DataLocker H350

DataLocker Inc.

FIPS 140-2 Non-Proprietary Security Policy

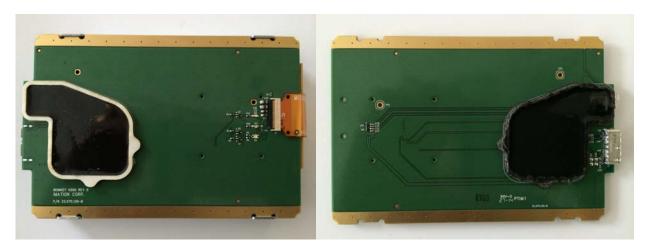
(Document Version 1.2)

January 25, 2017

TABLE OF CONTENTS

1. MODULE OVERVIEW	3
2. SECURITY LEVEL	5
3. MODES OF OPERATION	5
4. PORTS AND INTERFACES	6
5. IDENTIFICATION AND AUTHENTICATION POLICY	6
6. ACCESS CONTROL POLICY	7
ROLES AND SERVICES	
DEFINITION OF PUBLIC KEYS DEFINITION OF CSPS MODES OF ACCESS	
7. OPERATIONAL ENVIRONMENT	10
8. SECURITY RULES	10
9. PHYSICAL SECURITY POLICY	12
PHYSICAL SECURITY MECHANISMS	12 12
10. MITIGATION OF OTHER ATTACKS POLICY	12
11 DEFINITIONS AND ACPONYMS	12

1. Module Overview


The DataLocker H350, hereafter referred to as the cryptographic module, is a multi-chip standalone cryptographic module designed to provide secure data storage and operator authentication. The module under validation includes the following configurations, which differ only in storage size and are physically identical:

DataLocker H350 (FW Version: 1.1.0)			
HW P/N (SKU)	Description		
MXKB1B500G5001FIPS	DataLocker H350 2.5 EHDD USB 3.0 500GB		
MXKB1B001T5001FIPS	DataLocker H350 2.5 EHDD USB 3.0 1TB		
MXKB1B002T5001FIPS	DataLocker H350 2.5 EHDD USB 3.0 2TB		
DL-H350-0250SSD	DataLocker H350 2.5 SSD USB 3.0 250GB		
DL-H350-0500SSD	DataLocker H350 2.5 SSD USB 3.0 500GB		
DL-H350-1000SSD	DataLocker H350 2.5 SSD USB 3.0 1TB		

The cryptographic boundary is defined as being the outer perimeter of the metallic enclosure and is depicted below.

Figures 1 & 2 – Images of the Cryptographic Module w/ Excluded Case

Figures 3 & 4 - Images of the Cryptographic Module w/o Excluded Case

When the DataLocker H350 is connected to a PC, it mounts two drives: a secure volume and a Read-Only disk drive. All files distributed and mounted within the internal Read-Only drive are excluded from the requirements of FIPS 140-2, as they cannot execute within the cryptographic boundary, cannot lead to a compromise of the module's security, and exist for storage only. The metallic enclosure is also excluded from the requirements of FIPS 140-2, as it is removable. The module relies on the features described in Section 9, Physical Security Policy, of this document for physical protection. Lastly, the physical storage drive (Hard Disk Drive or Solid State Drive) is also excluded from the requirements of FIPS 140-2, as it is also removable and does not contain any plaintext secrets or information that could be used to compromise the module's security.

2. Security Level

The cryptographic module meets the overall requirements applicable to Level 3 security of FIPS 140-2.

Table 1 - Module Security Level Specification

Security Requirements Section	Level
Cryptographic Module Specification	3
Module Ports and Interfaces	3
Roles, Services and Authentication	3
Finite State Model	3
Physical Security	3
Operational Environment	N/A
Cryptographic Key Management	3
EMI/EMC	3
Self-Tests	3
Design Assurance	3
Mitigation of Other Attacks	N/A

3. Modes of Operation

Approved mode of operation

The cryptographic module only supports an Approved mode of operation. The operator can verify that the firmware version matches the Approved version through the 'Get Version' service, which can be accessed by checking the Device Info provided in the Control Panel application that interfaces with the H350. The cryptographic module supports the following FIPS Approved algorithms:

- AES ECB and CBC:128, 192, 256-bit (AES Cert. #1412)
- AES ECB and XTS; 256-bit (AES Cert. #4139)
- HMAC_Based DRBG (HMAC Cert. #1257)
- HMAC SHA-256 (HMAC Certs. #2712 and #2715)
- PBKDF (Per SP800-132, vendor affirmed) for internal storage encryption only
- FIPS 186-4 RSA PKCS#1 V1.5, Verify; 2048-bit (RSA Cert. #2255)
- FIPS 186-4 PKCS#1 V1.5, Sign/Verify; RSA PSS Verify; 2048-bit (RSA Cert. #2256); RSA signature generation with SHA-1 tested, but not employed
- SHA-1, SHA-256 (SHS Cert. #1282)
- SHA-256 (SHS Cert. #3409)

The cryptographic module supports the following non-Approved algorithms, which are allowed for use in the FIPS Approved mode of operation:

NDRNG

 RSA Key Transport (key wrapping; key establishment methodology provides 112 bits of encryption strength)

4. Ports and Interfaces

The cryptographic module provides the following physical port and logical interfaces:

USB: Data In/Out, Control In, Status Out, Power In

LEDs (Qty. 3): Status Out

5. Identification and Authentication Policy

Assumption of roles

The cryptographic module supports three distinct roles, the User, the Cryptographic Officer, and the Server. All previous authentications are cleared upon power cycling the module.

Table 2 - Roles and Required Identification and Authentication

Role	Type of Authentication Authentication Data		
User	Identity-based operator authentication	Password Hash	
Cryptographic Officer	Identity-based operator authentication	Digital Signature Verification	
Server	Identity-based operator authentication	Digital Signature Verification	

Table 3 - Strengths of Authentication Mechanisms

Authentication Mechanism	Strength of Mechanism
Password Hash Verification	The probability that a random attempt will succeed or a false acceptance will occur is 1/4^95, which is less than 1/1,000,000.
	The module can be configured to restrict the number of consecutive authentication failures, through policy, to a value between one and 239 before it zeroizes all data and CSP contents of the module (Default is 10). The probability of successfully authenticating to the module within one minute through random attempts is less than 1/100,000.
Digital Signature Verification, 2048-bit keys	The probability that a random attempt will succeed or a false acceptance will occur is 1/2^112, which is less than 1/1,000,000.
	The performance limitations of the USB port and the performance of the processor allow for 1111 RSA signature verifications to be performed in one minute (1 every 54ms). Therefore, the probability of successfully authenticating to the module within one minute through random attempts is less than 1/100,000.

^{*} Note: The original authentication data for the User is assumed to meet the 1/1,000,000 strength requirements defined in Section 4.3.3 in FIPS 140-2.

6. Access Control Policy

Roles and Services

Table 4 - Services Authorized for Roles

Role	Authorized Services		
User	- Secure Data Storage: Safely store your data within the storage.		
	- Change Password: Modify the User password.		
	- Format Drive: Re-initialize the secure volume.		
	- Get Version: Retrieve current version information.		
	- Lock Device: Logout the User and prohibit access to the storage drive.		
	- Get Public Key: Retrieve a public key from the module.		
	- RSA Sign/Verify: Create or verify a digital signature with a specified key.		
	- RSA Wrap/Unwrap: RSA encrypt/decrypt a key value with a specified key.		
	- Get Random: Request a random number from the module.		
	 Application Data Access: Support data read/write privileges to secure portions of storage allocated to an application. 		
	Import Key Pair: Enter a public or private RSA key into the module's secure storage.		
Cryptographic Officer	- Firmware Upgrade: Update the firmware or Application Volume.		
Server	- Policy Import: Configure the module's policy.		
	 Access Restrictions: Authorize or prohibit User authentication. This service may also be used to force a User to specify a new password. 		
	- Device Recovery: Assist the recovery of a module with a lost password.		
	- Device Reset: Re-commissions a device for a new employee.		
	- Self-Destruct: Zeroize the device.		

Unauthenticated Services

The cryptographic module supports the following unauthenticated services:

- Show Status: Provides the current status of the cryptographic module through error codes and

the LED.

- Self-Tests: Executes the power-on self-tests and is invoked by a power cycle.

Basic Reset: Re-initializes the device for a new User.

- Login: Initialize the device and allow the operator to authenticate.

For additional information, please see the DataLocker H350 User Guide.

Definition of Critical Security Parameters (CSPs)

Table 5 -CSPs

Device Private Key	2048-bit RSA key. Facilitates key transport.
Login Private Key	2048-bit RSA key. Facilitates key transport.
User Private Keys	2048-bit RSA key. Used at the discretion of the User.
Master Key	256-bit AES ECB key used to encrypt the Secure Volume Key.
Secure Volume Key	256-bit AES XTS key. Provides data protection for the disk drive contents.
Password Hash	SHA-256 hash of the User's password. Authenticates the User.
Device Recovery Key	256-bit HMAC SHA-256 Key. Facilitates device recovery.
DRBG V and Key	Used to generate random numbers.
Entropy Input String	Used to seed the DRBG
Box AES Key	256-bit AES XTS key. Provides data protection for application data.
HMAC Integrity Key	HMAC SHA-256 key. Provides firmware integrity.

Definition of Public Keys

Table 6 - Public Keys

Device Public Key	2048-bit RSA key. Facilitates key transport and signature verification.
Host Public Key	2048-bit RSA key. Digital signature verification and key transport.
Server Public Key	2048-bit RSA key. Digital signature verification and key transport.
User Public Keys	2048-bit RSA key. Used at the discretion of the User.
Firmware and Application Volume Public Key	2048-bit RSA key. Digital signature verification.
Login Public Key	2048-bit RSA key. Facilitates authentication between device and Host.

Definition of CSPs Modes of Access

Table 7 defines the relationship between access to CSPs and the different module services. The modes of access shown in the table are defined as follows:

- Read
- Write
- Execute

Table 7 - CSP Access Rights within Roles & Services

Role		Service	Cryptographic Keys and CSPs Access Operation	
C.O.	User	Server		
	Х		Secure Data Storage	Read/Execute Device Private Key, Secure Volume Key, Box AES Keys
	X		Change	Read/Write Password Hash, Master Key
	^		Password	Read Device Private Key
	Х		Format Drive	Read Device Private Key
	Х		Get Version	Read Device Private Key
	Х		Lock Device	Read Device Private Key
	Х		Get Public Key	Read Device Private Key
	Х		RSA Sign/Verify	Read/Execute Device Private Key, User Private Key
	Х		RSA Wrap/Unwrap	Read/Execute Device Private Key, User Private Keys
	X	Get Random	Read/Execute Device Private Key	
	^	^	Read/Write/Execute DRBG V and Key, Entropy Input String	

Role		Service	Cryptographic Keys and CSPs Access Operation	
C.O.	User	Server		
	Х		Application Data Access	Read/Execute Device Private Key, Box AES Keys, User Private Keys
	X		Import Key Pair	Read/Execute Device Private Key
	^			Write User Private Keys
Х			Firmware Upgrade	Read/Execute Firmware and Application Volume Public Key
		Х	Policy Import	Read/Execute Box AES Key, Device Private Key
		Х	Access Restrictions	Read/Execute Device Private Key
		Х	Device Recovery	Read/Execute Device Recovery Key, Password Hash, Login Private Key, Device Private Key
	Y	Х	Device Reset	Read/Execute Device Private Key
				Write User Private Keys, Box AES Key (Zeroize)
		X	Self-Destruct	Read/Execute Device Private Key
		_ ^		Write all CSPs (Zeroize)
Х	Х	Х	Show Status	N/A
Х	Х	Х	Self-Tests	N/A
Х	Х	Х	Basic Reset	Read/Execute Device Private Key
				Write User Private Keys, Box AES Key (Zeroize)
			Login	Read/Write/Execute Login Private Key, DRBG V and Key, Entropy Input String, Master Key, Device Recovery Key
Х	Х	Х		Read/Execute Password Hash
				Write All Plaintext CSPs (if authentication retry limit is exceeded, Zeroize)

7. Operational Environment

The FIPS 140-2 Area 6 Operational Environment requirements are not applicable because the device contains a non-modifiable operational environment. The module only allows the loading of trusted, validated code that is signed by DataLocker; any firmware updates loaded into the module require FIPS 140-2 validation.

8. Security Rules

The cryptographic module's design corresponds to the cryptographic module's security rules. This section documents the security rules enforced by the cryptographic module to implement the security requirements of this FIPS 140-2 Level 3 module.

- 1. The cryptographic module shall provide three distinct roles. These are the User role, the Cryptographic-Officer role, and the Server role.
- 2. The cryptographic module shall provide identity-based authentication.
- 3. When an operator has not been authenticated to a valid role, the operator shall not have access to

any cryptographic services.

- 4. The cryptographic module shall clear previous authentications upon power off.
- 5. The cryptographic module shall perform the following tests:

Power up Self-Tests:

- 1. Cryptographic algorithm tests:
 - a. AES Encrypt/Decrypt Known Answer Tests
 - b. SHA-1, SHA-256 Known Answer Tests
 - c. HMAC SHA-256 Known Answer Tests
 - d. RSA Sign/Verify Known Answer Tests
 - e. DRBG Known Answer Test
 - f. PBKDF Known Answer Test
- 2. Firmware Integrity Tests
- 3. Critical Functions Tests: N/A.

Conditional Self-Tests:

- 1. Continuous RNG Tests: Performed on NDRNG and DRBG
- 2. SP800-90A Health Tests
- 3. Firmware Load Test (RSA 2048-bit Signature Verification)
- 6. Successful completion of self-tests is indicated by the loading of the DataLocker application.
- 7. At any time, the operator shall be able to command the module to perform the power-up self-tests by power cycling the module.
- 8. Data output shall be inhibited during key generation, self-tests, zeroization, and error states.
- 9. Status information shall not contain CSPs or sensitive data that if misused could lead to a compromise of the module.
- 10. The cryptographic module shall not support concurrent operators or a maintenance role.
- 11. The cryptographic module shall not support a bypass capability.
- 12. The cryptographic module does not support the plaintext entry or output of CSPs. All secret and private keys shall be entered and output in encrypted format.
- 13. The cryptographic module shall not support manual key entry, split-knowledge key entry procedures, output of intermediate key generation values, or entry of seed keys.
- 14. The cryptographic module shall not allow an operator to change roles without reauthenticating first.
- 15. Keys derived from passwords as shown in SP800-132 shall only be used for storage applications.
- 16. PBKDF employs Option 2a as specified in Section 5.4 of SP800-132.
- 17. Passwords must have a minimum of four characters.

9. Physical Security Policy

Physical Security Mechanisms

The cryptographic module includes the following physical security mechanisms:

- Production-grade components
- Hard, opaque epoxy

Note: The module hardness testing was only performed at ambient temperature and no assurance is provided for Level 3 hardness conformance at any other temperature.

Operator Required Actions

The operator is required to periodically inspect the epoxy encapsulate for tamper evidence.

10. Mitigation of Other Attacks Policy

The cryptographic module has not been designed to mitigate attacks beyond the scope of FIPS 140-2 requirements.

11. Definitions and Acronyms

AES Advanced Encryption Standard

ANSI American National Standards Institute

CM Configuration Management
CO Cryptographic Officer

CSP Critical Security Parameter

DRBG Deterministic Random Bit Generator

EDC Error Detection Code

FIPS Federal Information Processing Standard

GPC General Purpose Computer

HDD Hard Disk Drive

HMAC Keyed-Hash Message Authentication Code

NDRNG Non-Deterministic Random Number Generator

PBKDF Password-based Key Derivation Function

PC Personal Computer

RAM Random Access Memory

ROM Read Only Memory
RSA Rivest Shamir Adelman
SHA Secure Hash Algorithm

SSD Solid State Drive