
Withdrawn Draft

Warning Notice

The attached draft document has been withdrawn, and is provided solely for historical purposes.
It has been superseded by the document identified below.

Withdrawal Date April 23, 2020

Original Release Date June 11, 2019

Superseding Document

Status Final

Series/Number NIST Cybersecurity White Paper (CSWP)

Title Mitigating the Risk of Software Vulnerabilities by Adopting a
Secure Software Development Framework (SSDF)

Publication Date April 23, 2020

DOI https://doi.org/10.6028/NIST.CSWP.04232020

CSRC URL https://csrc.nist.gov/publications/detail/white-
paper/2020/04/23/mitigating-risk-of-software-vulnerabilities-with-
ssdf/final

Additional Information N/A

https://doi.org/10.6028/NIST.CSWP.04232020
https://csrc.nist.gov/publications/detail/white-paper/2020/04/23/mitigating-risk-of-software-vulnerabilities-with-ssdf/final
https://csrc.nist.gov/publications/detail/white-paper/2020/04/23/mitigating-risk-of-software-vulnerabilities-with-ssdf/final
https://csrc.nist.gov/publications/detail/white-paper/2020/04/23/mitigating-risk-of-software-vulnerabilities-with-ssdf/final

NIST CYBERSECURITY WHITE PAPER (DRAFT) CSRC.NIST.GOV

Mitigating the Risk of Software 1

Vulnerabilities by Adopting a Secure 2

Software Development Framework (SSDF) 3

 4

Donna Dodson 5
Applied Cybersecurity Division 6
Information Technology Laboratory 7
 8
Murugiah Souppaya 9
Computer Security Division 10
Information Technology Laboratory 11
 12
Karen Scarfone 13
Scarfone Cybersecurity 14
Clifton, VA 15
 16

 17

June 11, 2019 18

 19

 20

 21

 22

NIST CYBERSECURITY WHITE PAPER (DRAFT) MITIGATING THE RISK OF SOFTWARE
JUNE 11, 2019 VULNERABILITIES BY ADOPTING AN SSDF

ii

Abstract 23

Few software development life cycle (SDLC) models explicitly address software security in detail, 24
so secure software development practices usually need to be added to each SDLC model to ensure 25
the software being developed is well secured. This white paper recommends a core set of high-26
level secure software development practices, called a secure software development framework 27
(SSDF), to be added to each SDLC implementation. The paper facilitates communications about 28
secure software development practices amongst business owners, software developers, and 29
cybersecurity professionals within an organization. Following these practices should help software 30
producers reduce the number of vulnerabilities in released software, mitigate the potential impact 31
of the exploitation of undetected or unaddressed vulnerabilities, and address the root causes of 32
vulnerabilities to prevent future recurrences. Software consumers can reuse and adapt the practices 33
in their software acquisition processes. 34

Keywords 35

secure software development; secure software development framework (SSDF); secure software 36
development practices; software acquisition; software development; software development life 37
cycle (SDLC); software security. 38

Disclaimer 39

Any mention of commercial products or reference to commercial organizations is for information 40
only; it does not imply recommendation or endorsement by NIST, nor does it imply that the 41
products mentioned are necessarily the best available for the purpose. 42

Additional Information 43

For additional information on NIST’s Cybersecurity programs, projects and publications, visit the 44
Computer Security Resource Center. Information on other efforts at NIST and in the Information 45
Technology Laboratory (ITL) is also available. 46

 47
Public Comment Period: June 11, 2019 through August 5, 2019 48

National Institute of Standards and Technology 49
Attn: Computer Security Division, Information Technology Laboratory 50

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930 51
Email: ssdf@nist.gov 52

All comments are subject to release under the Freedom of Information Act (FOIA). 53

 54

 55

https://csrc.nist.gov/
https://www.nist.gov/
https://www.nist.gov/itl
https://www.nist.gov/itl
mailto:ssdf@nist.gov

NIST CYBERSECURITY WHITE PAPER (DRAFT) MITIGATING THE RISK OF SOFTWARE
JUNE 11, 2019 VULNERABILITIES BY ADOPTING AN SSDF

iii

Acknowledgments 56

The authors wish to thank all the individuals and organizations who provided comments on the 57
preliminary ideas and drafts, particularly BSA | The Software Alliance, the Information Security 58
and Privacy Advisory Board (ISPAB), and the members of the Software Assurance Forum for 59
Excellence in Code (SAFECode). 60

Audience 61

There are two primary audiences for this white paper. The first is software producers (e.g., 62
commercial-off-the-shelf [COTS] product vendors, government-off-the-shelf [GOTS] software 63
developers, custom software developers) regardless of size, sector, or level of maturity. The second 64
is software consumers, both federal government agencies and other organizations. Readers of this 65
document are not expected to be experts in secure software development in order to understand it, 66
but such expertise is required to implement its recommended practices. 67

Personnel within the following Workforce Categories and Specialty Areas from the National 68
Initiative for Cybersecurity Education (NICE) Cybersecurity Workforce Framework [1] are most 69
likely to find this publication of interest: 70

• Securely Provision (SP): Risk Management (RSK), Software Development (DEV), 71
Systems Requirements Planning (SRP), Test and Evaluation (TST), Systems Development 72
(SYS) 73

• Operate and Maintain (OM): Systems Analysis (ANA) 74
• Oversee and Govern (OV): Training, Education, and Awareness (TEA), Cybersecurity 75

Management (MGT), Executive Cyber Leadership (EXL), Program/Project Management 76
(PMA) and Acquisition 77

• Protect and Defend (PR): Incident Response (CIR), Vulnerability Assessment and 78
Management (VAM) 79

• Analyze (AN): Threat Analysis (TWA), Exploitation Analysis (EXP) 80

Trademark Information 81

All registered trademarks or trademarks belong to their respective organizations. 82

Note to Reviewers 83

This white paper is intended as a starting point for discussing the concept of a secure software 84
development framework (SSDF), and it does not provide a comprehensive view of SSDFs. Future 85
work will expand on the material in this white paper, potentially covering topics such as how an 86
SSDF may apply to and vary for different software development methodologies, and how an 87
organization can transition from using just their current software development practices to also 88
incorporating the practices specified by the SSDF. It is likely that the future work will primarily 89
take the form of use cases so the insights will be more readily applicable to certain types of 90
development environments. 91

NIST CYBERSECURITY WHITE PAPER (DRAFT) MITIGATING THE RISK OF SOFTWARE
JUNE 11, 2019 VULNERABILITIES BY ADOPTING AN SSDF

iv

Table of Contents 92

1 Introduction .. 1 93
2 Secure Software Development Framework (SSDF) ... 3 94
References ... 17 95
Appendix A— Acronyms .. 19 96

 97

NIST CYBERSECURITY WHITE PAPER (DRAFT) MITIGATING THE RISK OF SOFTWARE
JUNE 11, 2019 VULNERABILITIES BY ADOPTING AN SSDF

 1

1 Introduction 98

A software development life cycle (SDLC) is a formal or informal methodology for designing, 99
creating, and maintaining software. There are many models for SDLCs, including waterfall, spiral, 100
agile, and Development and Operations (DevOps). Few SDLC models explicitly address software 101
security in detail, so secure software development practices usually need to be added to and 102
integrated within each SDLC model to ensure the software being developed under that model is 103
well secured. Regardless of which SDLC model is used to develop software, secure software 104
development practices should be integrated throughout it for three reasons: to reduce the number 105
of vulnerabilities in released software, to mitigate the potential impact of the exploitation of 106
undetected or unaddressed vulnerabilities, and to address the root causes of vulnerabilities to 107
prevent future recurrences. Most aspects of security can be addressed at multiple places within an 108
SDLC, but in general, the earlier in the SDLC security is addressed, the less effort is ultimately 109
required to achieve the same level of security. 110

There are many existing documents on secure software development practices. This white paper 111
does not introduce new practices or define new terminology; instead, it describes a subset of high-112
level practices based on established standards, guidance, and secure software development practice 113
documents. These practices, collectively called a secure software development framework (SSDF), 114
should be particularly helpful for the target audiences to achieve security software development 115
objectives. 116

This white paper expresses secure software development practices but does not prescribe exactly 117
how to implement them. The most important thing is implementing the practices and not the 118
mechanisms used to do so. For example, one organization might automate a particular step, while 119
another might use manual processes instead. Advantages of specifying the practices at a high level 120
include the following: 121

• Can be used by organizations in any sector or community, regardless of size or 122
cybersecurity sophistication 123

• Can be applied to software developed to support information technology (IT), industrial 124
control systems (ICS), cyber-physical systems (CPS), or the Internet of Things (IoT) 125

• Can be integrated into any existing software development workflow and automated 126
toolchain; should not negatively affect organizations that already have robust secure 127
software development practices in place 128

• Makes the practices broadly applicable—not specific to particular technologies, platforms, 129
programming languages, SDLC models, development environments, operating 130
environments, tools, etc. 131

• Can help an organization document its secure software development baseline today and 132
define its future target baseline as part of its continuous improvement process. 133

• Can assist an organization currently using a classic software development model in 134
transitioning its secure software development practices for use with a modern software 135
development model (e.g., agile, DevOps). 136

This white paper also provides a common language to describe fundamental secure software 137
development practices. This is similar to the approach of the Framework for Improving Critical 138
Infrastructure Cybersecurity, also known as the NIST Cybersecurity Framework [2]. Expertise in 139

NIST CYBERSECURITY WHITE PAPER (DRAFT) MITIGATING THE RISK OF SOFTWARE
JUNE 11, 2019 VULNERABILITIES BY ADOPTING AN SSDF

 2

secure software development is not required to understand the practices. This helps facilitate 140
communications about secure software practices amongst both internal and external organizational 141
stakeholders, including: 142

• Business owners, software developers, and cybersecurity professionals within an 143
organization 144

• Software consumers, both federal government agencies and other organizations, that want 145
to define required or desired characteristics for software in their acquisition processes in 146
order to have higher-quality software (particularly with fewer security vulnerabilities) 147

• Software producers (e.g., commercial-off-the-shelf [COTS] product vendors, government-148
off-the-shelf [GOTS] software developers, software developers working within or on 149
behalf of software consumer organizations) that want to integrate secure software 150
development practices throughout their SDLCs, express their secure software practices to 151
their customers, or define requirements for their suppliers 152

This white paper’s practices are not based on an assumption of all organizations having the same 153
security objectives and priorities. Rather, the recommendations reflect that each software producer 154
may have unique security assumptions and each software consumer may have unique security 155
needs. While the desire is for each security producer to follow all applicable practices, the 156
expectation is that the degree to which each practice is implemented will vary based on the 157
producer’s security assumptions. The practices provide flexibility for implementers, but they are 158
also clear to avoid leaving too much open to interpretation. 159

 160

NIST CYBERSECURITY WHITE PAPER (DRAFT) MITIGATING THE RISK OF SOFTWARE
JUNE 11, 2019 VULNERABILITIES BY ADOPTING AN SSDF

 3

2 Secure Software Development Framework (SSDF) 161

This white paper introduces a secure software development framework (SSDF) of fundamental, 162
sound secure software development practices based on established secure software development 163
practice documents. For the purposes of this white paper, the practices are organized into four 164
groups: 165

• Prepare the Organization (PO): Ensure the organization’s people, processes, and 166
technology are prepared to perform secure software development. 167

• Protect the Software (PS): Protect all components of the software from tampering and 168
unauthorized access. 169

• Produce Well-Secured Software (PW): Produce well-secured software that has minimal 170
security vulnerabilities in its releases. 171

• Respond to Vulnerability Reports (RV): Identify vulnerabilities in software releases and 172
respond appropriately to address those vulnerabilities and prevent similar vulnerabilities 173
from occurring in the future. 174

Each practice is defined with the following elements: 175

• Practice: A brief statement of the practice, along with a unique identifier and an 176
explanation of what the practice is and why it is beneficial. 177

• Task: An individual action (or actions) needed to accomplish a practice. 178
• Implementation Example: An example of a type of tool, process, or other method that 179

could be used to implement this practice; not intended to imply that any example or 180
combination of examples is required, or that only the stated examples are feasible options. 181

• Reference: An established secure development practice document and its mappings to a 182
particular task. 183

Although most practices are relevant for any software development effort, some practices are not 184
always applicable. For example, if developing a particular piece of software does not involve using 185
a compiler, there would be no need to follow a practice on configuring the compiler to improve 186
executable security. 187

 188

NIST CYBERSECURITY WHITE PAPER (DRAFT) MITIGATING THE RISK OF SOFTWARE
JUNE 11, 2019 VULNERABILITIES BY ADOPTING AN SSDF

 4

 189

Practices Tasks Implementation Examples References
Prepare the Organization (PO)
Define Security Requirements
for Software Development
(PO.1): Ensure security
requirements for software
development are known at all
times so they can be taken into
account throughout the SDLC,
and duplication of effort can be
minimized because the
requirements information can be
collected once and shared. This
includes requirements from
internal sources, such as the
organization’s policies, business
objectives, and risk
management strategy, and
external sources, such as
applicable laws and regulations.

PO.1.1: Identify all applicable
security requirements for the
organization’s general software
development, and maintain the
requirements over time.

• Define policies that specify the security
requirements for the organization’s
software to meet, including secure
coding practices for developers to follow.

• Define policies that specify software
architecture requirements, such as
making code modular to facilitate code
reuse and easier updates, and isolating
security functionality from other
functionality during code execution.

• Define policies for securing the
development infrastructure, such as
developer workstations and code
repositories.

• Ensure policies cover the entire software
life cycle, including notifying users of the
impending end of software support and
the date of software end-of-life, when the
software will no longer function properly.

• Use a well-known set of security
requirements as a structure or lexicon for
defining the organization’s requirements.
This set can readily be mapped to other
third-party security requirements the
organization is also subject to.

• Review and update the requirements
after each response to a vulnerability
incident.

• Conduct a periodic (typically at least
annual) review of all security
requirements.

• Promptly review new external
requirements and updates to existing
external requirements.

• Educate affected developers on the
impending changes in requirements.

BSIMM9 [3]: CP1.1, CP1.3, SR1.1
BSA [19]: SC.1-1, SC.2, PD.1-1, PD.1-2,
PD.1-3, PD.2-2
ISO27034 [4]: 7.3.2
MSSDL [5]: Practice 2
NISTCSF [2]: ID.GV-3
OWASPSCP [6]: Entire guide
OWASPTEST [7]: Phase 2.1
PCISSLRAP [8]: 2.1
SAMM15 [9]: PC1-A, PC1-B, PC2-A,
SR1-A, SR1-B, SR2-B
SCFPSSD [10]: Planning the
Implementation and Deployment of
Secure Development Practices;
Establish Coding Standards and
Conventions
SP80053 [11]: SA-15
SP80064 [12]: 3.1.3.1
SP800160 [13]: 3.1.2, 3.3.1, 3.4.2, 3.4.3
SP800181 [1]: T0414; K0003, K0039,
K0044, K0157, K0168, K0177, K0211,
K0260, K0261, K0262, K0524; S0010,
S0357, S0368; A0033, A0123, A0151

NIST CYBERSECURITY WHITE PAPER (DRAFT) MITIGATING THE RISK OF SOFTWARE
JUNE 11, 2019 VULNERABILITIES BY ADOPTING AN SSDF

 5

Practices Tasks Implementation Examples References
Implement Roles and
Responsibilities (PO.2):
Ensure everyone inside and
outside the organization
involved in the SDLC is
prepared to perform their SSDF-
related roles and responsibilities
throughout the SDLC.

PO.2.1: Create new roles and
alter responsibilities for existing
roles to encompass all parts of
the SSDF. Periodically review
the defined roles and
responsibilities, and update
them as needed.

• Define SSDF-related roles and
responsibilities for all members of the
software development team.

• Integrate the security roles into the
software development team.

• Define roles and responsibilities for
cybersecurity staff, security champions,
senior management, software
developers, product owners, and others
involved in the SDLC.

• Conduct an annual review of all roles
and responsibilities.

• Educate affected individuals on the
impending changes in roles and
responsibilities.

BSA: PD.2-1, PD.2-2
BSIMM9: CP3.2, SM1.1
NISTCSF: ID.AM-6, ID.GV-2
PCISSLRAP: 1.2
SCSIC [14]: Vendor Software
Development Integrity Controls
SP80053: SA-3
SP80064: 3.1.3.1
SP800160: 3.2.1, 3.2.4, 3.3.1
SP800181: K0233

PO.2.2: Provide role-specific
training for all personnel in roles
with responsibilities that
contribute to secure
development. Periodically
review role-specific training and
update it as needed.

• Document the desired outcomes of
training for each role.

• Acquire or create training for each role;
acquired training may need
customization for the organization.

BSA: PD.2-2
BSIMM9: CP2.5, SM1.3, T1.1, T1.5,
T1.6, T1.7, T2.6, T3.2, T3.4
MSSDL: Practice 1
NISTCSF: PR.AT-*
PCISSLRAP: 1.3
SAMM15: EG1-A, EG2-A
SCAGILE [15]: Operational Security
Tasks 14, 15; Tasks Requiring the Help
of Security Experts 1
SCFPSSD: Planning the Implementation
and Deployment of Secure Development
Practices
SCSIC: Vendor Software Development
Integrity Controls
SP80053: SA-8
SP80064: 3.1.3.5
SP800160: 3.2.4
SP800181: OV-TEA-001, OV-TEA-002;
T0030, T0073, T0320; K0204, K0208,
K0220, K0226, K0243, K0245, K0252;
S0100, S0101; A0004, A0057

NIST CYBERSECURITY WHITE PAPER (DRAFT) MITIGATING THE RISK OF SOFTWARE
JUNE 11, 2019 VULNERABILITIES BY ADOPTING AN SSDF

 6

Practices Tasks Implementation Examples References
Implement a Supporting
Toolchain (PO.3): Use
automation to reduce the human
effort needed and improve the
accuracy, consistency, and
comprehensiveness of security
practices throughout the SDLC,
as well as a way to document
and demonstrate use of these
practices without significant
additional effort or expense.

PO.3.1: Specify which tools or
tool types are to be included in
each toolchain and which tools
or tool types are mandatory,
along with how the toolchain
components are to be integrated
with each other.

• Define categories of toolchains, and
specify the mandatory tools or tool types
to be used for each category.

• Use automated technology for toolchain
management and orchestration.

• Identify security tools to integrate into the
developer toolchain.

BSA: TC.1, TC.1-1, TC.1-2
MSSDL: Practice 8
SCAGILE: Tasks Requiring the Help of
Security Experts 9
SP80053: SA-15
SP800181: K0013, K0178

PO.3.2: Following sound
security practices, deploy and
configure tools, integrate them
within the toolchain, and
maintain the individual tools and
the toolchain as a whole.

• Evaluate, select, and acquire tools.
• Integrate tools with other tools and with

existing software development
processes and workflows.

• Update, upgrade, and replace existing
tools.

• Monitor tool logs for potential operational
and security issues.

BSA: TC.1-1, TC.1-6
SCAGILE: Tasks Requiring the Help of
Security Experts 9
SP80053: SA-15
SP800181: K0013, K0178

PO.3.3: Configure tools to
collect evidence and artifacts of
their support of the secure
software development practices.

• Use the organization’s existing workflow
or bug tracking systems to create an
audit trail of secure development-related
actions performed.

• Determine how often the collected
information should be audited, and
implement processes to perform the
auditing.

BSA: PD.1.6
MSSDL: Practice 8
PCISSLRAP: 2.5
SCAGILE: Tasks Requiring the Help of
Security Experts 9
SP80053: SA-15
SP800181: K0013

Define Criteria for Software
Security Checks (PO.4): Help
ensure the software resulting
from the SDLC meets the
organization’s expectations by
defining criteria for checking the
software’s security during
development.

PO.4.1: Define criteria for
software security checks at one
or more points within the SDLC.

• Ensure the criteria adequately indicate
how effectively security risk is being
managed.

• Define key performance indicators
(KPIs) for software security.

• Add software security criteria to existing
checks (e.g., the Definition of Done in
agile SDLC methodologies).

• Review the artifacts generated as part of
the software development workflow
system to determine if they meet the
criteria purposes.

• Record security check approvals,
rejections, and requests for exception as
part of the workflow and tracking system.

BSA: TV.2-1, TV.5-1
BSIMM9: SM1.4, SM2.2
ISO27034: 7.3.5
MSSDL: Practice 3
OWASPTEST: Phase 1.3
SAMM15: DR3-B, IR3-B, PC3-A, ST3-B
SP80053: SA-15
SP800160: 3.2.1, 3.2.5, 3.3.1
SP800181: K0153, K0165

NIST CYBERSECURITY WHITE PAPER (DRAFT) MITIGATING THE RISK OF SOFTWARE
JUNE 11, 2019 VULNERABILITIES BY ADOPTING AN SSDF

 7

Practices Tasks Implementation Examples References
PO.4.2: Implement processes,
mechanisms, etc. to gather the
necessary information in support
of the criteria.

• Use the toolchain to automatically gather
information that informs security decision
making.

• Deploy additional tools if needed to
support generation and collection of
information supporting the criteria.

• Automate decision making processes
utilizing the criteria.

BSA: PD.1-6
BSIMM9: SM1.4, SM2.2
SP80053: SA-15
SP800160: 3.3.7
SP800181: T0349; K0153

Protect Software (PS)

Protect All Forms of Code
from Unauthorized Access
and Tampering (PS.1): Help
prevent unauthorized changes
to code, both inadvertent and
intentional, which could
circumvent or negate the
intended security characteristics
of the software. For code not
intended to be publicly
accessible, it helps prevent theft
of the software and makes it
more difficult for attackers to find
vulnerabilities in the software.

PS.1.1: Store all forms of code,
including source code and
executable code, based on the
principle of least privilege so that
only authorized personnel have
the necessary forms of access.
The protection needed will vary
based on the nature of the code.
For example, some code may
be intended for public access, in
which case its integrity and
availability should be protected;
other code may also need its
confidentiality protected.

• Store all source code in a code
repository, and restrict access to it.

• Use version control features of the
repository to track all changes made to
code with accountability to the individual
developer account.

• Use code signing to help protect the
integrity and provenance of executables.

• Use cryptographic hashes to help protect
the integrity of files.

• Create and maintain a software bill of
materials (SBOM) for each piece of
software stored in the repository.

BSA: IA.1, IA.2-2, SM.4-1
IDASOAR [16]: Fact Sheet 25
NISTCSF: PR.AC-4
PCISSLRAP: 6.1
SCSIC: Vendor Software Delivery
Integrity Controls, Vendor Software
Development Integrity Controls
SP80064: 3.1.3.5

Provide a Mechanism for
Verifying Software Release
Integrity (PS.2): Help software
consumers ensure the software
they acquire is legitimate and
has not been tampered with.

PS.2.1: Make verification
information available to software
consumers.

• Post cryptographic hashes for release
files on a well-secured website.

• Use an established certificate authority
for code signing so consumers can
confirm the validity of signatures.

• Periodically review the code signing
processes, including certificate renewal
and protection.

BSA: SM.4.2, SM.4.3, SM.5.1, SM.6.1
BSIMM9: SE2.4
NISTCSF: PR.DS-6
PCISSLRAP: 6.2
SAMM15: OE3-B
SCSIC: Vendor Software Delivery
Integrity Controls
SP800181: K0178

Archive and Protect Each
Software Release (PS.3): Helps
identify, analyze, and eliminate
vulnerabilities discovered in the
software after release.

PS.3.1: Securely archive a copy
of each release and all of its
components, such as code,
package files, third-party
libraries, documentation, and
release integrity verification
information.

• Store all release files in a repository, and
restrict access to them.

BSA: PD.1-6
IDASOAR: Fact Sheet 25
NISTCSF: PR.IP-4
PCISSLRAP: 5.2, 6.2
SCSIC: Vendor Software Delivery
Integrity Controls
SP80053: SA-15

NIST CYBERSECURITY WHITE PAPER (DRAFT) MITIGATING THE RISK OF SOFTWARE
JUNE 11, 2019 VULNERABILITIES BY ADOPTING AN SSDF

 8

Practices Tasks Implementation Examples References
Produce Well-Secured Software (PW)

Take Security Requirements
and Risk Information into
Account During Software
Design (PW.1): Determine
which security requirements the
software’s design should meet,
and determine what security
risks the software is likely to
face during production operation
and how those risks should be
mitigated by the software’s
design. Addressing security
requirements and risks during
software design instead of later
helps to make software
development more efficient.

PW.1.1: Use threat modeling,
attack modeling, attack surface
mapping, and/or other forms of
risk modeling to help assess the
security risk for the software.

• Train the development team to create
threat models and attack models, and to
analyze how to address the risks and
implement mitigations.

• Perform more rigorous assessments for
high-risk areas, such as protecting
sensitive data.

• Review vulnerability reports and
statistics for previous software.

BSA: SC.1-3, SC.1-4
BSIMM9: AM1.3, AM1.5, AM2.1, AM2.2,
AM2.5, AM2.6, AM2.7
IDASOAR: Fact Sheet 1
ISO27034: 7.3.3
MSSDL: Practice 4
NISTCSF: ID.RA-*
OWASPTEST: Phase 2.4
PCISSLRAP: 3.2
SAMM15: DR1-A, TA1-A, TA1-B, TA3-B
SCAGILE: Tasks Requiring the Help of
Security Experts 3
SCFPSSD: Threat Modeling
SCTTM [17]: Entire guide
SP80053: SA-8, SA-15, SA-17
SP800160: 3.3.4, 3.4.5
SP800181: T0038, T0062, T0236;
K0005, K0009, K0038, K0039, K0070,
K0080, K0119, K0147, K0149, K0151,
K0152, K0160, K0161, K0162, K0165,
K0297, K0310, K0344, K0362, K0487,
K0624; S0006, S0009, S0022, S0078,
S0171, S0229, S0248; A0092, A0093,
A107

Review the Software Design
to Verify Compliance with
Security Requirements and
Risk Information (PW.2): Help
ensure the software will meet
the security requirements and
satisfactorily address the
identified risk information.

PW.2.1: Have someone
qualified who was not involved
with the software design review
it to confirm it meets all the
security requirements and
satisfactorily addresses the
identified risk information.

• Review the software design to confirm it
addresses all the security requirements.

• Review the risk models created during
software design to determine if they
appear to adequately identify the risks.

• Review the software design to confirm it
satisfactorily addresses the risks
identified by the risk models.

• Have the software’s designer correct all
failures to meet the requirements.

BSA: TV.3, TV.3-1, TV.5
BSIMM9: AA1.2, AA2.1
ISO27034: 7.3.3
OWASPTEST: Phase 2.2
SAMM15: DR1-A, DR1-B
SP800181: T0328; K0038, K0039,
K0070, K0080, K0119, K0152, K0153,
K0161, K0165, K0172, K0297; S0006,
S0009, S0022, S0036, S0141, S0171

NIST CYBERSECURITY WHITE PAPER (DRAFT) MITIGATING THE RISK OF SOFTWARE
JUNE 11, 2019 VULNERABILITIES BY ADOPTING AN SSDF

 9

Practices Tasks Implementation Examples References
Verify Third-Party Software
Complies with Security
Requirements (PW.3): Reduce
the risk associated with using
acquired software modules and
services, which are potential
sources of additional
vulnerabilities.

PW.3.1: Communicate
requirements to vendors, open
source communities, and other
third parties who may provide
software modules and services
to the organization for reuse by
the organization’s own software.

• Define a core set of security
requirements, and include them in
acquisition documents, software
contracts, and other agreements with
third parties.

• Define the security-related criteria for
selecting commercial and open source
software.

• Require the providers of commercial
software modules and services to
provide evidence that their software
complies with the organization’s security
requirements.

BSA: SM.1, SM.2, SM.2-1, SM.2.4
BSIMM9: CP2.4, SR2.5, SR3.2
IDASOAR: Fact Sheets 19, 21
MSSDL: Practice 7
SAMM15: SR3-A
SCFPSSD: Manage Security Risk
Inherent in the Use of Third-Party
Components
SCSIC: Vendor Sourcing Integrity
Controls
SP80053: SA-4, SA-12
SP800160: 3.1.1, 3.1.2
SP800181: T0203, T0415; K0039;
S0374; A0056, A0161

PW.3.2: Use appropriate means
to verify commercial and open
source third-party software
modules and services comply
with the requirements.

• See if there are publicly known
vulnerabilities in the software modules
and services that the vendor has not yet
fixed.

• Ensure each software module or service
is still actively maintained, especially
remediating new vulnerabilities found in
the software.

• Determine a plan of action for each third-
party software module or service no
longer being maintained or available in
the future.

• [See Review and/or Analyze Human-
Readable Code to Identify
Vulnerabilities and Verify Compliance
with Security Requirements (PW.7)]

• [See Test Executable Code to Identify
Vulnerabilities and Verify Compliance
with Security Requirements (PW.8)]

BSA: SC.3-1, TV.2
IDASOAR: Fact Sheet 21
MSSDL: Practice 7
PCISSLRAP: 4.1
SCAGILE: Tasks Requiring the Help of
Security Experts 8
SCFPSSD: Manage Security Risk
Inherent in the Use of Third-Party
Components
SCSIC: Vendor Sourcing Integrity
Controls
SCTPC [18]: 3.2.2
SP80053: SA-12
SP800160: 3.1.2, 3.3.8
SP800181: SP-DEV-002; K0153, K0266
[See Review and/or Analyze Human-
Readable Code to Identify
Vulnerabilities and Verify Compliance
with Security Requirements (PW.7)]
[See Test Executable Code to Identify
Vulnerabilities and Verify Compliance
with Security Requirements (PW.8)]

NIST CYBERSECURITY WHITE PAPER (DRAFT) MITIGATING THE RISK OF SOFTWARE
JUNE 11, 2019 VULNERABILITIES BY ADOPTING AN SSDF

 10

Practices Tasks Implementation Examples References
Reuse Existing, Well-Secured
Software When Feasible
Instead of Duplicating
Functionality (PW.4): Lower
the costs of software
development, expedite software
development, and decrease the
likelihood of introducing
additional security vulnerabilities
into the software. These are
particularly true for software that
implements security
functionality, such as
cryptographic modules and
protocols.

PW.4.1: Acquire well-secured
software libraries, modules,
middleware, frameworks, and
other components from third
parties for use by the
organization’s software.

• Review and evaluate the third-party
software components in the context of
their expected use. If a component is to
be used in a substantially different way
in the future, perform the review and
evaluation again with that new context in
mind.

• Establish an organization-wide software
repository to host sanctioned and vetted
open source components.

• Maintain a list of approved commercial
software components and component
versions.

• Designate which components must be
included by software to be developed.

BSA: SM.2, SM.2.1
IDASOAR: Fact Sheet 19
MSSDL: Practice 6
OWASPSCP: Communication Security,
Cryptographic Practices
SAMM15: SA1-A
SCTPC: 3.2.1
SP80053: SA-12
SP80064: 3.1.3.5
SP800181: K0039

PW.4.2: Create well-secured
software components in-house
following SDLC processes to
meet common internal software
development needs that cannot
be better met by third-party
software.

• Follow the organization-established
security practices for secure software
development.

• Maintain an organization-wide software
repository for these components.

• Designate which components must be
included by software to be developed.

BSIMM9: SFD1.1, SFD2.1
IDASOAR: Fact Sheet 19
SP80064: 3.1.3.5
SP800181: SP-DEV-001

PW.4.3: Where appropriate,
build in support for using
standardized security features
and services, such as
integrating with log
management, identity
management, access control,
and vulnerability management
systems.

• Maintain an organization-wide software
repository of modules for supporting
standardized security features and
services.

• Designate which security features and
services must be supported by software
to be developed.

BSA: SI.2, EN.1-1, LO.1
MSSDL: Practice 5
OWASPSCP: Authentication and
Password Management
SCFPSSD: Establish Log Requirements
and Audit Practices

NIST CYBERSECURITY WHITE PAPER (DRAFT) MITIGATING THE RISK OF SOFTWARE
JUNE 11, 2019 VULNERABILITIES BY ADOPTING AN SSDF

 11

Practices Tasks Implementation Examples References
Create Source Code Adhering
to Secure Coding Practices
(PW.5): Decrease the number of
security vulnerabilities in the
software, and reduce costs by
eliminating vulnerabilities during
source code creation.

PW.5.1: Follow all secure
coding practices appropriate to
the development languages and
environment.

• Validate all untrusted input, and validate
and properly encode all output.

• Avoid using unsafe functions and calls.
• Handle errors gracefully.
• Provide logging and tracing capabilities.
• Use development environments with

features that encourage or require the
use of secure coding practices.

• Follow procedures for manually ensuring
compliance with secure coding practices.

BSA: SC.2, SC.4, SC.3, SC.3-2, EE.1,
EE.1.2, EE.2, LO.1,
IDASOAR: Fact Sheet 2
ISO27034: 7.3.5
MSSDL: Practice 9
OWASPSCP: Error Handling and
Logging, General Coding Practices,
Input Validation, Output Encoding
SCFPSSD: Establish Log Requirements
and Audit Practices, Handle Data Safely,
Handle Errors, Use Safe Functions Only
SP800181 [1]: SP-DEV-001; T0013,
T0077, T0176; K0009, K0016, K0039,
K0070, K0140, K0624; S0019, S0060,
S0149, S0172, S0266; A0036, A0047

PW.5.2: Have the developer
review their own human-
readable code, analyze their
own human-readable code,
and/or test their own executable
code.

• [See Review and/or Analyze Human-
Readable Code to Identify
Vulnerabilities and Verify Compliance
with Security Requirements (PW.7)]

• [See Test Executable Code to Identify
Vulnerabilities and Verify Compliance
with Security Requirements (PW.8)]

[See Review and/or Analyze Human-
Readable Code to Identify
Vulnerabilities and Verify Compliance
with Security Requirements (PW.7)]
[See Test Executable Code to Identify
Vulnerabilities and Verify Compliance
with Security Requirements (PW.8)]

Configure the Compilation
and Build Processes to
Improve Executable Security
(PW.6): Decrease the number of
security vulnerabilities in the
software, and reduce costs by
eliminating vulnerabilities before
testing occurs.

PW.6.1: Use compiler and build
tools that offer features to
improve executable security.

• Consider replacing older compiler and
build tools with up-to-date versions.

BSA: TC.1-1, TC.1-3, TC.1-4, TC.1-5
MSSDL: Practice 8
SCAGILE: Operational Security Task 3
SCFPSSD: Use Current Compiler and
Toolchain Versions and Secure Compiler
Options
SCSIC: Vendor Software Development
Integrity Controls

PW.6.2: Determine which
features should be used and
how each feature should be
configured, then implement the
approved configuration for
compilation and build tools,
processes, etc.

• Enable compiler features that produce
warnings for potentially poorly secured
code during the compilation process.

• Enable compiler features that randomize
characteristics, such as memory location
usage, that would otherwise be easily
predictable and thus exploitable.

• Conduct testing to ensure the features
are working as expected and not

BSA: TC.1, TC.1-3, TC.1-4, TC.1-5
SCAGILE: Operational Security Task 8
SCFPSSD: Use Current Compiler and
Toolchain Versions and Secure Compiler
Options
SCSIC: Vendor Software Development
Integrity Controls
SP800181: K0039, K0070

NIST CYBERSECURITY WHITE PAPER (DRAFT) MITIGATING THE RISK OF SOFTWARE
JUNE 11, 2019 VULNERABILITIES BY ADOPTING AN SSDF

 12

Practices Tasks Implementation Examples References
inadvertently causing any operational
issues or other problems.

• Verify the approved configuration is
enabled for compilation and build tools,
processes, etc.

• Document information about the
compilation and build tool configuration
in a knowledge base that developers can
access and search.

Review and/or Analyze
Human-Readable Code to
Identify Vulnerabilities and
Verify Compliance with
Security Requirements
(PW.7): Help identify
vulnerabilities before software is
released so they can be
corrected before release, which
prevents exploitation. Using
automated methods lowers the
effort and resources needed to
detect vulnerabilities. Human-
readable code is source code
and any other form of code an
organization deems as human
readable.

PW.7.1: Determine whether
code review (a person directly
looks at the code to find issues)
and/or code analysis (tools are
used to find issues in code,
either in a fully automated way
or in conjunction with a person)
should be used.

• Follow the organization’s policies or
guidelines for when code review should
be performed and how it should be
conducted.

• Follow the organization’s policies or
guidelines for when code analysis should
be performed and how it should be
conducted.

SCSIC: Peer Reviews and Security
Testing
SP80053: SA-11
SP800181: SP-DEV-002; K0013, K0039,
K0070, K0153, K0165; S0174

PW.7.2: Perform the code
review and/or code analysis,
and document and triage all
discovered issues and
recommended remediations in
the development team’s
workflow or bug-tracking
system.

• Have developers review their own code.
• Perform peer review of code.
• Use peer reviewing tools that facilitate

the peer review process and document
all discussions and other feedback.

• Use a static analysis tool to
automatically check code for
vulnerabilities and for compliance with
the organization’s secure coding
standards, with a human reviewing
issues reported by the tool and
remediating them as necessary.

• Use review checklists to verify the code
complies with the requirements.

• Use automated tools to identify and
remediate documented and verified
unsafe software practices on a
continuous basis as human-readable
code is checked into the code repository.

• Identify and document the root cause of
each discovered issue.

• Document lessons learned from code
review and analysis in a knowledge base

BSA: PD.1-5, TV.2, TV.3
BSIMM9: CR1.2, CR1.4, CR1.6, CR2.6,
CR2.7
IDASOAR: Fact Sheets 3, 4, 5, 14, 15,
48
ISO27034: 7.3.6
MSSDL: Practices 9, 10
OWASPTEST: Phase 3.2, Phase 4.1
PCISSLRAP: 4.1
SAMM15: IR1-B, IR2-A, IR2-B
SCAGILE: Operational Security Tasks 4,
7
SCFPSSD: Use Code Analysis Tools to
Find Security Issues Early, Use Static
Analysis Security Testing Tools, Perform
Manual Verification of Security
Features/Mitigations
SCSIC: Peer Reviews and Security
Testing
SP80053: SA-11, SA-15
SP80064: 3.2.3.6
SP800181: SP-DEV-001, SP-DEV-002;

NIST CYBERSECURITY WHITE PAPER (DRAFT) MITIGATING THE RISK OF SOFTWARE
JUNE 11, 2019 VULNERABILITIES BY ADOPTING AN SSDF

 13

Practices Tasks Implementation Examples References
that developers can access and search. T0013, T0111, T0176, T0267, T0516;

K0009, K0039, K0070, K0140, K0624;
S0019, S0060, S0078, S0137, S0149,
S0167, S0174, S0242, S0266; A0007,
A0015, A0036, A0044, A0047

Test Executable Code to
Identify Vulnerabilities and
Verify Compliance with
Security Requirements
(PW.8): Help identify
vulnerabilities before software is
released so they can be
corrected before release, which
prevents exploitation. Using
automated methods lowers the
effort and resources needed to
detect vulnerabilities.
Executable code is binaries,
directly executed bytecode,
directly executed source code,
and any other form of code an
organization deems as
executable.

PW.8.1: Determine if executable
code testing should be
performed and, if so, which
types should be used.

• Follow the organization’s policies or
guidelines for when code testing should
be performed and how it should be
conducted.

BSA: TV.3
SCSIC: Peer Reviews and Security
Testing
SP80053: SA-11
SP800181: SP-DEV-001, SP-DEV-002;
T0456; K0013, K0039, K0070, K0153,
K0165, K0342, K0367, K0536, K0624;
S0001, S0015, S0026, S0061, S0083,
S0112, S0135

PW.8.2: Design the tests,
perform the testing, and
document the results.

• Perform robust functional testing of
security features.

• Integrate dynamic vulnerability testing
into the project’s automated test suite.

• Incorporate tests for previously reported
vulnerabilities into the project’s
automated test suite to ensure that
errors are not reintroduced.

• Use automated fuzz testing tools to find
issues with input handling by native
code.

• Use penetration testing to simulate how
an attacker might attempt to compromise
the software only in high-risk scenarios if
resources are available.

• Use automated tools to identify and
remediate documented and verified
unsafe software practices on a
continuous basis as executable code is
checked into the code repository.

• Identify and document the root cause of
each discovered issue.

• Document lessons learned from code
testing in a knowledge base that
developers can access and search.

BSA: PD.1-5, TV.3, TV.5, TV.5-2
BSIMM9: PT1.1, PT1.2, PT1.3, ST1.1,
ST1.3, ST2.1, ST2.4, ST2.5, ST2.6,
ST3.3, ST3.4
IDASOAR: Fact Sheets 7, 8, 10, 11, 38,
39, 43, 44, 48, 55, 56, 57
ISO27034: 7.3.6
MSSDL: Practice 11
PCISSLRAP: 4.1
SAMM15: ST1-B, ST2-A, ST2-B
SCAGILE: Operational Security Tasks
10, 11; Tasks Requiring the Help of
Security Experts 4, 6, 7
SCFPSSD: Perform Dynamic Analysis
Security Testing, Fuzz Parsers, Network
Vulnerability Scanning, Perform
Automated Functional Testing of
Security Features/Mitigations, Perform
Penetration Testing
SCSIC: Peer Reviews and Security
Testing
SP80053: SA-11, SA-15
SP80064: 3.2.3.6
SP800181: SP-DEV-001, SP-DEV-002;
T0013, T0028, T0169, T0176, T0253,

NIST CYBERSECURITY WHITE PAPER (DRAFT) MITIGATING THE RISK OF SOFTWARE
JUNE 11, 2019 VULNERABILITIES BY ADOPTING AN SSDF

 14

Practices Tasks Implementation Examples References
T0266, T0456, T0516; K0009, K0039,
K0070, K0272, K0339, K0342, K0362,
K0536, K0624; S0001, S0015, S0046,
S0051, S0078, S0081, S0083, S0135,
S0137, S0167, S0242; A0015

Configure the Software to
Have Secure Settings by
Default (PW.9): Help improve
the security of the software at
installation time, which reduces
the likelihood of the software
being deployed with weak
security settings that would put it
at greater risk of compromise.

PW.9.1: Determine how to
configure each setting that has
an effect on security so the
default settings are secure and
they do not weaken the security
functions provided by the
platform, network infrastructure,
or services.

• Conduct testing to ensure the settings
are working as expected and not
inadvertently causing any security
weaknesses, operational issues, or other
problems.

BSA: CF.1, TC.1
IDASOAR: Fact Sheet 23
ISO27034: 7.3.5
OWASPSCP: System Configuration
OWASPTEST: Phase 4.2
SCAGILE: Tasks Requiring the Help of
Security Experts 12
SCSIC: Vendor Software Delivery
Integrity Controls, Vendor Software
Development Integrity Controls
SP800181: SP-DEV-002; K0009, K0039,
K0073, K0153, K0165, K0275, K0531;
S0167

PW.9.2: Implement the default
settings and document each
setting for software
administrators.

• Verify the approved configuration is in
place for the software.

• Document each setting’s purpose,
options, default value, security
relevance, potential operational impact,
and relationships with other settings.

• Document how each setting can be
implemented by software administrators.

IDASOAR: Fact Sheet 23
OWASPSCP: System Configuration
OWASPTEST: Phase 4.2
PCISSLRAP: 8.1, 8.2
SCAGILE: Tasks Requiring the Help of
Security Experts 12
SCFPSSD: Verify Secure Configurations
and Use of Platform Mitigation
SCSIC: Vendor Software Delivery
Integrity Controls, Vendor Software
Development Integrity Controls
SP800181: SP-DEV-001; K0009, K0039,
K0073, K0153, K0165, K0275, K0531

NIST CYBERSECURITY WHITE PAPER (DRAFT) MITIGATING THE RISK OF SOFTWARE
JUNE 11, 2019 VULNERABILITIES BY ADOPTING AN SSDF

 15

Practices Tasks Implementation Examples References
Respond to Vulnerability Reports (RV)
Identify and Confirm
Vulnerabilities on an Ongoing
Basis (RV.1): Help ensure
vulnerabilities are identified
more quickly so they can be
remediated more quickly,
reducing the window of
opportunity for attackers.

RV.1.1: Gather information from
consumers and public sources
on potential vulnerabilities in the
software and any third-party
components the software uses,
and investigate all credible
reports.

• Establish a vulnerability response
program, and make it easy for security
researchers to learn about your program
and report possible vulnerabilities.

• Monitor vulnerability databases, security
mailing lists, and other sources of
vulnerability reports through manual or
automated means.

BSA: VM.1-3, VM.3
BSIMM9: CMVM1.2, CMVM3.4
PCISSLRAP: 3.4, 4.1, 9.1
SAMM15: IM1-A
SCAGILE: Operational Security Task 5
SCTPC: 3.2.4
SP800181: K0009, K0038, K0040,
K0070, K0161, K0362; S0078

RV.1.2: Periodically review,
analyze, and/or test the
software’s code to identify
previously undetected
vulnerabilities.

• Configure the toolchain to perform
automated code analysis and testing on
a regular basis.

• [See Review and/or Analyze Human-
Readable Code to Identify
Vulnerabilities and Verify Compliance
with Security Requirements (PW.7)]

• [See Test Executable Code to Identify
Vulnerabilities and Verify Compliance
with Security Requirements (PW.8)]

BSA: VM.1-2
ISO27034: 7.3.6
PCISSLRAP: 3.4, 4.1
SP800181: SP-DEV-002; K0009, K0039,
K0153
[See Review and/or Analyze Human-
Readable Code to Identify
Vulnerabilities and Verify Compliance
with Security Requirements (PW.7)]
[See Test Executable Code to Identify
Vulnerabilities and Verify Compliance
with Security Requirements (PW.8)]

RV.1.3: Have an incident
response capability to
coordinate response to
vulnerability reports.

• Have a policy that addresses
vulnerability disclosure and remediation,
and implement the processes needed to
support that policy.

• Have a security response playbook to
handle a generic reported vulnerability, a
report of zero-days, a vulnerability being
exploited in the wild, and a major
ongoing incident involving multiple
parties.

BSA: VM.1-1, VM.2, VM.2-3
MSSDL: Practice 12
SAMM15: IM1-B, IM2-A, IM2-B
SCFPSSD: Vulnerability Response and
Disclosure
SP800160: 3.3.8
SP800181: K0041, K0042, K0151,
K0292, K0317; S0054; A0025

NIST CYBERSECURITY WHITE PAPER (DRAFT) MITIGATING THE RISK OF SOFTWARE
JUNE 11, 2019 VULNERABILITIES BY ADOPTING AN SSDF

 16

Practices Tasks Implementation Examples References
Assess and Prioritize the
Remediation of All
Vulnerabilities (RV.2): Help
ensure vulnerabilities are
remediated as quickly as
necessary, reducing the window
of opportunity for attackers.

RV.2.1: Analyze each
vulnerability which is not being
exploited to determine how
much effort would be required to
remediate it, what the potential
impact of vulnerability
exploitation would be, what
resources are required to
weaponize the vulnerability (with
the assumption that the
vulnerability will be exploited in
the near future), and how
vulnerability remediation should
be prioritized, along with any
other relevant factors.

• Use issue tracking or bug tracking
software to document each vulnerability.

BSA: VM.2, VM.2-1, VM.2-2
PCISSLRAP: 4.2
SCAGILE: Tasks Requiring the Help of
Security Experts 10
SP80053: SA-10
SP800160: 3.3.8
SP800181: K0009, K0039, K0070,
K0161, K0165; S0078

Analyze Vulnerabilities to
Identify Their Root Causes
(RV.3): Help reduce the
frequency of vulnerabilities in
the future.

RV.3.1: Analyze all identified
vulnerabilities to determine the
root cause of each vulnerability.

• Document the root cause of each
discovered issue.

• Document lessons learned from root
cause analysis in a knowledge base that
developers can access and search.

BSA: VM.2.1
PCISSLRAP: 4.2
SAMM15: IM3-A
SP800181: T0047, K0009, K0039,
K0070, K0343

RV.3.2: Analyze the root causes
over time to identify patterns,
such as when a particular
secure coding practice not being
followed consistently.

• Document lessons learned from root
cause analysis in a knowledge base that
developers can access and search.

BSA: VM.2-1, PD.1-3
MSSDLPG52: Phase Two: Design
PCISSLRAP: 4.2
SP800160: 3.3.8
SP800181: T0111, K0009, K0039,
K0070, K0343

RV.3.3: Review the software for
other instances of the reported
problem and fix them proactively
rather than waiting for external
reports.

• [See Review and/or Analyze Human-
Readable Code to Identify
Vulnerabilities and Verify Compliance
with Security Requirements (PW.7)]

• [See Create Source Code Adhering to
Secure Coding Practices (PW.5)]

BSA: VM.2
PCISSLRAP: 4.2
SP800181: SP-DEV-001, SP-DEV-002;
K0009, K0039, K0070

RV.3.4: Review the SDLC
process and update it as
appropriate to prevent (or
reduce the likelihood of) the root
cause recurring in updates to
this software or in new software
that is created.

• Document lessons learned from root
cause analysis in a knowledge base that
developers can access and search.

• Plan and implement changes to the
appropriate SSDF practices.

BSA: PD.1-3
BSIMM9: CMVM3.2
MSSDL: Practice 2
PCISSLRAP: 2.6, 4.2
SP800181: K0009, K0039, K0070

190

NIST CYBERSECURITY WHITE PAPER (DRAFT) MITIGATING THE RISK OF SOFTWARE
JUNE 11, 2019 VULNERABILITIES BY ADOPTING AN SSDF

 17

References 191

[1] Newhouse W, Keith S, Scribner B, Witte G (2017) National Initiative for Cybersecurity
Education (NICE) Cybersecurity Workforce Framework. (National Institute of Standards
and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-181.
https://doi.org/10.6028/NIST.SP.800-181

[2] National Institute of Standards and Technology (2018), Framework for Improving
Critical Infrastructure Cybersecurity, Version 1.1. (National Institute of Standards and
Technology, Gaithersburg, MD). https://doi.org/10.6028/NIST.CSWP.04162018

[3] McGraw G, Migues S, West J (2018) Building Security In Maturity Model (BSIMM)
Version 9. Available at https://www.bsimm.com/download/

[4] International Organization for Standardization/International Electrotechnical
Commission (ISO/IEC), Information technology – Security techniques – Application
security – Part 1: Overview and concepts, ISO/IEC 27034-1:2011, 2011. Available at
https://www.iso.org/standard/44378.html

[5] Microsoft (2019) Security Development Lifecycle. Available at
https://www.microsoft.com/en-us/sdl

[6] Open Web Application Security Project (2010) OWASP Secure Coding Practices Quick
Reference Guide. Available at
https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guide_v2.pdf

[7] Open Web Application Security Project (2014) OWASP Testing Guide 4.0. Available at
https://www.owasp.org/images/1/19/OTGv4.pdf

[8] Payment Card Industry (PCI) Security Standards Council (2019) Secure Software
Lifecycle (Secure SLC) Requirements and Assessment Procedures. Available at
https://www.pcisecuritystandards.org/document_library?category=sware_sec#results

[9] Open Web Application Security Project (2017) Software Assurance Maturity Model
Version 1.5. Available at https://www.owasp.org/index.php/OWASP_SAMM_Project

[10] Software Assurance Forum for Excellence in Code (2018) Fundamental Practices for
Secure Software Development: Essential Elements of a Secure Development Lifecycle
Program, Third Edition. Available at https://safecode.org/wp-
content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Dev
elopment_March_2018.pdf

[11] Joint Task Force Transformation Initiative (2013) Security and Privacy Controls for
Federal Information Systems and Organizations. (National Institute of Standards and
Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-53, Revision 4,
Includes updates as of January 22, 2015. https://doi.org/10.6028/NIST.SP.800-53r4

https://doi.org/10.6028/NIST.SP.800-181
https://doi.org/10.6028/NIST.CSWP.04162018
https://www.bsimm.com/download/
https://www.iso.org/standard/44378.html
https://www.microsoft.com/en-us/sdl
https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guide_v2.pdf
https://www.owasp.org/images/1/19/OTGv4.pdf
https://www.pcisecuritystandards.org/document_library?category=sware_sec#results
https://www.owasp.org/index.php/OWASP_SAMM_Project
https://safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf
https://safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf
https://safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf
https://doi.org/10.6028/NIST.SP.800-53r4

NIST CYBERSECURITY WHITE PAPER (DRAFT) MITIGATING THE RISK OF SOFTWARE
JUNE 11, 2019 VULNERABILITIES BY ADOPTING AN SSDF

 18

[12] Kissel R, Stine K, Scholl M, Rossman H, Fahlsing J, Gulick J (2008) Security
Considerations in the System Development Life Cycle. (National Institute of Standards
and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-64 Revision 2.
https://doi.org/10.6028/NIST.SP.800-64r2

[13] Ross R, McEvilley M, Oren J (2016) Systems Security Engineering: Considerations for a
Multidisciplinary Approach in the Engineering of Trustworthy Secure Systems.
(National Institute of Standards and Technology, Gaithersburg, MD), NIST Special
Publication (SP) 800-160, Volume 1, Includes updates as of March 21, 2018.
https://doi.org/10.6028/NIST.SP.800-160v1

[14] Software Assurance Forum for Excellence in Code (2010) Software Integrity Controls:
An Assurance-Based Approach to Minimizing Risks in the Software Supply Chain.
Available at
http://www.safecode.org/publication/SAFECode_Software_Integrity_Controls0610.pdf

[15] Software Assurance Forum for Excellence in Code (2012) Practical Security Stories and
Security Tasks for Agile Development Environments. Available at
http://www.safecode.org/publication/SAFECode_Agile_Dev_Security0712.pdf

[16] Hong Fong EK, Wheeler D, Henninger A (2016) State-of-the-Art Resources (SOAR) for
Software Vulnerability Detection, Test, and Evaluation 2016. (Institute for Defense
Analyses [IDA], Alexandria, VA), IDA Paper P-8005. Available at
http://www.acq.osd.mil/se/docs/P-8005-SOAR-2016.pdf

[17] Software Assurance Forum for Excellence in Code (2017) Tactical Threat Modeling.
Available at https://www.safecode.org/wp-
content/uploads/2017/05/SAFECode_TM_Whitepaper.pdf

[18] Software Assurance Forum for Excellence in Code (2017) Managing Security Risks
Inherent in the Use of Third-Party Components. Available at
https://www.safecode.org/wp-
content/uploads/2017/05/SAFECode_TPC_Whitepaper.pdf

[19] BSA (2019) Framework for Secure Software. Available at
https://www.bsa.org/reports/bsa-framework-for-secure-software

 192

https://doi.org/10.6028/NIST.SP.800-64r2
https://doi.org/10.6028/NIST.SP.800-160v1
http://www.safecode.org/publication/SAFECode_Software_Integrity_Controls0610.pdf
http://www.safecode.org/publication/SAFECode_Agile_Dev_Security0712.pdf
http://www.acq.osd.mil/se/docs/P-8005-SOAR-2016.pdf
https://www.safecode.org/wp-content/uploads/2017/05/SAFECode_TM_Whitepaper.pdf
https://www.safecode.org/wp-content/uploads/2017/05/SAFECode_TM_Whitepaper.pdf
https://www.safecode.org/wp-content/uploads/2017/05/SAFECode_TPC_Whitepaper.pdf
https://www.safecode.org/wp-content/uploads/2017/05/SAFECode_TPC_Whitepaper.pdf
https://www.bsa.org/reports/bsa-framework-for-secure-software

NIST CYBERSECURITY WHITE PAPER (DRAFT) MITIGATING THE RISK OF SOFTWARE
JUNE 11, 2019 VULNERABILITIES BY ADOPTING AN SSDF

 19

Appendix A—Acronyms 193

BSIMM Building Security In Maturity Model
COTS Commercial-Off-the-Shelf
CPS Cyber-Physical System
DevOps Development and Operations
GOTS Government-Off-the-Shelf
ICS Industrial Control System
IDA Institute for Defense Analyses
IEC International Electrotechnical Commission
IoT Internet of Things
ISO International Organization for Standardization
ISPAB Information Security and Privacy Advisory Board
IT Information Technology
ITL Information Technology Laboratory
KPI Key Performance Indicator
NICE National Initiative for Cybersecurity Education
NIST National Institute of Standards and Technology
OWASP Open Web Application Security Project
PCI Payment Card Industry
SAFECode Software Assurance Forum for Excellence in Code
SAMM Software Assurance Maturity Model
SBOM Software Bill of Materials
SDL [Microsoft] Security Development Lifecycle
SDLC Software Development Life Cycle
SLC Software Lifecyle
SOAR State-of-the-Art Resources
SSDF Secure Software Development Framework

 194

	1 Introduction
	2 Secure Software Development Framework (SSDF)
	References
	Appendix A— Acronyms

