through key confirmation, or by some other approved means (see 170
Sections 6.4.1 and 6.4.2). 171

4.3 Key-Transport Process 172

Figure 3 depicts the steps implemented by two entities when using the key-transport schemes 173
described in Section 9.2 of this Recommendation to establish secret keying material. 174

The entity who will act as the sender obtains the identifier associated with the entity that will act 175
as the receiver, and verifies that the receiver’s identifier corresponds to an entity to whom the 176
sender wishes to send secret keying material. 177

Prior to performing key transport, the sender obtains the receiver’s public key and obtains 178
assurance of its validity. Approved methods for obtaining assurance of the validity of another 179
entity’s public key are provided in Section 6.4.2. The sender is also required to have assurance that 180
the receiver is in possession of the private key corresponding to the receiver’s public key prior to 181
key transport, unless that assurance is obtained via the key confirmation steps that are included as 182
part of the scheme. (See Section 9.2 for details). 183

The sender selects the secret keying material (and, perhaps, additional input) to be transported to 184
the other entity. Then, using the intended receiver’s public key, the sender encrypts that material 185
directly (see Section 9.2.3). The resulting ciphertext is transported to the receiver. 186

Prior to participating in a key-transport transaction, the receiver is required to have assurance of 187
the validity of its own key pair. This assurance may be renewed whenever desired. Upon (or 188
before) receipt of the transported ciphertext, the receiver retrieves the private key from its own key 189
pair. Using its private key, the receiver takes the necessary steps (as specified in Section 9.2.3) to 190
decrypt the ciphertext and obtain the transported plaintext keying material. 191

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

21

 192
Figure 3: Key-transport Process 193

If the key-transport scheme includes key confirmation, then key confirmation is provided by the 194
receiver to the sender as specified in Section 9.2.4. Through the use of key confirmation, the sender 195
can obtain assurance that the receiver has correctly recovered the keying material from the 196
ciphertext. Successful key confirmation may also provide assurance that the receiver was in 197
possession of the correct private key (see Section 6.4.2.3.2). 198

An additional method for key transport is discussed in Section 9.3. 199

 200

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

22

5 Cryptographic Elements 201

This section describes the basic cryptographic elements that support the development of the key-202
establishment schemes specified in this Recommendation. The schemes described herein are based 203
upon the correct implementation of these elements. 204

5.1 Cryptographic Hash Functions 205

In this Recommendation, cryptographic hash functions may be used for mask generation during 206
RSA-OAEP encryption/decryption, in key derivation, and/or in MAC-tag computation during key 207
confirmation. An approved hash function shall be used when a hash function is required (see FIPS 208
18010 and FIPS 20211). 209

5.2 Message Authentication Code (MAC) Algorithms 210

A Message Authentication Code (MAC) algorithm defines a family of one-way (MAC) functions 211
that is parameterized by a symmetric key. The input to a MAC function includes a symmetric key, 212
called MacKey, and a binary data string, called MacData. A MAC function is represented as 213
MAC(MacKey, MacData {, ...})12. In this Recommendation, a MAC function is used in key 214
confirmation (see Section 5.6) and may be used for key derivation (see Section 5.5 and SP 800-215
56C). 216

It must be computationally infeasible to determine the MAC of a (newly formed) MacData value 217
without knowledge of the MacKey value (even if one has seen the MACs corresponding to other 218
MacData values that were computed using that same MacKey value). 219

Key confirmation requires the use of one of the following approved MAC algorithms: HMAC, 220
AES-CMAC or KMAC. HMAC is specified in FIPS 198 and requires the use of an approved hash 221
function. AES-CMAC is specified in SP 800-38B13 for the AES block cipher algorithm specified 222
in FIPS 197. KMAC is specified in SP 800-185.14 223

When used for key confirmation, the key-confirmation provider is required to compute a "MAC 224
tag" on received or derived data using the agreed-upon MAC function. A symmetric key derived 225
from a shared secret (during a key-agreement transaction) or extracted from transported keying 226
material (during a key-transport transaction) is used as MacKey. The resulting MAC tag is sent to 227
the key-confirmation recipient, who can obtain assurance (via MAC-tag verification) that the 228
shared secret and derived keying material were correctly computed (in the case of key agreement) 229
or that the transported keying material was successfully received (in the case of key transport). 230
MAC-tag computation and verification are defined in Sections 5.2.1 and 5.2.2. 231

10 FIPS 180, Secure Hash Standard (SHS).
11 FIPS 202, Permutation-Based Hash and Extendable-Output Functions.
12 Some MAC algorithms (e.g., KMAC) have additional parameters other than MacKey and MacData.
13 SP 800-38B, Recommendation for Block Cipher Modes of Operation: the CMAC Mode for Authentication.
14 SP 800-185, SHA-3 Derived Funcions: cSHAKE, KMAC, TupleHash and ParallelHash.

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

23

5.2.1 MacTag Computation for Key Confirmation 232
The computation of a MAC tag is represented as follows: 233

MacTag = TMacTagBits[MAC(MacKey, MacData)]. 234

To compute a MAC tag: 235

1. An approved, agreed-upon MAC algorithm (see FIPS 198, SP 800-38B or SP 800-185) is 236
used with MacKey to compute a MAC on the MacData, where MacKey is a symmetric key, 237
and MacData represents the data on which the MAC tag is computed. The minimum length of 238
MacKey is specified in Section 5.6.3. 239

MacKey is obtained from the DerivedKeyingMaterial (when a key-agreement scheme employs 240
key confirmation) or obtained from the TransportedKeyingMaterial (when a key-transport 241
scheme employs key confirmation), as specified in Section 5.6.1.1. 242

The resulting MAC consists of MacOutputBits bits, which is the full output length of the 243
selected MAC algorithm. 244

2. The output of the MAC algorithm is input to a truncation function TMacTagBits to obtain the most 245
significant (i.e., leftmost) MacTagBits bits, where MacTagBits represents the intended length 246
of MacTag, which is required to be less than or equal to MacOutputBits. (When MacTagBits 247
equals MacOutputBits, TMacTagBits acts as the identity function.) The minimum value for 248
MacTagBits is specified in Section 5.6.3. 249

Note: A routine implementing a Mac-tag computation for key confirmation shall destroy any local 250
copies of MacKey and MacData, any locally stored portions of MacTag, and any other locally 251
stored values used or produced during the execution of the routine; their destruction shall occur 252
prior to or during any exit from the routine – whether exiting early because of an error or exiting 253
normally with MacTag as the output. 254

5.2.2 MacTag Verification for Key Confirmation 255
To verify the MAC tag received during key confirmation, a new MAC tag, MacTag′, is computed 256
as specified in Section 5.2.1 using the values of MacKey, MacTagBits, and MacData possessed by 257
the key-confirmation recipient. MacTag′ is compared with the received MAC tag (i.e., MacTag). 258
If their values are equal, then it may be inferred that the same MacKey, MacTagBits, and MacData 259
values were used in the computation of MacTag and MacTag′. That is, successful verification 260
provides evidence that the key-confirmation provider has obtained the same MAC key as the key-261
confirmation recipient. 262

5.3 Random Bit Generators 263

Whenever this Recommendation requires the use of a randomly generated value (for example, for 264
obtaining keys or nonces), the values shall be generated using an approved random bit generator 265
(RBG), as specified in SP 800-90,15 that supports an appropriate security strength. 266

When an approved RBG is used to generate a secret value as part of a key-establishment scheme 267
specified in this Recommendation (e.g., Z in a scheme from the KAS1 family), that RBG shall be 268

15 SP 800-90, Recommendation for Random Number Generation.

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

24

instantiated to support a security strength that is equal to or greater than the security strength 269
associated with the RSA modulus length as specified in SP 800-57, Part 1. 270

5.4 Nonces 271

A nonce is a time-varying value that has a negligible chance of repeating (where the meaning of 272
“negligible” may be application specific). This Recommendation requires party V to supply a 273
nonce, NV, during the execution of key-agreement schemes in the KAS1 family (see Section 8.2). 274
This nonce is included in the input to the key-derivation process, and (when key confirmation is 275
employed) is also used in the computation of the MAC tag sent from party V to party U. 276

A nonce may be composed of one (or more) of the following components (other components may 277
also be appropriate): 278

1. A random bit string that is generated anew for each nonce, using an approved random bit 279
generator. A nonce containing a component of this type is called a random nonce. 280

2. A timestamp of sufficient resolution (detail) so that it is different each time that it is used. 281

3. A monotonically increasing sequence number, or 282

4. A combination of a timestamp and a monotonically increasing sequence number such that 283
the sequence number is reset when and only when the timestamp changes. (For example, a 284
timestamp may show the date but not the time of day, so a sequence number is appended 285
that will not repeat during a particular day.) 286

For the KAS1 schemes, the required nonce NV should be a random nonce containing a random bit 287
string output from an approved random bit generator (RBG), where both the security strength 288
supported by the instantiation of the random bit generator and the bit length of the random bit 289
string are greater than or equal to the targeted security strength of the key-agreement scheme in 290
which the nonce is used; when feasible, the bit length of the random bit string should be (at least) 291
twice the targeted security strength. For details concerning the security strength supported by an 292
instantiation of a random bit generator, see SP 800-90. 293

As part of the proper implementation of this Recommendation, system users and/or agents trusted 294
to act on their behalf should determine that the components selected for inclusion in required 295
nonces meet the security requirements of those users or agents. The application tasked with 296
performing key establishment on behalf of a party should determine whether or not to proceed 297
with a key-establishment transaction, based upon the perceived adequacy of the method(s) used to 298
form the required nonces. Such knowledge may be explicitly provided to the application in some 299
manner, or may be implicitly provided by the operation of the application itself. 300

5.5 Key-Derivation Methods for Key-Establishment Schemes 301

An approved key-derivation method shall be used to derive keying material from the shared secret 302
Z during the execution of a key-establishment scheme from the KAS1 or KAS2 family of schemes. 303
The shared secret shall be used only by an approved key-derivation method and shall not be used 304
for any other purpose. 305

When employed during the execution of a key-establishment scheme as specified in this 306
Recommendation, the agreed-upon key-derivation method uses input that includes a freshly 307

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

25

created shared secret Z along with other information. The derived keying material shall be 308
computed in its entirety before outputting any portion of it, and (all copies of) Z shall be treated 309
as a critical security parameter and destroyed immediately following its use. 310

The output produced by a key-derivation method using input that includes the shared secret created 311
during the execution of any key-establishment scheme specified in this Recommendation shall 312
only be used as secret keying material – such as a symmetric key used for data encryption or 313
message integrity, a secret initialization vector, or, perhaps, a key-derivation key that will be used 314
to generate additional keying material (possibly using a different process – see SP 800-10816). The 315
derived keying material shall not be used as a key stream for a stream cipher. Non-secret keying 316
material (such as a non-secret initialization vector) shall not be generated using a key-derivation 317
method that includes the shared secret, Z, as input (this restriction applies to all one-step and two-318
step key-derivation methods in SP 800-56C). 319

5.5.1 Performing the Key Derivation 320
Approved methods for key derivation from a shared secret are specified in SP 800-56C. These 321
methods can be accessed using the following call: 322

KDM(Z, OtherInput), 323

where 324

1. Z is a byte string that represents the shared secret, 325

2. OtherInput consists of additional input information that may be required by a given key-326
derivation method, for example: 327

• L − an integer that indicates the bit length of the secret keying material to be derived, 328

• salt − a byte string, 329

• IV – a bit string used as an initialization value, and 330

• FixedInfo – a bit sting of context-specific data (see Section 5.5.2). 331
See SP 800-56C for details concerning the appropriate form of OtherInput. 332

5.5.2 FixedInfo 333
The bit string FixedInfo should be used to ensure that the derived keying material is adequately 334
“bound” to the context of the key-establishment transaction. Although other methods may be used 335
to bind keying material to the transaction context, this Recommendation makes no statement as to 336
the adequacy of these other methods. Failure to adequately bind the derived keying material to the 337
transaction context could adversely affect the types of assurance that can be provided by certain 338
key-establishment schemes. 339

Context-specific information that may be appropriate for inclusion in FixedInfo includes the 340
following: 341

16 SP 800-108, Recommendation for Key Derivation Using Pseudorandom Functions.

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

26

• Public information about parties U and V, such as names, e-mail addresses, and/or other 342
identifiers. 343

• The public keys contributed by each party to the key-establishment transaction. (For 344
example, a certificate that contains the public key could be included.) 345

• An identifier and/or other information associated with the RSA public key employed in the 346
key-establishment transaction. For example, the hash of a certificate that contains that RSA 347
public key could be included. 348

• Other public and/or private information shared between parties U and V before or during 349
the transaction, such as nonces, counters, or pre-shared secret data. (The inclusion of 350
private or secret information shall be limited to situations in which that information is 351
afforded adequate confidentiality protection.) 352

• An indication of the protocol or application employing the key-establishment scheme. 353

• Protocol-related information, such as a label or session identifier. 354

• Agreed-upon encodings (as bit strings) of the values of one or more of the other 355
parameters used as additional input to the KDM (e.g., L, salt, and/or IV). 356

• An indication of the key-establishment scheme and/or key-derivation method used during 357
the transaction. 358

• An indication of various parameter or primitive choices (e.g., hash functions, MAC 359
algorithms, MacTag lengths used for key confirmation, etc.). 360

• An indication of how the keying material should be parsed, including an indication of 361
which algorithm(s) will use the (parsed) keying material. 362

For rationale in support of including entity identifiers, scheme identifiers, and/or other 363
information in OtherInput, see Appendix B of SP 800-56A. 364

When FixedInfo is used, the meaning of each information item and each item’s position within the 365
FixedInfo bit string shall be specified. In addition, each item of information included in FixedInfo 366
shall be unambiguously represented. For example, each item of information could take the form 367
of a fixed-length bit string, or, if greater flexibility is needed, an item of information could be 368
represented in a Datalen || Data format, where Data is a variable-length string of zero or more 369
(eight-bit) bytes, and Datalen is a fixed-length, big-endian counter that indicates the byte length 370
of Data. These requirements can be satisfied, for example, by using ASN.1 DER encoding as 371
specified in Section 5.5.2.1.2. 372

5.5.2.1 One-step Key Derivation 373
Recommended formats for FixedInfo when used by a one-step key-derivation method are specified 374
in Sections 5.5.2.1.1 and 5.5.2.1.2. One of those two formats should be used by a one-step key-375
derivation method specified in SP 800-56C when the auxiliary function employed is H = hash. 376

When FixedInfo is included during the key-derivation process, and the recommended formats are 377
used, the included items of information shall be divided into (three, four, or five) subfields as 378
defined below. 379

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

27

AlgorithmID: A required non-null subfield that indicates how the derived keying material will 380
be parsed and for which algorithm(s) the derived secret keying material will be used. For 381
example, AlgorithmID might indicate that bits 1 to 112 are to be used as a 112-bit HMAC key 382
and that bits 113 to 240 are to be used as a 128-bit AES key. 383

PartyUInfo: A required non-null subfield containing public information about party U. At a 384
minimum, PartyUInfo shall include IDU, an identifier for party U, as a distinct item of 385
information. This subfield could also include information about the public key (if any) 386
contributed to the key-establishment transaction by party U. Although the schemes specified 387
in the Recommendation do not require the contribution of a nonce by party U, any nonce 388
provided by party U should be included in this subfield. 389

PartyVInfo: A required non-null subfield containing public information about party V. At a 390
minimum, PartyVInfo shall include IDV, an identifier for party V, as a distinct item of 391
information. This subfield could also include information about the public key contributed to 392
the key-establishment transaction by party V. When the key-derivation method is used in a 393
KAS1 scheme (see Section 8.2), the nonce, NV, supplied by party V shall be included in this 394
field. 395

SuppPubInfo: An optional subfield that contains additional, mutually known public 396
information (e.g., L, an identifier for the particular key-establishment scheme that was used to 397
determine Z, an indication of the protocol or application employing that scheme, a session 398
identifier, etc.; this is particularly useful if these aspects of the key-establishment transaction 399
can vary). While an implementation may be capable of including this subfield, the subfield 400
may be Null for a given transaction. 401

SuppPrivInfo: An optional subfield that contains additional, mutually known private 402
information (e.g., a secret symmetric key that has been communicated through a separate 403
channel). While an implementation may be capable of including this subfield, the subfield may 404
be Null for a given transaction. 405

5.5.2.1.1 The Concatenation Format for FixedInfo 406
This section specifies the concatenation format for FixedInfo. This format has been designed to 407
provide a simple means of binding the derived keying material to the context of the key-408
establishment transaction, independent of other actions taken by the relying application. Note: 409
When the one-step key-derivation method specified in SP 800-56C is used with H = hash as the 410
auxiliary function and this concatenation format for FixedInfo, the resulting key-derivation method 411
is the Concatenation Key-Derivation Function specified in the original version of SP 800-56A. 412

For this format, FixedInfo is a bit string equal to the following concatenation: 413

 AlgorithmID || PartyUInfo || PartyVInfo {|| SuppPubInfo }{|| SuppPrivInfo }, 414

where the five subfields are bit strings comprised of items of information as described in Section 415
5.5.2.1. 416

Each of the three required subfields AlgorithmID, PartyUInfo, and PartyVInfo shall be the 417
concatenation of a pre-determined sequence of substrings in which each substring represents a 418
distinct item of information. Each such substring shall have one of these two formats: either it is 419
a fixed-length bit string, or it has the form Datalen || Data – where Data is a variable-length string 420

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

28

of zero or more (eight-bit) bytes, and Datalen is a fixed-length, big-endian counter that indicates 421
the byte length of Data. (In this variable-length format, a null string of data shall be represented 422
by a zero value for Datalen, indicating the absence of following data.) A protocol using this format 423
for FixedInfo shall specify the number, ordering and meaning of the information-bearing 424
substrings that are included in each of the subfields (i.e., AlgorithmID, PartyUInfo, and 425
PartyVInfo), and shall also specify which of the two formats (fixed-length or variable-length) is 426
used by each such substring to represent its distinct item of information. The protocol shall specify 427
the lengths for all fixed-length quantities, including the Datalen counters. 428

Each of the optional SuppPrivInfo and SuppPubInfo subfields (when allowed by the protocol 429
employing the one-step key-derivation method) shall be the concatenation of a pre-determined 430
sequence of substrings representing additional items of information that may be used during key 431
derivation upon mutual agreement of parties U and V. Each substring representing an item of 432
information shall be of the form Datalen || Data, where Data is a variable-length string of zero or 433
more (eight-bit) bytes, and Datalen is a fixed-length, big-endian counter that indicates the byte 434
length of Data; the use of this form for the information allows U and V to omit a particular 435
information item without confusion about the meaning of the other information that is provided in 436
the SuppPrivInfo or SuppPubInfo subfield. The substrings representing items of information that 437
parties U and V choose not to contribute are set equal to Null, and are represented in this variable-438
length format by setting Datalen equal to zero. If a protocol allows the use of the FixedInfo subfield 439
SuppPrivInfo and/or the subfield SuppPubInfo, then the protocol shall specify the number, 440
ordering and meaning of additional items of information that may be used in the allowed 441
subfield(s) and shall specify the fixed-length of the Datalen counters. 442

5.5.2.1.2 The ASN.1 Format for FixedInfo 443
The ASN.1 format for FixedInfo provides an alternative means of binding the derived keying 444
material to the context of the key-establishment transaction, independent of other actions taken by 445
the relying application. Note: When the one-step key-derivation method specified in SP 800-56C 446
is used with H = hash as the auxiliary function and with this ASN.1 format for FixedInfo, the 447
resulting key-derivation method is the ASN.1 Key-Derivation Function specified in the original 448
version of SP 800-56B. 449

For the ASN.1 format, FixedInfo is a bit string resulting from the ASN.1 Distinguished Encoding 450
Rules (DER) encoding (see ISO/IEC 8825-1) of a data structure comprised of a sequence of three 451
required subfields AlgorithmID, PartyUInfo, and PartyVInfo, and, optionally, a subfield 452
SuppPubInfo and/or a subfield SuppPrivInfo – as described in Section 5.5.2.1. A protocol using 453
this format for FixedInfo shall specify the type, ordering and number of distinct items of 454
information included in each of the (three, four, or five) subfields employed. 455

5.5.2.2 Two-step Key-Derivation (Extraction-then-Expansion) 456
For the two-step key-derivation method specified in SP 800-56C, FixedInfo is a bit string that 457
contains component data fields such as a Label, Context information, and [L]2, where: 458

• Label is a binary string that identifies the purpose of the derived keying material. The 459
encoding method for the label is defined in a larger context, for example, in a protocol 460
using the derivation method. 461

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

29

• Context is a binary string containing information relating to the derived keying material. 462
Section 5.5.2 provides a list of context-specific information that may be appropriate for the 463
inclusion in this string. 464

• [L]2 is a binary string that specifies the length (in bits) of the keying material to be derived. 465
Different orderings of the component data fields of FixedInfo may be used, and one or more of the 466
data fields may be combined (or omitted under certain circumstances). See SP 800-108 and Section 467
5 in SP 800-56C for details. 468

5.5.2.3 Other Formats for FixedInfo 469
Formats other than those provided in Sections 5.5.2.1 and 5.5.2.2 (e.g., those providing the items 470
of information in a different arrangement) may be used for FixedInfo, but the context-specific 471
information described in the preceding sections should be included (see the discussion in Section 472
5.5.2). This Recommendation makes no statement as to the adequacy of other formats. 473

5.6 Key Confirmation 474

The term key confirmation (KC) refers to actions taken to provide assurance to one party (the key-475
confirmation recipient) that another party (the key-confirmation provider) is in possession of a 476
(supposedly) shared secret and/or to confirm that the other party has the correct version of keying 477
material that was derived or transported during a key-establishment transaction (correct, that is, 478
from the perspective of the key-confirmation recipient.) Such actions are said to provide unilateral 479
key confirmation when they provide this assurance to only one of the participants in the key-480
establishment transaction; the actions are said to provide bilateral key confirmation when this 481
assurance is provided to both participants (i.e., when unilateral key confirmation is provided in 482
both directions). 483

Oftentimes, key confirmation is obtained (at least implicitly) by some means that are external to 484
the key-establishment scheme employed during a transaction (e.g., by using a symmetric key that 485
was established during the transaction to decrypt an encrypted message sent later by the key-486
confirmation provider), but this is not always the case. In some circumstances, it may be 487
appropriate to incorporate the exchange of explicit key-confirmation information as an integral 488
part of the key-establishment scheme itself. The inclusion of key confirmation may enhance the 489
security services that can be offered by a key-establishment scheme. For example, the key-490
establishment schemes incorporating key confirmation that are specified in this Recommendation 491
could be used to provide the KC recipient with assurance that the KC provider is in possession of 492
the private key corresponding to the provider’s public key-establishment key, from which the 493
recipient may infer that the provider is the owner of that key pair. 494

For key confirmation to comply with this Recommendation, key confirmation shall be 495
incorporated into an approved key-establishment scheme as specified in Sections 5.6.1, 5.6.2, 8 496
and 9. If any other methods are used to provide key confirmation, this Recommendation makes no 497
statement as to their adequacy. 498

5.6.1 Unilateral Key Confirmation for Key-Establishment Schemes 499
As specified in this Recommendation, unilateral key confirmation occurs when one participant in 500
the execution of a key-establishment scheme (the key-confirmation “provider”) demonstrates to 501

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

30

the satisfaction of the other participant (the key-confirmation “recipient”) that both the KC 502
provider and the KC recipient have possession of the same secret MacKey. 503

MacKey shall be a symmetric key that is unique to a specific execution of a key-establishment 504
scheme and (from the perspective of the KC provider) shall be unpredictable prior to that key-505
establishment transaction. In the case of a key-agreement scheme, MacKey is derived using the 506
shared secret Z created during the execution of that scheme (see Section 5.5 for the details of key 507
derivation). In the case of a key-transport scheme, MacKey is included as part of the transported 508
keying material. Step 2 below specifies how MacKey is to be extracted from the derived or 509
transported keying material. 510

MacKey and certain context-specific MacData (as specified below) are used by the KC provider 511
as input to an approved MAC algorithm to obtain a MAC tag that is sent to the KC recipient. The 512
recipient performs an independent computation of the MAC tag. If the MAC tag value computed 513
by the KC recipient matches the MAC tag value received from the KC provider, then key 514
confirmation is successful. (See Section 5.2 for MAC-tag generation and verification, and Section 515
5.6.3 for a discussion of MAC-tag security.) 516

In the case of a scheme providing key-agreement, successful key confirmation following key 517
agreement provides assurance to the KC recipient that the same Z value has been used by both 518
parties to correctly derive the keying material (which includes MacKey). In the case of a key-519
transport scheme (see Section 9.2.4), successful key confirmation provides assurance to the KC 520
recipient (who sent the keying material) that the transported keying material (which includes 521
MacKey) has been correctly decrypted by the party to whom it was sent. 522

A close examination of the KC process shows that each of the pair-wise key-establishment 523
schemes specified in this Recommendation that incorporate key confirmation can be used to 524
provide the KC recipient with assurance that the KC provider is currently in possession of the 525
(correct) private key – the one corresponding to the KC provider’s public key-establishment key. 526
The use of transaction-specific values for both MacKey and MacData prevents (for all practical 527
purposes) the replay of any previously computed value of MacTag. The receipt of a correctly 528
computed MAC tag provides assurance to the KC recipient that the KC provider has used the 529
correct private key during the current transaction – to successfully recover the secret data that is a 530
prerequisite to learning the value of MacKey. 531

To include unilateral key confirmation, the following steps shall be incorporated into the scheme. 532
(Additional details will be provided for each scheme in the appropriate subsections of Sections 8 533
and 9.) In the discussion that follows, the key-confirmation provider, P, may be either party U or 534
party V, as long as the KC provider, P, contributes a key pair to the key-establishment transaction. 535
The key-confirmation recipient, R, is the other party. 536

1. The provider, P, computes 537

 MacDataP = message_stringP || IDP || IDR || EphemDataP || EphemDataR {|| TextP} 538

where 539

- message_stringP is a six-byte character string, with a value of “KC_1_U” when 540
party U is providing the MAC tag, or “KC_1_V” when party V is providing the 541
MAC tag. (Note that these values will be changed for bilateral key confirmation, as 542
specified in Section 5.6.2). 543

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

31

- IDP is the identifier used to label the key-confirmation provider. 544

- IDR is the identifier used to label the key-confirmation recipient. 545

- EphemDataP and EphemDataR are (ephemeral) values contributed by the KC 546
provider and recipient, respectively. These values are specified in the sections 547
describing the schemes that include key confirmation. 548

- TextP is an optional bit string that may be used during key confirmation and that is 549
known by both parties. 550

The content of each of the components that are concatenated to form MacDataP shall be 551
precisely defined and unambiguously represented. A particular component’s content may 552
be represented, for example, as a fixed-length bit string or in the form Datalen || Data, 553
where Data is a variable-length string of zero or more (eight-bit) bytes, and Datalen is a 554
fixed-length, big-endian counter that indicates the length (in bytes) of Data. These 555
requirements could also be satisfied by using a specific ASN.1 DER encoding of each 556
component. It is imperative that the provider and recipient have agreed upon the content 557
and format that will be used for each component of MacDataP. 558

MacData shall include a non-null identifier, IDP, for the key-confirmation provider. 559

Depending upon the circumstances, the key-confirmation recipient’s identifier, IDR, may 560
be replaced by a null string. The rules for selecting IDP and IDR are as follows: 561

As specified in this Recommendation, the key-confirmation provider must own a key 562
pair that is employed by the basic key-establishment scheme (KAS1-basic, KAS2-563
basic or KTS-OAEP-basic) that determines the MacKey value used in the key-564
confirmation computations performed during the transaction. The identifier, IDp, 565
included in MacDataP shall be one that has a trusted association with the public key of 566
that key pair. 567

If the key-confirmation recipient also owns a key pair that is employed by the basic 568
key-establishment scheme used during the transaction, then the identifier, IDR, included 569
in MacDataP shall be one that has a trusted association with the public key of that key 570
pair. 571

If the key-confirmation recipient does not own a key pair employed for key-572
establishment purposes, and no identifier has been used to label that party during the 573
execution of the basic key-establishment scheme employed by the transaction, then IDR 574
may be replaced by a null string. However, if an identifier is desired/required for that 575
party for key confirmation purposes, then a non-null value for IDR, shall be 576
selected/assigned in accordance with the requirements of the protocol relying upon the 577
transaction. 578

Whenever a particular identifier has been used to label the key-confirmation recipient 579
or key-confirmation provider in the execution of the basic key-establishment scheme 580
used during the transaction, that same identifier shall be used as IDP or IDR, 581
respectively, in theMacDataP used during key confirmation. For example, if party U 582
is the key-confirmation recipient, and IDU has been used to label party U in the 583
FixedInfo employed by the key-derivation method of a key-agreement scheme used 584

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

32

during the transaction, then the MacDataP used during key confirmation shall have IDR 585
= IDU. 586

2. When a KAS1 or KAS2 key-agreement scheme is used: After computing the shared secret 587
Z and applying the key-derivation function to obtain the derived keying material, 588
DerivedKeyingMaterial (see Section 5.5), the KC provider uses agreed-upon bit lengths to 589
parse DerivedKeyingMaterial into two parts, MacKey and KeyData: 590

MacKey || KeyData = DerivedKeyingMaterial. 591

When the KTS-OAEP key-transport scheme is used: The KC provider parses the 592
TransportedKeyingMaterial into MacKey and KeyData: 593

MacKey || KeyData = TransportedKeyingMaterial. 594

3. Using an agreed-upon bit length MacTagBits, the KC provider computes MacTagP (see 595
Sections 5.2.1 and 5.6.3): 596

MacTagP = TMacTagBits[MAC (MacKey, MacDataP)], 597

and sends it to the KC recipient. 598

4. The KC recipient forms MacDataP, determines MacKey, computes MacTagP in the same 599
manner as the KC provider, and then compares its computed MacTagP to the value received 600
from the provider. If the received value is equal to the computed value, then the recipient 601
is assured that the provider has used the same value for MacKey and that the provider shares 602
the recipient’s value of MacTagP. 603

Each participant shall destroy all copies of the MacKey that was employed for key-confirmation 604
purposes during a particular pair-wise key-establishment transaction when MacKey is no longer 605
needed to provide or obtain key confirmation as part of that transaction. 606

If MacTagP cannot be verified by the KC recipient during a particular key-establishment 607
transaction, then key confirmation has failed, and both participants shall destroy all of their copies 608
of MacKey and KeyData. In particular, MacKey and KeyData shall not be revealed by either 609
participant to any other party (not even to the other participant), and the keying material shall not 610
be used for any further purpose. In the case of a key-confirmation failure, the key-establishment 611
transaction shall be terminated. 612

Note: The key-confirmation routines employed by the KC provider and KC recipient shall 613
destroy all local copies of MacKey, MacData, destroyable copies of KeyData and any other 614
locally stored values used or produced during their execution. Their destruction shall occur 615
prior to or during any exit from those routines – whether exiting normally or exiting early, 616
because of an error. 617

Unilateral key confirmation, as specified in this Recommendation, can be incorporated into any 618
key-establishment scheme in which the key-confirmation provider is required to own a key-619
establishment key pair that is used in the key-establishment process. Unilateral key confirmation 620
may be added in either direction to a KAS2 scheme (see Sections 8.3.3.2 and 8.3.3.3); it may 621
also be added to a KAS1 or KTS-OAEP scheme, but only with party V (the party contributing 622
the key pair) acting as the key-confirmation provider, and party U acting as the key-confirmation 623
recipient (see Sections 8.2.3.1 and 9.2.4.2). 624

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

33

5.6.2 Bilateral Key Confirmation for KAS2 Schemes 625
Bilateral key confirmation, as specified in this Recommendation, can be incorporated into a KAS2 626
key-agreement scheme since each party is required to own a key-establishment key pair that is 627
used in the key-agreement process. Bilateral key confirmation is accomplished by performing 628
unilateral key confirmation in both directions (with party U providing MacTagU to KC recipient 629
V, and party V providing MacTagV to KC recipient U) during the same scheme. 630

To include bilateral key confirmation, two instances of unilateral key confirmation (as specified 631
in Section 5.6.1, subject to the modifications listed below) shall be incorporated into the KAS2 632
scheme, once with party U as the key-confirmation provider (i.e., P = U and R = V) and once with 633
party V as the key-confirmation provider (i.e., P = V and R = U). Additional details will be 634
provided in Section 8.3.3.4. 635

In addition to setting P = U and R = V in one instance of the unilateral key-confirmation procedure 636
described in Section 5.6.1 and setting P = V and R = U in a second instance, the following 637
changes/clarifications apply when using the procedure for bilateral key confirmation: 638

1. When computing MacTagU, the value of message_stringU that forms the initial segment 639
of MacDataU is the six-byte character string “KC_2_U”. 640

2. When computing MacTagV, the value of message_stringV that forms the initial segment of 641
MacDataV is the six-byte character string “KC_2_V”. 642

3. If used at all, the value of the (optional) byte string TextU used to form the final segment 643
of MacDataU can be different than the value of the (optional) byte string TextV used to 644
form the final segment of MacDataV, provided that both parties are aware of the value(s) 645
used. 646

4. The identifiers used to label the parties U and V when forming MacDataU shall be the same 647
as the identifiers used to label the parties U and V when forming MacDataV, although IDU 648
and IDV will play different roles in the two strings. If IDP = IDU and IDR = IDV are used in 649
MacDataU, then IDP = IDV and IDR = IDU are used in MacDataV. 650

5.6.3 Selecting the MAC and Other Key-Confirmation Parameters 651
Key confirmation as specified in this Recommendation requires that a MacKey of an appropriate 652
length be generated or obtained as part of the derived keying material (see Section 5.6.1). The 653
MacKey is then used with a MAC algorithm to generate a MAC; the length of the MAC output by 654
the MAC algorithm is MacOutputBits bits. The MAC is subsequently used to form a MAC tag 655
(see Section 5.6.1 for the generation of the MAC and Section 5.2.1 for the formation of the MAC 656
tag from the MAC). 657

Table 1 provides a list of approved MAC algorithms for key confirmation and the security 658
strengths that each can support, along with the corresponding value of MacOutputBits and 659
permissible MacKey lengths for each MAC algorithm. 660

 661

 662

 663

 664

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

34

Table 1: Approved MAC Algorithms for Key Confirmation. 665

MAC Algorithm MacOutputBits

Permissable
MacKey Lengths

(µ bits)

Supported Security
Strengths for Key

Confirmation

(s bits)

HMAC_SHA-1) 160

s ≤ µ ≤ 512

112 ≤ s ≤ 256

HMAC_SHA-224 224

HMAC_SHA-256 256

HMAC_SHA-512/224 224

HMAC_SHA-512/256 256

HMAC_SHA-384 384

HMAC_SHA-512 512

HMAC_SHA3-224 224

HMAC_SHA3-256 256

HMAC_SHA3-384 384

HMAC_SHA3-512 512

KMAC128 ≤ 22040 – 1

(see * below)

112 ≤ s ≤ 128

KMAC256 112 ≤ s ≤ 256

AES-128-CMAC 128 µ = 128 112 ≤ s ≤ 128

AES-192-CMAC 128 µ = 192 112 ≤ s ≤ 192

AES-256-CMAC 128 µ = 256 112 ≤ s ≤ 256

* Although KMAC128 and KMAC256 can accommodate MacOutputBits values as large as 666
22040 − 1, practical considerations dictate that the lengths of transmitted MAC tags be 667
limited to sizes that are more realistic and commensurate with the actual 668
performance/security requirements of the relying applications. 669

The MAC algorithm used to compute a key-confirmation MAC tag in compliance with this 670
Recommendation shall be selected from among the approved MAC algorithms capable of 671

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

35

supporting a security strength s that is at least as large as the targeted security strength of the key-672
establishment scheme (as indicated in Table 1 above). 673

Note that when the HMAC or KMAC algorithm is used for key confirmation as specified in this 674
Recommendation, MacKey lengths can be no greater than 512 bits (an upper bound that is at least 675
twice the maximum supported security strength). Although the HMAC and KMAC specifications 676
permit the use of longer keys, the 512-bit maximum is sufficient for this key-confirmation 677
application. In the case of HMAC, the 512-bit upper bound has the advantage of being less than 678
the input block length of whatever hash function is used in the algorithm’s implementation. If 679
MacKey were allowed to be longer than the input block length, it would be hashed down to a string 680
of length MacOutputBits during the HMAC computation (see step 2 in Table 1 of FIPS 198); 681
allowing MacKey to be longer than the input block length would not be an efficient use of keying 682
material. 683

The length of the MAC tag for key confirmation also needs to be selected. Note that in many cases, 684
the length of the MAC tag (MacTagBits) has been selected by the protocol in which the key-685
establishment is conducted. MacTagBits shall be at least 64 bits, and its maximum length shall be 686
no more than MacOutputBits for the MAC algorithm selected for key confirmation. The 64-bit 687
minimum for the MAC tag length assumes that the protocol imposes a limit on the number of 688
retries for key confirmation. 689

6 RSA Key Pairs 690

6.1 General Requirements 691

The following are requirements on RSA key pairs (see SP 800-57): 692

1. Each key pair shall be created using an approved key-generation method as specified in 693
Section 6.3. 694

2. The private keys and prime factors of the modulus shall be protected from unauthorized 695
access, disclosure, and modification. 696

3. Public keys shall be protected from unauthorized modification. This is often accomplished 697
by using public-key certificates that have been signed by a Certification Authority (CA). 698

4. A recipient of a public key shall be assured of the integrity and correct association of (a) 699
the public key and (b) an identifier of the entity that owns the key pair (that is, the party 700
with whom the recipient intends to establish secret keying material). This assurance is often 701
provided by verifying a public-key certificate that was signed by a trusted third party (for 702
example, a CA), but may be provided by direct distribution of the public key and identifier 703
from the owner, provided that the recipient trusts the owner and distribution process to do 704
this. 705

5. One key pair shall not be used for different cryptographic purposes (for example, a digital-706
signature key pair shall not be used for key establishment or vice versa), with the following 707
possible exception: when requesting the certificate for a public key-establishment key, the 708
private key-establishment key associated with the public key may be used to sign the 709
certificate request (see SP 800-57, Part 1 on Key Usage for further information). A key pair 710
may be used in more than one key-establishment scheme. However, a key pair used for 711

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

36

schemes specified in this Recommendation should not be used for any schemes not 712
specified herein. 713

6. The owner of a key pair shall have assurance of the key pair’s validity (see Section 6.4.1.1); 714
that is, the owner shall have assurance of the correct generation of the key pair (see Section 715
6.3), consistent with the criteria of Section 6.2; assurance of private and public-key 716
validity; and assurance of pair-wise consistency. 717

7. A recipient of a public key shall have assurance of the validity of the public key (see 718
Section 6.4.2.1). This assurance may be provided, for example, through the use of a public-719
key certificate if the CA obtains sufficient assurance of public-key validity as part of its 720
certification process. 721

8. A recipient of a public key shall have assurance of the owner’s possession of the associated 722
private key (see Section 6.4.2.3). This assurance may be provided, for example, through 723
the use of a public key certificate if the CA obtains sufficient assurance of possession as 724
part of its certification process. 725

6.2 Criteria for RSA Key Pairs for Key Establishment 726

6.2.1 Definition of a Key Pair 727
A valid RSA key pair, in its basic form, shall consist of an RSA public key (n, e) and an RSA 728
private key (n, d), where: 729

1. n, the public modulus, shall be the product of exactly two distinct, odd positive prime 730
factors, p and q, that are kept secret. Let len(n) = nBits, the bit length of n; len(n) is required 731
to be even. 732

2. The public exponent e shall be an odd integer that is selected prior to the generation of p 733
and q such that: 734

65,537 ≤ e < 2256 735

3. The prime factors p and q shall be generated using one of the methods specified in 736
Appendix B.3 of FIPS 186 such that: 737

a. 2(nBits − 1)/2 < p < 2nBits/2. 738

b. 2(nBits − 1)/2 < q < 2nBits/2. 739

c. |p – q| > 2nBits/2−100. 740

d. The exponent e must be mutually prime with both p − 1 and q − 1: 741

GCD(e, LCM(p − 1, q − 1)) = 1. 742
4. The primes p and q, and the private exponent d shall be selected such that: 743

a. 2nBits/2 < d < LCM(p−1, q−1), and 744

b. d = e−1 mod (LCM(p−1, q−1)). 745
Note that these criteria are also specified in FIPS 186. 746

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

37

6.2.2 Formats 747
The RSA private key may be expressed in several formats. The basic format of the RSA private 748
key consists of the modulus n and a private-key exponent d that depends on n and the public-key 749
exponent e; this format is used to specify the RSA primitives and operations in Section 7. The 750
other two formats may be used in implementations, but may require appropriate modifications for 751
correct implementation. To facilitate implementation testing, the format for the private key shall 752
be one of the following: 753

1. The basic format: (n, d). 754

2. The prime-factor format: (p, q, d). 755

3. The Chinese Remainder Theorem (CRT) format: (n, e, d, p, q, dP, dQ, qInv), where dP = 756
d mod (p – 1), dQ = d mod (q – 1), and qInv = q–1 mod p. Note that Section 7.1.2 discusses 757
the use of the private key expressed using the CRT format during the execution of the RSA 758
decryption primitive. 759

Key-pair generators and key-pair validation methods are given for each of these formats in 760
Sections 6.3 and 6.4, respectively. 761

6.3 RSA Key-Pair Generators 762

The key pairs employed by the key-establishment schemes specified in this Recommendation shall 763
be generated using the techniques specified in Appendix B.3 of FIPS 186, employing the requisite 764
methods for prime-number generation, primality testing, etc., that are specified in Appendix C of 765
that document. Note that these generation methods ensure that the prime factors p and q have the 766
same bit length and that their product, n (the RSA modulus), has a bit length that is exactly twice 767
the length of its factors. 768

An approved RSA key-pair generator and approved random bit generator (RBG) shall be used 769
to produce an RSA key pair. Any modulus with an even bit length that provides at least 112 bits 770
of security strength may be used. Commonly used modulus lengths and their associated security 771
strengths are given in Table 2. For other modulus lengths, Appendix D provides a method for 772
estimating the security strength that can be supported. 773

Table 2: Security Strengths Supported by Commonly Used Modulus Lengths17 774

Modulus Bit length (nBits) Estimated Maximum
Security Strength

2048 112

3072 128

4096 152

6144 176

17 The 15,384-bit modulus length was not included because it is impractical to implement.

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

38

8192 200

Approved RBGs are discussed in Section 5.3. The approved RSA key-pair generators are 775
provided in Sections 6.3.1 and 6.3.2, and are differentiated by the method for determining the 776
public-key exponent e that is used as part of an RSA public key (i.e., (n, e)); Section 6.3.1 addresses 777
the use of a fixed value for the exponent, whereas Section 6.3.2 uses a randomly generated value. 778

For the following methods in Section 6.3 and the assurances in Section 6.4, let S(nBits) denote the 779
estimated maximum security strength for a modulus of bit length nBits as determined by Table 2 780
or Appendix D. 781

6.3.1 RSAKPG1 Family: RSA Key-Pair Generation with a Fixed Public Exponent 782
The RSAKPG1 family of key-pair generation methods consists of three RSA key-pair generators 783
where the public exponent has a fixed value (see Section 6.2). 784

Three representations are addressed: 785

1. rsakpg1-basic generates the private key in the basic format (n, d); 786

2. rsakpg1-prime-factor generates the private key in the prime-factor format (p, q, d); and 787

3. rsakpg1-crt generates the private key in the Chinese Remainder Theorem format (n, e, d, 788
p, q, dP, dQ, qInv). 789

An implementation may perform a key-pair validation before the key pair is output from the 790
generator. The key-pair validation methods for this family are specified in Section 6.4.1.2. 791

6.3.1.1 rsakpg1-basic 792
rsakpg1-basic is the generator in the RSAKPG1 family where the private key is in the basic format 793
(n, d). 794

Function call: rsakpg1-basic(s, nBits, e) 795
Input: 796

1. s: the targeted security strength; 797

2. nBits: the intended bit length of the RSA modulus; and 798

3. e: a pre-determined public exponent − an odd integer, such that 65,537 ≤ e < 2256. 799

Process: 800
1. Check the values: 801

a. If s is not in the range [112, 256], output an indication that the targeted security 802
strength is not acceptable, and exit without further processing. 803

b. If s > S(nBits), output an indication that the modulus length is not adequate for the 804
targeted security strength, and exit without further processing. 805

c. If e is not an odd integer such that 65,537 ≤ e < 2256, output an indication that the 806
exponent is out of range, and exit without further processing. 807

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

39

2. Generate the prime factors p and q, as specified in FIPS 186. Note that the routines ensure 808
that p – 1 and q – 1 are relatively prime to e. 809

3. Determine the private exponent d: 810

d = e–1 mod LCM(p – 1, q – 1) . 811

In the very rare event that d ≤ 2nBits/2, discard the results of all computations and repeat the 812
process, starting at step 2. 813

4. Determine the modulus n as n = p × q, the product of p and q. 814

5. Perform a pair-wise consistency test18 by verifying that m is the same as (me)d mod n for 815
some integer m satisfying 1 < m < n − 1. If an inconsistency is found, output an indication 816
of a pair-wise consistency failure, and exit without further processing. 817

6. Output (n, e) as the public key, and (n, d) as the private key. 818

Output: 819

1. (n, e): the RSA public key, and 820

2. (n, d): the RSA private key in the basic format. 821

Errors: Indications of the following: 822

1. The targeted security strength is not acceptable, 823

2. The intended modulus bit length is not adequate for the targeted security strength, 824

3. The fixed public exponent is out of range, or 825

4. Pair-wise consistency failure. 826

 Note that key-pair validation, as specified in Section 6.4.1.2.1, can be performed after step 5 and 827
before step 6 of the process above. If an error is detected during the validation process, output an 828
indication of a key-pair validation failure, and exit without further processing. 829

A routine that implements this generation function shall destroy any local copies of p, q, and d, as 830
well as any other locally stored values used or produced during its execution. Their destruction 831
shall occur prior to or during any exit from the routine (whether exiting early because of an error, 832
or exiting normally with the output of an RSA key pair). Note that the requirement for destruction 833
includes any locally stored portions of the output key pair. 834

18 Although the previous steps should have theoretically produced a valid key pair, this step is required to ensure that

implementation errors do not result in an invalid key pair.

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

40

6.3.1.2 rsakpg1-prime-factor 835
rsakpg1-prime-factor is the generator in the RSAKPG1 family such that the private key is in the 836
prime factor format (p, q, d). 837

Function call: rsakpg1-prime-factor(s, nBits, e) 838

The inputs, outputs and errors are the same as in rsakpg1-basic (see Section 6.3.1.1) except that 839
the private key is in the prime-factor format: (p, q, d). 840

The steps are the same as in rsakpg1-basic except that processing Step 6 is replaced by the 841
following: 842

6. Output (n, e) as the public key, and (p, q, d) as the private key. 843

Note that key-pair validation, as specified in Section 6.4.1.2.2, can be performed after step 5 and 844
before step 6. If an error is detected during the validation process, output an indication of a key-845
pair validation failure, and exit without further processing. 846

A routine that implements this generation function shall destroy any local copies of p, q, and d, as 847
well as any other locally stored values used or produced during its execution. Their destruction 848
shall occur prior to or during any exit from the routine (whether exiting early, because of an error, 849
or exiting normally, with the output of an RSA key pair). Note that the requirement for destruction 850
includes any locally stored portions of the output key pair. 851

6.3.1.3 rsakpg1-crt 852
rsakpg1-crt is the generator in the RSAKPG1 family such that the private key is in the Chinese 853
Remainder Theorem format (n, e, d, p, q, dP, dQ, qInv). 854

Function call: rsakpg1-crt(s, nBits, e) 855

The inputs, outputs and errors are the same as in rsakpg1-basic (see Section 6.3.1.1) except that 856
the private key is in the Chinese Remainder Theorem format: (n, e, d, p, q, dP, dQ, qInv). 857

The steps are the same as in rsakpg1-basic except that processing steps 5 and 6 are replaced by the 858
following: 859

5. Determine the components dP, dQ and qInv: 860

a. dP = d mod (p – 1). 861

b. dQ = d mod (q – 1). 862

c. qInv = q–1 mod p. 863

6. Perform a pair-wise consistency test19 by verifying that m = (me)d mod n for some integer 864
m satisfying 1 < m < n − 1. If an inconsistency is found, output an indication of a pair-wise 865
consistency failure, and exit without further processing. 866

7. Output (n, e) as the public key, and (n, e, d, p, q, dP, dQ, qInv) as the private key. 867

19 Although the previous steps should have theoretically produced a valid key pair, this step is required to ensure that

implementation errors do not result in an invalid key pair.

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

41

Note that key-pair validation, as specified in Section 6.4.1.2.3, can be performed after step 6 and 868
before step 7. If an error is detected during the validation process, output an indication of a key-869
pair validation failure, and exit without further processing. 870

A routine that implements this generation function shall destroy any local copies of p, q, dP, dQ, 871
qInv, and d, as well as any other locally stored values used or produced during its execution. Their 872
destruction shall occur prior to or during any exit from the routine (whether exiting early because 873
of an error or exiting normally with the output of an RSA key pair). Note that the requirement for 874
destruction includes any locally stored portions of the output key pair. 875

6.3.2 RSAKPG2 Family: RSA Key-Pair Generation with a Random Public 876
Exponent 877

The RSAKPG2 family of key-pair generation methods consists of three RSA key-pair generators 878
such that the public exponent e is a random value in the range 65,537 ≤ e < 2256. 879

Three representations are addressed: 880

1. rsakpg2-basic generates the private key in the basic format (n, d); 881

2. rsakpg2-prime-factor generates the private key in the prime factor format (p, q, d); and 882

3. rsakpg2-crt generates the private key in the Chinese Remainder Theorem format (n, e, d, 883
p, q, dP, dQ, qInv). 884

An implementation may perform a key-pair validation before outputting the key pair from the 885
generation function. The key-pair validation methods for this family are specified in Section 886
6.4.1.3. 887

6.3.2.1 rsakpg2-basic 888
rsakpg2-basic is the generator in the RSAKPG2 family such that the private key is in the basic 889
format (n, d). 890

Function call: rsakpg2-basic(s, nBits, eBits) 891

Input: 892

1. s: the targeted security strength; 893

2. nBits: the intended bit length of the RSA modulus; and 894

3. eBits: the intended bit length of the public exponent − an integer such that 17 ≤ eBits ≤ 256. 895
Note that the public exponent shall be an odd integer such that 65,537 ≤ e < 2256. 896

Process: 897

1. Check the values: 898

a. If s is not in the range [112, 256], output an indication that the targeted security 899
strength is not acceptable, and exit without further processing. 900

b. If s > S(nBits), output an indication that the modulus length is not adequate for the 901
targeted security strength, and exit without further processing. 902

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

42

c. If eBits is not an integer such that 17 ≤ eBits ≤ 256, output an indication that the 903
exponent length is out of range, and exit without further processing. 904

2. Generate an odd public exponent e in the range [2eBits – 1 + 1, 2eBits – 1] using an approved 905
RBG (see Section 5.3). 906

3. Generate the prime factors p and q as specified in FIPS 186. Note that the routines ensure 907
that p – 1 and q – 1 are relatively prime to e. 908

4. Determine the private exponent d: 909

 d = e–1 mod LCM(p – 1, q – 1). 910

In the event that no such d exists, or in the very rare event that d ≤ 2nBits/2, discard the results 911
of all computations and repeat the process, starting at step 2. 912

5. Determine the modulus n as n = p × q, the product of p and q. 913
6. Perform a pair-wise consistency test20 by verifying that m is the same as (me)d mod n for 914

some integer m satisfying 1 < m < n − 1. If an inconsistency is found, output an indication 915
of a pair-wise consistency failure, and exit without further processing. 916

7. Output (n, e) as the public key and (n, d) as the private key. 917

Output: 918

1. (n, e): the RSA public key; and 919

2. (n, d): the RSA private key in the basic format. 920

Errors: Indications of the following: 921

1. The targeted security strength is not acceptable, 922

2. The intended modulus bit length is not adequate for the targeted security strength, 923

3. The intended exponent bit length is out of range, or 924

4. Pair-wise consistency failure. 925

Note that key-pair validation, as specified in Section 6.4.1.3.1, can be performed after step 6 and 926
before step 7 of the process above. If an error is detected during the validation process, output an 927
indication of a key-pair validation failure, and exit without further processing. 928

A routine that implements this generation function shall destroy any local copies of p, q, and d, as 929
well as any other locally stored values used or produced during its execution. Their destruction 930
shall occur prior to or during any exit from the routine (whether exiting early, because of an error, 931
or exiting normally, with the output of an RSA key pair). Note that the requirement for destruction 932
includes any locally stored portions of the output key pair. 933

20 Although the previous steps should have theoretically produced a valid key pair, this step is required to ensure that

implementation errors do not result in an invalid key pair.

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

43

6.3.2.2 rsakpg2-prime-factor 934
rsakpg2-prime-factor is the generator in the RSAKPG2 family such that the private key is in the 935
prime-factor format (p, q, d). 936

Function call: rsakpg2-prime-factor(s, nBits, eBits) 937

The inputs, outputs and errors are the same as in rsakpg2-basic (see Section 6.3.2.1) except that 938
the private key is in the prime-factor format: (p, q, d). 939

The steps are the same as in rsakpg2-basic except that processing Step 7 is replaced by the 940
following: 941

7. Output (n, e) as the public key, and (p, q, d) as the private key. 942

Note that key-pair validation as specified in Section 6.4.1.3.2 can be performed after step 6 and 943
before step 7. If an error is detected during the validation process, output an indication of a key-944
pair validation failure, and exit without further processing. 945

A routine that implements this generation function shall destroy any local copies of p, q, and d, as 946
well as any other locally stored values used or produced during its execution. Their destruction 947
shall occur prior to or during any exit from the routine (whether exiting early because of an error 948
or exiting normally with the output of an RSA key pair). Note that the requirement for destruction 949
includes any locally stored portions of the output key pair. 950

6.3.2.3 rsakpg2-crt 951
rsakpg2-crt is the generator in the RSAKPG2 family such that the private key is in the Chinese 952
Remainder Theorem format (n, e, d, p, q, dP, dQ, qInv). 953

Function call: rsakpg2-crt(s, nBits, eBits) 954

The inputs, outputs and errors are the same as in rsakpg2-basic (see Section 6.3.2.1) except that 955
the private key is in the Chinese Remainder Theorem format: (n, e, d, p, q, dP, dQ, qInv). 956

The steps are the same as in rsakpg2-basic except that processing Steps 6 and 7 are replaced by 957
the following: 958

6. Determine the components dP, dQ and qInv: 959

a. dP = d mod (p – 1). 960

b. dQ = d mod (q – 1). 961

c. qInv = q–1 mod p. 962

7. Perform a pair-wise consistency test21 by verifying that m is the same as (me)d mod n for 963
some integer m satisfying 1 < m < n − 1. If an inconsistency is found, output an indication 964
of a pair-wise consistency failure, and exit without further processing. 965

8. Output (n, e) as the public key, and (n, e, d, p, q, dP, dQ, qInv) as the private key. 966

21 Although the previous steps should have theoretically produced a valid key pair, this step is required to ensure that

implementation errors do not result in an invalid key pair.

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

44

Note that key-pair validation as specified in Section 6.4.1.3.3 can be performed after step 7 and 967
before step 8. If an error is detected during the validation process, output an indication of a key-968
pair validation failure, and exit without further processing. 969

A routine that implements this generation function shall destroy any local copies of p, q, dP, dQ, 970
qInv, and d, as well as any other locally stored values used or produced during its execution. Their 971
destruction shall occur prior to or during any exit from the routine (whether exiting early because 972
of an error, or exiting normally with the output of an RSA key pair). Note that the requirement for 973
destruction includes any locally stored portions of the output key pair. 974

6.4 Required Assurances 975

Secure key establishment depends upon the use of valid key-establishment keys. The security of 976
key-establishment schemes also depends on limiting knowledge of the private keys to those who 977
have been authorized to use them (i.e., their respective owners) and to the trusted third party that 978
may have generated them.22 In addition to preventing unauthorized entities from gaining access to 979
private keys, it is also important that owners have possession of the correct private keys. 980

To explain the assurance requirements, some terminology needs to be defined. The owner of a key 981
pair is the entity that is authorized to use the private key that corresponds to the owner’s public 982
key, whether or not the owner generated the key pair. The recipient of a public key is the entity 983
that is participating in a key-establishment transaction with the owner and obtains the owner’s 984
public key before or during the current transaction. 985

Prior to or during a key-establishment transaction, the participants in the transaction (i.e., parties 986
U and V) shall obtain the appropriate assurances about the key pairs used during that transaction. 987
The types of assurance that may be sought by one or both of the parties (U and/or V) concerning 988
the components of a key pair (i.e., the private key and public key) are discussed in Sections 6.4.1 989
and 6.4.2. 990

6.4.1 Assurances Required by the Key-Pair Owner 991
Prior to the use of a key pair in a key-establishment transaction, the key-pair owner shall have 992
assurance of the validity of the key pair. Assurance of key-pair validity provides assurance that a 993
key pair was generated in accordance with the requirements in Sections 6.2 and 6.3. Key-pair 994
validity implies public-key validity and assurance of possession of the correct private key. 995
Assurance of key-pair validity can only be provided by an entity that has the private key (e.g., the 996
owner). Depending on an organization’s requirements, a renewal of key-pair validity may be 997
prudent. The method of obtaining initial and renewed assurance of key-pair validity is addressed 998
in Section 6.4.1.1. 999

Assurance of key-pair validity can be renewed at any time (see Section 6.4.1.1). As time passes, 1000
an owner may lose possession of the correct value of the private-key component of their key pair, 1001
e.g., due to an error; for this reason, renewed (i.e., current) assurance of possession of a private 1002
key can be of value for some applications. See Section 6.4.1.5 for techniques that the owner can 1003

22 The trusted third party is trusted not to use or reveal the distributed private keys.

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

45

use to obtain renewed assurance of private-key possession separately from assurance of key-pair 1004
validity. 1005

6.4.1.1 Obtaining Owner Assurance of Key-Pair Validity 1006
Assurance of key-pair validity shall be obtained by its owner prior to the first use of the key pair 1007
in a key-establishment transaction (see Section 4.1) by successfully completing the following 1008
three-step process: 1009

1. Key-pair generation: Assurance that the key pair has been correctly formed, in a manner 1010
consistent with the criteria of Section 6.2, is obtained using one of the following two 1011
methods: 1012

a. Owner generation – The owner obtains the desired assurance if it generates the 1013
public/private key pair as specified in Section 6.3. 1014

b. TTP generation – The owner obtains the desired assurance when a trusted third 1015
party (TTP) who is trusted by the owner generates the public/private key pair as 1016
specified in Section 6.3 and provides it to the owner. 1017

2. Key-pair consistencey: The owner shall perform a pair-wise consistency test by verifying 1018
that m = (me)d mod n for some integer m satisfying 1 < m < n − 1. Note that if the owner 1019
generated the key pair (see method 1.a above), an initial pair-wise consistency test was 1020
performed during key-pair generation (see Section 6.3). If a TTP generated the key pair 1021
and provided it to the owner (see method 1.b above), the owner shall perform the 1022
consistency check separately, prior to the first use of the key pair in a key-establishment 1023
transaction (see Section 4.1). 1024

3. Key-pair validation: A key pair shall be validated using one of the following methods: 1025

a. The owner performs key-pair validation: The owner either 1026

1) Performs a successful key-pair validation while generating the key pair (see 1027
Section 6.3), or 1028

2) Performs a successful key-pair validation separately from key-pair generation 1029
(regardless of whether the owner or a TTP generated the key pair) (see Section 1030
6.4.1.2, 6.4.1.3 or 6.4.1.4). 1031

b. The TTP performs key-pair validation: A trusted third party (trusted by the owner) 1032
either 1033

1) Performs a successful key-pair validation while generating the key pair (see 1034
Section 6.3), or 1035

2) Performs a successful key-pair validation separately from key-pair generation 1036
(as specified in Sections 6.4.1.2, 6.4.1.3 or 6.4.1.4), and indicates the success 1037
to the owner. Note that if the key-pair validation is performed separately from 1038
the key-pair generation, and the TTP does not have the key pair, then the party 1039
that generated the key pair or owns the key pair must provide it to the TTP. 1040

Note that the use of a TTP to generate a key pair or to perform key-pair validation for an owner 1041
means that the TTP must be trusted (by both the owner and any recipient) to not use the owner’s 1042

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

46

private key to masquerade as the owner or otherwise compromise the key-establishment 1043
transaction. 1044

The key-pair owner can revalidate the key pair at any time using the following steps: 1045

1. Perform a pair-wise consistency test by verifying that m = (me)d mod n for some integer m 1046
satisfying 1 < m < n − 1, and 1047

2, Perform a successful key-pair validation: 1048

a. If the intended value or bit length of the public exponent is known, then perform a 1049
successful key-pair validation as specified in Section 6.4.1.2 or 6.4.1.3. 1050

b. If the intended value or bit length of the public exponent is NOT known, then perform 1051
a successful key-pair validation as specified in Section 6.4.1.4. 1052

6.4.1.2 RSAKPV1 Family: RSA Key-Pair Validation with a Fixed Public Exponent 1053
The RSAKPV1 family of key-pair validation methods corresponds to the RSAKPG1 family of 1054
key-pair generation methods (see Section 6.3.1). RSAKPV1 can be used when the public key, the 1055
intended fixed value of the public exponent, the intended bit length of the modulus, the targeted 1056
security strength, and the value of the private key are all known by the entity performing the 1057
validation. 1058

6.4.1.2.1 rsakpv1-basic 1059
rsakpv1-basic is the key-pair validation method corresponding to rsakpg1-basic (see Section 1060
6.3.1.1). 1061

Function call: rsakpv1-basic (s, nBits, efixed, (npub, epub), (npriv, d)) 1062

Input: 1063

1. s: the targeted security strength; 1064

2. nBits: the intended bit length of the RSA modulus; 1065

3. efixed: the intended fixed public exponent − an odd integer such that 65,537 ≤ efixed < 2256; 1066
4. (npub, epub): the RSA public key to be validated; and 1067

5. (npriv, d): the RSA private key to be validated in the basic format. 1068

Process: 1069

1. Check the sizes of s and efixed: 1070

a. If s is not in the interval [112, 256], output an indication that the security strength 1071
is not acceptable, and exit without further processing. 1072

b. If s > S(nBits), output an indication that the modulus length is not adequate for the 1073
intended security strength, and exit without further processing. 1074

c. If efixed is not an odd integer such that 65,537 ≤ efixed < 2256, output an indication that 1075
the fixed public exponent is out of range, and exit without further processing. 1076

2. Compare the public exponents: 1077

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

47

If epub ≠ efixed, output an indication of an invalid key pair, and exit without further 1078
processing. 1079

3. Check the modulus: 1080

a. If npub ≠ npriv, output an indication of an invalid key pair, and exit without further 1081
processing. 1082

b. If len(npub) ≠ nBits, output an indication of an invalid key pair, and exit without 1083
further processing. 1084

c. If nBits is not a positive even integer, output an indication of an invalid key pair, 1085
and exit without further processing. 1086

4. Prime-factor recovery: 1087

a. Recover the prime factors p and q from the modulus npub, the public exponent 1088
epub and the private exponent d (using one of the methods in Appendix C): 1089

(p, q) = RecoverPrimeFactors (npub, epub, d). 1090

b. If RecoverPrimeFactors outputs an indication that the prime factors were not 1091
found, output an indication that the request is invalid, and exit without further 1092
processing. 1093

c. If npub ≠ p × q, then output an indication that the request is invalid, and exit 1094
without further processing. 1095

5. Check the prime factors: 1096

a. If (p < (2)(2nBits/2−1)) or (p > 2nBits/2 – 1), output an indication of an invalid key 1097
pair, and exit without further processing. 1098

b. If (q < (2)(2nBits/2−1)) or (q > 2nBits/2 – 1), output an indication of an invalid key 1099
pair, and exit without further processing. 1100

c. If |p – q| ≤ 2(nBits/2−100), output an indication of an invalid key pair, and exit without 1101
further processing. 1102

d. If GCD (p – 1, epub) ≠ 1, output an indication of an invalid key pair, and exit without 1103
further processing. 1104

e. If GCD (q – 1, epub) ≠ 1, output an indication of an invalid key pair, and exit without 1105
further processing. 1106

f. Apply an approved primality test* to the factor p (see FIPS 186, Appendices C.3 1107
and E). If the primality test indicates that p is not prime, output an indication of an 1108
invalid key pair, and exit without further processing. 1109

g. Apply an approved primality test* to the factor q (see FIPS 186, Appendices C.3 1110
and E). If the primality test indicates that q is not prime, output an indication of an 1111
invalid key pair, and exit without further processing. 1112

* Relying parties (and/or agents trusted to act on their behalf) shall determine which of 1113
the approved primality tests in FIPS 186 meet their security requirements. The 1114

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

48

probability that p or q may be incorrectly classified as prime by the test used in step 5 1115
shall be less than or equal to 2–S(nBits). 1116

6. Check that the private exponent d satisfies 1117

a. 2nBits/2 < d < LCM (p – 1, q – 1). 1118

and 1119

b. 1 = (d × epub) mod LCM (p – 1, q – 1). 1120

If either check fails, output an indication of an invalid key pair, and exit without further 1121
processing. 1122

7. Output an indication that the key pair is valid. 1123

Output: 1124

1. status: An indication that the key pair is valid or an indication of an error. 1125

Errors: Indications of the following: 1126

1. The targeted security strength is not acceptable, 1127

2. The modulus length is not adequate for the targeted security strength, 1128

3. The fixed public exponent is out of range, or 1129

4. The key pair is invalid. 1130

A routine that implements this validation function shall destroy any local copies of p, q and d, as 1131
well as any other locally stored values used or produced during its execution. Their destruction 1132
shall occur prior to or during any exit from the routine (whether exiting early because of an error, 1133
or exiting normally). 1134

6.4.1.2.2 rsakpv1-prime-factor 1135
rsakpv1-prime-factor is the key-pair validation method corresponding to rsakpg1-prime-factor 1136
(see Section 6.3.1.2). 1137

Function call: rsakpv1-prime-factor (s, nBits, efixed, (npub, epub), (p, q, d)) 1138

The inputs, outputs and errors are the same as in rsakpv1-basic (see Section 6.4.1.2.1) except that 1139
the private key is in the prime-factor format: (p, q, d). 1140

The steps are the same as in rsakpv1-basic except that in processing: 1141

A. Step 3 is replaced by the following: 1142

3. Check the modulus: 1143

a. If npub ≠ p × q, output an indication of an invalid key pair, and exit without further 1144
processing. 1145

b. If len(npub) ≠ nBits, output an indication of an invalid key pair, and exit without 1146
further processing. 1147

c. If nBits is not a positive even integer, output an indication of an invalid key pair, 1148
and exit without further processing. 1149

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

49

B. Step 4 (prime-factor recovery) is omitted (i.e., not used). 1150

A routine that implements this validation function shall destroy any local copies of p, q, and d, as 1151
well as any other locally stored values used or produced during its execution. Their destruction 1152
shall occur prior to or during any exit from the routine (whether exiting early because of an error, 1153
or exiting normally). 1154

6.4.1.2.3 rsakpv1-crt 1155
rsakpv1-crt is the key-pair validation method corresponding to rsakpg1-crt. 1156

Function call: rsakpv1-crt (s, nBits, efixed, (npub, epub), (npriv, epriv, d, p, q, dP, dQ, qInv)) 1157

The inputs, outputs and errors are the same as in rsakpv1-basic (see Section 6.4.1.2.1) except that 1158
the private key is in the Chinese Remainder Theorem format: (npriv, epriv, d, p, q, dP, dQ, qInv). 1159

The steps are the same as in rsakpv1-basic except that in processing: 1160

A. Step 2 is replaced by the following: 1161

2. Compare the public exponents: 1162

If (epub ≠ efixed) or (epub ≠ epriv), output an indication of an invalid key pair, and exit 1163
without further processing. 1164

B. Step 3 is replaced by 1165

3. Check the modulus: 1166

a. If npub ≠ p × q, or npub ≠ npriv, output an indication of an invalid key pair, and 1167
exit without further processing. 1168

b. If len(npub) ≠ nBits, output an indication of an invalid key pair, and exit 1169
without further processing. 1170

c. If nBits is not a positive even integer, output an indication of an invalid key 1171
pair, and exit without further processing. 1172

C. Step 4 (prime-factor recovery) is omitted (i.e., not used), 1173

D. Step 7 is replaced by the following two steps: 1174

7. Check the CRT components: Check that the components dP, dQ and qInv satisfy 1175

a. 1 < dP < (p – 1). 1176

b. 1 < dQ < (q – 1). 1177

c. 1 < qInv < p. 1178

d. 1 = (dP × efixed) mod (p – 1). 1179

e. 1 = (dQ × efixed) mod (q – 1). 1180

f. 1 = (qInv × q) mod p. 1181

If any of the criteria in Section 6.2.1 are not met, output an indication of an invalid 1182
key pair, and exit without further processing. 1183

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

50

8. Output an indication that the key pair is valid. 1184

A routine that implements this validation function shall destroy any local copies of p, q, d, dP, dQ, 1185
and qInv, as well as any other locally stored values used or produced during its execution. Their 1186
destruction shall occur prior to or during any exit from the routine (whether exiting early because 1187
of an error, or exiting normally). 1188

6.4.1.3 RSAKPV2 Family: RSA Key-Pair Validation (Random Public Exponent) 1189
The RSAKPV2 family of key-pair validation methods corresponds to the RSAKPG2 family of 1190
key-pair generation methods (see Section 6.3.2). RSAKPV2 can be used when the public key, the 1191
intended bit length of the public exponent, the intended bit length of the modulus, the targeted 1192
security strength, and the value of the private key are all known by the entity performing the 1193
validation. 1194

6.4.1.3.1 rsakpv2-basic 1195
rsakpv2-basic is the validation method corresponding to rsakpg2-basic (see Section 6.3.2.1). 1196

Function call: rsapkv2-basic (s, nBits, eBits, (npub, epub), (npriv, d)) 1197

The method is the same as the rsapkv1-basic method in Section 6.4.1.2.1 except that: 1198

A. The efixed input parameter is replaced by eBits, which is the intended bit length of the public 1199
exponent − an integer such that 17 ≤ eBits ≤ 256. 1200

B. Step 1c is replaced by: 1201

c. If (eBits < 17) or (eBits > 256), output an indication that the exponent is out of 1202
range, and exit without further processing. 1203

C. Step 2 is replaced by: 1204

2. Check the public exponent. 1205

If the public exponent epub is not odd, or if len(epub) ≠ eBits, output an indication of 1206
an invalid key pair, and exit without further processing. 1207

A routine that implements this validation function shall destroy any local copies of p, q, and d, as 1208
well as any other locally stored values used or produced during its execution. Their destruction 1209
shall occur prior to or during any exit from the routine (whether exiting early because of an error, 1210
or exiting normally). 1211

6.4.1.3.2 rsakpv2-prime-factor 1212
rsakpv2-prime-factor is the key-pair validation method corresponding to the rsakpg2-prime-factor 1213
key-pair generation method (see Section 6.3.2.2). 1214

Function call: rsakpv2-prime-factor (s, nBits, eBits, (npub, epub), (p, q, d)) 1215

The inputs, outputs and errors are the same as in rsakpv1-basic (see Section 6.4.1.2.1), except that 1216
the private key is in the prime factor format: (p, q, d). 1217

The steps are the same as in rsakpv1-basic (see Section 6.4.1.2.1) except that: 1218

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

51

A. The efixed input parameter is replaced by eBits, which is the intended bit length of the public 1219
exponent, an integer such that 17 ≤ eBits ≤ 256. 1220

B. Step 1c is replaced by: 1221

c. If (eBits < 17) or (eBits > 256), output an indication that the exponent is out of 1222
range, and exit without further processing. 1223

C. Step 2 is replaced by: 1224

2. Check the public exponent. 1225

If the public exponent epub is not odd, or if len(epub) ≠ eBits, output an indication of 1226
an invalid key pair, and exit without further processing. 1227

D. Step 3 is replaced by the following: 1228

3. Check the modulus: 1229

a. If npub ≠ p × q, output an indication of an invalid key pair, and exit without 1230
further processing. 1231

b. If len(npub) ≠ nBits, output an indication of an invalid key pair, and exit 1232
without further processing. 1233

c. If nBits is not a positive even integer, output an indication of an invalid key 1234
pair, and exit without further processing. 1235

E. Step 4 (prime-factor recovery) is omitted (i.e., not used). 1236

A routine that implements this validation function shall destroy any local copies of p, q, and d, as 1237
well as any other locally stored values used or produced during its execution. Their destruction 1238
shall occur prior to or during any exit from the routine (whether exiting early because of an error 1239
or exiting normally). 1240

6.4.1.3.3 rsakpv2-crt 1241
rsakpv2-crt is the key-pair validation method corresponding to the rsakpg2-crt key-pair generation 1242
method (see Section 6.3.1.3). 1243

Function call: rsakpv2-crt (s, nBits, eBits, (npub, epub), (npriv, epriv, d, p, q, dP, dQ, qInv)) 1244

The inputs, outputs and errors are the same as in rsakpv1-basic (see Section 6.4.1.2.1) except that 1245
the private key is in the Chinese Remainder Theorem format: (npriv, epriv, d, p, q, dP, dQ, qInv). 1246

The steps are the same as in rsakpv1-basic (see Section 6.4.1.2.1) except that: 1247

A. The efixed input parameter is replaced by eBits, which is the intended bit length of the public 1248
exponent, an integer such that 17 ≤ eBits ≤ 256. 1249

B. Step 1c is replaced by: 1250

c. If (eBits < 17) or (eBits > 256), output an indication that the exponent is out of 1251
range, and exit without further processing. 1252

C. Step 2 is replaced by the following: 1253

2. Compare the public exponents: 1254

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

52

If (epub ≠ epriv) or (epub is not odd) or (len(epub) ≠ eBits), output an indication of an 1255
invalid key pair, and exit without further processing. 1256

D. Step 3 is replaced by 1257
3. Check the modulus: 1258

a. If (npub ≠ p × q) or (npub ≠ npriv) output an indication of an invalid key pair, 1259
and exit without further processing. 1260

b. If len(npub) ≠ nBits, output an indication of an invalid key pair, and exit 1261
without further processing. 1262

c. If nBits is not a positive even integer, output an indication of an invalid key 1263
pair, and exit without further processing. 1264

E. Step 4 (prime-factor recovery) is omitted (i.e., not used), 1265

F. Step 7 is replaced by the following two steps: 1266

7. Check the CRT components: Check that the components dP, dQ and qInv satisfy 1267

a. 1 < dP < (p – 1). 1268

b. 1 < dQ < (q – 1). 1269

c. 1 < qInv < p. 1270

d. 1 = (dP × epub) mod (p – 1). 1271

e. 1 = (dQ × epub) mod (q – 1). 1272

f. 1 = (qInv × q) mod p. 1273
If any of the criteria in Section 6.2.1 are not met, output an indication of an invalid 1274
key pair, and exit without further processing. 1275

8. Output an indication that the key pair is valid. 1276

A routine that implements this validation function shall destroy any local copies of p, q, d, dP, dQ, 1277
and qInv, as well as any other locally stored values used or produced during its execution. Their 1278
destruction shall occur prior to or during any exit from the routine (whether exiting early because 1279
of an error, or exiting normally). 1280

6.4.1.4 RSA Key-Pair Validation (Exponent-Creation Method Unknown) 1281
Public-key validation may be performed when the intended fixed value or intended bit length of 1282
the public exponent is unknown by the entity performing the validation (i.e., the entity is unaware 1283
of whether the key pair was generated as specified in Section 6.3.1 or Section 6.3.2). The following 1284
methods can be used as long as the entity performing the validation (i.e., the key-pair owner or a 1285
TTP trusted by the owner) knows the intended bit length of the modulus and the targeted security 1286
strength, and has possession of some representation of the key pair to be validated (including the 1287
private key in either the basic, prime factor or crt format). 1288

6.4.1.4.1 basic-pkv 1289
In this format, the private key is represented as (n, d). 1290

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

53

Function call: basic_pkv (s, nBits, (npub, epub), (npriv, d)) 1291

The method is the same as the rsapkv1-basic method in Section 6.4.1.2.1 except that: 1292

A. A value for efixed is not available as an input parameter. 1293

B. Step 1.c is replaced by: 1294

If epub is not an odd integer such that 65,537 ≤ epub < 2256, output an indication that the 1295
exponent is out of range, and exit without further processing. 1296

C. Step 2 is omitted (i.e., not used). 1297

A routine that implements this validation function shall destroy any local copies of p, q, and d, as 1298
well as any other locally stored values used or produced during its execution. Their destruction 1299
shall occur prior to or during any exit from the routine (whether exiting early because of an error 1300
or exiting normally). 1301

6.4.1.4.2 prime-factor-pkv 1302
In this format, the private key is represented as (p, q, d). 1303

Function call: prime-factor_pkv (s, nBits, (npub, epub), (p, q, d)) 1304

The inputs, outputs and errors are the same as in rsakpv1-basic (see Section 6.4.1.2.1) except that 1305
the private key is in the prime factor format: (p, q, d). 1306

The steps are the same as in rsakpv1-basic (see Section 6.4.1.2.1) except that: 1307

A. A value for efixed is not available as an input parameter. 1308

B. Step 1.c is replaced by: 1309

If epub is not an odd integer such that 65,537 ≤ epub < 2256, output an indication that the 1310
exponent is out of range, and exit without further processing. 1311

C. Step 2 is omitted (i.e., not used). 1312

D. Step 3 is replaced by the following: 1313

3. Check the modulus: 1314

a. If npub ≠ p × q, output an indication of an invalid key pair, and exit without 1315
further processing. 1316

b. If len(npub) ≠ nBits, output an indication of an invalid key pair, and exit 1317
without further processing. 1318

c. If nBits is not a positive even integer, output an indication of an invalid key 1319
pair, and exit without further processing. 1320

E. Step 4 (prime-factor recovery) is omitted (i.e., not used). 1321

A routine that implements this validation function shall destroy any local copies of p, q, and d, as 1322
well as any other locally stored values used or produced during its execution. Their destruction 1323
shall occur prior to or during any exit from the routine (whether exiting early because of an error, 1324
or exiting normally). 1325

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

54

6.4.1.4.3 crt_pkv 1326
In this format, the private key is represented as (n, e, d, p, q, dP. dQ, qInv). 1327

Function call: crt_pkv(s, nBits, (npub, epub), (npriv, epriv, d, p, q, dP, dQ, qInv)) 1328

The inputs, outputs and errors are the same as in rsakpv1-basic (see Section 6.4.1.2.1) except that 1329
the private key is in the Chinese Remainder Theorem (CRT) format: (npriv, epriv, d, p, q, dP, dQ, 1330
qInv). 1331

The steps are the same as in rsakpv1-basic (see Section 6.4.1.2.1) except that: 1332

A. A value for efixed is not available as an input parameter. 1333

B. Step 1c is replaced by: 1334

If epub is not an odd integer such that 65,537 ≤ epub < 2256, output an indication that the 1335
exponent is out of range, and exit without further processing. 1336

C. Step 2 is omitted (i.e., not used). 1337

D. Step 3 is replaced by 1338

3. Check the modulus: 1339

a. If (npub ≠ p × q) or (npub ≠ npriv), output an indication of an invalid key pair, 1340
and exit without further processing. 1341

b. If len(npub) ≠ nBits, output an indication of an invalid key pair, and exit 1342
without further processing. 1343

 c. If nBits is not a positive even integer, output an indication of an invalid key 1344
pair, and exit without further processing. 1345

E. Step 4 (prime-factor recovery) is omitted (i.e., not used), 1346

F. Step 7 is replaced by the following two steps: 1347

7. Check the CRT components: Check that the components dP, dQ and qInv satisfy 1348

a. 1 < dP < (p – 1). 1349

b. 1 < dQ < (q – 1). 1350

c. 1 < qInv < p. 1351

d. 1 = (dP × epub) mod (p – 1). 1352

e. 1 = (dQ × epub) mod (q – 1). 1353

f. 1 = (qInv × q) mod p. 1354
If any of the criteria in Section 6.2.1 are not met, output an indication of an 1355
invalid key pair, and exit without further processing. 1356

8. Output an indication that the key pair is valid. 1357

A routine that implements this validation function shall destroy any local copies of p, q, dP, dQ, 1358
and qInv, as well as any other locally stored values used or produced during its execution. Their 1359

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

55

destruction shall occur prior to or during any exit from the routine (whether exiting early because 1360
of an error or exiting normally). 1361

6.4.1.5 Owner Assurance of Private-Key Possession 1362
An owner’s initial assurance of possession of his private key is obtained when assurance of key-1363
pair validity is obtained (see Section 6.4.1.1); assurance of key-pair validity is required prior to the 1364
owner’s use of a key pair for key establishment. As time passes, an owner could lose possession 1365
of the private key of a key pair. For this reason, renewing the assurance of possession may be 1366
appropriate for some applications (i.e., assurance of possession can be refreshed). A discussion of 1367
the effect of time on the assurance of private-key possession is provided in SP 800-89. 1368

Renewed assurance that the owner continues to possess the correct associated private key shall be 1369
obtained in one or more of the following ways: 1370

1. The key-pair owner renews assurance of key-pair validity – The owner obtains assurance 1371
of renewed key-pair validity (see Section 6.4.1.1), thereby also obtaining renewed 1372
assurance of private key possession. 1373

2. The key-pair owner receives renewed assurance via key confirmation – The owner employs 1374
the key pair to successfully engage a trusted second party in a key-agreement transaction 1375
using a scheme from the KAS2 family that incorporates key confirmation. The key 1376
confirmation shall be performed in order to obtain assurance that the private key(s) 1377
function correctly. 1378

- The KAS2-Party_V-confirmation scheme in Section 8.3.3.2 can be used to provide 1379
assurance to a key-pair owner, acting as party U, that both parties are in possession of 1380
the correct private key; i.e., when the key confirmation is successful, party U obtains 1381
assurance that party V possesses the private key corresponding to PubKeyV, and that 1382
party U possesses the private key corresponding to PubKeyU, where PubKeyV and 1383
PubKeyU are the public keys associated with parties V and U, respectively, that were 1384
used during that KAS2-Party_V-confirmation transaction. 1385

- The KAS2-Party_U-confirmation scheme in Section 8.3.3.3 can be used to provide 1386
assurance to a key-pair owner, acting as party V, that both parties are in possession of 1387
the correct private key; i.e., when the key confirmation is successful, party V obtains 1388
assurance that party U possesses the private key corresponding to PubKeyU and that 1389
party V possesses the private key corresponding to PubKeyV, where PubKeyU and 1390
PubKeyV are the public keys associated with parties U and V, respectively, that were 1391
used during that KAS2-Party_U-confirmation transaction. 1392

- The KAS2-bilateral-confirmation scheme in Section 8.3.3.4 can be used to provide 1393
assurance to a key-pair owner acting as either party U or party V that both parties are 1394
in possession of the correct private key; i.e., when the bilateral key-confirmation is 1395
successful, each party obtains assurance that party U possesses the private key 1396
corresponding to PubKeyU, and that party V possesses the private key corresponding to 1397
PubKeyV, where PubKeyU and PubKeyV are the public keys associated with parties U 1398
and V, respectively, that were used during that KAS2-bilateral-confirmation 1399
transaction.” 1400

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

56

3. The owner receives assurance via an encrypted certificate - The key-pair owner uses the 1401
private key while engaging in a key-establishment transaction with a Certificate Authority 1402
(trusted by the owner) using a scheme in this Recommendation after providing the CA with 1403
the corresponding public key. As part of this transaction, the CA generates a (new) 1404
certificate containing the owner’s public key and encrypts that certificate using (some 1405
portion of) the symmetric keying material that has been established. Only the encrypted 1406
form of the certificate is provided to the owner. By successfully decrypting the certificate 1407
and verifying the CA’s signature, the owner obtains assurance of possession of the correct 1408
private key (at the time of the key-establishment transaction). 1409

The key-pair owner (or agents trusted to act on the owner’s behalf) should determine that the 1410
method used for obtaining renewed assurance of the owner’s possession of the correct private key 1411
is sufficient and appropriate to meet the security requirements of the owner’s intended 1412
application(s). 1413

6.4.2 Assurances Required by a Public-Key Recipient 1414
In this Recommendation, unless otherwise indicated, a recipient of the public key of another party 1415
is assumed to be an entity that does not have (and is not authorized to have) access to the 1416
corresponding private key. The recipient of the (purported) public key-establishment key of 1417
another party shall have: 1418

1. Assurance of the arithmetic validity of the other party’s public key before using it in a key-1419
establishment transaction with its claimed owner, and (if used) 1420

2. Assurance that the claimed public-key owner (i.e., the other party) actually possesses the 1421
private key corresponding to that public key. 1422

6.4.2.1 Obtaining Assurance of Public-Key Validity for a Received Public Key 1423
The recipient shall obtain assurance of public-key validity using one or more of the following 1424
methods: 1425

1. Recipient Partial Public-Key Validation − The recipient performs a successful partial 1426
public-key validation (see Section 6.4.2.2). 1427

2. TTP Partial Public-Key Validation – The recipient receives assurance that a trusted third 1428
party (trusted by the recipient) has performed a successful partial public-key validation (see 1429
Section 6.4.2.2). 1430

3. TTP Key-Pair Validation – The recipient receives assurance that a trusted third party 1431
(trusted by the recipient and the owner) has performed key-pair validation in accordance 1432
with Section 6.4.1.1 (step 3.b). 1433

Note that the use of a TTP to perform key-pair validation (method 3) implies that both the 1434
owner and any recipient of the public key trust that the TTP will not use the owner’s private 1435
key to masquerade as the owner or otherwise compromise their key-establishment 1436
transactions. 1437

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

57

6.4.2.2 Partial Public-Key Validation for RSA 1438
Partial public-key validation for RSA consists of conducting plausibility tests. These tests 1439
determine whether the public modulus and public exponent are plausible, not necessarily whether 1440
they are completely valid, i.e., they may not conform to all RSA key-generation requirements as 1441
specified in this Recommendation. Plausibility tests can detect unintentional errors with a 1442
reasonable probability. Note that full RSA public-key validation is not specified in this 1443
Recommendation, as it is an area of ongoing research. Therefore, if an application requires 1444
assurance of full public-key validation, then another approved key-establishment method shall be 1445
used (e.g., as specified in SP 800-56A). 1446

Plausibility tests shall include the tests specified in Section 5.3.3 of SP 800-89, with the caveat 1447
that the bit length of the modulus shall be a length that is approved in this Recommendation. 1448

6.4.2.3 Recipient Assurances of an Owner’s Possession of a Private Key 1449
When two parties engage in a key-establishment transaction, there is (at least) an implicit claim of 1450
ownership made whenever a public key is provided on behalf of a particular party. That party is 1451
considered to be a claimed owner of the corresponding key pair – as opposed to being a true owner 1452
– until adequate assurance can be provided that the party is actually the one authorized to use the 1453
private key. The claimed owner can provide such assurance by demonstrating its knowledge of 1454
that private key. 1455

The recipient of another party’s public key shall obtain an initial assurance that the other party 1456
(i.e., the claimed owner of the public key) actually possesses the associated private key, either 1457
prior to or concurrently with performing a key-establishment transaction with that other party. 1458
Obtaining this assurance is addressed in Sections 6.4.2.3.1 and 6.4.2.3.2. As time passes, renewing 1459
the assurance of possession may be appropriate for some applications; assurance of possession can 1460
be renewed as specified in Section 6.4.2.3.2. A discussion of the effect of time on the assurance of 1461
private-key possession is provided in SP 800-89. 1462

As part of the proper implementation of this Recommendation, system users and/or agents trusted 1463
to act on their behalf should determine which of the methods for obtaining assurance of possession 1464
meet their security requirements. The application tasked with performing key establishment on 1465
behalf of a party should determine whether or not to proceed with a key-establishment transaction, 1466
based upon the perceived adequacy of the method(s) used. Such knowledge may be explicitly 1467
provided to the application in some manner, or may be implicitly provided by the operation of the 1468
application itself. 1469

If a binding authority is the public-key recipient: At the time of binding an owner’s identifier to 1470
his public key, the binding authority (i.e., a trusted third party, such as a CA) shall obtain assurance 1471
that the owner is in possession of the correct private key. This assurance shall either be obtained 1472
using one of the methods specified in Section 6.4.2.3.2 (e.g., with the binding authority acting as 1473
the public-key recipient) or by using an approved alternative (see SP 800-57, Part 1, Sections 5.2 1474
and 8.1.5.1.1.2). 1475

Recipients not acting in the role of a binding authority: The recipients shall obtain this assurance 1476
either through a trusted third party (see Section 6.4.2.3.1) or directly from the owner (i.e., the other 1477
party) (see Section 6.4.2.3.2) before using the derived keying material for purposes beyond those 1478
required during the key-establishment transaction itself. If the recipient chooses to obtain this 1479

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

58

assurance directly from the other party (i.e., the claimed owner of that public key), then to comply 1480
with this Recommendation, the recipient shall use one of the methods specified in Section 1481
6.4.2.3.2. 1482

Note that the requirement that assurance of possession be obtained before using the established 1483
keying material for purposes beyond those of the key-establishment transaction itself does not 1484
prohibit the parties to a key-establishment transaction from using a portion of the derived or 1485
transported keying material during the key-establishment transaction for purposes required by that 1486
key-establishment scheme. For example, in a transaction involving a key-agreement scheme that 1487
incorporates key confirmation, the parties establish a (purported) shared secret, derive keying 1488
material, and − as part of that same transaction − use a portion of the derived keying material as 1489
the MAC key in their key-confirmation computations. 1490

6.4.2.3.1 Recipient Obtains Assurance from a Trusted Third Party 1491
The recipient of a public key may receive assurance that its owner (i.e., the other party in the key-1492
establishment transaction) is in possession of the correct private key from a trusted third party 1493
(trusted by the recipient), either before or during a key-establishment transaction that makes use 1494
of that public key. The methods used by a third party trusted by the recipient to obtain that 1495
assurance are beyond the scope of this Recommendation (see however, the discussions in Sections 1496
6.4.2.3.2 below and in 8.1.5.1.1.2 of SP 800-57). 1497

The recipient of a public key (or agents trusted to act on behalf of the recipient) should know the 1498
method(s) used by the third party, in order to determine that the assurance obtained on behalf of 1499
the recipient is sufficient and appropriate to meet the security requirements of the recipient’s 1500
intended application(s). 1501

6.4.2.3.2 Recipient Obtains Assurance Directly from the Claimed Owner (i.e., the Other 1502
Party) 1503

The recipient of a public key can directly obtain assurance of the claimed owner’s current 1504
possession of the corresponding private key by successfully completing a key-establishment 1505
transaction that explicitly incorporates key confirmation, with the claimed owner serving as the 1506
key-confirmation provider. Note that the recipient of the public key in question will also be the 1507
key-confirmation recipient. Also note that this use of key confirmation is an additional benefit 1508
beyond its use to confirm that two parties possess the same keying material. 1509

There are several key-establishment schemes specified in this Recommendation that can be used. 1510
In order to claim conformance with this Recommendation, the key-establishment transaction 1511
during which the recipient of a public key seeks to obtain assurance of its owner’s current 1512
possession of the corresponding private key shall employ one of the following approved key-1513
establishment schemes: 1514

1. The KAS1-Party_V-confirmation scheme in Section 8.2.3.2 can be used to provide 1515
assurance to party U that party V possesses the private key corresponding to PubKeyV, (the 1516
public key that was associated with party V when that key pair is used during the key-1517
agreement transaction). 1518

2. The KAS2-Party_V-confirmation scheme in Section 8.3.3.2 can be used to provide 1519
assurance to party U that party V possesses the private key corresponding to PubKeyV (the 1520

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

59

public key that was associated with party V when that key pair is used during the key-1521
agreement transaction). 1522

3. The KAS2-Party_U-confirmation scheme in Section 8.3.3.3 can be used to provide 1523
assurance to party V that party U possesses the private key corresponding to PubKeyU (the 1524
public key that was associated with party U when that key pair is used during the key-1525
agreement transaction). 1526

4. The KAS2-bilateral-confirmation scheme in Section 8.3.3.4 can be used to provide 1527
assurance to each party that the other party possesses the correct private key that 1528
corresponds to the other party's public key; i.e., when bilateral key-confirmation is 1529
successful, party U obtains assurance that party V possesses the private key corresponding 1530
to PubKeyV (the key pair that was associated with party V and that was used during the 1531
key-agreement transaction), and party V obtains assurance that party U possesses the 1532
private key corresponding to PubKeyU (the key pair that was associated with party U and 1533
that was used during the key-agreement transaction). 1534

5. The KTS-OAEP-Party_V-confirmation scheme in Section 9.2.4.2 can be used to provide 1535
assurance to party U (the key-transport sender) that party V (the key-transport receiver) 1536
possesses the private key corresponding to PubKeyV (the key pair that was associated with 1537
party V and that was used during the key-agreement transaction). 1538

The recipient of a public key (or agents trusted to act on the recipient’s behalf) shall determine 1539
whether or not using one of the key-establishment schemes in this Recommendation to obtain 1540
assurance of possession through key confirmation is sufficient and appropriate to meet the security 1541
requirements of the recipient’s intended application(s). Other approved methods (e.g., see Section 1542
5.4.4 of SP 800-57-Part 1) of directly obtaining this assurance of possession from the owner are 1543
also allowed. If obtaining assurance of possession directly from the owner is not acceptable, then 1544
assurance of possession shall be obtained indirectly as discussed in Section 6.4.2.3.1. 1545

Successful key confirmation (performed in the context described in this Recommendation) 1546
demonstrates that the correct private key has been used in the key-confirmation provider’s 1547
calculations, and thus also provides assurance that the claimed owner is the true owner. 1548

The assurance of possession obtained via the key-confirmation schemes identified above may be 1549
useful even when the recipient has previously obtained independent assurance that the claimed 1550
owner of a public key is indeed its true owner. This may be appropriate in situations where the 1551
recipient desires renewed assurance that the owner possesses the correct private key (and that the 1552
owner is still able to use it correctly), including situations where there is no access to a trusted 1553
party who can provide renewed assurance of the owner’s continued possession of the private key. 1554

7 Primitives and Operations 1555

Except for RSADP (see Section 7.1.2), the primitives and operations are defined in this section as 1556
if the RSA private keys are in the basic format. Equivalent primitives and operations that employ 1557
RSA private keys given in the prime-factor or CRT format are permitted. 1558

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

60

7.1 Encryption and Decryption Primitives 1559

RSAEP and RSADP are the basic encryption and decryption primitives from the RSA 1560
cryptosystem [RSA 1978], specified in PKCS 1. RSAEP produces ciphertext from plaintext using 1561
a public key; RSADP recovers the plaintext from the ciphertext using the corresponding private 1562
key. The primitives assume that the RSA public key is valid. 1563

7.1.1 RSAEP 1564
RSAEP produces ciphertext using an RSA public key. 1565

Function call: RSAEP((n, e), m) 1566

Input: 1567

1. (n, e): the RSA public key. 1568

2. m: the plaintext; an integer such that 1 < m < n – 1. 1569

Assumption: The RSA public key is valid (see Section 6.4). 1570

Process: 1571

1. If m does not satisfy 1 < m < n – 1, output an indication that m is out of range, and exit 1572
without further processing. 1573

2. Let c = me mod n. 1574

3. Output c. 1575

Output: 1576
 c: the ciphertext, an integer such that 1 < c < n – 1, or an error indicator. 1577

A routine that implements this primitive shall destroy any local copies of the input m, as well as 1578
any other potentially sensitive locally stored values used or produced during its execution. Their 1579
destruction shall occur prior to or during any exit from the routine (whether exiting early because 1580
of an error or exiting normally with the output of c). 1581

7.1.2 RSADP 1582
RSADP is the decryption primitive. It recovers the plaintext from ciphertext using an RSA private 1583
key. The format of the decryption operation depends on the format of the private key: basic, prime 1584
factor or CRT. 1585

A routine that implements this primitive shall destroy any local copies of the private key, as well 1586
as any other potentially sensitive locally stored values used or produced during its execution (such 1587
as any locally stored portions of the plaintext). Their destruction shall occur prior to or during any 1588
exit from the routine (whether exiting early because of an error or exiting normally, with the output 1589
of plaintext). 1590

Note: 1591

Care should be taken to ensure that an implementation of RSADP does not reveal even partial 1592
information about the value of the plaintext to unauthorized entities. An opponent who can 1593
reliably obtain particular bits of the plaintext for sufficiently many chosen ciphertext values 1594

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

61

may be able to obtain the full decryption of an arbitrary ciphertext by applying the bit-security 1595
results of Håstad and Näslund [HN 1998]. 1596

7.1.2.1 Decryption with the Private Key in the Basic Format 1597
Function call: RSADP((n, d), c) 1598

Input: 1599

1. (n, d): the RSA private key. 1600

2. c: the ciphertext; an integer such that 1 < c < n – 1. 1601

Process: 1602

1. If the ciphertext c does not satisfy 1 < c < n – 1, output an indication that the ciphertext is 1603
out of range, and exit without further processing. 1604

2. Let m = cd mod n. 1605

3. Output m. 1606

Output: 1607

 m: the plaintext; an integer such that 1 < m < n – 1, or an error indicator. 1608

7.1.2.2 Decryption with the Private Key in the Prime Factor Format 1609
 1610
Function call: RSADP((p, q, d), c) 1611

Input: 1612

1. (p, q, d): the RSA private key. 1613

2. c: the ciphertext; an integer such that 1 < c < n – 1. 1614

Process: 1615

1. If the ciphertext c does not satisfy 1 < c < n – 1, output an indication that the ciphertext is 1616
out of range, and exit without further processing. 1617

2. Let n = p × q, the product of p and q. 1618
3. Let m = cd mod n. 1619

4. Output m. 1620

Output: 1621

 m: the plaintext; an integer such that 1 < m < n – 1, or an error indicator. 1622

7.1.2.3 Decryption with the Private Key in the CRT Format 1623
Function call: RSADP(n, e, d, p, q, dP, dQ, qInv, c) 1624

1. (n, e, d, p, q, dP, dQ, qInv): the RSA private key, where dP = d mod (p – 1), dQ = d mod 1625
(q – 1) and qInv = q mod p. 1626

2. c: the ciphertext; an integer such that 1 < c < n – 1. 1627

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

62

Process: 1628
1. If the ciphertext c does not satisfy 1 < c < n – 1, output an indication that the ciphertext is 1629

out of range, and exit without further processing. 1630

2. mp = cdP mod p. 1631

3. mq = cdQ mod q. 1632

4. Let h = ((mp − mq) × qInv) mod p. 1633

5. Let m = (mq + (q × h)) mod n. 1634

6. Output m. 1635

7.2 Encryption and Decryption Operations 1636

7.2.1 RSA Secret-Value Encapsulation (RSASVE) 1637
The RSASVE generate operation is used by one party in a key-establishment transaction to 1638
generate and encrypt a secret value to produce ciphertext using the public key-establishment key 1639
of the other party. When this ciphertext is received by that other party, and the secret value is 1640
recovered (using the RSASVE recover operation and the corresponding private key-establishment 1641
key), the secret value is then considered to be a shared secret. Secret-value encapsulation employs 1642
a Random Bit Generator (RBG) to generate the secret value. 1643

The RSASVE generate and recovery operations specified in Sections 7.2.1.2 and 7.2.1.3, 1644
respectively, are based on the RSAEP and RSADP primitives (see Section 7.1). These operations 1645
are used by the KAS1 and KAS2 key-agreement families (see Sections 8.2 and 8.3). 1646

7.2.1.1 RSASVE Components 1647
RSASVE uses the following components: 1648

1. RBG: An approved random bit generator (see Section 5.3). 1649

2. RSAEP: RSA Encryption Primitive (see Section 7.1.1). 1650

3. RSADP: RSA Decryption Primitive (see Section 7.1.2). 1651

7.2.1.2 RSASVE Generate Operation (RSASVE.GENERATE) 1652
RSASVE.GENERATE generates a secret value and corresponding ciphertext using an RSA public 1653
key. 1654

Function call: RSASVE.GENERATE((n, e)) 1655

Input: 1656

(n, e): an RSA public key. 1657

Assumptions: The RSA public key is valid. 1658

Process: 1659

1. Compute the value of nLen = len(n)/8 − the byte length of the modulus n. 1660

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

63

2. Generation: 1661

a. Using the RBG (see Section 5.3), generate Z, a byte string of nLen bytes. 1662

b. Convert Z to an integer z (See Appendix B.2): 1663

z = BS2I(Z, nLen). 1664

c. If z does not satisfy 1 < z < n – 1, then go to step 2a. 1665

3. RSA encryption: 1666

a. Apply the RSAEP encryption primitive (see Section 7.1.1) to the integer z using the 1667
public key (n, e) to produce an integer ciphertext c: 1668

c = RSAEP((n, e), z). 1669

 1670

b. Convert the ciphertext c to a ciphertext byte string C of nLen bytes (see Appendix 1671
B.1): 1672

C = I2BS(c, nLen). 1673

 4. Output the string Z as the secret value, and the ciphertext C. 1674

Output: 1675

Z: the secret value to be shared (a byte string of nLen bytes), and C: the ciphertext (a byte string 1676
of nLen bytes). 1677

A routine that implements this operation shall destroy any locally stored portions of Z and z, as 1678
well as any other potentially sensitive locally stored values used or produced during its execution. 1679
Their destruction shall occur prior to or during any exit from the routine (whether exiting early 1680
because of an error or exiting normally with the output of Z and C). Note that the requirement for 1681
destruction includes any locally stored portions of the secret value Z included in the output. 1682

7.2.1.3 RSASVE Recovery Operation (RSASVE.RECOVER) 1683
RSASVE.RECOVER recovers a secret value from ciphertext using an RSA private key. Once 1684
recovered, the secret value is considered to be a shared secret. 1685

Function call: 1686

RSASVE.RECOVER((n, d), C) 1687

Input: 1688

1. (n, d): an RSA private key. 1689

2. C: the ciphertext; a byte string of nLen bytes. 1690

Assumptions: The RSA private key is part of a valid key pair. 1691

Process: 1692

1. nLen = = len(n)/8, the byte length of n. 1693
2. Length checking: 1694

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

64

If the length of the ciphertext C is not nLen bytes in length, output an indication of a 1695
decryption error, and exit without further processing. 1696

3. RSA decryption: 1697

a. Convert the ciphertext C to an integer ciphertext c (see Appendix B.2): 1698

c = BS2I(C). 1699

b. Apply the RSADP decryption primitive (see Section 7.1.2) to the ciphertext c using 1700
the private key (n, d) to produce an integer z: 1701

z = RSADP((n, d), c).23 1702

c. If RSADP indicates that the ciphertext is out of range, output an indication of a 1703
decryption error, and exit without further processing. 1704

d. Convert the integer z to a byte string Z of nLen bytes (see Appendix B.1): 1705

Z = I2BS(z, nLen). 1706

4. Output the string Z as the secret value (i.e., the shared secret), or an error indicator. 1707

Output: 1708

Z: the secret value/shared secret (a byte string of nLen bytes), or an error indicator. 1709

Note: 1710

Care should be taken to ensure that an implementation does not reveal information about the 1711
encapsulated secret value (i.e., the value of the integer z or its byte string equivalent Z). For 1712
instance, the observable behavior of the I2BS routine should not reveal even partial 1713
information about the byte string Z. An opponent who can reliably obtain particular bits of Z 1714
for sufficiently many chosen ciphertext values may be able to obtain the full decryption of an 1715
arbitrary RSA-encrypted value by applying the bit-security results of Håstad and Näslund [HN 1716
1998]. 1717

A routine that implements this operation shall destroy any local copies of the private key, any 1718
locally stored portions of Z and z, and any other potentially sensitive locally stored values used or 1719
produced during its execution. Their destruction shall occur prior to or during any exit from the 1720
routine (whether exiting early because of an error or exiting normally with the output of Z). Note 1721
that the requirement for destruction includes any locally stored portions of the output. 1722

7.2.2 RSA with Optimal Asymmetric Encryption Padding (RSA-OAEP) 1723
RSA-OAEP consists of asymmetric encryption and decryption operations that are based on an 1724
approved hash function, an approved random bit generator, a mask-generation function, and the 1725
RSAEP and RSADP primitives. These operations are used by the KTS-OAEP key-transport 1726
scheme (see Section 9.2). 1727

In the RSA-OAEP encryption operation, a data block is constructed by the sender (party U) from 1728
the keying material to be transported and the hash of additional input (see Section 9.1) that is 1729

23 When the private key is represented in the prime-factor or CRT format, appropriate changes are discussed in

Section 7.1.2.

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

65

shared by party U and the intended receiving party (party V). A random byte string is generated, 1730
after which both the random byte string and the data block are masked in a way that binds their 1731
values. The masked values are used to form the plaintext that is input to the RSAEP primitive, 1732
along with the public key-establishment key of party V. The resulting RSAEP output further binds 1733
the random byte string, the keying material and the hash of the additional data in the ciphertext 1734
that is sent to party V. 1735

In the RSA-OAEP decryption operation, the ciphertext and the receiving party’s (i.e., party V’s) 1736
private key-establishment key are input to the RSADP primitive, recovering the masked values as 1737
output. The mask-generation function is then used to reconstruct and remove the masks that 1738
obscure the random byte string and the data block. After removing the masks, party V can examine 1739
the format of the recovered data and compare its own computation of the hash of the additional 1740
data to the hash value contained in the unmasked data block, thus obtaining some measure of 1741
assurance of the integrity of the recovered data – including the transported keying material. 1742

RSA-OAEP can process up to nLen – 2HLen – 2 bytes of keying material, where nLen is the byte 1743
length of the recipient’s RSA modulus, and HLen is the byte length of the values output by the 1744
underlying hash function. 1745

7.2.2.1 RSA-OAEP Components 1746
RSA-OAEP uses the following components: 1747

1. H: An approved hash function (see Section 5.1). HLen is used to denote the 1748
byte length of the hash function output. 1749

2. MGF: The mask-generation function (see Section 7.2.2.2). The MGF employs a 1750
hash function hash. This hash function need not be the same as the hash 1751
function H used in step 3a of Section 7.2.2.3 and step 4a of Section 7.2.2.4. 1752

3. RBG: An approved random bit generator (see Section 5.3). 1753

4. RSAEP: RSA Encryption Primitive (see Section 7.1.1). 1754

5. RSADP: RSA Decryption Primitive (see Section 7.1.2). 1755

7.2.2.2 The Mask Generation Function (MGF) 1756
MGF is a mask-generation function based on an approved hash function (see Section 5.1). The 1757
purpose of the MGF is to generate a string of bits that may be used to “mask” other bit strings. The 1758
MGF is used by the RSA-OAEP-based schemes specified in Section 9.2. 1759

Let hash be an approved hash function. 1760

For the purposes of this Recommendation, the MGF shall not be invoked more than once by each 1761
party during a given transaction using a given MGF seed (i.e., a mask shall be derived only once 1762
by each party from a given MGF seed). 1763

Function call: MGF(mgfSeed, maskLen) 1764

Auxiliary Function: 1765

hash: an approved hash function (see Section 5.1). 1766

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

66

Implementation-Dependent Parameters: 1767

1. hashLen: an integer that indicates the byte length of the output block of the auxiliary hash 1768
function, hash. 1769

2. max_hash_inputLen: an integer that indicates the maximum-permitted byte length of the 1770
bit string, x, that is used as input to the auxiliary hash function, hash. 1771

Input: 1772

1. mgfSeed: a byte string from which the mask is generated. 1773

2. maskLen: the intended byte length of the mask. 1774

Process: 1775

1. If maskLen > 232 hashLen, output an error indicator, and exit from this process without 1776
performing the remaining actions. 1777

2. If mgfSeed is more than max_hash_inputLen bytes in length, then output an error indicator, 1778
and exit this process without performing the remaining actions. 1779

3. Set T = the null string. 1780

4. For counter from 0 to  maskLen / hashLen  – 1, do the following: 1781
a) Let D = I2BS(counter, 4) (see Appendix B.1). 1782

b) Let T = T || hash(mgfSeed || D). 1783

 5. Output the leftmost maskLen bytes of T as the byte string mask. 1784

Output: 1785

The byte string mask (of maskLen bytes), or an error indicator. 1786

A routine that implements this function shall destroy any local copies of the input mgfSeed, any 1787
locally stored portions of mask (e.g., any portion of T), and any other potentially sensitive locally 1788
stored values used or produced during its execution. Their destruction shall occur prior to or during 1789
any exit from the routine (whether exiting early because of an error or exiting normally with the 1790
output of mask). Note that the requirement for destruction includes any locally stored portions of 1791
the output. 1792

7.2.2.3 RSA-OAEP Encryption Operation (RSA-OAEP.ENCRYPT) 1793
The RSA-OAEP.ENCRYPT operation produces ciphertext from keying material and additional 1794
input using an RSA public key, as shown in Figure 4. See Section 9.1 for more information on the 1795
additional input. Let HLen be the byte length of the output of hash function H. 1796

Function call: RSA-OAEP.ENCRYPT((n, e), K, A) 1797

Input: 1798

1. (n, e): the receiver’s RSA public key. 1799

2. K: the keying material; a byte string of at most nLen – 2HLen – 2 bytes, where nlen is the 1800
byte length of n. 1801

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

67

3. A: additional input; a byte string (may be the Null string) to be cryptographically bound to 1802
the keying material (see Section 9.1). 1803

Assumptions: The RSA public key is valid. 1804

Process: 1805

1. nLen = = len(n)/8, the byte length of n. 1806
2. Length checking: 1807

a. KLen = = len(K)/8, the byte length of K. 1808

b. If KLen > nLen – 2HLen – 2, then output an indication that the keying material is 1809
too long, and exit without further processing. 1810

3. OAEP encoding: 1811

a. Apply the selected hash function to compute: 1812

HA = H(A). 1813

HA is a byte string of HLen bytes. If A is an empty string, then HA is the hash value 1814
for the empty string. 1815

b. Construct a byte string PS consisting of nLen – KLen – 2HLen – 2 zero bytes. The 1816
length of PS may be zero. 1817

c. Concatenate HA, PS, a single byte with a hexadecimal value of 01, and the keying 1818
material K to form data DB of nLen – HLen – 1 bytes as follows: 1819

DB = HA || PS || 00000001 || K, 1820

where 00000001 is a string of eight bits. 1821

d. Using the RBG (see Section 5.3), generate a random byte string mgfSeed of HLen 1822
bytes. 1823

e. Apply the mask-generation function in Section 7.2.2.2 to compute: 1824

dbMask = MGF(mgfSeed, nLen – HLen – 1). 1825

f. Let maskedDB = DB ⊕ dbMask. 1826
g. Apply the mask-generation function in Section 7.2.2.2 to compute: 1827

mgfSeedMask = MGF(maskedDB, HLen). 1828

h. Let maskedMGFSeed = mgfSeed ⊕ mgfSeedMask. 1829

i. Concatenate a single byte with hexadecimal value 00, maskedMGFSeed, and 1830
maskedDB to form an encoded message EM of nLen bytes as follows: 1831

EM = 00000000 || maskedMGFSeed || maskedDB 1832

where 00000000 is a sting of eight bits. 1833

4. RSA encryption: 1834

a. Convert the encoded message EM to an integer em (see Appendix B.2): 1835

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

68

em = BS2I(EM). 1836

b. Apply RSAEP (see Section 7.1.1) to the integer em using the public key (n, e) to 1837
produce a ciphertext integer c: 1838

c = RSAEP((n, e), em). 1839

c. Convert the ciphertext integer c to a ciphertext byte string C of nLen bytes (see 1840
Appendix B.1): 1841

C = I2BS(c, nLen). 1842

5. Zeroize all intermediate values and output the ciphertext C. 1843

Output: C: the ciphertext (a byte string of nLen bytes), or an error indicator. 1844

A routine that implements this operation shall destroy any local copies of sensitive input values 1845
(e.g., K and any sensitive portions of A), as well as any other potentially sensitive locally stored 1846
values used or produced during its execution (including HA, DB, mfgSeed, dbMask, maskedDB, 1847
mgfSeedMask, maskedMGFSeed, EM, and em). Their destruction shall occur prior to or during 1848
any exit from the routine – whether exiting early because of an error or exiting normally with the 1849
output of C. 1850

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

69

 1851

Figure 4: RSA-OAEP Encryption Operation 1852

7.2.2.4 RSA-OAEP Decryption Operation (RSA-OAEP.DECRYPT) 1853
RSA-OAEP.DECRYPT recovers keying material from a ciphertext and additional input using an 1854
RSA private key as shown in Figure 5. Let HLen be the byte length of the output of hash function 1855
H. 1856

Function call: RSA-OAEP.DECRYPT((n, d), C, A) 1857

Input: 1858

1. (n, d): the receiver’s RSA private key. 1859

2. C: the ciphertext; a byte string. 1860

3. A: additional input; a byte string (may be the empty string) whose cryptographic binding 1861
to the keying material is to be verified (see Section 9.1). 1862

Assumptions: The RSA private key is valid. 1863

DB = HA PS 01 K

mgfSeed

MGF

MGF

EM = 00 maskedMGFSeed maskedDB

BS2I

RSAEP

I2BS

C

DB = HA PS 01 K

mgfSeed

MGF

MGF

EM = 00 maskedMGFSeed maskedDB

BS2I BS2I

RSAEPRSAEP

I2BSI2BS

C

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

70

Process: 1864

1. Initializations: 1865

a. nLen = the byte length of n. For this Recommendation, nLen ≥ 256. 1866
b. DecryptErrorFlag = False. 1867

2. Check for erroneous input: 1868

a. If the length of the ciphertext C is not nLen bytes, output an indication of erroneous 1869
input, and exit without further processing. 1870

b. Convert the ciphertext byte string C to a ciphertext integer c 1871
(see Appendix B.2): 1872

c = BS2I(C). 1873

c. If the ciphertext integer c is not such that 1 < c < n – 1, output an indication of 1874
erroneous input, and exit without further processing. 1875

3. RSA decryption: 1876

a. Apply RSADP (see Section 7.1.2) to the ciphertext integer c using the private key 1877
(n, d) to produce an integer em: 1878

em = RSADP((n, d), c).24 1879

b. Convert the integer em to an encoded message EM, a byte string of nLen bytes (see 1880
Appendix B.1): 1881

EM = I2BS(em, nLen). 1882

4. OAEP decoding: 1883

a. Apply the selected hash function (see Section 5.1) to compute: 1884

HA = H(A). 1885

HA is a byte string of HLen bytes. 1886

b. Separate the encoded message EM into a single byte Y, a byte string 1887
maskedMGFSeed′ of HLen bytes, and a byte string maskedDB′ of nLen – HLen – 1 1888
bytes as follows: 1889

EM = Y || maskedMGFSeed′ || maskedDB′. 1890

c. Apply the mask-generation function specified in Section 7.2.2.2 to compute: 1891

mgfSeedMask′ = MGF(maskedDB′, HLen). 1892

d. Let mgfSeed′ = maskedMGFSeed′ ⊕ mgfSeedMask′. 1893

e. Apply the mask-generation function specified in Section 7.2.2.2 to compute: 1894

24 When the private key is represented in the prime-factor or CRT format, appropriate changes are discussed in

Section 7.1.2.

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

71

dbMask′= MGF(mgfSeed′, nLen – HLen – 1). 1895

f. Let DB′ = maskedDB′ ⊕ dbMask′. 1896

g. Separate DB′ into a byte string HA′ of HLen bytes and a byte string X of nLen – 1897
2HLen – 1 bytes as follows: 1898

DB′ = HA′ || X. 1899

5. Check for RSA-OAEP decryption errors: 1900

a. DecryptErrorFlag = False. 1901

b. If Y is not the 00 byte (i.e., the bit string 00000000), then DecryptErrorFlag = True. 1902

c. If HA′ does not equal HA, then DecryptErrorFlag = True. 1903

d. If X does not have the form PS || 00000001 || K, where PS consists of zero or more 1904
consecutive 00 bytes, then DecryptErrorFlag = True. 1905

The type(s) of any error(s) found shall not be reported. 1906
(See the notes below for more information.) 1907

6. Output of the decryption process: 1908

a. If DecryptErrorFlag = True, then output an indication of an (unspecified) 1909
decryption error, and exit without further processing. (See the notes below for more 1910
information.) 1911

b. Otherwise, output K, the portion of the byte string X that follows the leading 01 1912
byte. 1913

Output: 1914

K: the recovered keying material (a byte string of at most nLen – 2HLen − 2 bytes), or an error 1915
indicator. 1916

A routine that implements this operation shall destroy any local copies of sensitive input values 1917
(including the private key and any sensitive portions of A), any locally stored portions of K, and 1918
any other potentially sensitive locally stored values used or produced during its execution 1919
(including DecryptErrorFlag, em, EM, HA, Y, maskedMGFSeed ′, maskedDB′, mgfSeedMask ′, 1920
mfgSeed ′, dbMask ′, DB′, HA′, and X). Their destruction shall occur prior to or during any exit 1921
from the routine – whether exiting because of an error, or exiting normally with the output of K. 1922
Note that the requirement for destruction includes any locally stored portions of the recovered 1923
keying material. 1924

Notes: 1925

1. Care should be taken to ensure that the different error conditions that may be detected in 1926
step 5 above cannot be distinguished from one another by an opponent, whether by an error 1927
message or by process timing. Otherwise, an opponent may be able to obtain useful 1928
information about the decryption of a chosen ciphertext C, leading to the attack observed 1929
by Manger in [Manger 2001]. A single error message should be employed and output the 1930
same way for each type of decryption error. There should be no difference in the 1931
observable behavior for the different RSA-OAEP decryption errors. 1932

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

72

2. In addition, care should be taken to ensure that even if there are no errors, an 1933
implementation does not reveal partial information about the encoded message em or EM. 1934
For instance, the observable behavior of the mask-generation function should not reveal 1935
even partial information about the MGF seed employed in the process (since that could 1936
compromise portions of the maskedDB′ segment of EM). An opponent who can reliably 1937
obtain particular bits of EM for sufficiently many chosen-ciphertext values may be able to 1938
obtain the full decryption of an arbitrary ciphertext by applying the bit-security results of 1939
Håstad and Näslund [HN 1998]. 1940

 1941

Figure 5: RSA-OAEP Decryption Operation 1942

EM = Y maskedMGFSeed’ maskedDB’

MGF

BS2I

RSADP

I2BS

C

MGF

DB’ = HA’ X

EM = Y maskedMGFSeed’ maskedDB’

MGF MGF

BS2I BS2I

RSADPRSADP

I2BSI2BS

C

MGF MGF

DB’ = HA’ X

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

73

8 Key-Agreement Schemes 1943

In a key-agreement scheme, two parties, party U and party V, establish keying material over which 1944
neither has complete control of the result, but both have influence. This Recommendation provides 1945
two families of key-agreement schemes: KAS1 and KAS2. The KAS1 family consists of the 1946
KAS1-basic and KAS1-Party_V-confirmation schemes, and the KAS2 family consists of the 1947
KAS2-basic, KAS2-Party_V-confirmation, KAS2-Party_U-confirmation, and KAS2-1948
bilateral-confirmation schemes. These schemes are based on secret-value encapsulation (see 1949
Section 7.2.1). 1950

Key confirmation is included in some of these schemes to provide assurance that the participants 1951
share the same keying material; see Section 5.6 for the details of key confirmation. When possible, 1952
each party should have such assurance. Although other methods are often used to provide this 1953
assurance, this Recommendation makes no statement as to the adequacy of these other methods. 1954
Key confirmation may also provide assurance of private-key possession. 1955

For each of the KAS1 and KAS2 schemes, Party V shall have an identifier, IDV, that has an 1956
association with the key pair that is known (or discoverable) and trusted by party U (i.e., there 1957
shall be a trusted association between IDV and party V’s public key). For the KAS2 key-agreement 1958
schemes, party U shall also have such an identifier, IDU. 1959

A general flow diagram is provided for each key-agreement scheme. The dotted-line arrows 1960
represent the distribution of public keys by the parties themselves or by a third party, such as a 1961
Certification Authority (CA). The solid-line arrows represent the distribution of nonces or 1962
cryptographically protected values that occur during the key-agreement scheme. Note that the flow 1963
diagrams in this Recommendation omit explicit mention of various validation checks that are 1964
required. The flow diagrams and descriptions in this Recommendation assume a successful 1965
completion of the key-agreement process. 1966

For each scheme, there are conditions that must be satisfied to enable proper use of that scheme. 1967
These conditions are listed as assumptions. Failure to meet all such conditions could yield 1968
undesirable results, such as the inability to communicate or the loss of security. As part of the 1969
proper implementation of this Recommendation, system users and/or agents trusted to act on their 1970
behalf (including application developers, system installers, and system administrators) are 1971
responsible for ensuring that all assumptions are satisfied at the time that a key-establishment 1972
transaction takes place. 1973

8.1 Common Components for Key Agreement 1974

The key-agreement schemes in this Recommendation have the following common components: 1975

1. RSASVE: RSA secret-value encapsulation, consisting of a generation operation 1976
RSASVE.GENERATE and a recovery operation RSASVE.RECOVER (see Section 1977
7.2.1). 1978

2. KDM: A key-derivation method (see Section 5.5). 1979

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

74

8.2 KAS1 Key Agreement 1980

For the KAS1 key-agreement schemes, even if both parties have key-establishment key pairs, only 1981
party V’s key-establishment key pair is used. 1982

The KAS1 key-agreement schemes have the following general form: 1983

1. Party U generates a secret value (which will become a shared secret) and a corresponding 1984
ciphertext using the RSASVE.GENERATE operation and party V’s public key-establishment 1985
key, and then sends the ciphertext to party V. 1986

2. Party V recovers the secret value from the ciphertext using the RSASVE.RECOVER 1987
operation and its private key-establishment key; the secret value is then considered to be 1988
the shared secret. Party V generates a nonce and sends it to party U. 1989

3. Both parties then derive keying material from the shared secret and “other information”, 1990
including party V’s nonce, using a key-derivation method. The length of the keying 1991
material that can be agreed on is limited only by the length that can be output by the key-1992
derivation method. 1993

4. If key confirmation (KC) is incorporated in the scheme, then the derived keying material 1994
is parsed into two parts, MacKey and KeyData, and a MacData string is formed (see 1995
Sections 5.6 and 8.2.3.2.), MacKey and MacData are used to compute a MAC tag of 1996
MacTagBits bits (see Sections 5.2.1, 5.2.2, 5.6.1 and 5.6.3), and MacTag is sent from party 1997
V (the KC provider) to party U (the KC recipient). If the MAC tag computed by party V 1998
matches the MAC tag (re)computed by party U, then the successful establishment of keying 1999
material is confirmed to party U. 2000

The following schemes are defined: 2001

1. KAS1-basic, the basic scheme without key confirmation (see Section 8.2.2). 2002

2. KAS1-Party_V-confirmation, a variant of KAS1-basic with unilateral key confirmation 2003
provided by party V to party U (see Section 8.2.3). 2004

For the security properties of the KAS1 key-agreement schemes, see Section 10.1. 2005

8.2.1 KAS1 Assumptions 2006
1. Party V has been designated as the owner of a key-establishment key pair that was 2007

generated as specified in Section 6.3. Party V has assurance of possession of the correct 2008
value for its private key as specified in Section 6.4.1.5. 2009

2. Party U and party V have agreed upon an approved key-derivation method (see Section 2010
5.5), as well as an approved algorithm to be used with that method (e.g., a specific hash 2011
function) and other associated parameters related to the cryptographic elements to be used. 2012

3. If key confirmation is used, party U and party V have agreed upon an approved MAC 2013
algorithm and associated parameters, including the lengths of MacKey and MacTag (see 2014
Section 5.2). 2015

4. When an identifier is used to label either party during the key-agreement process, both 2016
parties are aware of the particular identifier employed for that purpose. In particular, when 2017
an identifier is used to label party V during the key-agreement process, that identifier’s 2018

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

75

association with party V’s public key is trusted by party U. When an identifier is used to 2019
label party U during the key-agreement process, it has been selected/assigned in accordance 2020
with the requirements of the protocol relying upon the use of the key-agreement scheme. 2021

5. Party U has obtained assurance of the validity of party V’s public key, as specified in 2022
Section 6.4.2. 2023

The following is an assumption for using any keying material derived during a KAS1 key-2024
agreement scheme for purposes beyond those of the scheme itself. 2025

Party U has obtained (or will obtain) assurance that party V is (or was) in possession of the 2026
private key corresponding to the public key used during the key-agreement transaction, as 2027
specified in Section 6.4.2.3. 2028

This assumption recognizes the possibility that assurance of private-key possession may be 2029
provided/obtained by means of key confirmation performed as part of a particular KAS1 2030
transaction. 2031

8.2.2 KAS1-basic 2032
KAS1-basic is the basic key-agreement scheme in the KAS1 family. In this scheme, party V does 2033
not contribute to the formation of the shared secret; instead, a nonce is used as a party V-selected 2034
contribution to the key-derivation method, ensuring that both parties influence the derived keying 2035
material. 2036

Let (PubKeyV, PrivKeyV) be party V’s key-establishment key pair. Let KBits be the intended length 2037
in bits of the keying material to be established. The parties shall perform the following or an 2038
equivalent sequence of steps, as illustrated in Figure 6. 2039

Party U Party V

 (PubKeyV, PrivKeyV)

Obtain party V’s public key-establishment
key

PubKeyV

(Z, C) = RSASVE.GENERATE(PubKeyV) C Z = RSASVE.RECOVER(PrivKeyV, C)

Compute DerivedKeyingMaterial and
Destroy Z

NV Compute DerivedKeyingMaterial and
Destroy Z

Figure 6: KAS1-basic Scheme 2040

Party U shall execute the following key-agreement steps in order to a) establish a shared secret Z 2041
with party V, and b) derive secret keying material from Z. 2042

Actions: Party U generates a shared secret and derives secret keying material as follows: 2043

1. Use the RSASVE.GENERATE operation in Section 7.2.1.2 to generate a secret value Z and 2044
a corresponding ciphertext C using party V’s public key-establishment key, PubKeyV. Note 2045
that the secret value Z will become a shared secret when recovered by Party V. 2046

2. Send the ciphertext C to party V. 2047

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

76

3. Obtain party V’s nonce NV from party V. If NV is not available, return an error indicator 2048
without performing the remaining actions. 2049

4. Assemble the OtherInput for key derivation, including the required nonce, NV, and any 2050
other requisite information (see Section 5.5). 2051

5. Use the agreed-upon key-derivation method (see Section 5.5) to derive secret keying 2052
material of the agreed-upon length from the shared secret value Z and OtherInput (see step 2053
4). If the key-derivation method outputs an error indicator, return an error indicator without 2054
performing the remaining actions. 2055

6. Output the DerivedKeyingMaterial. 2056

Any local copies of Z, OtherInput, DerivedKeyingMaterial and any intermediate values used 2057
during the execution of party U’s actions shall be destroyed prior to the early termination of the 2058
actions due to an error, or (in the absence of errors), prior to or during the the completion of step 2059
6. 2060

Party V shall execute the following key-agreement steps in order to a) establish a shared secret Z 2061
with party U, and b) derive secret keying material from Z. 2062

Actions: Party V obtains the shared secret and derives secret keying material as follows: 2063

1. Receive a ciphertext C from party U. 2064

2. Use the RSASVE.RECOVER operation in Section 7.2.1.3 to recover the secret value Z from 2065
the ciphertext C using the private key-establishment key, PrivKeyV; hereafter, Z is 2066
considered to be a shared secret. If the call to RSASVE.RECOVER outputs an error indicator, 2067
return an error indicator without performing the remaining actions. 2068

3. Obtain a nonce NV (see Section 5.4) and send NV to party U. 2069

4. Construct the other information OtherInput for key derivation (see Section 5.5) using the 2070
nonce NV and the identifiers IDU and IDV, if available. 2071

5. Use the agreed-upon key-derivation method to derive secret keying material with the 2072
agreed upon length from the shared secret value Z and other input. If the key-derivation 2073
method outputs an error indicator, return an error indicator without performing the 2074
remaining actions. 2075

6. Output the DerivedKeyingMaterial. 2076

Any local copies of Z, PrivKeyV, OtherInput DerivedKeyingMaterial and any intermediate values 2077
used during the execution of party V’s actions shall be destroyed prior to the early termination of 2078
the actions due to an error, or (in the absence of errors) prior to or during the the completion of 2079
step 6. 2080

The messages may be sent in a different order, i.e., NV may be sent before C. 2081

It is extremely important that an implementation not reveal any sensitive information. It is also 2082
important to conceal partial information about the shared secret Z to prevent chosen-ciphertext 2083
attacks on the secret-value encapsulation scheme. 2084

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

77

8.2.3 KAS1 Key Confirmation 2085
The KAS1-Party_V-confirmation scheme is based on the KAS1-basic scheme. 2086

8.2.3.1 KAS1 Key-Confirmation Components 2087
The components for KAS1 key agreement with key confirmation are the components listed in 2088
Section 8.1, plus the following: 2089

MAC: A message authentication code algorithm with the following parameters (see Section 2090
5.2), 2091

a. MacKeyLen: the byte length of MacKey, and 2092

b. MacTagLen: the byte length of MacTag. (MacTagBits, as used in Section 5.2, is equal 2093
to 8 × MacTagLen.) 2094

MacKey shall be the first MacKeyLen bytes of the keying material and shall be used only for the 2095
key-confirmation operation of a single transaction. For KAS1 key confirmation, the length of the 2096
derived keying material shall be at least MacKeyLen bytes in length. The keying material is 2097
usually longer than MacKeyLen bytes so that other keying material is available for subsequent 2098
operations. 2099

8.2.3.2 KAS1-Party_V-confirmation 2100
Figure 7 depicts a typical flow for a KAS1 scheme with unilateral key confirmation from party V 2101
to party U. In this scheme, party V and party U assume the roles of key-confirmation provider and 2102
recipient, respectively. 2103

Party U Party V

 (PubKeyV, PrivKeyV)

Obtain party V’s public key-establishment
key

PubKeyV

(Z, C) = RSASVE.GENERATE(PubKeyV) C Z = RSASVE.RECOVER(PrivKeyV, C)

Compute DerivedKeyingMaterial and
Destroy Z

NV Compute DerivedKeyingMaterial and
Destroy Z

MacTagV =?
TMacTagBits[MAC(MacKey, MacDataV)] MacTagV MacTagV =

TMacTagBits[MAC(MacKey, MacDataV)

Figure 7: KAS1-Party_V-confirmation Scheme (from Party V to Party U) 2104

To provide (and receive) key confirmation (as described in Section 5.6.1), both parties set 2105
EphemDataV = NV, and EphemDataU = C: 2106

Party V provides MacTagV to party U (as specified in Section 5.6.1, with P = V and R = U), where 2107
MacTagV is computed (as specified in Section 5.2.1) using 2108

MacDataV = “KC_1_V” || IDV || IDU || NV || C{ || TextV}. 2109

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

78

Party U uses the identical format and values to compute TMacTagBits[MAC(MacKey, MacDataV), and 2110
then verify that it matches the MacTagV value provided by party V. 2111

The MacKey used during key confirmation shall be destroyed by party V immediately after the 2112
computation of MacTagV, and by party U immediately after the verification of the received 2113
MacTagV or a (final) determination that the received MacTagV is in error. 2114

Certain messages may be combined or sent in a different order (e.g., NV and MacTagV may be sent 2115
together, or NV may be sent before C). 2116

8.3 KAS2 Key Agreement 2117

In this family of key-agreement schemes, key-establishment key pairs are used by both party U 2118
and party V. 2119

The schemes in this family have the following general form: 2120

1. Party U generates a secret value (which will become a component of the shared secret) and 2121
a corresponding ciphertext using the RSASVE.GENERATE operation and party V’s public 2122
key-establishment key, and sends the ciphertext to party V. 2123

2. Party V recovers party U’s secret component from the ciphertext received from party U 2124
using the RSASVE.RECOVER operation and its private key-establishment key. 2125

3. Party V generates a secret value (which will become a second component of the shared 2126
secret) and the corresponding ciphertext using the RSASVE.GENERATE operation and 2127
party U’s public key-establishment key, and sends the ciphertext to party U. 2128

4. Party U recovers party V’s secret component from the ciphertext received from party V 2129
using the RSASVE.RECOVER operation and its private key-establishment key. 2130

5. Both parties concatenate the two secret components to form the shared secret, and then 2131
derive keying material from the shared secret and “other information” using a key-2132
derivation method. The length of the keying material that can be agreed on is limited only 2133
by the length that can be output by the key-derivation method. 2134

6. Party U and/or party V may additionally provide key confirmation. If key confirmation is 2135
incorporated, then the derived keying material is parsed into two parts, MacKey and 2136
KeyData. MacKey is then used to compute a MAC tag of MacTagLen bytes on MacData 2137
(see Sections 5.2.1, 5.2.2, 5.6.1 and 5.6.3). MacTag is sent from the KC provider to the KC 2138
recipient. If the MAC tag computed by the provider matches the MAC tag computed by 2139
the recipient, then the successful establishment of keying material is confirmed by the 2140
recipient. 2141

The following schemes are defined: 2142

1. KAS2-basic, the basic scheme without key confirmation (see Section 8.3.2). 2143

2. KAS2-Party_V-confirmation, a variant of KAS2-basic with unilateral key confirmation 2144
provided by party V to party U (see Section 8.3.3.2). 2145

3. KAS2-Party_U-confirmation, a variant of KAS2-basic with unilateral key confirmation 2146
probided by party U to party V (see Section 8.3.3.3). 2147

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

79

4. KAS2-bilateral-confirmation, a variant of KAS2-basic with bilateral key confirmation 2148
between party U and party V (see Section 8.3.3.4). 2149

For the security properties of the KAS2 key-agreement schemes, see Section 10.2. 2150

8.3.1 KAS2 Assumptions 2151
1. Each party has been designated as the owner of a key-establishment key pair that was 2152

generated as specified in Section 6.3. Prior to or during the key-agreement process, each 2153
party has obtained assurance of its possession of the correct value for its own private key 2154
as specified in Section 6.4.1.5. 2155

2. The parties have agreed upon an approved key-derivation method (see Section 5.5), as 2156
well as an approved algorithm to be used with that method (e.g., a specific hash function) 2157
and other associated parameters to be used for key derivation. 2158

3. If key confirmation is used, party U and party V have agreed upon an approved MAC 2159
algorithm and associated parameters, including the lengths of MacKey and MacTag (see 2160
Section 5.2). The parties must also agree on whether one party or both parties will send 2161
MacTag, and in what order. 2162

4. When an identifier is used to label a party during the key-agreement process, that identifier 2163
has a trusted association to that party’s public key. (In other words, whenever both the 2164
identifier and public key of one participant are employed in the key-agreement process, 2165
they are associated in a manner that is trusted by the other participant.) When an identifier 2166
is used to label a party during the key-agreement process, both parties are aware of the 2167
particular identifier employed for that purpose. 2168

5. Each party has obtained assurance of the validity of the public keys that are used during 2169
the transaction, as specified in Section 6.4.2.3. 2170

The following is an assumption for using any keying material derived during a KAS2 key-2171
agreement scheme for purposes beyond those of the scheme itself. 2172

Each party has obtained (or will obtain) assurance that the other party is (or was) in possession 2173
of the private key corresponding to their public key that was used during the key-agreement 2174
transaction, as specified in Section 6.4.2.3. 2175

This assumption recognizes the possibility that assurance of private-key possession may be 2176
provided/obtained by means of key confirmation performed as part of a particular KAS2 2177
transaction. 2178

8.3.2 KAS2-basic 2179
Figure 8 depicts the typical flow for the KAS2-basic scheme. The parties exchange secret values 2180
that are concatenated to form the mutually determined shared secret to be input to the key-2181
derivation method. 2182

Party U shall execute the following key-agreement steps in order to a) establish a mutually 2183
determined shared secret Z with party V, and b) derive secret keying material from Z. 2184

Actions: Party U generates a shared secret and derives secret keying material as follows: 2185

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

80

1. Use the RSASVE.GENERATE operation in Section 7.2.1.2 to generate a secret value ZU and 2186
a corresponding ciphertext CU using party V’s public key-establishment key PubKeyV. 2187

2. Send the ciphertext CU to party V. 2188

3. Receive a ciphertext CV from party V. If CV is not available, return an error indicator 2189
without performing the remaining actions. 2190

4. Use the RSASVE.RECOVER operation in Section 7.2.1.3 to recover ZV from the ciphertext 2191
CV using the private key-establishment key PrivKeyU. If the call to RSASVE.RECOVER 2192
outputs an error indicator, return an error indicator without performing the remaining 2193
actions. 2194

5. Construct the mutually determined shared secret Z from ZU and ZV 2195

Z = ZU || ZV. 2196

6. Assemble the OtherInput for key derivation, including all requisite information (see 2197
Section 5.5). 2198

7 Use the agreed-upon key-derivation method (see Section 5.5) to derive secret keying 2199
material with the specified length from the shared secret Z and other input. If the key-2200
derivation method outputs an error indicator, return an error indicator without performing 2201
the remaining actions. 2202

8. Output the DerivedKeyingMaterial. 2203

Any local copies of Z, ZU, ZV, PrivKeyU, OtherInput, DerivedKeyingMaterial and any intermediate 2204
values used during the execution of party U’s actions shall be destroyed prior to the early 2205
termination of the actions due to an error, or (in the absence of errors), prior to or during the 2206
completion of step 8. 2207

Party U Party V

(PubKeyU, PrivKeyU) (PubKeyV, PrivKeyV)

Obtain party V’s public key-
establishment key

PubKeyV
←   

 PubKeyU
    →

Obtain party U’s public key-
establishment key

(ZU, CU) =
RSASVE.GENERATE(PubKeyV)

CU
→

ZU =
RSASVE.RECOVER(PrivKeyV, CU)

ZV =
RSASVE.RECOVER(PrivKeyU, CV)

CV
←

(ZV, CV) =
RSASVE.GENERATE(PubKeyU)

Z = ZU || ZV Z = ZU || ZV

Compute DerivedKeyingMaterial
and destroy Z Compute DerivedKeyingMaterial

and destroy Z

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

81

Figure 8: KAS2-basic Scheme 2208

Party V shall execute the following key-agreement steps in order to a) establish a mutually 2209
determined shared secret Z with party U, and b) derive secret keying material from Z. 2210

Actions: Party V generates a shared secret and derives secret keying material as follows: 2211

1. Receive a ciphertext CU from party U. 2212

2. Use the RSASVE.RECOVER operation in Section 7.2.1.3 to recover ZU from the ciphertext 2213
CU using the private key-establishment key PrivKeyU. If the call to RSASVE.RECOVER 2214
outputs an error indicator, return an error indicator without performing the remaining 2215
actions. 2216

3. Use the RSASVE.GENERATE operation in Section 7.2.1.2 to generate a secret value ZV and 2217
a corresponding ciphertext CV using party U’s public key-establishment key PubKeyU. 2218

4. Send the ciphertext CV to party U. 2219

5. Construct the mutually determined shared secret Z from ZU and ZV 2220

Z = ZU || ZV. 2221

6. Assemble the OtherInput for key derivation, including all requisite information (see 2222
Section 5.5). 2223

7. Use the agreed-upon key-derivation method (see Section 5.5) to derive KBits of secret 2224
keying material DerivedKeyingMaterial from the shared secret Z and OtherInput. If the 2225
key-derivation method outputs an error indicator, return an error indicator without 2226
performing the remaining actions. 2227

8. Output the DerivedKeyingMaterial. 2228

Any local copies of Z, ZU, ZV, PrivKeyV, OtherInput, DerivedKeyingMaterial and any intermediate 2229
values used during the execution of party V’s actions shall be destroyed prior to the early 2230
termination of the actions due to an error, or (in the absence of errors), prior to or during the 2231
completion of step 8. 2232

The messages may be sent in a different order, i.e., CV may be sent before CU. 2233
It is extremely important that an implementation not reveal any sensitive information. It is also 2234
important to conceal partial information about ZU, ZV and Z to prevent chosen-ciphertext attacks 2235
on the secret-value encapsulation scheme. In particular, the observable behavior of the key-2236
agreement process should not reveal partial information about the shared secret Z. 2237

8.3.3 KAS2 Key Confirmation 2238
The KAS2 key-confirmation schemes are based on the KAS2-basic scheme. 2239

8.3.3.1 KAS2 Key-Confirmation Components 2240
The components for KAS2 key agreement with key confirmation are the components in Section 2241
8.1, plus the following: 2242

MAC: A message authentication code algorithm with the following parameters (see Section 2243
5.2) 2244

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

82

a. MacKeyLen: the byte length of MacKey. 2245

b. MacTagLen: the byte length of MacTag. (MacTagBits, as used in Section 5.2, is equal 2246
to 8 × MacTagLen.) 2247

MacKey shall be the first MacKeyLen bytes of the keying material and shall be used only for the 2248
key-confirmation operation of a single transaction. For KAS2 key confirmation, the length of the 2249
keying material shall be at least MacKeyLen bytes. The keying material is usually longer than 2250
MacKeyLen bytes so that other keying material is available for subsequent operations. 2251

8.3.3.2 KAS2-Party_V-confirmation 2252
Figure 9 depicts a typical flow for a KAS2 scheme with unilateral key confirmation from party V 2253
to party U. In this scheme, party V and party U assume the roles of the key-confirmation 2254
provider and recipient, respectively. 2255

Party U Party V

(PubKeyU, PrivKeyU) (PubKeyV, PrivKeyV)

Obtain party V’s public key-
establishment key

PubKeyV
←   

 PubKeyU
    →

Obtain party U’s public key
establishment-key

(ZU, CU) =
RSASVE.Generate(PubKeyV)

CU
→ ZU = RSASVE.Recover(PrivKeyV, CU)

ZV =
RSASVE.RECOVER(PrivKeyU, CV)

CV
←

(ZV, CV) =
RSASVE.GENERATE(PubKeyU)

Z = ZU || ZV Z = ZU || ZV

Compute DerivedKeyingMaterial =
MacKey || KeyData and destroy Z Compute DerivedKeyingMaterial =

MacKey || KeyData and destroy Z

MacTagV =?
TMacTagBits[MAC(MacKey, MacDataV)]

MacTagV
←

MacTagV =
TMacTagBits[MAC(MacKey, MacDataV)]

Figure 9: KAS2-Party_V-confirmation Scheme (from Party V to Party U) 2256

To provide (and receive) key confirmation (as described in Section 5.6.1), both parties set 2257
EphemDataV = CV, and EphemDataU = CU. 2258

Party V provides MacTagV to party U (as specified in Section 5.6.1, with P = V and R = U), where 2259
MacTagV is computed (as specified in Section 5.2.1) on 2260

MacDataV = “KC_1_V” || IDV || IDU || CV || CU{ || TextV}. 2261

Party U (the KC recipient) uses the identical format and values to compute 2262
TMacTagBits[MAC(MacKey, MacDataV)] and then verify that it equals MacTagV as provided by party 2263
V. 2264

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

83

The MAC key used during key confirmation (i.e., MacKey) shall be destroyed by party V 2265
immediately after the computation of MacTagV, and by party U immediately after the verification 2266
of the received MacTagV or a (final) determination that the received MacTagV is in error. 2267

Certain messages may be combined or sent in a different order (e.g., CV and MacTagV may be sent 2268
together, or CV may be sent before CU). 2269

8.3.3.2 KAS2-Party_U-confirmation 2270
Figure 10 depicts a typical flow for a KAS2 scheme with unilateral key confirmation from party 2271
U to party V. In this scheme, party U and party V assume the roles of key-confirmation provider 2272
and recipient, respectively. 2273

Party U Party V

(PubKeyU, PrivKeyU) (PubKeyV, PrivKeyV)

Obtain party V’s public key-
establishment key

PubKeyV
←   

 PubKeyU

    →

Obtain party U’s public key-
establishment key

(ZU, CU) =
RSASVE.GENERATE(PubKeyV)

CU
→

ZU = RSASVE.RECOVER(PrivKeyV,
CU)

ZV =
RSASVE.RECOVER(PrivKeyU, CV)

CV
←

(ZV, CV) =
RSASVE.GENERATE(PubKeyU)

Z = ZU ZV Z = ZU ZV

Compute DerivedKeyingMaterial =
MacKey || KeyData and destroy Z Compute DerivedKeyingMaterial =

MacKey || KeyData and destroy Z

MacTagU =
TMacTagBits[MAC(MacKey, MacDataU)]

MacTagU

→
MacTagU =?

TMacTagBits[MAC(MacKey, MacDataU)]

Figure 10: KAS2-Party_U-confirmation Scheme (from Party U to Party V) 2274

To provide (and receive) key confirmation (as described in Section 5.6.1), both parties set 2275
EphemDataV = CV, and EphemDataU = CU. 2276
 2277
Party U provides MacTagU to party V (as specified in Section 5.6.1, with P = U and R = V), 2278
where MacTagU is computed (as specified in Section 5.2.1) on 2279

MacDataU = “KC_1_U” || IDU || IDV || CU || CV{ || TextU}. 2280

Party V (the KC recipient) uses the identical format and values to compute 2281
TMacTagBits[MAC(MacKey, MacDataU)] and then verify that it matches the MacTagU value provided 2282
by party U. 2283

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

84

The MAC key used during key confirmation shall be destroyed by party U immediately after the 2284
computation of MacTagU, and by party V immediately after the verification of the received 2285
MacTagU or a (final) determination that the received MacTagU is in error. 2286

Note that CV may be sent before CU; in which case CU and MacTagU may be sent together. 2287

8.3.3.3 KAS2-bilateral-confirmation 2288
Figure 11 depicts a typical flow for a KAS2 scheme with bilateral key confirmation. In this scheme, 2289
party U and party V assume the roles of both the KC provider and recipient in order to obtain 2290
bilateral key confirmation. 2291

Party U Party V

(PubKeyU, PrivKeyU) (PubKeyV, PrivKeyV)

Obtain party V’s public key-
establishment key

PubKeyV
←   

 PubKeyU

    →

Obtain party U’s public key-
establishment key

(ZU, CU) =
RSASVE.GENERATE(PubKeyV)

CU

ZU =

RSASVE.RECOVER(PrivKeyV, CU)

ZV =
RSASVE.RECOVER(PrivKeyU, CV)

CV

(ZV, CV) =

RSASVE.GENERATE(PubKeyV)

Z = ZU ZV Z = ZU ZV

Compute DerivedKeyingMaterial =
MacKey || KeyData and destroy Z Compute DerivedKeyingMaterial =

MacKey || KeyData and destroy Z

MacTagV =?
TMacTagBits[MAC(MacKey, MacDataV)]

MacTagV

MacTagV =

TMacTagBits[MAC(MacKey, MacDataV)]

MacTagU =
TMacTagBits[MAC(MacKey, MacDataU)]

MacTagU

MacTagU =?

TMacTagBits[MAC(MacKey, MacDataU)]

Figure 11: KAS2-bilateral-confirmation Scheme 2292

To provide bilateral key confirmation (as described in Section 5.6.2), party U and party V exchange 2293
and verify MacTags that have been computed (as specified in Section 5.6.1) using EphemDataU = 2294
CU, and EphemDataV = CV. 2295

Party V provides MacTagV to party U (as specified in Section 5.6.1, with P = V and R = U); 2296
MacTagV is computed by party V (and verified by party U) using 2297

MacDataV = “KC_2_V” || IDV || IDU || CV || CU{ || TextV}. 2298

Party U provides MacTagU to party V (as specified in Section 5.6.1, with P = U and R = V); 2299
MacTagU is computed by party U (and verified by party V) using 2300

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

85

MacDataU = “KC_2_U” || IDU || IDV || CU || CV{ || TextU}. 2301

The MAC key used during key confirmation shall be destroyed by each party immediately 2302
following its use to compute and verify the MAC tags used for key confirmation. Once party U 2303
has computed MacTagU and has either verified the received MacTagV or made a (final) 2304
determination that the received MacTagU is in error, party U shall immediately destroy its copy of 2305
MacKey. Similarly, after party V has computed MacTagV and has either verified the received 2306
MacTagU or made a (final) determination that the received MacTagU is in error, party V shall 2307
immediately destroy its copy of MacKey. 2308

Certain messages may be sent in a different order (and/or combined with others), e.g., CV may be 2309
sent before CU and/or MacTagV may be sent before MacTagU. 2310

9 Key-Transport Schemes 2311

In a key-transport scheme, two parties, the sender and receiver, establish keying material selected 2312
by the sender. The keying material may be cryptographically bound to additional input (see Section 2313
9.1). 2314

In this Recommendation, the KTS-OAEP family of key-transport schemes is specified (see 2315
Section 9.2). In addition, a hybrid method for key transport is discussed whereby a key-2316
establishment scheme specified in this Recommendation is followed by a key-wrapping scheme 2317
(see Section 9.3). 2318

Key confirmation is included in one of the KTS-OAEP schemes to provide assurance to the sender 2319
that the participants share the same keying material (see Section 5.6 for further details on key 2320
confirmation). 2321

A general flow diagram is provided for each KTS-OAEP key-transport scheme. The dotted-line 2322
arrows represent the distribution of public keys by the parties themselves or by a third party, such 2323
as a Certification Authority (CA). The solid-line arrows represent the distribution of 2324
cryptographically protected values that occur during the key-transport or key-confirmation 2325
process. Note that the flow diagrams in this Recommendation omit explicit mention of various 2326
validation checks that are required. The flow diagrams and descriptions in this Recommendation 2327
assume a successful completion of the key-transport process. 2328

As in Section 8, there are conditions that must be satisfied for each key-transport scheme to enable 2329
the proper use of that scheme. These conditions are listed as assumptions. Failure to meet any of 2330
these conditions could yield undesirable results, such as the inability to communicate or the loss 2331
of security. As part of the proper implementation of this Recommendation, system users and/or 2332
agents trusted to act on their behalf (including application developers, system installers, and system 2333
administrators) are responsible for ensuring that all assumptions are satisfied at the time that a key-2334
establishment transaction takes place. 2335

9.1 Additional Input 2336

Additional input to the key-transport process may be employed to ensure that the keying material 2337
is adequately “bound” to the context of the key-transport transaction. The use of additional input, 2338
A, is explicitly supported by the key-transport schemes specified in Section 9.2. Each party to a 2339

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

86

key-transport transaction shall know whether or not additional input is employed in that 2340
transaction. 2341

Context-specific information that may be appropriate for inclusion in the additional input is listed 2342
in Section 5.5.2. (The suggestions for the content of FixedfInfo apply to the additional input as 2343
well.) 2344

Both parties to the key-transport transaction shall know the format of the additional input, A, and 2345
shall acquire A in time to use it as required by the scheme. The methods used for formatting and 2346
distributing the additional input are application-defined. System users and/or agents trusted to act 2347
on their behalf should determine that the information selected for inclusion in A and the methods 2348
used for formatting and distributing A meet the security requirements of those users. 2349

9.2 KTS-OAEP: Key-Transport Using RSA-OAEP 2350

The KTS-OAEP family of key-transport schemes is based on the RSA-OAEP encrypt and decrypt 2351
operations (see Section 7.2.2), which are, in turn, based on the asymmetric encryption and 2352
decryption primitives, RSAEP and RSADP (see Section 7.1). In this family, only party V’s key 2353
pair is used. 2354

The key-transport schemes of this family have the following general form: 2355

1. Party U (the sender) encrypts the keying material (and possibly additional input – see 2356
Section 7.2.2.3) to be transported using the RSA-OAEP.ENCRYPT operation and party V’s 2357
(the receiver’s) public key-establishment key to produce ciphertext, and sends the 2358
ciphertext to party V. 2359

2. Party V decrypts the ciphertext using its private key-establishment key and the RSA-2360
OAEP.DECRYPT operation to recover the transported keying material (see Section 7.2.2.4). 2361

3. If key confirmation is incorporated, then the transported keying material is parsed into two 2362
parts, a transaction-specific (random) value for MacKey, followed by KeyData (see Section 2363
5.6.1). The Mackey portion of the keying material and an approved MAC algorithm are 2364
used by each party to compute a MAC tag (of an appropriate, agreed-upon length) on what 2365
should be the same MacData (see Sections 5.6 and 9.2.4.2). The MAC tag computed by 2366
party V (the key-confirmation provider) is sent to party U (the key-confirmation recipient). 2367
If the value of the MAC tag sent by party V matches the MAC tag value computed by party 2368
U, then party U obtains a confirmation of the success of the key-transport transaction. 2369

The common components of the schemes in the KTS-OAEP family are listed in Section 9.2.2. The 2370
following schemes are then defined: 2371

1. KTS-OAEP-basic, the basic scheme without key confirmation (see Section 9.2.3). 2372

2. KTS-OAEP-Party_V-confirmation, a variant of KTS-OAEP-basic with unilateral key 2373
confirmation from party V to party U (see Section 9.2.4). 2374

For the security attributes of the KTS-OAEP family, see Section 10.3. 2375

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

87

9.2.1 KTS-OAEP Assumptions 2376
1. Party V has been designated as the owner of a key-establishment key pair that was 2377

generated as specified in Section 6.3. Party V has obtained assurance of its possession of 2378
the correct value for its private key as specified in Section 6.4.1.5. 2379

2. The parties have agreed upon an approved hash function, hash, appropriate for use with 2380
the mask-generation function used by RSA-OAEP, as well as an approved hash function, 2381
H, used to hash the additional input (see Sections 5.1, and 7.2.2). The same hash function 2382
may be used for both functions. 2383

3. Prior to or during the transport process, the sender and receiver have either agreed upon 2384
the form and content of the additional input A (a byte string to be cryptographically bound 2385
to the transported keying material so that the ciphertext is a function of both values), or 2386
agreed that A will be a null string (see Section 9.1). 2387

4. If key confirmation is used, the parties have agreed upon an approved MAC algorithm and 2388
associated parameters, including the lengths of MacKey and MacTag (see Section 5.2). 2389

5. When an identifier is used to label either party during the key-transport process, both 2390
parties are aware of the particular identifier employed for that purpose. In particular, the 2391
association of the identifier used to label party V with party V’s public key is trusted by 2392
party U. When an identifier is used to label party U during the key-transport process, it has 2393
been selected/assigned in accordance with the requirements of the protocol relying upon 2394
the use of the key-transport scheme. 2395

6. Party U has obtained assurance of the validity of party V’s public key, as specified in 2396
Section 6.4.2. 2397

7. Prior to or during the key-transport process, party U has obtained (or will obtain) assurance 2398
that party V is (or was) in possession of the (correct) private key corresponding to the 2399
public key-establishment key used during the transaction, as specified in Section 6.4.2. 2400

8. Prior to or during the key-transport process, the keying material to be transported has 2401
been/is determined and has a format as specified in Section 9. 2402

9.2.2 Common components 2403
The schemes in the KTS-OAEP family have the following common component: 2404

1. RSA-OAEP: asymmetric operations, consisting of an encryption operation RSA-2405
OAEP.ENCRYPT and a decryption operation RSA-OAEP.DECRYPT (see Section 7.2.2). 2406

9.2.3 KTS-OAEP-basic 2407
KTS-OAEP-basic is the basic key-transport scheme in the KTS-OAEP family without key 2408
confirmation. 2409

Let (PubKeyV, PrivKeyV) be party V’s (the receiver’s) key-establishment key pair. Let K be the 2410
keying material to be transported from party U (the sender) to party V; note that the length of K is 2411
restricted by the length of the RSA modulus and the length of the output of the hash-function used 2412
to hash the additional input during the RSA-OAEP process (see Section 7.2.2.3). The parties shall 2413
perform the following or an equivalent sequence of steps, which are also illustrated in Figure 12. 2414

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

88

Party U Party V

K to be transported (PubKeyV, PrivKeyV)

Obtain party V’s public key-
establishment key

PubKeyV
←   

C =
RSA-OAEP. ENCRYPT(PubKeyV, K, A)

C
→

K =
RSA-OAEP. DECRYPT(PrivKeyV, C, A)

Figure 12: KTS-OAEP-basic Scheme 2415

Party U shall execute the following steps in order to transport keying material to party V. 2416

Party U Actions: 2417

1. Encrypt the keying material K using party V’s public key-establishment key PubKeyV and 2418
the additional input A, to produce a ciphertext C (see Section 7.2.2.3): 2419

 2420
C = RSA-OAEP.ENCRYPT(PubKeyV, K, A). 2421

2. If an error indication has been returned, then return an error indication without performing 2422
the remaining actions. 2423

3. Send the ciphertext C to party V. 2424

Any local copies of K, A, and any intermediate values used during the execution of party U’s 2425
actions shall be destroyed prior to the early termination of the actions due to an error, or (in the 2426
absence of errors), prior to or during the the completion of step 3. 2427

Party V shall execute the following steps when receiving keys transported from party U. 2428

Party V Actions: 2429

1. Receive the ciphertext C. 2430

2. Decrypt the ciphertext C using the private key-establishment key PrivKeyV and the 2431
additional input A, to recover the transported keying material K (see Section 7.2.2.4): 2432

K = RSA-OAEP.DECRYPT(PrivKeyV, C, A). 2433

If the decryption operation outputs an error indicator, return an error indication without 2434
performing the remaining actions. 2435

3. Output K. 2436

Any local copies of K, PrivKeyV, A, and any intermediate values used during the execution of party 2437
V’s actions shall be destroyed prior to the early termination of the actions due to an error, or (in 2438
the absence of errors), prior to or during the the completion of step 3. 2439

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

89

9.2.4 KTS-OAEP Key Confirmation 2440
The KES-OAEP-Party_V-confirmation scheme is based on the KTS-OAEP-basic scheme. 2441

9.2.4.1 KTS-OAEP Common Components for Key Confirmation 2442
The components for KTS-OAEP with key confirmation are the same as for KTS-OAEP-basic 2443
(see Section 9.2.2), plus the following: 2444

MAC: A message authentication code algorithm with the following parameters (see Section 2445
5.2): 2446

a. MacKeyLen: the byte length of MacKey. 2447

b. MacTagLen: the byte length of MacTag. (MacTagBits, as used in Section 5.2, is equal 2448
to 8 × MacTagLen.) 2449

MacKey shall be the first MacKeyLen bytes of the keying material and shall be used only for the 2450
key-confirmation operation. For KTS-OAEP key confirmation, the length of the keying material 2451
shall be at least MacKeyLen bytes, and usually longer so that keying material other than MacKey 2452
is available for subsequent operations. 2453

9.2.4.2 KTS-OAEP-Party_V-confirmation 2454
KTS-OAEP-Party_V-confirmation is a variant of KTS-OAEP-basic with unilateral key 2455
confirmation from party V to party U. 2456

Figure 13 depicts a typical flow for the KTS-OAEP-Party_V-confirmation scheme. In this 2457
scheme, party V and party U assume the roles of key-confirmation provider and recipient, 2458
respectively. 2459

Party U Party V

K = MacKey ll KeyData (PubKeyV, PrivKeyV)

Obtain party V’s public key-
establishment key

PubKeyV
←   

C =
RSA-OAEP.ENCRYPT(PubKeyV, K, A)

C
→

K =
RSA-OAEP.DECRYPT(PrivKeyV, C, A)

 MacKey || KeyData = K

MacTagV Error! Bookmark not
defined.=?

TMacTagBits[MAC(MacKey, MacDataV)]

MacTagV
←

MacTagV Error! Bookmark not
defined.=

TMacTagBits[MAC(MacKey, MacDataV)]

Figure 13: KTS-OAEP-Party_V-confirmation Scheme 2460

To provide (and receive) key confirmation (as described in Section 5.6.1), both parties form 2461
MacData with EphemDataV = Null, and EphemDataU = C: 2462
 2463

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

90

Party V provides MacTagV to party U (as specified in Section 5.6.1, with P = V and R = U), 2464
where MacTagV is computed (as specified in Section 5.2.1) using 2465

MacDataV = “KC_1_V” || IDV || IDU || Null || C{ || TextV}. 2466

Party U uses the identical format and values to compute TMacTagBits[MAC(MacKey, MacDataV)] and 2467
then verify that it matches the MacTagV value provided by party V. 2468

The MAC tag used during key confirmation shall be destroyed by party V immediately after the 2469
computation of MacTagV, and by party U immediately after the verification of the received 2470
MacTagV or a (final) determination that the received MacTagV is in error. 2471

9.3 Hybrid Key-Transport Methods 2472

Key transport may be accomplished following any of the key-establishment schemes in this 2473
Recommendation (i.e, any KAS1, KAS2 or KTS-OAEP scheme) by using an approved key-2474
wrapping algorithm (see SP 800-38F25) with a key-wrapping key established during the execution 2475
of that key-establishment scheme. The security properties for this hybrid key-establishment 2476
process depend on the key-establishment scheme, the key-wrapping algorithm and the 2477
communication protocol used; the roles assumed by the participants during the process; and all 2478
other parameters used during the entire process. 2479

 2480

25 SP 800-38F, Recommendation for Block Cipher Modes of Operation: Methods for Key Wrapping.

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

91

10 Rationale for Selecting a Specific Scheme 2481

The subsections that follow describe the security properties that may be considered when a user 2482
and/or developer is choosing a key-establishment scheme from among the various schemes 2483
described in this Recommendation. The descriptions are intended to highlight certain similarities 2484
and differences between families of key-establishment schemes and/or between schemes within a 2485
particular family; they do not constitute an in-depth analysis of all possible security properties of 2486
every scheme under all adversary models. 2487

The (brief) discussions will focus on the extent to which each participant in a particular transaction 2488
has assurance that fresh keying material has been successfully established with the intended party 2489
(and no one else). To that end, it is important to distinguish between the actual identifier of a 2490
participant in a key-establishment transaction and the role (party U or party V) assumed by that 2491
participant during the transaction. To simplify matters, in what follows, assume that the actual 2492
identifiers of the (honest) participants in a key-establishment transaction are the proverbial 2493
“Alice,” acting as party U, and “Bob,” acting as party V. (Pretend, for the sake of discussion, that 2494
these identifiers are unique among the universe of possible participants.) The identifier associated 2495
with their malevolent adversary is “Eve.” The discussions will also consider the ill effects of 2496
certain compromises that might occur. The basic security properties that are cited depend on such 2497
factors as how a shared secret is calculated, how keying material is established, and what types of 2498
key-confirmation (if any) are incorporated into a given scheme. 2499

Note 1: In order to provide concise descriptions of security properties possessed by the various 2500
schemes, it is necessary to make some assumptions concerning the format and type of data that is 2501
used as input during key derivation. The following assumptions are made solely for the purposes 2502
of Sections 10.1 through 10.3; they are not intended to preclude the options specified elsewhere in 2503
this Recommendation. 2504

1. When discussing the security properties of schemes, it is assumed that the FixedInfo input 2505
to a (single-step) key-derivation function employed during a particular key-agreement 2506
transaction uses either the concatenation format or the ASN.1 format (see Section 5.5). It 2507
is also assumed that FixedInfo includes sufficiently specific identifiers for the participants 2508
in the transaction, an identifier for the key-establishment scheme being used during the 2509
transaction, and additional input (e.g., a nonce, and/or session identifier) that may provide 2510
assurance to one or both participants that the derived keying material will reflect the 2511
specific context in which the transaction occurs (see Section 5.5 and Appendix B of SP 2512
800-56A for further discussion concerning context-specific information that may be 2513
appropriate for inclusion in FixedInfo). 2514

2. In general, FixedInfo may include additional secret information (already shared between 2515
parties U and V), but the following analyses of the security properties of each scheme type 2516
assume that additional secret information is not included in the FixedInfo. 2517

3. In cases where an approved extraction-then-expansion key-derivation procedure is 2518
employed (see Section 5.5 and SP 800-56C), it is assumed that the FixedInfo is used as the 2519
Context input during the key-expansion step, as specified in SP 800-56C. 2520

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

92

4. Finally, it is assumed that all required nonces employed during a transaction are random 2521
nonces that include a component consisting of a random bit string formed in accordance 2522
with the recommendations of Section 5.4. 2523

Note 2: Different schemes may possess different security properties. A scheme should be selected 2524
based on how well the scheme fulfills system requirements. For instance, if messages are 2525
exchanged over a large-scale network where each exchange consumes a considerable amount of 2526
time, a scheme with fewer exchanges during a single key-agreement transaction might be 2527
preferable to a scheme with more exchanges, even though the latter may possess more security 2528
benefits. It is important to keep in mind that a key-establishment scheme is usually a component 2529
of a larger protocol that may offer security-related assurances beyond those that can be provided 2530
by the key-establishment scheme alone. For example, the protocol may include specific features 2531
that limit opportunities for accidental or intentional misuse of the key-establishment component of 2532
the protocol. Protocols, per se, are not specified in this Recommendation. 2533

10.1 Rationale for Choosing a KAS1 Key-Agreement Scheme 2534

In both schemes included in the KAS1 family, only Bob (assumed to be acting as party V) is 2535
required to own an RSA key pair that is used in the key-agreement transaction. Assume that the 2536
identifier used to label party V during the transaction is one that is associated with Bob’s RSA 2537
public key in a manner that is trusted by Alice (who is acting as party U). This can provide Alice 2538
with some level of assurance that she has correctly identified the party with whom she will be 2539
establishing keying material if the transaction is successfully completed. 2540

Each KAS1 scheme requires Alice to employ the RSASVE.GENERATE operation to select a 2541
(random) secret value Z and encrypt it as ciphertext C using Bob’s RSA public key. Unless Bob’s 2542
corresponding private key has been compromised, Alice has assurance that no unintended entity 2543
(i.e., no one but Bob) could employ the RSASVE.RECOVER operation to obtain Z from C. Absent 2544
the compromise of Bob’s RSA private key and/or Z, Alice may attain a certain level of confidence 2545
that she has correctly identified party V as Bob. Alice’s level of confidence is dependent upon: 2546

• The specificity of the identifier that is associated with Bob’s RSA public key, 2547

• The degree of trust in the association between that identifier and the public key, 2548

• The assurance of the validity of the public key, and 2549

• The availability of evidence that the keying material has been correctly derived by Bob 2550
using Z (and the other information input to the agreed-upon key-derivation method), e.g., 2551
through key confirmation with Bob as the provider. 2552

In general, Bob has no assurance that party U is Alice, since Bob has no assurance concerning the 2553
accuracy of any identifier that may be used to label party U (unless, for example, the protocol 2554
using a key-agreement scheme from the KAS1 family also includes additional elements that 2555
establish a trusted association between an identifier for Alice and the ciphertext C that she 2556
contributes to the transaction while acting as party U). 2557

The assurance of freshness of the derived keying material that can be obtained by a participant in 2558
a KAS1 transaction is commensurate with the participant’s assurance that different input will be 2559
supplied to the agreed-upon key-derivation method during each such transaction. Alice can obtain 2560

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

93

assurance that fresh keying material will be derived based on her unilateral selection and 2561
contribution of the random Z value. Bob can obtain similar assurance owing to his selection and 2562
contribution of the nonce NV, which is also used as input to the agreed-upon key-derivation method. 2563

The KAS1-Party_V-confirmation scheme permits party V to provide evidence to party U that 2564
keying material has been correctly derived. When the KAS1-Party_V-confirmation scheme is 2565
employed during a key-agreement transaction, party V provides a key-confirmation MAC tag, 2566
MacTagV, to party U as specified in Section 8.2.3.2. This allows Alice (who is acting as party U, 2567
the key-confirmation recipient) to obtain assurance that party V has possession of the MacKey 2568
derived from the shared secret Z (and nonce NV) and has used it with the appropriate MacDataV to 2569
compute the received MacTagV. In the absence of a compromise of secret information (e.g., Bob’s 2570
RSA private key and/or Z), Alice can also obtain assurance that the appropriate identifier has been 2571
used to label party V, and that the participant acting as party V is indeed Bob, the owner of the 2572
RSA public key associated with that identifier. 2573

Specifically, by successfully comparing the received value of MacTagV with her own computation, 2574
Alice (acting as party U, the key-confirmation recipient) may obtain assurance that 2575

1. Party V has correctly recovered Z from C, and, therefore, possesses the RSA private key 2576
corresponding to Bob’s RSA public key – from which it may be inferred that party V is 2577
Bob; 2578

2. Both parties have correctly computed (at least) the same MacKey portion of the derived 2579
keying material; 2580

3. Both parties agree on the values (and representation) of IDV, IDU, NV, C, and any other data 2581
included in MacDataV; and 2582

4. Bob (acting as party V) has actively participated in the transaction. 2583

Consequently, when the KAS1-Party_V-confirmation scheme is employed during a particular 2584
key-agreement transaction (and neither Z nor Bob’s RSA private key has been compromised), 2585
Alice can obtain assurance of the active (and successful) participation by Bob in the transaction. 2586

The acquisition of Bob’s RSA private key by their adversary, Eve, may lead to the compromise of 2587
shared secrets and derived keying material from past, current, and future legitimate transactions 2588
(i.e., transactions that involve honest parties and are not actively influenced by an adversary) that 2589
employ the compromised private key. For example, Eve may be able to compromise a particular 2590
KAS1 transaction between Alice and Bob as long as she acquires the ciphertext, C, contributed by 2591
Alice and the nonce, NV, contributed by Bob (as well as any other data used as input during key 2592
derivation). In addition to compromising legitimate KAS1 transactions, once Eve has learned 2593
Bob’s RSA private key, she may be able to impersonate Bob while acting as party V in future 2594
KAS1 transactions (with Alice or any other party). Other schemes and applications that rely on 2595
the compromised private key may also be adversely affected. (See the appropriate subsection for 2596
details.) 2597

Even without knowledge of Bob’s private key, if Eve learns the value of Z that has been (or will 2598
be) used in a particular KAS1 transaction between Alice and Bob, then she may be able to derive 2599
the keying material resulting from that transaction as easily as Alice and Bob (as long as Eve also 2600
acquires the value of NV and any other data used as input during key derivation). Alternatively, 2601

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

94

armed with knowledge of the Z value that has been (or will be) selected by Alice, Eve might be 2602
able to insert herself into the transaction (in the role of party V) while masquerading as Bob. 2603

10.2 Rationale for Choosing a KAS2 Key-Agreement Scheme 2604

In the schemes included in the KAS2 family, both Alice (assumed to be acting as party U) and 2605
Bob (assumed to be acting as party V) are required to own an RSA key pair that is used in their 2606
key-agreement transaction. Assume that the identifier used to label party V during the transaction 2607
is one that is associated with Bob’s RSA public key in a manner that is trusted by Alice. Similarly, 2608
assume that the identifier used to label party U during the transaction is one that is associated with 2609
Alice’s RSA public key in a manner that is trusted by Bob. This can provide each party with some 2610
level of assurance concerning the identifier of the other party, with whom keying material will be 2611
established if the transaction is successfully completed. 2612

Each KAS2 scheme requires Alice to employ the RSASVE.GENERATE operation to select a 2613
(random) secret value ZU and encrypt it as ciphertext CU using Bob’s RSA public key. Unless 2614
Bob’s corresponding private key has been compromised, Alice has assurance that no unintended 2615
entity (i.e., no one but Bob) could employ the RSASVE.RECOVER operation to obtain ZU from CU. 2616
Similarly, each KAS2 scheme requires Bob to employ the RSASVE.GENERATE operation to select 2617
a (random) secret value ZV and encrypt it as ciphertext CV using Alice’s RSA public key. Unless 2618
Alice’s corresponding private key has been compromised, Bob has assurance that no unintended 2619
entity (i.e., no one but Alice) could employ the RSASVE.RECOVER operation to obtain ZV from 2620
CV. 2621

Absent the compromise of Bob’s RSA private key and/or ZU, Alice may attain a certain level of 2622
confidence that she has correctly identified party V as Bob. Alice’s level of confidence is 2623
commensurate with: 2624

• The specificity of the identifier that is associated with Bob’s RSA public key, 2625

• The degree of trust in the association between that identifier and Bob’s public key, 2626

• The assurance of the validity of the public key, and 2627

• The availability of evidence that the keying material has been correctly derived by Bob 2628
using Z = ZU || ZV (and the other information input to the agreed-upon key-derivation 2629
method), e.g., through key-confirmation, with Bob as the provider. 2630

Similarly, absent the compromise of Alice’s private key and/or ZV, Bob may attain a certain level 2631
of confidence that he has correctly identified party U as Alice. Bob’s level of confidence is 2632
commensurate with: 2633

• The specificity of the identifier that is associated with Alice’s RSA public key, 2634

• The degree of trust in the association between that identifier and Alice’s public key, 2635

• The assurance of the validity of the public key, and 2636

• The availability of evidence that the keying material has been correctly derived by Alice 2637
using Z = ZU || ZV (and the other information input to the agreed-upon key-derivation 2638
method), e.g., through key-confirmation, with Alice as the provider. 2639

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

95

The assurance of freshness of the derived keying material that can be obtained by a participant in 2640
a KAS2 transaction is commensurate with the participant’s assurance that different input will be 2641
supplied to the agreed-upon key-derivation method during each such transaction. Alice can obtain 2642
assurance that fresh keying material will be derived, based on her selection and contribution of the 2643
random ZU component of Z. Bob can obtain similar assurance owing to his selection and 2644
contribution of the random ZV component of Z. 2645

Evidence that keying material has been correctly derived may be provided by using one of the 2646
three schemes from the KAS2 family that incorporates key confirmation. The KAS2-Party_V-2647
confirmation scheme permits party V (Bob) to provide evidence of correct key derivation to party 2648
U (Alice); the KAS2-Party_U-confirmation scheme permits party U (Alice) to provide evidence 2649
of correct key derivation to party V (Bob); the KAS2-bilateral-confirmation scheme permits each 2650
party to provide evidence of correct key derivation to the other party. 2651

When the KAS2-Party_V-confirmation scheme or the KAS2-bilateral-confirmation scheme is 2652
employed during a key-agreement transaction, party V provides a key-confirmation MAC tag, 2653
MacTagV, to party U as specified in Section 8.3.3.2 or Section 8.3.3.4, respectively. This allows 2654
Alice (who is the recipient of MacTagV) to obtain assurance that party V has possession of the 2655
MacKey derived from the shared secret Z and has used it with the appropriate MacDataV to 2656
compute the received MacTagV. In the absence of a compromise of secret information (e.g., Bob’s 2657
RSA private key and/or ZU), Alice can also obtain assurance that the appropriate identifier has been 2658
used to label party V, and that the participant acting as party V is indeed Bob, the owner of the 2659
RSA public key associated with that identifier. 2660

Similarly, when the KAS2-Party_U-confirmation scheme or the KAS2-bilateral-confirmation 2661
scheme is employed during a key-agreement transaction, party U provides a key-confirmation 2662
MAC tag, MacTagU, to party V as specified in Section 8.3.3.3 or Section 8.3.3.4, respectively. 2663
This allows Bob (who is the recipient of MacTagU) to obtain assurance that party U has possession 2664
of the MacKey derived from the shared secret Z and has used it with the appropriate MacDataU to 2665
compute the received MacTagU. In the absence of a compromise of secret information (e.g., Alice’s 2666
RSA private key and/or ZV), Bob can also obtain assurance that the appropriate identifier has been 2667
used to label party U, and that the participant acting as party U is indeed Alice, the owner of the 2668
RSA public key associated with that identifier. 2669

Specifically, by successfully comparing the value of a received MAC tag with his/her own 2670
computation, a key-confirmation recipient in a KAS2 transaction (be it Alice or Bob) may obtain 2671
the following assurances. 2672

1. He/She has correctly decrypted the ciphertext that was produced by the other party and, 2673
thus, that he/she possesses the RSA private key corresponding to the RSA public key that 2674
was used by the other party to produce that ciphertext – from which it may be inferred that 2675
the other party had access to the RSA public key owned by the key-confirmation recipient. 2676
For example, if Alice is a key-confirmation recipient, she may obtain assurance that she 2677
has correctly decrypted the ciphertext CV using her RSA private key, and so may also obtain 2678
assurance that her corresponding RSA public key was used by party V to produce CV. 2679

2. The ciphertext sent to the other party was correctly decrypted and, thus, the other party 2680
possesses the RSA private key corresponding to the RSA public key that was used to 2681
produce that ciphertext – from which it may be inferred that the other party is the owner of 2682

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

96

that RSA public key. For example, if Alice is a key-confirmation recipient, she can obtain 2683
assurance that party V has correctly decrypted the ciphertext CU using the RSA private key 2684
corresponding to Bob’s RSA public key – from which she may infer that party V is Bob. 2685

3. Both parties have correctly computed (at least) the same MacKey portion of the derived 2686
keying material. 2687

4. Both parties agree on the values (and representation) of IDV, IDU, CV, CU, and any other 2688
data included as input to the MAC algorithm. 2689

5. Assuming that there has been no compromise of either participant’s RSA private key and/or 2690
either component of Z, a key-confirmation recipient in a KAS2 transaction can obtain 2691
assurance of the active (and successful) participation in that transaction by the owner of 2692
the RSA public key associated with the key-confirmation provider. For example, if Alice 2693
is a key-confirmation recipient, she can obtain assurance that Bob has actively – and 2694
successfully – participated in that KAS2 transaction. 2695

The acquisition of a single RSA private key by their adversary, Eve, will not (by itself) lead to the 2696
compromise of derived keying material from legitimate KAS2 transactions between Alice and Bob 2697
that employ the compromised RSA key pair. (In this context, a “legitimate transaction” is one in 2698
which Alice and Bob act honestly, and there is no active influence exerted by Eve.) However, if 2699
Eve acquires an RSA private key, she may be able to impersonate that RSA key pair’s owner while 2700
participating in KAS2 transactions. (For example, If Eve acquires Alice’s private key, she may be 2701
able to impersonate Alice – acting as party U or as party V – in KAS2 transactions with Bob or 2702
any other party). Other schemes and applications that rely on the compromised private key may 2703
also be adversely affected. (See the appropriate subsection for details.) 2704

Similarly, the acquisition of one (but not both) of the secret Z components, ZU or ZV, would not (by 2705
itself) compromise the keying material derived during a legitimate KAS2 transaction between 2706
Alice and Bob in which the compromised value was used as one of the two components of Z. 2707
However, armed with knowledge of only one Z component, Eve could attempt to launch an active 2708
attack against the party that generated it. For example, if Eve learns the value of ZU that has been 2709
(or will be) contributed by Alice, then Eve might be able to insert herself into the transaction by 2710
masquerading as Bob (while acting as party V). Likewise, an adversary who knows the value of 2711
ZV that has been (or will be) selected by Bob might be able to participate in the transaction by 2712
masquerading as Alice (while acting as party U). 2713

10.3 Rationale for Choosing a KTS-OAEP Key-Transport Scheme 2714

In each of the key-transport schemes included in the KTS-OAEP family, only Bob (assumed to 2715
be acting as party V, the key-transport receiver) is required to own an RSA key pair that is used in 2716
the transaction. Assume that the identifier used to label party V during the transaction is one that 2717
is associated with Bob’s RSA public key in a manner that is trusted by Alice (who is acting as 2718
party U, the key-transport sender). This can provide Alice with some level of assurance that she 2719
has correctly identified the party with whom she will be establishing keying material if the key-2720
transport transaction is successfully completed. 2721

Each KTS-OAEP scheme requires Alice to employ the RSA-OAEP.ENCRYPT operation to encrypt 2722
the selected keying material (and any additional input) as ciphertext C, using Bob’s RSA public 2723
key. Unless Bob’s corresponding private key has been compromised, Alice has assurance that no 2724

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

97

unintended entity (i.e., no one but Bob) could employ the RSA-OAEP.DECRYPT operation to 2725
obtain the transported keying material from C. Absent the compromise of Bob’s RSA private key 2726
(or some compromise of the keying material itself – perhaps prior to transport), Alice may attain 2727
a certain level of confidence that she has correctly identified party V as Bob. Alice’s level of 2728
confidence is commensurate with: 2729

• The specificity of the identifier that is associated with Bob’s RSA public key, 2730

• The degree of trust in the association between that identifier and the public key, 2731

• The assurance of the validity of the public key, and 2732

• The availability of evidence that the transported keying material has been correctly 2733
recovered from C by Bob, e.g., through key confirmation, with Bob as the provider. 2734

In general, Bob has no assurance that party U is Alice, since Bob has no assurance concerning the 2735
accuracy of any identifier that may be used to label party U (unless, for example, the protocol 2736
using a key-transport scheme from the KTS-OAEP family also includes additional elements that 2737
establish a trusted association between an identifier for Alice and the ciphertext, C, that she sends 2738
to Bob while acting as party U). 2739

Due to Alice’s unilateral selection of the keying material, only she can obtain assurance of its 2740
freshness. (Her level of confidence concerning its freshness is dependent upon the actual manner 2741
in which the keying material is generated by/for her.) Given that Bob simply accepts the keying 2742
material that is transported to him by Alice, he has no assurance that it is fresh. 2743

The randomized plaintext encoding used during the RSA-OAEP.ENCRYPT operation can provide 2744
assurance to Alice that the value of C will change from one KTS-OAEP transaction with Bob to 2745
the next, which may help obfuscate the occurrence of a repeated transport of the same keying 2746
material from Alice to Bob, should that ever be necessary. 2747

The KTS-OAEP-Party_V-confirmation scheme permits party V to provide evidence to party U 2748
that keying material has been correctly recovered from the ciphertext C. When the KTS-OAEP- 2749
Party_V-confirmation scheme is employed during a key-transport transaction, party V provides 2750
a key-confirmation MAC tag (MacTagV) to party U as specified in Section 9.2.4.2. This allows 2751
Alice (who is acting as party U, the key-confirmation recipient) to obtain assurance that party V 2752
has recovered the fresh MAC key (MacKey) that was included in the transported keying material 2753
and that party V has used it with the appropriate MacDataV to compute the received MacTagV. In 2754
the absence of a compromise of secret information (e.g., Bob’s RSA private key and/or the MAC 2755
key), Alice can also obtain assurance that the appropriate identifier has been used to label party V, 2756
and that the participant acting as party V is indeed Bob, the owner of the RSA public key associated 2757
with that identifier. 2758

Specifically, by successfully comparing the received value of MacTagV with her own computation, 2759
Alice (acting as party U, the key-confirmation recipient) may obtain assurance that 2760

1. Party V has correctly recovered MacKey from C, and, therefore, possesses the RSA private 2761
key corresponding to Bob’s RSA public key – from which it may be inferred that party V 2762
is Bob; 2763

2. Both parties agree on the values (and representation) of IDV, IDU, C, and any other data 2764
included in MacDataV; and 2765

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

98

3. Bob has actively participated in the transaction (as party V), assuming that neither the 2766
transported MAC key nor Bob’s RSA private key has been compromised. Alice’s level of 2767
confidence is commensurate with her confidence in the freshness of the MAC key. 2768

The acquisition of Bob’s RSA private key by their adversary, Eve, may lead to the compromise of 2769
keying material established during past, current, and future legitimate transactions (i.e., 2770
transactions that involve honest parties and are not actively influenced by an adversary) that 2771
employ the compromised private key. For example, Eve may be able to compromise a particular 2772
KTS-OAEP transaction between Alice and Bob, as long as she also acquires the ciphertext, C, 2773
sent from Alice to Bob. In addition to compromising legitimate KTS-OAEP transactions, once 2774
Eve has learned Bob’s RSA private key, she may be able to impersonate Bob while acting as party 2775
V in future KTS-OAEP transactions (with Alice or any other party). Other schemes and 2776
applications that rely on the compromised private key may also be adversely affected. (See the 2777
discussions of other schemes in this section.) 2778

Even without knowledge of Bob’s private key, if the KTS-OAEP-Party_V-confirmation scheme 2779
is used during a particular key-transport transaction, and Eve learns the value of MacKey that Alice 2780
will send to Bob, then it may be possible for Eve to mislead Alice about Bob’s (active and 2781
successful) participation. As long as Eve also acquires the value of C intended for Bob (and any 2782
other data needed to form MacDataV), it may be possible for Eve to correctly compute MacTagV 2783
and return it to Alice as if it had come from Bob (who may not even be aware that Alice has 2784
initiated a transaction with him). Such circumstances could arise, for example, if (in violation of 2785
this Recommendation) Alice were to use the same MAC key while attempting to transport keying 2786
material to multiple parties (including both Bob and Eve). 2787

10.4 Summary of Assurances Associated with Key-Establishment Schemes 2788

The security-related features discussed in the preceding subsections of Section 10 can be 2789
summarized in terms of the following types of assurance that may be obtained when participating 2790
in a key-establishment transaction. 2791

• Implicit Key Authentication (IKA): In the case of a key-agreement scheme from the 2792
KAS1 or KAS2 family, this is the assurance obtained by one party in a key-agreement 2793
transaction that only a specifically identified entity (the intended second party in that 2794
transaction) could also derive the key(s) of interest. In the case of a key-transport scheme 2795
from the KTS-OAEP family, this is the assurance obtained by the sender that only a 2796
specifically identified entity (the intended receiver in that transaction) could successfully 2797
decrypt the encrypted keying material to obtain the key(s) of interest. 2798

• Key Freshness (KF): This is the assurance obtained by one party in a key-establishment 2799
transaction that keying material established during that transaction is statistically 2800
independent of the keying material established during that party’s previous key-2801
establishment transactions. 2802

• Key Confirmation (KC): This is the assurance obtained by one party in a key-2803
establishment transaction that a specifically identified entity (the intended second party in 2804
that key-establishment transaction) has correctly acquired and is able to use, the key(s) of 2805
interest. 2806

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

99

Notes: 2807

A participant in a key-establishment transaction cannot hope to distinguish between the actions 2808
of another entity and the actions of those who share knowledge of that entity’s private key-2809
establishment key and/or any other secret data sufficient for that entity’s successful 2810
participation in a particular key-agreement transaction. In what follows, references to a 2811
“specifically identified entity” must be interpreted as an umbrella term including all those who 2812
are legitimately in possession of that entity’s private key, etc., and are trusted to act on the 2813
entity’s behalf. Any assurance obtained with respect to the actions of a specifically identified 2814
entity is conditioned upon the assumption that the identified entity’s relevant private/secret 2815
data has not been misused by a trusted party or compromised by an adversary. 2816

IKA assurance, as used in this Recommendation, does not address the potential compromise 2817
of established keying material owing to such problems as improper storage, the failure to 2818
prevent the leakage of sensitive information during computations involving the established 2819
keys, and/or inadequate methods for the timely destruction of sensitive data (including the keys 2820
themselves). These are just a few examples of misuse, mishandling, side-channel leakage, etc. 2821
that could lead to an eventual compromise. 2822

In the definition of KC assurance, this Recommendation’s requirement that it be a specifically 2823
identified entity who demonstrates the ability to use (some portion of) the established keying 2824
material is a stricter condition than is sometimes found in the literature. In this 2825
Recommendation, KC assurance presupposes IKA assurance with respect to (at least) the MAC 2826
key used in the key-confirmation computations. 2827

KC assurance can be obtained by employing a key-establishment scheme that includes key-2828
confirmation as specified in this Recommendation. In particular, the KC provider is expected 2829
to use an RSA private key, and the KC recipient is expected to contribute random/ephemeral 2830
data that affects the values of both the MacKey and the MacData used to compute a key-2831
confirmation MacTag. 2832

The following table shows which types of assurance can be obtained and by whom (i.e., party U 2833
and/or party V) in a key-establishment transaction by using appropriately implemented schemes 2834
from the indicated scheme families. The previous assumptions in Section 10 concerning the format 2835
and content of FixedInfo, the specificity of identifiers bound to RSA public keys, the randomness 2836
of nonces, etc., still hold. 2837

 2838

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

100

Table 3: Summary of Assurances 2839

Scheme Family Sections
Assurance that can be Obtained by the Indicated Parties

IKA KF KC

KAS1 8.2 and 10.1 U U & V U

KAS2 8.3 and 10.2 U & V U & V U & V

KTS-OAEP 9.2 and 10.3 U U U

In key-agreement transactions that employ a scheme from the KAS2 family, there is an additional 2840
type of assurance that can be obtained by both participants: 2841

• Key-Compromise Impersonation Resilience (K-CI): This is the assurance obtained by 2842
one party in a KAS2 key-agreement transaction that the compromise of that party’s RSA 2843
private key would not permit an adversary to impersonate another entity (the owner of a 2844
second, uncompromised, RSA key pair) while acting as the second party in the transaction. 2845

For example, suppose that Alice participates in a KAS2 key-agreement transaction with a 2846
second party that she believes to be Bob (based on the identifier associated with the second 2847
party’s RSA public key). Alice has assurance that even if a malicious party, Eve, has 2848
obtained Alice’s RSA private key, that would not (by itself) permit Eve to impersonate 2849
Bob in the transaction and successfully establish shared keying material with Alice. 2850

The notion of key-compromise impersonation resilience, as defined in this Recommendation, is 2851
not applicable to transactions employing a scheme from the KAS1 or KTS-OAEP family. In such 2852
schemes, only one party owns an RSA key pair, and the scheme (by itself) provides no means of 2853
ensuring the accuracy of any identifier that may be associated with the other party. 2854

Under the assumptions made in Section 10, there is an often-desirable type of assurance that is not 2855
supported by the use of (only) the key-establishment schemes specified in this Recommendation: 2856

• Forward Secrecy (FS): This is the assurance obtained by one party in a key-establishment 2857
transaction that the keying material established during that transaction is secure against the 2858
future compromise of (any and all of) the long-term private/secret keys of the participants. 2859

(Key-agreement transactions that employ a scheme from the KAS2 family afford some security 2860
against the compromise of a single participant’s RSA private key, but may not be secure against 2861
the compromise of the RSA private keys of both participants.) If a user or application requires 2862
assurance of forward secrecy, then an appropriate choice of key-agreement scheme from the C(2) 2863
category of schemes specified in SP 800-56A may be employed. 2864

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

101

11 Key Recovery 2865

For some applications, the secret keying material used to protect data or to process protected data 2866
may need to be recovered (for example, if the normal reference copy of the secret keying material 2867
is lost or corrupted). In this case, either the secret keying material or sufficient information to 2868
reconstruct the secret keying material needs to be available (for example, the keys and other inputs 2869
to the scheme used to perform the key-establishment process). 2870

Keys used during the key-establishment process shall be handled in accordance with the following: 2871

1. One or both keys of a key pair may be saved. 2872

2. A key-wrapping key may be saved. 2873

In addition, the following information that is used during key-establishment may need to be saved: 2874

3. The nonce(s), 2875

4. The ciphertext, 2876

5. Additional input, and 2877

6. OtherInput, or its equivalent. 2878

General guidance on key recovery and the protections required for each type of key is provided in 2879
SP 800-57. 2880

12 Implementation Validation 2881

When the NIST Cryptographic Algorithm Validation System (CAVS) has established a validation 2882
program for this Recommendation, a vendor shall have its implementation tested and validated by 2883
the Cryptographic Algorithm Validation Program (CAVP) and Cryptographic Module Validation 2884
Program (CMVP) in order to claim conformance to this Recommendation. Information on the 2885
CAVP and CMVP is available at https://csrc.nist.gov/projects/cryptographic-algorithm-2886
validation-program and https://csrc.nist.gov/projects/cryptographic-module-validation-program, 2887
respectively. 2888
An implementation claiming conformance to this Recommendation shall include one or more of 2889
the following capabilities: 2890

• Key-pair generation as specified in Section 6.3, together with an approved random bit 2891
generator; 2892

• Public-key validation as specified in Section 6.4.2; 2893

• A key-agreement scheme from Section 8, together with an approved key-derivation 2894
method from Section 5.5 and an approved random bit generator; 2895

• The key-transport scheme specified in Section 9.2, together with an approved random bit 2896
generator and approved hash function(s); and/or 2897

• Unilateral or bilateral key confirmation as specified in Section 5.6. 2898
An implementer shall also identify the appropriate specifics of the implementation, including: 2899

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program
https://csrc.nist.gov/projects/cryptographic-module-validation-program

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

102

• The hash function(s) to be used (see Section 5.1); 2900

• The MAC function used for key confirmation; 2901

• The MacKey length(s) (see Table 2 in Section 5.6.3); 2902

• The key-establishment schemes available (see Sections 8 and 9); 2903

• The key-derivation method to be used if a key-agreement scheme is implemented, 2904
including the format of OtherInput or its equivalent (see Section 5.5); 2905

• The type of nonces to be generated (see Section 5.4); 2906

• How assurance of private-key possession and assurance of public-key validity are expected 2907
to be achieved by both the owner and the recipient (see Section 6.4); 2908

• Whether or not a capability is available to handle additional input (see Section 9.1); and 2909

• The RBG used, and its security strength (see Section 5.3). 2910

 2911

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

103

Appendix A: References 2912

A.1 Normative References 2913

[FIPS 140] FIPS 140-2, Security Requirements for Cryptographic Modules, May 25, 2001. 2914
FIPS 140-3 is currently under development. 2915

[FIPS 140 IG] FIPS 140-2 Implementation Guidance; available at 2916
https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-2917
program/documents/fips140-2/fips1402ig.pdf. 2918

[FIPS 180] FIPS 180-4 Secure Hash Standard, March 2012. 2919

[FIPS 186] FIPS 186-4, Digital Signature Standard, July 2013. 2920

[FIPS 197] FIPS 197, Advanced Encryption Standard, November 2001. 2921

[FIPS 198] FIPS 198-1, The Keyed-Hash Message Authentication Code (HMAC), July 2008. 2922

[FIPS 202] FIPS 202, SHA-3 Standard: Permutation-Based Hash and Extendable-Output 2923
Functions, August 2015. 2924

 [SP 800-38B] NIST SP 800-38B, Recommendation for Block Cipher Modes of Operation: The 2925
CMAC Mode for Authentication, May 2005. 2926

[SP 800-38C] NIST SP 800-38C, Recommendation for Block Cipher Modes of Operation: The 2927
CCM Mode for Authentication and Confidentiality, May 2004. 2928

[SP 800-38F] NIST SP 800-38F, Recommendation for Block Cipher Modes of Operation: 2929
Methods for Key-wrapping, December 2012. 2930

[SP 800-56A] NIST SP 800-56A, Recommendation for Pair-Wise Key-establishment Schemes 2931
Using Discrete Logarithm Cryptography, Revision 3, April 2018. 2932

[SP 800-56C] NIST SP 800-56C, Recommendation for Key Derivation through Extraction-then-2933
Expansion, Revision 1, April 2018. 2934

[SP 800-57] NIST SP 800-57-Part 1, Recommendation for Key Management, Revision 3, July 2935
2012. 2936

 [SP 800-89] NIST SP 800-89, Recommendation for Obtaining Assurances for Digital Signature 2937
Applications, November 2006. 2938

[SP 800-90] Recommendation for Random Number Generation 2939

SP 800-90A: Recommendation for Random Number Generation Using 2940
Deterministic Random Bit Generators, Revision 1, June 2015. 2941

SP 800-90B: Recommendation for the Entropy Sources Used for Random Bit 2942
Generation, January 2018. 2943

SP 800-90C: DRAFT Recommendation for Random Bit Generator (RBG) 2944
Constructions, April 2016. 2945

https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/fips140-2/fips1402ig.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/fips140-2/fips1402ig.pdf

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

104

 [SP 800-108] NIST SP 800-108, Recommendation for Key Derivation Using Pseudorandom 2946
Functions, October 2009. 2947

[SP 800-133] NIST SP 800-133, Recommendation for Cryptographic Key Generation, November 2948
2012. 2949

[SP 800-135] NIST SP 800-135, Recommendation for Existing Application-Specific Key 2950
Derivation Functions, Revision 1, December 2011. 2951

[SP 800-185] NIST SP 800-185, SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash, and 2952
ParallelHash, December 2016. 2953

[ANS X9.44] ANS X9.44-2007 (R2017) Public Key Cryptography for the Financial Services 2954
Industry: Key Establishment Using Integer Factorization Cryptography, August 2955
2007 (WITHDRAWN). 2956

[ISO/IEC 8825] ISO/IEC 8825-1, Information Technology – ASN.1 encoding rules: Specification 2957
of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and 2958
Distinguished Encoding Rules (DER), December 2008. 2959

[PKCS 1] Public Key Cryptography Series (PKCS) #1: RSA Cryptography Specifications 2960
Version 2.2, RFC 8017, October 2012. 2961

A.2 Informative References 2962

[Manger 2001] A Chosen Ciphertext Attack on RSA Optimal Asymmetric Encryption Padding 2963
(OAEP) as Standardized in PKCS #1 v2.0, J. Manger, In J. Kilian, editor, Advances 2964
in Cryptology – Crypto 2001, pp. 230 – 238, Springer-Verlag, 2001. 2965

[RSA 1978] A Method for Obtaining Digital Signatures and Public-Key Cryptosystems, R. 2966
Rivest, A. Shamir and L. Adleman, Communications of the ACM, 21(2), pp. 120 – 2967
126, 1978. 2968

[HN 1998] The Security of all RSA and Discrete Log Bits, J. Håstad and M. Näslund, Proc. of 2969
the 39th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 510 – 2970
521, 1998. 2971

[Boneh 1999] Twenty Years of Attacks on the RSA Cryptosystem, D. Boneh, Notices of the 2972
American Mathematical Society (AMS), 46(2), 203 – 213. 1999. 2973

2974

http://crypto.stanford.edu/%7Edabo/abstracts/RSAattack-survey.html
http://www.ams.org/notices

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

105

Appendix B: Data Conversions (Normative) 2975

B.1 Integer-to-Byte String (I2BS) Conversion 2976

Input: A non-negative integer X and the intended length n of the byte string satisfying 2977
 28n > X. 2978
Output: A byte string S of length n bytes. 2979

1. Qn+1 = X. 2980

2. For i = n to 1 by −1 2981

2.1 Qi = (Qi+1)/256. 2982

2.2 Xi = Qi+1 − (Qi × 256). 2983

2.3 Si = (ai1, ai2, ai3, ai4, ai5, ai6, ai7, ai8), 2984

the 8-bit binary representation of the non-negative integer 2985
Xi = ai1 27+ai2 26+ai3 25+ai4 24+ai5 23+ai6 22+ai7 2+ai8. 2986

3. Let S1, S2,…, Sn be the bytes of S from leftmost to rightmost. 2987

4. Output S. 2988

B.2 Byte String to Integer (BS2I) Conversion 2989

Input: A non-empty byte string S (SLen is used to denote the length of the byte string). 2990

Output: A non-negative integer X. 2991

1. Let S1, S2,… SSLen be the bytes of S from first to last (i.e., from leftmost to rightmost). 2992

2. Let X = 0. 2993

3. For i = 1 to SLen by 1 2994

3.1 Let Xi = (ai127, ai226, ai325, ai424, ai523, ai622, ai72, ai8), 2995
where ai1, ai2, ai3, ai4, ai5, ai6, ai7, ai8 are the bits of Si from leftmost to rightmost; 2996
i.e., Si = (ai1, ai2, ai3, ai4, ai5, ai6, ai7, ai8). 2997

3.2 Replace X by (X × 256) + Xi. 2998

4. Output X. 2999

 3000

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

106

 3001

Appendix C: Prime-Factor Recovery (Normative) 3002

Two methods for prime-factor recovery are provided below: Appendix C.1 provides a probabilistic 3003
method, and Appendix C.2 provides a determinitic method. Prime-factor recovery is required 3004
during key-pair validation using the basic format (see Section 6.4.1.2.1). 3005

C.1 Probabilistic Prime-Factor Recovery 3006

The following algorithm recovers the prime factors of a modulus, given the public and private 3007
exponents. The algorithm is based on Fact 1 in [Boneh 1999]. 3008

Function call: RecoverPrimeFactors(n, e, d) 3009

Input: 3010

1. n: modulus. 3011

2. e: public exponent. 3012

3. d: private exponent. 3013

Output: 3014
1. (p, q): prime factors of modulus. 3015

Errors: “prime factors not found” 3016

Assumptions: The modulus n is the product of two prime factors p and q; the public and private 3017
exponents satisfy de ≡ 1 (mod λ(n)) where λ(n) = LCM(p – 1, q – 1). 3018

Process: 3019

1. Let m = de – 1. If m is odd, then go to Step 4. 3020

2. Write m as m = 2tr, where r is the largest odd integer dividing m, and t ≥ 1. 3021
3. For i = 1 to 100 do: 3022

a. Generate a random integer g in the range [0, n−1]. 3023

b. Let y = gr mod n. 3024

c. If y = 1 or y = n – 1, then go to Step g. 3025

d. For j = 1 to t – 1 do: 3026

i. Let x = y2 mod n. 3027

ii. If x = 1, go to Step 5. 3028

iii. If x = n – 1, go to Step g. 3029

iv. Let y = x. 3030

e. Let x = y2 mod n. 3031

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

107

f. If x = 1, go to Step 5. 3032

g. Continue. 3033

4. Output “prime factors not found,” and exit without further processing. 3034

5. Let p = GCD(y – 1, n) and let q = n/p. 3035

6. Output (p, q) as the prime factors. 3036

Any local copies of d, p, q , m, t, r, x, y, g and any intermediate values used during the execution 3037
of the RecoverPrimeFactors function shall be destroyed prior to or during steps 4 and 6. Note that 3038
this includes the values for p and q that are output in step 6. 3039

Notes: 3040

1. According to Fact 1 in [Boneh 1999], the probability that one of the values of y in an 3041
iteration of Step 3 reveals the factors of the modulus is at least 1/2, so on average, no more 3042
than two iterations of that step will be required. If the prime factors are not revealed after 3043
100 iterations, then the probability is overwhelming that the modulus is not the product of 3044
two prime factors, or that the public and private exponents are not consistent with each 3045
other. 3046

2. The algorithm bears some resemblance to the Miller-Rabin primality-testing algorithm 3047
(see, e.g., FIPS 186). 3048

3. The order of the recovered prime factors p and q may be the reverse of the order in which 3049
the factors were generated originally. 3050

4. All local copies of d, p, q, and and any other local/intermediate values used during the 3051
execution of the RecoverPrimeFactors function shall be destroyed prior to the early 3052
termination of the process due to an error, or (in the absence of errors), prior to or during 3053
the the completion of step 6. 3054

C.2 Deterministic Prime-Factor Recovery 3055

The following (deterministic) algorithm also recovers the prime factors of a modulus, given the 3056
public and private exponents. A proof of correctness is provided below. 3057

Function call: RecoverPrimeFactors(n, e, d) 3058

Input: 3059

1. n: modulus. 3060

2. e: public exponent. 3061

3. d: private exponent. 3062

Output: 3063
(p, q): prime factors of modulus, with p > q. 3064

Assumptions: 3065
1. The modulus n is the product of two prime factors p and q, with p > q. 3066

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

108

2. Both p and q are less than 2(nBits/2), where nBits ≥ 2048 is the bit length of n. 3067

3. The public exponent e is an odd integer between 216 and 2256. 3068

4. The private exponent d is a positive integer that is less than λ(n) = LCM(p – 1, q – 1). 3069

5. The exponents e and d satisfy de ≡ 1 (mod λ(n)). 3070

Note: For more general applications of the process below, assumptions 2 and 3 above can be 3071
replaced by the more general assumption that the public exponent e is an odd integer 3072
satisfying 1 < e2 ≤ n /(p + q – 1). (See the discussion following Lemma 3 below.) That 3073
condition will be satisfied, e.g., if e2 is greater than one, but no greater than one-half of the 3074
smallest prime factor of n, as is the case for any RSA key pair generated in conformance 3075
with this Recommendation. 3076

 3077
Process: 3078

1. Let a = (de – 1) × GCD(n – 1, de – 1). 3079

2. Let m = a /n and r = a – m n, so that 3080

 a = m n + r and 0 ≤ r < n. 3081

3. Let b = ((n – r)/(m + 1)) + 1; if b is not an integer or b2 ≤ 4n, then output an error indicator, 3082
and exit without further processing. (See Note 1 below.) 3083

4. Let ϒ be the positive square root of b2 – 4n; if ϒ is not an integer, then output an error 3084
indicator, and exit without further processing. (See Note 2 below.) 3085

5. Let p = (b + ϒ)/2 and let q = (b – ϒ)/2. 3086

6. Output (p, q) as the prime factors. (See Note 3 below.) 3087

Notes: 3088
1. b should be equal to p + q. If b is not an integer satisfying b2 > 4n, then one or more of the 3089

assumptions concerning n, e, d, p and q are incorrect and the corresponding RSA key pair does 3090
not conform to the requirements of this Recommendation. 3091

2. ϒ should be equal to p – q. If ϒ is not an integer, then one or more of the assumptions 3092
concerning n, e, d, p and q are incorrect and the corresponding RSA key pair does not conform 3093
to the requirements of this Recommendation. 3094

3. The labeling of the recovered prime factors (i.e., labeling the larger as p and the smaller as q) 3095
may be the reverse of the labeling that was used when those factors were originally generated. 3096

4. All local copies of d, p, q, and and any other local/intermediate values used during the 3097
execution of the RecoverPrimeFactors function shall be destroyed prior to the early 3098
termination of the process due to an error, or (in the absence of errors) prior to or during the 3099
the completion of step 6. 3100

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

109

Proof of Correctness: 3101

Since (by definition), λ(n) = LCM(p – 1, q – 1), 3102

(p – 1)(q – 1) = LCM(p – 1, q – 1) × GCD(p – 1, q – 1) = λ(n) × GCD(p – 1, q – 1) (1) 3103
 3104

Lemma 1: GCD(p – 1, q – 1) = GCD(n – 1, λ(n)) 3105

Proof of Lemma 1: 3106

Since n – 1 = (p – 1)(q – 1) + (p – 1) + (q – 1) and λ(n) is a divisor of (p – 1)(q – 1), it follows 3107
that GCD(n – 1, λ(n)) = GCD((p – 1) + (q – 1), λ(n)). 3108

Any common divisor of p – 1 and q – 1 will also be a divisor of both (p – 1) + (q – 1) and λ(n), 3109
and hence a divisor of GCD((p – 1) + (q – 1), λ(n)). In particular, GCD(p – 1, q – 1) is a divisor 3110
of GCD((p – 1) + (q – 1), λ(n)), and so, GCD(p – 1, q – 1) ≤ GCD((p – 1) + (q – 1), λ(n)). 3111

To establish that GCD((p – 1) + (q – 1), λ(n)) ≤ GCD(p – 1, q – 1) – and hence that the two 3112
GCDs are equal. Let { hi | 1 ≤ i ≤ m } denote the set of primes that are divisors of either p – 1 or 3113
q – 1. Then the factorizations of p – 1, q – 1, and λ(n) have the forms 3114

p – 1 = h1
x(1) × h2

x(2) × … × hm
x(m), 3115

q – 1 = h1
y(1) × h2

y(2) × … × hm
y(m), and 3116

 λ(n) = h1
z(1) × h2

z(2) × … × hm
z(m), 3117

where { x(i) | 1 ≤ i ≤ m }, { y(i) | 1 ≤ i ≤ m }, and { z(i) | 1 ≤ i ≤ m } are sets of non-negative 3118
integers satisfying z(i) = max(x(i), y(i)). If j is a divisor of λ(n), then j has the form 3119

 j = h1
w(1) × h2

w(2) × … × hm
w(m), with 0 ≤ w(i) ≤ z(i) for 1 ≤ i ≤ m. 3120

Suppose that j is also a divisor of (p – 1) + (q – 1) and that, for a particular value of i, z(i) = x(i). 3121
In this case, hi

w(i) will divide both p – 1 and the sum (p – 1) + (q – 1), hence hi
w(i) will divide their 3122

difference, q – 1. Similarly, if z(i) = y(i), then hi
w(i) will divide both q – 1 and the sum (p – 1) + 3123

(q – 1), hence hi
w(i) will divide p – 1 as well. Thus, each prime-power factor of j is a common 3124

divisor of p – 1 and q – 1, and so the same is true of j. This shows that any common divisor j of 3125
λ(n) and the sum (p – 1) + (q – 1) is also a common divisor of p – 1 and q – 1, and hence a divisor 3126
of GCD(p – 1, q – 1). 3127

In particular, GCD((p – 1) + (q – 1), λ(n)) is a divisor of GCD(p – 1, q – 1), from which it 3128
follows that GCD((p – 1) + (q – 1), λ(n)) ≤ GCD(p – 1, q – 1). Combining this result with the 3129
previously established inequality GCD(p – 1, q – 1) ≤ GCD((p – 1) + (q – 1), λ(n)), proves the 3130
lemma’s claim: GCD(p – 1, q – 1) = GCD((p – 1) + (q – 1), λ(n)) = GCD(n – 1, λ(n)). 3131

 3132

Combining Lemma 1 with equation (1) above yields 3133

(p – 1)(q – 1) = λ(n) × GCD(n – 1, λ(n)). (2) 3134

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

110

Consider the quantity a = (de – 1) × GCD(n, de – 1) from step 1 of the RecoverPrimeFactors 3135
process. Since e > 1, the congruence de ≡ 1 (mod λ(n)) implies that de – 1 = u λ(n) for some 3136
positive integer u. Substituting u λ(n) for de – 1 in the expression for a yields 3137

a = (de – 1) × GCD(n – 1, de – 1) = u λ(n) × GCD(n – 1, u λ(n)). (3) 3138

GCD(n – 1, λ(n)) is a common divisor of n – 1 and u λ(n), and so is also a divisor of their GCD. 3139
Let v = GCD(n – 1, u λ(n)) / GCD(n – 1, λ(n)). 3140
 3141

Lemma 2: 1 ≤ v ≤ u < e 3142

Proof of Lemma 2: 3143

The assumption that the positive integer d is less than λ(n) and the fact that u = (de – 1)/λ(n) 3144
implies that u < e. Since v is a positive integer, it is true that 1 ≤ v. It remains to show that 3145
v ≤ u. Using 3146

GCD(n – 1, u λ(n)) = (n – 1)(u λ(n)) / LCM(n – 1, u λ(n)) 3147
and 3148

GCD(n – 1, λ(n)) = (n – 1)(λ(n)) / LCM(n – 1, λ(n)), 3149

It follows that 3150

v = GCD(n – 1, u λ(n)) / GCD(n – 1, λ(n)) = u × LCM(n – 1, λ(n))/LCM(n – 1, u λ(n)), 3151
which can be rewritten to obtain 3152

LCM(n – 1, u λ(n)) / LCM(n – 1, λ(n)) = u/v. 3153

Since LCM(n – 1, u λ(n)) is a common multiple of n – 1 and λ(n), it is a multiple of the least 3154
common multiple of n – 1 and λ(n). Therefore, u/v = LCM(n – 1, u λ(n)) / LCM(n – 1, λ(n)) is a 3155
positive integer. From 1 ≤ u/v, one obtains v ≤ u, completing the proof of the lemma. 3156

 3157

Using GCD(n – 1, u λ(n)) = v GCD(n – 1, λ(n)) together with equations (2) and (3) above, it follows 3158
that 3159

a = u λ(n) × v GCD(n – 1, λ(n)) = uv (λ(n) × GCD(n – 1, λ(n))) = uv (p – 1)(q – 1). (4) 3160

Since (p – 1)(q – 1) = n – (p + q – 1), equation (4) above shows that 3161

a = uv n – uv (p + q – 1) = (uv – 1) n + (n – uv (p + q – 1)) (5) 3162

 3163

Lemma 3: 0 ≤ n – uv (p + q – 1) < n 3164
Proof of Lemma 3: 3165

It suffices to verify that 0 < uv ≤ n /(p + q – 1). By the assumptions on the sizes of p, q, and n, it 3166
follows that p + q – 1 < 2(nBits/2)+1 and n > 2(nBits – 1), so that n /(p + q – 1) > 2(nBits/2) – 2. If it can be 3167
shown that the product uv is less than 2(nBits/2) – 2, then the proof of Lemma 3 will be complete. 3168

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

111

Lemma 2 implies that 1 ≤ uv ≤ u2 < e2. By assumption, e < 2256, so e2 < 2512. Since this document 3169
requires nBits ≥ 2048, it follows that 2(nBits/2) – 2 ≥ 21022. The fact that uv < 2512 < 21022 ≤ 3170
2(nBits/2) – 2 completes the proof of the lemma. 3171

Note: Lemma 3 (and hence the proof of correctness for the RecoverPrimeFactors process) is true 3172
under conditions more general than those used in the proof above, which invoked the bounds on 3173
the sizes of e, p, q, and n that are required by this Recommendation. For example, it suffices to 3174
know that those four values satisfy the condition 1 < e2 ≤ n /(p + q – 1) and that d < λ(n). 3175
 3176

Now consider the quantities m and r computed in step 2 of the RecoverPrimeFactors process. 3177

Combining equation (5) with Lemma 3 yields 3178

m = a /n = (uv – 1) and r = a – mn = n – uv (p + q – 1). 3179

Therefore, in step 3 of the process, 3180

b = ((n – r)/(m + 1)) + 1 = (uv (p + q – 1))/(uv)) + 1 = p + q, 3181

and in step 4, 3182

 ϒ = (b2 – 4n)1/2 = ((p + q)2 – 4pq)1/2 = ((p – q)2)1/2 = p – q. 3183

These values for b and ϒ ensure that p and q are correctly recovered in step 5, since 3184

p = (b + ϒ)/2 and q = (b – ϒ)/2. 3185

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

112

 3186

Appendix D: Maximum Security Strength Estimates for IFC Modulus 3187
Lengths 3188

Approved key-establishment schemes are required to provide a security strength of at least 112 3189
bits. An approximation of the maximum security strength that can be supported by an RSA 3190
modulus n can be computed as follows: 3191

Let nBits = len(n), the bit length of the RSA modulus n included in a public key employed by the 3192
key-establishment scheme. The estimated maximum security strength E that can be supported by 3193
the modulus is determined using the following formula: 3194

E =
1.923×∛(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ×ln 2)×∛[ln (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛×ln 2)]2−4.69

ln 2
 . 3195

Since E is not likely to be an integer, some rounding is appropriate. To facilitate comparison to 3196
symmetric-key algorithms (whose keys typically consist of some number of bytes), the value of E 3197
will be rounded to the nearest integer multiple of eight to obtain an estimate of the maximum 3198
security strength that can be supported by the use of a modulus of length nBits. In short, 3199

S(nBits) = the nearest multiple of 8 to E. 3200

Therefore, for the modulus lengths identified in Table 3 of Section 6.3, the maximum security 3201
strengths that can be suppported are provided below. 3202

Table 5: Estimated Security Strengths of Common RSA Moduli 3203

Modulus
Length
(in bits)

E Maximum Security Strength
S(nBits)

2048 110.1 112

3072 131.97 128

4096 149.73 152

6144 178.42 176

8192 201.7 200

As stated in Section 6.3, any modulus of even bit length with an even bit length that provides at 3204
least 112 bits of security strength may be used (i.e., nBits must be ≥ 2048). The method above can 3205
be used to estimate the security strengths supported by moduli other than those explicitly listed 3206
above. 3207

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

113

Appendix E: Revisions (Informative) 3208

In the 2014 revision, the following revisions were made: 3209
• Section 3.1 – Added definitions of assumptions, binding, destroy, fresh, key-derivation 3210

function, key-derivation method, key-wrapping key, MAC tag, and trusted association; 3211
removed algorithm identifier, digital signature, initiator, responder. 3212

• Section 4 – Used party U and party V to name the parties, rather than using the initiator and 3213
responder as the parties. In Sections 8 and 9, the schemes have been accordingly renamed: 3214
KAS1-responder-confirmation is now KAS1-Party_V-confirmation, KAS2-responder-3215
confirmation is now KAS2-Party_V-confirmation, KAS2-initiator-confirmation is now 3216
KAS2-Party_U-confirmation, KTS-OAEP-receiver-confirmation is not KTS-OAEP-3217
Party_V-confirmation, and KTS-KEM-KWS-receiver-confirmation is now KTS-KEM-3218
KWS-Party_V-confirmation. 3219

• Section 4 – Added requirements to destroy the local copies of secret and private values and 3220
all intermediate calculations before terminating a routine normally or in response to an 3221
error. Instructions to this effect have been inserted throughout the document. 3222

• The discussion about identifiers vs. identity and binding have been moved to Section 4.1. 3223

• Section 4.3 – The phrase “IFC-based” has been removed throughout the document. 3224

• Section 5.4 – More discussion has been added about the use of nonces, including new 3225
requirements and recommendations. 3226

• Section 5.5 – Key derivation has been divided into single-step key derivation methods 3227
(Section 5.5.1), an extract-then-expand key derivation procedure (Section 5.5.2) and 3228
application-specific key-derivation methods (Section 5.5.3). 3229

• Section 5.5.1.2 – The use of OtherInfo (including identifiers) during the derivation of keys 3230
is recommended, but no longer required (Section 5.5.1.2). 3231

• Moved the general introduction of key-confirmation to Section 5.9 – The discussion now 3232
incorporates the material from Section 6.6 of the previous version of the document. 3233

• Section 6.4 – There is now a longer, and more thorough discussion of validity in Section 3234
6.4. The concept of trusted associations has been introduced. 3235

• Section 6.4.1.1 – Removed “or TTP” from the following: “The key pair can be revalidated 3236
at any time by the owner as follows….” 3237

• Section 7.2.3.2 – Moved discussion of symmetric key-wrapping methods from Section 5.7 3238
to Section 7.2.3.2; much more information is now provided. 3239

• Section 10 – The rationale for choosing each scheme type has been combined in this new 3240
section, along with a discussion of their security properties. 3241

• The old Appendix A, Summary of Differences between this Recommendation and ANS 3242
X9.44 (Informative), was removed. 3243

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

114

• The old Appendix E becomes Appendix D, and the changes introduced in this Revision are 3244
listed here. 3245

• All figures are replaced to reflect the content, text, and terminology changes. 3246

• Security requirements have been updated; in particular, the 80-bit security strength is no 3247
longer permitted in this Recommendation. 3248

• Changes to handle the destruction of local keys and intermediate values have been 3249
introduced. 3250

• General changes have been made to make this Recommendation more similar to [SP 800 3251
56A]. 3252

 3253
In the 2018 revision, the following changes were made (in addition to editorial changes): 3254

1. Overall changes: 3255

• Removed provisions for using TDEA. 3256

• Provided moduli > 3072 bits and a method for estimated the maximum security strength 3257
that can be provided by these moduli. 3258

• Removed the KTS-KEM-KWS scheme and added a hybrid scheme (KTS-Hybrid-SKW). 3259

• Hyperlinks to sections within the document and to referenced documents are now included. 3260
2. Section 3.1: Added: Big endian, Byte length, Confidentiality, Key-establishment key pair, 3261

Integrity, Random nonce, Support (a security strength), Symmetric key. 3262

• Modified: Approved, Assurance of validity, Bit length, Byte, Destroy, Fresh, Key-3263
agreement transaction, Key confirmation, Key-derivation function, Key-derivation 3264
method, Key-derivation procedure, Key establishment, Key-establishment transaction, 3265
Keying material, Key transport, Key-transport transaction, Key wrapping, Least-common 3266
multiple, MacOutputBits, MacOutputLen, MAC tag, MacTagBits, Message Authentication 3267
Code, Nonce, Party, Public-key certificate, Recipient, Scheme, Security properties, 3268
Targeted security strength, Third party. 3269

• Deleted: Entity authentication, Length in bits of the non-negative integer x . 3270
3. Section 3.2: Added: len(x), which has been used throughout the document; MacKeyBits; 3271

MacOutputBits; MacOutputLen; MacTagBits; OtherInput; S(nBits). 3272

• Modified: c; C, C0, C1; nLen; 3273
• Removed: Bytelen, k, KTS-KEM-KWS, kwkBits, KWS, OtherInfo, RSA-KEM-KWS, RSA-3274

KEM-KWS-basic, RSA-KEM-KWS-PartyV-confirmation, x, z. 3275

4. Section 4.1, para. 2: A sentence was inserted to provide guidance for providing a key pair to 3276
its owner. 3277

5. Section 4.2, para. 1: A sentence was inserted as sentence 3 (for clarification). 3278

6. Section 4.3: Refererences to the RSA-KEM-KWS scheme have been removed. A reference to 3279
the hybrid method for key transport has been inserted. 3280

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

115

7. Section 5.2: The first three paragraphs were updated. KMAC was added as an approved MAC 3281
algorithm. 3282

8. Section 5.4, third para.: Reworded the requirements for the minimum security strength and 3283
random bit string length for a nonce. 3284

9. Section 5.5: Rewritten to refer to SP 800-56C for performing key derivation. 3285

10. Section 5.6: Inserted text and a table to clarify the roles for each scheme. 3286

11. Sections 5.6.1 and 5.6.2: Revised to accommodate the new KTS-Hybrid SKW family of 3287
schemes. 3288

12. Section 5.6.3: Revised to clarify the approved MAC algorithms, the acceptable MacKey 3289
lengths and the supported security strengths. 3290

13. Section 6.2.1: Steps 3a and 3b have been changed to remove the "−1" from the upper bound. 3291
14. Section 6.3: Inserted text and a table of estimated maximum security strengths for additional 3292

approved modulus lengths. Also, see Appendix D. 3293

15. Sections 6.3.1.1, 6.3.2.1, and 6.4.1.2.1: Revised to accommodate the revised modulus lengths 3294
and clarify error indications. 3295

16. Sections 6.4.1.2.1, 6.4.1.2.2, 6.4.1.2.3, 6.4.1.3.2, 6.4.1.3.3, 6.4.1.4.2 and 6.4.1.4.3: Added step 3296
3c to check that nBits is an even integer. 3297

17. Section 6.4.1.2.1: Added a requirement regarding the error rate on the primality tests. 3298

18. Section 6.4.1.5: Revised step 2 to clarify KAS2 key confirmation. 3299

19. Section 6.4.2.3.2: Revised descriptions of the key confirmation provided for the key-3300
establishment schemes. 3301

20. Old Section 7: Removed the components used by the KTS-KEM-KWS family of schemes. 3302

21. Section 7.1.2: Routines have been added for decryption using the prime factor and CRT 3303
formats for the private key. 3304

22. Section 7.2.2.1: Explicitly stated that the hash function used for the MGF computation need 3305
not be the same as the has function used for MAC generation. 3306

23. Section 7.2.2, 7.2.2.3 and 7.2.2.4: Removed the list of (limited) modulus lengths that were used 3307
in the previous version of SP 800-56B. 3308

24. Section 7.2.2.4: Added an initial step to set DecryptErrorFlag to False, 3309

25. Section 9: Revised to remove discussions of the KTS-KEM-KWS schemes and a brief 3310
discussion of a hybrid key-transport scheme. 3311

26. Section 9.1: Revised to refer to the list in Section 5.5.2 as possible information to be used for 3312
additional input. 3313

27. Section 9.3: A discussion of a hybrid key-transport method. 3314

28. Section 10.4: Removed the rationale for the RSA-KEM KWS family and added a summary of 3315
the assurances for each key-establishment scheme family. 3316

NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
 USING INTEGER FACTORIZATION CRYPTOGRAPHY

116

29. Section 12: Additional items were added to the validation lists. 3317

30. Appendix A: Updated the references. 3318

31. Appendix C.2: Added the Deterministic Prime-Factor Recovery Method. 3319

32. Appendix D: Added a method for estimated the maximum security strength that could be 3320
provided by an IFC modulus length. 3321

 3322

	1. Introduction
	2. Scope and Purpose
	3. Definitions, Symbols and Abbreviations
	3.1 Definitions
	3.2 Symbols and Abbreviations

	4 Key-Establishment Schemes Overview
	4.1 Key-Establishment Preparations
	4.2 Key-Agreement Process
	4.3 Key-Transport Process

	5 Cryptographic Elements
	5.1 Cryptographic Hash Functions
	5.2 Message Authentication Code (MAC) Algorithms
	5.2.1 MacTag Computation for Key Confirmation
	5.2.2 MacTag Verification for Key Confirmation

	5.3 Random Bit Generators
	5.4 Nonces
	5.5 Key-Derivation Methods for Key-Establishment Schemes
	5.5.1 Performing the Key Derivation
	5.5.2 FixedInfo
	5.5.2.1 One-step Key Derivation
	5.5.2.1.1 The Concatenation Format for FixedInfo
	5.5.2.1.2 The ASN.1 Format for FixedInfo

	5.5.2.2 Two-step Key-Derivation (Extraction-then-Expansion)
	5.5.2.3 Other Formats for FixedInfo

	5.6 Key Confirmation
	5.6.1 Unilateral Key Confirmation for Key-Establishment Schemes
	5.6.2 Bilateral Key Confirmation for KAS2 Schemes
	5.6.3 Selecting the MAC and Other Key-Confirmation Parameters

	6 RSA Key Pairs
	6.1 General Requirements
	6.2 Criteria for RSA Key Pairs for Key Establishment
	6.2.1 Definition of a Key Pair
	6.2.2 Formats

	6.3 RSA Key-Pair Generators
	6.3.1 RSAKPG1 Family: RSA Key-Pair Generation with a Fixed Public Exponent
	6.3.1.1 rsakpg1-basic
	6.3.1.2 rsakpg1-prime-factor
	6.3.1.3 rsakpg1-crt

	6.3.2 RSAKPG2 Family: RSA Key-Pair Generation with a Random Public Exponent
	6.3.2.1 rsakpg2-basic
	6.3.2.2 rsakpg2-prime-factor
	6.3.2.3 rsakpg2-crt

	6.4 Required Assurances
	6.4.1 Assurances Required by the Key-Pair Owner
	6.4.1.1 Obtaining Owner Assurance of Key-Pair Validity
	6.4.1.2 RSAKPV1 Family: RSA Key-Pair Validation with a Fixed Public Exponent
	6.4.1.2.1 rsakpv1-basic
	6.4.1.2.2 rsakpv1-prime-factor
	6.4.1.2.3 rsakpv1-crt

	6.4.1.3 RSAKPV2 Family: RSA Key-Pair Validation (Random Public Exponent)
	6.4.1.3.1 rsakpv2-basic
	6.4.1.3.2 rsakpv2-prime-factor
	6.4.1.3.3 rsakpv2-crt

	6.4.1.4 RSA Key-Pair Validation (Exponent-Creation Method Unknown)
	6.4.1.4.1 basic-pkv
	6.4.1.4.2 prime-factor-pkv
	6.4.1.4.3 crt_pkv

	6.4.1.5 Owner Assurance of Private-Key Possession

	6.4.2 Assurances Required by a Public-Key Recipient
	6.4.2.1 Obtaining Assurance of Public-Key Validity for a Received Public Key
	6.4.2.2 Partial Public-Key Validation for RSA
	6.4.2.3 Recipient Assurances of an Owner’s Possession of a Private Key
	6.4.2.3.1 Recipient Obtains Assurance from a Trusted Third Party
	6.4.2.3.2 Recipient Obtains Assurance Directly from the Claimed Owner (i.e., the Other Party)

	7 Primitives and Operations
	7.1 Encryption and Decryption Primitives
	7.1.1 RSAEP
	7.1.2 RSADP
	7.1.2.1 Decryption with the Private Key in the Basic Format
	7.1.2.2 Decryption with the Private Key in the Prime Factor Format
	7.1.2.3 Decryption with the Private Key in the CRT Format

	7.2 Encryption and Decryption Operations
	7.2.1 RSA Secret-Value Encapsulation (RSASVE)
	7.2.1.1 RSASVE Components
	7.2.1.2 RSASVE Generate Operation (RSASVE.GENERATE)
	7.2.1.3 RSASVE Recovery Operation (RSASVE.RECOVER)

	7.2.2 RSA with Optimal Asymmetric Encryption Padding (RSA-OAEP)
	7.2.2.1 RSA-OAEP Components
	7.2.2.2 The Mask Generation Function (MGF)
	7.2.2.3 RSA-OAEP Encryption Operation (RSA-OAEP.ENCRYPT)
	7.2.2.4 RSA-OAEP Decryption Operation (RSA-OAEP.DECRYPT)

	8 Key-Agreement Schemes
	8.1 Common Components for Key Agreement
	8.2 KAS1 Key Agreement
	8.2.1 KAS1 Assumptions
	8.2.2 KAS1-basic
	8.2.3 KAS1 Key Confirmation
	8.2.3.1 KAS1 Key-Confirmation Components
	8.2.3.2 KAS1-Party_V-confirmation

	8.3 KAS2 Key Agreement
	8.3.1 KAS2 Assumptions
	8.3.2 KAS2-basic
	8.3.3 KAS2 Key Confirmation
	8.3.3.1 KAS2 Key-Confirmation Components
	8.3.3.2 KAS2-Party_V-confirmation
	8.3.3.2 KAS2-Party_U-confirmation
	8.3.3.3 KAS2-bilateral-confirmation

	9 Key-Transport Schemes
	9.1 Additional Input
	9.2 KTS-OAEP: Key-Transport Using RSA-OAEP
	9.2.1 KTS-OAEP Assumptions
	9.2.2 Common components
	9.2.3 KTS-OAEP-basic
	9.2.4 KTS-OAEP Key Confirmation
	9.2.4.1 KTS-OAEP Common Components for Key Confirmation
	9.2.4.2 KTS-OAEP-Party_V-confirmation

	9.3 Hybrid Key-Transport Methods

	10 Rationale for Selecting a Specific Scheme
	10.1 Rationale for Choosing a KAS1 Key-Agreement Scheme
	10.2 Rationale for Choosing a KAS2 Key-Agreement Scheme
	10.3 Rationale for Choosing a KTS-OAEP Key-Transport Scheme
	10.4 Summary of Assurances Associated with Key-Establishment Schemes

	11 Key Recovery
	12 Implementation Validation
	Appendix A: References
	A.1 Normative References
	A.2 Informative References

	Appendix B: Data Conversions (Normative)
	B.1 Integer-to-Byte String (I2BS) Conversion
	B.2 Byte String to Integer (BS2I) Conversion

	Appendix C: Prime-Factor Recovery (Normative)
	C.1 Probabilistic Prime-Factor Recovery
	C.2 Deterministic Prime-Factor Recovery

	Appendix D: Maximum Security Strength Estimates for IFC Modulus Lengths
	Appendix E: Revisions (Informative)
	Word Bookmarks
	Figure_1
	Figure_2
	Figure_3
	Table_1
	Table_2
	Figure_4
	Figure_5
	Figure_6
	Figure_7
	Figure_8
	Figure_9
	Figure_10
	Figure_11
	Figure_12
	Figure_13
	Table_3
	FIPS_140
	FIPS_140_IG
	FIPS_180
	FIPS_186
	FIPS_197
	FIPS_198
	FIPS_202
	SP_800_38B
	SP_800_38C
	SP_800_38F
	SP_800_56A
	SP_800_56C
	SP_800_57
	SP_800_89
	SP_800_90
	SP_800_90A
	SP_800_90B
	SP_800_90C
	SP_800_108
	SP_800_133
	SP_800_135
	SP_800_185
	X9_44
	ISO_IEC_8825
	PKCS_1
	Manger_2001
	RSA_1978
	HN_1998
	Boneh_1999
	Appendix_B
	Appendix_C
	Appendix_D

NIST SP 800-56B REV. 2 (DRAFT)	RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
USING INTEGER FACTORIZATION CRYPTOGRAPHY

NIST SP 800-56B REV. 2 (DRAFT)	RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT
	USING INTEGER FACTORIZATION CRYPTOGRAPHY

Draft NIST Special Publication 800-56B

Revision 2

Recommendation for Pair-Wise
Key Establishment Using Integer Factorization Cryptography

Elaine Barker

Lily Chen

Allen Roginsky

Apostol Vassilev

Richard Davis

Scott Simon

C O M P U T E R S E C U R I T Y

August 2, 2018

This draft has been modified very slightly from the version originally posted on July 10, 2018: 1) In the Notes to Reviewers (p. iii), item 2 has been updated and item 3 has been deleted; 2) In Appendix E, items 16 and 17 identify specific changes in Section 6.4.1.

[bookmark: _GoBack]

[image: nistident_flright_300ppi]

Draft NIST Special Publication 800-56B

 Revision 2

Recommendation for Pair-Wise
Key Establishment Using Integer Factorization Cryptography

Elaine Barker

Lily Chen

Allen Roginsky

Apostol Vassilev

Computer Security Division

Information Technology Laboratory

Richard Davis

Scott Simon

National Security Agency

July 2018

[image:]

U.S. Department of Commerce

Wilbur L. Ross, Jr., Secretary

National Institute of Standards and Technology

Walter Copan, NIST Director and Under Secretary of Commerce for Standards and Technology

Authority

This publication has been developed by the National Institute of Standards and Technology (NIST) in accordance with its statutory responsibilities under the Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law (P.L.) 113-283. NIST is responsible for developing information security standards and guidelines, including minimum requirements for federal information systems, but such standards and guidelines shall not apply to national security systems without the express approval of appropriate federal officials exercising policy authority over such systems. This guideline is consistent with the requirements of the Office of Management and Budget (OMB) Circular A-130.

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these guidelines be interpreted as altering or superseding the existing authorities of the Secretary of Commerce, Director of the OMB, or any other federal official. This publication may be used by nongovernmental organizations on a voluntary basis and is not subject to copyright in the United States. Attribution would, however, be appreciated by NIST.

National Institute of Standards and Technology Special Publication 800-56B Revision 2
Natl. Inst. Stand. Technol. Spec. Publ. 800-56B Rev. 2, 126 pages (July 2018)
CODEN: NSPUE2Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

There may be references in this publication to other publications currently under development by NIST in accordance with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies, may be used by Federal agencies even before the completion of such companion publications. Thus, until each publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For planning and transition purposes, Federal agencies may wish to closely follow the development of these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide feedback to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at https://csrc.nist.gov/publications.

Public comment period: July 9, 2018 through October 5, 2018

National Institute of Standards and Technology

Attn: Computer Security Division, Information Technology Laboratory

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930

Email: SP800-56b_comments@nist.gov

All comments are subject to release under the Freedom of Information Act (FOIA).
Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology (NIST) promotes the U.S. economy and public welfare by providing technical leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of concept implementations, and technical analyses to advance the development and productive use of information technology. ITL’s responsibilities include the development of management, administrative, technical, and physical standards and guidelines for the cost-effective security and privacy of other than national security-related information in Federal information systems. The Special Publication 800-series reports on ITL’s research, guidelines, and outreach efforts in information system security, and its collaborative activities with industry, government, and academic organizations.

Abstract

This Recommendation specifies key-establishment schemes using integer factorization cryptography (in particular, RSA). Both key-agreement and key transport schemes are specified for pairs of entities, and methods for key confirmation are included to provide assurance that both parties share the same keying material. In addition, the security properties associated with each scheme are provided.

Keywords

assurances; integer factorization cryptography; key agreement; key confirmation; key derivation; key establishment; key management; key recovery; key transport.

Acknowledgements

NIST thanks the many contributions by the public and private sectors whose thoughtful and constructive comments improved the quality and usefulness of this publication. The authors also acknowledge the contributions by Dustin Moody, Andrew Regenscheid and Miles Smid made to previous versions of this Recommendation.

Conformance Testing

Conformance testing for implementations of this Recommendation will be conducted within the framework of the Cryptographic Algorithm Validation Program (CAVP) and the Cryptographic Module Validation Program (CMVP). The requirements of this Recommendation are indicated by the word “shall.” Some of these requirements may be out-of-scope for CAVP or CMVP validation testing, and thus are the responsibility of entities using, implementing, installing or configuring applications that incorporate this Recommendation.

Notes to Reviewers

Please refer to Appendix E for a detailed list of changes for this revision. In particular, note the following:

1.	The RSA-KEM-KWS key transport scheme that was included in the previous version of this document has been removed. A preliminary search for its inclusion in FIPS-140-validated modules indicated that it was sometimes implemented, but additional research did not indicate that the scheme was actually used (e.g., in protocols). If this is incorrect, please advise us.

2.	The key-pair validation routines in Section 6.4.1 now include a requirement regarding the error rate on the primality test.

Table of Contents

1.	Introduction	1

2.	Scope and Purpose	1

3.	Definitions, Symbols and Abbreviations	2

3.1	Definitions	2

3.2	Symbols and Abbreviations	9

4	Key-Establishment Schemes Overview	15

4.1	Key-Establishment Preparations	16

4.2	Key-Agreement Process	18

4.3	Key-Transport Process	20

5	Cryptographic Elements	22

5.1	Cryptographic Hash Functions	22

5.2	Message Authentication Code (MAC) Algorithms	22

5.2.1	MacTag Computation for Key Confirmation	23

5.2.2	MacTag Verification for Key Confirmation	23

5.3	Random Bit Generators	23

5.4	Nonces	24

5.5	Key-Derivation Methods for Key-Establishment Schemes	24

5.5.1	Performing the Key Derivation	25

5.5.2	FixedInfo	25

5.5.2.1	One-step Key Derivation	26

5.5.2.1.1	The Concatenation Format for FixedInfo	27

5.5.2.1.2	The ASN.1 Format for FixedInfo	28

5.5.2.2	Two-step Key-Derivation (Extraction-then-Expansion)	28

5.5.2.3	Other Formats for FixedInfo	29

5.6	Key Confirmation	29

5.6.1	Unilateral Key Confirmation for Key-Establishment Schemes	29

5.6.2	Bilateral Key Confirmation for KAS2 Schemes	33

5.6.3	Selecting the MAC and Other Key-Confirmation Parameters	33

6	RSA Key Pairs	35

6.1	General Requirements	35

6.2	Criteria for RSA Key Pairs for Key Establishment	36

6.2.1	Definition of a Key Pair	36

6.2.2	Formats	37

6.3	RSA Key-Pair Generators	37

6.3.1	RSAKPG1 Family: RSA Key-Pair Generation with a Fixed Public Exponent	38

6.3.1.1	rsakpg1-basic	38

6.3.1.2	rsakpg1-prime-factor	40

6.3.1.3	rsakpg1-crt	40

6.3.2	RSAKPG2 Family: RSA Key-Pair Generation with a Random Public Exponent	41

6.3.2.1	rsakpg2-basic	41

6.3.2.2	rsakpg2-prime-factor	43

6.3.2.3	rsakpg2-crt	43

6.4	Required Assurances	44

6.4.1	Assurances Required by the Key-Pair Owner	44

6.4.1.1	Obtaining Owner Assurance of Key-Pair Validity	45

6.4.1.2	RSAKPV1 Family: RSA Key-Pair Validation with a Fixed Public Exponent	46

6.4.1.2.1	rsakpv1-basic	46

6.4.1.2.2	rsakpv1-prime-factor	48

6.4.1.2.3	rsakpv1-crt	49

6.4.1.3	RSAKPV2 Family: RSA Key-Pair Validation (Random Public Exponent)	50

6.4.1.3.1	rsakpv2-basic	50

6.4.1.3.2	rsakpv2-prime-factor	50

6.4.1.3.3	rsakpv2-crt	51

6.4.1.4	RSA Key-Pair Validation (Exponent-Creation Method Unknown)	52

6.4.1.4.1	basic-pkv	52

6.4.1.4.2	prime-factor-pkv	53

6.4.1.4.3	crt_pkv	53

6.4.1.5	Owner Assurance of Private-Key Possession	54

6.4.2	Assurances Required by a Public-Key Recipient	56

6.4.2.1	Obtaining Assurance of Public-Key Validity for a Received Public Key	56

6.4.2.2	Partial Public-Key Validation for RSA	56

6.4.2.3	Recipient Assurances of an Owner’s Possession of a Private Key	56

6.4.2.3.1	Recipient Obtains Assurance from a Trusted Third Party	57

6.4.2.3.2	Recipient Obtains Assurance Directly from the Claimed Owner (i.e., the Other Party)	58

7	Primitives and Operations	59

7.1	Encryption and Decryption Primitives	59

7.1.1	RSAEP	59

7.1.2	RSADP	60

7.1.2.1	Decryption with the Private Key in the Basic Format	60

7.1.2.2	Decryption with the Private Key in the Prime Factor Format	61

7.1.2.3	Decryption with the Private Key in the CRT Format	61

7.2	Encryption and Decryption Operations	61

7.2.1	RSA Secret-Value Encapsulation (RSASVE)	61

7.2.1.1	RSASVE Components	62

7.2.1.2	RSASVE Generate Operation (RSASVE.GENERATE)	62

7.2.1.3	RSASVE Recovery Operation (RSASVE.RECOVER)	63

7.2.2	RSA with Optimal Asymmetric Encryption Padding (RSA-OAEP)	64

7.2.2.1	RSA-OAEP Components	64

7.2.2.2	The Mask Generation Function (MGF)	65

7.2.2.3	RSA-OAEP Encryption Operation (RSA-OAEP.ENCRYPT)	66

7.2.2.4	RSA-OAEP Decryption Operation (RSA-OAEP.DECRYPT)	68

8	Key-Agreement Schemes	72

8.1	Common Components for Key Agreement	72

8.2	KAS1 Key Agreement	73

8.2.1	KAS1 Assumptions	73

8.2.2	KAS1-basic	74

8.2.3	KAS1 Key Confirmation	76

8.2.3.1	KAS1 Key-Confirmation Components	76

8.2.3.2	KAS1-Party_V-confirmation	76

8.3	KAS2 Key Agreement	77

8.3.1	KAS2 Assumptions	78

8.3.2	KAS2-basic	78

8.3.3	KAS2 Key Confirmation	80

8.3.3.1	KAS2 Key-Confirmation Components	80

8.3.3.2	KAS2-Party_V-confirmation	81

8.3.3.2	KAS2-Party_U-confirmation	82

8.3.3.3	KAS2-bilateral-confirmation	83

9	Key-Transport Schemes	84

9.1	Additional Input	84

9.2	KTS-OAEP: Key-Transport Using RSA-OAEP	85

9.2.1	KTS-OAEP Assumptions	86

9.2.2	Common components	86

9.2.3	KTS-OAEP-basic	86

9.2.4	KTS-OAEP Key Confirmation	88

9.2.4.1	KTS-OAEP Common Components for Key Confirmation	88

9.2.4.2	KTS-OAEP-Party_V-confirmation	88

9.3	Hybrid Key-Transport Methods	89

10	Rationale for Selecting a Specific Scheme	90

10.1	Rationale for Choosing a KAS1 Key-Agreement Scheme	91

10.2	Rationale for Choosing a KAS2 Key-Agreement Scheme	93

10.3	Rationale for Choosing a KTS-OAEP Key-Transport Scheme	95

10.4	Summary of Assurances Associated with Key-Establishment Schemes	97

11	Key Recovery	100

12	Implementation Validation	100

Appendix A: References	102

A.1	Normative References	102

A.2 Informative References	103

Appendix B: Data Conversions (Normative)	104

B.1	Integer-to-Byte String (I2BS) Conversion	104

B.2	Byte String to Integer (BS2I) Conversion	104

Appendix C: Prime-Factor Recovery (Normative)	105

C.1	Probabilistic Prime-Factor Recovery	105

C.2	Deterministic Prime-Factor Recovery	106

Appendix D: Maximum Security Strength Estimates for IFC Modulus Lengths	111

Appendix E: Revisions (Informative)	112

Figures

Figure 1: Owner Key-establishment Preparations	16

Figure 2: Key-Agreement Process	19

Figure 3: Key-transport Process	21

Figure 4: RSA-OAEP Encryption Operation	68

Figure 5: RSA-OAEP Decryption Operation	71

Figure 6: RSA-KEM-KWS Encryption Operation	73

Figure 7: RSA-KEM-KWS Decryption Operation	74

Figure 8: KAS1-basic Scheme	77

Figure 9: KAS1-Party_V-confirmation Scheme (from Party V to Party U)	79

Figure 10: KAS2-basic Scheme	80

Figure 11: KAS2-Party_V-confirmation Scheme (from Party V to Party U)	81

Figure 12: KAS2-Party_U-confirmation Scheme (from Party U to Party V)	85

Figure 13: KAS2-bilateral-confirmation Scheme	86

Tables

Table 1: Approved MAC Algorithms for Key Confirmation	33

Table 2: Security Strengths Provided by Commonly Used Modulus Lengths	36

Table 3: Summary of Assurances	97

1

[bookmark: _Toc518378734]Introduction

Many U.S. Government Information Technology (IT) systems need to employ strong cryptographic schemes to protect the integrity and confidentiality of the data that they process. Algorithms such as the Advanced Encryption Standard (AES), as defined in Federal Information Processing Standard (FIPS) 197,[footnoteRef:1] and HMAC, as defined in FIPS 198,[footnoteRef:2] make attractive choices for the provision of these services. These algorithms have been standardized to facilitate interoperability between systems. However, the use of these algorithms requires the establishment of secret keying material that is shared in advance. Trusted couriers may manually distribute this secret keying material, but as the number of entities using a system grows, the work involved in the distribution of the secret keying material grows rapidly. Therefore, it is essential to support the cryptographic algorithms used in modern U.S. Government applications with automated key-establishment schemes. [1: FIPS 197, Advanced Encryption Standard (AES).] [2: FIPS 198, Keyed-hash Message Authentication Code (HMAC).]

This Recommendation provides the specifications of key-establishment schemes that are appropriate for use by the U.S. Federal Government, based on a standard that was developed by the Accredited Standards Committee (ASC) X9, Inc: ANS X9.44.[footnoteRef:3] A key-establishment scheme can be characterized as either a key-agreement scheme or a key-transport scheme. This Recommendation provides key-agreement and key-transport schemes that are based on the Rivest Shamir Adleman (RSA) asymmetric-key algorithm. [3: ANS X9.44, Key Establishment using Integer Factorization Cryptography.]

[bookmark: _Toc518378735]Scope and Purpose

This Recommendation is intended for use in conjunction with NIST Special Publication (SP) 800-57.[footnoteRef:4] This key-establishment Recommendation, SP 800-57, and FIPS 186[footnoteRef:5] are intended to provide information for a vendor to implement secure key-establishment using asymmetric algorithms in FIPS 140[footnoteRef:6] validated modules. [4: SP 800-57, Recommendation for Key Management, Part 1: General.] [5: FIPS 186, Digital Signature Standard (DSS).] [6: FIPS 140, Security Requirements for Cryptographic Modules.]

Note that a key-establishment scheme is a component of a protocol that may provide security properties not provided by the scheme when considered by itself; protocols, per se, are not specified in this Recommendation.

[bookmark: _Toc518378736]Definitions, Symbols and Abbreviations

3.1 [bookmark: _Toc518378737]Definitions

		Additional input

		Information known by two parties that is cryptographically bound to the secret keying material being protected using the encryption operation.

		Algorithm

		A clearly specified mathematical process for computation; a set of rules that, if followed, will give a prescribed result.

		Approved

		Federal Information Processing Standards (FIPS)-approved or NIST-recommended. An algorithm or technique that is either 1) specified in a FIPS or NIST Recommendation, 2) adopted in a FIPS or NIST Recommendation or 3) specified in a list of NIST-approved security functions.

		Assumption

		Used to indicate the conditions that are required to be true when an approved key-establishment scheme is executed in accordance with this Recommendation.

		Assurance of private key possession

		Confidence that an entity possesses a private key associated with a given public key.

		Assurance of validity

		Confidence that an RSA key pair is arithmetically correct.

		Big-endian

		The property of a byte string having its bytes positioned in order of decreasing significance. In particular, the leftmost (first) byte is the most significant byte (containing the most significant eight bits of the corresponding bit string) and the rightmost (last) byte is the least significant byte (containing the least significant eight bits of the corresponding bit string).

For the purposes of this Recommendation, it is assumed that the bits within each byte of a big-endian byte string are also positioned in order of decreasing significance (beginning with the most significant bit in the leftmost position and ending with the least significant bit in the rightmost position).

		Binding

		Assurance of the integrity of an asserted relationship between items of information that is provided by cryptographic means. Also see Trusted association.

		Bit length

		A positive integer that expresses the number of bits in a bit string.

		Bit string

		An ordered sequence of 0’s and 1’s. Also known as a binary string.

		Byte

		A bit string consisting of eight bits.

		Byte length

		A positive integer that expresses the number of bytes in a byte string.

		Byte string

		An ordered sequence of bytes.

		Certificate Authority (CA)

		The entity in a Public Key Infrastructure (PKI) that is responsible for issuing public-key certificates and exacting compliance to a PKI policy. Also known as a Certification Authority.

		Ciphertext

		Data in its enciphered form.

		Confidentiality

		The property that sensitive information is not disclosed to unauthorized entities.

		Critical security parameter (CSP)

		Security-related information whose disclosure or modification can compromise the security of a cryptographic module. Domain parameters, secret or private keys, shared secrets, key-derivation keys, intermediate values and secret salts are examples of quantities that may be considered critical security parameters in this Recommendation. See FIPS 140.

		Cryptographic key (Key)

		A parameter used with a cryptographic algorithm that determines its operation.

		Decryption

		The process of transforming ciphertext into plaintext using a cryptographic algorithm and key.

		Destroy

		In this Recommendation, an action applied to a key or a piece of secret data. After a key or a piece of secret data is destroyed, no information about its value can be recovered. Also known as zeroization in FIPS 140.

		Encryption

		The process of transforming plaintext into ciphertext using a cryptographic algorithm and key.

		Entity

		An individual (person), organization, device, or process. “Party” is a synonym.

		Fresh

		Newly established secret keying material that is statistically independent of any previously established keying material.

		Greatest common divisor

		The largest positive integer that divides each of two or more positive integers without a remainder.

		Hash function

		A function that maps a bit string of arbitrary length to a fixed-length bit string. Approved hash functions are expected to satisfy the following properties:

1. One-way: It is computationally infeasible to find any input that maps to any pre-specified output, and

2. Collision resistant: It is computationally infeasible to find any two distinct inputs that map to the same output.

		Hash value

		The fixed-length bit string produced by a hash function.

		Identifier

		A bit string that is associated with a person, device or organization. It may be an identifying name, or may be something more abstract (for example, a string consisting of an Internet Protocol (IP) address and timestamp).

		Integrity

		A property whereby data has not been altered in an unauthorized manner since it was created, transmitted or stored.

In this Recommendation, the statement that a cryptographic algorithm "provides data integrity" means that the algorithm is used to detect unauthorized alterations.

		Key agreement

		A (pair-wise) key-establishment procedure where the resultant secret keying material is a function of information contributed by two participants so that no party can predetermine the value of the secret keying material independently from the contributions of the other party. Contrast with key-transport.

		Key-agreement transaction

		An execution of a key-agreement scheme.

		Key confirmation

		A procedure to provide assurance to one party (the key-confirmation recipient) that another party (the key-confirmation provider) possesses the correct secret keying material and/or shared secret from which that secret keying material is derived.

		Key-confirmation provider

		The party that provides assurance to the other party (the recipient) that the two parties have indeed established a shared secret or shared keying material.

		Key-derivation function

		As used in this Recommendation, a function used to derive secret keying material from a shared secret (or a key) and other information.

		Key-derivation method

		As used in this Recommendation, a method by which secret keying material is derived from a shared secret and other information. A key-derivation method may use a key-derivation function or a key-derivation procedure.

		Key-derivation procedure

		As used in this Recommendation, a multi-step process to derive secret keying material from a shared secret and other information.

		Key establishment

		A procedure that results in establishing secret keying material that is shared among different parties.

		Key-establishment key pair

		A private/public key pair used in a key-establishment scheme.

		Key-establishment transaction

		An instance of establishing secret keying material using a key-agreement or key-transport transaction.

		Key pair

		See key-establishment key pair.

		Key transport

		A (pair-wise) key-establishment procedure whereby one party (the sender) selects a value for the secret keying material and then securely distributes that value to another party (the receiver). Contrast with key agreement.

		Key-transport transaction

		An execution of a key-transport scheme.

		Key wrapping

		A method of protecting secret keying material (along with associated integrity information) that provides both confidentiality and integrity protection when using symmetric-key algorithms.

		Key-wrapping key

		In this Recommendation, a key-wrapping key is a symmetric key established during a key-transport transaction and used with a key- wrapping algorithm to protect the secret keying material to be transported.

		Keying material

		Data that is represented as a binary string such that any non-overlapping segments of the string with the required lengths can be used as secret keys, secret initialization vectors and other secret parameters.

		Least common multiple

		The smallest positive integer that is divisible by two or more positive integers without a remainder. For example, the least common multiple of 2 and 3 is 6.

		MAC tag

		Data obtained from the output of a MAC algorithm (possibly by truncation) that can be used by an entity to verify the integrity and the origination of the information used as input to the MAC algorithm.

		Message Authentication Code (MAC) algorithm

		A family of cryptographic functions that is parameterized by a symmetric key. Each of the functions can act on input data (called a “message”) of variable length to produce an output value of a specified length. The output value is called the MAC of the input message. An approved MAC algorithm is expected to satisfy the following property (for each of its supported security levels):

1. It must be computationally infeasible to determine the (as yet unseen) MAC of a message without knowledge of the key, even if one has already seen the results of using that key to compute the MACs of other (different) messages.

A MAC algorithm can be used to provide data-origin authentication and data-integrity protection. In this Recommendation, a MAC algorithm is used for key confirmation; the use of MAC algorithms for key derivation is addressed in SP 800-56C.[footnoteRef:7] [7: SP 800-56C, Recommendation for Key-Derivation Methods in Key-Establishment Schemes.]

		Nonce

		A time-varying value that has an acceptably small chance of repeating. For example, a nonce is a random value that is generated anew for each use, a timestamp, a sequence number, or some combination of these.

		Owner

		For a key pair, the owner is the entity that is authorized to use the private key associated with a public key, whether that entity generated the key pair itself or a trusted party generated the key pair for the entity.

		Party

		See entity.

		Prime number

		An integer greater than 1 that has no positive integer factors other than 1 and itself.

		Primitive

		A low-level cryptographic algorithm that is used as a basic building block for higher-level cryptographic operations or schemes.

		Private key

		A cryptographic key that is kept secret and is used with a public-key cryptographic algorithm. A private key is associated with a public key.

		Protocol

		A set of rules used by two or more communicating entities that describe the message order and data structures for information exchanged between the entities.

		Provider

		A party that provides (1) a public key (e.g., in a certificate); (2) assurance, such as an assurance of the validity of a candidate public key or assurance of possession of the private key associated with a public key; or (3) key confirmation. Contrast with recipient.

		Public key

		A cryptographic key that may be made public and is used with a public-key cryptographic algorithm. A public key is associated with a private key.

		Public-key algorithm

		A cryptographic algorithm that uses two related keys: a public key and a private key. The two keys have the property that determining the private key from the public key is computationally infeasible.

		Public-key certificate

		A data structure that contains an entity’s identifier(s), the entity's public key (including an indication of the associated set of domain parameters) and possibly other information, along with a signature on that data set that is generated by a trusted party, i.e., a certificate authority, thereby binding the public key to the included identifier(s).

		Public-key cryptography

		A form of cryptography that uses two related keys, a public key and a private key; the two keys have the property that, given the public key, it is computationally infeasible to derive the private key.

For key establishment, public-key cryptography allows different parties to communicate securely without having prior access to a secret key that is shared, by using one or more pairs (public key and private key) of cryptographic keys.

		Public-key validation

		The procedure whereby the recipient of a public key checks that the key conforms to the arithmetic requirements for such a key in order to thwart certain types of attacks.

		Random nonce

		A nonce containing a random-value component that is generated anew for each nonce.

		Receiver

		The party that receives secret keying material via a key-transport transaction. Contrast with sender.

		Recipient

		A party that either (1) receives a public key; or (2) obtains assurance from an assurance provider (e.g., assurance of the validity of a candidate public key or assurance of possession of the private key corresponding to a public key); or (3) receives key confirmation from a key-confirmation provider.

		Relatively prime

		Two positive integers are relatively prime if their greatest common divisor is 1.

		Scheme

		A set of unambiguously specified transformations that provide a (cryptographic) service when properly implemented and maintained. A scheme is a higher-level construct than a primitive and a lower-level construct than a protocol.

		Security properties

		The security features (e.g., replay protection, or key confirmation) that a cryptographic scheme may, or may not, provide.

		Security strength (also, “Bits of security”)

		A number associated with the amount of work (that is, the number of operations) that is required to break a cryptographic algorithm or system.

		Sender

		The party that sends secret keying material to the receiver using a key-transport transaction. Contrast with receiver.

		Shall

		This term is used to indicate a requirement that needs to be fulfilled to claim conformance to this Recommendation. Note that shall may be coupled with not to become shall not.

		Shared secret

		A secret value that has been computed during the execution of a key-establishment scheme, is known by both participants, and is used as input to a key-derivation method to produce secret keying material.

		Should

		This term is used to indicate an important recommendation. Ignoring the recommendation could result in undesirable results. Note that should may be coupled with not to become should not.

		Support (a security strength)

		A security strength of s bits is said to be supported by a particular choice of algorithm, primitive, auxiliary function, parameters (etc.) for use in the implementation of a cryptographic mechanism if that choice will not prevent the resulting implementation from attaining a security strength of at least s bits.

In this Recommendation, it is assumed that implementation choices are intended to support a security strength of 112 bits or more (see [SP 800-57][footnoteRef:8] and [SP 800-131A][footnoteRef:9]). [8: SP 800-57 Rev. 4, Recommendation for Key Management Part1: General.] [9: SP 800-131A, Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms and Key Lengths.]

		Symmetric key

		A cryptographic key that is shared between two or more entities and used with a cryptographic application to process information.

		Symmetric-key algorithm

		A cryptographic algorithm that uses secret keying material that is shared between authorized parties.

		Targeted security strength

		The security strength that is intended to be supported by one or more implementation-related choices (such as algorithms, primitives, auxiliary functions, parameter sizes and/or actual parameters) for the purpose of instantiating a cryptographic mechanism.

In this Recommendation, it is assumed that the targeted security strength of any instantiation of an approved key-establishment scheme has a value greater than or equal to 112 bits and less than or equal to 256 bits.

		Trusted association

		Assurance of the integrity of an asserted relationship between items of information that may be provided by cryptographic or non-cryptographic (e.g., physical) means. Also see Binding.

		Trusted party

		A party that is trusted by an entity to faithfully perform certain services for that entity. An entity may choose to act as a trusted party for itself.

		Trusted third party

		A third party, such as a CA, that is trusted by its clients to perform certain services. (By contrast, the two participants in a key-establishment transaction are considered to be the first and second parties.)

3.2 [bookmark: _Toc518378738]Symbols and Abbreviations

		A

		Additional input that is bound to the secret keying material; a byte string.

		[a, b]

		The set of integers x such that a ≤ x ≤ b.

		AES

		Advanced Encryption Standard (as specified in FIPS 197).

		ANS

		American National Standard.

		ASC

		The Accredited Standards Committee of the American National Standards Institute (ANSI).

		ASN.1

		Abstract Syntax Notation One.

		BS2I

		Byte String to Integer conversion routine.

		c

		Ciphertext (expressed as an integer).

		C, C0, C1

		Ciphertext (expressed as a byte string).

		CA

		Certification Authority.

		CRT

		Chinese Remainder Theorem.

		d

		RSA private exponent; a positive integer.

		Data

		A variable-length string of zero or more (eight-bit) bytes.

		DerivedKeyingMaterial

		Derived keying material; a bit string.

		dP

		RSA private exponent for the prime factor p in the CRT format, i.e., d mod (p 1); an integer.

		dQ

		RSA private exponent for the prime factor q in the CRT format, i.e., d mod (q 1); an integer.

		e

		RSA public exponent; a positive integer.

		eBits

		The bit length of the RSA exponent e.

		GCD(a, b)

		Greatest Common Divisor of two positive integers a and b. For example, GCD(12, 16) = 4.

		HMAC

		Keyed-hash Message Authentication Code (as specified in FIPS 198).

		HMAC-hash

		Keyed-hash Message Authentication Code (as specified in FIPS 198) with an approved hash function hash.

		I2BS

		Integer to Byte String conversion routine.

		ID

		The bit string denoting the identifier associated with an entity.

		IDP, IDR, IDU, IDV

		Identifier bit strings for parties P, R, U, and V, respectively.

		IFC

		Integer Factorization Cryptography.

		K

		Keying material; a byte string.

		KBits

		The bit length of the secret keying material.

		KAS

		Key-Agreement Scheme.

		KAS1-basic

		The basic form of Key-Agreement Scheme 1.

		KAS1-Party_V-confirmation

		Key-Agreement Scheme 1 with confirmation by party V. Previously known as KAS1-responder-confirmation.

		KAS2-basic

		The basic form of Key-Agreement Scheme 2.

		KAS2-bilateral-confirmation

		Key-Agreement Scheme 2 with bilateral confirmation.

		KAS2-Party_V-confirmation

		Key-Agreement Scheme 2 with confirmation by party V. Previously known as KAS2-responder-confirmation.

		KAS2-Party_U-confirmation

		Key-Agreement Scheme 2 with confirmation by party U. Previously known as KAS2-initiator-confirmation.

		KC

		Key Confirmation.

		KDM

		Key-Derivation Method.

		KeyData

		Keying material other than that which is used for the MacKey employed in key confirmation.

		KTS

		Key-transport Scheme.

		KTS-OAEP-basic

		The basic form of the key-transport Scheme with Optimal Asymmetric Encryption Padding.

		KTS-OAEP-Party_V-confirmation

		Key-transport Scheme with Optimal Asymmetric Encryption Padding and key confirmation provided by party V. Previously known as KTS-OAEP-receiver-confirmation.

		KWK

		Key-Wrapping Key; a byte string.

		LCM(a, b)

		Least Common Multiple of two positive integers a and b. For example, LCM(4, 6) = 12.

		len(x)

		The bit length of the non-negative integer x. For integer x > 0, len(x) = log2(x)+1. (In the case of 0, len(0) = 1.)

		MAC

		Message Authentication Code.

		MacData

		A byte string input to the MacTag computation.

		MacDataU, (or MacDataV)

		MacData associated with party U (or party V, respectively), and used to generate MacTagU (or MacTagV, respectively). Each is a byte string.

		MacKey

		Key used to compute the MAC; a byte string.

		MacKeyBits

		The bit length of MacKey such that MacKeyBits = 8 MacKeyLen.

		MacKeyLen

		The byte length of the MacKey.

		MacOutputBits

		The bit length of the MAC output block such that MacOutputBits = 8 MacOutputLen.

		MacOutputLen

		The byte length of the MAC output block.

		MacTag

		A byte string that allows an entity to verify the integrity of the information. MacTag is the output from the MAC algorithm (possibly after truncation). The literature sometimes refers to MacTag as a Message Authentication Code (MAC).

		MacTagV, (MacTagU)

		The MacTag generated by party V (or party U, respectively). Each is a byte string.

		MacTagBits

		The bit length of the MAC tag such that MacTagBits = 8 MacTagLen.

		MacTagLen

		The byte length of MacTag.

		Mask

		Mask; a byte string.

		MGF

		Mask Generation Function.

		mgfSeed

		String from which a mask is derived; a byte string.

		 n

		RSA modulus. n = pq, where p and q are distinct odd primes.

		(n, d)

		RSA private key in the basic format.

		(n, e)

		RSA public key.

		(n, e, d, p, q, dP, dQ, qInv)

		RSA private key in the Chinese Remainder Theorem (CRT) format.

		NV

		Nonce contributed by party V; a byte string.

		nBits

		The bit length of the RSA modulus n.

		nLen

		The byte length of the RSA modulus n. (Note that in FIPS 186, nlen refers to the bit length of n.)

		Null

		The empty bit string.

		OtherInput

		Other information for key derivation; a bit string.

		p

		First prime factor of the RSA modulus n.

		(p, q, d)

		RSA private key in the prime-factor format.

		PrivKeyU, PrivKeyV

		Private key of party U or V, respectively.

		PubKeyU, PubKeyV

		Public key of party U or V, respectively.

		q

		Second prime factor of the RSA modulus n.

		qInv

		Inverse of q modulo p in the CRT format, i.e., q1 mod p; an integer.

		RBG

		Random Bit Generator.

		RSA

		Rivest-Shamir-Adleman algorithm

		RSASVE

		RSA Secret Value Encapsulation.

		RSA-OAEP

		RSA with Optimal Asymmetric Encryption Padding.

		S

		String of bytes.

		s

		Security strength in bits.

		S(nBits)

		The estimated maximum security strength for an RSA modulus of length nBits.

		SHA

		Secure Hash Algorithm.

		SKW

		Symmetric-Key-Wrapping.

		TMacTagBits(X)

		A truncation function that outputs the most significant (i.e., leftmost) MacTagBits bits of the input string, X, when the bit length of X is greater than MacTagBits; otherwise, the function outputs X. For example, T2(1011) = 10, T3(1011) = 101, and T4(1011) = 1011.

		TransportedKeyingMaterial

		Transported keying material.

		TTP

		A Trusted Third Party.

		U

		One party in a key-establishment scheme.

		V

		Another party in a key-establishment scheme.

		X

		Byte string to be converted to or from an integer; the output of conversion from an ASCII string.

		X =? Y

		Check for the equality of X and Y.

		x mod n

		The modular reduction of the (arbitrary) integer x by the positive integer n (the modulus). For the purposes of this Recommendation, y = x mod n is the unique integer satisfying the following two conditions: 1) 0 y n, and 2) x y is divisible by n.

		x 1 mod n

		The multiplicative inverse of the integer x modulo the positive integer n. This quantity is defined if and only if x is relatively prime to n. For the purposes of this Recommendation, y = x1 mod n is the unique integer satisfying the following two conditions:
1) 0 y n, and 2) 1 = (xy) mod n.

		{X}

		Indicates that the inclusion of X is optional.

		{x, y}

		A set containing the integers x and y.

		x y

		The product of x and y.

		xy

		

		X || Y

		Concatenation of two strings X and Y.

		x

		The ceiling of x; the smallest integer x. For example, 5 = 5 and 5.3 = 6.

		x

		The floor of x; the greatest integer that does not exceed x. For example, 2.1 = 2, and 4 = 4.

		x

		The absolute value of x.

		Z

		A shared secret that is used to derive secret keying material using a key-derivation method; a byte string.

		(n)

		Lambda function of the RSA modulus n, i.e., the least positive integer i such that 1= ai mod n for all a relatively prime to n. When n = p q, (n) = LCM(p 1, q 1).

		

		Exclusive-Or (XOR) operation, defined as bit-wise modulo 2 arithmetic with no carry.

4 [bookmark: _Toc518378739]Key-Establishment Schemes Overview

Secret cryptographic keying material may be electronically established between parties by using a key-establishment scheme, that is, by using either a key-agreement scheme or a key-transport scheme. Key-establishment schemes may use either symmetric-key techniques or asymmetric-key techniques or both. The key-establishment schemes described in this Recommendation use asymmetric-key techniques.

In this Recommendation, the approved key-establishment schemes are described in terms of the roles played by parties “U” and “V.” These are specific labels that are used to distinguish between the two participants engaged in key establishment – irrespective of the actual labels that may be used by a protocol employing a particular approved key-establishment scheme.

During key agreement, the derived secret keying material is the result of contributions made by both parties. To be in conformance with this Recommendation, a protocol employing any of the approved pair-wise key-agreement schemes shall unambiguously assign the roles of U and V to the participants by clearly defining which participant performs the actions ascribed by this Recommendation to party U, and which performs the actions ascribed herein to party V.

During key transport, one party selects the secret keying material to be transported. The secret keying material is then encrypted using RSA, and sent to the other party. The party that sends the secret keying material is called the sender, and the other party is called the receiver.

The security of the Integer Factorization Cryptography (IFC) schemes in this Recommendation relies on the intractability of factoring integers that are products of two sufficiently large, distinct prime numbers. All IFC schemes in this Recommendation are based on RSA.

The security of an IFC scheme also depends on its implementation, and this document includes a number of practical recommendations for implementers. For example, good security practice dictates that implementations of procedures employed by primitives, operations, schemes, etc., include steps that destroy any potentially sensitive locally stored data that is created (and/or copied for use) during the execution of a particular procedure, and whose continued local storage is not required after the procedure has been exited. The destruction of such locally stored data ideally occurs prior to or during any exit from the procedure. This is intended to limit opportunities for unauthorized access to sensitive information that might compromise a key-establishment process.

Explicit instructions for the destruction of certain potentially sensitive values that are likely to be locally stored by procedures are included in the specifications found in this Recommendation. Examples of such values include local copies of any portions of secret or private keys that are employed or generated during the execution of a procedure, intermediate results produced during computations, and locally stored duplicates of values that are ultimately output by a procedure. However, it is not possible to anticipate the form of all possible implementations of the specified primitives, operations, schemes, etc., making it impossible to enumerate all potentially sensitive data that might be locally stored by a procedure employed in a particular implementation. Nevertheless, the destruction of any potentially sensitive locally stored data is an obligation of all implementations.

Error handling can also be an issue. Section 7 cautions implementers to handle error messages in a manner that avoids revealing even partial information about the decryption/decoding processes that may be performed during the execution of a particular procedure.

For compliance with this Recommendation, equivalent processes may be used. Two processes are equivalent if, whenever the same values are input to each process (either as input parameters or as values made available during the process), each process produces the same output as the other.

Some processes are used to provide assurance (for example, assurance of the arithmetic validity of a public key or assurance of possession of a private key associated with a public key). The party that provides the assurance is called the provider (of the assurance), and the other party is called the recipient (of the assurance).

Several steps are performed to establish secret keying material as described in Sections 4.1, 4.2, and 4.3.

4.1 [bookmark: _Key-Establishment_Preparations][bookmark: _Key-Establishment_Preparations_1][bookmark: _Key-Establishment_Preparations_2][bookmark: _Toc518378740]Key-Establishment Preparations

The owner of a private/public key pair is the entity that is authorized to use the private key of that key pair. Figure 1 depicts the steps that may be required of that entity when preparing for a key-establishment process (i.e., either key agreement or key transport).

[image:]

[bookmark: Figure_1]Figure 1: Owner Key-establishment Preparations

The first step in the preparation is for the entity to obtain a key pair. Either the entity (i.e., the owner) generates the key pair as specified in Section 6.3, or a trusted third party (TTP) generates the key pair as specified in Section 6.3 and provides it to the owner. If the key pair is generated by a trusted third party, then the key pair shall be transported to the owner in a protected manner (providing source authentication and integrity protection for the entire key pair, and confidentiality protection for (at least) the private key). The owner obtains assurance of key-pair validity and, as part of the process, obtains assurance that it actually possesses the (correct) private key. Approved methods for obtaining assurance of key-pair validity by the owner are provided in Section 6.4.1.

An identifier is used to label the entity that owns a key pair used in a key-establishment transaction. This label may uniquely distinguish the entity from all others, in which case it could rightfully be considered an identity. However, the label may be something less specific – an organization, nickname, etc. – hence, the term identifier is used in this Recommendation, rather than the term identity. For example, an identifier could be “NIST123,” rather than an identifier that names a particular person. A key pair’s owner (or an agent trusted to act on the owner’s behalf) is responsible for ensuring that the identifier associated with its public key is appropriate for the applications in which the public key will be used.

For each key pair, this Recommendation assumes that there is a trusted association between the owner’s identifier(s) and the owner’s public key. The association may be provided using cryptographic mechanisms or by physical means. The use of cryptographic mechanisms may require the use of a binding authority (i.e., a trusted authority) that binds the information in a manner that can be verified by others; an example of such a trusted authority is a registration authority working with a CA who creates a certificate containing both the public key and the identifier(s). The binding authority shall verify the owner’s intent to associate the public key with the specific identifier(s) chosen for the owner; the means for accomplishing this is beyond the scope of this Recommendation. The binding authority shall obtain assurance of both the arithmetic validity of the owner’s public key and the owner’s possession of the private key corresponding to that public key. (Approved techniques that can be employed by the binding authority to obtain these assurances are described in Section 6.4.2.1 [method 1], Section 6.4.2.2, Section 6.4.2.3 and Section 6.4.2.3.2.)

As an alternative to reliance upon a binding authority, trusted associations between identifiers and public keys may be established by the direct exchange of this information between entities, using a mutually trusted method (e.g., a trusted courier or a face-to-face exchange). In this case, each entity receiving a public key and associated identifier(s) shall be responsible for obtaining the same assurances that would have been obtained on the entity’s behalf by a binding authority (see the previous paragraph). Entities shall also be responsible for maintaining (by cryptographic or other means) the trusted associations between any identifiers and public keys received through such exchanges.

[bookmark: _Toc181546827][bookmark: _Toc181547043][bookmark: _Toc181547646][bookmark: _Toc173652196]If an entity engaged in a key-establishment transaction owns a key pair that is employed during the transaction, then the identifier used to label that party shall be one that has a trusted association with the public key of that key pair. If an entity engaged in a key-establishment transaction does not employ a key pair during the transaction, but an identifier is still desired/required for that party, then a non-null identifier shall be selected/assigned in accordance with the requirements of the protocol relying upon the transaction.

After the above steps have been performed, the key-pair owner is ready to enter into a key-establishment process.

4.2 [bookmark: _Key-Agreement_Process][bookmark: _Toc518378741]Key-Agreement Process

Figure 2 depicts the steps implemented by an entity when establishing secret keying material with another entity using one of the key-agreement schemes described in Section 8 of this Recommendation. (Some discrepancies in ordering may occur in practice, depending on the communication protocol in which the key-agreement process is performed.) Depending on the key-agreement scheme, the party whose actions are described could be either of the two participants in the key-agreement scheme (i.e., either party U or party V). Note that some of the actions shown may not be a part of every scheme. For example, key confirmation is not provided in the basic key-agreement schemes (see Sections 8.2.2 and 8.3.2). The specifications of this Recommendation indicate when a particular action is required.

[image:]

[bookmark: Figure_2][bookmark: _Toc494191682][bookmark: _Toc181546828][bookmark: _Toc181547044]Figure 2: Key-Agreement Process

Each participant that is required to do so by the key-agreement scheme or the relying application/protocol obtains an identifier associated with the other entity, and verifies that the identifier of the other entity corresponds to the entity with whom the participant wishes to establish secret keying material.

Each entity that requires the other entity’s public key for use in the key-agreement scheme obtains a public key that has a trusted association with the other party’s identifier, and obtains assurance of the validity of the public key. Approved methods for obtaining assurance of the validity of another entity’s public key are provided in Section 6.4.2.

Each entity generates either a (random) secret value or a nonce, as required by the particular key-agreement scheme. If the scheme requires an entity to generate a secret value, that secret value is generated as specified in Section 5.3 and encrypted using the other entity's public key. The resulting ciphertext is then provided to the other entity. If the key-agreement scheme requires that an entity provide a nonce, that nonce is generated as specified in Section 5.4 and provided (in plaintext form) to the other party. (See Sections 8.2 and 8.3 for details).

Each participant in the key-agreement process uses the appropriate public and/or private keys to establish a shared secret (Z) as specified in Section 8.2.2 or 8.3.2. Each participant then derives secret keying material from the shared secret (and other information), as specified in Section 5.5.

If the key-agreement scheme includes key confirmation provided by one or both of the participants, then key confirmation is performed as specified in Section 8.2.3 or 8.3.3. When performed in accordance with those sections, successful key confirmation may also provide assurance that a key-pair owner possesses the (correct) private key (see Section 6.4.2.3.2).

The owner of any key pair used during the key-agreement transaction is required to have assurance that the owner is in possession of the correct private key. Likewise, the recipient of another entity’s public key is required to have assurance that its owner is in possession of the corresponding private key. Assurance of private-key possession is obtained prior to using the derived keying material for purposes beyond those of the key-agreement transaction itself. This assurance may be provided/obtained either through key confirmation, or by some other approved means (see Sections 6.4.1 and 6.4.2).

4.3 [bookmark: _Key-Transport_Process][bookmark: _Toc518378742]Key-Transport Process

Figure 3 depicts the steps implemented by two entities when using the key-transport schemes described in Section 9.2 of this Recommendation to establish secret keying material.

The entity who will act as the sender obtains the identifier associated with the entity that will act as the receiver, and verifies that the receiver’s identifier corresponds to an entity to whom the sender wishes to send secret keying material.

Prior to performing key transport, the sender obtains the receiver’s public key and obtains assurance of its validity. Approved methods for obtaining assurance of the validity of another entity’s public key are provided in Section 6.4.2. The sender is also required to have assurance that the receiver is in possession of the private key corresponding to the receiver’s public key prior to key transport, unless that assurance is obtained via the key confirmation steps that are included as part of the scheme. (See Section 9.2 for details).

The sender selects the secret keying material (and, perhaps, additional input) to be transported to the other entity. Then, using the intended receiver’s public key, the sender encrypts that material directly (see Section 9.2.3). The resulting ciphertext is transported to the receiver.

Prior to participating in a key-transport transaction, the receiver is required to have assurance of the validity of its own key pair. This assurance may be renewed whenever desired. Upon (or before) receipt of the transported ciphertext, the receiver retrieves the private key from its own key pair. Using its private key, the receiver takes the necessary steps (as specified in Section 9.2.3) to decrypt the ciphertext and obtain the transported plaintext keying material.

[image:]

[bookmark: Figure_3][bookmark: _Toc494191683][bookmark: _Toc181546829][bookmark: _Toc181547045][bookmark: _Toc181547648]Figure 3: Key-transport Process

If the key-transport scheme includes key confirmation, then key confirmation is provided by the receiver to the sender as specified in Section 9.2.4. Through the use of key confirmation, the sender can obtain assurance that the receiver has correctly recovered the keying material from the ciphertext. Successful key confirmation may also provide assurance that the receiver was in possession of the correct private key (see Section 6.4.2.3.2).

An additional method for key transport is discussed in Section 9.3.

5 [bookmark: _Toc232928829][bookmark: _Toc518378743]Cryptographic Elements

This section describes the basic cryptographic elements that support the development of the key-establishment schemes specified in this Recommendation. The schemes described herein are based upon the correct implementation of these elements.

5.1 [bookmark: _Cryptographic_Hash_Functions][bookmark: _Cryptographic_Hash_Functions_1][bookmark: _Cryptographic_Hash_Functions_2][bookmark: _Cryptographic_Hash_Functions_3][bookmark: _Cryptographic_Hash_Functions_4][bookmark: _Cryptographic_Hash_Functions_5][bookmark: _Toc232928830][bookmark: _Toc518378744]Cryptographic Hash Functions

In this Recommendation, cryptographic hash functions may be used for mask generation during RSA-OAEP encryption/decryption, in key derivation, and/or in MAC-tag computation during key confirmation. An approved hash function shall be used when a hash function is required (see FIPS 180[footnoteRef:10] and FIPS 202[footnoteRef:11]). [10: FIPS 180, Secure Hash Standard (SHS).] [11: FIPS 202, Permutation-Based Hash and Extendable-Output Functions.]

5.2 [bookmark: _Message_Authentication_Code][bookmark: _Message_Authentication_Code_1][bookmark: _Message_Authentication_Code_2][bookmark: _Message_Authentication_Code_3][bookmark: _Message_Authentication_Code_4][bookmark: _Message_Authentication_Code_5][bookmark: _Message_Authentication_Code_6][bookmark: _Message_Authentication_Code_7][bookmark: _Toc232928831][bookmark: _Toc518378745]Message Authentication Code (MAC) Algorithms

A Message Authentication Code (MAC) algorithm defines a family of one-way (MAC) functions that is parameterized by a symmetric key. The input to a MAC function includes a symmetric key, called MacKey, and a binary data string, called MacData. A MAC function is represented as MAC(MacKey, MacData {, ...})[footnoteRef:12]. In this Recommendation, a MAC function is used in key confirmation (see Section 5.6) and may be used for key derivation (see Section 5.5 and SP 800-56C). [12: Some MAC algorithms (e.g., KMAC) have additional parameters other than MacKey and MacData.]

It must be computationally infeasible to determine the MAC of a (newly formed) MacData value without knowledge of the MacKey value (even if one has seen the MACs corresponding to other MacData values that were computed using that same MacKey value).

Key confirmation requires the use of one of the following approved MAC algorithms: HMAC, AES-CMAC or KMAC. HMAC is specified in FIPS 198 and requires the use of an approved hash function. AES-CMAC is specified in SP 800-38B[footnoteRef:13] for the AES block cipher algorithm specified in FIPS 197. KMAC is specified in SP 800-185.[footnoteRef:14] [13: SP 800-38B, Recommendation for Block Cipher Modes of Operation: the CMAC Mode for Authentication.] [14: SP 800-185, SHA-3 Derived Funcions: cSHAKE, KMAC, TupleHash and ParallelHash.]

When used for key confirmation, the key-confirmation provider is required to compute a "MAC tag" on received or derived data using the agreed-upon MAC function. A symmetric key derived from a shared secret (during a key-agreement transaction) or extracted from transported keying material (during a key-transport transaction) is used as MacKey. The resulting MAC tag is sent to the key-confirmation recipient, who can obtain assurance (via MAC-tag verification) that the shared secret and derived keying material were correctly computed (in the case of key agreement) or that the transported keying material was successfully received (in the case of key transport). MAC-tag computation and verification are defined in Sections 5.2.1 and 5.2.2.

5.2.1 [bookmark: _MacTag_Computation_for][bookmark: _MacTag_Computation_for_1][bookmark: _MacTag_Computation_for_2][bookmark: _MacTag_Computation_for_3][bookmark: _MacTag_Computation_for_4][bookmark: _MacTag_Computation_for_5][bookmark: _MacTag_Computation_for_6][bookmark: _MacTag_Computation_for_7][bookmark: _MacTag_Computation_for_8][bookmark: _MacTag_Computation_for_9][bookmark: _MacTag_Computation_for_10][bookmark: _Toc232928832][bookmark: _Toc518378746]MacTag Computation for Key Confirmation

The computation of a MAC tag is represented as follows:

MacTag = TMacTagBits[MAC(MacKey, MacData)].

To compute a MAC tag:

1. An approved, agreed-upon MAC algorithm (see FIPS 198, SP 800-38B or SP 800-185) is used with MacKey to compute a MAC on the MacData, where MacKey is a symmetric key, and MacData represents the data on which the MAC tag is computed. The minimum length of MacKey is specified in Section 5.6.3.

MacKey is obtained from the DerivedKeyingMaterial (when a key-agreement scheme employs key confirmation) or obtained from the TransportedKeyingMaterial (when a key-transport scheme employs key confirmation), as specified in Section 5.6.1.1.

The resulting MAC consists of MacOutputBits bits, which is the full output length of the selected MAC algorithm.

2. The output of the MAC algorithm is input to a truncation function TMacTagBits to obtain the most significant (i.e., leftmost) MacTagBits bits, where MacTagBits represents the intended length of MacTag, which is required to be less than or equal to MacOutputBits. (When MacTagBits equals MacOutputBits, TMacTagBits acts as the identity function.) The minimum value for MacTagBits is specified in Section 5.6.3.

Note: A routine implementing a Mac-tag computation for key confirmation shall destroy any local copies of MacKey and MacData, any locally stored portions of MacTag, and any other locally stored values used or produced during the execution of the routine; their destruction shall occur prior to or during any exit from the routine – whether exiting early because of an error or exiting normally with MacTag as the output.

5.2.2 [bookmark: _MacTag_Verification_for][bookmark: _MacTag_Verification_for_1][bookmark: _MacTag_Verification_for_2][bookmark: _Toc232928833][bookmark: _Toc518378747]MacTag Verification for Key Confirmation

To verify the MAC tag received during key confirmation, a new MAC tag, MacTag, is computed as specified in Section 5.2.1 using the values of MacKey, MacTagBits, and MacData possessed by the key-confirmation recipient. MacTag is compared with the received MAC tag (i.e., MacTag). If their values are equal, then it may be inferred that the same MacKey, MacTagBits, and MacData values were used in the computation of MacTag and MacTag. That is, successful verification provides evidence that the key-confirmation provider has obtained the same MAC key as the key-confirmation recipient.

5.3 [bookmark: _Random_Bit_Generators][bookmark: _Random_Bit_Generators_1][bookmark: _Random_Bit_Generators_2][bookmark: _Random_Bit_Generators_3][bookmark: _Random_Bit_Generators_4][bookmark: _Random_Bit_Generators_5][bookmark: _Random_Bit_Generators_6][bookmark: _Random_Bit_Generators_7][bookmark: _Random_Bit_Generators_8][bookmark: _Toc232928835][bookmark: _Toc518378748]Random Bit Generators

Whenever this Recommendation requires the use of a randomly generated value (for example, for obtaining keys or nonces), the values shall be generated using an approved random bit generator (RBG), as specified in SP 800-90,[footnoteRef:15] that supports an appropriate security strength. [15: SP 800-90, Recommendation for Random Number Generation.]

When an approved RBG is used to generate a secret value as part of a key-establishment scheme specified in this Recommendation (e.g., Z in a scheme from the KAS1 family), that RBG shall be instantiated to support a security strength that is equal to or greater than the security strength associated with the RSA modulus length as specified in SP 800-57, Part 1.

5.4 [bookmark: _Nonces][bookmark: _Nonces_1][bookmark: _Nonces_2][bookmark: _Nonces_3][bookmark: _Toc232928838][bookmark: _Toc518378749]Nonces

A nonce is a time-varying value that has a negligible chance of repeating (where the meaning of “negligible” may be application specific). This Recommendation requires party V to supply a nonce, NV, during the execution of key-agreement schemes in the KAS1 family (see Section 8.2). This nonce is included in the input to the key-derivation process, and (when key confirmation is employed) is also used in the computation of the MAC tag sent from party V to party U.

A nonce may be composed of one (or more) of the following components (other components may also be appropriate):

1.	A random bit string that is generated anew for each nonce, using an approved random bit generator. A nonce containing a component of this type is called a random nonce.

2.	A timestamp of sufficient resolution (detail) so that it is different each time that it is used.

3.	A monotonically increasing sequence number, or

4.	A combination of a timestamp and a monotonically increasing sequence number such that the sequence number is reset when and only when the timestamp changes. (For example, a timestamp may show the date but not the time of day, so a sequence number is appended that will not repeat during a particular day.)

For the KAS1 schemes, the required nonce NV should be a random nonce containing a random bit string output from an approved random bit generator (RBG), where both the security strength supported by the instantiation of the random bit generator and the bit length of the random bit string are greater than or equal to the targeted security strength of the key-agreement scheme in which the nonce is used; when feasible, the bit length of the random bit string should be (at least) twice the targeted security strength. For details concerning the security strength supported by an instantiation of a random bit generator, see SP 800-90.

[bookmark: _Toc232928839]As part of the proper implementation of this Recommendation, system users and/or agents trusted to act on their behalf should determine that the components selected for inclusion in required nonces meet the security requirements of those users or agents. The application tasked with performing key establishment on behalf of a party should determine whether or not to proceed with a key-establishment transaction, based upon the perceived adequacy of the method(s) used to form the required nonces. Such knowledge may be explicitly provided to the application in some manner, or may be implicitly provided by the operation of the application itself.

[bookmark: _Key-Derivation_Methods][bookmark: _Key-Derivation_Methods_1][bookmark: _Key-Derivation_Methods_2][bookmark: _Key-Derivation_Methods_3][bookmark: _Key-Derivation_Methods_4][bookmark: _Key-Derivation_Methods_5][bookmark: _Key-Derivation_Methods_6][bookmark: _Key-Derivation_Methods_7][bookmark: _Key-Derivation_Methods_8][bookmark: _Key-Derivation_Methods_9][bookmark: _Key-Derivation_Methods_10][bookmark: _Key-Derivation_Methods_11][bookmark: _Key-Derivation_Methods_12][bookmark: _Key-Derivation_Methods_13][bookmark: _Key-Derivation_Methods_14][bookmark: _Key-Derivation_Methods_15][bookmark: _5.5_Key-Derivation_Methods][bookmark: _Toc518378750][bookmark: _Toc332100216][bookmark: _Toc232928841]5.5	Key-Derivation Methods for Key-Establishment Schemes

An approved key-derivation method shall be used to derive keying material from the shared secret Z during the execution of a key-establishment scheme from the KAS1 or KAS2 family of schemes. The shared secret shall be used only by an approved key-derivation method and shall not be used for any other purpose.

When employed during the execution of a key-establishment scheme as specified in this Recommendation, the agreed-upon key-derivation method uses input that includes a freshly created shared secret Z along with other information. The derived keying material shall be computed in its entirety before outputting any portion of it, and (all copies of) Z shall be treated as a critical security parameter and destroyed immediately following its use.

The output produced by a key-derivation method using input that includes the shared secret created during the execution of any key-establishment scheme specified in this Recommendation shall only be used as secret keying material – such as a symmetric key used for data encryption or message integrity, a secret initialization vector, or, perhaps, a key-derivation key that will be used to generate additional keying material (possibly using a different process – see SP 800-108[footnoteRef:16]). The derived keying material shall not be used as a key stream for a stream cipher. Non-secret keying material (such as a non-secret initialization vector) shall not be generated using a key-derivation method that includes the shared secret, Z, as input (this restriction applies to all one-step and two-step key-derivation methods in SP 800-56C). [16: SP 800-108, Recommendation for Key Derivation Using Pseudorandom Functions.]

[bookmark: _Toc479677359][bookmark: _Toc518378751]5.5.1	Performing the Key Derivation

Approved methods for key derivation from a shared secret are specified in SP 800-56C. These methods can be accessed using the following call:

KDM(Z, OtherInput),

where

1. Z is a byte string that represents the shared secret,

2.	OtherInput consists of additional input information that may be required by a given key-derivation method, for example:

· L − an integer that indicates the bit length of the secret keying material to be derived,

· salt − a byte string,

· IV – a bit string used as an initialization value, and

· FixedInfo – a bit sting of context-specific data (see Section 5.5.2).

See SP 800-56C for details concerning the appropriate form of OtherInput.

[bookmark: _5.5.2_FixedInfo][bookmark: _5.5.2_FixedInfo_1][bookmark: _5.5.2_FixedInfo_2][bookmark: _Toc518378752]5.5.2	FixedInfo

The bit string FixedInfo should be used to ensure that the derived keying material is adequately “bound” to the context of the key-establishment transaction. Although other methods may be used to bind keying material to the transaction context, this Recommendation makes no statement as to the adequacy of these other methods. Failure to adequately bind the derived keying material to the transaction context could adversely affect the types of assurance that can be provided by certain key-establishment schemes.

Context-specific information that may be appropriate for inclusion in FixedInfo includes the following:

· Public information about parties U and V, such as names, e-mail addresses, and/or other identifiers.

· The public keys contributed by each party to the key-establishment transaction. (For example, a certificate that contains the public key could be included.)

· An identifier and/or other information associated with the RSA public key employed in the key-establishment transaction. For example, the hash of a certificate that contains that RSA public key could be included.

· Other public and/or private information shared between parties U and V before or during the transaction, such as nonces, counters, or pre-shared secret data. (The inclusion of private or secret information shall be limited to situations in which that information is afforded adequate confidentiality protection.)

· An indication of the protocol or application employing the key-establishment scheme.

· Protocol-related information, such as a label or session identifier.

· Agreed-upon encodings (as bit strings) of the values of one or more of the other parameters used as additional input to the KDM (e.g., L, salt, and/or IV).

· An indication of the key-establishment scheme and/or key-derivation method used during the transaction.

· An indication of various parameter or primitive choices (e.g., hash functions, MAC algorithms, MacTag lengths used for key confirmation, etc.).

· An indication of how the keying material should be parsed, including an indication of which algorithm(s) will use the (parsed) keying material.

For rationale in support of including entity identifiers, scheme identifiers, and/or other information in OtherInput, see Appendix B of SP 800-56A.

When FixedInfo is used, the meaning of each information item and each item’s position within the FixedInfo bit string shall be specified. In addition, each item of information included in FixedInfo shall be unambiguously represented. For example, each item of information could take the form of a fixed-length bit string, or, if greater flexibility is needed, an item of information could be represented in a Datalen || Data format, where Data is a variable-length string of zero or more (eight-bit) bytes, and Datalen is a fixed-length, big-endian counter that indicates the byte length of Data. These requirements can be satisfied, for example, by using ASN.1 DER encoding as specified in Section 5.5.2.1.2.

[bookmark: _5.5.2.1_One-step_Key][bookmark: _5.5.2.1_One-step_Key_1][bookmark: _5.5.2.1_One-step_Key_2][bookmark: _Toc479677361][bookmark: _Toc518378753]5.5.2.1	One-step Key Derivation

Recommended formats for FixedInfo when used by a one-step key-derivation method are specified in Sections 5.5.2.1.1 and 5.5.2.1.2. One of those two formats should be used by a one-step key-derivation method specified in SP 800-56C when the auxiliary function employed is H = hash.

When FixedInfo is included during the key-derivation process, and the recommended formats are used, the included items of information shall be divided into (three, four, or five) subfields as defined below.

AlgorithmID: A required non-null subfield that indicates how the derived keying material will be parsed and for which algorithm(s) the derived secret keying material will be used. For example, AlgorithmID might indicate that bits 1 to 112 are to be used as a 112-bit HMAC key and that bits 113 to 240 are to be used as a 128-bit AES key.

PartyUInfo: A required non-null subfield containing public information about party U. At a minimum, PartyUInfo shall include IDU, an identifier for party U, as a distinct item of information. This subfield could also include information about the public key (if any) contributed to the key-establishment transaction by party U. Although the schemes specified in the Recommendation do not require the contribution of a nonce by party U, any nonce provided by party U should be included in this subfield.

PartyVInfo: A required non-null subfield containing public information about party V. At a minimum, PartyVInfo shall include IDV, an identifier for party V, as a distinct item of information. This subfield could also include information about the public key contributed to the key-establishment transaction by party V. When the key-derivation method is used in a KAS1 scheme (see Section 8.2), the nonce, NV, supplied by party V shall be included in this field.

SuppPubInfo: An optional subfield that contains additional, mutually known public information (e.g., L, an identifier for the particular key-establishment scheme that was used to determine Z, an indication of the protocol or application employing that scheme, a session identifier, etc.; this is particularly useful if these aspects of the key-establishment transaction can vary). While an implementation may be capable of including this subfield, the subfield may be Null for a given transaction.

SuppPrivInfo: An optional subfield that contains additional, mutually known private information (e.g., a secret symmetric key that has been communicated through a separate channel). While an implementation may be capable of including this subfield, the subfield may be Null for a given transaction.

[bookmark: _5.5.2.1.1_The_Concatenation][bookmark: _Toc518378754]5.5.2.1.1	The Concatenation Format for FixedInfo

This section specifies the concatenation format for FixedInfo. This format has been designed to provide a simple means of binding the derived keying material to the context of the key-establishment transaction, independent of other actions taken by the relying application. Note: When the one-step key-derivation method specified in SP 800-56C is used with H = hash as the auxiliary function and this concatenation format for FixedInfo, the resulting key-derivation method is the Concatenation Key-Derivation Function specified in the original version of SP 800-56A.

For this format, FixedInfo is a bit string equal to the following concatenation:

 	 AlgorithmID || PartyUInfo || PartyVInfo {|| SuppPubInfo }{|| SuppPrivInfo },

where the five subfields are bit strings comprised of items of information as described in Section 5.5.2.1.

Each of the three required subfields AlgorithmID, PartyUInfo, and PartyVInfo shall be the concatenation of a pre-determined sequence of substrings in which each substring represents a distinct item of information. Each such substring shall have one of these two formats: either it is a fixed-length bit string, or it has the form Datalen || Data – where Data is a variable-length string of zero or more (eight-bit) bytes, and Datalen is a fixed-length, big-endian counter that indicates the byte length of Data. (In this variable-length format, a null string of data shall be represented by a zero value for Datalen, indicating the absence of following data.) A protocol using this format for FixedInfo shall specify the number, ordering and meaning of the information-bearing substrings that are included in each of the subfields (i.e., AlgorithmID, PartyUInfo, and PartyVInfo), and shall also specify which of the two formats (fixed-length or variable-length) is used by each such substring to represent its distinct item of information. The protocol shall specify the lengths for all fixed-length quantities, including the Datalen counters.

Each of the optional SuppPrivInfo and SuppPubInfo subfields (when allowed by the protocol employing the one-step key-derivation method) shall be the concatenation of a pre-determined sequence of substrings representing additional items of information that may be used during key derivation upon mutual agreement of parties U and V. Each substring representing an item of information shall be of the form Datalen || Data, where Data is a variable-length string of zero or more (eight-bit) bytes, and Datalen is a fixed-length, big-endian counter that indicates the byte length of Data; the use of this form for the information allows U and V to omit a particular information item without confusion about the meaning of the other information that is provided in the SuppPrivInfo or SuppPubInfo subfield. The substrings representing items of information that parties U and V choose not to contribute are set equal to Null, and are represented in this variable-length format by setting Datalen equal to zero. If a protocol allows the use of the FixedInfo subfield SuppPrivInfo and/or the subfield SuppPubInfo, then the protocol shall specify the number, ordering and meaning of additional items of information that may be used in the allowed subfield(s) and shall specify the fixed-length of the Datalen counters.

[bookmark: _5.5.2.1.2_The_ASN.1][bookmark: _5.5.2.1.2_The_ASN.1_1][bookmark: _Toc518378755]5.5.2.1.2	The ASN.1 Format for FixedInfo

The ASN.1 format for FixedInfo provides an alternative means of binding the derived keying material to the context of the key-establishment transaction, independent of other actions taken by the relying application. Note: When the one-step key-derivation method specified in SP 800-56C is used with H = hash as the auxiliary function and with this ASN.1 format for FixedInfo, the resulting key-derivation method is the ASN.1 Key-Derivation Function specified in the original version of SP 800-56B.

For the ASN.1 format, FixedInfo is a bit string resulting from the ASN.1 Distinguished Encoding Rules (DER) encoding (see ISO/IEC 8825-1) of a data structure comprised of a sequence of three required subfields AlgorithmID, PartyUInfo, and PartyVInfo, and, optionally, a subfield SuppPubInfo and/or a subfield SuppPrivInfo – as described in Section 5.5.2.1. A protocol using this format for FixedInfo shall specify the type, ordering and number of distinct items of information included in each of the (three, four, or five) subfields employed.

[bookmark: _5.5.2.2_Two-step_Key-Derivation][bookmark: _Toc479677364][bookmark: _Toc518378756]5.5.2.2	Two-step Key-Derivation (Extraction-then-Expansion)

For the two-step key-derivation method specified in SP 800-56C, FixedInfo is a bit string that contains component data fields such as a Label, Context information, and [L]2, where:

· Label is a binary string that identifies the purpose of the derived keying material. The encoding method for the label is defined in a larger context, for example, in a protocol using the derivation method.

· Context is a binary string containing information relating to the derived keying material. Section 5.5.2 provides a list of context-specific information that may be appropriate for the inclusion in this string.

· [L]2 is a binary string that specifies the length (in bits) of the keying material to be derived.

Different orderings of the component data fields of FixedInfo may be used, and one or more of the data fields may be combined (or omitted under certain circumstances). See SP 800-108 and Section 5 in SP 800-56C for details.

[bookmark: _Toc518378757]5.5.2.3	Other Formats for FixedInfo

Formats other than those provided in Sections 5.5.2.1 and 5.5.2.2 (e.g., those providing the items of information in a different arrangement) may be used for FixedInfo, but the context-specific information described in the preceding sections should be included (see the discussion in Section 5.5.2). This Recommendation makes no statement as to the adequacy of other formats.

[bookmark: _Key_Confirmation][bookmark: _Key_Confirmation_1][bookmark: _Key_Confirmation_2][bookmark: _Key_Confirmation_3][bookmark: _Key_Confirmation_4][bookmark: _5.6_Key_Confirmation][bookmark: _Toc318455252][bookmark: _Toc332100225][bookmark: _Toc518378758]5.6	Key Confirmation

The term key confirmation (KC) refers to actions taken to provide assurance to one party (the key-confirmation recipient) that another party (the key-confirmation provider) is in possession of a (supposedly) shared secret and/or to confirm that the other party has the correct version of keying material that was derived or transported during a key-establishment transaction (correct, that is, from the perspective of the key-confirmation recipient.) Such actions are said to provide unilateral key confirmation when they provide this assurance to only one of the participants in the key-establishment transaction; the actions are said to provide bilateral key confirmation when this assurance is provided to both participants (i.e., when unilateral key confirmation is provided in both directions).

Oftentimes, key confirmation is obtained (at least implicitly) by some means that are external to the key-establishment scheme employed during a transaction (e.g., by using a symmetric key that was established during the transaction to decrypt an encrypted message sent later by the key-confirmation provider), but this is not always the case. In some circumstances, it may be appropriate to incorporate the exchange of explicit key-confirmation information as an integral part of the key-establishment scheme itself. The inclusion of key confirmation may enhance the security services that can be offered by a key-establishment scheme. For example, the key-establishment schemes incorporating key confirmation that are specified in this Recommendation could be used to provide the KC recipient with assurance that the KC provider is in possession of the private key corresponding to the provider’s public key-establishment key, from which the recipient may infer that the provider is the owner of that key pair.

For key confirmation to comply with this Recommendation, key confirmation shall be incorporated into an approved key-establishment scheme as specified in Sections 5.6.1, 5.6.2, 8 and 9. If any other methods are used to provide key confirmation, this Recommendation makes no statement as to their adequacy.

[bookmark: _Unilateral_Key_Confirmation][bookmark: _Unilateral_Key_Confirmation_1][bookmark: _Unilateral_Key_Confirmation_2][bookmark: _Unilateral_Key_Confirmation_3][bookmark: _Unilateral_Key_Confirmation_4][bookmark: _Unilateral_Key_Confirmation_5][bookmark: _Unilateral_Key_Confirmation_6][bookmark: _Unilateral_Key_Confirmation_7][bookmark: _Unilateral_Key_Confirmation_8][bookmark: _Unilateral_Key_Confirmation_9][bookmark: _5.6.1_Unilateral_Key][bookmark: _5.6.1_Unilateral_Key_1][bookmark: _Toc318455253][bookmark: _Toc332100226][bookmark: _Toc518378759]5.6.1	Unilateral Key Confirmation for Key-Establishment Schemes

As specified in this Recommendation, unilateral key confirmation occurs when one participant in the execution of a key-establishment scheme (the key-confirmation “provider”) demonstrates to the satisfaction of the other participant (the key-confirmation “recipient”) that both the KC provider and the KC recipient have possession of the same secret MacKey.

MacKey shall be a symmetric key that is unique to a specific execution of a key-establishment scheme and (from the perspective of the KC provider) shall be unpredictable prior to that key-establishment transaction. In the case of a key-agreement scheme, MacKey is derived using the shared secret Z created during the execution of that scheme (see Section 5.5 for the details of key derivation). In the case of a key-transport scheme, MacKey is included as part of the transported keying material. Step 2 below specifies how MacKey is to be extracted from the derived or transported keying material.

MacKey and certain context-specific MacData (as specified below) are used by the KC provider as input to an approved MAC algorithm to obtain a MAC tag that is sent to the KC recipient. The recipient performs an independent computation of the MAC tag. If the MAC tag value computed by the KC recipient matches the MAC tag value received from the KC provider, then key confirmation is successful. (See Section 5.2 for MAC-tag generation and verification, and Section 5.6.3 for a discussion of MAC-tag security.)

In the case of a scheme providing key-agreement, successful key confirmation following key agreement provides assurance to the KC recipient that the same Z value has been used by both parties to correctly derive the keying material (which includes MacKey). In the case of a key-transport scheme (see Section 9.2.4), successful key confirmation provides assurance to the KC recipient (who sent the keying material) that the transported keying material (which includes MacKey) has been correctly decrypted by the party to whom it was sent.

A close examination of the KC process shows that each of the pair-wise key-establishment schemes specified in this Recommendation that incorporate key confirmation can be used to provide the KC recipient with assurance that the KC provider is currently in possession of the (correct) private key – the one corresponding to the KC provider’s public key-establishment key. The use of transaction-specific values for both MacKey and MacData prevents (for all practical purposes) the replay of any previously computed value of MacTag. The receipt of a correctly computed MAC tag provides assurance to the KC recipient that the KC provider has used the correct private key during the current transaction – to successfully recover the secret data that is a prerequisite to learning the value of MacKey.

[bookmark: _Adding_Unilateral_Key][bookmark: _Adding_Unilateral_Key_1][bookmark: _Adding_Unilateral_Key_2][bookmark: _Adding_Unilateral_Key_3][bookmark: _Adding_Unilateral_Key_4][bookmark: _Adding_Unilateral_Key_5][bookmark: _Adding_Unilateral_Key_6]To include unilateral key confirmation, the following steps shall be incorporated into the scheme. (Additional details will be provided for each scheme in the appropriate subsections of Sections 8 and 9.) In the discussion that follows, the key-confirmation provider, P, may be either party U or party V, as long as the KC provider, P, contributes a key pair to the key-establishment transaction. The key-confirmation recipient, R, is the other party.

1. The provider, P, computes

 MacDataP = message_stringP || IDP || IDR || EphemDataP || EphemDataR {|| TextP}

where

· message_stringP is a six-byte character string, with a value of “KC_1_U” when party U is providing the MAC tag, or “KC_1_V” when party V is providing the MAC tag. (Note that these values will be changed for bilateral key confirmation, as specified in Section 5.6.2).

· IDP is the identifier used to label the key-confirmation provider.

· IDR is the identifier used to label the key-confirmation recipient.

· EphemDataP and EphemDataR are (ephemeral) values contributed by the KC provider and recipient, respectively. These values are specified in the sections describing the schemes that include key confirmation.

· TextP is an optional bit string that may be used during key confirmation and that is known by both parties.

The content of each of the components that are concatenated to form MacDataP shall be precisely defined and unambiguously represented. A particular component’s content may be represented, for example, as a fixed-length bit string or in the form Datalen || Data, where Data is a variable-length string of zero or more (eight-bit) bytes, and Datalen is a fixed-length, big-endian counter that indicates the length (in bytes) of Data. These requirements could also be satisfied by using a specific ASN.1 DER encoding of each component. It is imperative that the provider and recipient have agreed upon the content and format that will be used for each component of MacDataP.

MacData shall include a non-null identifier, IDP, for the key-confirmation provider.

Depending upon the circumstances, the key-confirmation recipient’s identifier, IDR, may be replaced by a null string. The rules for selecting IDP and IDR are as follows:

As specified in this Recommendation, the key-confirmation provider must own a key pair that is employed by the basic key-establishment scheme (KAS1-basic, KAS2-basic or KTS-OAEP-basic) that determines the MacKey value used in the key-confirmation computations performed during the transaction. The identifier, IDp, included in MacDataP shall be one that has a trusted association with the public key of that key pair.

If the key-confirmation recipient also owns a key pair that is employed by the basic key-establishment scheme used during the transaction, then the identifier, IDR, included in MacDataP shall be one that has a trusted association with the public key of that key pair.

If the key-confirmation recipient does not own a key pair employed for key-establishment purposes, and no identifier has been used to label that party during the execution of the basic key-establishment scheme employed by the transaction, then IDR may be replaced by a null string. However, if an identifier is desired/required for that party for key confirmation purposes, then a non-null value for IDR, shall be selected/assigned in accordance with the requirements of the protocol relying upon the transaction.

Whenever a particular identifier has been used to label the key-confirmation recipient or key-confirmation provider in the execution of the basic key-establishment scheme used during the transaction, that same identifier shall be used as IDP or IDR, respectively, in theMacDataP used during key confirmation. For example, if party U is the key-confirmation recipient, and IDU has been used to label party U in the FixedInfo employed by the key-derivation method of a key-agreement scheme used during the transaction, then the MacDataP used during key confirmation shall have IDR = IDU.

2. When a KAS1 or KAS2 key-agreement scheme is used: After computing the shared secret Z and applying the key-derivation function to obtain the derived keying material, DerivedKeyingMaterial (see Section 5.5), the KC provider uses agreed-upon bit lengths to parse DerivedKeyingMaterial into two parts, MacKey and KeyData:

MacKey || KeyData = DerivedKeyingMaterial.

When the KTS-OAEP key-transport scheme is used: The KC provider parses the TransportedKeyingMaterial into MacKey and KeyData:

MacKey || KeyData = TransportedKeyingMaterial.

3. Using an agreed-upon bit length MacTagBits, the KC provider computes MacTagP (see Sections 5.2.1 and 5.6.3):

MacTagP = TMacTagBits[MAC (MacKey, MacDataP)],

and sends it to the KC recipient.

4. 	The KC recipient forms MacDataP, determines MacKey, computes MacTagP in the same manner as the KC provider, and then compares its computed MacTagP to the value received from the provider. If the received value is equal to the computed value, then the recipient is assured that the provider has used the same value for MacKey and that the provider shares the recipient’s value of MacTagP.

Each participant shall destroy all copies of the MacKey that was employed for key-confirmation purposes during a particular pair-wise key-establishment transaction when MacKey is no longer needed to provide or obtain key confirmation as part of that transaction.

If MacTagP cannot be verified by the KC recipient during a particular key-establishment transaction, then key confirmation has failed, and both participants shall destroy all of their copies of MacKey and KeyData. In particular, MacKey and KeyData shall not be revealed by either participant to any other party (not even to the other participant), and the keying material shall not be used for any further purpose. In the case of a key-confirmation failure, the key-establishment transaction shall be terminated.

Note: The key-confirmation routines employed by the KC provider and KC recipient shall destroy all local copies of MacKey, MacData, destroyable copies of KeyData and any other locally stored values used or produced during their execution. Their destruction shall occur prior to or during any exit from those routines – whether exiting normally or exiting early, because of an error.

Unilateral key confirmation, as specified in this Recommendation, can be incorporated into any key-establishment scheme in which the key-confirmation provider is required to own a key-establishment key pair that is used in the key-establishment process. Unilateral key confirmation may be added in either direction to a KAS2 scheme (see Sections 8.3.3.2 and 8.3.3.3); it may also be added to a KAS1 or KTS-OAEP scheme, but only with party V (the party contributing the key pair) acting as the key-confirmation provider, and party U acting as the key-confirmation recipient (see Sections 8.2.3.1 and 9.2.4.2).

[bookmark: _Bilateral_Key_Confirmation][bookmark: _Bilateral_Key_Confirmation_1][bookmark: _5.6.2_Bilateral_Key][bookmark: _Toc318455255][bookmark: _Toc332100228][bookmark: _Toc518378760]5.6.2	Bilateral Key Confirmation for KAS2 Schemes

Bilateral key confirmation, as specified in this Recommendation, can be incorporated into a KAS2 key-agreement scheme since each party is required to own a key-establishment key pair that is used in the key-agreement process. Bilateral key confirmation is accomplished by performing unilateral key confirmation in both directions (with party U providing MacTagU to KC recipient V, and party V providing MacTagV to KC recipient U) during the same scheme.

To include bilateral key confirmation, two instances of unilateral key confirmation (as specified in Section 5.6.1, subject to the modifications listed below) shall be incorporated into the KAS2 scheme, once with party U as the key-confirmation provider (i.e., P = U and R = V) and once with party V as the key-confirmation provider (i.e., P = V and R = U). Additional details will be provided in Section 8.3.3.4.

In addition to setting P = U and R = V in one instance of the unilateral key-confirmation procedure described in Section 5.6.1 and setting P = V and R = U in a second instance, the following changes/clarifications apply when using the procedure for bilateral key confirmation:

1. When computing MacTagU, the value of message_stringU that forms the initial segment of MacDataU is the six-byte character string “KC_2_U”.

2. When computing MacTagV, the value of message_stringV that forms the initial segment of MacDataV is the six-byte character string “KC_2_V”.

3. If used at all, the value of the (optional) byte string TextU used to form the final segment of MacDataU can be different than the value of the (optional) byte string TextV used to form the final segment of MacDataV, provided that both parties are aware of the value(s) used.

4. The identifiers used to label the parties U and V when forming MacDataU shall be the same as the identifiers used to label the parties U and V when forming MacDataV, although IDU and IDV will play different roles in the two strings. If IDP = IDU and IDR = IDV are used in MacDataU, then IDP = IDV and IDR = IDU are used in MacDataV.

[bookmark: _Minimum_Requirements_for][bookmark: _Minimum_Requirements_for_1][bookmark: _Minimum_Requirements_for_2][bookmark: _Minimum_Requirements_for_3][bookmark: _Selecting_the_MAC][bookmark: _Selecting_the_MAC_1][bookmark: _Selecting_the_MAC_2][bookmark: _Toc318455257][bookmark: _Toc332100230][bookmark: _Toc518378761]5.6.3	Selecting the MAC and Other Key-Confirmation Parameters

Key confirmation as specified in this Recommendation requires that a MacKey of an appropriate length be generated or obtained as part of the derived keying material (see Section 5.6.1). The MacKey is then used with a MAC algorithm to generate a MAC; the length of the MAC output by the MAC algorithm is MacOutputBits bits. The MAC is subsequently used to form a MAC tag (see Section 5.6.1 for the generation of the MAC and Section 5.2.1 for the formation of the MAC tag from the MAC).

Table 1 provides a list of approved MAC algorithms for key confirmation and the security strengths that each can support, along with the corresponding value of MacOutputBits and permissible MacKey lengths for each MAC algorithm.

[bookmark: Table_1]Table 1: Approved MAC Algorithms for Key Confirmation.

		MAC Algorithm

		MacOutputBits

		Permissable MacKey Lengths

(bits)

		Supported Security Strengths for Key Confirmation

(s bits)

		HMAC_SHA-1)

		160

		s 512

		112 s 256

		HMAC_SHA-224

		224

		

		

		HMAC_SHA-256

		256

		

		

		HMAC_SHA-512/224

		224

		

		

		HMAC_SHA-512/256

		256

		

		

		HMAC_SHA-384

		384

		

		

		HMAC_SHA-512

		512

		

		

		HMAC_SHA3-224

		224

		

		

		HMAC_SHA3-256

		256

		

		

		HMAC_SHA3-384

		384

		

		

		HMAC_SHA3-512

		512

		

		

		KMAC128

		 22040 – 1

(see * below)

		

		112 s 128

		KMAC256

		

		

		112 s 256

		AES-128-CMAC

		128

		 = 128

		112 s 128

		AES-192-CMAC

		128

		 = 192

		112 s 192

		AES-256-CMAC

		128

		 = 256

		112 s 256

*	Although KMAC128 and KMAC256 can accommodate MacOutputBits values as large as 22040 1, practical considerations dictate that the lengths of transmitted MAC tags be limited to sizes that are more realistic and commensurate with the actual performance/security requirements of the relying applications.

The MAC algorithm used to compute a key-confirmation MAC tag in compliance with this Recommendation shall be selected from among the approved MAC algorithms capable of supporting a security strength s that is at least as large as the targeted security strength of the key-establishment scheme (as indicated in Table 1 above).

Note that when the HMAC or KMAC algorithm is used for key confirmation as specified in this Recommendation, MacKey lengths can be no greater than 512 bits (an upper bound that is at least twice the maximum supported security strength). Although the HMAC and KMAC specifications permit the use of longer keys, the 512-bit maximum is sufficient for this key-confirmation application. In the case of HMAC, the 512-bit upper bound has the advantage of being less than the input block length of whatever hash function is used in the algorithm’s implementation. If MacKey were allowed to be longer than the input block length, it would be hashed down to a string of length MacOutputBits during the HMAC computation (see step 2 in Table 1 of FIPS 198); allowing MacKey to be longer than the input block length would not be an efficient use of keying material.

The length of the MAC tag for key confirmation also needs to be selected. Note that in many cases, the length of the MAC tag (MacTagBits) has been selected by the protocol in which the key-establishment is conducted. MacTagBits shall be at least 64 bits, and its maximum length shall be no more than MacOutputBits for the MAC algorithm selected for key confirmation. The 64-bit minimum for the MAC tag length assumes that the protocol imposes a limit on the number of retries for key confirmation.

6 [bookmark: _Toc518378762]RSA Key Pairs

6.1 [bookmark: _Toc518378763]General Requirements

The following are requirements on RSA key pairs (see SP 800-57):

1.	Each key pair shall be created using an approved key-generation method as specified in Section 6.3.

2.	The private keys and prime factors of the modulus shall be protected from unauthorized access, disclosure, and modification.

3.	Public keys shall be protected from unauthorized modification. This is often accomplished by using public-key certificates that have been signed by a Certification Authority (CA).

4.	A recipient of a public key shall be assured of the integrity and correct association of (a) the public key and (b) an identifier of the entity that owns the key pair (that is, the party with whom the recipient intends to establish secret keying material). This assurance is often provided by verifying a public-key certificate that was signed by a trusted third party (for example, a CA), but may be provided by direct distribution of the public key and identifier from the owner, provided that the recipient trusts the owner and distribution process to do this.

5.	One key pair shall not be used for different cryptographic purposes (for example, a digital-signature key pair shall not be used for key establishment or vice versa), with the following possible exception: when requesting the certificate for a public key-establishment key, the private key-establishment key associated with the public key may be used to sign the certificate request (see SP 800-57, Part 1 on Key Usage for further information). A key pair may be used in more than one key-establishment scheme. However, a key pair used for schemes specified in this Recommendation should not be used for any schemes not specified herein.

6. The owner of a key pair shall have assurance of the key pair’s validity (see Section 6.4.1.1); that is, the owner shall have assurance of the correct generation of the key pair (see Section 6.3), consistent with the criteria of Section 6.2; assurance of private and public-key validity; and assurance of pair-wise consistency.

7. A recipient of a public key shall have assurance of the validity of the public key (see Section 6.4.2.1). This assurance may be provided, for example, through the use of a public-key certificate if the CA obtains sufficient assurance of public-key validity as part of its certification process.

8. A recipient of a public key shall have assurance of the owner’s possession of the associated private key (see Section 6.4.2.3). This assurance may be provided, for example, through the use of a public key certificate if the CA obtains sufficient assurance of possession as part of its certification process.

6.2 [bookmark: _Criteria_for_RSA][bookmark: _Criteria_for_RSA_1][bookmark: _Criteria_for_RSA_2][bookmark: _Criteria_for_RSA_3][bookmark: _Toc518378764]Criteria for RSA Key Pairs for Key Establishment

6.2.1 [bookmark: _Definition_of_a][bookmark: _Definition_of_a_1][bookmark: _Definition_of_a_2][bookmark: _Toc518378765]Definition of a Key Pair

A valid RSA key pair, in its basic form, shall consist of an RSA public key (n, e) and an RSA private key (n, d), where:

1. n, the public modulus, shall be the product of exactly two distinct, odd positive prime factors, p and q, that are kept secret. Let len(n) = nBits, the bit length of n; len(n) is required to be even.

2. The public exponent e shall be an odd integer that is selected prior to the generation of p and q such that:

65,537 ≤ e < 2256

3. The prime factors p and q shall be generated using one of the methods specified in Appendix B.3 of FIPS 186 such that:

a.	2(nBits 1)/2 < p < 2nBits/2.

b.	 2(nBits 1)/2 < q < 2nBits/2.

c.	|p – q| > 2nBits/2100.

d. The exponent e must be mutually prime with both p 1 and q 1:

GCD(e, LCM(p 1, q 1)) = 1.

4. The primes p and q, and the private exponent d shall be selected such that:

a.	2nBits/2 < d < LCM(p1, q1), and

b.	d = e1 mod (LCM(p1, q1)).

Note that these criteria are also specified in FIPS 186.

6.2.2 [bookmark: _Toc518378766]Formats

The RSA private key may be expressed in several formats. The basic format of the RSA private key consists of the modulus n and a private-key exponent d that depends on n and the public-key exponent e; this format is used to specify the RSA primitives and operations in Section 7. The other two formats may be used in implementations, but may require appropriate modifications for correct implementation. To facilitate implementation testing, the format for the private key shall be one of the following:

1. The basic format: (n, d).

2. The prime-factor format: (p, q, d).

3. The Chinese Remainder Theorem (CRT) format: (n, e, d, p, q, dP, dQ, qInv), where dP = d mod (p – 1), dQ = d mod (q – 1), and qInv = q–1 mod p. Note that Section 7.1.2 discusses the use of the private key expressed using the CRT format during the execution of the RSA decryption primitive.

Key-pair generators and key-pair validation methods are given for each of these formats in Sections 6.3 and 6.4, respectively.

6.3 [bookmark: _RSA_Key-Pair_Generators][bookmark: _RSA_Key-Pair_Generators_1][bookmark: _RSA_Key-Pair_Generators_2][bookmark: _RSA_Key-Pair_Generators_3][bookmark: _RSA_Key-Pair_Generators_4][bookmark: _RSA_Key-Pair_Generators_5][bookmark: _RSA_Key-Pair_Generators_6][bookmark: _RSA_Key-Pair_Generators_7][bookmark: _RSA_Key-Pair_Generators_8][bookmark: _RSA_Key-Pair_Generators_9][bookmark: _RSA_Key-Pair_Generators_10][bookmark: _RSA_Key-Pair_Generators_11][bookmark: _RSA_Key-Pair_Generators_12][bookmark: _RSA_Key-Pair_Generators_13][bookmark: _RSA_Key-Pair_Generators_14][bookmark: _RSA_Key-Pair_Generators_15][bookmark: _Toc518378767]RSA Key-Pair Generators

The key pairs employed by the key-establishment schemes specified in this Recommendation shall be generated using the techniques specified in Appendix B.3 of FIPS 186, employing the requisite methods for prime-number generation, primality testing, etc., that are specified in Appendix C of that document. Note that these generation methods ensure that the prime factors p and q have the same bit length and that their product, n (the RSA modulus), has a bit length that is exactly twice the length of its factors.

An approved RSA key-pair generator and approved random bit generator (RBG) shall be used to produce an RSA key pair. Any modulus with an even bit length that provides at least 112 bits of security strength may be used. Commonly used modulus lengths and their associated security strengths are given in Table 2. For other modulus lengths, Appendix D provides a method for estimating the security strength that can be supported.

[bookmark: Table_2]Table 2: Security Strengths Supported by Commonly Used Modulus Lengths[footnoteRef:17] [17: The 15,384-bit modulus length was not included because it is impractical to implement.]

		Modulus Bit length (nBits)

		Estimated Maximum Security Strength

		2048

		112

		3072

		128

		4096

		152

		6144

		176

		8192

		200

Approved RBGs are discussed in Section 5.3. The approved RSA key-pair generators are provided in Sections 6.3.1 and 6.3.2, and are differentiated by the method for determining the public-key exponent e that is used as part of an RSA public key (i.e., (n, e)); Section 6.3.1 addresses the use of a fixed value for the exponent, whereas Section 6.3.2 uses a randomly generated value.

For the following methods in Section 6.3 and the assurances in Section 6.4, let S(nBits) denote the estimated maximum security strength for a modulus of bit length nBits as determined by Table 2 or Appendix D.

6.3.1 [bookmark: _RSAKPG1_Family:_RSA][bookmark: _RSAKPG1_Family:_RSA_1][bookmark: _RSAKPG1_Family:_RSA_2][bookmark: _Toc518378768]RSAKPG1 Family: RSA Key-Pair Generation with a Fixed Public Exponent

[bookmark: _Ref8640487][bookmark: _Ref33702323]The RSAKPG1 family of key-pair generation methods consists of three RSA key-pair generators where the public exponent has a fixed value (see Section 6.2).

Three representations are addressed:

1.	rsakpg1-basic generates the private key in the basic format (n, d);

2.	rsakpg1-prime-factor generates the private key in the prime-factor format (p, q, d); and

3.	rsakpg1-crt generates the private key in the Chinese Remainder Theorem format (n, e, d, p, q, dP, dQ, qInv).

An implementation may perform a key-pair validation before the key pair is output from the generator. The key-pair validation methods for this family are specified in Section 6.4.1.2.

6.3.1.1 [bookmark: _rsakpg1-basic][bookmark: _rsakpg1-basic_1][bookmark: _rsakpg1-basic_2][bookmark: _Ref51733514][bookmark: _Toc518378769]rsakpg1-basic

rsakpg1-basic is the generator in the RSAKPG1 family where the private key is in the basic format (n, d).

Function call: rsakpg1-basic(s, nBits, e)

Input:

1.	s: the targeted security strength;

2.	nBits: the intended bit length of the RSA modulus; and

3.	e: a pre-determined public exponent an odd integer, such that 65,537 ≤ e < 2256.

Process:

1.	Check the values:

a.	If s is not in the range [112, 256], output an indication that the targeted security strength is not acceptable, and exit without further processing.

b.	If s > S(nBits), output an indication that the modulus length is not adequate for the targeted security strength, and exit without further processing.

c.	If e is not an odd integer such that 65,537 ≤ e < 2256, output an indication that the exponent is out of range, and exit without further processing.

2.	Generate the prime factors p and q, as specified in FIPS 186. Note that the routines ensure that p – 1 and q – 1 are relatively prime to e.

3.	Determine the private exponent d:

d = e–1 mod LCM(p – 1, q – 1) .

In the very rare event that d 2nBits/2, discard the results of all computations and repeat the process, starting at step 2.

4.	Determine the modulus n as n = p q, the product of p and q.

5.	Perform a pair-wise consistency test[footnoteRef:18] by verifying that m is the same as (me)d mod n for some integer m satisfying 1 < m < n 1. If an inconsistency is found, output an indication of a pair-wise consistency failure, and exit without further processing. [18: Although the previous steps should have theoretically produced a valid key pair, this step is required to ensure that implementation errors do not result in an invalid key pair.]

6.	Output (n, e) as the public key, and (n, d) as the private key.

Output:

1.	(n, e): the RSA public key, and

2.	(n, d): the RSA private key in the basic format.

Errors: Indications of the following:

1. The targeted security strength is not acceptable,

2. The intended modulus bit length is not adequate for the targeted security strength,

3. The fixed public exponent is out of range, or

4. Pair-wise consistency failure.

 Note that key-pair validation, as specified in Section 6.4.1.2.1, can be performed after step 5 and before step 6 of the process above. If an error is detected during the validation process, output an indication of a key-pair validation failure, and exit without further processing.

A routine that implements this generation function shall destroy any local copies of p, q, and d, as well as any other locally stored values used or produced during its execution. Their destruction shall occur prior to or during any exit from the routine (whether exiting early because of an error, or exiting normally with the output of an RSA key pair). Note that the requirement for destruction includes any locally stored portions of the output key pair.

6.3.1.2 [bookmark: _rsakpg1-prime-factor][bookmark: _Ref51735336][bookmark: _Toc518378770][bookmark: _Ref533396563]rsakpg1-prime-factor

rsakpg1-prime-factor is the generator in the RSAKPG1 family such that the private key is in the prime factor format (p, q, d).

Function call: rsakpg1-prime-factor(s, nBits, e)

The inputs, outputs and errors are the same as in rsakpg1-basic (see Section 6.3.1.1) except that the private key is in the prime-factor format: (p, q, d).

The steps are the same as in rsakpg1-basic except that processing Step 6 is replaced by the following:

6.	Output (n, e) as the public key, and (p, q, d) as the private key.

Note that key-pair validation, as specified in Section 6.4.1.2.2, can be performed after step 5 and before step 6. If an error is detected during the validation process, output an indication of a key-pair validation failure, and exit without further processing.

A routine that implements this generation function shall destroy any local copies of p, q, and d, as well as any other locally stored values used or produced during its execution. Their destruction shall occur prior to or during any exit from the routine (whether exiting early, because of an error, or exiting normally, with the output of an RSA key pair). Note that the requirement for destruction includes any locally stored portions of the output key pair.

6.3.1.3 [bookmark: _rsakpg1-crt][bookmark: _Ref51735339][bookmark: _Toc518378771]rsakpg1-crt

rsakpg1-crt is the generator in the RSAKPG1 family such that the private key is in the Chinese Remainder Theorem format (n, e, d, p, q, dP, dQ, qInv).

Function call: rsakpg1-crt(s, nBits, e)

The inputs, outputs and errors are the same as in rsakpg1-basic (see Section 6.3.1.1) except that the private key is in the Chinese Remainder Theorem format: (n, e, d, p, q, dP, dQ, qInv).

The steps are the same as in rsakpg1-basic except that processing steps 5 and 6 are replaced by the following:

5. Determine the components dP, dQ and qInv:

a.	dP = d mod (p – 1).

b.	dQ = d mod (q – 1).

c.	qInv = q–1 mod p.

6.	Perform a pair-wise consistency test[footnoteRef:19] by verifying that m = (me)d mod n for some integer m satisfying 1 < m < n 1. If an inconsistency is found, output an indication of a pair-wise consistency failure, and exit without further processing. [19: Although the previous steps should have theoretically produced a valid key pair, this step is required to ensure that implementation errors do not result in an invalid key pair.]

7.	Output (n, e) as the public key, and (n, e, d, p, q, dP, dQ, qInv) as the private key.

Note that key-pair validation, as specified in Section 6.4.1.2.3, can be performed after step 6 and before step 7. If an error is detected during the validation process, output an indication of a key-pair validation failure, and exit without further processing.

A routine that implements this generation function shall destroy any local copies of p, q, dP, dQ, qInv, and d, as well as any other locally stored values used or produced during its execution. Their destruction shall occur prior to or during any exit from the routine (whether exiting early because of an error or exiting normally with the output of an RSA key pair). Note that the requirement for destruction includes any locally stored portions of the output key pair.

6.3.2 [bookmark: _RSAKPG2_Family:_RSA][bookmark: _RSAKPG2_Family:_RSA_1][bookmark: _RSAKPG2_Family:_RSA_2][bookmark: _Ref44909640][bookmark: _Toc103497128][bookmark: _Toc121918029][bookmark: _Toc518378772]RSAKPG2 Family: RSA Key-Pair Generation with a Random Public Exponent

The RSAKPG2 family of key-pair generation methods consists of three RSA key-pair generators such that the public exponent e is a random value in the range 65,537 ≤ e < 2256.

Three representations are addressed:

1.	rsakpg2-basic generates the private key in the basic format (n, d);

2.	rsakpg2-prime-factor generates the private key in the prime factor format (p, q, d); and

3.	rsakpg2-crt generates the private key in the Chinese Remainder Theorem format (n, e, d, p, q, dP, dQ, qInv).

[bookmark: _Ref51735525]An implementation may perform a key-pair validation before outputting the key pair from the generation function. The key-pair validation methods for this family are specified in Section 6.4.1.3.

6.3.2.1 [bookmark: _rsakpg2-basic][bookmark: _rsakpg2-basic_1][bookmark: _rsakpg2-basic_2][bookmark: _Ref51735860][bookmark: _Toc518378773]rsakpg2-basic

rsakpg2-basic is the generator in the RSAKPG2 family such that the private key is in the basic format (n, d).

Function call: rsakpg2-basic(s, nBits, eBits)

Input:

1. s: the targeted security strength;

2. nBits: the intended bit length of the RSA modulus; and

3. eBits: the intended bit length of the public exponent an integer such that 17 eBits 256. Note that the public exponent shall be an odd integer such that 65,537 ≤ e < 2256.

Process:

1. Check the values:

a.	If s is not in the range [112, 256], output an indication that the targeted security strength is not acceptable, and exit without further processing.

b.	If s > S(nBits), output an indication that the modulus length is not adequate for the targeted security strength, and exit without further processing.

c.	If eBits is not an integer such that 17 eBits 256, output an indication that the exponent length is out of range, and exit without further processing.

2.	Generate an odd public exponent e in the range [2eBits – 1 + 1, 2eBits – 1] using an approved RBG (see Section 5.3).

3.	Generate the prime factors p and q as specified in FIPS 186. Note that the routines ensure that p – 1 and q – 1 are relatively prime to e.

4.	Determine the private exponent d:

		d = e–1 mod LCM(p – 1, q – 1).

In the event that no such d exists, or in the very rare event that d 2nBits/2, discard the results of all computations and repeat the process, starting at step 2.

5.	Determine the modulus n as n = p q, the product of p and q.

6.	Perform a pair-wise consistency test[footnoteRef:20] by verifying that m is the same as (me)d mod n for some integer m satisfying 1 < m < n 1. If an inconsistency is found, output an indication of a pair-wise consistency failure, and exit without further processing. [20: Although the previous steps should have theoretically produced a valid key pair, this step is required to ensure that implementation errors do not result in an invalid key pair.]

7.	Output (n, e) as the public key and (n, d) as the private key.

Output:

1. (n, e): the RSA public key; and

2. (n, d): the RSA private key in the basic format.

Errors: Indications of the following:

1. The targeted security strength is not acceptable,

2. The intended modulus bit length is not adequate for the targeted security strength,

3. The intended exponent bit length is out of range, or

4. Pair-wise consistency failure.

Note that key-pair validation, as specified in Section 6.4.1.3.1, can be performed after step 6 and before step 7 of the process above. If an error is detected during the validation process, output an indication of a key-pair validation failure, and exit without further processing.

A routine that implements this generation function shall destroy any local copies of p, q, and d, as well as any other locally stored values used or produced during its execution. Their destruction shall occur prior to or during any exit from the routine (whether exiting early, because of an error, or exiting normally, with the output of an RSA key pair). Note that the requirement for destruction includes any locally stored portions of the output key pair.

6.3.2.2 [bookmark: _rsakpg2-prime-factor][bookmark: _Ref51736072][bookmark: _Toc518378774]rsakpg2-prime-factor

rsakpg2-prime-factor is the generator in the RSAKPG2 family such that the private key is in the prime-factor format (p, q, d).

Function call: rsakpg2-prime-factor(s, nBits, eBits)

The inputs, outputs and errors are the same as in rsakpg2-basic (see Section 6.3.2.1) except that the private key is in the prime-factor format: (p, q, d).

The steps are the same as in rsakpg2-basic except that processing Step 7 is replaced by the following:

7.	Output (n, e) as the public key, and (p, q, d) as the private key.

Note that key-pair validation as specified in Section 6.4.1.3.2 can be performed after step 6 and before step 7. If an error is detected during the validation process, output an indication of a key-pair validation failure, and exit without further processing.

A routine that implements this generation function shall destroy any local copies of p, q, and d, as well as any other locally stored values used or produced during its execution. Their destruction shall occur prior to or during any exit from the routine (whether exiting early because of an error or exiting normally with the output of an RSA key pair). Note that the requirement for destruction includes any locally stored portions of the output key pair.

6.3.2.3 [bookmark: _Ref51736078][bookmark: _Toc518378775]rsakpg2-crt

rsakpg2-crt is the generator in the RSAKPG2 family such that the private key is in the Chinese Remainder Theorem format (n, e, d, p, q, dP, dQ, qInv).

Function call: rsakpg2-crt(s, nBits, eBits)

The inputs, outputs and errors are the same as in rsakpg2-basic (see Section 6.3.2.1) except that the private key is in the Chinese Remainder Theorem format: (n, e, d, p, q, dP, dQ, qInv).

The steps are the same as in rsakpg2-basic except that processing Steps 6 and 7 are replaced by the following:

6.	Determine the components dP, dQ and qInv:

a.	dP = d mod (p – 1).

b.	dQ = d mod (q – 1).

c.	qInv = q–1 mod p.

7.	Perform a pair-wise consistency test[footnoteRef:21] by verifying that m is the same as (me)d mod n for some integer m satisfying 1 < m < n 1. If an inconsistency is found, output an indication of a pair-wise consistency failure, and exit without further processing. [21: Although the previous steps should have theoretically produced a valid key pair, this step is required to ensure that implementation errors do not result in an invalid key pair.]

8.	Output (n, e) as the public key, and (n, e, d, p, q, dP, dQ, qInv) as the private key.

Note that key-pair validation as specified in Section 6.4.1.3.3 can be performed after step 7 and before step 8. If an error is detected during the validation process, output an indication of a key-pair validation failure, and exit without further processing.

A routine that implements this generation function shall destroy any local copies of p, q, dP, dQ, qInv, and d, as well as any other locally stored values used or produced during its execution. Their destruction shall occur prior to or during any exit from the routine (whether exiting early because of an error, or exiting normally with the output of an RSA key pair). Note that the requirement for destruction includes any locally stored portions of the output key pair.

6.4 [bookmark: _Required_Assurances][bookmark: _Required_Assurances_1][bookmark: _Required_Assurances_2][bookmark: _Required_Assurances_3][bookmark: _Toc518378776]Required Assurances

[bookmark: _Toc121918031]Secure key establishment depends upon the use of valid key-establishment keys. The security of key-establishment schemes also depends on limiting knowledge of the private keys to those who have been authorized to use them (i.e., their respective owners) and to the trusted third party that may have generated them.[footnoteRef:22] In addition to preventing unauthorized entities from gaining access to private keys, it is also important that owners have possession of the correct private keys. [22: The trusted third party is trusted not to use or reveal the distributed private keys.]

To explain the assurance requirements, some terminology needs to be defined. The owner of a key pair is the entity that is authorized to use the private key that corresponds to the owner’s public key, whether or not the owner generated the key pair. The recipient of a public key is the entity that is participating in a key-establishment transaction with the owner and obtains the owner’s public key before or during the current transaction.

Prior to or during a key-establishment transaction, the participants in the transaction (i.e., parties U and V) shall obtain the appropriate assurances about the key pairs used during that transaction. The types of assurance that may be sought by one or both of the parties (U and/or V) concerning the components of a key pair (i.e., the private key and public key) are discussed in Sections 6.4.1 and 6.4.2.

6.4.1 [bookmark: _Assurances_Required_by][bookmark: _Assurances_Required_by_2][bookmark: _Assurances_Required_by_5][bookmark: _Toc518378777]Assurances Required by the Key-Pair Owner

Prior to the use of a key pair in a key-establishment transaction, the key-pair owner shall have assurance of the validity of the key pair. Assurance of key-pair validity provides assurance that a key pair was generated in accordance with the requirements in Sections 6.2 and 6.3. Key-pair validity implies public-key validity and assurance of possession of the correct private key. Assurance of key-pair validity can only be provided by an entity that has the private key (e.g., the owner). Depending on an organization’s requirements, a renewal of key-pair validity may be prudent. The method of obtaining initial and renewed assurance of key-pair validity is addressed in Section 6.4.1.1.

Assurance of key-pair validity can be renewed at any time (see Section 6.4.1.1). As time passes, an owner may lose possession of the correct value of the private-key component of their key pair, e.g., due to an error; for this reason, renewed (i.e., current) assurance of possession of a private key can be of value for some applications. See Section 6.4.1.5 for techniques that the owner can use to obtain renewed assurance of private-key possession separately from assurance of key-pair validity.

6.4.1.1 [bookmark: _Obtaining_Owner_Assurance][bookmark: _Obtaining_Owner_Assurance_1][bookmark: _Obtaining_Owner_Assurance_2][bookmark: _Obtaining_Owner_Assurance_3][bookmark: _Obtaining_Owner_Assurance_4][bookmark: _Toc518378778]Obtaining Owner Assurance of Key-Pair Validity

Assurance of key-pair validity shall be obtained by its owner prior to the first use of the key pair in a key-establishment transaction (see Section 4.1) by successfully completing the following three-step process:

1.	Key-pair generation: Assurance that the key pair has been correctly formed, in a manner consistent with the criteria of Section 6.2, is obtained using one of the following two methods:

a.	Owner generation – The owner obtains the desired assurance if it generates the public/private key pair as specified in Section 6.3.

b.	TTP generation – The owner obtains the desired assurance when a trusted third party (TTP) who is trusted by the owner generates the public/private key pair as specified in Section 6.3 and provides it to the owner.

2.	Key-pair consistencey: The owner shall perform a pair-wise consistency test by verifying that m = (me)d mod n for some integer m satisfying 1 < m < n 1. Note that if the owner generated the key pair (see method 1.a above), an initial pair-wise consistency test was performed during key-pair generation (see Section 6.3). If a TTP generated the key pair and provided it to the owner (see method 1.b above), the owner shall perform the consistency check separately, prior to the first use of the key pair in a key-establishment transaction (see Section 4.1).

3.	Key-pair validation: A key pair shall be validated using one of the following methods:

a.	The owner performs key-pair validation: The owner either

1) Performs a successful key-pair validation while generating the key pair (see Section 6.3), or

2) Performs a successful key-pair validation separately from key-pair generation (regardless of whether the owner or a TTP generated the key pair) (see Section 6.4.1.2, 6.4.1.3 or 6.4.1.4).

b.	The TTP performs key-pair validation: A trusted third party (trusted by the owner) either

1)	 Performs a successful key-pair validation while generating the key pair (see Section 6.3), or

2) 	Performs a successful key-pair validation separately from key-pair generation (as specified in Sections 6.4.1.2, 6.4.1.3 or 6.4.1.4), and indicates the success to the owner. Note that if the key-pair validation is performed separately from the key-pair generation, and the TTP does not have the key pair, then the party that generated the key pair or owns the key pair must provide it to the TTP.

Note that the use of a TTP to generate a key pair or to perform key-pair validation for an owner means that the TTP must be trusted (by both the owner and any recipient) to not use the owner’s private key to masquerade as the owner or otherwise compromise the key-establishment transaction.

The key-pair owner can revalidate the key pair at any time using the following steps:

1.	Perform a pair-wise consistency test by verifying that m = (me)d mod n for some integer m satisfying 1 < m < n 1, and

2,	Perform a successful key-pair validation:

a.	If the intended value or bit length of the public exponent is known, then perform a successful key-pair validation as specified in Section 6.4.1.2 or 6.4.1.3.

b.	If the intended value or bit length of the public exponent is NOT known, then perform a successful key-pair validation as specified in Section 6.4.1.4.

6.4.1.2 [bookmark: _RSAKPV1_Family:_RSA][bookmark: _RSAKPV1_Family:_RSA_1][bookmark: _RSAKPV1_Family:_RSA_2][bookmark: _RSAKPV1_Family:_RSA_3][bookmark: _Ref51734301][bookmark: _Toc103497130][bookmark: _Toc121918032][bookmark: _Toc518378779]RSAKPV1 Family: RSA Key-Pair Validation with a Fixed Public Exponent

The RSAKPV1 family of key-pair validation methods corresponds to the RSAKPG1 family of key-pair generation methods (see Section 6.3.1). RSAKPV1 can be used when the public key, the intended fixed value of the public exponent, the intended bit length of the modulus, the targeted security strength, and the value of the private key are all known by the entity performing the validation.

6.4.1.2.1 [bookmark: _rsakpv1-basic][bookmark: _rsakpv1-basic_1][bookmark: _rsakpv1-basic_2][bookmark: _rsakpv1-basic_3][bookmark: _rsakpv1-basic_4][bookmark: _rsakpv1-basic_5][bookmark: _rsakpv1-basic_6][bookmark: _rsakpv1-basic_7][bookmark: _rsakpv1-basic_8][bookmark: _Toc169002234][bookmark: _Toc518378780]rsakpv1-basic

rsakpv1-basic is the key-pair validation method corresponding to rsakpg1-basic (see Section 6.3.1.1).

Function call: rsakpv1-basic (s, nBits, efixed, (npub, epub), (npriv, d))

Input:

1.	s: the targeted security strength;

2.	nBits: the intended bit length of the RSA modulus;

3.	efixed: the intended fixed public exponent an odd integer such that 65,537 ≤ efixed < 2256;

4.	(npub, epub): the RSA public key to be validated; and

5.	(npriv, d): the RSA private key to be validated in the basic format.

Process:

1.	Check the sizes of s and efixed:

a.	If s is not in the interval [112, 256], output an indication that the security strength is not acceptable, and exit without further processing.

b.	If s > S(nBits), output an indication that the modulus length is not adequate for the intended security strength, and exit without further processing.

c.	If efixed is not an odd integer such that 65,537 ≤ efixed < 2256, output an indication that the fixed public exponent is out of range, and exit without further processing.

2.	Compare the public exponents:

If epub efixed, output an indication of an invalid key pair, and exit without further processing.

3.	Check the modulus:

a.	If npub npriv, output an indication of an invalid key pair, and exit without further processing.

b.	If len(npub) nBits, output an indication of an invalid key pair, and exit without further processing.

c.	If nBits is not a positive even integer, output an indication of an invalid key pair, and exit without further processing.

4.	Prime-factor recovery:

a.	Recover the prime factors p and q from the modulus npub, the public exponent epub and the private exponent d (using one of the methods in Appendix C):

(p, q) = RecoverPrimeFactors (npub, epub, d).

b.	If RecoverPrimeFactors outputs an indication that the prime factors were not found, output an indication that the request is invalid, and exit without further processing.

c.	If npub p q, then output an indication that the request is invalid, and exit without further processing.

5.	Check the prime factors:

a.	If (p < ()(2nBits/21)) or (p > 2nBits/2 – 1), output an indication of an invalid key pair, and exit without further processing.

b.	If (q < ()(2nBits/21)) or (q > 2nBits/2 – 1), output an indication of an invalid key pair, and exit without further processing.

c.	If |p – q| 2(nBits/2100), output an indication of an invalid key pair, and exit without further processing.

d.	If GCD (p – 1, epub) 1, output an indication of an invalid key pair, and exit without further processing.

e.	If GCD (q – 1, epub) 1, output an indication of an invalid key pair, and exit without further processing.

f.	Apply an approved primality test* to the factor p (see FIPS 186, Appendices C.3 and E). If the primality test indicates that p is not prime, output an indication of an invalid key pair, and exit without further processing.

g.	Apply an approved primality test* to the factor q (see FIPS 186, Appendices C.3 and E). If the primality test indicates that q is not prime, output an indication of an invalid key pair, and exit without further processing.

*	Relying parties (and/or agents trusted to act on their behalf) shall determine which of the approved primality tests in FIPS 186 meet their security requirements. The probability that p or q may be incorrectly classified as prime by the test used in step 5 shall be less than or equal to 2–S(nBits).

6.	Check that the private exponent d satisfies

a.	2nBits/2 < d < LCM (p – 1, q – 1).

and

b.	1 = (d epub) mod LCM (p – 1, q – 1).

If either check fails, output an indication of an invalid key pair, and exit without further processing.

7.	Output an indication that the key pair is valid.

Output:

1.	status: An indication that the key pair is valid or an indication of an error.

Errors: Indications of the following:

1. The targeted security strength is not acceptable,

2. The modulus length is not adequate for the targeted security strength,

3. The fixed public exponent is out of range, or

4. The key pair is invalid.

A routine that implements this validation function shall destroy any local copies of p, q and d, as well as any other locally stored values used or produced during its execution. Their destruction shall occur prior to or during any exit from the routine (whether exiting early because of an error, or exiting normally).

6.4.1.2.2 [bookmark: _rsakpv1-prime-factor][bookmark: _Toc169002235][bookmark: _Toc518378781]rsakpv1-prime-factor

rsakpv1-prime-factor is the key-pair validation method corresponding to rsakpg1-prime-factor (see Section 6.3.1.2).

Function call: rsakpv1-prime-factor (s, nBits, efixed, (npub, epub), (p, q, d))

The inputs, outputs and errors are the same as in rsakpv1-basic (see Section 6.4.1.2.1) except that the private key is in the prime-factor format: (p, q, d).

The steps are the same as in rsakpv1-basic except that in processing:

A.	Step 3 is replaced by the following:

3.	Check the modulus:

a.	If npub p q, output an indication of an invalid key pair, and exit without further processing.

b.	If len(npub) nBits, output an indication of an invalid key pair, and exit without further processing.

c.	If nBits is not a positive even integer, output an indication of an invalid key pair, and exit without further processing.

B.	Step 4 (prime-factor recovery) is omitted (i.e., not used).

A routine that implements this validation function shall destroy any local copies of p, q, and d, as well as any other locally stored values used or produced during its execution. Their destruction shall occur prior to or during any exit from the routine (whether exiting early because of an error, or exiting normally).

6.4.1.2.3 [bookmark: _rsakpv1-crt][bookmark: _Toc169002236][bookmark: _Toc518378782]rsakpv1-crt

rsakpv1-crt is the key-pair validation method corresponding to rsakpg1-crt.

Function call: rsakpv1-crt (s, nBits, efixed, (npub, epub), (npriv, epriv, d, p, q, dP, dQ, qInv))

The inputs, outputs and errors are the same as in rsakpv1-basic (see Section 6.4.1.2.1) except that the private key is in the Chinese Remainder Theorem format: (npriv, epriv, d, p, q, dP, dQ, qInv).

The steps are the same as in rsakpv1-basic except that in processing:

A. 	Step 2 is replaced by the following:

2.	Compare the public exponents:

If (epub efixed) or (epub epriv), output an indication of an invalid key pair, and exit without further processing.

B.	Step 3 is replaced by

3.	Check the modulus:

a.	If npub p q, or npub npriv, output an indication of an invalid key pair, and exit without further processing.

b.	If len(npub) nBits, output an indication of an invalid key pair, and exit without further processing.

c.	If nBits is not a positive even integer, output an indication of an invalid key pair, and exit without further processing.

C.	Step 4 (prime-factor recovery) is omitted (i.e., not used),

D.	Step 7 is replaced by the following two steps:

7.	Check the CRT components: Check that the components dP, dQ and qInv satisfy

a. 1 < dP < (p – 1).

b. 1 < dQ < (q – 1).

c. 1 < qInv < p.

d. 1 = (dP efixed) mod (p – 1).

e. 1 = (dQ efixed) mod (q – 1).

f. 1 = (qInv q) mod p.

If any of the criteria in Section 6.2.1 are not met, output an indication of an invalid key pair, and exit without further processing.

8.	Output an indication that the key pair is valid.

A routine that implements this validation function shall destroy any local copies of p, q, d, dP, dQ, and qInv, as well as any other locally stored values used or produced during its execution. Their destruction shall occur prior to or during any exit from the routine (whether exiting early because of an error, or exiting normally).

6.4.1.3 [bookmark: _RSAKPV2_Family:_RSA][bookmark: _RSAKPV2_Family:_RSA_1][bookmark: _RSAKPV2_Family:_RSA_2][bookmark: _RSAKPV2_Family:_RSA_3][bookmark: _Ref51735609][bookmark: _Ref51756255][bookmark: _Toc103497131][bookmark: _Toc121918033][bookmark: _Toc518378783]RSAKPV2 Family: RSA Key-Pair Validation (Random Public Exponent)

The RSAKPV2 family of key-pair validation methods corresponds to the RSAKPG2 family of key-pair generation methods (see Section 6.3.2). RSAKPV2 can be used when the public key, the intended bit length of the public exponent, the intended bit length of the modulus, the targeted security strength, and the value of the private key are all known by the entity performing the validation.

6.4.1.3.1 [bookmark: _rsakpv2-basic][bookmark: _Toc169002238][bookmark: _Toc518378784]rsakpv2-basic

rsakpv2-basic is the validation method corresponding to rsakpg2-basic (see Section 6.3.2.1).

Function call: rsapkv2-basic (s, nBits, eBits, (npub, epub), (npriv, d))

The method is the same as the rsapkv1-basic method in Section 6.4.1.2.1 except that:

A.	The efixed input parameter is replaced by eBits, which is the intended bit length of the public exponent an integer such that 17 ≤ eBits ≤ 256.

B.	Step 1c is replaced by:

c.	If (eBits < 17) or (eBits > 256), output an indication that the exponent is out of range, and exit without further processing.

C.	Step 2 is replaced by:

2.	Check the public exponent.

If the public exponent epub is not odd, or if len(epub) eBits, output an indication of an invalid key pair, and exit without further processing.

A routine that implements this validation function shall destroy any local copies of p, q, and d, as well as any other locally stored values used or produced during its execution. Their destruction shall occur prior to or during any exit from the routine (whether exiting early because of an error, or exiting normally).

6.4.1.3.2 [bookmark: _rsakpv2-prime-factor][bookmark: _Toc169002239][bookmark: _Toc518378785]rsakpv2-prime-factor

rsakpv2-prime-factor is the key-pair validation method corresponding to the rsakpg2-prime-factor key-pair generation method (see Section 6.3.2.2).

Function call: rsakpv2-prime-factor (s, nBits, eBits, (npub, epub), (p, q, d))

The inputs, outputs and errors are the same as in rsakpv1-basic (see Section 6.4.1.2.1), except that the private key is in the prime factor format: (p, q, d).

The steps are the same as in rsakpv1-basic (see Section 6.4.1.2.1) except that:

A.	The efixed input parameter is replaced by eBits, which is the intended bit length of the public exponent, an integer such that 17 ≤ eBits ≤ 256.

B.	Step 1c is replaced by:

c.	If (eBits < 17) or (eBits > 256), output an indication that the exponent is out of range, and exit without further processing.

C.	Step 2 is replaced by:

2.	Check the public exponent.

If the public exponent epub is not odd, or if len(epub) eBits, output an indication of an invalid key pair, and exit without further processing.

D.	Step 3 is replaced by the following:

3.	Check the modulus:

a.	If npub p q, output an indication of an invalid key pair, and exit without further processing.

b.	If len(npub) nBits, output an indication of an invalid key pair, and exit without further processing.

c.	If nBits is not a positive even integer, output an indication of an invalid key pair, and exit without further processing.

E.	Step 4 (prime-factor recovery) is omitted (i.e., not used).

A routine that implements this validation function shall destroy any local copies of p, q, and d, as well as any other locally stored values used or produced during its execution. Their destruction shall occur prior to or during any exit from the routine (whether exiting early because of an error or exiting normally).

6.4.1.3.3 [bookmark: _rsakpv2-crt][bookmark: _Toc169002240][bookmark: _Toc518378786]rsakpv2-crt

rsakpv2-crt is the key-pair validation method corresponding to the rsakpg2-crt key-pair generation method (see Section 6.3.1.3).

Function call: rsakpv2-crt (s, nBits, eBits, (npub, epub), (npriv, epriv, d, p, q, dP, dQ, qInv))

The inputs, outputs and errors are the same as in rsakpv1-basic (see Section 6.4.1.2.1) except that the private key is in the Chinese Remainder Theorem format: (npriv, epriv, d, p, q, dP, dQ, qInv).

The steps are the same as in rsakpv1-basic (see Section 6.4.1.2.1) except that:

A.	The efixed input parameter is replaced by eBits, which is the intended bit length of the public exponent, an integer such that 17 ≤ eBits ≤ 256.

B.	Step 1c is replaced by:

c.	If (eBits < 17) or (eBits > 256), output an indication that the exponent is out of range, and exit without further processing.

C.	Step 2 is replaced by the following:

2.	Compare the public exponents:

If (epub epriv) or (epub is not odd) or (len(epub) eBits), output an indication of an invalid key pair, and exit without further processing.

D.	Step 3 is replaced by

3.	Check the modulus:

a.	If (npub p q) or (npub npriv) output an indication of an invalid key pair, and exit without further processing.

b.	If len(npub) nBits, output an indication of an invalid key pair, and exit without further processing.

c.	If nBits is not a positive even integer, output an indication of an invalid key pair, and exit without further processing.

E.	Step 4 (prime-factor recovery) is omitted (i.e., not used),

F.	Step 7 is replaced by the following two steps:

7.	Check the CRT components: Check that the components dP, dQ and qInv satisfy

a. 1 < dP < (p – 1).

b. 1 < dQ < (q – 1).

c. 1 < qInv < p.

d. 1 = (dP epub) mod (p – 1).

e. 1 = (dQ epub) mod (q – 1).

f. 1 = (qInv q) mod p.

If any of the criteria in Section 6.2.1 are not met, output an indication of an invalid key pair, and exit without further processing.

8. Output an indication that the key pair is valid.

A routine that implements this validation function shall destroy any local copies of p, q, d, dP, dQ, and qInv, as well as any other locally stored values used or produced during its execution. Their destruction shall occur prior to or during any exit from the routine (whether exiting early because of an error, or exiting normally).

6.4.1.4 [bookmark: _RSA_Key-Pair_Validation][bookmark: _RSA_Key-Pair_Validation_1][bookmark: _Toc518378787]RSA Key-Pair Validation (Exponent-Creation Method Unknown)

Public-key validation may be performed when the intended fixed value or intended bit length of the public exponent is unknown by the entity performing the validation (i.e., the entity is unaware of whether the key pair was generated as specified in Section 6.3.1 or Section 6.3.2). The following methods can be used as long as the entity performing the validation (i.e., the key-pair owner or a TTP trusted by the owner) knows the intended bit length of the modulus and the targeted security strength, and has possession of some representation of the key pair to be validated (including the private key in either the basic, prime factor or crt format).

6.4.1.4.1 [bookmark: _Toc518378788]basic-pkv

In this format, the private key is represented as (n, d).

Function call: basic_pkv (s, nBits, (npub, epub), (npriv, d))

The method is the same as the rsapkv1-basic method in Section 6.4.1.2.1 except that:

A.	A value for efixed is not available as an input parameter.

B.	Step 1.c is replaced by:

If epub is not an odd integer such that 65,537 ≤ epub < 2256, output an indication that the exponent is out of range, and exit without further processing.

C.	Step 2 is omitted (i.e., not used).

A routine that implements this validation function shall destroy any local copies of p, q, and d, as well as any other locally stored values used or produced during its execution. Their destruction shall occur prior to or during any exit from the routine (whether exiting early because of an error or exiting normally).

6.4.1.4.2 [bookmark: _Toc518378789]prime-factor-pkv

In this format, the private key is represented as (p, q, d).

Function call: prime-factor_pkv (s, nBits, (npub, epub), (p, q, d))

The inputs, outputs and errors are the same as in rsakpv1-basic (see Section 6.4.1.2.1) except that the private key is in the prime factor format: (p, q, d).

The steps are the same as in rsakpv1-basic (see Section 6.4.1.2.1) except that:

A.	A value for efixed is not available as an input parameter.

B.	Step 1.c is replaced by:

If epub is not an odd integer such that 65,537 ≤ epub < 2256, output an indication that the exponent is out of range, and exit without further processing.

C.	Step 2 is omitted (i.e., not used).

D.	Step 3 is replaced by the following:

3.	Check the modulus:

a.	If npub p q, output an indication of an invalid key pair, and exit without further processing.

b.	If len(npub) nBits, output an indication of an invalid key pair, and exit without further processing.

c.	If nBits is not a positive even integer, output an indication of an invalid key pair, and exit without further processing.

E.	Step 4 (prime-factor recovery) is omitted (i.e., not used).

A routine that implements this validation function shall destroy any local copies of p, q, and d, as well as any other locally stored values used or produced during its execution. Their destruction shall occur prior to or during any exit from the routine (whether exiting early because of an error, or exiting normally).

6.4.1.4.3 [bookmark: _Toc518378790]crt_pkv

In this format, the private key is represented as (n, e, d, p, q, dP. dQ, qInv).

Function call: crt_pkv(s, nBits, (npub, epub), (npriv, epriv, d, p, q, dP, dQ, qInv))

The inputs, outputs and errors are the same as in rsakpv1-basic (see Section 6.4.1.2.1) except that the private key is in the Chinese Remainder Theorem (CRT) format: (npriv, epriv, d, p, q, dP, dQ, qInv).

The steps are the same as in rsakpv1-basic (see Section 6.4.1.2.1) except that:

A.	A value for efixed is not available as an input parameter.

B.	Step 1c is replaced by:

If epub is not an odd integer such that 65,537 ≤ epub < 2256, output an indication that the exponent is out of range, and exit without further processing.

C.	Step 2 is omitted (i.e., not used).

D.	Step 3 is replaced by

3.	Check the modulus:

a.	If (npub p q) or (npub npriv), output an indication of an invalid key pair, and exit without further processing.

b.	If len(npub) nBits, output an indication of an invalid key pair, and exit without further processing.

 c.	If nBits is not a positive even integer, output an indication of an invalid key pair, and exit without further processing.

E.	Step 4 (prime-factor recovery) is omitted (i.e., not used),

F.	Step 7 is replaced by the following two steps:

7.	Check the CRT components: Check that the components dP, dQ and qInv satisfy

a. 1 < dP < (p – 1).

b. 1 < dQ < (q – 1).

c. 1 < qInv < p.

d. 1 = (dP epub) mod (p – 1).

e. 1 = (dQ epub) mod (q – 1).

f. 1 = (qInv q) mod p.

If any of the criteria in Section 6.2.1 are not met, output an indication of an invalid key pair, and exit without further processing.

8.	Output an indication that the key pair is valid.

A routine that implements this validation function shall destroy any local copies of p, q, dP, dQ, and qInv, as well as any other locally stored values used or produced during its execution. Their destruction shall occur prior to or during any exit from the routine (whether exiting early because of an error or exiting normally).

6.4.1.5 [bookmark: _Owner_Assurance_of][bookmark: _Owner_Assurance_of_1][bookmark: _Owner_Assurance_of_2][bookmark: _Owner_Assurance_of_3][bookmark: _Toc518378791]Owner Assurance of Private-Key Possession

An owner’s initial assurance of possession of his private key is obtained when assurance of key-pair validity is obtained (see Section 6.4.1.1); assurance of key-pair validity is required prior to the owner’s use of a key pair for key establishment. As time passes, an owner could lose possession of the private key of a key pair. For this reason, renewing the assurance of possession may be appropriate for some applications (i.e., assurance of possession can be refreshed). A discussion of the effect of time on the assurance of private-key possession is provided in SP 800-89.

Renewed assurance that the owner continues to possess the correct associated private key shall be obtained in one or more of the following ways:

1. The key-pair owner renews assurance of key-pair validity – The owner obtains assurance of renewed key-pair validity (see Section 6.4.1.1), thereby also obtaining renewed assurance of private key possession.

2. The key-pair owner receives renewed assurance via key confirmation – The owner employs the key pair to successfully engage a trusted second party in a key-agreement transaction using a scheme from the KAS2 family that incorporates key confirmation. The key confirmation shall be performed in order to obtain assurance that the private key(s) function correctly.

-	The KAS2-Party_V-confirmation scheme in Section 8.3.3.2 can be used to provide assurance to a key-pair owner, acting as party U, that both parties are in possession of the correct private key; i.e., when the key confirmation is successful, party U obtains assurance that party V possesses the private key corresponding to PubKeyV, and that party U possesses the private key corresponding to PubKeyU, where PubKeyV and PubKeyU are the public keys associated with parties V and U, respectively, that were used during that KAS2-Party_V-confirmation transaction.

-	The KAS2-Party_U-confirmation scheme in Section 8.3.3.3 can be used to provide assurance to a key-pair owner, acting as party V, that both parties are in possession of the correct private key; i.e., when the key confirmation is successful, party V obtains assurance that party U possesses the private key corresponding to PubKeyU and that party V possesses the private key corresponding to PubKeyV, where PubKeyU and PubKeyV are the public keys associated with parties U and V, respectively, that were used during that KAS2-Party_U-confirmation transaction.

-	The KAS2-bilateral-confirmation scheme in Section 8.3.3.4 can be used to provide assurance to a key-pair owner acting as either party U or party V that both parties are in possession of the correct private key; i.e., when the bilateral key-confirmation is successful, each party obtains assurance that party U possesses the private key corresponding to PubKeyU, and that party V possesses the private key corresponding to PubKeyV, where PubKeyU and PubKeyV are the public keys associated with parties U and V, respectively, that were used during that KAS2-bilateral-confirmation transaction.”

3. The owner receives assurance via an encrypted certificate - The key-pair owner uses the private key while engaging in a key-establishment transaction with a Certificate Authority (trusted by the owner) using a scheme in this Recommendation after providing the CA with the corresponding public key. As part of this transaction, the CA generates a (new) certificate containing the owner’s public key and encrypts that certificate using (some portion of) the symmetric keying material that has been established. Only the encrypted form of the certificate is provided to the owner. By successfully decrypting the certificate and verifying the CA’s signature, the owner obtains assurance of possession of the correct private key (at the time of the key-establishment transaction).

The key-pair owner (or agents trusted to act on the owner’s behalf) should determine that the method used for obtaining renewed assurance of the owner’s possession of the correct private key is sufficient and appropriate to meet the security requirements of the owner’s intended application(s).

6.4.2 [bookmark: _Assurances_Required_by_1][bookmark: _Assurances_Required_by_3][bookmark: _Assurances_Required_by_4][bookmark: _Assurances_Required_by_6][bookmark: _Assurances_Required_by_7][bookmark: _Assurances_Required_by_8][bookmark: _Assurances_Required_by_9][bookmark: _Toc518378792]Assurances Required by a Public-Key Recipient

In this Recommendation, unless otherwise indicated, a recipient of the public key of another party is assumed to be an entity that does not have (and is not authorized to have) access to the corresponding private key. The recipient of the (purported) public key-establishment key of another party shall have:

1.	Assurance of the arithmetic validity of the other party’s public key before using it in a key-establishment transaction with its claimed owner, and (if used)

2.	Assurance that the claimed public-key owner (i.e., the other party) actually possesses the private key corresponding to that public key.

6.4.2.1 [bookmark: _Obtaining_Assurance_of][bookmark: _Obtaining_Assurance_of_1][bookmark: _Toc518378793]Obtaining Assurance of Public-Key Validity for a Received Public Key

The recipient shall obtain assurance of public-key validity using one or more of the following methods:

1.	Recipient Partial Public-Key Validation The recipient performs a successful partial public-key validation (see Section 6.4.2.2).

2.	TTP Partial Public-Key Validation – The recipient receives assurance that a trusted third party (trusted by the recipient) has performed a successful partial public-key validation (see Section 6.4.2.2).

3.	TTP Key-Pair Validation – The recipient receives assurance that a trusted third party (trusted by the recipient and the owner) has performed key-pair validation in accordance with Section 6.4.1.1 (step 3.b).

Note that the use of a TTP to perform key-pair validation (method 3) implies that both the owner and any recipient of the public key trust that the TTP will not use the owner’s private key to masquerade as the owner or otherwise compromise their key-establishment transactions.

6.4.2.2 [bookmark: _Partial_Public-Key_Validation][bookmark: _Partial_Public-Key_Validation_1][bookmark: _Toc518378794]Partial Public-Key Validation for RSA

Partial public-key validation for RSA consists of conducting plausibility tests. These tests determine whether the public modulus and public exponent are plausible, not necessarily whether they are completely valid, i.e., they may not conform to all RSA key-generation requirements as specified in this Recommendation. Plausibility tests can detect unintentional errors with a reasonable probability. Note that full RSA public-key validation is not specified in this Recommendation, as it is an area of ongoing research. Therefore, if an application requires assurance of full public-key validation, then another approved key-establishment method shall be used (e.g., as specified in SP 800-56A).

Plausibility tests shall include the tests specified in Section 5.3.3 of SP 800-89, with the caveat that the bit length of the modulus shall be a length that is approved in this Recommendation.

6.4.2.3 [bookmark: _Recipient__Assurances][bookmark: _Recipient__Assurances_1][bookmark: _Recipient__Assurances_2][bookmark: _Recipient__Assurances_3][bookmark: _Recipient__Assurances_4][bookmark: _Toc518378795]Recipient Assurances of an Owner’s Possession of a Private Key

When two parties engage in a key-establishment transaction, there is (at least) an implicit claim of ownership made whenever a public key is provided on behalf of a particular party. That party is considered to be a claimed owner of the corresponding key pair – as opposed to being a true owner – until adequate assurance can be provided that the party is actually the one authorized to use the private key. The claimed owner can provide such assurance by demonstrating its knowledge of that private key.

The recipient of another party’s public key shall obtain an initial assurance that the other party (i.e., the claimed owner of the public key) actually possesses the associated private key, either prior to or concurrently with performing a key-establishment transaction with that other party. Obtaining this assurance is addressed in Sections 6.4.2.3.1 and 6.4.2.3.2. As time passes, renewing the assurance of possession may be appropriate for some applications; assurance of possession can be renewed as specified in Section 6.4.2.3.2. A discussion of the effect of time on the assurance of private-key possession is provided in SP 800-89.

As part of the proper implementation of this Recommendation, system users and/or agents trusted to act on their behalf should determine which of the methods for obtaining assurance of possession meet their security requirements. The application tasked with performing key establishment on behalf of a party should determine whether or not to proceed with a key-establishment transaction, based upon the perceived adequacy of the method(s) used. Such knowledge may be explicitly provided to the application in some manner, or may be implicitly provided by the operation of the application itself.

If a binding authority is the public-key recipient: At the time of binding an owner’s identifier to his public key, the binding authority (i.e., a trusted third party, such as a CA) shall obtain assurance that the owner is in possession of the correct private key. This assurance shall either be obtained using one of the methods specified in Section 6.4.2.3.2 (e.g., with the binding authority acting as the public-key recipient) or by using an approved alternative (see SP 800-57, Part 1, Sections 5.2 and 8.1.5.1.1.2).

Recipients not acting in the role of a binding authority: The recipients shall obtain this assurance either through a trusted third party (see Section 6.4.2.3.1) or directly from the owner (i.e., the other party) (see Section 6.4.2.3.2) before using the derived keying material for purposes beyond those required during the key-establishment transaction itself. If the recipient chooses to obtain this assurance directly from the other party (i.e., the claimed owner of that public key), then to comply with this Recommendation, the recipient shall use one of the methods specified in Section 6.4.2.3.2.

Note that the requirement that assurance of possession be obtained before using the established keying material for purposes beyond those of the key-establishment transaction itself does not prohibit the parties to a key-establishment transaction from using a portion of the derived or transported keying material during the key-establishment transaction for purposes required by that key-establishment scheme. For example, in a transaction involving a key-agreement scheme that incorporates key confirmation, the parties establish a (purported) shared secret, derive keying material, and as part of that same transaction use a portion of the derived keying material as the MAC key in their key-confirmation computations.

6.4.2.3.1 [bookmark: _Recipient_Obtains_Assurance_3][bookmark: _Recipient_Obtains_Assurance_6][bookmark: _Recipient_Obtains_Assurance_8][bookmark: _Toc518378796]Recipient Obtains Assurance from a Trusted Third Party

The recipient of a public key may receive assurance that its owner (i.e., the other party in the key-establishment transaction) is in possession of the correct private key from a trusted third party (trusted by the recipient), either before or during a key-establishment transaction that makes use of that public key. The methods used by a third party trusted by the recipient to obtain that assurance are beyond the scope of this Recommendation (see however, the discussions in Sections 6.4.2.3.2 below and in 8.1.5.1.1.2 of SP 800-57).

The recipient of a public key (or agents trusted to act on behalf of the recipient) should know the method(s) used by the third party, in order to determine that the assurance obtained on behalf of the recipient is sufficient and appropriate to meet the security requirements of the recipient’s intended application(s).

6.4.2.3.2 [bookmark: _Recipient_Obtains_Assurance][bookmark: _Recipient_Obtains_Assurance_1][bookmark: _Recipient_Obtains_Assurance_2][bookmark: _Recipient_Obtains_Assurance_4][bookmark: _Recipient_Obtains_Assurance_5][bookmark: _Recipient_Obtains_Assurance_7][bookmark: _Toc518378797]Recipient Obtains Assurance Directly from the Claimed Owner (i.e., the Other Party)

The recipient of a public key can directly obtain assurance of the claimed owner’s current possession of the corresponding private key by successfully completing a key-establishment transaction that explicitly incorporates key confirmation, with the claimed owner serving as the key-confirmation provider. Note that the recipient of the public key in question will also be the key-confirmation recipient. Also note that this use of key confirmation is an additional benefit beyond its use to confirm that two parties possess the same keying material.

There are several key-establishment schemes specified in this Recommendation that can be used. In order to claim conformance with this Recommendation, the key-establishment transaction during which the recipient of a public key seeks to obtain assurance of its owner’s current possession of the corresponding private key shall employ one of the following approved key-establishment schemes:

1. The KAS1-Party_V-confirmation scheme in Section 8.2.3.2 can be used to provide assurance to party U that party V possesses the private key corresponding to PubKeyV, (the public key that was associated with party V when that key pair is used during the key-agreement transaction).

2. The KAS2-Party_V-confirmation scheme in Section 8.3.3.2 can be used to provide assurance to party U that party V possesses the private key corresponding to PubKeyV (the public key that was associated with party V when that key pair is used during the key-agreement transaction).

3. The KAS2-Party_U-confirmation scheme in Section 8.3.3.3 can be used to provide assurance to party V that party U possesses the private key corresponding to PubKeyU (the public key that was associated with party U when that key pair is used during the key-agreement transaction).

4. The KAS2-bilateral-confirmation scheme in Section 8.3.3.4 can be used to provide assurance to each party that the other party possesses the correct private key that corresponds to the other party's public key; i.e., when bilateral key-confirmation is successful, party U obtains assurance that party V possesses the private key corresponding to PubKeyV (the key pair that was associated with party V and that was used during the key-agreement transaction), and party V obtains assurance that party U possesses the private key corresponding to PubKeyU (the key pair that was associated with party U and that was used during the key-agreement transaction).

5. The KTS-OAEP-Party_V-confirmation scheme in Section 9.2.4.2 can be used to provide assurance to party U (the key-transport sender) that party V (the key-transport receiver) possesses the private key corresponding to PubKeyV (the key pair that was associated with party V and that was used during the key-agreement transaction).

The recipient of a public key (or agents trusted to act on the recipient’s behalf) shall determine whether or not using one of the key-establishment schemes in this Recommendation to obtain assurance of possession through key confirmation is sufficient and appropriate to meet the security requirements of the recipient’s intended application(s). Other approved methods (e.g., see Section 5.4.4 of SP 800-57-Part 1) of directly obtaining this assurance of possession from the owner are also allowed. If obtaining assurance of possession directly from the owner is not acceptable, then assurance of possession shall be obtained indirectly as discussed in Section 6.4.2.3.1.

Successful key confirmation (performed in the context described in this Recommendation) demonstrates that the correct private key has been used in the key-confirmation provider’s calculations, and thus also provides assurance that the claimed owner is the true owner.

The assurance of possession obtained via the key-confirmation schemes identified above may be useful even when the recipient has previously obtained independent assurance that the claimed owner of a public key is indeed its true owner. This may be appropriate in situations where the recipient desires renewed assurance that the owner possesses the correct private key (and that the owner is still able to use it correctly), including situations where there is no access to a trusted party who can provide renewed assurance of the owner’s continued possession of the private key.

7 [bookmark: _Primitives_and_Operations][bookmark: _Toc518378798]Primitives and Operations

Except for RSADP (see Section 7.1.2), the primitives and operations are defined in this section as if the RSA private keys are in the basic format. Equivalent primitives and operations that employ RSA private keys given in the prime-factor or CRT format are permitted.

7.1 [bookmark: _Encryption_and_Decryption][bookmark: _Encryption_and_Decryption_1][bookmark: _Toc518378799]Encryption and Decryption Primitives

RSAEP and RSADP are the basic encryption and decryption primitives from the RSA cryptosystem [RSA 1978], specified in PKCS 1. RSAEP produces ciphertext from plaintext using a public key; RSADP recovers the plaintext from the ciphertext using the corresponding private key. The primitives assume that the RSA public key is valid.

7.1.1 [bookmark: _RSAEP][bookmark: _RSAEP_1][bookmark: _RSAEP_2][bookmark: _RSAEP_3][bookmark: _Toc518378800]RSAEP

RSAEP produces ciphertext using an RSA public key.

Function call: RSAEP((n, e), m)

Input:

1. (n, e): the RSA public key.

2. m: the plaintext; an integer such that 1 < m < n – 1.

Assumption: The RSA public key is valid (see Section 6.4).

Process:

1. If m does not satisfy 1 < m < n – 1, output an indication that m is out of range, and exit without further processing.

2. Let c = me mod n.

3. Output c.

Output:

 c: the ciphertext, an integer such that 1 < c < n – 1, or an error indicator.

A routine that implements this primitive shall destroy any local copies of the input m, as well as any other potentially sensitive locally stored values used or produced during its execution. Their destruction shall occur prior to or during any exit from the routine (whether exiting early because of an error or exiting normally with the output of c).

7.1.2 [bookmark: _RSADP][bookmark: _RSADP_1][bookmark: _RSADP_2][bookmark: _RSADP_3][bookmark: _Toc518378801]RSADP

RSADP is the decryption primitive. It recovers the plaintext from ciphertext using an RSA private key. The format of the decryption operation depends on the format of the private key: basic, prime factor or CRT.

A routine that implements this primitive shall destroy any local copies of the private key, as well as any other potentially sensitive locally stored values used or produced during its execution (such as any locally stored portions of the plaintext). Their destruction shall occur prior to or during any exit from the routine (whether exiting early because of an error or exiting normally, with the output of plaintext).

Note:

Care should be taken to ensure that an implementation of RSADP does not reveal even partial information about the value of the plaintext to unauthorized entities. An opponent who can reliably obtain particular bits of the plaintext for sufficiently many chosen ciphertext values may be able to obtain the full decryption of an arbitrary ciphertext by applying the bit-security results of Håstad and Näslund [HN 1998].

[bookmark: _Toc518378802]7.1.2.1	Decryption with the Private Key in the Basic Format

Function call: RSADP((n, d), c)

Input:

1. (n, d): the RSA private key.

2. c: the ciphertext; an integer such that 1 < c < n – 1.

Process:

1. If the ciphertext c does not satisfy 1 < c < n – 1, output an indication that the ciphertext is out of range, and exit without further processing.

2. Let m = cd mod n.

3. Output m.

Output:

 m: the plaintext; an integer such that 1 < m < n – 1, or an error indicator.

[bookmark: _Toc518378803]7.1.2.2	Decryption with the Private Key in the Prime Factor Format

Function call: RSADP((p, q, d), c)

Input:

1. (p, q, d): the RSA private key.

2. c: the ciphertext; an integer such that 1 < c < n – 1.

Process:

1. If the ciphertext c does not satisfy 1 < c < n – 1, output an indication that the ciphertext is out of range, and exit without further processing.

2. Let n = p q, the product of p and q.

3. Let m = cd mod n.

4. Output m.

Output:

 m: the plaintext; an integer such that 1 < m < n – 1, or an error indicator.

[bookmark: _Toc518378804]7.1.2.3	Decryption with the Private Key in the CRT Format

Function call: RSADP(n, e, d, p, q, dP, dQ, qInv, c)

1. (n, e, d, p, q, dP, dQ, qInv): the RSA private key, where dP = d mod (p – 1), dQ = d mod (q – 1) and qInv = q mod p.

2. c: the ciphertext; an integer such that 1 < c < n – 1.

Process:

1. If the ciphertext c does not satisfy 1 < c < n – 1, output an indication that the ciphertext is out of range, and exit without further processing.

2.	mp = cdP mod p.

3.	mq = cdQ mod q.

4.	Let h = ((mp mq) qInv) mod p.

5.	Let m = (mq + (q h)) mod n.

6.	Output m.

7.2 [bookmark: _Toc518378805]Encryption and Decryption Operations

7.2.1 [bookmark: _RSA_Secret-Value_Encapsulation][bookmark: _RSA_Secret-Value_Encapsulation_1][bookmark: _Toc518378806]RSA Secret-Value Encapsulation (RSASVE)

[bookmark: _Ref33772733]The RSASVE generate operation is used by one party in a key-establishment transaction to generate and encrypt a secret value to produce ciphertext using the public key-establishment key of the other party. When this ciphertext is received by that other party, and the secret value is recovered (using the RSASVE recover operation and the corresponding private key-establishment key), the secret value is then considered to be a shared secret. Secret-value encapsulation employs a Random Bit Generator (RBG) to generate the secret value.

[bookmark: _11.8.2_RSASVES1]The RSASVE generate and recovery operations specified in Sections 7.2.1.2 and 7.2.1.3, respectively, are based on the RSAEP and RSADP primitives (see Section 7.1). These operations are used by the KAS1 and KAS2 key-agreement families (see Sections 8.2 and 8.3).

7.2.1.1 [bookmark: _Toc518378807]RSASVE Components

RSASVE uses the following components:

1. RBG:		An approved random bit generator (see Section 5.3).

2. RSAEP:	RSA Encryption Primitive (see Section 7.1.1).

3. RSADP:	RSA Decryption Primitive (see Section 7.1.2).

7.2.1.2 [bookmark: _RSASVE_Generate_Operation][bookmark: _RSASVE_Generate_Operation_1][bookmark: _RSASVE_Generate_Operation_2][bookmark: _RSASVE_Generate_Operation_3][bookmark: _Ref9073692][bookmark: _Toc32395169][bookmark: _Toc518378808]RSASVE Generate Operation (RSASVE.GENERATE)

RSASVE.GENERATE generates a secret value and corresponding ciphertext using an RSA public key.

Function call: RSASVE.GENERATE((n, e))

Input:

(n, e): an RSA public key.

Assumptions: The RSA public key is valid.

Process:

1.	Compute the value of nLen = len(n)/8 the byte length of the modulus n.

2. Generation:

a.	Using the RBG (see Section 5.3), generate Z, a byte string of nLen bytes.

b.	Convert Z to an integer z (See Appendix B.2):

z = BS2I(Z, nLen).

c.	If z does not satisfy 1 < z < n – 1, then go to step 2a.

3. RSA encryption:

a.	Apply the RSAEP encryption primitive (see Section 7.1.1) to the integer z using the public key (n, e) to produce an integer ciphertext c:

c = RSAEP((n, e), z).

b.	Convert the ciphertext c to a ciphertext byte string C of nLen bytes (see Appendix B.1):

C = I2BS(c, nLen).

 4. Output the string Z as the secret value, and the ciphertext C.

Output:

Z: the secret value to be shared (a byte string of nLen bytes), and C: the ciphertext (a byte string of nLen bytes).

A routine that implements this operation shall destroy any locally stored portions of Z and z, as well as any other potentially sensitive locally stored values used or produced during its execution. Their destruction shall occur prior to or during any exit from the routine (whether exiting early because of an error or exiting normally with the output of Z and C). Note that the requirement for destruction includes any locally stored portions of the secret value Z included in the output.

7.2.1.3 [bookmark: _RSASVE_Recovery_Operation][bookmark: _RSASVE_Recovery_Operation_1][bookmark: _RSASVE_Recovery_Operation_2][bookmark: _RSASVE_Recovery_Operation_3][bookmark: _Toc32395170][bookmark: _Toc518378809]RSASVE Recovery Operation (RSASVE.RECOVER)

RSASVE.RECOVER recovers a secret value from ciphertext using an RSA private key. Once recovered, the secret value is considered to be a shared secret.

Function call:

RSASVE.RECOVER((n, d), C)

Input:

1. (n, d): an RSA private key.

2. C: the ciphertext; a byte string of nLen bytes.

Assumptions: The RSA private key is part of a valid key pair.

Process:

1.	nLen = = len(n)/8, the byte length of n.

2.	Length checking:

If the length of the ciphertext C is not nLen bytes in length, output an indication of a decryption error, and exit without further processing.

3.	RSA decryption:

a.	Convert the ciphertext C to an integer ciphertext c (see Appendix B.2):

c = BS2I(C).

b.	Apply the RSADP decryption primitive (see Section 7.1.2) to the ciphertext c using the private key (n, d) to produce an integer z:

z = RSADP((n, d), c).[footnoteRef:23] [23: When the private key is represented in the prime-factor or CRT format, appropriate changes are discussed in Section 7.1.2.]

c.	If RSADP indicates that the ciphertext is out of range, output an indication of a decryption error, and exit without further processing.

d.	Convert the integer z to a byte string Z of nLen bytes (see Appendix B.1):

Z = I2BS(z, nLen).

4. Output the string Z as the secret value (i.e., the shared secret), or an error indicator.

Output:

Z: the secret value/shared secret (a byte string of nLen bytes), or an error indicator.

Note:

Care should be taken to ensure that an implementation does not reveal information about the encapsulated secret value (i.e., the value of the integer z or its byte string equivalent Z). For instance, the observable behavior of the I2BS routine should not reveal even partial information about the byte string Z. An opponent who can reliably obtain particular bits of Z for sufficiently many chosen ciphertext values may be able to obtain the full decryption of an arbitrary RSA-encrypted value by applying the bit-security results of Håstad and Näslund [HN 1998].

A routine that implements this operation shall destroy any local copies of the private key, any locally stored portions of Z and z, and any other potentially sensitive locally stored values used or produced during its execution. Their destruction shall occur prior to or during any exit from the routine (whether exiting early because of an error or exiting normally with the output of Z). Note that the requirement for destruction includes any locally stored portions of the output.

7.2.2 [bookmark: _RSA_with_Optimal][bookmark: _RSA_with_Optimal_1][bookmark: _RSA_with_Optimal_2][bookmark: _Toc518378810]RSA with Optimal Asymmetric Encryption Padding (RSA-OAEP)

[bookmark: _Ref44304715][bookmark: _Toc103497055][bookmark: _Toc121918185]RSA-OAEP consists of asymmetric encryption and decryption operations that are based on an approved hash function, an approved random bit generator, a mask-generation function, and the RSAEP and RSADP primitives. These operations are used by the KTS-OAEP key-transport scheme (see Section 9.2).

In the RSA-OAEP encryption operation, a data block is constructed by the sender (party U) from the keying material to be transported and the hash of additional input (see Section 9.1) that is shared by party U and the intended receiving party (party V). A random byte string is generated, after which both the random byte string and the data block are masked in a way that binds their values. The masked values are used to form the plaintext that is input to the RSAEP primitive, along with the public key-establishment key of party V. The resulting RSAEP output further binds the random byte string, the keying material and the hash of the additional data in the ciphertext that is sent to party V.

In the RSA-OAEP decryption operation, the ciphertext and the receiving party’s (i.e., party V’s) private key-establishment key are input to the RSADP primitive, recovering the masked values as output. The mask-generation function is then used to reconstruct and remove the masks that obscure the random byte string and the data block. After removing the masks, party V can examine the format of the recovered data and compare its own computation of the hash of the additional data to the hash value contained in the unmasked data block, thus obtaining some measure of assurance of the integrity of the recovered data – including the transported keying material.

RSA-OAEP can process up to nLen – 2HLen – 2 bytes of keying material, where nLen is the byte length of the recipient’s RSA modulus, and HLen is the byte length of the values output by the underlying hash function.

7.2.2.1 [bookmark: _Toc518378811][bookmark: _Ref524256656][bookmark: _Ref524256666][bookmark: _Toc532979185]RSA-OAEP Components

RSA-OAEP uses the following components:

1. H:	An approved hash function (see Section 5.1). HLen is used to denote the byte length of the hash function output.

2. MGF:	The mask-generation function (see Section 7.2.2.2). The MGF employs a hash function hash. This hash function need not be the same as the hash function H used in step 3a of Section 7.2.2.3 and step 4a of Section 7.2.2.4.

3. RBG:		An approved random bit generator (see Section 5.3).

4. RSAEP:	RSA Encryption Primitive (see Section 7.1.1).

5. RSADP:	RSA Decryption Primitive (see Section 7.1.2).

[bookmark: _7.2.2.2_The_Mask][bookmark: _7.2.2.2_The_Mask_1][bookmark: _7.2.2.2_The_Mask_2][bookmark: _Toc518378812]7.2.2.2	The Mask Generation Function (MGF)

MGF is a mask-generation function based on an approved hash function (see Section 5.1). The purpose of the MGF is to generate a string of bits that may be used to “mask” other bit strings. The MGF is used by the RSA-OAEP-based schemes specified in Section 9.2.

Let hash be an approved hash function.

For the purposes of this Recommendation, the MGF shall not be invoked more than once by each party during a given transaction using a given MGF seed (i.e., a mask shall be derived only once by each party from a given MGF seed).

Function call: MGF(mgfSeed, maskLen)

Auxiliary Function:

hash: an approved hash function (see Section 5.1).

Implementation-Dependent Parameters:

1. hashLen: an integer that indicates the byte length of the output block of the auxiliary hash function, hash.

2. max_hash_inputLen: an integer that indicates the maximum-permitted byte length of the bit string, x, that is used as input to the auxiliary hash function, hash.

Input:

1.	mgfSeed: a byte string from which the mask is generated.

2.	maskLen: the intended byte length of the mask.

Process:

1.	If maskLen > 232 hashLen, output an error indicator, and exit from this process without performing the remaining actions.

2.	If mgfSeed is more than max_hash_inputLen bytes in length, then output an error indicator, and exit this process without performing the remaining actions.

3. Set T = the null string.

4.	For counter from 0 to maskLen / hashLen – 1, do the following:

a) Let D = I2BS(counter, 4) (see Appendix B.1).

b) Let T = T || hash(mgfSeed || D).

 5. Output the leftmost maskLen bytes of T as the byte string mask.

Output:

The byte string mask (of maskLen bytes), or an error indicator.

A routine that implements this function shall destroy any local copies of the input mgfSeed, any locally stored portions of mask (e.g., any portion of T), and any other potentially sensitive locally stored values used or produced during its execution. Their destruction shall occur prior to or during any exit from the routine (whether exiting early because of an error or exiting normally with the output of mask). Note that the requirement for destruction includes any locally stored portions of the output.

7.2.2.3 [bookmark: _RSA-OAEP_Encryption_Operation][bookmark: _RSA-OAEP_Encryption_Operation_1][bookmark: _RSA-OAEP_Encryption_Operation_2][bookmark: _Toc372193196][bookmark: _Toc518378813]RSA-OAEP Encryption Operation (RSA-OAEP.ENCRYPT)

The RSA-OAEP.ENCRYPT operation produces ciphertext from keying material and additional input using an RSA public key, as shown in Figure 4. See Section 9.1 for more information on the additional input. Let HLen be the byte length of the output of hash function H.

Function call: RSA-OAEP.ENCRYPT((n, e), K, A)

Input:

1. (n, e): the receiver’s RSA public key.

2. K: the keying material; a byte string of at most nLen – 2HLen – 2 bytes, where nlen is the byte length of n.

3. A: additional input; a byte string (may be the Null string) to be cryptographically bound to the keying material (see Section 9.1).

Assumptions: The RSA public key is valid.

Process:

1. nLen = = len(n)/8, the byte length of n.

2. Length checking:

a.	KLen = = len(K)/8, the byte length of K.

b.	If KLen > nLen – 2HLen – 2, then output an indication that the keying material is too long, and exit without further processing.

3.	OAEP encoding:

a.	Apply the selected hash function to compute:

HA = H(A).

HA is a byte string of HLen bytes. If A is an empty string, then HA is the hash value for the empty string.

b.	Construct a byte string PS consisting of nLen – KLen – 2HLen – 2 zero bytes. The length of PS may be zero.

c.	Concatenate HA, PS, a single byte with a hexadecimal value of 01, and the keying material K to form data DB of nLen – HLen – 1 bytes as follows:

DB = HA || PS || 00000001 || K,

where 00000001 is a string of eight bits.

d.	Using the RBG (see Section 5.3), generate a random byte string mgfSeed of HLen bytes.

e.	Apply the mask-generation function in Section 7.2.2.2 to compute:

dbMask = MGF(mgfSeed, nLen – HLen – 1).

f.	Let maskedDB = DB  dbMask.

g.	Apply the mask-generation function in Section 7.2.2.2 to compute:

mgfSeedMask = MGF(maskedDB, HLen).

h.	Let maskedMGFSeed = mgfSeed  mgfSeedMask.

i.	Concatenate a single byte with hexadecimal value 00, maskedMGFSeed, and maskedDB to form an encoded message EM of nLen bytes as follows:

EM = 00000000 || maskedMGFSeed || maskedDB

where 00000000 is a sting of eight bits.

4.	RSA encryption:

a.	Convert the encoded message EM to an integer em (see Appendix B.2):

em = BS2I(EM).

[bookmark: _Ref523291703]b.	Apply RSAEP (see Section 7.1.1) to the integer em using the public key (n, e) to produce a ciphertext integer c:

c = RSAEP((n, e), em).

c.	Convert the ciphertext integer c to a ciphertext byte string C of nLen bytes (see Appendix B.1):

C = I2BS(c, nLen).

5.	Zeroize all intermediate values and output the ciphertext C.

Output:	C: the ciphertext (a byte string of nLen bytes), or an error indicator.

A routine that implements this operation shall destroy any local copies of sensitive input values (e.g., K and any sensitive portions of A), as well as any other potentially sensitive locally stored values used or produced during its execution (including HA, DB, mfgSeed, dbMask, maskedDB, mgfSeedMask, maskedMGFSeed, EM, and em). Their destruction shall occur prior to or during any exit from the routine – whether exiting early because of an error or exiting normally with the output of C.

[bookmark: _Ref533487669][bookmark: _Toc16056263][bookmark: _Toc53336552][bookmark: _Ref524256687][bookmark: _Toc532979186][bookmark: _Toc32395163][image:]

[bookmark: Figure_4][bookmark: _Toc494191684][bookmark: _Toc121187194][bookmark: _Toc173652199][bookmark: _Toc181546830][bookmark: _Toc181547046][bookmark: _Toc181547649]Figure 4: RSA-OAEP Encryption Operation

7.2.2.4 [bookmark: _RSA-OAEP_Decryption_Operation][bookmark: _Toc372193197][bookmark: _Toc518378814]RSA-OAEP Decryption Operation (RSA-OAEP.DECRYPT)

RSA-OAEP.DECRYPT recovers keying material from a ciphertext and additional input using an RSA private key as shown in Figure 5. Let HLen be the byte length of the output of hash function H.

Function call: RSA-OAEP.DECRYPT((n, d), C, A)

Input:

1. (n, d): the receiver’s RSA private key.

2. C: the ciphertext; a byte string.

3. A: additional input; a byte string (may be the empty string) whose cryptographic binding to the keying material is to be verified (see Section 9.1).

Assumptions: The RSA private key is valid.

Process:

1. Initializations:

a.	nLen = the byte length of n. For this Recommendation, nLen 256.

b. 	DecryptErrorFlag = False.

2. Check for erroneous input:

a.	If the length of the ciphertext C is not nLen bytes, output an indication of erroneous input, and exit without further processing.

b.	Convert the ciphertext byte string C to a ciphertext integer c
(see Appendix B.2):

c = BS2I(C).

c.	If the ciphertext integer c is not such that 1 < c < n – 1, output an indication of erroneous input, and exit without further processing.

3.	RSA decryption:

a.	Apply RSADP (see Section 7.1.2) to the ciphertext integer c using the private key (n, d) to produce an integer em:

em = RSADP((n, d), c).[footnoteRef:24] [24: When the private key is represented in the prime-factor or CRT format, appropriate changes are discussed in Section 7.1.2.]

b.	Convert the integer em to an encoded message EM, a byte string of nLen bytes (see Appendix B.1):

EM = I2BS(em, nLen).

[bookmark: _Ref533486553]4.	OAEP decoding:

a.	Apply the selected hash function (see Section 5.1) to compute:

HA = H(A).

HA is a byte string of HLen bytes.

b.	Separate the encoded message EM into a single byte Y, a byte string maskedMGFSeed′ of HLen bytes, and a byte string maskedDB′ of nLen – HLen – 1 bytes as follows:

EM = Y || maskedMGFSeed′ || maskedDB′.

c.	Apply the mask-generation function specified in Section 7.2.2.2 to compute:

mgfSeedMask′ = MGF(maskedDB′, HLen).

d.	Let mgfSeed′ = maskedMGFSeed′  mgfSeedMask′.

e.	Apply the mask-generation function specified in Section 7.2.2.2 to compute:

dbMask′= MGF(mgfSeed′, nLen – HLen – 1).

f.	Let DB′ = maskedDB′  dbMask′.

g.	Separate DB′ into a byte string HA of HLen bytes and a byte string X of nLen – 2HLen – 1 bytes as follows:

DB′ = HA′ || X.

5.	Check for RSA-OAEP decryption errors:

a.	DecryptErrorFlag = False.

b.	If Y is not the 00 byte (i.e., the bit string 00000000), then DecryptErrorFlag = True.

c.	If HA′ does not equal HA, then DecryptErrorFlag = True.

d.	If X does not have the form PS || 00000001 || K, where PS consists of zero or more consecutive 00 bytes, then DecryptErrorFlag = True.

The type(s) of any error(s) found shall not be reported.
(See the notes below for more information.)

6.	Output of the decryption process:

a.	If DecryptErrorFlag = True, then output an indication of an (unspecified) decryption error, and exit without further processing. (See the notes below for more information.)

b.	Otherwise, output K, the portion of the byte string X that follows the leading 01 byte.

Output:

K: the recovered keying material (a byte string of at most nLen – 2HLen 2 bytes), or an error indicator.

A routine that implements this operation shall destroy any local copies of sensitive input values (including the private key and any sensitive portions of A), any locally stored portions of K, and any other potentially sensitive locally stored values used or produced during its execution (including DecryptErrorFlag, em, EM, HA, Y, maskedMGFSeed , maskedDB, mgfSeedMask , mfgSeed , dbMask , DB, HA, and X). Their destruction shall occur prior to or during any exit from the routine – whether exiting because of an error, or exiting normally with the output of K. Note that the requirement for destruction includes any locally stored portions of the recovered keying material.

Notes:

1. Care should be taken to ensure that the different error conditions that may be detected in step 5 above cannot be distinguished from one another by an opponent, whether by an error message or by process timing. Otherwise, an opponent may be able to obtain useful information about the decryption of a chosen ciphertext C, leading to the attack observed by Manger in [Manger 2001]. A single error message should be employed and output the same way for each type of decryption error. There should be no difference in the observable behavior for the different RSA-OAEP decryption errors.

2. In addition, care should be taken to ensure that even if there are no errors, an implementation does not reveal partial information about the encoded message em or EM. For instance, the observable behavior of the mask-generation function should not reveal even partial information about the MGF seed employed in the process (since that could compromise portions of the maskedDB′ segment of EM). An opponent who can reliably obtain particular bits of EM for sufficiently many chosen-ciphertext values may be able to obtain the full decryption of an arbitrary ciphertext by applying the bit-security results of Håstad and Näslund [HN 1998].

[bookmark: Figure_5][bookmark: _Toc494191685][bookmark: _MON_1311161386][bookmark: _Toc53336553][bookmark: _Toc121187195][bookmark: _Toc173652200][bookmark: _Toc181546831][bookmark: _Toc181547047][bookmark: _Toc181547650][bookmark: _Ref33781338][bookmark: _Ref533502128][bookmark: _Toc32395166][bookmark: _Ref32747422][bookmark: _Ref33328395][bookmark: _Ref33328763][bookmark: _Ref33329432][bookmark: _Ref33772694][image:]Figure 5: RSA-OAEP Decryption Operation

8 [bookmark: _Key-Agreement_Schemes][bookmark: _Key-Agreement_Schemes_1][bookmark: _Key-Agreement_Schemes_2][bookmark: _Key-Agreement_Schemes_3][bookmark: _Key-Agreement_Schemes_4][bookmark: _Key-Agreement_Schemes_5][bookmark: _Toc372193203][bookmark: _Toc518378815]Key-Agreement Schemes

In a key-agreement scheme, two parties, party U and party V, establish keying material over which neither has complete control of the result, but both have influence. This Recommendation provides two families of key-agreement schemes: KAS1 and KAS2. The KAS1 family consists of the KAS1-basic and KAS1-Party_V-confirmation schemes, and the KAS2 family consists of the KAS2-basic, KAS2-Party_V-confirmation, KAS2-Party_U-confirmation, and KAS2-bilateral-confirmation schemes. These schemes are based on secret-value encapsulation (see Section 7.2.1).

Key confirmation is included in some of these schemes to provide assurance that the participants share the same keying material; see Section 5.6 for the details of key confirmation. When possible, each party should have such assurance. Although other methods are often used to provide this assurance, this Recommendation makes no statement as to the adequacy of these other methods. Key confirmation may also provide assurance of private-key possession.

For each of the KAS1 and KAS2 schemes, Party V shall have an identifier, IDV, that has an association with the key pair that is known (or discoverable) and trusted by party U (i.e., there shall be a trusted association between IDV and party V’s public key). For the KAS2 key-agreement schemes, party U shall also have such an identifier, IDU.

A general flow diagram is provided for each key-agreement scheme. The dotted-line arrows represent the distribution of public keys by the parties themselves or by a third party, such as a Certification Authority (CA). The solid-line arrows represent the distribution of nonces or cryptographically protected values that occur during the key-agreement scheme. Note that the flow diagrams in this Recommendation omit explicit mention of various validation checks that are required. The flow diagrams and descriptions in this Recommendation assume a successful completion of the key-agreement process.

For each scheme, there are conditions that must be satisfied to enable proper use of that scheme. These conditions are listed as assumptions. Failure to meet all such conditions could yield undesirable results, such as the inability to communicate or the loss of security. As part of the proper implementation of this Recommendation, system users and/or agents trusted to act on their behalf (including application developers, system installers, and system administrators) are responsible for ensuring that all assumptions are satisfied at the time that a key-establishment transaction takes place.

3. [bookmark: _Toc372193204]

4.

5.

6.

7.

8.

[bookmark: _Common_Components_for][bookmark: _Common_Components_for_1][bookmark: _Common_Components_for_2][bookmark: _Toc518378816]Common Components for Key Agreement

The key-agreement schemes in this Recommendation have the following common components:

1. RSASVE:	RSA secret-value encapsulation, consisting of a generation operation RSASVE.GENERATE and a recovery operation RSASVE.RECOVER (see Section 7.2.1).

2. KDM:	A key-derivation method (see Section 5.5).

[bookmark: _KAS1_Key_Agreement][bookmark: _KAS1_Key_Agreement_1][bookmark: _KAS1_Key_Agreement_2][bookmark: _KAS1_Key_Agreement_3][bookmark: _KAS1_Key_Agreement_4][bookmark: _KAS1_Key_Agreement_5][bookmark: _KAS1_Key_Agreement_6][bookmark: _Toc518378817] KAS1 Key Agreement

For the KAS1 key-agreement schemes, even if both parties have key-establishment key pairs, only party V’s key-establishment key pair is used.

The KAS1 key-agreement schemes have the following general form:

1. Party U generates a secret value (which will become a shared secret) and a corresponding ciphertext using the RSASVE.GENERATE operation and party V’s public key-establishment key, and then sends the ciphertext to party V.

2. Party V recovers the secret value from the ciphertext using the RSASVE.RECOVER operation and its private key-establishment key; the secret value is then considered to be the shared secret. Party V generates a nonce and sends it to party U.

3. Both parties then derive keying material from the shared secret and “other information”, including party V’s nonce, using a key-derivation method. The length of the keying material that can be agreed on is limited only by the length that can be output by the key-derivation method.

4. If key confirmation (KC) is incorporated in the scheme, then the derived keying material is parsed into two parts, MacKey and KeyData, and a MacData string is formed (see Sections 5.6 and 8.2.3.2.), MacKey and MacData are used to compute a MAC tag of MacTagBits bits (see Sections 5.2.1, 5.2.2, 5.6.1 and 5.6.3), and MacTag is sent from party V (the KC provider) to party U (the KC recipient). If the MAC tag computed by party V matches the MAC tag (re)computed by party U, then the successful establishment of keying material is confirmed to party U.

The following schemes are defined:

1. KAS1-basic, the basic scheme without key confirmation (see Section 8.2.2).

2. KAS1-Party_V-confirmation, a variant of KAS1-basic with unilateral key confirmation provided by party V to party U (see Section 8.2.3).

For the security properties of the KAS1 key-agreement schemes, see Section 10.1.

[bookmark: _8.2.1__][bookmark: _8.2.1___1][bookmark: _Toc518378818]8.2.1	KAS1 Assumptions

1. Party V has been designated as the owner of a key-establishment key pair that was generated as specified in Section 6.3. Party V has assurance of possession of the correct value for its private key as specified in Section 6.4.1.5.

2. Party U and party V have agreed upon an approved key-derivation method (see Section 5.5), as well as an approved algorithm to be used with that method (e.g., a specific hash function) and other associated parameters related to the cryptographic elements to be used.

3. If key confirmation is used, party U and party V have agreed upon an approved MAC algorithm and associated parameters, including the lengths of MacKey and MacTag (see Section 5.2).

4. When an identifier is used to label either party during the key-agreement process, both parties are aware of the particular identifier employed for that purpose. In particular, when an identifier is used to label party V during the key-agreement process, that identifier’s association with party V’s public key is trusted by party U. When an identifier is used to label party U during the key-agreement process, it has been selected/assigned in accordance with the requirements of the protocol relying upon the use of the key-agreement scheme.

5. Party U has obtained assurance of the validity of party V’s public key, as specified in Section 6.4.2.

The following is an assumption for using any keying material derived during a KAS1 key-agreement scheme for purposes beyond those of the scheme itself.

Party U has obtained (or will obtain) assurance that party V is (or was) in possession of the private key corresponding to the public key used during the key-agreement transaction, as specified in Section 6.4.2.3.

This assumption recognizes the possibility that assurance of private-key possession may be provided/obtained by means of key confirmation performed as part of a particular KAS1 transaction.

8.2.2 [bookmark: _KAS1-basic][bookmark: _KAS1-basic_1][bookmark: _KAS1-basic_2][bookmark: _KAS1-basic_3][bookmark: _Toc372193207][bookmark: _Toc518378819]KAS1-basic

KAS1-basic is the basic key-agreement scheme in the KAS1 family. In this scheme, party V does not contribute to the formation of the shared secret; instead, a nonce is used as a party V-selected contribution to the key-derivation method, ensuring that both parties influence the derived keying material.

Let (PubKeyV, PrivKeyV) be party V’s key-establishment key pair. Let KBits be the intended length in bits of the keying material to be established. The parties shall perform the following or an equivalent sequence of steps, as illustrated in Figure 6.

		Party U

		

		Party V

		

		

		(PubKeyV, PrivKeyV)

		Obtain party V’s public key-establishment key

		PubKeyV

		

		(Z, C) = RSASVE.GENERATE(PubKeyV)

		C

		Z = RSASVE.RECOVER(PrivKeyV, C)

		Compute DerivedKeyingMaterial and Destroy Z

		NV

		Compute DerivedKeyingMaterial and Destroy Z

[bookmark: Figure_6]Figure 6: KAS1-basic Scheme

Party U shall execute the following key-agreement steps in order to a) establish a shared secret Z with party V, and b) derive secret keying material from Z.

Actions: Party U generates a shared secret and derives secret keying material as follows:

1.	Use the RSASVE.GENERATE operation in Section 7.2.1.2 to generate a secret value Z and a corresponding ciphertext C using party V’s public key-establishment key, PubKeyV. Note that the secret value Z will become a shared secret when recovered by Party V.

2.	Send the ciphertext C to party V.

3.	Obtain party V’s nonce NV from party V. If NV is not available, return an error indicator without performing the remaining actions.

4.	Assemble the OtherInput for key derivation, including the required nonce, NV, and any other requisite information (see Section 5.5).

5.	Use the agreed-upon key-derivation method (see Section 5.5) to derive secret keying material of the agreed-upon length from the shared secret value Z and OtherInput (see step 4). If the key-derivation method outputs an error indicator, return an error indicator without performing the remaining actions.

6.	 Output the DerivedKeyingMaterial.

Any local copies of Z, OtherInput, DerivedKeyingMaterial and any intermediate values used during the execution of party U’s actions shall be destroyed prior to the early termination of the actions due to an error, or (in the absence of errors), prior to or during the the completion of step 6.

Party V shall execute the following key-agreement steps in order to a) establish a shared secret Z with party U, and b) derive secret keying material from Z.

Actions: Party V obtains the shared secret and derives secret keying material as follows:

1.	Receive a ciphertext C from party U.

2.	Use the RSASVE.RECOVER operation in Section 7.2.1.3 to recover the secret value Z from the ciphertext C using the private key-establishment key, PrivKeyV; hereafter, Z is considered to be a shared secret. If the call to RSASVE.RECOVER outputs an error indicator, return an error indicator without performing the remaining actions.

3.	Obtain a nonce NV (see Section 5.4) and send NV to party U.

4.	Construct the other information OtherInput for key derivation (see Section 5.5) using the nonce NV and the identifiers IDU and IDV, if available.

5.	Use the agreed-upon key-derivation method to derive secret keying material with the agreed upon length from the shared secret value Z and other input. If the key-derivation method outputs an error indicator, return an error indicator without performing the remaining actions.

6.	Output the DerivedKeyingMaterial.

Any local copies of Z, PrivKeyV, OtherInput DerivedKeyingMaterial and any intermediate values used during the execution of party V’s actions shall be destroyed prior to the early termination of the actions due to an error, or (in the absence of errors) prior to or during the the completion of step 6.

The messages may be sent in a different order, i.e., NV may be sent before C.

It is extremely important that an implementation not reveal any sensitive information. It is also important to conceal partial information about the shared secret Z to prevent chosen-ciphertext attacks on the secret-value encapsulation scheme.

8.2.3 [bookmark: _KAS1_Key_Confirmation][bookmark: _KAS1_Key_Confirmation_1][bookmark: _KAS1_Key_Confirmation_2][bookmark: _KAS1_Key_Confirmation_3][bookmark: _KAS1_Key_Confirmation_4][bookmark: _Toc372193208][bookmark: _Toc518378820]KAS1 Key Confirmation

The KAS1-Party_V-confirmation scheme is based on the KAS1-basic scheme.

8.2.3.1 [bookmark: _KAS1_Key-Confirmation_Components][bookmark: _Toc372193209][bookmark: _Toc518378821]KAS1 Key-Confirmation Components

The components for KAS1 key agreement with key confirmation are the components listed in Section 8.1, plus the following:

MAC: A message authentication code algorithm with the following parameters (see Section 5.2),

a. MacKeyLen: the byte length of MacKey, and

b. MacTagLen: the byte length of MacTag. (MacTagBits, as used in Section 5.2, is equal to 8 MacTagLen.)

MacKey shall be the first MacKeyLen bytes of the keying material and shall be used only for the key-confirmation operation of a single transaction. For KAS1 key confirmation, the length of the derived keying material shall be at least MacKeyLen bytes in length. The keying material is usually longer than MacKeyLen bytes so that other keying material is available for subsequent operations.

8.2.3.2 [bookmark: _KAS1-Party_V-confirmation][bookmark: _KAS1-Party_V-confirmation_1][bookmark: _KAS1-Party_V-confirmation_2][bookmark: _Toc372193210][bookmark: _Toc518378822]KAS1-Party_V-confirmation

Figure 7 depicts a typical flow for a KAS1 scheme with unilateral key confirmation from party V to party U. In this scheme, party V and party U assume the roles of key-confirmation provider and recipient, respectively.

		Party U

		

		Party V

		

		

		(PubKeyV, PrivKeyV)

		Obtain party V’s public key-establishment key

		PubKeyV

		

		(Z, C) = RSASVE.GENERATE(PubKeyV)

		C

		Z = RSASVE.RECOVER(PrivKeyV, C)

		Compute DerivedKeyingMaterial and Destroy Z

		NV

		Compute DerivedKeyingMaterial and Destroy Z

		MacTagV =?
TMacTagBits[MAC(MacKey, MacDataV)]

		MacTagV

		MacTagV =
TMacTagBits[MAC(MacKey, MacDataV)

[bookmark: Figure_7]Figure 7: KAS1-Party_V-confirmation Scheme (from Party V to Party U)

To provide (and receive) key confirmation (as described in Section 5.6.1), both parties set EphemDataV = NV, and EphemDataU = C:

Party V provides MacTagV to party U (as specified in Section 5.6.1, with P = V and R = U), where MacTagV is computed (as specified in Section 5.2.1) using

MacDataV = “KC_1_V” || IDV || IDU || NV || C{ || TextV}.

Party U uses the identical format and values to compute TMacTagBits[MAC(MacKey, MacDataV), and then verify that it matches the MacTagV value provided by party V.

The MacKey used during key confirmation shall be destroyed by party V immediately after the computation of MacTagV, and by party U immediately after the verification of the received MacTagV or a (final) determination that the received MacTagV is in error.

Certain messages may be combined or sent in a different order (e.g., NV and MacTagV may be sent together, or NV may be sent before C).

[bookmark: _KAS2_Key_Agreement][bookmark: _KAS2_Key_Agreement_1][bookmark: _KAS2_Key_Agreement_2][bookmark: _KAS2_Key_Agreement_3][bookmark: _KAS2_Key_Agreement_4][bookmark: _KAS2_Key_Agreement_5][bookmark: _KAS2_Key_Agreement_6][bookmark: _KAS2_Key_Agreement_7][bookmark: _Toc518378823]	KAS2 Key Agreement

In this family of key-agreement schemes, key-establishment key pairs are used by both party U and party V.

The schemes in this family have the following general form:

1. Party U generates a secret value (which will become a component of the shared secret) and a corresponding ciphertext using the RSASVE.GENERATE operation and party V’s public key-establishment key, and sends the ciphertext to party V.

2. Party V recovers party U’s secret component from the ciphertext received from party U using the RSASVE.RECOVER operation and its private key-establishment key.

3. Party V generates a secret value (which will become a second component of the shared secret) and the corresponding ciphertext using the RSASVE.GENERATE operation and party U’s public key-establishment key, and sends the ciphertext to party U.

4. Party U recovers party V’s secret component from the ciphertext received from party V using the RSASVE.RECOVER operation and its private key-establishment key.

5. Both parties concatenate the two secret components to form the shared secret, and then derive keying material from the shared secret and “other information” using a key-derivation method. The length of the keying material that can be agreed on is limited only by the length that can be output by the key-derivation method.

6. Party U and/or party V may additionally provide key confirmation. If key confirmation is incorporated, then the derived keying material is parsed into two parts, MacKey and KeyData. MacKey is then used to compute a MAC tag of MacTagLen bytes on MacData (see Sections 5.2.1, 5.2.2, 5.6.1 and 5.6.3). MacTag is sent from the KC provider to the KC recipient. If the MAC tag computed by the provider matches the MAC tag computed by the recipient, then the successful establishment of keying material is confirmed by the recipient.

The following schemes are defined:

1. KAS2-basic, the basic scheme without key confirmation (see Section 8.3.2).

2. KAS2-Party_V-confirmation, a variant of KAS2-basic with unilateral key confirmation provided by party V to party U (see Section 8.3.3.2).

3. KAS2-Party_U-confirmation, a variant of KAS2-basic with unilateral key confirmation probided by party U to party V (see Section 8.3.3.3).

4. KAS2-bilateral-confirmation, a variant of KAS2-basic with bilateral key confirmation between party U and party V (see Section 8.3.3.4).

For the security properties of the KAS2 key-agreement schemes, see Section 10.2.

8.1.1 [bookmark: _KAS2_Assumptions][bookmark: _KAS2_Assumptions_1][bookmark: _Toc372193212][bookmark: _Toc518378824]KAS2 Assumptions

1. Each party has been designated as the owner of a key-establishment key pair that was generated as specified in Section 6.3. Prior to or during the key-agreement process, each party has obtained assurance of its possession of the correct value for its own private key as specified in Section 6.4.1.5.

2. The parties have agreed upon an approved key-derivation method (see Section 5.5), as well as an approved algorithm to be used with that method (e.g., a specific hash function) and other associated parameters to be used for key derivation.

3. If key confirmation is used, party U and party V have agreed upon an approved MAC algorithm and associated parameters, including the lengths of MacKey and MacTag (see Section 5.2). The parties must also agree on whether one party or both parties will send MacTag, and in what order.

4. When an identifier is used to label a party during the key-agreement process, that identifier has a trusted association to that party’s public key. (In other words, whenever both the identifier and public key of one participant are employed in the key-agreement process, they are associated in a manner that is trusted by the other participant.) When an identifier is used to label a party during the key-agreement process, both parties are aware of the particular identifier employed for that purpose.

5. Each party has obtained assurance of the validity of the public keys that are used during the transaction, as specified in Section 6.4.2.3.

The following is an assumption for using any keying material derived during a KAS2 key-agreement scheme for purposes beyond those of the scheme itself.

Each party has obtained (or will obtain) assurance that the other party is (or was) in possession of the private key corresponding to their public key that was used during the key-agreement transaction, as specified in Section 6.4.2.3.

This assumption recognizes the possibility that assurance of private-key possession may be provided/obtained by means of key confirmation performed as part of a particular KAS2 transaction.

8.1.2 [bookmark: _KAS2-basic][bookmark: _KAS2-basic_1][bookmark: _KAS2-basic_2][bookmark: _Toc372193213][bookmark: _Toc518378825]KAS2-basic

Figure 8 depicts the typical flow for the KAS2-basic scheme. The parties exchange secret values that are concatenated to form the mutually determined shared secret to be input to the key-derivation method.

Party U shall execute the following key-agreement steps in order to a) establish a mutually determined shared secret Z with party V, and b) derive secret keying material from Z.

Actions: Party U generates a shared secret and derives secret keying material as follows:

1. Use the RSASVE.GENERATE operation in Section 7.2.1.2 to generate a secret value ZU and a corresponding ciphertext CU using party V’s public key-establishment key PubKeyV.

2.	 Send the ciphertext CU to party V.

3.	Receive a ciphertext CV from party V. If CV is not available, return an error indicator without performing the remaining actions.

4.	Use the RSASVE.RECOVER operation in Section 7.2.1.3 to recover ZV from the ciphertext CV using the private key-establishment key PrivKeyU. If the call to RSASVE.RECOVER outputs an error indicator, return an error indicator without performing the remaining actions.

5. Construct the mutually determined shared secret Z from ZU and ZV

Z = ZU || ZV.

6.	Assemble the OtherInput for key derivation, including all requisite information (see Section 5.5).

7	Use the agreed-upon key-derivation method (see Section 5.5) to derive secret keying material with the specified length from the shared secret Z and other input. If the key-derivation method outputs an error indicator, return an error indicator without performing the remaining actions.

8.	Output the DerivedKeyingMaterial.

Any local copies of Z, ZU, ZV, PrivKeyU, OtherInput, DerivedKeyingMaterial and any intermediate values used during the execution of party U’s actions shall be destroyed prior to the early termination of the actions due to an error, or (in the absence of errors), prior to or during the completion of step 8.

		Party U

		

		Party V

		(PubKeyU, PrivKeyU)

		

		(PubKeyV, PrivKeyV)

		Obtain party V’s public key-establishment key

		PubKeyV

		

		

		PubKeyU

		Obtain party U’s public key-establishment key

		(ZU, CU) = RSASVE.GENERATE(PubKeyV)

		CU

		ZU =
RSASVE.RECOVER(PrivKeyV, CU)

		ZV =
RSASVE.RECOVER(PrivKeyU, CV)

		CV

		(ZV, CV) = RSASVE.GENERATE(PubKeyU)

		Z = ZU || ZV

		

		Z = ZU || ZV

		Compute DerivedKeyingMaterial and destroy Z

		

		Compute DerivedKeyingMaterial and destroy Z

[bookmark: Figure_8]Figure 8: KAS2-basic Scheme

Party V shall execute the following key-agreement steps in order to a) establish a mutually determined shared secret Z with party U, and b) derive secret keying material from Z.

Actions: Party V generates a shared secret and derives secret keying material as follows:

1.	Receive a ciphertext CU from party U.

2.	Use the RSASVE.RECOVER operation in Section 7.2.1.3 to recover ZU from the ciphertext CU using the private key-establishment key PrivKeyU. If the call to RSASVE.RECOVER outputs an error indicator, return an error indicator without performing the remaining actions.

3.	Use the RSASVE.GENERATE operation in Section 7.2.1.2 to generate a secret value ZV and a corresponding ciphertext CV using party U’s public key-establishment key PubKeyU.

4.	Send the ciphertext CV to party U.

5.	Construct the mutually determined shared secret Z from ZU and ZV

Z = ZU || ZV.

6.	Assemble the OtherInput for key derivation, including all requisite information (see Section 5.5).

7.	Use the agreed-upon key-derivation method (see Section 5.5) to derive KBits of secret keying material DerivedKeyingMaterial from the shared secret Z and OtherInput. If the key-derivation method outputs an error indicator, return an error indicator without performing the remaining actions.

8.	Output the DerivedKeyingMaterial.

Any local copies of Z, ZU, ZV, PrivKeyV, OtherInput, DerivedKeyingMaterial and any intermediate values used during the execution of party V’s actions shall be destroyed prior to the early termination of the actions due to an error, or (in the absence of errors), prior to or during the completion of step 8.

[bookmark: _Toc532979200]The messages may be sent in a different order, i.e., CV may be sent before CU.

It is extremely important that an implementation not reveal any sensitive information. It is also important to conceal partial information about ZU, ZV and Z to prevent chosen-ciphertext attacks on the secret-value encapsulation scheme. In particular, the observable behavior of the key-agreement process should not reveal partial information about the shared secret Z.

8.1.3 [bookmark: _KAS2_Key_Confirmation][bookmark: _KAS2_Key_Confirmation_1][bookmark: _KAS2_Key_Confirmation_2][bookmark: _KAS2_Key_Confirmation_3][bookmark: _Toc372193214][bookmark: _Toc518378826]KAS2 Key Confirmation

The KAS2 key-confirmation schemes are based on the KAS2-basic scheme.

8.1.3.1 [bookmark: _Toc372193215][bookmark: _Toc518378827]KAS2 Key-Confirmation Components

The components for KAS2 key agreement with key confirmation are the components in Section 8.1, plus the following:

MAC: A message authentication code algorithm with the following parameters (see Section 5.2)

a. MacKeyLen: the byte length of MacKey.

b. MacTagLen: the byte length of MacTag. (MacTagBits, as used in Section 5.2, is equal to 8 MacTagLen.)

[bookmark: _KAS2-Party_V-confirmation][bookmark: _KAS2-Party_V-confirmation_1][bookmark: _KAS2-Party_V-confirmation_2][bookmark: _KAS2-Party_V-confirmation_3][bookmark: _KAS2-Party_V-confirmation_4]MacKey shall be the first MacKeyLen bytes of the keying material and shall be used only for the key-confirmation operation of a single transaction. For KAS2 key confirmation, the length of the keying material shall be at least MacKeyLen bytes. The keying material is usually longer than MacKeyLen bytes so that other keying material is available for subsequent operations.

[bookmark: _Toc518378828]8.3.3.2	KAS2-Party_V-confirmation

Figure 9 depicts a typical flow for a KAS2 scheme with unilateral key confirmation from party V to party U. In this scheme, party V and party U assume the roles of the key-confirmation provider and recipient, respectively.

		Party U

		

		Party V

		(PubKeyU, PrivKeyU)

		

		(PubKeyV, PrivKeyV)

		Obtain party V’s public key-establishment key

		PubKeyV

		

		

		PubKeyU

		Obtain party U’s public key establishment-key

		(ZU, CU) = RSASVE.Generate(PubKeyV)

		CU

		ZU = RSASVE.Recover(PrivKeyV, CU)

		ZV =
RSASVE.RECOVER(PrivKeyU, CV)

		CV

		(ZV, CV) = RSASVE.GENERATE(PubKeyU)

		Z = ZU || ZV

		

		Z = ZU || ZV

		Compute DerivedKeyingMaterial = MacKey || KeyData and destroy Z

		

		Compute DerivedKeyingMaterial = MacKey || KeyData and destroy Z

		MacTagV =?
TMacTagBits[MAC(MacKey, MacDataV)]

		MacTagV

		MacTagV =
TMacTagBits[MAC(MacKey, MacDataV)]

[bookmark: Figure_9]Figure 9: KAS2-Party_V-confirmation Scheme (from Party V to Party U)

To provide (and receive) key confirmation (as described in Section 5.6.1), both parties set EphemDataV = CV, and EphemDataU = CU.

Party V provides MacTagV to party U (as specified in Section 5.6.1, with P = V and R = U), where MacTagV is computed (as specified in Section 5.2.1) on

MacDataV = “KC_1_V” || IDV || IDU || CV || CU{ || TextV}.

Party U (the KC recipient) uses the identical format and values to compute TMacTagBits[MAC(MacKey, MacDataV)] and then verify that it equals MacTagV as provided by party V.

[bookmark: _Toc173652206][bookmark: _Toc181546837][bookmark: _Toc181547053][bookmark: _Toc181547656]The MAC key used during key confirmation (i.e., MacKey) shall be destroyed by party V immediately after the computation of MacTagV, and by party U immediately after the verification of the received MacTagV or a (final) determination that the received MacTagV is in error.

Certain messages may be combined or sent in a different order (e.g., CV and MacTagV may be sent together, or CV may be sent before CU).

8.1.3.2 [bookmark: _KAS2-Party_U-confirmation][bookmark: _KAS2-Party_U-confirmation_1][bookmark: _KAS2-Party_U-confirmation_2][bookmark: _KAS2-Party_U-confirmation_3][bookmark: _KAS2-Party_U-confirmation_4][bookmark: _Toc372193217][bookmark: _Toc518378829]KAS2-Party_U-confirmation

Figure 10 depicts a typical flow for a KAS2 scheme with unilateral key confirmation from party U to party V. In this scheme, party U and party V assume the roles of key-confirmation provider and recipient, respectively.

		Party U

		

		Party V

		(PubKeyU, PrivKeyU)

		

		(PubKeyV, PrivKeyV)

		Obtain party V’s public key-establishment key

		PubKeyV

		

		

		PubKeyU

		Obtain party U’s public key-establishment key

		(ZU, CU) = RSASVE.GENERATE(PubKeyV)

		CU

		ZU = RSASVE.RECOVER(PrivKeyV, CU)

		ZV = RSASVE.RECOVER(PrivKeyU, CV)

		CV

		(ZV, CV) = RSASVE.GENERATE(PubKeyU)

		Z = ZU ZV

		

		Z = ZU ZV

		Compute DerivedKeyingMaterial = MacKey || KeyData and destroy Z

		

		Compute DerivedKeyingMaterial = MacKey || KeyData and destroy Z

		MacTagU =
TMacTagBits[MAC(MacKey, MacDataU)]

		MacTagU

		MacTagU =?
TMacTagBits[MAC(MacKey, MacDataU)]

[bookmark: Figure_10]Figure 10: KAS2-Party_U-confirmation Scheme (from Party U to Party V)

To provide (and receive) key confirmation (as described in Section 5.6.1), both parties set EphemDataV = CV, and EphemDataU = CU.

Party U provides MacTagU to party V (as specified in Section 5.6.1, with P = U and R = V), where MacTagU is computed (as specified in Section 5.2.1) on

MacDataU = “KC_1_U” || IDU || IDV || CU || CV{ || TextU}.

Party V (the KC recipient) uses the identical format and values to compute TMacTagBits[MAC(MacKey, MacDataU)] and then verify that it matches the MacTagU value provided by party U.

The MAC key used during key confirmation shall be destroyed by party U immediately after the computation of MacTagU, and by party V immediately after the verification of the received MacTagU or a (final) determination that the received MacTagU is in error.

Note that CV may be sent before CU; in which case CU and MacTagU may be sent together.

8.1.3.3 [bookmark: _KAS2-bilateral-confirmation][bookmark: _KAS2-bilateral-confirmation_1][bookmark: _KAS2-bilateral-confirmation_2][bookmark: _KAS2-bilateral-confirmation_3][bookmark: _KAS2-bilateral-confirmation_4][bookmark: _KAS2-bilateral-confirmation_5][bookmark: _KAS2-bilateral-confirmation_6][bookmark: _Toc372193218][bookmark: _Toc518378830]KAS2-bilateral-confirmation

Figure 11 depicts a typical flow for a KAS2 scheme with bilateral key confirmation. In this scheme, party U and party V assume the roles of both the KC provider and recipient in order to obtain bilateral key confirmation.

		Party U

		

		Party V

		(PubKeyU, PrivKeyU)

		

		(PubKeyV, PrivKeyV)

		Obtain party V’s public key-establishment key

		PubKeyV

		

		

		PubKeyU

		Obtain party U’s public key-establishment key

		(ZU, CU) = RSASVE.GENERATE(PubKeyV)

		CU

		ZU =
RSASVE.RECOVER(PrivKeyV, CU)

		ZV =
RSASVE.RECOVER(PrivKeyU, CV)

		CV

		(ZV, CV) = RSASVE.GENERATE(PubKeyV)

		Z = ZU ZV

		

		Z = ZU ZV

		Compute DerivedKeyingMaterial = MacKey || KeyData and destroy Z

		

		Compute DerivedKeyingMaterial = MacKey || KeyData and destroy Z

		MacTagV =?
TMacTagBits[MAC(MacKey, MacDataV)]

		MacTagV

		MacTagV =
TMacTagBits[MAC(MacKey, MacDataV)]

		MacTagU =
TMacTagBits[MAC(MacKey, MacDataU)]

		MacTagU

		MacTagU =? TMacTagBits[MAC(MacKey, MacDataU)]

[bookmark: Figure_11]Figure 11: KAS2-bilateral-confirmation Scheme

To provide bilateral key confirmation (as described in Section 5.6.2), party U and party V exchange and verify MacTags that have been computed (as specified in Section 5.6.1) using EphemDataU = CU, and EphemDataV = CV.

Party V provides MacTagV to party U (as specified in Section 5.6.1, with P = V and R = U); MacTagV is computed by party V (and verified by party U) using

MacDataV = “KC_2_V” || IDV || IDU || CV || CU{ || TextV}.

Party U provides MacTagU to party V (as specified in Section 5.6.1, with P = U and R = V); MacTagU is computed by party U (and verified by party V) using

MacDataU = “KC_2_U” || IDU || IDV || CU || CV{ || TextU}.

The MAC key used during key confirmation shall be destroyed by each party immediately following its use to compute and verify the MAC tags used for key confirmation. Once party U has computed MacTagU and has either verified the received MacTagV or made a (final) determination that the received MacTagU is in error, party U shall immediately destroy its copy of MacKey. Similarly, after party V has computed MacTagV and has either verified the received MacTagU or made a (final) determination that the received MacTagU is in error, party V shall immediately destroy its copy of MacKey.

Certain messages may be sent in a different order (and/or combined with others), e.g., CV may be sent before CU and/or MacTagV may be sent before MacTagU.

9 [bookmark: _Key-Transport_Schemes][bookmark: _Key-Transport_Schemes_1][bookmark: _Key-Transport_Schemes_2][bookmark: _Key-Transport_Schemes_3][bookmark: _Key-Transport_Schemes_4][bookmark: _Key-Transport_Schemes_5][bookmark: _Key-Transport_Schemes_6][bookmark: _Key-Transport_Schemes_7][bookmark: _Toc518378831]Key-Transport Schemes

In a key-transport scheme, two parties, the sender and receiver, establish keying material selected by the sender. The keying material may be cryptographically bound to additional input (see Section 9.1).

In this Recommendation, the KTS-OAEP family of key-transport schemes is specified (see Section 9.2). In addition, a hybrid method for key transport is discussed whereby a key-establishment scheme specified in this Recommendation is followed by a key-wrapping scheme (see Section 9.3).

Key confirmation is included in one of the KTS-OAEP schemes to provide assurance to the sender that the participants share the same keying material (see Section 5.6 for further details on key confirmation).

A general flow diagram is provided for each KTS-OAEP key-transport scheme. The dotted-line arrows represent the distribution of public keys by the parties themselves or by a third party, such as a Certification Authority (CA). The solid-line arrows represent the distribution of cryptographically protected values that occur during the key-transport or key-confirmation process. Note that the flow diagrams in this Recommendation omit explicit mention of various validation checks that are required. The flow diagrams and descriptions in this Recommendation assume a successful completion of the key-transport process.

As in Section 8, there are conditions that must be satisfied for each key-transport scheme to enable the proper use of that scheme. These conditions are listed as assumptions. Failure to meet any of these conditions could yield undesirable results, such as the inability to communicate or the loss of security. As part of the proper implementation of this Recommendation, system users and/or agents trusted to act on their behalf (including application developers, system installers, and system administrators) are responsible for ensuring that all assumptions are satisfied at the time that a key-establishment transaction takes place.

9. [bookmark: _Toc372193220]

[bookmark: _Additional_Input][bookmark: _Additional_Input_1][bookmark: _Additional_Input_2][bookmark: _Additional_Input_3][bookmark: _Additional_Input_4][bookmark: _Additional_Input_5][bookmark: _Additional_Input_6][bookmark: _Additional_Input_7][bookmark: _Toc518378832]Additional Input

Additional input to the key-transport process may be employed to ensure that the keying material is adequately “bound” to the context of the key-transport transaction. The use of additional input, A, is explicitly supported by the key-transport schemes specified in Section 9.2. Each party to a key-transport transaction shall know whether or not additional input is employed in that transaction.

Context-specific information that may be appropriate for inclusion in the additional input is listed in Section 5.5.2. (The suggestions for the content of FixedfInfo apply to the additional input as well.)

Both parties to the key-transport transaction shall know the format of the additional input, A, and shall acquire A in time to use it as required by the scheme. The methods used for formatting and distributing the additional input are application-defined. System users and/or agents trusted to act on their behalf should determine that the information selected for inclusion in A and the methods used for formatting and distributing A meet the security requirements of those users.

[bookmark: _KTS-OAEP:_Key-Transport_Using][bookmark: _KTS-OAEP:_Key-Transport_Using_1][bookmark: _KTS-OAEP:_Key-Transport_Using_2][bookmark: _KTS-OAEP:_Key-Transport_Using_3][bookmark: _KTS-OAEP:_Key-Transport_Using_4][bookmark: _KTS-OAEP:_Key-Transport_Using_5][bookmark: _KTS-OAEP:_Key-Transport_Using_6][bookmark: _KTS-OAEP:_Key-Transport_Using_7][bookmark: _KTS-OAEP:_Key-Transport_Using_8][bookmark: _KTS-OAEP:_Key-Transport_Using_9][bookmark: _KTS-OAEP:_Key-Transport_Using_10][bookmark: _Toc518378833]KTS-OAEP: Key-Transport Using RSA-OAEP

[bookmark: _Ref2744948]The KTS-OAEP family of key-transport schemes is based on the RSA-OAEP encrypt and decrypt operations (see Section 7.2.2), which are, in turn, based on the asymmetric encryption and decryption primitives, RSAEP and RSADP (see Section 7.1). In this family, only party V’s key pair is used.

The key-transport schemes of this family have the following general form:

1. Party U (the sender) encrypts the keying material (and possibly additional input – see Section 7.2.2.3) to be transported using the RSA-OAEP.ENCRYPT operation and party V’s (the receiver’s) public key-establishment key to produce ciphertext, and sends the ciphertext to party V.

2. Party V decrypts the ciphertext using its private key-establishment key and the RSA-OAEP.DECRYPT operation to recover the transported keying material (see Section 7.2.2.4).

3. If key confirmation is incorporated, then the transported keying material is parsed into two parts, a transaction-specific (random) value for MacKey, followed by KeyData (see Section 5.6.1). The Mackey portion of the keying material and an approved MAC algorithm are used by each party to compute a MAC tag (of an appropriate, agreed-upon length) on what should be the same MacData (see Sections 5.6 and 9.2.4.2). The MAC tag computed by party V (the key-confirmation provider) is sent to party U (the key-confirmation recipient). If the value of the MAC tag sent by party V matches the MAC tag value computed by party U, then party U obtains a confirmation of the success of the key-transport transaction.

[bookmark: _Ref25037616][bookmark: _Toc16056179][bookmark: _Toc32395189]The common components of the schemes in the KTS-OAEP family are listed in Section 9.2.2. The following schemes are then defined:

1. KTS-OAEP-basic, the basic scheme without key confirmation (see Section 9.2.3).

2. KTS-OAEP-Party_V-confirmation, a variant of KTS-OAEP-basic with unilateral key confirmation from party V to party U (see Section 9.2.4).

For the security attributes of the KTS-OAEP family, see Section 10.3.

9.1.1 [bookmark: _KTS-OAEP_Assumptions][bookmark: _KTS-OAEP_Assumptions_1][bookmark: _Toc372193222][bookmark: _Toc518378834]KTS-OAEP Assumptions

1. Party V has been designated as the owner of a key-establishment key pair that was generated as specified in Section 6.3. Party V has obtained assurance of its possession of the correct value for its private key as specified in Section 6.4.1.5.

2. The parties have agreed upon an approved hash function, hash, appropriate for use with the mask-generation function used by RSA-OAEP, as well as an approved hash function, H, used to hash the additional input (see Sections 5.1, and 7.2.2). The same hash function may be used for both functions.

3. Prior to or during the transport process, the sender and receiver have either agreed upon the form and content of the additional input A (a byte string to be cryptographically bound to the transported keying material so that the ciphertext is a function of both values), or agreed that A will be a null string (see Section 9.1).

4. If key confirmation is used, the parties have agreed upon an approved MAC algorithm and associated parameters, including the lengths of MacKey and MacTag (see Section 5.2).

5. When an identifier is used to label either party during the key-transport process, both parties are aware of the particular identifier employed for that purpose. In particular, the association of the identifier used to label party V with party V’s public key is trusted by party U. When an identifier is used to label party U during the key-transport process, it has been selected/assigned in accordance with the requirements of the protocol relying upon the use of the key-transport scheme.

6. Party U has obtained assurance of the validity of party V’s public key, as specified in Section 6.4.2.

7. Prior to or during the key-transport process, party U has obtained (or will obtain) assurance that party V is (or was) in possession of the (correct) private key corresponding to the public key-establishment key used during the transaction, as specified in Section 6.4.2.

8. Prior to or during the key-transport process, the keying material to be transported has been/is determined and has a format as specified in Section 9.

9.2.2 [bookmark: _Common_components][bookmark: _Common_components_1][bookmark: _Common_components_2][bookmark: _Common_components_3][bookmark: _Ref36527738][bookmark: _Ref36608332][bookmark: _Ref36608680][bookmark: _Ref44818725][bookmark: _Toc103497169][bookmark: _Toc121918073][bookmark: _Toc518378835]Common components

The schemes in the KTS-OAEP family have the following common component:

1. RSA-OAEP:	asymmetric operations, consisting of an encryption operation RSA-OAEP.ENCRYPT and a decryption operation RSA-OAEP.DECRYPT (see Section 7.2.2).

9.2.3 [bookmark: _KTS-OAEP-basic][bookmark: _KTS-OAEP-basic_1][bookmark: _KTS-OAEP-basic_2][bookmark: _KTS-OAEP-basic_3][bookmark: _Ref36608189][bookmark: _Ref44304914][bookmark: _Toc103497170][bookmark: _Toc121918074][bookmark: _Toc518378836][bookmark: _Ref33338224][bookmark: _Ref36525121]KTS-OAEP-basic

KTS-OAEP-basic is the basic key-transport scheme in the KTS-OAEP family without key confirmation.

Let (PubKeyV, PrivKeyV) be party V’s (the receiver’s) key-establishment key pair. Let K be the keying material to be transported from party U (the sender) to party V; note that the length of K is restricted by the length of the RSA modulus and the length of the output of the hash-function used to hash the additional input during the RSA-OAEP process (see Section 7.2.2.3). The parties shall perform the following or an equivalent sequence of steps, which are also illustrated in Figure 12.

		Party U

		

		Party V

		K to be transported

		

		(PubKeyV, PrivKeyV)

		Obtain party V’s public key-establishment key

		PubKeyV

		

		C =
RSA-OAEP. ENCRYPT(PubKeyV, K, A)

		C

		K =
RSA-OAEP. DECRYPT(PrivKeyV, C, A)

[bookmark: Figure_12]Figure 12: KTS-OAEP-basic Scheme

Party U shall execute the following steps in order to transport keying material to party V.

Party U Actions:

1. Encrypt the keying material K using party V’s public key-establishment key PubKeyV and the additional input A, to produce a ciphertext C (see Section 7.2.2.3):

C = RSA-OAEP.ENCRYPT(PubKeyV, K, A).

2. If an error indication has been returned, then return an error indication without performing the remaining actions.

3. Send the ciphertext C to party V.

Any local copies of K, A, and any intermediate values used during the execution of party U’s actions shall be destroyed prior to the early termination of the actions due to an error, or (in the absence of errors), prior to or during the the completion of step 3.

Party V shall execute the following steps when receiving keys transported from party U.

Party V Actions:

1. 	Receive the ciphertext C.

2.	Decrypt the ciphertext C using the private key-establishment key PrivKeyV and the additional input A, to recover the transported keying material K (see Section 7.2.2.4):

K = RSA-OAEP.DECRYPT(PrivKeyV, C, A).

If the decryption operation outputs an error indicator, return an error indication without performing the remaining actions.

3.	Output K.

Any local copies of K, PrivKeyV, A, and any intermediate values used during the execution of party V’s actions shall be destroyed prior to the early termination of the actions due to an error, or (in the absence of errors), prior to or during the the completion of step 3.

9.2.4 [bookmark: _Hlt524168918][bookmark: _Hlt524262521][bookmark: _Hlt524262402][bookmark: _KTS-OAEP_Key_Confirmation][bookmark: _KTS-OAEP_Key_Confirmation_1][bookmark: _KTS-OAEP_Key_Confirmation_2][bookmark: _KTS-OAEP_Key_Confirmation_3][bookmark: _KTS-OAEP_Key_Confirmation_4][bookmark: _Toc518378837][bookmark: _Ref36525129][bookmark: _Toc103497171][bookmark: _Toc121918075][bookmark: _Ref533482757][bookmark: _Ref533482758][bookmark: _Ref2618618][bookmark: _Toc16056182][bookmark: _Toc32395192][bookmark: _Ref33340394][bookmark: _Ref33895501]KTS-OAEP Key Confirmation

The KES-OAEP-Party_V-confirmation scheme is based on the KTS-OAEP-basic scheme.

9.2.4.1 [bookmark: _KTS-OAEP_Common_Components][bookmark: _KTS-OAEP_Common_Components_1][bookmark: _Toc518378838]KTS-OAEP Common Components for Key Confirmation

The components for KTS-OAEP with key confirmation are the same as for KTS-OAEP-basic (see Section 9.2.2), plus the following:

MAC:	A message authentication code algorithm with the following parameters (see Section 5.2):

a. MacKeyLen: the byte length of MacKey.

b. MacTagLen: the byte length of MacTag. (MacTagBits, as used in Section 5.2, is equal to 8 MacTagLen.)

MacKey shall be the first MacKeyLen bytes of the keying material and shall be used only for the key-confirmation operation. For KTS-OAEP key confirmation, the length of the keying material shall be at least MacKeyLen bytes, and usually longer so that keying material other than MacKey is available for subsequent operations.

9.2.4.2 [bookmark: _KTS-OAEP-Party_V-confirmation][bookmark: _KTS-OAEP-Party_V-confirmation_1][bookmark: _KTS-OAEP-Party_V-confirmation_2][bookmark: _KTS-OAEP-Party_V-confirmation_3][bookmark: _KTS-OAEP-Party_V-confirmation_4][bookmark: _Toc518378839]KTS-OAEP-Party_V-confirmation

KTS-OAEP-Party_V-confirmation is a variant of KTS-OAEP-basic with unilateral key confirmation from party V to party U.

Figure 13 depicts a typical flow for the KTS-OAEP-Party_V-confirmation scheme. In this scheme, party V and party U assume the roles of key-confirmation provider and recipient, respectively.

		Party U

		

		Party V

		K = MacKey ll KeyData

		

		(PubKeyV, PrivKeyV)

		Obtain party V’s public key-establishment key

		PubKeyV

		

		C =
RSA-OAEP.ENCRYPT(PubKeyV, K, A)

		C

		K =
RSA-OAEP.DECRYPT(PrivKeyV, C, A)

		

		

		MacKey || KeyData = K

		MacTagV =?
TMacTagBits[MAC(MacKey, MacDataV)]

		MacTagV

		MacTagV =
TMacTagBits[MAC(MacKey, MacDataV)]

[bookmark: Figure_13]Figure 13: KTS-OAEP-Party_V-confirmation Scheme

To provide (and receive) key confirmation (as described in Section 5.6.1), both parties form MacData with EphemDataV = Null, and EphemDataU = C:

Party V provides MacTagV to party U (as specified in Section 5.6.1, with P = V and R = U), where MacTagV is computed (as specified in Section 5.2.1) using

MacDataV = “KC_1_V” || IDV || IDU || Null || C{ || TextV}.

Party U uses the identical format and values to compute TMacTagBits[MAC(MacKey, MacDataV)] and then verify that it matches the MacTagV value provided by party V.

The MAC tag used during key confirmation shall be destroyed by party V immediately after the computation of MacTagV, and by party U immediately after the verification of the received MacTagV or a (final) determination that the received MacTagV is in error.

[bookmark: _KTS-KEM-KWS:_Key-Transport_using][bookmark: _KTS-KEM-KWS:_Key-Transport_using_1][bookmark: _KTS-Hybrid-SKW:_Key-Transport][bookmark: _KTS-Hybrid-SKW:_Key-Transport_1][bookmark: _KTS-Hybrid-SKW:_Key-Transport_2][bookmark: _KTS-Hybrid-SKW:_Key-Transport_3][bookmark: _KTS-Hybrid-SKW:_Key-Transport_4][bookmark: _KTS-Hybrid-SKW:_Key-Transport_5][bookmark: _KTS-Hybrid-SKW:_Key-Transport_6][bookmark: _KTS-Hybrid-SKW:_Key-Transport_7][bookmark: _KTS-Hybrid-SKW:_Key-Transport_8][bookmark: _KTS-Hybrid-SKW_Family_Assumptions][bookmark: _9.3.2_Common_Components][bookmark: _9.3.2_Common_Components_1][bookmark: _9.3.2_Common_Components_2][bookmark: _9.3.4.2_KTS-Hybrid-SKW-Receiver-_Confir][bookmark: _Toc518378840]9.3	Hybrid Key-Transport Methods

Key transport may be accomplished following any of the key-establishment schemes in this Recommendation (i.e, any KAS1, KAS2 or KTS-OAEP scheme) by using an approved key-wrapping algorithm (see SP 800-38F[footnoteRef:25]) with a key-wrapping key established during the execution of that key-establishment scheme. The security properties for this hybrid key-establishment process depend on the key-establishment scheme, the key-wrapping algorithm and the communication protocol used; the roles assumed by the participants during the process; and all other parameters used during the entire process. [25: SP 800-38F, Recommendation for Block Cipher Modes of Operation: Methods for Key Wrapping.]

10 [bookmark: _Common_Components_of][bookmark: _KTS-KEM-KWS-basic][bookmark: _KTS-Hybrid-SKW-basic][bookmark: _KTS-KEM-KWS_Key_Confirmation][bookmark: _Toc518378841]Rationale for Selecting a Specific Scheme

The subsections that follow describe the security properties that may be considered when a user and/or developer is choosing a key-establishment scheme from among the various schemes described in this Recommendation. The descriptions are intended to highlight certain similarities and differences between families of key-establishment schemes and/or between schemes within a particular family; they do not constitute an in-depth analysis of all possible security properties of every scheme under all adversary models.

The (brief) discussions will focus on the extent to which each participant in a particular transaction has assurance that fresh keying material has been successfully established with the intended party (and no one else). To that end, it is important to distinguish between the actual identifier of a participant in a key-establishment transaction and the role (party U or party V) assumed by that participant during the transaction. To simplify matters, in what follows, assume that the actual identifiers of the (honest) participants in a key-establishment transaction are the proverbial “Alice,” acting as party U, and “Bob,” acting as party V. (Pretend, for the sake of discussion, that these identifiers are unique among the universe of possible participants.) The identifier associated with their malevolent adversary is “Eve.” The discussions will also consider the ill effects of certain compromises that might occur. The basic security properties that are cited depend on such factors as how a shared secret is calculated, how keying material is established, and what types of key-confirmation (if any) are incorporated into a given scheme.

Note 1: In order to provide concise descriptions of security properties possessed by the various schemes, it is necessary to make some assumptions concerning the format and type of data that is used as input during key derivation. The following assumptions are made solely for the purposes of Sections 10.1 through 10.3; they are not intended to preclude the options specified elsewhere in this Recommendation.

1. When discussing the security properties of schemes, it is assumed that the FixedInfo input to a (single-step) key-derivation function employed during a particular key-agreement transaction uses either the concatenation format or the ASN.1 format (see Section 5.5). It is also assumed that FixedInfo includes sufficiently specific identifiers for the participants in the transaction, an identifier for the key-establishment scheme being used during the transaction, and additional input (e.g., a nonce, and/or session identifier) that may provide assurance to one or both participants that the derived keying material will reflect the specific context in which the transaction occurs (see Section 5.5 and Appendix B of SP 800-56A for further discussion concerning context-specific information that may be appropriate for inclusion in FixedInfo).

2. In general, FixedInfo may include additional secret information (already shared between parties U and V), but the following analyses of the security properties of each scheme type assume that additional secret information is not included in the FixedInfo.

3. In cases where an approved extraction-then-expansion key-derivation procedure is employed (see Section 5.5 and SP 800-56C), it is assumed that the FixedInfo is used as the Context input during the key-expansion step, as specified in SP 800-56C.

4. Finally, it is assumed that all required nonces employed during a transaction are random nonces that include a component consisting of a random bit string formed in accordance with the recommendations of Section 5.4.

Note 2: Different schemes may possess different security properties. A scheme should be selected based on how well the scheme fulfills system requirements. For instance, if messages are exchanged over a large-scale network where each exchange consumes a considerable amount of time, a scheme with fewer exchanges during a single key-agreement transaction might be preferable to a scheme with more exchanges, even though the latter may possess more security benefits. It is important to keep in mind that a key-establishment scheme is usually a component of a larger protocol that may offer security-related assurances beyond those that can be provided by the key-establishment scheme alone. For example, the protocol may include specific features that limit opportunities for accidental or intentional misuse of the key-establishment component of the protocol. Protocols, per se, are not specified in this Recommendation.

10. [bookmark: _Toc321990339]

[bookmark: _Rationale_for_Choosing][bookmark: _Toc372193236][bookmark: _Toc518378842]Rationale for Choosing a KAS1 Key-Agreement Scheme

In both schemes included in the KAS1 family, only Bob (assumed to be acting as party V) is required to own an RSA key pair that is used in the key-agreement transaction. Assume that the identifier used to label party V during the transaction is one that is associated with Bob’s RSA public key in a manner that is trusted by Alice (who is acting as party U). This can provide Alice with some level of assurance that she has correctly identified the party with whom she will be establishing keying material if the transaction is successfully completed.

Each KAS1 scheme requires Alice to employ the RSASVE.GENERATE operation to select a (random) secret value Z and encrypt it as ciphertext C using Bob’s RSA public key. Unless Bob’s corresponding private key has been compromised, Alice has assurance that no unintended entity (i.e., no one but Bob) could employ the RSASVE.RECOVER operation to obtain Z from C. Absent the compromise of Bob’s RSA private key and/or Z, Alice may attain a certain level of confidence that she has correctly identified party V as Bob. Alice’s level of confidence is dependent upon:

· The specificity of the identifier that is associated with Bob’s RSA public key,

· The degree of trust in the association between that identifier and the public key,

· The assurance of the validity of the public key, and

· The availability of evidence that the keying material has been correctly derived by Bob using Z (and the other information input to the agreed-upon key-derivation method), e.g., through key confirmation with Bob as the provider.

In general, Bob has no assurance that party U is Alice, since Bob has no assurance concerning the accuracy of any identifier that may be used to label party U (unless, for example, the protocol using a key-agreement scheme from the KAS1 family also includes additional elements that establish a trusted association between an identifier for Alice and the ciphertext C that she contributes to the transaction while acting as party U).

The assurance of freshness of the derived keying material that can be obtained by a participant in a KAS1 transaction is commensurate with the participant’s assurance that different input will be supplied to the agreed-upon key-derivation method during each such transaction. Alice can obtain assurance that fresh keying material will be derived based on her unilateral selection and contribution of the random Z value. Bob can obtain similar assurance owing to his selection and contribution of the nonce NV, which is also used as input to the agreed-upon key-derivation method.

The KAS1-Party_V-confirmation scheme permits party V to provide evidence to party U that keying material has been correctly derived. When the KAS1-Party_V-confirmation scheme is employed during a key-agreement transaction, party V provides a key-confirmation MAC tag, MacTagV, to party U as specified in Section 8.2.3.2. This allows Alice (who is acting as party U, the key-confirmation recipient) to obtain assurance that party V has possession of the MacKey derived from the shared secret Z (and nonce NV) and has used it with the appropriate MacDataV to compute the received MacTagV. In the absence of a compromise of secret information (e.g., Bob’s RSA private key and/or Z), Alice can also obtain assurance that the appropriate identifier has been used to label party V, and that the participant acting as party V is indeed Bob, the owner of the RSA public key associated with that identifier.

Specifically, by successfully comparing the received value of MacTagV with her own computation, Alice (acting as party U, the key-confirmation recipient) may obtain assurance that

1. Party V has correctly recovered Z from C, and, therefore, possesses the RSA private key corresponding to Bob’s RSA public key – from which it may be inferred that party V is Bob;

2. Both parties have correctly computed (at least) the same MacKey portion of the derived keying material;

3. Both parties agree on the values (and representation) of IDV, IDU, NV, C, and any other data included in MacDataV; and

4. Bob (acting as party V) has actively participated in the transaction.

Consequently, when the KAS1-Party_V-confirmation scheme is employed during a particular key-agreement transaction (and neither Z nor Bob’s RSA private key has been compromised), Alice can obtain assurance of the active (and successful) participation by Bob in the transaction.

The acquisition of Bob’s RSA private key by their adversary, Eve, may lead to the compromise of shared secrets and derived keying material from past, current, and future legitimate transactions (i.e., transactions that involve honest parties and are not actively influenced by an adversary) that employ the compromised private key. For example, Eve may be able to compromise a particular KAS1 transaction between Alice and Bob as long as she acquires the ciphertext, C, contributed by Alice and the nonce, NV, contributed by Bob (as well as any other data used as input during key derivation). In addition to compromising legitimate KAS1 transactions, once Eve has learned Bob’s RSA private key, she may be able to impersonate Bob while acting as party V in future KAS1 transactions (with Alice or any other party). Other schemes and applications that rely on the compromised private key may also be adversely affected. (See the appropriate subsection for details.)

Even without knowledge of Bob’s private key, if Eve learns the value of Z that has been (or will be) used in a particular KAS1 transaction between Alice and Bob, then she may be able to derive the keying material resulting from that transaction as easily as Alice and Bob (as long as Eve also acquires the value of NV and any other data used as input during key derivation). Alternatively, armed with knowledge of the Z value that has been (or will be) selected by Alice, Eve might be able to insert herself into the transaction (in the role of party V) while masquerading as Bob.

[bookmark: _Rationale_for_Choosing_1][bookmark: _Toc518378843]Rationale for Choosing a KAS2 Key-Agreement Scheme

In the schemes included in the KAS2 family, both Alice (assumed to be acting as party U) and Bob (assumed to be acting as party V) are required to own an RSA key pair that is used in their key-agreement transaction. Assume that the identifier used to label party V during the transaction is one that is associated with Bob’s RSA public key in a manner that is trusted by Alice. Similarly, assume that the identifier used to label party U during the transaction is one that is associated with Alice’s RSA public key in a manner that is trusted by Bob. This can provide each party with some level of assurance concerning the identifier of the other party, with whom keying material will be established if the transaction is successfully completed.

Each KAS2 scheme requires Alice to employ the RSASVE.GENERATE operation to select a (random) secret value ZU and encrypt it as ciphertext CU using Bob’s RSA public key. Unless Bob’s corresponding private key has been compromised, Alice has assurance that no unintended entity (i.e., no one but Bob) could employ the RSASVE.RECOVER operation to obtain ZU from CU. Similarly, each KAS2 scheme requires Bob to employ the RSASVE.GENERATE operation to select a (random) secret value ZV and encrypt it as ciphertext CV using Alice’s RSA public key. Unless Alice’s corresponding private key has been compromised, Bob has assurance that no unintended entity (i.e., no one but Alice) could employ the RSASVE.RECOVER operation to obtain ZV from CV.

Absent the compromise of Bob’s RSA private key and/or ZU, Alice may attain a certain level of confidence that she has correctly identified party V as Bob. Alice’s level of confidence is commensurate with:

· The specificity of the identifier that is associated with Bob’s RSA public key,

· The degree of trust in the association between that identifier and Bob’s public key,

· The assurance of the validity of the public key, and

· The availability of evidence that the keying material has been correctly derived by Bob using Z = ZU || ZV (and the other information input to the agreed-upon key-derivation method), e.g., through key-confirmation, with Bob as the provider.

Similarly, absent the compromise of Alice’s private key and/or ZV, Bob may attain a certain level of confidence that he has correctly identified party U as Alice. Bob’s level of confidence is commensurate with:

· The specificity of the identifier that is associated with Alice’s RSA public key,

· The degree of trust in the association between that identifier and Alice’s public key,

· The assurance of the validity of the public key, and

· The availability of evidence that the keying material has been correctly derived by Alice using Z = ZU || ZV (and the other information input to the agreed-upon key-derivation method), e.g., through key-confirmation, with Alice as the provider.

The assurance of freshness of the derived keying material that can be obtained by a participant in a KAS2 transaction is commensurate with the participant’s assurance that different input will be supplied to the agreed-upon key-derivation method during each such transaction. Alice can obtain assurance that fresh keying material will be derived, based on her selection and contribution of the random ZU component of Z. Bob can obtain similar assurance owing to his selection and contribution of the random ZV component of Z.

Evidence that keying material has been correctly derived may be provided by using one of the three schemes from the KAS2 family that incorporates key confirmation. The KAS2-Party_V-confirmation scheme permits party V (Bob) to provide evidence of correct key derivation to party U (Alice); the KAS2-Party_U-confirmation scheme permits party U (Alice) to provide evidence of correct key derivation to party V (Bob); the KAS2-bilateral-confirmation scheme permits each party to provide evidence of correct key derivation to the other party.

When the KAS2-Party_V-confirmation scheme or the KAS2-bilateral-confirmation scheme is employed during a key-agreement transaction, party V provides a key-confirmation MAC tag, MacTagV, to party U as specified in Section 8.3.3.2 or Section 8.3.3.4, respectively. This allows Alice (who is the recipient of MacTagV) to obtain assurance that party V has possession of the MacKey derived from the shared secret Z and has used it with the appropriate MacDataV to compute the received MacTagV. In the absence of a compromise of secret information (e.g., Bob’s RSA private key and/or ZU), Alice can also obtain assurance that the appropriate identifier has been used to label party V, and that the participant acting as party V is indeed Bob, the owner of the RSA public key associated with that identifier.

Similarly, when the KAS2-Party_U-confirmation scheme or the KAS2-bilateral-confirmation scheme is employed during a key-agreement transaction, party U provides a key-confirmation MAC tag, MacTagU, to party V as specified in Section 8.3.3.3 or Section 8.3.3.4, respectively. This allows Bob (who is the recipient of MacTagU) to obtain assurance that party U has possession of the MacKey derived from the shared secret Z and has used it with the appropriate MacDataU to compute the received MacTagU. In the absence of a compromise of secret information (e.g., Alice’s RSA private key and/or ZV), Bob can also obtain assurance that the appropriate identifier has been used to label party U, and that the participant acting as party U is indeed Alice, the owner of the RSA public key associated with that identifier.

Specifically, by successfully comparing the value of a received MAC tag with his/her own computation, a key-confirmation recipient in a KAS2 transaction (be it Alice or Bob) may obtain the following assurances.

1. He/She has correctly decrypted the ciphertext that was produced by the other party and, thus, that he/she possesses the RSA private key corresponding to the RSA public key that was used by the other party to produce that ciphertext – from which it may be inferred that the other party had access to the RSA public key owned by the key-confirmation recipient. For example, if Alice is a key-confirmation recipient, she may obtain assurance that she has correctly decrypted the ciphertext CV using her RSA private key, and so may also obtain assurance that her corresponding RSA public key was used by party V to produce CV.

2. The ciphertext sent to the other party was correctly decrypted and, thus, the other party possesses the RSA private key corresponding to the RSA public key that was used to produce that ciphertext – from which it may be inferred that the other party is the owner of that RSA public key. For example, if Alice is a key-confirmation recipient, she can obtain assurance that party V has correctly decrypted the ciphertext CU using the RSA private key corresponding to Bob’s RSA public key – from which she may infer that party V is Bob.

3. Both parties have correctly computed (at least) the same MacKey portion of the derived keying material.

4. Both parties agree on the values (and representation) of IDV, IDU, CV, CU, and any other data included as input to the MAC algorithm.

5. Assuming that there has been no compromise of either participant’s RSA private key and/or either component of Z, a key-confirmation recipient in a KAS2 transaction can obtain assurance of the active (and successful) participation in that transaction by the owner of the RSA public key associated with the key-confirmation provider. For example, if Alice is a key-confirmation recipient, she can obtain assurance that Bob has actively – and successfully – participated in that KAS2 transaction.

The acquisition of a single RSA private key by their adversary, Eve, will not (by itself) lead to the compromise of derived keying material from legitimate KAS2 transactions between Alice and Bob that employ the compromised RSA key pair. (In this context, a “legitimate transaction” is one in which Alice and Bob act honestly, and there is no active influence exerted by Eve.) However, if Eve acquires an RSA private key, she may be able to impersonate that RSA key pair’s owner while participating in KAS2 transactions. (For example, If Eve acquires Alice’s private key, she may be able to impersonate Alice – acting as party U or as party V – in KAS2 transactions with Bob or any other party). Other schemes and applications that rely on the compromised private key may also be adversely affected. (See the appropriate subsection for details.)

Similarly, the acquisition of one (but not both) of the secret Z components, ZU or ZV, would not (by itself) compromise the keying material derived during a legitimate KAS2 transaction between Alice and Bob in which the compromised value was used as one of the two components of Z. However, armed with knowledge of only one Z component, Eve could attempt to launch an active attack against the party that generated it. For example, if Eve learns the value of ZU that has been (or will be) contributed by Alice, then Eve might be able to insert herself into the transaction by masquerading as Bob (while acting as party V). Likewise, an adversary who knows the value of ZV that has been (or will be) selected by Bob might be able to participate in the transaction by masquerading as Alice (while acting as party U).

[bookmark: _Rationale_for_Choosing_2][bookmark: _Toc518378844]Rationale for Choosing a KTS-OAEP Key-Transport Scheme

In each of the key-transport schemes included in the KTS-OAEP family, only Bob (assumed to be acting as party V, the key-transport receiver) is required to own an RSA key pair that is used in the transaction. Assume that the identifier used to label party V during the transaction is one that is associated with Bob’s RSA public key in a manner that is trusted by Alice (who is acting as party U, the key-transport sender). This can provide Alice with some level of assurance that she has correctly identified the party with whom she will be establishing keying material if the key-transport transaction is successfully completed.

Each KTS-OAEP scheme requires Alice to employ the RSA-OAEP.ENCRYPT operation to encrypt the selected keying material (and any additional input) as ciphertext C, using Bob’s RSA public key. Unless Bob’s corresponding private key has been compromised, Alice has assurance that no unintended entity (i.e., no one but Bob) could employ the RSA-OAEP.DECRYPT operation to obtain the transported keying material from C. Absent the compromise of Bob’s RSA private key (or some compromise of the keying material itself – perhaps prior to transport), Alice may attain a certain level of confidence that she has correctly identified party V as Bob. Alice’s level of confidence is commensurate with:

· The specificity of the identifier that is associated with Bob’s RSA public key,

· The degree of trust in the association between that identifier and the public key,

· The assurance of the validity of the public key, and

· The availability of evidence that the transported keying material has been correctly recovered from C by Bob, e.g., through key confirmation, with Bob as the provider.

In general, Bob has no assurance that party U is Alice, since Bob has no assurance concerning the accuracy of any identifier that may be used to label party U (unless, for example, the protocol using a key-transport scheme from the KTS-OAEP family also includes additional elements that establish a trusted association between an identifier for Alice and the ciphertext, C, that she sends to Bob while acting as party U).

Due to Alice’s unilateral selection of the keying material, only she can obtain assurance of its freshness. (Her level of confidence concerning its freshness is dependent upon the actual manner in which the keying material is generated by/for her.) Given that Bob simply accepts the keying material that is transported to him by Alice, he has no assurance that it is fresh.

The randomized plaintext encoding used during the RSA-OAEP.ENCRYPT operation can provide assurance to Alice that the value of C will change from one KTS-OAEP transaction with Bob to the next, which may help obfuscate the occurrence of a repeated transport of the same keying material from Alice to Bob, should that ever be necessary.

The KTS-OAEP-Party_V-confirmation scheme permits party V to provide evidence to party U that keying material has been correctly recovered from the ciphertext C. When the KTS-OAEP- Party_V-confirmation scheme is employed during a key-transport transaction, party V provides a key-confirmation MAC tag (MacTagV) to party U as specified in Section 9.2.4.2. This allows Alice (who is acting as party U, the key-confirmation recipient) to obtain assurance that party V has recovered the fresh MAC key (MacKey) that was included in the transported keying material and that party V has used it with the appropriate MacDataV to compute the received MacTagV. In the absence of a compromise of secret information (e.g., Bob’s RSA private key and/or the MAC key), Alice can also obtain assurance that the appropriate identifier has been used to label party V, and that the participant acting as party V is indeed Bob, the owner of the RSA public key associated with that identifier.

Specifically, by successfully comparing the received value of MacTagV with her own computation, Alice (acting as party U, the key-confirmation recipient) may obtain assurance that

1. Party V has correctly recovered MacKey from C, and, therefore, possesses the RSA private key corresponding to Bob’s RSA public key – from which it may be inferred that party V is Bob;

2. Both parties agree on the values (and representation) of IDV, IDU, C, and any other data included in MacDataV; and

3. Bob has actively participated in the transaction (as party V), assuming that neither the transported MAC key nor Bob’s RSA private key has been compromised. Alice’s level of confidence is commensurate with her confidence in the freshness of the MAC key.

The acquisition of Bob’s RSA private key by their adversary, Eve, may lead to the compromise of keying material established during past, current, and future legitimate transactions (i.e., transactions that involve honest parties and are not actively influenced by an adversary) that employ the compromised private key. For example, Eve may be able to compromise a particular KTS-OAEP transaction between Alice and Bob, as long as she also acquires the ciphertext, C, sent from Alice to Bob. In addition to compromising legitimate KTS-OAEP transactions, once Eve has learned Bob’s RSA private key, she may be able to impersonate Bob while acting as party V in future KTS-OAEP transactions (with Alice or any other party). Other schemes and applications that rely on the compromised private key may also be adversely affected. (See the discussions of other schemes in this section.)

Even without knowledge of Bob’s private key, if the KTS-OAEP-Party_V-confirmation scheme is used during a particular key-transport transaction, and Eve learns the value of MacKey that Alice will send to Bob, then it may be possible for Eve to mislead Alice about Bob’s (active and successful) participation. As long as Eve also acquires the value of C intended for Bob (and any other data needed to form MacDataV), it may be possible for Eve to correctly compute MacTagV and return it to Alice as if it had come from Bob (who may not even be aware that Alice has initiated a transaction with him). Such circumstances could arise, for example, if (in violation of this Recommendation) Alice were to use the same MAC key while attempting to transport keying material to multiple parties (including both Bob and Eve).

[bookmark: _Toc518378845]Summary of Assurances Associated with Key-Establishment Schemes

The security-related features discussed in the preceding subsections of Section 10 can be summarized in terms of the following types of assurance that may be obtained when participating in a key-establishment transaction.

· Implicit Key Authentication (IKA): In the case of a key-agreement scheme from the KAS1 or KAS2 family, this is the assurance obtained by one party in a key-agreement transaction that only a specifically identified entity (the intended second party in that transaction) could also derive the key(s) of interest. In the case of a key-transport scheme from the KTS-OAEP family, this is the assurance obtained by the sender that only a specifically identified entity (the intended receiver in that transaction) could successfully decrypt the encrypted keying material to obtain the key(s) of interest.

· Key Freshness (KF): This is the assurance obtained by one party in a key-establishment transaction that keying material established during that transaction is statistically independent of the keying material established during that party’s previous key-establishment transactions.

· Key Confirmation (KC): This is the assurance obtained by one party in a key-establishment transaction that a specifically identified entity (the intended second party in that key-establishment transaction) has correctly acquired and is able to use, the key(s) of interest.

Notes:

A participant in a key-establishment transaction cannot hope to distinguish between the actions of another entity and the actions of those who share knowledge of that entity’s private key-establishment key and/or any other secret data sufficient for that entity’s successful participation in a particular key-agreement transaction. In what follows, references to a “specifically identified entity” must be interpreted as an umbrella term including all those who are legitimately in possession of that entity’s private key, etc., and are trusted to act on the entity’s behalf. Any assurance obtained with respect to the actions of a specifically identified entity is conditioned upon the assumption that the identified entity’s relevant private/secret data has not been misused by a trusted party or compromised by an adversary.

IKA assurance, as used in this Recommendation, does not address the potential compromise of established keying material owing to such problems as improper storage, the failure to prevent the leakage of sensitive information during computations involving the established keys, and/or inadequate methods for the timely destruction of sensitive data (including the keys themselves). These are just a few examples of misuse, mishandling, side-channel leakage, etc. that could lead to an eventual compromise.

In the definition of KC assurance, this Recommendation’s requirement that it be a specifically identified entity who demonstrates the ability to use (some portion of) the established keying material is a stricter condition than is sometimes found in the literature. In this Recommendation, KC assurance presupposes IKA assurance with respect to (at least) the MAC key used in the key-confirmation computations.

KC assurance can be obtained by employing a key-establishment scheme that includes key-confirmation as specified in this Recommendation. In particular, the KC provider is expected to use an RSA private key, and the KC recipient is expected to contribute random/ephemeral data that affects the values of both the MacKey and the MacData used to compute a key-confirmation MacTag.

The following table shows which types of assurance can be obtained and by whom (i.e., party U and/or party V) in a key-establishment transaction by using appropriately implemented schemes from the indicated scheme families. The previous assumptions in Section 10 concerning the format and content of FixedInfo, the specificity of identifiers bound to RSA public keys, the randomness of nonces, etc., still hold.

[bookmark: Table_3]Table 3: Summary of Assurances

		Scheme Family

		Sections

		Assurance that can be Obtained by the Indicated Parties

		

		

		IKA

		KF

		KC

		KAS1

		8.2 and 10.1

		U

		U & V

		U

		KAS2

		8.3 and 10.2

		U & V

		U & V

		U & V

		KTS-OAEP

		9.2 and 10.3

		U

		U

		U

In key-agreement transactions that employ a scheme from the KAS2 family, there is an additional type of assurance that can be obtained by both participants:

· Key-Compromise Impersonation Resilience (K-CI): This is the assurance obtained by one party in a KAS2 key-agreement transaction that the compromise of that party’s RSA private key would not permit an adversary to impersonate another entity (the owner of a second, uncompromised, RSA key pair) while acting as the second party in the transaction.

For example, suppose that Alice participates in a KAS2 key-agreement transaction with a second party that she believes to be Bob (based on the identifier associated with the second party’s RSA public key). Alice has assurance that even if a malicious party, Eve, has obtained Alice’s RSA private key, that would not (by itself) permit Eve to impersonate Bob in the transaction and successfully establish shared keying material with Alice.

The notion of key-compromise impersonation resilience, as defined in this Recommendation, is not applicable to transactions employing a scheme from the KAS1 or KTS-OAEP family. In such schemes, only one party owns an RSA key pair, and the scheme (by itself) provides no means of ensuring the accuracy of any identifier that may be associated with the other party.

Under the assumptions made in Section 10, there is an often-desirable type of assurance that is not supported by the use of (only) the key-establishment schemes specified in this Recommendation:

· Forward Secrecy (FS): This is the assurance obtained by one party in a key-establishment transaction that the keying material established during that transaction is secure against the future compromise of (any and all of) the long-term private/secret keys of the participants.

(Key-agreement transactions that employ a scheme from the KAS2 family afford some security against the compromise of a single participant’s RSA private key, but may not be secure against the compromise of the RSA private keys of both participants.) If a user or application requires assurance of forward secrecy, then an appropriate choice of key-agreement scheme from the C(2) category of schemes specified in SP 800-56A may be employed.

11 [bookmark: _Rationale_for_Choosing_3][bookmark: _Toc518378846]Key Recovery

For some applications, the secret keying material used to protect data or to process protected data may need to be recovered (for example, if the normal reference copy of the secret keying material is lost or corrupted). In this case, either the secret keying material or sufficient information to reconstruct the secret keying material needs to be available (for example, the keys and other inputs to the scheme used to perform the key-establishment process).

Keys used during the key-establishment process shall be handled in accordance with the following:

1.	One or both keys of a key pair may be saved.

2.	A key-wrapping key may be saved.

In addition, the following information that is used during key-establishment may need to be saved:

3. The nonce(s),

4.	The ciphertext,

5.	Additional input, and

6. OtherInput, or its equivalent.

General guidance on key recovery and the protections required for each type of key is provided in SP 800-57.

12 [bookmark: _Toc518378847]Implementation Validation

When the NIST Cryptographic Algorithm Validation System (CAVS) has established a validation program for this Recommendation, a vendor shall have its implementation tested and validated by the Cryptographic Algorithm Validation Program (CAVP) and Cryptographic Module Validation Program (CMVP) in order to claim conformance to this Recommendation. Information on the CAVP and CMVP is available at https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program and https://csrc.nist.gov/projects/cryptographic-module-validation-program, respectively.

An implementation claiming conformance to this Recommendation shall include one or more of the following capabilities:

· Key-pair generation as specified in Section 6.3, together with an approved random bit generator;

· Public-key validation as specified in Section 6.4.2;

· A key-agreement scheme from Section 8, together with an approved key-derivation method from Section 5.5 and an approved random bit generator;

· The key-transport scheme specified in Section 9.2, together with an approved random bit generator and approved hash function(s); and/or

· Unilateral or bilateral key confirmation as specified in Section 5.6.

An implementer shall also identify the appropriate specifics of the implementation, including:

· The hash function(s) to be used (see Section 5.1);

· The MAC function used for key confirmation;

· The MacKey length(s) (see Table 2 in Section 5.6.3);

· The key-establishment schemes available (see Sections 8 and 9);

· The key-derivation method to be used if a key-agreement scheme is implemented, including the format of OtherInput or its equivalent (see Section 5.5);

· The type of nonces to be generated (see Section 5.4);

· How assurance of private-key possession and assurance of public-key validity are expected to be achieved by both the owner and the recipient (see Section 6.4);

· Whether or not a capability is available to handle additional input (see Section 9.1); and

· The RBG used, and its security strength (see Section 5.3).

[bookmark: _Toc518378848]Appendix A: References

[bookmark: _Toc518378849]A.1	Normative References

[bookmark: FIPS_140][FIPS 140] 	FIPS 140-2, Security Requirements for Cryptographic Modules, May 25, 2001. FIPS 140-3 is currently under development.

[bookmark: FIPS_140_IG][FIPS 140 IG]	FIPS 140-2 Implementation Guidance; available at https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/fips140-2/fips1402ig.pdf.

[bookmark: FIPS_180][FIPS 180]	FIPS 180-4 Secure Hash Standard, March 2012.

[bookmark: FIPS_186][FIPS 186]	FIPS 186-4, Digital Signature Standard, July 2013.

[bookmark: FIPS_197][FIPS 197]	FIPS 197, Advanced Encryption Standard, November 2001.

[bookmark: FIPS_198][FIPS 198]	FIPS 198-1, The Keyed-Hash Message Authentication Code (HMAC), July 2008.

[bookmark: FIPS_202][FIPS 202]	FIPS 202, SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions, August 2015.

[bookmark: SP_800_38B] [SP 800-38B]	NIST SP 800-38B, Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication, May 2005.

[bookmark: SP_800_38C][SP 800-38C]	NIST SP 800-38C, Recommendation for Block Cipher Modes of Operation: The CCM Mode for Authentication and Confidentiality, May 2004.

[bookmark: SP_800_38F][SP 800-38F]	NIST SP 800-38F, Recommendation for Block Cipher Modes of Operation: Methods for Key-wrapping, December 2012.

[bookmark: SP_800_56A][SP 800-56A]	NIST SP 800-56A, Recommendation for Pair-Wise Key-establishment Schemes Using Discrete Logarithm Cryptography, Revision 3, April 2018.

[bookmark: SP_800_56C][SP 800-56C]	NIST SP 800-56C, Recommendation for Key Derivation through Extraction-then-Expansion, Revision 1, April 2018.

[bookmark: SP_800_57][SP 800-57]	NIST SP 800-57-Part 1, Recommendation for Key Management, Revision 3, July 2012.

[bookmark: SP_800_89] [SP 800-89]	NIST SP 800-89, Recommendation for Obtaining Assurances for Digital Signature Applications, November 2006.

[bookmark: SP_800_90][SP 800-90]	Recommendation for Random Number Generation

[bookmark: SP_800_90A]SP 800-90A:	Recommendation for Random Number Generation Using Deterministic Random Bit Generators, Revision 1, June 2015.

[bookmark: SP_800_90B]SP 800-90B:	Recommendation for the Entropy Sources Used for Random Bit Generation, January 2018.

[bookmark: SP_800_90C]SP 800-90C:	DRAFT Recommendation for Random Bit Generator (RBG) Constructions, April 2016.

[bookmark: SP_800_108] [SP 800-108]	NIST SP 800-108, Recommendation for Key Derivation Using Pseudorandom Functions, October 2009.

[bookmark: SP_800_133][SP 800-133]	NIST SP 800-133, Recommendation for Cryptographic Key Generation, November 2012.

[bookmark: SP_800_135][SP 800-135]	NIST SP 800-135, Recommendation for Existing Application-Specific Key Derivation Functions, Revision 1, December 2011.

[bookmark: SP_800_185][SP 800-185]	NIST SP 800-185, SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash, and ParallelHash, December 2016.

[bookmark: X9_44][ANS X9.44]	ANS X9.44-2007 (R2017) Public Key Cryptography for the Financial Services Industry: Key Establishment Using Integer Factorization Cryptography, August 2007 (WITHDRAWN).

[bookmark: ISO_IEC_8825][ISO/IEC 8825]	ISO/IEC 8825-1, Information Technology – ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER), December 2008.

[bookmark: PKCS_1][PKCS 1]	Public Key Cryptography Series (PKCS) #1: RSA Cryptography Specifications Version 2.2, RFC 8017, October 2012.

[bookmark: _Toc518378850]A.2 Informative References

[bookmark: Manger_2001][Manger 2001] 	A Chosen Ciphertext Attack on RSA Optimal Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1 v2.0, J. Manger, In J. Kilian, editor, Advances in Cryptology – Crypto 2001, pp. 230 – 238, Springer-Verlag, 2001.

[bookmark: RSA_1978][RSA 1978]	A Method for Obtaining Digital Signatures and Public-Key Cryptosystems, R. Rivest, A. Shamir and L. Adleman, Communications of the ACM, 21(2), pp. 120 – 126, 1978.

[bookmark: HN_1998][HN 1998]	The Security of all RSA and Discrete Log Bits, J. Håstad and M. Näslund, Proc. of the 39th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 510 – 521, 1998.

[bookmark: Boneh_1999][Boneh 1999]	Twenty Years of Attacks on the RSA Cryptosystem, D. Boneh, Notices of the American Mathematical Society (AMS), 46(2), 203 – 213. 1999.

[bookmark: Appendix_B][bookmark: _Toc518378851]
Appendix B: Data Conversions (Normative)

[bookmark: _B.1_Integer-to-Byte_String][bookmark: _B.1_Integer-to-Byte_String_1][bookmark: _B.1_Integer-to-Byte_String_2][bookmark: _B.1_Integer-to-Byte_String_3][bookmark: _Toc518378852]B.1	Integer-to-Byte String (I2BS) Conversion

Input:	A non-negative integer X and the intended length n of the byte string satisfying

				28n > X.

Output:	A byte string S of length n bytes.

1.	Qn+1 = X.

2.	For i = n to 1 by −1

2.1	Qi = (Qi+1)256.

2.2	Xi = Qi+1 (Qi 256).

2.3	Si = (ai1, ai2, ai3, ai4, ai5, ai6, ai7, ai8),

the 8-bit binary representation of the non-negative integer
Xi = ai1 27+ai2 26+ai3 25+ai4 24+ai5 23+ai6 22+ai7 2+ai8.

3.	Let S1, S2,…, Sn be the bytes of S from leftmost to rightmost.

4.	Output S.

[bookmark: _B.2_Byte_String][bookmark: _B.2_Byte_String_1][bookmark: _B.2_Byte_String_2][bookmark: _B.2_Byte_String_3][bookmark: _Toc518378853]B.2	Byte String to Integer (BS2I) Conversion

Input:		A non-empty byte string S (SLen is used to denote the length of the byte string).

Output:	A non-negative integer X.

1.	Let S1, S2,… SSLen be the bytes of S from first to last (i.e., from leftmost to rightmost).

2.	Let X = 0.

3.	For i = 1 to SLen by 1

3.1 Let Xi = (ai127, ai226, ai325, ai424, ai523, ai622, ai72, ai8),

where ai1, ai2, ai3, ai4, ai5, ai6, ai7, ai8 are the bits of Si from leftmost to rightmost; i.e., Si = (ai1, ai2, ai3, ai4, ai5, ai6, ai7, ai8).

3.2 Replace X by (X 256) + Xi.

4.	Output X.

[bookmark: _Appendix_C:_Prime-Factor][bookmark: Appendix_C][bookmark: _Toc518378854]Appendix C: Prime-Factor Recovery (Normative)

Two methods for prime-factor recovery are provided below: Appendix C.1 provides a probabilistic method, and Appendix C.2 provides a determinitic method. Prime-factor recovery is required during key-pair validation using the basic format (see Section 6.4.1.2.1).

[bookmark: _Toc518378855]C.1	Probabilistic Prime-Factor Recovery

The following algorithm recovers the prime factors of a modulus, given the public and private exponents. The algorithm is based on Fact 1 in [Boneh 1999].

Function call: RecoverPrimeFactors(n, e, d)

Input:

1. n: modulus.

2. e: public exponent.

3. d: private exponent.

Output:

(p, q): prime factors of modulus.

Errors: “prime factors not found”

Assumptions: The modulus n is the product of two prime factors p and q; the public and private exponents satisfy de 1 (mod (n)) where (n) = LCM(p – 1, q – 1).

Process:

1.	Let m = de – 1. If m is odd, then go to Step 4.

2.	Write m as m = 2tr, where r is the largest odd integer dividing m, and t 1.

3.	For i = 1 to 100 do:

a.	Generate a random integer g in the range [0, n1].

b.	Let y = gr mod n.

c.	If y = 1 or y = n – 1, then go to Step g.

d.	For j = 1 to t – 1 do:

i. Let x = y2 mod n.

ii. If x = 1, go to Step 5.

iii. If x = n – 1, go to Step g.

iv. Let y = x.

e. Let x = y2 mod n.

f.	If x = 1, go to Step 5.

g.	Continue.

4.	Output “prime factors not found,” and exit without further processing.

5.	Let p = GCD(y – 1, n) and let q = n/p.

6.	Output (p, q) as the prime factors.

Any local copies of d, p, q , m, t, r, x, y, g and any intermediate values used during the execution of the RecoverPrimeFactors function shall be destroyed prior to or during steps 4 and 6. Note that this includes the values for p and q that are output in step 6.

Notes:

1. According to Fact 1 in [Boneh 1999], the probability that one of the values of y in an iteration of Step 3 reveals the factors of the modulus is at least 1/2, so on average, no more than two iterations of that step will be required. If the prime factors are not revealed after 100 iterations, then the probability is overwhelming that the modulus is not the product of two prime factors, or that the public and private exponents are not consistent with each other.

2. The algorithm bears some resemblance to the Miller-Rabin primality-testing algorithm (see, e.g., FIPS 186).

3. The order of the recovered prime factors p and q may be the reverse of the order in which the factors were generated originally.

4. All local copies of d, p, q, and and any other local/intermediate values used during the execution of the RecoverPrimeFactors function shall be destroyed prior to the early termination of the process due to an error, or (in the absence of errors), prior to or during the the completion of step 6.

[bookmark: _Toc518378856]C.2	Deterministic Prime-Factor Recovery

The following (deterministic) algorithm also recovers the prime factors of a modulus, given the public and private exponents. A proof of correctness is provided below.

Function call: RecoverPrimeFactors(n, e, d)

Input:

1. n: modulus.

2. e: public exponent.

3. d: private exponent.

Output:

(p, q): prime factors of modulus, with p q.

Assumptions:

1. The modulus n is the product of two prime factors p and q, with p q.

2. Both p and q are less than 2(nBits/2), where nBits ≥ 2048 is the bit length of n.

3. The public exponent e is an odd integer between 216 and 2256.

4. The private exponent d is a positive integer that is less than (n) = LCM(p – 1, q – 1).

5. The exponents e and d satisfy de 1 (mod (n)).

Note: 	For more general applications of the process below, assumptions 2 and 3 above can be replaced by the more general assumption that the public exponent e is an odd integer satisfying 1 e2 ≤ n /(p + q – 1). (See the discussion following Lemma 3 below.) That condition will be satisfied, e.g., if e2 is greater than one, but no greater than one-half of the smallest prime factor of n, as is the case for any RSA key pair generated in conformance with this Recommendation.

Process:

1.	Let a = (de – 1) GCD(n – 1, de – 1).

2.	Let m = a /n and r = a – m n, so that

 a = m n + r and 0 ≤ r n.

3.	Let b = ((n – r)/(m + 1)) + 1; if b is not an integer or b2 ≤ 4n, then output an error indicator, and exit without further processing. (See Note 1 below.)

4.	Let be the positive square root of b2 – 4n; if is not an integer, then output an error indicator, and exit without further processing. (See Note 2 below.)

5.	Let p = (b +)/2 and let q = (b –)/2.

6.	Output (p, q) as the prime factors. (See Note 3 below.)

Notes:

1.	b should be equal to p + q. If b is not an integer satisfying b2 4n, then one or more of the assumptions concerning n, e, d, p and q are incorrect and the corresponding RSA key pair does not conform to the requirements of this Recommendation.	

2.	 should be equal to p – q. If is not an integer, then one or more of the assumptions concerning n, e, d, p and q are incorrect and the corresponding RSA key pair does not conform to the requirements of this Recommendation.

3.	The labeling of the recovered prime factors (i.e., labeling the larger as p and the smaller as q) may be the reverse of the labeling that was used when those factors were originally generated.

4.	All local copies of d, p, q, and and any other local/intermediate values used during the execution of the RecoverPrimeFactors function shall be destroyed prior to the early termination of the process due to an error, or (in the absence of errors) prior to or during the the completion of step 6.

Proof of Correctness:

Since (by definition), (n) = LCM(p – 1, q – 1),

(p – 1)(q – 1) = LCM(p – 1, q – 1) GCD(p – 1, q – 1) = (n) GCD(p – 1, q – 1)	(1)

Lemma 1: GCD(p – 1, q – 1) = GCD(n – 1, (n))				

Proof of Lemma 1:

Since n – 1 = (p – 1)(q – 1) + (p – 1) + (q – 1) and (n) is a divisor of (p – 1)(q – 1), it follows that GCD(n – 1, (n)) = GCD((p – 1) + (q – 1), (n)).

Any common divisor of p – 1 and q – 1 will also be a divisor of both (p – 1) + (q – 1) and (n), and hence a divisor of GCD((p – 1) + (q – 1), (n)). In particular, GCD(p – 1, q – 1) is a divisor of GCD((p – 1) + (q – 1), (n)), and so, GCD(p – 1, q – 1) ≤ GCD((p – 1) + (q – 1), (n)).

To establish that GCD((p – 1) + (q – 1), (n)) ≤ GCD(p – 1, q – 1) – and hence that the two GCDs are equal. Let { hi | 1 ≤ i ≤ m } denote the set of primes that are divisors of either p – 1 or q – 1. Then the factorizations of p – 1, q – 1, and (n) have the forms

p – 1	= h1x(1) h2x(2) … hmx(m),

q – 1	= h1y(1) h2y(2) … hmy(m), and

 (n)	= h1z(1) h2z(2) … hmz(m),

where { x(i) | 1 ≤ i ≤ m }, { y(i) | 1 ≤ i ≤ m }, and { z(i) | 1 ≤ i ≤ m } are sets of non-negative integers satisfying z(i) = max(x(i), y(i)). If j is a divisor of (n), then j has the form

 j = h1w(1) h2w(2) … hmw(m), with 0 ≤ w(i) ≤ z(i) for 1 ≤ i ≤ m.

Suppose that j is also a divisor of (p – 1) + (q – 1) and that, for a particular value of i, z(i) = x(i). In this case, hiw(i) will divide both p – 1 and the sum (p – 1) + (q – 1), hence hiw(i) will divide their difference, q – 1. Similarly, if z(i) = y(i), then hiw(i) will divide both q – 1 and the sum (p – 1) + (q – 1), hence hiw(i) will divide p – 1 as well. Thus, each prime-power factor of j is a common divisor of p – 1 and q – 1, and so the same is true of j. This shows that any common divisor j of (n) and the sum (p – 1) + (q – 1) is also a common divisor of p – 1 and q – 1, and hence a divisor of GCD(p – 1, q – 1).

In particular, GCD((p – 1) + (q – 1), (n)) is a divisor of GCD(p – 1, q – 1), from which it follows that GCD((p – 1) + (q – 1), (n)) ≤ GCD(p – 1, q – 1). Combining this result with the previously established inequality GCD(p – 1, q – 1) ≤ GCD((p – 1) + (q – 1), (n)), proves the lemma’s claim: GCD(p – 1, q – 1) = GCD((p – 1) + (q – 1), (n)) = GCD(n – 1, (n)).

Combining Lemma 1 with equation (1) above yields

(p – 1)(q – 1) = (n) GCD(n – 1, (n)). 	(2)

Consider the quantity a = (de – 1) GCD(n, de – 1) from step 1 of the RecoverPrimeFactors process. Since e > 1, the congruence de 1 (mod (n)) implies that de – 1 = u (n) for some positive integer u. Substituting u (n) for de – 1 in the expression for a yields

a = (de – 1) GCD(n – 1, de – 1) = u (n) GCD(n – 1, u (n)).	(3)

GCD(n – 1, (n)) is a common divisor of n – 1 and u (n), and so is also a divisor of their GCD. Let v = GCD(n – 1, u (n)) / GCD(n – 1, (n)).

Lemma 2: 1 ≤ v ≤ u e

Proof of Lemma 2:

The assumption that the positive integer d is less than (n) and the fact that u = (de – 1)/(n) implies that u e. Since v is a positive integer, it is true that 1 ≤ v. It remains to show that
v ≤ u. Using

GCD(n – 1, u (n)) = (n – 1)(u (n)) / LCM(n – 1, u (n))

and

GCD(n – 1, (n)) = (n – 1)((n)) / LCM(n – 1, (n)),

It follows that

v = GCD(n – 1, u (n)) / GCD(n – 1, (n)) = u LCM(n – 1, (n))/LCM(n – 1, u (n)),

which can be rewritten to obtain

LCM(n – 1, u (n)) / LCM(n – 1, (n)) = u/v.

Since LCM(n – 1, u (n)) is a common multiple of n – 1 and (n), it is a multiple of the least common multiple of n – 1 and (n). Therefore, u/v = LCM(n – 1, u (n)) / LCM(n – 1, (n)) is a positive integer. From 1 ≤ u/v, one obtains v ≤ u, completing the proof of the lemma.

Using GCD(n – 1, u (n)) = v GCD(n – 1, (n)) together with equations (2) and (3) above, it follows that

a = u (n) v GCD(n – 1, (n)) = uv ((n) GCD(n – 1, (n))) = uv (p – 1)(q – 1).	(4)

Since (p – 1)(q – 1) = n – (p + q – 1), equation (4) above shows that

a = uv n – uv (p + q – 1) = (uv – 1) n + (n – uv (p + q – 1))	(5)

Lemma 3: 0 ≤ n – uv (p + q – 1) n

Proof of Lemma 3:

It suffices to verify that 0 uv ≤ n /(p + q – 1). By the assumptions on the sizes of p, q, and n, it follows that p + q – 1 2(nBits/2)+1 and n 2(nBits – 1), so that n /(p + q – 1) 2(nBits/2) – 2. If it can be shown that the product uv is less than 2(nBits/2) – 2, then the proof of Lemma 3 will be complete. Lemma 2 implies that 1 ≤ uv ≤ u2 e2. By assumption, e 2256, so e2 2512. Since this document requires nBits ≥ 2048, it follows that 2(nBits/2) – 2 ≥ 21022. The fact that uv 2512 21022 ≤
2(nBits/2) – 2 completes the proof of the lemma.

Note: Lemma 3 (and hence the proof of correctness for the RecoverPrimeFactors process) is true under conditions more general than those used in the proof above, which invoked the bounds on the sizes of e, p, q, and n that are required by this Recommendation. For example, it suffices to know that those four values satisfy the condition 1 e2 ≤ n /(p + q – 1) and that d (n).

Now consider the quantities m and r computed in step 2 of the RecoverPrimeFactors process.

Combining equation (5) with Lemma 3 yields

m = a /n = (uv – 1) 	and r = a – mn = n – uv (p + q – 1).

Therefore, in step 3 of the process,

b = ((n – r)/(m + 1)) + 1 = (uv (p + q – 1))/(uv)) + 1 = p + q,

and in step 4,

		 = (b2 – 4n)1/2 = ((p + q)2 – 4pq)1/2 = ((p – q)2)1/2 = p – q.

These values for b and ensure that p and q are correctly recovered in step 5, since

p = (b +)/2 and q = (b –)/2.

[bookmark: _Appendix_D:_Security][bookmark: _Appendix_D:_Maximum][bookmark: Appendix_D][bookmark: _Toc518378857]Appendix D: Maximum Security Strength Estimates for IFC Modulus Lengths

Approved key-establishment schemes are required to provide a security strength of at least 112 bits. An approximation of the maximum security strength that can be supported by an RSA modulus n can be computed as follows:

Let nBits = len(n), the bit length of the RSA modulus n included in a public key employed by the key-establishment scheme. The estimated maximum security strength E that can be supported by the modulus is determined using the following formula:

E =

Since E is not likely to be an integer, some rounding is appropriate. To facilitate comparison to symmetric-key algorithms (whose keys typically consist of some number of bytes), the value of E will be rounded to the nearest integer multiple of eight to obtain an estimate of the maximum security strength that can be supported by the use of a modulus of length nBits. In short,

S(nBits) = the nearest multiple of 8 to E.

Therefore, for the modulus lengths identified in Table 3 of Section 6.3, the maximum security strengths that can be suppported are provided below.

Table 5: Estimated Security Strengths of Common RSA Moduli

		Modulus Length

(in bits)

		E

		Maximum Security Strength S(nBits)

		2048

		110.1

		112

		3072

		131.97

		128

		4096

		149.73

		152

		6144

		178.42

		176

		8192

		201.7

		200

As stated in Section 6.3, any modulus of even bit length with an even bit length that provides at least 112 bits of security strength may be used (i.e., nBits must be 2048). The method above can be used to estimate the security strengths supported by moduli other than those explicitly listed above.

[bookmark: _Toc518378858]Appendix E: Revisions (Informative)

In the 2014 revision, the following revisions were made:

· Section 3.1 – Added definitions of assumptions, binding, destroy, fresh, key-derivation function, key-derivation method, key-wrapping key, MAC tag, and trusted association; removed algorithm identifier, digital signature, initiator, responder.

· Section 4 – Used party U and party V to name the parties, rather than using the initiator and responder as the parties. In Sections 8 and 9, the schemes have been accordingly renamed: KAS1-responder-confirmation is now KAS1-Party_V-confirmation, KAS2-responder-confirmation is now KAS2-Party_V-confirmation, KAS2-initiator-confirmation is now KAS2-Party_U-confirmation, KTS-OAEP-receiver-confirmation is not KTS-OAEP-Party_V-confirmation, and KTS-KEM-KWS-receiver-confirmation is now KTS-KEM-KWS-Party_V-confirmation.

· Section 4 – Added requirements to destroy the local copies of secret and private values and all intermediate calculations before terminating a routine normally or in response to an error. Instructions to this effect have been inserted throughout the document.

· The discussion about identifiers vs. identity and binding have been moved to Section 4.1.

· Section 4.3 – The phrase “IFC-based” has been removed throughout the document.

· Section 5.4 – More discussion has been added about the use of nonces, including new requirements and recommendations.

· Section 5.5 – Key derivation has been divided into single-step key derivation methods (Section 5.5.1), an extract-then-expand key derivation procedure (Section 5.5.2) and application-specific key-derivation methods (Section 5.5.3).

· Section 5.5.1.2 – The use of OtherInfo (including identifiers) during the derivation of keys is recommended, but no longer required (Section 5.5.1.2).

· Moved the general introduction of key-confirmation to Section 5.9 – The discussion now incorporates the material from Section 6.6 of the previous version of the document.

· Section 6.4 – There is now a longer, and more thorough discussion of validity in Section 6.4. The concept of trusted associations has been introduced.

· Section 6.4.1.1 – Removed “or TTP” from the following: “The key pair can be revalidated at any time by the owner as follows….”

· Section 7.2.3.2 – Moved discussion of symmetric key-wrapping methods from Section 5.7 to Section 7.2.3.2; much more information is now provided.

· Section 10 – The rationale for choosing each scheme type has been combined in this new section, along with a discussion of their security properties.

· The old Appendix A, Summary of Differences between this Recommendation and ANS X9.44 (Informative), was removed.

· The old Appendix E becomes Appendix D, and the changes introduced in this Revision are listed here.

· All figures are replaced to reflect the content, text, and terminology changes.

· Security requirements have been updated; in particular, the 80-bit security strength is no longer permitted in this Recommendation.

· Changes to handle the destruction of local keys and intermediate values have been introduced.

· General changes have been made to make this Recommendation more similar to [SP 800 56A].

In the 2018 revision, the following changes were made (in addition to editorial changes):

1. Overall changes:

· Removed provisions for using TDEA.

· Provided moduli > 3072 bits and a method for estimated the maximum security strength that can be provided by these moduli.

· Removed the KTS-KEM-KWS scheme and added a hybrid scheme (KTS-Hybrid-SKW).

· Hyperlinks to sections within the document and to referenced documents are now included.

2.	Section 3.1: Added: Big endian, Byte length, Confidentiality, Key-establishment key pair, Integrity, Random nonce, Support (a security strength), Symmetric key.

· Modified: Approved, Assurance of validity, Bit length, Byte, Destroy, Fresh, Key-agreement transaction, Key confirmation, Key-derivation function, Key-derivation method, Key-derivation procedure, Key establishment, Key-establishment transaction, Keying material, Key transport, Key-transport transaction, Key wrapping, Least-common multiple, MacOutputBits, MacOutputLen, MAC tag, MacTagBits, Message Authentication Code, Nonce, Party, Public-key certificate, Recipient, Scheme, Security properties, Targeted security strength, Third party.

· Deleted: Entity authentication, Length in bits of the non-negative integer x .

3.	Section 3.2: Added: len(x), which has been used throughout the document; MacKeyBits; MacOutputBits; MacOutputLen; MacTagBits; OtherInput; S(nBits).

· Modified: c; C, C0, C1; nLen;

· Removed: Bytelen, k, KTS-KEM-KWS, kwkBits, KWS, OtherInfo, RSA-KEM-KWS, RSA-KEM-KWS-basic, RSA-KEM-KWS-PartyV-confirmation, x, z.

4.	Section 4.1, para. 2: A sentence was inserted to provide guidance for providing a key pair to its owner.

5.	Section 4.2, para. 1: A sentence was inserted as sentence 3 (for clarification).

6.	Section 4.3: Refererences to the RSA-KEM-KWS scheme have been removed. A reference to the hybrid method for key transport has been inserted.

7.	Section 5.2: The first three paragraphs were updated. KMAC was added as an approved MAC algorithm.

8.	Section 5.4, third para.: Reworded the requirements for the minimum security strength and random bit string length for a nonce.

9.	Section 5.5: Rewritten to refer to SP 800-56C for performing key derivation.

10.	Section 5.6: Inserted text and a table to clarify the roles for each scheme.

11.	Sections 5.6.1 and 5.6.2: Revised to accommodate the new KTS-Hybrid SKW family of schemes.

12.	Section 5.6.3: Revised to clarify the approved MAC algorithms, the acceptable MacKey lengths and the supported security strengths.

13.	Section 6.2.1: Steps 3a and 3b have been changed to remove the "1" from the upper bound.

14.	Section 6.3: Inserted text and a table of estimated maximum security strengths for additional approved modulus lengths. Also, see Appendix D.

15.	Sections 6.3.1.1, 6.3.2.1, and 6.4.1.2.1: Revised to accommodate the revised modulus lengths and clarify error indications.

16.	Sections 6.4.1.2.1, 6.4.1.2.2, 6.4.1.2.3, 6.4.1.3.2, 6.4.1.3.3, 6.4.1.4.2 and 6.4.1.4.3: Added step 3c to check that nBits is an even integer.

17.	Section 6.4.1.2.1: Added a requirement regarding the error rate on the primality tests.

18. Section 6.4.1.5: Revised step 2 to clarify KAS2 key confirmation.

19.	Section 6.4.2.3.2: Revised descriptions of the key confirmation provided for the key-establishment schemes.

20.	Old Section 7: Removed the components used by the KTS-KEM-KWS family of schemes.

21.	Section 7.1.2: Routines have been added for decryption using the prime factor and CRT formats for the private key.

22.	Section 7.2.2.1: Explicitly stated that the hash function used for the MGF computation need not be the same as the has function used for MAC generation.

23.	Section 7.2.2, 7.2.2.3 and 7.2.2.4: Removed the list of (limited) modulus lengths that were used in the previous version of SP 800-56B.

24.	Section 7.2.2.4: Added an initial step to set DecryptErrorFlag to False,

25.	Section 9: Revised to remove discussions of the KTS-KEM-KWS schemes and a brief discussion of a hybrid key-transport scheme.

26.	Section 9.1: Revised to refer to the list in Section 5.5.2 as possible information to be used for additional input.

27.	Section 9.3: A discussion of a hybrid key-transport method.

28.	Section 10.4: Removed the rationale for the RSA-KEM KWS family and added a summary of the assurances for each key-establishment scheme family.

29.	Section 12: Additional items were added to the validation lists.

30.	Appendix A: Updated the references.

31.	Appendix C.2: Added the Deterministic Prime-Factor Recovery Method.

32.	Appendix D: Added a method for estimated the maximum security strength that could be provided by an IFC modulus length.

1

image2.wmf

image3.emf

Owner obtains

Assurance of

Key Pair Validity

(6.4.1)

Obtain

Key Pair

(6.3)

Owner Ready for Key Establishment

Owner

generates

TTP

generates

Provide

Assurance of Possession

and Identifier to a

Binding Authority

image4.png

Obtain other entity’s
public key and obtain
assurance of its validity

(64.2)

Generate (random)
secret value or nonce
(5.3,5.4)

Retrieve entity’s own

Send public-key-encrypted
secret value or (plaintext) nonce

private key

Receive and decrypt ciphertext
(to obtain secret value) or
receive nonce

Generate a shared secret (Z) and
derive secret keying material
(8.2.2,83.2 and 5.5)

Destroy shared secret (Z)

+

Perform key confirmation (if
required by scheme)

(823, 8.3.3)

l

Obtain assurance that each key-
pair owner possesses the
(correct) private key

!

Key agreement completed

image5.png

Key transport sender

Obtain receiver’s public key

Select the keying material

and obtain assurance of its
validity
(6.4.2)

l

L

Encrypt keying material
9.2.3)

Obtain assurance of receiver’s

1

Key transport receiver

possession of the (correct)
private key (if key

confirmation is not required by

Transport encrypted
keying material

scheme)
©.2)

Receive encrypted keying
material and retrieve receiver’s
private key

|

Decrypt encrypted keying material

|

Provide key confirmation (if
required by scheme)

(024)

Key transport completed

image6.emf

DB =

HA PS 01 K

mgfSeed

MGF

MGF

EM =

00 maskedMGFSeed maskedDB

BS2I

RSAEP

I2BS

C

DB =

HA PS 01 K

mgfSeed

MGF

MGF

EM =

00 maskedMGFSeed maskedDB

BS2I BS2I

RSAEP RSAEP

I2BS I2BS

C

image7.emf

EM =

Y maskedMGFSeed’ maskedDB’

MGF

BS2I

RSADP

I2BS

C

MGF

DB’ =

HA’ X

EM =

Y maskedMGFSeed’ maskedDB’

MGF MGF

BS2I BS2I

RSADP RSADP

I2BS I2BS

C

MGF MGF

DB’ =

HA’ X

image1.jpeg

NIST

National Institute of
Standards and Technology
U.S. Department of Commerce

