
Microsoft Corporation Windows Compact Cryptographic Primitives Library (bcrypt.dll) Security Policy Document

 This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision)

Microsoft Corporation Windows Embedded

Compact

Cryptographic Primitives Library

(bcrypt.dll) Non-Proprietary Security Policy

Document

Microsoft Corporation Windows Embedded Compact 7 and Microsoft Corporation Windows

Embedded Compact2013 Operating System

FIPS 140‐2 Security Policy Document

This document specifies the security policy for the Microsoft Corporation Windows Embedded Compact Cryptographic

Primitives Library (BCRYPT.DLL) as described in FIPS PUB 140‐2.

June 05, 2017

Document Version: 1.8

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date
of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the
part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.
This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE
INFORMATION IN THIS DOCUMENT.
Complying with all applicable copyright laws is the responsibility of the user. This work is licensed under the Creative Commons
Attribution-NonCommercial-NoDerivs License (which allows redistribution of the work). To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California
94305, USA. Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering
subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this
document does not give you any license to these patents, trademarks, copyrights, or other intellectual property. The example companies,
organizations, products, people and events depicted herein are fictitious. No association with any real company, organization, product,
person or event is intended or should be inferred.

© 2015 Microsoft Corporation. All rights reserved.
Microsoft, Active Directory, Visual Basic, Visual Studio, Windows, the Windows logo, Windows NT, Windows Server, Windows
Vista, and Windows Embedded Compact 7, Windows Embedded Compact 2013 are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries. The names of actual companies and products mentioned herein may
be the trademarks of their respective owners.

Microsoft Corporation Windows Cryptographic Primitives Library (bcrypt.dll) Security Policy Document

 This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision) 2

Contents
1 Cryptographic Module Specification .. 4

1.1 Cryptographic Boundary .. 4

2 Security Policy .. 5

3 Cryptographic Module Ports and Interfaces .. 7

3.1 Ports and Interfaces .. 7

3.1.1 Export Functions ... 7

3.1.2 Data Input and Output Interfaces .. 8

3.1.3 Control Input Interface ... 8

3.1.4 Status Output Interface .. 8

4 Roles and Authentication ... 8

4.1 Roles .. 8

4.3 Operator Authentication ... 9

5 Services .. 9

5.1 Algorithm Providers and Properties .. 9

5.1.1 BCryptOpenAlgorithmProvider .. 9

5.1.2 BCryptCloseAlgorithmProvider .. 9

5.1.3 BCryptSetProperty .. 9

5.1.4 BCryptGetProperty ... 9

5.1.5 BCryptFreeBuffer .. 9

5.2 Random Number Generation .. 10

5.2.1 BCryptGenRandom ... 10

5.3 Key and Key‐Pair Generation... 10

5.3.1 BCryptGenerateSymmetricKey ... 10

5.3.2 BCryptGenerateKeyPair .. 10

5.3.3 BCryptFinalizeKeyPair ... 10

5.3.4 BCryptDuplicateKey .. 10

5.3.5 BCryptDestroyKey .. 11

5.4 Key Entry and Output .. 11

5.4.1 BCryptImportKey .. 11

5.4.2 BCryptImportKeyPair .. 11

5.4.3 BCryptExportKey .. 12

5.5 Encryption and Decryption .. 12

5.5.1 BCryptEncrypt .. 12

5.5.2 BCryptDecrypt .. 13

Microsoft Corporation Windows Compact Cryptographic Primitives Library (bcrypt.dll) Security Policy Document

 This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision) 3

5.6 Hashing and HMAC .. 14

5.6.1 BCryptCreateHash .. 14

5.6.2 BCryptHashData ... 14

5.6.3 BCryptDuplicateHash ... 14

5.6.4 BCryptFinishHash ... 14

5.6.5 BCryptDestroyHash .. 14

5.7 Signing and Verification ... 15

5.7.1 BCryptSignHash .. 15

5.7.2 BCryptVerifySignature .. 15

5.8 Secret Agreement and Key Derivation .. 16

5.8.1 BCryptSecretAgreement ... 16

5.8.2 BCryptDeriveKey .. 16

5.8.3 BCryptDestroySecret .. 16

5.9 Configuration ... 16

6 Operational Environment ... 17

7 Cryptographic Key Management .. 18

7.1 Cryptographic Keys, CSPs, and SRDIs .. 18

7.2 Access Control Policy ... 19

7.3 Key Material .. 20

7.4 Key Generation .. 20

Note: Restrictions on key Generation .. 20

7.5 Key Establishment ... 20

7.6 Key Entry and Output .. 20

7.8 Key Archival ... 21

7.9 Key Zeroization .. 21

7.10 Mapping of Services, Algorithms, and Critical Security Parameters ... 21

7.11 Mapping of Services, Export Functions, and Invocations .. 22

8 Self‐Tests .. 23

9 Design Assurance ... 24

10 Mitigation of Other Attacks .. 24

11 Additional details ... 24

Microsoft Corporation Windows Cryptographic Primitives Library (bcrypt.dll) Security Policy Document

 This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision) 4

1 Cryptographic Module Specification
The Microsoft Corporation Windows Cryptographic Primitives Library is a general purpose, software‐based, cryptographic

module. The primitive provider functionality is offered through one cryptographic module, BCRYPT.DLL (version 7.00.2872

– Windows Embedded Compact7 and version 8.00.6246 – Windows Embedded Compact 2013), subject to FIPS‐140‐2

validation. BCRYPT.DLL provides cryptographic services, through its documented interfaces, to Windows Embedded

Compact 7 and Windows Embedded Compact 2013 components and applications running on Windows Embedded

Compact 7 and Windows Embedded Compact 2013.This cryptographic module is referred to as BCRYPT.DLL or BCRYPT in

this document.

The cryptographic module, BCRYPT.DLL, encapsulates several different cryptographic algorithms in an easy to‐use

cryptographic module accessible via the Microsoft CNG (Cryptography, Next Generation) API. It can be dynamically linked

into applications by software developers to permit the use of general‐ purpose FIPS 140-2 Level 1 compliant cryptography

as provided in the table.

Section Section Title Level

1 Cryptographic Module specification 1

2 Cryptographic Module Ports and Interfaces 1

3 Roles, Services, and Authentication 1

4 Finite State Model 1

5 Physical Security NA

6 Operational Environment 1

7 Cryptographic Key Management 1

8 EMI/EMC 1

9 Self-Tests 1

10 Design Assurance 1

11 Mitigation of Other Attacks NA

1.1 CryptographicBoundary
The Windows Embedded Compact 7 and Windows Embedded Compact 2013 BCRYPT.DLL consists of a dynamically‐

linked library (DLL). The cryptographic boundary for BCRYPT.DLL is defined as the enclosure of the computer system, on

Microsoft Corporation Windows Compact Cryptographic Primitives Library (bcrypt.dll) Security Policy Document

 This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision) 5

which BCRYPT.DLL is to be executed. The logical boundary for BCRYPT.DLL is the BCRYPT.DLL file itself. The physical

configuration of BCRYPT.DLL, as defined in FIPS‐140‐2, is multi‐chip standalone.

2 Security Policy
BCRYPT.DLL operates under several rules that encapsulate its security policy.

• BCRYPT.DLL is supported on Windows Embedded Compact 7 and Windows Embedded Compact 2013

• Windows Embedded Compact 7 and Windows Embedded Compact 2013 are an operating system supporting a

“single user” mode where there is only one interactive user during a logon session.

• BCRYPT.DLL is only in its Approved mode of operation when Windows Embedded Compact 7 and Windows

Embedded Compact 2013 is booted normally, meaning Debug mode is disabled.

• Also for BCRYPT.DLL to be in approved mode of operation the scavenge interval for gathering random data from

different sources should be set to 1 sec. This ensures even in the worst case after boot-up the device is guaranteed

to have 256 bits of entropy.

The scavenge interval can be set by modifying the registry at:

[HKEY_LOCAL_MACHINE\Comm\Security\Crypto]

ScavengeIntervalInSeconds=dword:1

• All users assume either the User or Cryptographic Officer roles.
• BCRYPT.DLL provides no authentication of users. Roles are assumed implicitly. The authentication provided by

the Windows Embedded Compact 7 and Windows Embedded Compact 2013 operating system is not in the scope

of the validation.
• All cryptographic services implemented within BCRYPT.DLL are available to the User and Cryptographic Officer

roles.

• BCRYPT.DLL implements the following FIPS‐140‐2 Approved algorithms:

o FIPS 180-4 SHA‐1, SHA‐256, SHA‐384, SHA‐512 hash (Certs. #3648 and #3649)

o FIPS 198-1 SHA‐1, SHA‐256, SHA‐384, SHA‐512 HMAC (Certs. #2942 and #2943). Note - HMAC Keys

used in HMAC-SHA1 must be 112 bits in length (or longer), and that any key length shorter than that

is not allowed as per SP800-131A

o SP 800-67r1 Triple‐DES (2 key legacy-use decryption and 3 key encryption/decryption) in ECB and CBC

modes (Certs. #2381 and #2382). Note - Triple-DES 2 key is restricted to use for decryption only

(legacy use) as per SP 800‐131A.

o FIPS 197 AES‐128, AES‐192, AES‐256 in ECB and CBC modes (Certs. #4430 and #4431)

o FIPS 186-4 RSA (RSASSA‐PKCS1‐v1_5) digital signatures (Certs. #2411 and #2412)

• RSA key sizes up to 4096 bits are supported. A 1024-bit or 1536-bit modulus

and/or SHA-1 are only allowed for legacy digital signature verification as per

SP800-131A.

o FIPS 186-4 ECDSA with the following NIST curves: P‐256, P‐384, P‐521 (Certs. #1072 and #1073).

ECDSA with SHA-1 is only allowed for legacy digital signature verification as per SP800-131A.

o FIPS 186-2 DSA PQG Verification and Signature Verification for legacy use only (Certs. #1187 and

#1188, L=1024, N=160)

o SP 800‐90A Deterministic Random Bit Generator (DRBG) with AES‐256-CTR (Certs.

#1429 and #1430)

o SP 800-56A Diffie-Hellman Key Agreement; Finite Field Cryptography (FFC) with

parameter FB (p=2048, q=224) and FC (p=2048, q=256); key establishment

methodology provides 112 bits of encryption strength (KAS Certs. #114 and #115)

o SP 800-56A EC Diffie-Hellman Key Agreement; Elliptic Curve Cryptography (ECC) with

parameter EC (P-256 w/ SHA-256), ED (P-384 w/ SHA-384), and EE (P-521 w/ SHA-

Microsoft Corporation Windows Cryptographic Primitives Library (bcrypt.dll) Security Policy Document

 This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision) 6

512); key establishment methodology provides between 128 and 256 bits of

encryption strength (KAS Certs. #114 and #115)

o SP800-135 IKEv1 and TLS KDF primitives (CVL Certs. #1139 and #1140)

• BCRYPT.DLL supports the following non‐Approved (but allowed) algorithms:

o MD5 is allowed in the approved mode of operation when used as part of an approved

key transport scheme where no security is provided by the algorithm (as per FIPS 140-

2 IG G.13)

o NDRNG is allowed for usage in FIPS mode in order to seed the Approved DRBG

o RSA Key wrapping (key wrapping; key establishment methodology provides between

112 and 150 bits of encryption strength. Keys can be entered by using the recipient’s

public key, per Section 7.6).

• BCRYPT.DLL also supports the following non-Approved algorithms that may not be used at all when operating the

module in a FIPS compliant manner:

o FIPS 186‐2 DSA Key Generation and Signature Generation (L=1024, N=160)

o RC2, RC4, MD2, MD4

o DES in ECB, CBC, and CFB with 8‐bit feedback

o Dual‐EC DRBG non‐Approved implementation

o FIPS 186‐2 DSA RNG non-Approved implementation.

The following diagram illustrates the master components of the BCRYPT.DLL module

BCRYPT.DLL was tested using the following machine configurations:

Windows Embedded Compact 7:

Microsoft Corporation Windows Compact Cryptographic Primitives Library (bcrypt.dll) Security Policy Document

 This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision) 7

ARMV5 Microsoft Corporation Windows Embedded Compact 7 – iMX27

ARMV6 Microsoft Corporation Windows Embedded Compact 7 – Samsung SMDK 6410

ARMV7 Microsoft Corporation Windows Embedded Compact 7 – TI OMAP EVM3530 EVM2 ARM Cortex A8 Processor

MIPS Microsoft Corporation Windows Embedded Compact 7 – Sigma Designs SMP8654 (MIPSII)

MIPS Microsoft Corporation Windows Embedded Compact 7 – Sigma Designs SMP8654 (MIPSII_FP)

Windows Embedded Compact 2013:

ARMV7 Microsoft Corporation Windows Embedded Compact 2013 – TI OMAP EVM3730 DM3730 ARM Cortex A8

Processor

x86 Microsoft Corporation Windows Embedded Compact 2013 – i586 (MSTI PDX‐600)

3 Cryptographic Module Ports and Interfaces

3.1 Ports and Interfaces

3.1.1 Export Functions

The following list contains the functions exported by BCRYPT.DLL to its callers.

• BCryptCloseAlgorithmProvider
• BCryptCreateHash
• BCryptDecrypt
• BCryptDeriveKey
• BCryptDestroyHash
• BCryptDestroyKey
• BCryptDestroySecret
• BCryptDuplicateHash
• BCryptDuplicateKey
• BCryptEncrypt
• BCryptEnumAlgorithms
• BCryptEnumProviders

• BCryptExportKey
• BCryptFinalizeKeyPair
• BCryptFinishHash
• BCryptFreeBuffer
• BCryptGenerateKeyPair
• BCryptGenerateSymmetricKey
• BCryptGenRandom
• BCryptGetProperty
• BCryptHashData
• BCryptImportKey
• BCryptImportKeyPair
• BCryptOpenAlgorithmProvider
• BCryptSecretAgreement
• BCryptSetProperty
• BCryptSignHash
• BCryptVerifySignature
• BCryptQueryProviderRegistration
• BCryptEnumRegisteredProviders
• BCryptCreateContext
• BCryptDeleteContext
• BCryptEnumContexts
• BCryptConfigureContext

Microsoft Corporation Windows Cryptographic Primitives Library (bcrypt.dll) Security Policy Document

 This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision) 8

• BCryptQueryContextConfiguration
• BCryptAddContextFunction
• BCryptRemoveContextFunction
• BCryptEnumContextFunctions
• BCryptConfigureContextFunction
• BCryptQueryContextFunctionConfiguration
• BCryptEnumContextFunctionProviders
• BCryptSetContextFunctionProperty
• BCryptQueryContextFunctionProperty
• BCryptRegisterConfigChangeNotify
• BCryptUnregisterConfigChangeNotify
• BCryptResolveProviders
• BCryptGetFipsAlgorithmMode

All these functions are used in the approved mode. Furthermore, these are the only approved functions that this module

can perform.

Additionally, BCRYPT.DLL exports crypto configuration functions. They are described in a separate section 5.9 below for

informational purposes.

3.1.2 Data Input and Output Interfaces

The Data Input Interface for BCRYPT.DLL consists of the BCRYPT export functions. Data and options are passed to the

interface as input parameters to the BCRYPT export functions. Data Input is kept separate from Control Input by passing

Data Input in separate parameters from Control Input.

The Data Output Interface for BCRYPT.DLL also consists of the BCRYPT export functions.

3.1.3 Control Input Interface

The Control Input Interface for BCRYPT.DLL also consists of the BCRYPT export functions. Options for control operations

are passed as input parameters to the BCRYPT export functions.

3.1.4 Status Output Interface

The Status Output Interface for BCRYPT.DLL also consists of the BCRYPT export functions. For each function, the status

information is returned to the caller as the return value from the function.

 3.2 Cryptographic Bypass

Cryptographic bypass is not supported by BCRYPT.DLL.

4 Roles and Authentication
4.1 Roles
BCRYPT.DLL provides User and Cryptographic Officer roles (as defined in FIPS 140‐2). These roles share all the services

implemented in the cryptographic module.

When an application requests the crypto module to generate keys for a user, the keys are generated, used, and deleted as

requested by applications. There are no implicit keys associated with a user. Each user may have numerous keys, and each

user’s keys are separate from other users’ keys.

4.2 Maintenance Roles

Maintenance roles are not supported by BCRYPT.DLL.

Microsoft Corporation Windows Compact Cryptographic Primitives Library (bcrypt.dll) Security Policy Document

 This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision) 9

4.3 Operator Authentication
The module does not provide authentication. Roles are implicitly assumed based on the services that are executed.

5 Services
The following list contains all services available to an operator. All services are accessible to both the User and Crypto

Officer roles.

5.1 Algorithm Providers and Properties

5.1.1 BCryptOpenAlgorithmProvider

NTSTATUS WINAPI BCryptOpenAlgorithmProvider(BCRYPT_ALG_HANDLE *phAlgorithm, LPCWSTR pszAlgId,

LPCWSTR pszImplementation, ULONG dwFlags);

The BCryptOpenAlgorithmProvider() function has four parameters: algorithm handle output to the opened algorithm

provider, desired algorithm ID input, an optional specific provider name input, and optional flags. This function loads and

initializes a CNG provider for a given algorithm, and returns a handle to the opened algorithm provider on success. See

http://msdn.microsoft.com for CNG providers. Unless the calling function specifies the name of the provider, the default

provider is used. The default provider is the first provider listed for a given algorithm. The calling function must pass the

BCRYPT_ALG_HANDLE_HMAC_FLAG flag in order to use an HMAC function with a hash algorithm.

5.1.2 BCryptCloseAlgorithmProvider

NTSTATUS WINAPI BCryptCloseAlgorithmProvider(BCRYPT_ALG_HANDLE hAlgorithm, ULONG dwFlags);

This function closes an algorithm provider handle opened by a call to BCryptOpenAlgorithmProvider() function.

5.1.3 BCryptSetProperty

NTSTATUS WINAPI BCryptSetProperty(BCRYPT_HANDLE hObject, LPCWSTR pszProperty, PUCHAR pbInput, ULONG

cbInput, ULONG dwFlags);

The BCryptSetProperty() function sets the value of a named property for a CNG object, e.g., a cryptographic key. The CNG

object is referenced by a handle, the property name is a NULL terminated string, and the value of the property is a length‐

specified byte string.

 User can pass BCRYPT_INTERNAL_AESCTR_RNG_SELF_TEST to pass pbInput (as pbEntropy) to

AesCtrRng_Instantiate. However, BCryptSetProperty does not support pbPersonalizationString.

5.1.4 BCryptGetProperty

NTSTATUS WINAPI BCryptGetProperty(BCRYPT_HANDLE hObject, LPCWSTR pszProperty, PUCHAR pbOutput, ULONG

cbOutput, ULONG *pcbResult, ULONG dwFlags);

The BCryptGetProperty() function retrieves the value of a named property for a CNG object, e.g., a cryptographic key.

The CNG object is referenced by a handle, the property name is a NULL terminated string, and the value of the property

is a length‐specified byte string.

5.1.5 BCryptFreeBuffer

VOID WINAPI BCryptFreeBuffer(PVOID pvBuffer);

Some of the CNG functions allocate memory on caller’s behalf. The BCryptFreeBuffer() function frees memory that was

allocated by such a CNG function.

Microsoft Corporation Windows Cryptographic Primitives Library (bcrypt.dll) Security Policy Document

 This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision) 10

5.2 Random Number Generation

5.2.1 BCryptGenRandom

NTSTATUS WINAPI BCryptGenRandom(BCRYPT_ALG_HANDLE hAlgorithm, PUCHAR pbBuffer, ULONG cbBuffer, ULONG

dwFlags);

The BCryptGenRandom() function fills a buffer with random bytes. There are three random number generation

algorithms:

• BCRYPT_RNG_ALGORITHM. The DRBG based on the AES counter mode specified in the NIST SP 800‐90A

standard.

• BCRYPT_RNG_FIPS186_DSA_ALGORITHM. This is Non-Approved RNG algorithm suitable for DSA (Digital

Signature Algorithm) as defined in FIPS 186‐2 which is not allowed in FIPS mode.

• BCRYPT_RNG_DUAL_EC_ALGORITHM. This is the dual elliptic curve Non-Approved RNG algorithm specified in the

NIST SP 800‐90A standard, currently which is not allowed in FIPS mode.

When BCRYPT_RNG_USE_ENTROPY_IN_BUFFER is specified in the dwFlags parameter, this function will use the

number in the pbBuffer buffer as additional entropy for the random number. If this flag is not specified, this

function will use a random number for the entropy.

5.3 Key and Key‐Pair Generation

The following list of Services for Key and Key-Pair Generation all use the unmodified output from the module’s SP800-90A

AES-CTR DRBG to produce symmetric keys and generated seeds when the module is being operated in the Approved

mode.

5.3.1 BCryptGenerateSymmetricKey

NTSTATUS WINAPI BCryptGenerateSymmetricKey(BCRYPT_ALG_HANDLE hAlgorithm, BCRYPT_KEY_HANDLE *phKey,

PUCHAR pbKeyObject, ULONG cbKeyObject, PUCHAR pbSecret, ULONG cbSecret, ULONG dwFlags);

The BCryptGenerateSymmetricKey() function generates a symmetric key object for use with a symmetric

encryption algorithm from a supplied cbSecret bytes long key value provided in the pbSecret memory location.

The calling application must specify a handle to the algorithm provider opened with the

BCryptOpenAlgorithmProvider() function. The algorithm specified when the provider was opened must support

symmetric key encryption.

5.3.2 BCryptGenerateKeyPair

NTSTATUS WINAPI BCryptGenerateKeyPair(BCRYPT_ALG_HANDLE hAlgorithm, BCRYPT_KEY_HANDLE *phKey, ULONG

dwLength, ULONG dwFlags);

The BCryptGenerateKeyPair() function creates a public/private key pair object without any cryptographic keys in it.

After creating such an empty key pair object using this function, call the BCryptSetProperty() function to set its

properties. The key pair can be used only after BCryptFinalizeKeyPair() function is called.

5.3.3 BCryptFinalizeKeyPair

NTSTATUS WINAPI BCryptFinalizeKeyPair(BCRYPT_KEY_HANDLE hKey, ULONG dwFlags);

The BCryptFinalizeKeyPair() function completes a public/private key pair import or generation. The key pair cannot be

used until this function has been called. After this function has been called, the BCryptSetProperty() function can no

longer be used for this key pair.

5.3.4 BCryptDuplicateKey

NTSTATUS WINAPI BCryptDuplicateKey(BCRYPT_KEY_HANDLE hKey, BCRYPT_KEY_HANDLE *phNewKey, PUCHAR

pbKeyObject, ULONG cbKeyObject, ULONG dwFlags);

The BCryptDuplicateKey() function creates a duplicate of a symmetric key object.

Microsoft Corporation Windows Compact Cryptographic Primitives Library (bcrypt.dll) Security Policy Document

 This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision) 11

5.3.5 BCryptDestroyKey

NTSTATUS WINAPI BCryptDestroyKey(BCRYPT_KEY_HANDLE hKey);

The BCryptDestroyKey() function destroys a key.

5.4 Key Entry and Output

5.4.1 BCryptImportKey

NTSTATUS WINAPI BCryptImportKey(BCRYPT_ALG_HANDLE hAlgorithm, BCRYPT_KEY_HANDLE hImportKey,

LPCWSTR pszBlobType, BCRYPT_KEY_HANDLE *phKey, PUCHAR pbKeyObject, ULONG cbKeyObject, PUCHAR

pbInput, ULONG cbInput, ULONG dwFlags);

The BCryptImportKey() function imports a symmetric key from a key blob.

hAlgorithm [in] is the handle of the algorithm provider to import the key. This handle is obtained by calling the

BCryptOpenAlgorithmProvider function.

hImportKey [in, out] is not currently used and should be NULL.

pszBlobType [in] is a null‐terminated Unicode string that contains an identifier that specifies the type of BLOB

that is contained in the pbInput buffer. pszBlobType can be one of BCRYPT_KEY_DATA_BLOB and

BCRYPT_OPAQUE_KEY_BLOB.

phKey [out] is a pointer to a BCRYPT_KEY_HANDLE that receives the handle of the imported key that is used in

subsequent functions that require a key, such as BCryptEncrypt. This handle must be released when it is no longer

needed by passing it to the BCryptDestroyKey function.

pbKeyObject [out] is a pointer to a buffer that receives the imported key object. The cbKeyObject parameter contains the

size of this buffer. The required size of this buffer can be obtained by calling the
BCryptGetProperty function to get the BCRYPT_OBJECT_LENGTH property. This will provide the size of the key object

for the specified algorithm. This memory can only be freed after the phKey key handle is destroyed.

cbKeyObject [in] is the size, in bytes, of the pbKeyObject buffer.

pbInput [in] is the address of a buffer that contains the key BLOB to import. The cbInput parameter contains the size of

this buffer.

The pszBlobType parameter specifies the type of key BLOB this buffer contains. cbInput [in]

is the size, in bytes, of the pbInput buffer.

dwFlags [in] is a set of flags that modify the behavior of this function. No flags are currently defined, so this parameter

should be zero.

5.4.2 BCryptImportKeyPair

NTSTATUS WINAPI BCryptImportKeyPair(BCRYPT_ALG_HANDLE hAlgorithm, BCRYPT_KEY_HANDLE hImportKey,

LPCWSTR pszBlobType, BCRYPT_KEY_HANDLE *phKey, PUCHAR pbInput, ULONG cbInput, ULONG dwFlags); The

BCryptImportKeyPair() function is used to import a public/private key pair from a key blob.

hAlgorithm [in] is the handle of the algorithm provider to import the key. This handle is obtained by calling the

BCryptOpenAlgorithmProvider function.

hImportKey [in, out] is not currently used and should be NULL.

pszBlobType [in] is a null‐terminated Unicode string that contains an identifier that specifies the type of BLOB that is

contained in the pbInput buffer. This can be one of the following values: BCRYPT_DH_PRIVATE_BLOB,

BCRYPT_DH_PUBLIC_BLOB, BCRYPT_DSA_PRIVATE_BLOB, BCRYPT_DSA_PUBLIC_BLOB, BCRYPT_PUBLIC_KEY_BLOB,

BCRYPT_PRIVATE_KEY_BLOB, BCRYPT_RSAPRIVATE_BLOB, BCRYPT_RSAPUBLIC_BLOB, LEGACY_DH_PUBLIC_BLOB,

Microsoft Corporation Windows Cryptographic Primitives Library (bcrypt.dll) Security Policy Document

 This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision) 12

LEGACY_DH_PRIVATE_BLOB, LEGACY_DSA_PRIVATE_BLOB, LEGACY_DSA_PUBLIC_BLOB,

LEGACY_DSA_V2_PRIVATE_BLOB,

LEGACY_RSAPRIVATE_BLOB, LEGACY_RSAPUBLIC_BLOB.

phKey [out] is a pointer to a BCRYPT_KEY_HANDLE that receives the handle of the imported key. This handle is

used in subsequent functions that require a key, such as BCryptSignHash. This handle must be released when it is

no longer needed by passing it to the BCryptDestroyKey function.

pbInput [in] is the address of a buffer that contains the key BLOB to import. The cbInput parameter contains the size

of this buffer. The pszBlobType parameter specifies the type of key BLOB this buffer contains. cbInput [in] contains

the size, in bytes, of the pbInput buffer.

dwFlags [in] is a set of flags that modify the behavior of this function. This can be zero or the following value:

BCRYPT_NO_KEY_VALIDATION.

5.4.3 BCryptExportKey

NTSTATUS WINAPI BCryptExportKey(BCRYPT_KEY_HANDLE hKey, BCRYPT_KEY_HANDLE hExportKey, LPCWSTR

pszBlobType, PUCHAR pbOutput, ULONG cbOutput, ULONG *pcbResult, ULONG dwFlags);

The BCryptExportKey() function exports a key to a memory blob that can be persisted for later use. hKey [in] is

the handle of the key to export.

hExportKey [in, out] is not currently used and should be set to NULL.

pszBlobType [in] is a null‐terminated Unicode string that contains an identifier that specifies the type of BLOB to

export. This can be one of the following values: BCRYPT_DH_PRIVATE_BLOB, BCRYPT_DH_PUBLIC_BLOB,

BCRYPT_DSA_PRIVATE_BLOB, BCRYPT_DSA_PUBLIC_BLOB, BCRYPT_ECCPRIVATE_BLOB, BCRYPT_ECCPUBLIC_BLOB,

BCRYPT_KEY_DATA_BLOB, BCRYPT_OPAQUE_KEY_BLOB, BCRYPT_PUBLIC_KEY_BLOB, BCRYPT_PRIVATE_KEY_BLOB,

BCRYPT_RSAPRIVATE_BLOB, BCRYPT_RSAPUBLIC_BLOB, LEGACY_DH_PRIVATE_BLOB, LEGACY_DH_PUBLIC_BLOB,

LEGACY_DSA_PRIVATE_BLOB, LEGACY_DSA_PUBLIC_BLOB, LEGACY_DSA_V2_PRIVATE_BLOB, LEGACY_RSAPRIVATE_BLOB,

LEGACY_RSAPUBLIC_BLOB.

pbOutput is the address of a buffer that receives the key BLOB. The cbOutput parameter contains the size of this

buffer. If this parameter is NULL, this function will place the required size, in bytes, in the ULONG pointed to by

the pcbResult parameter.

cbOutput [in] contains the size, in bytes, of the pbOutput buffer.

pcbResult [out] is a pointer to a ULONG that receives the number of bytes that were copied to the pbOutput buffer.

If the pbOutput parameter is NULL, this function will place the required size, in bytes, in the ULONG pointed to by

this parameter. dwFlags [in] is a set of flags that modify the behavior of this function. No flags are defined for this

function.

5.5 Encryption and Decryption

5.5.1 BCryptEncrypt

NTSTATUS WINAPI BCryptEncrypt(BCRYPT_KEY_HANDLE hKey, PUCHAR pbInput, ULONG cbInput, VOID

*pPaddingInfo, PUCHAR pbIV, ULONG cbIV, PUCHAR pbOutput, ULONG cbOutput, ULONG *pcbResult, ULONG

dwFlags); The BCryptEncrypt() function encrypts a block of data of given length.

hKey [in, out] is the handle of the key to use to encrypt the data. This handle is obtained from one of the key creation

functions, such as BCryptGenerateSymmetricKey, BCryptGenerateKeyPair, or BCryptImportKey. pbInput [in] is the

address of a buffer that contains the plaintext to be encrypted. The cbInput parameter contains the size of the plaintext

to encrypt. For more information, see Remarks. cbInput [in] is the number of bytes in the pbInput buffer to encrypt.

Microsoft Corporation Windows Compact Cryptographic Primitives Library (bcrypt.dll) Security Policy Document

 This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision) 13

pPaddingInfo [in, optional] is a pointer to a structure that contains padding information. The actual type of structure

this parameter points to depends on the value of the dwFlags parameter. This parameter is only used with asymmetric

keys and must be NULL otherwise.

pbIV [in, out, optional] is the address of a buffer that contains the initialization vector (IV) to use during encryption.

The cbIV parameter contains the size of this buffer. This function will modify the contents of this buffer. If you need

to reuse the IV later, make sure you make a copy of this buffer before calling this function. This parameter is

optional and can be NULL if no IV is used. The required size of the IV can be obtained by calling the

BCryptGetProperty function to get the BCRYPT_BLOCK_LENGTH property. This will provide the size of a block for the

algorithm, which is also the size of the IV. cbIV [in] contains the size, in bytes, of the pbIV buffer.

pbOutput [out, optional] is the address of a buffer that will receive the ciphertext produced by this function. The

cbOutput parameter contains the size of this buffer. For more information, see Remarks. If this parameter is NULL, this

function will calculate the size needed for the ciphertext and return the size in the location pointed to by the pcbResult

parameter.

cbOutput [in] contains the size, in bytes, of the pbOutput buffer. This parameter is ignored if the pbOutput

parameter is NULL.

pcbResult [out] is a pointer to a ULONG variable that receives the number of bytes copied to the pbOutput buffer. If

pbOutput is NULL, this receives the size, in bytes, required for the ciphertext. dwFlags [in] is a set of flags that modify

the behavior of this function. The allowed set of flags depends on the type of key specified by

the hKey parameter. If the key is a symmetric key, this can be zero or the following value:

BCRYPT_BLOCK_PADDING. If the key is an asymmetric key, this can be one of the following values:

BCRYPT_PAD_NONE, BCRYPT_PAD_OAEP, BCRYPT_PAD_PKCS1.

5.5.2 BCryptDecrypt

NTSTATUS WINAPI BCryptDecrypt(BCRYPT_KEY_HANDLE hKey, PUCHAR pbInput, ULONG cbInput, VOID

*pPaddingInfo, PUCHAR pbIV, ULONG cbIV, PUCHAR pbOutput, ULONG cbOutput, ULONG *pcbResult, ULONG

dwFlags); The BCryptDecrypt() function decrypts a block of data of given length.

hKey [in, out] is the handle of the key to use to decrypt the data. This handle is obtained from one of the key creation

functions, such as BCryptGenerateSymmetricKey, BCryptGenerateKeyPair, or BCryptImportKey. pbInput [in] is the

address of a buffer that contains the ciphertext to be decrypted. The cbInput parameter contains the size of the

ciphertext to decrypt. For more information, see Remarks. cbInput [in] is the number of bytes in the pbInput buffer to

decrypt.

pPaddingInfo [in, optional] is a pointer to a structure that contains padding information. The actual type of structure

this parameter points to depends on the value of the dwFlags parameter. This parameter is only used with asymmetric

keys and must be NULL otherwise.

pbIV [in, out, optional] is the address of a buffer that contains the initialization vector (IV) to use during decryption.

The cbIV parameter contains the size of this buffer. This function will modify the contents of this buffer. If you need

to reuse the IV later, make sure you make a copy of this buffer before calling this function. This parameter is

optional and can be NULL if no IV is used. The required size of the IV can be obtained by calling the

BCryptGetProperty function to get the BCRYPT_BLOCK_LENGTH property. This will provide the size of a block for the

algorithm, which is also the size of the IV. cbIV [in] contains the size, in bytes, of the pbIV buffer.

pbOutput [out, optional] is the address of a buffer to receive the plaintext produced by this function. The cbOutput

parameter contains the size of this buffer. For more information, see Remarks.

If this parameter is NULL, this function will calculate the size required for the plaintext and return the size in the

location pointed to by the pcbResult parameter.

cbOutput [in] is the size, in bytes, of the pbOutput buffer. This parameter is ignored if the pbOutput parameter is NULL.

Microsoft Corporation Windows Cryptographic Primitives Library (bcrypt.dll) Security Policy Document

 This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision) 14

pcbResult [out] is a pointer to a ULONG variable to receive the number of bytes copied to the pbOutput buffer. If

pbOutput is NULL, this receives the size, in bytes, required for the plaintext.

dwFlags [in] is a set of flags that modify the behavior of this function. The allowed set of flags depends on the type of

key specified by the hKey parameter. If the key is a symmetric key, this can be zero or the following value:

BCRYPT_BLOCK_PADDING. If the key is an asymmetric key, this can be one of the following values: BCRYPT_PAD_NONE,

BCRYPT_PAD_OAEP, BCRYPT_PAD_PKCS1.

5.6 Hashing and HMAC

5.6.1 BCryptCreateHash

NTSTATUS WINAPI BCryptCreateHash(BCRYPT_ALG_HANDLE hAlgorithm, BCRYPT_HASH_HANDLE *phHash, PUCHAR

pbHashObject, ULONG cbHashObject, PUCHAR pbSecret, ULONG cbSecret, ULONG dwFlags);

The BCryptCreateHash() function creates a hash object with an optional key. The optional key is used for HMAC type

keyed‐hash functions.

hAlgorithm [in, out] is the handle of an algorithm provider created by using the BCryptOpenAlgorithmProvider

function. The algorithm that was specified when the provider was created must support the hash interface. phHash
[out] is a pointer to a BCRYPT_HASH_HANDLE value that receives a handle that represents the hash object. This

handle is used in subsequent hashing functions, such as the BCryptHashData function. When you have finished using

this handle, release it by passing it to the BCryptDestroyHash function. pbHashObject [out] is a pointer to a buffer

that receives the hash object. The cbHashObject parameter contains the size of this buffer. The required size of this

buffer can be obtained by calling the BCryptGetProperty function to get the BCRYPT_OBJECT_LENGTH property. This

will provide the size of the hash object for the specified algorithm. This memory can only be freed after the hash

handle is destroyed. cbHashObject [in] contains the size, in bytes, of the pbHashObject buffer.

pbSecret [in, optional] is a pointer to a buffer that contains the key to use for the hash. The cbSecret parameter

contains the size of this buffer. If no key should be used with the hash, set this parameter to NULL. This key only

applies to keyed hash algorithms, like Hash‐Based Message Authentication Code (HMAC). cbSecret [in, optional]

contains the size, in bytes, of the pbSecret buffer. If no key should be used with the hash, set this parameter to zero.

dwFlags [in] is not currently used and must be zero.

5.6.2 BCryptHashData

NTSTATUS WINAPI BCryptHashData(BCRYPT_HASH_HANDLE hHash, PUCHAR pbInput, ULONG cbInput, ULONG

dwFlags);

The BCryptHashData() function performs a one way hash on a data buffer. Call the BCryptFinishHash() function to finalize

the hashing operation to get the hash result.

5.6.3 BCryptDuplicateHash

NTSTATUS WINAPI BCryptDuplicateHash(BCRYPT_HASH_HANDLE hHash, BCRYPT_HASH_HANDLE *phNewHash, PUCHAR

pbHashObject, ULONG cbHashObject, ULONG dwFlags);

The BCryptDuplicateHash() function duplicates an existing hash object. The duplicate hash object contains all state and

data that was hashed to the point of duplication.

5.6.4 BCryptFinishHash

NTSTATUS WINAPI BCryptFinishHash(BCRYPT_HASH_HANDLE hHash, PUCHAR pbOutput, ULONG cbOutput, ULONG

dwFlags);

The BCryptFinishHash() function retrieves the hash value for the data accumulated from prior calls to BCryptHashData()

function.

5.6.5 BCryptDestroyHash

NTSTATUS WINAPI BCryptDestroyHash(BCRYPT_HASH_HANDLE hHash);

Microsoft Corporation Windows Compact Cryptographic Primitives Library (bcrypt.dll) Security Policy Document

 This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision) 15

The BCryptDestroyHash() function destroys a hash object.

5.7 Signing and Verification

5.7.1 BCryptSignHash

NTSTATUS WINAPI BCryptSignHash(BCRYPT_KEY_HANDLE hKey, VOID *pPaddingInfo, PUCHAR pbInput,

ULONG cbInput, PUCHAR pbOutput, ULONG cbOutput, ULONG *pcbResult, ULONG dwFlags); The

BCryptSignHash() function creates a signature of a hash value. hKey [in] is the handle of the key to use to sign

the hash.

pPaddingInfo [in, optional] is a pointer to a structure that contains padding information. The actual type of structure

this parameter points to depends on the value of the dwFlags parameter. This parameter is only used with

asymmetric keys and must be NULL otherwise.

pbInput [in] is a pointer to a buffer that contains the hash value to sign. The cbInput parameter contains the size of this

buffer.

cbInput [in] is the number of bytes in the pbInput buffer to sign.

pbOutput [out] is the address of a buffer to receive the signature produced by this function. The cbOutput

parameter contains the size of this buffer. If this parameter is NULL, this function will calculate the size required for

the signature and return the size in the location pointed to by the pcbResult parameter. cbOutput [in] is the size, in

bytes, of the pbOutput buffer. This parameter is ignored if the pbOutput parameter is NULL.

pcbResult [out] is a pointer to a ULONG variable that receives the number of bytes copied to the pbOutput buffer. If

pbOutput is NULL, this receives the size, in bytes, required for the signature. dwFlags [in] is a set of flags that modify

the behavior of this function. The allowed set of flags depends on the type of key specified by the hKey parameter. If

the key is a symmetric key, this parameter is not used and should be set to zero. If the key is an asymmetric key, this

can be one of the following values: BCRYPT_PAD_PKCS1, BCRYPT_PAD_PSS.

Note: According to SP 800‐131A, SHA‐1 hash signing should no longer be used, and is disallowed as of

12/2013. This is for legacy use only for signature verification.

5.7.2 BCryptVerifySignature

NTSTATUS WINAPI BCryptVerifySignature(BCRYPT_KEY_HANDLE hKey, VOID *pPaddingInfo, PUCHAR pbHash, ULONG

cbHash, PUCHAR pbSignature, ULONG cbSignature, ULONG dwFlags);

The BCryptVerifySignature() function verifies that the specified signature matches the specified hash. hKey [in] is

the handle of the key to use to decrypt the signature. This must be an identical key or the public key portion of the

key pair used to sign the data with the BCryptSignHash function.

pPaddingInfo [in, optional] is a pointer to a structure that contains padding information. The actual type of structure

this parameter points to depends on the value of the dwFlags parameter. This parameter is only used with asymmetric

keys and must be NULL otherwise.

pbHash [in] is the address of a buffer that contains the hash of the data. The cbHash parameter contains the size of this

buffer.

cbHash [in] is the size, in bytes, of the pbHash buffer.

pbSignature [in] is the address of a buffer that contains the signed hash of the data. The BCryptSignHash function is

used to create the signature. The cbSignature parameter contains the size of this buffer. cbSignature [in] is the

size, in bytes, of the pbSignature buffer. The BCryptSignHash function is used to create the signature.

Note: According to SP 800‐131A, SHA‐1 hash signing should no longer be used, and is disallowed as of 12/2013. This is for

legacy use only for signature verification.

Microsoft Corporation Windows Cryptographic Primitives Library (bcrypt.dll) Security Policy Document

 This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision) 16

5.8 Secret Agreement and Key Derivation

5.8.1 BCryptSecretAgreement

NTSTATUS WINAPI BCryptSecretAgreement(BCRYPT_KEY_HANDLE hPrivKey, BCRYPT_KEY_HANDLE hPubKey,

BCRYPT_SECRET_HANDLE *phAgreedSecret, ULONG dwFlags);

The BCryptSecretAgreement() function creates a secret agreement value from a private and a public key.

This function is used with Diffie‐Hellman (DH) and Elliptic Curve Diffie‐Hellman (ECDH) algorithms. hPrivKey [in] The

handle of the private key to use to create the secret agreement value. hPubKey [in] The handle of the public key to

use to create the secret agreement value.

phSecret [out] A pointer to a BCRYPT_SECRET_HANDLE that receives a handle that represents the secret agreement

value. This handle must be released by passing it to the BCryptDestroySecret function when it is no longer needed.

dwFlags [in] A set of flags that modify the behavior of this function. This can be zero or the following value:

KDF_USE_SECRET_AS_HMAC_KEY_FLAG.

5.8.2 BCryptDeriveKey

NTSTATUS WINAPI BCryptDeriveKey(BCRYPT_SECRET_HANDLE hSharedSecret, LPCWSTR pwszKDF, BCryptBufferDesc

*pParameterList, PUCHAR pbDerivedKey, ULONG cbDerivedKey, ULONG *pcbResult, ULONG dwFlags); The

BCryptDeriveKey() function derives a key from a secret agreement value.

hSharedSecret [in, optional] is the secret agreement handle to create the key from. This handle is obtained from the

BCryptSecretAgreement function.

pwszKDF [in] is a pointer to a null‐terminated Unicode string that contains an object identifier (OID) that identifies the key

derivation function (KDF) to use to derive the key. This can be one of the following strings:

BCRYPT_KDF_HASH (parameters in pParameterList: KDF_HASH_ALGORITHM, KDF_SECRET_PREPEND,

KDF_SECRET_APPEND), BCRYPT_KDF_HMAC (parameters in pParameterList: KDF_HASH_ALGORITHM, KDF_HMAC_KEY,

KDF_SECRET_PREPEND, KDF_SECRET_APPEND), BCRYPT_KDF_TLS_PRF (parameters in pParameterList:

KDF_TLS_PRF_LABEL, KDF_TLS_PRF_SEED). pParameterList [in, optional] is the address of a BCryptBufferDesc structure

that contains the KDF parameters. This parameter is optional and can be NULL if it is not needed. pbDerivedKey [out,

optional] is the address of a buffer that receives the key. The cbDerivedKey parameter contains the size of this buffer. If

this parameter is NULL, this function will place the required size, in bytes, in the ULONG pointed to by the pcbResult

parameter.

cbDerivedKey [in] contains the size, in bytes, of the pbDerivedKey buffer.

pcbResult [out] is a pointer to a ULONG that receives the number of bytes that were copied to the pbDerivedKey

buffer. If the pbDerivedKey parameter is NULL, this function will place the required size, in bytes, in the ULONG pointed

to by this parameter.

dwFlags [in] is a set of flags that modify the behavior of this function. This can be zero or the following value.

5.8.3 BCryptDestroySecret

NTSTATUS WINAPI BCryptDestroySecret(BCRYPT_SECRET_HANDLE hSecret);

The BCryptDestroySecret() function destroys a secret agreement handle that was created by using the

BCryptSecretAgreement() function.

5.9 Configuration

The below list of approved functions are used to configure cryptographic providers on the system. Please see

http://msdn.microsoft.com for details.

Function Name Description

Microsoft Corporation Windows Compact Cryptographic Primitives Library (bcrypt.dll) Security Policy Document

 This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision) 17

BCryptAddContextFunction Adds a function (algorithm or cipher-suite) to a context function list.

BCryptAddContextFunctionProvider Adds a provider to a context function provider list.

BCryptConfigureContext Configures a context.

BCryptConfigureContextFunction Configures a context function.

BCryptCreateContext Creates a new configuration context.

BCryptDeleteContext Deletes a configuration context.

BCryptEnumAlgorithms Enumerates the algorithms for a given set of operations.

BCryptEnumContextFunctionProviders Enumerates the providers in a context function provider list.

BCryptEnumContextFunctions Enumerates the functions (algorithms or suites) in a context function

list.

BCryptEnumContexts Enumerates the configuration contexts in the specified table.

BCryptEnumProviders Returns a list of providers for a given algorithm.
BCryptEnumRegisteredProviders Enumerates the providers currently registered on the local machine.

BCryptQueryContextConfiguration Queries the current configuration of a context.
BCryptQueryContextFunctionConfiguration Queries the current configuration of a context function.

BCryptQueryContextFunctionProperty Queries the current value of a context function property.

BCryptQueryProviderRegistration Retrieves registration information for a provider.
BCryptRegisterConfigChangeNotify This API differs slightly between User‐Mode and Kernel‐ Mode.

BCryptRegisterProvider Registers a provider for usage on the local machine.
BCryptRemoveContextFunction Removes a function (algorithm or cipher‐suite) from a context

function list.

BCryptRemoveContextFunctionProvider Removes a provider from a context function provider list.

BCryptResolveProviders This is the main API in Crypto configuration. It resolves queries

against the set of providers currently registered on the local system

and the configuration information specified in the machine and

domain configuration tables, returning an ordered list of references

to one or more providers matching the specified criteria.

BCryptSetContextFunctionProperty Creates, modifies, or deletes a context function property.

BCryptUnregisterConfigChangeNotify Unregisters Config Change notification request.

BCryptUnregisterProvider Removes provider registration information from the local machine.

BCryptGetFipsAlgorithmMode Retrieve whether the FIPS algorithm mode is enabled or not.

6 Operational Environment
BCRYPT.DLL is intended to run on Windows Embedded Compact 7 and Windows Embedded Compact 2013 operating

systems and in Single User mode, on the hardware as defined in Section 2, and is tested on the below operational

environments. When run in these configurations, multiple concurrent operators are not supported.

Windows Embedded Compact 7:

• Windows Embedded Compact 7 running on a Sigma Designs Vantage 8654 Development Kit with a Sigma

Designs SMP8654 (MIPSII_FP) CPU

Microsoft Corporation Windows Cryptographic Primitives Library (bcrypt.dll) Security Policy Document

 This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision) 18

• Windows Embedded Compact 7 running on a Sigma Designs Vantage 8654 Development Kit with a Sigma

Designs SMP8654 (MIPSII) CPU

• Windows Embedded Compact 7 running on a TI OMAP TMDSEVM3530 with Texas Instruments EVM3530 CPU

• Windows Embedded Compact 7 running on a Samsung SMDK6410 Development Kit with Samsung SMDK6410

CPU

• Windows Embedded Compact 7 running on a Freescale i.MX27 Development Kit with Freescale i.MX27 CPU

• Windows Embedded Compact 7 running on an eBox‐330‐A with MSTI PDX‐600 CPU

Windows Embedded Compact 2013:

• Windows Embedded Compact 7 running on a TI OMAP TMDSEVM3730 with Texas Instruments EVM3730 CPU

• Windows Embedded Compact 7 running on an eBox‐330‐A with MSTI PDX‐600 CPU

BCRYPT.DLL is also compliant on platforms that are not listed above. Please see FIPS PUB 140‐2 Implementation

Guidance G.5 for more details on portability rules and requirements.

Because BCRYPT.DLL module is a DLL, each process requesting access is provided its own instance of the module. As

such, each process has full access to all information and keys within the module. Note that no keys or other information

are maintained upon detachment from the DLL, thus an instantiation of the module will only contain keys or

information that the process has placed in the module.

7 Cryptographic Key Management
BCRYPT.DLL crypto module manages keys in the following manner.

7.1 Cryptographic Keys, CSPs, and SRDIs

The BCRYPT.DLL crypto module contains the following security relevant data items:

Security Relevant Data

Item SRDI Description

Symmetric encryption/decryption

keys
Keys used for AES or Triple-DES encryption/decryption. Key

sizes for AES are 128, 192, and 256 bits and key sizes for Triple-

DES are 168 and 112 bits.

HMAC keys Keys used for HMAC‐SHA1, HMAC‐SHA256, HMAC‐ SHA384, and

HMAC‐SHA512

Hard coded CSP cert Ce_csp_root - Cert used for self-check. This is a 2048-bit RSA

Public Key.

DSA Public Keys Keys used for the legacy verification of DSA digital signatures.

These are 1024-bit DSA Public Keys.

ECDSA Public Keys Keys used for the verification of ECDSA digital signatures. Curve

sizes are P-256, P-384, and P-521.
ECDSA Private Keys Keys used for the calculation of ECDSA digital signatures. Curve

sizes are P-256, P-384, and P-521.
RSA Public Keys Keys used for the verification of RSA digital signatures. Key sizes

are between 1024 and 4096 bits.
RSA Private Keys Keys used for the calculation of RSA digital signatures. Key sizes

are between 2048 and 4096 bits.

Microsoft Corporation Windows Compact Cryptographic Primitives Library (bcrypt.dll) Security Policy Document

 This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision) 19

DH Public and Private values Public and private values used for Diffie‐Hellman key

establishment. Key sizes are 2048 bits.

ECDH Public and Private values Public and private values used for EC Diffie‐Hellman key

establishment. Curve sizes are P-256, P-384, and P-521

DRBG Parameters DRBG Seed (384 bits), Entropy (512 bits), Key (256 bits) and

State value ‘V’ (128 bits)

*The module generates cryptographic keys whose strengths are modified by available entropy.

7.2 Access Control Policy
The BCRYPT.DLL crypto module allows controlled access to the SRDIs contained within it. The following table defines

the access that a service has to each. The permissions are categorized as a set of four separate permissions: read (r),

write (w), execute (x), delete (d). If no permission is listed, the service has no access to the SRDI.

BCRYPT.DLL crypto module

SRDI/Service Access Policy

S
y

m
m

et
ri

c
K

ey
s

H
M

A
C

 K
ey

s

E
C

D
S

A
 P

u
b

li
c

K
ey

s

E
C

D
S

A
 P

ri
v

at
e

K
ey

s

R
S

A
 P

u
b

li
c

K
ey

s

R
S

A
 P

ri
v

at
e

K
ey

s

D
H

 P
u

b
li

c
an

d
 P

ri
v

at
e

v
al

u
es

E
C

D
H

 P
u

b
li

c
an

d
 P

ri
v

at
e

v
al

u
es

D
R

B
G

 P
ar

am
et

er
s

D
S

A
 P

u
b

li
c

K
ey

s

H
ar

d
 c

o
d

ed
 C

S
P

 C
er

t

Service Categories

Cryptographic Module Power Up and Power

Down
 r/x

Key Formatting w

Random Number Generation (DRBG) x r,w,x

Data Encryption and Decryption x

Hashing x/w

Acquiring a Table of Pointers to

BCryptXXX Functions

Algorithm Providers and Properties

Key and Key-Pair Generation w/d w/d w/d w/d w/d w/d w/d w/d

Key Entry and Output r/w r/w r/w r/w r/w r/w r/w r/w

Signing and Verification x x x x x x

Microsoft Corporation Windows Cryptographic Primitives Library (bcrypt.dll) Security Policy Document

 This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision) 20

Secret Agreement and Key Derivation x x

7.3 Key Material
Each time an application links with BCRYPT.DLL, the DLL is instantiated and no keys exist within it. The user application is

responsible for importing keys into BCRYPT.DLL or using BCRYPT.DLL’s functions to generate keys.

7.4 Key Generation
BCRYPT.DLL can create and use keys for the following algorithms: RSA, DH, ECDH, ECDSA, RC2, RC4, DES, Triple‐DES, AES,

and HMAC (RC2, RC4 and DES may not be used in FIPS mode).

Random keys can be generated by calling the BCryptGenerateSymmetricKey() and BCryptGenerateKeyPair() functions.

Random data generated by the BCryptGenRandom() function is provided to

BCryptGenerateSymmetricKey() function to generate symmetric keys. DES, Triple‐DES, AES, ECDSA, DSA, DH, and

ECDH keys and key‐pairs are generated following the techniques given in FIPS PUB 186‐2, Appendix 3, Random Number

Generation. RSA key‐pairs are generated per ANSIX9.31.

Note: Restrictions on key Generation

o ECDSA Key Generation as per 186-2 cannot be tested for 3SUB or 5SUB submissions and as such will not allow for

usage in FIPS mode

o RSA Key Generation as per 186-2 cannot be tested for 3SUB or 5SUB submissions and as such will not be allowed

for usage in FIPS mode

o Keys generated while not operating in the Approved mode of operation (as described in section 2) cannot be

used in the Approved mode, and vice versa.

7.5 Key Establishment
BCRYPT.DLL can use FIPS approved Diffie‐Hellman key agreement (DH), Elliptic Curve Diffie‐Hellman key agreement

(ECDH), and manual methods to establish keys.

BCRYPT.DLL can use the following FIPS non‐approved but allowed key derivation functions (KDF) from the common

secret that is established during the execution of DH and ECDH key agreement algorithms:

• BCRYPT_KDF_HASH. This KDF supports FIPS SP800‐56A (Section 5.8), X9.63, and X9.42 key derivation.

• BCRYPT_KDF_HMAC. This KDF supports FIPS IPsec IKE v1 key derivation as specified in FIPS 140‐2

Implementation Guidance.

• BCRYPT_KDF_TLS_PRF. This KDF supports FIPS SSLv3.1 and TLS v1.0 key derivation as specified in FIPS 140-2

Implementation Guidance.

7.6 Key Entry and Output
Keys can be both exported and imported out of and into BCRYPT.DLL via BCryptExportKey(), BCryptImportKey(), and

BCryptImportKeyPair() functions.

Symmetric key entry and output can also be done by exchanging keys using the recipient’s asymmetric public key via

BCryptSecretAgreement() and BCryptDeriveKey() functions.

Exporting the RSA private key by supplying a blob type of BCRYPT_PRIVATE_KEY_BLOB,

BCRYPT_RSAFULLPRIVATE_BLOB, or BCRYPT_RSAPRIVATE_BLOB to BCryptExportKey() is not allowed in FIPS mode.

7.7 Key Storage

BCRYPT.DLL does not provide persistent storage of keys.

Microsoft Corporation Windows Compact Cryptographic Primitives Library (bcrypt.dll) Security Policy Document

 This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision) 21

7.8 Key Archival
BCRYPT.DLL does not directly archive cryptographic keys. The Authenticated User may choose to export a

cryptographic key (cf. “Key Entry and Output” above), but management of the secure archival of that key is the

responsibility of the user.

7.9 Key Zeroization
All keys are destroyed and their memory location zeroized when the User calls BCryptDestroyKey() or

BCryptDestroySecret() on that key handle.

7.10 Mapping of Services, Algorithms, and Critical Security Parameters
The following table maps the services to their corresponding algorithms and critical security parameters (CSPs).

Service Algorithms CSPs

Power Up and Power Down None None

Algorithm Providers and

Properties

None None

Random Number Generation AES-256 CTR DRBG

NDRNG (allowed, used to provide

entropy to DRBG)

AES-CTR DRBG Seed

AES-CTR DRBG Entropy Input

AES-CTR DRBG V

AES-CTR DRBG Key

Key and Key-Pair Generation RSA, DH, ECDH, ECDSA, RC2, RC4,

DES, Triple-DES, AES, and HMAC

(RC2, RC4, and DES cannot be used in

FIPS mode.)

Symmetric Keys

Asymmetric Public Keys

Asymmetric Private Keys

Key Entry and Output None None

Encryption and Decryption Triple-DES with 2 key (encryption
disallowed) and 3 key in ECB and
CBC modes; AES-128, AES-192, and
AES-256 in ECB, CBC and
CTR modes;

(RC2, RC4, RSA, and DES, which

cannot be used in FIPS mode)

Symmetric Keys

Asymmetric Public Keys

Asymmetric Private Keys

Hashing and Message

Authentication

FIPS 180-4 SHA-1, SHA-256,

SHA-384, and SHA-512;

FIPS 180-4 SHA-1, SHA-256, SHA-

384, SHA-512 HMAC;

MD5 (allowed in
TLS and EAP-TLS);

MD2 and MD4 (disallowed in FIPS

mode)

Symmetric Keys (for HMAC)

Signing and Verification FIPS 186-4 RSA (RSASSA-PKCS1v1_5)

digital signature generation (with

1024 – 4096 modulus) and

verification (with 2048 - 4096

modulus); supports SHA-1 FIPS 186-4

ECDSA with the following NIST

curves: P-256, P384, P-521 for

RSA Public Keys

RSA Private Keys
ECDSA Public keys
ECDSA Private keys

DSA Public Keys

Microsoft Corporation Windows Cryptographic Primitives Library (bcrypt.dll) Security Policy Document

 This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision) 22

signature verification

Secret Agreement and Key

Derivation

KAS – SP 800-56A Diffie-Hellman

Key Agreement; Finite Field

Cryptography (FFC)

KAS – SP 800-56A EC Diffie-

Hellman Key Agreement

SP 800-135 IKEv1 and TLS KDF
primitives

DH Private and Public Values

ECDH Private and Public

Values

Show Status None None

Self-Tests See Section 8 Self-Tests for the list of

algorithms

Hard coded CSP cert

Zeroization None All Keys / CSPs can be zeroized

7.11 Mapping of Services, Export Functions, and Invocations
The following table maps the services to their corresponding export functions and invocations.

Service Export Functions Invocations

Power Up and Power Down Driver Entry Driver Unload

This service is fully automatic.
The User / Cryptographic Officer does
not take any actions to explicitly start
this service. This service is executed
upon startup of this module.

Algorithm Providers and
Properties

BCryptOpenAlgorithmProvider
BCryptCloseAlgorithmProvider
BCryptSetProperty
BCryptGetProperty
BCryptFreeBuffer

The User / Cryptographic Officer does
not take any actions to explicitly start
this service. This service is executed
whenever one of these exported
functions is called.

Random Number Generation BcryptGenRandom

The User / Cryptographic Officer does
not take any actions to explicitly start
this service. This service is executed
whenever one of these exported
functions is called.

Key and Key-Pair Generation

BCryptGenerateSymmetricKey
BCryptGenerateKeyPair
BCryptFinalizeKeyPair
BCryptDuplicateKey
BCryptDestroyKey

The User / Cryptographic Officer does
not take any actions to explicitly start
this service. This service is executed
whenever one of these exported
functions is called.

Key Entry and Output
BCryptImportKey
BCryptImportKeyPair
BCryptExportKey

The User / Cryptographic Officer does
not take any actions to explicitly start
this service. This service is executed
whenever one of these exported
functions is called.

Microsoft Corporation Windows Compact Cryptographic Primitives Library (bcrypt.dll) Security Policy Document

 This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision) 23

Encryption and Decryption
BCryptEncrypt
BCryptDecrypt

The User / Cryptographic Officer does
not take any actions to explicitly start
this service. This service is executed
whenever one of these exported
functions is called.

Hashing and Message
Authentication

BCryptCreateHash
BCryptHashData
BCryptDuplicateHash
BCryptFinishHash
BCryptDestroyHash

The User / Cryptographic Officer does
not take any actions to explicitly start
this service. This service is executed
whenever one of these exported
functions is called.

Signing and Verification
BCryptSignHash
BCryptVerifySignature

The User / Cryptographic Officer does
not take any actions to explicitly start
this service. This service is executed
whenever one of these exported
functions is called.

Secret Agreement and Key
Derivation

BCryptSecretAgreement
BCryptDeriveKey
BCryptDestroySecret

The User / Cryptographic Officer does
not take any actions to explicitly start
this service. This service is executed
whenever one of these exported
functions is called.

Show Status All Exported Functions

This service is fully automatic.
The User / Cryptographic Officer does
not take any actions to explicitly start
this service. This service is executed
upon completion of an exported
function.

Self-Tests Driver Entry

This service is fully automatic.
The User / Cryptographic Officer does
not take any actions to explicitly start
this service. This service is executed
upon startup of this module.

Zeroization
BCryptDestroyKey
BCryptDestroySecret

The User / Cryptographic Officer does
not take any actions to explicitly start
this service. This service is executed
whenever one of these exported
functions is called.

8 Self‐Tests
BCRYPT.DLL performs the following power‐on (startup) self‐tests when DllMain is called by the operating system.

• SHA‐1, SHA-256 & SHA-512 hash Known Answer Test

• HMAC‐SHA‐1, HMAC‐SHA‐256, HMAC‐SHA‐384, and HMAC‐SHA‐512 Known Answer Test

• Triple‐DES encrypt/decrypt ECB Known Answer Test with 112 and 168 bit key sizes.

• Triple‐DES encrypt/decrypt CBC Known Answer Test with 112 and 168 bit key sizes.

• AES‐128, AES‐192, AES‐256 encrypt/decrypt ECB Known Answer Test

• AES‐128, AES‐192, AES‐256 encrypt/decrypt CBC Known Answer Test

• RSA sign and verify Known Answer Test with 2048 bit key size.

• DSA sign/verify test with 1024 bit key size

• DH secret agreement Known Answer Test with 2048 bit key size.

Microsoft Corporation Windows Cryptographic Primitives Library (bcrypt.dll) Security Policy Document

 This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision) 24

• ECDSA sign/verify test on P256 curve.

 ECDH secret agreement Known Answer Test on P256 curve

 SP 800-56A concatenation KDF Known Answer Tests (same as Diffie-Hellman KAT)

 SP 800-90A AES-256 based counter mode random generator Known Answer Tests (instantiate, generate and
reseed)

• Power-up Integrity Test (RSA Signature Verification)

BCRYPT.DLL performs the following conditional self-tests:

 CRNGT for SP 800-90A AES-CTR DRBG

 Assurances for SP 800-56A (According to sections 5.5.2, 5.6.2, and 5.6.3 of the standard)

 DRBG health test for SP 800-90A AES-CTR

 CRNGT for the entropy source of the DRBGs.

 Pairwise consistency tests for ECDSA and RSA key generations

 Pairwise consistency tests for Diffie-Hellman and EC Diffie-Hellman prime value generation

In all cases for any failure of a power‐on (startup) self‐test, BCRYPT.DLL DllMain fails to return the

STATUS_SUCCESS status to the operating system. The only way to recover from the failure of a power‐ on (startup)

self‐test is to attempt to reload the BCRYPT.DLL, which will rerun the self‐tests, and will only succeed if the self‐tests

passes.

9 Design Assurance
The BCRYPT.DLL crypto module is part of the overall Windows Embedded Compact 7 and Windows Embedded Compact

2013 operating system, which is a product family that has gone through and is continuously going through the Common

Criteria Certification or equivalent under US NIAP CCEVS since Windows NT 3.5. The certification provides the necessary

design assurance.

The BCRYPT.DLL is installed and started as part of the Windows Embedded Compact 7 and Windows Embedded Compact

2013 operating system.

10 Mitigation of Other Attacks
The BCRYPT.DLL crypto module does not provide any mechanisms to mitigate other attacks.

11 Additional details
For the latest information on Windows Embedded Compact 7 and Windows Embedded Compact 2013 check out the

Microsoft web site at http://www.microsoft.com.

CHANGE HISTORY

AUTHOR DATE VERSION COMMENT

Tolga Acar 6/7/2007 1.0 Windows Vista FIPS Approval Submission Version

Kevin

Michelizzi
2/17/2012 1.1 Windows Embedded Compact 7 Version

Kevin

Michelizzi
3/22/2012 1.2 Windows Embedded Compact 7 FIPS Approval Review

Microsoft Corporation Windows Compact Cryptographic Primitives Library (bcrypt.dll) Security Policy Document

 This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision) 25

Kevin

Michelizzi
7/18/2012 1.3 Windows Embedded Compact 7 HMAC and algorithm

corrections

Kevin

Michelizzi
10/30/2012 1.4 Update with final comments from review

Kevin

Michelizzi
07/03/2013 1.5 Update with comments from CMVP

Kevin

Michelizzi
07/18/2013 1.6 Add entropy caveat on key generation

Hua Liu 03/15/2017 1.7 Added support for Window Embedded Compact 2013 and

updated information relevant to the new DRBG

Subramanyam

Kannaboina

06/05/2017 1.8 Update with comments from CMVP

