

# Mocana Cryptographic Loadable Kernel Module

Software Version 6.4.1f

Non-Proprietary Security Policy

Document Version 3.5

Mocana Corporation

May 16, 2017



### **Table of Contents**

| 1. Module Overview                                                                                                                                   | 4  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2. Security Level                                                                                                                                    | 6  |
| 3. Modes of Operation                                                                                                                                | 7  |
| 4. Ports and Interfaces                                                                                                                              | 8  |
| 5. Identification and Authentication Policy  Assumption of Roles                                                                                     |    |
| 6. Access Control Policy                                                                                                                             | 9  |
| Roles and Services  Other Services  Definition of Critical Security Parameters (CSPs)  Definition of Public Keys  Definition of CSPs Modes of Access |    |
| 7. Operational Environment                                                                                                                           |    |
| 8. Security Rules                                                                                                                                    | 14 |
| 9. Physical Security                                                                                                                                 | 15 |
| 10. Mitigation of Other Attacks Policy                                                                                                               | 15 |
| 11. Key Management                                                                                                                                   |    |
| Key/CSP Zeroization                                                                                                                                  |    |
| 12. Guidance                                                                                                                                         | 16 |
| Cryptographic Officer Guidance                                                                                                                       |    |
| Key Destruction Service                                                                                                                              |    |
| Random Number Generation                                                                                                                             |    |
| 13 Definitions and Aeronyms                                                                                                                          | 17 |



## **List of Tables**

| Table 1 – Operational Environment                                           | 4  |
|-----------------------------------------------------------------------------|----|
| Table 2 - Module Security Level Specification                               | 6  |
| Table 3 - Algorithms and Software Versions                                  | 7  |
| Table 4 - Logical Interface Mapping                                         | 8  |
| Table 5 - Roles and Required Identification and Authentication              | 9  |
| Table 6 - Services Authorized for Use in the Approved Mode of Operation     | 9  |
| Table 7 - Services Authorized for Use in the non-Approved Mode of Operation | 10 |
| Table 8 - CSP Information                                                   | 11 |
| Table 9 - CSP Access Rights within Roles & Services                         | 12 |
| Table 10 - Power-up Self-Tests                                              | 14 |
| Table 11 - Conditional Self-Tests                                           | 14 |
| Table 12 - Acronyms and Terms                                               | 17 |
| List of Figures                                                             |    |
| Figure 1 - Cryptographic Module Interface Design                            | 5  |
| Figure 2 - Logical Cryptographic Boundary                                   | 5  |
| Figure 3 - Code Example for Self-Test                                       | 13 |



### 1. Module Overview

The Mocana Cryptographic Loadable Kernel Module (Software Version 6.4.1f) is a software only, multi-chip standalone cryptographic module that runs on a general purpose computer. The primary purpose of this module is to provide FIPS Approved cryptographic routines to consuming applications via an Application Programming Interface. The physical boundary of the module is the case of the general purpose computer. The logical boundary of the cryptographic module is the kernel module, moc\_crypto.ko, as well as the signature file, moc\_crypto.ko.sig.

The cryptographic module runs on the following operating environment:

**Table 1 – Operational Environment** 

| SW Version | Operating System     | Platform         |
|------------|----------------------|------------------|
| 6.4.1f     | Wind River Linux 6.0 | Intel Atom E3800 |
|            |                      |                  |



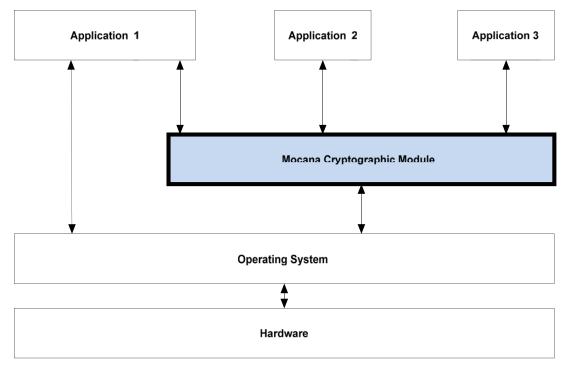



Figure 1 - Cryptographic Module Interface Design

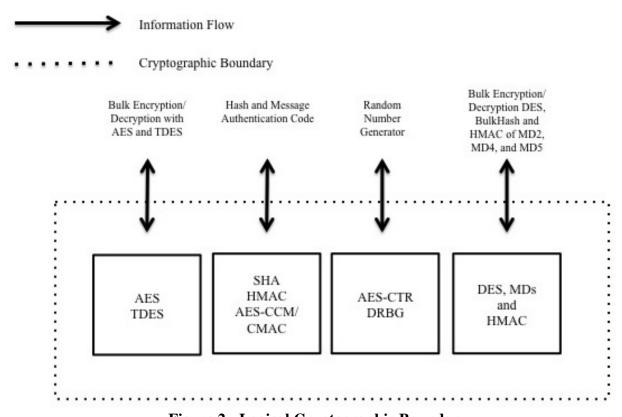



Figure 2 - Logical Cryptographic Boundary



## 2. Security Level

The cryptographic module meets the overall requirements applicable to Security Level 1 of FIPS 140-2.

**Table 2 - Module Security Level Specification** 

| <b>Security Requirements Section</b> | Level |
|--------------------------------------|-------|
| Cryptographic Module Specification   | 1     |
| Module Ports and Interfaces          | 1     |
| Roles, Services and Authentication   | 1     |
| Finite State Model                   | 1     |
| Physical Security                    | N/A   |
| Operational Environment              | 1     |
| Cryptographic Key Management         | 1     |
| EMI/EMC                              | 1     |
| Self-Tests                           | 1     |
| Design Assurance                     | 1     |
| Mitigation of Other Attacks          | N/A   |



## 3. Modes of Operation

#### **Approved mode of operation**

During module initialization, a consuming application can configure the module to utilize all of the following FIPS Approved algorithms:

**Table 3 - Algorithms and Software Versions** 

| Algorithm      | Mode/Method/Strength                                       | CAVP   |
|----------------|------------------------------------------------------------|--------|
|                |                                                            | Cert # |
| AES [FIPS 197] | ECB, CBC, OFB, CFB128 and CTR modes; E/D; 128, 192 and 256 | 4265   |
| AES [FIPS 197] | CCM and CMAC 128, 192 and 256                              | 4265   |
| DRBG           | AES-CTR based DRBG- AES-128, AES-192, AES-256              | 1336   |
| [SP 800-90A]   |                                                            |        |
| HMAC           | HMAC-SHA-1; HMAC-SHA-224; HMAC-SHA-256; HMAC-SHA-384;      | 2810   |
| [FIPS 198]     | HMAC-SHA-512                                               |        |
| SHS            | SHA-1                                                      | 3511   |
| [FIPS180-4]    | SHA-2: SHA-224; SHA-256; SHA-384; SHA-512                  |        |
| Triple-DES     | 3-key; TCBC; E/D)                                          | 2306   |
| [SP 800-67]    |                                                            |        |

During module initialization, a consuming application can configure the module to utilize all, or any subset of the above Approved algorithms. The module's FIPS\_powerupSelfTest\_Ex() function, which is called during module startup, takes a parameter that points to a configuration table data structure. This data structure contains an array of booleans indexed by an internal Algorithm-ID that will indicate to the module which FIPS algorithms should be initialized for use. The only configuration that was tested as part of the FIPS validation is the configuration which utilized ALL of the Approved algorithms. The CMVP makes no statement as to the correct operation of the module for all other configurations for which operational testing was not performed.

## **Non-FIPS Approved mode**

In addition to the above algorithms, the following algorithms are available in the non-FIPS Approved mode of operation:

**AES EAX** 

AES GCM and GMAC (GCM IV generation not compliant with IG A.5)

**AES XCBC** 

AES XTS (not compliant with IG A.9)

**DES** 



HMAC-MD5 MD2, MD4, MD5 FIPS 186-2 RNG Triple-DES, 2 key

Note: All the various AES modes, (e.g. EAX, XCBC, XTS, etc.) use the same underlying AES implementation as the approved AES Cert. #4265.

During operation, the module can switch service by service between an Approved mode of operation and a non-Approved mode of operation. The module will transition to the non-Approved mode of operation when one of the above non-Approved security functions is utilized in lieu of an Approved one. The module can transition back to the Approved mode of operation by utilizing an Approved security function.

#### 4. Ports and Interfaces

The physical ports of the module are provided by the general-purpose computer on which the module is installed. The logical interfaces are defined as the API of the cryptographic module. The module's API supports the following logical interfaces: data input, data output, control input, and status output.

**Table 4 - Logical Interface Mapping** 

| FIPS 140-2 INTERFACE | Logical Interface                                                                                           |
|----------------------|-------------------------------------------------------------------------------------------------------------|
| Data Input           | Input parameters of API function calls                                                                      |
| Data Output          | Input parameters of API function calls                                                                      |
| Control Input        | API Function Calls                                                                                          |
| Status Output        | For FIPS mode, function calls returning status information and return codes provided by API function calls. |
| Power                | None                                                                                                        |



## 5. Identification and Authentication Policy

#### **Assumption of Roles**

The Mocana Cryptographic Loadable Kernel Module shall support two distinct roles (User and Cryptographic Officer). The cryptographic module does not provide any identification or authentication methods of its own. The Cryptographic Officer and the User roles are implicitly assumed based on the service requested.

**Table 5 - Roles and Required Identification and Authentication** 

| Role                  | Type of Authentication | Authentication Data |
|-----------------------|------------------------|---------------------|
| User                  | N/A                    | N/A                 |
| Cryptographic Officer | N/A                    | N/A                 |

## **6. Access Control Policy**

#### **Roles and Services**

Table 6 - Services Authorized for Use in the Approved Mode of Operation

| Role                  | Authorized Services                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| User                  | <ul><li>Self-tests</li><li>Show Status</li><li>Read Version</li></ul>                                                                                                                                                                                                                                                                                                                                                                                       |
| Cryptographic-Officer | <ul> <li>AES Encryption</li> <li>AES Decryption</li> <li>AES Message Authentication Code</li> <li>Triple-DES Encryption</li> <li>Triple-DES Decryption</li> <li>SHA-1</li> <li>SHA-224/256</li> <li>SHA-384/512</li> <li>HMAC-SHA1 Message Authentication Code</li> <li>HMAC-SHA224/256 Message Authentication Code</li> <li>HMAC-SHA384/512 Message Authentication Code</li> <li>AES-CTR DRBG Random Number Generation</li> <li>Key Destruction</li> </ul> |



#### **Other Services**

Table 7 - Services Authorized for Use in the non-Approved Mode of Operation

| Role                  | Authorized Services                 |  |  |
|-----------------------|-------------------------------------|--|--|
| User                  | Self-tests                          |  |  |
|                       | Show Status                         |  |  |
|                       | Read Version                        |  |  |
| G 11 0 00             | DES Encryption                      |  |  |
| Cryptographic-Officer | DES Decryption                      |  |  |
|                       | AES Message Authentication Code     |  |  |
|                       | MD2 Hash                            |  |  |
|                       | MD4 Hash                            |  |  |
|                       | MD5 Hash                            |  |  |
|                       | AES EAX Encryption                  |  |  |
|                       | AES EAX Decryption                  |  |  |
|                       | AES XCBC Encryption                 |  |  |
|                       | AES XCBC Decryption                 |  |  |
|                       | AES XTS Encryption                  |  |  |
|                       | AES XTS Decryption                  |  |  |
|                       | FIPS 186-2 Random Number Generation |  |  |

The cryptographic module supports the following service that does not require an operator to assume an authorized role:

• Self-tests: This service executes the suite of self-tests required by FIPS 140-2. It is invoked by loading the kernel module into executable memory.



## **Definition of Critical Security Parameters (CSPs)**

The following are CSPs that may be contained in the module:

**Table 8 - CSP Information** 

| Key                   | Description/Usage                                       | Generation            | Storage                     | Entry /<br>Output                                    | Destruction                                                                                                   |
|-----------------------|---------------------------------------------------------|-----------------------|-----------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| TDES Key              | Used during Triple-<br>DES encryption<br>and decryption | Externally generated. | Temporarily in volatile RAM | Entry:<br>Plaintext<br>Output:<br>N/A                | An application program which uses the API may destroy the key. The Key Destruction service zeroizes this CSP. |
| AES Keys              | Used during AES encryption, decryption, CMAC operations | Externally generated. | Temporarily in volatile RAM | Entry:<br>Plaintext<br>Output:<br>N/A                | An application program which uses the API may destroy the key. The Key Destruction service zeroizes this CSP. |
| HMAC Keys             | Used during HMAC-SHA-1, 224, 256, 384, 512 operations   | Externally generated. | Temporarily in volatile RAM | Entry:<br>Plaintext<br>Output:<br>N/A                | An application program which uses the API may destroy the key. The Key Destruction service zeroizes this CSP. |
| V and Key DRBG values | Used to seed the DRBG for key generation                | Externally generated. | Temporarily in volatile RAM | Entry: Plaintext if generated externally Output: N/A | Automatically after use                                                                                       |

Note: Key Entry and Output refers to keys crossing the logical boundary of the cryptographic module and not the physical boundary of the general purpose computer.



## **Definition of Public Keys**

The module does not contain any public keys.

#### **Definition of CSPs Modes of Access**

Table 9 defines the relationship between access to CSPs and the different module services.

Table 9 - CSP Access Rights within Roles & Services

| Role |      | Service                                                | Cryptographic Keys and CSPs Access Operation                                      |  |  |
|------|------|--------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|
| C.O. | User |                                                        |                                                                                   |  |  |
| Х    |      | AES Encryption                                         | Use AES Key                                                                       |  |  |
| Х    |      | AES Decryption                                         | Use AES Key                                                                       |  |  |
| Х    |      | AES Message<br>Authentication                          | Use AES Key                                                                       |  |  |
| Х    |      | Triple-DES<br>Encryption                               | Use Triple-DES Key                                                                |  |  |
| Х    |      | Triple- ES<br>Decryption                               | Use Triple-DES Key                                                                |  |  |
| X    |      | SHA-1                                                  | Generate SHA-1 Output; no CSP access                                              |  |  |
| Х    |      | SHA-224/256                                            | Generate SHA-224/256 Output; no CSP access                                        |  |  |
| Х    |      | SHA-384/512                                            | Generate SHA-384/512 Output; no CSP access                                        |  |  |
| X    |      | HMAC-SHA-1<br>Message<br>Authentication<br>Code        | Use HMAC-SHA-1 Key Generate HMAC-SHA-1 Output                                     |  |  |
| X    |      | HMAC-SHA-<br>224/256 Message<br>Authentication<br>Code | Use HMAC-SHA-224/256 Key<br>Generate HMAC-SHA-224/256 Output                      |  |  |
| Х    |      | HMAC-SHA-<br>384/512 Message<br>Authentication<br>Code | Use HMAC-SHA-384/512 Key<br>Generate HMAC-SHA-384/512 Output                      |  |  |
| Х    |      | AES-CTR DRBG<br>Random Number<br>Generation            | Use V and Key values to generate random number Destroy V and Key values after use |  |  |
| Х    |      | Key Destruction                                        | Destroy All CSPs                                                                  |  |  |
|      | Х    | Show Status                                            | N/A                                                                               |  |  |
|      | Х    | Self-Tests                                             | N/A                                                                               |  |  |
|      | Х    | Read Version                                           | N/A                                                                               |  |  |



## 7. Operational Environment

The FIPS 140-2 Area 6 Operational Environment requirements are applicable because the Mocana Cryptographic Loadable Kernel Module operates in a modifiable operational environment. Please refer to Table 1 for a list of environments for which operational testing of the module was performed.

#### **Integrity Check at Application Start**

During the load of the kernel module, the integrity check of the kernel module and constants occurs in the module startup function. It verifies the integrity by executing the HMAC-SHA 1 fingerprint algorithm on the kernel module .ko file, and comparing the result with the signature file. This integrity check is performed as part of the function FIPS\_powerupSelfTest(). This function is called automatically by the host O/S upon loading the kernel module into memory via the code snippet below.

```
static int __init
 mss_crypto_init(void)
     int status = 0;
     PRINTDEBUG("moc crypto init.\n");
#ifdef ENABLE FIPS POWERUP TEST
     if (OK > (status = FIPS_powerupSelfTest()))
         PRINTDEBUG("powerup test failed!\n");
         goto cleanup;
     }
     else
     {
         PRINTDEBUG("powerup test passed!\n");
         goto cleanup;
 #else
     PRINTDEBUG("powerup test disabled!\n");
#endif
cleanup:
      return status;
 }
 static void exit
 mss_crypto_fini(void)
 {
     PRINTDEBUG("moc crypto fini.\n");
 }
 module_init(mss_crypto_init);
 module_exit(mss_crypto_fini);
```

Figure 3 - Code Example for Self-Test



**Known Answer Tests** 

## 8. Security Rules

The Mocana Cryptographic Loadable Kernel Module design corresponds to the following security rules. This section documents the security rules enforced by the cryptographic module to implement the security requirements of this FIPS 140-2 Level 1 module.

- 1. The cryptographic module provides two (2) distinct roles. These are the User role and the Cryptographic Officer role.
- 2. The cryptographic module does not provide any operator authentication.
- 3. The cryptographic module shall encrypt/decrypt message traffic using the Triple-DES or AES algorithms.
- 4. The cryptographic module shall perform the following self-tests:

Type

Software Integrity Check

• HMAC-SHA-1

• AES-ECB, CBC, OFB. CFB, CCM, CMAC, CTR, GCM, GMAC and XTS

• Triple-DES

• HMAC-SHA-1

• HMAC-SHA-224

• HMAC-SHA-256

SHA-1 SHA-224 SHA-256 SHA-384 SHA-512

**Table 10 - Power-up Self-Tests** 

| Table 1 | 1Λ _ | Conc | ditional                                | I Cal | f_Tost | _ |
|---------|------|------|-----------------------------------------|-------|--------|---|
| IZINE   |      |      | 111111111111111111111111111111111111111 | . 30. |        |   |

AES-CTR DRBG (including SP800-90A Health Checks)

HMAC-SHA-384

HMAC-SHA-512

| Туре                 | Detail                       |
|----------------------|------------------------------|
| Continuous RNG Tests | AES-CTR DRBG Continuous Test |

- 5. At any time, the operator shall be capable of commanding the module to perform the power-up self-tests by reloading the cryptographic module into memory.
- 6. The cryptographic module is available to perform services only after successfully completing the power-up self-tests.



- 7. Data output shall be inhibited during self-tests, zeroization, and error states. Because the logical interface is defined as the API of the crypto module and the API of the crypto module is single-threaded, zeroization must be complete before the API returns control to the calling application.
- 8. Status information shall not contain CSPs or sensitive data that if misused could lead to a compromise of the module.
- 9. In the event of a self-test or conditional test failure, the module will enter an error state and a specific error code will be returned indicating which self-test or conditional test has failed. The module will not provide any cryptographic services while in this state.
- 10. The operating system is restricted to a single operator mode of operation (i.e., concurrent operators are explicitly excluded). The application that makes calls to the modules is the single user of the modules, even when the application is serving multiple clients.
- 11. The module does not support key generation.
- 12. The calling application of the module shall use entropy sources that meet the security strength required for the random bit generation mechanism. A minimum of 112 bits of entropy must be requested by the calling application.
- 13. DES, MD2, MD4, MD5, AES EAX, AES XCBC, FIPS 186-2 RNG, and Two-key Triple-DES are not allowed for use in the FIPS Approved mode of operation. When these algorithms are used, the module is no longer operating in the FIPS Approved mode of operation. It is the responsibility of the consuming application to zeroize all keys and CSPs prior to and after utilizing these non-Approved algorithms. CSPs shall not be shared between the Approved and non-Approved modes of operation.

## 9. Physical Security

The FIPS 140-2 Area 5 Physical Security requirements are not applicable because the Mocana Cryptographic Loadable Kernel Module is software only.

## 10. Mitigation of Other Attacks Policy

The module has not been designed to mitigate any specific attacks outside the scope of FIPS 140-2 requirements.

## 11. Key Management

The application that uses the module is responsible for appropriate destruction and zeroization of the keys. The library provides API calls for key allocation and destruction. These API calls overwrite the memory occupied by the key information with zeros before that memory is deallocated. See Key Destruction Service paragraph below.



#### **Key/CSP Zeroization**

The application is responsible for calling the appropriate destruction functions from the API. These functions overwrite the memory with zeros and de-allocate the memory. In case of abnormal termination, the Linux kernel overwrites the keys in physical memory before the physical memory is allocated to another process.

#### 12. Guidance

#### **Cryptographic Officer Guidance**

The operating system running the Mocana Cryptographic Loadable Kernel Module must be configured in a single-user mode of operation.

The Cryptographic Officer will install the kernel module and associated signature of the module into the proper location within the computer system. For example, the kernel module and signature file may be installed in the /usr/local/lib/module directory, which is protected by Linux access control mechanisms. The module is protected from modification by the integrity self-test performed during startup. The module is initialized by the operating system upon loading the module (kernel module or shared library) into memory for use by calling applications.

#### **Key Destruction Service**

There is a context structure associated with every cryptographic algorithm available in this module. Context structures hold sensitive information such as cryptographic keys. These context structures must be destroyed via respective API calls when the application software no longer needs to use a specific algorithm any more. This API call will zeroize all sensitive information including cryptographic keys before freeing the dynamically allocated memory. This will occur while the application process is still in memory, but no longer needs the specific algorithm, which sufficiently protects the keys from compromise. See the *Mocana Cryptographic API Reference* for additional information.

#### **Random Number Generation**

The module implements a CTR-based DRBG. The DRBG generates blocks of random numbers with more than 15 bits. During each generation of random numbers, the newly created bits are compared with the previously created bits. If they are not the same, then the newly created bits are saved to be used in a subsequent bit generation comparison test, however, if they are the same then the module enters the error state.

The module accepts input from entropy sources external to the cryptographic boundary for use as seed material for the module's Approved DRBG's. External entropy can be added via several APIs available to the crypto-module client application:

MOCANA\_addEntropyBit () and MOCANA\_addEntropy32Bits().

Module users (the calling applications) shall use entropy sources that meet the security strength required for the random number generation mechanism.



#### **User Guidance**

The module must be operated in FIPS Approved mode to ensure that FIPS140-2 validated cryptographic algorithms and security functions are used.

## 13. Definitions and Acronyms

**Table 11 - Acronyms and Terms** 

| Acronym | Term                                    |
|---------|-----------------------------------------|
| AES     | Advanced Encryption Standard            |
| API     | Application Program Interface           |
| CO      | Cryptographic Officer                   |
| CMVP    | Cryptographic Module Validation Program |
| CSP     | Critical Security Parameter             |
| DES     | Data Encryption Standard                |
| DH      | Diffie-Hellman                          |
| DLL     | Dynamic Link Library                    |
| DRBG    | Deterministic Random Bit Generator      |
| EMC     | Electromagnetic Compatibility           |
| EMI     | Electromagnetic Interference            |
| FIPS    | Federal Information Processing Standard |
| HMAC    | Keyed-Hash Message Authentication Code  |
| LKM     | Loadable Kernel Module                  |
| RAM     | Random Access Memory                    |
| RNG     | Random Number Generator                 |
| TDES    | Triple-DES                              |
| SHA     | Secure Hash Algorithm                   |