MÜCAŅA

Mocana Cryptographic Suite B Module

Software Version 6.4.1f

Non-Proprietary Security Policy Document Version 3.6

Mocana Corporation

June 14, 2017

Copyright Mocana Corporation 2017. May be reproduced only in its original entirety [without revision].

MOCANA.

Table of Contents

1. Module Specifications	4
2. Security Level	6
3. Modes of Operation	
4. Ports and Interfaces	9
5. Identification and Authentication Policy Assumption of Roles	
6. Access Control Policy	
7. Operational Environment Integrity Check at Application Start	
8. Security Rules	20
9. Physical Security	22
10. Mitigation of Other Attacks Policy	22
11. Key Management Key/CSP Authorized Access and Use Key/CSP Storage Key/CSP Zeroization Key Destruction Service Random Number Generation	22 22 22 22 22 22
12. Guidance	23
Cryptographic Officer Guidance User Guidance	
13. Definitions and Acronyms	24

MOCANA

List of Tables

Table 1 - Operational Environments	4
Table 2 - Module Security Level Specification	6
Table 3 – Approved Algorithms	7
Table 4 - Logical Interface Mapping	9
Table 5 - Roles and Required Identification and Authentication	10
Table 6 - Services Authorized for Use in the Approved Mode of Operation	10
Table 7 - Services Authorized for Use in the non-Approved Mode of Operation	11
Table 8 - CSP Information	13
Table 9 - Public Key Information	15
Table 10 - CSP Access Rights within Roles & Services	16
Table 11 - Power-up Self-Tests	20
Table 12 - Conditional Self-Tests	21
Table 13 - Acronyms and Terms	24

List of Figures

Figure 1 - Cryptographic Module Interface Diagram	5
Figure 2 – Logical Cryptographic Boundary	5
Figure 3 – Code example for Self Test	18

MÖCANA

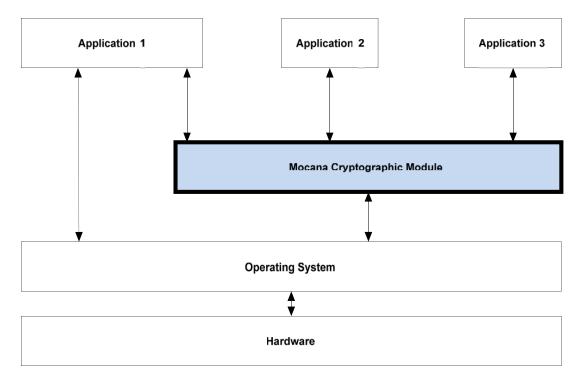
1. Module Specifications

The Mocana Cryptographic Suite B Module (Software Version 6.4.1f) is a software only, multi-chip standalone cryptographic module that runs on a general purpose computer. The primary purpose of this module is to provide FIPS Approved cryptographic routines to consuming applications via an Application Programming Interface. The physical boundary of the module is the case of the general purpose computer. The logical boundary of the cryptographic module is the single shared object (SO).

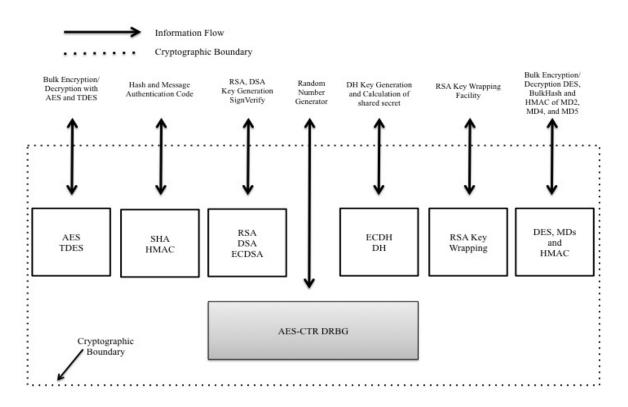
The cryptographic module runs on the following operating environments:

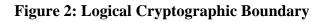
SW Version	Operating System	Platform
6.4.1f	Mentor Graphics Linux 4.0	Avaya VSP4450GSX (with Freescale P2020 processor)
6.4.1f	Wind River Linux 6.0	Intel Atom E3800

Table 1 - Operational Environments


The cryptographic module is also supported on the following operating environments for which operational testing was not performed:

- Linux Kernel version 4.2.0 (32-bit)
- Linux Kernel version 3.16.0 (64-bit)
- 4450GSX-PWR+
- 4450GTXHT-PWR+
- VSP7200
- VSP8200
- VSP8400
- Avaya VSP Operating System Software (VOSS) Stream


Note: the CMVP makes no statement as to the correct operation of the module on the operational environments for which operational testing was not performed.


MÖCANA.

Mocana Cryptographic Suite B Module Security Policy Version 3.6

2. Security Level

The cryptographic module meets the overall requirements applicable to Security Level 1 of FIPS 140-2.

Security Requirements Section	Level
Cryptographic Module Specification	1
Module Ports and Interfaces	1
Roles, Services and Authentication	1
Finite State Model	1
Physical Security	N/A
Operational Environment	1
Cryptographic Key Management	1
EMI/EMC	1
Self-Tests	1
Design Assurance	1
Mitigation of Other Attacks	N/A

Table 2 - Module Security Level Specification

3. Modes of Operation

Approved mode of operation

During module initialization, a consuming application can configure the module to utilize all of the following FIPS Approved algorithms:

Table 3 – Approved Algo	orithms
-------------------------	---------

Algorithm	Mode/Method/Strength	CAVP
		Cert #
AES [FIPS 197]	ECB, CBC, OFB, CFB128 and CTR modes; E/D; 128, 192 and 256	4100,
		4265
AES [FIPS 197]	CCM, CMAC and GMAC 128, 192 and 256	4100,
		4265
CVL DH	6.1.2.1 dhEphem	971,
[SP800-56A]		1007
	Key agreement; key establishment methodology provides 112 bits of	
	encryption strength	
CVL ECDH	6.1.2.2 Ephemeral Unified Diffie-Hellman	971,
[SP800-56A]	Curves: P-224, -256, -384, -521	1007
	Key agreement; key establishment methodology provides between 112 and	
DDDC	256 bits of encryption strength	1000
DRBG	AES-CTR based DRBG- AES-128, AES-192, AES-256	1232,
[SP 800-90A]		1336
DSA	Key Pair Gen: 2048/N=224, 2048/N=256, 3072/N=256	1115,
[FIPS 186-4]	PQG Gen:	1140
	o 2048/N=224 using SHA-224, SHA-256, SHA-384, SHA-512	
	o 2048/N=256 using SHA-256, SHA-384, SHA-512	
	o 3072/N=256 using SHA-256, SHA-384, SHA-512	
	PGQ Ver:	
	o 1024/N=160 using SHA-1, SHA-224, SHA-256, SHA-384, SHA-512	
	o 2048/N=224 using SHA-224, SHA-256, SHA-384, SHA-512	
	o 2048/N=256, 3072/N=256 using SHA-256, SHA-384, SHA-512	
	Sig Gen:	
	 2048/N=256 using SHA-1*, SHA-256, SHA-384, SHA-512 3072/N=256 using SHA-1*, SHA-256, SHA-384, SHA-512 	
	0 30/2/N=256 using SHA-1*, SHA-256, SHA-384, SHA-512 Sig Ver:	
	 1024-bit using SHA-1, SHA-224, SHA-256, SHA-384, SHA-512 2048/N=224 using SHA-1, SHA-224, SHA-256, SHA-384, SHA-512 	
	 2048/N=256 using SHA-1, SHA-224, SHA-256, SHA-384, SHA-512 3072/N=256 using SHA-1, SHA-224, SHA-256, SHA-384, SHA-512 	
ECDSA	Key Pair: CURVES P; 224, 256, 384, 521	928,
[FIPS 186-4]	Sig Gen: CURVES P; 224, 256, 384, 521 using SHA-224, SHA-256, SHA-	928, 994
	384, SHA-512 (SHA-1 tested but not used)	
	Sig Ver: CURVES P; 192, 224, 256, 384, 521 using SHA-1, SHA-224,	
	SHA-256, SHA-384, SHA-512	
	PKV: CURVES P; 192, 224, 256, 384, 521	
	1 X • . CON • LD 1 , 172, 227, 230, 307, 321	

Page 7 of 24

Copyright Mocana Corporation 2017. May be reproduced only in its original entirety [without revision].

HMAC	HMAC-SHA-1; HMAC-SHA-224; HMAC-SHA-256; HMAC-SHA-384;	2679,
[FIPS 198]	HMAC-SHA-512	2810
RSA	Key generation: 2048, 3072-bit	2219,
[FIPS 186-4]	PKCS #1 1.5 and PSS signature generation: 2048, 3072-bit using SHA-1*,	2296
	SHA-224, SHA-256, SHA-384, SHA-512	
	PKCS #1 1.5 and PSS signature verification: 1024,	
	2048, 3072-bit using SHA-1, SHA-224, SHA-256, SHA-384, SHA-512	
SHS	SHA-1	3375,
[FIPS180-4]	SHA-2: SHA-224; SHA-256; SHA-384; SHA-512	3511
Triple-DES	3-key; TCBC; E/D)	2243,
[SP 800-67]		2306

* Digital Signature Generation using SHA-1 is Approved for use within protocols only.

During module initialization, a consuming application can configure the module to utilize all, or any subset of the above Approved algorithms. The module's FIPS_powerupSelfTest_Ex() function, which is called during module startup, takes a parameter that points to a configuration table data structure. This data structure contains an array of booleans indexed by an internal Algorithm-ID that will indicate to the module which FIPS algorithms should be initialized for use. The only configuration that was tested as part of the FIPS validation is the configuration which utilized ALL of the Approved algorithms. The CMVP makes no statement as to the correct operation of the module for all other configurations for which operational testing was not performed.

Non-FIPS Approved but Allowed Algorithms

Within the FIPS Approved mode of operation, the module supports the following allowed algorithms:

- RSA (key wrapping; key establishment methodology provides between 112 and 128 bits of encryption strength)
- Diffie-Hellman (key agreement; key establishment methodology provides 112 bits of encryption strength; non-compliant less than 112 bits of encryption strength)
- EC Diffie-Hellman (key agreement; key establishment methodology provides between 112 and 256 bits of encryption strength; non-compliant less than 112 bits of encryption strength)

Non-FIPS Approved mode

In addition to the above algorithms, the following algorithms are available in the non-FIPS Approved mode of operation:

- Diffie-Hellman (key agreement; key establishment methodology provides 80 bits of encryption strength; non-compliant)
- EC Diffie Hellman (key agreement; key establishment methodology provides less than 112 bits of encryption strength; non-compliant)
- RSA (key wrapping; key establishment methodology provides less than 112 bits of encryption strength; non-compliant)
- AES EAX
- AES GCM (IV generation not compliant with IG A.5)
- AES XCBC

Page 8 *of* 24

MÖCANA

- AES XTS Encryption and Decryption (AES Certs. #4100 and #4265, not compliant with IG A.9)
- DES
- HMAC-MD5
- MD2, MD4 and MD5
- FIPS 186-2 RNG
- RSA PKCS #1 v2.1 RSAES-OAEP encryption/decryption
- RSA Sig Gen 2048/N=224 using SHA-1
- Triple-DES, 2 key

During operation, the module can switch service by service between an Approved mode of operation and a non-Approved mode of operation. The module will transition to the non-Approved mode of operation when one of the above non-Approved security functions is utilized in lieu of an Approved one. The module can transition back to the Approved mode of operation by utilizing an Approved security function.

4. Ports and Interfaces

The physical ports of the module are provided by the general purpose computer on which the module is installed. The logical interfaces are defined as the API of the cryptographic module. The module's API supports the following logical interfaces: data input, data output, control input, and status output.

FIPS 140-2 INTERFACE	Logical Interface
Data Input	Input parameters of API function calls
Data Output	Input parameters of API function calls
Control Input	API Function Calls
Status Output	For FIPS mode, function calls returning status information and return codes provided by API function calls.
Power	None

Table 4 - Logical Interface Mapping

5. Identification and Authentication Policy

Assumption of Roles

The Mocana Cryptographic Suite B Module shall support two distinct roles (User and Cryptographic Officer). The cryptographic module does not provide any identification or authentication methods of its own. The Cryptographic Officer and the User roles are implicitly assumed based on the service requested.

Table 5 - Roles and Required Identification and Authentication

Role	Type of Authentication	Authentication Data
User	N/A	N/A
Cryptographic Officer	N/A	N/A

6. Access Control Policy

Roles and Services

Table 6 - Services Authorized for Use in the Approved Mode of Operation

Role	Authorized Services
User	Self-testsShow StatusRead Version

Cryptographic-Officer	DH Key Generation
	• DH Key Exchange
	ECDH Key Exchange
	ECDH Key Generation
	RSA Key Generation
	RSA Signature Generation
	RSA Signature Verification
	RSA Key Wrapping Encryption
	RSA Key Wrapping Decryption
	DSA Key Generation
	DSA Signature Generation
	DSA Signature Verification
	ECDSA Key Generation
	ECDSA Signature Generation
	ECDSA Signature Verification
	AES Encryption
	AES Decryption
	AES Message Authentication Code
	Triple-DES Encryption
	Triple-DES Decryption
	• SHA-1
	• SHA-224/256
	• SHA-384/512
	HMAC-SHA1 Message Authentication Code
	HMAC-SHA224/256 Message Authentication Code
	HMAC-SHA384/512 Message Authentication Code
	AES-CTR DRBG Random Number Generation
	Key Destruction

Other Services

Table 7 - Services Authorized for Use in the non-Approved Mode of Operation

Role	Authorized Services	
User	Self-tests	
	Show Status	
	Read Version	

MOCANA.

Cryptographic-Officer	DES Encryption
	DES Decryption
	AES Message Authentication Code
	• MD2 Hash
	• MD4 Hash
	• MD5 Hash
	AES XTS Encryption
	• AES XTS Decryption
	AES EAX Encryption
	AES EAX Decryption
	AES XCBC Encryption
	AES XCBC Decryption
	RSA PKCS #1 v2.1 RSAES-OAEP Encryption
	• RSA PKCS #1 v2.1 RSAES-OAEP Decryption
	• FIPS 186-2 Random Number Generation

The cryptographic module supports the following service that does not require an operator to assume an authorized role:

• Self-tests: This service executes the suite of self-tests required by FIPS 140-2. It is invoked by reloading the library into executable memory.

Definition of Critical Security Parameters (CSPs)

The following are CSPs that may be contained in the module:

Key	Description/Usage	Generation	Storage	Entry / Output	Destruction
DH Private Components	Used to derive the secret session key during DH key agreement protocol	Internally using the AES-CTR DRBG	Temporarily in volatile RAM	N/A	An application program which uses the API may destroy the key. The Key Destruction service zeroizes this CSP.
ECDH Private Components	Used to derive the secret session key during ECDH key agreement protocol	Internally using the AES-CTR DRBG	Temporarily in volatile RAM	N/A	An application program which uses the API may destroy the key. The Key Destruction service zeroizes this CSP.
V and Key DRBG values	Used to seed the DRBG for key generation	Externally generated.	Temporarily in volatile RAM	Entry: Plaintext if generated externally Output: N/A	Automatically after use
RSA Private Key	Used to create RSA digital signatures	May be generated internally using the AES-CTR DRBG or generated externally	Temporarily in volatile RAM	Entry: Plaintext if generated externally Output: Plaintext	An application program which uses the API may destroy the key. The Key Destruction service zeroizes this CSP.
RSA Key Wrapping Private Key	Used for RSA Key Wrapping decryption operation	May be generated internally using the AES-CTR DRBG or generated externally	Temporarily in volatile RAM	Entry: Plaintext if generated externally Output: Plaintext	An application program which uses the API may destroy the key. The Key Destruction service zeroizes this CSP.
DSA Private Key	Used to create DSA digital signatures	May be generated internally using the AES-CTR DRBG or generated externally	Temporarily in volatile RAM	Entry: Plaintext if generated externally Output: Plaintext	An application program which uses the API may destroy the key. The Key Destruction service zeroizes this CSP.

Table 8 - CSP Information

Key	Description/Usage	Generation	Storage	Entry / Output	Destruction
ECDSA Private Key	Used to create DSA digital signatures	May be generated internally using the AES-CTR DRBG or generated externally	Temporarily in volatile RAM	Entry: Plaintext if generated externally Output: Plaintext	An application program which uses the API may destroy the key. The Key Destruction service zeroizes this CSP.
TDES Key	Used during Triple- DES encryption and decryption	Externally.	Temporarily in volatile RAM	Entry: Plaintext Output: N/A	An application program which uses the API may destroy the key. The Key Destruction service zeroizes this CSP.
AES Keys	Used during AES encryption, decryption, CMAC and GMAC operations	Externally.	Temporarily in volatile RAM	Entry: Plaintext Output: N/A	An application program which uses the API may destroy the key. The Key Destruction service zeroizes this CSP.
HMAC Keys	160 bit keys used during HMAC- SHA- 1, 224, 256, 384, 512 operations	Externally.	Temporarily in volatile RAM	Entry: Plaintext Output: N/A	An application program which uses the API may destroy the key. The Key Destruction service zeroizes this CSP.

Definition of Public Keys

The following are the public keys contained in the module:

Key	Description/Usage	Generation	Storage	Entry/Output
DH Public Components	Used to derive the secret session key during DH key agreement protocol	Internally using the AES-CTR DRBG	Temporarily in volatile RAM	Entry: Receive Client Public Component during DH exchange. Output: Transmit Host Public Component during
ECDH Public Components	Used to derive the secret session key during ECDH key agreement protocol	Internally using the AES-CTR DRBG	Temporarily in volatile RAM	DH exchangeEntry: Receive Client Public Component during DH exchange.Output: Transmit Host Public Component during DH exchange
RSA Public Key	Used to verify RSA signatures	May be generated internally using the AES-CTR DRBG or generated externally	Temporarily in volatile RAM	Input: Plaintext if generated externally t Output: Plaintext
RSA Key Wrapping Public Key	Used for RSA Key Wrapping encryption operation	May be generated internally using the AES-CTR DRBG or generated externally	Temporarily in volatile RAM	Input: Plaintext if generated externally Output: Plaintext
DSA Public Key	Used to verify DSA signatures	May be generated internally using the AES-CTR DRBG or generated externally	Temporarily in volatile RAM	Input: Plaintext if generated externally Output: Plaintext
ECDSA Public Key	Used to verify ECDSA signatures	May be generated internally using the AES-CTR DRBG or generated externally	Temporarily in volatile RAM	Input: Plaintext if generated externally Output: Plaintext

Table 9 - Public Key Information

Copyright Mocana Corporation 2017. May be reproduced only in its original entirety [without revision].

Definition of CSPs Modes of Access

Table 10 defines the relationship between access to CSPs and the different module services.

Role		Service	Cryptographic Keys and CSPs Access Operation
C.O.	User		
Х		DH Key Generation	Use DH Parameters Generate DH Key pair
Х		DH Key Exchange	Use DH Private Component Generate DH shared secret
Х		ECDH Key Exchange	Use ECDH Private Component Generate ECDH shared secret
Х		ECDH Key Generation	Use ECDH Parameters Generate ECDH Key pair
Х		RSA Key Generation	Generate RSA Public/Private Key pair
Х		RSA Signature Generation	Use RSA Private Key Generate RSA Signature
Х		RSA Signature Verification	Use RSA Public Key Verify RSA Signature
Х		RSA Key Wrapping Encryption	Use RSA Public Key Performs Key Wrapping Encryption
Х		RSA Key Wrapping Decryption	Use RSA Private Key Performs Key Wrapping Decryption
Х		DSA Key Generation	Generate DSA Key Pair for Signature Generation/Verification
Х		DSA Signature Generation	Use DSA Private Key Generate DSA Signature
Х		DSA Signature Verification	Use DSA Public Key Verify DSA Signature
X		ECDSA Key Generation	Generate ECDSA Key Pair for Signature Generation/Verification
Х		ECDSA Signature Generation	Use DSA Private Key Generate ECDSA Signature
Х		ECDSA Signature Verification	Use ECDSA Public Key Verify ECDSA Signature
Х		AES Encryption	Use AES Key
Х		AES Decryption	Use AES Key

Table 10 - CSP Access Rights within Roles & Services

Copyright Mocana Corporation 2017. May be reproduced only in its original entirety [without revision].

	Х		AES Message Authentication	Use AES Key
--	---	--	-------------------------------	-------------

MÖCANA

Role		Service	Cryptographic Keys and CSPs Access Operation
C.O.	User		
		Code	
X		Triple-DES Encryption	Use Triple-DES Key
Х		Triple-DES Decryption	Use Triple-DES Key
Х		SHA-1	Generate SHA-1 Output; no CSP access
Х		SHA-224/256	Generate SHA-224/256 Output; no CSP access
Х		SHA-384/512	Generate SHA-384/512 Output; no CSP access
X		HMAC-SHA-1 Message Authentication Code	Use HMAC-SHA-1 Key Generate HMAC-SHA-1 Output
X		HMAC-SHA- 224/256 Message Authentication Code	Use HMAC-SHA-224/256 Key Generate HMAC-SHA-224/256 Output
X		HMAC-SHA- 384/512 Message Authentication Code	Use HMAC-SHA-384/512 Key Generate HMAC-SHA-384/512 Output
Х		AES-CTR DRBG Random Number Generation	Use V and Key values to generate random number Destroy V and Key values after use
Х		Key Destruction	Destroy All CSPs
	Х	Show Status	N/A
	Х	Self-Tests	N/A
	Х	Read Version	N/A

7. Operational Environment

The FIPS 140-2 Area 6 Operational Environment requirements are applicable because the Mocana Cryptographic Suite B Module operates in a modifiable operational environment.

Please refer to Table 1 for a list of environments for which operational testing of the module was performed.

Integrity Check at Application Start

During the load of the shared object, the integrity check of the library code and constants occurs in the module startup function. It verifies the integrity by executing the HMAC-SHA 1 fingerprint algorithm on the shared library .so file, and comparing the result with the signature file. This integrity check is performed as part of the function FIPS_powerupSelfTest(). This function is called automatically by the host O/S upon loading the shared object into memory via the code snippet below.

```
#ifdef __ENABLE_MOCANA_FIPS_LIB_CONSTRUCTOR__
static void FIPS_constructor() __attribute__((constructor));
void FIPS_constructor()
{
    FIPS_powerupSelfTest();
}
#endif
```

Figure 3: Code Example for Self-Test

MÖCANA.

8. Security Rules

The Mocana Cryptographic Suite B Module design corresponds to the following security rules. This section documents the security rules enforced by the cryptographic module to implement the security requirements of this FIPS 140-2 Level 1 module.

- 1. The cryptographic module provides two (2) distinct roles. These are the User role and the Cryptographic Officer role.
- 2. The cryptographic module does not provide any operator authentication.
- 3. The cryptographic module shall encrypt/decrypt message traffic using the Triple-DES or AES algorithms.
- 4. The cryptographic module shall perform the following self-tests:

Туре	Detail
Software Integrity Check	• HMAC-SHA-1
Known Answer Tests	 AES-ECB, CBC, OFB. CFB, CCM, CMAC, CTR, GCM, GMAC and XTS Triple-DES HMAC-SHA-1 HMAC-SHA-224 HMAC-SHA-256 HMAC-SHA-384 HMAC-SHA-512 SHA-1 SHA-224 SHA-256 SHA-384 SHA-512 RSA Encrypt/Decrypt RSA Sign and Verify KATs AES-CTR DRBG (including SP800-90A Health Checks)
Pair-wise Consistency Tests	 DSA ECDSA ECDH DH

Table 11 - Power-up Self-Tests

Туре	Detail
	• DSA
Pair-wise Consistency Tests	• RSA
	• ECDSA
Continuous RNG Tests	AES-CTR DRBG Continuous Test

Table 12 - Conditional Self-Tests

- 5. At any time, the operator shall be capable of commanding the module to perform the powerup self-tests by reloading the cryptographic module into memory.
- 6. The cryptographic module is available to perform services only after successfully completing the power-up self-tests.
- 7. Data output shall be inhibited during key generation, self-tests, zeroization, and error states. Because the logical interface is defined as the API of the crypto module and the API of the crypto module is single-threaded, key generation or zeroization must be complete before the API returns control to the calling application.
- 8. Status information shall not contain CSPs or sensitive data that if misused could lead to a compromise of the module.
- 9. In the event of a self-test failure, the module will enter an error state and a specific error code will be returned indicating which self-test or conditional test has failed. The module will not provide any cryptographic services while in this state.
- 10. The operating system is restricted to a single operator mode of operation (i.e., concurrent operators are explicitly excluded). The application that makes calls to the modules is the single user of the modules, even when the application is serving multiple clients.
- 11. The calling application of the module shall use entropy sources that meet the security strength required for the random bit generation mechanism. A minimum of 112 bits of entropy must be requested by the calling application.
- 12. DES, MD2, MD4, MD5, AES XTS, AES EAX, AES XCBC, FIPS 186-2 RNG, and RSA PKCS #1 v2.1 RSAES-OAEP encryption/decryption are not allowed for use in the FIPS Approved mode of operation. When these algorithms are used, the module is no longer operating in the FIPS Approved mode of operation. It is the responsibility of the consuming application to zeroize all keys and CSPs prior to and after utilizing these non-Approved algorithms. CSPs shall not be shared between the Approved and non-Approved modes of operation.

9. Physical Security

The FIPS 140-2 Area 5 Physical Security requirements are not applicable because the Mocana Cryptographic Suite B Module is software only.

10. Mitigation of Other Attacks Policy

The module has not been designed to mitigate any specific attacks outside the scope of FIPS140-2 requirements.

11. Key Management

The application that uses the module is responsible for appropriate destruction and zeroization of the keys. The library provides API calls for key allocation and destruction. These API calls overwrite the memory occupied by the key information with zeros before that memory is de-allocated. See Key Destruction Service paragraph below.

Key/CSP Authorized Access and Use

An authorized application acting as the User has access to all key data generated during the operation of the module.

Key/CSP Storage

Private and public keys are provided to the module by the calling process and are destroyed when released by the appropriate API function calls. The module does not perform persistent storage of keys.

Key/CSP Zeroization

The application is responsible for calling the appropriate destruction functions from the API. These functions overwrite the memory with zeros and de-allocate the memory. In case of abnormal termination, the Linux kernel overwrites the keys in physical memory before the physical memory is allocated to another process.

Key Destruction Service

There is a context structure associated with every cryptographic algorithm available in this module. Context structures hold sensitive information such as cryptographic keys. These context structures must be destroyed via respective API calls when the application software no longer needs to use a specific algorithm any more. This API call will zeroize all sensitive information including cryptographic keys before freeing the dynamically allocated memory. This will occur while the application process is still in memory, but no longer needs the specific algorithm, which sufficiently protects the keys from compromise. See the *Mocana Cryptographic API Reference* for additional information.

Random Number Generation

The module implements a CTR-based DRBG. The DRBG generates blocks of random numbers with more than 15 bits. During each generation of random numbers, the newly created bits are compared with the previously created bits. If they are not the same, then the newly created bits are saved to be used in a subsequent bit generation comparison test, however, if they are the same, then the module enters the error state.

The module accepts input from entropy sources external to the cryptographic boundary for use as seed material for the module's Approved DRBG's. External entropy can be added via several APIs available to the crypto-module client application:

```
MOCANA_addEntropyBit () and MOCANA_addEntropy32Bits().
```

Module users (the calling applications) shall use entropy sources that meet the security strength required for the random number generation mechanism.

12. Guidance

Cryptographic Officer Guidance

The operating system running the Mocana Cryptographic Suite B Module must be configured in a single-user mode of operation.

The Cryptographic Officer will install the crypto module and associated signature of the module into the proper location within the computer system. For example, the shared memory library and signature file may be installed in the /usr/local/lib directory, which is protected by Linux access control mechanisms. The module is protected from modification by the integrity self-test performed during startup. The module is initialized by the operating system upon loading the module (kernel module or shared library) into memory for use by calling applications.

User Guidance

The module must be operated in FIPS Approved mode to ensure that FIPS 140-2 validated cryptographic algorithms and security functions are used.

13. Definitions and Acronyms

Acronym	Term
AES	Advanced Encryption Standard
API	Application Program Interface
СО	Cryptographic Officer
CMVP	Cryptographic Module Validation Program
CSP	Critical Security Parameter
DES	Data Encryption Standard
DH	Diffie-Hellman
DRBG	Deterministic Random Bit Generator
DSA	Digital Signature Algorithm
ECDH	Elliptic Curve Diffie-Hellman
ECDSA	Elliptic Curve Digital Signature Algorithm
EMC	Electromagnetic Compatibility
EMI	Electromagnetic Interference
FIPS	Federal Information Processing Standard
HMAC	Keyed-Hash Message Authentication Code
RAM	Random Access Memory
RNG	Random Number Generator
RSA	Rivest, Shamir and Adleman Algorithm
TDES	Triple-DES
SHA	Secure Hash Algorithm
SO	Shared Object