

Aruba 2920 Switch Series

FIPS 140-2 Non-Proprietary Security Policy Security Level 1 Validation

Hardware Versions: J9726A, J9729A Firmware version: WB.16.02.0015

Version 1.4

August 1, 2017

The information contained in this document is subject to change without notice.

HEWLLETT PACKARD ENTERPRISE COMPANY MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Hewlett Packard Enterprise (HPE) shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

The only warranties for HPE products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be constructed as constituting an additional warranty. HPE shall not be liable for technical or editorial errors or omissions contained herein.

Hewlett Packard Enterprise assumes no responsibility for the use or reliability of its software on equipment that is not furnished by Hewlett Packard Enterprise.

© Copyright 2017 Hewlett Packard Enterprise

This document may be freely reproduced and distributed whole and intact including this copyright notice. Products identified herein contain confidential commercial software. Valid license required.

Contents

1 Introduction	7
Purpose	7
References	7
2 Overview	8
3 Security Validation Level	9
4 Cryptographic Module Specifications	10
Aruba 2920 Switch (J9726A)	10
Aruba 2920 Switch (J9729A)	10
5 Cryptographic Module Port and Interfaces	11
Aruba 2920 Switch Series Ports	11
Console Port	11
Out-of-Band Management (OOBM) Port	11
Aruba 2920 Series Ports	12
Aruba 2920 Series Ports and Interfaces	13
6 Roles, Services, and Authentication	15
Roles	15
Services	16
Crypto Officer Services	16
User Services	18
Security Officer Services	18
Unauthenticated Services	19
Authentication Mechanisms	19
Authentication Data Protection	19
Identity-based Authentication	19
7 Physical Security Mechanism	20
8 Cryptographic Algorithms	21
FIPS Approved Cryptographic Algorithms	21
FIPS Allowed Cryptographic Algorithms	22
Non-FIPS Approved Cryptographic Algorithms	22
9 Cryptographic Key Management	24
Cryptographic Security Parameters	24

10 Self-Tests
Power-Up Self-Tests
BootROM Power-Up Self-Tests
Firmware Power-Up Self-Tests
Conditional Self-Tests
11 Delivery and Operation
Secure Delivery
Secure Operation
Pre-Initialization
Initialization and Configuration
Zeroization
Secure Management
User Guidance
BootROM Guidance
12 Mitigation of Other Attacks
13 Documentation References
Obtaining documentation 40
Technical support

TABLES and FIGURES

Table 1 - List of abbreviations	. 6
Table 2 - Validation Level by Section	.9
Table 3 - List of Ports on Front Panel 1	12
Table 4 - List of Ports on Rear Panel 1	13
Table 5 – Mapping of FIPS 140-2 Logical Interfaces for the Aruba 2920 Switch 1	14
Table 6 - Roles and Role description 1	15
Table 7 - Crypto officer services 1	16
Table 8 - User services 1	18
Table 9 - Security Officer Services 1	19
Table 10 - FIPS-Approved Cryptography Algorithms 2	21

Table 11 - FIPS-Allowed Cryptography Algorithms	22
Table 12 - Non-FIPS Approved Cryptography Algorithms	22
Table 13 - Cryptographic Security Parameters	24
Figure 1 – Aruba 2920 24G Switch (J9726A)	10
Figure 2 – Aruba 2920 48G Switch (J9729A)	11
Figure 3 - Aruba 2920 (J9726A) Switch	12
Figure 4 - Front of Aruba 2920 (J9729A) Switch	12
Figure 5 - Back of an Aruba 2920 Switch Series (All)	13

FIPS 140-2 Non-Proprietary Security Policy for the Aruba 2920 Switch Series

Keywords: Security Policy, CSP, Roles, Service, Cryptographic Module

TABLE 1 - LIST OF ABBREVIATIONS

Abbreviation	Full spelling
ACL	Access Control List
AES	Advanced Encryption Standard
CLI	Command Line Interface
CMVP	Cryptographic Module Validation Program
CSP	Critical Security Parameter
DES	Data Encryption Standard
DHCP	Dynamic Host Configuration Protocol
DOA	Dead on arrival
FIPS	Federal Information Processing Standard
HMAC	Hash-based Message Authentication Code
НТТР	Hyper Text Transfer Protocol
IRF	Intelligent Resilient Framework
КАТ	Known Answer Test
LED	Light Emitting Diode
MPU	Main Processing Unit
NIST	National Institute of Standards and Technology
RADIUS	Remote Authentication Dial In User Service
RAM	Random Access Memory
RIP	Routing Information Protocol
RSA	Rivest Shamir and Adleman method for asymmetric encryption
sFlow	Sampled Flow
SFP	Small Form-Factor Pluggable
SFP+	Enhanced Small Form-Factor Pluggable
SHA	Secure Hash Algorithm
SSL	Secure Sockets Layer

1 Introduction

Purpose

This is a non-proprietary Cryptographic Module Security Policy for the Aruba 2920 Switch Series from Hewlett Packard Enterprise (HPE) Company. This Security Policy describes how the Aruba 2920 Switch Series meets the security requirements of Federal Information Processing Standards (FIPS) Publication 140-2, which details the U.S. and Canadian Government requirements for cryptographic modules. More information about the FIPS 140-2 standard and validation program is available on the National Institute of Standards and Technology (NIST) and the Communications Security Establishment Canada (CSEC) Cryptographic Module Validation Program (CMVP) website at http://csrc.nist.gov/groups/STM/cmvp.

This document also describes how to run the module in a secure FIPS-Approved mode of operation. This policy was prepared as part of the Overall Level 1 FIPS 140-2 validation of the module. The Aruba 2920 Switch Series is referred to in this document as Aruba 2920 Switch Series, the switches, the cryptographic modules, or the modules.

References

This document deals only with operations and capabilities of the module in the technical terms of a FIPS 140-2 cryptographic module security policy. More information is available on the module from the following sources:

- The HPE website (<u>www.hpe.com</u>) contains information on the full line of products from Aruba Networks Inc.
- The CMVP website (<u>http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm</u>) contains contact information for individuals to answer technical or sales-related questions for the module.

2 Overview

The Aruba 2920 Switch Series provides security, scalability, and ease of use for enterprise edge, SMB and branch office networks. A powerful ProVision ASIC delivers low latency, more packet buffering, and adaptive power consumption.

This Basic Layer 3 switch series supports modular stacking, 10GbE, RIP routing, PoE+, ACLs, sFlow, and IPv6. The Aruba 2920 Switch Series delivers consistent wired/wireless user experience with unified management tools such as Aruba ClearPass Policy Manager and Aruba Airwave and is ready for Software-defined Networking (SDN) with OpenFlow support.

The Aruba 2920 Switch Series is suitable for a range of uses. These switches can be deployed at enterprise edge and remote branch offices, and converged networks. Each device is based on the Aruba OS-CX Software, version WB.16.0.0015 platform. The module firmware runs on a customized Greenhills (GHS) Integrity Operating System, version 5.0.11.

The Aruba 2920 Switch Series modules are being validated as a multi-chip standalone network device at FIPS 140-2 Overall Security Level 1.

The Aruba switch configurations validated during the cryptographic module test included:

- Aruba 2920 24G Switch (J9726A)
- Aruba 2920 48G PoE+ Switch (J9729A)

3 Security Validation Level

The following table lists the level of validation for each area in the FIPS PUB 140-2.

TABLE 2 -	VALIDATION	LEVEL BY	SECTION

No.	Area	Level
1	Cryptographic Module Specification	1
2	Cryptographic Module Ports and Interfaces	1
3	Roles, Services, and Authentication	3
4	Finite State Model	1
5	Physical Security	1
6	Operational Environment	N/A
7	Cryptographic Key management	1
8	Electromagnetic Interface/Electromagnetic Compatibility	1
9	Self-Tests	1
10	Design Assurance	2
11	Mitigation of Other Attacks	N/A
12	Overall Level	1

4 Cryptographic Module Specifications

The Aruba 2920 Switch Series is a multi-chip standalone network device. The cryptographic boundary is defined as encompassing the "top," "front," "rear", "left," "right," and "bottom" surfaces of the case. The general components of the Aruba 2920 Switch Series include firmware and hardware, which are placed in the three-dimensional space within the case.

The Aruba 2920 switches are multi-port switches that can be used to build high-performance switched networks. These switches are store-and-forward devices offering low latency for high-speed networking. The Aruba 2920 switches also support a field-replaceable power supply, Power over Ethernet (PoE/PoE+) technologies, and full network management capabilities.

The management features: Aruba AirWave Network Management; IMC – Intelligent Management Center; Command-line interface; Web browser; Configuration menu; Out-of-band management (RJ-45 Ethernet); SNMP manager; Telnet; RMON1; FTP; In-line and out-of-band; Out-of-band management (serial RS-232c or micro usb).

Aruba 2920 Switch (J9726A)

FIGURE 1 – ARUBA 2920 24G SWITCH (J9726A)

The following are the specifications for this switch:

- Supports throughput of up to 95.2 Mpps.
- Switching capacity of 128 Gbps.

Aruba 2920 Switch (J9729A)

The following are the specifications for this switch:

- Supports throughput of up to 130.9 Mpps.
- Switching capacity of 176 Gbps.

5 Cryptographic Module Port and Interfaces

The Aruba 2920 cryptographic modules physical ports can be categorized into the following logical interfaces defined by FIPS 140-2:

- Data Input Interface
- Data Output Interface
- Control Input Interface
- Status Output Interface
- Power Interface

Aruba 2920 Switch Series Ports

Console Port

Use the console port to connect a console to the switch by using the RJ-45 to DB9 cable supplied with the switch. For more information about the console connection, see "Connect a management console" in Chapter 2 and "Installing the Switch". The console can be a PC or workstation running a VT-100 terminal emulator, or a VT-100 terminal.

Out-of-Band Management (OOBM) Port

This RJ-45 port is used to connect a dedicated management network to the switch. To use this port, the switch must have an IP address. IP settings can be configured through a Console port connection or automatically from a DHCP/Bootp server. A networked out-of-band connection through the Management port allows you to manage data network switches from a physically and logically separate management network.

To use: connect an RJ-45 network cable to the Management port to manage an Aruba 2920 Switch through Telnet from a remote PC or a UNIX workstation.

For more information, see the "Network Out-of-Band Management (OOBM)" appendix in the Management and Configuration Guide at: www.hpe.com/us/en/networking/switches.html.

Aruba 2920 Series Ports

Additional information in the switch Installation and Getting Started Guide.

The Aruba 2920 Series data and management ports are located on the switch front panel.

FIGURE 3 - ARUBA 2920 (J9726A) SWITCH

FIGURE 4 - FRONT OF ARUBA 2920 (J9729A) SWITCH

The labeling and descriptions apply to both of the Aruba 2920 switches.

TABLE 3 - LIST	OF PORTS ON	FRONT PANEL
----------------	-------------	-------------

NUMBER	LABEL
1	Power, Fault and Locator LEDs
2	Console Ports
3	LED Mode button and 5 mode indicator LEDs
4	Status LEDs for components on the back of the switch

5	Stacking Status LEDs
6	Switch port LEDs
7	PoE, Tmp (Temperature), Test, Fan, and Aux (Auxiliary) port status LED
8	Reset and Clear buttons
9	Aux port and OOBM Port
10	RJ-45 Gig-T Ethernet ports for J7926A / RJ-45 Gig-T PoE+ Ethernet ports
	for J7929A
11	Dual-Personality (10/100/1000BASE-T or SFP) ports

FIGURE 5 - BACK OF AN ARUBA 2920 SWITCH SERIES (ALL)

TABLE 4 - LIST OF PORTS ON REAR PANEL

NUMBER	LABEL
1	Ground lug mounting holes
2	10G Expansion Module slots
3	Stacking Module Slot
4	XPS Connector
5	Power Supply and AC power connector

The use of the Expansion Module, Stacking Module, and XPS Connector are not included in the FIPS 140-2 validation.

Aruba 2920 Series Ports and Interfaces

The mapping of logical and physical interfaces to the FIPS validated configuration of the Aruba 2920 switch is detailed in Table 5.

FIPS 140-2 Logical Interfaces	Module Physical Interface
Data Input	RJ-45 Gig-T OOBM port (20) ¹ RJ-45 Gig-T Ethernet ports (for non-PoE+ models) (44) ² RJ-45 Gig-T PoE+ Ethernet ports (for PoE+ models) (4) Dual-personality (RJ-45 Gig-T and SFP) ports RS-232 (RJ-45) serial port RS-232 (mini-USB) serial port Auxiliary (USB) port
Data Output	RJ-45 Gig-T OOBM port (20) ¹ RJ-45 Gig-T Ethernet ports (for non-PoE+ models) (44) ² RJ-45 Gig-T PoE+ Ethernet ports (for PoE+ models) (4) Dual-personality (RJ-45 Gig-T and SFP) ports RS-232 (RJ-45) serial port RS-232 (mini-USB) serial port Auxiliary (USB) port
Control Input	RJ-45 Gig-T OOBM port (20) ¹ RJ-45 Gig-T Ethernet ports (for non-PoE+ models) (44) ² RJ-45 Gig-T PoE+ Ethernet ports (for PoE+ models) (4) Dual-personality (RJ-45 Gig-T and SFP) ports RS-232 (RJ-45) serial port RS-232 (mini-USB) serial port Auxiliary (USB) port Reset Push Button Clear Push Button LED Mode Push Button
Status Output	RJ-45 Gig-T OOBM port (20) ¹ RJ-45 Gig-T Ethernet ports (for non-PoE+ models) (44) ² RJ-45 Gig-T PoE+ Ethernet ports (for PoE+ models) (4) Dual-personality (RJ-45 Gig-T and SFP) ports RS-232 (RJ-45) serial port RS-232 (mini-USB) serial port Auxiliary (USB) port Ethernet port LEDs Switch status LEDs
Power Input	AC10 Power Interface
Power Output	RJ-45 Gig-T Ethernet PoE+ ports (for J7929A)

Note¹: 20 RJ-45 Gig-T Ethernet ports on J9726A Note²: 44 RJ-45 Gig-T Ethernet PoE+ ports on J9729A

6 Roles, Services, and Authentication

Roles

Each cryptographic module supports three roles that an operator can assume: a Crypto Officer (Manager) role, a User (Operator) role, and a Security Officer role. Each role is accessed through proper role-based authentication to the switch. Services associated with each role are listed in the following sections.

The Crypto Officer is responsible for the set up and initialization of the Aruba 2920 Switch Series as documented in Section 11 (Delivery and Operation) of this document. The Crypto Officer has complete control of the switches and is in charge of configuring all of the settings for each switch. The Crypto Officer can create RSA key pairs for SSHv2. The Crypto Officer is also in charge of maintaining access control and checking error and intrusion logs.

The User role can show the current secure-mode of the switch and connect to the switch remotely via SSHv2.

The Security Officer role is to view and delete the security logs. This role can also copy the security logs from the switch and do not have permission to execute any other commands. The security logs cannot be viewed or deleted by other roles on the switch.

Table 6 presents the roles and roles description. The devices allow multiple management users to operate the networking device simultaneously. The Aruba 2920 Switch Series does not employ a maintenance interface and does not have a maintenance role.

FIPS Role	Role Description					
Crypto Officer	Configuration of CSPs for normal switch operation					
	Manage Crypto Officer, User, and BootROM passwords					
	Reboot the system into a FIPS-Approved mode of operation					
	Reboot the system into a non-FIPS Approved mode of operation					
Zeroize all keys and CSPs Establish a remote SSHv2 session with the switch Reboot the switch; perform self-tests on demand Display the current secure mode of the switch						
						View syslog for system status, warnings, and errors
					User	Establish a remote SSHv2 session with the module
						Display the current secure mode of the module

TARIF	6 -	ROLES		ROLE	DESCRIPTION
IADLL	U -	NOLLS	AND	NOLL	DESCRIPTION

	Control the "Chassis Locate" LED			
	View syslog for system status, warnings, and errors			
Security Officer	View and delete security logs.			
	Copy security logs from the switch.			
	Do not have permission to execute any other commands on the switch by default. The security log commands are not executable from any other user including cryptographic-officer.			

Services

All services are available in FIPS mode and non-FIPS Approved mode.

The user can access the Aruba switches through:

- Console Port
- SSH

The console port and SSH present a command line interface.

Crypto Officer Services

The Crypto Officer role is responsible for the configuration and maintenance of the switches. The Crypto Officer services consist of the following:

Description	Input	Output	CSP Access			
View Device Status	View Device Status					
 View currently running image version; View installed hardware components status and version 	Commands	Status of devices	None			
View Running Status						
1. View memory status, packet statistics, interface status, current configuration, routing table, active sessions, temperature and SNMP MIB statistics.	Commands	Status of device functions	None			
Perform Network Functions						

1. 2. 3. 4.	Network diagnostic service such as "ping"; Network connection service such as "SSHv2" client; Provide TLS service to protect the session between the switch and external server (e.g. Radius Server/Log Server) Initial Configuration setup (IP, hostname, DNS server)	Commands and configuration data	Status of commands and configuration data	CSP2-1 SSH Private key (write/delete) CSP2-2 SSH Diffie-Hellman Key Pairs (write/delete) CSP2-3 SSH Session Key (write/delete) CSP2-4 SSH Session authentication Key (write/delete) CSP3-1 Crypto-Officer Password (write/delete) CSP4-1 DRBG seed (write) CSP4-2 DRBG V (write) CSP4-3 DRBG Key (write) CSP5-2 TLS Master secret (write/delete) CSP5-3 TLS Traffic encryption key (write/delete) CSP5-4 TLS traffic authentication key (write/delete) CSP5-6 TLS Server public key(write/delete)	
Per	form Security Management				
1. 2.	Change the role; Reset and change the			CSP1-1 RSA private key (write/delete) CSP1-2 RSA Public keys (write/delete)	
	password of same/lower privilege user;			CSP2-1 SSH Filvale key (wherdelete) CSP2-2 SSH Diffie-Hellman Key Pairs (write/delete)	
3.	Maintenance of the User role and Security Officer password;			CSP2-3 SSH Session Key (write/delete) CSP2-4 SSH Session authentication Key	
4.	Maintenance of the bootware password;			(write/delete) CSP3-1 Crypto-Officer Password	
5.	Maintenance (create, destroy, import, export) of public key/private key/shared key;		CSP3-2 User-role Password (write/delete) CSP3-3 RADIUS shared secret keys (write/delete)		
6.	Management (create, delete, modify) of the user roles;	Commands and	commands	CSP3-4 TACACS+ shared secret keys (write/delete)	
7.	Management of the access control rules for each role;	configuration data	configuration data	CSP3-5 Security-Officer Password(write/delete) CSP4-1 DRBG seed (delete)	
8.	Management (create, delete, modify) of the user account;			CSP4-2 DRBG V (delete) CSP4-3 DRBG Key (delete)	
9.	Management of the time;			CSP1-4 Key encrypting key (read)	
10.	Maintenance (delete, modify) system start-up parameters;			(write/delete) (SP5-2 TLS Master secret (write/delete)	
11.	File operation (e.g. dir, copy, del);			CSP5-3 TLS Traffic encryption key (write/delete)	
12.	Perform self-tests			CSP5-4 TLS traffic authentication key (write/delete)	
13.	Shut down or Reboot the networking device;			CSP5-6 TLS Server public key(write/delete)	
Per	Perform Configuration Functions				

1.	Save configuration;			
2.	Management of information center;	Commands and configuration data	Status of commands and configuration data	CSP1-1 RSA private key (write/delete)
3.	Define network interfaces and settings;			(read/write/delete) CSP3-1 Crypto-Officer Password
4.	Set the protocols the switches will support (e.g. SFTP server, SSHv2 server);			(write/delete) CSP3-2 User-role Password (write/delete) CSP3-3 RADIUS shared secret keys
5.	Enable interfaces and network services;			(write/delete) CSP3-4 TACACS+ shared secret keys (write/delete)
6.	Management of access control scheme			CSP3-5 Security-Officer Password(write/delete)
7.	Shut down or Reboot the networking device;			
8.	Change Mode: This service configures the module to run in a FIPS Approved mode.			CSP4-3 DRBG Key (delete) CSP5-1 TLS Server private key (write/delete)
9.	Reset of the CSPs.			

User Services

The following table describes the services available to user service.

TABLE 8 - USER SERVICES

Description	Input	Output	CSP Access		
View Device Status					
 View currently running image version; View installed hardware components status and version 	Commands	Status of devices	None		
View Running Status					
1. View memory status, packet statistics, interface status, current configuration, routing table, active sessions, temperature and SNMP MIB statistics.	Commands	Status of device functions	None		
Perform Network Functions					
 Network diagnostic service such as "ping"; Network connection service such as "SSHv2" client; 	Commands and configuration data	Status of commands and configuration data	CSP2-1 SSH Private key (read/write/delete) CSP2-2 SSH Diffie-Hellman Key Pairs (read/write/delete) CSP2-3 SSH Session Key (read/write/delete) CSP2-4 SSH Session authentication Key (read/write/delete)		

Security Officer Services

The following table describes the services available to security officer.

Description	Input	Output	CSP Access	
Execution of Security Log Related Commands				
 Security logs: The security user can only view security logs and does not have permission to execute any other commands on the switch. 	Commands	Logs	CSP3-5 Security-Officer Password (write/delete)	

Unauthenticated Services

- Cycle the power on the switch
- Perform self-tests at power on
- Observe status LED

Authentication Mechanisms

The Aruba 2920 Switch Series supports identity-based authentication to control access to all services provided by the switches. The username and password will be configured by the Crypto Officer and the operator or Security officer will be able to login using these credentials. Once the operator or security officer is authenticated, they will assume their respective role and will be able to carry out the available services listed in Table 7, Table 8, and Table 9.

Authentication Data Protection

The Aruba 2920 Switch Series does not allow the disclosure, modification, or substitution of authentication data to unauthorized operators. Authentication data can only be modified by the operator who has assumed the Crypto Officer role.

Identity-based Authentication

Each user is authenticated upon initial access to the device. The authentication is identity-based. All users can be authenticated locally, and optionally supports authentication via a RADIUS and TACACS+ server.

The authentication method is Username and Password.

To logon to the networking devices, an operator must connect to it through one of the management interfaces (console port, SSH) and provide a password.

A user must be authenticated using username and password. The minimum password length is 8 characters, and the maximum is 64. The passwords can contain the following, equaling 94 possibilities per character:

lower case letters (26), upper case letters (26), special characters (32) and numeric characters (10)

Therefore, for 8 characters password, the probability of randomly guessing the correct sequence is 1 in 94^8 (this calculation is based on the use of the typical standard American QWERTY computer keyboard.)

The users who try to log in or switch to a different user privilege level can be authenticated by RADIUS and TACACS+ Server. The minimum password length is 8 characters, and the maximum is 64.

Therefore, for 8 characters password, the probability of randomly guessing the correct sequence is one in 94^8. The device (RADIUS client) and the RADIUS server use a shared key to authenticate RADIUS packets and encrypt user passwords exchanged between them. For more details, see RFC 2865: 3 Packet Format Authenticator field and 5.2 User-password.

The module requires an 8 character password with 94 possible characters per password character; therefore requiring $94^8/100,000 = 6.096 \times 10^{10}$ password attempts in 60 seconds to surpass the 1:100,000 ratio. The processor speed is 666MHz, translating to 1.5×10^{-9} seconds per cycle. Assuming worst case scenario and no overhead, to process (6.096×10^{10} passwords * 8 bits =) 4.877×10^{11} bits of data, it would take the processor ((4.877×10^{11} bits $\times 1.5 \times 10^{-9}$ seconds per cycle)/8 bits per cycle=) 91 seconds to process all 6.096×10^{10} password attempts. Therefore the password strengths meet FIPS 140-2 requirements.

There is a CLI command to configure the minimum password length between 8 and 64.

7 Physical Security Mechanism

The Aruba 2920 Switch Series meets the FIPS 140-2 Level 1 security requirements as production grade equipment.

8 Cryptographic Algorithms

FIPS Approved Cryptographic Algorithms

The following table lists the FIPS-Approved algorithms Aruba 2920 Switch Series provide.

TABLE 10 -	FIPS-APPROVED	CRYPTOGRAPHY	ALGORITHMS
I ADLL IV		CIVITIOOINALIII	ALGOMITIMIS

CAVP Certificate	Algorithm	Standard	Mode/ Method	Key Lengths, Curves or Moduli	Use
AES # <u>4305</u>	AES ¹	FIPS 197, SP 800-38A, SP 800-38D	CBC, ECB	128, 192, 256	Data Encryption/ Decryption
CVL # <u>1019</u>	TLS 1.0/1.1/1.2, SSHv2, SNMPv3 KDFs ²	SP 800-135rev1			Key Derivation
DRBG # <u>1366</u>	DRBG	SP 800-90A	CTR (AES-256)		Deterministic Random Bit Generation
HMAC # <u>2841</u>	HMAC ³	FIPS 198-1	HMAC SHA-1	160	Message Authentication
SHS # <u>3544</u>	SHS ⁴	FIPS 180-4	SHA-1, SHA-224, SHA- 256, SHA-384, SHA-512		Message Digest
DSA # <u>1145</u>	DSA	FIPS 186-4	DSA	1024	Digital Signature Verification
			Fixed Public Exponent e 10001	2048, 3072	Key Pair Generation
RSA # <u>2326</u>	RSA	FIPS 186-4	SHA-256, PKCS1 v.1.5	2048	Digital Signature Generation
			SHA-1, SHA-256, SHA-384, SHA-512, PKCS1 v1.5	1024 to 3072 bit keys	Digital Signature Verification

 $^{\rm 1}\,{\rm ECB}$ is not used by any of the module's services.

² This module supports the SNMP, SSH and TLS protocols with SP 800-135 rev 1 KDF primitives. However, the SNMP, SSH and TLS Protocols have not been reviewed or tested by the CMVP or CAVP

³ HMAC SHA-224, HMAC SHA-256, HMAC SHA-384, and HMAC SHA-512 are not used by any of the module's services.

⁴ SHA-224 is not used by any of the module's services

CAVP Certificate	Algorithm	Standard	Mode/ Method	Key Lengths, Curves or Moduli	Use
Triple-DES # <u>2326</u>	Triple-DES	SP 800-67	Triple-DES - CBC	168	Data Encryption/ Decryption

FIPS Allowed Cryptographic Algorithms

The following table contains the set of FIPS Allowed cryptographic algorithms that can also be used in FIPS-mode.

TABLE 11 - FIPS-ALLOWED CRYPTOGRAPHY ALGORITHMS

Algorithm	Application				
Diffie-Hellman	Key establishment				
(L = 2048, N = 224)	(provides 112 bits of encryption strength)				
Message Digest 5 (MD5)	KDF in TLS 1.0/1.1				
	Message authentication for use with OSPF, BGP, RADIUS, TACACS, and RIP				
NDRNG	Seeding for the Approved DRBG				
	(contain no less than 256 bits of entropy)				
EC Diffie-Hellman	TLS				
	Curves supported : secp256r1, secp384r1, secp521r1, secp224r1				
	(provides 112 to 256 bits of encryption strength)				
RSA	Key wrapping; Key establishment				
	(provides 112 bits of encryption strength)				

Non-FIPS Approved Cryptographic Algorithms

The following table contains the set of non-FIPS Approved algorithms that are implemented but may not be used when operating in FIPS-mode. These algorithms are used in non-FIPS-mode.

TABLE 12 - NON-FIPS APPROVED CRYPTOGRAPHY ALGORITHMS

Algorithm	Application
DES	Encryption/Decryption
Diffie-Hellman (< 2048-bits)	Key Agreement
RC4	Encryption/Decryption
MD5	Hashing
HMAC MD5	Message Authentication
RSA	SSH

Algorithm	Application
(< 2048-bits)	Key Pair Generation,
	Digital Signature Generation
	Digital Signature Verification
ECDSA	Digital Signature Generation
(non-compliant)	Digital Signature Verification

9 Cryptographic Key Management

Cryptographic Security Parameters

The networking devices use a variety of Critical Security Parameters (CSP) during operation. The following table lists the CSP including cryptographic keys used by the Aruba 2920 Switch Series. It summarizes generation, storage, and zeroization methods for the CSP.

 TABLE 13 - CRYPTOGRAPHIC SECURITY PARAMETERS

#	Key/ CSP Name	Algorithm	Key Size	Description	Key / CSP Entry		Key / CSP Entry Key / CSP Output		Zeroization	
					Origin	Storage	Output	Format		
Public key management										
CSP1-1	RSA private key	RSA	2048 bits	Identity certificates for the networking device itself.	Internal	FLASH (plain text)	No	NA	Using CLI command to zeroize.	
CSP1-2	RSA Public keys	RSA	2048 bits	Public keys used to validate the firmware image.	Generated Externally	FLASH (plain text)	No	NA	This is part of the software code.	
SSH										
CSP2-1	SSH Private key	RSA	2048 bits, 3072 bits	private key used for SSH protocol	Internal	RAM/ FLASH (plain text)	No	NA	Using CLI command to zeroize	

#	Key/ CSP Name	Algorithm	Key Size	Description	Key / CSP Entry		Key/CS	P Output	Zeroization
					Origin	Storage	Output	Format	
CSP2-2	SSH Diffie- Hellman Key Pairs	Diffie-Hellman	L=2048 bits N=224 bits	Key agreement for SSH sessions	Internal	RAM (plain text)	No	NA	Automatically when handshake finishing
CSP2-3	SSH Session Key	AES-CBC	128 bits, 256 bits	SSH session symmetric key	Derived from handshake	RAM (plain text)	No	NA	Automatically when SSH session terminated
CSP2-4	SSH Session authentication Key	HMAC-SHA1	160 bits	SSH session authentication key	Derived from handshake	RAM (plain text)	No	NA	Automatically when SSH session terminated
Authenticat	tion, Authorizatio	on, and Accountir	ng						
CSP3-1	Crypto-Officer Password	Password	8 ~ 64 bytes	Critical security parameters used to authenticate the administrator login	Entered Electronically	FLASH / RAM (obfuscated / plain text)	No	NA	Using CLI command to zeroize
CSP3-2	User-role Password	Password	8 ~ 64 bytes	Critical security parameters used to authenticate the user- role	Entered Electronically	FLASH / RAM (obfuscated / plain text)	No	NA	Using CLI command to zeroize

#	Key/ CSP Name	Algorithm	Key Size	Description	Key / C	SP Entry	Key / CSP Output		Zeroization
					Origin	Storage	Output	Format	
CSP3-3	RADIUS shared secret	Shared Secret	15 ~ 32 bytes	Used for authenticating the RADIUS server to the networking device and vice versa. Crypto- Officer in plain text form and stored in plain text form.	Entered Electronically	FLASH / RAM (obfuscated / plain text)	Via "show run" command	plain text	Using CLI command to zeroize
CSP3-4	TACACS+ shared secret	Shared Secret	15 ~ 100 bytes	Used for authenticating the TACACS+ server to the networking device and vice versa.	Entered Electronically	FLASH / RAM (obfuscated /plain text)	Via "show run" command	plain text	Using CLI command to zeroize
CSP3-5	Security- Officer Password	Password	8 ~ 64 bytes	Critical security parameters used to authenticate the security officer.	Entered Electronically	FLASH / RAM (obfuscated / plain text)	No	NA	Using CLI command to zeroize
Random Bit	ts Generation	·			•	•			

#	Key/ CSP Name	Algorithm	Key Size	Description	Key / C	Key / CSP Entry		Key / CSP Entry Key / CSP Output		P Output	Zeroization
					Origin	Storage	Output	Format			
CSP4-1	DRBG seed	SP 800 - 90A CTR_DRBG	384 bits	Input to the DRBG that determines the internal state of the DRBG	Internal	RAM (plaintext)	No	NA	Resetting or rebooting the networking device		
CSP4-2	DRBG V	SP 800 - 90A CTR_DRBG	128 bits	Generated by entropy source via the CTR_DRBG derivation function. It is stored in DRAM with plaintext form	Internal	RAM (plaintext)	No	NA	Resetting or rebooting the networking device		
CSP4-3	DRBG Key	SP 800 - 90A CTR_DRBG	256 bits	DRBG key used for SP 800-90A CTR_DRBG	Internal	RAM (plaintext)	No	NA	Resetting or rebooting the networking device		
TLS											
CSP5-1	TLS Server private key	RSA	2048 bits	Private key used for TLS negotiations.	Internal	RAM /FLASH (plain text)	No	NA	Using CLI command to zeroize		

#	Key/ CSP Name	Algorithm	Key Size	Description	Key / C	SP Entry	' Entry Key / CSP Output		Zeroization
					Origin	Storage	Output	Format	
CSP5-2	TLS Master secret	Shared key	384 bits	Shared secret used for creating TLS traffic keys.	Generated internally	RAM (plain text)	No	NA	Automatically zeroize when session terminated.
CSP5-3	TLS Traffic encryption key	AES-CBC Triple-DES	128 / 256 bits 168 bits	Used for encrypting TLS data.	Internal / Derived from handshake	RAM (plain text)	No	NA	Automatically zeroize when session terminated.
CSP5-4	TLS traffic authentication key	HMAC-SHA1	160 bits	Used for authenticating HTTPS data.	Internal / Derived from handshake	RAM (plain text)	No	NA	Automatically zeroize when session terminated.
CSP5-5	TLS Elliptic Curve Diffie- Hellman Key Pairs	EC Diffie- Hellman	secp256r1, secp384r1, secp521r1, secp224r1	Key agreement for TLS sessions.	Internal	RAM (plain text)	No	NA	Automatically when handshake finishing
CSP5-6	TLS Server public key	RSA	2048 bits	Key agreement for TLS sessions.	Internal	FLASH / RAM (plain text)	No	NA	Using CLI command to zeroize

*There is a hardcoded key in the firmware that is used to obfuscate keys stored in the 'config' file. Data obfuscated by this key is considered equivalent to plaintext and does not provide any security.

10 Self-Tests

The Aruba 2920 Switch Series performs cryptographic self-tests during power-up. The purpose of these self-tests is to verify functionality and correctness of the cryptographic algorithms listed below. Should any of the power-up self-tests or conditional self-tests fail, the module will cease operation, inhibiting all data output from the modules. The module will automatically reboot and perform power-up self-tests. Successful completion of the power-up self-tests will return the module to normal operation.

Power-Up Self-Tests

Power-up self-tests are performed when the Aruba 2920 Switch Series first powers up. There are two instances of power-up self-tests that are performed.

- BootROM instance
- Firmware Instance

BootROM Power-Up Self-Tests

The first instance is performed by the BootROM image. The BootROM, used for the selection of a cryptographic firmware image, performs the following self-tests:

- Known Answer Tests (KATs)
 - o SHA-1 KAT
 - SHA-256 KAT
 - SHA-512 KAT
 - o RSA Sign and Verify KATs
- BootROM integrity check
- Firmware integrity check (after image has been selected)

The BootROM performs the integrity check on itself to ensure that its image is valid. To perform an integrity check on itself, as well as on images that can be downloaded within, the BootROM first performs a RSA signature verification, and then check the SHA-256 hash of the image. If the BootROM integrity check fails, the switch shall be returned to HPE. If the firmware integrity check fails, the switch will transition to the BootROM console where a new image with a valid signature can be downloaded.

Firmware Power-Up Self-Tests

The power-up self-tests are performed on Aruba 2920 Switch Series once a FIPS Approved image has been loaded by the BootROM and are performed by that image. The following power up self-tests are performed:

- CTR DRBG KATs (instantiate, generate and reseed).
- SHA1 KAT, SHA256 KAT, SHA512 KAT
- HMAC_SHA1 KAT
- Triple-DES CBC Encrypt and Decrypt KATs

- AES-CBC Encrypt and Decrypt KATs
- DSA-1024 PCT, DSA-2048 PCT*
- RSA-2048 Sign and Verify KATs
- ECDSA PCT*

*These self-tests are for future use.

When there is power up self test failure, the error message indicating as to which crypto algorithm failed in self test will be displayed and the switch will be crashed and the switch should be rebooted.

Example error message with SHA1 power up self test failure is:

"Crypto powerup selftests for SHA1_KAT failed."

Conditional Self-Tests

Conditional self-tests implemented by the switches:

- Continuous RNG Test for DRBG
- Continuous RNG Test for NDRNG
- RSA PCT
- DSA PCT
- Firmware Load Test (BootROM)
- Firmware Load Test (Firmware)

11 Delivery and Operation

Secure Delivery

To ensure no one has tampered with the goods during delivery, inspect the Networking switch physical package and check as follows:

- 1. Outer Package Inspection
 - 1) Check that the outer carton is in good condition.
 - 2) Check the package for a HPE Quality Seal or IPQC Seal, and ensure that it is intact.
 - 3) Check that the IPQC seal on the plastic bag inside the carton is intact.
 - 4) If any check failed, the goods shall be treated as dead-on-arrival (DOA) goods.
- 2. Packing List Verification

Check against the packing list for discrepancy in material type and quantity. If any discrepancy found, the goods shall be treated as DOA goods.

3. External Visual Inspection

Inspect the cabinet or chassis for any defects, loose connections, damages, and illegible marks. If any surface defect or material shortage found, the goods shall be treated as DOA goods.

- 4. Confirm Software/firmware
 - 1) Version verification

To verify the software version, start the networking device, view the self-test result during startup, and use the **show version** command to check the software version. If software loading failed or the version information is incorrect, please contact HPE for support.

2) RSA with SHA-256 verification

To verify that software/firmware has not been tampered, run **verify signature flash <primary/secondary>** on the networking device. The command will return a pass or fail message.

5. DOA (Dead on Arrival)

If the package is damaged, any label/seal is incorrect or tampered, stop unpacking the goods, retain the package, and report to HPE for further investigation. The damaged goods will be replaced if necessary.

Secure Operation

The Aruba 2920 Switch Series is capable of two different modes of operation.

- Standard Secure-Mode non-FIPS Approved of operation for the switches
- FIPS Mode FIPS-Approved mode of operation for the switches

In FIPS Mode, services such as Telnet, TFTP⁵, HTTP⁶, and SNMPv2 have to be disabled. Auxiliary ports and buttons capable of manual reset and password clearing need to be disabled on the front panel of the modules. Other services in the modules need to be enabled, such as SSHv2, SFTP and SNMPv3. For the encryption of 'passwords and RADIUS/TACACS shared-keys', configure the pre-shared key using the command "encrypt-credentials pre-shared-key. This will generate a new Encryption key to be used in place of the hardcoded Encryption key in Table 13".

The following initialization steps in this policy must be followed to ensure that the Aruba 2920 Switch Series is running in a FIPS-Approved mode of operation.

FIPS 186-4

¹¹ FIPS 46-3

For more information on switch software commands related to Secure Mode, see the Access Security Guide for the switch.

Note: The FIPS set-up instructions here-in are to be executed from the local serial port of the switch.

Note: The examples show an "Aruba-Switch#" prompt. Prompts will differ based on the specific switch model number.

Pre-Initialization

Prior to enabling the switch for a FIPS-Approved mode of operation, the Crypto Officer must download the latest FIPS-Approved firmware image from HPE and load it onto the switch. In the following example, the FIPS firmware image is downloaded as the primary flash image using this command structure: Copy tftp flash <tftp server> <FIPS image>

ARUBA-SWITCH# copy tftp flash 192.168.1.1 WB_16.02.0015.swi

Once the image has been downloaded, the Crypto Officer must reboot the switch (still in Standard Secure-Mode) with the newly loaded FIPS-Approved firmware image.

ARUBA-SWITCH# boot system flash primary

The switch will reboot to the primary flash image. Once presented with the CLI, the Crypto Officer must download the FIPS-Approved image a second time. This is a mandatory measure to ensure that a FIPS-Approved image is being downloaded appropriately. The FIPS firmware image will be downloaded as the primary flash image:

ARUBA-SWITCH# copy tftp flash 192.168.1.1 WB_16.02.0015.swi

After completing the download, the Crypto Officer will set the configuration file of the switch to its default settings. This will erase custom keys and other custom configuration settings.

ARUBA-SWITCH# erase startup-config

After the startup configuration file has been set to its default settings, the Crypto Officer will enter the 'configuration' context and reboot the switch into a FIPS-ready mode of operation. This means that only FIPS-Approved algorithms and operations are used. Authentication, CSPs, and other services still need to be set up to bring the switch to a FIPS-Approved mode of operation.

```
ARUBA-SWITCH# configure
ARUBA-SWITCH# (config) # secure-mode enhanced
```

Before transitioning to FIPS-mode, the Crypto Officer will be asked to confirm whether or not they would like to zeroize the switch, erasing all files except for the firmware image. Zeroization is required when bringing the switch out of or into a FIPS-Approved mode of operation. This is required so that private keys and CSPs established in one mode of operation cannot be used in another. Zeroization can take up to an hour to complete.

The system will be rebooted and all Management Module files except software images will be erased and zeroized. This will take up to 60 minutes and the switch will not be usable during that time. Continue (y/n)?

After the Crypto Officer confirms the above message, the switch will reboot directly into the last loaded firmware image (the FIPS firmware image), run cryptographic self-tests, and do complete zeroization of the switch. Once completed, the switch is ready to be configured to run in a FIPS-Approved mode of operation.

ATTENTION: Zeroization has started and will take up to 60 minutes. Interrupting this process may cause the switch to become unstable. Backing up firmware images and other system files... Zeroizing the file system... 100% Verifying cleanness of the file system... 100% Restoring firmware images and other system files... Zeroization of the file system completed. Continue initializing..initialization done.

Initialization and Configuration

The steps outlined in this section will require the Cryptographic Officer to enter the 'configuration' context in order to execute the commands necessary for initializing the module.

ARUBA-SWITCH# configure

The Crypto Officer must create passwords for himself or herself, the User, and for the BootROM console in order to meet the security requirements laid out by FIPS PUB 140-2. All other commands for password management not used in this document are prohibited in the FIPS-Approved mode of operation. A password for the BootROM console is necessary to ensure that only an authorized operator is able to access the BootROM console services. The Crypto Officer shall be the only one with knowledge of the BootROM password.

```
ARUBA-SWITCH(config)# password operator
New password for operator: *********
Please retype new password for operator: *********
```

FIPS 140-2 Non-Proprietary Security Policy for Aruba 2920 Switch Series

```
ARUBA-SWITCH(config)# password manager
New password for manager: *********
Please retype new password for manager: ********
ARUBA-SWITCH(config)# password rom-console
Enter password: ********
Re-enter password: *********
ARUBA-SWITCH(config)# aaa authentication local-user secuser group
default-security-group password plaintext
New password for secuser: ********
Please retype new password for secuser: ********
```

Following password initialization, the Crypto Officer will disable Telnet services.

ARUBA-SWITCH(config) # no telnet-server

SSHv2 services will be turned on to allow the User and Crypto Officer to access the switch's CLI services remotely. To do this, the Crypto Officer must first generate a new RSA key pair (2048 or 3072 bits) to be used for secure key and message transportation though the SSHv2 connection.

```
ARUBA-SWITCH(config)# crypto key generate ssh rsa bits 3072
Installing new key pair. If the key/entropy cache is
depleted, this could take up to a minute.
```

The follow command enables the SSHv2 server:

ARUBA-SWITCH(config) # ip ssh

SFTP/SCP services must be enabled in order to download new firmware images and security updates from HPE Networking. It may also be necessary to access an SFTP server to save a copy of the configuration file or device log to an external storage device securely. Enabling SFTP will disable the TFTP service.

ARUBA-SWITCH(config) # ip ssh filetransfer

Tftp and auto-tftp have been disabled.

As an added security measure, the Crypto Officer will type the following commands to ensure the switch does not have access to the TFTP client and server services:

```
ARUBA-SWITCH(config)# no tftp client
ARUBA-SWITCH(config)# no tftp server
```

In order to disable SNMPv1 and SNMPv2, the Crypto Officer must first initialize SNMPv3. Set-up of SNMPv3 requires that an initial user be created with an associated MD5 authentication hash. After creating the 'initial' user, the Crypto Officer will type in an authentication password and associated privacy password for the 'initial' user:

```
ARUBA-SWITCH(config) # snmpv3 enable
SNMPv3 Initialization process.
Creating user 'initial'
Authentication Protocol: MD5
Enter authentication password: *******
Privacy protocol is DES
Enter privacy password: ******
```

Following the creation of the 'initial' user, the Crypto Officer will be asked if they would like to create a second user that uses SHA-1 for authentication. The Crypto Officer will type 'y' then press the "Enter" or "Return" key in order to create the second user.

Once the FIPS-Approved user has been created with their associated authentication and privacy passwords, the Crypto Officer will limit access to SNMPv1 and SNMPv2c messages to 'read only'. This does not disable SNMPv1 and SNMPv2.

User creation is done. SNMPv3 is now functional.

Would you like to restrict SNMPv1 and SNMPv2c messages to have read only access (you can set this later by the command 'snmp restrict-access')? [y/n] y

The privacy protocol for the SNMPv3 "crypto officer" user must be changed from DES to AES-128. Use the following command to manually change the privacy protocol for the "crypto officer" user. Substitute the "*" with a secure password.

```
ARUBA-SWITCH(config)# snmpv3 user crypto_officer auth sha ******
priv aes ******
```

The following commands will be typed by the Crypto Officer in order to delete the unapproved SNMPv3 user ('initial') and to disable use of SNMPv1 and SNMPv2.

```
ARUBA-SWITCH(config) # no snmpv3 user initial
ARUBA-SWITCH(config) # no snmp-server enable
ARUBA-SWITCH(config) # snmpv3 only
```

Plaintext connections to the switch are not allowed in a FIPS-Approved mode of operation and must be disabled with the following command:

ARUBA-SWITCH(config) # no web-management plaintext

HTTPS7 access to the module must be disabled. The Crypto Officer can use the following command to disable SSL8 v3.1/TLS9 1.0 web management services.

ARUBA-SWITCH(config) # no web-management ssl

To prevent unintentional factory reset of the switch, the "Reset" button located on the Aruba 2920 series switches must be disabled. The Crypto Officer must confirm the prompt with a 'y' to complete the command.

ARUBA-SWITCH(config)# no front-panel-security factory-reset

**** CAUTION ****

Disabling the factory reset option prevents switch configuration and passwords from being easily reset or recovered. Ensure that you are familiar with the front panel security options before proceeding.

⁷ HTTPS – Secure Hypertext Transfer Protocol

⁸ SSL – Secure Socket Layer

⁹ TLS – Transport Layer Security

To prevent unintentional password reset of the switch, the "Clear" button located on the Aruba 2920 series switches must be disabled. The Crypto Officer must confirm the prompt with a ' $_{y}$ ' to complete the command.

```
ARUBA-SWITCH(config) # no front-panel-security password-clear
```

```
**** CAUTION ****
```

Disabling the clear button prevents switch passwords from being easily reset or recovered. Ensure that you are familiar with the front panel security options before proceeding.

Continue with disabling the clear button [y/n]? y

Please note: The autorun feature will not function when the USB port is disabled.

ARUBA-SWITCH(config) # no usb-port

The start-up configuration file needs to be written with the new settings that have been applied in this section. The following command will write the new start-up configuration file:

ARUBA-SWITCH(config) # write memory

The last steps to ensure that the switch is running in a FIPS-Approved mode of operation is to set the default boot image to the primary image and then reboot the switch into the newly configured FIPS-Approved firmware image.

ARUBA-SWITCH(config) # boot set default primary
ARUBA-SWITCH(config) # boot system flash primary

Use the following command to confirm the switch is running in a FIPS-Approved mode of operation:

ARUBA-SWITCH(config) # show secure-mode

Secure-mode : Enabled

Zeroization

Zeroization is required when bringing the switch out of or into a FIPS-Approved mode of operation. This is required so that private keys and CSPs established in one mode of operation cannot be used in another. The Aruba 2920 series switches will execute full system zeroization when the switch is changing secure-mode states. For example, this can be done by calling secure-mode enhanced while the switch is in a "secure-mode standard" state. The module will not execute zeroization if calling secure-mode enhanced while the switch is currently in the "secure-mode enhanced" state.

Zeroization can also be done by executing the erase all zeroize command. This command has the same effect as the above commands; however the switch will not transition to the opposite mode from which the command was called in. The secure-mode commands shall only be called when accessing the switch directly through a serial connection. Otherwise status information about the zeroization process will not be displayed nor will the operator be able to access the module remotely until remote access has been set up. The only things that will remain on the switch after zeroization has completed are the BootROM image and the firmware images.

Secure Management

Once the Aruba 2920 series switches have been configured for a FIPS-Approved mode of operation, the Crypto Officer will be responsible for keeping track of and regenerating RSA key pairs for SSHv2 authentication to the switches. Remote management is available via SSHv2. The Crypto Officer is the only operator that can change configuration settings of the switch, which includes access control, password management, and port security. Physical access to and local control of the Aruba 2920 series switches shall be limited to the Cryptographic Officer.

User Guidance

The user is only able to access the Aruba 2920 series switches remotely via SSHv2. When accessing the switches remotely via SSHv2, the User will be presented with the same CLI interface as if connected locally. In an SSHv2 session, the user is able to see most of the health information and configuration settings of the switches, but is unable to change them.

BootROM Guidance

The primary purpose of the BootROM console is to download a new firmware image should there be a problem booting the current FIPS-Approved image. The BootROM may be accessed when rebooting the Aruba 2920 series switches locally through the serial port. When entering into the BootROM, the BootROM selection menu will present the Crypto Officer with three options. Option *0* allows the Crypto Officer to access BootROM console services. Option *1* and Option *2* allow the Crypto Officer to boot the system into either the primary or secondary firmware image, respectively. Only a FIPS approved firmware image may be selected from the menu. If nothing is pressed within 3 seconds of being presented with the selection menu, the switch will boot into the last booted image.

When accessing the BootROM console from the BootROM selection menu, the Crypto Officer will be prompted for the BootROM password which was previously configured by the Crypto Officer during switch initialization. This password shall be different than the Crypto Officer password. A limited set of commands is available to the Crypto Officer within the BootROM console that allows the Crypto Officer to download a new image, reboot the switch, zeroize the switch, or display BootROM image versioning information. The BootROM console may be exited at any time, to access the image selection menu, via the quit command.

12 Mitigation of Other Attacks

The networking devices do not claim to mitigate any attacks in a FIPS approved mode of operation.

13 Documentation References

Obtaining documentation

You can access the Aruba Networking products page:

<u>https://www.hpe.com/us/en/networking.html#.UcMNEpzzIX0</u>, where you can obtain the up-to-date documents of Aruba Switches, such as datasheet, installation manual, configuration guide, command reference, and other reference documents.

Technical support

For technical or sales related question please refer to the contacts list on the HPE website: <u>http://www.hpe.com.</u>