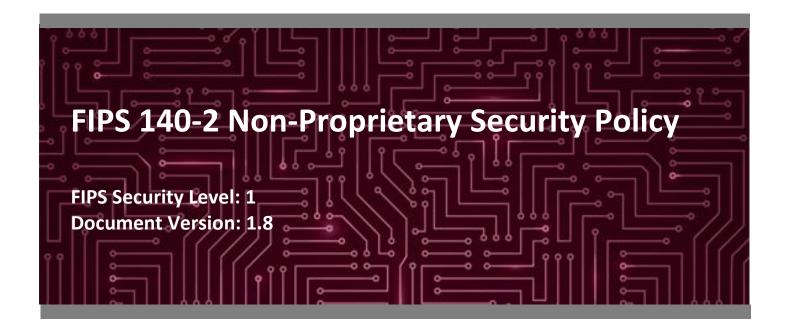
EMC Corporation


Unity 12 Gb/s SAS I/O Module with Encryption

Firmware Version: 03.90

Hardware Version:

Storage Processor SAS Module with P/N 362-000-332, P/N 363-000-071, P/N 363-000-084, and P/N 364-000-096.

Pluggable I/O SAS Module with P/N 362-000-333, P/N 363-000-071, P/N 363-000-084, and P/N 364-000-063.

Prepared for:

EMC Corporation 176 South Street Hopkinton, MA 01748 United States of America

Phone: +1 806 438 3622 www.emc.com Prepared by:

Corsec Security, Inc. 13921 Park Center Road, Suite 460 Herndon, VA 20171 United States of America

Phone: +1 703 267 6050 www.corsec.com

Table of Contents

1. Introdu	uction4
1.1 P	urpose4
1.2 R	eferences4
1.3 D	Ocument Organization
2. Unity 1	12 Gb/s SAS I/O Module with Encryption6
2.1 O	0verview6
2.2 N	/Iodule Specification
2.3 N	Nodule Interfaces
2.4 R	oles and Services
2.5 Pl	hysical Security
2.6 O	Operational Environment
2.7 C	Cryptographic Key Management 13
2.8 EI	MI / EMC
2.9 Se	elf-Tests
2.9.1	Power-Up Self-Tests
2.9.2	Conditional Self-Tests 15
2.9.3	Critical Functions Self-Tests 15
2.10 N	/litigation of Other Attacks
3. Secure	9 Operation
3.1 In	nitial Setup
3.2 Se	ecure Management
3.2.1	Management
3.2.2	Monitoring Status 18
3.2.3	Zeroization
3.3 U	Jser Guidance
3.4 N	Ion-FIPS Approved Mode
4. Acrony	/ms 19

List of Tables

Table 1 – Security Level per FIPS 140-2 Sections	7
Table 2 – FIPS-Approved algorithm implementations	
Table 3 – FIPS 140-2 Logical Interface Mappings	
Table 4 – Crypto Officer and User Services	
Table 5 – List of Cryptographic Keys, Cryptographic Key Components, and CSPs	14
Table 6 – Acronyms	
,	

EMC Unity 12 Gb/s SAS I/O Module with Encryption ©2017 EMC Corporation

List of Figures

Figure 1 – Unity 12 Gb/s SAS I/O Module with Encryption Block Diagram	8
Figure 2 – Top view of Pluggable I/O SAS Module	
Figure 3 – Bottom view of Pluggable I/O SAS Module	12
Figure 4 – Top view of Storage Processor SAS Module	13

1. Introduction

1.1 Purpose

This is a non-proprietary Cryptographic Module Security Policy for the Unity 12 Gb/s SAS^{1,2} I/O³ Module with Encryption from EMC Corporation. This Security Policy describes how the EMC Unity 12 Gb/s SAS I/O Module with Encryption meets the security requirements of Federal Information Processing Standards (FIPS) Publication 140-2, which details the U.S.⁴ and Canadian government requirements for cryptographic modules. More information about the FIPS 140-2 standard and validation program is available on the National Institute of Standards and Technology (NIST) and the Communications Security Establishment (CSE) Cryptographic Module Validation Program (CMVP) website at http://csrc.nist.gov/groups/STM/cmvp.

This document also describes how to operate the module in a secure FIPS-approved mode of operation. This policy was prepared as part of the Level 1 FIPS 140-2 validation of the module. The EMC Unity 12 Gb/s SAS I/O Module with Encryption is also referred to in this document as the module.

1.2 References

This document deals only with operations and capabilities of the module in the technical terms of a FIPS 140-2 cryptographic module security policy. More information is available on the module from the following sources:

- The EMC website (<u>www.emc.com</u>) contains information on the full line of products from EMC.
- The CMVP website (<u>http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm</u>) contains contact information for individuals to answer technical or sales-related questions for the module.

1.3 Document Organization

The Security Policy document is one document in a FIPS 140-2 Submission Package. In addition to this document, the Submission Package contains:

- Vendor Evidence document
- Finite State Model document
- Other supporting documentation as additional references

This Security Policy and the other validation submission documentation were produced by Corsec Security, Inc. under contract to EMC. With the exception of this Non-Proprietary Security Policy, the FIPS 140-2 Submission

¹ SAS – Serial Attached SCSI

² SCSI – Small Computer System Interface

³ I/O – Input/Output

⁴ U.S. – United States of America

Package is proprietary to EMC and is releasable only under appropriate non-disclosure agreements. For access to these documents, please contact EMC.

2. Unity 12 Gb/s SAS I/O Module with Encryption

2.1 Overview

The EMC Unity 12 Gb/s SAS I/O Module with Encryption is a high-density SAS controller chipset executing specialized firmware that provides Data At Rest Encryption (D@RE) for EMC Unity storage arrays. D@RE provides data security and offers a convenient means to decommission all drives in the system at once. Information is protected from unauthorized access even when drives are physically removed from the system. The EMC Unity 12 Gb/s SAS I/O Module with Encryption is an optimized solution for native SAS HBA⁵ applications.

The Unity 12 Gb/s SAS I/O Module with Encryption implements 256-bit AES⁶-XTS^{7,8,9} encryption/decryption to encrypt and decrypt data as it is being written to or read from a SAS drive.

The module is available in two variants. The Storage Processor SAS Module variant is embedded on the printed circuit board (PCB) of the Storage Processor (SP). The Storage Processor SAS Module consists of:

- SAS Controller (P/N 362-000-332)
- Flash Memory (P/N 363-000-071)
- Serial EEPROM¹⁰ (P/N 363-000-084)
- 75 MHz Clock (P/N 364-000-096)

The Pluggable I/O SAS Module variant is embedded on the PCB of a pluggable I/O Module. The Pluggable I/O SAS Module consists of:

- SAS Controller (P/N 362-000-333)
- Flash Memory (P/N 363-000-071)
- Serial EEPROM (P/N 363-000-084)
- 75 MHz Clock (P/N 364-000-063)

The EMC Unity 12 Gb/s SAS I/O Module with Encryption is validated at the FIPS 140-2 Section levels shown in Table I below.

EMC Unity 12 Gb/s SAS I/O Module with Encryption ©2017 EMC Corporation

⁵ HBA – Host Bus Adapter

⁶ AES – Advanced Encryption Standard

⁷ XTS – XEX-Based Tweaked-Codebook Mode with Ciphertext Stealing

⁸ XEX – XOR-Encrypt-XOR

⁹ XOR – Exclusive OR

¹⁰ EEPROM – Electrically Erasable Programmable Read-Only Memory

Section	Section Title	Level
1	Cryptographic Module Specification	1
2	Cryptographic Module Ports and Interfaces	1
3	Roles, Services, and Authentication	1
4	Finite State Model	1
5	Physical Security	1
6	Operational Environment	N/A ¹¹
7	Cryptographic Key Management	1
8	EMI/EMC ¹²	1
9	Self-tests	1
10	Design Assurance	1
11	Mitigation of Other Attacks	N/A

Table 1 – Security Level per FIPS 140-2 Sections

2.2 Module Specification

The Unity 12 Gb/s SAS I/O Module with Encryption is a hardware module with a multiple-chip embedded embodiment. The overall security level of the module is 1.

The cryptographic boundary of the EMC Unity 12 Gb/s SAS I/O Module with Encryption includes the following components:

- SAS controller:
 - Within Storage Processor SAS Module P/N 362-000-332 Eight-lane SAS controller that is configured to provide two quad-lane SAS interfaces. It incorporates FIPS 197 validated, IEEE¹³ 1619-compliant XTS-AES encryption engines.
 - Within Pluggable I/O SAS Module P/N 362-000-333 Sixteen-lane SAS controller that can be configured to provide four quad-lane SAS interfaces or two eight-lane SAS interfaces. It incorporates FIPS 197 validated, IEEE 1619-compliant XTS-AES encryption engines.
- Flash Memory (P/N 363-000-071)
- Serial EEPROM (P/N 363-000-084)
- 75 MHz reference clock:
 - Within Storage Processor SAS Module P/N 364-000-096
 - Within Pluggable I/O SAS Module P/N 364-000-063

 $^{^{11}}$ N/A – Not Applicable

¹² EMI/EMC – Electromagnetic Interference / Electromagnetic Compatibility

¹³ IEEE – Institute of Electrical and Electronics Engineers

EMC Unity 12 Gb/s SAS I/O Module with Encryption ©2017 EMC Corporation

This document may be freely reproduced and distributed whole and intact including this copyright notice.

The cryptographic module includes 16MB¹⁴ of Flash memory for firmware storage and error logging and 4KB¹⁵ SEEPROM¹⁶ for boot block, errata storage, and initialization of the module. The module also includes an on-board 75 MHz reference clock. The module uses SAS ports to interface with the attached storage and PCIe¹⁷ to interface with the host device. Figure 1 below presents the block diagram of the module.

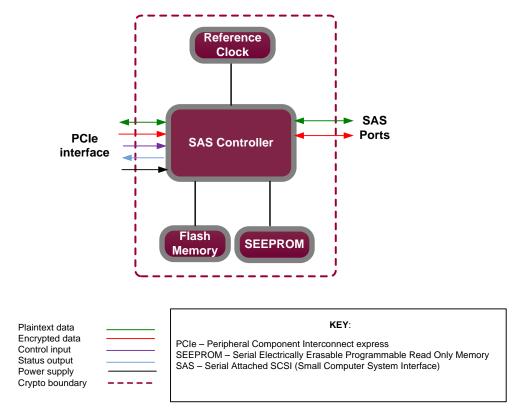


Figure 1 – Unity 12 Gb/s SAS I/O Module with Encryption Block Diagram

The module implements the FIPS-approved algorithms listed in Table 2 below.

Table 2 – FIPS-Approved algorithm implementations

Algorithm	Certificate Number
256-bit AES ECB ¹⁸ encryption/decryption	<u>3586</u>
256-bit AES-XTS encryption/decryption ¹⁹	<u>3598</u>

¹⁴ MB – Megabyte

EMC Unity 12 Gb/s SAS I/O Module with Encryption

©2017 EMC Corporation

¹⁵ KB – Kilobyte

¹⁶ SEEPROM – Serial Electrically Erasable Programmable Read Only Memory

¹⁷ PCIe – Peripheral Component Interconnect Express

¹⁸ ECB – Electronic Code Book

¹⁹ In compliance with IG A.9, the module performs the check of Key $1 \neq$ Key 2 prior to using keys for AES-XTS encryption/decryption.

Algorithm	Certificate Number
256-bit AES Key Wrap ²⁰	<u>3598</u>
HMAC ²¹ with SHA ²² -512 ²³	<u>2296</u> ²⁴
SHA 512 ²³	<u>2961</u> ²⁵

2.3 Module Interfaces

The module's design separates the physical connections into four logically distinct and isolated categories. They are:

- Data Input Interface
- Data Output Interface
- Control Input Interface
- Status Output Interface

In addition, the module supports a Power Input interface.

Physical interfaces for the EMC Unity 12 Gb/s SAS I/O Module with Encryption are described in Table 3 below.

Physical Port/Interface	Quantity	FIPS 140-2 Interface
PCIe interface	Storage Processor SAS Module: 1 Pluggable I/O SAS Module: 1	Data Input Data Output Control Input Status Output Power Input
SAS interface	Storage Processor SAS Module: 2 x 4 (8 x 12G ²⁶) ports Pluggable I/O SAS Module: 4 x 4 (16 x 12G) ports or 2 x 8 (16 x 12G) ports	Data Output

Table 3 – FIPS 140-2 Logical Interface Mappings

²⁶ G – Gigabit

²⁰ 256-bit AES Key Wrap is used to unwrap the KEK and DEK when each key enters the module.

²¹ HMAC – (Keyed) Hash Messaged Authentication Code

²² SHA – Secure Hash Algorithm

²³ The module uses HMAC SHA 512 only to perform the integrity test during power-up. The HMAC and SHA algorithms are not available once the module is operational.

²⁴ Please note that HMAC SHA-1, HMAC SHA-224, HMAC SHA-256 and HMAC SHA-384 listed on certificate #2296 are not accessible.

²⁵ Please note that SHA-1, SHA-224, SHA-256 and SHA-384 listed on certificate #2961 are not accessible.

EMC Unity 12 Gb/s SAS I/O Module with Encryption © 2017 EMC Corporation

This document may be freely reproduced and distributed whole and intact including this copyright notice.

2.4 Roles and Services

There are two roles in the module that operators may assume: a Crypto Officer (CO) role and a User role. Roles are assumed implicitly based on the service accessed.

Descriptions of the services available to a CO and a User are described below in Table 4. Please note that the keys and Critical Security Parameters (CSPs) listed in the Table 4 indicate the type of access required using the following notation:

- R Read: The CSP is read.
- W Write: The CSP is established, generated, modified, or zeroized.
- X Execute: The CSP is used within an Approved or Allowed security function or authentication mechanism.

Service	Op	erator	Description	Innut	Output	CSP and Type of Access	
Service	со	User	Description	Input	Output	CSP and Type of Access	
Configure parameters	~	-	Configuring the module's configuration parameters	Command	Status output	None	
Show Status	-	~	Show the module's status	Command	Status output	None	
Load KEK ²⁷	~	-	Load KEK	Command	Status output	KEK – W KEK-KEK ²⁸ – R/X	
Zeroize KEK	~	-	Zeroize KEK Zeroize KEK-KEK	Command	Status output	KEK – W KEK-KEK – W	
Load DEK ²⁹	~	-	Load DEK	Command	Status output	DEK – W KEK – R/X	
Zeroize DEK	~	-	Zeroize DEK	Command	Status output	DEK – W	
Encryption/ Decryption I/Os	-	~	Perform encryption/decryption of I/Os over SAS interface	Command	Status output	DEK – R/X	
Power down	~	-	Power down the module. KEK and DEK are zeroized as part of the power down process.	Command	Status output	KEK – W DEK – W	

Table 4 – Crypto Officer and User Services

²⁷ KEK – Key Encryption Key

²⁹ DEK – Data Encryption Key

EMC Unity 12 Gb/s SAS I/O Module with Encryption ©2017 EMC Corporation

²⁸ KEK-KEK – Key Encryption Key-Key Encryption Key

Service	Оре	erator	Description	Input	Output	CSD and Tuno of Assoc
Service	со	User	Description	Input	Output	CSP and Type of Access
Perform self- tests	✓	-	Invoke self-tests via a reboot or power cycling	Reboot or power cycling	Status output	None

2.5 Physical Security

The EMC Unity 12 Gb/s SAS I/O Module with Encryption is a multiple-chip embedded cryptographic module. The module consists of production-grade components that include standard passivation techniques. Figure 2 and Figure 3 below identifies all components within the cryptographic boundary along with module interfaces of the Pluggable I/O SAS Module. Figure 4 identifies all components within the cryptographic boundary along with module interfaces of the Storage Processor SAS Module.

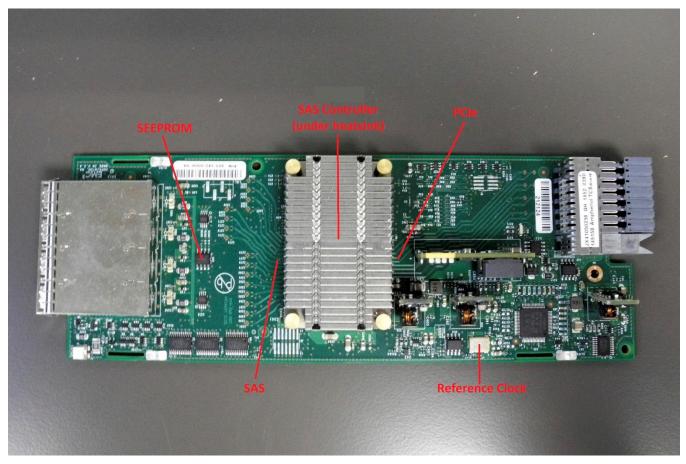


Figure 2 – Top view of Pluggable I/O SAS Module

EMC Unity 12 Gb/s SAS I/O Module with Encryption ©2017 EMC Corporation This document may be freely reproduced and distributed whole and intact including this copyright notice.

Page 11 of 21

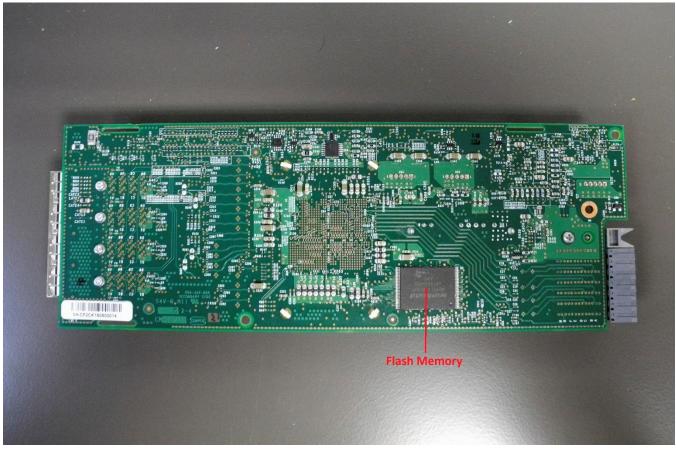


Figure 3 – Bottom view of Pluggable I/O SAS Module

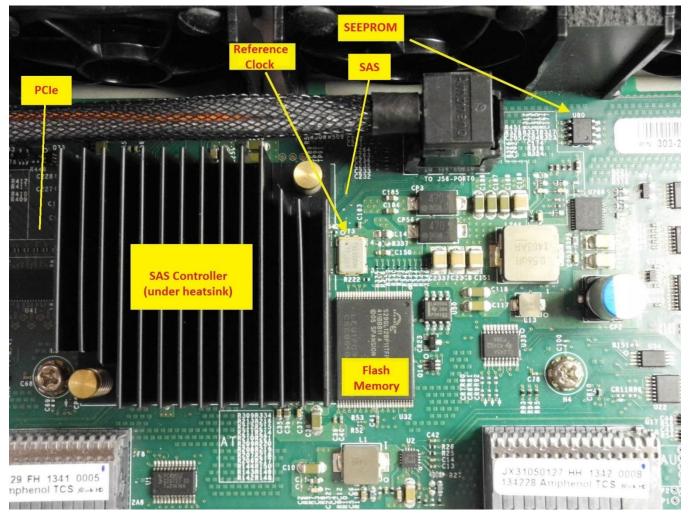


Figure 4 – Top view of Storage Processor SAS Module

2.6 **Operational Environment**

The cryptographic module employs a non-modifiable operating environment. The cryptographic module does not provide a general-purpose Operating System (OS) to the operator. The operational environment of the cryptographic module consists of the module's firmware v03.90. The module only loads and executes firmware that successfully passes the HMAC SHA-512 verification method.

2.7 Cryptographic Key Management

The module supports the CSPs listed below in Table 5 below.

CSP	CSP Type	Generation / Input	Output	Storage	Zeroization	Use
DEK	256-bit AES-XTS	Entered electronically in ciphertext	Never exits the module	Stored in plaintext within the SAS controller	Zeroize DEK service and Power down service	Encryption and Decryption of data
КЕК	256-bit AES ECB Unwrap Key	Entered electronically in ciphertext	Never exits the module	Stored in plaintext within the SAS controller	Zeroize KEK service and Power down service	Decryption of DEK
KEK-KEK	256-bit AES ECB Unwrap Key	Loaded electronically in plaintext as part of module initial configuration.	Never exits the module	Stored in plaintext in flash memory	Zeroize KEK service	Decryption of KEK

Table 5 – List of Cryptographic Keys, Cryptographic Key Components, and CSPs

The KEK-KEK is generated outside the module and automatically loaded into the module in plaintext form during initial configuration of the module into the approved mode. Configuring the module for FIPS-approved mode is detailed in Section 3.

The KEK is wrapped outside the module boundary on the host platform with the KEK-KEK. The KEK is entered encrypted electronically from the host platform of the module. The module uses its internally stored copy of the KEK-KEK to decrypt (unwrap) the KEK using an AES (Cert. #3598) key unwrapping algorithm.

The DEK is wrapped outside the module boundary on the host platform with the KEK. The DEK is entered encrypted electronically from the host platform of the module. The module then uses the KEK which was previously unwrapped to decrypt (unwrap) the DEK using an AES (Cert. #3598) key unwrapping algorithm.

2.8 EMI / EMC

EMC Unity 12 Gb/s SAS I/O Module with Encryption was tested and found conformant to the EMI/EMC requirements specified by 47 Code of Federal Regulations, Part 15, Subpart B, Unintentional Radiators, Digital Devices, Class A (business use).

2.9 Self-Tests

Cryptographic self-tests are performed by the module when the module is first powered up. These power-up self-tests can be initiated on-demand at any time by rebooting or power cycling the module. The following sections list self-tests performed by the module, their expected error status, and error resolutions.

2.9.1 Power-Up Self-Tests

During power-up, once the module is initialized, EMC Unity 12 Gb/s SAS I/O Module with Encryption performs the following power-on self-tests:

- Main module firmware integrity test HMAC SHA-512³⁰
- Known Answer Tests (KATs)
 - AES-ECB encrypt KAT
 - AES-ECB decrypt KAT
 - AES-XTS encrypt KAT
 - AES-XTS decrypt KAT

After powering—on the module, the power-up self-tests will execute automatically with no intervention from the operator. While the module is executing the self-tests all data output interfaces are inhibited. When the power-up self-tests complete successfully, then the module is in a fully operational state. If the module fails an integrity test on main firmware, or any power-up self-test, then a critical error occurs. The error is logged in a register internally and outputted from the module over the PCIe interface. Once the module has entered the critical error state, all cryptographic processing and data output is inhibited.

To clear the critical error state, the module must be power cycled or rebooted. If the condition persists, the module must be serviced by EMC.

2.9.2 Conditional Self-Tests

The module does not perform any conditional self-tests.

2.9.3 Critical Functions Self-Tests

The EMC Unity 12 Gb/s SAS I/O Module with Encryption performs the following critical functional self-tests at power-on or reboot of the module:

³⁰ HMAC SHA-512 is used by the module only to perform the main firmware integrity test and ILA integrity test. These functions are not available for any other use. The module's integrity check using HMAC-SHA-512 also serves as the known answer test for the HMAC algorithm.

This document may be freely reproduced and distributed whole and intact including this copyright notice.

- ILA³¹ integrity test HMAC SHA-512
- AES key unwrap KAT

While the module is executing the self-tests all data output interfaces are inhibited. When the critical functions self-tests complete successfully, then the module is in a fully operational state. If the module fails either of the critical functions tests, then the module enters a critical error state. The error is logged in a register internally and output from the module over the PCIe interface. Once the module has entered the critical error state, all cryptographic processing and data output is inhibited.

To clear the critical error state, the module must be power cycled or rebooted. If the condition persists, the module must be serviced by EMC.

2.10 Mitigation of Other Attacks

This section is not applicable. The module does not claim to mitigate any attacks beyond the FIPS 140-2 Level 1 requirements for this validation.

³¹ ILA – Image Loader Agent

3. Secure Operation

The Unity 12 Gb/s SAS I/O Module with Encryption meets Level 1 requirements for FIPS 140-2. The sections below describe how to place the module in the FIPS-approved mode of operation.

3.1 Initial Setup

The module is available pre-installed on an EMC Unity array. The module is delivered in a non-operational factory state. The CO is responsible for initialization, configuration, and management activities of the module.

The module can be managed through the following underlying host device's interfaces:

- Unisphere Command Line Interface (CLI)
- Unisphere Graphical User Interface (GUI)

The commands and buttons used in these interfaces translate to commands that enter the module over the PCIe bus.

During initial setup, the CO must perform the following steps to configure the module:

- The CO shall validate the module firmware version number 03.90 by executing the following service command: svc_diag --state spinfo. For more information, please refer to the Unity Family Service Commands Technical Notes³² document.
- The CO shall install the Unity license file that includes the Data at Rest Encryption feature on the host device. This process will configure the KEK-KEK. For more information, please refer to the Unity Family Security Configuration Guide³² and Unity: Data at Rest Encryption White Paper³².
- The CO shall verify that the Encryption mode has changed from "Unencrypted" to "Controller Based Encryption" via Unisphere GUI or Unisphere CLI. To view the status via Unisphere GUI, navigate to Settings
 > Management > Encryption. To view the status via Unisphere CLI, use /prot/encrypt show detail command and for more information please refer to the Unity Family Unisphere CLI User Guide³².
- The CO shall reboot the system. Once the module is powered on and all power-up self-tests have completed successfully, the module is operating in FIPS-Approved mode.

Once all steps are completed, the module is initialized.

3.2 Secure Management

The CO is responsible for ensuring that the module is operating correctly.

³² This document is available via EMC Support website

3.2.1 Management

When configured according to the guidance stated in this Security Policy, the module runs in a FIPS-Approved mode of operation. The CO shall manage the module via the host device interfaces, Unisphere CLI and Unisphere GUI.

3.2.2 Monitoring Status

The CO should monitor the module status regularly. The CO can verify that the module is operating in the approved mode by ensuring that the Encryption mode reports "Controller Based Encryption". Please refer to Section 3.1 for the details to verify the Encryption mode. When configured according to the guidance stated in this Security Policy, the module operates in the FIPS-Approved mode. The module when operational is always in the FIPS-Approved mode.

The current status of the module which is output over the PCIe interface can be monitored via the Unisphere CLI and Unisphere GUI interfaces. The encryption mode of the array is also reported on the Unisphere CLI and Unisphere GUI host device interfaces.

Detailed instructions to monitor and troubleshoot the systems are provided via EMC Support at <u>www.emc.com</u>³³.

3.2.3 Zeroization

A CO can perform the Zeroize DEK service or Power down service to zeroize the DEK. The KEK is zeroized when a CO performs the Zeroize KEK service or Power down service. CO zeroizes the KEK-KEK by performing the Zeroize KEK service. Once keys are zeroized they are no longer available to the module.

3.3 User Guidance

No additional guidance for Users is required to maintain the FIPS-Approved mode of operation.

3.4 Non-FIPS Approved Mode

When initialized and configured according to the instructions in this Security Policy, the module does not support a non-FIPS-Approved mode of operation.

³³ A username and password are required to access EMC support information.

EMC Unity 12 Gb/s SAS I/O Module with Encryption ©2017 EMC Corporation This document may be freely reproduced and distributed whole and intact including this copyright notice.

4. Acronyms

Table 6 below provides definitions for the acronyms used in this document.

Table 6 – Acronyms

Acronym	Definition			
AES	Advanced Encryption Standard			
CLI	Command Line Interface			
CMVP	Cryptographic Module Validation Program			
со	Crypto Officer			
CSE	Communications Security Establishment			
CSP	Critical Security Parameter			
D@RE	Data At Rest Encryption			
DEK	Data Encryption Key			
ECB	Electronic Code Book			
EEPROM	Electrically Erasable Programmable Read Only Encryption			
EMC	Electromagnetic Compatibility			
EMI	Electromagnetic Interference			
FIPS	Federal Information Processing Standard			
GUI	Graphical User Interface			
НВА	Host Bus Adapter			
НМАС	(Keyed) Hash Messaged Authentication Code			
ILA	Image Loader Agent			
I/O	Input/Output			
IEEE	Institute of Electrical and Electronics Engineers			
п	Information Technology			
КАТ	Known Answer Test			
КЕК	Key Encryption Key			
КЕК-КЕК	Key Encryption Key-Key Encryption Key			
МА	Massachusetts			
КВ	Kilobyte			
МВ	Megabyte			
MHz	Megahertz			
N/A	Not Applicable			

EMC Unity 12 Gb/s SAS I/O Module with Encryption © 2017 EMC Corporation

FIPS 140-2 Non-Proprietary Security Policy, Version 1.8

Acronym	Definition				
NIST	National Institute of Standards and Technology				
OS	Operating System				
РСВ	Printed Circuit Board				
PCle	Peripheral Component Interconnect Express				
SAS	Serial Attached SCSI				
SCSI	Small Computer System Interface				
SEEPROM	Serial Electrically Erasable Programmable Read Only Encryption				
SSP	Serial SCSI Protocol				
VA	Virginia				
XEX	XOR-Encrypt-XOR				
XOR	Exclusive Or				
ХТЅ	XEX-Based Tweaked-Codebook Mode with Ciphertext Stealing				

Prepared by: Corsec Security, Inc.

13921 Park Center Road, Suite 460 Herndon, VA 20171 United States of America

> Phone: +1 703 267 6050 Email: <u>info@corsec.com</u> <u>http://www.corsec.com</u>