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Abstract 

This Recommendation specifies key-establishment schemes using integer factorization cryptography (in 
particular, RSA). Both key-agreement and key transport schemes are specified for pairs of entities, and 
methods for key confirmation are included to provide assurance that both parties share the same keying 
material. In addition, the security properties associated with each scheme are provided. 
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Notes to Reviewers 

 
Please refer to Appendix E for a detailed list of changes for this revision. In particular, note the 
following: 

1. The RSA-KEM-KWS key transport scheme that was included in the previous version of this 
document has been removed. A preliminary search for its inclusion in FIPS-140-validated 
modules indicated that it was sometimes implemented, but additional research did not indicate 
that the scheme was actually used (e.g.,  in protocols). If this is incorrect, please advise us. 

2. The key-pair validation routines in Section 6.4.1 now include a requirement regarding the error 
rate on the primality test.  
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1. Introduction 1 

Many U.S. Government Information Technology (IT) systems need to employ strong 2 
cryptographic schemes to protect the integrity and confidentiality of the data that they process. 3 
Algorithms such as the Advanced Encryption Standard (AES), as defined in Federal Information 4 
Processing Standard (FIPS) 197,1 and HMAC, as defined in FIPS 198,2 make attractive choices 5 
for the provision of these services. These algorithms have been standardized to facilitate 6 
interoperability between systems. However, the use of these algorithms requires the establishment 7 
of secret keying material that is shared in advance. Trusted couriers may manually distribute this 8 
secret keying material, but as the number of entities using a system grows, the work involved in 9 
the distribution of the secret keying material grows rapidly. Therefore, it is essential to support the 10 
cryptographic algorithms used in modern U.S. Government applications with automated key-11 
establishment schemes. 12 

This Recommendation provides the specifications of key-establishment schemes that are 13 
appropriate for use by the U.S. Federal Government, based on a standard that was developed by 14 
the Accredited Standards Committee (ASC) X9, Inc: ANS X9.44.3 A key-establishment scheme 15 
can be characterized as either a key-agreement scheme or a key-transport scheme. This 16 
Recommendation provides key-agreement and key-transport schemes that are based on the Rivest 17 
Shamir Adleman (RSA) asymmetric-key algorithm.  18 

2. Scope and Purpose 19 

This Recommendation is intended for use in conjunction with NIST Special Publication (SP) 800-20 
57.4 This key-establishment Recommendation, SP 800-57, and FIPS 1865  are intended to provide 21 
information for a vendor to implement secure key-establishment using asymmetric algorithms in 22 
FIPS 1406 validated modules. 23 

Note that a key-establishment scheme is a component of a protocol that may provide security 24 
properties not provided by the scheme when considered by itself; protocols, per se, are not 25 
specified in this Recommendation. 26 

                                                 
1 FIPS 197, Advanced Encryption Standard (AES). 
2 FIPS 198, Keyed-hash Message Authentication Code (HMAC). 
3 ANS X9.44, Key Establishment using Integer Factorization Cryptography. 
4 SP 800-57, Recommendation for Key Management, Part 1: General. 
5 FIPS 186, Digital Signature Standard (DSS). 
6 FIPS 140, Security Requirements for Cryptographic Modules.  
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3. Definitions, Symbols and Abbreviations 27 

3.1 Definitions 28 

Additional input Information known by two parties that is cryptographically bound to 
the secret keying material being protected using the encryption 
operation. 

Algorithm A clearly specified mathematical process for computation; a set of 
rules that, if followed, will give a prescribed result. 

Approved Federal Information Processing Standards (FIPS)-approved or 
NIST-recommended. An algorithm or technique that is either 1) 
specified in a FIPS or NIST Recommendation, 2) adopted in a FIPS 
or NIST Recommendation or 3) specified in a list of NIST-
approved security functions.   

Assumption Used to indicate the conditions that are required to be true when an 
approved key-establishment scheme is executed in accordance with 
this Recommendation.  

Assurance of private 
key possession 

Confidence that an entity possesses a private key associated with a 
given public key.  

Assurance of validity Confidence that an RSA key pair is arithmetically correct. 

Big-endian The property of a byte string having its bytes positioned in order of 
decreasing significance. In particular, the leftmost (first) byte is the 
most significant byte (containing the most significant eight bits of 
the corresponding bit string) and the rightmost (last) byte is the least 
significant byte (containing the least significant eight bits of the 
corresponding bit string).  

For the purposes of this Recommendation, it is assumed that the bits 
within each byte of a big-endian byte string are also positioned in 
order of decreasing significance (beginning with the most significant 
bit in the leftmost position and ending with the least significant bit 
in the rightmost position). 

Binding Assurance of the integrity of an asserted relationship between items 
of information that is provided by cryptographic means. Also see 
Trusted association. 

Bit length A positive integer that expresses the number of bits in a bit string. 

Bit string An ordered sequence of 0’s and 1’s. Also known as a binary string. 
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Byte A bit string consisting of eight bits. 

Byte length A positive integer that expresses the number of bytes in a byte string. 

Byte string An ordered sequence of bytes. 

Certificate Authority 
(CA) 

The entity in a Public Key Infrastructure (PKI) that is responsible 
for issuing public-key certificates and exacting compliance to a PKI 
policy. Also known as a Certification Authority. 

Ciphertext Data in its enciphered form. 

Confidentiality The property that sensitive information is not disclosed to 
unauthorized entities. 

Critical security 
parameter (CSP) 

Security-related information whose disclosure or modification can 
compromise the security of a cryptographic module. Domain 
parameters, secret or private keys, shared secrets, key-derivation 
keys, intermediate values and secret salts are examples of quantities 
that may be considered critical security parameters in this 
Recommendation.  See FIPS 140. 

Cryptographic key 
(Key) 

A parameter used with a cryptographic algorithm that determines its 
operation. 

Decryption The process of transforming ciphertext into plaintext using a 
cryptographic algorithm and key. 

Destroy In this Recommendation, an action applied to a key or a piece of 
secret data. After a key or a piece of secret data is destroyed, no 
information about its value can be recovered. Also known as 
zeroization in FIPS 140. 

Encryption The process of transforming plaintext into ciphertext using a 
cryptographic algorithm and key. 

Entity An individual (person), organization, device, or process. “Party” is 
a synonym. 

Fresh Newly established secret keying material that is statistically 
independent of any previously established keying material. 

Greatest common 
divisor 

The largest positive integer that divides each of two or more positive 
integers without a remainder. 
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Hash function A function that maps a bit string of arbitrary length to a fixed-length 
bit string. Approved hash functions are expected to satisfy the 
following properties: 

1. One-way: It is computationally infeasible to find any input 
that maps to any pre-specified output, and 

2. Collision resistant: It is computationally infeasible to find 
any two distinct inputs that map to the same output. 

Hash value The fixed-length bit string produced by a hash function. 

Identifier A bit string that is associated with a person, device or organization. 
It may be an identifying name, or may be something more abstract 
(for example, a string consisting of an Internet Protocol (IP) address 
and timestamp).  

Integrity A property whereby data has not been altered in an unauthorized 
manner since it was created, transmitted or stored.  

In this Recommendation, the statement that a cryptographic 
algorithm "provides data integrity" means that the algorithm is used 
to detect unauthorized alterations. 

Key agreement  A (pair-wise) key-establishment procedure where the resultant 
secret keying material is a function of information contributed by 
two participants so that no party can predetermine the value of the 
secret keying material independently from the contributions of the 
other party. Contrast with key-transport. 

Key-agreement 
transaction 

An execution of a key-agreement scheme. 

Key confirmation A procedure to provide assurance to one party (the key-confirmation 
recipient) that another party (the key-confirmation provider) 
possesses the correct secret keying material and/or shared secret 
from which that secret keying material is derived. 

Key-confirmation 
provider 

The party that provides assurance to the other party (the recipient) 
that the two parties have indeed established a shared secret or shared 
keying material. 

Key-derivation function As used in this Recommendation, a function used to derive secret 
keying material from a shared secret (or a key) and other 
information. 
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Key-derivation method As used in this Recommendation, a method by which secret keying 
material is derived from a shared secret and other information. A 
key-derivation method may use a key-derivation function or a key-
derivation procedure. 

Key-derivation 
procedure 

As used in this Recommendation, a multi-step process to derive 
secret keying material from a shared secret and other information. 

Key establishment  A procedure that results in establishing secret keying material that is 
shared among different parties. 

Key-establishment key 
pair 

A private/public key pair used in a key-establishment scheme.  

Key-establishment 
transaction 

An instance of establishing secret keying material using a key-
agreement or key-transport transaction. 

Key pair See key-establishment key pair. 

Key transport  A (pair-wise) key-establishment procedure whereby one party (the 
sender) selects a value for the secret keying material and then 
securely distributes that value to another party (the receiver). 
Contrast with key agreement. 

Key-transport 
transaction 

An execution of a key-transport scheme. 

Key wrapping A method of protecting secret keying material (along with associated 
integrity information) that provides both confidentiality and 
integrity protection when using symmetric-key algorithms. 

Key-wrapping key In this Recommendation, a key-wrapping key is a symmetric key 
established during a key-transport transaction and used with a key- 
wrapping algorithm to protect the secret keying material to be 
transported. 

Keying material Data that is represented as a binary string such that any non-
overlapping segments of the string with the required lengths can be 
used as secret keys, secret initialization vectors and other secret 
parameters. 

Least common multiple The smallest positive integer that is divisible by two or more positive 
integers without a remainder. For example, the least common 
multiple of 2 and 3 is 6. 
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MAC tag Data obtained from the output of a MAC algorithm (possibly by 
truncation) that can be used by an entity to verify the integrity and 
the origination of the information used as input to the MAC 
algorithm. 

Message Authentication 
Code (MAC) algorithm 

A family of cryptographic functions that is parameterized by a 
symmetric key.  Each of the functions can act on input data (called 
a “message”) of variable length to produce an output value of a 
specified length. The output value is called the MAC of the input 
message. An approved MAC algorithm is expected to satisfy the 
following property (for each of its supported security levels):  

It must be computationally infeasible to determine the (as yet 
unseen) MAC of a message without knowledge of the key, even 
if one has already seen the results of using that key to compute 
the MACs of other (different) messages.  

A MAC algorithm can be used to provide data-origin authentication 
and data-integrity protection. In this Recommendation, a MAC 
algorithm is used for key confirmation; the use of MAC algorithms 
for key derivation is addressed in SP 800-56C.7 

Nonce A time-varying value that has an acceptably small chance of 
repeating. For example, a nonce is a random value that is generated 
anew for each use, a timestamp, a sequence number, or some 
combination of these. 

Owner For a key pair, the owner is the entity that is authorized to use the 
private key associated with a public key, whether that entity 
generated the key pair itself or a trusted party generated the key pair 
for the entity.  

Party See entity. 

Prime number An integer greater than 1 that has no positive integer factors other 
than 1 and itself. 

Primitive A low-level cryptographic algorithm that is used as a basic building 
block for higher-level cryptographic operations or schemes. 

Private key A cryptographic key that is kept secret and is used with a public-key 
cryptographic algorithm. A private key is associated with a public 
key.  

                                                 
7 SP 800-56C, Recommendation for Key-Derivation Methods in Key-Establishment Schemes. 



NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT 
 USING INTEGER FACTORIZATION CRYPTOGRAPHY 

7 

 

Protocol A set of rules used by two or more communicating entities that 
describe the message order and data structures for information 
exchanged between the entities. 

Provider A party that provides (1) a public key (e.g., in a certificate); (2) 
assurance, such as an assurance of the validity of a candidate public 
key or assurance of possession of the private key associated with a 
public key; or (3) key confirmation. Contrast with recipient. 

Public key A cryptographic key that may be made public and is used with a 
public-key cryptographic algorithm. A public key is associated with 
a private key.  

Public-key algorithm A cryptographic algorithm that uses two related keys: a public key 
and a private key. The two keys have the property that determining 
the private key from the public key is computationally infeasible. 

Public-key certificate  A data structure that contains an entity’s identifier(s), the entity's 
public key (including an indication of the associated set of domain 
parameters) and possibly other information, along with a signature 
on that data set that is generated by a trusted party, i.e., a certificate 
authority, thereby binding the public key to the included 
identifier(s). 

Public-key cryptography A form of cryptography that uses two related keys, a public key and a 
private key; the two keys have the property that, given the public key, 
it is computationally infeasible to derive the private key. 

For key establishment, public-key cryptography allows different 
parties to communicate securely without having prior access to a 
secret key that is shared, by using one or more pairs (public key and 
private key) of cryptographic keys. 

Public-key validation The procedure whereby the recipient of a public key checks that the 
key conforms to the arithmetic requirements for such a key in order 
to thwart certain types of attacks.  

Random nonce A nonce containing a random-value component that is generated 
anew for each nonce.  

Receiver The party that receives secret keying material via a key-transport 
transaction. Contrast with sender. 

Recipient A party that either (1) receives a public key; or (2) obtains assurance 
from an assurance provider (e.g., assurance of the validity of a 
candidate public key or assurance of possession of the private key 
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corresponding to a public key); or (3) receives key confirmation 
from a key-confirmation provider. 

Relatively prime Two positive integers are relatively prime if their greatest common 
divisor is 1. 

Scheme A set of unambiguously specified transformations that provide a 
(cryptographic) service when properly implemented and maintained. 
A scheme is a higher-level construct than a primitive and a lower-
level construct than a protocol. 

Security properties The security features (e.g., replay protection, or key confirmation) 
that a cryptographic scheme may, or may not, provide. 

Security strength (also, 
“Bits of security”) 

A number associated with the amount of work (that is, the number 
of operations) that is required to break a cryptographic algorithm or 
system.  

Sender The party that sends secret keying material to the receiver using a 
key-transport transaction.  Contrast with receiver. 

Shall This term is used to indicate a requirement that needs to be fulfilled 
to claim conformance to this Recommendation. Note that shall may 
be coupled with not to become shall not. 

Shared secret A secret value that has been computed during the execution of a key-
establishment scheme, is known by both participants, and is used as 
input to a key-derivation method to produce secret keying material.  

Should This term is used to indicate an important recommendation. Ignoring 
the recommendation could result in undesirable results. Note that 
should may be coupled with not to become should not. 

Support (a security 
strength) 

A security strength of s bits is said to be supported by a particular 
choice of algorithm, primitive, auxiliary function, parameters (etc.) 
for use in the implementation of a cryptographic mechanism if that 
choice will not prevent the resulting implementation from attaining 
a security strength of at least s bits.  

In this Recommendation, it is assumed that implementation choices 
are intended to support a security strength of 112 bits or more (see 
[SP 800-57]8 and [SP 800-131A]9). 

                                                 
8 SP 800-57 Rev. 4, Recommendation for Key Management Part1: General. 
9 SP 800-131A, Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms and Key 
Lengths. 

http://en.wikipedia.org/wiki/Greatest_common_divisor
http://en.wikipedia.org/wiki/Greatest_common_divisor
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Symmetric key A cryptographic key that is shared between two or more entities and 
used with a cryptographic application to process information. 

Symmetric-key 
algorithm 

A cryptographic algorithm that uses secret keying material that is 
shared between authorized parties. 

Targeted security 
strength 

The security strength that is intended to be supported by one or more 
implementation-related choices (such as algorithms, primitives, 
auxiliary functions, parameter sizes and/or actual parameters) for the 
purpose of instantiating a cryptographic mechanism. 

In this Recommendation, it is assumed that the targeted security 
strength of any instantiation of an approved key-establishment 
scheme has a value greater than or equal to 112 bits and less than or 
equal to 256 bits. 

Trusted association Assurance of the integrity of an asserted relationship between items 
of information that may be provided by cryptographic or non-
cryptographic (e.g., physical) means. Also see Binding.  

Trusted party A party that is trusted by an entity to faithfully perform certain 
services for that entity. An entity may choose to act as a trusted party 
for itself. 

Trusted third party A third party, such as a CA, that is trusted by its clients to perform 
certain services. (By contrast, the two participants in a key-
establishment transaction are considered to be the first and second 
parties.) 

3.2 Symbols and Abbreviations 29 

A Additional input that is bound to the secret keying material; a byte 
string. 

[a, b] The set of integers x such that a ≤ x ≤ b. 

AES Advanced Encryption Standard (as specified in FIPS 197). 

ANS American National Standard. 

ASC The Accredited Standards Committee of the American National 
Standards Institute (ANSI). 

ASN.1 Abstract Syntax Notation One. 

BS2I Byte String to Integer conversion routine. 
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c Ciphertext (expressed as an integer). 

C, C0, C1 Ciphertext (expressed as a byte string). 

CA Certification Authority. 

CRT Chinese Remainder Theorem. 

d RSA private exponent; a positive integer. 

Data A variable-length string of zero or more (eight-bit) bytes. 

DerivedKeyingMaterial Derived keying material; a bit string. 

dP RSA private exponent for the prime factor p in the CRT format, 
i.e., d mod (p − 1); an integer. 

dQ RSA private exponent for the prime factor q in the CRT format, 
i.e., d mod (q − 1); an integer. 

e RSA public exponent; a positive integer. 

eBits The bit length of the RSA exponent e. 

GCD(a, b) Greatest Common Divisor of two positive integers a and b.  For 
example, GCD(12, 16) = 4. 

HMAC Keyed-hash Message Authentication Code (as specified in FIPS 
198). 

HMAC-hash Keyed-hash Message Authentication Code (as specified in FIPS 
198) with an approved hash function hash. 

I2BS Integer to Byte String conversion routine. 

ID The bit string denoting the identifier associated with an entity. 

IDP, IDR, IDU, IDV Identifier bit strings for parties P, R, U, and V, respectively. 

IFC Integer Factorization Cryptography. 

K Keying material; a byte string. 

KBits The bit length of the secret keying material. 

KAS Key-Agreement Scheme. 
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KAS1-basic The basic form of Key-Agreement Scheme 1. 

KAS1-Party_V-
confirmation 

Key-Agreement Scheme 1 with confirmation by party V. 
Previously known as KAS1-responder-confirmation. 

KAS2-basic The basic form of Key-Agreement Scheme 2. 

KAS2-bilateral-
confirmation 

Key-Agreement Scheme 2 with bilateral confirmation. 

KAS2-Party_V-
confirmation 

Key-Agreement Scheme 2 with confirmation by party V. 
Previously known as KAS2-responder-confirmation. 

KAS2-Party_U-
confirmation 

Key-Agreement Scheme 2 with confirmation by party U. 
Previously known as KAS2-initiator-confirmation. 

KC Key Confirmation. 

KDM Key-Derivation Method. 

KeyData Keying material other than that which is used for the MacKey 
employed in key confirmation. 

KTS Key-transport Scheme. 

KTS-OAEP-basic The basic form of the key-transport Scheme with Optimal 
Asymmetric Encryption Padding. 

KTS-OAEP-Party_V-
confirmation 

Key-transport Scheme with Optimal Asymmetric Encryption 
Padding and key confirmation provided by party V. Previously 
known as KTS-OAEP-receiver-confirmation. 

KWK Key-Wrapping Key; a byte string. 

LCM(a, b) Least Common Multiple of two positive integers a and b.  For 
example, LCM(4, 6) = 12. 

len(x) The bit length of the non-negative integer x. For integer x > 0, 
len(x) = log2(x)+1. (In the case of 0, len(0) = 1.) 

MAC Message Authentication Code. 

MacData A byte string input to the MacTag computation. 
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MacDataU, (or MacDataV) MacData associated with party U (or party V, respectively), and 
used to generate MacTagU  (or MacTagV, respectively). Each is a 
byte string. 

MacKey Key used to compute the MAC; a byte string. 

MacKeyBits The bit length of MacKey such that MacKeyBits = 8 × 
MacKeyLen. 

MacKeyLen The byte length of the MacKey. 

MacOutputBits The bit length of the MAC output block such that MacOutputBits 
= 8 × MacOutputLen. 

MacOutputLen The byte length of the MAC output block. 

MacTag A byte string that allows an entity to verify the integrity of the 
information. MacTag is the output from the MAC algorithm 
(possibly after truncation). The literature sometimes refers to 
MacTag as a Message Authentication Code (MAC). 

MacTagV, (MacTagU) The MacTag generated by party V (or party U, respectively). 
Each is a byte string. 

MacTagBits The bit length of the MAC tag such that MacTagBits = 8 × 
MacTagLen. 

MacTagLen The byte length of MacTag. 

Mask Mask; a byte string. 

MGF Mask Generation Function. 

mgfSeed String from which a mask is derived; a byte string. 

 n RSA modulus. n = pq, where p and q are distinct odd primes. 

(n, d) RSA private key in the basic format. 

(n, e) RSA public key. 

(n, e, d, p, q, dP, dQ, qInv) RSA private key in the Chinese Remainder Theorem (CRT) 
format. 

NV Nonce contributed by party V; a byte string. 
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nBits The bit length of the RSA modulus n. 

nLen The byte length of the RSA modulus n. (Note that in FIPS 186, 
nlen refers to the bit length of n.) 

Null The empty bit string. 

OtherInput Other information for key derivation; a bit string. 

p First prime factor of the RSA modulus n. 

(p, q, d) RSA private key in the prime-factor format. 

PrivKeyU, PrivKeyV Private key of party U or V, respectively. 

PubKeyU, PubKeyV Public key of party U or V, respectively. 

q Second prime factor of the RSA modulus n. 

qInv Inverse of q modulo p in the CRT format, i.e., q−1 mod p; an 
integer. 

RBG Random Bit Generator. 

RSA Rivest-Shamir-Adleman algorithm 

RSASVE RSA Secret Value Encapsulation. 

RSA-OAEP RSA with Optimal Asymmetric Encryption Padding. 

S String of bytes. 

s Security strength in bits. 

S(nBits) The estimated maximum security strength for an RSA modulus 
of length nBits. 

SHA Secure Hash Algorithm.  

SKW Symmetric-Key-Wrapping. 

TMacTagBits(X) A truncation function that outputs the most significant (i.e., 
leftmost) MacTagBits bits of the input string, X, when the bit 
length of X is greater than MacTagBits; otherwise, the function 
outputs X.  For example, T2(1011) = 10, T3(1011) = 101, and 
T4(1011) = 1011. 
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TransportedKeyingMaterial Transported keying material. 

TTP A Trusted Third Party. 

U One party in a key-establishment scheme. 

V Another party in a key-establishment scheme. 

X Byte string to be converted to or from an integer; the output of 
conversion from an ASCII string. 

X =? Y Check for the equality of X and Y. 

x mod n The modular reduction of the (arbitrary) integer x by the positive 
integer n (the modulus). For the purposes of this 
Recommendation, y = x mod n is the unique integer satisfying the 
following two conditions:  1) 0 ≤ y < n, and 2) x − y is divisible 
by n.  

x −1 mod n The multiplicative inverse of the integer x modulo the positive 
integer n. This quantity is defined if and only if x is relatively 
prime to n. For the purposes of this Recommendation, y = x−1 mod 
n is the unique integer satisfying the following two conditions:   
1) 0 ≤ y < n, and 2) 1 = (xy) mod n. 

{X} Indicates that the inclusion of X is optional. 

{x, y} A set containing the integers x and y. 

x × y 
The product of x and y. 

xy 

X || Y Concatenation of two strings X and Y. 

x The ceiling of x; the smallest integer ≥ x. For example, 5 = 5 
and 5.3 = 6. 

x The floor of x; the greatest integer that does not exceed x. For 
example, 2.1 = 2, and 4 = 4.  

x  The absolute value of x. 

Z A shared secret that is used to derive secret keying material using 
a key-derivation method; a byte string. 
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λ(n) Lambda function of the RSA modulus n, i.e., the least positive 
integer i such that 1= ai mod n for all a relatively prime to n. 
When n = p × q, λ(n) = LCM(p − 1, q − 1). 

⊕  Exclusive-Or (XOR) operation, defined as bit-wise modulo 2 
arithmetic with no carry. 

4 Key-Establishment Schemes Overview 30 

Secret cryptographic keying material may be electronically established between parties by using a 31 
key-establishment scheme, that is, by using either a key-agreement scheme or a key-transport 32 
scheme. Key-establishment schemes may use either symmetric-key techniques or asymmetric-key 33 
techniques or both.  The key-establishment schemes described in this Recommendation use 34 
asymmetric-key techniques.  35 
In this Recommendation, the approved key-establishment schemes are described in terms of the roles 36 
played by parties “U” and “V.” These are specific labels that are used to distinguish between the two 37 
participants engaged in key establishment – irrespective of the actual labels that may be used by a 38 
protocol employing a particular approved key-establishment scheme.   39 
During key agreement, the derived secret keying material is the result of contributions made by both 40 
parties. To be in conformance with this Recommendation, a protocol employing any of the approved 41 
pair-wise key-agreement schemes shall unambiguously assign the roles of U and V to the participants 42 
by clearly defining which participant performs the actions ascribed by this Recommendation to party 43 
U, and which performs the actions ascribed herein to party V. 44 
During key transport, one party selects the secret keying material to be transported.  The secret 45 
keying material is then encrypted using RSA, and sent to the other party.  The party that sends the 46 
secret keying material is called the sender, and the other party is called the receiver.   47 

The security of the Integer Factorization Cryptography (IFC) schemes in this Recommendation 48 
relies on the intractability of factoring integers that are products of two sufficiently large, distinct 49 
prime numbers.  All IFC schemes in this Recommendation are based on RSA. 50 

The security of an IFC scheme also depends on its implementation, and this document includes a 51 
number of practical recommendations for implementers. For example, good security practice 52 
dictates that implementations of procedures employed by primitives, operations, schemes, etc., 53 
include steps that destroy any potentially sensitive locally stored data that is created (and/or copied 54 
for use) during the execution of a particular procedure, and whose continued local storage is not 55 
required after the procedure has been exited. The destruction of such locally stored data ideally 56 
occurs prior to or during any exit from the procedure. This is intended to limit opportunities for 57 
unauthorized access to sensitive information that might compromise a key-establishment process.  58 

Explicit instructions for the destruction of certain potentially sensitive values that are likely to be 59 
locally stored by procedures are included in the specifications found in this Recommendation. 60 
Examples of such values include local copies of any portions of secret or private keys that are 61 
employed or generated during the execution of a procedure, intermediate results produced during 62 
computations, and locally stored duplicates of values that are ultimately output by a procedure. 63 
However, it is not possible to anticipate the form of all possible implementations of the specified 64 
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primitives, operations, schemes, etc., making it impossible to enumerate all potentially sensitive 65 
data that might be locally stored by a procedure employed in a particular implementation. 66 
Nevertheless, the destruction of any potentially sensitive locally stored data is an obligation of all 67 
implementations.  68 

Error handling can also be an issue. Section 7 cautions implementers to handle error messages in 69 
a manner that avoids revealing even partial information about the decryption/decoding processes 70 
that may be performed during the execution of a particular procedure. 71 

For compliance with this Recommendation, equivalent processes may be used. Two processes are 72 
equivalent if, whenever the same values are input to each process (either as input parameters or as 73 
values made available during the process), each process produces the same output as the other.  74 

Some processes are used to provide assurance (for example, assurance of the arithmetic validity 75 
of a public key or assurance of possession of a private key associated with a public key). The party 76 
that provides the assurance is called the provider (of the assurance), and the other party is called 77 
the recipient (of the assurance). 78 

Several steps are performed to establish secret keying material as described in Sections 4.1, 4.2, 79 
and 4.3. 80 

4.1 Key-Establishment Preparations 81 

The owner of a private/public key pair is the entity that is authorized to use the private key of that 82 
key pair. Figure 1 depicts the steps that may be required of that entity when preparing for a key-83 
establishment process (i.e., either key agreement or key transport). 84 

 85 
Figure 1: Owner Key-establishment Preparations 86 
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The first step in the preparation is for the entity to obtain a key pair. Either the entity (i.e., the 87 
owner) generates the key pair as specified in Section 6.3, or a trusted third party (TTP) generates 88 
the key pair as specified in Section 6.3 and provides it to the owner. If the key pair is generated by 89 
a trusted third party, then the key pair shall be transported to the owner in a protected manner 90 
(providing source authentication and integrity protection for the entire key pair, and confidentiality 91 
protection for (at least) the private key). The owner obtains assurance of key-pair validity and, as 92 
part of the process, obtains assurance that it actually possesses the (correct) private key. Approved 93 
methods for obtaining assurance of key-pair validity by the owner are provided in Section 6.4.1. 94 

An identifier is used to label the entity that owns a key pair used in a key-establishment transaction. 95 
This label may uniquely distinguish the entity from all others, in which case it could rightfully be 96 
considered an identity. However, the label may be something less specific – an organization, 97 
nickname, etc. – hence, the term identifier is used in this Recommendation, rather than the term 98 
identity.  For example, an identifier could be “NIST123,” rather than an identifier that names a 99 
particular person.  A key pair’s owner (or an agent trusted to act on the owner’s behalf) is 100 
responsible for ensuring that the identifier associated with its public key is appropriate for the 101 
applications in which the public key will be used. 102 

For each key pair, this Recommendation assumes that there is a trusted association between the 103 
owner’s identifier(s) and the owner’s public key. The association may be provided using 104 
cryptographic mechanisms or by physical means. The use of cryptographic mechanisms may 105 
require the use of a binding authority (i.e., a trusted authority) that binds the information in a 106 
manner that can be verified by others; an example of such a trusted authority is a registration 107 
authority working with a CA who creates a certificate containing both the public key and the 108 
identifier(s). The binding authority shall verify the owner’s intent to associate the public key with 109 
the specific identifier(s) chosen for the owner; the means for accomplishing this is beyond the 110 
scope of this Recommendation. The binding authority shall obtain assurance of both the arithmetic 111 
validity of the owner’s public key and the owner’s possession of the private key corresponding to 112 
that public key. (Approved techniques that can be employed by the binding authority to obtain 113 
these assurances are described in Section 6.4.2.1 [method 1], Section 6.4.2.2, Section 6.4.2.3 and 114 
Section 6.4.2.3.2.)  115 

As an alternative to reliance upon a binding authority, trusted associations between identifiers and 116 
public keys may be established by the direct exchange of this information between entities, using 117 
a mutually trusted method (e.g., a trusted courier or a face-to-face exchange). In this case, each 118 
entity receiving a public key and associated identifier(s) shall be responsible for obtaining the 119 
same assurances that would have been obtained on the entity’s behalf by a binding authority (see 120 
the previous paragraph). Entities shall also be responsible for maintaining (by cryptographic or 121 
other means) the trusted associations between any identifiers and public keys received through 122 
such exchanges.  123 

If an entity engaged in a key-establishment transaction owns a key pair that is employed during 124 
the transaction, then the identifier used to label that party shall be one that has a trusted association 125 
with the public key of that key pair. If an entity engaged in a key-establishment transaction does 126 
not employ a key pair during the transaction, but an identifier is still desired/required for that party, 127 
then a non-null identifier shall be selected/assigned in accordance with the requirements of the 128 
protocol relying upon the transaction. 129 
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After the above steps have been performed, the key-pair owner is ready to enter into a key-130 
establishment process. 131 

4.2 Key-Agreement Process 132 

Figure 2 depicts the steps implemented by an entity when establishing secret keying material with 133 
another entity using one of the key-agreement schemes described in Section 8 of this 134 
Recommendation. (Some discrepancies in ordering may occur in practice, depending on the 135 
communication protocol in which the key-agreement process is performed.)  Depending on the 136 
key-agreement scheme, the party whose actions are described could be either of the two 137 
participants in the key-agreement scheme (i.e., either party U or party V). Note that some of the 138 
actions shown may not be a part of every scheme. For example, key confirmation is not provided 139 
in the basic key-agreement schemes (see Sections 8.2.2 and 8.3.2). The specifications of this 140 
Recommendation indicate when a particular action is required.  141 
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 142 
Figure 2: Key-Agreement Process 143 

Each participant that is required to do so by the key-agreement scheme or the relying 144 
application/protocol obtains an identifier associated with the other entity, and verifies that the 145 
identifier of the other entity corresponds to the entity with whom the participant wishes to establish 146 
secret keying material. 147 

Each entity that requires the other entity’s public key for use in the key-agreement scheme obtains 148 
a public key that has a trusted association with the other party’s identifier, and obtains assurance 149 
of the validity of the public key. Approved methods for obtaining assurance of the validity of 150 
another entity’s public key are provided in Section 6.4.2.  151 

Each entity generates either a (random) secret value or a nonce, as required by the particular key-152 
agreement scheme. If the scheme requires an entity to generate a secret value, that secret value is 153 
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generated as specified in Section 5.3 and encrypted using the other entity's public key. The 154 
resulting ciphertext is then provided to the other entity. If the key-agreement scheme requires that 155 
an entity provide a nonce, that nonce is generated as specified in Section 5.4 and provided (in 156 
plaintext form) to the other party. (See Sections 8.2 and 8.3 for details). 157 

Each participant in the key-agreement process uses the appropriate public and/or private keys to 158 
establish a shared secret (Z) as specified in Section 8.2.2 or 8.3.2. Each participant then derives 159 
secret keying material from the shared secret (and other information), as specified in Section 5.5. 160 

If the key-agreement scheme includes key confirmation provided by one or both of the participants, 161 
then key confirmation is performed as specified in Section 8.2.3 or 8.3.3.  When performed in 162 
accordance with those sections, successful key confirmation may also provide assurance that a 163 
key-pair owner possesses the (correct) private key (see Section 6.4.2.3.2).  164 

The owner of any key pair used during the key-agreement transaction is required to have assurance 165 
that the owner is in possession of the correct private key. Likewise, the recipient of another entity’s 166 
public key is required to have assurance that its owner is in possession of the corresponding private 167 
key. Assurance of private-key possession is obtained prior to using the derived keying material for 168 
purposes beyond those of the key-agreement transaction itself. This assurance may be 169 
provided/obtained either through key confirmation, or by some other approved means (see 170 
Sections 6.4.1 and 6.4.2). 171 

4.3 Key-Transport Process 172 

Figure 3 depicts the steps implemented by two entities when using the key-transport schemes 173 
described in Section 9.2 of this Recommendation to establish secret keying material.  174 

The entity who will act as the sender obtains the identifier associated with the entity that will act 175 
as the receiver, and verifies that the receiver’s identifier corresponds to an entity to whom the 176 
sender wishes to send secret keying material. 177 

Prior to performing key transport, the sender obtains the receiver’s public key and obtains 178 
assurance of its validity. Approved methods for obtaining assurance of the validity of another 179 
entity’s public key are provided in Section 6.4.2. The sender is also required to have assurance that 180 
the receiver is in possession of the private key corresponding to the receiver’s public key prior to 181 
key transport, unless that assurance is obtained via the key confirmation steps that are included as 182 
part of the scheme. (See Section 9.2 for details).  183 

The sender selects the secret keying material (and, perhaps, additional input) to be transported to 184 
the other entity. Then, using the intended receiver’s public key, the sender encrypts that material 185 
directly (see Section 9.2.3). The resulting ciphertext is transported to the receiver.  186 

Prior to participating in a key-transport transaction, the receiver is required to have assurance of 187 
the validity of its own key pair. This assurance may be renewed whenever desired. Upon (or 188 
before) receipt of the transported ciphertext, the receiver retrieves the private key from its own key 189 
pair. Using its private key, the receiver takes the necessary steps (as specified in Section 9.2.3) to 190 
decrypt the ciphertext and obtain the transported plaintext keying material.  191 
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 192 
Figure 3: Key-transport Process 193 

If the key-transport scheme includes key confirmation, then key confirmation is provided by the 194 
receiver to the sender as specified in Section 9.2.4. Through the use of key confirmation, the sender 195 
can obtain assurance that the receiver has correctly recovered the keying material from the 196 
ciphertext. Successful key confirmation may also provide assurance that the receiver was in 197 
possession of the correct private key (see Section 6.4.2.3.2).  198 

An additional method for key transport is discussed in Section 9.3. 199 

  200 
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5 Cryptographic Elements 201 

This section describes the basic cryptographic elements that support the development of the key-202 
establishment schemes specified in this Recommendation. The schemes described herein are based 203 
upon the correct implementation of these elements. 204 

5.1 Cryptographic Hash Functions 205 

In this Recommendation, cryptographic hash functions may be used for mask generation during 206 
RSA-OAEP encryption/decryption, in key derivation, and/or in MAC-tag computation during key 207 
confirmation. An approved hash function shall be used when a hash function is required (see FIPS 208 
18010 and FIPS 20211).  209 

5.2 Message Authentication Code (MAC) Algorithms 210 

A Message Authentication Code (MAC) algorithm defines a family of one-way (MAC) functions 211 
that is parameterized by a symmetric key. The input to a MAC function includes a symmetric key, 212 
called MacKey, and a binary data string, called MacData. A MAC function is represented as 213 
MAC(MacKey, MacData {, ...})12. In this Recommendation, a MAC function is used in key 214 
confirmation (see Section 5.6) and may be used for key derivation (see Section 5.5 and  SP 800-215 
56C).  216 

It must be computationally infeasible to determine the MAC of a (newly formed) MacData value 217 
without knowledge of the MacKey value (even if one has seen the MACs corresponding to other 218 
MacData values that were computed using that same MacKey value). 219 

Key confirmation requires the use of one of the following approved MAC algorithms: HMAC, 220 
AES-CMAC or KMAC. HMAC is specified in FIPS 198 and requires the use of an approved hash 221 
function. AES-CMAC is specified in SP 800-38B13 for the AES block cipher algorithm specified 222 
in FIPS 197. KMAC is specified in SP 800-185.14 223 

When used for key confirmation, the key-confirmation provider is required to compute a "MAC 224 
tag" on received or derived data using the agreed-upon MAC function. A symmetric key derived 225 
from a shared secret (during a key-agreement transaction) or extracted from transported keying 226 
material (during a key-transport transaction) is used as MacKey. The resulting MAC tag is sent to 227 
the key-confirmation recipient, who can obtain assurance (via MAC-tag verification) that the 228 
shared secret and derived keying material were correctly computed (in the case of key agreement) 229 
or that the transported keying material was successfully received (in the case of key transport). 230 
MAC-tag computation and verification are defined in Sections 5.2.1 and 5.2.2. 231 

                                                 
10 FIPS 180, Secure Hash Standard (SHS). 
11 FIPS 202, Permutation-Based Hash and Extendable-Output Functions. 
12 Some MAC algorithms (e.g., KMAC) have additional parameters other than MacKey and MacData. 
13 SP 800-38B, Recommendation for Block Cipher Modes of Operation: the CMAC Mode for Authentication. 
14 SP 800-185, SHA-3 Derived Funcions: cSHAKE, KMAC, TupleHash and ParallelHash. 
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5.2.1 MacTag Computation for Key Confirmation 232 
The computation of a MAC tag is represented as follows: 233 

MacTag = TMacTagBits[MAC(MacKey, MacData)]. 234 

To compute a MAC tag: 235 

1. An approved, agreed-upon MAC algorithm (see FIPS 198, SP 800-38B or SP 800-185) is 236 
used with MacKey to compute a MAC on the MacData, where MacKey is a symmetric key, 237 
and MacData represents the data on which the MAC tag is computed. The minimum length of 238 
MacKey is specified in Section 5.6.3. 239 

MacKey is obtained from the DerivedKeyingMaterial (when a key-agreement scheme employs 240 
key confirmation) or obtained from the TransportedKeyingMaterial (when a key-transport 241 
scheme employs key confirmation), as specified in Section 5.6.1.1. 242 

The resulting MAC consists of MacOutputBits bits, which is the full output length of the 243 
selected MAC algorithm. 244 

2. The output of the MAC algorithm is input to a truncation function TMacTagBits to obtain the most 245 
significant (i.e., leftmost) MacTagBits bits, where MacTagBits represents the intended length 246 
of MacTag, which is required to be less than or equal to MacOutputBits. (When MacTagBits 247 
equals MacOutputBits, TMacTagBits acts as the identity function.) The minimum value for 248 
MacTagBits is specified in Section 5.6.3.  249 

Note: A routine implementing a Mac-tag computation for key confirmation shall destroy any local 250 
copies of MacKey and MacData, any locally stored portions of MacTag, and any other locally 251 
stored values used or produced during the execution of the routine; their destruction shall occur 252 
prior to or during any exit from the routine – whether exiting early because of an error or exiting 253 
normally with MacTag as the output. 254 

5.2.2 MacTag Verification for Key Confirmation 255 
To verify the MAC tag received during key confirmation, a new MAC tag, MacTag′, is computed 256 
as specified in Section 5.2.1 using the values of MacKey, MacTagBits, and MacData possessed by 257 
the key-confirmation recipient. MacTag′ is compared with the received MAC tag (i.e., MacTag). 258 
If their values are equal, then it may be inferred that the same MacKey, MacTagBits, and MacData 259 
values were used in the computation of MacTag and MacTag′. That is, successful verification 260 
provides evidence that the key-confirmation provider has obtained the same MAC key as the key-261 
confirmation recipient. 262 

5.3 Random Bit Generators  263 

Whenever this Recommendation requires the use of a randomly generated value (for example, for 264 
obtaining keys or nonces), the values shall be generated using an approved random bit generator 265 
(RBG), as specified in SP 800-90,15 that supports an appropriate security strength.  266 

When an approved RBG is used to generate a secret value as part of a key-establishment scheme 267 
specified in this Recommendation (e.g., Z in a scheme from the KAS1 family), that RBG shall be 268 
                                                 
15 SP 800-90, Recommendation for Random Number Generation. 
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instantiated to support a security strength that is equal to or greater than the security strength 269 
associated with the RSA modulus length as specified in SP 800-57, Part 1.   270 

5.4 Nonces 271 

A nonce is a time-varying value that has a negligible chance of repeating (where the meaning of 272 
“negligible” may be application specific). This Recommendation requires party V to supply a 273 
nonce, NV, during the execution of key-agreement schemes in the KAS1 family (see Section 8.2). 274 
This nonce is included in the input to the key-derivation process, and (when key confirmation is 275 
employed) is also used in the computation of the MAC tag sent from party V to party U. 276 

A nonce may be composed of one (or more) of the following components (other components may 277 
also be appropriate): 278 

1. A random bit string that is generated anew for each nonce, using an approved random bit 279 
generator. A nonce containing a component of this type is called a random nonce.  280 

2. A timestamp of sufficient resolution (detail) so that it is different each time that it is used. 281 

3. A monotonically increasing sequence number, or 282 

4. A combination of a timestamp and a monotonically increasing sequence number such that 283 
the sequence number is reset when and only when the timestamp changes. (For example, a 284 
timestamp may show the date but not the time of day, so a sequence number is appended 285 
that will not repeat during a particular day.) 286 

For the KAS1 schemes, the required nonce NV should be a random nonce containing a random bit 287 
string output from an approved random bit generator (RBG), where both the security strength 288 
supported by the instantiation of the random bit generator and the bit length of the random bit 289 
string are greater than or equal to the targeted security strength of the key-agreement scheme in 290 
which the nonce is used; when feasible, the bit length of the random bit string should be (at least) 291 
twice the targeted security strength. For details concerning the security strength supported by an 292 
instantiation of a random bit generator, see SP 800-90. 293 

As part of the proper implementation of this Recommendation, system users and/or agents trusted 294 
to act on their behalf should determine that the components selected for inclusion in required 295 
nonces meet the security requirements of those users or agents. The application tasked with 296 
performing key establishment on behalf of a party should determine whether or not to proceed 297 
with a key-establishment transaction, based upon the perceived adequacy of the method(s) used to 298 
form the required nonces. Such knowledge may be explicitly provided to the application in some 299 
manner, or may be implicitly provided by the operation of the application itself.  300 

5.5 Key-Derivation Methods for Key-Establishment Schemes  301 

An approved key-derivation method shall be used to derive keying material from the shared secret 302 
Z during the execution of a key-establishment scheme from the KAS1 or KAS2 family of schemes. 303 
The shared secret shall be used only by an approved key-derivation method and shall not be used 304 
for any other purpose. 305 

When employed during the execution of a key-establishment scheme as specified in this 306 
Recommendation, the agreed-upon key-derivation method uses input that includes a freshly 307 
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created shared secret Z along with other information. The derived keying material shall be 308 
computed in its entirety before outputting any portion of it, and (all copies of) Z shall be treated 309 
as a critical security parameter and destroyed immediately following its use.  310 

The output produced by a key-derivation method using input that includes the shared secret created 311 
during the execution of any key-establishment scheme specified in this Recommendation shall 312 
only be used as secret keying material – such as a symmetric key used for data encryption or 313 
message integrity, a secret initialization vector, or, perhaps, a key-derivation key that will be used 314 
to generate additional keying material (possibly using a different process – see SP 800-10816). The 315 
derived keying material shall not be used as a key stream for a stream cipher. Non-secret keying 316 
material (such as a non-secret initialization vector) shall not be generated using a key-derivation 317 
method that includes the shared secret, Z, as input (this restriction applies to all one-step and two-318 
step key-derivation methods in SP 800-56C). 319 

5.5.1 Performing the Key Derivation 320 
Approved methods for key derivation from a shared secret are specified in SP 800-56C. These 321 
methods can be accessed using the following call: 322 

KDM(Z, OtherInput), 323 

where 324 

1. Z is a byte string that represents the shared secret,  325 

2. OtherInput consists of additional input information that may be required by a given key-326 
derivation method, for example: 327 

• L − an integer that indicates the bit length of the secret keying material to be derived, 328 

• salt − a byte string, 329 

• IV –  a bit string used as an initialization value, and 330 

• FixedInfo – a bit sting of context-specific data (see Section 5.5.2). 331 
See SP 800-56C for details concerning the appropriate form of OtherInput. 332 

5.5.2 FixedInfo  333 
The bit string FixedInfo should be used to ensure that the derived keying material is adequately 334 
“bound” to the context of the key-establishment transaction. Although other methods may be used 335 
to bind keying material to the transaction context, this Recommendation makes no statement as to 336 
the adequacy of these other methods. Failure to adequately bind the derived keying material to the 337 
transaction context could adversely affect the types of assurance that can be provided by certain 338 
key-establishment schemes. 339 

Context-specific information that may be appropriate for inclusion in FixedInfo includes the 340 
following: 341 

                                                 
16 SP 800-108, Recommendation for Key Derivation Using Pseudorandom Functions. 
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• Public information about parties U and V, such as names, e-mail addresses, and/or other 342 
identifiers.  343 

• The public keys contributed by each party to the key-establishment transaction. (For 344 
example, a certificate that contains the public key could be included.) 345 

• An identifier and/or other information associated with the RSA public key employed in the 346 
key-establishment transaction. For example, the hash of a certificate that contains that RSA 347 
public key could be included. 348 

• Other public and/or private information shared between parties U and V before or during 349 
the transaction, such as nonces, counters, or pre-shared secret data. (The inclusion of 350 
private or secret information shall be limited to situations in which that information is 351 
afforded adequate confidentiality protection.) 352 

• An indication of the protocol or application employing the key-establishment scheme. 353 

• Protocol-related information, such as a label or session identifier. 354 

• Agreed-upon encodings (as bit strings) of the values of one or more of the other 355 
parameters used as additional input to the KDM (e.g., L, salt, and/or IV). 356 

• An indication of the key-establishment scheme and/or key-derivation method used during 357 
the transaction. 358 

• An indication of various parameter or primitive choices (e.g., hash functions, MAC 359 
algorithms, MacTag lengths used for key confirmation, etc.). 360 

• An indication of how the keying material should be parsed, including an indication of 361 
which algorithm(s) will use the (parsed) keying material. 362 

For rationale in support of including entity identifiers, scheme identifiers, and/or other 363 
information in OtherInput, see Appendix B of SP 800-56A. 364 

When FixedInfo is used, the meaning of each information item and each item’s position within the 365 
FixedInfo bit string shall be specified. In addition, each item of information included in FixedInfo 366 
shall be unambiguously represented. For example, each item of information could take the form 367 
of a fixed-length bit string, or, if greater flexibility is needed, an item of information could be 368 
represented in a Datalen || Data format, where Data is a variable-length string of zero or more 369 
(eight-bit) bytes, and Datalen is a fixed-length, big-endian counter that indicates the byte length 370 
of Data. These requirements can be satisfied, for example, by using ASN.1 DER encoding as 371 
specified in Section 5.5.2.1.2. 372 

5.5.2.1 One-step Key Derivation 373 
Recommended formats for FixedInfo when used by a one-step key-derivation method are specified 374 
in Sections 5.5.2.1.1 and 5.5.2.1.2. One of those two formats should be used by a one-step key-375 
derivation method specified in SP 800-56C when the auxiliary function employed is H = hash.  376 

When FixedInfo is included during the key-derivation process, and the recommended formats are 377 
used, the included items of information shall be divided into (three, four, or five) subfields as 378 
defined below. 379 
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AlgorithmID: A required non-null subfield that indicates how the derived keying material will 380 
be parsed and for which algorithm(s) the derived secret keying material will be used. For 381 
example, AlgorithmID might indicate that bits 1 to 112 are to be used as a 112-bit HMAC key 382 
and that bits 113 to 240 are to be used as a 128-bit AES key. 383 

PartyUInfo: A required non-null subfield containing public information about party U. At a 384 
minimum, PartyUInfo shall include IDU, an identifier for party U, as a distinct item of 385 
information. This subfield could also include information about the public key (if any) 386 
contributed to the key-establishment transaction by party U. Although the schemes specified 387 
in the Recommendation do not require the contribution of a nonce by party U, any nonce 388 
provided by party U should be included in this subfield. 389 

PartyVInfo: A required non-null subfield containing public information about party V. At a 390 
minimum, PartyVInfo shall include IDV, an identifier for party V, as a distinct item of 391 
information. This subfield could also include information about the public key contributed to 392 
the key-establishment transaction by party V. When the key-derivation method is used in a 393 
KAS1 scheme (see Section 8.2), the nonce, NV, supplied by party V shall be included in this 394 
field.  395 

SuppPubInfo: An optional subfield that contains additional, mutually known public 396 
information (e.g., L, an identifier for the particular key-establishment scheme that was used to 397 
determine Z, an indication of the protocol or application employing that scheme, a session 398 
identifier, etc.; this is particularly useful if these aspects of the key-establishment transaction 399 
can vary). While an implementation may be capable of including this subfield, the subfield 400 
may be Null for a given transaction. 401 

SuppPrivInfo: An optional subfield that contains additional, mutually known private 402 
information (e.g., a secret symmetric key that has been communicated through a separate 403 
channel). While an implementation may be capable of including this subfield, the subfield may 404 
be Null for a given transaction. 405 

5.5.2.1.1 The Concatenation Format for FixedInfo 406 
This section specifies the concatenation format for FixedInfo. This format has been designed to 407 
provide a simple means of binding the derived keying material to the context of the key-408 
establishment transaction, independent of other actions taken by the relying application. Note: 409 
When the one-step key-derivation method specified in SP 800-56C is used with H = hash as the 410 
auxiliary function and this concatenation format for FixedInfo, the resulting key-derivation method 411 
is the Concatenation Key-Derivation Function specified in the original version of SP 800-56A. 412 

For this format, FixedInfo is a bit string equal to the following concatenation: 413 

        AlgorithmID || PartyUInfo || PartyVInfo {|| SuppPubInfo }{|| SuppPrivInfo }, 414 

where the five subfields are bit strings comprised of items of information as described in Section 415 
5.5.2.1.  416 

Each of the three required subfields AlgorithmID, PartyUInfo, and PartyVInfo shall be the 417 
concatenation of a pre-determined sequence of substrings in which each substring represents a 418 
distinct item of information. Each such substring shall have one of these two formats: either it is 419 
a fixed-length bit string, or it has the form Datalen || Data – where Data is a variable-length string 420 
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of zero or more (eight-bit) bytes, and Datalen is a fixed-length, big-endian counter that indicates 421 
the byte length of Data. (In this variable-length format, a null string of data shall be represented 422 
by a zero value for Datalen, indicating the absence of following data.) A protocol using this format 423 
for FixedInfo shall specify the number, ordering and meaning of the information-bearing 424 
substrings that are included in each of the subfields (i.e., AlgorithmID, PartyUInfo, and 425 
PartyVInfo), and shall also specify which of the two formats (fixed-length or variable-length) is 426 
used by each such substring to represent its distinct item of information. The protocol shall specify 427 
the lengths for all fixed-length quantities, including the Datalen counters. 428 

Each of the optional SuppPrivInfo and SuppPubInfo subfields (when allowed by the protocol 429 
employing the one-step key-derivation method) shall be the concatenation of a pre-determined 430 
sequence of substrings representing additional items of information that may be used during key 431 
derivation upon mutual agreement of parties U and V. Each substring representing an item of 432 
information shall be of the form Datalen || Data, where Data is a variable-length string of zero or 433 
more (eight-bit) bytes, and Datalen is a fixed-length, big-endian counter that indicates the byte 434 
length of Data; the use of this form for the information allows U and V to omit a particular 435 
information item without confusion about the meaning of the other information that is provided in 436 
the SuppPrivInfo or SuppPubInfo subfield. The substrings representing items of information that 437 
parties U and V choose not to contribute are set equal to Null, and are represented in this variable-438 
length format by setting Datalen equal to zero. If a protocol allows the use of the FixedInfo subfield 439 
SuppPrivInfo and/or the subfield SuppPubInfo, then the protocol shall specify the number, 440 
ordering and meaning of additional items of information that may be used in the allowed 441 
subfield(s) and shall specify the fixed-length of the Datalen counters. 442 

5.5.2.1.2 The ASN.1 Format for FixedInfo  443 
The ASN.1 format for FixedInfo provides an alternative means of binding the derived keying 444 
material to the context of the key-establishment transaction, independent of other actions taken by 445 
the relying application. Note: When the one-step key-derivation method specified in SP 800-56C 446 
is used with H = hash as the auxiliary function and with this ASN.1 format for FixedInfo, the 447 
resulting key-derivation method is the ASN.1 Key-Derivation Function specified in the original 448 
version of SP 800-56B. 449 

For the ASN.1 format, FixedInfo is a bit string resulting from the ASN.1 Distinguished Encoding 450 
Rules (DER) encoding (see ISO/IEC 8825-1) of a data structure comprised of a sequence of three 451 
required subfields AlgorithmID, PartyUInfo, and PartyVInfo, and, optionally, a subfield 452 
SuppPubInfo and/or a subfield SuppPrivInfo – as described in Section 5.5.2.1. A protocol using 453 
this format for FixedInfo shall specify the type, ordering and number of distinct items of 454 
information included in each of the (three, four, or five) subfields employed.  455 

5.5.2.2 Two-step Key-Derivation (Extraction-then-Expansion) 456 
For the two-step key-derivation method specified in SP 800-56C, FixedInfo is a bit string that 457 
contains component data fields such as a Label, Context information, and [L]2, where: 458 

• Label is a binary string that identifies the purpose of the derived keying material. The 459 
encoding method for the label is defined in a larger context, for example, in a protocol 460 
using the derivation method. 461 
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• Context is a binary string containing information relating to the derived keying material. 462 
Section 5.5.2 provides a list of context-specific information that may be appropriate for the 463 
inclusion in this string. 464 

• [L]2 is a binary string that specifies the length (in bits) of the keying material to be derived. 465 
Different orderings of the component data fields of FixedInfo may be used, and one or more of the 466 
data fields may be combined (or omitted under certain circumstances). See SP 800-108 and Section 467 
5 in SP 800-56C for details. 468 

5.5.2.3 Other Formats for FixedInfo 469 
Formats other than those provided in Sections 5.5.2.1 and 5.5.2.2 (e.g., those providing the items 470 
of information in a different arrangement) may be used for FixedInfo, but the context-specific 471 
information described in the preceding sections should be included (see the discussion in Section 472 
5.5.2). This Recommendation makes no statement as to the adequacy of other formats. 473 

5.6 Key Confirmation 474 

The term key confirmation (KC) refers to actions taken to provide assurance to one party (the key-475 
confirmation recipient) that another party (the key-confirmation provider) is in possession of a 476 
(supposedly) shared secret and/or to confirm that the other party has the correct version of keying 477 
material that was derived or transported during a key-establishment transaction (correct, that is, 478 
from the perspective of the key-confirmation recipient.) Such actions are said to provide unilateral 479 
key confirmation when they provide this assurance to only one of the participants in the key-480 
establishment transaction; the actions are said to provide bilateral key confirmation when this 481 
assurance is provided to both participants (i.e., when unilateral key confirmation is provided in 482 
both directions). 483 

Oftentimes, key confirmation is obtained (at least implicitly) by some means that are external to 484 
the key-establishment scheme employed during a transaction (e.g., by using a symmetric key that 485 
was established during the transaction to decrypt an encrypted message sent later by the key-486 
confirmation provider), but this is not always the case. In some circumstances, it may be 487 
appropriate to incorporate the exchange of explicit key-confirmation information as an integral 488 
part of the key-establishment scheme itself. The inclusion of key confirmation may enhance the 489 
security services that can be offered by a key-establishment scheme. For example, the key-490 
establishment schemes incorporating key confirmation that are specified in this Recommendation 491 
could be used to provide the KC recipient with assurance that the KC provider is in possession of 492 
the private key corresponding to the provider’s public key-establishment key, from which the 493 
recipient may infer that the provider is the owner of that key pair.  494 

For key confirmation to comply with this Recommendation, key confirmation shall be 495 
incorporated into an approved key-establishment scheme as specified in Sections 5.6.1, 5.6.2, 8 496 
and 9. If any other methods are used to provide key confirmation, this Recommendation makes no 497 
statement as to their adequacy. 498 

5.6.1 Unilateral Key Confirmation for Key-Establishment Schemes 499 
As specified in this Recommendation, unilateral key confirmation occurs when one participant in 500 
the execution of a key-establishment scheme (the key-confirmation “provider”) demonstrates to 501 
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the satisfaction of the other participant (the key-confirmation “recipient”) that both the KC 502 
provider and the KC recipient have possession of the same secret MacKey.  503 

MacKey shall be a symmetric key that is unique to a specific execution of a key-establishment 504 
scheme and (from the perspective of the KC provider) shall be unpredictable prior to that key-505 
establishment transaction. In the case of a key-agreement scheme, MacKey is derived using the 506 
shared secret Z created during the execution of that scheme (see Section 5.5 for the details of key 507 
derivation). In the case of a key-transport scheme, MacKey is included as part of the transported 508 
keying material. Step 2 below specifies how MacKey is to be extracted from the derived or 509 
transported keying material.  510 

MacKey and certain context-specific MacData (as specified below) are used by the KC provider 511 
as input to an approved MAC algorithm to obtain a MAC tag that is sent to the KC recipient. The 512 
recipient performs an independent computation of the MAC tag. If the MAC tag value computed 513 
by the KC recipient matches the MAC tag value received from the KC provider, then key 514 
confirmation is successful. (See Section 5.2 for MAC-tag generation and verification, and Section 515 
5.6.3 for a discussion of MAC-tag security.) 516 

In the case of a scheme providing key-agreement, successful key confirmation following key 517 
agreement provides assurance to the KC recipient that the same Z value has been used by both 518 
parties to correctly derive the keying material (which includes MacKey). In the case of a key-519 
transport scheme (see Section 9.2.4), successful key confirmation provides assurance to the KC 520 
recipient (who sent the keying material) that the transported keying material (which includes 521 
MacKey) has been correctly decrypted by the party to whom it was sent. 522 

A close examination of the KC process shows that each of the pair-wise key-establishment 523 
schemes specified in this Recommendation that incorporate key confirmation can be used to 524 
provide the KC recipient with assurance that the KC provider is currently in possession of the 525 
(correct) private key – the one corresponding to the KC provider’s public key-establishment key. 526 
The use of transaction-specific values for both MacKey and MacData prevents (for all practical 527 
purposes) the replay of any previously computed value of MacTag. The receipt of a correctly 528 
computed MAC tag provides assurance to the KC recipient that the KC provider has used the 529 
correct private key during the current transaction – to successfully recover the secret data that is a 530 
prerequisite to learning the value of MacKey. 531 

To include unilateral key confirmation, the following steps shall be incorporated into the scheme. 532 
(Additional details will be provided for each scheme in the appropriate subsections of Sections 8 533 
and 9.) In the discussion that follows, the key-confirmation provider, P, may be either party U or 534 
party V, as long as the KC provider, P, contributes a key pair to the key-establishment transaction. 535 
The key-confirmation recipient, R, is the other party. 536 

1. The provider, P, computes 537 

   MacDataP = message_stringP || IDP || IDR || EphemDataP || EphemDataR {|| TextP} 538 

where  539 

- message_stringP is a six-byte character string, with a value of “KC_1_U” when 540 
party U is providing the MAC tag, or “KC_1_V” when party V is providing the 541 
MAC tag. (Note that these values will be changed for bilateral key confirmation, as 542 
specified in Section 5.6.2). 543 
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- IDP is the identifier used to label the key-confirmation provider. 544 

- IDR is the identifier used to label the key-confirmation recipient.  545 

- EphemDataP and EphemDataR are (ephemeral) values contributed by the KC 546 
provider and recipient, respectively. These values are specified in the sections 547 
describing the schemes that include key confirmation. 548 

- TextP  is an optional bit string that may be used during key confirmation and that is 549 
known by both parties. 550 

The content of each of the components that are concatenated to form MacDataP shall be 551 
precisely defined and unambiguously represented. A particular component’s content may 552 
be represented, for example, as a fixed-length bit string or in the form Datalen || Data, 553 
where Data is a variable-length string of zero or more (eight-bit) bytes, and Datalen is a 554 
fixed-length, big-endian counter that indicates the length (in bytes) of Data. These 555 
requirements could also be satisfied by using a specific ASN.1 DER encoding of each 556 
component. It is imperative that the provider and recipient have agreed upon the content 557 
and format that will be used for each component of MacDataP. 558 

MacData shall include a non-null identifier, IDP, for the key-confirmation provider. 559 

Depending upon the circumstances, the key-confirmation recipient’s identifier, IDR, may 560 
be replaced by a null string. The rules for selecting IDP and IDR are as follows: 561 

As specified in this Recommendation, the key-confirmation provider must own a key 562 
pair that is employed by the basic key-establishment scheme (KAS1-basic, KAS2-563 
basic or KTS-OAEP-basic) that determines the MacKey value used in the key-564 
confirmation computations performed during the transaction. The identifier, IDp, 565 
included in MacDataP shall be one that has a trusted association with the public key of 566 
that key pair.  567 

If the key-confirmation recipient also owns a key pair that is employed by the basic 568 
key-establishment scheme used during the transaction, then the identifier, IDR, included 569 
in  MacDataP shall be one that has a trusted association with the public key of that key 570 
pair.  571 

If the key-confirmation recipient does not own a key pair employed for key-572 
establishment purposes, and no identifier has been used to label that party during the 573 
execution of the basic key-establishment scheme employed by the transaction, then IDR 574 
may be replaced by a null string. However, if an identifier is desired/required for that 575 
party for key confirmation purposes, then a non-null value for IDR, shall be 576 
selected/assigned in accordance with the requirements of the protocol relying upon the 577 
transaction. 578 

Whenever a particular identifier has been used to label the key-confirmation recipient 579 
or key-confirmation provider in the execution of the basic key-establishment scheme 580 
used during the transaction, that same identifier shall be used as IDP or IDR, 581 
respectively, in theMacDataP used during key confirmation.  For example, if party U 582 
is the key-confirmation recipient, and IDU has been used to label party U in the 583 
FixedInfo employed by the key-derivation method of a key-agreement scheme used 584 
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during the transaction, then the MacDataP used during key confirmation shall have IDR 585 
= IDU.  586 

2. When a KAS1 or KAS2 key-agreement scheme is used: After computing the shared secret 587 
Z and applying the key-derivation function to obtain the derived keying material, 588 
DerivedKeyingMaterial (see Section 5.5), the KC provider uses agreed-upon bit lengths to 589 
parse DerivedKeyingMaterial into two parts, MacKey and KeyData: 590 

MacKey || KeyData = DerivedKeyingMaterial. 591 

When the KTS-OAEP key-transport scheme is used: The KC provider parses the 592 
TransportedKeyingMaterial into MacKey and KeyData: 593 

MacKey || KeyData = TransportedKeyingMaterial. 594 

3. Using an agreed-upon bit length MacTagBits, the KC provider computes MacTagP (see 595 
Sections 5.2.1 and 5.6.3): 596 

MacTagP = TMacTagBits[MAC (MacKey, MacDataP)], 597 

and sends it to the KC recipient. 598 

4. The KC recipient forms MacDataP, determines MacKey, computes MacTagP in the same 599 
manner as the KC provider, and then compares its computed MacTagP to the value received 600 
from the provider. If the received value is equal to the computed value, then the recipient 601 
is assured that the provider has used the same value for MacKey and that the provider shares 602 
the recipient’s value of MacTagP.  603 

Each participant shall destroy all copies of the MacKey that was employed for key-confirmation 604 
purposes during a particular pair-wise key-establishment transaction when MacKey is no longer 605 
needed to provide or obtain key confirmation as part of that transaction.  606 

If MacTagP cannot be verified by the KC recipient during a particular key-establishment 607 
transaction, then key confirmation has failed, and both participants shall destroy all of their copies 608 
of MacKey and KeyData. In particular, MacKey and KeyData shall not be revealed by either 609 
participant to any other party (not even to the other participant), and the keying material shall not 610 
be used for any further purpose. In the case of a key-confirmation failure, the key-establishment 611 
transaction shall be terminated. 612 

Note: The key-confirmation routines employed by the KC provider and KC recipient shall 613 
destroy all local copies of MacKey, MacData, destroyable copies of KeyData and any other 614 
locally stored values used or produced during their execution. Their destruction shall occur 615 
prior to or during any exit from those routines – whether exiting normally or exiting early, 616 
because of an error. 617 

Unilateral key confirmation, as specified in this Recommendation, can be incorporated into any 618 
key-establishment scheme in which the key-confirmation provider is required to own a key-619 
establishment key pair that is used in the key-establishment process. Unilateral key confirmation 620 
may be added in either direction to a KAS2 scheme (see Sections 8.3.3.2 and 8.3.3.3); it may 621 
also be added to a KAS1 or KTS-OAEP scheme, but only with party V (the party contributing 622 
the key pair) acting as the key-confirmation provider, and party U acting as the key-confirmation 623 
recipient (see Sections 8.2.3.1 and 9.2.4.2). 624 
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5.6.2 Bilateral Key Confirmation for KAS2 Schemes 625 
Bilateral key confirmation, as specified in this Recommendation, can be incorporated into a KAS2 626 
key-agreement scheme since each party is required to own a key-establishment key pair that is 627 
used in the key-agreement process. Bilateral key confirmation is accomplished by performing 628 
unilateral key confirmation in both directions (with party U providing MacTagU to KC recipient 629 
V, and party V providing MacTagV to KC recipient U) during the same scheme.  630 

To include bilateral key confirmation, two instances of unilateral key confirmation (as specified 631 
in Section 5.6.1, subject to the modifications listed below) shall be incorporated into the KAS2 632 
scheme, once with party U as the key-confirmation provider (i.e., P = U and R = V) and once with 633 
party V as the key-confirmation provider (i.e., P = V and R = U). Additional details will be 634 
provided in Section 8.3.3.4. 635 

In addition to setting P = U and R = V in one instance of the unilateral key-confirmation procedure 636 
described in Section 5.6.1 and setting P = V and R = U in a second instance, the following 637 
changes/clarifications apply when using the procedure for bilateral key confirmation:  638 

1. When computing MacTagU, the value of message_stringU that forms the initial segment 639 
of MacDataU is the six-byte character string “KC_2_U”. 640 

2. When computing MacTagV, the value of message_stringV that forms the initial segment of 641 
MacDataV is the six-byte character string “KC_2_V”. 642 

3. If used at all, the value of the (optional) byte string TextU used to form the final segment 643 
of MacDataU can be different than the value of the (optional) byte string TextV used to 644 
form the final segment of MacDataV, provided that both parties are aware of the value(s) 645 
used. 646 

4. The identifiers used to label the parties U and V when forming MacDataU shall be the same 647 
as the identifiers used to label the parties U and V when forming MacDataV, although IDU 648 
and IDV will play different roles in the two strings.  If IDP = IDU and IDR = IDV are used in 649 
MacDataU, then IDP = IDV and IDR = IDU are used in MacDataV. 650 

5.6.3 Selecting the MAC and Other Key-Confirmation Parameters 651 
Key confirmation as specified in this Recommendation requires that a MacKey of an appropriate 652 
length be generated or obtained as part of the derived keying material (see Section 5.6.1). The 653 
MacKey is then used with a MAC algorithm to generate a MAC; the length of the MAC output by 654 
the MAC algorithm is MacOutputBits bits. The MAC is subsequently used to form a MAC tag 655 
(see Section 5.6.1 for the generation of the MAC and Section 5.2.1 for the formation of the MAC 656 
tag from the MAC). 657 

Table 1 provides a list of approved MAC algorithms for key confirmation and the security 658 
strengths that each can support, along with the corresponding value of MacOutputBits and 659 
permissible MacKey lengths for each MAC algorithm.  660 

 661 

 662 

 663 

 664 
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Table 1: Approved MAC Algorithms for Key Confirmation. 665 

MAC Algorithm MacOutputBits 
 

Permissable 
MacKey Lengths 

(µ bits) 

Supported Security 
Strengths for Key 

Confirmation   

(s bits) 

HMAC_SHA-1) 160 

s ≤  µ ≤ 512 

 

112 ≤  s ≤ 256 

HMAC_SHA-224 224 

HMAC_SHA-256 256 

HMAC_SHA-512/224 224 

HMAC_SHA-512/256 256 

HMAC_SHA-384 384 

HMAC_SHA-512 512 

HMAC_SHA3-224 224 

HMAC_SHA3-256 256 

HMAC_SHA3-384 384 

HMAC_SHA3-512 512 

KMAC128 ≤ 22040 – 1 

(see * below) 

112 ≤  s ≤ 128 

KMAC256 112 ≤  s ≤  256 

AES-128-CMAC  128 µ = 128 112 ≤  s ≤ 128 

AES-192-CMAC  128 µ = 192 112 ≤  s ≤ 192 

AES-256-CMAC  128 µ = 256 112  ≤  s ≤ 256 

* Although KMAC128 and KMAC256 can accommodate MacOutputBits values as large as 666 
22040 − 1, practical considerations dictate that the lengths of transmitted MAC tags be 667 
limited to sizes that are more realistic and commensurate with the actual 668 
performance/security requirements of the relying applications. 669 

The MAC algorithm used to compute a key-confirmation MAC tag in compliance with this 670 
Recommendation shall be selected from among the approved MAC algorithms capable of 671 
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supporting a security strength s that is at least as large as the targeted security strength of the key-672 
establishment scheme (as indicated in Table 1 above). 673 

Note that when the HMAC or KMAC algorithm is used for key confirmation as specified in this 674 
Recommendation, MacKey lengths can be no greater than 512 bits (an upper bound that is at least 675 
twice the maximum supported security strength). Although the HMAC and KMAC specifications 676 
permit the use of longer keys, the 512-bit maximum is sufficient for this key-confirmation 677 
application. In the case of HMAC, the 512-bit upper bound has the advantage of being less than 678 
the input block length of whatever hash function is used in the algorithm’s implementation. If 679 
MacKey were allowed to be longer than the input block length, it would be hashed down to a string 680 
of length MacOutputBits during the HMAC computation (see step 2 in Table 1 of FIPS 198); 681 
allowing MacKey to be longer than the input block length would not be an efficient use of keying 682 
material. 683 

The length of the MAC tag for key confirmation also needs to be selected. Note that in many cases, 684 
the length of the MAC tag (MacTagBits) has been selected by the protocol in which the key-685 
establishment is conducted. MacTagBits shall be at least 64 bits, and its maximum length shall be 686 
no more than MacOutputBits for the MAC algorithm selected for key confirmation. The 64-bit 687 
minimum for the MAC tag length assumes that the protocol imposes a limit on the number of 688 
retries for key confirmation. 689 

6 RSA Key Pairs 690 

6.1 General Requirements 691 

The following are requirements on RSA key pairs (see SP 800-57): 692 

1. Each key pair shall be created using an approved key-generation method as specified in 693 
Section 6.3. 694 

2. The private keys and prime factors of the modulus shall be protected from unauthorized 695 
access, disclosure, and modification.  696 

3. Public keys shall be protected from unauthorized modification. This is often accomplished 697 
by using public-key certificates that have been signed by a Certification Authority (CA).  698 

4. A recipient of a public key shall be assured of the integrity and correct association of (a) 699 
the public key and (b) an identifier of the entity that owns the key pair (that is, the party 700 
with whom the recipient intends to establish secret keying material). This assurance is often 701 
provided by verifying a public-key certificate that was signed by a trusted third party (for 702 
example, a CA), but may be provided by direct distribution of the public key and identifier 703 
from the owner, provided that the recipient trusts the owner and distribution process to do 704 
this.  705 

5. One key pair shall not be used for different cryptographic purposes (for example, a digital-706 
signature key pair shall not be used for key establishment or vice versa), with the following 707 
possible exception: when requesting the certificate for a public key-establishment key, the 708 
private key-establishment key associated with the public key may be used to sign the 709 
certificate request (see SP 800-57, Part 1 on Key Usage for further information). A key pair 710 
may be used in more than one key-establishment scheme.  However, a key pair used for 711 
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schemes specified in this Recommendation should not be used for any schemes not 712 
specified herein.  713 

6. The owner of a key pair shall have assurance of the key pair’s validity (see Section 6.4.1.1); 714 
that is, the owner shall have assurance of the correct generation of the key pair (see Section 715 
6.3), consistent with the criteria of Section 6.2; assurance of private and public-key 716 
validity; and assurance of pair-wise consistency.   717 

7. A recipient of a public key shall have assurance of the validity of the public key (see 718 
Section 6.4.2.1). This assurance may be provided, for example, through the use of a public-719 
key certificate if the CA obtains sufficient assurance of public-key validity as part of its 720 
certification process.  721 

8. A recipient of a public key shall have assurance of the owner’s possession of the associated 722 
private key (see Section 6.4.2.3). This assurance may be provided, for example, through 723 
the use of a public key certificate if the CA obtains sufficient assurance of possession as 724 
part of its certification process.  725 

6.2 Criteria for RSA Key Pairs for Key Establishment 726 

6.2.1 Definition of a Key Pair 727 
A valid RSA key pair, in its basic form, shall consist of an RSA public key (n, e) and an RSA 728 
private key (n, d), where: 729 

1. n, the public modulus, shall be the product of exactly two distinct, odd positive prime 730 
factors, p and q, that are kept secret. Let len(n) = nBits, the bit length of n; len(n) is required 731 
to be even. 732 

2. The public exponent e shall be an odd integer that is selected prior to the generation of p 733 
and q such that: 734 

65,537 ≤ e < 2256 735 

3. The prime factors p and q shall be generated using one of the methods specified in 736 
Appendix B.3 of FIPS 186 such that: 737 

a. 2(nBits − 1)/2 < p < 2nBits/2. 738 

b.  2(nBits − 1)/2 < q < 2nBits/2. 739 

c. |p – q| > 2nBits/2−100. 740 

d.   The exponent e must be mutually prime with both p − 1 and q − 1: 741 

GCD(e, LCM(p − 1, q − 1)) = 1. 742 
4. The primes p and q, and the private exponent d shall be selected such that: 743 

a. 2nBits/2 < d < LCM(p−1, q−1), and 744 

b. d = e−1 mod (LCM(p−1, q−1)). 745 
Note that these criteria are also specified in FIPS 186. 746 
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6.2.2 Formats 747 
The RSA private key may be expressed in several formats. The basic format of the RSA private 748 
key consists of the modulus n and a private-key exponent d that depends on n and the public-key 749 
exponent e; this format is used to specify the RSA primitives and operations in Section 7. The 750 
other two formats may be used in implementations, but may require appropriate modifications for 751 
correct implementation. To facilitate implementation testing, the format for the private key shall 752 
be one of the following: 753 

1. The basic format: (n, d). 754 

2. The prime-factor format: (p, q, d). 755 

3. The Chinese Remainder Theorem (CRT) format: (n, e, d, p, q, dP, dQ, qInv), where dP = 756 
d mod (p – 1), dQ = d mod (q – 1), and qInv = q–1 mod p. Note that Section 7.1.2 discusses 757 
the use of the private key expressed using the CRT format during the execution of the RSA 758 
decryption primitive. 759 

Key-pair generators and key-pair validation methods are given for each of these formats in 760 
Sections 6.3 and 6.4, respectively. 761 

6.3 RSA Key-Pair Generators 762 

The key pairs employed by the key-establishment schemes specified in this Recommendation shall 763 
be generated using the techniques specified in Appendix B.3 of FIPS 186, employing the requisite 764 
methods for prime-number generation, primality testing, etc., that are specified in Appendix C of 765 
that document. Note that these generation methods ensure that the prime factors p and q have the 766 
same bit length and that their product, n (the RSA modulus), has a bit length that is exactly twice 767 
the length of its factors. 768 

An approved RSA key-pair generator and approved random bit generator (RBG) shall be used 769 
to produce an RSA key pair.  Any modulus with an even bit length that provides at least 112 bits 770 
of security strength may be used. Commonly used modulus lengths and their associated security 771 
strengths are given in Table 2. For other modulus lengths, Appendix D provides a method for 772 
estimating the security strength that can be supported. 773 

Table 2: Security Strengths Supported by Commonly Used Modulus Lengths17 774 

Modulus Bit length (nBits) Estimated Maximum 
Security Strength 

2048 112 

3072 128 

4096 152 

6144 176 

                                                 
17 The 15,384-bit modulus length was not included because it is impractical to implement. 
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8192 200 

Approved RBGs are discussed in Section 5.3. The approved RSA key-pair generators are 775 
provided in Sections 6.3.1 and 6.3.2, and are differentiated by the method for determining the 776 
public-key exponent e that is used as part of an RSA public key (i.e., (n, e)); Section 6.3.1 addresses 777 
the use of a fixed value for the exponent, whereas Section 6.3.2 uses a randomly generated value.  778 

For the following methods in Section 6.3 and the assurances in Section 6.4, let S(nBits) denote the 779 
estimated maximum security strength for a modulus of bit length nBits as determined by Table 2 780 
or Appendix D. 781 

6.3.1 RSAKPG1 Family: RSA Key-Pair Generation with a Fixed Public Exponent 782 
The RSAKPG1 family of key-pair generation methods consists of three RSA key-pair generators 783 
where the public exponent has a fixed value (see Section 6.2).  784 

Three representations are addressed: 785 

1. rsakpg1-basic generates the private key in the basic format (n, d); 786 

2. rsakpg1-prime-factor generates the private key in the prime-factor format (p, q, d); and 787 

3. rsakpg1-crt generates the private key in the Chinese Remainder Theorem format (n, e, d, 788 
p, q, dP, dQ, qInv). 789 

An implementation may perform a key-pair validation before the key pair is output from the 790 
generator. The key-pair validation methods for this family are specified in Section 6.4.1.2. 791 

6.3.1.1 rsakpg1-basic 792 
rsakpg1-basic is the generator in the RSAKPG1 family where the private key is in the basic format 793 
(n, d).  794 

Function call: rsakpg1-basic(s, nBits, e) 795 
Input: 796 

1. s: the targeted security strength; 797 

2. nBits: the intended bit length of the RSA modulus; and 798 

3. e: a pre-determined public exponent − an odd integer, such that 65,537 ≤ e < 2256. 799 

Process: 800 
1. Check the values: 801 

a. If s is not in the range [112, 256], output an indication that the targeted security 802 
strength is not acceptable, and exit without further processing. 803 

b. If s > S(nBits), output an indication that the modulus length is not adequate for the 804 
targeted security strength, and exit without further processing. 805 

c. If e is not an odd integer such that 65,537 ≤ e < 2256, output an indication that the 806 
exponent is out of range, and exit without further processing. 807 
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2. Generate the prime factors p and q, as specified in FIPS 186. Note that the routines ensure 808 
that p – 1 and q – 1 are relatively prime to e.  809 

3. Determine the private exponent d: 810 

d = e–1 mod LCM(p – 1, q – 1) . 811 

In the very rare event that d ≤ 2nBits/2, discard the results of all computations and repeat the 812 
process, starting at step 2. 813 

4. Determine the modulus n as n = p × q, the product of p and q.  814 

5. Perform a pair-wise consistency test18 by verifying that m is the same as (me)d mod n for 815 
some integer m satisfying 1 < m < n − 1. If an inconsistency is found, output an indication 816 
of a pair-wise consistency failure, and exit without further processing. 817 

6. Output (n, e) as the public key, and (n, d) as the private key. 818 

Output: 819 

1. (n, e): the RSA public key, and 820 

2. (n, d): the RSA private key in the basic format. 821 

Errors: Indications of the following: 822 

1. The targeted security strength is not acceptable, 823 

2. The intended modulus bit length is not adequate for the targeted security strength, 824 

3. The fixed public exponent is out of range, or 825 

4. Pair-wise consistency failure. 826 

 Note that key-pair validation, as specified in Section 6.4.1.2.1, can be performed after step 5 and 827 
before step 6 of the process above. If an error is detected during the validation process, output an 828 
indication of a key-pair validation failure, and exit without further processing. 829 

A routine that implements this generation function shall destroy any local copies of p, q, and d, as 830 
well as any other locally stored values used or produced during its execution. Their destruction 831 
shall occur prior to or during any exit from the routine (whether exiting early because of an error, 832 
or exiting normally with the output of an RSA key pair). Note that the requirement for destruction 833 
includes any locally stored portions of the output key pair. 834 

                                                 
18 Although the previous steps should have theoretically produced a valid key pair, this step is required to ensure that 

implementation errors do not result in an invalid key pair. 
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6.3.1.2 rsakpg1-prime-factor 835 
rsakpg1-prime-factor is the generator in the RSAKPG1 family such that the private key is in the 836 
prime factor format (p, q, d). 837 

Function call: rsakpg1-prime-factor(s, nBits, e) 838 

The inputs, outputs and errors are the same as in rsakpg1-basic (see Section 6.3.1.1) except that 839 
the private key is in the prime-factor format: (p, q, d). 840 

The steps are the same as in rsakpg1-basic except that processing Step 6 is replaced by the 841 
following: 842 

6. Output (n, e) as the public key, and (p, q, d) as the private key. 843 

Note that key-pair validation, as specified in Section 6.4.1.2.2, can be performed after step 5 and 844 
before step 6. If an error is detected during the validation process, output an indication of a key-845 
pair validation failure, and exit without further processing.  846 

A routine that implements this generation function shall destroy any local copies of p, q, and d, as 847 
well as any other locally stored values used or produced during its execution. Their destruction 848 
shall occur prior to or during any exit from the routine (whether exiting early, because of an error, 849 
or exiting normally, with the output of an RSA key pair). Note that the requirement for destruction 850 
includes any locally stored portions of the output key pair. 851 

6.3.1.3 rsakpg1-crt 852 
rsakpg1-crt is the generator in the RSAKPG1 family such that the private key is in the Chinese 853 
Remainder Theorem format (n, e, d, p, q, dP, dQ, qInv). 854 

Function call: rsakpg1-crt(s, nBits, e) 855 

The inputs, outputs and errors are the same as in rsakpg1-basic (see Section 6.3.1.1) except that 856 
the private key is in the Chinese Remainder Theorem format: (n, e, d, p, q, dP, dQ, qInv). 857 

The steps are the same as in rsakpg1-basic except that processing steps 5 and 6 are replaced by the 858 
following: 859 

5. Determine the components dP, dQ and qInv: 860 

a. dP = d mod (p – 1). 861 

b. dQ = d mod (q – 1). 862 

c. qInv = q–1 mod p.  863 

6. Perform a pair-wise consistency test19 by verifying that m = (me)d mod n for some integer 864 
m satisfying 1 < m < n − 1. If an inconsistency is found, output an indication of a pair-wise 865 
consistency failure, and exit without further processing. 866 

7. Output (n, e) as the public key, and (n, e, d, p, q, dP, dQ, qInv) as the private key.  867 

                                                 
19 Although the previous steps should have theoretically produced a valid key pair, this step is required to ensure that 

implementation errors do not result in an invalid key pair. 
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Note that key-pair validation, as specified in Section 6.4.1.2.3, can be performed after step 6 and 868 
before step 7. If an error is detected during the validation process, output an indication of a key-869 
pair validation failure, and exit without further processing.  870 

A routine that implements this generation function shall destroy any local copies of p, q, dP, dQ, 871 
qInv, and d, as well as any other locally stored values used or produced during its execution. Their 872 
destruction shall occur prior to or during any exit from the routine (whether exiting early because 873 
of an error or exiting normally with the output of an RSA key pair). Note that the requirement for 874 
destruction includes any locally stored portions of the output key pair. 875 

6.3.2 RSAKPG2 Family: RSA Key-Pair Generation with a Random Public 876 
Exponent 877 

The RSAKPG2 family of key-pair generation methods consists of three RSA key-pair generators 878 
such that the public exponent e is a random value in the range 65,537 ≤ e < 2256. 879 

Three representations are addressed: 880 

1. rsakpg2-basic generates the private key in the basic format (n, d); 881 

2. rsakpg2-prime-factor generates the private key in the prime factor format (p, q, d); and 882 

3. rsakpg2-crt generates the private key in the Chinese Remainder Theorem format (n, e, d, 883 
p, q, dP, dQ, qInv). 884 

An implementation may perform a key-pair validation before outputting the key pair from the 885 
generation function. The key-pair validation methods for this family are specified in Section 886 
6.4.1.3. 887 

6.3.2.1 rsakpg2-basic 888 
rsakpg2-basic is the generator in the RSAKPG2 family such that the private key is in the basic 889 
format (n, d).  890 

Function call: rsakpg2-basic(s, nBits, eBits) 891 

Input: 892 

1. s: the targeted security strength; 893 

2. nBits: the intended bit length of the RSA modulus; and 894 

3. eBits: the intended bit length of the public exponent − an integer such that 17 ≤ eBits ≤ 256. 895 
Note that the public exponent shall be an odd integer such that 65,537 ≤ e < 2256. 896 

Process: 897 

1. Check the values: 898 

a. If s is not in the range [112, 256], output an indication that the targeted security 899 
strength is not acceptable, and exit without further processing. 900 

b. If s > S(nBits), output an indication that the modulus length is not adequate for the 901 
targeted security strength, and exit without further processing. 902 
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c. If eBits is not an integer such that 17 ≤ eBits ≤ 256, output an indication that the 903 
exponent length is out of range, and exit without further processing. 904 

2. Generate an odd public exponent e in the range [2eBits – 1 + 1, 2eBits – 1] using an approved 905 
RBG (see Section 5.3). 906 

3. Generate the prime factors p and q as specified in FIPS 186. Note that the routines ensure 907 
that p – 1 and q – 1 are relatively prime to e. 908 

4. Determine the private exponent d: 909 

  d = e–1 mod LCM(p – 1, q – 1). 910 

In the event that no such d exists, or in the very rare event that d ≤ 2nBits/2, discard the results 911 
of all computations and repeat the process, starting at step 2. 912 

5. Determine the modulus n as n = p × q, the product of p and q.  913 
6. Perform a pair-wise consistency test20 by verifying that m is the same as (me)d mod n for 914 

some integer m satisfying 1 < m < n − 1. If an inconsistency is found, output an indication 915 
of a pair-wise consistency failure, and exit without further processing. 916 

7. Output (n, e) as the public key and (n, d) as the private key. 917 

Output: 918 

1. (n, e): the RSA public key; and 919 

2. (n, d): the RSA private key in the basic format. 920 

Errors: Indications of the following: 921 

1. The targeted security strength is not acceptable, 922 

2. The intended modulus bit length is not adequate for the targeted security strength, 923 

3. The intended exponent bit length is out of range, or 924 

4. Pair-wise consistency failure. 925 

Note that key-pair validation, as specified in Section 6.4.1.3.1, can be performed after step 6 and 926 
before step 7 of the process above. If an error is detected during the validation process, output an 927 
indication of a key-pair validation failure, and exit without further processing. 928 

A routine that implements this generation function shall destroy any local copies of p, q, and d, as 929 
well as any other locally stored values used or produced during its execution. Their destruction 930 
shall occur prior to or during any exit from the routine (whether exiting early, because of an error, 931 
or exiting normally, with the output of an RSA key pair). Note that the requirement for destruction 932 
includes any locally stored portions of the output key pair. 933 

                                                 
20 Although the previous steps should have theoretically produced a valid key pair, this step is required to ensure that 

implementation errors do not result in an invalid key pair. 
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6.3.2.2 rsakpg2-prime-factor 934 
rsakpg2-prime-factor is the generator in the RSAKPG2 family such that the private key is in the 935 
prime-factor format (p, q, d). 936 

Function call: rsakpg2-prime-factor(s, nBits, eBits) 937 

The inputs, outputs and errors are the same as in rsakpg2-basic (see Section 6.3.2.1) except that 938 
the private key is in the prime-factor format: (p, q, d). 939 

The steps are the same as in rsakpg2-basic except that processing Step 7 is replaced by the 940 
following: 941 

7. Output (n, e) as the public key, and (p, q, d) as the private key. 942 

Note that key-pair validation as specified in Section 6.4.1.3.2 can be performed after step 6 and 943 
before step 7. If an error is detected during the validation process, output an indication of a key-944 
pair validation failure, and exit without further processing. 945 

A routine that implements this generation function shall destroy any local copies of p, q, and d, as 946 
well as any other locally stored values used or produced during its execution. Their destruction 947 
shall occur prior to or during any exit from the routine (whether exiting early because of an error 948 
or exiting normally with the output of an RSA key pair). Note that the requirement for destruction 949 
includes any locally stored portions of the output key pair. 950 

6.3.2.3 rsakpg2-crt 951 
rsakpg2-crt is the generator in the RSAKPG2 family such that the private key is in the Chinese 952 
Remainder Theorem format (n, e, d, p, q, dP, dQ, qInv). 953 

Function call: rsakpg2-crt(s, nBits, eBits) 954 

The inputs, outputs and errors are the same as in rsakpg2-basic (see Section 6.3.2.1) except that 955 
the private key is in the Chinese Remainder Theorem format: (n, e, d, p, q, dP, dQ, qInv). 956 

The steps are the same as in rsakpg2-basic except that processing Steps 6 and 7 are replaced by 957 
the following: 958 

6. Determine the components dP, dQ and qInv: 959 

a. dP = d mod (p – 1). 960 

b. dQ = d mod (q – 1). 961 

c. qInv = q–1 mod p.  962 

7. Perform a pair-wise consistency test21 by verifying that m is the same as (me)d mod n for 963 
some integer m satisfying 1 < m < n − 1. If an inconsistency is found, output an indication 964 
of a pair-wise consistency failure, and exit without further processing. 965 

8. Output (n, e) as the public key, and (n, e, d, p, q, dP, dQ, qInv) as the private key. 966 

                                                 
21 Although the previous steps should have theoretically produced a valid key pair, this step is required to ensure that 

implementation errors do not result in an invalid key pair. 
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Note that key-pair validation as specified in Section 6.4.1.3.3 can be performed after step 7 and 967 
before step 8. If an error is detected during the validation process, output an indication of a key-968 
pair validation failure, and exit without further processing.  969 

A routine that implements this generation function shall destroy any local copies of p, q, dP, dQ, 970 
qInv, and d, as well as any other locally stored values used or produced during its execution. Their 971 
destruction shall occur prior to or during any exit from the routine (whether exiting early because 972 
of an error, or exiting normally with the output of an RSA key pair). Note that the requirement for 973 
destruction includes any locally stored portions of the output key pair. 974 

6.4 Required Assurances  975 

Secure key establishment depends upon the use of valid key-establishment keys. The security of 976 
key-establishment schemes also depends on limiting knowledge of the private keys to those who 977 
have been authorized to use them (i.e., their respective owners) and to the trusted third party that 978 
may have generated them.22 In addition to preventing unauthorized entities from gaining access to 979 
private keys, it is also important that owners have possession of the correct private keys. 980 

To explain the assurance requirements, some terminology needs to be defined. The owner of a key 981 
pair is the entity that is authorized to use the private key that corresponds to the owner’s public 982 
key, whether or not the owner generated the key pair. The recipient of a public key is the entity 983 
that is participating in a key-establishment transaction with the owner and obtains the owner’s 984 
public key before or during the current transaction. 985 

Prior to or during a key-establishment transaction, the participants in the transaction (i.e., parties 986 
U and V) shall obtain the appropriate assurances about the key pairs used during that transaction. 987 
The types of assurance that may be sought by one or both of the parties (U and/or V) concerning 988 
the components of a key pair (i.e., the private key and public key) are discussed in Sections 6.4.1 989 
and 6.4.2. 990 

6.4.1 Assurances Required by the Key-Pair Owner 991 
Prior to the use of a key pair in a key-establishment transaction, the key-pair owner shall have 992 
assurance of the validity of the key pair. Assurance of key-pair validity provides assurance that a 993 
key pair was generated in accordance with the requirements in Sections 6.2 and 6.3. Key-pair 994 
validity implies public-key validity and assurance of possession of the correct private key. 995 
Assurance of key-pair validity can only be provided by an entity that has the private key (e.g., the 996 
owner). Depending on an organization’s requirements, a renewal of key-pair validity may be 997 
prudent. The method of obtaining initial and renewed assurance of key-pair validity is addressed 998 
in Section 6.4.1.1. 999 

Assurance of key-pair validity can be renewed at any time (see Section 6.4.1.1).  As time passes, 1000 
an owner may lose possession of the correct value of the private-key component of their key pair, 1001 
e.g., due to an error; for this reason, renewed (i.e., current) assurance of possession of a private 1002 
key can be of value for some applications. See Section 6.4.1.5 for techniques that the owner can 1003 

                                                 
22 The trusted third party is trusted not to use or reveal the distributed private keys. 



NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT 
 USING INTEGER FACTORIZATION CRYPTOGRAPHY 

45 

 

use to obtain renewed assurance of private-key possession separately from assurance of key-pair 1004 
validity. 1005 

6.4.1.1 Obtaining Owner Assurance of Key-Pair Validity 1006 
Assurance of key-pair validity shall be obtained  by its owner prior to the first use of the key pair 1007 
in a key-establishment transaction (see Section 4.1) by successfully completing the following 1008 
three-step process: 1009 

1. Key-pair generation: Assurance that the key pair has been correctly formed, in a manner 1010 
consistent with the criteria of Section 6.2, is obtained using one of the following two 1011 
methods: 1012 

a. Owner generation – The owner obtains the desired assurance if it generates the 1013 
public/private key pair as specified in Section 6.3. 1014 

b. TTP generation – The owner obtains the desired assurance when a trusted third 1015 
party (TTP) who is trusted by the owner generates the public/private key pair as 1016 
specified in Section 6.3 and provides it to the owner.  1017 

2. Key-pair consistencey: The owner shall perform a pair-wise consistency test by verifying 1018 
that m = (me)d mod n for some integer m satisfying 1 < m < n − 1. Note that if the owner 1019 
generated the key pair (see method 1.a above), an initial pair-wise consistency test was 1020 
performed during key-pair generation (see Section 6.3). If a TTP generated the key pair 1021 
and provided it to the owner (see method 1.b above), the owner shall perform the 1022 
consistency check separately, prior to the first use of the key pair in a key-establishment 1023 
transaction (see Section 4.1).  1024 

3. Key-pair validation: A key pair shall be validated using one of the following methods: 1025 

a. The owner performs key-pair validation: The owner either 1026 

1) Performs a successful key-pair validation while generating the key pair (see 1027 
Section 6.3), or  1028 

2)  Performs a successful key-pair validation separately from key-pair generation 1029 
(regardless of whether the owner or a TTP generated the key pair) (see Section 1030 
6.4.1.2, 6.4.1.3 or 6.4.1.4).  1031 

b. The TTP performs key-pair validation: A trusted third party (trusted by the owner) 1032 
either 1033 

1)  Performs a successful key-pair validation while generating the key pair (see 1034 
Section 6.3), or  1035 

2)  Performs a successful key-pair validation separately from key-pair generation 1036 
(as specified in Sections 6.4.1.2,  6.4.1.3 or 6.4.1.4), and indicates the success 1037 
to the owner. Note that if the key-pair validation is performed separately from 1038 
the key-pair generation, and the TTP does not have the key pair, then the party 1039 
that generated the key pair or owns the key pair must provide it to the TTP. 1040 

Note that the use of a TTP to generate a key pair or to perform key-pair validation for an owner 1041 
means that the TTP must be trusted (by both the owner and any recipient) to not use the owner’s 1042 



NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT 
 USING INTEGER FACTORIZATION CRYPTOGRAPHY 

46 

 

private key to masquerade as the owner or otherwise compromise the key-establishment 1043 
transaction. 1044 

The key-pair owner can revalidate the key pair at any time using the following steps:  1045 

1. Perform a pair-wise consistency test by verifying that m = (me)d mod n for some integer m 1046 
satisfying 1 < m < n − 1, and 1047 

2, Perform a successful key-pair validation: 1048 

a. If the intended value or bit length of the public exponent is known, then perform a 1049 
successful key-pair validation as specified in Section 6.4.1.2 or 6.4.1.3. 1050 

b. If the intended value or bit length of the public exponent is NOT known, then perform 1051 
a successful key-pair validation as specified in Section 6.4.1.4. 1052 

6.4.1.2 RSAKPV1 Family: RSA Key-Pair Validation with a Fixed Public Exponent 1053 
The RSAKPV1 family of key-pair validation methods corresponds to the RSAKPG1 family of 1054 
key-pair generation methods (see Section 6.3.1). RSAKPV1 can be used when the public key, the 1055 
intended fixed value of the public exponent, the intended bit length of the modulus, the targeted 1056 
security strength, and the value of the private key are all known by the entity performing the 1057 
validation. 1058 

6.4.1.2.1 rsakpv1-basic 1059 
rsakpv1-basic is the key-pair validation method corresponding to rsakpg1-basic (see Section 1060 
6.3.1.1). 1061 

Function call: rsakpv1-basic (s, nBits, efixed, (npub, epub), (npriv, d)) 1062 

Input: 1063 

1. s:  the targeted security strength; 1064 

2. nBits: the intended bit length of the RSA modulus;  1065 

3. efixed: the intended fixed public exponent − an odd integer such that 65,537 ≤ efixed < 2256; 1066 
4. (npub, epub): the RSA public key to be validated; and 1067 

5. (npriv, d): the RSA private key to be validated in the basic format. 1068 

Process: 1069 

1. Check the sizes of s and efixed: 1070 

a. If s is not in the interval [112, 256], output an indication that the security strength 1071 
is not acceptable, and exit without further processing. 1072 

b. If s > S(nBits), output an indication that the modulus length is not adequate for the 1073 
intended security strength, and exit without further processing. 1074 

c. If efixed is not an odd integer such that 65,537 ≤ efixed < 2256, output an indication that 1075 
the fixed public exponent is out of range, and exit without further processing. 1076 

2. Compare the public exponents: 1077 
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If epub ≠ efixed, output an indication of an invalid key pair, and exit without further 1078 
processing. 1079 

3. Check the modulus: 1080 

a. If npub ≠ npriv, output an indication of an invalid key pair, and exit without further 1081 
processing. 1082 

b. If len(npub) ≠ nBits, output an indication of an invalid key pair, and exit without 1083 
further processing. 1084 

c. If nBits is not a positive even integer, output an indication of an invalid key pair, 1085 
and exit without further processing. 1086 

4. Prime-factor recovery: 1087 

a. Recover the prime factors p and q from the modulus npub, the public exponent 1088 
epub and the private exponent d (using one of the methods in Appendix C): 1089 

(p, q) = RecoverPrimeFactors (npub, epub, d). 1090 

b. If RecoverPrimeFactors outputs an indication that the prime factors were not 1091 
found, output an indication that the request is invalid, and exit without further 1092 
processing. 1093 

c. If npub ≠ p × q, then output an indication that the request is invalid, and exit 1094 
without further processing. 1095 

5. Check the prime factors: 1096 

a. If (p < ( 2)(2nBits/2−1)) or (p > 2nBits/2 – 1), output an indication of an invalid key 1097 
pair, and exit without further processing. 1098 

b. If (q < ( 2)(2nBits/2−1)) or (q > 2nBits/2  – 1), output an indication of an invalid key 1099 
pair, and exit without further processing. 1100 

c. If |p – q| ≤ 2(nBits/2−100), output an indication of an invalid key pair, and exit without 1101 
further processing. 1102 

d. If GCD (p – 1, epub) ≠ 1, output an indication of an invalid key pair, and exit without 1103 
further processing. 1104 

e. If GCD (q – 1, epub) ≠ 1, output an indication of an invalid key pair, and exit without 1105 
further processing. 1106 

f. Apply an approved primality test* to the factor p (see FIPS 186, Appendices C.3 1107 
and E). If the primality test indicates that p is not prime, output an indication of an 1108 
invalid key pair, and exit without further processing. 1109 

g. Apply an approved primality test* to the factor q (see FIPS 186, Appendices C.3 1110 
and E). If the primality test indicates that q is not prime, output an indication of an 1111 
invalid key pair, and exit without further processing. 1112 

* Relying parties (and/or agents trusted to act on their behalf) shall determine which of 1113 
the approved primality tests in FIPS 186 meet their security requirements. The 1114 
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probability that p or q may be incorrectly classified as prime by the test used in step 5 1115 
shall be less than or equal to 2–S(nBits). 1116 

6. Check that the private exponent d satisfies 1117 

a. 2nBits/2 < d < LCM (p – 1, q – 1). 1118 

and 1119 

b. 1 = (d × epub) mod LCM (p – 1, q – 1). 1120 

If either check fails, output an indication of an invalid key pair, and exit without further 1121 
processing. 1122 

7. Output an indication that the key pair is valid. 1123 

Output: 1124 

1. status: An indication that the key pair is valid or an indication of an error. 1125 

Errors: Indications of the following: 1126 

1. The targeted security strength is not acceptable, 1127 

2. The modulus length is not adequate for the targeted security strength, 1128 

3. The fixed public exponent is out of range, or 1129 

4. The key pair is invalid. 1130 

A routine that implements this validation function shall destroy any local copies of p, q and d, as 1131 
well as any other locally stored values used or produced during its execution. Their destruction 1132 
shall occur prior to or during any exit from the routine (whether exiting early because of an error, 1133 
or exiting normally). 1134 

6.4.1.2.2 rsakpv1-prime-factor 1135 
rsakpv1-prime-factor is the key-pair validation method corresponding to rsakpg1-prime-factor 1136 
(see Section 6.3.1.2). 1137 

Function call: rsakpv1-prime-factor (s, nBits, efixed, (npub, epub), (p, q, d)) 1138 

The inputs, outputs and errors are the same as in rsakpv1-basic (see Section 6.4.1.2.1) except that 1139 
the private key is in the prime-factor format: (p, q, d). 1140 

The steps are the same as in rsakpv1-basic except that in processing: 1141 

A. Step 3 is replaced by the following: 1142 

3. Check the modulus: 1143 

a. If npub ≠ p × q, output an indication of an invalid key pair, and exit without further 1144 
processing. 1145 

b. If len(npub) ≠ nBits, output an indication of an invalid key pair, and exit without 1146 
further processing. 1147 

c. If nBits is not a positive even integer, output an indication of an invalid key pair, 1148 
and exit without further processing. 1149 
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B. Step 4 (prime-factor recovery) is omitted (i.e., not used). 1150 

A routine that implements this validation function shall destroy any local copies of p, q, and d, as 1151 
well as any other locally stored values used or produced during its execution. Their destruction 1152 
shall occur prior to or during any exit from the routine (whether exiting early because of an error, 1153 
or exiting normally). 1154 

6.4.1.2.3 rsakpv1-crt 1155 
rsakpv1-crt is the key-pair validation method corresponding to rsakpg1-crt. 1156 

Function call: rsakpv1-crt (s, nBits, efixed, (npub, epub), (npriv, epriv, d, p, q, dP, dQ, qInv)) 1157 

The inputs, outputs and errors are the same as in rsakpv1-basic (see Section 6.4.1.2.1) except that 1158 
the private key is in the Chinese Remainder Theorem format: (npriv, epriv, d, p, q, dP, dQ, qInv). 1159 

The steps are the same as in rsakpv1-basic except that in processing: 1160 

A.  Step 2 is replaced by the following: 1161 

2. Compare the public exponents: 1162 

If (epub ≠ efixed) or (epub ≠ epriv), output an indication of an invalid key pair, and exit 1163 
without further processing. 1164 

B. Step 3 is replaced by  1165 

3. Check the modulus: 1166 

a. If npub ≠ p × q, or npub ≠ npriv, output an indication of an invalid key pair, and 1167 
exit without further processing. 1168 

b. If len(npub) ≠ nBits, output an indication of an invalid key pair, and exit 1169 
without further processing. 1170 

c. If nBits is not a positive even integer, output an indication of an invalid key 1171 
pair, and exit without further processing. 1172 

C. Step 4 (prime-factor recovery) is omitted (i.e., not used),  1173 

D. Step 7 is replaced by the following two steps: 1174 

7. Check the CRT components: Check that the components dP, dQ and qInv satisfy 1175 

a. 1 < dP <  (p – 1). 1176 

b. 1 < dQ < (q – 1). 1177 

c. 1 < qInv <  p.  1178 

d. 1 = (dP × efixed) mod (p – 1). 1179 

e. 1 = (dQ × efixed) mod (q – 1). 1180 

f. 1 = (qInv × q) mod p. 1181 

If any of the criteria in Section 6.2.1 are not met, output an indication of an invalid 1182 
key pair, and exit without further processing. 1183 
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8. Output an indication that the key pair is valid. 1184 

A routine that implements this validation function shall destroy any local copies of p, q, d, dP, dQ, 1185 
and qInv, as well as any other locally stored values used or produced during its execution. Their 1186 
destruction shall occur prior to or during any exit from the routine (whether exiting early because 1187 
of an error, or exiting normally). 1188 

6.4.1.3 RSAKPV2 Family: RSA Key-Pair Validation (Random Public Exponent) 1189 
The RSAKPV2 family of key-pair validation methods corresponds to the RSAKPG2 family of 1190 
key-pair generation methods (see Section 6.3.2). RSAKPV2 can be used when the public key, the 1191 
intended bit length of the public exponent, the intended bit length of the modulus, the targeted 1192 
security strength, and the value of the private key are all known by the entity performing the 1193 
validation. 1194 

6.4.1.3.1 rsakpv2-basic 1195 
rsakpv2-basic is the validation method corresponding to rsakpg2-basic (see Section 6.3.2.1). 1196 

Function call: rsapkv2-basic (s, nBits, eBits, (npub, epub), (npriv, d)) 1197 

The method is the same as the rsapkv1-basic method in Section 6.4.1.2.1 except that: 1198 

A. The efixed input parameter is replaced by eBits, which is the intended bit length of the public 1199 
exponent − an integer such that 17 ≤ eBits ≤ 256. 1200 

B. Step 1c is replaced by: 1201 

c. If (eBits < 17) or (eBits > 256), output an indication that the exponent is out of 1202 
range, and exit without further processing. 1203 

C. Step 2 is replaced by: 1204 

2. Check the public exponent. 1205 

If the public exponent epub is not odd, or if len(epub) ≠ eBits, output an indication of 1206 
an invalid key pair, and exit without further processing. 1207 

A routine that implements this validation function shall destroy any local copies of p, q, and d, as 1208 
well as any other locally stored values used or produced during its execution. Their destruction 1209 
shall occur prior to or during any exit from the routine (whether exiting early because of an error, 1210 
or exiting normally).  1211 

6.4.1.3.2 rsakpv2-prime-factor 1212 
rsakpv2-prime-factor is the key-pair validation method corresponding to the rsakpg2-prime-factor 1213 
key-pair generation method (see Section 6.3.2.2). 1214 

Function call: rsakpv2-prime-factor (s, nBits, eBits, (npub, epub), (p, q, d)) 1215 

The inputs, outputs and errors are the same as in rsakpv1-basic (see Section 6.4.1.2.1), except that 1216 
the private key is in the prime factor format: (p, q, d). 1217 

The steps are the same as in rsakpv1-basic (see Section 6.4.1.2.1) except that: 1218 
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A. The efixed input parameter is replaced by eBits, which is the intended bit length of the public 1219 
exponent, an integer such that 17 ≤ eBits ≤ 256. 1220 

B. Step 1c is replaced by: 1221 

c. If (eBits < 17) or (eBits > 256), output an indication that the exponent is out of 1222 
range, and exit without further processing. 1223 

C. Step 2 is replaced by: 1224 

2. Check the public exponent. 1225 

If the public exponent epub is not odd, or if len(epub) ≠ eBits, output an indication of 1226 
an invalid key pair, and exit without further processing. 1227 

D. Step 3 is replaced by the following: 1228 

3. Check the modulus: 1229 

a. If npub ≠ p × q, output an indication of an invalid key pair, and exit without 1230 
further processing. 1231 

b. If len(npub) ≠ nBits, output an indication of an invalid key pair, and exit 1232 
without further processing. 1233 

c. If nBits is not a positive even integer, output an indication of an invalid key 1234 
pair, and exit without further processing. 1235 

E. Step 4 (prime-factor recovery) is omitted (i.e., not used). 1236 

A routine that implements this validation function shall destroy any local copies of p, q, and d, as 1237 
well as any other locally stored values used or produced during its execution. Their destruction 1238 
shall occur prior to or during any exit from the routine (whether exiting early because of an error 1239 
or exiting normally). 1240 

6.4.1.3.3 rsakpv2-crt 1241 
rsakpv2-crt is the key-pair validation method corresponding to the rsakpg2-crt key-pair generation 1242 
method (see Section 6.3.1.3). 1243 

Function call: rsakpv2-crt (s, nBits, eBits, (npub, epub), (npriv, epriv, d, p, q, dP, dQ, qInv)) 1244 

The inputs, outputs and errors are the same as in rsakpv1-basic (see Section 6.4.1.2.1) except that 1245 
the private key is in the Chinese Remainder Theorem format: (npriv, epriv, d, p, q, dP, dQ, qInv). 1246 

The steps are the same as in rsakpv1-basic (see Section 6.4.1.2.1) except that: 1247 

A. The efixed input parameter is replaced by eBits, which is the intended bit length of the public 1248 
exponent, an integer such that 17 ≤ eBits ≤ 256. 1249 

B. Step 1c is replaced by: 1250 

c. If (eBits < 17) or (eBits > 256), output an indication that the exponent is out of 1251 
range, and exit without further processing. 1252 

C. Step 2 is replaced by the following: 1253 

2. Compare the public exponents: 1254 
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If (epub ≠ epriv) or (epub is not odd) or (len( epub) ≠ eBits), output an indication of an 1255 
invalid key pair, and exit without further processing. 1256 

D. Step 3 is replaced by  1257 
3. Check the modulus: 1258 

a. If (npub ≠ p × q) or (npub ≠ npriv) output an indication of an invalid key pair, 1259 
and exit without further processing. 1260 

b. If len(npub) ≠ nBits, output an indication of an invalid key pair, and exit 1261 
without further processing. 1262 

c. If nBits is not a positive even integer, output an indication of an invalid key 1263 
pair, and exit without further processing. 1264 

E. Step 4 (prime-factor recovery) is omitted (i.e., not used),  1265 

F. Step 7 is replaced by the following two steps: 1266 

7. Check the CRT components: Check that the components dP, dQ and qInv satisfy 1267 

a. 1 < dP <  (p – 1). 1268 

b. 1 < dQ < (q – 1). 1269 

c. 1 < qInv <  p.  1270 

d. 1 = (dP × epub) mod (p – 1).  1271 

e. 1 = (dQ × epub) mod (q – 1).   1272 

f. 1 = (qInv × q) mod p. 1273 
If any of the criteria in Section 6.2.1 are not met, output an indication of an invalid 1274 
key pair, and exit without further processing. 1275 

8.  Output an indication that the key pair is valid. 1276 

A routine that implements this validation function shall destroy any local copies of p, q, d, dP, dQ, 1277 
and qInv, as well as any other locally stored values used or produced during its execution. Their 1278 
destruction shall occur prior to or during any exit from the routine (whether exiting early because 1279 
of an error, or exiting normally). 1280 

6.4.1.4 RSA Key-Pair Validation (Exponent-Creation Method Unknown) 1281 
Public-key validation may be performed when the intended fixed value or intended bit length of 1282 
the public exponent is unknown by the entity performing the validation (i.e., the entity is unaware 1283 
of whether the key pair was generated as specified in Section 6.3.1 or Section 6.3.2). The following 1284 
methods can be used as long as the entity performing the validation (i.e., the key-pair owner or a 1285 
TTP trusted by the owner) knows the intended bit length of the modulus and the targeted security 1286 
strength, and has possession of some representation of the key pair to be validated (including the 1287 
private key in either the basic, prime factor or crt format). 1288 

6.4.1.4.1 basic-pkv 1289 
In this format, the private key is represented as (n, d). 1290 
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Function call: basic_pkv (s, nBits, (npub, epub), (npriv, d)) 1291 

The method is the same as the rsapkv1-basic method in Section 6.4.1.2.1 except that: 1292 

A. A value for efixed is not available as an input parameter.  1293 

B. Step 1.c is replaced by:  1294 

If epub is not an odd integer such that 65,537 ≤ epub < 2256, output an indication that the 1295 
exponent is out of range, and exit without further processing. 1296 

C. Step 2 is omitted (i.e., not used). 1297 

A routine that implements this validation function shall destroy any local copies of p, q, and d, as 1298 
well as any other locally stored values used or produced during its execution. Their destruction 1299 
shall occur prior to or during any exit from the routine (whether exiting early because of an error 1300 
or exiting normally). 1301 

6.4.1.4.2 prime-factor-pkv 1302 
In this format, the private key is represented as (p, q, d). 1303 

Function call: prime-factor_pkv (s, nBits, (npub, epub), (p, q, d)) 1304 

The inputs, outputs and errors are the same as in rsakpv1-basic (see Section 6.4.1.2.1) except that 1305 
the private key is in the prime factor format: (p, q, d). 1306 

The steps are the same as in rsakpv1-basic (see Section 6.4.1.2.1) except that: 1307 

A. A value for efixed is not available as an input parameter. 1308 

B. Step 1.c is replaced by:  1309 

If epub is not an odd integer such that 65,537 ≤ epub < 2256, output an indication that the 1310 
exponent is out of range, and exit without further processing. 1311 

C. Step 2 is omitted (i.e., not used). 1312 

D. Step 3 is replaced by the following: 1313 

3. Check the modulus: 1314 

a. If npub ≠ p × q, output an indication of an invalid key pair, and exit without 1315 
further processing. 1316 

b. If len(npub) ≠ nBits, output an indication of an invalid key pair, and exit 1317 
without further processing. 1318 

c. If nBits is not a positive even integer, output an indication of an invalid key 1319 
pair, and exit without further processing. 1320 

E. Step 4 (prime-factor recovery) is omitted (i.e., not used). 1321 

A routine that implements this validation function shall destroy any local copies of p, q, and d, as 1322 
well as any other locally stored values used or produced during its execution. Their destruction 1323 
shall occur prior to or during any exit from the routine (whether exiting early because of an error, 1324 
or exiting normally). 1325 
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6.4.1.4.3 crt_pkv 1326 
In this format, the private key is represented as (n, e, d, p, q, dP. dQ, qInv). 1327 

Function call: crt_pkv(s, nBits, (npub, epub), (npriv, epriv, d, p, q, dP, dQ, qInv)) 1328 

The inputs, outputs and errors are the same as in rsakpv1-basic (see Section 6.4.1.2.1) except that 1329 
the private key is in the Chinese Remainder Theorem (CRT) format: (npriv, epriv, d, p, q, dP, dQ, 1330 
qInv). 1331 

The steps are the same as in rsakpv1-basic (see Section 6.4.1.2.1) except that: 1332 

A. A value for efixed is not available as an input parameter. 1333 

B. Step 1c is replaced by: 1334 

If epub is not an odd integer such that 65,537 ≤ epub < 2256, output an indication that the 1335 
exponent is out of range, and exit without further processing. 1336 

C. Step 2 is omitted (i.e., not used). 1337 

D. Step 3 is replaced by  1338 

3. Check the modulus: 1339 

a. If (npub ≠ p × q) or (npub ≠ npriv), output an indication of an invalid key pair, 1340 
and exit without further processing. 1341 

b. If len(npub) ≠ nBits, output an indication of an invalid key pair, and exit 1342 
without further processing. 1343 

 c. If nBits is not a positive even integer, output an indication of an invalid key 1344 
pair, and exit without further processing. 1345 

E. Step 4 (prime-factor recovery) is omitted (i.e., not used),  1346 

F. Step 7 is replaced by the following two steps: 1347 

7. Check the CRT components: Check that the components dP, dQ and qInv satisfy 1348 

a. 1 < dP <  (p – 1). 1349 

b. 1 < dQ < (q – 1). 1350 

c. 1 < qInv <  p.  1351 

d. 1 = (dP × epub) mod (p – 1).  1352 

e. 1 = (dQ × epub) mod (q – 1).   1353 

f. 1 = (qInv × q) mod p. 1354 
If any of the criteria in Section 6.2.1 are not met, output an indication of an 1355 
invalid key pair, and exit without further processing. 1356 

8. Output an indication that the key pair is valid. 1357 

A routine that implements this validation function shall destroy any local copies of p, q, dP, dQ, 1358 
and qInv, as well as any other locally stored values used or produced during its execution. Their 1359 
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destruction shall occur prior to or during any exit from the routine (whether exiting early because 1360 
of an error or exiting normally). 1361 

6.4.1.5 Owner Assurance of Private-Key Possession 1362 
An owner’s initial assurance of possession of his private key is obtained when assurance of key-1363 
pair validity is obtained (see Section 6.4.1.1); assurance of key-pair validity is required prior to the 1364 
owner’s use of a key pair for key establishment. As time passes, an owner could lose possession 1365 
of the private key of a key pair. For this reason, renewing the assurance of possession may be 1366 
appropriate for some applications (i.e., assurance of possession can be refreshed). A discussion of 1367 
the effect of time on the assurance of private-key possession is provided in SP 800-89. 1368 

Renewed assurance that the owner continues to possess the correct associated private key shall be 1369 
obtained in one or more of the following ways: 1370 

1. The key-pair owner renews assurance of key-pair validity – The owner obtains assurance 1371 
of renewed key-pair validity (see Section 6.4.1.1), thereby also obtaining renewed 1372 
assurance of private key possession. 1373 

2. The key-pair owner receives renewed assurance via key confirmation – The owner employs 1374 
the key pair to successfully engage a trusted second party in a key-agreement transaction 1375 
using a scheme from the KAS2 family that incorporates key confirmation. The key 1376 
confirmation shall be performed in order to obtain assurance that the private key(s) 1377 
function correctly.   1378 

- The KAS2-Party_V-confirmation scheme in Section 8.3.3.2 can be used to provide 1379 
assurance to a key-pair owner, acting as party U, that both parties are in possession of 1380 
the correct private key; i.e., when the key confirmation is successful, party U obtains 1381 
assurance that party V possesses the private key corresponding to PubKeyV, and that 1382 
party U possesses the private key corresponding to PubKeyU, where PubKeyV and 1383 
PubKeyU are the public keys associated with parties V and U, respectively, that were 1384 
used during that KAS2-Party_V-confirmation transaction.    1385 

- The KAS2-Party_U-confirmation scheme in Section 8.3.3.3 can be used to provide 1386 
assurance to a key-pair owner, acting as party V, that both parties are in possession of 1387 
the correct private key; i.e., when the key confirmation is successful, party V obtains 1388 
assurance that party U possesses the private key corresponding to PubKeyU and that 1389 
party V possesses the private key corresponding to PubKeyV, where PubKeyU and 1390 
PubKeyV are the public keys associated with parties U and V, respectively, that were 1391 
used during that KAS2-Party_U-confirmation transaction. 1392 

- The KAS2-bilateral-confirmation scheme in Section 8.3.3.4 can be used to provide 1393 
assurance to a key-pair owner acting as either party U or party V that both parties are 1394 
in possession of the correct private key; i.e., when the bilateral key-confirmation is 1395 
successful, each party obtains assurance that party U possesses the private key 1396 
corresponding to PubKeyU, and that party V possesses the private key corresponding to 1397 
PubKeyV, where PubKeyU and PubKeyV are the public keys associated with parties U 1398 
and V, respectively, that were used during that KAS2-bilateral-confirmation 1399 
transaction.” 1400 
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3. The owner receives assurance via an encrypted certificate - The key-pair owner uses the 1401 
private key while engaging in a key-establishment transaction with a Certificate Authority 1402 
(trusted by the owner) using a scheme in this Recommendation after providing the CA with 1403 
the corresponding public key. As part of this transaction, the CA generates a (new) 1404 
certificate containing the owner’s public key and encrypts that certificate using (some 1405 
portion of) the symmetric keying material that has been established. Only the encrypted 1406 
form of the certificate is provided to the owner. By successfully decrypting the certificate 1407 
and verifying the CA’s signature, the owner obtains assurance of possession of the correct 1408 
private key (at the time of the key-establishment transaction). 1409 

The key-pair owner (or agents trusted to act on the owner’s behalf) should determine that the 1410 
method used for obtaining renewed assurance of the owner’s possession of the correct private key 1411 
is sufficient and appropriate to meet the security requirements of the owner’s intended 1412 
application(s). 1413 

6.4.2 Assurances Required by a Public-Key Recipient 1414 
In this Recommendation, unless otherwise indicated, a recipient of the public key of another party 1415 
is assumed to be an entity that does not have (and is not authorized to have) access to the 1416 
corresponding private key. The recipient of the (purported) public key-establishment key of 1417 
another party shall have: 1418 

1. Assurance of the arithmetic validity of the other party’s public key before using it in a key-1419 
establishment transaction with its claimed owner, and (if used) 1420 

2. Assurance that the claimed public-key owner (i.e., the other party) actually possesses the 1421 
private key corresponding to that public key. 1422 

6.4.2.1 Obtaining Assurance of Public-Key Validity for a Received Public Key 1423 
The recipient shall obtain assurance of public-key validity using one or more of the following 1424 
methods: 1425 

1. Recipient Partial Public-Key Validation − The recipient performs a successful partial 1426 
public-key validation (see Section 6.4.2.2). 1427 

2. TTP Partial Public-Key Validation – The recipient receives assurance that a trusted third 1428 
party (trusted by the recipient) has performed a successful partial public-key validation (see 1429 
Section 6.4.2.2). 1430 

3. TTP Key-Pair Validation – The recipient receives assurance that a trusted third party 1431 
(trusted by the recipient and the owner) has performed key-pair validation in accordance 1432 
with Section 6.4.1.1 (step 3.b). 1433 

Note that the use of a TTP to perform key-pair validation (method 3) implies that both the 1434 
owner and any recipient of the public key trust that the TTP will not use the owner’s private 1435 
key to masquerade as the owner or otherwise compromise their key-establishment 1436 
transactions. 1437 
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6.4.2.2 Partial Public-Key Validation for RSA 1438 
Partial public-key validation for RSA consists of conducting plausibility tests. These tests 1439 
determine whether the public modulus and public exponent are plausible, not necessarily whether 1440 
they are completely valid, i.e., they may not conform to all RSA key-generation requirements as 1441 
specified in this Recommendation. Plausibility tests can detect unintentional errors with a 1442 
reasonable probability. Note that full RSA public-key validation is not specified in this 1443 
Recommendation, as it is an area of ongoing research. Therefore, if an application requires 1444 
assurance of full public-key validation, then another approved key-establishment method shall be 1445 
used (e.g., as specified in SP 800-56A). 1446 

Plausibility tests shall include the tests specified in Section 5.3.3 of  SP 800-89, with the caveat 1447 
that the bit length of the modulus shall be a length that is approved in this Recommendation. 1448 

6.4.2.3 Recipient  Assurances of an Owner’s Possession of a Private Key  1449 
When two parties engage in a key-establishment transaction, there is (at least) an implicit claim of 1450 
ownership made whenever a public key is provided on behalf of a particular party. That party is 1451 
considered to be a claimed owner of the corresponding key pair – as opposed to being a true owner 1452 
– until adequate assurance can be provided that the party is actually the one authorized to use the 1453 
private key. The claimed owner can provide such assurance by demonstrating its knowledge of 1454 
that private key. 1455 

The recipient of another party’s public key shall obtain an initial assurance that the other party 1456 
(i.e., the claimed owner of the public key) actually possesses the associated private key, either 1457 
prior to or concurrently with performing a key-establishment transaction with that other party. 1458 
Obtaining this assurance is addressed in Sections 6.4.2.3.1 and 6.4.2.3.2.  As time passes, renewing 1459 
the assurance of possession may be appropriate for some applications; assurance of possession can 1460 
be renewed as specified in Section 6.4.2.3.2. A discussion of the effect of time on the assurance of 1461 
private-key possession is provided in SP 800-89. 1462 

As part of the proper implementation of this Recommendation, system users and/or agents trusted 1463 
to act on their behalf should determine which of the methods for obtaining assurance of possession 1464 
meet their security requirements. The application tasked with performing key establishment on 1465 
behalf of a party should determine whether or not to proceed with a key-establishment transaction, 1466 
based upon the perceived adequacy of the method(s) used. Such knowledge may be explicitly 1467 
provided to the application in some manner, or may be implicitly provided by the operation of the 1468 
application itself. 1469 

If a binding authority is the public-key recipient: At the time of binding an owner’s identifier to 1470 
his public key, the binding authority (i.e., a trusted third party, such as a CA) shall obtain assurance 1471 
that the owner is in possession of the correct private key. This assurance shall either be obtained 1472 
using one of the methods specified in Section 6.4.2.3.2 (e.g., with the binding authority acting as 1473 
the public-key recipient) or by using an approved alternative (see SP 800-57, Part 1, Sections 5.2 1474 
and 8.1.5.1.1.2).  1475 

Recipients not acting in the role of a binding authority: The recipients shall obtain this assurance 1476 
either through a trusted third party (see Section 6.4.2.3.1) or directly from the owner (i.e., the other 1477 
party) (see Section 6.4.2.3.2) before using the derived keying material for purposes beyond those 1478 
required during the key-establishment transaction itself. If the recipient chooses to obtain this 1479 
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assurance directly from the other party (i.e., the claimed owner of that public key), then to comply 1480 
with this Recommendation, the recipient shall use one of the methods specified in Section 1481 
6.4.2.3.2. 1482 

Note that the requirement that assurance of possession be obtained before using the established 1483 
keying material for purposes beyond those of the key-establishment transaction itself does not 1484 
prohibit the parties to a key-establishment transaction from using a portion of the derived or 1485 
transported keying material during the key-establishment transaction for purposes required by that 1486 
key-establishment scheme. For example, in a transaction involving a key-agreement scheme that 1487 
incorporates key confirmation, the parties establish a (purported) shared secret, derive keying 1488 
material, and − as part of that same transaction − use a portion of the derived keying material as 1489 
the MAC key in their key-confirmation computations. 1490 

6.4.2.3.1 Recipient Obtains Assurance from a Trusted Third Party 1491 
The recipient of a public key may receive assurance that its owner (i.e., the other party in the key-1492 
establishment transaction) is in possession of the correct private key from a trusted third party 1493 
(trusted by the recipient), either before or during a key-establishment transaction that makes use 1494 
of that public key. The methods used by a third party trusted by the recipient to obtain that 1495 
assurance are beyond the scope of this Recommendation (see however, the discussions in Sections 1496 
6.4.2.3.2 below and in 8.1.5.1.1.2 of SP 800-57). 1497 

The recipient of a public key (or agents trusted to act on behalf of the recipient) should know the 1498 
method(s) used by the third party, in order to determine that the assurance obtained on behalf of 1499 
the recipient is sufficient and appropriate to meet the security requirements of the recipient’s 1500 
intended application(s). 1501 

6.4.2.3.2 Recipient Obtains Assurance Directly from the Claimed Owner (i.e., the Other 1502 
Party) 1503 

The recipient of a public key can directly obtain assurance of the claimed owner’s current 1504 
possession of the corresponding private key by successfully completing a key-establishment 1505 
transaction that explicitly incorporates key confirmation, with the claimed owner serving as the 1506 
key-confirmation provider. Note that the recipient of the public key in question will also be the 1507 
key-confirmation recipient. Also note that this use of key confirmation is an additional benefit 1508 
beyond its use to confirm that two parties possess the same keying material. 1509 

There are several key-establishment schemes specified in this Recommendation that can be used. 1510 
In order to claim conformance with this Recommendation, the key-establishment transaction 1511 
during which the recipient of a public key seeks to obtain assurance of its owner’s current 1512 
possession of the corresponding private key shall employ one of the following approved key-1513 
establishment schemes: 1514 

1. The KAS1-Party_V-confirmation scheme in Section 8.2.3.2 can be used to provide 1515 
assurance to party U that party V possesses the private key corresponding to PubKeyV, (the 1516 
public key that was associated with party V when that key pair is used during the key-1517 
agreement transaction). 1518 

2. The KAS2-Party_V-confirmation scheme in Section 8.3.3.2 can be used to provide 1519 
assurance to party U that party V possesses the private key corresponding to PubKeyV (the 1520 
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public key that was associated with party V when that key pair is used during the key-1521 
agreement transaction). 1522 

3. The KAS2-Party_U-confirmation scheme in Section 8.3.3.3 can be used to provide 1523 
assurance to party V that party U possesses the private key corresponding to PubKeyU (the 1524 
public key that was associated with party U when that key pair is used during the key-1525 
agreement transaction). 1526 

4. The KAS2-bilateral-confirmation scheme in Section 8.3.3.4 can be used to provide 1527 
assurance to each party that the other party possesses the correct private key that 1528 
corresponds to the other party's public key; i.e., when bilateral key-confirmation is 1529 
successful, party U obtains assurance that party V possesses the private key corresponding 1530 
to PubKeyV (the key pair that was associated with party V and that was used during the 1531 
key-agreement transaction), and party V obtains assurance that party U possesses the 1532 
private key corresponding to PubKeyU (the key pair that was associated with party U and 1533 
that was used during the key-agreement transaction). 1534 

5. The KTS-OAEP-Party_V-confirmation scheme in Section 9.2.4.2 can be used to provide 1535 
assurance to party U (the key-transport sender) that party V (the key-transport receiver) 1536 
possesses the private key corresponding to PubKeyV (the key pair that was associated with 1537 
party V and that was used during the key-agreement transaction). 1538 

The recipient of a public key (or agents trusted to act on the recipient’s behalf) shall determine 1539 
whether or not using one of the key-establishment schemes in this Recommendation to obtain 1540 
assurance of possession through key confirmation is sufficient and appropriate to meet the security 1541 
requirements of the recipient’s intended application(s). Other approved methods (e.g., see Section 1542 
5.4.4 of SP 800-57-Part 1) of directly obtaining this assurance of possession from the owner are 1543 
also allowed. If obtaining assurance of possession directly from the owner is not acceptable, then 1544 
assurance of possession shall be obtained indirectly as discussed in Section 6.4.2.3.1. 1545 

Successful key confirmation (performed in the context described in this Recommendation) 1546 
demonstrates that the correct private key has been used in the key-confirmation provider’s 1547 
calculations, and thus also provides assurance that the claimed owner is the true owner. 1548 

The assurance of possession obtained via the key-confirmation schemes identified above may be 1549 
useful even when the recipient has previously obtained independent assurance that the claimed 1550 
owner of a public key is indeed its true owner. This may be appropriate in situations where the 1551 
recipient desires renewed assurance that the owner possesses the correct private key (and that the 1552 
owner is still able to use it correctly), including situations where there is no access to a trusted 1553 
party who can provide renewed assurance of the owner’s continued possession of the private key. 1554 

7 Primitives and Operations 1555 

Except for RSADP (see Section 7.1.2), the primitives and operations are defined in this section as 1556 
if the RSA private keys are in the basic format. Equivalent primitives and operations that employ 1557 
RSA private keys given in the prime-factor or CRT format are permitted. 1558 
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7.1 Encryption and Decryption Primitives 1559 

RSAEP and RSADP are the basic encryption and decryption primitives from the RSA 1560 
cryptosystem [RSA 1978], specified in PKCS 1. RSAEP produces ciphertext from plaintext using 1561 
a public key; RSADP recovers the plaintext from the ciphertext using the corresponding private 1562 
key.  The primitives assume that the RSA public key is valid. 1563 

7.1.1 RSAEP 1564 
RSAEP produces ciphertext using an RSA public key.  1565 

Function call: RSAEP((n, e), m) 1566 

Input: 1567 

1. (n, e): the RSA public key. 1568 

2. m: the plaintext; an integer such that 1 < m < n – 1. 1569 

Assumption: The RSA public key is valid (see Section 6.4). 1570 

Process: 1571 

1. If m does not satisfy 1 < m < n – 1, output an indication that m is out of range, and exit 1572 
without further processing. 1573 

2. Let c = me mod n. 1574 

3. Output c. 1575 

Output: 1576 
      c: the ciphertext, an integer such that 1 < c < n – 1, or an error indicator. 1577 

A routine that implements this primitive shall destroy any local copies of the input m, as well as 1578 
any other potentially sensitive locally stored values used or produced during its execution. Their 1579 
destruction shall occur prior to or during any exit from the routine (whether exiting early because 1580 
of an error or exiting normally with the output of c). 1581 

7.1.2 RSADP 1582 
RSADP is the decryption primitive. It recovers the plaintext from ciphertext using an RSA private 1583 
key. The format of the decryption operation depends on the format of the private key: basic, prime 1584 
factor or CRT. 1585 

A routine that implements this primitive shall destroy any local copies of the private key, as well 1586 
as any other potentially sensitive locally stored values used or produced during its execution (such 1587 
as any locally stored portions of the plaintext). Their destruction shall occur prior to or during any 1588 
exit from the routine (whether exiting early because of an error or exiting normally, with the output 1589 
of plaintext). 1590 

Note:  1591 

Care should be taken to ensure that an implementation of RSADP does not reveal even partial 1592 
information about the value of the plaintext to unauthorized entities. An opponent who can 1593 
reliably obtain particular bits of the plaintext for sufficiently many chosen ciphertext values 1594 
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may be able to obtain the full decryption of an arbitrary ciphertext by applying the bit-security 1595 
results of Håstad and Näslund [HN 1998]. 1596 

7.1.2.1 Decryption with the Private Key in the Basic Format 1597 
Function call: RSADP((n, d), c) 1598 

Input: 1599 

1. (n, d): the RSA private key. 1600 

2. c: the ciphertext; an integer such that 1 < c < n – 1. 1601 

Process: 1602 

1. If the ciphertext c does not satisfy 1 < c < n – 1, output an indication that the ciphertext is 1603 
out of range, and exit without further processing. 1604 

2. Let m = cd mod n. 1605 

3. Output m. 1606 

Output: 1607 

      m: the plaintext; an integer such that 1 < m < n – 1, or an error indicator. 1608 

7.1.2.2 Decryption with the Private Key in the Prime Factor Format 1609 
 1610 
Function call: RSADP((p, q, d), c) 1611 

Input: 1612 

1. (p, q, d): the RSA private key. 1613 

2. c: the ciphertext; an integer such that 1 < c < n – 1. 1614 

Process: 1615 

1. If the ciphertext c does not satisfy 1 < c < n – 1, output an indication that the ciphertext is 1616 
out of range, and exit without further processing. 1617 

2. Let n = p × q, the product of p and q. 1618 
3. Let m = cd mod n. 1619 

4. Output m. 1620 

Output: 1621 

      m: the plaintext; an integer such that 1 < m < n – 1, or an error indicator. 1622 

7.1.2.3 Decryption with the Private Key in the CRT Format 1623 
Function call: RSADP(n, e, d, p, q, dP, dQ, qInv, c) 1624 

1. (n, e, d, p, q, dP, dQ, qInv): the RSA private key, where dP = d mod (p – 1), dQ = d mod 1625 
(q – 1) and qInv = q mod p. 1626 

2. c: the ciphertext; an integer such that 1 < c < n – 1. 1627 
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Process: 1628 
1. If the ciphertext c does not satisfy 1 < c < n – 1, output an indication that the ciphertext is 1629 

out of range, and exit without further processing. 1630 

2. mp = cdP mod p. 1631 

3. mq = cdQ mod q. 1632 

4. Let h = ((mp − mq) × qInv) mod p. 1633 

5. Let m = (mq + (q × h)) mod n. 1634 

6. Output m. 1635 

7.2 Encryption and Decryption Operations 1636 

7.2.1 RSA Secret-Value Encapsulation (RSASVE) 1637 
The RSASVE generate operation is used by one party in a key-establishment transaction to 1638 
generate and encrypt a secret value to produce ciphertext using the public key-establishment key 1639 
of the other party. When this ciphertext is received by that other party, and the secret value is 1640 
recovered (using the RSASVE recover operation and the corresponding private key-establishment 1641 
key), the secret value is then considered to be a shared secret. Secret-value encapsulation employs 1642 
a Random Bit Generator (RBG) to generate the secret value.   1643 

The RSASVE generate and recovery operations specified in Sections 7.2.1.2 and 7.2.1.3, 1644 
respectively, are based on the RSAEP and RSADP primitives (see Section 7.1). These operations 1645 
are used by the KAS1 and KAS2 key-agreement families (see Sections 8.2 and 8.3). 1646 

7.2.1.1 RSASVE Components 1647 
RSASVE uses the following components: 1648 

1. RBG:  An approved random bit generator (see Section 5.3). 1649 

2. RSAEP: RSA Encryption Primitive (see Section 7.1.1). 1650 

3. RSADP: RSA Decryption Primitive (see Section 7.1.2).  1651 

7.2.1.2 RSASVE Generate Operation (RSASVE.GENERATE) 1652 
RSASVE.GENERATE generates a secret value and corresponding ciphertext using an RSA public 1653 
key. 1654 

Function call: RSASVE.GENERATE((n, e)) 1655 

Input: 1656 

(n, e): an RSA public key. 1657 

Assumptions: The RSA public key is valid. 1658 

Process: 1659 

1. Compute the value of nLen =  len(n)/8   − the byte length of the modulus n. 1660 
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2.  Generation: 1661 

a. Using the RBG (see Section 5.3), generate Z, a byte string of nLen bytes.  1662 

b. Convert Z to an integer z (See Appendix B.2): 1663 

z = BS2I(Z, nLen). 1664 

c. If z does not satisfy 1 < z < n – 1, then go to step 2a. 1665 

3.  RSA encryption: 1666 

a. Apply the RSAEP encryption primitive (see Section 7.1.1) to the integer z using the 1667 
public key (n, e) to produce an integer ciphertext c: 1668 

c = RSAEP((n, e), z). 1669 

 1670 

b. Convert the ciphertext c to a ciphertext byte string C of nLen bytes (see Appendix 1671 
B.1): 1672 

C = I2BS(c, nLen). 1673 

       4.  Output the string Z as the secret value, and the ciphertext C. 1674 

Output: 1675 

Z: the secret value to be shared (a byte string of nLen bytes), and C: the ciphertext (a byte string 1676 
of nLen bytes). 1677 

A routine that implements this operation shall destroy any locally stored portions of Z and z, as 1678 
well as any other potentially sensitive locally stored values used or produced during its execution. 1679 
Their destruction shall occur prior to or during any exit from the routine (whether exiting early 1680 
because of an error or exiting normally with the output of Z and C). Note that the requirement for 1681 
destruction includes any locally stored portions of the secret value Z included in the output. 1682 

7.2.1.3 RSASVE Recovery Operation (RSASVE.RECOVER) 1683 
RSASVE.RECOVER recovers a secret value from ciphertext using an RSA private key. Once 1684 
recovered, the secret value is considered to be a shared secret. 1685 

Function call:  1686 

RSASVE.RECOVER((n, d), C) 1687 

Input: 1688 

1. (n, d): an RSA private key. 1689 

2. C: the ciphertext; a byte string of nLen bytes. 1690 

Assumptions: The RSA private key is part of a valid key pair. 1691 

Process: 1692 

1. nLen = = len(n)/8, the byte length of n. 1693 
2. Length checking: 1694 
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If the length of the ciphertext C is not nLen bytes in length, output an indication of a 1695 
decryption error, and exit without further processing. 1696 

3. RSA decryption: 1697 

a. Convert the ciphertext C to an integer ciphertext c (see Appendix B.2): 1698 

c = BS2I(C). 1699 

b. Apply the RSADP decryption primitive (see Section 7.1.2) to the ciphertext c using 1700 
the private key (n, d) to produce an integer z: 1701 

z = RSADP((n, d), c).23 1702 

c. If RSADP indicates that the ciphertext is out of range, output an indication of a 1703 
decryption error, and exit without further processing. 1704 

d. Convert the integer z to a byte string Z of nLen bytes (see Appendix B.1): 1705 

Z = I2BS(z, nLen). 1706 

4.  Output the string Z as the secret value (i.e., the shared secret), or an error indicator. 1707 

Output: 1708 

Z: the secret value/shared secret (a byte string of nLen bytes), or an error indicator. 1709 

Note: 1710 

Care should be taken to ensure that an implementation does not reveal information about the 1711 
encapsulated secret value (i.e., the value of the integer z or its byte string equivalent Z). For 1712 
instance, the observable behavior of the I2BS routine should not reveal even partial 1713 
information about the byte string Z. An opponent who can reliably obtain particular bits of Z 1714 
for sufficiently many chosen ciphertext values may be able to obtain the full decryption of an 1715 
arbitrary RSA-encrypted value by applying the bit-security results of Håstad and Näslund [HN 1716 
1998]. 1717 

A routine that implements this operation shall destroy any local copies of the private key, any 1718 
locally stored portions of Z and z, and any other potentially sensitive locally stored values used or 1719 
produced during its execution. Their destruction shall occur prior to or during any exit from the 1720 
routine (whether exiting early because of an error or exiting normally with the output of Z). Note 1721 
that the requirement for destruction includes any locally stored portions of the output. 1722 

7.2.2 RSA with Optimal Asymmetric Encryption Padding (RSA-OAEP) 1723 
RSA-OAEP consists of asymmetric encryption and decryption operations that are based on an 1724 
approved hash function, an approved random bit generator, a mask-generation function, and the 1725 
RSAEP and RSADP primitives. These operations are used by the KTS-OAEP key-transport 1726 
scheme (see Section 9.2). 1727 

In the RSA-OAEP encryption operation, a data block is constructed by the sender (party U) from 1728 
the keying material to be transported and the hash of additional input (see Section 9.1) that is 1729 
                                                 
23 When the private key is represented in the prime-factor or CRT format, appropriate changes are discussed in 

Section 7.1.2. 
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shared by party U and the intended receiving party (party V). A random byte string is generated, 1730 
after which both the random byte string and the data block are masked in a way that binds their 1731 
values. The masked values are used to form the plaintext that is input to the RSAEP primitive, 1732 
along with the public key-establishment key of party V. The resulting RSAEP output further binds 1733 
the random byte string, the keying material and the hash of the additional data in the ciphertext 1734 
that is sent to party V. 1735 

In the RSA-OAEP decryption operation, the ciphertext and the receiving party’s (i.e., party V’s) 1736 
private key-establishment key are input to the RSADP primitive, recovering the masked values as 1737 
output. The mask-generation function is then used to reconstruct and remove the masks that 1738 
obscure the random byte string and the data block. After removing the masks, party V can examine 1739 
the format of the recovered data and compare its own computation of the hash of the additional 1740 
data to the hash value contained in the unmasked data block, thus obtaining some measure of 1741 
assurance of the integrity of the recovered data – including the transported keying material. 1742 

RSA-OAEP can process up to nLen – 2HLen – 2 bytes of keying material, where nLen is the byte 1743 
length of the recipient’s RSA modulus, and HLen is the byte length of the values output by the 1744 
underlying hash function. 1745 

7.2.2.1 RSA-OAEP Components 1746 
RSA-OAEP uses the following components: 1747 

1. H: An approved hash function (see Section 5.1). HLen is used to denote the 1748 
byte length of the hash function output. 1749 

2. MGF: The mask-generation function (see Section 7.2.2.2). The MGF employs a 1750 
hash function hash. This hash function need not be the same as the hash 1751 
function H used in step 3a of Section 7.2.2.3 and step 4a of Section 7.2.2.4. 1752 

3. RBG:  An approved random bit generator (see Section 5.3). 1753 

4. RSAEP: RSA Encryption Primitive (see Section 7.1.1). 1754 

5. RSADP: RSA Decryption Primitive (see Section 7.1.2). 1755 

7.2.2.2 The Mask Generation Function (MGF) 1756 
MGF is a mask-generation function based on an approved hash function (see Section 5.1). The 1757 
purpose of the MGF is to generate a string of bits that may be used to “mask” other bit strings. The 1758 
MGF is used by the RSA-OAEP-based schemes specified in Section 9.2.  1759 

Let hash be an approved hash function. 1760 

For the purposes of this Recommendation, the MGF shall not be invoked more than once by each 1761 
party during a given transaction using a given MGF seed (i.e., a mask shall be derived only once 1762 
by each party from a given MGF seed). 1763 

Function call: MGF(mgfSeed, maskLen) 1764 

Auxiliary Function: 1765 

hash: an approved hash function (see Section 5.1). 1766 
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Implementation-Dependent Parameters:  1767 

1. hashLen: an integer that indicates the byte length of the output block of the auxiliary hash 1768 
function, hash. 1769 

2. max_hash_inputLen: an integer that indicates the maximum-permitted byte length of the 1770 
bit string, x, that is used as input to the auxiliary hash function, hash. 1771 

Input: 1772 

1. mgfSeed: a byte string from which the mask is generated. 1773 

2. maskLen: the intended byte length of the mask. 1774 

Process: 1775 

1. If maskLen > 232 hashLen, output an error indicator, and exit from this process without 1776 
performing the remaining actions. 1777 

2. If mgfSeed is more than max_hash_inputLen bytes in length, then output an error indicator, 1778 
and exit this process without performing the remaining actions. 1779 

3.  Set T = the null string. 1780 

4. For counter from 0 to  maskLen / hashLen  – 1, do the following: 1781 
a) Let D = I2BS(counter, 4)   (see Appendix B.1). 1782 

b) Let T = T || hash(mgfSeed || D). 1783 

      5.  Output the leftmost maskLen bytes of T as the byte string mask. 1784 

Output: 1785 

The byte string mask (of maskLen bytes), or an error indicator. 1786 

A routine that implements this function shall destroy any local copies of the input mgfSeed, any 1787 
locally stored portions of mask (e.g., any portion of T), and any other potentially sensitive locally 1788 
stored values used or produced during its execution. Their destruction shall occur prior to or during 1789 
any exit from the routine (whether exiting early because of an error or exiting normally with the 1790 
output of mask). Note that the requirement for destruction includes any locally stored portions of 1791 
the output. 1792 

7.2.2.3 RSA-OAEP Encryption Operation (RSA-OAEP.ENCRYPT) 1793 
The RSA-OAEP.ENCRYPT operation produces ciphertext from keying material and additional 1794 
input using an RSA public key, as shown in Figure 4. See Section 9.1 for more information on the 1795 
additional input. Let HLen be the byte length of the output of hash function H. 1796 

Function call: RSA-OAEP.ENCRYPT((n, e), K, A) 1797 

Input: 1798 

1. (n, e): the receiver’s RSA public key. 1799 

2. K: the keying material; a byte string of at most nLen – 2HLen – 2 bytes, where nlen is the 1800 
byte length of n.  1801 
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3. A: additional input; a byte string (may be the Null string) to be cryptographically bound to 1802 
the keying material (see Section 9.1). 1803 

Assumptions: The RSA public key is valid. 1804 

Process: 1805 

1. nLen = = len(n)/8, the byte length of n. 1806 
2. Length checking: 1807 

a. KLen = = len(K)/8, the byte length of K. 1808 

b. If KLen > nLen – 2HLen – 2, then output an indication that the keying material is 1809 
too long, and exit without further processing. 1810 

3. OAEP encoding: 1811 

a. Apply the selected hash function to compute: 1812 

HA = H(A). 1813 

HA is a byte string of HLen bytes. If A is an empty string, then HA is the hash value 1814 
for the empty string. 1815 

b. Construct a byte string PS consisting of nLen – KLen – 2HLen – 2 zero bytes. The 1816 
length of PS may be zero. 1817 

c. Concatenate HA, PS, a single byte with a hexadecimal value of 01, and the keying 1818 
material K to form data DB of nLen – HLen – 1 bytes as follows: 1819 

DB = HA || PS || 00000001 || K, 1820 

where 00000001 is a string of eight bits. 1821 

d. Using the RBG (see Section 5.3), generate a random byte string mgfSeed of HLen 1822 
bytes. 1823 

e. Apply the mask-generation function in Section 7.2.2.2 to compute: 1824 

dbMask = MGF(mgfSeed, nLen – HLen – 1). 1825 

f. Let maskedDB = DB ⊕ dbMask. 1826 
g. Apply the mask-generation function in Section 7.2.2.2 to compute: 1827 

mgfSeedMask = MGF(maskedDB, HLen). 1828 

h. Let maskedMGFSeed = mgfSeed ⊕ mgfSeedMask. 1829 

i. Concatenate a single byte with hexadecimal value 00, maskedMGFSeed, and 1830 
maskedDB to form an encoded message EM of nLen bytes as follows: 1831 

EM = 00000000 || maskedMGFSeed || maskedDB 1832 

where 00000000 is a sting of eight bits. 1833 

4. RSA encryption: 1834 

a. Convert the encoded message EM to an integer em (see Appendix B.2): 1835 
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em = BS2I(EM). 1836 

b. Apply RSAEP (see Section 7.1.1) to the integer em using the public key (n, e) to 1837 
produce a ciphertext integer c: 1838 

c = RSAEP((n, e), em). 1839 

c. Convert the ciphertext integer c to a ciphertext byte string C of nLen bytes (see 1840 
Appendix B.1): 1841 

C = I2BS(c, nLen). 1842 

5. Zeroize all intermediate values and output the ciphertext C. 1843 

Output: C: the ciphertext (a byte string of nLen bytes), or an error indicator. 1844 

A routine that implements this operation shall destroy any local copies of sensitive input values 1845 
(e.g., K and any sensitive portions of A), as well as any other potentially sensitive locally stored 1846 
values used or produced during its execution (including HA, DB, mfgSeed, dbMask, maskedDB, 1847 
mgfSeedMask, maskedMGFSeed, EM, and em). Their destruction shall occur prior to or during 1848 
any exit from the routine – whether exiting early because of an error or exiting normally with the 1849 
output of C. 1850 
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 1851 

Figure 4: RSA-OAEP Encryption Operation 1852 

7.2.2.4 RSA-OAEP Decryption Operation (RSA-OAEP.DECRYPT) 1853 
RSA-OAEP.DECRYPT recovers keying material from a ciphertext and additional input using an 1854 
RSA private key as shown in Figure 5. Let HLen be the byte length of the output of hash function 1855 
H.  1856 

Function call: RSA-OAEP.DECRYPT((n, d), C, A) 1857 

Input: 1858 

1. (n, d): the receiver’s RSA private key. 1859 

2. C: the ciphertext; a byte string. 1860 

3. A: additional input; a byte string (may be the empty string) whose cryptographic binding 1861 
to the keying material is to be verified (see Section 9.1). 1862 

Assumptions: The RSA private key is valid. 1863 
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Process: 1864 

1. Initializations: 1865 

a. nLen = the byte length of n. For this Recommendation, nLen ≥ 256. 1866 
b.  DecryptErrorFlag = False. 1867 

2. Check for erroneous input: 1868 

a. If the length of the ciphertext C is not nLen bytes, output an indication of erroneous 1869 
input, and exit without further processing. 1870 

b. Convert the ciphertext byte string C to a ciphertext integer c  1871 
(see Appendix B.2): 1872 

c = BS2I(C). 1873 

c. If the ciphertext integer c is not such that 1 < c < n – 1, output an indication of 1874 
erroneous input, and exit without further processing. 1875 

3. RSA decryption: 1876 

a. Apply RSADP (see Section 7.1.2) to the ciphertext integer c using the private key 1877 
(n, d) to produce an integer em: 1878 

em = RSADP((n, d), c).24 1879 

b. Convert the integer em to an encoded message EM, a byte string of nLen bytes (see 1880 
Appendix B.1): 1881 

EM = I2BS(em, nLen). 1882 

4. OAEP decoding: 1883 

a. Apply the selected hash function (see Section 5.1) to compute: 1884 

HA = H(A). 1885 

HA is a byte string of HLen bytes. 1886 

b. Separate the encoded message EM into a single byte Y, a byte string 1887 
maskedMGFSeed′ of HLen bytes, and a byte string maskedDB′ of nLen – HLen – 1 1888 
bytes as follows: 1889 

EM = Y || maskedMGFSeed′ || maskedDB′. 1890 

c. Apply the mask-generation function specified in Section 7.2.2.2 to compute: 1891 

mgfSeedMask′ = MGF(maskedDB′, HLen). 1892 

d. Let mgfSeed′ = maskedMGFSeed′ ⊕ mgfSeedMask′. 1893 

e. Apply the mask-generation function specified in Section 7.2.2.2 to compute: 1894 

                                                 
24 When the private key is represented in the prime-factor or CRT format, appropriate changes are discussed in 

Section 7.1.2. 



NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT 
 USING INTEGER FACTORIZATION CRYPTOGRAPHY 

71 

 

dbMask′= MGF(mgfSeed′, nLen – HLen – 1). 1895 

f. Let DB′ = maskedDB′ ⊕ dbMask′. 1896 

g. Separate DB′ into a byte string HA′ of HLen bytes and a byte string X of nLen – 1897 
2HLen – 1 bytes as follows: 1898 

DB′ = HA′ || X. 1899 

5. Check for RSA-OAEP decryption errors: 1900 

a. DecryptErrorFlag = False. 1901 

b. If Y is not the 00 byte (i.e., the bit string 00000000), then DecryptErrorFlag = True. 1902 

c. If HA′ does not equal HA, then DecryptErrorFlag = True. 1903 

d. If X does not have the form PS || 00000001 || K, where PS consists of zero or more 1904 
consecutive 00 bytes, then DecryptErrorFlag = True.  1905 

The type(s) of any error(s) found shall not be reported.  1906 
(See the notes below for more information.) 1907 

6. Output of the decryption process: 1908 

a. If DecryptErrorFlag = True, then output an indication of an (unspecified) 1909 
decryption error, and exit without further processing. (See the notes below for more 1910 
information.) 1911 

b. Otherwise, output K, the portion of the byte string X that follows the leading 01 1912 
byte. 1913 

Output: 1914 

K: the recovered keying material (a byte string of at most nLen – 2HLen − 2 bytes), or an error 1915 
indicator. 1916 

A routine that implements this operation shall destroy any local copies of sensitive input values 1917 
(including the private key and any sensitive portions of A), any locally stored portions of K, and 1918 
any other potentially sensitive locally stored values used or produced during its execution 1919 
(including DecryptErrorFlag, em, EM, HA, Y, maskedMGFSeed ′, maskedDB′, mgfSeedMask ′, 1920 
mfgSeed ′, dbMask ′, DB′, HA′, and X). Their destruction shall occur prior to or during any exit 1921 
from the routine – whether exiting because of an error, or exiting normally with the output of K. 1922 
Note that the requirement for destruction includes any locally stored portions of the recovered 1923 
keying material. 1924 

Notes: 1925 

1. Care should be taken to ensure that the different error conditions that may be detected in 1926 
step 5 above cannot be distinguished from one another by an opponent, whether by an error 1927 
message or by process timing. Otherwise, an opponent may be able to obtain useful 1928 
information about the decryption of a chosen ciphertext C, leading to the attack observed 1929 
by Manger in [Manger 2001]. A single error message should be employed and output the 1930 
same way for each type of decryption error. There should be no difference in the 1931 
observable behavior for the different RSA-OAEP decryption errors. 1932 
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2. In addition, care should be taken to ensure that even if there are no errors, an 1933 
implementation does not reveal partial information about the encoded message em or EM. 1934 
For instance, the observable behavior of the mask-generation function should not reveal 1935 
even partial information about the MGF seed employed in the process (since that could 1936 
compromise portions of the maskedDB′ segment of EM). An opponent who can reliably 1937 
obtain particular bits of EM for sufficiently many chosen-ciphertext values may be able to 1938 
obtain the full decryption of an arbitrary ciphertext by applying the bit-security results of 1939 
Håstad and Näslund [HN 1998]. 1940 

 1941 

Figure 5: RSA-OAEP Decryption Operation  1942 
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8 Key-Agreement Schemes  1943 

In a key-agreement scheme, two parties, party U and party V, establish keying material over which 1944 
neither has complete control of the result, but both have influence. This Recommendation provides 1945 
two families of key-agreement schemes: KAS1 and KAS2. The KAS1 family consists of the 1946 
KAS1-basic and KAS1-Party_V-confirmation schemes, and the KAS2 family consists of the 1947 
KAS2-basic, KAS2-Party_V-confirmation, KAS2-Party_U-confirmation, and KAS2-1948 
bilateral-confirmation schemes.  These schemes are based on secret-value encapsulation (see 1949 
Section 7.2.1).   1950 

Key confirmation is included in some of these schemes to provide assurance that the participants 1951 
share the same keying material; see Section 5.6 for the details of key confirmation. When possible, 1952 
each party should have such assurance. Although other methods are often used to provide this 1953 
assurance, this Recommendation makes no statement as to the adequacy of these other methods.  1954 
Key confirmation may also provide assurance of private-key possession. 1955 

For each of the KAS1 and KAS2 schemes, Party V shall have an identifier, IDV, that has an 1956 
association with the key pair that is known (or discoverable) and trusted by party U (i.e., there 1957 
shall be a trusted association between IDV and party V’s public key). For the KAS2 key-agreement 1958 
schemes, party U shall also have such an identifier, IDU. 1959 

A general flow diagram is provided for each key-agreement scheme. The dotted-line arrows 1960 
represent the distribution of public keys by the parties themselves or by a third party, such as a 1961 
Certification Authority (CA). The solid-line arrows represent the distribution of nonces or 1962 
cryptographically protected values that occur during the key-agreement scheme. Note that the flow 1963 
diagrams in this Recommendation omit explicit mention of various validation checks that are 1964 
required. The flow diagrams and descriptions in this Recommendation assume a successful 1965 
completion of the key-agreement process.  1966 

For each scheme, there are conditions that must be satisfied to enable proper use of that scheme. 1967 
These conditions are listed as assumptions. Failure to meet all such conditions could yield 1968 
undesirable results, such as the inability to communicate or the loss of security. As part of the 1969 
proper implementation of this Recommendation, system users and/or agents trusted to act on their 1970 
behalf (including application developers, system installers, and system administrators) are 1971 
responsible for ensuring that all assumptions are satisfied at the time that a key-establishment 1972 
transaction takes place.  1973 

8.1 Common Components for Key Agreement 1974 

The key-agreement schemes in this Recommendation have the following common components: 1975 

1. RSASVE: RSA secret-value encapsulation, consisting of a generation operation 1976 
RSASVE.GENERATE and a recovery operation RSASVE.RECOVER (see Section 1977 
7.2.1). 1978 

2. KDM: A key-derivation method (see Section 5.5). 1979 
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8.2      KAS1 Key Agreement 1980 

For the KAS1 key-agreement schemes, even if both parties have key-establishment key pairs, only 1981 
party V’s key-establishment key pair is used. 1982 

The KAS1 key-agreement schemes have the following general form:  1983 

1. Party U generates a secret value (which will become a shared secret) and a corresponding 1984 
ciphertext using the RSASVE.GENERATE operation and party V’s public key-establishment 1985 
key, and then sends the ciphertext to party V.  1986 

2. Party V recovers the secret value from the ciphertext using the RSASVE.RECOVER 1987 
operation and its private key-establishment key; the secret value is then considered to be 1988 
the shared secret. Party V generates a nonce and sends it to party U.  1989 

3. Both parties then derive keying material from the shared secret and “other information”, 1990 
including party V’s nonce, using a key-derivation method. The length of the keying 1991 
material that can be agreed on is limited only by the length that can be output by the key-1992 
derivation method. 1993 

4. If key confirmation (KC) is incorporated in the scheme, then the derived keying material 1994 
is parsed into two parts, MacKey and KeyData, and a MacData string is formed (see 1995 
Sections 5.6 and 8.2.3.2.), MacKey and MacData are used to compute a MAC tag of 1996 
MacTagBits bits (see Sections 5.2.1, 5.2.2, 5.6.1 and 5.6.3), and MacTag is sent from party 1997 
V (the KC provider) to party U (the KC recipient). If the MAC tag computed by party V 1998 
matches the MAC tag (re)computed by party U, then the successful establishment of keying 1999 
material is confirmed to party U. 2000 

The following schemes are defined: 2001 

1. KAS1-basic, the basic scheme without key confirmation (see Section 8.2.2). 2002 

2. KAS1-Party_V-confirmation, a variant of KAS1-basic with unilateral key confirmation 2003 
provided by party V to party U (see Section 8.2.3). 2004 

For the security properties of the KAS1 key-agreement schemes, see Section 10.1. 2005 

8.2.1 KAS1 Assumptions 2006 
1. Party V has been designated as the owner of a key-establishment key pair that was 2007 

generated as specified in Section 6.3. Party V has assurance of possession of the correct 2008 
value for its private key as specified in Section 6.4.1.5. 2009 

2. Party U and party V have agreed upon an approved key-derivation method (see Section 2010 
5.5), as well as an approved algorithm to be used with that method (e.g., a specific hash 2011 
function) and other associated parameters related to the cryptographic elements to be used. 2012 

3. If key confirmation is used, party U and party V have agreed upon an approved MAC 2013 
algorithm and associated parameters, including the lengths of MacKey and MacTag (see 2014 
Section 5.2). 2015 

4. When an identifier is used to label either party during the key-agreement process, both 2016 
parties are aware of the particular identifier employed for that purpose. In particular, when 2017 
an identifier is used to label party V during the key-agreement process, that identifier’s 2018 
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association with party V’s public key is trusted by party U. When an identifier is used to 2019 
label party U during the key-agreement process, it has been selected/assigned in accordance 2020 
with the requirements of the protocol relying upon the use of the key-agreement scheme. 2021 

5. Party U has obtained assurance of the validity of party V’s public key, as specified in 2022 
Section 6.4.2. 2023 

The following is an assumption for using any keying material derived during a KAS1 key-2024 
agreement scheme for purposes beyond those of the scheme itself. 2025 

Party U has obtained (or will obtain) assurance that party V is (or was) in possession of the 2026 
private key corresponding to the public key used during the key-agreement transaction, as 2027 
specified in Section 6.4.2.3. 2028 

This assumption recognizes the possibility that assurance of private-key possession may be 2029 
provided/obtained by means of key confirmation performed as part of a particular KAS1 2030 
transaction. 2031 

8.2.2 KAS1-basic 2032 
KAS1-basic is the basic key-agreement scheme in the KAS1 family. In this scheme, party V does 2033 
not contribute to the formation of the shared secret; instead, a nonce is used as a party V-selected 2034 
contribution to the key-derivation method, ensuring that both parties influence the derived keying 2035 
material. 2036 

Let (PubKeyV, PrivKeyV) be party V’s key-establishment key pair. Let KBits be the intended length 2037 
in bits of the keying material to be established. The parties shall perform the following or an 2038 
equivalent sequence of steps, as illustrated in Figure 6. 2039 

Party U  Party V 

  (PubKeyV, PrivKeyV) 

Obtain party V’s public key-establishment 
key 

PubKeyV   

(Z, C) = RSASVE.GENERATE(PubKeyV) C Z = RSASVE.RECOVER(PrivKeyV, C) 

Compute DerivedKeyingMaterial and 
Destroy Z 

NV Compute DerivedKeyingMaterial and 
Destroy Z 

Figure 6: KAS1-basic Scheme 2040 

Party U shall execute the following key-agreement steps in order to a) establish a shared secret Z 2041 
with party V, and b) derive secret keying material from Z. 2042 

Actions: Party U generates a shared secret and derives secret keying material as follows: 2043 

1. Use the RSASVE.GENERATE operation in Section 7.2.1.2 to generate a secret value Z and 2044 
a corresponding ciphertext C using party V’s public key-establishment key, PubKeyV. Note 2045 
that the secret value Z will become a shared secret when recovered by Party V. 2046 

2. Send the ciphertext C to party V. 2047 
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3. Obtain party V’s nonce NV from party V. If NV is not available, return an error indicator 2048 
without performing the remaining actions. 2049 

4. Assemble the OtherInput for key derivation, including the required nonce, NV, and any 2050 
other requisite information (see Section 5.5). 2051 

5. Use the agreed-upon key-derivation method (see Section 5.5) to derive secret keying 2052 
material of the agreed-upon length from the shared secret value Z and OtherInput (see step 2053 
4). If the key-derivation method outputs an error indicator, return an error indicator without 2054 
performing the remaining actions.   2055 

6.  Output the DerivedKeyingMaterial. 2056 

Any local copies of Z, OtherInput, DerivedKeyingMaterial and any intermediate values used 2057 
during the execution of party U’s actions shall be destroyed prior to the early termination of the 2058 
actions due to an error, or (in the absence of errors), prior to or during the the completion of step 2059 
6.  2060 

Party V shall execute the following key-agreement steps in order to a) establish a shared secret Z 2061 
with party U, and b) derive secret keying material from Z. 2062 

Actions: Party V obtains the shared secret and derives secret keying material as follows: 2063 

1. Receive a ciphertext C from party U. 2064 

2. Use the RSASVE.RECOVER operation in Section 7.2.1.3 to recover the secret value Z from 2065 
the ciphertext C using the private key-establishment key, PrivKeyV; hereafter, Z is 2066 
considered to be a shared secret. If the call to RSASVE.RECOVER outputs an error indicator, 2067 
return an error indicator without performing the remaining actions.  2068 

3. Obtain a nonce NV  (see Section 5.4) and send NV  to party U. 2069 

4. Construct the other information OtherInput for key derivation (see Section 5.5) using the 2070 
nonce NV and the identifiers IDU and IDV, if available. 2071 

5. Use the agreed-upon key-derivation method to derive secret keying material with the 2072 
agreed upon length from the shared secret value Z and other input. If the key-derivation 2073 
method outputs an error indicator, return an error indicator without performing the 2074 
remaining actions. 2075 

6. Output the DerivedKeyingMaterial. 2076 

Any local copies of Z, PrivKeyV, OtherInput DerivedKeyingMaterial and any intermediate values 2077 
used during the execution of party V’s actions shall be destroyed prior to the early termination of 2078 
the actions due to an error, or (in the absence of errors) prior to or during the the completion of 2079 
step 6. 2080 

The messages may be sent in a different order, i.e., NV  may be sent before C. 2081 

It is extremely important that an implementation not reveal any sensitive information. It is also 2082 
important to conceal partial information about the shared secret Z to prevent chosen-ciphertext 2083 
attacks on the secret-value encapsulation scheme. 2084 
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8.2.3 KAS1 Key Confirmation 2085 
The KAS1-Party_V-confirmation scheme is based on the KAS1-basic scheme.  2086 

8.2.3.1 KAS1 Key-Confirmation Components 2087 
The components for KAS1 key agreement with key confirmation are the components listed in 2088 
Section 8.1, plus the following: 2089 

MAC: A message authentication code algorithm with the following parameters (see Section 2090 
5.2), 2091 

a.   MacKeyLen: the byte length of MacKey, and 2092 

b.  MacTagLen: the byte length of MacTag. (MacTagBits, as used in Section 5.2, is equal 2093 
to 8 × MacTagLen.) 2094 

MacKey shall be the first MacKeyLen bytes of the keying material and shall be used only for the 2095 
key-confirmation operation of a single transaction. For KAS1 key confirmation, the length of the 2096 
derived keying material shall be at least MacKeyLen bytes in length.  The keying material is 2097 
usually longer than MacKeyLen bytes so that other keying material is available for subsequent 2098 
operations.  2099 

8.2.3.2 KAS1-Party_V-confirmation 2100 
Figure 7 depicts a typical flow for a KAS1 scheme with unilateral key confirmation from party V 2101 
to party U. In this scheme, party V and party U assume the roles of key-confirmation provider and 2102 
recipient, respectively.  2103 

Party U  Party V 

  (PubKeyV, PrivKeyV) 

Obtain party V’s public key-establishment 
key 

PubKeyV   

(Z, C) = RSASVE.GENERATE(PubKeyV) C Z = RSASVE.RECOVER(PrivKeyV, C) 

Compute DerivedKeyingMaterial and 
Destroy Z 

NV Compute DerivedKeyingMaterial and 
Destroy Z 

MacTagV =?  
TMacTagBits[MAC(MacKey, MacDataV)] MacTagV MacTagV =  

TMacTagBits[MAC(MacKey, MacDataV) 

Figure 7: KAS1-Party_V-confirmation Scheme (from Party V to Party U) 2104 

To provide (and receive) key confirmation (as described in Section 5.6.1), both parties set 2105 
EphemDataV = NV, and EphemDataU = C: 2106 

Party V provides MacTagV  to party U (as specified in Section 5.6.1, with P = V and R = U), where 2107 
MacTagV is computed (as specified in Section 5.2.1) using  2108 

MacDataV = “KC_1_V” || IDV || IDU || NV || C{ || TextV}. 2109 
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Party U uses the identical format and values to compute TMacTagBits[MAC(MacKey, MacDataV), and 2110 
then verify that it matches the MacTagV value provided by party V. 2111 

The MacKey used during key confirmation shall be destroyed by party V immediately after the 2112 
computation of MacTagV, and by party U immediately after the verification of the received 2113 
MacTagV or a (final) determination that the received MacTagV is in error. 2114 

Certain messages may be combined or sent in a different order (e.g., NV and MacTagV may be sent 2115 
together, or NV may be sent before C). 2116 

8.3  KAS2 Key Agreement 2117 

In this family of key-agreement schemes, key-establishment key pairs are used by both party U 2118 
and party V. 2119 

The schemes in this family have the following general form:  2120 

1. Party U generates a secret value (which will become a component of the shared secret) and 2121 
a corresponding ciphertext using the RSASVE.GENERATE operation and party V’s public 2122 
key-establishment key, and sends the ciphertext to party V.  2123 

2. Party V recovers party U’s secret component from the ciphertext received from party U 2124 
using the RSASVE.RECOVER operation and its private key-establishment key.   2125 

3. Party V generates a secret value (which will become a second component of the shared 2126 
secret) and the corresponding ciphertext using the RSASVE.GENERATE operation and 2127 
party U’s public key-establishment key, and sends the ciphertext to party U.  2128 

4. Party U recovers party V’s secret component from the ciphertext received from party V 2129 
using the RSASVE.RECOVER operation and its private key-establishment key. 2130 

5. Both parties concatenate the two secret components to form the shared secret, and then 2131 
derive keying material from the shared secret and “other information” using a key-2132 
derivation method. The length of the keying material that can be agreed on is limited only 2133 
by the length that can be output by the key-derivation method.  2134 

6. Party U and/or party V may additionally provide key confirmation. If key confirmation is 2135 
incorporated, then the derived keying material is parsed into two parts, MacKey and 2136 
KeyData. MacKey is then used to compute a MAC tag of MacTagLen bytes on MacData 2137 
(see Sections 5.2.1, 5.2.2, 5.6.1 and 5.6.3). MacTag is sent from the KC provider to the KC 2138 
recipient. If the MAC tag computed by the provider matches the MAC tag computed by 2139 
the recipient, then the successful establishment of keying material is confirmed by the 2140 
recipient.  2141 

The following schemes are defined: 2142 

1. KAS2-basic, the basic scheme without key confirmation (see Section 8.3.2). 2143 

2. KAS2-Party_V-confirmation, a variant of KAS2-basic with unilateral key confirmation 2144 
provided by party V to party U (see Section 8.3.3.2). 2145 

3. KAS2-Party_U-confirmation, a variant of KAS2-basic with unilateral key confirmation 2146 
probided by party U to party V (see Section 8.3.3.3). 2147 
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4. KAS2-bilateral-confirmation, a variant of KAS2-basic with bilateral key confirmation 2148 
between party U and party V (see Section 8.3.3.4). 2149 

For the security properties of the KAS2 key-agreement schemes, see Section 10.2. 2150 

8.3.1 KAS2 Assumptions 2151 
1. Each party has been designated as the owner of a key-establishment key pair that was 2152 

generated as specified in Section 6.3. Prior to or during the key-agreement process, each 2153 
party has obtained assurance of its possession of the correct value for its own private key 2154 
as specified in Section 6.4.1.5.  2155 

2. The parties have agreed upon an approved key-derivation method (see Section 5.5), as 2156 
well as an approved algorithm to be used with that method (e.g., a specific hash function) 2157 
and other associated parameters to be used for key derivation. 2158 

3. If key confirmation is used, party U and party V have agreed upon an approved MAC 2159 
algorithm and associated parameters, including the lengths of MacKey and MacTag (see 2160 
Section 5.2).  The parties must also agree on whether one party or both parties will send 2161 
MacTag, and in what order.  2162 

4. When an identifier is used to label a party during the key-agreement process, that identifier 2163 
has a trusted association to that party’s public key. (In other words, whenever both the 2164 
identifier and public key of one participant are employed in the key-agreement process, 2165 
they are associated in a manner that is trusted by the other participant.) When an identifier 2166 
is used to label a party during the key-agreement process, both parties are aware of the 2167 
particular identifier employed for that purpose. 2168 

5. Each party has obtained assurance of the validity of the public keys that are used during 2169 
the transaction, as specified in Section 6.4.2.3.  2170 

The following is an assumption for using any keying material derived during a KAS2 key-2171 
agreement scheme for purposes beyond those of the scheme itself. 2172 

Each party has obtained (or will obtain) assurance that the other party is (or was) in possession 2173 
of the private key corresponding to their public key that was used during the key-agreement 2174 
transaction, as specified in Section 6.4.2.3. 2175 

This assumption recognizes the possibility that assurance of private-key possession may be 2176 
provided/obtained by means of key confirmation performed as part of a particular KAS2 2177 
transaction. 2178 

8.3.2 KAS2-basic 2179 
Figure 8 depicts the typical flow for the KAS2-basic scheme. The parties exchange secret values 2180 
that are concatenated to form the mutually determined shared secret to be input to the key-2181 
derivation method. 2182 

Party U shall execute the following key-agreement steps in order to a) establish a mutually 2183 
determined shared secret Z with party V, and b) derive secret keying material from Z. 2184 

Actions: Party U generates a shared secret and derives secret keying material as follows: 2185 
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1.  Use the RSASVE.GENERATE operation in Section 7.2.1.2 to generate a secret value ZU and 2186 
a corresponding ciphertext CU using party V’s public key-establishment key PubKeyV. 2187 

2.  Send the ciphertext CU to party V. 2188 

3. Receive a ciphertext CV from party V. If CV is not available, return an error indicator 2189 
without performing the remaining actions. 2190 

4. Use the RSASVE.RECOVER operation in Section 7.2.1.3 to recover ZV from the ciphertext 2191 
CV using the private key-establishment key PrivKeyU. If the call to RSASVE.RECOVER 2192 
outputs an error indicator, return an error indicator without performing the remaining 2193 
actions. 2194 

5. Construct the mutually determined shared secret Z from ZU and ZV 2195 

Z = ZU || ZV. 2196 

6. Assemble the OtherInput for key derivation, including all requisite information (see 2197 
Section 5.5). 2198 

7 Use the agreed-upon key-derivation method (see Section 5.5) to derive secret keying 2199 
material with the specified length from the shared secret Z and other input. If the key-2200 
derivation method outputs an error indicator, return an error indicator without performing 2201 
the remaining actions. 2202 

8. Output the DerivedKeyingMaterial. 2203 

Any local copies of Z, ZU, ZV, PrivKeyU, OtherInput, DerivedKeyingMaterial and any intermediate 2204 
values used during the execution of party U’s actions shall be destroyed prior to the early 2205 
termination of the actions due to an error, or (in the absence of errors), prior to or during the 2206 
completion of step 8.  2207 

Party U  Party V 

(PubKeyU, PrivKeyU)  (PubKeyV, PrivKeyV) 

Obtain party V’s public key-
establishment key 

PubKeyV 
←         

 

 PubKeyU 
        → 

Obtain party U’s public key-
establishment key 

(ZU, CU) = 
RSASVE.GENERATE(PubKeyV) 

CU 
→ 

ZU =  
RSASVE.RECOVER(PrivKeyV, CU) 

ZV =  
RSASVE.RECOVER(PrivKeyU, CV) 

CV 
← 

(ZV, CV) = 
RSASVE.GENERATE(PubKeyU) 

Z = ZU || ZV  Z = ZU || ZV 

Compute DerivedKeyingMaterial          
and destroy Z  Compute DerivedKeyingMaterial         

and destroy Z 
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Figure 8: KAS2-basic Scheme 2208 

Party V shall execute the following key-agreement steps in order to a) establish a mutually 2209 
determined shared secret Z with party U, and b) derive secret keying material from Z. 2210 

Actions: Party V generates a shared secret and derives secret keying material as follows: 2211 

1. Receive a ciphertext CU from party U. 2212 

2. Use the RSASVE.RECOVER operation in Section 7.2.1.3 to recover ZU from the ciphertext 2213 
CU using the private key-establishment key PrivKeyU. If the call to RSASVE.RECOVER 2214 
outputs an error indicator, return an error indicator without performing the remaining 2215 
actions. 2216 

3. Use the RSASVE.GENERATE operation in Section 7.2.1.2 to generate a secret value ZV and 2217 
a corresponding ciphertext CV using party U’s public key-establishment key PubKeyU. 2218 

4. Send the ciphertext CV to party U. 2219 

5. Construct the mutually determined shared secret Z from ZU and ZV 2220 

Z = ZU || ZV. 2221 

6. Assemble the OtherInput for key derivation, including all requisite information (see 2222 
Section 5.5). 2223 

7. Use the agreed-upon key-derivation method (see Section 5.5) to derive KBits of secret 2224 
keying material DerivedKeyingMaterial from the shared secret Z and OtherInput. If the 2225 
key-derivation method outputs an error indicator, return an error indicator without 2226 
performing the remaining actions. 2227 

8. Output the DerivedKeyingMaterial. 2228 

Any local copies of Z, ZU, ZV, PrivKeyV, OtherInput, DerivedKeyingMaterial and any intermediate 2229 
values used during the execution of party V’s actions shall be destroyed prior to the early 2230 
termination of the actions due to an error, or (in the absence of errors), prior to or during the 2231 
completion of step 8.   2232 

The messages may be sent in a different order, i.e., CV may be sent before CU. 2233 
It is extremely important that an implementation not reveal any sensitive information. It is also 2234 
important to conceal partial information about ZU, ZV and Z to prevent chosen-ciphertext attacks 2235 
on the secret-value encapsulation scheme. In particular, the observable behavior of the key-2236 
agreement process should not reveal partial information about the shared secret Z. 2237 

8.3.3 KAS2 Key Confirmation 2238 
The KAS2 key-confirmation schemes are based on the KAS2-basic scheme. 2239 

8.3.3.1 KAS2 Key-Confirmation Components 2240 
The components for KAS2 key agreement with key confirmation are the components in Section 2241 
8.1, plus the following: 2242 

MAC:  A message authentication code algorithm with the following parameters (see Section 2243 
5.2) 2244 
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a. MacKeyLen: the byte length of MacKey. 2245 

b. MacTagLen: the byte length of MacTag. (MacTagBits, as used in Section 5.2, is equal 2246 
to 8 × MacTagLen.) 2247 

MacKey shall be the first MacKeyLen bytes of the keying material and shall be used only for the 2248 
key-confirmation operation of a single transaction. For KAS2 key confirmation, the length of the 2249 
keying material shall be at least MacKeyLen bytes.  The keying material is usually longer than 2250 
MacKeyLen bytes so that other keying material is available for subsequent operations.  2251 

8.3.3.2 KAS2-Party_V-confirmation 2252 
Figure 9 depicts a typical flow for a KAS2 scheme with unilateral key confirmation from party V 2253 
to party U. In this scheme, party V and party U assume the roles of the key-confirmation 2254 
provider and recipient, respectively. 2255 

Party U  Party V 

(PubKeyU, PrivKeyU)  (PubKeyV, PrivKeyV) 

Obtain party V’s public key-
establishment key 

PubKeyV 
←        

 

 PubKeyU 
       → 

Obtain party U’s public key 
establishment-key 

(ZU, CU) = 
RSASVE.Generate(PubKeyV) 

CU 
→ ZU = RSASVE.Recover(PrivKeyV, CU) 

ZV =  
RSASVE.RECOVER(PrivKeyU, CV) 

CV 
← 

(ZV, CV) = 
RSASVE.GENERATE(PubKeyU) 

Z = ZU || ZV  Z = ZU || ZV 

Compute DerivedKeyingMaterial = 
MacKey || KeyData and destroy Z  Compute DerivedKeyingMaterial = 

MacKey || KeyData and destroy Z 

MacTagV =?  
TMacTagBits[MAC(MacKey, MacDataV)] 

MacTagV 
← 

MacTagV =  
TMacTagBits[MAC(MacKey, MacDataV)] 

Figure 9: KAS2-Party_V-confirmation Scheme (from Party V to Party U) 2256 

To provide (and receive) key confirmation (as described in Section 5.6.1), both parties set 2257 
EphemDataV = CV,  and EphemDataU = CU. 2258 

Party V provides MacTagV  to party U (as specified in Section 5.6.1, with P = V and R = U), where 2259 
MacTagV is computed (as specified in Section 5.2.1) on 2260 

MacDataV = “KC_1_V” || IDV || IDU || CV || CU{ || TextV}. 2261 

Party U (the KC recipient) uses the identical format and values to compute 2262 
TMacTagBits[MAC(MacKey, MacDataV)] and then verify that it equals MacTagV as provided by party 2263 
V. 2264 
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The MAC key used during key confirmation (i.e., MacKey) shall be destroyed by party V 2265 
immediately after the computation of MacTagV, and by party U immediately after the verification 2266 
of the received MacTagV or a (final) determination that the received MacTagV is in error. 2267 

Certain messages may be combined or sent in a different order (e.g., CV and MacTagV may be sent 2268 
together, or CV may be sent before CU).  2269 

8.3.3.2 KAS2-Party_U-confirmation 2270 
Figure 10 depicts a typical flow for a KAS2 scheme with unilateral key confirmation from party 2271 
U to party V. In this scheme, party U and party V assume the roles of key-confirmation provider 2272 
and recipient, respectively.  2273 

Party U  Party V 

(PubKeyU, PrivKeyU)  (PubKeyV, PrivKeyV) 

Obtain party V’s public key-
establishment key 

PubKeyV 
←        

 

 PubKeyU 

       → 

Obtain party U’s public key-
establishment key 

(ZU, CU) = 
RSASVE.GENERATE(PubKeyV) 

CU 
→ 

ZU =    RSASVE.RECOVER(PrivKeyV, 
CU) 

ZV =    
RSASVE.RECOVER(PrivKeyU, CV) 

CV 
← 

(ZV, CV) = 
RSASVE.GENERATE(PubKeyU) 

Z = ZU ZV  Z = ZU ZV 

Compute DerivedKeyingMaterial = 
MacKey || KeyData and destroy Z  Compute DerivedKeyingMaterial =  

MacKey || KeyData and destroy Z 

MacTagU =  
TMacTagBits[MAC(MacKey, MacDataU)] 

MacTagU 

→ 
MacTagU =?  

TMacTagBits[MAC(MacKey, MacDataU)] 

Figure 10: KAS2-Party_U-confirmation Scheme (from Party U to Party V) 2274 

To provide (and receive) key confirmation (as described in Section 5.6.1), both parties set 2275 
EphemDataV = CV,  and EphemDataU = CU. 2276 
  2277 
Party U provides MacTagU to party V (as specified in Section 5.6.1, with P = U and R = V), 2278 
where MacTagU is computed (as specified in Section 5.2.1) on  2279 

MacDataU = “KC_1_U” || IDU || IDV || CU || CV{ || TextU}. 2280 

Party V (the KC recipient) uses the identical format and values to compute 2281 
TMacTagBits[MAC(MacKey, MacDataU)] and then verify that it matches the MacTagU value provided 2282 
by party U. 2283 
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The MAC key used during key confirmation shall be destroyed by party U immediately after the 2284 
computation of MacTagU, and by party V immediately after the verification of the received 2285 
MacTagU or a (final) determination that the received MacTagU is in error. 2286 

Note that CV may be sent before CU; in which case CU and MacTagU may be sent together. 2287 

8.3.3.3 KAS2-bilateral-confirmation 2288 
Figure 11 depicts a typical flow for a KAS2 scheme with bilateral key confirmation. In this scheme, 2289 
party U and party V assume the roles of both the KC provider and recipient in order to obtain 2290 
bilateral key confirmation. 2291 

Party U  Party V 

(PubKeyU, PrivKeyU)  (PubKeyV, PrivKeyV) 

Obtain party V’s public key-
establishment key 

PubKeyV 
←         

 PubKeyU 

       → 

Obtain party U’s public key-
establishment key 

(ZU, CU) = 
RSASVE.GENERATE(PubKeyV) 

CU 

 
ZU =  

RSASVE.RECOVER(PrivKeyV, CU) 

ZV =  
RSASVE.RECOVER(PrivKeyU, CV) 

CV 

 
(ZV, CV) = 

RSASVE.GENERATE(PubKeyV) 

Z = ZU ZV  Z = ZU ZV 

Compute DerivedKeyingMaterial = 
MacKey || KeyData and destroy Z  Compute DerivedKeyingMaterial = 

MacKey || KeyData and destroy Z 

MacTagV =?  
TMacTagBits[MAC(MacKey, MacDataV)] 

MacTagV 

 
MacTagV =  

TMacTagBits[MAC(MacKey, MacDataV)] 

MacTagU =  
TMacTagBits[MAC(MacKey, MacDataU)] 

MacTagU 

 
MacTagU =? 

TMacTagBits[MAC(MacKey, MacDataU)] 

Figure 11: KAS2-bilateral-confirmation Scheme  2292 

To provide bilateral key confirmation (as described in Section 5.6.2), party U and party V exchange 2293 
and verify MacTags that have been computed (as specified in Section 5.6.1) using EphemDataU = 2294 
CU,  and EphemDataV = CV. 2295 

Party V provides MacTagV to party U (as specified in Section 5.6.1, with P = V and R = U); 2296 
MacTagV is computed by party V (and verified by party U) using  2297 

MacDataV = “KC_2_V” || IDV || IDU || CV || CU{ || TextV}. 2298 

Party U provides MacTagU to party V (as specified in Section 5.6.1, with P = U and R = V); 2299 
MacTagU is computed by party U (and verified by party V) using  2300 
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MacDataU = “KC_2_U” || IDU || IDV || CU || CV{ || TextU}. 2301 

The MAC key used during key confirmation shall be destroyed by each party immediately 2302 
following its use to compute and verify the MAC tags used for key confirmation. Once party U 2303 
has computed MacTagU and has either verified the received MacTagV or made a (final) 2304 
determination that the received MacTagU is in error, party U shall immediately destroy its copy of 2305 
MacKey. Similarly, after party V has computed MacTagV and has either verified the received 2306 
MacTagU or made a (final) determination that the received MacTagU is in error, party V shall 2307 
immediately destroy its copy of MacKey. 2308 

Certain messages may be sent in a different order (and/or combined with others), e.g., CV may be 2309 
sent before CU and/or MacTagV may be sent before MacTagU.  2310 

9 Key-Transport Schemes 2311 

In a key-transport scheme, two parties, the sender and receiver, establish keying material selected 2312 
by the sender. The keying material may be cryptographically bound to additional input (see Section 2313 
9.1). 2314 

In this Recommendation, the KTS-OAEP family of key-transport schemes is specified (see 2315 
Section 9.2). In addition, a hybrid method for key transport is discussed whereby a key-2316 
establishment scheme specified in this Recommendation is followed by a key-wrapping scheme 2317 
(see Section 9.3). 2318 

Key confirmation is included in one of the KTS-OAEP schemes to provide assurance to the sender 2319 
that the participants share the same keying material (see Section 5.6 for further details on key 2320 
confirmation).   2321 

A general flow diagram is provided for each KTS-OAEP key-transport scheme. The dotted-line 2322 
arrows represent the distribution of public keys by the parties themselves or by a third party, such 2323 
as a Certification Authority (CA). The solid-line arrows represent the distribution of 2324 
cryptographically protected values that occur during the key-transport or key-confirmation 2325 
process. Note that the flow diagrams in this Recommendation omit explicit mention of various 2326 
validation checks that are required. The flow diagrams and descriptions in this Recommendation 2327 
assume a successful completion of the key-transport process.  2328 

As in Section 8, there are conditions that must be satisfied for each key-transport scheme to enable 2329 
the proper use of that scheme. These conditions are listed as assumptions. Failure to meet any of 2330 
these conditions could yield undesirable results, such as the inability to communicate or the loss 2331 
of security. As part of the proper implementation of this Recommendation, system users and/or 2332 
agents trusted to act on their behalf (including application developers, system installers, and system 2333 
administrators) are responsible for ensuring that all assumptions are satisfied at the time that a key-2334 
establishment transaction takes place. 2335 

9.1 Additional Input 2336 

Additional input to the key-transport process may be employed to ensure that the keying material 2337 
is adequately “bound” to the context of the key-transport transaction. The use of additional input, 2338 
A, is explicitly supported by the key-transport schemes specified in  Section 9.2. Each party to a 2339 
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key-transport transaction shall know whether or not additional input is employed in that 2340 
transaction. 2341 

Context-specific information that may be appropriate for inclusion in the additional input is listed 2342 
in Section 5.5.2. (The suggestions for the content of FixedfInfo apply to the additional input as 2343 
well.) 2344 

Both parties to the key-transport transaction shall know the format of the additional input, A, and 2345 
shall acquire A in time to use it as required by the scheme. The methods used for formatting and 2346 
distributing the additional input are application-defined. System users and/or agents trusted to act 2347 
on their behalf should determine that the information selected for inclusion in A and the methods 2348 
used for formatting and distributing A meet the security requirements of those users. 2349 

9.2 KTS-OAEP: Key-Transport Using RSA-OAEP 2350 

The KTS-OAEP family of key-transport schemes is based on the RSA-OAEP encrypt and decrypt 2351 
operations (see Section 7.2.2), which are, in turn, based on the asymmetric encryption and 2352 
decryption primitives, RSAEP and RSADP (see Section 7.1). In this family, only party V’s key 2353 
pair is used. 2354 

The key-transport schemes of this family have the following general form: 2355 

1. Party U (the sender) encrypts the keying material (and possibly additional input – see 2356 
Section 7.2.2.3) to be transported using the RSA-OAEP.ENCRYPT operation and party V’s 2357 
(the receiver’s) public key-establishment key to produce ciphertext, and sends the 2358 
ciphertext to party V. 2359 

2. Party V decrypts the ciphertext using its private key-establishment key and the RSA-2360 
OAEP.DECRYPT operation to recover the transported keying material (see Section 7.2.2.4). 2361 

3. If key confirmation is incorporated, then the transported keying material is parsed into two 2362 
parts, a transaction-specific (random) value for MacKey, followed by KeyData (see Section 2363 
5.6.1). The Mackey portion of the keying material and an approved MAC algorithm are 2364 
used by each party to compute a MAC tag (of an appropriate, agreed-upon length) on what 2365 
should be the same MacData (see Sections 5.6 and 9.2.4.2). The MAC tag computed by 2366 
party V (the key-confirmation provider) is sent to party U (the key-confirmation recipient). 2367 
If the value of the MAC tag sent by party V matches the MAC tag value computed by party 2368 
U, then party U obtains a confirmation of the success of the key-transport transaction. 2369 

The common components of the schemes in the KTS-OAEP family are listed in Section 9.2.2. The 2370 
following schemes are then defined: 2371 

1. KTS-OAEP-basic, the basic scheme without key confirmation (see Section 9.2.3). 2372 

2. KTS-OAEP-Party_V-confirmation, a variant of KTS-OAEP-basic with unilateral key 2373 
confirmation from party V to party U (see Section 9.2.4). 2374 

For the security attributes of the KTS-OAEP family, see Section 10.3.  2375 
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9.2.1 KTS-OAEP Assumptions 2376 
1. Party V has been designated as the owner of a key-establishment key pair that was 2377 

generated as specified in Section 6.3. Party V has obtained assurance of its possession of 2378 
the correct value for its private key as specified in Section 6.4.1.5. 2379 

2. The parties have agreed upon an approved hash function, hash, appropriate for use with 2380 
the mask-generation function used by RSA-OAEP, as well as an approved hash function, 2381 
H, used to hash the additional input (see Sections 5.1, and 7.2.2). The same hash function 2382 
may be used for both functions. 2383 

3. Prior to or during the transport process, the sender and receiver have either agreed upon 2384 
the form and content of the additional input A (a byte string to be cryptographically bound 2385 
to the transported keying material so that the ciphertext is a function of both values), or 2386 
agreed that A will be a null string (see Section 9.1). 2387 

4. If key confirmation is used, the parties have agreed upon an approved MAC algorithm and 2388 
associated parameters, including the lengths of MacKey and MacTag (see Section 5.2). 2389 

5. When an identifier is used to label either party during the key-transport process, both 2390 
parties are aware of the particular identifier employed for that purpose. In particular, the 2391 
association of the identifier used to label party V with party V’s public key is trusted by 2392 
party U. When an identifier is used to label party U during the key-transport process, it has 2393 
been selected/assigned in accordance with the requirements of the protocol relying upon 2394 
the use of the key-transport scheme. 2395 

6. Party U has obtained assurance of the validity of party V’s public key, as specified in 2396 
Section 6.4.2. 2397 

7. Prior to or during the key-transport process, party U has obtained (or will obtain) assurance 2398 
that party V is (or was) in possession of the (correct) private key corresponding to the 2399 
public key-establishment key used during the transaction, as specified in Section 6.4.2. 2400 

8. Prior to or during the key-transport process, the keying material to be transported has 2401 
been/is determined and has a format as specified in Section 9.  2402 

9.2.2 Common components 2403 
The schemes in the KTS-OAEP family have the following common component: 2404 

1. RSA-OAEP: asymmetric operations, consisting of an encryption operation RSA-2405 
OAEP.ENCRYPT and a decryption operation RSA-OAEP.DECRYPT (see Section 7.2.2). 2406 

9.2.3 KTS-OAEP-basic 2407 
KTS-OAEP-basic is the basic key-transport scheme in the KTS-OAEP family without key 2408 
confirmation. 2409 

Let (PubKeyV, PrivKeyV) be party V’s (the receiver’s) key-establishment key pair. Let K be the 2410 
keying material to be transported from party U (the sender) to party V; note that the length of K is 2411 
restricted by the length of the RSA modulus and the length of the output of the hash-function used 2412 
to hash the additional input during the RSA-OAEP process (see Section 7.2.2.3). The parties shall 2413 
perform the following or an equivalent sequence of steps, which are also illustrated in Figure 12. 2414 
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Party U  Party V 

K to be transported  (PubKeyV, PrivKeyV) 

Obtain party V’s public key-
establishment key 

PubKeyV 
←           

C =  
RSA-OAEP. ENCRYPT(PubKeyV, K, A) 

C 
→ 

K =  
RSA-OAEP. DECRYPT(PrivKeyV, C, A) 

Figure 12: KTS-OAEP-basic Scheme 2415 

Party U shall execute the following steps in order to transport keying material to party V. 2416 

Party U Actions:  2417 

1. Encrypt the keying material K using party V’s public key-establishment key PubKeyV and 2418 
the additional input A, to produce a ciphertext C (see Section 7.2.2.3): 2419 

 2420 
C = RSA-OAEP.ENCRYPT(PubKeyV, K, A). 2421 

2. If an error indication has been returned, then return an error indication without performing 2422 
the remaining actions. 2423 

3. Send the ciphertext C to party V.  2424 

Any local copies of K, A, and any intermediate values used during the execution of party U’s 2425 
actions shall be destroyed prior to the early termination of the actions due to an error, or (in the 2426 
absence of errors), prior to or during the the completion of step 3.  2427 

Party V shall execute the following steps when receiving keys transported from party U. 2428 

Party V Actions:  2429 

1.  Receive the ciphertext C. 2430 

2. Decrypt the ciphertext C using the private key-establishment key PrivKeyV and the 2431 
additional input A, to recover the transported keying material K (see Section 7.2.2.4): 2432 

K = RSA-OAEP.DECRYPT(PrivKeyV, C, A). 2433 

If the decryption operation outputs an error indicator, return an error indication without 2434 
performing the remaining actions. 2435 

3. Output K. 2436 

Any local copies of K, PrivKeyV, A, and any intermediate values used during the execution of party 2437 
V’s actions shall be destroyed prior to the early termination of the actions due to an error, or (in 2438 
the absence of errors), prior to or during the the completion of step 3. 2439 
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9.2.4 KTS-OAEP Key Confirmation 2440 
The KES-OAEP-Party_V-confirmation scheme is based on the KTS-OAEP-basic scheme. 2441 

9.2.4.1 KTS-OAEP Common Components for Key Confirmation 2442 
The components for KTS-OAEP with key confirmation are the same as for KTS-OAEP-basic 2443 
(see Section 9.2.2), plus the following: 2444 

MAC: A message authentication code algorithm with the following parameters (see Section 2445 
5.2): 2446 

a. MacKeyLen: the byte length of MacKey. 2447 

b. MacTagLen: the byte length of MacTag. (MacTagBits, as used in Section 5.2, is equal 2448 
to 8 × MacTagLen.) 2449 

MacKey shall be the first MacKeyLen bytes of the keying material and shall be used only for the 2450 
key-confirmation operation. For KTS-OAEP key confirmation, the length of the keying material 2451 
shall be at least MacKeyLen bytes, and usually longer so that keying material other than MacKey 2452 
is available for subsequent operations.  2453 

9.2.4.2 KTS-OAEP-Party_V-confirmation 2454 
KTS-OAEP-Party_V-confirmation is a variant of KTS-OAEP-basic with unilateral key 2455 
confirmation from party V to party U. 2456 

Figure 13 depicts a typical flow for the KTS-OAEP-Party_V-confirmation scheme. In this 2457 
scheme, party V and party U assume the roles of key-confirmation provider and recipient, 2458 
respectively.  2459 

Party U  Party V 

K = MacKey ll KeyData  (PubKeyV, PrivKeyV) 

Obtain party V’s public key-
establishment key 

PubKeyV 
←          

C =  
RSA-OAEP.ENCRYPT(PubKeyV, K, A) 

C 
→ 

K =  
RSA-OAEP.DECRYPT(PrivKeyV, C, A) 

  MacKey || KeyData = K 

MacTagV Error! Bookmark not 
defined.=?  

TMacTagBits[MAC(MacKey, MacDataV)] 

MacTagV 
← 

MacTagV Error! Bookmark not 
defined.=  

TMacTagBits[MAC(MacKey, MacDataV)] 

Figure 13: KTS-OAEP-Party_V-confirmation Scheme 2460 

To provide (and receive) key confirmation (as described in Section 5.6.1), both parties form 2461 
MacData with EphemDataV = Null, and EphemDataU = C: 2462 
  2463 
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Party V provides MacTagV to party U (as specified in Section 5.6.1, with P = V and R = U), 2464 
where MacTagV is computed (as specified in Section 5.2.1) using  2465 

MacDataV = “KC_1_V” || IDV || IDU || Null || C{ || TextV}. 2466 

Party U uses the identical format and values to compute TMacTagBits[MAC(MacKey, MacDataV)] and 2467 
then verify that it matches the MacTagV value provided by party V. 2468 

The MAC tag used during key confirmation shall be destroyed by party V immediately after the 2469 
computation of MacTagV, and by party U immediately after the verification of the received 2470 
MacTagV or a (final) determination that the received MacTagV is in error. 2471 

9.3 Hybrid Key-Transport Methods 2472 

Key transport may be accomplished following any of the key-establishment schemes in this 2473 
Recommendation (i.e, any KAS1, KAS2 or KTS-OAEP scheme) by using an approved key-2474 
wrapping algorithm (see SP 800-38F25) with a key-wrapping key established during the execution 2475 
of that key-establishment scheme. The security properties for this hybrid key-establishment 2476 
process depend on the key-establishment scheme, the key-wrapping algorithm  and the 2477 
communication protocol used; the roles assumed by the participants during the process; and all 2478 
other parameters used during the entire process. 2479 

  2480 

                                                 
25 SP 800-38F, Recommendation for Block Cipher Modes of Operation: Methods for Key Wrapping. 
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10 Rationale for Selecting a Specific Scheme  2481 

The subsections that follow describe the security properties that may be considered when a user 2482 
and/or developer is choosing a key-establishment scheme from among the various schemes 2483 
described in this Recommendation. The descriptions are intended to highlight certain similarities 2484 
and differences between families of key-establishment schemes and/or between schemes within a 2485 
particular family; they do not constitute an in-depth analysis of all possible security properties of 2486 
every scheme under all adversary models.  2487 

The (brief) discussions will focus on the extent to which each participant in a particular transaction 2488 
has assurance that fresh keying material has been successfully established with the intended party 2489 
(and no one else). To that end, it is important to distinguish between the actual identifier of a 2490 
participant in a key-establishment transaction and the role (party U or party V) assumed by that 2491 
participant during the transaction. To simplify matters, in what follows, assume that the actual 2492 
identifiers of the (honest) participants in a key-establishment transaction are the proverbial 2493 
“Alice,” acting as party U, and “Bob,” acting as party V. (Pretend, for the sake of discussion, that 2494 
these identifiers are unique among the universe of possible participants.) The identifier associated 2495 
with their malevolent adversary is “Eve.” The discussions will also consider the ill effects of 2496 
certain compromises that might occur. The basic security properties that are cited depend on such 2497 
factors as how a shared secret is calculated, how keying material is established, and what types of 2498 
key-confirmation (if any) are incorporated into a given scheme. 2499 

Note 1: In order to provide concise descriptions of security properties possessed by the various 2500 
schemes, it is necessary to make some assumptions concerning the format and type of data that is 2501 
used as input during key derivation. The following assumptions are made solely for the purposes 2502 
of Sections 10.1 through 10.3; they are not intended to preclude the options specified elsewhere in 2503 
this Recommendation.  2504 

1. When discussing the security properties of schemes, it is assumed that the FixedInfo input 2505 
to a (single-step) key-derivation function employed during a particular key-agreement 2506 
transaction uses either the concatenation format or the ASN.1 format (see Section 5.5). It 2507 
is also assumed that FixedInfo includes sufficiently specific identifiers for the participants 2508 
in the transaction, an identifier for the key-establishment scheme being used during the 2509 
transaction, and additional input (e.g., a nonce, and/or session identifier) that may provide 2510 
assurance to one or both participants that the derived keying material will reflect the 2511 
specific context in which the transaction occurs (see Section 5.5 and Appendix B of SP 2512 
800-56A for further discussion concerning context-specific information that may be 2513 
appropriate for inclusion in FixedInfo).  2514 

2. In general, FixedInfo may include additional secret information (already shared between 2515 
parties U and V), but the following analyses of the security properties of each scheme type 2516 
assume that additional secret information is not included in the FixedInfo.  2517 

3. In cases where an approved extraction-then-expansion key-derivation procedure is 2518 
employed (see Section 5.5 and SP 800-56C), it is assumed that the FixedInfo is used as the 2519 
Context input during the key-expansion step, as specified in SP 800-56C.  2520 
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4. Finally, it is assumed that all required nonces employed during a transaction are random 2521 
nonces that include a component consisting of a random bit string formed in accordance 2522 
with the recommendations of Section 5.4. 2523 

Note 2: Different schemes may possess different security properties. A scheme should be selected 2524 
based on how well the scheme fulfills system requirements. For instance, if messages are 2525 
exchanged over a large-scale network where each exchange consumes a considerable amount of 2526 
time, a scheme with fewer exchanges during a single key-agreement transaction might be 2527 
preferable to a scheme with more exchanges, even though the latter may possess more security 2528 
benefits. It is important to keep in mind that a key-establishment scheme is usually a component 2529 
of a larger protocol that may offer security-related assurances beyond those that can be provided 2530 
by the key-establishment scheme alone. For example, the protocol may include specific features 2531 
that limit opportunities for accidental or intentional misuse of the key-establishment component of 2532 
the protocol. Protocols, per se, are not specified in this Recommendation. 2533 

10.1 Rationale for Choosing a KAS1 Key-Agreement Scheme 2534 

In both schemes included in the KAS1 family, only Bob (assumed to be acting as party V) is 2535 
required to own an RSA key pair that is used in the key-agreement transaction. Assume that the 2536 
identifier used to label party V during the transaction is one that is associated with Bob’s RSA 2537 
public key in a manner that is trusted by Alice (who is acting as party U). This can provide Alice 2538 
with some level of assurance that she has correctly identified the party with whom she will be 2539 
establishing keying material if the transaction is successfully completed. 2540 

Each KAS1 scheme requires Alice to employ the RSASVE.GENERATE operation to select a 2541 
(random) secret value Z and encrypt it as ciphertext C using Bob’s RSA public key. Unless Bob’s 2542 
corresponding private key has been compromised, Alice has assurance that no unintended entity 2543 
(i.e., no one but Bob) could employ the RSASVE.RECOVER operation to obtain Z from C. Absent 2544 
the compromise of Bob’s RSA private key and/or Z, Alice may attain a certain level of confidence 2545 
that she has correctly identified party V as Bob. Alice’s level of confidence is dependent upon: 2546 

• The specificity of the identifier that is associated with Bob’s RSA public key, 2547 

• The degree of trust in the association between that identifier and the public key, 2548 

• The assurance of the validity of the public key, and 2549 

• The availability of evidence that the keying material has been correctly derived by Bob 2550 
using Z (and the other information input to the agreed-upon key-derivation method), e.g., 2551 
through key confirmation with Bob as the provider.  2552 

In general, Bob has no assurance that party U is Alice, since Bob has no assurance concerning the 2553 
accuracy of any identifier that may be used to label party U (unless, for example, the protocol 2554 
using a key-agreement scheme from the KAS1 family also includes additional elements that 2555 
establish a trusted association between an identifier for Alice and the ciphertext C that she 2556 
contributes to the transaction while acting as party U). 2557 

The assurance of freshness of the derived keying material that can be obtained by a participant in 2558 
a KAS1 transaction is commensurate with the participant’s assurance that different input will be 2559 
supplied to the agreed-upon key-derivation method during each such transaction. Alice can obtain 2560 
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assurance that fresh keying material will be derived based on her unilateral selection and 2561 
contribution of the random Z value. Bob can obtain similar assurance owing to his selection and 2562 
contribution of the nonce NV, which is also used as input to the agreed-upon key-derivation method.  2563 

The KAS1-Party_V-confirmation scheme permits party V to provide evidence to party U that 2564 
keying material has been correctly derived. When the KAS1-Party_V-confirmation scheme is 2565 
employed during a key-agreement transaction, party V provides a key-confirmation MAC tag, 2566 
MacTagV, to party U as specified in Section 8.2.3.2. This allows Alice (who is acting as party U, 2567 
the key-confirmation recipient) to obtain assurance that party V has possession of the MacKey 2568 
derived from the shared secret Z (and nonce NV) and has used it with the appropriate MacDataV to 2569 
compute the received MacTagV. In the absence of a compromise of secret information (e.g., Bob’s 2570 
RSA private key and/or Z), Alice can also obtain assurance that the appropriate identifier has been 2571 
used to label party V, and that the participant acting as party V is indeed Bob, the owner of the 2572 
RSA public key associated with that identifier.  2573 

Specifically, by successfully comparing the received value of MacTagV with her own computation, 2574 
Alice (acting as party U, the key-confirmation recipient) may obtain assurance that  2575 

1. Party V has correctly recovered Z from C, and, therefore, possesses the RSA private key 2576 
corresponding to Bob’s RSA public key – from which it may be inferred that party V is 2577 
Bob; 2578 

2. Both parties have correctly computed (at least) the same MacKey portion of the derived 2579 
keying material; 2580 

3. Both parties agree on the values (and representation) of IDV, IDU, NV, C, and any other data 2581 
included in MacDataV; and 2582 

4. Bob (acting as party V) has actively participated in the transaction.  2583 

Consequently, when the KAS1-Party_V-confirmation scheme is employed during a particular 2584 
key-agreement transaction (and neither Z nor Bob’s RSA private key has been compromised), 2585 
Alice can obtain assurance of the active (and successful) participation by Bob in the transaction. 2586 

The acquisition of Bob’s RSA private key by their adversary, Eve, may lead to the compromise of 2587 
shared secrets and derived keying material from past, current, and future legitimate transactions 2588 
(i.e., transactions that involve honest parties and are not actively influenced by an adversary) that 2589 
employ the compromised private key. For example, Eve may be able to compromise a particular 2590 
KAS1 transaction between Alice and Bob as long as she acquires the ciphertext, C, contributed by 2591 
Alice and the nonce, NV, contributed by Bob (as well as any other data used as input during key 2592 
derivation). In addition to compromising legitimate KAS1 transactions, once Eve has learned 2593 
Bob’s RSA private key, she may be able to impersonate Bob while acting as party V in future 2594 
KAS1 transactions (with Alice or any other party). Other schemes and applications that rely on 2595 
the compromised private key may also be adversely affected. (See the appropriate subsection for 2596 
details.) 2597 

Even without knowledge of Bob’s private key, if Eve learns the value of Z that has been (or will 2598 
be) used in a particular KAS1 transaction between Alice and Bob, then she may be able to derive 2599 
the keying material resulting from that transaction as easily as Alice and Bob (as long as Eve also 2600 
acquires the value of NV and any other data used as input during key derivation). Alternatively, 2601 
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armed with knowledge of the Z value that has been (or will be) selected by Alice, Eve might be 2602 
able to insert herself into the transaction (in the role of party V) while masquerading as Bob. 2603 

10.2 Rationale for Choosing a KAS2 Key-Agreement Scheme 2604 

In the schemes included in the KAS2 family, both Alice (assumed to be acting as party U) and 2605 
Bob (assumed to be acting as party V) are required to own an RSA key pair that is used in their 2606 
key-agreement transaction. Assume that the identifier used to label party V during the transaction 2607 
is one that is associated with Bob’s RSA public key in a manner that is trusted by Alice. Similarly, 2608 
assume that the identifier used to label party U during the transaction is one that is associated with 2609 
Alice’s RSA public key in a manner that is trusted by Bob. This can provide each party with some 2610 
level of assurance concerning the identifier of the other party, with whom keying material will be 2611 
established if the transaction is successfully completed. 2612 

Each KAS2 scheme requires Alice to employ the RSASVE.GENERATE operation to select a 2613 
(random) secret value ZU and encrypt it as ciphertext CU using Bob’s RSA public key. Unless 2614 
Bob’s corresponding private key has been compromised, Alice has assurance that no unintended 2615 
entity (i.e., no one but Bob) could employ the RSASVE.RECOVER operation to obtain ZU from CU. 2616 
Similarly, each KAS2 scheme requires Bob to employ the RSASVE.GENERATE operation to select 2617 
a (random) secret value ZV and encrypt it as ciphertext CV using Alice’s RSA public key. Unless 2618 
Alice’s corresponding private key has been compromised, Bob has assurance that no unintended 2619 
entity (i.e., no one but Alice) could employ the RSASVE.RECOVER operation to obtain ZV from 2620 
CV. 2621 

Absent the compromise of Bob’s RSA private key and/or ZU, Alice may attain a certain level of 2622 
confidence that she has correctly identified party V as Bob. Alice’s level of confidence is 2623 
commensurate with: 2624 

• The specificity of the identifier that is associated with Bob’s RSA public key, 2625 

• The degree of trust in the association between that identifier and Bob’s public key, 2626 

• The assurance of the validity of the public key, and 2627 

• The availability of evidence that the keying material has been correctly derived by Bob 2628 
using Z = ZU || ZV (and the other information input to the agreed-upon key-derivation 2629 
method), e.g., through key-confirmation, with Bob as the provider.  2630 

Similarly, absent the compromise of Alice’s private key and/or ZV, Bob may attain a certain level 2631 
of confidence that he has correctly identified party U as Alice. Bob’s level of confidence is 2632 
commensurate with: 2633 

• The specificity of the identifier that is associated with Alice’s RSA public key, 2634 

• The degree of trust in the association between that identifier and Alice’s public key, 2635 

• The assurance of the validity of the public key, and 2636 

• The availability of evidence that the keying material has been correctly derived by Alice 2637 
using Z = ZU || ZV (and the other information input to the agreed-upon key-derivation 2638 
method), e.g., through key-confirmation, with Alice as the provider. 2639 
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The assurance of freshness of the derived keying material that can be obtained by a participant in 2640 
a KAS2 transaction is commensurate with the participant’s assurance that different input will be 2641 
supplied to the agreed-upon key-derivation method during each such transaction. Alice can obtain 2642 
assurance that fresh keying material will be derived, based on her selection and contribution of the 2643 
random ZU component of Z. Bob can obtain similar assurance owing to his selection and 2644 
contribution of the random ZV component of Z. 2645 

Evidence that keying material has been correctly derived may be provided by using one of the 2646 
three schemes from the KAS2 family that incorporates key confirmation. The KAS2-Party_V-2647 
confirmation scheme permits party V (Bob) to provide evidence of correct key derivation to party 2648 
U (Alice); the KAS2-Party_U-confirmation scheme permits party U (Alice) to provide evidence 2649 
of correct key derivation to party V (Bob); the KAS2-bilateral-confirmation scheme permits each 2650 
party to provide evidence of correct key derivation to the other party. 2651 

When the KAS2-Party_V-confirmation scheme or the KAS2-bilateral-confirmation scheme is 2652 
employed during a key-agreement transaction, party V provides a key-confirmation MAC tag, 2653 
MacTagV, to party U as specified in Section 8.3.3.2 or Section 8.3.3.4, respectively. This allows 2654 
Alice (who is the recipient of MacTagV) to obtain assurance that party V has possession of the 2655 
MacKey derived from the shared secret Z and has used it with the appropriate MacDataV to 2656 
compute the received MacTagV. In the absence of a compromise of secret information (e.g., Bob’s 2657 
RSA private key and/or ZU), Alice can also obtain assurance that the appropriate identifier has been 2658 
used to label party V, and that the participant acting as party V is indeed Bob, the owner of the 2659 
RSA public key associated with that identifier. 2660 

Similarly, when the KAS2-Party_U-confirmation scheme or the KAS2-bilateral-confirmation 2661 
scheme is employed during a key-agreement transaction, party U provides a key-confirmation 2662 
MAC tag, MacTagU, to party V as specified in Section 8.3.3.3 or Section 8.3.3.4, respectively. 2663 
This allows Bob (who is the recipient of MacTagU) to obtain assurance that party U has possession 2664 
of the MacKey derived from the shared secret Z and has used it with the appropriate MacDataU to 2665 
compute the received MacTagU. In the absence of a compromise of secret information (e.g., Alice’s 2666 
RSA private key and/or ZV), Bob can also obtain assurance that the appropriate identifier has been 2667 
used to label party U, and that the participant acting as party U is indeed Alice, the owner of the 2668 
RSA public key associated with that identifier. 2669 

Specifically, by successfully comparing the value of a received MAC tag with his/her own 2670 
computation, a key-confirmation recipient in a KAS2 transaction (be it Alice or Bob) may obtain 2671 
the following assurances.  2672 

1. He/She has correctly decrypted the ciphertext that was produced by the other party and, 2673 
thus, that he/she possesses the RSA private key corresponding to the RSA public key that 2674 
was used by the other party to produce that ciphertext – from which it may be inferred that 2675 
the other party had access to the RSA public key owned by the key-confirmation recipient. 2676 
For example, if Alice is a key-confirmation recipient, she may obtain assurance that she 2677 
has correctly decrypted the ciphertext CV using her RSA private key, and so may also obtain 2678 
assurance that her corresponding RSA public key was used by party V to produce CV. 2679 

2. The ciphertext sent to the other party was correctly decrypted and, thus, the other party 2680 
possesses the RSA private key corresponding to the RSA public key that was used to 2681 
produce that ciphertext – from which it may be inferred that the other party is the owner of 2682 
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that RSA public key. For example, if Alice is a key-confirmation recipient, she can obtain 2683 
assurance that party V has correctly decrypted the ciphertext CU using the RSA private key 2684 
corresponding to Bob’s RSA public key – from which she may infer that party V is Bob. 2685 

3. Both parties have correctly computed (at least) the same MacKey portion of the derived 2686 
keying material. 2687 

4. Both parties agree on the values (and representation) of IDV, IDU, CV, CU, and any other 2688 
data included as input to the MAC algorithm. 2689 

5. Assuming that there has been no compromise of either participant’s RSA private key and/or 2690 
either component of Z, a key-confirmation recipient in a KAS2 transaction can obtain 2691 
assurance of the active (and successful) participation in that transaction by the owner of 2692 
the RSA public key associated with the key-confirmation provider. For example, if Alice 2693 
is a key-confirmation recipient, she can obtain assurance that Bob has actively – and 2694 
successfully – participated in that KAS2 transaction. 2695 

The acquisition of a single RSA private key by their adversary, Eve, will not (by itself) lead to the 2696 
compromise of derived keying material from legitimate KAS2 transactions between Alice and Bob 2697 
that employ the compromised RSA key pair. (In this context, a “legitimate transaction” is one in 2698 
which Alice and Bob act honestly, and there is no active influence exerted by Eve.) However, if 2699 
Eve acquires an RSA private key, she may be able to impersonate that RSA key pair’s owner while 2700 
participating in KAS2 transactions. (For example, If Eve acquires Alice’s private key, she may be 2701 
able to impersonate Alice – acting as party U or as party V – in KAS2 transactions with Bob or 2702 
any other party). Other schemes and applications that rely on the compromised private key may 2703 
also be adversely affected. (See the appropriate subsection for details.) 2704 

Similarly, the acquisition of one (but not both) of the secret Z components, ZU or ZV, would not (by 2705 
itself) compromise the keying material derived during a legitimate KAS2 transaction between 2706 
Alice and Bob in which the compromised value was used as one of the two components of Z. 2707 
However, armed with knowledge of only one Z component, Eve could attempt to launch an active 2708 
attack against the party that generated it. For example, if Eve learns the value of ZU that has been 2709 
(or will be) contributed by Alice, then Eve might be able to insert herself into the transaction by 2710 
masquerading as Bob (while acting as party V). Likewise, an adversary who knows the value of 2711 
ZV that has been (or will be) selected by Bob might be able to participate in the transaction by 2712 
masquerading as Alice (while acting as party U). 2713 

10.3 Rationale for Choosing a KTS-OAEP Key-Transport Scheme 2714 

In each of the key-transport schemes included in the KTS-OAEP family, only Bob (assumed to 2715 
be acting as party V, the key-transport receiver) is required to own an RSA key pair that is used in 2716 
the transaction. Assume that the identifier used to label party V during the transaction is one that 2717 
is associated with Bob’s RSA public key in a manner that is trusted by Alice (who is acting as 2718 
party U, the key-transport sender). This can provide Alice with some level of assurance that she 2719 
has correctly identified the party with whom she will be establishing keying material if the key-2720 
transport transaction is successfully completed. 2721 

Each KTS-OAEP scheme requires Alice to employ the RSA-OAEP.ENCRYPT operation to encrypt 2722 
the selected keying material (and any additional input) as ciphertext C, using Bob’s RSA public 2723 
key. Unless Bob’s corresponding private key has been compromised, Alice has assurance that no 2724 
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unintended entity (i.e., no one but Bob) could employ the RSA-OAEP.DECRYPT operation to 2725 
obtain the transported keying material from C. Absent the compromise of Bob’s RSA private key 2726 
(or some compromise of the keying material itself – perhaps prior to transport), Alice may attain 2727 
a certain level of confidence that she has correctly identified party V as Bob. Alice’s level of 2728 
confidence is commensurate with: 2729 

• The specificity of the identifier that is associated with Bob’s RSA public key, 2730 

• The degree of trust in the association between that identifier and the public key, 2731 

• The assurance of the validity of the public key, and 2732 

• The availability of evidence that the transported keying material has been correctly 2733 
recovered from C by Bob, e.g., through key confirmation, with Bob as the provider. 2734 

In general, Bob has no assurance that party U is Alice, since Bob has no assurance concerning the 2735 
accuracy of any identifier that may be used to label party U (unless, for example, the protocol 2736 
using a key-transport scheme from the KTS-OAEP family also includes additional elements that 2737 
establish a trusted association between an identifier for Alice and the ciphertext, C, that she sends 2738 
to Bob while acting as party U). 2739 

Due to Alice’s unilateral selection of the keying material, only she can obtain assurance of its 2740 
freshness. (Her level of confidence concerning its freshness is dependent upon the actual manner 2741 
in which the keying material is generated by/for her.) Given that Bob simply accepts the keying 2742 
material that is transported to him by Alice, he has no assurance that it is fresh. 2743 

The randomized plaintext encoding used during the RSA-OAEP.ENCRYPT operation can provide 2744 
assurance to Alice that the value of C will change from one KTS-OAEP transaction with Bob to 2745 
the next, which may help obfuscate the occurrence of a repeated transport of the same keying 2746 
material from Alice to Bob, should that ever be necessary. 2747 

The KTS-OAEP-Party_V-confirmation scheme permits party V to provide evidence to party U 2748 
that keying material has been correctly recovered from the ciphertext C. When the KTS-OAEP- 2749 
Party_V-confirmation scheme is employed during a key-transport transaction, party V provides 2750 
a key-confirmation MAC tag (MacTagV) to party U as specified in Section 9.2.4.2. This allows 2751 
Alice (who is acting as party U, the key-confirmation recipient) to obtain assurance that party V 2752 
has recovered the fresh MAC key (MacKey) that was included in the transported keying material 2753 
and that party V has used it with the appropriate MacDataV to compute the received MacTagV. In 2754 
the absence of a compromise of secret information (e.g., Bob’s RSA private key and/or the MAC 2755 
key), Alice can also obtain assurance that the appropriate identifier has been used to label party V, 2756 
and that the participant acting as party V is indeed Bob, the owner of the RSA public key associated 2757 
with that identifier.  2758 

Specifically, by successfully comparing the received value of MacTagV with her own computation, 2759 
Alice (acting as party U, the key-confirmation recipient) may obtain assurance that  2760 

1. Party V has correctly recovered MacKey from C, and, therefore, possesses the RSA private 2761 
key corresponding to Bob’s RSA public key – from which it may be inferred that party V 2762 
is Bob; 2763 

2. Both parties agree on the values (and representation) of IDV, IDU, C, and any other data 2764 
included in MacDataV; and 2765 
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3. Bob has actively participated in the transaction (as party V), assuming that neither the 2766 
transported MAC key nor Bob’s RSA private key has been compromised. Alice’s level of 2767 
confidence is commensurate with her confidence in the freshness of the MAC key. 2768 

The acquisition of Bob’s RSA private key by their adversary, Eve, may lead to the compromise of 2769 
keying material established during past, current, and future legitimate transactions (i.e., 2770 
transactions that involve honest parties and are not actively influenced by an adversary) that 2771 
employ the compromised private key. For example, Eve may be able to compromise a particular 2772 
KTS-OAEP transaction between Alice and Bob, as long as she also acquires the ciphertext, C, 2773 
sent from Alice to Bob. In addition to compromising legitimate KTS-OAEP transactions, once 2774 
Eve has learned Bob’s RSA private key, she may be able to impersonate Bob while acting as party 2775 
V in future KTS-OAEP transactions (with Alice or any other party). Other schemes and 2776 
applications that rely on the compromised private key may also be adversely affected. (See the 2777 
discussions of other schemes in this section.)  2778 

Even without knowledge of Bob’s private key, if the KTS-OAEP-Party_V-confirmation scheme 2779 
is used during a particular key-transport transaction, and Eve learns the value of MacKey that Alice 2780 
will send to Bob, then it may be possible for Eve to mislead Alice about Bob’s (active and 2781 
successful) participation. As long as Eve also acquires the value of C intended for Bob (and any 2782 
other data needed to form MacDataV), it may be possible for Eve to correctly compute MacTagV 2783 
and return it to Alice as if it had come from Bob (who may not even be aware that Alice has 2784 
initiated a transaction with him). Such circumstances could arise, for example, if (in violation of 2785 
this Recommendation) Alice were to use the same MAC key while attempting to transport keying 2786 
material to multiple parties (including both Bob and Eve). 2787 

10.4 Summary of Assurances Associated with Key-Establishment Schemes 2788 

The security-related features discussed in the preceding subsections of Section 10 can be 2789 
summarized in terms of the following types of assurance that may be obtained when participating 2790 
in a key-establishment transaction. 2791 

• Implicit Key Authentication (IKA): In the case of a key-agreement scheme from the 2792 
KAS1 or KAS2 family, this is the assurance obtained by one party in a key-agreement 2793 
transaction that only a specifically identified entity (the intended second party in that 2794 
transaction) could also derive the key(s) of interest. In the case of a key-transport scheme 2795 
from the KTS-OAEP family, this is the assurance obtained by the sender that only a 2796 
specifically identified entity (the intended receiver in that transaction) could successfully 2797 
decrypt the encrypted keying material to obtain the key(s) of interest.  2798 

• Key Freshness (KF): This is the assurance obtained by one party in a key-establishment 2799 
transaction that keying material established during that transaction is statistically 2800 
independent of the keying material established during that party’s previous key-2801 
establishment transactions. 2802 

• Key Confirmation (KC): This is the assurance obtained by one party in a key-2803 
establishment transaction that a specifically identified entity (the intended second party in 2804 
that key-establishment transaction) has correctly acquired and is able to use, the key(s) of 2805 
interest. 2806 
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Notes:  2807 

A participant in a key-establishment transaction cannot hope to distinguish between the actions 2808 
of another entity and the actions of those who share knowledge of that entity’s private key-2809 
establishment key and/or any other secret data sufficient for that entity’s successful 2810 
participation in a particular key-agreement transaction. In what follows, references to a 2811 
“specifically identified entity” must be interpreted as an umbrella term including all those who 2812 
are legitimately in possession of that entity’s private key, etc., and are trusted to act on the 2813 
entity’s behalf. Any assurance obtained with respect to the actions of a specifically identified 2814 
entity is conditioned upon the assumption that the identified entity’s relevant private/secret 2815 
data has not been misused by a trusted party or compromised by an adversary. 2816 

IKA assurance, as used in this Recommendation, does not address the potential compromise 2817 
of established keying material owing to such problems as improper storage, the failure to 2818 
prevent the leakage of sensitive information during computations involving the established 2819 
keys, and/or inadequate methods for the timely destruction of sensitive data (including the keys 2820 
themselves). These are just a few examples of misuse, mishandling, side-channel leakage, etc. 2821 
that could lead to an eventual compromise. 2822 

In the definition of KC assurance, this Recommendation’s requirement that it be a specifically 2823 
identified entity who demonstrates the ability to use (some portion of) the established keying 2824 
material is a stricter condition than is sometimes found in the literature. In this 2825 
Recommendation, KC assurance presupposes IKA assurance with respect to (at least) the MAC 2826 
key used in the key-confirmation computations.  2827 

KC assurance can be obtained by employing a key-establishment scheme that includes key-2828 
confirmation as specified in this Recommendation. In particular, the KC provider is expected 2829 
to use an RSA private key, and the KC recipient is expected to contribute random/ephemeral 2830 
data that affects the values of both the MacKey and the MacData used to compute a key-2831 
confirmation MacTag. 2832 

The following table shows which types of assurance can be obtained and by whom (i.e., party U 2833 
and/or party V) in a key-establishment transaction by using appropriately implemented schemes 2834 
from the indicated scheme families. The previous assumptions in Section 10 concerning the format 2835 
and content of FixedInfo, the specificity of identifiers bound to RSA public keys, the randomness 2836 
of nonces, etc., still hold. 2837 

 2838 
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Table 3:  Summary of Assurances 2839 

Scheme Family Sections 
Assurance that can be Obtained by the Indicated Parties 

IKA KF KC 

KAS1 8.2 and 10.1 U U & V U 

KAS2 8.3 and 10.2 U & V U & V U & V 

KTS-OAEP 9.2 and 10.3 U U U 

In key-agreement transactions that employ a scheme from the KAS2 family, there is an additional 2840 
type of assurance that can be obtained by both participants: 2841 

• Key-Compromise Impersonation Resilience (K-CI): This is the assurance obtained by 2842 
one party in a KAS2 key-agreement transaction that the compromise of that party’s RSA 2843 
private key would not permit an adversary to impersonate another entity (the owner of a 2844 
second, uncompromised, RSA key pair) while acting as the second party in the transaction. 2845 

For example, suppose that Alice participates in a KAS2 key-agreement transaction with a 2846 
second party that she believes to be Bob (based on the identifier associated with the second 2847 
party’s RSA public key). Alice has assurance that even if a malicious party, Eve, has 2848 
obtained Alice’s RSA private key, that would not (by itself) permit Eve to impersonate 2849 
Bob in the transaction and successfully establish shared keying material with Alice. 2850 

The notion of key-compromise impersonation resilience, as defined in this Recommendation, is 2851 
not applicable to transactions employing a scheme from the KAS1 or KTS-OAEP family. In such 2852 
schemes, only one party owns an RSA key pair, and the scheme (by itself) provides no means of 2853 
ensuring the accuracy of any identifier that may be associated with the other party. 2854 

Under the assumptions made in Section 10, there is an often-desirable type of assurance that is not 2855 
supported by the use of (only) the key-establishment schemes specified in this Recommendation: 2856 

• Forward Secrecy (FS): This is the assurance obtained by one party in a key-establishment 2857 
transaction that the keying material established during that transaction is secure against the 2858 
future compromise of (any and all of) the long-term private/secret keys of the participants. 2859 

(Key-agreement transactions that employ a scheme from the KAS2 family afford some security 2860 
against the compromise of a single participant’s RSA private key, but may not be secure against 2861 
the compromise of the RSA private keys of both participants.) If a user or application requires 2862 
assurance of forward secrecy, then an appropriate choice of key-agreement scheme from the C(2) 2863 
category of schemes specified in SP 800-56A may be employed. 2864 
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11 Key Recovery 2865 

For some applications, the secret keying material used to protect data or to process protected data 2866 
may need to be recovered (for example, if the normal reference copy of the secret keying material 2867 
is lost or corrupted). In this case, either the secret keying material or sufficient information to 2868 
reconstruct the secret keying material needs to be available (for example, the keys and other inputs 2869 
to the scheme used to perform the key-establishment process). 2870 

Keys used during the key-establishment process shall be handled in accordance with the following: 2871 

1. One or both keys of a key pair may be saved. 2872 

2. A key-wrapping key may be saved. 2873 

In addition, the following information that is used during key-establishment may need to be saved: 2874 

3.  The nonce(s), 2875 

4. The ciphertext, 2876 

5. Additional input, and 2877 

6.  OtherInput, or its equivalent. 2878 

General guidance on key recovery and the protections required for each type of key is provided in 2879 
SP 800-57. 2880 

12 Implementation Validation  2881 

When the NIST Cryptographic Algorithm Validation System (CAVS) has established a validation 2882 
program for this Recommendation, a vendor shall have its implementation tested and validated by 2883 
the Cryptographic Algorithm Validation Program (CAVP) and Cryptographic Module Validation 2884 
Program (CMVP) in order to claim conformance to this Recommendation. Information on the 2885 
CAVP and CMVP is available at https://csrc.nist.gov/projects/cryptographic-algorithm-2886 
validation-program and https://csrc.nist.gov/projects/cryptographic-module-validation-program, 2887 
respectively. 2888 
An implementation claiming conformance to this Recommendation shall include one or more of 2889 
the following capabilities: 2890 

• Key-pair generation as specified in Section 6.3, together with an approved random bit 2891 
generator; 2892 

• Public-key validation as specified in Section 6.4.2;  2893 

• A key-agreement scheme from Section 8, together with an approved key-derivation 2894 
method from Section 5.5 and an approved random bit generator;  2895 

• The key-transport scheme specified in Section 9.2, together with an approved random bit 2896 
generator and approved hash function(s); and/or 2897 

• Unilateral or bilateral key confirmation as specified in Section 5.6. 2898 
An implementer shall also identify the appropriate specifics of the implementation, including: 2899 

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program
https://csrc.nist.gov/projects/cryptographic-module-validation-program
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• The hash function(s) to be used (see Section 5.1); 2900 

• The MAC function used for key confirmation; 2901 

• The MacKey length(s) (see Table 2 in Section 5.6.3); 2902 

• The key-establishment schemes available (see Sections 8 and 9); 2903 

• The key-derivation method to be used if a key-agreement scheme is implemented, 2904 
including the format of OtherInput or its equivalent (see Section 5.5); 2905 

• The type of nonces to be generated (see Section 5.4); 2906 

• How assurance of private-key possession and assurance of public-key validity are expected 2907 
to be achieved by both the owner and the recipient (see Section 6.4); 2908 

• Whether or not a capability is available to handle additional input (see Section 9.1); and 2909 

• The RBG used, and its security strength (see Section 5.3). 2910 

  2911 
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Appendix B: Data Conversions (Normative) 2975 

B.1 Integer-to-Byte String (I2BS) Conversion 2976 

Input: A non-negative integer X and the intended length n of the byte string satisfying 2977 
    28n > X. 2978 
Output: A byte string S of length n bytes. 2979 

1. Qn+1 = X. 2980 

2. For i = n to 1 by −1 2981 

2.1 Qi = (Qi+1)/256. 2982 

2.2 Xi = Qi+1 − (Qi × 256). 2983 

2.3 Si = (ai1, ai2, ai3, ai4, ai5, ai6, ai7, ai8), 2984 

the 8-bit binary representation of the non-negative integer  2985 
Xi = ai1 27+ai2 26+ai3 25+ai4 24+ai5 23+ai6 22+ai7 2+ai8. 2986 

3. Let S1, S2,…, Sn be the bytes of S from leftmost to rightmost. 2987 

4. Output S. 2988 

B.2 Byte String to Integer (BS2I) Conversion 2989 

Input:  A non-empty byte string S (SLen is used to denote the length of the byte string). 2990 

Output: A non-negative integer X. 2991 

1. Let S1, S2,… SSLen be the bytes of S from first to last (i.e., from leftmost to rightmost). 2992 

2. Let X = 0. 2993 

3. For i = 1 to SLen by 1 2994 

3.1  Let Xi = (ai127, ai226, ai325, ai424, ai523, ai622, ai72, ai8), 2995 
where ai1, ai2, ai3, ai4, ai5, ai6, ai7, ai8 are the bits of Si from leftmost to rightmost; 2996 
i.e., Si = (ai1, ai2, ai3, ai4, ai5, ai6, ai7, ai8). 2997 

3.2   Replace X by (X × 256) + Xi. 2998 

4. Output X. 2999 

  3000 
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 3001 

Appendix C: Prime-Factor Recovery (Normative) 3002 

Two methods for prime-factor recovery are provided below: Appendix C.1 provides a probabilistic 3003 
method, and Appendix C.2 provides a determinitic method. Prime-factor recovery is required 3004 
during key-pair validation using the basic format (see Section 6.4.1.2.1). 3005 

C.1 Probabilistic Prime-Factor Recovery 3006 

The following algorithm recovers the prime factors of a modulus, given the public and private 3007 
exponents. The algorithm is based on Fact 1 in [Boneh 1999]. 3008 

Function call: RecoverPrimeFactors(n, e, d) 3009 

Input: 3010 

1. n: modulus. 3011 

2. e: public exponent. 3012 

3. d: private exponent. 3013 

Output: 3014 
1. (p, q): prime factors of modulus. 3015 

Errors: “prime factors not found” 3016 

Assumptions: The modulus n is the product of two prime factors p and q; the public and private 3017 
exponents satisfy de ≡ 1 (mod λ(n)) where λ(n) = LCM(p – 1, q – 1). 3018 

Process: 3019 

1. Let m = de – 1. If m is odd, then go to Step 4. 3020 

2. Write m as m = 2tr, where r is the largest odd integer dividing m, and t ≥ 1. 3021 
3. For i = 1 to 100 do: 3022 

a. Generate a random integer g in the range [0, n−1]. 3023 

b. Let y = gr mod n. 3024 

c. If y = 1 or y = n – 1, then go to Step g. 3025 

d. For j = 1 to t – 1 do: 3026 

i. Let x = y2 mod n. 3027 

ii. If x = 1, go to Step 5. 3028 

iii. If x = n – 1, go to Step g. 3029 

iv. Let y = x. 3030 

e. Let x = y2 mod n. 3031 
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f. If x = 1, go to Step 5. 3032 

g. Continue. 3033 

4. Output “prime factors not found,” and exit without further processing. 3034 

5. Let p = GCD(y – 1, n) and let q = n/p. 3035 

6. Output (p, q) as the prime factors. 3036 

Any local copies of d, p, q , m, t, r, x, y, g and any intermediate values used during the execution 3037 
of the RecoverPrimeFactors function shall be destroyed prior to or during steps 4 and 6. Note that 3038 
this includes the values for p and q that are output in step 6. 3039 

Notes: 3040 

1. According to Fact 1 in [Boneh 1999], the probability that one of the values of y in an 3041 
iteration of Step 3 reveals the factors of the modulus is at least 1/2, so on average, no more 3042 
than two iterations of that step will be required. If the prime factors are not revealed after 3043 
100 iterations, then the probability is overwhelming that the modulus is not the product of 3044 
two prime factors, or that the public and private exponents are not consistent with each 3045 
other. 3046 

2. The algorithm bears some resemblance to the Miller-Rabin primality-testing algorithm 3047 
(see, e.g., FIPS 186). 3048 

3. The order of the recovered prime factors p and q may be the reverse of the order in which 3049 
the factors were generated originally. 3050 

4. All local copies of d, p, q, and and any other local/intermediate values used during the 3051 
execution of the RecoverPrimeFactors function shall be destroyed prior to the early 3052 
termination of the process due to an error, or (in the absence of errors), prior to or during 3053 
the the completion of step 6. 3054 

C.2 Deterministic Prime-Factor Recovery 3055 

The following (deterministic) algorithm also recovers the prime factors of a modulus, given the 3056 
public and private exponents. A proof of correctness is provided below. 3057 

Function call: RecoverPrimeFactors(n, e, d) 3058 

Input: 3059 

1. n: modulus. 3060 

2. e: public exponent. 3061 

3. d: private exponent. 3062 

Output: 3063 
(p, q): prime factors of modulus, with p > q. 3064 

Assumptions:  3065 
1. The modulus n is the product of two prime factors p and q, with p > q.  3066 
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2. Both p and q are less than 2(nBits/2), where nBits ≥ 2048 is the bit length of n. 3067 

3. The public exponent e is an odd integer between 216 and 2256. 3068 

4. The private exponent d is a positive integer that is less than λ(n) = LCM(p – 1, q – 1). 3069 

5. The exponents e and d satisfy de ≡ 1 (mod λ(n)). 3070 

Note:  For more general applications of the process below, assumptions 2 and 3 above can be 3071 
replaced by the more general assumption that the public exponent e is an odd integer 3072 
satisfying 1 < e2 ≤ n /(p + q – 1). (See the discussion following Lemma 3 below.) That 3073 
condition will be satisfied, e.g., if e2 is greater than one, but no greater than one-half of the 3074 
smallest prime factor of n, as is the case for any RSA key pair generated in conformance 3075 
with this Recommendation.  3076 

 3077 
Process: 3078 

1. Let a = (de – 1) × GCD(n – 1, de – 1). 3079 

2. Let m = a /n and r = a – m n, so that 3080 

     a = m n + r  and  0 ≤ r < n. 3081 

3. Let b = ( (n – r)/(m + 1) ) + 1;  if b is not an integer or b2 ≤ 4n, then output an error indicator, 3082 
and exit without further processing. (See Note 1 below.) 3083 

4. Let ϒ be the positive square root of b2 – 4n; if ϒ is not an integer, then output an error 3084 
indicator, and exit without further processing. (See Note 2 below.) 3085 

5. Let p = (b + ϒ)/2 and let q = (b – ϒ)/2. 3086 

6. Output (p, q) as the prime factors. (See Note 3 below.) 3087 

Notes: 3088 
1. b should be equal to p + q. If b is not an integer satisfying b2 > 4n, then one or more of the 3089 

assumptions concerning n, e, d, p and q are incorrect and the corresponding RSA key pair does 3090 
not conform to the requirements of this Recommendation.  3091 

2. ϒ should be equal to p – q. If ϒ is not an integer, then one or more of the assumptions 3092 
concerning n, e, d, p and q are incorrect and the corresponding RSA key pair does not conform 3093 
to the requirements of this Recommendation. 3094 

3. The labeling of the recovered prime factors (i.e., labeling the larger as p and the smaller as q) 3095 
may be the reverse of the labeling that was used when those factors were originally generated. 3096 

4. All local copies of d, p, q, and and any other local/intermediate values used during the 3097 
execution of the RecoverPrimeFactors function shall be destroyed prior to the early 3098 
termination of the process due to an error, or (in the absence of errors) prior to or during the 3099 
the completion of step 6. 3100 
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Proof of Correctness: 3101 

Since (by definition), λ(n) = LCM(p – 1, q – 1),  3102 

(p – 1)(q – 1) = LCM(p – 1, q – 1) × GCD(p – 1, q – 1) = λ(n) × GCD(p – 1, q – 1) (1) 3103 
 3104 

Lemma 1:  GCD(p – 1, q – 1) = GCD(n – 1, λ(n))     3105 

Proof of Lemma 1: 3106 

Since n – 1 = (p – 1)(q – 1) + (p – 1) + (q – 1) and λ(n) is a divisor of (p – 1)(q – 1), it follows 3107 
that GCD(n – 1, λ(n)) = GCD( (p – 1) + (q – 1), λ(n) ).  3108 

Any common divisor of p – 1 and q – 1 will also be a divisor of both (p – 1) + (q – 1) and λ(n), 3109 
and hence a divisor of GCD( (p – 1) + ( q – 1), λ(n) ). In particular, GCD(p – 1, q – 1) is a divisor 3110 
of GCD( (p – 1) + (q – 1), λ(n) ), and so, GCD(p – 1, q – 1) ≤ GCD( (p – 1) + (q – 1), λ(n) ). 3111 

To establish that GCD( (p – 1) + (q – 1), λ(n) ) ≤ GCD(p – 1, q – 1) – and hence that the two 3112 
GCDs are equal. Let { hi | 1 ≤ i ≤ m } denote the set of primes that are divisors of either p – 1 or 3113 
q – 1. Then the factorizations of p – 1, q – 1, and λ(n) have the forms  3114 

p – 1 = h1
x(1) × h2

x(2) × … × hm
x(m), 3115 

q – 1 = h1
y(1) × h2

y(2) × … × hm
y(m),  and 3116 

 λ(n) = h1
z(1) × h2

z(2) × … × hm
z(m), 3117 

where { x(i) | 1 ≤ i ≤ m }, { y(i) | 1 ≤ i ≤ m }, and { z(i) | 1 ≤ i ≤ m } are sets of non-negative 3118 
integers satisfying z(i) = max( x(i), y(i) ). If j is a divisor of λ(n), then j has the form 3119 

 j = h1
w(1) × h2

w(2) × … × hm
w(m), with 0 ≤ w(i) ≤ z(i) for 1 ≤ i ≤ m. 3120 

Suppose that j is also a divisor of (p – 1) + (q – 1) and that, for a particular value of i, z(i) = x(i). 3121 
In this case, hi

w(i) will divide both p – 1 and the sum (p – 1) + (q – 1), hence hi
w(i) will divide their 3122 

difference, q – 1. Similarly, if z(i) = y(i), then hi
w(i) will divide both q – 1 and the sum (p – 1) + 3123 

(q – 1), hence hi
w(i) will divide p – 1 as well. Thus, each prime-power factor of j is a common 3124 

divisor of p – 1 and q – 1, and so the same is true of j. This shows that any common divisor j of 3125 
λ(n) and the sum (p – 1) + (q – 1) is also a common divisor of p – 1 and q – 1, and hence a divisor 3126 
of GCD(p – 1, q – 1).  3127 

In particular, GCD( (p – 1) + (q – 1), λ(n) ) is a divisor of GCD(p – 1, q – 1), from which it 3128 
follows that GCD( (p – 1) + (q – 1), λ(n) ) ≤ GCD(p – 1, q – 1). Combining this result with the 3129 
previously established inequality GCD(p – 1, q – 1) ≤ GCD( (p – 1) + (q – 1), λ(n) ), proves the 3130 
lemma’s claim: GCD(p – 1, q – 1) = GCD( (p – 1) + (q – 1), λ(n) ) = GCD(n – 1, λ(n)).   3131 

 3132 

Combining Lemma 1 with equation (1) above yields  3133 

(p – 1)(q – 1) = λ(n) × GCD(n – 1, λ(n)).  (2) 3134 
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Consider the quantity a = (de – 1) × GCD(n, de – 1) from step 1 of  the RecoverPrimeFactors 3135 
process. Since e > 1, the congruence de ≡ 1 (mod λ(n)) implies that de – 1 = u λ(n) for some 3136 
positive integer u. Substituting u λ(n) for de – 1 in the expression for a yields 3137 

a = (de – 1) × GCD(n – 1, de – 1) = u λ(n) × GCD(n – 1, u λ(n)). (3) 3138 

GCD(n – 1, λ(n)) is a common divisor of n – 1 and u λ(n), and so is also a divisor of their GCD. 3139 
Let v = GCD(n – 1, u λ(n)) / GCD(n – 1, λ(n)).  3140 
 3141 

Lemma 2:  1 ≤ v ≤ u < e 3142 

Proof of Lemma 2: 3143 

The assumption that the positive integer d is less than λ(n) and the fact that u = (de – 1)/λ(n) 3144 
implies that u < e. Since v is a positive integer, it is true that 1 ≤ v. It remains to show that 3145 
v ≤ u. Using  3146 

GCD(n – 1, u λ(n)) = (n – 1)(u λ(n)) / LCM(n – 1, u λ(n)) 3147 
and 3148 

GCD(n – 1, λ(n)) = (n – 1)(λ(n)) / LCM(n – 1, λ(n)), 3149 

It follows that 3150 

v = GCD(n – 1, u λ(n)) / GCD(n – 1, λ(n)) = u × LCM(n – 1, λ(n))/LCM(n – 1, u λ(n)), 3151 
which can be rewritten to obtain 3152 

LCM(n – 1, u λ(n)) / LCM(n – 1, λ(n)) = u/v. 3153 

Since LCM(n – 1, u λ(n)) is a common multiple of n – 1 and λ(n), it is a multiple of the least 3154 
common multiple of n – 1 and λ(n). Therefore, u/v = LCM(n – 1, u λ(n)) / LCM(n – 1, λ(n)) is a 3155 
positive integer. From 1 ≤ u/v, one obtains v ≤ u, completing the proof of the lemma.   3156 

 3157 

Using GCD(n – 1, u λ(n)) = v GCD(n – 1, λ(n)) together with equations (2) and (3) above, it follows 3158 
that 3159 

a = u λ(n) × v GCD(n – 1, λ(n)) = uv ( λ(n) × GCD(n – 1, λ(n)) ) = uv (p – 1)(q – 1). (4) 3160 

Since (p – 1)(q – 1) = n – (p + q – 1), equation (4) above shows that 3161 

a = uv n – uv (p + q – 1) = (uv – 1) n + ( n – uv (p + q – 1) ) (5) 3162 

 3163 

Lemma 3:  0 ≤ n – uv (p + q – 1) < n 3164 
Proof of Lemma 3: 3165 

It suffices to verify that 0 < uv  ≤ n /(p + q – 1). By the assumptions on the sizes of p, q, and n, it 3166 
follows that  p + q – 1 < 2(nBits/2)+1 and n > 2(nBits – 1), so that n /(p + q – 1) > 2(nBits/2) – 2. If it can be 3167 
shown that the product uv is less than 2(nBits/2) – 2, then the proof of Lemma 3 will be complete. 3168 
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Lemma 2 implies that 1 ≤ uv ≤ u2 < e2. By assumption, e < 2256, so e2 < 2512. Since this document 3169 
requires nBits ≥ 2048, it follows that 2(nBits/2) – 2 ≥ 21022. The fact that uv < 2512 < 21022 ≤  3170 
2(nBits/2) – 2 completes the proof of the lemma.   3171 

Note: Lemma 3 (and hence the proof of correctness for the RecoverPrimeFactors process) is true 3172 
under conditions more general than those used in the proof above, which invoked the bounds on 3173 
the sizes of e, p, q, and n that are required by this Recommendation. For example, it suffices to 3174 
know that those four values satisfy the condition 1 < e2 ≤ n /(p + q – 1) and that d < λ(n). 3175 
 3176 

Now consider the quantities m and r computed in step 2 of the RecoverPrimeFactors process.  3177 

Combining equation (5) with Lemma 3 yields 3178 

m = a /n = (uv – 1)   and    r = a – mn = n – uv (p + q – 1). 3179 

Therefore, in step 3 of the process,  3180 

b = ( (n – r)/(m + 1) ) + 1 = ( uv (p + q – 1))/(uv) ) + 1 = p + q, 3181 

and in step 4,  3182 

  ϒ = (b2 – 4n)1/2 = ( (p + q)2 – 4pq)1/2  = ( (p – q)2)1/2 = p – q. 3183 

These values for b and ϒ ensure that p and q are correctly recovered in step 5, since 3184 

p = (b + ϒ)/2   and   q = (b – ϒ)/2.  3185 



NIST SP 800-56B REV. 2 (DRAFT) RECOMMENDATION FOR PAIR-WISE KEY ESTABLISHMENT 
 USING INTEGER FACTORIZATION CRYPTOGRAPHY 

112 

 

 3186 

Appendix D: Maximum Security Strength Estimates for IFC Modulus 3187 
Lengths 3188 

Approved key-establishment schemes are required to provide a security strength of at least 112 3189 
bits. An approximation of the maximum security strength that can be supported by an RSA 3190 
modulus n can be computed as follows: 3191 

Let nBits = len(n), the bit length of the RSA modulus n included in a public key employed by the 3192 
key-establishment scheme. The estimated maximum security strength E that can be supported by 3193 
the modulus is determined using the following formula: 3194 

E = 
1.923×∛(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ×ln 2)×∛[ln (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛×ln 2)]2−4.69 

ln 2
   . 3195 

Since E is not likely to be an integer, some rounding is appropriate. To facilitate comparison to 3196 
symmetric-key algorithms (whose keys typically consist of some number of bytes), the value of E 3197 
will be rounded to the nearest integer multiple of eight to obtain an estimate of the maximum 3198 
security strength that can be supported by the use of a modulus of length nBits. In short,  3199 

S(nBits) = the nearest multiple of 8 to E. 3200 

Therefore, for the modulus lengths identified in Table 3 of Section 6.3, the maximum security 3201 
strengths that can be suppported are provided below.  3202 

Table 5: Estimated Security Strengths of Common RSA Moduli 3203 

Modulus 
Length 
(in bits) 

E Maximum Security Strength 
S(nBits) 

2048 110.1 112 

3072 131.97 128 

4096 149.73 152 

6144 178.42 176 

8192 201.7 200 

As stated in Section 6.3, any modulus of even bit length with an even bit length that provides at 3204 
least 112 bits of security strength may be used (i.e., nBits must be ≥ 2048). The method above can 3205 
be used to estimate the security strengths supported by moduli other than those explicitly listed 3206 
above. 3207 
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Appendix E: Revisions (Informative) 3208 

In the 2014 revision, the following revisions were made: 3209 
• Section 3.1 – Added definitions of assumptions, binding, destroy, fresh, key-derivation 3210 

function, key-derivation method, key-wrapping key, MAC tag, and trusted association; 3211 
removed algorithm identifier, digital signature, initiator, responder. 3212 

• Section 4 – Used party U and party V to name the parties, rather than using the initiator and 3213 
responder as the parties.  In Sections 8 and 9, the schemes have been accordingly renamed: 3214 
KAS1-responder-confirmation is now KAS1-Party_V-confirmation, KAS2-responder-3215 
confirmation is now KAS2-Party_V-confirmation, KAS2-initiator-confirmation is now 3216 
KAS2-Party_U-confirmation, KTS-OAEP-receiver-confirmation is not KTS-OAEP-3217 
Party_V-confirmation, and KTS-KEM-KWS-receiver-confirmation is now KTS-KEM-3218 
KWS-Party_V-confirmation.  3219 

• Section 4 – Added requirements to destroy the local copies of secret and private values and 3220 
all intermediate calculations before terminating a routine normally or in response to an 3221 
error. Instructions to this effect have been inserted throughout the document.  3222 

• The discussion about identifiers vs. identity and binding have been moved to Section 4.1. 3223 

• Section 4.3 – The phrase “IFC-based” has been removed throughout the document. 3224 

• Section 5.4 – More discussion has been added about the use of nonces, including new 3225 
requirements and recommendations. 3226 

• Section 5.5 – Key derivation has been divided into single-step key derivation methods 3227 
(Section 5.5.1), an extract-then-expand key derivation procedure (Section 5.5.2) and 3228 
application-specific key-derivation methods (Section 5.5.3). 3229 

• Section 5.5.1.2 – The use of OtherInfo (including identifiers) during the derivation of keys 3230 
is recommended, but no longer required (Section 5.5.1.2). 3231 

• Moved the general introduction of key-confirmation to Section 5.9 – The discussion now 3232 
incorporates the material from Section 6.6 of the previous version of the document. 3233 

• Section 6.4 – There is now a longer, and more thorough discussion of validity in Section 3234 
6.4.  The concept of trusted associations has been introduced. 3235 

• Section 6.4.1.1 – Removed “or TTP” from the following:  “The key pair can be revalidated 3236 
at any time by the owner as follows….”  3237 

• Section 7.2.3.2 – Moved discussion of symmetric key-wrapping methods from Section 5.7 3238 
to Section 7.2.3.2; much more information is now provided. 3239 

• Section 10 – The rationale for choosing each scheme type has been combined in this new 3240 
section, along with a discussion of their security properties. 3241 

• The old Appendix A, Summary of Differences between this Recommendation and ANS 3242 
X9.44 (Informative), was removed.  3243 
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• The old Appendix E becomes Appendix D, and the changes introduced in this Revision are 3244 
listed here. 3245 

• All figures are replaced to reflect the content, text, and terminology changes. 3246 

• Security requirements have been updated; in particular, the 80-bit security strength is no 3247 
longer permitted in this Recommendation. 3248 

• Changes to handle the destruction of local keys and intermediate values have been 3249 
introduced. 3250 

• General changes have been made to make this Recommendation more similar to [SP 800 3251 
56A]. 3252 

 3253 
In the 2018 revision, the following changes were made (in addition to editorial changes): 3254 

1. Overall changes: 3255 

• Removed provisions for using TDEA. 3256 

• Provided moduli > 3072 bits and a method for estimated the maximum security strength 3257 
that can be provided by these moduli. 3258 

•  Removed the KTS-KEM-KWS scheme and added a hybrid scheme (KTS-Hybrid-SKW). 3259 

• Hyperlinks to sections within the document and to referenced documents are now included. 3260 
2. Section 3.1: Added: Big endian, Byte length, Confidentiality,  Key-establishment key pair, 3261 

Integrity, Random nonce, Support (a security strength), Symmetric key.   3262 

• Modified: Approved, Assurance of validity, Bit length, Byte, Destroy, Fresh, Key-3263 
agreement transaction, Key confirmation, Key-derivation function, Key-derivation 3264 
method, Key-derivation procedure, Key establishment, Key-establishment transaction, 3265 
Keying material, Key transport, Key-transport transaction, Key wrapping, Least-common 3266 
multiple, MacOutputBits, MacOutputLen, MAC tag, MacTagBits, Message Authentication 3267 
Code, Nonce, Party, Public-key certificate, Recipient, Scheme, Security properties, 3268 
Targeted security strength, Third party. 3269 

• Deleted: Entity authentication, Length in bits of the non-negative integer x .  3270 
3. Section 3.2: Added: len(x), which has been used throughout the document; MacKeyBits; 3271 

MacOutputBits; MacOutputLen; MacTagBits; OtherInput; S(nBits). 3272 

• Modified: c; C, C0, C1; nLen; 3273 
• Removed: Bytelen, k, KTS-KEM-KWS, kwkBits, KWS, OtherInfo, RSA-KEM-KWS, RSA-3274 

KEM-KWS-basic, RSA-KEM-KWS-PartyV-confirmation, x, z. 3275 

4. Section 4.1, para. 2: A sentence was inserted to provide guidance for providing a key pair to 3276 
its owner. 3277 

5. Section 4.2, para. 1: A sentence was inserted as sentence 3 (for clarification). 3278 

6. Section 4.3: Refererences to the RSA-KEM-KWS scheme have been removed. A reference to 3279 
the hybrid method for key transport has been inserted. 3280 
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7. Section 5.2: The first three paragraphs were updated. KMAC was added as an approved MAC 3281 
algorithm. 3282 

8. Section 5.4, third para.: Reworded the requirements for the minimum security strength and 3283 
random bit string length for a nonce. 3284 

9. Section 5.5: Rewritten to refer to SP 800-56C for performing key derivation. 3285 

10. Section 5.6: Inserted text and a table to clarify the roles for each scheme. 3286 

11. Sections 5.6.1 and 5.6.2: Revised to accommodate the new KTS-Hybrid SKW family of 3287 
schemes. 3288 

12. Section 5.6.3: Revised to clarify the approved MAC algorithms, the acceptable MacKey 3289 
lengths and the supported security strengths.  3290 

13. Section 6.2.1: Steps 3a and 3b have been changed to remove the "−1" from the upper bound. 3291 
14. Section 6.3: Inserted text and a table of estimated maximum security strengths for additional 3292 

approved modulus lengths. Also, see Appendix D. 3293 

15. Sections 6.3.1.1, 6.3.2.1, and 6.4.1.2.1: Revised to accommodate the revised modulus lengths 3294 
and clarify error indications. 3295 

16. Sections 6.4.1.2.1, 6.4.1.2.2, 6.4.1.2.3, 6.4.1.3.2, 6.4.1.3.3, 6.4.1.4.2 and 6.4.1.4.3: Added step 3296 
3c to check that nBits is an even integer. 3297 

17. Section 6.4.1.2.1: Added a requirement regarding the error rate on the primality tests. 3298 

18. Section 6.4.1.5: Revised step 2 to clarify KAS2 key confirmation. 3299 

19. Section 6.4.2.3.2: Revised descriptions of the key confirmation provided for the key-3300 
establishment schemes. 3301 

20. Old Section 7: Removed the components used by the KTS-KEM-KWS family of schemes. 3302 

21. Section 7.1.2: Routines have been added for decryption using the prime factor and CRT 3303 
formats for the private key. 3304 

22. Section 7.2.2.1: Explicitly stated that the hash function used for the MGF computation need 3305 
not be the same as the has function used for MAC generation. 3306 

23. Section 7.2.2, 7.2.2.3 and 7.2.2.4: Removed the list of (limited) modulus lengths that were used 3307 
in the previous version of SP 800-56B. 3308 

24. Section 7.2.2.4: Added an initial step to set DecryptErrorFlag to False, 3309 

25. Section 9: Revised to remove discussions of the KTS-KEM-KWS schemes and a brief 3310 
discussion of a hybrid key-transport scheme. 3311 

26. Section 9.1: Revised to refer to the list in Section 5.5.2 as possible information to be used for 3312 
additional input. 3313 

27. Section 9.3: A discussion of a hybrid key-transport method. 3314 

28. Section 10.4: Removed the rationale for the RSA-KEM KWS family and added a summary of 3315 
the assurances for each key-establishment scheme family. 3316 
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29. Section 12: Additional items were added to the validation lists. 3317 

30. Appendix A: Updated the references. 3318 

31. Appendix C.2: Added the Deterministic Prime-Factor Recovery Method. 3319 

32. Appendix D: Added a method for estimated the maximum security strength that could be 3320 
provided by an IFC modulus length. 3321 

 3322 
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Abstract
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Notes to Reviewers



Please refer to Appendix E for a detailed list of changes for this revision. In particular, note the following:

1.	The RSA-KEM-KWS key transport scheme that was included in the previous version of this document has been removed. A preliminary search for its inclusion in FIPS-140-validated modules indicated that it was sometimes implemented, but additional research did not indicate that the scheme was actually used (e.g.,  in protocols). If this is incorrect, please advise us.

2.	The key-pair validation routines in Section 6.4.1 now include a requirement regarding the error rate on the primality test. 
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[bookmark: _Toc518378734]Introduction

Many U.S. Government Information Technology (IT) systems need to employ strong cryptographic schemes to protect the integrity and confidentiality of the data that they process. Algorithms such as the Advanced Encryption Standard (AES), as defined in Federal Information Processing Standard (FIPS) 197,[footnoteRef:1] and HMAC, as defined in FIPS 198,[footnoteRef:2] make attractive choices for the provision of these services. These algorithms have been standardized to facilitate interoperability between systems. However, the use of these algorithms requires the establishment of secret keying material that is shared in advance. Trusted couriers may manually distribute this secret keying material, but as the number of entities using a system grows, the work involved in the distribution of the secret keying material grows rapidly. Therefore, it is essential to support the cryptographic algorithms used in modern U.S. Government applications with automated key-establishment schemes. [1:  FIPS 197, Advanced Encryption Standard (AES).]  [2:  FIPS 198, Keyed-hash Message Authentication Code (HMAC).] 


This Recommendation provides the specifications of key-establishment schemes that are appropriate for use by the U.S. Federal Government, based on a standard that was developed by the Accredited Standards Committee (ASC) X9, Inc: ANS X9.44.[footnoteRef:3] A key-establishment scheme can be characterized as either a key-agreement scheme or a key-transport scheme. This Recommendation provides key-agreement and key-transport schemes that are based on the Rivest Shamir Adleman (RSA) asymmetric-key algorithm.  [3:  ANS X9.44, Key Establishment using Integer Factorization Cryptography.] 


[bookmark: _Toc518378735]Scope and Purpose

This Recommendation is intended for use in conjunction with NIST Special Publication (SP) 800-57.[footnoteRef:4] This key-establishment Recommendation, SP 800-57, and FIPS 186[footnoteRef:5]  are intended to provide information for a vendor to implement secure key-establishment using asymmetric algorithms in FIPS 140[footnoteRef:6] validated modules. [4:  SP 800-57, Recommendation for Key Management, Part 1: General.]  [5:  FIPS 186, Digital Signature Standard (DSS).]  [6:  FIPS 140, Security Requirements for Cryptographic Modules. ] 


Note that a key-establishment scheme is a component of a protocol that may provide security properties not provided by the scheme when considered by itself; protocols, per se, are not specified in this Recommendation.

[bookmark: _Toc518378736]Definitions, Symbols and Abbreviations

3.1 [bookmark: _Toc518378737]Definitions

		Additional input

		Information known by two parties that is cryptographically bound to the secret keying material being protected using the encryption operation.



		Algorithm

		A clearly specified mathematical process for computation; a set of rules that, if followed, will give a prescribed result.



		Approved

		Federal Information Processing Standards (FIPS)-approved or NIST-recommended. An algorithm or technique that is either 1) specified in a FIPS or NIST Recommendation, 2) adopted in a FIPS or NIST Recommendation or 3) specified in a list of NIST-approved security functions.  



		Assumption

		Used to indicate the conditions that are required to be true when an approved key-establishment scheme is executed in accordance with this Recommendation. 



		Assurance of private key possession

		Confidence that an entity possesses a private key associated with a given public key. 



		Assurance of validity

		Confidence that an RSA key pair is arithmetically correct.



		Big-endian

		The property of a byte string having its bytes positioned in order of decreasing significance. In particular, the leftmost (first) byte is the most significant byte (containing the most significant eight bits of the corresponding bit string) and the rightmost (last) byte is the least significant byte (containing the least significant eight bits of the corresponding bit string). 

For the purposes of this Recommendation, it is assumed that the bits within each byte of a big-endian byte string are also positioned in order of decreasing significance (beginning with the most significant bit in the leftmost position and ending with the least significant bit in the rightmost position).



		Binding

		Assurance of the integrity of an asserted relationship between items of information that is provided by cryptographic means. Also see Trusted association.



		Bit length

		A positive integer that expresses the number of bits in a bit string.



		Bit string

		An ordered sequence of 0’s and 1’s. Also known as a binary string.



		Byte

		A bit string consisting of eight bits.



		Byte length

		A positive integer that expresses the number of bytes in a byte string.



		Byte string

		An ordered sequence of bytes.



		Certificate Authority (CA)

		The entity in a Public Key Infrastructure (PKI) that is responsible for issuing public-key certificates and exacting compliance to a PKI policy. Also known as a Certification Authority.



		Ciphertext

		Data in its enciphered form.



		Confidentiality

		The property that sensitive information is not disclosed to unauthorized entities.



		Critical security parameter (CSP)

		Security-related information whose disclosure or modification can compromise the security of a cryptographic module. Domain parameters, secret or private keys, shared secrets, key-derivation keys, intermediate values and secret salts are examples of quantities that may be considered critical security parameters in this Recommendation.  See FIPS 140.



		Cryptographic key (Key)

		A parameter used with a cryptographic algorithm that determines its operation.



		Decryption

		The process of transforming ciphertext into plaintext using a cryptographic algorithm and key.



		Destroy

		In this Recommendation, an action applied to a key or a piece of secret data. After a key or a piece of secret data is destroyed, no information about its value can be recovered. Also known as zeroization in FIPS 140.



		Encryption

		The process of transforming plaintext into ciphertext using a cryptographic algorithm and key.



		Entity

		An individual (person), organization, device, or process. “Party” is a synonym.



		Fresh

		Newly established secret keying material that is statistically independent of any previously established keying material.



		Greatest common divisor

		The largest positive integer that divides each of two or more positive integers without a remainder.



		Hash function

		A function that maps a bit string of arbitrary length to a fixed-length bit string. Approved hash functions are expected to satisfy the following properties:

1. One-way: It is computationally infeasible to find any input that maps to any pre-specified output, and

2. Collision resistant: It is computationally infeasible to find any two distinct inputs that map to the same output.



		Hash value

		The fixed-length bit string produced by a hash function.



		Identifier

		A bit string that is associated with a person, device or organization. It may be an identifying name, or may be something more abstract (for example, a string consisting of an Internet Protocol (IP) address and timestamp). 



		Integrity

		A property whereby data has not been altered in an unauthorized manner since it was created, transmitted or stored. 

In this Recommendation, the statement that a cryptographic algorithm "provides data integrity" means that the algorithm is used to detect unauthorized alterations.



		Key agreement 

		A (pair-wise) key-establishment procedure where the resultant secret keying material is a function of information contributed by two participants so that no party can predetermine the value of the secret keying material independently from the contributions of the other party. Contrast with key-transport.



		Key-agreement transaction

		An execution of a key-agreement scheme.



		Key confirmation

		A procedure to provide assurance to one party (the key-confirmation recipient) that another party (the key-confirmation provider) possesses the correct secret keying material and/or shared secret from which that secret keying material is derived.



		Key-confirmation provider

		The party that provides assurance to the other party (the recipient) that the two parties have indeed established a shared secret or shared keying material.



		Key-derivation function

		As used in this Recommendation, a function used to derive secret keying material from a shared secret (or a key) and other information.



		Key-derivation method

		As used in this Recommendation, a method by which secret keying material is derived from a shared secret and other information. A key-derivation method may use a key-derivation function or a key-derivation procedure.



		Key-derivation procedure

		As used in this Recommendation, a multi-step process to derive secret keying material from a shared secret and other information.



		Key establishment 

		A procedure that results in establishing secret keying material that is shared among different parties.



		Key-establishment key pair

		A private/public key pair used in a key-establishment scheme. 



		Key-establishment transaction

		An instance of establishing secret keying material using a key-agreement or key-transport transaction.



		Key pair

		See key-establishment key pair.



		Key transport 

		A (pair-wise) key-establishment procedure whereby one party (the sender) selects a value for the secret keying material and then securely distributes that value to another party (the receiver). Contrast with key agreement.



		Key-transport transaction

		An execution of a key-transport scheme.



		Key wrapping

		A method of protecting secret keying material (along with associated integrity information) that provides both confidentiality and integrity protection when using symmetric-key algorithms.



		Key-wrapping key

		In this Recommendation, a key-wrapping key is a symmetric key established during a key-transport transaction and used with a key- wrapping algorithm to protect the secret keying material to be transported.



		Keying material

		Data that is represented as a binary string such that any non-overlapping segments of the string with the required lengths can be used as secret keys, secret initialization vectors and other secret parameters.



		Least common multiple

		The smallest positive integer that is divisible by two or more positive integers without a remainder. For example, the least common multiple of 2 and 3 is 6.



		MAC tag

		Data obtained from the output of a MAC algorithm (possibly by truncation) that can be used by an entity to verify the integrity and the origination of the information used as input to the MAC algorithm.



		Message Authentication Code (MAC) algorithm

		A family of cryptographic functions that is parameterized by a symmetric key.  Each of the functions can act on input data (called a “message”) of variable length to produce an output value of a specified length. The output value is called the MAC of the input message. An approved MAC algorithm is expected to satisfy the following property (for each of its supported security levels): 

1. It must be computationally infeasible to determine the (as yet unseen) MAC of a message without knowledge of the key, even if one has already seen the results of using that key to compute the MACs of other (different) messages. 

A MAC algorithm can be used to provide data-origin authentication and data-integrity protection. In this Recommendation, a MAC algorithm is used for key confirmation; the use of MAC algorithms for key derivation is addressed in SP 800-56C.[footnoteRef:7] [7:  SP 800-56C, Recommendation for Key-Derivation Methods in Key-Establishment Schemes.] 




		Nonce

		A time-varying value that has an acceptably small chance of repeating. For example, a nonce is a random value that is generated anew for each use, a timestamp, a sequence number, or some combination of these.



		Owner

		For a key pair, the owner is the entity that is authorized to use the private key associated with a public key, whether that entity generated the key pair itself or a trusted party generated the key pair for the entity. 



		Party

		See entity.



		Prime number

		An integer greater than 1 that has no positive integer factors other than 1 and itself.



		Primitive

		A low-level cryptographic algorithm that is used as a basic building block for higher-level cryptographic operations or schemes.



		Private key

		A cryptographic key that is kept secret and is used with a public-key cryptographic algorithm. A private key is associated with a public key. 



		Protocol

		A set of rules used by two or more communicating entities that describe the message order and data structures for information exchanged between the entities.



		Provider

		A party that provides (1) a public key (e.g., in a certificate); (2) assurance, such as an assurance of the validity of a candidate public key or assurance of possession of the private key associated with a public key; or (3) key confirmation. Contrast with recipient.



		Public key

		A cryptographic key that may be made public and is used with a public-key cryptographic algorithm. A public key is associated with a private key. 



		Public-key algorithm

		A cryptographic algorithm that uses two related keys: a public key and a private key. The two keys have the property that determining the private key from the public key is computationally infeasible.



		Public-key certificate 

		A data structure that contains an entity’s identifier(s), the entity's public key (including an indication of the associated set of domain parameters) and possibly other information, along with a signature on that data set that is generated by a trusted party, i.e., a certificate authority, thereby binding the public key to the included identifier(s).



		Public-key cryptography

		A form of cryptography that uses two related keys, a public key and a private key; the two keys have the property that, given the public key, it is computationally infeasible to derive the private key.

For key establishment, public-key cryptography allows different parties to communicate securely without having prior access to a secret key that is shared, by using one or more pairs (public key and private key) of cryptographic keys.



		Public-key validation

		The procedure whereby the recipient of a public key checks that the key conforms to the arithmetic requirements for such a key in order to thwart certain types of attacks. 



		Random nonce

		A nonce containing a random-value component that is generated anew for each nonce. 



		Receiver

		The party that receives secret keying material via a key-transport transaction. Contrast with sender.



		Recipient

		A party that either (1) receives a public key; or (2) obtains assurance from an assurance provider (e.g., assurance of the validity of a candidate public key or assurance of possession of the private key corresponding to a public key); or (3) receives key confirmation from a key-confirmation provider.



		Relatively prime

		Two positive integers are relatively prime if their greatest common divisor is 1.



		Scheme

		A set of unambiguously specified transformations that provide a (cryptographic) service when properly implemented and maintained. A scheme is a higher-level construct than a primitive and a lower-level construct than a protocol.



		Security properties

		The security features (e.g., replay protection, or key confirmation) that a cryptographic scheme may, or may not, provide.



		Security strength (also, “Bits of security”)

		A number associated with the amount of work (that is, the number of operations) that is required to break a cryptographic algorithm or system. 



		Sender

		The party that sends secret keying material to the receiver using a key-transport transaction.  Contrast with receiver.



		Shall

		This term is used to indicate a requirement that needs to be fulfilled to claim conformance to this Recommendation. Note that shall may be coupled with not to become shall not.



		Shared secret

		A secret value that has been computed during the execution of a key-establishment scheme, is known by both participants, and is used as input to a key-derivation method to produce secret keying material. 



		Should

		This term is used to indicate an important recommendation. Ignoring the recommendation could result in undesirable results. Note that should may be coupled with not to become should not.



		Support (a security strength)

		A security strength of s bits is said to be supported by a particular choice of algorithm, primitive, auxiliary function, parameters (etc.) for use in the implementation of a cryptographic mechanism if that choice will not prevent the resulting implementation from attaining a security strength of at least s bits. 

In this Recommendation, it is assumed that implementation choices are intended to support a security strength of 112 bits or more (see [SP 800-57][footnoteRef:8] and [SP 800-131A][footnoteRef:9]). [8:  SP 800-57 Rev. 4, Recommendation for Key Management Part1: General.]  [9:  SP 800-131A, Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms and Key Lengths.] 




		Symmetric key

		A cryptographic key that is shared between two or more entities and used with a cryptographic application to process information.



		Symmetric-key algorithm

		A cryptographic algorithm that uses secret keying material that is shared between authorized parties.



		Targeted security strength

		The security strength that is intended to be supported by one or more implementation-related choices (such as algorithms, primitives, auxiliary functions, parameter sizes and/or actual parameters) for the purpose of instantiating a cryptographic mechanism.

In this Recommendation, it is assumed that the targeted security strength of any instantiation of an approved key-establishment scheme has a value greater than or equal to 112 bits and less than or equal to 256 bits.



		Trusted association

		Assurance of the integrity of an asserted relationship between items of information that may be provided by cryptographic or non-cryptographic (e.g., physical) means. Also see Binding. 



		Trusted party

		A party that is trusted by an entity to faithfully perform certain services for that entity. An entity may choose to act as a trusted party for itself.



		Trusted third party

		A third party, such as a CA, that is trusted by its clients to perform certain services. (By contrast, the two participants in a key-establishment transaction are considered to be the first and second parties.)





3.2 [bookmark: _Toc518378738]Symbols and Abbreviations

		A

		Additional input that is bound to the secret keying material; a byte string.



		[a, b]

		The set of integers x such that a ≤ x ≤ b.



		AES

		Advanced Encryption Standard (as specified in FIPS 197).



		ANS

		American National Standard.



		ASC

		The Accredited Standards Committee of the American National Standards Institute (ANSI).



		ASN.1

		Abstract Syntax Notation One.



		BS2I

		Byte String to Integer conversion routine.



		c

		Ciphertext (expressed as an integer).



		C, C0, C1

		Ciphertext (expressed as a byte string).



		CA

		Certification Authority.



		CRT

		Chinese Remainder Theorem.



		d

		RSA private exponent; a positive integer.



		Data

		A variable-length string of zero or more (eight-bit) bytes.



		DerivedKeyingMaterial

		Derived keying material; a bit string.



		dP

		RSA private exponent for the prime factor p in the CRT format, i.e., d mod (p  1); an integer.



		dQ

		RSA private exponent for the prime factor q in the CRT format, i.e., d mod (q  1); an integer.



		e

		RSA public exponent; a positive integer.



		eBits

		The bit length of the RSA exponent e.



		GCD(a, b)

		Greatest Common Divisor of two positive integers a and b.  For example, GCD(12, 16) = 4.



		HMAC

		Keyed-hash Message Authentication Code (as specified in FIPS 198).



		HMAC-hash

		Keyed-hash Message Authentication Code (as specified in FIPS 198) with an approved hash function hash.



		I2BS

		Integer to Byte String conversion routine.



		ID

		The bit string denoting the identifier associated with an entity.



		IDP, IDR, IDU, IDV

		Identifier bit strings for parties P, R, U, and V, respectively.



		IFC

		Integer Factorization Cryptography.



		K

		Keying material; a byte string.



		KBits

		The bit length of the secret keying material.



		KAS

		Key-Agreement Scheme.



		KAS1-basic

		The basic form of Key-Agreement Scheme 1.



		KAS1-Party_V-confirmation

		Key-Agreement Scheme 1 with confirmation by party V. Previously known as KAS1-responder-confirmation.



		KAS2-basic

		The basic form of Key-Agreement Scheme 2.



		KAS2-bilateral-confirmation

		Key-Agreement Scheme 2 with bilateral confirmation.



		KAS2-Party_V-confirmation

		Key-Agreement Scheme 2 with confirmation by party V. Previously known as KAS2-responder-confirmation.



		KAS2-Party_U-confirmation

		Key-Agreement Scheme 2 with confirmation by party U. Previously known as KAS2-initiator-confirmation.



		KC

		Key Confirmation.



		KDM

		Key-Derivation Method.



		KeyData

		Keying material other than that which is used for the MacKey employed in key confirmation.



		KTS

		Key-transport Scheme.



		KTS-OAEP-basic

		The basic form of the key-transport Scheme with Optimal Asymmetric Encryption Padding.



		KTS-OAEP-Party_V-confirmation

		Key-transport Scheme with Optimal Asymmetric Encryption Padding and key confirmation provided by party V. Previously known as KTS-OAEP-receiver-confirmation.



		KWK

		Key-Wrapping Key; a byte string.



		LCM(a, b)

		Least Common Multiple of two positive integers a and b.  For example, LCM(4, 6) = 12.



		len(x)

		The bit length of the non-negative integer x. For integer x > 0, len(x) = log2(x)+1. (In the case of 0, len(0) = 1.)



		MAC

		Message Authentication Code.



		MacData

		A byte string input to the MacTag computation.



		MacDataU, (or MacDataV)

		MacData associated with party U (or party V, respectively), and used to generate MacTagU  (or MacTagV, respectively). Each is a byte string.



		MacKey

		Key used to compute the MAC; a byte string.



		MacKeyBits

		The bit length of MacKey such that MacKeyBits = 8  MacKeyLen.



		MacKeyLen

		The byte length of the MacKey.



		MacOutputBits

		The bit length of the MAC output block such that MacOutputBits = 8  MacOutputLen.



		MacOutputLen

		The byte length of the MAC output block.



		MacTag

		A byte string that allows an entity to verify the integrity of the information. MacTag is the output from the MAC algorithm (possibly after truncation). The literature sometimes refers to MacTag as a Message Authentication Code (MAC).



		MacTagV, (MacTagU)

		The MacTag generated by party V (or party U, respectively). Each is a byte string.



		MacTagBits

		The bit length of the MAC tag such that MacTagBits = 8  MacTagLen.



		MacTagLen

		The byte length of MacTag.



		Mask

		Mask; a byte string.



		MGF

		Mask Generation Function.



		mgfSeed

		String from which a mask is derived; a byte string.



		 n

		RSA modulus. n = pq, where p and q are distinct odd primes.



		(n, d)

		RSA private key in the basic format.



		(n, e)

		RSA public key.



		(n, e, d, p, q, dP, dQ, qInv)

		RSA private key in the Chinese Remainder Theorem (CRT) format.



		NV

		Nonce contributed by party V; a byte string.



		nBits

		The bit length of the RSA modulus n.



		nLen

		The byte length of the RSA modulus n. (Note that in FIPS 186, nlen refers to the bit length of n.)



		Null

		The empty bit string.



		OtherInput

		Other information for key derivation; a bit string.



		p

		First prime factor of the RSA modulus n.



		(p, q, d)

		RSA private key in the prime-factor format.



		PrivKeyU, PrivKeyV

		Private key of party U or V, respectively.



		PubKeyU, PubKeyV

		Public key of party U or V, respectively.



		q

		Second prime factor of the RSA modulus n.



		qInv

		Inverse of q modulo p in the CRT format, i.e., q1 mod p; an integer.



		RBG

		Random Bit Generator.



		RSA

		Rivest-Shamir-Adleman algorithm



		RSASVE

		RSA Secret Value Encapsulation.



		RSA-OAEP

		RSA with Optimal Asymmetric Encryption Padding.



		S

		String of bytes.



		s

		Security strength in bits.



		S(nBits)

		The estimated maximum security strength for an RSA modulus of length nBits.



		SHA

		Secure Hash Algorithm. 



		SKW

		Symmetric-Key-Wrapping.



		TMacTagBits(X)

		A truncation function that outputs the most significant (i.e., leftmost) MacTagBits bits of the input string, X, when the bit length of X is greater than MacTagBits; otherwise, the function outputs X.  For example, T2(1011) = 10, T3(1011) = 101, and T4(1011) = 1011.



		TransportedKeyingMaterial

		Transported keying material.



		TTP

		A Trusted Third Party.



		U

		One party in a key-establishment scheme.



		V

		Another party in a key-establishment scheme.



		X

		Byte string to be converted to or from an integer; the output of conversion from an ASCII string.



		X =? Y

		Check for the equality of X and Y.



		x mod n

		The modular reduction of the (arbitrary) integer x by the positive integer n (the modulus). For the purposes of this Recommendation, y = x mod n is the unique integer satisfying the following two conditions:  1) 0  y  n, and 2) x y is divisible by n. 



		x 1 mod n

		The multiplicative inverse of the integer x modulo the positive integer n. This quantity is defined if and only if x is relatively prime to n. For the purposes of this Recommendation, y = x1 mod n is the unique integer satisfying the following two conditions:  
1) 0  y  n, and 2) 1 = (xy) mod n.



		{X}

		Indicates that the inclusion of X is optional.



		{x, y}

		A set containing the integers x and y.



		x  y

		The product of x and y.



		xy

		



		X || Y

		Concatenation of two strings X and Y.



		x

		The ceiling of x; the smallest integer  x. For example, 5 = 5 and 5.3 = 6.



		x

		The floor of x; the greatest integer that does not exceed x. For example, 2.1 = 2, and 4 = 4. 



		x 

		The absolute value of x.



		Z

		A shared secret that is used to derive secret keying material using a key-derivation method; a byte string.



		(n)

		Lambda function of the RSA modulus n, i.e., the least positive integer i such that 1= ai mod n for all a relatively prime to n. When n = p  q, (n) = LCM(p  1, q  1).



		 

		Exclusive-Or (XOR) operation, defined as bit-wise modulo 2 arithmetic with no carry.





4 [bookmark: _Toc518378739]Key-Establishment Schemes Overview

Secret cryptographic keying material may be electronically established between parties by using a key-establishment scheme, that is, by using either a key-agreement scheme or a key-transport scheme. Key-establishment schemes may use either symmetric-key techniques or asymmetric-key techniques or both.  The key-establishment schemes described in this Recommendation use asymmetric-key techniques. 

In this Recommendation, the approved key-establishment schemes are described in terms of the roles played by parties “U” and “V.” These are specific labels that are used to distinguish between the two participants engaged in key establishment – irrespective of the actual labels that may be used by a protocol employing a particular approved key-establishment scheme.  

During key agreement, the derived secret keying material is the result of contributions made by both parties. To be in conformance with this Recommendation, a protocol employing any of the approved pair-wise key-agreement schemes shall unambiguously assign the roles of U and V to the participants by clearly defining which participant performs the actions ascribed by this Recommendation to party U, and which performs the actions ascribed herein to party V.

During key transport, one party selects the secret keying material to be transported.  The secret keying material is then encrypted using RSA, and sent to the other party.  The party that sends the secret keying material is called the sender, and the other party is called the receiver.  

The security of the Integer Factorization Cryptography (IFC) schemes in this Recommendation relies on the intractability of factoring integers that are products of two sufficiently large, distinct prime numbers.  All IFC schemes in this Recommendation are based on RSA.

The security of an IFC scheme also depends on its implementation, and this document includes a number of practical recommendations for implementers. For example, good security practice dictates that implementations of procedures employed by primitives, operations, schemes, etc., include steps that destroy any potentially sensitive locally stored data that is created (and/or copied for use) during the execution of a particular procedure, and whose continued local storage is not required after the procedure has been exited. The destruction of such locally stored data ideally occurs prior to or during any exit from the procedure. This is intended to limit opportunities for unauthorized access to sensitive information that might compromise a key-establishment process. 

Explicit instructions for the destruction of certain potentially sensitive values that are likely to be locally stored by procedures are included in the specifications found in this Recommendation. Examples of such values include local copies of any portions of secret or private keys that are employed or generated during the execution of a procedure, intermediate results produced during computations, and locally stored duplicates of values that are ultimately output by a procedure. However, it is not possible to anticipate the form of all possible implementations of the specified primitives, operations, schemes, etc., making it impossible to enumerate all potentially sensitive data that might be locally stored by a procedure employed in a particular implementation. Nevertheless, the destruction of any potentially sensitive locally stored data is an obligation of all implementations. 

Error handling can also be an issue. Section 7 cautions implementers to handle error messages in a manner that avoids revealing even partial information about the decryption/decoding processes that may be performed during the execution of a particular procedure.

For compliance with this Recommendation, equivalent processes may be used. Two processes are equivalent if, whenever the same values are input to each process (either as input parameters or as values made available during the process), each process produces the same output as the other. 

Some processes are used to provide assurance (for example, assurance of the arithmetic validity of a public key or assurance of possession of a private key associated with a public key). The party that provides the assurance is called the provider (of the assurance), and the other party is called the recipient (of the assurance).

Several steps are performed to establish secret keying material as described in Sections 4.1, 4.2, and 4.3.

4.1 [bookmark: _Key-Establishment_Preparations][bookmark: _Key-Establishment_Preparations_1][bookmark: _Key-Establishment_Preparations_2][bookmark: _Toc518378740]Key-Establishment Preparations

The owner of a private/public key pair is the entity that is authorized to use the private key of that key pair. Figure 1 depicts the steps that may be required of that entity when preparing for a key-establishment process (i.e., either key agreement or key transport).
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[bookmark: Figure_1]Figure 1: Owner Key-establishment Preparations

The first step in the preparation is for the entity to obtain a key pair. Either the entity (i.e., the owner) generates the key pair as specified in Section 6.3, or a trusted third party (TTP) generates the key pair as specified in Section 6.3 and provides it to the owner. If the key pair is generated by a trusted third party, then the key pair shall be transported to the owner in a protected manner (providing source authentication and integrity protection for the entire key pair, and confidentiality protection for (at least) the private key). The owner obtains assurance of key-pair validity and, as part of the process, obtains assurance that it actually possesses the (correct) private key. Approved methods for obtaining assurance of key-pair validity by the owner are provided in Section 6.4.1.

An identifier is used to label the entity that owns a key pair used in a key-establishment transaction. This label may uniquely distinguish the entity from all others, in which case it could rightfully be considered an identity. However, the label may be something less specific – an organization, nickname, etc. – hence, the term identifier is used in this Recommendation, rather than the term identity.  For example, an identifier could be “NIST123,” rather than an identifier that names a particular person.  A key pair’s owner (or an agent trusted to act on the owner’s behalf) is responsible for ensuring that the identifier associated with its public key is appropriate for the applications in which the public key will be used.

For each key pair, this Recommendation assumes that there is a trusted association between the owner’s identifier(s) and the owner’s public key. The association may be provided using cryptographic mechanisms or by physical means. The use of cryptographic mechanisms may require the use of a binding authority (i.e., a trusted authority) that binds the information in a manner that can be verified by others; an example of such a trusted authority is a registration authority working with a CA who creates a certificate containing both the public key and the identifier(s). The binding authority shall verify the owner’s intent to associate the public key with the specific identifier(s) chosen for the owner; the means for accomplishing this is beyond the scope of this Recommendation. The binding authority shall obtain assurance of both the arithmetic validity of the owner’s public key and the owner’s possession of the private key corresponding to that public key. (Approved techniques that can be employed by the binding authority to obtain these assurances are described in Section 6.4.2.1 [method 1], Section 6.4.2.2, Section 6.4.2.3 and Section 6.4.2.3.2.) 

As an alternative to reliance upon a binding authority, trusted associations between identifiers and public keys may be established by the direct exchange of this information between entities, using a mutually trusted method (e.g., a trusted courier or a face-to-face exchange). In this case, each entity receiving a public key and associated identifier(s) shall be responsible for obtaining the same assurances that would have been obtained on the entity’s behalf by a binding authority (see the previous paragraph). Entities shall also be responsible for maintaining (by cryptographic or other means) the trusted associations between any identifiers and public keys received through such exchanges. 

[bookmark: _Toc181546827][bookmark: _Toc181547043][bookmark: _Toc181547646][bookmark: _Toc173652196]If an entity engaged in a key-establishment transaction owns a key pair that is employed during the transaction, then the identifier used to label that party shall be one that has a trusted association with the public key of that key pair. If an entity engaged in a key-establishment transaction does not employ a key pair during the transaction, but an identifier is still desired/required for that party, then a non-null identifier shall be selected/assigned in accordance with the requirements of the protocol relying upon the transaction.

After the above steps have been performed, the key-pair owner is ready to enter into a key-establishment process.

4.2 [bookmark: _Key-Agreement_Process][bookmark: _Toc518378741]Key-Agreement Process

Figure 2 depicts the steps implemented by an entity when establishing secret keying material with another entity using one of the key-agreement schemes described in Section 8 of this Recommendation. (Some discrepancies in ordering may occur in practice, depending on the communication protocol in which the key-agreement process is performed.)  Depending on the key-agreement scheme, the party whose actions are described could be either of the two participants in the key-agreement scheme (i.e., either party U or party V). Note that some of the actions shown may not be a part of every scheme. For example, key confirmation is not provided in the basic key-agreement schemes (see Sections 8.2.2 and 8.3.2). The specifications of this Recommendation indicate when a particular action is required. 
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[bookmark: Figure_2][bookmark: _Toc494191682][bookmark: _Toc181546828][bookmark: _Toc181547044]Figure 2: Key-Agreement Process

Each participant that is required to do so by the key-agreement scheme or the relying application/protocol obtains an identifier associated with the other entity, and verifies that the identifier of the other entity corresponds to the entity with whom the participant wishes to establish secret keying material.

Each entity that requires the other entity’s public key for use in the key-agreement scheme obtains a public key that has a trusted association with the other party’s identifier, and obtains assurance of the validity of the public key. Approved methods for obtaining assurance of the validity of another entity’s public key are provided in Section 6.4.2. 

Each entity generates either a (random) secret value or a nonce, as required by the particular key-agreement scheme. If the scheme requires an entity to generate a secret value, that secret value is generated as specified in Section 5.3 and encrypted using the other entity's public key. The resulting ciphertext is then provided to the other entity. If the key-agreement scheme requires that an entity provide a nonce, that nonce is generated as specified in Section 5.4 and provided (in plaintext form) to the other party. (See Sections 8.2 and 8.3 for details).

Each participant in the key-agreement process uses the appropriate public and/or private keys to establish a shared secret (Z) as specified in Section 8.2.2 or 8.3.2. Each participant then derives secret keying material from the shared secret (and other information), as specified in Section 5.5.

If the key-agreement scheme includes key confirmation provided by one or both of the participants, then key confirmation is performed as specified in Section 8.2.3 or 8.3.3.  When performed in accordance with those sections, successful key confirmation may also provide assurance that a key-pair owner possesses the (correct) private key (see Section 6.4.2.3.2). 

The owner of any key pair used during the key-agreement transaction is required to have assurance that the owner is in possession of the correct private key. Likewise, the recipient of another entity’s public key is required to have assurance that its owner is in possession of the corresponding private key. Assurance of private-key possession is obtained prior to using the derived keying material for purposes beyond those of the key-agreement transaction itself. This assurance may be provided/obtained either through key confirmation, or by some other approved means (see Sections 6.4.1 and 6.4.2).

4.3 [bookmark: _Key-Transport_Process][bookmark: _Toc518378742]Key-Transport Process

Figure 3 depicts the steps implemented by two entities when using the key-transport schemes described in Section 9.2 of this Recommendation to establish secret keying material. 

The entity who will act as the sender obtains the identifier associated with the entity that will act as the receiver, and verifies that the receiver’s identifier corresponds to an entity to whom the sender wishes to send secret keying material.

Prior to performing key transport, the sender obtains the receiver’s public key and obtains assurance of its validity. Approved methods for obtaining assurance of the validity of another entity’s public key are provided in Section 6.4.2. The sender is also required to have assurance that the receiver is in possession of the private key corresponding to the receiver’s public key prior to key transport, unless that assurance is obtained via the key confirmation steps that are included as part of the scheme. (See Section 9.2 for details). 

The sender selects the secret keying material (and, perhaps, additional input) to be transported to the other entity. Then, using the intended receiver’s public key, the sender encrypts that material directly (see Section 9.2.3). The resulting ciphertext is transported to the receiver. 

Prior to participating in a key-transport transaction, the receiver is required to have assurance of the validity of its own key pair. This assurance may be renewed whenever desired. Upon (or before) receipt of the transported ciphertext, the receiver retrieves the private key from its own key pair. Using its private key, the receiver takes the necessary steps (as specified in Section 9.2.3) to decrypt the ciphertext and obtain the transported plaintext keying material. 
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[bookmark: Figure_3][bookmark: _Toc494191683][bookmark: _Toc181546829][bookmark: _Toc181547045][bookmark: _Toc181547648]Figure 3: Key-transport Process

If the key-transport scheme includes key confirmation, then key confirmation is provided by the receiver to the sender as specified in Section 9.2.4. Through the use of key confirmation, the sender can obtain assurance that the receiver has correctly recovered the keying material from the ciphertext. Successful key confirmation may also provide assurance that the receiver was in possession of the correct private key (see Section 6.4.2.3.2). 

An additional method for key transport is discussed in Section 9.3.




5 [bookmark: _Toc232928829][bookmark: _Toc518378743]Cryptographic Elements

This section describes the basic cryptographic elements that support the development of the key-establishment schemes specified in this Recommendation. The schemes described herein are based upon the correct implementation of these elements.

5.1 [bookmark: _Cryptographic_Hash_Functions][bookmark: _Cryptographic_Hash_Functions_1][bookmark: _Cryptographic_Hash_Functions_2][bookmark: _Cryptographic_Hash_Functions_3][bookmark: _Cryptographic_Hash_Functions_4][bookmark: _Cryptographic_Hash_Functions_5][bookmark: _Toc232928830][bookmark: _Toc518378744]Cryptographic Hash Functions

In this Recommendation, cryptographic hash functions may be used for mask generation during RSA-OAEP encryption/decryption, in key derivation, and/or in MAC-tag computation during key confirmation. An approved hash function shall be used when a hash function is required (see FIPS 180[footnoteRef:10] and FIPS 202[footnoteRef:11]).  [10:  FIPS 180, Secure Hash Standard (SHS).]  [11:  FIPS 202, Permutation-Based Hash and Extendable-Output Functions.] 


5.2 [bookmark: _Message_Authentication_Code][bookmark: _Message_Authentication_Code_1][bookmark: _Message_Authentication_Code_2][bookmark: _Message_Authentication_Code_3][bookmark: _Message_Authentication_Code_4][bookmark: _Message_Authentication_Code_5][bookmark: _Message_Authentication_Code_6][bookmark: _Message_Authentication_Code_7][bookmark: _Toc232928831][bookmark: _Toc518378745]Message Authentication Code (MAC) Algorithms

A Message Authentication Code (MAC) algorithm defines a family of one-way (MAC) functions that is parameterized by a symmetric key. The input to a MAC function includes a symmetric key, called MacKey, and a binary data string, called MacData. A MAC function is represented as MAC(MacKey, MacData {, ...})[footnoteRef:12]. In this Recommendation, a MAC function is used in key confirmation (see Section 5.6) and may be used for key derivation (see Section 5.5 and  SP 800-56C).  [12:  Some MAC algorithms (e.g., KMAC) have additional parameters other than MacKey and MacData.] 


It must be computationally infeasible to determine the MAC of a (newly formed) MacData value without knowledge of the MacKey value (even if one has seen the MACs corresponding to other MacData values that were computed using that same MacKey value).

Key confirmation requires the use of one of the following approved MAC algorithms: HMAC, AES-CMAC or KMAC. HMAC is specified in FIPS 198 and requires the use of an approved hash function. AES-CMAC is specified in SP 800-38B[footnoteRef:13] for the AES block cipher algorithm specified in FIPS 197. KMAC is specified in SP 800-185.[footnoteRef:14] [13:  SP 800-38B, Recommendation for Block Cipher Modes of Operation: the CMAC Mode for Authentication.]  [14:  SP 800-185, SHA-3 Derived Funcions: cSHAKE, KMAC, TupleHash and ParallelHash.] 


When used for key confirmation, the key-confirmation provider is required to compute a "MAC tag" on received or derived data using the agreed-upon MAC function. A symmetric key derived from a shared secret (during a key-agreement transaction) or extracted from transported keying material (during a key-transport transaction) is used as MacKey. The resulting MAC tag is sent to the key-confirmation recipient, who can obtain assurance (via MAC-tag verification) that the shared secret and derived keying material were correctly computed (in the case of key agreement) or that the transported keying material was successfully received (in the case of key transport). MAC-tag computation and verification are defined in Sections 5.2.1 and 5.2.2.

5.2.1 [bookmark: _MacTag_Computation_for][bookmark: _MacTag_Computation_for_1][bookmark: _MacTag_Computation_for_2][bookmark: _MacTag_Computation_for_3][bookmark: _MacTag_Computation_for_4][bookmark: _MacTag_Computation_for_5][bookmark: _MacTag_Computation_for_6][bookmark: _MacTag_Computation_for_7][bookmark: _MacTag_Computation_for_8][bookmark: _MacTag_Computation_for_9][bookmark: _MacTag_Computation_for_10][bookmark: _Toc232928832][bookmark: _Toc518378746]MacTag Computation for Key Confirmation

The computation of a MAC tag is represented as follows:

MacTag = TMacTagBits[MAC(MacKey, MacData)].

To compute a MAC tag:

1. An approved, agreed-upon MAC algorithm (see FIPS 198, SP 800-38B or SP 800-185) is used with MacKey to compute a MAC on the MacData, where MacKey is a symmetric key, and MacData represents the data on which the MAC tag is computed. The minimum length of MacKey is specified in Section 5.6.3.

MacKey is obtained from the DerivedKeyingMaterial (when a key-agreement scheme employs key confirmation) or obtained from the TransportedKeyingMaterial (when a key-transport scheme employs key confirmation), as specified in Section 5.6.1.1.

The resulting MAC consists of MacOutputBits bits, which is the full output length of the selected MAC algorithm.

2. The output of the MAC algorithm is input to a truncation function TMacTagBits to obtain the most significant (i.e., leftmost) MacTagBits bits, where MacTagBits represents the intended length of MacTag, which is required to be less than or equal to MacOutputBits. (When MacTagBits equals MacOutputBits, TMacTagBits acts as the identity function.) The minimum value for MacTagBits is specified in Section 5.6.3. 

Note: A routine implementing a Mac-tag computation for key confirmation shall destroy any local copies of MacKey and MacData, any locally stored portions of MacTag, and any other locally stored values used or produced during the execution of the routine; their destruction shall occur prior to or during any exit from the routine – whether exiting early because of an error or exiting normally with MacTag as the output.

5.2.2 [bookmark: _MacTag_Verification_for][bookmark: _MacTag_Verification_for_1][bookmark: _MacTag_Verification_for_2][bookmark: _Toc232928833][bookmark: _Toc518378747]MacTag Verification for Key Confirmation

To verify the MAC tag received during key confirmation, a new MAC tag, MacTag, is computed as specified in Section 5.2.1 using the values of MacKey, MacTagBits, and MacData possessed by the key-confirmation recipient. MacTag is compared with the received MAC tag (i.e., MacTag). If their values are equal, then it may be inferred that the same MacKey, MacTagBits, and MacData values were used in the computation of MacTag and MacTag. That is, successful verification provides evidence that the key-confirmation provider has obtained the same MAC key as the key-confirmation recipient.

5.3 [bookmark: _Random_Bit_Generators][bookmark: _Random_Bit_Generators_1][bookmark: _Random_Bit_Generators_2][bookmark: _Random_Bit_Generators_3][bookmark: _Random_Bit_Generators_4][bookmark: _Random_Bit_Generators_5][bookmark: _Random_Bit_Generators_6][bookmark: _Random_Bit_Generators_7][bookmark: _Random_Bit_Generators_8][bookmark: _Toc232928835][bookmark: _Toc518378748]Random Bit Generators 

Whenever this Recommendation requires the use of a randomly generated value (for example, for obtaining keys or nonces), the values shall be generated using an approved random bit generator (RBG), as specified in SP 800-90,[footnoteRef:15] that supports an appropriate security strength.  [15:  SP 800-90, Recommendation for Random Number Generation.] 


When an approved RBG is used to generate a secret value as part of a key-establishment scheme specified in this Recommendation (e.g., Z in a scheme from the KAS1 family), that RBG shall be instantiated to support a security strength that is equal to or greater than the security strength associated with the RSA modulus length as specified in SP 800-57, Part 1.  

5.4 [bookmark: _Nonces][bookmark: _Nonces_1][bookmark: _Nonces_2][bookmark: _Nonces_3][bookmark: _Toc232928838][bookmark: _Toc518378749]Nonces

A nonce is a time-varying value that has a negligible chance of repeating (where the meaning of “negligible” may be application specific). This Recommendation requires party V to supply a nonce, NV, during the execution of key-agreement schemes in the KAS1 family (see Section 8.2). This nonce is included in the input to the key-derivation process, and (when key confirmation is employed) is also used in the computation of the MAC tag sent from party V to party U.

A nonce may be composed of one (or more) of the following components (other components may also be appropriate):

1.	A random bit string that is generated anew for each nonce, using an approved random bit generator. A nonce containing a component of this type is called a random nonce. 

2.	A timestamp of sufficient resolution (detail) so that it is different each time that it is used.

3.	A monotonically increasing sequence number, or

4.	A combination of a timestamp and a monotonically increasing sequence number such that the sequence number is reset when and only when the timestamp changes. (For example, a timestamp may show the date but not the time of day, so a sequence number is appended that will not repeat during a particular day.)

For the KAS1 schemes, the required nonce NV should be a random nonce containing a random bit string output from an approved random bit generator (RBG), where both the security strength supported by the instantiation of the random bit generator and the bit length of the random bit string are greater than or equal to the targeted security strength of the key-agreement scheme in which the nonce is used; when feasible, the bit length of the random bit string should be (at least) twice the targeted security strength. For details concerning the security strength supported by an instantiation of a random bit generator, see SP 800-90.

[bookmark: _Toc232928839]As part of the proper implementation of this Recommendation, system users and/or agents trusted to act on their behalf should determine that the components selected for inclusion in required nonces meet the security requirements of those users or agents. The application tasked with performing key establishment on behalf of a party should determine whether or not to proceed with a key-establishment transaction, based upon the perceived adequacy of the method(s) used to form the required nonces. Such knowledge may be explicitly provided to the application in some manner, or may be implicitly provided by the operation of the application itself. 

[bookmark: _Key-Derivation_Methods][bookmark: _Key-Derivation_Methods_1][bookmark: _Key-Derivation_Methods_2][bookmark: _Key-Derivation_Methods_3][bookmark: _Key-Derivation_Methods_4][bookmark: _Key-Derivation_Methods_5][bookmark: _Key-Derivation_Methods_6][bookmark: _Key-Derivation_Methods_7][bookmark: _Key-Derivation_Methods_8][bookmark: _Key-Derivation_Methods_9][bookmark: _Key-Derivation_Methods_10][bookmark: _Key-Derivation_Methods_11][bookmark: _Key-Derivation_Methods_12][bookmark: _Key-Derivation_Methods_13][bookmark: _Key-Derivation_Methods_14][bookmark: _Key-Derivation_Methods_15][bookmark: _5.5_Key-Derivation_Methods][bookmark: _Toc518378750][bookmark: _Toc332100216][bookmark: _Toc232928841]5.5	Key-Derivation Methods for Key-Establishment Schemes 

An approved key-derivation method shall be used to derive keying material from the shared secret Z during the execution of a key-establishment scheme from the KAS1 or KAS2 family of schemes. The shared secret shall be used only by an approved key-derivation method and shall not be used for any other purpose.

When employed during the execution of a key-establishment scheme as specified in this Recommendation, the agreed-upon key-derivation method uses input that includes a freshly created shared secret Z along with other information. The derived keying material shall be computed in its entirety before outputting any portion of it, and (all copies of) Z shall be treated as a critical security parameter and destroyed immediately following its use. 

The output produced by a key-derivation method using input that includes the shared secret created during the execution of any key-establishment scheme specified in this Recommendation shall only be used as secret keying material – such as a symmetric key used for data encryption or message integrity, a secret initialization vector, or, perhaps, a key-derivation key that will be used to generate additional keying material (possibly using a different process – see SP 800-108[footnoteRef:16]). The derived keying material shall not be used as a key stream for a stream cipher. Non-secret keying material (such as a non-secret initialization vector) shall not be generated using a key-derivation method that includes the shared secret, Z, as input (this restriction applies to all one-step and two-step key-derivation methods in SP 800-56C). [16:  SP 800-108, Recommendation for Key Derivation Using Pseudorandom Functions.] 


[bookmark: _Toc479677359][bookmark: _Toc518378751]5.5.1	Performing the Key Derivation

Approved methods for key derivation from a shared secret are specified in SP 800-56C. These methods can be accessed using the following call:

KDM(Z, OtherInput),

where

1. Z is a byte string that represents the shared secret, 

2.	OtherInput consists of additional input information that may be required by a given key-derivation method, for example:

· L − an integer that indicates the bit length of the secret keying material to be derived,

· salt − a byte string,

· IV –  a bit string used as an initialization value, and

· FixedInfo – a bit sting of context-specific data (see Section 5.5.2).

See SP 800-56C for details concerning the appropriate form of OtherInput.

[bookmark: _5.5.2_FixedInfo][bookmark: _5.5.2_FixedInfo_1][bookmark: _5.5.2_FixedInfo_2][bookmark: _Toc518378752]5.5.2	FixedInfo 

The bit string FixedInfo should be used to ensure that the derived keying material is adequately “bound” to the context of the key-establishment transaction. Although other methods may be used to bind keying material to the transaction context, this Recommendation makes no statement as to the adequacy of these other methods. Failure to adequately bind the derived keying material to the transaction context could adversely affect the types of assurance that can be provided by certain key-establishment schemes.

Context-specific information that may be appropriate for inclusion in FixedInfo includes the following:

· Public information about parties U and V, such as names, e-mail addresses, and/or other identifiers. 

· The public keys contributed by each party to the key-establishment transaction. (For example, a certificate that contains the public key could be included.)

· An identifier and/or other information associated with the RSA public key employed in the key-establishment transaction. For example, the hash of a certificate that contains that RSA public key could be included.

· Other public and/or private information shared between parties U and V before or during the transaction, such as nonces, counters, or pre-shared secret data. (The inclusion of private or secret information shall be limited to situations in which that information is afforded adequate confidentiality protection.)

· An indication of the protocol or application employing the key-establishment scheme.

· Protocol-related information, such as a label or session identifier.

· Agreed-upon encodings (as bit strings) of the values of one or more of the other parameters used as additional input to the KDM (e.g., L, salt, and/or IV).

· An indication of the key-establishment scheme and/or key-derivation method used during the transaction.

· An indication of various parameter or primitive choices (e.g., hash functions, MAC algorithms, MacTag lengths used for key confirmation, etc.).

· An indication of how the keying material should be parsed, including an indication of which algorithm(s) will use the (parsed) keying material.

For rationale in support of including entity identifiers, scheme identifiers, and/or other information in OtherInput, see Appendix B of SP 800-56A.

When FixedInfo is used, the meaning of each information item and each item’s position within the FixedInfo bit string shall be specified. In addition, each item of information included in FixedInfo shall be unambiguously represented. For example, each item of information could take the form of a fixed-length bit string, or, if greater flexibility is needed, an item of information could be represented in a Datalen || Data format, where Data is a variable-length string of zero or more (eight-bit) bytes, and Datalen is a fixed-length, big-endian counter that indicates the byte length of Data. These requirements can be satisfied, for example, by using ASN.1 DER encoding as specified in Section 5.5.2.1.2.

[bookmark: _5.5.2.1_One-step_Key][bookmark: _5.5.2.1_One-step_Key_1][bookmark: _5.5.2.1_One-step_Key_2][bookmark: _Toc479677361][bookmark: _Toc518378753]5.5.2.1	One-step Key Derivation

Recommended formats for FixedInfo when used by a one-step key-derivation method are specified in Sections 5.5.2.1.1 and 5.5.2.1.2. One of those two formats should be used by a one-step key-derivation method specified in SP 800-56C when the auxiliary function employed is H = hash. 

When FixedInfo is included during the key-derivation process, and the recommended formats are used, the included items of information shall be divided into (three, four, or five) subfields as defined below.

AlgorithmID: A required non-null subfield that indicates how the derived keying material will be parsed and for which algorithm(s) the derived secret keying material will be used. For example, AlgorithmID might indicate that bits 1 to 112 are to be used as a 112-bit HMAC key and that bits 113 to 240 are to be used as a 128-bit AES key.

PartyUInfo: A required non-null subfield containing public information about party U. At a minimum, PartyUInfo shall include IDU, an identifier for party U, as a distinct item of information. This subfield could also include information about the public key (if any) contributed to the key-establishment transaction by party U. Although the schemes specified in the Recommendation do not require the contribution of a nonce by party U, any nonce provided by party U should be included in this subfield.

PartyVInfo: A required non-null subfield containing public information about party V. At a minimum, PartyVInfo shall include IDV, an identifier for party V, as a distinct item of information. This subfield could also include information about the public key contributed to the key-establishment transaction by party V. When the key-derivation method is used in a KAS1 scheme (see Section 8.2), the nonce, NV, supplied by party V shall be included in this field. 

SuppPubInfo: An optional subfield that contains additional, mutually known public information (e.g., L, an identifier for the particular key-establishment scheme that was used to determine Z, an indication of the protocol or application employing that scheme, a session identifier, etc.; this is particularly useful if these aspects of the key-establishment transaction can vary). While an implementation may be capable of including this subfield, the subfield may be Null for a given transaction.

SuppPrivInfo: An optional subfield that contains additional, mutually known private information (e.g., a secret symmetric key that has been communicated through a separate channel). While an implementation may be capable of including this subfield, the subfield may be Null for a given transaction.

[bookmark: _5.5.2.1.1_The_Concatenation][bookmark: _Toc518378754]5.5.2.1.1	The Concatenation Format for FixedInfo

This section specifies the concatenation format for FixedInfo. This format has been designed to provide a simple means of binding the derived keying material to the context of the key-establishment transaction, independent of other actions taken by the relying application. Note: When the one-step key-derivation method specified in SP 800-56C is used with H = hash as the auxiliary function and this concatenation format for FixedInfo, the resulting key-derivation method is the Concatenation Key-Derivation Function specified in the original version of SP 800-56A.

For this format, FixedInfo is a bit string equal to the following concatenation:

 	      AlgorithmID || PartyUInfo || PartyVInfo {|| SuppPubInfo }{|| SuppPrivInfo },

where the five subfields are bit strings comprised of items of information as described in Section 5.5.2.1. 

Each of the three required subfields AlgorithmID, PartyUInfo, and PartyVInfo shall be the concatenation of a pre-determined sequence of substrings in which each substring represents a distinct item of information. Each such substring shall have one of these two formats: either it is a fixed-length bit string, or it has the form Datalen || Data – where Data is a variable-length string of zero or more (eight-bit) bytes, and Datalen is a fixed-length, big-endian counter that indicates the byte length of Data. (In this variable-length format, a null string of data shall be represented by a zero value for Datalen, indicating the absence of following data.) A protocol using this format for FixedInfo shall specify the number, ordering and meaning of the information-bearing substrings that are included in each of the subfields (i.e., AlgorithmID, PartyUInfo, and PartyVInfo), and shall also specify which of the two formats (fixed-length or variable-length) is used by each such substring to represent its distinct item of information. The protocol shall specify the lengths for all fixed-length quantities, including the Datalen counters.

Each of the optional SuppPrivInfo and SuppPubInfo subfields (when allowed by the protocol employing the one-step key-derivation method) shall be the concatenation of a pre-determined sequence of substrings representing additional items of information that may be used during key derivation upon mutual agreement of parties U and V. Each substring representing an item of information shall be of the form Datalen || Data, where Data is a variable-length string of zero or more (eight-bit) bytes, and Datalen is a fixed-length, big-endian counter that indicates the byte length of Data; the use of this form for the information allows U and V to omit a particular information item without confusion about the meaning of the other information that is provided in the SuppPrivInfo or SuppPubInfo subfield. The substrings representing items of information that parties U and V choose not to contribute are set equal to Null, and are represented in this variable-length format by setting Datalen equal to zero. If a protocol allows the use of the FixedInfo subfield SuppPrivInfo and/or the subfield SuppPubInfo, then the protocol shall specify the number, ordering and meaning of additional items of information that may be used in the allowed subfield(s) and shall specify the fixed-length of the Datalen counters.

[bookmark: _5.5.2.1.2_The_ASN.1][bookmark: _5.5.2.1.2_The_ASN.1_1][bookmark: _Toc518378755]5.5.2.1.2	The ASN.1 Format for FixedInfo 

The ASN.1 format for FixedInfo provides an alternative means of binding the derived keying material to the context of the key-establishment transaction, independent of other actions taken by the relying application. Note: When the one-step key-derivation method specified in SP 800-56C is used with H = hash as the auxiliary function and with this ASN.1 format for FixedInfo, the resulting key-derivation method is the ASN.1 Key-Derivation Function specified in the original version of SP 800-56B.

For the ASN.1 format, FixedInfo is a bit string resulting from the ASN.1 Distinguished Encoding Rules (DER) encoding (see ISO/IEC 8825-1) of a data structure comprised of a sequence of three required subfields AlgorithmID, PartyUInfo, and PartyVInfo, and, optionally, a subfield SuppPubInfo and/or a subfield SuppPrivInfo – as described in Section 5.5.2.1. A protocol using this format for FixedInfo shall specify the type, ordering and number of distinct items of information included in each of the (three, four, or five) subfields employed. 

[bookmark: _5.5.2.2_Two-step_Key-Derivation][bookmark: _Toc479677364][bookmark: _Toc518378756]5.5.2.2	Two-step Key-Derivation (Extraction-then-Expansion)

For the two-step key-derivation method specified in SP 800-56C, FixedInfo is a bit string that contains component data fields such as a Label, Context information, and [L]2, where:

· Label is a binary string that identifies the purpose of the derived keying material. The encoding method for the label is defined in a larger context, for example, in a protocol using the derivation method.

· Context is a binary string containing information relating to the derived keying material. Section 5.5.2 provides a list of context-specific information that may be appropriate for the inclusion in this string.

· [L]2 is a binary string that specifies the length (in bits) of the keying material to be derived.

Different orderings of the component data fields of FixedInfo may be used, and one or more of the data fields may be combined (or omitted under certain circumstances). See SP 800-108 and Section 5 in SP 800-56C for details.

[bookmark: _Toc518378757]5.5.2.3	Other Formats for FixedInfo

Formats other than those provided in Sections 5.5.2.1 and 5.5.2.2 (e.g., those providing the items of information in a different arrangement) may be used for FixedInfo, but the context-specific information described in the preceding sections should be included (see the discussion in Section 5.5.2). This Recommendation makes no statement as to the adequacy of other formats.

[bookmark: _Key_Confirmation][bookmark: _Key_Confirmation_1][bookmark: _Key_Confirmation_2][bookmark: _Key_Confirmation_3][bookmark: _Key_Confirmation_4][bookmark: _5.6_Key_Confirmation][bookmark: _Toc318455252][bookmark: _Toc332100225][bookmark: _Toc518378758]5.6	Key Confirmation

The term key confirmation (KC) refers to actions taken to provide assurance to one party (the key-confirmation recipient) that another party (the key-confirmation provider) is in possession of a (supposedly) shared secret and/or to confirm that the other party has the correct version of keying material that was derived or transported during a key-establishment transaction (correct, that is, from the perspective of the key-confirmation recipient.) Such actions are said to provide unilateral key confirmation when they provide this assurance to only one of the participants in the key-establishment transaction; the actions are said to provide bilateral key confirmation when this assurance is provided to both participants (i.e., when unilateral key confirmation is provided in both directions).

Oftentimes, key confirmation is obtained (at least implicitly) by some means that are external to the key-establishment scheme employed during a transaction (e.g., by using a symmetric key that was established during the transaction to decrypt an encrypted message sent later by the key-confirmation provider), but this is not always the case. In some circumstances, it may be appropriate to incorporate the exchange of explicit key-confirmation information as an integral part of the key-establishment scheme itself. The inclusion of key confirmation may enhance the security services that can be offered by a key-establishment scheme. For example, the key-establishment schemes incorporating key confirmation that are specified in this Recommendation could be used to provide the KC recipient with assurance that the KC provider is in possession of the private key corresponding to the provider’s public key-establishment key, from which the recipient may infer that the provider is the owner of that key pair. 

For key confirmation to comply with this Recommendation, key confirmation shall be incorporated into an approved key-establishment scheme as specified in Sections 5.6.1, 5.6.2, 8 and 9. If any other methods are used to provide key confirmation, this Recommendation makes no statement as to their adequacy.

[bookmark: _Unilateral_Key_Confirmation][bookmark: _Unilateral_Key_Confirmation_1][bookmark: _Unilateral_Key_Confirmation_2][bookmark: _Unilateral_Key_Confirmation_3][bookmark: _Unilateral_Key_Confirmation_4][bookmark: _Unilateral_Key_Confirmation_5][bookmark: _Unilateral_Key_Confirmation_6][bookmark: _Unilateral_Key_Confirmation_7][bookmark: _Unilateral_Key_Confirmation_8][bookmark: _Unilateral_Key_Confirmation_9][bookmark: _5.6.1_Unilateral_Key][bookmark: _5.6.1_Unilateral_Key_1][bookmark: _Toc318455253][bookmark: _Toc332100226][bookmark: _Toc518378759]5.6.1	Unilateral Key Confirmation for Key-Establishment Schemes

As specified in this Recommendation, unilateral key confirmation occurs when one participant in the execution of a key-establishment scheme (the key-confirmation “provider”) demonstrates to the satisfaction of the other participant (the key-confirmation “recipient”) that both the KC provider and the KC recipient have possession of the same secret MacKey. 

MacKey shall be a symmetric key that is unique to a specific execution of a key-establishment scheme and (from the perspective of the KC provider) shall be unpredictable prior to that key-establishment transaction. In the case of a key-agreement scheme, MacKey is derived using the shared secret Z created during the execution of that scheme (see Section 5.5 for the details of key derivation). In the case of a key-transport scheme, MacKey is included as part of the transported keying material. Step 2 below specifies how MacKey is to be extracted from the derived or transported keying material. 

MacKey and certain context-specific MacData (as specified below) are used by the KC provider as input to an approved MAC algorithm to obtain a MAC tag that is sent to the KC recipient. The recipient performs an independent computation of the MAC tag. If the MAC tag value computed by the KC recipient matches the MAC tag value received from the KC provider, then key confirmation is successful. (See Section 5.2 for MAC-tag generation and verification, and Section 5.6.3 for a discussion of MAC-tag security.)

In the case of a scheme providing key-agreement, successful key confirmation following key agreement provides assurance to the KC recipient that the same Z value has been used by both parties to correctly derive the keying material (which includes MacKey). In the case of a key-transport scheme (see Section 9.2.4), successful key confirmation provides assurance to the KC recipient (who sent the keying material) that the transported keying material (which includes MacKey) has been correctly decrypted by the party to whom it was sent.

A close examination of the KC process shows that each of the pair-wise key-establishment schemes specified in this Recommendation that incorporate key confirmation can be used to provide the KC recipient with assurance that the KC provider is currently in possession of the (correct) private key – the one corresponding to the KC provider’s public key-establishment key. The use of transaction-specific values for both MacKey and MacData prevents (for all practical purposes) the replay of any previously computed value of MacTag. The receipt of a correctly computed MAC tag provides assurance to the KC recipient that the KC provider has used the correct private key during the current transaction – to successfully recover the secret data that is a prerequisite to learning the value of MacKey.

[bookmark: _Adding_Unilateral_Key][bookmark: _Adding_Unilateral_Key_1][bookmark: _Adding_Unilateral_Key_2][bookmark: _Adding_Unilateral_Key_3][bookmark: _Adding_Unilateral_Key_4][bookmark: _Adding_Unilateral_Key_5][bookmark: _Adding_Unilateral_Key_6]To include unilateral key confirmation, the following steps shall be incorporated into the scheme. (Additional details will be provided for each scheme in the appropriate subsections of Sections 8 and 9.) In the discussion that follows, the key-confirmation provider, P, may be either party U or party V, as long as the KC provider, P, contributes a key pair to the key-establishment transaction. The key-confirmation recipient, R, is the other party.

1. The provider, P, computes

   MacDataP = message_stringP || IDP || IDR || EphemDataP || EphemDataR {|| TextP}

where 

· message_stringP is a six-byte character string, with a value of “KC_1_U” when party U is providing the MAC tag, or “KC_1_V” when party V is providing the MAC tag. (Note that these values will be changed for bilateral key confirmation, as specified in Section 5.6.2).

· IDP is the identifier used to label the key-confirmation provider.

· IDR is the identifier used to label the key-confirmation recipient. 

· EphemDataP and EphemDataR are (ephemeral) values contributed by the KC provider and recipient, respectively. These values are specified in the sections describing the schemes that include key confirmation.

· TextP  is an optional bit string that may be used during key confirmation and that is known by both parties.

The content of each of the components that are concatenated to form MacDataP shall be precisely defined and unambiguously represented. A particular component’s content may be represented, for example, as a fixed-length bit string or in the form Datalen || Data, where Data is a variable-length string of zero or more (eight-bit) bytes, and Datalen is a fixed-length, big-endian counter that indicates the length (in bytes) of Data. These requirements could also be satisfied by using a specific ASN.1 DER encoding of each component. It is imperative that the provider and recipient have agreed upon the content and format that will be used for each component of MacDataP.

MacData shall include a non-null identifier, IDP, for the key-confirmation provider.

Depending upon the circumstances, the key-confirmation recipient’s identifier, IDR, may be replaced by a null string. The rules for selecting IDP and IDR are as follows:

As specified in this Recommendation, the key-confirmation provider must own a key pair that is employed by the basic key-establishment scheme (KAS1-basic, KAS2-basic or KTS-OAEP-basic) that determines the MacKey value used in the key-confirmation computations performed during the transaction. The identifier, IDp, included in MacDataP shall be one that has a trusted association with the public key of that key pair. 

If the key-confirmation recipient also owns a key pair that is employed by the basic key-establishment scheme used during the transaction, then the identifier, IDR, included in  MacDataP shall be one that has a trusted association with the public key of that key pair. 

If the key-confirmation recipient does not own a key pair employed for key-establishment purposes, and no identifier has been used to label that party during the execution of the basic key-establishment scheme employed by the transaction, then IDR may be replaced by a null string. However, if an identifier is desired/required for that party for key confirmation purposes, then a non-null value for IDR, shall be selected/assigned in accordance with the requirements of the protocol relying upon the transaction.

Whenever a particular identifier has been used to label the key-confirmation recipient or key-confirmation provider in the execution of the basic key-establishment scheme used during the transaction, that same identifier shall be used as IDP or IDR, respectively, in theMacDataP used during key confirmation.  For example, if party U is the key-confirmation recipient, and IDU has been used to label party U in the FixedInfo employed by the key-derivation method of a key-agreement scheme used during the transaction, then the MacDataP used during key confirmation shall have IDR = IDU. 

2. When a KAS1 or KAS2 key-agreement scheme is used: After computing the shared secret Z and applying the key-derivation function to obtain the derived keying material, DerivedKeyingMaterial (see Section 5.5), the KC provider uses agreed-upon bit lengths to parse DerivedKeyingMaterial into two parts, MacKey and KeyData:

MacKey || KeyData = DerivedKeyingMaterial.

When the KTS-OAEP key-transport scheme is used: The KC provider parses the TransportedKeyingMaterial into MacKey and KeyData:

MacKey || KeyData = TransportedKeyingMaterial.

3. Using an agreed-upon bit length MacTagBits, the KC provider computes MacTagP (see Sections 5.2.1 and 5.6.3):

MacTagP = TMacTagBits[MAC (MacKey, MacDataP)],

and sends it to the KC recipient.

4. 	The KC recipient forms MacDataP, determines MacKey, computes MacTagP in the same manner as the KC provider, and then compares its computed MacTagP to the value received from the provider. If the received value is equal to the computed value, then the recipient is assured that the provider has used the same value for MacKey and that the provider shares the recipient’s value of MacTagP. 

Each participant shall destroy all copies of the MacKey that was employed for key-confirmation purposes during a particular pair-wise key-establishment transaction when MacKey is no longer needed to provide or obtain key confirmation as part of that transaction. 

If MacTagP cannot be verified by the KC recipient during a particular key-establishment transaction, then key confirmation has failed, and both participants shall destroy all of their copies of MacKey and KeyData. In particular, MacKey and KeyData shall not be revealed by either participant to any other party (not even to the other participant), and the keying material shall not be used for any further purpose. In the case of a key-confirmation failure, the key-establishment transaction shall be terminated.

Note: The key-confirmation routines employed by the KC provider and KC recipient shall destroy all local copies of MacKey, MacData, destroyable copies of KeyData and any other locally stored values used or produced during their execution. Their destruction shall occur prior to or during any exit from those routines – whether exiting normally or exiting early, because of an error.

Unilateral key confirmation, as specified in this Recommendation, can be incorporated into any key-establishment scheme in which the key-confirmation provider is required to own a key-establishment key pair that is used in the key-establishment process. Unilateral key confirmation may be added in either direction to a KAS2 scheme (see Sections 8.3.3.2 and 8.3.3.3); it may also be added to a KAS1 or KTS-OAEP scheme, but only with party V (the party contributing the key pair) acting as the key-confirmation provider, and party U acting as the key-confirmation recipient (see Sections 8.2.3.1 and 9.2.4.2).

[bookmark: _Bilateral_Key_Confirmation][bookmark: _Bilateral_Key_Confirmation_1][bookmark: _5.6.2_Bilateral_Key][bookmark: _Toc318455255][bookmark: _Toc332100228][bookmark: _Toc518378760]5.6.2	Bilateral Key Confirmation for KAS2 Schemes

Bilateral key confirmation, as specified in this Recommendation, can be incorporated into a KAS2 key-agreement scheme since each party is required to own a key-establishment key pair that is used in the key-agreement process. Bilateral key confirmation is accomplished by performing unilateral key confirmation in both directions (with party U providing MacTagU to KC recipient V, and party V providing MacTagV to KC recipient U) during the same scheme. 

To include bilateral key confirmation, two instances of unilateral key confirmation (as specified in Section 5.6.1, subject to the modifications listed below) shall be incorporated into the KAS2 scheme, once with party U as the key-confirmation provider (i.e., P = U and R = V) and once with party V as the key-confirmation provider (i.e., P = V and R = U). Additional details will be provided in Section 8.3.3.4.

In addition to setting P = U and R = V in one instance of the unilateral key-confirmation procedure described in Section 5.6.1 and setting P = V and R = U in a second instance, the following changes/clarifications apply when using the procedure for bilateral key confirmation: 

1. When computing MacTagU, the value of message_stringU that forms the initial segment of MacDataU is the six-byte character string “KC_2_U”.

2. When computing MacTagV, the value of message_stringV that forms the initial segment of MacDataV is the six-byte character string “KC_2_V”.

3. If used at all, the value of the (optional) byte string TextU used to form the final segment of MacDataU can be different than the value of the (optional) byte string TextV used to form the final segment of MacDataV, provided that both parties are aware of the value(s) used.

4. The identifiers used to label the parties U and V when forming MacDataU shall be the same as the identifiers used to label the parties U and V when forming MacDataV, although IDU and IDV will play different roles in the two strings.  If IDP = IDU and IDR = IDV are used in MacDataU, then IDP = IDV and IDR = IDU are used in MacDataV.

[bookmark: _Minimum_Requirements_for][bookmark: _Minimum_Requirements_for_1][bookmark: _Minimum_Requirements_for_2][bookmark: _Minimum_Requirements_for_3][bookmark: _Selecting_the_MAC][bookmark: _Selecting_the_MAC_1][bookmark: _Selecting_the_MAC_2][bookmark: _Toc318455257][bookmark: _Toc332100230][bookmark: _Toc518378761]5.6.3	Selecting the MAC and Other Key-Confirmation Parameters

Key confirmation as specified in this Recommendation requires that a MacKey of an appropriate length be generated or obtained as part of the derived keying material (see Section 5.6.1). The MacKey is then used with a MAC algorithm to generate a MAC; the length of the MAC output by the MAC algorithm is MacOutputBits bits. The MAC is subsequently used to form a MAC tag (see Section 5.6.1 for the generation of the MAC and Section 5.2.1 for the formation of the MAC tag from the MAC).

Table 1 provides a list of approved MAC algorithms for key confirmation and the security strengths that each can support, along with the corresponding value of MacOutputBits and permissible MacKey lengths for each MAC algorithm. 









[bookmark: Table_1]Table 1: Approved MAC Algorithms for Key Confirmation.

		MAC Algorithm

		MacOutputBits


		Permissable MacKey Lengths

( bits)

		Supported Security Strengths for Key Confirmation  

(s bits)



		HMAC_SHA-1)

		160

		s     512



		112   s  256



		HMAC_SHA-224

		224

		

		



		HMAC_SHA-256

		256

		

		



		HMAC_SHA-512/224

		224

		

		



		HMAC_SHA-512/256

		256

		

		



		HMAC_SHA-384

		384

		

		



		HMAC_SHA-512

		512

		

		



		HMAC_SHA3-224

		224

		

		



		HMAC_SHA3-256

		256

		

		



		HMAC_SHA3-384

		384

		

		



		HMAC_SHA3-512

		512

		

		



		KMAC128

		 22040 – 1

(see * below)

		

		112   s  128



		KMAC256

		

		

		112   s   256



		AES-128-CMAC 

		128

		 = 128

		112   s  128



		AES-192-CMAC 

		128

		 = 192

		112   s  192



		AES-256-CMAC 

		128

		 = 256

		112    s  256





*	Although KMAC128 and KMAC256 can accommodate MacOutputBits values as large as 22040  1, practical considerations dictate that the lengths of transmitted MAC tags be limited to sizes that are more realistic and commensurate with the actual performance/security requirements of the relying applications.

The MAC algorithm used to compute a key-confirmation MAC tag in compliance with this Recommendation shall be selected from among the approved MAC algorithms capable of supporting a security strength s that is at least as large as the targeted security strength of the key-establishment scheme (as indicated in Table 1 above).

Note that when the HMAC or KMAC algorithm is used for key confirmation as specified in this Recommendation, MacKey lengths can be no greater than 512 bits (an upper bound that is at least twice the maximum supported security strength). Although the HMAC and KMAC specifications permit the use of longer keys, the 512-bit maximum is sufficient for this key-confirmation application. In the case of HMAC, the 512-bit upper bound has the advantage of being less than the input block length of whatever hash function is used in the algorithm’s implementation. If MacKey were allowed to be longer than the input block length, it would be hashed down to a string of length MacOutputBits during the HMAC computation (see step 2 in Table 1 of FIPS 198); allowing MacKey to be longer than the input block length would not be an efficient use of keying material.

The length of the MAC tag for key confirmation also needs to be selected. Note that in many cases, the length of the MAC tag (MacTagBits) has been selected by the protocol in which the key-establishment is conducted. MacTagBits shall be at least 64 bits, and its maximum length shall be no more than MacOutputBits for the MAC algorithm selected for key confirmation. The 64-bit minimum for the MAC tag length assumes that the protocol imposes a limit on the number of retries for key confirmation.

6 [bookmark: _Toc518378762]RSA Key Pairs

6.1 [bookmark: _Toc518378763]General Requirements

The following are requirements on RSA key pairs (see SP 800-57):

1.	Each key pair shall be created using an approved key-generation method as specified in Section 6.3.

2.	The private keys and prime factors of the modulus shall be protected from unauthorized access, disclosure, and modification. 

3.	Public keys shall be protected from unauthorized modification. This is often accomplished by using public-key certificates that have been signed by a Certification Authority (CA). 

4.	A recipient of a public key shall be assured of the integrity and correct association of (a) the public key and (b) an identifier of the entity that owns the key pair (that is, the party with whom the recipient intends to establish secret keying material). This assurance is often provided by verifying a public-key certificate that was signed by a trusted third party (for example, a CA), but may be provided by direct distribution of the public key and identifier from the owner, provided that the recipient trusts the owner and distribution process to do this. 

5.	One key pair shall not be used for different cryptographic purposes (for example, a digital-signature key pair shall not be used for key establishment or vice versa), with the following possible exception: when requesting the certificate for a public key-establishment key, the private key-establishment key associated with the public key may be used to sign the certificate request (see SP 800-57, Part 1 on Key Usage for further information). A key pair may be used in more than one key-establishment scheme.  However, a key pair used for schemes specified in this Recommendation should not be used for any schemes not specified herein. 

6. The owner of a key pair shall have assurance of the key pair’s validity (see Section 6.4.1.1); that is, the owner shall have assurance of the correct generation of the key pair (see Section 6.3), consistent with the criteria of Section 6.2; assurance of private and public-key validity; and assurance of pair-wise consistency.  

7. A recipient of a public key shall have assurance of the validity of the public key (see Section 6.4.2.1). This assurance may be provided, for example, through the use of a public-key certificate if the CA obtains sufficient assurance of public-key validity as part of its certification process. 

8. A recipient of a public key shall have assurance of the owner’s possession of the associated private key (see Section 6.4.2.3). This assurance may be provided, for example, through the use of a public key certificate if the CA obtains sufficient assurance of possession as part of its certification process. 

6.2 [bookmark: _Criteria_for_RSA][bookmark: _Criteria_for_RSA_1][bookmark: _Criteria_for_RSA_2][bookmark: _Criteria_for_RSA_3][bookmark: _Toc518378764]Criteria for RSA Key Pairs for Key Establishment

6.2.1 [bookmark: _Definition_of_a][bookmark: _Definition_of_a_1][bookmark: _Definition_of_a_2][bookmark: _Toc518378765]Definition of a Key Pair

A valid RSA key pair, in its basic form, shall consist of an RSA public key (n, e) and an RSA private key (n, d), where:

1. n, the public modulus, shall be the product of exactly two distinct, odd positive prime factors, p and q, that are kept secret. Let len(n) = nBits, the bit length of n; len(n) is required to be even.

2. The public exponent e shall be an odd integer that is selected prior to the generation of p and q such that:

65,537 ≤ e < 2256

3. The prime factors p and q shall be generated using one of the methods specified in Appendix B.3 of FIPS 186 such that:

a.	2(nBits  1)/2 < p < 2nBits/2.

b.	 2(nBits  1)/2 < q < 2nBits/2.

c.	|p – q| > 2nBits/2100.

d.   The exponent e must be mutually prime with both p  1 and q  1:

GCD(e, LCM(p  1, q  1)) = 1.

4. The primes p and q, and the private exponent d shall be selected such that:

a.	2nBits/2 < d < LCM(p1, q1), and

b.	d = e1 mod (LCM(p1, q1)).

Note that these criteria are also specified in FIPS 186.

6.2.2 [bookmark: _Toc518378766]Formats

The RSA private key may be expressed in several formats. The basic format of the RSA private key consists of the modulus n and a private-key exponent d that depends on n and the public-key exponent e; this format is used to specify the RSA primitives and operations in Section 7. The other two formats may be used in implementations, but may require appropriate modifications for correct implementation. To facilitate implementation testing, the format for the private key shall be one of the following:

1. The basic format: (n, d).

2. The prime-factor format: (p, q, d).

3. The Chinese Remainder Theorem (CRT) format: (n, e, d, p, q, dP, dQ, qInv), where dP = d mod (p – 1), dQ = d mod (q – 1), and qInv = q–1 mod p. Note that Section 7.1.2 discusses the use of the private key expressed using the CRT format during the execution of the RSA decryption primitive.

Key-pair generators and key-pair validation methods are given for each of these formats in Sections 6.3 and 6.4, respectively.

6.3 [bookmark: _RSA_Key-Pair_Generators][bookmark: _RSA_Key-Pair_Generators_1][bookmark: _RSA_Key-Pair_Generators_2][bookmark: _RSA_Key-Pair_Generators_3][bookmark: _RSA_Key-Pair_Generators_4][bookmark: _RSA_Key-Pair_Generators_5][bookmark: _RSA_Key-Pair_Generators_6][bookmark: _RSA_Key-Pair_Generators_7][bookmark: _RSA_Key-Pair_Generators_8][bookmark: _RSA_Key-Pair_Generators_9][bookmark: _RSA_Key-Pair_Generators_10][bookmark: _RSA_Key-Pair_Generators_11][bookmark: _RSA_Key-Pair_Generators_12][bookmark: _RSA_Key-Pair_Generators_13][bookmark: _RSA_Key-Pair_Generators_14][bookmark: _RSA_Key-Pair_Generators_15][bookmark: _Toc518378767]RSA Key-Pair Generators

The key pairs employed by the key-establishment schemes specified in this Recommendation shall be generated using the techniques specified in Appendix B.3 of FIPS 186, employing the requisite methods for prime-number generation, primality testing, etc., that are specified in Appendix C of that document. Note that these generation methods ensure that the prime factors p and q have the same bit length and that their product, n (the RSA modulus), has a bit length that is exactly twice the length of its factors.

An approved RSA key-pair generator and approved random bit generator (RBG) shall be used to produce an RSA key pair.  Any modulus with an even bit length that provides at least 112 bits of security strength may be used. Commonly used modulus lengths and their associated security strengths are given in Table 2. For other modulus lengths, Appendix D provides a method for estimating the security strength that can be supported.

[bookmark: Table_2]Table 2: Security Strengths Supported by Commonly Used Modulus Lengths[footnoteRef:17] [17:  The 15,384-bit modulus length was not included because it is impractical to implement.] 


		Modulus Bit length (nBits)

		Estimated Maximum Security Strength



		2048

		112



		3072

		128



		4096

		152



		6144

		176



		8192

		200





Approved RBGs are discussed in Section 5.3. The approved RSA key-pair generators are provided in Sections 6.3.1 and 6.3.2, and are differentiated by the method for determining the public-key exponent e that is used as part of an RSA public key (i.e., (n, e)); Section 6.3.1 addresses the use of a fixed value for the exponent, whereas Section 6.3.2 uses a randomly generated value. 

For the following methods in Section 6.3 and the assurances in Section 6.4, let S(nBits) denote the estimated maximum security strength for a modulus of bit length nBits as determined by Table 2 or Appendix D.

6.3.1 [bookmark: _RSAKPG1_Family:_RSA][bookmark: _RSAKPG1_Family:_RSA_1][bookmark: _RSAKPG1_Family:_RSA_2][bookmark: _Toc518378768]RSAKPG1 Family: RSA Key-Pair Generation with a Fixed Public Exponent

[bookmark: _Ref8640487][bookmark: _Ref33702323]The RSAKPG1 family of key-pair generation methods consists of three RSA key-pair generators where the public exponent has a fixed value (see Section 6.2). 

Three representations are addressed:

1.	rsakpg1-basic generates the private key in the basic format (n, d);

2.	rsakpg1-prime-factor generates the private key in the prime-factor format (p, q, d); and

3.	rsakpg1-crt generates the private key in the Chinese Remainder Theorem format (n, e, d, p, q, dP, dQ, qInv).

An implementation may perform a key-pair validation before the key pair is output from the generator. The key-pair validation methods for this family are specified in Section 6.4.1.2.

6.3.1.1 [bookmark: _rsakpg1-basic][bookmark: _rsakpg1-basic_1][bookmark: _rsakpg1-basic_2][bookmark: _Ref51733514][bookmark: _Toc518378769]rsakpg1-basic

rsakpg1-basic is the generator in the RSAKPG1 family where the private key is in the basic format (n, d). 

Function call: rsakpg1-basic(s, nBits, e)

Input:

1.	s: the targeted security strength;

2.	nBits: the intended bit length of the RSA modulus; and

3.	e: a pre-determined public exponent  an odd integer, such that 65,537 ≤ e < 2256.

Process:

1.	Check the values:

a.	If s is not in the range [112, 256], output an indication that the targeted security strength is not acceptable, and exit without further processing.

b.	If s > S(nBits), output an indication that the modulus length is not adequate for the targeted security strength, and exit without further processing.

c.	If e is not an odd integer such that 65,537 ≤ e < 2256, output an indication that the exponent is out of range, and exit without further processing.

2.	Generate the prime factors p and q, as specified in FIPS 186. Note that the routines ensure that p – 1 and q – 1 are relatively prime to e. 

3.	Determine the private exponent d:

d = e–1 mod LCM(p – 1, q – 1) .

In the very rare event that d  2nBits/2, discard the results of all computations and repeat the process, starting at step 2.

4.	Determine the modulus n as n = p  q, the product of p and q. 

5.	Perform a pair-wise consistency test[footnoteRef:18] by verifying that m is the same as (me)d mod n for some integer m satisfying 1 < m < n  1. If an inconsistency is found, output an indication of a pair-wise consistency failure, and exit without further processing. [18:  Although the previous steps should have theoretically produced a valid key pair, this step is required to ensure that implementation errors do not result in an invalid key pair.] 


6.	Output (n, e) as the public key, and (n, d) as the private key.

Output:

1.	(n, e): the RSA public key, and

2.	(n, d): the RSA private key in the basic format.

Errors: Indications of the following:

1. The targeted security strength is not acceptable,

2. The intended modulus bit length is not adequate for the targeted security strength,

3. The fixed public exponent is out of range, or

4. Pair-wise consistency failure.

 Note that key-pair validation, as specified in Section 6.4.1.2.1, can be performed after step 5 and before step 6 of the process above. If an error is detected during the validation process, output an indication of a key-pair validation failure, and exit without further processing.

A routine that implements this generation function shall destroy any local copies of p, q, and d, as well as any other locally stored values used or produced during its execution. Their destruction shall occur prior to or during any exit from the routine (whether exiting early because of an error, or exiting normally with the output of an RSA key pair). Note that the requirement for destruction includes any locally stored portions of the output key pair.

6.3.1.2 [bookmark: _rsakpg1-prime-factor][bookmark: _Ref51735336][bookmark: _Toc518378770][bookmark: _Ref533396563]rsakpg1-prime-factor

rsakpg1-prime-factor is the generator in the RSAKPG1 family such that the private key is in the prime factor format (p, q, d).

Function call: rsakpg1-prime-factor(s, nBits, e)

The inputs, outputs and errors are the same as in rsakpg1-basic (see Section 6.3.1.1) except that the private key is in the prime-factor format: (p, q, d).

The steps are the same as in rsakpg1-basic except that processing Step 6 is replaced by the following:

6.	Output (n, e) as the public key, and (p, q, d) as the private key.

Note that key-pair validation, as specified in Section 6.4.1.2.2, can be performed after step 5 and before step 6. If an error is detected during the validation process, output an indication of a key-pair validation failure, and exit without further processing. 

A routine that implements this generation function shall destroy any local copies of p, q, and d, as well as any other locally stored values used or produced during its execution. Their destruction shall occur prior to or during any exit from the routine (whether exiting early, because of an error, or exiting normally, with the output of an RSA key pair). Note that the requirement for destruction includes any locally stored portions of the output key pair.

6.3.1.3 [bookmark: _rsakpg1-crt][bookmark: _Ref51735339][bookmark: _Toc518378771]rsakpg1-crt

rsakpg1-crt is the generator in the RSAKPG1 family such that the private key is in the Chinese Remainder Theorem format (n, e, d, p, q, dP, dQ, qInv).

Function call: rsakpg1-crt(s, nBits, e)

The inputs, outputs and errors are the same as in rsakpg1-basic (see Section 6.3.1.1) except that the private key is in the Chinese Remainder Theorem format: (n, e, d, p, q, dP, dQ, qInv).

The steps are the same as in rsakpg1-basic except that processing steps 5 and 6 are replaced by the following:

5. Determine the components dP, dQ and qInv:

a.	dP = d mod (p – 1).

b.	dQ = d mod (q – 1).

c.	qInv = q–1 mod p. 

6.	Perform a pair-wise consistency test[footnoteRef:19] by verifying that m = (me)d mod n for some integer m satisfying 1 < m < n  1. If an inconsistency is found, output an indication of a pair-wise consistency failure, and exit without further processing. [19:  Although the previous steps should have theoretically produced a valid key pair, this step is required to ensure that implementation errors do not result in an invalid key pair.] 


7.	Output (n, e) as the public key, and (n, e, d, p, q, dP, dQ, qInv) as the private key. 

Note that key-pair validation, as specified in Section 6.4.1.2.3, can be performed after step 6 and before step 7. If an error is detected during the validation process, output an indication of a key-pair validation failure, and exit without further processing. 

A routine that implements this generation function shall destroy any local copies of p, q, dP, dQ, qInv, and d, as well as any other locally stored values used or produced during its execution. Their destruction shall occur prior to or during any exit from the routine (whether exiting early because of an error or exiting normally with the output of an RSA key pair). Note that the requirement for destruction includes any locally stored portions of the output key pair.

6.3.2 [bookmark: _RSAKPG2_Family:_RSA][bookmark: _RSAKPG2_Family:_RSA_1][bookmark: _RSAKPG2_Family:_RSA_2][bookmark: _Ref44909640][bookmark: _Toc103497128][bookmark: _Toc121918029][bookmark: _Toc518378772]RSAKPG2 Family: RSA Key-Pair Generation with a Random Public Exponent

The RSAKPG2 family of key-pair generation methods consists of three RSA key-pair generators such that the public exponent e is a random value in the range 65,537 ≤ e < 2256.

Three representations are addressed:

1.	rsakpg2-basic generates the private key in the basic format (n, d);

2.	rsakpg2-prime-factor generates the private key in the prime factor format (p, q, d); and

3.	rsakpg2-crt generates the private key in the Chinese Remainder Theorem format (n, e, d, p, q, dP, dQ, qInv).

[bookmark: _Ref51735525]An implementation may perform a key-pair validation before outputting the key pair from the generation function. The key-pair validation methods for this family are specified in Section 6.4.1.3.

6.3.2.1 [bookmark: _rsakpg2-basic][bookmark: _rsakpg2-basic_1][bookmark: _rsakpg2-basic_2][bookmark: _Ref51735860][bookmark: _Toc518378773]rsakpg2-basic

rsakpg2-basic is the generator in the RSAKPG2 family such that the private key is in the basic format (n, d). 

Function call: rsakpg2-basic(s, nBits, eBits)

Input:

1. s: the targeted security strength;

2. nBits: the intended bit length of the RSA modulus; and

3. eBits: the intended bit length of the public exponent  an integer such that 17  eBits  256. Note that the public exponent shall be an odd integer such that 65,537 ≤ e < 2256.

Process:

1. Check the values:

a.	If s is not in the range [112, 256], output an indication that the targeted security strength is not acceptable, and exit without further processing.

b.	If s > S(nBits), output an indication that the modulus length is not adequate for the targeted security strength, and exit without further processing.

c.	If eBits is not an integer such that 17  eBits  256, output an indication that the exponent length is out of range, and exit without further processing.

2.	Generate an odd public exponent e in the range [2eBits – 1 + 1, 2eBits – 1] using an approved RBG (see Section 5.3).

3.	Generate the prime factors p and q as specified in FIPS 186. Note that the routines ensure that p – 1 and q – 1 are relatively prime to e.

4.	Determine the private exponent d:

		d = e–1 mod LCM(p – 1, q – 1).

In the event that no such d exists, or in the very rare event that d  2nBits/2, discard the results of all computations and repeat the process, starting at step 2.

5.	Determine the modulus n as n = p  q, the product of p and q. 

6.	Perform a pair-wise consistency test[footnoteRef:20] by verifying that m is the same as (me)d mod n for some integer m satisfying 1 < m < n  1. If an inconsistency is found, output an indication of a pair-wise consistency failure, and exit without further processing. [20:  Although the previous steps should have theoretically produced a valid key pair, this step is required to ensure that implementation errors do not result in an invalid key pair.] 


7.	Output (n, e) as the public key and (n, d) as the private key.

Output:

1. (n, e): the RSA public key; and

2. (n, d): the RSA private key in the basic format.

Errors: Indications of the following:

1. The targeted security strength is not acceptable,

2. The intended modulus bit length is not adequate for the targeted security strength,

3. The intended exponent bit length is out of range, or

4. Pair-wise consistency failure.

Note that key-pair validation, as specified in Section 6.4.1.3.1, can be performed after step 6 and before step 7 of the process above. If an error is detected during the validation process, output an indication of a key-pair validation failure, and exit without further processing.

A routine that implements this generation function shall destroy any local copies of p, q, and d, as well as any other locally stored values used or produced during its execution. Their destruction shall occur prior to or during any exit from the routine (whether exiting early, because of an error, or exiting normally, with the output of an RSA key pair). Note that the requirement for destruction includes any locally stored portions of the output key pair.

6.3.2.2 [bookmark: _rsakpg2-prime-factor][bookmark: _Ref51736072][bookmark: _Toc518378774]rsakpg2-prime-factor

rsakpg2-prime-factor is the generator in the RSAKPG2 family such that the private key is in the prime-factor format (p, q, d).

Function call: rsakpg2-prime-factor(s, nBits, eBits)

The inputs, outputs and errors are the same as in rsakpg2-basic (see Section 6.3.2.1) except that the private key is in the prime-factor format: (p, q, d).

The steps are the same as in rsakpg2-basic except that processing Step 7 is replaced by the following:

7.	Output (n, e) as the public key, and (p, q, d) as the private key.

Note that key-pair validation as specified in Section 6.4.1.3.2 can be performed after step 6 and before step 7. If an error is detected during the validation process, output an indication of a key-pair validation failure, and exit without further processing.

A routine that implements this generation function shall destroy any local copies of p, q, and d, as well as any other locally stored values used or produced during its execution. Their destruction shall occur prior to or during any exit from the routine (whether exiting early because of an error or exiting normally with the output of an RSA key pair). Note that the requirement for destruction includes any locally stored portions of the output key pair.

6.3.2.3 [bookmark: _Ref51736078][bookmark: _Toc518378775]rsakpg2-crt

rsakpg2-crt is the generator in the RSAKPG2 family such that the private key is in the Chinese Remainder Theorem format (n, e, d, p, q, dP, dQ, qInv).

Function call: rsakpg2-crt(s, nBits, eBits)

The inputs, outputs and errors are the same as in rsakpg2-basic (see Section 6.3.2.1) except that the private key is in the Chinese Remainder Theorem format: (n, e, d, p, q, dP, dQ, qInv).

The steps are the same as in rsakpg2-basic except that processing Steps 6 and 7 are replaced by the following:

6.	Determine the components dP, dQ and qInv:

a.	dP = d mod (p – 1).

b.	dQ = d mod (q – 1).

c.	qInv = q–1 mod p. 

7.	Perform a pair-wise consistency test[footnoteRef:21] by verifying that m is the same as (me)d mod n for some integer m satisfying 1 < m < n  1. If an inconsistency is found, output an indication of a pair-wise consistency failure, and exit without further processing. [21:  Although the previous steps should have theoretically produced a valid key pair, this step is required to ensure that implementation errors do not result in an invalid key pair.] 


8.	Output (n, e) as the public key, and (n, e, d, p, q, dP, dQ, qInv) as the private key.

Note that key-pair validation as specified in Section 6.4.1.3.3 can be performed after step 7 and before step 8. If an error is detected during the validation process, output an indication of a key-pair validation failure, and exit without further processing. 

A routine that implements this generation function shall destroy any local copies of p, q, dP, dQ, qInv, and d, as well as any other locally stored values used or produced during its execution. Their destruction shall occur prior to or during any exit from the routine (whether exiting early because of an error, or exiting normally with the output of an RSA key pair). Note that the requirement for destruction includes any locally stored portions of the output key pair.

6.4 [bookmark: _Required_Assurances][bookmark: _Required_Assurances_1][bookmark: _Required_Assurances_2][bookmark: _Required_Assurances_3][bookmark: _Toc518378776]Required Assurances 

[bookmark: _Toc121918031]Secure key establishment depends upon the use of valid key-establishment keys. The security of key-establishment schemes also depends on limiting knowledge of the private keys to those who have been authorized to use them (i.e., their respective owners) and to the trusted third party that may have generated them.[footnoteRef:22] In addition to preventing unauthorized entities from gaining access to private keys, it is also important that owners have possession of the correct private keys. [22:  The trusted third party is trusted not to use or reveal the distributed private keys.] 


To explain the assurance requirements, some terminology needs to be defined. The owner of a key pair is the entity that is authorized to use the private key that corresponds to the owner’s public key, whether or not the owner generated the key pair. The recipient of a public key is the entity that is participating in a key-establishment transaction with the owner and obtains the owner’s public key before or during the current transaction.

Prior to or during a key-establishment transaction, the participants in the transaction (i.e., parties U and V) shall obtain the appropriate assurances about the key pairs used during that transaction. The types of assurance that may be sought by one or both of the parties (U and/or V) concerning the components of a key pair (i.e., the private key and public key) are discussed in Sections 6.4.1 and 6.4.2.

6.4.1 [bookmark: _Assurances_Required_by][bookmark: _Assurances_Required_by_2][bookmark: _Assurances_Required_by_5][bookmark: _Toc518378777]Assurances Required by the Key-Pair Owner

Prior to the use of a key pair in a key-establishment transaction, the key-pair owner shall have assurance of the validity of the key pair. Assurance of key-pair validity provides assurance that a key pair was generated in accordance with the requirements in Sections 6.2 and 6.3. Key-pair validity implies public-key validity and assurance of possession of the correct private key. Assurance of key-pair validity can only be provided by an entity that has the private key (e.g., the owner). Depending on an organization’s requirements, a renewal of key-pair validity may be prudent. The method of obtaining initial and renewed assurance of key-pair validity is addressed in Section 6.4.1.1.

Assurance of key-pair validity can be renewed at any time (see Section 6.4.1.1).  As time passes, an owner may lose possession of the correct value of the private-key component of their key pair, e.g., due to an error; for this reason, renewed (i.e., current) assurance of possession of a private key can be of value for some applications. See Section 6.4.1.5 for techniques that the owner can use to obtain renewed assurance of private-key possession separately from assurance of key-pair validity.

6.4.1.1 [bookmark: _Obtaining_Owner_Assurance][bookmark: _Obtaining_Owner_Assurance_1][bookmark: _Obtaining_Owner_Assurance_2][bookmark: _Obtaining_Owner_Assurance_3][bookmark: _Obtaining_Owner_Assurance_4][bookmark: _Toc518378778]Obtaining Owner Assurance of Key-Pair Validity

Assurance of key-pair validity shall be obtained  by its owner prior to the first use of the key pair in a key-establishment transaction (see Section 4.1) by successfully completing the following three-step process:

1.	Key-pair generation: Assurance that the key pair has been correctly formed, in a manner consistent with the criteria of Section 6.2, is obtained using one of the following two methods:

a.	Owner generation – The owner obtains the desired assurance if it generates the public/private key pair as specified in Section 6.3.

b.	TTP generation – The owner obtains the desired assurance when a trusted third party (TTP) who is trusted by the owner generates the public/private key pair as specified in Section 6.3 and provides it to the owner. 

2.	Key-pair consistencey: The owner shall perform a pair-wise consistency test by verifying that m = (me)d mod n for some integer m satisfying 1 < m < n  1. Note that if the owner generated the key pair (see method 1.a above), an initial pair-wise consistency test was performed during key-pair generation (see Section 6.3). If a TTP generated the key pair and provided it to the owner (see method 1.b above), the owner shall perform the consistency check separately, prior to the first use of the key pair in a key-establishment transaction (see Section 4.1). 

3.	Key-pair validation: A key pair shall be validated using one of the following methods:

a.	The owner performs key-pair validation: The owner either

1) Performs a successful key-pair validation while generating the key pair (see Section 6.3), or 

2)  Performs a successful key-pair validation separately from key-pair generation (regardless of whether the owner or a TTP generated the key pair) (see Section 6.4.1.2, 6.4.1.3 or 6.4.1.4). 

b.	The TTP performs key-pair validation: A trusted third party (trusted by the owner) either

1)	 Performs a successful key-pair validation while generating the key pair (see Section 6.3), or 

2) 	Performs a successful key-pair validation separately from key-pair generation (as specified in Sections 6.4.1.2,  6.4.1.3 or 6.4.1.4), and indicates the success to the owner. Note that if the key-pair validation is performed separately from the key-pair generation, and the TTP does not have the key pair, then the party that generated the key pair or owns the key pair must provide it to the TTP.

Note that the use of a TTP to generate a key pair or to perform key-pair validation for an owner means that the TTP must be trusted (by both the owner and any recipient) to not use the owner’s private key to masquerade as the owner or otherwise compromise the key-establishment transaction.

The key-pair owner can revalidate the key pair at any time using the following steps: 

1.	Perform a pair-wise consistency test by verifying that m = (me)d mod n for some integer m satisfying 1 < m < n  1, and

2,	Perform a successful key-pair validation:

a.	If the intended value or bit length of the public exponent is known, then perform a successful key-pair validation as specified in Section 6.4.1.2 or 6.4.1.3.

b.	If the intended value or bit length of the public exponent is NOT known, then perform a successful key-pair validation as specified in Section 6.4.1.4.

6.4.1.2 [bookmark: _RSAKPV1_Family:_RSA][bookmark: _RSAKPV1_Family:_RSA_1][bookmark: _RSAKPV1_Family:_RSA_2][bookmark: _RSAKPV1_Family:_RSA_3][bookmark: _Ref51734301][bookmark: _Toc103497130][bookmark: _Toc121918032][bookmark: _Toc518378779]RSAKPV1 Family: RSA Key-Pair Validation with a Fixed Public Exponent

The RSAKPV1 family of key-pair validation methods corresponds to the RSAKPG1 family of key-pair generation methods (see Section 6.3.1). RSAKPV1 can be used when the public key, the intended fixed value of the public exponent, the intended bit length of the modulus, the targeted security strength, and the value of the private key are all known by the entity performing the validation.

6.4.1.2.1 [bookmark: _rsakpv1-basic][bookmark: _rsakpv1-basic_1][bookmark: _rsakpv1-basic_2][bookmark: _rsakpv1-basic_3][bookmark: _rsakpv1-basic_4][bookmark: _rsakpv1-basic_5][bookmark: _rsakpv1-basic_6][bookmark: _rsakpv1-basic_7][bookmark: _rsakpv1-basic_8][bookmark: _Toc169002234][bookmark: _Toc518378780]rsakpv1-basic

rsakpv1-basic is the key-pair validation method corresponding to rsakpg1-basic (see Section 6.3.1.1).

Function call: rsakpv1-basic (s, nBits, efixed, (npub, epub), (npriv, d))

Input:

1.	s:  the targeted security strength;

2.	nBits: the intended bit length of the RSA modulus; 

3.	efixed: the intended fixed public exponent  an odd integer such that 65,537 ≤ efixed < 2256;

4.	(npub, epub): the RSA public key to be validated; and

5.	(npriv, d): the RSA private key to be validated in the basic format.

Process:

1.	Check the sizes of s and efixed:

a.	If s is not in the interval [112, 256], output an indication that the security strength is not acceptable, and exit without further processing.

b.	If s > S(nBits), output an indication that the modulus length is not adequate for the intended security strength, and exit without further processing.

c.	If efixed is not an odd integer such that 65,537 ≤ efixed < 2256, output an indication that the fixed public exponent is out of range, and exit without further processing.

2.	Compare the public exponents:

If epub  efixed, output an indication of an invalid key pair, and exit without further processing.

3.	Check the modulus:

a.	If npub  npriv, output an indication of an invalid key pair, and exit without further processing.

b.	If len(npub)  nBits, output an indication of an invalid key pair, and exit without further processing.

c.	If nBits is not a positive even integer, output an indication of an invalid key pair, and exit without further processing.

4.	Prime-factor recovery:

a.	Recover the prime factors p and q from the modulus npub, the public exponent epub and the private exponent d (using one of the methods in Appendix C):

(p, q) = RecoverPrimeFactors (npub, epub, d).

b.	If RecoverPrimeFactors outputs an indication that the prime factors were not found, output an indication that the request is invalid, and exit without further processing.

c.	If npub  p  q, then output an indication that the request is invalid, and exit without further processing.

5.	Check the prime factors:

a.	If (p < ()(2nBits/21)) or (p > 2nBits/2 – 1), output an indication of an invalid key pair, and exit without further processing.

b.	If (q < ()(2nBits/21)) or (q > 2nBits/2  – 1), output an indication of an invalid key pair, and exit without further processing.

c.	If |p – q|  2(nBits/2100), output an indication of an invalid key pair, and exit without further processing.

d.	If GCD (p – 1, epub)  1, output an indication of an invalid key pair, and exit without further processing.

e.	If GCD (q – 1, epub)  1, output an indication of an invalid key pair, and exit without further processing.

f.	Apply an approved primality test* to the factor p (see FIPS 186, Appendices C.3 and E). If the primality test indicates that p is not prime, output an indication of an invalid key pair, and exit without further processing.

g.	Apply an approved primality test* to the factor q (see FIPS 186, Appendices C.3 and E). If the primality test indicates that q is not prime, output an indication of an invalid key pair, and exit without further processing.

*	Relying parties (and/or agents trusted to act on their behalf) shall determine which of the approved primality tests in FIPS 186 meet their security requirements. The probability that p or q may be incorrectly classified as prime by the test used in step 5 shall be less than or equal to 2–S(nBits).

6.	Check that the private exponent d satisfies

a.	2nBits/2 < d < LCM (p – 1, q – 1).

and

b.	1 = (d  epub) mod LCM (p – 1, q – 1).

If either check fails, output an indication of an invalid key pair, and exit without further processing.

7.	Output an indication that the key pair is valid.

Output:

1.	status: An indication that the key pair is valid or an indication of an error.

Errors: Indications of the following:

1. The targeted security strength is not acceptable,

2. The modulus length is not adequate for the targeted security strength,

3. The fixed public exponent is out of range, or

4. The key pair is invalid.

A routine that implements this validation function shall destroy any local copies of p, q and d, as well as any other locally stored values used or produced during its execution. Their destruction shall occur prior to or during any exit from the routine (whether exiting early because of an error, or exiting normally).

6.4.1.2.2 [bookmark: _rsakpv1-prime-factor][bookmark: _Toc169002235][bookmark: _Toc518378781]rsakpv1-prime-factor

rsakpv1-prime-factor is the key-pair validation method corresponding to rsakpg1-prime-factor (see Section 6.3.1.2).

Function call: rsakpv1-prime-factor (s, nBits, efixed, (npub, epub), (p, q, d))

The inputs, outputs and errors are the same as in rsakpv1-basic (see Section 6.4.1.2.1) except that the private key is in the prime-factor format: (p, q, d).

The steps are the same as in rsakpv1-basic except that in processing:

A.	Step 3 is replaced by the following:

3.	Check the modulus:

a.	If npub  p  q, output an indication of an invalid key pair, and exit without further processing.

b.	If len(npub)  nBits, output an indication of an invalid key pair, and exit without further processing.

c.	If nBits is not a positive even integer, output an indication of an invalid key pair, and exit without further processing.

B.	Step 4 (prime-factor recovery) is omitted (i.e., not used).

A routine that implements this validation function shall destroy any local copies of p, q, and d, as well as any other locally stored values used or produced during its execution. Their destruction shall occur prior to or during any exit from the routine (whether exiting early because of an error, or exiting normally).

6.4.1.2.3 [bookmark: _rsakpv1-crt][bookmark: _Toc169002236][bookmark: _Toc518378782]rsakpv1-crt

rsakpv1-crt is the key-pair validation method corresponding to rsakpg1-crt.

Function call: rsakpv1-crt (s, nBits, efixed, (npub, epub), (npriv, epriv, d, p, q, dP, dQ, qInv))

The inputs, outputs and errors are the same as in rsakpv1-basic (see Section 6.4.1.2.1) except that the private key is in the Chinese Remainder Theorem format: (npriv, epriv, d, p, q, dP, dQ, qInv).

The steps are the same as in rsakpv1-basic except that in processing:

A. 	Step 2 is replaced by the following:

2.	Compare the public exponents:

If (epub  efixed) or (epub  epriv), output an indication of an invalid key pair, and exit without further processing.

B.	Step 3 is replaced by 

3.	Check the modulus:

a.	If npub  p  q, or npub  npriv, output an indication of an invalid key pair, and exit without further processing.

b.	If len(npub)  nBits, output an indication of an invalid key pair, and exit without further processing.

c.	If nBits is not a positive even integer, output an indication of an invalid key pair, and exit without further processing.

C.	Step 4 (prime-factor recovery) is omitted (i.e., not used), 

D.	Step 7 is replaced by the following two steps:

7.	Check the CRT components: Check that the components dP, dQ and qInv satisfy

a. 1 < dP <  (p – 1).

b. 1 < dQ < (q – 1).

c. 1 < qInv <  p. 

d. 1 = (dP  efixed) mod (p – 1).

e. 1 = (dQ  efixed) mod (q – 1).

f. 1 = (qInv  q) mod p.

If any of the criteria in Section 6.2.1 are not met, output an indication of an invalid key pair, and exit without further processing.

8.	Output an indication that the key pair is valid.

A routine that implements this validation function shall destroy any local copies of p, q, d, dP, dQ, and qInv, as well as any other locally stored values used or produced during its execution. Their destruction shall occur prior to or during any exit from the routine (whether exiting early because of an error, or exiting normally).

6.4.1.3 [bookmark: _RSAKPV2_Family:_RSA][bookmark: _RSAKPV2_Family:_RSA_1][bookmark: _RSAKPV2_Family:_RSA_2][bookmark: _RSAKPV2_Family:_RSA_3][bookmark: _Ref51735609][bookmark: _Ref51756255][bookmark: _Toc103497131][bookmark: _Toc121918033][bookmark: _Toc518378783]RSAKPV2 Family: RSA Key-Pair Validation (Random Public Exponent)

The RSAKPV2 family of key-pair validation methods corresponds to the RSAKPG2 family of key-pair generation methods (see Section 6.3.2). RSAKPV2 can be used when the public key, the intended bit length of the public exponent, the intended bit length of the modulus, the targeted security strength, and the value of the private key are all known by the entity performing the validation.

6.4.1.3.1 [bookmark: _rsakpv2-basic][bookmark: _Toc169002238][bookmark: _Toc518378784]rsakpv2-basic

rsakpv2-basic is the validation method corresponding to rsakpg2-basic (see Section 6.3.2.1).

Function call: rsapkv2-basic (s, nBits, eBits, (npub, epub), (npriv, d))

The method is the same as the rsapkv1-basic method in Section 6.4.1.2.1 except that:

A.	The efixed input parameter is replaced by eBits, which is the intended bit length of the public exponent  an integer such that 17 ≤ eBits ≤ 256.

B.	Step 1c is replaced by:

c.	If (eBits < 17) or (eBits > 256), output an indication that the exponent is out of range, and exit without further processing.

C.	Step 2 is replaced by:

2.	Check the public exponent.

If the public exponent epub is not odd, or if len(epub)  eBits, output an indication of an invalid key pair, and exit without further processing.

A routine that implements this validation function shall destroy any local copies of p, q, and d, as well as any other locally stored values used or produced during its execution. Their destruction shall occur prior to or during any exit from the routine (whether exiting early because of an error, or exiting normally). 

6.4.1.3.2 [bookmark: _rsakpv2-prime-factor][bookmark: _Toc169002239][bookmark: _Toc518378785]rsakpv2-prime-factor

rsakpv2-prime-factor is the key-pair validation method corresponding to the rsakpg2-prime-factor key-pair generation method (see Section 6.3.2.2).

Function call: rsakpv2-prime-factor (s, nBits, eBits, (npub, epub), (p, q, d))

The inputs, outputs and errors are the same as in rsakpv1-basic (see Section 6.4.1.2.1), except that the private key is in the prime factor format: (p, q, d).

The steps are the same as in rsakpv1-basic (see Section 6.4.1.2.1) except that:

A.	The efixed input parameter is replaced by eBits, which is the intended bit length of the public exponent, an integer such that 17 ≤ eBits ≤ 256.

B.	Step 1c is replaced by:

c.	If (eBits < 17) or (eBits > 256), output an indication that the exponent is out of range, and exit without further processing.

C.	Step 2 is replaced by:

2.	Check the public exponent.

If the public exponent epub is not odd, or if len(epub)  eBits, output an indication of an invalid key pair, and exit without further processing.

D.	Step 3 is replaced by the following:

3.	Check the modulus:

a.	If npub  p  q, output an indication of an invalid key pair, and exit without further processing.

b.	If len(npub)  nBits, output an indication of an invalid key pair, and exit without further processing.

c.	If nBits is not a positive even integer, output an indication of an invalid key pair, and exit without further processing.

E.	Step 4 (prime-factor recovery) is omitted (i.e., not used).

A routine that implements this validation function shall destroy any local copies of p, q, and d, as well as any other locally stored values used or produced during its execution. Their destruction shall occur prior to or during any exit from the routine (whether exiting early because of an error or exiting normally).

6.4.1.3.3 [bookmark: _rsakpv2-crt][bookmark: _Toc169002240][bookmark: _Toc518378786]rsakpv2-crt

rsakpv2-crt is the key-pair validation method corresponding to the rsakpg2-crt key-pair generation method (see Section 6.3.1.3).

Function call: rsakpv2-crt (s, nBits, eBits, (npub, epub), (npriv, epriv, d, p, q, dP, dQ, qInv))

The inputs, outputs and errors are the same as in rsakpv1-basic (see Section 6.4.1.2.1) except that the private key is in the Chinese Remainder Theorem format: (npriv, epriv, d, p, q, dP, dQ, qInv).

The steps are the same as in rsakpv1-basic (see Section 6.4.1.2.1) except that:

A.	The efixed input parameter is replaced by eBits, which is the intended bit length of the public exponent, an integer such that 17 ≤ eBits ≤ 256.

B.	Step 1c is replaced by:

c.	If (eBits < 17) or (eBits > 256), output an indication that the exponent is out of range, and exit without further processing.

C.	Step 2 is replaced by the following:

2.	Compare the public exponents:

If (epub  epriv) or (epub is not odd) or (len( epub)  eBits), output an indication of an invalid key pair, and exit without further processing.

D.	Step 3 is replaced by 

3.	Check the modulus:

a.	If (npub  p  q) or (npub  npriv) output an indication of an invalid key pair, and exit without further processing.

b.	If len(npub)  nBits, output an indication of an invalid key pair, and exit without further processing.

c.	If nBits is not a positive even integer, output an indication of an invalid key pair, and exit without further processing.

E.	Step 4 (prime-factor recovery) is omitted (i.e., not used), 

F.	Step 7 is replaced by the following two steps:

7.	Check the CRT components: Check that the components dP, dQ and qInv satisfy

a. 1 < dP <  (p – 1).

b. 1 < dQ < (q – 1).

c. 1 < qInv <  p. 

d. 1 = (dP  epub) mod (p – 1). 

e. 1 = (dQ  epub) mod (q – 1).  

f. 1 = (qInv  q) mod p.

If any of the criteria in Section 6.2.1 are not met, output an indication of an invalid key pair, and exit without further processing.

8.  Output an indication that the key pair is valid.

A routine that implements this validation function shall destroy any local copies of p, q, d, dP, dQ, and qInv, as well as any other locally stored values used or produced during its execution. Their destruction shall occur prior to or during any exit from the routine (whether exiting early because of an error, or exiting normally).

6.4.1.4 [bookmark: _RSA_Key-Pair_Validation][bookmark: _RSA_Key-Pair_Validation_1][bookmark: _Toc518378787]RSA Key-Pair Validation (Exponent-Creation Method Unknown)

Public-key validation may be performed when the intended fixed value or intended bit length of the public exponent is unknown by the entity performing the validation (i.e., the entity is unaware of whether the key pair was generated as specified in Section 6.3.1 or Section 6.3.2). The following methods can be used as long as the entity performing the validation (i.e., the key-pair owner or a TTP trusted by the owner) knows the intended bit length of the modulus and the targeted security strength, and has possession of some representation of the key pair to be validated (including the private key in either the basic, prime factor or crt format).

6.4.1.4.1 [bookmark: _Toc518378788]basic-pkv

In this format, the private key is represented as (n, d).

Function call: basic_pkv (s, nBits, (npub, epub), (npriv, d))

The method is the same as the rsapkv1-basic method in Section 6.4.1.2.1 except that:

A.	A value for efixed is not available as an input parameter. 

B.	Step 1.c is replaced by: 

If epub is not an odd integer such that 65,537 ≤ epub < 2256, output an indication that the exponent is out of range, and exit without further processing.

C.	Step 2 is omitted (i.e., not used).

A routine that implements this validation function shall destroy any local copies of p, q, and d, as well as any other locally stored values used or produced during its execution. Their destruction shall occur prior to or during any exit from the routine (whether exiting early because of an error or exiting normally).

6.4.1.4.2 [bookmark: _Toc518378789]prime-factor-pkv

In this format, the private key is represented as (p, q, d).

Function call: prime-factor_pkv (s, nBits, (npub, epub), (p, q, d))

The inputs, outputs and errors are the same as in rsakpv1-basic (see Section 6.4.1.2.1) except that the private key is in the prime factor format: (p, q, d).

The steps are the same as in rsakpv1-basic (see Section 6.4.1.2.1) except that:

A.	A value for efixed is not available as an input parameter.

B.	Step 1.c is replaced by: 

If epub is not an odd integer such that 65,537 ≤ epub < 2256, output an indication that the exponent is out of range, and exit without further processing.

C.	Step 2 is omitted (i.e., not used).

D.	Step 3 is replaced by the following:

3.	Check the modulus:

a.	If npub  p  q, output an indication of an invalid key pair, and exit without further processing.

b.	If len(npub)  nBits, output an indication of an invalid key pair, and exit without further processing.

c.	If nBits is not a positive even integer, output an indication of an invalid key pair, and exit without further processing.

E.	Step 4 (prime-factor recovery) is omitted (i.e., not used).

A routine that implements this validation function shall destroy any local copies of p, q, and d, as well as any other locally stored values used or produced during its execution. Their destruction shall occur prior to or during any exit from the routine (whether exiting early because of an error, or exiting normally).

6.4.1.4.3 [bookmark: _Toc518378790]crt_pkv

In this format, the private key is represented as (n, e, d, p, q, dP. dQ, qInv).

Function call: crt_pkv(s, nBits, (npub, epub), (npriv, epriv, d, p, q, dP, dQ, qInv))

The inputs, outputs and errors are the same as in rsakpv1-basic (see Section 6.4.1.2.1) except that the private key is in the Chinese Remainder Theorem (CRT) format: (npriv, epriv, d, p, q, dP, dQ, qInv).

The steps are the same as in rsakpv1-basic (see Section 6.4.1.2.1) except that:

A.	A value for efixed is not available as an input parameter.

B.	Step 1c is replaced by:

If epub is not an odd integer such that 65,537 ≤ epub < 2256, output an indication that the exponent is out of range, and exit without further processing.

C.	Step 2 is omitted (i.e., not used).

D.	Step 3 is replaced by 

3.	Check the modulus:

a.	If (npub  p  q) or (npub  npriv), output an indication of an invalid key pair, and exit without further processing.

b.	If len(npub)  nBits, output an indication of an invalid key pair, and exit without further processing.

 c.	If nBits is not a positive even integer, output an indication of an invalid key pair, and exit without further processing.

E.	Step 4 (prime-factor recovery) is omitted (i.e., not used), 

F.	Step 7 is replaced by the following two steps:

7.	Check the CRT components: Check that the components dP, dQ and qInv satisfy

a. 1 < dP <  (p – 1).

b. 1 < dQ < (q – 1).

c. 1 < qInv <  p. 

d. 1 = (dP  epub) mod (p – 1). 

e. 1 = (dQ  epub) mod (q – 1).  

f. 1 = (qInv  q) mod p.

If any of the criteria in Section 6.2.1 are not met, output an indication of an invalid key pair, and exit without further processing.

8.	Output an indication that the key pair is valid.

A routine that implements this validation function shall destroy any local copies of p, q, dP, dQ, and qInv, as well as any other locally stored values used or produced during its execution. Their destruction shall occur prior to or during any exit from the routine (whether exiting early because of an error or exiting normally).

6.4.1.5 [bookmark: _Owner_Assurance_of][bookmark: _Owner_Assurance_of_1][bookmark: _Owner_Assurance_of_2][bookmark: _Owner_Assurance_of_3][bookmark: _Toc518378791]Owner Assurance of Private-Key Possession

An owner’s initial assurance of possession of his private key is obtained when assurance of key-pair validity is obtained (see Section 6.4.1.1); assurance of key-pair validity is required prior to the owner’s use of a key pair for key establishment. As time passes, an owner could lose possession of the private key of a key pair. For this reason, renewing the assurance of possession may be appropriate for some applications (i.e., assurance of possession can be refreshed). A discussion of the effect of time on the assurance of private-key possession is provided in SP 800-89.

Renewed assurance that the owner continues to possess the correct associated private key shall be obtained in one or more of the following ways:

1. The key-pair owner renews assurance of key-pair validity – The owner obtains assurance of renewed key-pair validity (see Section 6.4.1.1), thereby also obtaining renewed assurance of private key possession.

2. The key-pair owner receives renewed assurance via key confirmation – The owner employs the key pair to successfully engage a trusted second party in a key-agreement transaction using a scheme from the KAS2 family that incorporates key confirmation. The key confirmation shall be performed in order to obtain assurance that the private key(s) function correctly.  

-	The KAS2-Party_V-confirmation scheme in Section 8.3.3.2 can be used to provide assurance to a key-pair owner, acting as party U, that both parties are in possession of the correct private key; i.e., when the key confirmation is successful, party U obtains assurance that party V possesses the private key corresponding to PubKeyV, and that party U possesses the private key corresponding to PubKeyU, where PubKeyV and PubKeyU are the public keys associated with parties V and U, respectively, that were used during that KAS2-Party_V-confirmation transaction.   

-	The KAS2-Party_U-confirmation scheme in Section 8.3.3.3 can be used to provide assurance to a key-pair owner, acting as party V, that both parties are in possession of the correct private key; i.e., when the key confirmation is successful, party V obtains assurance that party U possesses the private key corresponding to PubKeyU and that party V possesses the private key corresponding to PubKeyV, where PubKeyU and PubKeyV are the public keys associated with parties U and V, respectively, that were used during that KAS2-Party_U-confirmation transaction.

-	The KAS2-bilateral-confirmation scheme in Section 8.3.3.4 can be used to provide assurance to a key-pair owner acting as either party U or party V that both parties are in possession of the correct private key; i.e., when the bilateral key-confirmation is successful, each party obtains assurance that party U possesses the private key corresponding to PubKeyU, and that party V possesses the private key corresponding to PubKeyV, where PubKeyU and PubKeyV are the public keys associated with parties U and V, respectively, that were used during that KAS2-bilateral-confirmation transaction.”

3. The owner receives assurance via an encrypted certificate - The key-pair owner uses the private key while engaging in a key-establishment transaction with a Certificate Authority (trusted by the owner) using a scheme in this Recommendation after providing the CA with the corresponding public key. As part of this transaction, the CA generates a (new) certificate containing the owner’s public key and encrypts that certificate using (some portion of) the symmetric keying material that has been established. Only the encrypted form of the certificate is provided to the owner. By successfully decrypting the certificate and verifying the CA’s signature, the owner obtains assurance of possession of the correct private key (at the time of the key-establishment transaction).

The key-pair owner (or agents trusted to act on the owner’s behalf) should determine that the method used for obtaining renewed assurance of the owner’s possession of the correct private key is sufficient and appropriate to meet the security requirements of the owner’s intended application(s).

6.4.2 [bookmark: _Assurances_Required_by_1][bookmark: _Assurances_Required_by_3][bookmark: _Assurances_Required_by_4][bookmark: _Assurances_Required_by_6][bookmark: _Assurances_Required_by_7][bookmark: _Assurances_Required_by_8][bookmark: _Assurances_Required_by_9][bookmark: _Toc518378792]Assurances Required by a Public-Key Recipient

In this Recommendation, unless otherwise indicated, a recipient of the public key of another party is assumed to be an entity that does not have (and is not authorized to have) access to the corresponding private key. The recipient of the (purported) public key-establishment key of another party shall have:

1.	Assurance of the arithmetic validity of the other party’s public key before using it in a key-establishment transaction with its claimed owner, and (if used)

2.	Assurance that the claimed public-key owner (i.e., the other party) actually possesses the private key corresponding to that public key.

6.4.2.1 [bookmark: _Obtaining_Assurance_of][bookmark: _Obtaining_Assurance_of_1][bookmark: _Toc518378793]Obtaining Assurance of Public-Key Validity for a Received Public Key

The recipient shall obtain assurance of public-key validity using one or more of the following methods:

1.	Recipient Partial Public-Key Validation  The recipient performs a successful partial public-key validation (see Section 6.4.2.2).

2.	TTP Partial Public-Key Validation – The recipient receives assurance that a trusted third party (trusted by the recipient) has performed a successful partial public-key validation (see Section 6.4.2.2).

3.	TTP Key-Pair Validation – The recipient receives assurance that a trusted third party (trusted by the recipient and the owner) has performed key-pair validation in accordance with Section 6.4.1.1 (step 3.b).

Note that the use of a TTP to perform key-pair validation (method 3) implies that both the owner and any recipient of the public key trust that the TTP will not use the owner’s private key to masquerade as the owner or otherwise compromise their key-establishment transactions.

6.4.2.2 [bookmark: _Partial_Public-Key_Validation][bookmark: _Partial_Public-Key_Validation_1][bookmark: _Toc518378794]Partial Public-Key Validation for RSA

Partial public-key validation for RSA consists of conducting plausibility tests. These tests determine whether the public modulus and public exponent are plausible, not necessarily whether they are completely valid, i.e., they may not conform to all RSA key-generation requirements as specified in this Recommendation. Plausibility tests can detect unintentional errors with a reasonable probability. Note that full RSA public-key validation is not specified in this Recommendation, as it is an area of ongoing research. Therefore, if an application requires assurance of full public-key validation, then another approved key-establishment method shall be used (e.g., as specified in SP 800-56A).

Plausibility tests shall include the tests specified in Section 5.3.3 of  SP 800-89, with the caveat that the bit length of the modulus shall be a length that is approved in this Recommendation.

6.4.2.3 [bookmark: _Recipient__Assurances][bookmark: _Recipient__Assurances_1][bookmark: _Recipient__Assurances_2][bookmark: _Recipient__Assurances_3][bookmark: _Recipient__Assurances_4][bookmark: _Toc518378795]Recipient  Assurances of an Owner’s Possession of a Private Key 

When two parties engage in a key-establishment transaction, there is (at least) an implicit claim of ownership made whenever a public key is provided on behalf of a particular party. That party is considered to be a claimed owner of the corresponding key pair – as opposed to being a true owner – until adequate assurance can be provided that the party is actually the one authorized to use the private key. The claimed owner can provide such assurance by demonstrating its knowledge of that private key.

The recipient of another party’s public key shall obtain an initial assurance that the other party (i.e., the claimed owner of the public key) actually possesses the associated private key, either prior to or concurrently with performing a key-establishment transaction with that other party. Obtaining this assurance is addressed in Sections 6.4.2.3.1 and 6.4.2.3.2.  As time passes, renewing the assurance of possession may be appropriate for some applications; assurance of possession can be renewed as specified in Section 6.4.2.3.2. A discussion of the effect of time on the assurance of private-key possession is provided in SP 800-89.

As part of the proper implementation of this Recommendation, system users and/or agents trusted to act on their behalf should determine which of the methods for obtaining assurance of possession meet their security requirements. The application tasked with performing key establishment on behalf of a party should determine whether or not to proceed with a key-establishment transaction, based upon the perceived adequacy of the method(s) used. Such knowledge may be explicitly provided to the application in some manner, or may be implicitly provided by the operation of the application itself.

If a binding authority is the public-key recipient: At the time of binding an owner’s identifier to his public key, the binding authority (i.e., a trusted third party, such as a CA) shall obtain assurance that the owner is in possession of the correct private key. This assurance shall either be obtained using one of the methods specified in Section 6.4.2.3.2 (e.g., with the binding authority acting as the public-key recipient) or by using an approved alternative (see SP 800-57, Part 1, Sections 5.2 and 8.1.5.1.1.2). 

Recipients not acting in the role of a binding authority: The recipients shall obtain this assurance either through a trusted third party (see Section 6.4.2.3.1) or directly from the owner (i.e., the other party) (see Section 6.4.2.3.2) before using the derived keying material for purposes beyond those required during the key-establishment transaction itself. If the recipient chooses to obtain this assurance directly from the other party (i.e., the claimed owner of that public key), then to comply with this Recommendation, the recipient shall use one of the methods specified in Section 6.4.2.3.2.

Note that the requirement that assurance of possession be obtained before using the established keying material for purposes beyond those of the key-establishment transaction itself does not prohibit the parties to a key-establishment transaction from using a portion of the derived or transported keying material during the key-establishment transaction for purposes required by that key-establishment scheme. For example, in a transaction involving a key-agreement scheme that incorporates key confirmation, the parties establish a (purported) shared secret, derive keying material, and  as part of that same transaction  use a portion of the derived keying material as the MAC key in their key-confirmation computations.

6.4.2.3.1 [bookmark: _Recipient_Obtains_Assurance_3][bookmark: _Recipient_Obtains_Assurance_6][bookmark: _Recipient_Obtains_Assurance_8][bookmark: _Toc518378796]Recipient Obtains Assurance from a Trusted Third Party

The recipient of a public key may receive assurance that its owner (i.e., the other party in the key-establishment transaction) is in possession of the correct private key from a trusted third party (trusted by the recipient), either before or during a key-establishment transaction that makes use of that public key. The methods used by a third party trusted by the recipient to obtain that assurance are beyond the scope of this Recommendation (see however, the discussions in Sections 6.4.2.3.2 below and in 8.1.5.1.1.2 of SP 800-57).

The recipient of a public key (or agents trusted to act on behalf of the recipient) should know the method(s) used by the third party, in order to determine that the assurance obtained on behalf of the recipient is sufficient and appropriate to meet the security requirements of the recipient’s intended application(s).

6.4.2.3.2 [bookmark: _Recipient_Obtains_Assurance][bookmark: _Recipient_Obtains_Assurance_1][bookmark: _Recipient_Obtains_Assurance_2][bookmark: _Recipient_Obtains_Assurance_4][bookmark: _Recipient_Obtains_Assurance_5][bookmark: _Recipient_Obtains_Assurance_7][bookmark: _Toc518378797]Recipient Obtains Assurance Directly from the Claimed Owner (i.e., the Other Party)

The recipient of a public key can directly obtain assurance of the claimed owner’s current possession of the corresponding private key by successfully completing a key-establishment transaction that explicitly incorporates key confirmation, with the claimed owner serving as the key-confirmation provider. Note that the recipient of the public key in question will also be the key-confirmation recipient. Also note that this use of key confirmation is an additional benefit beyond its use to confirm that two parties possess the same keying material.

There are several key-establishment schemes specified in this Recommendation that can be used. In order to claim conformance with this Recommendation, the key-establishment transaction during which the recipient of a public key seeks to obtain assurance of its owner’s current possession of the corresponding private key shall employ one of the following approved key-establishment schemes:

1. The KAS1-Party_V-confirmation scheme in Section 8.2.3.2 can be used to provide assurance to party U that party V possesses the private key corresponding to PubKeyV, (the public key that was associated with party V when that key pair is used during the key-agreement transaction).

2. The KAS2-Party_V-confirmation scheme in Section 8.3.3.2 can be used to provide assurance to party U that party V possesses the private key corresponding to PubKeyV (the public key that was associated with party V when that key pair is used during the key-agreement transaction).

3. The KAS2-Party_U-confirmation scheme in Section 8.3.3.3 can be used to provide assurance to party V that party U possesses the private key corresponding to PubKeyU (the public key that was associated with party U when that key pair is used during the key-agreement transaction).

4. The KAS2-bilateral-confirmation scheme in Section 8.3.3.4 can be used to provide assurance to each party that the other party possesses the correct private key that corresponds to the other party's public key; i.e., when bilateral key-confirmation is successful, party U obtains assurance that party V possesses the private key corresponding to PubKeyV (the key pair that was associated with party V and that was used during the key-agreement transaction), and party V obtains assurance that party U possesses the private key corresponding to PubKeyU (the key pair that was associated with party U and that was used during the key-agreement transaction).

5. The KTS-OAEP-Party_V-confirmation scheme in Section 9.2.4.2 can be used to provide assurance to party U (the key-transport sender) that party V (the key-transport receiver) possesses the private key corresponding to PubKeyV (the key pair that was associated with party V and that was used during the key-agreement transaction).

The recipient of a public key (or agents trusted to act on the recipient’s behalf) shall determine whether or not using one of the key-establishment schemes in this Recommendation to obtain assurance of possession through key confirmation is sufficient and appropriate to meet the security requirements of the recipient’s intended application(s). Other approved methods (e.g., see Section 5.4.4 of SP 800-57-Part 1) of directly obtaining this assurance of possession from the owner are also allowed. If obtaining assurance of possession directly from the owner is not acceptable, then assurance of possession shall be obtained indirectly as discussed in Section 6.4.2.3.1.

Successful key confirmation (performed in the context described in this Recommendation) demonstrates that the correct private key has been used in the key-confirmation provider’s calculations, and thus also provides assurance that the claimed owner is the true owner.

The assurance of possession obtained via the key-confirmation schemes identified above may be useful even when the recipient has previously obtained independent assurance that the claimed owner of a public key is indeed its true owner. This may be appropriate in situations where the recipient desires renewed assurance that the owner possesses the correct private key (and that the owner is still able to use it correctly), including situations where there is no access to a trusted party who can provide renewed assurance of the owner’s continued possession of the private key.

7 [bookmark: _Primitives_and_Operations][bookmark: _Toc518378798]Primitives and Operations

Except for RSADP (see Section 7.1.2), the primitives and operations are defined in this section as if the RSA private keys are in the basic format. Equivalent primitives and operations that employ RSA private keys given in the prime-factor or CRT format are permitted.

7.1 [bookmark: _Encryption_and_Decryption][bookmark: _Encryption_and_Decryption_1][bookmark: _Toc518378799]Encryption and Decryption Primitives

RSAEP and RSADP are the basic encryption and decryption primitives from the RSA cryptosystem [RSA 1978], specified in PKCS 1. RSAEP produces ciphertext from plaintext using a public key; RSADP recovers the plaintext from the ciphertext using the corresponding private key.  The primitives assume that the RSA public key is valid.

7.1.1 [bookmark: _RSAEP][bookmark: _RSAEP_1][bookmark: _RSAEP_2][bookmark: _RSAEP_3][bookmark: _Toc518378800]RSAEP

RSAEP produces ciphertext using an RSA public key. 

Function call: RSAEP((n, e), m)

Input:

1. (n, e): the RSA public key.

2. m: the plaintext; an integer such that 1 < m < n – 1.

Assumption: The RSA public key is valid (see Section 6.4).

Process:

1. If m does not satisfy 1 < m < n – 1, output an indication that m is out of range, and exit without further processing.

2. Let c = me mod n.

3. Output c.

Output:

      c: the ciphertext, an integer such that 1 < c < n – 1, or an error indicator.

A routine that implements this primitive shall destroy any local copies of the input m, as well as any other potentially sensitive locally stored values used or produced during its execution. Their destruction shall occur prior to or during any exit from the routine (whether exiting early because of an error or exiting normally with the output of c).

7.1.2 [bookmark: _RSADP][bookmark: _RSADP_1][bookmark: _RSADP_2][bookmark: _RSADP_3][bookmark: _Toc518378801]RSADP

RSADP is the decryption primitive. It recovers the plaintext from ciphertext using an RSA private key. The format of the decryption operation depends on the format of the private key: basic, prime factor or CRT.

A routine that implements this primitive shall destroy any local copies of the private key, as well as any other potentially sensitive locally stored values used or produced during its execution (such as any locally stored portions of the plaintext). Their destruction shall occur prior to or during any exit from the routine (whether exiting early because of an error or exiting normally, with the output of plaintext).

Note: 

Care should be taken to ensure that an implementation of RSADP does not reveal even partial information about the value of the plaintext to unauthorized entities. An opponent who can reliably obtain particular bits of the plaintext for sufficiently many chosen ciphertext values may be able to obtain the full decryption of an arbitrary ciphertext by applying the bit-security results of Håstad and Näslund [HN 1998].

[bookmark: _Toc518378802]7.1.2.1	Decryption with the Private Key in the Basic Format

Function call: RSADP((n, d), c)

Input:

1. (n, d): the RSA private key.

2. c: the ciphertext; an integer such that 1 < c < n – 1.

Process:

1. If the ciphertext c does not satisfy 1 < c < n – 1, output an indication that the ciphertext is out of range, and exit without further processing.

2. Let m = cd mod n.

3. Output m.

Output:

      m: the plaintext; an integer such that 1 < m < n – 1, or an error indicator.

[bookmark: _Toc518378803]7.1.2.2	Decryption with the Private Key in the Prime Factor Format



Function call: RSADP((p, q, d), c)

Input:

1. (p, q, d): the RSA private key.

2. c: the ciphertext; an integer such that 1 < c < n – 1.

Process:

1. If the ciphertext c does not satisfy 1 < c < n – 1, output an indication that the ciphertext is out of range, and exit without further processing.

2. Let n = p  q, the product of p and q.

3. Let m = cd mod n.

4. Output m.

Output:

      m: the plaintext; an integer such that 1 < m < n – 1, or an error indicator.

[bookmark: _Toc518378804]7.1.2.3	Decryption with the Private Key in the CRT Format

Function call: RSADP(n, e, d, p, q, dP, dQ, qInv, c)

1. (n, e, d, p, q, dP, dQ, qInv): the RSA private key, where dP = d mod (p – 1), dQ = d mod (q – 1) and qInv = q mod p.

2. c: the ciphertext; an integer such that 1 < c < n – 1.

Process:

1. If the ciphertext c does not satisfy 1 < c < n – 1, output an indication that the ciphertext is out of range, and exit without further processing.

2.	mp = cdP mod p.

3.	mq = cdQ mod q.

4.	Let h = ((mp  mq)  qInv) mod p.

5.	Let m = (mq + (q  h)) mod n.

6.	Output m.

7.2 [bookmark: _Toc518378805]Encryption and Decryption Operations

7.2.1 [bookmark: _RSA_Secret-Value_Encapsulation][bookmark: _RSA_Secret-Value_Encapsulation_1][bookmark: _Toc518378806]RSA Secret-Value Encapsulation (RSASVE)

[bookmark: _Ref33772733]The RSASVE generate operation is used by one party in a key-establishment transaction to generate and encrypt a secret value to produce ciphertext using the public key-establishment key of the other party. When this ciphertext is received by that other party, and the secret value is recovered (using the RSASVE recover operation and the corresponding private key-establishment key), the secret value is then considered to be a shared secret. Secret-value encapsulation employs a Random Bit Generator (RBG) to generate the secret value.  

[bookmark: _11.8.2_RSASVES1]The RSASVE generate and recovery operations specified in Sections 7.2.1.2 and 7.2.1.3, respectively, are based on the RSAEP and RSADP primitives (see Section 7.1). These operations are used by the KAS1 and KAS2 key-agreement families (see Sections 8.2 and 8.3).

7.2.1.1 [bookmark: _Toc518378807]RSASVE Components

RSASVE uses the following components:

1. RBG:		An approved random bit generator (see Section 5.3).

2. RSAEP:	RSA Encryption Primitive (see Section 7.1.1).

3. RSADP:	RSA Decryption Primitive (see Section 7.1.2). 

7.2.1.2 [bookmark: _RSASVE_Generate_Operation][bookmark: _RSASVE_Generate_Operation_1][bookmark: _RSASVE_Generate_Operation_2][bookmark: _RSASVE_Generate_Operation_3][bookmark: _Ref9073692][bookmark: _Toc32395169][bookmark: _Toc518378808]RSASVE Generate Operation (RSASVE.GENERATE)

RSASVE.GENERATE generates a secret value and corresponding ciphertext using an RSA public key.

Function call: RSASVE.GENERATE((n, e))

Input:

(n, e): an RSA public key.

Assumptions: The RSA public key is valid.

Process:

1.	Compute the value of nLen =  len(n)/8    the byte length of the modulus n.

2.  Generation:

a.	Using the RBG (see Section 5.3), generate Z, a byte string of nLen bytes. 

b.	Convert Z to an integer z (See Appendix B.2):

z = BS2I(Z, nLen).

c.	If z does not satisfy 1 < z < n – 1, then go to step 2a.

3.  RSA encryption:

a.	Apply the RSAEP encryption primitive (see Section 7.1.1) to the integer z using the public key (n, e) to produce an integer ciphertext c:

c = RSAEP((n, e), z).



b.	Convert the ciphertext c to a ciphertext byte string C of nLen bytes (see Appendix B.1):

C = I2BS(c, nLen).

       4.  Output the string Z as the secret value, and the ciphertext C.

Output:

Z: the secret value to be shared (a byte string of nLen bytes), and C: the ciphertext (a byte string of nLen bytes).

A routine that implements this operation shall destroy any locally stored portions of Z and z, as well as any other potentially sensitive locally stored values used or produced during its execution. Their destruction shall occur prior to or during any exit from the routine (whether exiting early because of an error or exiting normally with the output of Z and C). Note that the requirement for destruction includes any locally stored portions of the secret value Z included in the output.

7.2.1.3 [bookmark: _RSASVE_Recovery_Operation][bookmark: _RSASVE_Recovery_Operation_1][bookmark: _RSASVE_Recovery_Operation_2][bookmark: _RSASVE_Recovery_Operation_3][bookmark: _Toc32395170][bookmark: _Toc518378809]RSASVE Recovery Operation (RSASVE.RECOVER)

RSASVE.RECOVER recovers a secret value from ciphertext using an RSA private key. Once recovered, the secret value is considered to be a shared secret.

Function call: 

RSASVE.RECOVER((n, d), C)

Input:

1. (n, d): an RSA private key.

2. C: the ciphertext; a byte string of nLen bytes.

Assumptions: The RSA private key is part of a valid key pair.

Process:

1.	nLen = = len(n)/8, the byte length of n.

2.	Length checking:

If the length of the ciphertext C is not nLen bytes in length, output an indication of a decryption error, and exit without further processing.

3.	RSA decryption:

a.	Convert the ciphertext C to an integer ciphertext c (see Appendix B.2):

c = BS2I(C).

b.	Apply the RSADP decryption primitive (see Section 7.1.2) to the ciphertext c using the private key (n, d) to produce an integer z:

z = RSADP((n, d), c).[footnoteRef:23] [23:  When the private key is represented in the prime-factor or CRT format, appropriate changes are discussed in Section 7.1.2.] 


c.	If RSADP indicates that the ciphertext is out of range, output an indication of a decryption error, and exit without further processing.

d.	Convert the integer z to a byte string Z of nLen bytes (see Appendix B.1):

Z = I2BS(z, nLen).

4.  Output the string Z as the secret value (i.e., the shared secret), or an error indicator.

Output:

Z: the secret value/shared secret (a byte string of nLen bytes), or an error indicator.

Note:

Care should be taken to ensure that an implementation does not reveal information about the encapsulated secret value (i.e., the value of the integer z or its byte string equivalent Z). For instance, the observable behavior of the I2BS routine should not reveal even partial information about the byte string Z. An opponent who can reliably obtain particular bits of Z for sufficiently many chosen ciphertext values may be able to obtain the full decryption of an arbitrary RSA-encrypted value by applying the bit-security results of Håstad and Näslund [HN 1998].

A routine that implements this operation shall destroy any local copies of the private key, any locally stored portions of Z and z, and any other potentially sensitive locally stored values used or produced during its execution. Their destruction shall occur prior to or during any exit from the routine (whether exiting early because of an error or exiting normally with the output of Z). Note that the requirement for destruction includes any locally stored portions of the output.

7.2.2 [bookmark: _RSA_with_Optimal][bookmark: _RSA_with_Optimal_1][bookmark: _RSA_with_Optimal_2][bookmark: _Toc518378810]RSA with Optimal Asymmetric Encryption Padding (RSA-OAEP)

[bookmark: _Ref44304715][bookmark: _Toc103497055][bookmark: _Toc121918185]RSA-OAEP consists of asymmetric encryption and decryption operations that are based on an approved hash function, an approved random bit generator, a mask-generation function, and the RSAEP and RSADP primitives. These operations are used by the KTS-OAEP key-transport scheme (see Section 9.2).

In the RSA-OAEP encryption operation, a data block is constructed by the sender (party U) from the keying material to be transported and the hash of additional input (see Section 9.1) that is shared by party U and the intended receiving party (party V). A random byte string is generated, after which both the random byte string and the data block are masked in a way that binds their values. The masked values are used to form the plaintext that is input to the RSAEP primitive, along with the public key-establishment key of party V. The resulting RSAEP output further binds the random byte string, the keying material and the hash of the additional data in the ciphertext that is sent to party V.

In the RSA-OAEP decryption operation, the ciphertext and the receiving party’s (i.e., party V’s) private key-establishment key are input to the RSADP primitive, recovering the masked values as output. The mask-generation function is then used to reconstruct and remove the masks that obscure the random byte string and the data block. After removing the masks, party V can examine the format of the recovered data and compare its own computation of the hash of the additional data to the hash value contained in the unmasked data block, thus obtaining some measure of assurance of the integrity of the recovered data – including the transported keying material.

RSA-OAEP can process up to nLen – 2HLen – 2 bytes of keying material, where nLen is the byte length of the recipient’s RSA modulus, and HLen is the byte length of the values output by the underlying hash function.

7.2.2.1 [bookmark: _Toc518378811][bookmark: _Ref524256656][bookmark: _Ref524256666][bookmark: _Toc532979185]RSA-OAEP Components

RSA-OAEP uses the following components:

1. H:	An approved hash function (see Section 5.1). HLen is used to denote the byte length of the hash function output.

2. MGF:	The mask-generation function (see Section 7.2.2.2). The MGF employs a hash function hash. This hash function need not be the same as the hash function H used in step 3a of Section 7.2.2.3 and step 4a of Section 7.2.2.4.

3. RBG:		An approved random bit generator (see Section 5.3).

4. RSAEP:	RSA Encryption Primitive (see Section 7.1.1).

5. RSADP:	RSA Decryption Primitive (see Section 7.1.2).

[bookmark: _7.2.2.2_The_Mask][bookmark: _7.2.2.2_The_Mask_1][bookmark: _7.2.2.2_The_Mask_2][bookmark: _Toc518378812]7.2.2.2	The Mask Generation Function (MGF)

MGF is a mask-generation function based on an approved hash function (see Section 5.1). The purpose of the MGF is to generate a string of bits that may be used to “mask” other bit strings. The MGF is used by the RSA-OAEP-based schemes specified in Section 9.2. 

Let hash be an approved hash function.

For the purposes of this Recommendation, the MGF shall not be invoked more than once by each party during a given transaction using a given MGF seed (i.e., a mask shall be derived only once by each party from a given MGF seed).

Function call: MGF(mgfSeed, maskLen)

Auxiliary Function:

hash: an approved hash function (see Section 5.1).

Implementation-Dependent Parameters: 

1. hashLen: an integer that indicates the byte length of the output block of the auxiliary hash function, hash.

2. max_hash_inputLen: an integer that indicates the maximum-permitted byte length of the bit string, x, that is used as input to the auxiliary hash function, hash.

Input:

1.	mgfSeed: a byte string from which the mask is generated.

2.	maskLen: the intended byte length of the mask.

Process:

1.	If maskLen > 232 hashLen, output an error indicator, and exit from this process without performing the remaining actions.

2.	If mgfSeed is more than max_hash_inputLen bytes in length, then output an error indicator, and exit this process without performing the remaining actions.

3.  Set T = the null string.

4.	For counter from 0 to  maskLen / hashLen  – 1, do the following:

a) Let D = I2BS(counter, 4)   (see Appendix B.1).

b) Let T = T || hash(mgfSeed || D).

      5.  Output the leftmost maskLen bytes of T as the byte string mask.

Output:

The byte string mask (of maskLen bytes), or an error indicator.

A routine that implements this function shall destroy any local copies of the input mgfSeed, any locally stored portions of mask (e.g., any portion of T), and any other potentially sensitive locally stored values used or produced during its execution. Their destruction shall occur prior to or during any exit from the routine (whether exiting early because of an error or exiting normally with the output of mask). Note that the requirement for destruction includes any locally stored portions of the output.

7.2.2.3 [bookmark: _RSA-OAEP_Encryption_Operation][bookmark: _RSA-OAEP_Encryption_Operation_1][bookmark: _RSA-OAEP_Encryption_Operation_2][bookmark: _Toc372193196][bookmark: _Toc518378813]RSA-OAEP Encryption Operation (RSA-OAEP.ENCRYPT)

The RSA-OAEP.ENCRYPT operation produces ciphertext from keying material and additional input using an RSA public key, as shown in Figure 4. See Section 9.1 for more information on the additional input. Let HLen be the byte length of the output of hash function H.

Function call: RSA-OAEP.ENCRYPT((n, e), K, A)

Input:

1. (n, e): the receiver’s RSA public key.

2. K: the keying material; a byte string of at most nLen – 2HLen – 2 bytes, where nlen is the byte length of n. 

3. A: additional input; a byte string (may be the Null string) to be cryptographically bound to the keying material (see Section 9.1).

Assumptions: The RSA public key is valid.

Process:

1. nLen = = len(n)/8, the byte length of n.

2. Length checking:

a.	KLen = = len(K)/8, the byte length of K.

b.	If KLen > nLen – 2HLen – 2, then output an indication that the keying material is too long, and exit without further processing.

3.	OAEP encoding:

a.	Apply the selected hash function to compute:

HA = H(A).

HA is a byte string of HLen bytes. If A is an empty string, then HA is the hash value for the empty string.

b.	Construct a byte string PS consisting of nLen – KLen – 2HLen – 2 zero bytes. The length of PS may be zero.

c.	Concatenate HA, PS, a single byte with a hexadecimal value of 01, and the keying material K to form data DB of nLen – HLen – 1 bytes as follows:

DB = HA || PS || 00000001 || K,

where 00000001 is a string of eight bits.

d.	Using the RBG (see Section 5.3), generate a random byte string mgfSeed of HLen bytes.

e.	Apply the mask-generation function in Section 7.2.2.2 to compute:

dbMask = MGF(mgfSeed, nLen – HLen – 1).

f.	Let maskedDB = DB  dbMask.

g.	Apply the mask-generation function in Section 7.2.2.2 to compute:

mgfSeedMask = MGF(maskedDB, HLen).

h.	Let maskedMGFSeed = mgfSeed  mgfSeedMask.

i.	Concatenate a single byte with hexadecimal value 00, maskedMGFSeed, and maskedDB to form an encoded message EM of nLen bytes as follows:

EM = 00000000 || maskedMGFSeed || maskedDB

where 00000000 is a sting of eight bits.

4.	RSA encryption:

a.	Convert the encoded message EM to an integer em (see Appendix B.2):

em = BS2I(EM).

[bookmark: _Ref523291703]b.	Apply RSAEP (see Section 7.1.1) to the integer em using the public key (n, e) to produce a ciphertext integer c:

c = RSAEP((n, e), em).

c.	Convert the ciphertext integer c to a ciphertext byte string C of nLen bytes (see Appendix B.1):

C = I2BS(c, nLen).

5.	Zeroize all intermediate values and output the ciphertext C.

Output:	C: the ciphertext (a byte string of nLen bytes), or an error indicator.

A routine that implements this operation shall destroy any local copies of sensitive input values (e.g., K and any sensitive portions of A), as well as any other potentially sensitive locally stored values used or produced during its execution (including HA, DB, mfgSeed, dbMask, maskedDB, mgfSeedMask, maskedMGFSeed, EM, and em). Their destruction shall occur prior to or during any exit from the routine – whether exiting early because of an error or exiting normally with the output of C.

[bookmark: _Ref533487669][bookmark: _Toc16056263][bookmark: _Toc53336552][bookmark: _Ref524256687][bookmark: _Toc532979186][bookmark: _Toc32395163][image: ]

[bookmark: Figure_4][bookmark: _Toc494191684][bookmark: _Toc121187194][bookmark: _Toc173652199][bookmark: _Toc181546830][bookmark: _Toc181547046][bookmark: _Toc181547649]Figure 4: RSA-OAEP Encryption Operation

7.2.2.4 [bookmark: _RSA-OAEP_Decryption_Operation][bookmark: _Toc372193197][bookmark: _Toc518378814]RSA-OAEP Decryption Operation (RSA-OAEP.DECRYPT)

RSA-OAEP.DECRYPT recovers keying material from a ciphertext and additional input using an RSA private key as shown in Figure 5. Let HLen be the byte length of the output of hash function H. 

Function call: RSA-OAEP.DECRYPT((n, d), C, A)

Input:

1. (n, d): the receiver’s RSA private key.

2. C: the ciphertext; a byte string.

3. A: additional input; a byte string (may be the empty string) whose cryptographic binding to the keying material is to be verified (see Section 9.1).

Assumptions: The RSA private key is valid.

Process:

1. Initializations:

a.	nLen = the byte length of n. For this Recommendation, nLen  256.

b. 	DecryptErrorFlag = False.

2. Check for erroneous input:

a.	If the length of the ciphertext C is not nLen bytes, output an indication of erroneous input, and exit without further processing.

b.	Convert the ciphertext byte string C to a ciphertext integer c 
(see Appendix B.2):

c = BS2I(C).

c.	If the ciphertext integer c is not such that 1 < c < n – 1, output an indication of erroneous input, and exit without further processing.

3.	RSA decryption:

a.	Apply RSADP (see Section 7.1.2) to the ciphertext integer c using the private key (n, d) to produce an integer em:

em = RSADP((n, d), c).[footnoteRef:24] [24:  When the private key is represented in the prime-factor or CRT format, appropriate changes are discussed in Section 7.1.2.] 


b.	Convert the integer em to an encoded message EM, a byte string of nLen bytes (see Appendix B.1):

EM = I2BS(em, nLen).

[bookmark: _Ref533486553]4.	OAEP decoding:

a.	Apply the selected hash function (see Section 5.1) to compute:

HA = H(A).

HA is a byte string of HLen bytes.

b.	Separate the encoded message EM into a single byte Y, a byte string maskedMGFSeed′ of HLen bytes, and a byte string maskedDB′ of nLen – HLen – 1 bytes as follows:

EM = Y || maskedMGFSeed′ || maskedDB′.

c.	Apply the mask-generation function specified in Section 7.2.2.2 to compute:

mgfSeedMask′ = MGF(maskedDB′, HLen).

d.	Let mgfSeed′ = maskedMGFSeed′  mgfSeedMask′.

e.	Apply the mask-generation function specified in Section 7.2.2.2 to compute:

dbMask′= MGF(mgfSeed′, nLen – HLen – 1).

f.	Let DB′ = maskedDB′  dbMask′.

g.	Separate DB′ into a byte string HA of HLen bytes and a byte string X of nLen – 2HLen – 1 bytes as follows:

DB′ = HA′ || X.

5.	Check for RSA-OAEP decryption errors:

a.	DecryptErrorFlag = False.

b.	If Y is not the 00 byte (i.e., the bit string 00000000), then DecryptErrorFlag = True.

c.	If HA′ does not equal HA, then DecryptErrorFlag = True.

d.	If X does not have the form PS || 00000001 || K, where PS consists of zero or more consecutive 00 bytes, then DecryptErrorFlag = True. 

The type(s) of any error(s) found shall not be reported. 
(See the notes below for more information.)

6.	Output of the decryption process:

a.	If DecryptErrorFlag = True, then output an indication of an (unspecified) decryption error, and exit without further processing. (See the notes below for more information.)

b.	Otherwise, output K, the portion of the byte string X that follows the leading 01 byte.

Output:

K: the recovered keying material (a byte string of at most nLen – 2HLen  2 bytes), or an error indicator.

A routine that implements this operation shall destroy any local copies of sensitive input values (including the private key and any sensitive portions of A), any locally stored portions of K, and any other potentially sensitive locally stored values used or produced during its execution (including DecryptErrorFlag, em, EM, HA, Y, maskedMGFSeed , maskedDB, mgfSeedMask , mfgSeed , dbMask , DB, HA, and X). Their destruction shall occur prior to or during any exit from the routine – whether exiting because of an error, or exiting normally with the output of K. Note that the requirement for destruction includes any locally stored portions of the recovered keying material.

Notes:

1. Care should be taken to ensure that the different error conditions that may be detected in step 5 above cannot be distinguished from one another by an opponent, whether by an error message or by process timing. Otherwise, an opponent may be able to obtain useful information about the decryption of a chosen ciphertext C, leading to the attack observed by Manger in [Manger 2001]. A single error message should be employed and output the same way for each type of decryption error. There should be no difference in the observable behavior for the different RSA-OAEP decryption errors.

2. In addition, care should be taken to ensure that even if there are no errors, an implementation does not reveal partial information about the encoded message em or EM. For instance, the observable behavior of the mask-generation function should not reveal even partial information about the MGF seed employed in the process (since that could compromise portions of the maskedDB′ segment of EM). An opponent who can reliably obtain particular bits of EM for sufficiently many chosen-ciphertext values may be able to obtain the full decryption of an arbitrary ciphertext by applying the bit-security results of Håstad and Näslund [HN 1998].



[bookmark: Figure_5][bookmark: _Toc494191685][bookmark: _MON_1311161386][bookmark: _Toc53336553][bookmark: _Toc121187195][bookmark: _Toc173652200][bookmark: _Toc181546831][bookmark: _Toc181547047][bookmark: _Toc181547650][bookmark: _Ref33781338][bookmark: _Ref533502128][bookmark: _Toc32395166][bookmark: _Ref32747422][bookmark: _Ref33328395][bookmark: _Ref33328763][bookmark: _Ref33329432][bookmark: _Ref33772694][image: ]Figure 5: RSA-OAEP Decryption Operation


8 [bookmark: _Key-Agreement_Schemes][bookmark: _Key-Agreement_Schemes_1][bookmark: _Key-Agreement_Schemes_2][bookmark: _Key-Agreement_Schemes_3][bookmark: _Key-Agreement_Schemes_4][bookmark: _Key-Agreement_Schemes_5][bookmark: _Toc372193203][bookmark: _Toc518378815]Key-Agreement Schemes 

In a key-agreement scheme, two parties, party U and party V, establish keying material over which neither has complete control of the result, but both have influence. This Recommendation provides two families of key-agreement schemes: KAS1 and KAS2. The KAS1 family consists of the KAS1-basic and KAS1-Party_V-confirmation schemes, and the KAS2 family consists of the KAS2-basic, KAS2-Party_V-confirmation, KAS2-Party_U-confirmation, and KAS2-bilateral-confirmation schemes.  These schemes are based on secret-value encapsulation (see Section 7.2.1).  

Key confirmation is included in some of these schemes to provide assurance that the participants share the same keying material; see Section 5.6 for the details of key confirmation. When possible, each party should have such assurance. Although other methods are often used to provide this assurance, this Recommendation makes no statement as to the adequacy of these other methods.  Key confirmation may also provide assurance of private-key possession.

For each of the KAS1 and KAS2 schemes, Party V shall have an identifier, IDV, that has an association with the key pair that is known (or discoverable) and trusted by party U (i.e., there shall be a trusted association between IDV and party V’s public key). For the KAS2 key-agreement schemes, party U shall also have such an identifier, IDU.

A general flow diagram is provided for each key-agreement scheme. The dotted-line arrows represent the distribution of public keys by the parties themselves or by a third party, such as a Certification Authority (CA). The solid-line arrows represent the distribution of nonces or cryptographically protected values that occur during the key-agreement scheme. Note that the flow diagrams in this Recommendation omit explicit mention of various validation checks that are required. The flow diagrams and descriptions in this Recommendation assume a successful completion of the key-agreement process. 

For each scheme, there are conditions that must be satisfied to enable proper use of that scheme. These conditions are listed as assumptions. Failure to meet all such conditions could yield undesirable results, such as the inability to communicate or the loss of security. As part of the proper implementation of this Recommendation, system users and/or agents trusted to act on their behalf (including application developers, system installers, and system administrators) are responsible for ensuring that all assumptions are satisfied at the time that a key-establishment transaction takes place. 

3. [bookmark: _Toc372193204]
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[bookmark: _Common_Components_for][bookmark: _Common_Components_for_1][bookmark: _Common_Components_for_2][bookmark: _Toc518378816]Common Components for Key Agreement

The key-agreement schemes in this Recommendation have the following common components:

1. RSASVE:	RSA secret-value encapsulation, consisting of a generation operation RSASVE.GENERATE and a recovery operation RSASVE.RECOVER (see Section 7.2.1).

2. KDM:	A key-derivation method (see Section 5.5).

[bookmark: _KAS1_Key_Agreement][bookmark: _KAS1_Key_Agreement_1][bookmark: _KAS1_Key_Agreement_2][bookmark: _KAS1_Key_Agreement_3][bookmark: _KAS1_Key_Agreement_4][bookmark: _KAS1_Key_Agreement_5][bookmark: _KAS1_Key_Agreement_6][bookmark: _Toc518378817]     KAS1 Key Agreement

For the KAS1 key-agreement schemes, even if both parties have key-establishment key pairs, only party V’s key-establishment key pair is used.

The KAS1 key-agreement schemes have the following general form: 

1. Party U generates a secret value (which will become a shared secret) and a corresponding ciphertext using the RSASVE.GENERATE operation and party V’s public key-establishment key, and then sends the ciphertext to party V. 

2. Party V recovers the secret value from the ciphertext using the RSASVE.RECOVER operation and its private key-establishment key; the secret value is then considered to be the shared secret. Party V generates a nonce and sends it to party U. 

3. Both parties then derive keying material from the shared secret and “other information”, including party V’s nonce, using a key-derivation method. The length of the keying material that can be agreed on is limited only by the length that can be output by the key-derivation method.

4. If key confirmation (KC) is incorporated in the scheme, then the derived keying material is parsed into two parts, MacKey and KeyData, and a MacData string is formed (see Sections 5.6 and 8.2.3.2.), MacKey and MacData are used to compute a MAC tag of MacTagBits bits (see Sections 5.2.1, 5.2.2, 5.6.1 and 5.6.3), and MacTag is sent from party V (the KC provider) to party U (the KC recipient). If the MAC tag computed by party V matches the MAC tag (re)computed by party U, then the successful establishment of keying material is confirmed to party U.

The following schemes are defined:

1. KAS1-basic, the basic scheme without key confirmation (see Section 8.2.2).

2. KAS1-Party_V-confirmation, a variant of KAS1-basic with unilateral key confirmation provided by party V to party U (see Section 8.2.3).

For the security properties of the KAS1 key-agreement schemes, see Section 10.1.

[bookmark: _8.2.1__][bookmark: _8.2.1___1][bookmark: _Toc518378818]8.2.1	KAS1 Assumptions

1. Party V has been designated as the owner of a key-establishment key pair that was generated as specified in Section 6.3. Party V has assurance of possession of the correct value for its private key as specified in Section 6.4.1.5.

2. Party U and party V have agreed upon an approved key-derivation method (see Section 5.5), as well as an approved algorithm to be used with that method (e.g., a specific hash function) and other associated parameters related to the cryptographic elements to be used.

3. If key confirmation is used, party U and party V have agreed upon an approved MAC algorithm and associated parameters, including the lengths of MacKey and MacTag (see Section 5.2).

4. When an identifier is used to label either party during the key-agreement process, both parties are aware of the particular identifier employed for that purpose. In particular, when an identifier is used to label party V during the key-agreement process, that identifier’s association with party V’s public key is trusted by party U. When an identifier is used to label party U during the key-agreement process, it has been selected/assigned in accordance with the requirements of the protocol relying upon the use of the key-agreement scheme.

5. Party U has obtained assurance of the validity of party V’s public key, as specified in Section 6.4.2.

The following is an assumption for using any keying material derived during a KAS1 key-agreement scheme for purposes beyond those of the scheme itself.

Party U has obtained (or will obtain) assurance that party V is (or was) in possession of the private key corresponding to the public key used during the key-agreement transaction, as specified in Section 6.4.2.3.

This assumption recognizes the possibility that assurance of private-key possession may be provided/obtained by means of key confirmation performed as part of a particular KAS1 transaction.

8.2.2 [bookmark: _KAS1-basic][bookmark: _KAS1-basic_1][bookmark: _KAS1-basic_2][bookmark: _KAS1-basic_3][bookmark: _Toc372193207][bookmark: _Toc518378819]KAS1-basic

KAS1-basic is the basic key-agreement scheme in the KAS1 family. In this scheme, party V does not contribute to the formation of the shared secret; instead, a nonce is used as a party V-selected contribution to the key-derivation method, ensuring that both parties influence the derived keying material.

Let (PubKeyV, PrivKeyV) be party V’s key-establishment key pair. Let KBits be the intended length in bits of the keying material to be established. The parties shall perform the following or an equivalent sequence of steps, as illustrated in Figure 6.
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		Compute DerivedKeyingMaterial and Destroy Z





[bookmark: Figure_6]Figure 6: KAS1-basic Scheme

Party U shall execute the following key-agreement steps in order to a) establish a shared secret Z with party V, and b) derive secret keying material from Z.

Actions: Party U generates a shared secret and derives secret keying material as follows:

1.	Use the RSASVE.GENERATE operation in Section 7.2.1.2 to generate a secret value Z and a corresponding ciphertext C using party V’s public key-establishment key, PubKeyV. Note that the secret value Z will become a shared secret when recovered by Party V.

2.	Send the ciphertext C to party V.

3.	Obtain party V’s nonce NV from party V. If NV is not available, return an error indicator without performing the remaining actions.

4.	Assemble the OtherInput for key derivation, including the required nonce, NV, and any other requisite information (see Section 5.5).

5.	Use the agreed-upon key-derivation method (see Section 5.5) to derive secret keying material of the agreed-upon length from the shared secret value Z and OtherInput (see step 4). If the key-derivation method outputs an error indicator, return an error indicator without performing the remaining actions.  

6.	 Output the DerivedKeyingMaterial.

Any local copies of Z, OtherInput, DerivedKeyingMaterial and any intermediate values used during the execution of party U’s actions shall be destroyed prior to the early termination of the actions due to an error, or (in the absence of errors), prior to or during the the completion of step 6. 

Party V shall execute the following key-agreement steps in order to a) establish a shared secret Z with party U, and b) derive secret keying material from Z.

Actions: Party V obtains the shared secret and derives secret keying material as follows:

1.	Receive a ciphertext C from party U.

2.	Use the RSASVE.RECOVER operation in Section 7.2.1.3 to recover the secret value Z from the ciphertext C using the private key-establishment key, PrivKeyV; hereafter, Z is considered to be a shared secret. If the call to RSASVE.RECOVER outputs an error indicator, return an error indicator without performing the remaining actions. 

3.	Obtain a nonce NV  (see Section 5.4) and send NV  to party U.

4.	Construct the other information OtherInput for key derivation (see Section 5.5) using the nonce NV and the identifiers IDU and IDV, if available.

5.	Use the agreed-upon key-derivation method to derive secret keying material with the agreed upon length from the shared secret value Z and other input. If the key-derivation method outputs an error indicator, return an error indicator without performing the remaining actions.

6.	Output the DerivedKeyingMaterial.

Any local copies of Z, PrivKeyV, OtherInput DerivedKeyingMaterial and any intermediate values used during the execution of party V’s actions shall be destroyed prior to the early termination of the actions due to an error, or (in the absence of errors) prior to or during the the completion of step 6.

The messages may be sent in a different order, i.e., NV  may be sent before C.

It is extremely important that an implementation not reveal any sensitive information. It is also important to conceal partial information about the shared secret Z to prevent chosen-ciphertext attacks on the secret-value encapsulation scheme.

8.2.3 [bookmark: _KAS1_Key_Confirmation][bookmark: _KAS1_Key_Confirmation_1][bookmark: _KAS1_Key_Confirmation_2][bookmark: _KAS1_Key_Confirmation_3][bookmark: _KAS1_Key_Confirmation_4][bookmark: _Toc372193208][bookmark: _Toc518378820]KAS1 Key Confirmation

The KAS1-Party_V-confirmation scheme is based on the KAS1-basic scheme. 

8.2.3.1 [bookmark: _KAS1_Key-Confirmation_Components][bookmark: _Toc372193209][bookmark: _Toc518378821]KAS1 Key-Confirmation Components

The components for KAS1 key agreement with key confirmation are the components listed in Section 8.1, plus the following:

MAC: A message authentication code algorithm with the following parameters (see Section 5.2),

a.   MacKeyLen: the byte length of MacKey, and

b.   MacTagLen: the byte length of MacTag. (MacTagBits, as used in Section 5.2, is equal to 8  MacTagLen.)

MacKey shall be the first MacKeyLen bytes of the keying material and shall be used only for the key-confirmation operation of a single transaction. For KAS1 key confirmation, the length of the derived keying material shall be at least MacKeyLen bytes in length.  The keying material is usually longer than MacKeyLen bytes so that other keying material is available for subsequent operations. 

8.2.3.2 [bookmark: _KAS1-Party_V-confirmation][bookmark: _KAS1-Party_V-confirmation_1][bookmark: _KAS1-Party_V-confirmation_2][bookmark: _Toc372193210][bookmark: _Toc518378822]KAS1-Party_V-confirmation

Figure 7 depicts a typical flow for a KAS1 scheme with unilateral key confirmation from party V to party U. In this scheme, party V and party U assume the roles of key-confirmation provider and recipient, respectively. 
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[bookmark: Figure_7]Figure 7: KAS1-Party_V-confirmation Scheme (from Party V to Party U)

To provide (and receive) key confirmation (as described in Section 5.6.1), both parties set EphemDataV = NV, and EphemDataU = C:

Party V provides MacTagV  to party U (as specified in Section 5.6.1, with P = V and R = U), where MacTagV is computed (as specified in Section 5.2.1) using 

MacDataV = “KC_1_V” || IDV || IDU || NV || C{ || TextV}.

Party U uses the identical format and values to compute TMacTagBits[MAC(MacKey, MacDataV), and then verify that it matches the MacTagV value provided by party V.

The MacKey used during key confirmation shall be destroyed by party V immediately after the computation of MacTagV, and by party U immediately after the verification of the received MacTagV or a (final) determination that the received MacTagV is in error.

Certain messages may be combined or sent in a different order (e.g., NV and MacTagV may be sent together, or NV may be sent before C).

[bookmark: _KAS2_Key_Agreement][bookmark: _KAS2_Key_Agreement_1][bookmark: _KAS2_Key_Agreement_2][bookmark: _KAS2_Key_Agreement_3][bookmark: _KAS2_Key_Agreement_4][bookmark: _KAS2_Key_Agreement_5][bookmark: _KAS2_Key_Agreement_6][bookmark: _KAS2_Key_Agreement_7][bookmark: _Toc518378823]	KAS2 Key Agreement

In this family of key-agreement schemes, key-establishment key pairs are used by both party U and party V.

The schemes in this family have the following general form: 

1. Party U generates a secret value (which will become a component of the shared secret) and a corresponding ciphertext using the RSASVE.GENERATE operation and party V’s public key-establishment key, and sends the ciphertext to party V. 

2. Party V recovers party U’s secret component from the ciphertext received from party U using the RSASVE.RECOVER operation and its private key-establishment key.  

3. Party V generates a secret value (which will become a second component of the shared secret) and the corresponding ciphertext using the RSASVE.GENERATE operation and party U’s public key-establishment key, and sends the ciphertext to party U. 

4. Party U recovers party V’s secret component from the ciphertext received from party V using the RSASVE.RECOVER operation and its private key-establishment key.

5. Both parties concatenate the two secret components to form the shared secret, and then derive keying material from the shared secret and “other information” using a key-derivation method. The length of the keying material that can be agreed on is limited only by the length that can be output by the key-derivation method. 

6. Party U and/or party V may additionally provide key confirmation. If key confirmation is incorporated, then the derived keying material is parsed into two parts, MacKey and KeyData. MacKey is then used to compute a MAC tag of MacTagLen bytes on MacData (see Sections 5.2.1, 5.2.2, 5.6.1 and 5.6.3). MacTag is sent from the KC provider to the KC recipient. If the MAC tag computed by the provider matches the MAC tag computed by the recipient, then the successful establishment of keying material is confirmed by the recipient. 

The following schemes are defined:

1. KAS2-basic, the basic scheme without key confirmation (see Section 8.3.2).

2. KAS2-Party_V-confirmation, a variant of KAS2-basic with unilateral key confirmation provided by party V to party U (see Section 8.3.3.2).

3. KAS2-Party_U-confirmation, a variant of KAS2-basic with unilateral key confirmation probided by party U to party V (see Section 8.3.3.3).

4. KAS2-bilateral-confirmation, a variant of KAS2-basic with bilateral key confirmation between party U and party V (see Section 8.3.3.4).

For the security properties of the KAS2 key-agreement schemes, see Section 10.2.

8.1.1 [bookmark: _KAS2_Assumptions][bookmark: _KAS2_Assumptions_1][bookmark: _Toc372193212][bookmark: _Toc518378824]KAS2 Assumptions

1. Each party has been designated as the owner of a key-establishment key pair that was generated as specified in Section 6.3. Prior to or during the key-agreement process, each party has obtained assurance of its possession of the correct value for its own private key as specified in Section 6.4.1.5. 

2. The parties have agreed upon an approved key-derivation method (see Section 5.5), as well as an approved algorithm to be used with that method (e.g., a specific hash function) and other associated parameters to be used for key derivation.

3. If key confirmation is used, party U and party V have agreed upon an approved MAC algorithm and associated parameters, including the lengths of MacKey and MacTag (see Section 5.2).  The parties must also agree on whether one party or both parties will send MacTag, and in what order. 

4. When an identifier is used to label a party during the key-agreement process, that identifier has a trusted association to that party’s public key. (In other words, whenever both the identifier and public key of one participant are employed in the key-agreement process, they are associated in a manner that is trusted by the other participant.) When an identifier is used to label a party during the key-agreement process, both parties are aware of the particular identifier employed for that purpose.

5. Each party has obtained assurance of the validity of the public keys that are used during the transaction, as specified in Section 6.4.2.3. 

The following is an assumption for using any keying material derived during a KAS2 key-agreement scheme for purposes beyond those of the scheme itself.

Each party has obtained (or will obtain) assurance that the other party is (or was) in possession of the private key corresponding to their public key that was used during the key-agreement transaction, as specified in Section 6.4.2.3.

This assumption recognizes the possibility that assurance of private-key possession may be provided/obtained by means of key confirmation performed as part of a particular KAS2 transaction.

8.1.2 [bookmark: _KAS2-basic][bookmark: _KAS2-basic_1][bookmark: _KAS2-basic_2][bookmark: _Toc372193213][bookmark: _Toc518378825]KAS2-basic

Figure 8 depicts the typical flow for the KAS2-basic scheme. The parties exchange secret values that are concatenated to form the mutually determined shared secret to be input to the key-derivation method.

Party U shall execute the following key-agreement steps in order to a) establish a mutually determined shared secret Z with party V, and b) derive secret keying material from Z.

Actions: Party U generates a shared secret and derives secret keying material as follows:

1.  Use the RSASVE.GENERATE operation in Section 7.2.1.2 to generate a secret value ZU and a corresponding ciphertext CU using party V’s public key-establishment key PubKeyV.

2.	 Send the ciphertext CU to party V.

3.	Receive a ciphertext CV from party V. If CV is not available, return an error indicator without performing the remaining actions.

4.	Use the RSASVE.RECOVER operation in Section 7.2.1.3 to recover ZV from the ciphertext CV using the private key-establishment key PrivKeyU. If the call to RSASVE.RECOVER outputs an error indicator, return an error indicator without performing the remaining actions.

5. Construct the mutually determined shared secret Z from ZU and ZV

Z = ZU || ZV.

6.	Assemble the OtherInput for key derivation, including all requisite information (see Section 5.5).

7	Use the agreed-upon key-derivation method (see Section 5.5) to derive secret keying material with the specified length from the shared secret Z and other input. If the key-derivation method outputs an error indicator, return an error indicator without performing the remaining actions.

8.	Output the DerivedKeyingMaterial.

Any local copies of Z, ZU, ZV, PrivKeyU, OtherInput, DerivedKeyingMaterial and any intermediate values used during the execution of party U’s actions shall be destroyed prior to the early termination of the actions due to an error, or (in the absence of errors), prior to or during the completion of step 8. 
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[bookmark: Figure_8]Figure 8: KAS2-basic Scheme

Party V shall execute the following key-agreement steps in order to a) establish a mutually determined shared secret Z with party U, and b) derive secret keying material from Z.

Actions: Party V generates a shared secret and derives secret keying material as follows:

1.	Receive a ciphertext CU from party U.

2.	Use the RSASVE.RECOVER operation in Section 7.2.1.3 to recover ZU from the ciphertext CU using the private key-establishment key PrivKeyU. If the call to RSASVE.RECOVER outputs an error indicator, return an error indicator without performing the remaining actions.

3.	Use the RSASVE.GENERATE operation in Section 7.2.1.2 to generate a secret value ZV and a corresponding ciphertext CV using party U’s public key-establishment key PubKeyU.

4.	Send the ciphertext CV to party U.

5.	Construct the mutually determined shared secret Z from ZU and ZV

Z = ZU || ZV.

6.	Assemble the OtherInput for key derivation, including all requisite information (see Section 5.5).

7.	Use the agreed-upon key-derivation method (see Section 5.5) to derive KBits of secret keying material DerivedKeyingMaterial from the shared secret Z and OtherInput. If the key-derivation method outputs an error indicator, return an error indicator without performing the remaining actions.

8.	Output the DerivedKeyingMaterial.

Any local copies of Z, ZU, ZV, PrivKeyV, OtherInput, DerivedKeyingMaterial and any intermediate values used during the execution of party V’s actions shall be destroyed prior to the early termination of the actions due to an error, or (in the absence of errors), prior to or during the completion of step 8.  

[bookmark: _Toc532979200]The messages may be sent in a different order, i.e., CV may be sent before CU.

It is extremely important that an implementation not reveal any sensitive information. It is also important to conceal partial information about ZU, ZV and Z to prevent chosen-ciphertext attacks on the secret-value encapsulation scheme. In particular, the observable behavior of the key-agreement process should not reveal partial information about the shared secret Z.

8.1.3 [bookmark: _KAS2_Key_Confirmation][bookmark: _KAS2_Key_Confirmation_1][bookmark: _KAS2_Key_Confirmation_2][bookmark: _KAS2_Key_Confirmation_3][bookmark: _Toc372193214][bookmark: _Toc518378826]KAS2 Key Confirmation

The KAS2 key-confirmation schemes are based on the KAS2-basic scheme.

8.1.3.1 [bookmark: _Toc372193215][bookmark: _Toc518378827]KAS2 Key-Confirmation Components

The components for KAS2 key agreement with key confirmation are the components in Section 8.1, plus the following:

MAC:  A message authentication code algorithm with the following parameters (see Section 5.2)

a. MacKeyLen: the byte length of MacKey.

b. MacTagLen: the byte length of MacTag. (MacTagBits, as used in Section 5.2, is equal to 8  MacTagLen.)

[bookmark: _KAS2-Party_V-confirmation][bookmark: _KAS2-Party_V-confirmation_1][bookmark: _KAS2-Party_V-confirmation_2][bookmark: _KAS2-Party_V-confirmation_3][bookmark: _KAS2-Party_V-confirmation_4]MacKey shall be the first MacKeyLen bytes of the keying material and shall be used only for the key-confirmation operation of a single transaction. For KAS2 key confirmation, the length of the keying material shall be at least MacKeyLen bytes.  The keying material is usually longer than MacKeyLen bytes so that other keying material is available for subsequent operations. 

[bookmark: _Toc518378828]8.3.3.2	KAS2-Party_V-confirmation

Figure 9 depicts a typical flow for a KAS2 scheme with unilateral key confirmation from party V to party U. In this scheme, party V and party U assume the roles of the key-confirmation provider and recipient, respectively.
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[bookmark: Figure_9]Figure 9: KAS2-Party_V-confirmation Scheme (from Party V to Party U)

To provide (and receive) key confirmation (as described in Section 5.6.1), both parties set EphemDataV = CV,  and EphemDataU = CU.

Party V provides MacTagV  to party U (as specified in Section 5.6.1, with P = V and R = U), where MacTagV is computed (as specified in Section 5.2.1) on

MacDataV = “KC_1_V” || IDV || IDU || CV || CU{ || TextV}.

Party U (the KC recipient) uses the identical format and values to compute TMacTagBits[MAC(MacKey, MacDataV)] and then verify that it equals MacTagV as provided by party V.

[bookmark: _Toc173652206][bookmark: _Toc181546837][bookmark: _Toc181547053][bookmark: _Toc181547656]The MAC key used during key confirmation (i.e., MacKey) shall be destroyed by party V immediately after the computation of MacTagV, and by party U immediately after the verification of the received MacTagV or a (final) determination that the received MacTagV is in error.

Certain messages may be combined or sent in a different order (e.g., CV and MacTagV may be sent together, or CV may be sent before CU). 

8.1.3.2 [bookmark: _KAS2-Party_U-confirmation][bookmark: _KAS2-Party_U-confirmation_1][bookmark: _KAS2-Party_U-confirmation_2][bookmark: _KAS2-Party_U-confirmation_3][bookmark: _KAS2-Party_U-confirmation_4][bookmark: _Toc372193217][bookmark: _Toc518378829]KAS2-Party_U-confirmation

Figure 10 depicts a typical flow for a KAS2 scheme with unilateral key confirmation from party U to party V. In this scheme, party U and party V assume the roles of key-confirmation provider and recipient, respectively. 
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[bookmark: Figure_10]Figure 10: KAS2-Party_U-confirmation Scheme (from Party U to Party V)

To provide (and receive) key confirmation (as described in Section 5.6.1), both parties set EphemDataV = CV,  and EphemDataU = CU.
 
Party U provides MacTagU to party V (as specified in Section 5.6.1, with P = U and R = V), where MacTagU is computed (as specified in Section 5.2.1) on 

MacDataU = “KC_1_U” || IDU || IDV || CU || CV{ || TextU}.

Party V (the KC recipient) uses the identical format and values to compute TMacTagBits[MAC(MacKey, MacDataU)] and then verify that it matches the MacTagU value provided by party U.

The MAC key used during key confirmation shall be destroyed by party U immediately after the computation of MacTagU, and by party V immediately after the verification of the received MacTagU or a (final) determination that the received MacTagU is in error.

Note that CV may be sent before CU; in which case CU and MacTagU may be sent together.

8.1.3.3 [bookmark: _KAS2-bilateral-confirmation][bookmark: _KAS2-bilateral-confirmation_1][bookmark: _KAS2-bilateral-confirmation_2][bookmark: _KAS2-bilateral-confirmation_3][bookmark: _KAS2-bilateral-confirmation_4][bookmark: _KAS2-bilateral-confirmation_5][bookmark: _KAS2-bilateral-confirmation_6][bookmark: _Toc372193218][bookmark: _Toc518378830]KAS2-bilateral-confirmation

Figure 11 depicts a typical flow for a KAS2 scheme with bilateral key confirmation. In this scheme, party U and party V assume the roles of both the KC provider and recipient in order to obtain bilateral key confirmation.

		Party U

		

		Party V



		(PubKeyU, PrivKeyU)

		

		(PubKeyV, PrivKeyV)



		Obtain party V’s public key-establishment key

		PubKeyV
       

		



		

		PubKeyU
       

		Obtain party U’s public key-establishment key



		(ZU, CU) = RSASVE.GENERATE(PubKeyV)

		CU


		ZU = 
RSASVE.RECOVER(PrivKeyV, CU)



		ZV = 
RSASVE.RECOVER(PrivKeyU, CV)

		CV


		(ZV, CV) = RSASVE.GENERATE(PubKeyV)



		Z = ZU ZV

		

		Z = ZU ZV



		Compute DerivedKeyingMaterial = MacKey || KeyData and destroy Z

		

		Compute DerivedKeyingMaterial = MacKey || KeyData and destroy Z



		MacTagV =? 
TMacTagBits[MAC(MacKey, MacDataV)]

		MacTagV


		MacTagV = 
TMacTagBits[MAC(MacKey, MacDataV)]



		MacTagU = 
TMacTagBits[MAC(MacKey, MacDataU)]

		MacTagU


		MacTagU =? TMacTagBits[MAC(MacKey, MacDataU)]





[bookmark: Figure_11]Figure 11: KAS2-bilateral-confirmation Scheme 

To provide bilateral key confirmation (as described in Section 5.6.2), party U and party V exchange and verify MacTags that have been computed (as specified in Section 5.6.1) using EphemDataU = CU,  and EphemDataV = CV.

Party V provides MacTagV to party U (as specified in Section 5.6.1, with P = V and R = U); MacTagV is computed by party V (and verified by party U) using 

MacDataV = “KC_2_V” || IDV || IDU || CV || CU{ || TextV}.

Party U provides MacTagU to party V (as specified in Section 5.6.1, with P = U and R = V); MacTagU is computed by party U (and verified by party V) using 

MacDataU = “KC_2_U” || IDU || IDV || CU || CV{ || TextU}.

The MAC key used during key confirmation shall be destroyed by each party immediately following its use to compute and verify the MAC tags used for key confirmation. Once party U has computed MacTagU and has either verified the received MacTagV or made a (final) determination that the received MacTagU is in error, party U shall immediately destroy its copy of MacKey. Similarly, after party V has computed MacTagV and has either verified the received MacTagU or made a (final) determination that the received MacTagU is in error, party V shall immediately destroy its copy of MacKey.

Certain messages may be sent in a different order (and/or combined with others), e.g., CV may be sent before CU and/or MacTagV may be sent before MacTagU. 
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In a key-transport scheme, two parties, the sender and receiver, establish keying material selected by the sender. The keying material may be cryptographically bound to additional input (see Section 9.1).

In this Recommendation, the KTS-OAEP family of key-transport schemes is specified (see Section 9.2). In addition, a hybrid method for key transport is discussed whereby a key-establishment scheme specified in this Recommendation is followed by a key-wrapping scheme (see Section 9.3).

Key confirmation is included in one of the KTS-OAEP schemes to provide assurance to the sender that the participants share the same keying material (see Section 5.6 for further details on key confirmation).  

A general flow diagram is provided for each KTS-OAEP key-transport scheme. The dotted-line arrows represent the distribution of public keys by the parties themselves or by a third party, such as a Certification Authority (CA). The solid-line arrows represent the distribution of cryptographically protected values that occur during the key-transport or key-confirmation process. Note that the flow diagrams in this Recommendation omit explicit mention of various validation checks that are required. The flow diagrams and descriptions in this Recommendation assume a successful completion of the key-transport process. 

As in Section 8, there are conditions that must be satisfied for each key-transport scheme to enable the proper use of that scheme. These conditions are listed as assumptions. Failure to meet any of these conditions could yield undesirable results, such as the inability to communicate or the loss of security. As part of the proper implementation of this Recommendation, system users and/or agents trusted to act on their behalf (including application developers, system installers, and system administrators) are responsible for ensuring that all assumptions are satisfied at the time that a key-establishment transaction takes place.

9. [bookmark: _Toc372193220]

[bookmark: _Additional_Input][bookmark: _Additional_Input_1][bookmark: _Additional_Input_2][bookmark: _Additional_Input_3][bookmark: _Additional_Input_4][bookmark: _Additional_Input_5][bookmark: _Additional_Input_6][bookmark: _Additional_Input_7][bookmark: _Toc518378832]Additional Input

Additional input to the key-transport process may be employed to ensure that the keying material is adequately “bound” to the context of the key-transport transaction. The use of additional input, A, is explicitly supported by the key-transport schemes specified in  Section 9.2. Each party to a key-transport transaction shall know whether or not additional input is employed in that transaction.

Context-specific information that may be appropriate for inclusion in the additional input is listed in Section 5.5.2. (The suggestions for the content of FixedfInfo apply to the additional input as well.)

Both parties to the key-transport transaction shall know the format of the additional input, A, and shall acquire A in time to use it as required by the scheme. The methods used for formatting and distributing the additional input are application-defined. System users and/or agents trusted to act on their behalf should determine that the information selected for inclusion in A and the methods used for formatting and distributing A meet the security requirements of those users.
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[bookmark: _Ref2744948]The KTS-OAEP family of key-transport schemes is based on the RSA-OAEP encrypt and decrypt operations (see Section 7.2.2), which are, in turn, based on the asymmetric encryption and decryption primitives, RSAEP and RSADP (see Section 7.1). In this family, only party V’s key pair is used.

The key-transport schemes of this family have the following general form:

1. Party U (the sender) encrypts the keying material (and possibly additional input – see Section 7.2.2.3) to be transported using the RSA-OAEP.ENCRYPT operation and party V’s (the receiver’s) public key-establishment key to produce ciphertext, and sends the ciphertext to party V.

2. Party V decrypts the ciphertext using its private key-establishment key and the RSA-OAEP.DECRYPT operation to recover the transported keying material (see Section 7.2.2.4).

3. If key confirmation is incorporated, then the transported keying material is parsed into two parts, a transaction-specific (random) value for MacKey, followed by KeyData (see Section 5.6.1). The Mackey portion of the keying material and an approved MAC algorithm are used by each party to compute a MAC tag (of an appropriate, agreed-upon length) on what should be the same MacData (see Sections 5.6 and 9.2.4.2). The MAC tag computed by party V (the key-confirmation provider) is sent to party U (the key-confirmation recipient). If the value of the MAC tag sent by party V matches the MAC tag value computed by party U, then party U obtains a confirmation of the success of the key-transport transaction.

[bookmark: _Ref25037616][bookmark: _Toc16056179][bookmark: _Toc32395189]The common components of the schemes in the KTS-OAEP family are listed in Section 9.2.2. The following schemes are then defined:

1. KTS-OAEP-basic, the basic scheme without key confirmation (see Section 9.2.3).

2. KTS-OAEP-Party_V-confirmation, a variant of KTS-OAEP-basic with unilateral key confirmation from party V to party U (see Section 9.2.4).

For the security attributes of the KTS-OAEP family, see Section 10.3. 

9.1.1 [bookmark: _KTS-OAEP_Assumptions][bookmark: _KTS-OAEP_Assumptions_1][bookmark: _Toc372193222][bookmark: _Toc518378834]KTS-OAEP Assumptions

1. Party V has been designated as the owner of a key-establishment key pair that was generated as specified in Section 6.3. Party V has obtained assurance of its possession of the correct value for its private key as specified in Section 6.4.1.5.

2. The parties have agreed upon an approved hash function, hash, appropriate for use with the mask-generation function used by RSA-OAEP, as well as an approved hash function, H, used to hash the additional input (see Sections 5.1, and 7.2.2). The same hash function may be used for both functions.

3. Prior to or during the transport process, the sender and receiver have either agreed upon the form and content of the additional input A (a byte string to be cryptographically bound to the transported keying material so that the ciphertext is a function of both values), or agreed that A will be a null string (see Section 9.1).

4. If key confirmation is used, the parties have agreed upon an approved MAC algorithm and associated parameters, including the lengths of MacKey and MacTag (see Section 5.2).

5. When an identifier is used to label either party during the key-transport process, both parties are aware of the particular identifier employed for that purpose. In particular, the association of the identifier used to label party V with party V’s public key is trusted by party U. When an identifier is used to label party U during the key-transport process, it has been selected/assigned in accordance with the requirements of the protocol relying upon the use of the key-transport scheme.

6. Party U has obtained assurance of the validity of party V’s public key, as specified in Section 6.4.2.

7. Prior to or during the key-transport process, party U has obtained (or will obtain) assurance that party V is (or was) in possession of the (correct) private key corresponding to the public key-establishment key used during the transaction, as specified in Section 6.4.2.

8. Prior to or during the key-transport process, the keying material to be transported has been/is determined and has a format as specified in Section 9. 

9.2.2 [bookmark: _Common_components][bookmark: _Common_components_1][bookmark: _Common_components_2][bookmark: _Common_components_3][bookmark: _Ref36527738][bookmark: _Ref36608332][bookmark: _Ref36608680][bookmark: _Ref44818725][bookmark: _Toc103497169][bookmark: _Toc121918073][bookmark: _Toc518378835]Common components

The schemes in the KTS-OAEP family have the following common component:

1. RSA-OAEP:	asymmetric operations, consisting of an encryption operation RSA-OAEP.ENCRYPT and a decryption operation RSA-OAEP.DECRYPT (see Section 7.2.2).

9.2.3 [bookmark: _KTS-OAEP-basic][bookmark: _KTS-OAEP-basic_1][bookmark: _KTS-OAEP-basic_2][bookmark: _KTS-OAEP-basic_3][bookmark: _Ref36608189][bookmark: _Ref44304914][bookmark: _Toc103497170][bookmark: _Toc121918074][bookmark: _Toc518378836][bookmark: _Ref33338224][bookmark: _Ref36525121]KTS-OAEP-basic

KTS-OAEP-basic is the basic key-transport scheme in the KTS-OAEP family without key confirmation.

Let (PubKeyV, PrivKeyV) be party V’s (the receiver’s) key-establishment key pair. Let K be the keying material to be transported from party U (the sender) to party V; note that the length of K is restricted by the length of the RSA modulus and the length of the output of the hash-function used to hash the additional input during the RSA-OAEP process (see Section 7.2.2.3). The parties shall perform the following or an equivalent sequence of steps, which are also illustrated in Figure 12.

		Party U

		

		Party V



		K to be transported

		

		(PubKeyV, PrivKeyV)



		Obtain party V’s public key-establishment key

		PubKeyV
         

		



		C = 
RSA-OAEP. ENCRYPT(PubKeyV, K, A)

		C


		K = 
RSA-OAEP. DECRYPT(PrivKeyV, C, A)





[bookmark: Figure_12]Figure 12: KTS-OAEP-basic Scheme

Party U shall execute the following steps in order to transport keying material to party V.

Party U Actions: 

1. Encrypt the keying material K using party V’s public key-establishment key PubKeyV and the additional input A, to produce a ciphertext C (see Section 7.2.2.3):



C = RSA-OAEP.ENCRYPT(PubKeyV, K, A).

2. If an error indication has been returned, then return an error indication without performing the remaining actions.

3. Send the ciphertext C to party V. 

Any local copies of K, A, and any intermediate values used during the execution of party U’s actions shall be destroyed prior to the early termination of the actions due to an error, or (in the absence of errors), prior to or during the the completion of step 3. 

Party V shall execute the following steps when receiving keys transported from party U.

Party V Actions: 

1. 	Receive the ciphertext C.

2.	Decrypt the ciphertext C using the private key-establishment key PrivKeyV and the additional input A, to recover the transported keying material K (see Section 7.2.2.4):

K = RSA-OAEP.DECRYPT(PrivKeyV, C, A).

If the decryption operation outputs an error indicator, return an error indication without performing the remaining actions.

3.	Output K.

Any local copies of K, PrivKeyV, A, and any intermediate values used during the execution of party V’s actions shall be destroyed prior to the early termination of the actions due to an error, or (in the absence of errors), prior to or during the the completion of step 3.

9.2.4 [bookmark: _Hlt524168918][bookmark: _Hlt524262521][bookmark: _Hlt524262402][bookmark: _KTS-OAEP_Key_Confirmation][bookmark: _KTS-OAEP_Key_Confirmation_1][bookmark: _KTS-OAEP_Key_Confirmation_2][bookmark: _KTS-OAEP_Key_Confirmation_3][bookmark: _KTS-OAEP_Key_Confirmation_4][bookmark: _Toc518378837][bookmark: _Ref36525129][bookmark: _Toc103497171][bookmark: _Toc121918075][bookmark: _Ref533482757][bookmark: _Ref533482758][bookmark: _Ref2618618][bookmark: _Toc16056182][bookmark: _Toc32395192][bookmark: _Ref33340394][bookmark: _Ref33895501]KTS-OAEP Key Confirmation

The KES-OAEP-Party_V-confirmation scheme is based on the KTS-OAEP-basic scheme.

9.2.4.1 [bookmark: _KTS-OAEP_Common_Components][bookmark: _KTS-OAEP_Common_Components_1][bookmark: _Toc518378838]KTS-OAEP Common Components for Key Confirmation

The components for KTS-OAEP with key confirmation are the same as for KTS-OAEP-basic (see Section 9.2.2), plus the following:

MAC:	A message authentication code algorithm with the following parameters (see Section 5.2):

a. MacKeyLen: the byte length of MacKey.

b. MacTagLen: the byte length of MacTag. (MacTagBits, as used in Section 5.2, is equal to 8  MacTagLen.)

MacKey shall be the first MacKeyLen bytes of the keying material and shall be used only for the key-confirmation operation. For KTS-OAEP key confirmation, the length of the keying material shall be at least MacKeyLen bytes, and usually longer so that keying material other than MacKey is available for subsequent operations. 

9.2.4.2 [bookmark: _KTS-OAEP-Party_V-confirmation][bookmark: _KTS-OAEP-Party_V-confirmation_1][bookmark: _KTS-OAEP-Party_V-confirmation_2][bookmark: _KTS-OAEP-Party_V-confirmation_3][bookmark: _KTS-OAEP-Party_V-confirmation_4][bookmark: _Toc518378839]KTS-OAEP-Party_V-confirmation

KTS-OAEP-Party_V-confirmation is a variant of KTS-OAEP-basic with unilateral key confirmation from party V to party U.

Figure 13 depicts a typical flow for the KTS-OAEP-Party_V-confirmation scheme. In this scheme, party V and party U assume the roles of key-confirmation provider and recipient, respectively. 

		Party U

		

		Party V



		K = MacKey ll KeyData

		

		(PubKeyV, PrivKeyV)



		Obtain party V’s public key-establishment key

		PubKeyV
        

		



		C = 
RSA-OAEP.ENCRYPT(PubKeyV, K, A)

		C


		K = 
RSA-OAEP.DECRYPT(PrivKeyV, C, A)



		

		

		MacKey || KeyData = K



		MacTagV =? 
TMacTagBits[MAC(MacKey, MacDataV)]

		MacTagV


		MacTagV = 
TMacTagBits[MAC(MacKey, MacDataV)]





[bookmark: Figure_13]Figure 13: KTS-OAEP-Party_V-confirmation Scheme

To provide (and receive) key confirmation (as described in Section 5.6.1), both parties form MacData with EphemDataV = Null, and EphemDataU = C:
 
Party V provides MacTagV to party U (as specified in Section 5.6.1, with P = V and R = U), where MacTagV is computed (as specified in Section 5.2.1) using 

MacDataV = “KC_1_V” || IDV || IDU || Null || C{ || TextV}.

Party U uses the identical format and values to compute TMacTagBits[MAC(MacKey, MacDataV)] and then verify that it matches the MacTagV value provided by party V.

The MAC tag used during key confirmation shall be destroyed by party V immediately after the computation of MacTagV, and by party U immediately after the verification of the received MacTagV or a (final) determination that the received MacTagV is in error.

[bookmark: _KTS-KEM-KWS:_Key-Transport_using][bookmark: _KTS-KEM-KWS:_Key-Transport_using_1][bookmark: _KTS-Hybrid-SKW:_Key-Transport][bookmark: _KTS-Hybrid-SKW:_Key-Transport_1][bookmark: _KTS-Hybrid-SKW:_Key-Transport_2][bookmark: _KTS-Hybrid-SKW:_Key-Transport_3][bookmark: _KTS-Hybrid-SKW:_Key-Transport_4][bookmark: _KTS-Hybrid-SKW:_Key-Transport_5][bookmark: _KTS-Hybrid-SKW:_Key-Transport_6][bookmark: _KTS-Hybrid-SKW:_Key-Transport_7][bookmark: _KTS-Hybrid-SKW:_Key-Transport_8][bookmark: _KTS-Hybrid-SKW_Family_Assumptions][bookmark: _9.3.2_Common_Components][bookmark: _9.3.2_Common_Components_1][bookmark: _9.3.2_Common_Components_2][bookmark: _9.3.4.2_KTS-Hybrid-SKW-Receiver-_Confir][bookmark: _Toc518378840]9.3	Hybrid Key-Transport Methods

Key transport may be accomplished following any of the key-establishment schemes in this Recommendation (i.e, any KAS1, KAS2 or KTS-OAEP scheme) by using an approved key-wrapping algorithm (see SP 800-38F[footnoteRef:25]) with a key-wrapping key established during the execution of that key-establishment scheme. The security properties for this hybrid key-establishment process depend on the key-establishment scheme, the key-wrapping algorithm  and the communication protocol used; the roles assumed by the participants during the process; and all other parameters used during the entire process. [25:  SP 800-38F, Recommendation for Block Cipher Modes of Operation: Methods for Key Wrapping.] 





10 [bookmark: _Common_Components_of][bookmark: _KTS-KEM-KWS-basic][bookmark: _KTS-Hybrid-SKW-basic][bookmark: _KTS-KEM-KWS_Key_Confirmation][bookmark: _Toc518378841]Rationale for Selecting a Specific Scheme 

The subsections that follow describe the security properties that may be considered when a user and/or developer is choosing a key-establishment scheme from among the various schemes described in this Recommendation. The descriptions are intended to highlight certain similarities and differences between families of key-establishment schemes and/or between schemes within a particular family; they do not constitute an in-depth analysis of all possible security properties of every scheme under all adversary models. 

The (brief) discussions will focus on the extent to which each participant in a particular transaction has assurance that fresh keying material has been successfully established with the intended party (and no one else). To that end, it is important to distinguish between the actual identifier of a participant in a key-establishment transaction and the role (party U or party V) assumed by that participant during the transaction. To simplify matters, in what follows, assume that the actual identifiers of the (honest) participants in a key-establishment transaction are the proverbial “Alice,” acting as party U, and “Bob,” acting as party V. (Pretend, for the sake of discussion, that these identifiers are unique among the universe of possible participants.) The identifier associated with their malevolent adversary is “Eve.” The discussions will also consider the ill effects of certain compromises that might occur. The basic security properties that are cited depend on such factors as how a shared secret is calculated, how keying material is established, and what types of key-confirmation (if any) are incorporated into a given scheme.

Note 1: In order to provide concise descriptions of security properties possessed by the various schemes, it is necessary to make some assumptions concerning the format and type of data that is used as input during key derivation. The following assumptions are made solely for the purposes of Sections 10.1 through 10.3; they are not intended to preclude the options specified elsewhere in this Recommendation. 

1. When discussing the security properties of schemes, it is assumed that the FixedInfo input to a (single-step) key-derivation function employed during a particular key-agreement transaction uses either the concatenation format or the ASN.1 format (see Section 5.5). It is also assumed that FixedInfo includes sufficiently specific identifiers for the participants in the transaction, an identifier for the key-establishment scheme being used during the transaction, and additional input (e.g., a nonce, and/or session identifier) that may provide assurance to one or both participants that the derived keying material will reflect the specific context in which the transaction occurs (see Section 5.5 and Appendix B of SP 800-56A for further discussion concerning context-specific information that may be appropriate for inclusion in FixedInfo). 

2. In general, FixedInfo may include additional secret information (already shared between parties U and V), but the following analyses of the security properties of each scheme type assume that additional secret information is not included in the FixedInfo. 

3. In cases where an approved extraction-then-expansion key-derivation procedure is employed (see Section 5.5 and SP 800-56C), it is assumed that the FixedInfo is used as the Context input during the key-expansion step, as specified in SP 800-56C. 

4. Finally, it is assumed that all required nonces employed during a transaction are random nonces that include a component consisting of a random bit string formed in accordance with the recommendations of Section 5.4.

Note 2: Different schemes may possess different security properties. A scheme should be selected based on how well the scheme fulfills system requirements. For instance, if messages are exchanged over a large-scale network where each exchange consumes a considerable amount of time, a scheme with fewer exchanges during a single key-agreement transaction might be preferable to a scheme with more exchanges, even though the latter may possess more security benefits. It is important to keep in mind that a key-establishment scheme is usually a component of a larger protocol that may offer security-related assurances beyond those that can be provided by the key-establishment scheme alone. For example, the protocol may include specific features that limit opportunities for accidental or intentional misuse of the key-establishment component of the protocol. Protocols, per se, are not specified in this Recommendation.

10. [bookmark: _Toc321990339]

[bookmark: _Rationale_for_Choosing][bookmark: _Toc372193236][bookmark: _Toc518378842]Rationale for Choosing a KAS1 Key-Agreement Scheme

In both schemes included in the KAS1 family, only Bob (assumed to be acting as party V) is required to own an RSA key pair that is used in the key-agreement transaction. Assume that the identifier used to label party V during the transaction is one that is associated with Bob’s RSA public key in a manner that is trusted by Alice (who is acting as party U). This can provide Alice with some level of assurance that she has correctly identified the party with whom she will be establishing keying material if the transaction is successfully completed.

Each KAS1 scheme requires Alice to employ the RSASVE.GENERATE operation to select a (random) secret value Z and encrypt it as ciphertext C using Bob’s RSA public key. Unless Bob’s corresponding private key has been compromised, Alice has assurance that no unintended entity (i.e., no one but Bob) could employ the RSASVE.RECOVER operation to obtain Z from C. Absent the compromise of Bob’s RSA private key and/or Z, Alice may attain a certain level of confidence that she has correctly identified party V as Bob. Alice’s level of confidence is dependent upon:

· The specificity of the identifier that is associated with Bob’s RSA public key,

· The degree of trust in the association between that identifier and the public key,

· The assurance of the validity of the public key, and

· The availability of evidence that the keying material has been correctly derived by Bob using Z (and the other information input to the agreed-upon key-derivation method), e.g., through key confirmation with Bob as the provider. 

In general, Bob has no assurance that party U is Alice, since Bob has no assurance concerning the accuracy of any identifier that may be used to label party U (unless, for example, the protocol using a key-agreement scheme from the KAS1 family also includes additional elements that establish a trusted association between an identifier for Alice and the ciphertext C that she contributes to the transaction while acting as party U).

The assurance of freshness of the derived keying material that can be obtained by a participant in a KAS1 transaction is commensurate with the participant’s assurance that different input will be supplied to the agreed-upon key-derivation method during each such transaction. Alice can obtain assurance that fresh keying material will be derived based on her unilateral selection and contribution of the random Z value. Bob can obtain similar assurance owing to his selection and contribution of the nonce NV, which is also used as input to the agreed-upon key-derivation method. 

The KAS1-Party_V-confirmation scheme permits party V to provide evidence to party U that keying material has been correctly derived. When the KAS1-Party_V-confirmation scheme is employed during a key-agreement transaction, party V provides a key-confirmation MAC tag, MacTagV, to party U as specified in Section 8.2.3.2. This allows Alice (who is acting as party U, the key-confirmation recipient) to obtain assurance that party V has possession of the MacKey derived from the shared secret Z (and nonce NV) and has used it with the appropriate MacDataV to compute the received MacTagV. In the absence of a compromise of secret information (e.g., Bob’s RSA private key and/or Z), Alice can also obtain assurance that the appropriate identifier has been used to label party V, and that the participant acting as party V is indeed Bob, the owner of the RSA public key associated with that identifier. 

Specifically, by successfully comparing the received value of MacTagV with her own computation, Alice (acting as party U, the key-confirmation recipient) may obtain assurance that 

1. Party V has correctly recovered Z from C, and, therefore, possesses the RSA private key corresponding to Bob’s RSA public key – from which it may be inferred that party V is Bob;

2. Both parties have correctly computed (at least) the same MacKey portion of the derived keying material;

3. Both parties agree on the values (and representation) of IDV, IDU, NV, C, and any other data included in MacDataV; and

4. Bob (acting as party V) has actively participated in the transaction. 

Consequently, when the KAS1-Party_V-confirmation scheme is employed during a particular key-agreement transaction (and neither Z nor Bob’s RSA private key has been compromised), Alice can obtain assurance of the active (and successful) participation by Bob in the transaction.

The acquisition of Bob’s RSA private key by their adversary, Eve, may lead to the compromise of shared secrets and derived keying material from past, current, and future legitimate transactions (i.e., transactions that involve honest parties and are not actively influenced by an adversary) that employ the compromised private key. For example, Eve may be able to compromise a particular KAS1 transaction between Alice and Bob as long as she acquires the ciphertext, C, contributed by Alice and the nonce, NV, contributed by Bob (as well as any other data used as input during key derivation). In addition to compromising legitimate KAS1 transactions, once Eve has learned Bob’s RSA private key, she may be able to impersonate Bob while acting as party V in future KAS1 transactions (with Alice or any other party). Other schemes and applications that rely on the compromised private key may also be adversely affected. (See the appropriate subsection for details.)

Even without knowledge of Bob’s private key, if Eve learns the value of Z that has been (or will be) used in a particular KAS1 transaction between Alice and Bob, then she may be able to derive the keying material resulting from that transaction as easily as Alice and Bob (as long as Eve also acquires the value of NV and any other data used as input during key derivation). Alternatively, armed with knowledge of the Z value that has been (or will be) selected by Alice, Eve might be able to insert herself into the transaction (in the role of party V) while masquerading as Bob.

[bookmark: _Rationale_for_Choosing_1][bookmark: _Toc518378843]Rationale for Choosing a KAS2 Key-Agreement Scheme

In the schemes included in the KAS2 family, both Alice (assumed to be acting as party U) and Bob (assumed to be acting as party V) are required to own an RSA key pair that is used in their key-agreement transaction. Assume that the identifier used to label party V during the transaction is one that is associated with Bob’s RSA public key in a manner that is trusted by Alice. Similarly, assume that the identifier used to label party U during the transaction is one that is associated with Alice’s RSA public key in a manner that is trusted by Bob. This can provide each party with some level of assurance concerning the identifier of the other party, with whom keying material will be established if the transaction is successfully completed.

Each KAS2 scheme requires Alice to employ the RSASVE.GENERATE operation to select a (random) secret value ZU and encrypt it as ciphertext CU using Bob’s RSA public key. Unless Bob’s corresponding private key has been compromised, Alice has assurance that no unintended entity (i.e., no one but Bob) could employ the RSASVE.RECOVER operation to obtain ZU from CU. Similarly, each KAS2 scheme requires Bob to employ the RSASVE.GENERATE operation to select a (random) secret value ZV and encrypt it as ciphertext CV using Alice’s RSA public key. Unless Alice’s corresponding private key has been compromised, Bob has assurance that no unintended entity (i.e., no one but Alice) could employ the RSASVE.RECOVER operation to obtain ZV from CV.

Absent the compromise of Bob’s RSA private key and/or ZU, Alice may attain a certain level of confidence that she has correctly identified party V as Bob. Alice’s level of confidence is commensurate with:

· The specificity of the identifier that is associated with Bob’s RSA public key,

· The degree of trust in the association between that identifier and Bob’s public key,

· The assurance of the validity of the public key, and

· The availability of evidence that the keying material has been correctly derived by Bob using Z = ZU || ZV (and the other information input to the agreed-upon key-derivation method), e.g., through key-confirmation, with Bob as the provider. 

Similarly, absent the compromise of Alice’s private key and/or ZV, Bob may attain a certain level of confidence that he has correctly identified party U as Alice. Bob’s level of confidence is commensurate with:

· The specificity of the identifier that is associated with Alice’s RSA public key,

· The degree of trust in the association between that identifier and Alice’s public key,

· The assurance of the validity of the public key, and

· The availability of evidence that the keying material has been correctly derived by Alice using Z = ZU || ZV (and the other information input to the agreed-upon key-derivation method), e.g., through key-confirmation, with Alice as the provider.

The assurance of freshness of the derived keying material that can be obtained by a participant in a KAS2 transaction is commensurate with the participant’s assurance that different input will be supplied to the agreed-upon key-derivation method during each such transaction. Alice can obtain assurance that fresh keying material will be derived, based on her selection and contribution of the random ZU component of Z. Bob can obtain similar assurance owing to his selection and contribution of the random ZV component of Z.

Evidence that keying material has been correctly derived may be provided by using one of the three schemes from the KAS2 family that incorporates key confirmation. The KAS2-Party_V-confirmation scheme permits party V (Bob) to provide evidence of correct key derivation to party U (Alice); the KAS2-Party_U-confirmation scheme permits party U (Alice) to provide evidence of correct key derivation to party V (Bob); the KAS2-bilateral-confirmation scheme permits each party to provide evidence of correct key derivation to the other party.

When the KAS2-Party_V-confirmation scheme or the KAS2-bilateral-confirmation scheme is employed during a key-agreement transaction, party V provides a key-confirmation MAC tag, MacTagV, to party U as specified in Section 8.3.3.2 or Section 8.3.3.4, respectively. This allows Alice (who is the recipient of MacTagV) to obtain assurance that party V has possession of the MacKey derived from the shared secret Z and has used it with the appropriate MacDataV to compute the received MacTagV. In the absence of a compromise of secret information (e.g., Bob’s RSA private key and/or ZU), Alice can also obtain assurance that the appropriate identifier has been used to label party V, and that the participant acting as party V is indeed Bob, the owner of the RSA public key associated with that identifier.

Similarly, when the KAS2-Party_U-confirmation scheme or the KAS2-bilateral-confirmation scheme is employed during a key-agreement transaction, party U provides a key-confirmation MAC tag, MacTagU, to party V as specified in Section 8.3.3.3 or Section 8.3.3.4, respectively. This allows Bob (who is the recipient of MacTagU) to obtain assurance that party U has possession of the MacKey derived from the shared secret Z and has used it with the appropriate MacDataU to compute the received MacTagU. In the absence of a compromise of secret information (e.g., Alice’s RSA private key and/or ZV), Bob can also obtain assurance that the appropriate identifier has been used to label party U, and that the participant acting as party U is indeed Alice, the owner of the RSA public key associated with that identifier.

Specifically, by successfully comparing the value of a received MAC tag with his/her own computation, a key-confirmation recipient in a KAS2 transaction (be it Alice or Bob) may obtain the following assurances. 

1. He/She has correctly decrypted the ciphertext that was produced by the other party and, thus, that he/she possesses the RSA private key corresponding to the RSA public key that was used by the other party to produce that ciphertext – from which it may be inferred that the other party had access to the RSA public key owned by the key-confirmation recipient. For example, if Alice is a key-confirmation recipient, she may obtain assurance that she has correctly decrypted the ciphertext CV using her RSA private key, and so may also obtain assurance that her corresponding RSA public key was used by party V to produce CV.

2. The ciphertext sent to the other party was correctly decrypted and, thus, the other party possesses the RSA private key corresponding to the RSA public key that was used to produce that ciphertext – from which it may be inferred that the other party is the owner of that RSA public key. For example, if Alice is a key-confirmation recipient, she can obtain assurance that party V has correctly decrypted the ciphertext CU using the RSA private key corresponding to Bob’s RSA public key – from which she may infer that party V is Bob.

3. Both parties have correctly computed (at least) the same MacKey portion of the derived keying material.

4. Both parties agree on the values (and representation) of IDV, IDU, CV, CU, and any other data included as input to the MAC algorithm.

5. Assuming that there has been no compromise of either participant’s RSA private key and/or either component of Z, a key-confirmation recipient in a KAS2 transaction can obtain assurance of the active (and successful) participation in that transaction by the owner of the RSA public key associated with the key-confirmation provider. For example, if Alice is a key-confirmation recipient, she can obtain assurance that Bob has actively – and successfully – participated in that KAS2 transaction.

The acquisition of a single RSA private key by their adversary, Eve, will not (by itself) lead to the compromise of derived keying material from legitimate KAS2 transactions between Alice and Bob that employ the compromised RSA key pair. (In this context, a “legitimate transaction” is one in which Alice and Bob act honestly, and there is no active influence exerted by Eve.) However, if Eve acquires an RSA private key, she may be able to impersonate that RSA key pair’s owner while participating in KAS2 transactions. (For example, If Eve acquires Alice’s private key, she may be able to impersonate Alice – acting as party U or as party V – in KAS2 transactions with Bob or any other party). Other schemes and applications that rely on the compromised private key may also be adversely affected. (See the appropriate subsection for details.)

Similarly, the acquisition of one (but not both) of the secret Z components, ZU or ZV, would not (by itself) compromise the keying material derived during a legitimate KAS2 transaction between Alice and Bob in which the compromised value was used as one of the two components of Z. However, armed with knowledge of only one Z component, Eve could attempt to launch an active attack against the party that generated it. For example, if Eve learns the value of ZU that has been (or will be) contributed by Alice, then Eve might be able to insert herself into the transaction by masquerading as Bob (while acting as party V). Likewise, an adversary who knows the value of ZV that has been (or will be) selected by Bob might be able to participate in the transaction by masquerading as Alice (while acting as party U).
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In each of the key-transport schemes included in the KTS-OAEP family, only Bob (assumed to be acting as party V, the key-transport receiver) is required to own an RSA key pair that is used in the transaction. Assume that the identifier used to label party V during the transaction is one that is associated with Bob’s RSA public key in a manner that is trusted by Alice (who is acting as party U, the key-transport sender). This can provide Alice with some level of assurance that she has correctly identified the party with whom she will be establishing keying material if the key-transport transaction is successfully completed.

Each KTS-OAEP scheme requires Alice to employ the RSA-OAEP.ENCRYPT operation to encrypt the selected keying material (and any additional input) as ciphertext C, using Bob’s RSA public key. Unless Bob’s corresponding private key has been compromised, Alice has assurance that no unintended entity (i.e., no one but Bob) could employ the RSA-OAEP.DECRYPT operation to obtain the transported keying material from C. Absent the compromise of Bob’s RSA private key (or some compromise of the keying material itself – perhaps prior to transport), Alice may attain a certain level of confidence that she has correctly identified party V as Bob. Alice’s level of confidence is commensurate with:

· The specificity of the identifier that is associated with Bob’s RSA public key,

· The degree of trust in the association between that identifier and the public key,

· The assurance of the validity of the public key, and

· The availability of evidence that the transported keying material has been correctly recovered from C by Bob, e.g., through key confirmation, with Bob as the provider.

In general, Bob has no assurance that party U is Alice, since Bob has no assurance concerning the accuracy of any identifier that may be used to label party U (unless, for example, the protocol using a key-transport scheme from the KTS-OAEP family also includes additional elements that establish a trusted association between an identifier for Alice and the ciphertext, C, that she sends to Bob while acting as party U).

Due to Alice’s unilateral selection of the keying material, only she can obtain assurance of its freshness. (Her level of confidence concerning its freshness is dependent upon the actual manner in which the keying material is generated by/for her.) Given that Bob simply accepts the keying material that is transported to him by Alice, he has no assurance that it is fresh.

The randomized plaintext encoding used during the RSA-OAEP.ENCRYPT operation can provide assurance to Alice that the value of C will change from one KTS-OAEP transaction with Bob to the next, which may help obfuscate the occurrence of a repeated transport of the same keying material from Alice to Bob, should that ever be necessary.

The KTS-OAEP-Party_V-confirmation scheme permits party V to provide evidence to party U that keying material has been correctly recovered from the ciphertext C. When the KTS-OAEP- Party_V-confirmation scheme is employed during a key-transport transaction, party V provides a key-confirmation MAC tag (MacTagV) to party U as specified in Section 9.2.4.2. This allows Alice (who is acting as party U, the key-confirmation recipient) to obtain assurance that party V has recovered the fresh MAC key (MacKey) that was included in the transported keying material and that party V has used it with the appropriate MacDataV to compute the received MacTagV. In the absence of a compromise of secret information (e.g., Bob’s RSA private key and/or the MAC key), Alice can also obtain assurance that the appropriate identifier has been used to label party V, and that the participant acting as party V is indeed Bob, the owner of the RSA public key associated with that identifier. 

Specifically, by successfully comparing the received value of MacTagV with her own computation, Alice (acting as party U, the key-confirmation recipient) may obtain assurance that 

1. Party V has correctly recovered MacKey from C, and, therefore, possesses the RSA private key corresponding to Bob’s RSA public key – from which it may be inferred that party V is Bob;

2. Both parties agree on the values (and representation) of IDV, IDU, C, and any other data included in MacDataV; and

3. Bob has actively participated in the transaction (as party V), assuming that neither the transported MAC key nor Bob’s RSA private key has been compromised. Alice’s level of confidence is commensurate with her confidence in the freshness of the MAC key.

The acquisition of Bob’s RSA private key by their adversary, Eve, may lead to the compromise of keying material established during past, current, and future legitimate transactions (i.e., transactions that involve honest parties and are not actively influenced by an adversary) that employ the compromised private key. For example, Eve may be able to compromise a particular KTS-OAEP transaction between Alice and Bob, as long as she also acquires the ciphertext, C, sent from Alice to Bob. In addition to compromising legitimate KTS-OAEP transactions, once Eve has learned Bob’s RSA private key, she may be able to impersonate Bob while acting as party V in future KTS-OAEP transactions (with Alice or any other party). Other schemes and applications that rely on the compromised private key may also be adversely affected. (See the discussions of other schemes in this section.) 

Even without knowledge of Bob’s private key, if the KTS-OAEP-Party_V-confirmation scheme is used during a particular key-transport transaction, and Eve learns the value of MacKey that Alice will send to Bob, then it may be possible for Eve to mislead Alice about Bob’s (active and successful) participation. As long as Eve also acquires the value of C intended for Bob (and any other data needed to form MacDataV), it may be possible for Eve to correctly compute MacTagV and return it to Alice as if it had come from Bob (who may not even be aware that Alice has initiated a transaction with him). Such circumstances could arise, for example, if (in violation of this Recommendation) Alice were to use the same MAC key while attempting to transport keying material to multiple parties (including both Bob and Eve).

[bookmark: _Toc518378845]Summary of Assurances Associated with Key-Establishment Schemes

The security-related features discussed in the preceding subsections of Section 10 can be summarized in terms of the following types of assurance that may be obtained when participating in a key-establishment transaction.

· Implicit Key Authentication (IKA): In the case of a key-agreement scheme from the KAS1 or KAS2 family, this is the assurance obtained by one party in a key-agreement transaction that only a specifically identified entity (the intended second party in that transaction) could also derive the key(s) of interest. In the case of a key-transport scheme from the KTS-OAEP family, this is the assurance obtained by the sender that only a specifically identified entity (the intended receiver in that transaction) could successfully decrypt the encrypted keying material to obtain the key(s) of interest. 

· Key Freshness (KF): This is the assurance obtained by one party in a key-establishment transaction that keying material established during that transaction is statistically independent of the keying material established during that party’s previous key-establishment transactions.

· Key Confirmation (KC): This is the assurance obtained by one party in a key-establishment transaction that a specifically identified entity (the intended second party in that key-establishment transaction) has correctly acquired and is able to use, the key(s) of interest.

Notes: 

A participant in a key-establishment transaction cannot hope to distinguish between the actions of another entity and the actions of those who share knowledge of that entity’s private key-establishment key and/or any other secret data sufficient for that entity’s successful participation in a particular key-agreement transaction. In what follows, references to a “specifically identified entity” must be interpreted as an umbrella term including all those who are legitimately in possession of that entity’s private key, etc., and are trusted to act on the entity’s behalf. Any assurance obtained with respect to the actions of a specifically identified entity is conditioned upon the assumption that the identified entity’s relevant private/secret data has not been misused by a trusted party or compromised by an adversary.

IKA assurance, as used in this Recommendation, does not address the potential compromise of established keying material owing to such problems as improper storage, the failure to prevent the leakage of sensitive information during computations involving the established keys, and/or inadequate methods for the timely destruction of sensitive data (including the keys themselves). These are just a few examples of misuse, mishandling, side-channel leakage, etc. that could lead to an eventual compromise.

In the definition of KC assurance, this Recommendation’s requirement that it be a specifically identified entity who demonstrates the ability to use (some portion of) the established keying material is a stricter condition than is sometimes found in the literature. In this Recommendation, KC assurance presupposes IKA assurance with respect to (at least) the MAC key used in the key-confirmation computations. 

KC assurance can be obtained by employing a key-establishment scheme that includes key-confirmation as specified in this Recommendation. In particular, the KC provider is expected to use an RSA private key, and the KC recipient is expected to contribute random/ephemeral data that affects the values of both the MacKey and the MacData used to compute a key-confirmation MacTag.

The following table shows which types of assurance can be obtained and by whom (i.e., party U and/or party V) in a key-establishment transaction by using appropriately implemented schemes from the indicated scheme families. The previous assumptions in Section 10 concerning the format and content of FixedInfo, the specificity of identifiers bound to RSA public keys, the randomness of nonces, etc., still hold.
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		Scheme Family

		Sections

		Assurance that can be Obtained by the Indicated Parties



		

		

		IKA

		KF

		KC



		KAS1

		8.2 and 10.1

		U

		U & V

		U



		KAS2

		8.3 and 10.2

		U & V

		U & V

		U & V



		KTS-OAEP

		9.2 and 10.3

		U

		U

		U





In key-agreement transactions that employ a scheme from the KAS2 family, there is an additional type of assurance that can be obtained by both participants:

· Key-Compromise Impersonation Resilience (K-CI): This is the assurance obtained by one party in a KAS2 key-agreement transaction that the compromise of that party’s RSA private key would not permit an adversary to impersonate another entity (the owner of a second, uncompromised, RSA key pair) while acting as the second party in the transaction.

For example, suppose that Alice participates in a KAS2 key-agreement transaction with a second party that she believes to be Bob (based on the identifier associated with the second party’s RSA public key). Alice has assurance that even if a malicious party, Eve, has obtained Alice’s RSA private key, that would not (by itself) permit Eve to impersonate Bob in the transaction and successfully establish shared keying material with Alice.

The notion of key-compromise impersonation resilience, as defined in this Recommendation, is not applicable to transactions employing a scheme from the KAS1 or KTS-OAEP family. In such schemes, only one party owns an RSA key pair, and the scheme (by itself) provides no means of ensuring the accuracy of any identifier that may be associated with the other party.

Under the assumptions made in Section 10, there is an often-desirable type of assurance that is not supported by the use of (only) the key-establishment schemes specified in this Recommendation:

· Forward Secrecy (FS): This is the assurance obtained by one party in a key-establishment transaction that the keying material established during that transaction is secure against the future compromise of (any and all of) the long-term private/secret keys of the participants.

(Key-agreement transactions that employ a scheme from the KAS2 family afford some security against the compromise of a single participant’s RSA private key, but may not be secure against the compromise of the RSA private keys of both participants.) If a user or application requires assurance of forward secrecy, then an appropriate choice of key-agreement scheme from the C(2) category of schemes specified in SP 800-56A may be employed.

11 [bookmark: _Rationale_for_Choosing_3][bookmark: _Toc518378846]Key Recovery

For some applications, the secret keying material used to protect data or to process protected data may need to be recovered (for example, if the normal reference copy of the secret keying material is lost or corrupted). In this case, either the secret keying material or sufficient information to reconstruct the secret keying material needs to be available (for example, the keys and other inputs to the scheme used to perform the key-establishment process).

Keys used during the key-establishment process shall be handled in accordance with the following:

1.	One or both keys of a key pair may be saved.

2.	A key-wrapping key may be saved.

In addition, the following information that is used during key-establishment may need to be saved:

3.  The nonce(s),

4.	The ciphertext,

5.	Additional input, and

6.  OtherInput, or its equivalent.

General guidance on key recovery and the protections required for each type of key is provided in SP 800-57.

12 [bookmark: _Toc518378847]Implementation Validation 

When the NIST Cryptographic Algorithm Validation System (CAVS) has established a validation program for this Recommendation, a vendor shall have its implementation tested and validated by the Cryptographic Algorithm Validation Program (CAVP) and Cryptographic Module Validation Program (CMVP) in order to claim conformance to this Recommendation. Information on the CAVP and CMVP is available at https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program and https://csrc.nist.gov/projects/cryptographic-module-validation-program, respectively.

An implementation claiming conformance to this Recommendation shall include one or more of the following capabilities:

· Key-pair generation as specified in Section 6.3, together with an approved random bit generator;

· Public-key validation as specified in Section 6.4.2; 

· A key-agreement scheme from Section 8, together with an approved key-derivation method from Section 5.5 and an approved random bit generator; 

· The key-transport scheme specified in Section 9.2, together with an approved random bit generator and approved hash function(s); and/or

· Unilateral or bilateral key confirmation as specified in Section 5.6.

An implementer shall also identify the appropriate specifics of the implementation, including:

· The hash function(s) to be used (see Section 5.1);

· The MAC function used for key confirmation;

· The MacKey length(s) (see Table 2 in Section 5.6.3);

· The key-establishment schemes available (see Sections 8 and 9);

· The key-derivation method to be used if a key-agreement scheme is implemented, including the format of OtherInput or its equivalent (see Section 5.5);

· The type of nonces to be generated (see Section 5.4);

· How assurance of private-key possession and assurance of public-key validity are expected to be achieved by both the owner and the recipient (see Section 6.4);

· Whether or not a capability is available to handle additional input (see Section 9.1); and

· The RBG used, and its security strength (see Section 5.3).
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Input:	A non-negative integer X and the intended length n of the byte string satisfying

				28n > X.

Output:	A byte string S of length n bytes.

1.	Qn+1 = X.

2.	For i = n to 1 by −1

2.1	Qi = (Qi+1)256.

2.2	Xi = Qi+1  (Qi  256).

2.3	Si = (ai1, ai2, ai3, ai4, ai5, ai6, ai7, ai8),

the 8-bit binary representation of the non-negative integer 
Xi = ai1 27+ai2 26+ai3 25+ai4 24+ai5 23+ai6 22+ai7 2+ai8.

3.	Let S1, S2,…, Sn be the bytes of S from leftmost to rightmost.

4.	Output S.
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Input:		A non-empty byte string S (SLen is used to denote the length of the byte string).

Output:	A non-negative integer X.

1.	Let S1, S2,… SSLen be the bytes of S from first to last (i.e., from leftmost to rightmost).

2.	Let X = 0.

3.	For i = 1 to SLen by 1

3.1  Let Xi = (ai127, ai226, ai325, ai424, ai523, ai622, ai72, ai8),

where ai1, ai2, ai3, ai4, ai5, ai6, ai7, ai8 are the bits of Si from leftmost to rightmost; i.e., Si = (ai1, ai2, ai3, ai4, ai5, ai6, ai7, ai8).

3.2   Replace X by (X  256) + Xi.

4.	Output X.
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Two methods for prime-factor recovery are provided below: Appendix C.1 provides a probabilistic method, and Appendix C.2 provides a determinitic method. Prime-factor recovery is required during key-pair validation using the basic format (see Section 6.4.1.2.1).

[bookmark: _Toc518378855]C.1	Probabilistic Prime-Factor Recovery

The following algorithm recovers the prime factors of a modulus, given the public and private exponents. The algorithm is based on Fact 1 in [Boneh 1999].

Function call: RecoverPrimeFactors(n, e, d)

Input:

1. n: modulus.

2. e: public exponent.

3. d: private exponent.

Output:

(p, q): prime factors of modulus.

Errors: “prime factors not found”

Assumptions: The modulus n is the product of two prime factors p and q; the public and private exponents satisfy de  1 (mod (n)) where (n) = LCM(p – 1, q – 1).

Process:

1.	Let m = de – 1. If m is odd, then go to Step 4.

2.	Write m as m = 2tr, where r is the largest odd integer dividing m, and t  1.

3.	For i = 1 to 100 do:

a.	Generate a random integer g in the range [0, n1].

b.	Let y = gr mod n.

c.	If y = 1 or y = n – 1, then go to Step g.

d.	For j = 1 to t – 1 do:

i. Let x = y2 mod n.

ii. If x = 1, go to Step 5.

iii. If x = n – 1, go to Step g.

iv. Let y = x.

e. Let x = y2 mod n.

f.	If x = 1, go to Step 5.

g.	Continue.

4.	Output “prime factors not found,” and exit without further processing.

5.	Let p = GCD(y – 1, n) and let q = n/p.

6.	Output (p, q) as the prime factors.

Any local copies of d, p, q , m, t, r, x, y, g and any intermediate values used during the execution of the RecoverPrimeFactors function shall be destroyed prior to or during steps 4 and 6. Note that this includes the values for p and q that are output in step 6.

Notes:

1. According to Fact 1 in [Boneh 1999], the probability that one of the values of y in an iteration of Step 3 reveals the factors of the modulus is at least 1/2, so on average, no more than two iterations of that step will be required. If the prime factors are not revealed after 100 iterations, then the probability is overwhelming that the modulus is not the product of two prime factors, or that the public and private exponents are not consistent with each other.

2. The algorithm bears some resemblance to the Miller-Rabin primality-testing algorithm (see, e.g., FIPS 186).

3. The order of the recovered prime factors p and q may be the reverse of the order in which the factors were generated originally.

4. All local copies of d, p, q, and and any other local/intermediate values used during the execution of the RecoverPrimeFactors function shall be destroyed prior to the early termination of the process due to an error, or (in the absence of errors), prior to or during the the completion of step 6.

[bookmark: _Toc518378856]C.2	Deterministic Prime-Factor Recovery

The following (deterministic) algorithm also recovers the prime factors of a modulus, given the public and private exponents. A proof of correctness is provided below.

Function call: RecoverPrimeFactors(n, e, d)

Input:

1. n: modulus.

2. e: public exponent.

3. d: private exponent.

Output:

(p, q): prime factors of modulus, with p  q.

Assumptions: 

1. The modulus n is the product of two prime factors p and q, with p  q. 

2. Both p and q are less than 2(nBits/2), where nBits ≥ 2048 is the bit length of n.

3. The public exponent e is an odd integer between 216 and 2256.

4. The private exponent d is a positive integer that is less than (n) = LCM(p – 1, q – 1).

5. The exponents e and d satisfy de  1 (mod (n)).

Note: 	For more general applications of the process below, assumptions 2 and 3 above can be replaced by the more general assumption that the public exponent e is an odd integer satisfying 1  e2 ≤ n /(p + q – 1). (See the discussion following Lemma 3 below.) That condition will be satisfied, e.g., if e2 is greater than one, but no greater than one-half of the smallest prime factor of n, as is the case for any RSA key pair generated in conformance with this Recommendation. 



Process:

1.	Let a = (de – 1)  GCD(n – 1, de – 1).

2.	Let m = a /n and r = a – m n, so that

     a = m n + r  and  0 ≤ r  n.

3.	Let b = ( (n – r)/(m + 1) ) + 1;  if b is not an integer or b2 ≤ 4n, then output an error indicator, and exit without further processing. (See Note 1 below.)

4.	Let  be the positive square root of b2 – 4n; if  is not an integer, then output an error indicator, and exit without further processing. (See Note 2 below.)

5.	Let p = (b + )/2 and let q = (b – )/2.

6.	Output (p, q) as the prime factors. (See Note 3 below.)

Notes:

1.	b should be equal to p + q. If b is not an integer satisfying b2  4n, then one or more of the assumptions concerning n, e, d, p and q are incorrect and the corresponding RSA key pair does not conform to the requirements of this Recommendation.	

2.	 should be equal to p – q. If  is not an integer, then one or more of the assumptions concerning n, e, d, p and q are incorrect and the corresponding RSA key pair does not conform to the requirements of this Recommendation.

3.	The labeling of the recovered prime factors (i.e., labeling the larger as p and the smaller as q) may be the reverse of the labeling that was used when those factors were originally generated.

4.	All local copies of d, p, q, and and any other local/intermediate values used during the execution of the RecoverPrimeFactors function shall be destroyed prior to the early termination of the process due to an error, or (in the absence of errors) prior to or during the the completion of step 6.

Proof of Correctness:

Since (by definition), (n) = LCM(p – 1, q – 1), 

(p – 1)(q – 1) = LCM(p – 1, q – 1)  GCD(p – 1, q – 1) = (n)  GCD(p – 1, q – 1)	(1)



Lemma 1:  GCD(p – 1, q – 1) = GCD(n – 1, (n))				

Proof of Lemma 1:

Since n – 1 = (p – 1)(q – 1) + (p – 1) + (q – 1) and (n) is a divisor of (p – 1)(q – 1), it follows that GCD(n – 1, (n)) = GCD( (p – 1) + (q – 1), (n) ). 

Any common divisor of p – 1 and q – 1 will also be a divisor of both (p – 1) + (q – 1) and (n), and hence a divisor of GCD( (p – 1) + ( q – 1), (n) ). In particular, GCD(p – 1, q – 1) is a divisor of GCD( (p – 1) + (q – 1), (n) ), and so, GCD(p – 1, q – 1) ≤ GCD( (p – 1) + (q – 1), (n) ).

To establish that GCD( (p – 1) + (q – 1), (n) ) ≤ GCD(p – 1, q – 1) – and hence that the two GCDs are equal. Let { hi | 1 ≤ i ≤ m } denote the set of primes that are divisors of either p – 1 or q – 1. Then the factorizations of p – 1, q – 1, and (n) have the forms 

p – 1	= h1x(1)  h2x(2)  …  hmx(m),

q – 1	= h1y(1)  h2y(2)  …  hmy(m),  and

 (n)	= h1z(1)  h2z(2)  …  hmz(m),

where { x(i) | 1 ≤ i ≤ m }, { y(i) | 1 ≤ i ≤ m }, and { z(i) | 1 ≤ i ≤ m } are sets of non-negative integers satisfying z(i) = max( x(i), y(i) ). If j is a divisor of (n), then j has the form

 j = h1w(1)  h2w(2)  …  hmw(m), with 0 ≤ w(i) ≤ z(i) for 1 ≤ i ≤ m.

Suppose that j is also a divisor of (p – 1) + (q – 1) and that, for a particular value of i, z(i) = x(i). In this case, hiw(i) will divide both p – 1 and the sum (p – 1) + (q – 1), hence hiw(i) will divide their difference, q – 1. Similarly, if z(i) = y(i), then hiw(i) will divide both q – 1 and the sum (p – 1) + (q – 1), hence hiw(i) will divide p – 1 as well. Thus, each prime-power factor of j is a common divisor of p – 1 and q – 1, and so the same is true of j. This shows that any common divisor j of (n) and the sum (p – 1) + (q – 1) is also a common divisor of p – 1 and q – 1, and hence a divisor of GCD(p – 1, q – 1). 

In particular, GCD( (p – 1) + (q – 1), (n) ) is a divisor of GCD(p – 1, q – 1), from which it follows that GCD( (p – 1) + (q – 1), (n) ) ≤ GCD(p – 1, q – 1). Combining this result with the previously established inequality GCD(p – 1, q – 1) ≤ GCD( (p – 1) + (q – 1), (n) ), proves the lemma’s claim: GCD(p – 1, q – 1) = GCD( (p – 1) + (q – 1), (n) ) = GCD(n – 1, (n)).  



Combining Lemma 1 with equation (1) above yields 

(p – 1)(q – 1) = (n)  GCD(n – 1, (n)). 	(2)

Consider the quantity a = (de – 1)  GCD(n, de – 1) from step 1 of  the RecoverPrimeFactors process. Since e > 1, the congruence de  1 (mod (n)) implies that de – 1 = u (n) for some positive integer u. Substituting u (n) for de – 1 in the expression for a yields

a = (de – 1)  GCD(n – 1, de – 1) = u (n)  GCD(n – 1, u (n)).	(3)

GCD(n – 1, (n)) is a common divisor of n – 1 and u (n), and so is also a divisor of their GCD. Let v = GCD(n – 1, u (n)) / GCD(n – 1, (n)). 



Lemma 2:  1 ≤ v ≤ u  e

Proof of Lemma 2:

The assumption that the positive integer d is less than (n) and the fact that u = (de – 1)/(n) implies that u  e. Since v is a positive integer, it is true that 1 ≤ v. It remains to show that
v ≤ u. Using 

GCD(n – 1, u (n)) = (n – 1)(u (n)) / LCM(n – 1, u (n))

and

GCD(n – 1, (n)) = (n – 1)((n)) / LCM(n – 1, (n)),

It follows that

v = GCD(n – 1, u (n)) / GCD(n – 1, (n)) = u  LCM(n – 1, (n))/LCM(n – 1, u (n)),

which can be rewritten to obtain

LCM(n – 1, u (n)) / LCM(n – 1, (n)) = u/v.

Since LCM(n – 1, u (n)) is a common multiple of n – 1 and (n), it is a multiple of the least common multiple of n – 1 and (n). Therefore, u/v = LCM(n – 1, u (n)) / LCM(n – 1, (n)) is a positive integer. From 1 ≤ u/v, one obtains v ≤ u, completing the proof of the lemma.  



Using GCD(n – 1, u (n)) = v GCD(n – 1, (n)) together with equations (2) and (3) above, it follows that

a = u (n)  v GCD(n – 1, (n)) = uv ( (n)  GCD(n – 1, (n)) ) = uv (p – 1)(q – 1).	(4)

Since (p – 1)(q – 1) = n – (p + q – 1), equation (4) above shows that

a = uv n – uv (p + q – 1) = (uv – 1) n + ( n – uv (p + q – 1) )	(5)



Lemma 3:  0 ≤ n – uv (p + q – 1)  n

Proof of Lemma 3:

It suffices to verify that 0  uv  ≤ n /(p + q – 1). By the assumptions on the sizes of p, q, and n, it follows that  p + q – 1  2(nBits/2)+1 and n  2(nBits – 1), so that n /(p + q – 1)  2(nBits/2) – 2. If it can be shown that the product uv is less than 2(nBits/2) – 2, then the proof of Lemma 3 will be complete. Lemma 2 implies that 1 ≤ uv ≤ u2  e2. By assumption, e  2256, so e2  2512. Since this document requires nBits ≥ 2048, it follows that 2(nBits/2) – 2 ≥ 21022. The fact that uv  2512  21022 ≤ 
2(nBits/2) – 2 completes the proof of the lemma.  

Note: Lemma 3 (and hence the proof of correctness for the RecoverPrimeFactors process) is true under conditions more general than those used in the proof above, which invoked the bounds on the sizes of e, p, q, and n that are required by this Recommendation. For example, it suffices to know that those four values satisfy the condition 1  e2 ≤ n /(p + q – 1) and that d  (n).



Now consider the quantities m and r computed in step 2 of the RecoverPrimeFactors process. 

Combining equation (5) with Lemma 3 yields

m = a /n = (uv – 1)  	and    r = a – mn = n – uv (p + q – 1).

Therefore, in step 3 of the process, 

b = ( (n – r)/(m + 1) ) + 1 = ( uv (p + q – 1))/(uv) ) + 1 = p + q,

and in step 4, 

		 = (b2 – 4n)1/2 = ( (p + q)2 – 4pq)1/2  = ( (p – q)2)1/2 = p – q.

These values for b and  ensure that p and q are correctly recovered in step 5, since

p = (b + )/2   and   q = (b – )/2.
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Approved key-establishment schemes are required to provide a security strength of at least 112 bits. An approximation of the maximum security strength that can be supported by an RSA modulus n can be computed as follows:

Let nBits = len(n), the bit length of the RSA modulus n included in a public key employed by the key-establishment scheme. The estimated maximum security strength E that can be supported by the modulus is determined using the following formula:

E = 

Since E is not likely to be an integer, some rounding is appropriate. To facilitate comparison to symmetric-key algorithms (whose keys typically consist of some number of bytes), the value of E will be rounded to the nearest integer multiple of eight to obtain an estimate of the maximum security strength that can be supported by the use of a modulus of length nBits. In short, 

S(nBits) = the nearest multiple of 8 to E.

Therefore, for the modulus lengths identified in Table 3 of Section 6.3, the maximum security strengths that can be suppported are provided below. 

Table 5: Estimated Security Strengths of Common RSA Moduli

		Modulus Length

(in bits)

		E

		Maximum Security Strength S(nBits)



		2048

		110.1

		112



		3072

		131.97

		128



		4096

		149.73

		152



		6144

		178.42

		176



		8192

		201.7

		200





As stated in Section 6.3, any modulus of even bit length with an even bit length that provides at least 112 bits of security strength may be used (i.e., nBits must be  2048). The method above can be used to estimate the security strengths supported by moduli other than those explicitly listed above.

[bookmark: _Toc518378858]Appendix E: Revisions (Informative)

In the 2014 revision, the following revisions were made:

· Section 3.1 – Added definitions of assumptions, binding, destroy, fresh, key-derivation function, key-derivation method, key-wrapping key, MAC tag, and trusted association; removed algorithm identifier, digital signature, initiator, responder.

· Section 4 – Used party U and party V to name the parties, rather than using the initiator and responder as the parties.  In Sections 8 and 9, the schemes have been accordingly renamed: KAS1-responder-confirmation is now KAS1-Party_V-confirmation, KAS2-responder-confirmation is now KAS2-Party_V-confirmation, KAS2-initiator-confirmation is now KAS2-Party_U-confirmation, KTS-OAEP-receiver-confirmation is not KTS-OAEP-Party_V-confirmation, and KTS-KEM-KWS-receiver-confirmation is now KTS-KEM-KWS-Party_V-confirmation. 

· Section 4 – Added requirements to destroy the local copies of secret and private values and all intermediate calculations before terminating a routine normally or in response to an error. Instructions to this effect have been inserted throughout the document. 

· The discussion about identifiers vs. identity and binding have been moved to Section 4.1.

· Section 4.3 – The phrase “IFC-based” has been removed throughout the document.

· Section 5.4 – More discussion has been added about the use of nonces, including new requirements and recommendations.

· Section 5.5 – Key derivation has been divided into single-step key derivation methods (Section 5.5.1), an extract-then-expand key derivation procedure (Section 5.5.2) and application-specific key-derivation methods (Section 5.5.3).

· Section 5.5.1.2 – The use of OtherInfo (including identifiers) during the derivation of keys is recommended, but no longer required (Section 5.5.1.2).

· Moved the general introduction of key-confirmation to Section 5.9 – The discussion now incorporates the material from Section 6.6 of the previous version of the document.

· Section 6.4 – There is now a longer, and more thorough discussion of validity in Section 6.4.  The concept of trusted associations has been introduced.

· Section 6.4.1.1 – Removed “or TTP” from the following:  “The key pair can be revalidated at any time by the owner as follows….” 

· Section 7.2.3.2 – Moved discussion of symmetric key-wrapping methods from Section 5.7 to Section 7.2.3.2; much more information is now provided.

· Section 10 – The rationale for choosing each scheme type has been combined in this new section, along with a discussion of their security properties.

· The old Appendix A, Summary of Differences between this Recommendation and ANS X9.44 (Informative), was removed. 

· The old Appendix E becomes Appendix D, and the changes introduced in this Revision are listed here.

· All figures are replaced to reflect the content, text, and terminology changes.

· Security requirements have been updated; in particular, the 80-bit security strength is no longer permitted in this Recommendation.

· Changes to handle the destruction of local keys and intermediate values have been introduced.

· General changes have been made to make this Recommendation more similar to [SP 800 56A].



In the 2018 revision, the following changes were made (in addition to editorial changes):

1. Overall changes:

· Removed provisions for using TDEA.

· Provided moduli > 3072 bits and a method for estimated the maximum security strength that can be provided by these moduli.

·  Removed the KTS-KEM-KWS scheme and added a hybrid scheme (KTS-Hybrid-SKW).

· Hyperlinks to sections within the document and to referenced documents are now included.

2.	Section 3.1: Added: Big endian, Byte length, Confidentiality,  Key-establishment key pair, Integrity, Random nonce, Support (a security strength), Symmetric key.  

· Modified: Approved, Assurance of validity, Bit length, Byte, Destroy, Fresh, Key-agreement transaction, Key confirmation, Key-derivation function, Key-derivation method, Key-derivation procedure, Key establishment, Key-establishment transaction, Keying material, Key transport, Key-transport transaction, Key wrapping, Least-common multiple, MacOutputBits, MacOutputLen, MAC tag, MacTagBits, Message Authentication Code, Nonce, Party, Public-key certificate, Recipient, Scheme, Security properties, Targeted security strength, Third party.

· Deleted: Entity authentication, Length in bits of the non-negative integer x . 

3.	Section 3.2: Added: len(x), which has been used throughout the document; MacKeyBits; MacOutputBits; MacOutputLen; MacTagBits; OtherInput; S(nBits).

· Modified: c; C, C0, C1; nLen;

· Removed: Bytelen, k, KTS-KEM-KWS, kwkBits, KWS, OtherInfo, RSA-KEM-KWS, RSA-KEM-KWS-basic, RSA-KEM-KWS-PartyV-confirmation, x, z.

4.	Section 4.1, para. 2: A sentence was inserted to provide guidance for providing a key pair to its owner.

5.	Section 4.2, para. 1: A sentence was inserted as sentence 3 (for clarification).

6.	Section 4.3: Refererences to the RSA-KEM-KWS scheme have been removed. A reference to the hybrid method for key transport has been inserted.

7.	Section 5.2: The first three paragraphs were updated. KMAC was added as an approved MAC algorithm.

8.	Section 5.4, third para.: Reworded the requirements for the minimum security strength and random bit string length for a nonce.

9.	Section 5.5: Rewritten to refer to SP 800-56C for performing key derivation.

10.	Section 5.6: Inserted text and a table to clarify the roles for each scheme.

11.	Sections 5.6.1 and 5.6.2: Revised to accommodate the new KTS-Hybrid SKW family of schemes.

12.	Section 5.6.3: Revised to clarify the approved MAC algorithms, the acceptable MacKey lengths and the supported security strengths. 

13.	Section 6.2.1: Steps 3a and 3b have been changed to remove the "1" from the upper bound.

14.	Section 6.3: Inserted text and a table of estimated maximum security strengths for additional approved modulus lengths. Also, see Appendix D.

15.	Sections 6.3.1.1, 6.3.2.1, and 6.4.1.2.1: Revised to accommodate the revised modulus lengths and clarify error indications.

16.	Sections 6.4.1.2.1, 6.4.1.2.2, 6.4.1.2.3, 6.4.1.3.2, 6.4.1.3.3, 6.4.1.4.2 and 6.4.1.4.3: Added step 3c to check that nBits is an even integer.

17.	Section 6.4.1.2.1: Added a requirement regarding the error rate on the primality tests.

18. Section 6.4.1.5: Revised step 2 to clarify KAS2 key confirmation.

19.	Section 6.4.2.3.2: Revised descriptions of the key confirmation provided for the key-establishment schemes.

20.	Old Section 7: Removed the components used by the KTS-KEM-KWS family of schemes.

21.	Section 7.1.2: Routines have been added for decryption using the prime factor and CRT formats for the private key.

22.	Section 7.2.2.1: Explicitly stated that the hash function used for the MGF computation need not be the same as the has function used for MAC generation.

23.	Section 7.2.2, 7.2.2.3 and 7.2.2.4: Removed the list of (limited) modulus lengths that were used in the previous version of SP 800-56B.

24.	Section 7.2.2.4: Added an initial step to set DecryptErrorFlag to False,

25.	Section 9: Revised to remove discussions of the KTS-KEM-KWS schemes and a brief discussion of a hybrid key-transport scheme.

26.	Section 9.1: Revised to refer to the list in Section 5.5.2 as possible information to be used for additional input.

27.	Section 9.3: A discussion of a hybrid key-transport method.

28.	Section 10.4: Removed the rationale for the RSA-KEM KWS family and added a summary of the assurances for each key-establishment scheme family.

29.	Section 12: Additional items were added to the validation lists.

30.	Appendix A: Updated the references.

31.	Appendix C.2: Added the Deterministic Prime-Factor Recovery Method.

32.	Appendix D: Added a method for estimated the maximum security strength that could be provided by an IFC modulus length.
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