

Juniper Networks SRX5400, SRX5600, and SRX5800 Services Gateways with Junos 15.1X49-D75

Non-Proprietary FIPS 140-2 Cryptographic Module Security Policy

Version: 1.3

Date: June 29, 2017

Juniper Networks, Inc. 1133 Innovation Way Sunnyvale, California 94089 USA 408.745.2000 1.888 JUNIPER www.juniper.net

Table of Contents

1	Introduction	4
	1.1 Hardware and Physical Cryptographic Boundary1.2 Mode of Operation	
	1.3 Zeroization	11
2	Cryptographic Functionality	13
	2.1 Approved Algorithms	
	2.2 Allowed Algorithms	
	2.3 Allowed Protocols	
	2.4 Disallowed Algorithms	
3	Roles, Authentication and Services	19
	3.1 Roles and Authentication of Operators to Roles	
	3.2 Authentication Methods	
	3.3 Services	
	3.4 Non-Approved Services	21
4	Self-tests	22
5	Physical Security Policy	24
	5.1 General Tamper Seal Placement and Application Instructions	
	5.2 SRX5400 (13 seals)	
	5.3 SRX5600 (18 seals)	
_		
6	Security Rules and Guidance	
7	References and Definitions	30
Lis	t of Tables	
Tabl	e 1 – Cryptographic Module Configurations	4
Tabl	e 2 - Security Level of Security Requirements	4
Tabl	e 3 - Ports and Interfaces	11
Tabl	e 4 - Data Plane Approved Cryptographic Functions	13
Tabl	e 5 - Control Plane Authentec Approved Cryptographic Functions	13
Tabl	e 6 – HMAC DRBG Approved Cryptographic Functions	14
Tabl	e 7 - OpenSSL Approved Cryptographic Functions	14
Tabl	e 8 – OpenSSH Approved Cryptographic Functions	15
Tabl	e 9 – LibMD Approved Cryptographic Functions	15
Tabl	e 10 – Allowed Cryptographic Functions	15
Tabl	e 11 – Protocols Allowed in FIPS Mode	16
Tabl	e 12 – Critical Security Parameters (CSPs)	17

Table 13 – Public Keys	18
Table 14 – Authenticated Services	19
Table 15 – Unauthenticated traffic	20
Table 16 – CSP Access Rights within Services	20
Table 17 – Authenticated Services	21
Table 18 – Unauthenticated traffic	21
Table 19 – Physical Security Inspection Guidelines	24
Table 20 – References	30
Table 21 – Acronyms and Definitions	31
Table 22 – Datasheets	31
List of Figures	
Figure 1 – SRX5400 Front View	6
Figure 2 – SRX5400 Bottom View	7
Figure 3 – SRX5600 Profile View	7
Figure 4 – SRX5600 Rear View	8
Figure 5 – SRX5600 Left View	8
Figure 6 – SRX5800 Top View	9
Figure 7 – SRX5800 Rear View	10
Figure 8 – SRX5800 Left View	10
Figure 9 - SRX5400- Tamper-Evident Seal Locations on Front- Six Seals	25
Figure 10 - SRX5400- Tamper-Evident Seal Locations on Rear- Seven Seals	25
Figure 11 - SRX5600- Tamper-Evident Seal Locations on Front-11 Seals	26
Figure 12 - SRX5600- Tamper-Evident Seal Locations on Rear- Seven Seals	26
Figure 13 - SRX5800- Tamper-Evident Seal Locations on Front- 19 Seals	27
Figure 14 - SRX5800- Tamper-Evident Seal Locations on Rear- Five Seals	28

1 Introduction

The Juniper Networks SRX Series Services Gateways are a series of secure routers that provide essential capabilities to connect, secure, and manage work force locations sized from handfuls to hundreds of users. By consolidating fast, highly available switching, routing, security, and applications capabilities in a single device, enterprises can economically deliver new services, safe connectivity, and a satisfying end user experience. All models run Juniper's JUNOS firmware — in this case, a specific FIPS-compliant version, when configured in FIPS-MODE called JUNOS-FIPS-MODE, version 15.1X49-D75. The firmware image is junos-srx5000-15.1X49-D75.5-domestic.tgz and the firmware Status service identifies itself as in the "Junos 15.1X49-D75.5".

This Security Policy covers the SRX5400, SRX5600, and SRX5800 models. They are meant for service providers, large enterprise networks, and public-sector networks.

The cryptographic modules are defined as multiple-chip standalone modules that execute JUNOS-FIPS firmware on any of the Juniper Networks SRX-Series gateways listed in the table below.

Table 1 – Cryptographic Module Configurations

Chassis PN	RE PN	SCB PN	SPC PN	IOC PN	Power PN	Tamper Seals
SRX5400	SRX5K-RE- 1800X4	SRX5K-SCBE	SRX5K-SPC-4-15-320	SRX-MIC-10XG- SFPP		JNPR-
SRX5600	SRX5K-RE- 1800X4	SRX5K-SCBE	SRX5K-SPC-4-15-320	SRX-MIC-10XG- SFPP	AC HC or DC	FIPS- TAMPER-
SRX5800	SRX5K-RE- 1800X4	SRX5K-SCBE	SRX5K-SPC-4-15-320	SRX-MIC-10XG- SFPP		LBLS

The modules are designed to meet FIPS 140-2 Level 2 overall:

Table 2 - Security Level of Security Requirements

Area	Description	Level
1	Module Specification	2
2	Ports and Interfaces	2
3	Roles and Services	3
4	Finite State Model	2
5	Physical Security	2
6	Operational Environment	N/A
7	Key Management	2
8	EMI/EMC	2
9	Self-test	2
10	Design Assurance	3
11	Mitigation of Other Attacks	N/A
	Overall	2

The modules have a limited operational environment as per the FIPS 140-2 definitions. They include a firmware load service to support necessary updates. New firmware versions within the scope of this validation must be validated through the FIPS 140-2 CMVP. Any other firmware loaded into these modules are out of the scope of this validation and require a separate FIPS 140-2 validation.

The modules do not implement any mitigation of other attacks as defined by FIPS 140-2.

1.1 Hardware and Physical Cryptographic Boundary

The physical forms of the module's various models are depicted in Figures 1-11 below. For all models the cryptographic boundary is defined as the outer edge of the chassis. The modules exclude the power supply and fan components from the requirements of FIPS 140-2. The power supplies and fans do not contain any security relevant components and cannot affect the security of the module. The excluded components are identified with red borders in the following figures. The module does not rely on external devices for input and output.

Figure 1 - SRX5400 Front View

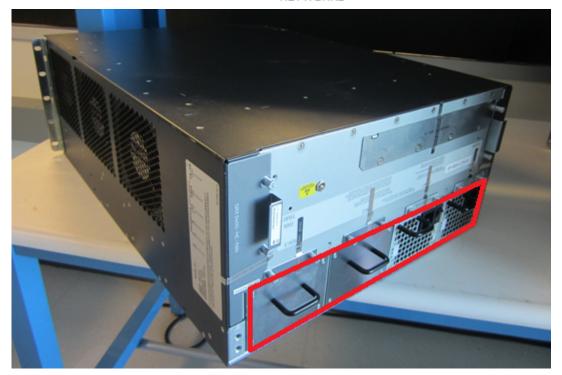


Figure 2 – SRX5400 Bottom View

Figure 3 – SRX5600 Profile View

Figure 4 – SRX5600 Rear View

Figure 5 – SRX5600 Left View

Figure 6 – SRX5800 Top View

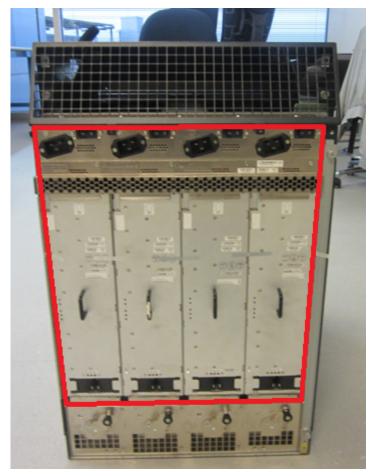


Figure 7 - SRX5800 Rear View

Figure 8 – SRX5800 Left View

Table 3 - Ports and Interfaces

Port	Description Logical Interface Type	
Ethernet	LAN Communications	Control in, Data in, Data out, Status out
Serial	Console serial port	Control in, Status out
Power	Power connector	Power
Reset	Reset	Control in
LED	Status indicator lighting	Status out
USB	Firmware load port	Control in, Data in
WAN	SHDSL, VDSL, T1, E1	Control in, Data in, Data out, Status out

1.2 Mode of Operation

Follow the instructions in Section 5 to apply the tamper seals to the module. Once the tamper seals have been applied as shown in this document, the JUNOS firmware image is installed on the device, and configured in FIPS-MODE and rebooted, and integrity and self-tests have run successfully on initial power-on in FIPS-MODE, the module is operating in the approved mode. The Crypto-Officer must ensure that the backup image of the firmware is also a JUNOS-FIPS-MODE image by issuing the *request system* snapshot command.

If the module was previously in a non-Approved mode of operation, the Cryptographic Officer must zeroize the CSPs by following the instructions in Section 1.3.

Then, the CO must run the following commands to configure SSH to use FIPS approved and FIPS allowed algorithms:

```
co@fips-srx# set system fips level 2
co@fips-srx:fips# commit
```

For each IPsec tunnel configured, the CO must run the following command to configure the algorithms:

The "show version" command will indicate if the module is operating in FIPS mode (e.g. JUNOS Software Release [15.1X49-D75] and ":fips" keyword as a prefix next to hostname in CLI mode). Also run "show security ike" and "show security ipsec" to verify IKEv2 is configured when ipsec or ike proposal encryption algorithm is configured to use AES-GCM.

1.3 Zeroization

The cryptographic module provides a non-Approved mode of operation in which non-approved cryptographic algorithms are supported. When transitioning between the non-Approved mode of

operation and the Approved mode of operation, the Cryptographic Officer must run the following command to zeroize the Approved mode CSPs:

co@fips-srx> request system zeroize

Note: The Cryptographic Officer must retain control of the module while zeroization is in process.

2 Cryptographic Functionality

2.1 Approved Algorithms

The module implements the FIPS Approved and Non-Approved but Allowed cryptographic functions listed in the Tables 4 to 6 below. Table 8 summarizes the high level protocol algorithm support. The module does not implement algorithms that require vendor affirmation.

References to standards are given in square bracket []; see the References table. Items enclosed in curly brackets {} are CAVP tested but not used by the module in the Approved mode.

Table 4 - Data Plane Approved Cryptographic Functions

CAVP Cert.	Algorithm	Mode	Description	Functions
CCI t.	7118011611111	Wode	Bescription	T directions
4205	AES [197]	CBC [38A]	Key Sizes: 128, 192, 256	Encrypt, Decrypt
4395		GCM [38D]	Key Sizes: 128, 192, 256	Encrypt, Decrypt, Message Authentication
2024	118486 [400]	SHA-1	λ = 96	
2921	HMAC [198]	SHA-256	λ = 128	Message Authentication
3623	CLIC [100]	SHA-1		Massaca Disast Consustion
	SHS [180]	SHA-256		Message Digest Generation
2370	Triple-DES [67]	TCBC [38A]	Key Size: 192	Encrypt, Decrypt

Table 5 - Control Plane Authentec Approved Cryptographic Functions

Cert	Algorithm	Mode	Description	Functions
		CBC [38A]	Key Sizes: 128, 192, 256	Encrypt, Decrypt
4393	AES [197]	GCM [38D]	Key Sizes: 128, 256	Encrypt, Decrypt, Message Authentication
N/A ¹	CKG	[133] Section	6.2	Asymmetric key generation using unmodified DRBG output
		[133] Section	7.3	Derivation of symmetric keys
1095	CVI	IKEv1 [135]	SHA 256, 384	Kay Davisation
1095	CVL IKEv2 [135] SHA	SHA 256, 384	Key Derivation	
1053	ECDSA[186]		P-256 (SHA 256)	KeyGen for EC Diffie-Hellman,
1055	LCD3A[180]		P-384 (SHA 384)	SigGen, SigVer
1172	DSA [186]		(L = 2048, N = 224)	KeyGen for Diffie-Hellman
11/2	D3A [160]		(L = 2048, N = 256)	ReyGen for Diffie-Hellifian
2010 UNAAC [100]	SHA-256		Message Authentication, KDF	
	HMAC [198]		30A-730	λ = 128, 256
2919		SHA-384	λ = 192, 384	Message Authentication, KDF
		311A-364	N = 132, 30 4	Primitive

¹ Vendor Affirmed.

NI/A	KTC	AES Cert. #4393 and HMAC Cert. #2919 Triple-DES Cert. #2368 and HMAC Cert. #2919		key establishment methodology provides between 128 and 256 bits of encryption strength
N/A	KTS			key establishment methodology provides 112 bits of encryption strength
2383	RSA [186]	PKCS1_V1_5	n=2048 (SHA 256) n=4096 (SHA 256)	SigGen, SigVer ²
3621	SHS [180]	SHA-256 SHA-384		Message Digest Generation
2368	Triple-DES [67]	TCBC [38A]	Key Size: 192	Encrypt, Decrypt

Table 6 – HMAC DRBG Approved Cryptographic Functions

Cert	Algorithm	Mode	Description	Functions
1423	DRBG [90A]	НМАС	SHA-256	Control Plane Random Bit Generation
1415	DRBG [90A]	НМАС	SHA-256	OpenSSL Random Bit Generation

Table 7 - OpenSSL Approved Cryptographic Functions

CAVP Cert.	Algorithm	Mode	Description	Functions
4394	AES [197]	CBC [38A] CTR [38A]	Key Sizes: 128, 192, 256	Encrypt, Decrypt
N/A ³	CKG	[133] Section [133] Section		Asymmetric key generation using unmodified DRBG output
1173	DSA [186]		(2048, 224) (2048, 256)	KeyGen
1054	ECDSA [186]		P-256 (SHA 256) P-384 (SHA 384)	SigGen, KeyGen, SigVer
		SHA-1 {SHA-384}	λ = 160 N/A	Message Authentication
2920	HMAC [198]	SHA-512	λ = 512	Wessage Nathemation
		SHA-256	λ = 256	Message Authentication, DRBG Primitive
N/A	KTS	AES Cert. #4394 and HMAC Cert. #2920		key establishment methodology provides between 128 and 256 bits of encryption strength

² RSA 4096 SigVer was not tested by the CAVP; however, it is Approved for use per CMVP guidance, because RSA 2048 SigVer was tested and testing for RSA 4096 SigVer is not available.

³ Vendor Affirmed.

		Triple-DES Cert. #2369 and HMAC Cert. #2920		key establishment methodology provides 112 bits of encryption strength
2377	RSA [186]	PKCS1_V1_5	n=2048 (SHA 256)	SigGen, SigVer ⁴
2377	K3A [160]	X9.31		KeyGen ⁵
3622	SHS [180]	SHA-1 SHA-256 SHA-384		Message Digest Generation, KDF Primitive
		SHA-512		Message Digest Generation
2369	Triple-DES [67]	TCBC [38A]	Key Size: 192	Encrypt, Decrypt

Table 8 – OpenSSH Approved Cryptographic Functions

Cert	Algorithm	Mode	Description	Functions
N/A ⁶	CKG	[133] Section 7.3		Derivation of symmetric keys
1096	CVL	SSH [135]	SHA 1, 256, 384	Key Derivation

Table 9 – LibMD Approved Cryptographic Functions

Cert	Algorithm	Mode	Description	Functions
3624	3624 SHS [180]	SHA-256		Message Digest Generation
3024	303 [160]	SHA-512	SHA-512 Message Digest General	

2.2 Allowed Algorithms

Table 10 – Allowed Cryptographic Functions

Algorithm	Caveat	Use
Diffie-Hellman [IG] D.8	Provides 112 bits of encryption strength.	key agreement; key establishment
Elliptic Curve Diffie- Hellman [IG] D.8	Provides 128 or 192 bits of encryption strength.	key agreement; key establishment
NDRNG [IG] 7.14 Scenario 1a	The module generates a minimum of 256 bits of entropy for key generation.	Seeding the DBRG

⁴ RSA 4096 SigVer was not tested by the CAVP; however, it is Approved for use per CMVP guidance, because RSA 2048 SigVer was tested and testing for RSA 4096 SigVer is not available.

⁵ RSA 4096 KeyGen was not tested by the CAVP; however, it is Approved for use per CMVP guidance, because RSA 2048 KeyGen was tested and testing for RSA 4096 KeyGen is not available.

⁶ Vendor Affirmed.

2.3 Allowed Protocols

Table 11 - Protocols Allowed in FIPS Mode

Protocol	Key Exchange	Auth	Cipher	Integrity
IKEv1	Diffie-Hellman (L = 2048, N = 224, 256) EC Diffie-Hellman P-256, P-384	RSA 2048 RSA 4096 Pre-Shared Secret ECDSA P-256 ECDSA P-384	Triple-DES CBC AES CBC 128/192/256	HMAC-SHA- 256 HMAC-SHA- 384
IKEv2 ⁷	Diffie-Hellman (L = 2048, N = 224, 256) EC Diffie-Hellman P-256, P-384	RSA 2048 RSA 4096 Pre-Shared Secret ECDSA P-256 ECDSA P-384	Triple-DES CBC AES CBC 128/192/256 AES GCM ⁸ 128/256	HMAC-SHA- 256 HMAC-SHA- 384
	 IKEv1 with optional: Diffie-Hellman (L = 2048, N = 224, 256) EC Diffie-Hellman P-256, P-384 	IKEv1	3 Key Triple-DES CBC AES CBC 128/192/256	HMAC-SHA-
IPsec ESP	IKEv2 with optional: • Diffie-Hellman (L = 2048, N = 224), (2048, 256) • EC Diffie-Hellman P-256, P-384	IKEv2	3 Key Triple-DES CBC AES CBC 128/192/256 AES GCM ⁹ 128/192/256	HMAC-SHA- 256-128
SSHv2	Diffie-Hellman (L = 2048, N = 256) EC Diffie-Hellman P-256, P-384	ECDSA P-256	Triple-DES CBC AES CBC 128/192/256 AES CTR 128/192/256	HMAC-SHA- 1 HMAC-SHA- 256 HMAC-SHA- 512

These protocols have not been reviewed or tested by the CAVP or CMVP.

The IKE and SSH algorithms allow independent selection of key exchange, authentication, cipher and integrity. In Table 8 above, each column of options for a given protocol is independent, and may be used in any viable combination. These security functions are also available in the SSH connect (non-compliant) service.

⁷ IKEv2 generates the SKEYSEED according to RFC7296.

⁸ The GCM IV is generated according to RFC5282.

⁹ The GCM IV is generated according to RFC4106.

2.4 Disallowed Algorithms

These algorithms are non-Approved algorithms that are disabled when the module is operated in an Approved mode of operation.

- ARCFOUR
- Blowfish
- CAST
- DSA (SigGen, SigVer; non-compliant)
- HMAC-MD5
- HMAC-RIPEMD160
- UMAC

2.5 Critical Security Parameters

All CSPs and public keys used by the module are described in this section.

Table 12 – Critical Security Parameters (CSPs)

Name	Description and usage	CKG
DRBG_Seed	Seed material used to seed or reseed the DRBG	N/A
DRBG_State	V and Key values for the HMAC_DRBG	N/A
SSH PHK	SSH Private host key. 1 st time SSH is configured, the keys are generated. ECDSA P-256. Used to identify the host.	[133] Section 6.1
SSH DH	SSH Diffie-Hellman private component. Ephemeral Diffie-Hellman private key used in SSH. Diffie-Hellman (N = 256 bit, 320 bit, 384 bit, 512 bit, or 1024 bit ¹⁰), EC Diffie-Hellman P-256, or EC Diffie-Hellman P-384	[133] Section 6.2
SSH-SEK	SSH Session Key; Session keys used with SSH. Triple-DES (3key), AES, HMAC.	[133] Section 7.3
ESP-SEK	IPSec ESP Session Keys. Triple-DES (3 key), AES, HMAC.	[133] Section 7.3
IKE-PSK	Pre-Shared Key used to authenticate IKE connections.	N/A
IKE-Priv	IKE Private Key. RSA 2048, RSA 4096, ECDSA P-256, or ECDSA P-384	[133] Section 6.1
IKE-SKEYID	IKE SKEYID. IKE secret used to derive IKE and IPsec ESP session keys.	[133] Section 7.3
IKE-SEK	IKE Session Keys. Triple-DES (3 key), AES, HMAC.	[133] Section 7.3
IKE-DH-PRI	IKE Diffie-Hellman private component. Ephemeral Diffie- Hellman private key used in IKE. DH N = 224 bit, EC Diffie- Hellman P-256, or EC Diffie-Hellman P-384	[133] Section 6.2
CO-PW	ASCII Text used to authenticate the CO.	N/A
User-PW	ASCII Text used to authenticate the User.	N/A

 $^{^{10}}$ SSH generates a Diffie-Hellman private key that is 2x the bit length of the longest symmetric or MAC key negotiated.

Copyright Juniper, 2017 Version 1.3 Page 17 of 31

Table 13 – Public Keys

Name	Description and usage	CKG
SSH-PUB	SSH Public Host Key used to identify the host. ECDSA P-256.	[133] Section 6.1
SSH-DH-PUB	Diffie-Hellman public component. Ephemeral Diffie-Hellman public key used in SSH key establishment. Diffie-Hellman (L = 2048 bit), EC Diffie-Hellman P-256, or EC Diffie-Hellman P-384	[133] Section 6.2
IKE-PUB	IKE Public Key RSA 2048, RSA 4096, ECDSA P-256, or ECDSA P-384	[133] Section 6.1
IKE-DH-PUB	Diffie-Hellman public component. Ephemeral Diffie-Hellman public key used in IKE key establishment. Diffie-Hellman L = 2048 bit, EC Diffie-Hellman P-256, or EC Diffie-Hellman P-384	[133] Section 6.2
Auth-UPub	User Authentication Public Keys. Used to authenticate users to the module. ECDSA P256 or P-384	N/A
Auth-COPub	CO Authentication Public Keys. Used to authenticate CO to the module. ECDSA P256 or P-384	N/A
Root-CA	Juniper Root CA. ECDSA P-256 or P-384 X.509 Certificate; Used to verify the validity of the Juniper Package-CA at software load.	N/A
Package-CA	Package CA. ECDSA P-256 X.509 Certificate; Used to verify the validity of Juniper Images at software load and boot.	N/A

3 Roles, Authentication and Services

3.1 Roles and Authentication of Operators to Roles

The module supports two roles: Cryptographic Officer (CO) and User. The module supports concurrent operators, but does not support a maintenance role and/or bypass capability. The module enforces the separation of roles using either identity-based operator authentication.

The Cryptographic Officer role configures and monitors the module via a console or SSH connection. As root or super-user, the Cryptographic Officer has permission to view and edit secrets within the module

The User role monitors the router via the console or SSH. The user role may not change the configuration.

3.2 Authentication Methods

The module implements two forms of Identity-Based authentication, Username and password over the Console and SSH as well as Username and public key over SSH.

Password authentication: The module enforces 10-character passwords (at minimum) chosen from the 96 human readable ASCII characters. The maximum password length is 20-characters.

The module enforces a timed access mechanism as follows: For the first two failed attempts (assuming 0 time to process), no timed access is enforced. Upon the third attempt, the module enforces a 5-second delay. Each failed attempt thereafter results in an additional 5-second delay above the previous (e.g. 4th failed attempt = 10-second delay, 5th failed attempt = 15-second delay, 6th failed attempt = 20-second delay, 7th failed attempt = 25-second delay).

This leads to a maximum of seven (7) possible attempts in a one-minute period for each getty. The best approach for the attacker would be to disconnect after 4 failed attempts, and wait for a new getty to be spawned. This would allow the attacker to perform roughly 9.6 attempts per minute (576 attempts per hour/60 mins); this would be rounded down to 9 per minute, because there is no such thing as 0.6 attempts. Thus the probability of a successful random attempt is $1/96^{10}$, which is less than 1/1 million. The probability of a success with multiple consecutive attempts in a one-minute period is $9/(96^{10})$, which is less than 1/100,000.

ECDSA signature verification: SSH public-key authentication. Processing constraints allow for a maximum of 5.6e7 ECDSA attempts per minute. The module supports ECDSA (P-256 and P-384). The probability of a success with multiple consecutive attempts in a one-minute period is 5.6e7/(2¹²⁸).

3.3 Services

All services implemented by the module are listed in the tables below. Table 16 lists the access to CSPs by each service.

Table 14 - Authenticated Services

Service	Description	СО	User
Configure security	Security relevant configuration	х	
Configure	Non-security relevant configuration	Х	
Secure Traffic	IPsec protected connection (ESP)	Х	
Status	Show status	Х	Х

Zeroize	Destroy all CSPs		
SSH connect	Initiate SSH connection for SSH monitoring and control (CLI)	х	х
IPsec connect	Initiate IPsec connection (IKE)	Х	
Console access	Console monitoring and control (CLI)	Х	Х
Remote reset	Software initiated reset	Х	

Table 15 – Unauthenticated traffic

Service	Description		
Local reset	Hardware reset or power cycle		
Traffic	Traffic requiring no cryptographic services		

Table 16 - CSP Access Rights within Services

	CSPs												
Service	DRBG_Seed	DRBG_State	SSH РНК	нд HSS	SSH-SEK	ESP-SEK	IKE-PSK	IKE-Priv	IKE-SKEYID	IKE-SEK	IKE-DH-PRI	Md-OO	User-PW
Configure security		Е	GWR			1	WR	GWR		-		W	W
Configure													
Secure traffic		l		-		E	-	-		E			
Status													
Zeroize		Z	Z				Z	Z				Z	Z
SSH connect		Е	Е	GE	GE							Е	Е
IPsec connect		E				G	E	E	GE	G	GE		
Console access		1		1		1	1	1	1	1		E	E
Remote reset	GZE	GZ		Z	Z	Z	1	1	Z	Z	Z	Z	Z
Local reset	GZE	GZ		Z	Z	Z			Z	Z	Z	Z	Z
Traffic													

G = Generate: The module generates the CSP

R = Read: The CSP is read from the module (e.g. the CSP is output)

E = Execute: The module executes using the CSP

W = Write: The CSP is written to persistent storage in the module

Z = Zeroize: The module zeroizes the CSP.

3.4 Non-Approved Services

The following services are available in the non-Approved mode of operation. The security functions provided by the non-Approved services are identical to the Approved counterparts with the exception of SSH Connect (non-compliant). SSH Connect (non-compliant) supports the security functions identified in Section 2.4 and the SSHv2 row of Table 11.

Table 17 – Authenticated Services

Service	Description	СО	User
Configure security (non-compliant)	Security relevant configuration	х	
Configure (non- compliant)	Non-security relevant configuration	х	
Secure Traffic (non- compliant)	IPsec protected connection (ESP)		
Status (non-compliant)	Show status	Х	Х
Zeroize (non-compliant)	Destroy all CSPs	Х	
SSH connect (non- compliant)	Initiate SSH connection for SSH monitoring and control (CLI)		х
IPsec connect (non- compliant)	Initiate IPsec connection (IKE)	х	
Console access (non-compliant)	Console monitoring and control (CLI)	х	х
Remote reset (non-compliant)	Software initiated reset	х	

Table 18 - Unauthenticated traffic

Service	Description			
Local reset (non- compliant)	Hardware reset or power cycle			
Traffic (non- compliant)	Traffic requiring no cryptographic services			

4 Self-tests

Each time the module is powered up it tests that the cryptographic algorithms still operate correctly and that sensitive data have not been damaged. Power-up self-tests are available on demand by power cycling the module.

On power-up or reset, the module performs the self-tests described below. All KATs must be completed successfully prior to any other use of cryptography by the module. If one of the KATs fails, the module enters the Critical Failure error state.

The module performs the following power-up self-tests:

- Firmware Integrity check using ECDSA P-256 with SHA-256
- Data Plane KATs
 - AES-CBC Encrypt KAT
 - AES-CBC Decrypt KAT
 - AES-GCM Encrypt KAT
 - AES-GCM Decrypt KAT
 - Triple-DES-CBC Encrypt KAT
 - Triple-DES-CBC Decrypt KAT
 - o HMAC-SHA-1 KAT
 - HMAC-SHA-256 KAT
- OpenSSL KATs
 - SP 800-90A HMAC DRBG KAT
 - Health-tests initialize, re-seed, and generate.
 - ECDSA P-256 Sign/Verify PCT
 - EC Diffie-Hellman P-256 KAT
 - Derivation of the expected shared secret.
 - RSA 2048 w/ SHA-256 Sign KAT
 - o RSA 2048 w/ SHA-256 Verify KAT
 - o Triple-DES-CBC Encrypt KAT
 - o Triple-DES-CBC Decrypt KAT
 - o HMAC-SHA-1 KAT
 - o HMAC-SHA2-256 KAT
 - o HMAC-SHA2-384 KAT
 - o HMAC-SHA2-512 KAT
 - AES-CBC Encrypt KAT
 - AES-CBC Decrypt KAT
- OpenSSH KAT
 - o KDF-SSH-SHA256 KAT
- HMAC DRBG KAT
 - o HMAC DRBG KAT (Certs. #1423)
 - Health-tests initialize, re-seed, and generate.
 - HMAC DRBG KAT (Certs. #1415)
 - Health-tests initialize, re-seed, and generate.
- Control Plane Authentec KATs
 - o RSA 2048 w/ SHA-256 Sign KAT
 - o RSA 2048 w/ SHA-256 Verify KAT
 - o ECDSA P-256 w/ SHA-256 Sign/Verify PCT

- o Triple-DES-CBC Encrypt KAT
- o Triple-DES-CBC Decrypt KAT
- o HMAC-SHA-256 KAT
- o HMAC-SHA-384 KAT
- AES-CBC Encrypt KAT
- AES-CBC Decrypt KAT
- AES-GCM Encrypt KAT
- AES-GCM Decrypt KAT
- o KDF-IKE-V1 KAT
- o KDF-IKE-V2 KAT
- Libmd KATs
 - HMAC-SHA2-256 KAT
 - o SHA-2-512 KAT
- Critical Function Test
 - The cryptographic module performs a verification of a limited operational environment, and verification of optional non-critical packages.

Upon successful completion of the self-tests, the module outputs "FIPS self-tests completed." to the local console.

If a self-test fails, the module outputs "<self-test name>: Failed" to the local console and automatically reboots.

The module also performs the following conditional self-tests:

- Continuous RNG Test on the SP 800-90A HMAC-DRBG
- Continuous RNG test on the NDRNG
- Pairwise consistency test when generating ECDSA and RSA key pairs.
- Firmware Load Test (ECDSA signature verification)

5 Physical Security Policy

The modules physical embodiment is that of a multi-chip standalone device that meets Level 2 Physical Security requirements. The module is completely enclosed in a rectangular nickel or clear zinc coated, cold rolled steel, plated steel and brushed aluminum enclosure. There are no ventilation holes, gaps, slits, cracks, slots, or crevices that would allow for any sort of observation of any component contained within the cryptographic boundary. Tamper-evident seals allow the operator to tell if the enclosure has been breached. These seals are not factory-installed and must be applied by the Cryptographic Officer. (Seals are available for order from Juniper using part number JNPR-FIPS-TAMPER-LBLS.) The tamper-evident seals shall be installed for the module to operate in a FIPS mode of operation.

The Cryptographic Officer is responsible for securing and having control at all times of any unused seals and the direct control and observation of any changes to the module such as reconfigurations where the tamper-evident seals or security appliances are removed or installed to ensure the security of the module is maintained during such changes and the module is returned to a FIPS Approved state.

Table 19 - Physical Security Inspection Guidelines

Physical Security Mechanism	Recommended Frequency of Inspection/Test	Inspection/Test Guidance Details
Tamper seals, opaque	Once per month by the	Seals should be free of any tamper
metal enclosure.	Cryptographic Officer.	evidence.

If the Cryptographic Officer observes tamper evidence, it shall be assumed that the device has been compromised. The Cryptographic Officer shall retain control of the module and perform Zeroization of the module's CSPs by following the steps in Section 1.3 of the Security Policy.

5.1 General Tamper Seal Placement and Application Instructions

For all seal applications, the Cryptographic Officer should observe the following instructions:

- Handle the seals with care. Do not touch the adhesive side.
- Before applying a seal, ensure the location of application is clean, dry, and clear of any residue.
- Place the seal on the module, applying firm pressure across it to ensure adhesion. Allow at least 1 hour for the adhesive to cure.

5.2 SRX5400 (13 seals)

Tamper-evident seals shall be applied to the following locations:

Front Pane:

- Two seals, vertical, connected to the topmost (non-honeycomb) sub-pane. They extend to the thin pane below and the honeycomb panel above.
- One seal, vertical, across the thin pane. Extends to the blank pane below and the subpane above.
- Three seals, vertical, one on each "long" horizontal sub-pane. Each attaches to the sub-pane above and the one below (or the chassis, if it's the bottommost sub-pane). Ensure one of the seals extends to the left sub-pane below the thin sub-pane.

Back Pane:

- Four seals, vertical: one on each of the top four sub-panes, extending to the large chassis plate below.
- One seal, vertical: on the horizontal screwed-in plate resting on the large central chassis.
 Should extend to the chassis in both directions.

• Two seals, horizontal: placed on the low side sub-panes, extending to the large central chassis area and wrapping around to the neighboring side panes.

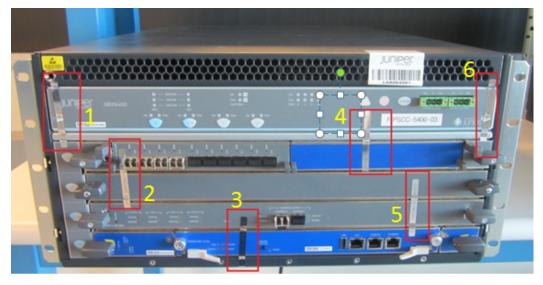


Figure 9 - SRX5400- Tamper-Evident Seal Locations on Front- Six Seals

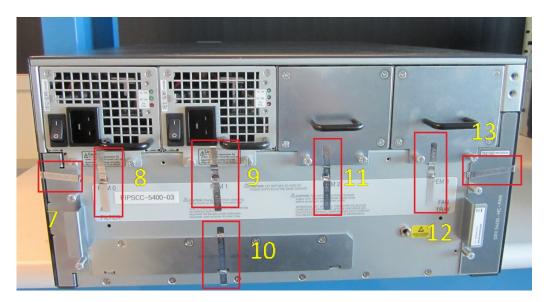


Figure 10 - SRX5400- Tamper-Evident Seal Locations on Rear- Seven Seals

5.3 SRX5600 (18 seals)

Tamper-evident seals must be applied to the following locations:

- Front Pane:
 - Eleven seals, vertical: one for each horizontal sub-pane (excluding the honeycomb plate on the top and the thin sub-pane a little below), a second for the top (non-honeycomb) sub-pane, and an extra for the bottom. The seals should attach to vertically adjacent sub-panes. The extra on the bottom attaches to the lowermost sub-pane and wraps

around attaching to the bottom pane. It should be ensured that one of the seals spans across the thin plate with ample extra distance on each side.

• Back Pane:

- Five seals, vertical: one on each of the upper four sub-panes, attaching to the large plate below.
- Two seals, horizontal: one on each of the vertical side sub-panes, extending to both the large central plate and the side panes.

Figure 11 - SRX5600- Tamper-Evident Seal Locations on Front-11 Seals

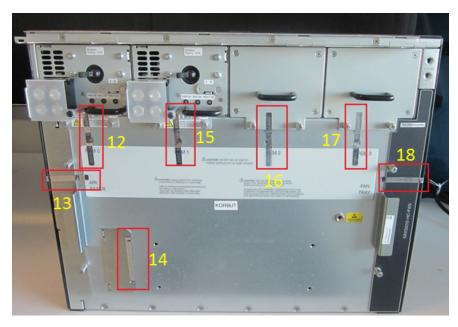


Figure 12 - SRX5600- Tamper-Evident Seal Locations on Rear- Seven Seals

5.4 SRX5800 (24 seals)

Tamper-evident seals shall be applied to the following locations:

Front Pane:

- o Fourteen seals, horizontal: one on each of the long vertical sub-panes, extending to the neighboring two. If on an end sub-pane, seal should wrap around to the side.
- Three seals, vertical: One over each of the thin panes two near the bottom, one near the top of the lower half.
- Two seals, vertical: both on the console area at the top of the module, one extending to the top and the other extending to the chassis area below.

• Back Pane:

 Five seals, horizontal: Three spanning the gaps between the vertical sub-panels, and then two more, one each on the far edges of the left and right panels. (These last two should wrap around to the sides.)

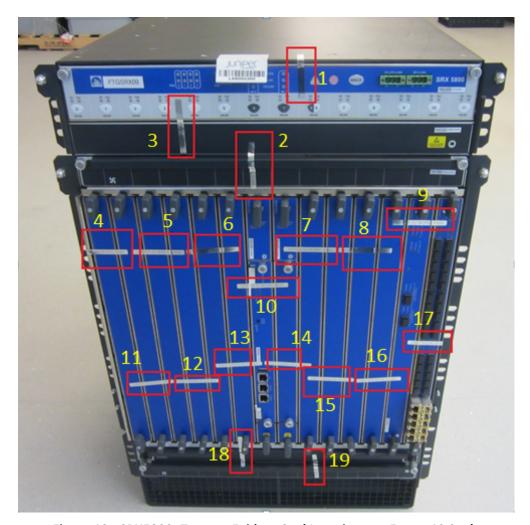


Figure 13 - SRX5800- Tamper-Evident Seal Locations on Front- 19 Seals

Figure 14 - SRX5800- Tamper-Evident Seal Locations on Rear- Five Seals

6 Security Rules and Guidance

The module design corresponds to the security rules below. The term *must* in this context specifically refers to a requirement for correct usage of the module in the Approved mode; all other statements indicate a security rule implemented by the module.

- 1. The module clears previous authentications on power cycle.
- 2. When the module has not been placed in a valid role, the operator does not have access to any cryptographic services.
- 3. Power up self-tests do not require any operator action.
- 4. Data output is inhibited during key generation, self-tests, zeroization, and error states.
- 5. Status information does not contain CSPs or sensitive data that if misused could lead to a compromise of the module.
- 6. There are no restrictions on which keys or CSPs are zeroized by the zeroization service.
- 7. The module does not support a maintenance interface or role.
- 8. The module does not support manual key entry.
- 9. The module does not output intermediate key values.
- 10. The module requires to independent internal actions to be performed prior to outputing plaintext CSPs.
- 11. The cryptographic officer must determine whether firmware being loaded is a legacy use of the firmware load service.
- 12. The cryptographic officer must retain control of the module while zeroization is in process.

7 References and Definitions

The following standards are referenced in this Security Policy.

Table 20 - References

Abbreviation	Full Specification Name		
[FIPS140-2]	Security Requirements for Cryptographic Modules, May 25, 2001		
[SP800-131A]	Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms and Key Lengths, January 2011		
[IG]	Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module Validation Program		
[133]	NIST Special Publication 800-133, Recommendation for Cryptographic Key Generation, December 2012		
[135]	National Institute of Standards and Technology, Recommendation for Existing Application-Specific Key Derivation Functions, Special Publication 800-135rev1, December 2011.		
[186]	National Institute of Standards and Technology, Digital Signature Standard (DSS), Federal Information Processing Standards Publication 186-4, July, 2013.		
[197]	National Institute of Standards and Technology, Advanced Encryption Standard (AES), Federal Information Processing Standards Publication 197, November 26, 2001		
[38A]	National Institute of Standards and Technology, Recommendation for Block Cipher Modes of Operation, Methods and Techniques, Special Publication 800-38A, December 2001		
[38D]	National Institute of Standards and Technology, Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC, Special Publication 800-38D, November 2007		
[198]	National Institute of Standards and Technology, The Keyed-Hash Message Authentication Code (HMAC), Federal Information Processing Standards Publication 198-1, July, 2008		
[180]	National Institute of Standards and Technology, Secure Hash Standard, Federal Information Processing Standards Publication 180-4, August, 2015		
[67]	National Institute of Standards and Technology, Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher, Special Publication 800-67, May 2004		
[90A]	National Institute of Standards and Technology, Recommendation for Random Number Generation Using Deterministic Random Bit Generators, Special Publication 800-90A, June 2015.		

Table 21 – Acronyms and Definitions

Acronym	Definition		
AES	Advanced Encryption Standard		
DH	Diffie-Hellman		
DSA	Digital Signature Algorithm		
ECDH	Elliptic Curve Diffie-Hellman		
ECDSA	Elliptic Curve Digital Signature Algorithm		
EMC	Electromagnetic Compatibility		
ESP	Encapsulating Security Payload		
FIPS	Federal Information Processing Standard		
HMAC	Keyed-Hash Message Authentication Code		
ICV	Integrity Check Value (i.e. Tag)		
IKE	Internet Key Exchange Protocol		
IOC	Input/Output Card		
IPsec	Internet Protocol Security		
MD5	Message Digest 5		
NPC	Network Processing Card		
RE	Routing Engine		
RSA	Public-key encryption technology developed by RSA Data Security, Inc.		
SHA	Secure Hash Algorithms		
SCB	Switch Control Board		
SPC	Services Processing Card		
SSH	Secure Shell		
Triple-DES	Triple - Data Encryption Standard		

Table 22 - Datasheets

Model	Title	URL
SRX5400 SRX5600 SRX5800	SRX Series Service Gateways for service provider, large enterprise, and public sector networks.	http://www.juniper.net/assets/us/en/local/pdf/datasheets/1000254-en.pdf