
Red Hat Enterprise Linux GnuTLS
Cryptographic Module

version 5.0

FIPS 140-2 Non-proprietary Security Policy

Document version 1.1

Last Update: 2017-09-01

Prepared by:
atsec information security corporation

9130 Jollyville Road, Suite 260
Austin, TX 78759
www.atsec.com

© 2017 Red Hat®, Inc./atsec information security. This document can be reproduced and distributed only
whole and intact, including this copyright notice.

Red Hat Enterprise Linux GnuTLS Cryptographic Module v5.0
FIPS 140-2 Non-proprietary Security Policy

Table of Contents
 1. Cryptographic Module Specification ... 3
 1.1. Description of the Module ... 3
 1.2. Description of the Approved Modes .. 4
 1.3. Cryptographic Boundary ... 9
 1.3.1. Hardware Block Diagram .. 9
 1.3.2. Software Block Diagram ... 10
 2. Cryptographic Module Ports and Interfaces .. 12
 3. Roles, Services and Authentication .. 13
 3.1. Roles ... 13
 3.2. Services .. 13
 3.3. Operator Authentication .. 17
 4. Physical Security .. 18
 5. Operational Environment ... 19
 5.1. Applicability .. 19
 5.2. Policy .. 19
 6. Cryptographic Key Management .. 20
 6.1. Random Number Generation ... 21
 6.2. Key Generation ... 22
 6.3. Key Establishment/Key Derivation ... 22
 6.4. Key Entry and Output .. 23
 6.5. Key/CSP Storage ... 23
 6.6. Key/CSP Zeroization .. 23
 7. Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC) 24
 7.1. Statement of compliance .. 24
 8. Self-Tests .. 25
 8.1. Power-Up Tests .. 25
 8.1.1. Integrity Tests .. 25
 8.1.2. Cryptographic Algorithm Test ... 25
 8.2. On-Demand Self-Tests ... 26
 8.3. Conditional Tests ... 26
 9. Guidance .. 27
 9.1. Crypto Officer Guidance .. 27
 9.2. User Guidance ... 28
 9.2.1. TLS and Diffie-Hellman ... 28
 9.2.2. AES GCM IV .. 29
 9.2.3. RSA and DSA Keys ... 29
 9.2.4. Symmetric Key Generation .. 29
 9.3. Handling Self-Test Errors .. 29
 10. Mitigation of Other Attacks .. 31
 11. Glossary and Abbreviations .. 32
 12. References ... 34

© 2017 Red Hat®, Inc./atsec information security. This document can be reproduced and distributed only
whole and intact, including this copyright notice. 2 of 35

Red Hat Enterprise Linux GnuTLS Cryptographic Module v5.0
FIPS 140-2 Non-proprietary Security Policy

1. Cryptographic Module Specification
This document is the non-proprietary security policy for the Red Hat Enterprise Linux GnuTLS
Cryptographic Module v5.0, and was prepared as part of the requirements for conformance to
Federal Information Processing Standard (FIPS) 140-2, Level 1 Software Module.

1.1. Description of the Module
The Red Hat Enterprise Linux GnuTLS Cryptographic Module (hereafter referred to as the
“module”) is a set of libraries implementing general purpose cryptographic algorithms and
network protocols. The module supports the Transport Layer Security (TLS) Protocol defined in
[RFC5246] and the Datagram Transport Layer Security (DTLS) Protocol defined in [RFC4347]. The
module provides a C language Application Program Interface (API) for use by other calling
applications that require cryptographic functionality or TLS/DTLS network protocols.

The components of the cryptographic module are specified in the following table:

Component Description

libgnutls This library provides the main interface which allows the calling applications to
request cryptographic services. The Approved cryptographic algorithm
implementations provided by this library include the TLS protocol, DRBG, RSA
Key Generation, Diffie-Hellman and EC Diffie-Hellman.

libnettle This library provides the cryptographic algorithm implementations, including
AES, Triple-DES, SHA, HMAC, RSA Digital Signature, DSA and ECDSA.

libhogweed This library includes the primitives used by libgnutls and libnettle to support the
asymmetric cryptographic operations.

libgmp This library provides the big number arithmetic operations to support the
asymmetric cryptographic operations.

*.hmac The .hmac files contain the HMAC-SHA-256 values of its associated library for
integrity check during the power-up.

Table 1: Cryptographic Module Components

The module has been tested on the following multi-chip standalone platforms:

Manufacturer Model Test Configurations Processor

Dell PowerEdge R630 Red Hat Enterprise Linux 7.4
with/without AES-NI

Intel(R) Xeon(R) CPU E5-
2640 v3

Table 2: Tested Platform

Note: Per FIPS 140-2 IG G.5, the CMVP makes no statement as to the correct operation of the
module or the security strengths of the generated keys when this module is ported and executed
in an operational environment not listed on the validation certificate.

The following table shows the security level for each of the eleven sections of the validation:

Security Component FIPS 140-2 Security Level

Cryptographic Module Specification 1

© 2017 Red Hat®, Inc./atsec information security. This document can be reproduced and distributed only
whole and intact, including this copyright notice. 3 of 35

Red Hat Enterprise Linux GnuTLS Cryptographic Module v5.0
FIPS 140-2 Non-proprietary Security Policy

Cryptographic Module Ports and Interfaces 1

Roles, Services and Authentication 1

Finite State Model 1

Physical Security N/A

Operational Environment 1

Cryptographic Key Management 1

EMI/EMC 1

Self-Tests 1

Design Assurance 1

Mitigation of Other Attacks 1

Table 3: Security Level of the Module

1.2. Description of the Approved Modes
The module supports two modes of operation:

• In "FIPS mode" (the FIPS Approved mode of operation) only approved or allowed security
functions with sufficient security strength can be used.

• In "non-FIPS mode" (the non-Approved mode of operation) only non-approved security
functions can be used.

When the module is powered up, the module executes the power-up tests and obtains the HMAC
value of the module for integrity check from the .hmac file for each software libraries within the
module's logical boundary. The module enters FIPS mode automatically after power-up tests
succeed. If the module fails any power-up tests, the module will return an error code and enter the
error state to prohibit any further cryptographic operations. The operator should follow the
guidance in section 9.3 for descriptions of possible self-test errors and recovery procedures.

Once the module completes power-up tests successfully and enters FIPS mode by default, the
module is available to provide cryptographic services. The mode of operation is implicitly assumed
depending on the security function invoked and the security strength of the cryptographic keys.

Critical security parameters used or stored in FIPS mode are not used in non-FIPS mode, and vice
versa.

The module supports the following FIPS 140-2 Approved algorithms in FIPS mode:

Algorithm CAVS Certificates Standards Keys/CSPs

AES with the following mode:
• CBC
• GCM

Certs. #4658,
#4659, #4660,
#4661, #4662 and
#4663

FIPS 197 AES
SP 800-38A
SP 800-38D GCM

AES keys 128 bits, 192
bits and 256 bits (CBC)

AES keys 128 bits and
256 bits (GCM)

© 2017 Red Hat®, Inc./atsec information security. This document can be reproduced and distributed only
whole and intact, including this copyright notice. 4 of 35

Red Hat Enterprise Linux GnuTLS Cryptographic Module v5.0
FIPS 140-2 Non-proprietary Security Policy

Algorithm CAVS Certificates Standards Keys/CSPs

3-key Triple-DES with the
following mode:

• CBC

Certs. #2479 and
#2480

SP 800-67
SP 800-38A

Triple-DES keys 192 bits

DRBG using AES-256
CTR_DRBG where AES
encryption is provided by the
C implementation from the
nettle library

Note: CTR_DRBG without
Derivation Function, without
Prediction Resistance and no
Reseeding implementation

Certs. #1574 and
#1575

Dependent AES
Certs. implemented
by the nettle library:
Certs. #4584,
#4585

SP 800-90A Entropy input string,
seed, V and Key

SHA:
• SHA-1
• SHA-224
• SHA-256
• SHA-384
• SHA-512

Certs. #3817,
#3818, #3819 and
#3820

HMAC:
• SHA-1
• SHA-224
• SHA-256
• SHA-384
• SHA-512

Certs. #3086 and
#3087

FIPS 198-1 At least 112 bits HMAC
Key

DSA Domain Parameters
Generation and Verification

• SHA-384

Certs. #1233 and
#1234

FIPS 186-4 DSA keys:
• L=2048, N=224
• L=2048, N=256
• L=3072, N=256DSA Key Generation

DSA Signature Generation L=2048, N=224 (SHA-
224, SHA-256, SHA-384,
SHA-512)

L=2048, N=256 (SHA-
256, SHA-384, SHA-512)

L=3072, N=256 (SHA-
256, SHA-384, SHA-512)

© 2017 Red Hat®, Inc./atsec information security. This document can be reproduced and distributed only
whole and intact, including this copyright notice. 5 of 35

Red Hat Enterprise Linux GnuTLS Cryptographic Module v5.0
FIPS 140-2 Non-proprietary Security Policy

Algorithm CAVS Certificates Standards Keys/CSPs

DSA Signature Verification
• SHA-1
• SHA-224
• SHA-256
• SHA-384
• SHA-512

L=1024, N=160 (SHA-1,
SHA-224, SHA-256, SHA-
384, SHA_512)

L=2048, N=224 (SHA-
224, SHA-256, SHA-384,
SHA-512)

L=2048, N=256 (SHA-
256, SHA-384, SHA-512)

L=3072, N=256 (SHA-
256, SHA-384, SHA-512)

RSA Key Generation
• SHA-384

Certs. #2542 and
#2543

FIPS 186-4 RSA keys 2048 and 3072
bits

RSA (PKCS#1 v1.5) Signature
Generation

RSA keys 2048 bits:
• SHA-224
• SHA-512

RSA keys 3072 bits:
• SHA-1
• SHA-224
• SHA-256
• SHA-384
• SHA-512

RSA (PKCS#1 v1.5) Signature
Verification

RSA keys 1024 bits:
• SHA-1
• SHA-224
• SHA-256
• SHA-384
• SHA-512

RSA keys 2048 bits:
• SHA-1
• SHA-224
• SHA-256
• SHA-384
• SHA-512

RSA keys 3072 bits:
• SHA-1
• SHA-224
• SHA-256
• SHA-384
• SHA-512

© 2017 Red Hat®, Inc./atsec information security. This document can be reproduced and distributed only
whole and intact, including this copyright notice. 6 of 35

Red Hat Enterprise Linux GnuTLS Cryptographic Module v5.0
FIPS 140-2 Non-proprietary Security Policy

Algorithm CAVS Certificates Standards Keys/CSPs

ECDSA Key Pair Generation
and Public Key Verification

Certs. #1146 and
#1147

FIPS 186-4 ECDSA keys based on P-
256, P-384, or P-521
curveECDSA Signature Generation

• SHA-224
• SHA-256
• SHA-384
• SHA-512

ECDSA Signature Verification
• SHA-1
• SHA-224
• SHA-256
• SHA-384
• SHA-512

CVL (KAS FCC/ECC) Certs. #1307 and
#1309

SP 8000-56A

Key Derivation Function in
TLS v1.0, v1.1 and v1.2 with:

• SHA-256
• SHA-384
• SHA-512

CVL Certs. #1308
and #1310

SP800-135 rev1
Section 4.2

None

Table 4: Validated Cryptographic Algorithms

Note: The TLS and DTLS network protocols have not been reviewed or tested by the CAVP and
CMVP.

Note2: 1024 bit RSA and DSA signature verification is legacy-use.

The module supports different AES and SHA implementations based on the underlying platform's
capability. The module supports the use of AES-NI and SSSE3 when it is operated in an Intel® x86-
64 architecture environment. When the AES-NI is enabled in the operating environment, the
module performs the AES operations using the support from the AES-NI instructions; when the
AES-NI is disabled in the operating environment, the module performs the AES operations using
the supports from the Supplemental Streaming SIMD Extensions 3 (SSSE3). The module also
performs SHA operations using the supports from the SSSE3. The SSSE3 cannot be disabled on the
test platform that runs in the Intel® x86 architecture environment. The AES and SHA
implementations that uses the AES-NI and SSSE3 supports and their related algorithms have been
CAVS tested and functionally tested. Although the module implements different implementations
for AES and SHA, only one implementation for one algorithm will ever be available for AES SHA
and HMAC cryptographic services at run-time.

The module implements the following non-Approved algorithms which are allowed in FIPS mode:

• RSA Key Wrapping with encryption and decryption primitives and at least 2048 bits
modulus size

• FIPS 186-4 RSA Key Generation and Signature Generation with at least 2048 bits modulus

© 2017 Red Hat®, Inc./atsec information security. This document can be reproduced and distributed only
whole and intact, including this copyright notice. 7 of 35

Red Hat Enterprise Linux GnuTLS Cryptographic Module v5.0
FIPS 140-2 Non-proprietary Security Policy

size except 2048 and 3072 bits1

• FIPS 186-4 RSA Signature Verification with at least 1024 bits modulus size except 1024,
2048 and 3072 bits1

• FIPS 186-4 RSA Digital Signature with MD5 or SHA-12

• Diffie-Hellman KAS with SHA-224 and SHA-256 and 2048 bits domain parameters size (CVL
Certs. #1307 and #1309)

• Diffie-Hellman KAS with greater than 2048 bits domain parameters size (CVL Certs. #1307
and #1309)

• EC Diffie-Hellman KAS with SHA-256, SHA-384 and SHA-512, and keys associated with the
NIST curves P-256, P-384, P-521 (CVL Certs. #1307 and #1309)

The module implements the following non-Approved algorithms only available in non-FIPS mode:

• AES with counter mode (CTR)
• Blowfish
• Camellia
• CAST 128
• DES
• Diffie-Hellman KAS with smaller than 2048 bits domain parameters size
• FIPS 186-2 RSA Key Generation
• FIPS 186-4 RSA Key Generation, Signature Generation and Key Wrapping with modulus size

smaller than 2048 bits and/or non-Approved hashing
• FIPS 186-4 RSA Signature Verification with smaller than 1024 bits modulus size
• FIPS 186-4 DSA Signature Generation with smaller than 2048 bits public key size
• GOST Hash R 34.11-94 (RFC4357)
• Lagged Fibonacci Pseudo-randomness Generator
• MD2
• MD4
• MD5
• NDRNG
• PBKDFv2 (RFC2898)
• RC2
• RC4
• RIPEMD-160
• Salsa20
• Serpent
• SHA-3
• Twofish
• UMAC
• Yarrow RNG

Regarding the available services in FIPS mode of operation and non-FIPS mode of operation, please

1 These algorithms are CAVS tested and listed as Approved algorithms in this module.
2 Please note that MD5 and SHA-1 can be used in the digital signature when it is used in TLS

protocol according to the [SP800-52].

© 2017 Red Hat®, Inc./atsec information security. This document can be reproduced and distributed only
whole and intact, including this copyright notice. 8 of 35

Red Hat Enterprise Linux GnuTLS Cryptographic Module v5.0
FIPS 140-2 Non-proprietary Security Policy

refer to Table 6: Services Available in FIPS mode and Table 7. Services Available in non-FIPS mode
in section 3.2 Services.

1.3. Cryptographic Boundary
The module's physical boundary is the physical boundary of the test platform. The embodiment
type of the module is defined as multi-chip standalone.

The module's logical boundary is the shared library files and their integrity check HMAC files,
which are delivered through Red Hat Package Manager (RPM) listed in section 9.1. The binary files
and the HMAC files within the module's logical boundary are listed below:

• libgnutls library:

◦ /usr/lib{64,}/libgnutls.so.28.43.0

◦ /usr/lib{64,}/.libgnutls.so.28.43.0.hmac

• libnettle library:

◦ /usr/lib{64,}/libnettle.so.4.7

◦ /usr/lib{64,}/.libnettle.so.4.7.hmac

• libhogweed library:

◦ /usr/lib{64,}/libhogweed.so.2.5

◦ /usr/lib{64,}/.libhogweed.so.2.5.hmac

• libgmp library:

◦ /usr/lib{64,}/libgmp.so.10.2.0

◦ /usr/lib{64,}/fipscheck/libgmp.so.10.2.0.hmac

1.3.1. Hardware Block Diagram
The physical boundary of the module is the physical boundary of the test platform which is a
General Purpose Computer (GPC). The following block diagram shows the hardware components of
a GPC:

© 2017 Red Hat®, Inc./atsec information security. This document can be reproduced and distributed only
whole and intact, including this copyright notice. 9 of 35

Red Hat Enterprise Linux GnuTLS Cryptographic Module v5.0
FIPS 140-2 Non-proprietary Security Policy

Figure 1. Hardware Block Diagram

1.3.2. Software Block Diagram
The block diagrams below shows the module's logical boundary, its interface with the operational
environment and the delimitation of its logical boundary which are included in BLUE box:

© 2017 Red Hat®, Inc./atsec information security. This document can be reproduced and distributed only
whole and intact, including this copyright notice. 10 of 35

Red Hat Enterprise Linux GnuTLS Cryptographic Module v5.0
FIPS 140-2 Non-proprietary Security Policy

Figure 2. Software Block Diagram

© 2017 Red Hat®, Inc./atsec information security. This document can be reproduced and distributed only
whole and intact, including this copyright notice. 11 of 35

Red Hat Enterprise Linux GnuTLS Cryptographic Module v5.0
FIPS 140-2 Non-proprietary Security Policy

2. Cryptographic Module Ports and Interfaces
The physical ports of the module are the same as the computer system on which it executes. The
logical interface is a C-language Application Program Interface (API) through libgnutls library.

The Data Input interface consists of the input parameters of the API functions. The Data Output
interface consists of the output parameters of the API functions. The Control Input interface
consists of the actual API functions. The Status Output interface includes the return values of the
API functions. The ports and interfaces are shown in the following table.

FIPS Interface Physical Port Module Interface

Data Input Ethernet ports API input parameters, kernel I/O –
network or files on file system, TLS
protocol

Data Output Ethernet ports API output parameters, kernel I/O –
network or files on file system, TLS
protocol

Control Input Keyboard, Serial port, Ethernet
port, Network

API function calls, TLS protocol

Status Output Serial port, Ethernet port,
Network

API return codes, TLS protocol

Power Input PC Power Supply Port N/A

Table 5: Ports and Interfaces

Note: The module is an implementation to support the TLS protocol defined in [RFC5246] and TLS
is a port networking interface to provide secure channel between entities. When the calling
application sends the data to the module, the module packages the data according to the TLS
standard and sends it to other entity confidentially and integrity. The module is considered a user
interface to use the TLS protocol to communicate with other remote entities securely through the
network.

© 2017 Red Hat®, Inc./atsec information security. This document can be reproduced and distributed only
whole and intact, including this copyright notice. 12 of 35

Red Hat Enterprise Linux GnuTLS Cryptographic Module v5.0
FIPS 140-2 Non-proprietary Security Policy

3. Roles, Services and Authentication
This section defines the roles, services, and authentication mechanisms and methods with respect
to the applicable FIPS 140-2 requirements.

3.1. Roles
The module supports the following roles:

• User role: performs all services (in both FIPS mode and non-FIPS mode of operation),
except module installation, configuration and initialization.

• Crypto Officer role: performs module installation, configuration and initialization.

The User and Crypto Officer roles are implicitly assumed by the entity accessing services
implemented by the module.

3.2. Services
The module provides services to users that assume one of the available roles. All services are
described in detail in the user documentation.

The following table lists the Approved services and the non-Approved but allowed services in FIPS
mode of operation, the roles that can request the service, the Critical Security Parameters (CSP)
involved and how they are accessed:

Service Role Keys/CSPs Access

Cryptographic Library Services

Symmetric Encryption and Decryption User AES 128, 192 or 256 bit key Read

3-key Triple-DES 192 bit key

Asymmetric Key Generation in X509
Certificate

User RSA public-private keys with at
least 2048 bits of modulus size

Create

DSA public-private keys with at
least 2048 bits of public key size

ECDSA public-private keys with P-
256, P-384 or P-521 curve

Digital Signature Generation in X509
Certificate

User RSA public-private keys with at
least 2048 bits of modulus size

Read

DSA public-private keys with at
least 2048 bits of public key size

ECDSA public-private keys with P-
256, P-384 or P-521 curve

Digital Signature Verification User RSA public-private keys with at
least 1024 bits of modulus size

Read

DSA public-private keys with at
least 1024 bits public key size

ECDSA public-private keys with P-
256, P-384 or P-521 curve

© 2017 Red Hat®, Inc./atsec information security. This document can be reproduced and distributed only
whole and intact, including this copyright notice. 13 of 35

Red Hat Enterprise Linux GnuTLS Cryptographic Module v5.0
FIPS 140-2 Non-proprietary Security Policy

Service Role Keys/CSPs Access

Public Key Verification User RSA public-private keys with at
least 2048 bits of modulus size

Read

DSA public-private keys with at
least 2048 bits of public key size

ECDSA public-private keys with P-
256, P-384 or P-521 curve

Diffie-Hellman Parameters Generation,
Import and Export

User Diffie-Hellman domain parameters Create,
Read,
Write

Import and Export Public Key User RSA, DSA or ECDSA public key Read,
Write

Import and Export Private Key User RSA, DSA or ECDSA private key Read,
Write

Keyed Hash (HMAC) User At least 112 bits HMAC Key Read

Message Digest (SHA) User None None

Random Number Generation (SP800-
90A DRBG)

User Entropy input string and seed Read

Network Protocols Services
(Note: The underlying algorithms are the same as the algorithm implementations provided in the
Cryptographic Library Services.)

TLS or DTLS Handshaking Initialization User None None

TLS Alert Protocol User None None

TLS Record Protocol User AES or Triple-DES key, HMAC key Read

TLS Handshaking using X509
Certificates Authentication method
with:

• Diffie-Hellman KAS
• EC Diffie-Hellman KAS
• RSA-based Key Wrapping using

RSA Encryption and Decryption
Primitives (SP 800-56B Section
7.1)

User AES or Triple-DES key, RSA, DSA or
ECDSA public-private key, HMAC
Key, Shared Secret, Diffie-Hellman
domain parameters and EC Diffie-
Hellman EC public-private keys

Create,
Read

TLS Handshaking using Anonymous
Authentication method with:

• Diffie-Hellman KAS
• EC Diffie-Hellman KAS

User AES or Triple-DES key, DSA or
ECDSA public-private key, HMAC
Key, Shared Secret, Diffie-Hellman
domain parameters and EC Diffie-
Hellman EC public-private keys

Create,
Read

© 2017 Red Hat®, Inc./atsec information security. This document can be reproduced and distributed only
whole and intact, including this copyright notice. 14 of 35

Red Hat Enterprise Linux GnuTLS Cryptographic Module v5.0
FIPS 140-2 Non-proprietary Security Policy

Service Role Keys/CSPs Access

TLS Handshaking using Pre-Shared Key
(PSK) Authentication method with:

• Diffie-Hellman KAS
• EC Diffie-Hellman KAS
• RSA-based Key Wrapping using

RSA Encryption and Decryption
Primitives (SP 800-56B Section
7.1)

User AES or Triple-DES key, RSA, DSA or
ECDSA public-private key, HMAC
Key, Shared Secret, Diffie-Hellman
domain parameters and EC Diffie-
Hellman EC public-private keys

Create,
Read

TLS X.509 Certificate Handling,
including digital signature,
key/certificate import and export, and
support the following format:

• PKCS#7
• PKCS#12
• Binary (DER) encoding
• ASCII (PEM) encoding

User RSA, DSA or ECDSA public-private
key

Read,
Write

TLS Extensions User RSA, DSA or ECDSA public-private
key

Read

Other FIPS-related Services

Show status User None None

Self-test User None None

Zeroize User All aforementioned CSPs Zeroize

Module Installation Crypto
Officer

None None

Module Initialization Crypto
Officer

None None

Table 6: Services Available in FIPS mode

The following table lists the services only available in non-FIPS mode of operation.

Service Role Keys/CSPs Access

FIPS 186-4 RSA Key Generation,
Signature Generation, Public Key
Verification or Key Wrapping with
modulus size smaller than 2048 bits

User RSA public-private keys with
modulus size smaller than 2048
bits

Create,
Read

FIPS 186-4 RSA Signature Verification
with modulus size smaller than 1024
bits

User RSA public-private keys with
modulus size smaller than 1024
bits

Read

FIPS 186-2 RSA Key Generation User RSA public-private keys Create

FIPS 186-4 RSA Signature Generation
with non-Approved Message Digest
algorithms

User RSA public-private keys Read

© 2017 Red Hat®, Inc./atsec information security. This document can be reproduced and distributed only
whole and intact, including this copyright notice. 15 of 35

Red Hat Enterprise Linux GnuTLS Cryptographic Module v5.0
FIPS 140-2 Non-proprietary Security Policy

Service Role Keys/CSPs Access

DSA Key Generation, Signature
Generation or Public Key Verification
with public key size smaller than 2048
bits

User DSA public-private keys with public
key size smaller than 2048 bits

Create,
Read

DSA Signature Verification with public
key size smaller than 1024 bits

User DSA public-private keys with public
key size smaller than 1024 bits

Read

Asymmetric Key for Data Encryption
and Decryption

User RSA public-private keys Read

Diffie-Hellman KAS with key sizes
smaller than 2048 bits

User Diffie-Hellman domain parameters Read

Random Number Generation or
Symmetric Key Generation using
Yarrow RNG or Lagged Fibonacci
Pseudorandomness Generator

User PRNG seed Read

Encryption and Decryption using AES
CTR, Blowfish, Camellia, CAST 128,
DES, RC2, RC4, Salsa20, Serpent, or
Twofish

User 8 to 2048 bits key Read

Message Digest using GOST Hash R
34.11-94 (RFC4357), MD2, MD4, MD5,
RIPEMD-160, or SHA-3

User None None

SP 800-132 Password-based Key
Derivation Function (PBKDF2)

User Password, derived keying material Read,
Create

MAC generation using UMAC User MAC key Read

Support to use DANE Certificate User RSA, DSA and ECDSA public-
private keys

Read

Support to use OpenPGP Certificate User RSA, DSA and ECDSA public-
private keys

Read

Support to use PKCS#11 Certificate User RSA, DSA and ECDSA public-
private keys

Read

Support to use the Secure RTP (SRTP)
defined in RFC5764

User AES and HMAC keys Read

Support to use Trusted Platform Module
(TPM)

User RSA, DSA and ECDSA public-
private keys

Create,
Read

Table 7. Services Available in non-FIPS mode

Note: The module does not share CSPs between FIPS mode of operation and a non‐FIPS mode of
operation. All cryptographic keys used in the FIPS mode of operation must be generated in the
FIPS mode or imported while running in the FIPS mode. The DRBG shall not be used for key
generation for non-Approved services in non-FIPS mode.

More information about the services and their associated APIs listed in Table 6: Services Available

© 2017 Red Hat®, Inc./atsec information security. This document can be reproduced and distributed only
whole and intact, including this copyright notice. 16 of 35

Red Hat Enterprise Linux GnuTLS Cryptographic Module v5.0
FIPS 140-2 Non-proprietary Security Policy

in FIPS mode can be found in the GnuTLS documentation gnutls.pdf provided with the module's
code or manpages from the module.

3.3. Operator Authentication
The module does not implement authentication. The role is implicitly assumed based on the
service requested.

© 2017 Red Hat®, Inc./atsec information security. This document can be reproduced and distributed only
whole and intact, including this copyright notice. 17 of 35

Red Hat Enterprise Linux GnuTLS Cryptographic Module v5.0
FIPS 140-2 Non-proprietary Security Policy

4. Physical Security
The module comprises of software only and thus does not claim any physical security.

© 2017 Red Hat®, Inc./atsec information security. This document can be reproduced and distributed only
whole and intact, including this copyright notice. 18 of 35

Red Hat Enterprise Linux GnuTLS Cryptographic Module v5.0
FIPS 140-2 Non-proprietary Security Policy

5. Operational Environment
This module operates in a modifiable operational environment per the FIPS 140-2 definition.

5.1. Applicability
The module operates in a modifiable operational environment per FIPS 140-2 level 1 specifications.
The module runs on a commercially available general-purpose operating system executing on the
hardware specified in section 2.2.

The Red Hat Enterprise Linux operating system is used as the basis of other products which inlude
but are not limited to:

• Red Hat Enterprise Linux Atomic Host
• Red Hat Virtualization (RHV)
• Red Hat OpenStack Platform
• OpenShift Container Platform
• Red Hat Gluster Storage
• Red Hat Ceph Storage
• Red Hat CloudForms
• Red Hat Satellite.

Compliance is maintained for these products whenever the binary is found
unchanged.

The module operates in a modifiable operational environment per FIPS 140-2 level 1 specifications.
The module runs on a commercially available general-purpose operating system executing on the
hardware specified in section 1.1.

5.2. Policy
The operating system is restricted to a single operator (concurrent operators are explicitly
excluded). The application that request cryptographic services is the single user of the module,
even when the application is serving multiple clients.

In FIPS Approved mode, the ptrace(2) system call, the debugger (gdb(1)), and strace(1) shall be
not used.

© 2017 Red Hat®, Inc./atsec information security. This document can be reproduced and distributed only
whole and intact, including this copyright notice. 19 of 35

Red Hat Enterprise Linux GnuTLS Cryptographic Module v5.0
FIPS 140-2 Non-proprietary Security Policy

6. Cryptographic Key Management
The following table summarizes the Keys and Critical Security Parameters (CSPs) that are used by
the cryptographic services implemented in the module in FIPS mode:

Keys/CSPs Generation Entry and Output Zeroization

128, 192 or
256 bits AES
Key

The key material can be
generated during the Diffie-
Hellman and EC Diffie-
Hellman KAS, or can be
generated by the SP 800-
90A DRBG.

The key is passed into the
module via API input
parameters.
The key can exit the module
via TLS protocol by using
RSA-based key wrapping.

Call
gnutls_cipher_deinit()
to zeroize the key.

192 bits Triple-
DES Key

The key material can be
generated during the Diffie-
Hellman and EC Diffie-
Hellman KAS, or can be
generated by the SP 800-
90A DRBG.

The key is passed into the
module via API input
parameters.
The key can exit the module
via TLS protocol by using
RSA-based key wrapping.

Call
gnutls_cipher_deinit()
to zeroize the key.

At least 112
bits HMAC Key

The key material can be
generated during the Diffie-
Hellman and EC Diffie-
Hellman KAS, or can be
generated by the SP 800-
90A DRBG.

The key is passed into the
module via API input
parameters.
The key can exit the module
via TLS protocol by using
RSA-based key wrapping.

Call
gnutls_hmac_deinit()
to zeroize the key.

RSA Public-
Private Keys
with at least
2048 bits of
modulus size

The RSA public-private keys
with the modulus size of
2048 and 3072 bits are
generated using FIPS 186-4
RSA Key Generation
method and the random
value used in key
generation is generated
using SP 800-90A DRBG.

The key is passed into the
module via API input
parameters, or imported via
service calls.
The public-private keys can
be exported via service
calls, and the public key can
exit the module via TLS
protocol.

Call
gnutls_rsa_params_dei
nit(),
gnutls_privkey_deinit()
or
gnutls_x509_privkey_d
einit() to zeroize the
key.

DSA Public-
Private Keys
where the
public key size
is at least 2048
bits

The DSA public-private keys
with the public key size of
2048 and 3072 bits are
generated using FIPS 186-4
DSA Key Generation
method and the random
value used in key
generation is generated
using SP 800-90A DRBG.

The key is passed into the
module via API input
parameters, or imported via
service calls.
The public-private keys can
be exported via service
calls.

Call
gnutls_privkey_deinit()
or
gnutls_x509_privkey_d
einit() to zeroize the
key.

© 2017 Red Hat®, Inc./atsec information security. This document can be reproduced and distributed only
whole and intact, including this copyright notice. 20 of 35

Red Hat Enterprise Linux GnuTLS Cryptographic Module v5.0
FIPS 140-2 Non-proprietary Security Policy

ECDSA Public-
Private Keys
where the key
associated
with P-256, P-
384 or P-521
curve

The ECDSA public-private
keys are generated using
FIPS 186-4 ECDSA Key
Generation method and the
random value used in key
generation is generated
using SP 800-90A DRBG.

The key is passed into the
module via API input
parameters, or imported via
service calls.
The public-private keys can
be exported via service
calls.

Call
gnutls_privkey_deinit()
or
gnutls_x509_privkey_d
einit() to zeroize the
key.

Diffie-Hellman
domain
parameters
where the
public key size
is at least 2048
bits

The domain parameters
used in Diffie-Hellman is
generated using SP 800-
90A DRBG.

The domain parameters are
passed into the module via
API input parameters, or
imported via service calls.
The domain parameters can
be exported via service
calls, and the generated
public key can exit the
module via TLS protocol.

Call or gnutls_deinit()
or
gnutls_dh_params_dei
nit() to zeroize the
Diffie-Hellman domain
parameters.

EC Diffie-
Hellman EC
public-private
keys where the
key associated
with P-256, P-
384 or P-521
curve

The components to
generate the public-private
keys used in EC Diffie-
Hellman is generated using
SP 800-90A DRBG.

The key is passed into the
module via API input
parameters.
The public key can exist the
module via TLS protocol.

Call gnutls_deinit() to
zeroize the EC public-
private keys.

Shared Secret The shared secret (i.e., the
key material) is generated
by the module in the Diffie-
Hellman or EC Diffie-
Hellman KAS function.

The module does not import
or export this CSP.

Call gnutls_deinit() to
zeroize the shared
secret.

Entropy Input
String for
DRBG seed

Obtained from NDRNG
outside of the module’s
logical boundary within the
module's physical boundary

The module does not import
or export the key or CSP.

Call
gnutls_global_deinit()
to zeroize the internal
state of the DRBG.

DRBG internal
V and Key

Generated internally in the
DRBG

The module does not import
or export the key or CSP.

Call
gnutls_global_deinit()
to zeroize the internal
state of the DRBG.

Table 8: Keys/CSPs

6.1. Random Number Generation
The module employs a Deterministic Random Bit Generator (DRBG) based on [SP800-90A] for the
creation of key components of asymmetric keys, symmetric keys, and random number generation.

The module implements the CTR_DRBG with AES-256 without derivation function and without
prediction resistance. The CTR_DRBG is implemented in the libgnutls library and provides at least
128 bits of output data per each request.

The module uses the output of an NDRNG (i.e., /dev/urandom) as the entropy source for seeding

© 2017 Red Hat®, Inc./atsec information security. This document can be reproduced and distributed only
whole and intact, including this copyright notice. 21 of 35

Red Hat Enterprise Linux GnuTLS Cryptographic Module v5.0
FIPS 140-2 Non-proprietary Security Policy

the CTR_DRBG. The NDRNG is implemented in the O/S which is outside of the module's logical
boundary within the module's physical boundary. This pseudo device is initialized by the O/S at
system startup.

The module collects 384 bits of data from the NDRNG for generating the initial seed during
initialization of the CTR_DRBG, and reseeding internally which occurs less than 248 times of DRBG
services request. The module obtains at least 112 bits of entropy from the NDRNG per each call.

The continuous self-tests on the output of NDRNG for seeding the SP800-90A DRBG is done by the
O/S to ensure that consecutive random numbers do not repeat.

6.2. Key Generation
The Key Generation methods implemented in the module for Approved services in FIPS mode is
compliant with [SP800-133].

For generating RSA, DSA and ECDSA keys the module implements asymmetric key generation
services compliant with [FIPS186-4] and [SP800-90A]. A seed (i.e. the random value) used in
asymmetric key generation is directly obtained from the [SP800-90A] DRBG.

The module does not offer a dedicated service for generating keys for symmetric algorithms or for
HMAC in FIPS mode of operation. However, the module offers a DRBG compliant to [SP800-90A] to
allow a caller to obtain random numbers which can be used as key material for symmetric
algorithms or HMAC. The shared secret generated during the Diffie-Hellman or EC Diffie-Hellman
KAS is also the key material for symmetric algorithms or HMAC.

The public and private key pairs used in the Diffie-Hellman and EC Diffie-Hellman KAS are
generated internally by the module using the same DSA and ECDSA key generation compliant with
[FIPS186-4] which is compliant with [SP800-56A].

CAVEAT:

• The module generates cryptographic keys whose strengths are modified by available
entropy

6.3. Key Establishment/Key Derivation
The module supports the [SP800-56A] Diffie-Hellman with at least 2048 bits key size and EC Diffie-
Hellman with P-256, P-384 or P-521 curve in FIPS mode. The Diffie-Hellman with less than 2048
bits key size is only available in non-FIPS mode.

The module also supports RSA key wrapping using encryption and decryption primitives with the
modulus size of at least 2048 bits in FIPS mode. The modulus size of 1024 bits is only available in
non-FIPS mode.

According to Table 2: Comparable strengths in NIST SP 800-57 Part1 (dated on March 8, 2007), the
key sizes of RSA, Diffie-Hellman and EC Diffie-Hellman provides the following security strength for
the corresponding key establishment method shown below:

• RSA key wrapping provides between 112 and 256 bits of encryption strength;

• Diffie-Hellman key agreement provides between 112 and 256 bits of encryption strength;

• EC Diffie-Hellman key agreement provides between 128 and 256 bits of encryption
strength.

© 2017 Red Hat®, Inc./atsec information security. This document can be reproduced and distributed only
whole and intact, including this copyright notice. 22 of 35

Red Hat Enterprise Linux GnuTLS Cryptographic Module v5.0
FIPS 140-2 Non-proprietary Security Policy

Note: As the module supports the RSA key pair with 15360 bits or more modulus size and the DSA
key pair with the public key size of 15360 bits or more, the encryption strength 256 bits is claimed
for RSA key wrapping and Diffie-Hellman KAS.

6.4. Key Entry and Output
The module does not support manual key entry or intermediate key generation key output.

For symmetric algorithms or for HMAC, the keys are provided to the module via API input
parameters for the cryptographic operations. For asymmetric algorithms, the keys are also
provided to the module via API input parameters. The module also provides the services to import
and export public and private keys.

6.5. Key/CSP Storage
The module does not support persistent key storage. The keys and CSPs are stored as plaintext in
the RAM.

The symmetric keys and HMAC keys are provided to the module via API input parameters, and are
destroyed by the module using appropriate API function calls before they are released in the
memory.

Asymmetric public and private keys are provided to the module via API input parameters, and are
destroyed by the module using appropriate API function calls before they are released in the
memory.

The HMAC key used for integrity test is stored in the .hmac file and relies on the operating
system for protection.

6.6. Key/CSP Zeroization
The memory occupied by keys is allocated by regular libc malloc/calloc() calls. The application that
uses the module is responsible for calling the appropriate destruction functions from the GnuTLS
API to zeroize the keys or keying material. The destruction functions then overwrite the memory
occupied by keys with pre-defined values and deallocates the memory with the free() call. In case
of abnormal termination, or swap in/out of a physical memory page of a process, the keys in
physical memory are overwritten by the Linux kernel before the physical memory is allocated to
another process.

© 2017 Red Hat®, Inc./atsec information security. This document can be reproduced and distributed only
whole and intact, including this copyright notice. 23 of 35

Red Hat Enterprise Linux GnuTLS Cryptographic Module v5.0
FIPS 140-2 Non-proprietary Security Policy

7. Electromagnetic Interference/Electromagnetic
Compatibility (EMI/EMC)
MARKETING NAME......................…. PowerEdge R630
REGULATORY MODEL................….. E26S
REGULATORY TYPE.....................…. E26S001
EFFECTIVE DATE..........................… September 03, 2014
EMC EMISSIONS CLASS...............… Class A

7.1. Statement of compliance
This product has been determined to be compliant with the applicable standards, regulations, and
directives for the countries where the product is marketed. The product is affixed with regulatory
marking and text as necessary for the country/agency. Generally, Information Technology
Equipment (ITE) product compliance is based on IEC and CISPR standards and their national
equivalent such as Product Safety, IEC 60950-1 and European Norm EN 60950-1 or EMC, CISPR
22/CISPR 24 and EN 55022/55024. Dell products have been verified to comply with the EU RoHS
Directive 2011/65/EU. Dell products do not contain any of the restricted substances in
concentrations and applications not permitted by the RoHS Directive.

© 2017 Red Hat®, Inc./atsec information security. This document can be reproduced and distributed only
whole and intact, including this copyright notice. 24 of 35

Red Hat Enterprise Linux GnuTLS Cryptographic Module v5.0
FIPS 140-2 Non-proprietary Security Policy

8. Self-Tests
FIPS 140-2 requires that the module perform power-up tests to ensure the integrity of the module
and the correctness of the cryptographic functionality at start up. In addition, some functions
require continuous testing of the cryptographic functionality, such as the asymmetric key
generation. If any self-test fails, the module returns an error code and enters the error state. No
data output or cryptographic operations are allowed in error state.

See section 9.3 for descriptions of possible self-test errors and recovery procedures.

8.1. Power-Up Tests
The module performs power-up self-tests automatically when the module is loaded into memory;
power-up tests ensure that the module is not corrupted and that the cryptographic algorithms
work as expected. Input, output, and cryptographic functions cannot be performed while the
module is in a self-test state because the module is single-threaded and will not return to the
calling application until the power-up self-tests are completed. If any power-up self-test fails, the
module returns the error code listed in section 9.3 and displays “Error in GnuTLS initialization” with
the specific error message associated with the returned error code, and then enters the error
state. The subsequent calls to the module will also fail - thus no further cryptographic operations
are possible. If the power-up self-tests complete successfully, the module will return 0 and accepts
cryptographic operation services request.

8.1.1. Integrity Tests
The integrity of the module is verified by comparing an HMAC-SHA-256 value calculated at run
time with the HMAC value stored in the .hmac file that was computed at build time for each
component of the module. If the HMAC values do not match, the test fails and the module enters
the error state.

8.1.2. Cryptographic Algorithm Test
The module performs self-tests on all FIPS-Approved cryptographic algorithms supported in the
approved mode of operation, using the known answer tests (KAT) and pair-wise consistency test
(PCT), shown in the following table:

Algorithm Power-Up Tests

AES • KAT AES CBC encryption
• KAT AES CBC decryption

Triple-DE • KAT Triple-DES CBC encryption
• KAT Triple-DES CBC decryption

HMAC • KAT HMAC-SHA-1
• KAT HMAC-SHA-224
• KAT HMAC-SHA-256
• KAT HMAC-SHA-384
• KAT HMAC-SHA-512

SHS • KATs SHA are covered in the KATs for HMAC as allowed with IG 9.1

DSA • KAT DSA 2048-bit key with SHA-256 signature generation
• KAT DSA 2048-bit key with SHA-256 signature verification
• PCT, sign and verify

© 2017 Red Hat®, Inc./atsec information security. This document can be reproduced and distributed only
whole and intact, including this copyright notice. 25 of 35

Red Hat Enterprise Linux GnuTLS Cryptographic Module v5.0
FIPS 140-2 Non-proprietary Security Policy

Algorithm Power-Up Tests

RSA • KAT RSA 2048-bit key with SHA-256 signature generation
• KAT RSA 2048-bit key with SHA-256 signature verification

ECDSA • KAT ECDSA (NIST P-256, P-384 and P-521) signature generation
• KAT ECDSA (NIST P-256, P-384 and P-521) signature verification
• PCT, sign and verify

Diffie-Hellman Primitive "Z" Computation KAT

EC Diffie-Hellman Primitive "Z" Computation KAT with P-256 curve

DRBG KAT CTR_DRBG with AES-256 bit

Table 9: Power-Up Self-Tests

For the KAT, the module calculates the result and compares it with the known value. If the answer
does not match the known answer, the KAT is failed and the module returns the error code and
enters the error state. For the PCT, if the signature generation or verification fails, the module
returns the error code and enters the error state.

As described in section 1.2, only one AES or SHA implementation from libnettle library written in C
language or using the support from AES-NI or SSSE3 instructions is available at run-time. The KATs
cover different implementations dependent on the implementations availability in the operating
environment.

8.2. On-Demand Self-Tests
The on-demand self-tests is invoked by powering-off and reloading the module which causes the
module to run the power-up tests again. During the execution of the on-demand self-tests,
services are not available and no data output or input is possible.

8.3. Conditional Tests
The module performs conditional tests on the cryptographic algorithms, using the pair-wise
consistency test (PCT) and Continuous Random Number Generator Test (CRNGT), shown in the
following table:

Algorithm Conditional Tests

DSA Pairwise consistency test: signature generation and
verification

ECDSA Pairwise consistency test: signature generation and
verification

RSA Pairwise consistency test: encryption and decryption

DRBG CRNGT is not required per IG 9.8

NDRNG CRNGT is implemented in the Kernel

Table 10: Module Conditional Tests

© 2017 Red Hat®, Inc./atsec information security. This document can be reproduced and distributed only
whole and intact, including this copyright notice. 26 of 35

Red Hat Enterprise Linux GnuTLS Cryptographic Module v5.0
FIPS 140-2 Non-proprietary Security Policy

9. Guidance
9.1. Crypto Officer Guidance
The binaries of the module are delivered via Red Hat Package Manager (RPM) packages. The
Crypto Officer shall follow this Security Policy to configure the operational environment and install
the module to be operated as FIPS 140-2 validated module.

The following version of the RPM packages containing the FIPS validated module and the operating
environment settings:

Processor Architecture RPM packages

x86_64 gnutls-3.3.26-9.el7.x86_64.rpm
gmp-6.0.0-15.el7.x86_64.rpm
nettle-2.7.1-8.el7.x86_64.rpm

Table 11: RPM packages

The RPM packages of the module can be installed by standard tools recommended for the
installation of RPM packages on a Red Hat Enterprise Linux system (for example, yum, rpm, and
the RHN remote management tool).

For proper operation of the in-module integrity verification, the prelink has to be disabled. This can
be done by setting PRELINKING=no in the /etc/sysconfig/prelink configuration file. If module were
already prelinked, the prelink should be undone on all the system files using the 'prelink -u -a'
command.

Operating Environment Configurations:

The configuration of the operating environment to support FIPS is provided by the dracut-fips
package. The dracut-fips RPM package is only used for configuring the operating environment and
does not provide any services to operators interacting with the module. Therefore the dracut-fips
RPM package is outside the module's logical boundary. To configure the operating environment to
support FIPS, the following shall be performed:

1. Install the dracut-fips package:

yum install dracut-fips

2. Recreate the INITRAMFS image:

dracut -f

After regenerating the initramfs, the Crypto Officer has to append the following string to the kernel
command line by changing the setting in the boot loader:

fips=1

If /boot or /boot/efi resides on a separate partition, the kernel parameter boot=<partition of /boot
or /boot/efi> must be supplied. The partition can be identified with the following command
respectively:

"df /boot"

or

© 2017 Red Hat®, Inc./atsec information security. This document can be reproduced and distributed only
whole and intact, including this copyright notice. 27 of 35

Red Hat Enterprise Linux GnuTLS Cryptographic Module v5.0
FIPS 140-2 Non-proprietary Security Policy

"df /boot/efi"

For example:

$ df /boot

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/sda1 233191 30454 190296 14% /boot

The partition of /boot is located on /dev/sda1 in this example. Therefore, the following string needs
to be appended to the kernel command line:

"boot=/dev/sda1"

Reboot to apply these settings.

The Crypto Officer shall check the file /proc/sys/crypto/fips_enabled if the file exists and contains
“1” . If the file does not exist or does not contain “1”, the operating environment is not configured
to support FIPS and the module will not operate properly.

Once the operating environment has been configured to support FIPS, it is not possible to switch
back to standard mode without terminating the module first.

Module Installations:

The Crypto Officer can install the RPM packages contains the module listed in Table 11: RPM
packages based on the processor architecture. The integrity of the RPM is automatically verified
during the installation of the module and the Crypto Officer shall not install the RPM file if the RPM
tool indicates an integrity error.

9.2. User Guidance
The applications must be linked dynamically to run the module. Only the services listed in Table 6:
Services Available in FIPS mode are allowed to be used in FIPS mode.

The libraries of GMP and Nettle provides the support of cryptographic operations to the GnuTLS
library. The operator shall use the API provided by the GnuTLS library for the services. Invoking the
APIs provided by the supporting libraries are forbidden.

9.2.1. TLS and Diffie-Hellman
The TLS protocol implementation provides both, the server and the client sides. As required by
SP800-131A, Diffie-Helllman with keys smaller than 2048 bits must not be used.

The TLS protocol lacks the support to negotiate the used Diffie-Hellman key sizes. To ensure full
support for all TLS protocol versions, the TLS client implementation of the cryptographic module
accepts Diffie-Hellman key sizes smaller than 2048 bits offered by the TLS server.

For complying with the requirement of [FIPS140-2] to not allow Diffie-Hellman key sizes smaller
than 2048 bits, the operator must ensure that:

• in case the module is used as TLS server, the Diffie-Hellman domain parameters must be
2048 bits or larger;

• in case the module is used as TLS client, the TLS server must be configured to only offer

© 2017 Red Hat®, Inc./atsec information security. This document can be reproduced and distributed only
whole and intact, including this copyright notice. 28 of 35

Red Hat Enterprise Linux GnuTLS Cryptographic Module v5.0
FIPS 140-2 Non-proprietary Security Policy

Diffie-Hellman domain parameters of 2048 bits or larger.

9.2.2. AES GCM IV

In case the module’s power is lost and then restored, the key used for the AES GCM encryption or
decryption shall be re-distributed.

The AES GCM IV generation is in compliance with the [RFC5288] and shall only be used for the TLS
protocol version 1.2 to be compliant with [FIPS140-2_IG] IG A.5; thus, the module is compliant with
[SP800-52].
9.2.3. RSA and DSA Keys
The module allows the use of 1024 bit RSA and DSA keys for legacy purposes, including signature
generation.

As per SP800-131A, RSA and DSA must be used at least 2048 bit keys in FIPS mode. To comply
with the requirements of [FIPS140-2], the operator must therefore only use keys with at least 2048
bits in FIPS mode.

9.2.4. Symmetric Key Generation
The API function gnutls_key_generate() shall not be used in FIPS mode of operation. The caller
shall call gnutls_rnd() which calls the DRBG compliant to [SP800-90A] to generate the key
materials for symmetric keys or HMAC keys.

9.3. Handling Self-Test Errors
When the module fails any self-test, it will return an error code to indicate the error and enters
error state that any further cryptographic operations is inhibited. Here is the list of error codes
when the module fails any self-test or in error state:

Error Events Error Codes Error Messages

When the KAT or PCT fails
at the power-up

GNUTLS_E_SELF_TEST_ERROR
(-400)

“Error while performing self
checks.”

When the KAT of DRBG fails
at the power-up

GNUTLS_E_RANDOM_FAILED
(-206)

“Failed to acquire random
data.”

When the new generated
RSA, DSA or ECDSA key
pair fails the PCT

GNUTLS_E_PK_GENERATION_ERROR
(-403)

“Error in public key
generation.”

When the module is in error
state and caller requests
cryptographic operations

GNUTLS_E_LIB_IN_ERROR_STATE
(-402)

"An error has been detected in
the library and cannot
continue operations."

Table 12: Error Events, Error Codes and Error Messages

Self-test errors transition the module into an error state that keeps the module operational but
prevents any cryptographic related operations. The module must be restarted and perform power-
up self-test to recover from these errors. If failures persist, the module must be re-installed. When
downloading the module, the Crypto Officer shall confirm from the RPM tool that the module was
downloaded properly.

© 2017 Red Hat®, Inc./atsec information security. This document can be reproduced and distributed only
whole and intact, including this copyright notice. 29 of 35

Red Hat Enterprise Linux GnuTLS Cryptographic Module v5.0
FIPS 140-2 Non-proprietary Security Policy

A completed list of the error codes can be found in Appendix C “Error Codes and Descriptions” in
the gnutls.pdf provided with the module's code.

© 2017 Red Hat®, Inc./atsec information security. This document can be reproduced and distributed only
whole and intact, including this copyright notice. 30 of 35

Red Hat Enterprise Linux GnuTLS Cryptographic Module v5.0
FIPS 140-2 Non-proprietary Security Policy

10. Mitigation of Other Attacks
RSA is vulnerable to timing attacks. In a setup where attackers can measure the time of RSA
decryption or signature operations, blinding is always used to protect the RSA operation from that
attack.

The internal API function of _rsa_blind() and _rsa_unblind() are called by the module for RSA
signature generation and RSA decryption operations. The module generates a random blinding
factor and include this random value in the RSA operations to prevent RSA timing attacks.

© 2017 Red Hat®, Inc./atsec information security. This document can be reproduced and distributed only
whole and intact, including this copyright notice. 31 of 35

Red Hat Enterprise Linux GnuTLS Cryptographic Module v5.0
FIPS 140-2 Non-proprietary Security Policy

11. Glossary and Abbreviations
AES Advanced Encryption Specification

AES-NI Advanced Encryption Standard New Instructions

API Application Program Interface

CAVP Cryptographic Algorithm Validation Program

CAVS Cryptographic Algorithm Validation System

CBC Cypher Block Chaining

CMVP Cryptographic Module Validation Program

CRNGT Continuous Random Number Generator Test

CSP Critical Security Parameter

CTR Counter Mode

CVL Component Validation List

DES Data Encryption Standard

DRBG Deterministic Random Bit Generator

DSA Digital Signature Algorithm

DTLS Datagram Transport Layer Security

ECC Elliptic Curve Cryptography

FFC Finite Field Cryptography

FIPS Federal Information Processing Standards Publication

GCM Galois Counter Mode

GPC General Purpose Computer

HMAC Hash Message Authentication Code

IG Implementation Guidance

KAS Key Agreement Schema

KAT Known Answer Test

MAC Message Authentication Code

NDRNG Non-Deterministic Random Number Generator

NIST National Institute of Science and Technology

O/S Operating System

PCT Pair-wise Consistency Test

RHEL Red Hat Enterprise Linux

RNG Random Number Generator

RPM Red Hat Package Manager

© 2017 Red Hat®, Inc./atsec information security. This document can be reproduced and distributed only
whole and intact, including this copyright notice. 32 of 35

Red Hat Enterprise Linux GnuTLS Cryptographic Module v5.0
FIPS 140-2 Non-proprietary Security Policy

RSA Rivest, Shamir, Addleman

SHA Secure Hash Algorithm

SSSE3 Supplemental Streaming SIMD Extensions 3

TLS Transport Layer Security

© 2017 Red Hat®, Inc./atsec information security. This document can be reproduced and distributed only
whole and intact, including this copyright notice. 33 of 35

Red Hat Enterprise Linux GnuTLS Cryptographic Module v5.0
FIPS 140-2 Non-proprietary Security Policy

12. References
FIPS140-2 FIPS PUB 140-2 - Security Requirements For Cryptographic Modules

May 2001
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

FIPS140-2_IG Implementation Guidance for FIPS PUB 140-2 and the Cryptographic
Module Validation Program
September 15, 2015
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf

FIPS180-4 Secure Hash Standard (SHS)
March 2012
http://csrc.nist.gov/publications/fips/fips180-4/fips 180-4.pdf

FIPS186-4 Digital Signature Standard (DSS)
July 2013
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

FIPS197 Advanced Encryption Standard
November 2001
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

FIPS198-1 The Keyed Hash Message Authentication Code (HMAC)
July 2008
http://csrc.nist.gov/publications/fips/fips198 1/FIPS-198 1_final.pdf

PKCS#1 Public Key Cryptography Standards (PKCS) #1: RSA Cryptography
Specifications Version 2.1
February 2003
http://www.ietf.org/rfc/rfc3447.txt

RFC4347 Datagram Transport Layer Security
April 2006
https://tools.ietf.org/html/rfc4347.txt

RFC5246 The Transport Layer Security (TLS) Protocol Version 1.2
August 2008
https://tools.ietf.org/html/rfc5246.txt

RFC5288 AES Galois Counter Mode (GCM) Cipher Suites for TLS
August 2008
https://tools.ietf.org/html/rfc5288.txt

RFC6520 Transport Layer Security (TLS) and Datagram Transport Layer Security
(DTLS) Heartbeat Extension
February 2012
https://tools.ietf.org/html/rfc6520.txt

SP800-38A NIST Special Publication 800-38A - Recommendation for Block Cipher
Modes of Operation Methods and Techniques
December 2001
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

© 2017 Red Hat®, Inc./atsec information security. This document can be reproduced and distributed only
whole and intact, including this copyright notice. 34 of 35

Red Hat Enterprise Linux GnuTLS Cryptographic Module v5.0
FIPS 140-2 Non-proprietary Security Policy

SP800-52 NIST Special Publication 800-52 Revision 1 - Guidelines for the
Selection, Configuration, and Use of Transport Layer Security (TLS)
Implementations
April 2014
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r1.pdf

SP800-56A NIST Special Publication 800-56A Revision 2 - Recommendation for Pair
Wise Key Establishment Schemes Using Discrete Logarithm
Cryptography
May 2013
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800 56Ar2.pdf

SP800-67 NIST Special Publication 800-67 Revision 1 - Recommendation for the
Triple Data Encryption Algorithm (TDEA) Block Cipher
January 2012
http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf

SP800-90A NIST Special Publication 800-90A Revision 1 - Recommendation for
Random Number Generation Using Deterministic Random Bit
Generators
June 2015
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf

SP800-135 NIST Special Publication 800-135 Revision 1 - Recommendation for
Existing Application-Specific Key Derivation Functions
December 2011
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-135r1.pdf

© 2017 Red Hat®, Inc./atsec information security. This document can be reproduced and distributed only
whole and intact, including this copyright notice. 35 of 35

	1. Cryptographic Module Specification
	1.1. Description of the Module
	1.2. Description of the Approved Modes
	1.3. Cryptographic Boundary
	1.3.1. Hardware Block Diagram
	1.3.2. Software Block Diagram
	2. Cryptographic Module Ports and Interfaces
	3. Roles, Services and Authentication
	3.1. Roles
	3.2. Services
	3.3. Operator Authentication
	4. Physical Security
	5. Operational Environment
	5.1. Applicability
	5.2. Policy
	6. Cryptographic Key Management
	6.1. Random Number Generation
	6.2. Key Generation
	6.3. Key Establishment/Key Derivation
	6.4. Key Entry and Output
	6.5. Key/CSP Storage
	6.6. Key/CSP Zeroization
	7. Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC)
	7.1. Statement of compliance
	8. Self-Tests
	8.1. Power-Up Tests
	8.1.1. Integrity Tests
	8.1.2. Cryptographic Algorithm Test
	8.2. On-Demand Self-Tests
	8.3. Conditional Tests
	9. Guidance
	9.1. Crypto Officer Guidance
	9.2. User Guidance
	9.2.1. TLS and Diffie-Hellman
	9.2.2. AES GCM IV
	9.2.3. RSA and DSA Keys
	9.2.4. Symmetric Key Generation
	9.3. Handling Self-Test Errors
	10. Mitigation of Other Attacks
	11. Glossary and Abbreviations
	12. References

