

HGST Ultrastar SS200 TCG Enterprise SSD FIPS 140-2 Cryptographic Module Non-Proprietary Security Policy

Protection of Data at Rest

Version: 1.5 Date: 9/27/2017

© 2017 Western Digital Corporation or its affiliates. Public Material - May be reproduced only in its original entirety [without revision].

Table of Contents

1	Introduction	4
	 1.1 Hardware and Physical Cryptographic Boundary 1.2 Firmware and Logical Cryptographic Boundary 1.3 Mode of Operation 	5 6 6
2	Cryptographic Features	6
	 2.1 Critical Security Parameters 2.2 Public Keys 2.3 SP800 132 Key Derivation Function Affirmations 	8 9 9
3	Roles, Authentication and Services	9
	 3.1 Assumption of Roles 3.2 Authentication Methods 3.3 Services 	9 L1 L2
4	Self-tests 1	6
5	Physical Security 1	17
	5.1Mechanisms15.2Tamper-Evident Seals and Locations15.3Operator Inspection1	L7 L8 L9
6	Operational Environment 1	9
7	Mitigation of Other Attacks Policy	
8	Security Rules and Guidance 1	9
	8.1 Invariant Rules 2 8.2 Crypto-Officer Initialization 2 8.3 Crypto-Officer Zeroization 2	20 20 20
9	Non-security Related Services	21
	9.1 Non-security Related TCG Methods and Protocol	21 21
10	References 2	21
11	Glossary 2	22

List of Tables

Table 1 – Product Models and Versions	. 4
Table 2 – Security Level of Security Requirements	. 4
Table 3 – Ports and Interfaces	. 5
Table 4 – Approved and CAVP Validated Cryptographic Functions	. 7
Table 5 – Approved Cryptographic Functions Tested with Vendor Affirmation	. 7
Table 6 – Non-Approved but Allowed Cryptographic Functions	. 8
Table 7 – Critical Security Parameters (CSPs)	. 8
Table 8 – Public Security Parameters (PSPs)	. 9
Table 9 – Roles Description	. 9
Table 10 – Unauthenticated Roles	10
Table 11 – Authentication Description	11
Table 12 – Authenticated Services	12
Table 13 – Unauthenticated Services	13
Table 14 –Access Rights within Services	14
Table 15 – Power Up Self-tests	16
Table 16 – Conditional Self-tests	16
Table 17 – TCG Methods/Messages	21
Table 18 – SCSI Commands	21
Table 19 – References	21
Table 20 – Acronyms and Definitions	22

List of Figures

Figure 1 – SDLL1HLR-076T and SDLL1MLR-038T Cryptographic Module Definition	5
Figure 2 - SDLL1CLR-020T and SDLL1DLR-920G Cryptographic Module Definition	5
Figure 3 – Module Block Diagram	6
Figure 4 - Tamper-Evident Seal Over Screws (12mm x 7mm)	. 18
Figure 5 - Tamper-Evident Seal Over HDMI Port (20mm x 10mm)	. 18
Figure 6 – Tamper-Evident Seal Locations on Top SDLL1HLR-076T Version 1 and SDLL1MLR-038T Version 1	. 18
Figure 7 Tamper-Evident Seal Locations on Top SDLL1CLR-020T Version 1 and SDLL1DLR-920G Version 1	. 18
Figure 8 Tamper-Evident Seal Location on Back Covering HDMI Port	. 18
Figure 9 - Tamper-Evident Seal Location on Back Covering HDMI Port	. 18
Figure 10 – Small Seal Before Tamper	. 19
Figure 11 – Small Seal with Tamper Evidence	. 19
Figure 12 – Large Seal Before Tamper	. 19
Figure 13 – Large Seal with Tamper Evidence	. 19

1 Introduction

This document defines the Security Policy for the HGST Ultrastar SS200 TCG Enterprise SSD cryptographic modules, hereafter denoted as the Module. It is compliant with FIPS 140-2 overall Level 2 requirements and is a multi-chip embedded embodiment. The Module is a 12Gbps Solid State Drive (SSD)-Self-Encrypting Drive (SED). The Module is constructed and compliant with the following standards and specifications:

- FIPS PUB 140-2 [FIPS140]
- NIST [SP800 88] Guidelines for Media Sanitization
- Trusted Computing Group Storage Architecture Core Specification [TCG Core]
- Trusted Computing Group Enterprise Specification [TCG Enterprise]
- Trusted Computing Group Storage Interface Interaction Specification [TCG SIIS]
- Small Computer System Interface Block Commands [SCSI SBC]
- Small Computer System Interface Primary Commands [SCSI SPC]
- Serial Attached SCSI [SAS]
- Small Form Factor 8200 2.5" Enclosure Specification [SFF Enclosure]
- Small Form Factor 8639 Connector Specification [SFF Connector]

More information on the Module is available from the following sources:

- <u>http://www.hgst.com/products/solid-state-solutions/ultrastar-ss200</u> has information on HGST products
- <u>http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/1401vend.htm</u> has contact information for individuals that can answer technical and sales questions

There shall be no discrepancies with the product model numbers, the hardware version numbers and the firmware version numbers from the three following sources:

- This Security Policy
- The NIST/CMVP website
- The output information provided by the 'FIPS Info' service

Table 1 – Product Models and Versions

Model Number, HW Version	FW Version	Capacity	Description
SDLL1HLR-076T Version 1	XC00	7680 GB	12Gbs SAS, 2.5in, 15mm
SDLL1MLR-038T Version 1	XC00	3840 GB	12Gbs SAS, 2.5in, 15mm
SDLL1CLR-020T Version 1	XC00	1920 GB	12Gbs SAS, 2.5in, 15mm
SDLL1DLR-920G Version 1	XC00	920 GB	12Gbs SAS, 2.5in, 15mm

The FIPS 140-2 security levels for the Module are:

Table 2 – Security Level of Security Requirements

Security Requirement	Security Level
Cryptographic Module Specification	2
Cryptographic Module Ports and Interfaces	2
Roles, Services, and Authentication	2
Finite State Model	2
Physical Security	2

Security Requirement	Security Level
Operational Environment	N/A
Cryptographic Key Management	2
EMI/EMC	3
Self-Tests	2
Design Assurance	3
Mitigation of Other Attacks	N/A

1.1 Hardware and Physical Cryptographic Boundary

Figure 1 depicts the front and rear views of the Module. The drive enclosure defines the cryptographic boundary.

Figure 1 – SDLL1HLR-076T and SDLL1MLR-038T Cryptographic Module Definition

Figure 2 - SDLL1CLR-020T and SDLL1DLR-920G Cryptographic Module Definition

Table 3 – Ports and Interfaces

FIPS140 Logical Interface	Module Physical Ports
Power	Power connector
Control Input	Dual Port SAS connector, Micro-HDMI connector is disabled with a tamper evidence seal
Status Output	Dual Port SAS connector, Micro-HDMI connector is disabled with a tamper evidence seal
Data Input	Dual Port SAS connector, Micro-HDMI connector is disabled with a tamper evidence seal
Data Output	Dual Port SAS connector, Micro-HDMI connector is disabled with a tamper evidence seal

The SAS (Serial Attached SCSI) connector is defined by the storage industry [SFF]. Two independent SAS ports are implemented. The Data Input interface is active only during the data phase of a SCSI Write command, and the Data Output interface is active only during the data phase of a SCSI Read Command. The Micro-HDMI connector is enabled only at HGST facilities; it is disabled with a tamper evidence seal before the Module is delivered.

1.2 Firmware and Logical Cryptographic Boundary

Figure 2 depicts the Module's operational environment.

1.3 Mode of Operation

The Module operates in a FIPS Approved mode unless any self-test fails, in which case the Module enters a TCG Shutdown error state. To verify that the Module is in the Approved mode of operation, invoke the FIPS Info service. This service provides the model number, hardware version number and firmware version number. Failure of the FIPS Info service indicates the Module is in an error state that can only be cleared by the Reset service.

2 Cryptographic Features

The Module implements FIPS Approved and Allowed cryptographic functions. All algorithms and key lengths comply with [SP800 131A].

Table 4 – Ann	roved and CAV	P Validated C	rvntogranhic	Functions
able + - App			Jyptographic	i unctions

Algorithm	Description	Cert #
AES Firmware	[FIPS 197, SP800 38A]	4343
	Functions: Encryption and Decryption	
	Modes: ECB	
	Key sizes: 256 bits	
AES XTS Hardware	[FIPS 197, SP800 38A, SP800 38E]	4463
	Functions: Encryption of Data In, Decryption of Data Out	
	Modes: XTS	
	Key sizes: 256 bits	
	• XTS Key 1 is not equal to XTS Key 2	
	XTS data unit length is less than 2 ²⁰ blocks	
	Modes: ECB	
	Key sizes: 256 bits	
DRBG Firmware	[SP800 90A]	1385
	Functions: HMAC_DRBG Deterministic Random Bit Generator	
	Security Strength: 256 bits	
HMAC Firmware	[FIPS 198-1]	2881
	Functions: SP800 132 KDF and SP800 90A DRBG	
	SHA sizes: SHA-256	
RSA Hardware	[FIPS 186-4, PKCS#1 v1.5]	2439
	Functions: Signature Verification with SHA-256	
	Key sizes: 2048 bits	
SHA Firmware	[FIPS 180-4]	3578
	Functions: non-Digital Signature Applications	
	SHA sizes: SHA-256	
SHA-256 Hardware	[FIPS 180-4]	3675
	Functions: Digital Signature Verification and Integrity	
	SHA sizes: SHA-256	

Table 5 – Approved Cryptographic Functions Tested with Vendor Affirmation

Algorithm	Description	Rationale
СКБ	[SP800 133] Cryptographic Key Generation Functions: Generated from the DRBG without further modification or post processing	Vendor Affirmed [FIPS140] IG D.12.
		See Section 2.1.

Algorithm	Description	Rationale
PBKDF	[SP800 132] Password Based Key Derivation Function	Vendor Affirmed
	Functions: Key Encrypting Key	[FIPS140 IG] D.6.
	Modes: HMAC/SHA-256	
	Key Sizes: 256 bits	See Section 2.3.

Table 6 – Non-Approved but Allowed Cryptographic Functions

Algorithm	Description
NDRNG	[FIPS140 IG] 7.11
	Hardware Non-Deterministic Random Number Generator with 16-bits per access. The output seeds the SP800 90A Deterministic Random Bit Generator.

There are no Non-Approved Cryptographic Functions.

2.1 Critical Security Parameters

All CSPs used by the Module are described in this section. All usage of these CSPs by the Module (including all CSP lifecycle states) is described in the services detailed in Section 4.

CSP	Туре	Description
CO TCG PIN: 2 User TCG PIN: 16	256-bit value	Authentication data of TCG Authorities (Roles) is a binary value with no encoding; industry practice is a 256-bit random number or a SHA- 256 digest [TCG App]
Drive AUTH: 16	256-bit value	Private KEKs that wrap MEKs when Bands are set to 'Unlock on Reset' with the Set Band service; generated from the DRBG without modification
MEKs (Media Encryption Keys) 16 total	AES256-XTS (512 bits)	Encrypts User data for the Data In interface and decrypts User data for the Data Out interface; generated from the DRBG without modification
KEKs (Key Encrypting Keys) 16 total	256 bits	SP800 132 KDF output; ephemeral, calculated keys that wrap MEKs
DRBG	HMAC_DRBG state (256-bit output)	State associated with the SP800 90A Deterministic Random Bit Generator; the internal state includes values "V" and "Key"
NDRNG	entropy source	2048-bit seed and 1024-bit nonce for DRBG

Table 7 – Critical Security Parameters	(CSPs)	١
ruble / childen becanty rubliceers		,

2.2 Public Keys

Table 8 – Public Security Paran	neters (PSPs)
---------------------------------	---------------

Кеу	Description
Download Key	Public key of a 2048-bit RSA key pair used to verify downloaded firmware
Value [qty]	Description
MSID [1]	Initial authentication data for all operators
PSID [1]	Crypto-Officer authentication data for TCG Revert
AUTH Salt [18]	Concatenated with CO TCG PIN, User TCG PIN or Drive AUTH, hashed with SHA256 and digest stored within the Module
MEK Salt [16]	Input to SP800 132 PBKDF

SP800 132 Key Derivation Function Affirmations 2.3

The Module deploys a [SP800 132] Key Derivation Function (KDF).

- The KEKs (SP800 132 Master Keys) are derived from the User TCG PINs and the CO TCG PINs (SP800 132 Password) with SP800-132 Option 1a
- The length of the User TCG PINs and the CO TCG PINs is 256 bits and the stored security strength is 256 bits
- The upper bound for the probability of guessing the User TCG PINs and the CO TCG PINs is 2^{-256.}
- The difficulty of guessing the User TCG PINs and the CO TCG PINs is equivalent to a brute force attack
- The KEKs (SP800 132 Master Keys) are only used to wrap the Media Encryption Keys (MEKs).
- The CSPs derived using [SP800 132] are only used within storage applications.

3 **Roles, Authentication and Services**

Assumption of Roles 3.1

The Module supports three (3) distinct authenticated operator roles: Cryptographic Officer (CO), User and one HGST role. The Module enforces the separation of roles with Identity based authentication and fixed entity to key relationships. The relationship between Users (BandMasters), Bands and MEKs (Media Encryption Keys) is 1:1:1. Each CO and User role is associated with a 64-bit public Unique ID (UID) that is defined in [TCG Core]. The HGST role uses RSA2048 PKCS#1 v1.5 signature verification.

Table 9 lists all of the operator roles supported by the Module. The Module does not support a maintenance role or a bypass mode. The Module protects authentication data from unauthorized disclosure on the Data Out and Status Out interfaces by not storing plaintext authentication data within the Module and by the constraints imposed by the TCG/SCSI protocol stack.

Role Name	Description	Authentication Type	Credentials	
Crypto-Officer (CO)	TCG SID Authority. initializes the Module	Identity-based	64-bit UID and 256-bit authentication data (TCG PIN)	
	TCG EraseMaster Authority is authorized to generate new Band keys	Identity-based	64-bit UID and 256-bit authentication data (TCG PIN)	
8000				

Table	9 –	Roles	Description
-------	-----	-------	-------------

Role Name	Description	Authentication Type	Credentials
User	TCG BandMasters [0-15] Authorities set Band location and size and lock/unlock a band; Module maintains Drive authentication data when a User has not locked a band	Role-based	TCG BandMasters 64-bit UID and 256-bit authentication data (TCG PIN); Drive AUTH: 256-bit authentication data
Drive AUTH	The Module authenticates itself when Band [0-15] are not configured to lock on Reset. It is required because a KEK cannot be generated without successful User Authentication	Role-based	256-bit plaintext secret that is generated at the HGST factory and re-generated at Zeroize
HGST	The Module verifies FW Images with a RSA2048 public key	Identity-based	A RSA2048 private key signs FW images at a HGST facility

Table 10 – Unauthenticated Roles

Role Name	Description	Authentication Type	Rationale
Anybody	TCG Anybody Authority is permitted to access unauthenticated services	None	Public 64-bit UID; no TCG PIN is required
CO.MSID	A Module unique default TCG PIN is installed during manufacturing	Public value	Obtained with the Get service and used by the CO as authentication data for the Initialize service
CO.PSID	A Module unique TCG PIN is installed during manufacturing	Public value	Printed on the Module's label and used by the CO as authentication data for the Zeroize service
MakerSymK	A TCG Authority that may obtain a random number from the [SP800 90A] DRBG	None	Equivalent to the Random service but uses the Authenticate service
User.MSID	A Module unique default TCG PIN is installed during manufacturing	Public value	Obtained with the Get service and provided by the User as authentication data

3.2 Authentication Methods

The Authenticate service for User TCG PINs and the CO TCG PINs has two input parameters: a 64-bit public Unique ID (UID) defined in [TCG Core] and 256-bit authentication data. The authentication data is binary, i.e., there are no restrictions on values such as character or digit encoding. The [TCG Core] term for authentication data is a PIN. The difficulty of guessing a TCG PIN is equivalent to a brute force attack.

Firmware downloads are signed at an HGST facility with RSA2048 PKCS#1 v1.5 and verified by the Module before they are stored within the module.

Authentication Method	Probability	Rationale
256-bit authentication data	1 chance in 2 ²⁵⁶	A TCG PIN is 256 non-coded bits, which provides 2^{256} possible values. The probability that a random attempt succeeds is ~8.6 x 10^{-78} , which is significantly less than $1/1,000,000$ (1 x 10^{-6}).
		Multiple, successive authentication attempts can only occur sequentially. Any authentication attempt consumes at least 10 microseconds, and at most, 6,000,000 authentication attempts are possible in one minute. Thus, the probability that a false acceptance occurs over a one-minute interval is 5 x 10 ⁻⁷¹ , which is significantly less than 1 chance in 100,000 (1 x 10 ⁻⁵).
RSA2048 PKCS#1 v1.5	1 chance in 2 ¹¹²	Given the 2^{112} strength of security from [SP800 131A], the probability that a random attempt succeeds is ~1.9 x 10^{-34} , which is significantly less than 1/1,000,000 (1 x 10^{-6}).
		Multiple, successive authentication attempts can only occur sequentially. Any authentication attempt consumes at least four (4) seconds, and at most, 15 authentication attempts are possible in one minute. Thus, the probability that a false acceptance occurs over a one-minute interval is ~3 x 10^{-33} , which is significantly less than 1 chance in 100,000 (1 x 10^{-5}).

Table 11 – Authentication	Description
	Description

3.3 Services

All services implemented by the Module are listed in Table 12 and Table 13. Table 14 declares all usage of CSPs by service.

Service	Description	CO.SID Authority	CO. Erase Master	User	Drive AUTH	HGST
Authenticate	TCG method to input a UID and PIN for authentication	х	х	х		
Set	A polymorphic TCG method that writes structured data subject to operator authorization	х	х	х		
Set TCG PIN	A specific TCG Set method that modifies a PIN. An operator can only change its own PIN	х	х	х		
Set Band	A specific TCG Set method that creates and modifies a Band's location, capacity and properties			х		
Lock/Unlock Band	A specific TCG Set method that denies/permits access to a Band			Х		
Erase Band	A TCG method that generates a new Band Media Encryption Key		Х			
Read User Data	SCSI READ command reads from a Band, transforms ciphertext to plaintext and outputs User data to the Data Out interface			х	х	
Write User Data	SCSI WRITE command Inputs from the Data In interface, transforms plaintext User Data to ciphertext and writes to a Band			х	х	
Set Data Store	A specific TCG Set method to write a stream of bytes to unstructured storage			Х		
Download Firmware	The SCSI WRITE BUFFER command loads and verifies a firmware image by RSA2048. If the new self-tests complete successfully, the Module executes the new code					Х
Enable/Disable Vendor Access	CO may disable the Download Firmware service and vendor log access	Х				

Table 12 –	Authenticated	Services
	/ achienced	00111000

Table 13 – Unauthenticated Services

Service	Description	Anybody	co.msid	CO.PSID	MakerSymK	User.MSID
Module Services						
Initialize	The Crypto-Officer takes ownership of the Module with organizational policies. re: 'Section 8.2 <u>Crypto-Officer Initialization</u>		х			
Reset	The Module is reset by a power cycle	Х				
Self-test	The Module executes self-tests without operator intervention at power on	х				
Show Status	Module Status Out is a compound type constructed with the TCG, SCSI and SAS protocol stack. Status elements are the TCG IF- SEND and IF-RECV payloads, SCSI SENSE DATA and SAS status	х				
Zeroize	Invoke the TCG Revert service			Х		
TCG Services						
Authenticate (at Initialize)	TCG method to input a UID and PIN for authentication		х	х	х	х
Get	A polymorphic TCG method that reads structured data	х				
Random	The TCG Random method outputs a random number from the [SP800 90A] DRBG	х			х	
Get Data Store	A specific TCG Get method to read a stream of bytes from unstructured storage	х				
StartSession	A TCG method that connects to a TCG Security Provider object	х				
End Session	A TCG protocol token from the Module to the operator that disconnects a TCG Security Provider object	х				
Revert	A TCG method that restores authentication data to MSID, the original factory default, and generates new Media Encryption Keys			х		
SCSI Services						
FIPS Info	Outputs the [SCSI Core] FIPS 140 compliance descriptor, which provides a model number, hardware version, firmware version	х				

Service	Description	Anybody	CO.MSID	CO.PSID	MakerSymK	User.MSID
IF-RECV	SCSI SECURITY IN command which provides a tunnel for the TCG protocol	х				
IF-SEND	SCSI SECURITY OUT command which provides a tunnel for the TCG protocol	х				
Sanitize	SCSI SANITIZE command that generates and establishes a new Media Encryption Key	х				
Non-security Related Services						
TCG methods/messages	re: Section 9.1 <u>Non-security Related TCG</u> requests	х				
SCSI Commands	re: Section 9.2 <u>Non-security Related SCSI</u> <u>Commands</u>	х				

Table 14 defines the relationship between access to SSPs (i.e., the union of CSPs and PSPs) and the different Module services. The modes of access shown in the table are defined as:

- G = Generate: The Module generates the SSP.
- R = Read: The Module reads the SSP. The read access is typically performed before the Module uses the SSP.
- E = Execute: The Module executes using the SSP.
- W = Write: The Module writes the SSP. The write access is typically performed after a SSP is imported into the Module, when the Module generates a SSP, or when the Module overwrites an existing SSP.
- Z = Zeroize: The Module zeroizes the SSP.

Table 14 – Access	Rights	within	Services
-------------------	--------	--------	----------

				CSP						PSP)	
Service	CO TCG PIN	User TCG PIN	Drive AUTH	MEKs	KEKs	DRBG	NDRNG	Download Key	MSID	PSID	AUTH Salt	MEK Salt
Authenticate	R	R									R	
Set	W	RW	E		GEZ	R	R				GW	GWR
Set TCG PIN	W	W		W	GEZ	R	R				GW	GW
Set Band		R	E	W	GEZ							R
Lock/Unlock Band		R		R	GEZ							R
					-							

FIPS 140- 2 Security Policy

	CSP						PSP					
Service	CO TCG PIN	User TCG PIN	Drive AUTH	MEKs	KEKs	DRBG	NDRNG	Download Key	MSID	PSID	AUTH Salt	MEK Salt
Erase Band	R		E	ZGW		R	R					GW
Read User Data			E	E								
Write User Data			E	E								
Set Data Store		R									R	
Download Firmware								E				
Enable/Disable Vendor Access	R										R	
Initialize	W	W		W	GEZ	R	R		R		GW	GW
Reset			G ¹ E			ZG	ZR					
Self-test												
Show Status												
Zeroize	ZW	ZW	ZGWE	ZGW		ZG	ZR		R	R	GW	GW
Authenticate (at Initialize)	R	R									R	
Get									R			
Random						R	R					
Get Data Store												
StartSession												
End Session												
Revert	ZW	ZW	ZGWE	ZGW		ZG	ZR		R	R	GW	GW
FIPS Info												
IF-RECV												
IF-SEND												
Sanitize			E	ZGW		R	R					GW
TCG methods/messages												
SCSI Commands												

1 - Drive AUTH is initially generated at the first Power On Reset during Vendor manufacturing. A User may choose to override Drive AUTH with authentication data or to grant access to a Band at Reset. The latter is useful for clients that must load Master Boot Records and operating system software before User authentication can be executed.

4 Self-tests

Each time the Module is powered on, it tests that the cryptographic algorithms operate correctly and that sensitive data has not been damaged. Power on self-tests are available on demand by power cycling the Module. Table 15 describes the power-on self-tests. All KATs are completed successfully prior to any other use of cryptography by the Module. If one of the KATs fails, the Module enters the TCG Shutdown error state. Table 16 describes the conditional self-tests that are performed during certain conditions after power-on.

The module outputs an error indicator. The error indicator is x04440019 for each self-test that fails. The only exceptions are the following:

- the error indicator is 0x05269A00 for FW Download failure and
- the error indicator is "*** No firmware images could be loaded ***" for FW integrity failure.

Test Target	Description
Firmware Integrity	32-bit checksum of firmware by parts; all parts are checked.
AES Firmware	KATs: Encryption, Decryption
	Modes: ECB
	Key sizes: 256 bits
DRBG Firmware	Performed within SP800 90A section 11.3 health checks below
HMAC Firmware	KATs: Generation
	SHA sizes: SHA-256
KDF Firmware	KATs: None during SP800 132 vendor affirmation period per [FIPS140 IG] D.6
SHA Firmware	KATs: SHA-256
AES-XTS Hardware	KATs: Encryption, Decryption
	Modes: XTS
	Key sizes: 256 bits
RSA Hardware	KATs: Signature Verification
	Key sizes: 2048 bits
SHA Hardware	KATs: SHA-256

Table 15 – Power Up Self-tests

Table 16 – Conditional Self-tests

Test Target	Description
NDRNG	Continuous Test performed when a random value is requested from the NDRNG.
DRBG	Continuous Test performed when a random value is requested from the DRBG.
DRBG Health Checks	KAT, Instantiate, Generate and Reseed tests are performed per [SP800 90A] 211.3
Firmware Image	RSA 2048 with SHA-256 signature verification performed when firmware is loaded.

5 Physical Security

5.1 Mechanisms

The Module has the following physical security properties:

- Production-grade components with standard passivation are used
- The drive enclosure is opaque
- The tamper-evident seals are comprised of two (2) different sizes, one is smaller at 12mm x 7mm; the other is larger at 20mm x 10mm
- Three (3) tamper-evident seals are applied at HGST manufacturing:
 - Two (2) small seals to prevent removal of the top cover in order to gain access or visibility
 - One (1) large seal to prevent access to the Micro-HDMI connector
- The tamper-evident seals cannot be penetrated or removed and reapplied without showing tamperevidence
- The tamper-evident seals cannot be replicated during a low attack time

5.2 Tamper-Evident Seals and Locations

Figure 4 - Tamper-Evident Seal Over Screws (12mm x 7mm)

Figure 6 – Tamper-Evident Seal Locations on Top SDLL1HLR-076T Version 1 and SDLL1MLR-038T Version

Figure 8. - Tamper-Evident Seal Location on Back Covering HDMI Port

SDLL1HLR-076T Version 1 and SDLL1MLR-038T Version 1

Figure 5 - Tamper-Evident Seal Over HDMI Port (20mm x 10mm)

Figure 7. - Tamper-Evident Seal Locations on Top SDLL1CLR-020T Version 1 and SDLL1DLR-920G Version

Figure 9 - Tamper-Evident Seal Location on Back Covering HDMI Port

SDLL1CLR-020T Version 1 and SDLL1DLR-920G Version 1

5.3 **Operator Inspection**

The Operator should inspect the Module for evidence of tampering upon receipt of the Module and once per year thereafter. If tampering is detected, the module should be removed from service and returned to HGST.

A tamper-evident seal that is intact will look smooth and uniform. Its edges will be firmly adhered to the surface of the drive. Careful scrutiny of the seal should reveal whether or not the seal has been tampered with. Attempts to remove the seal may be manifested by one or more of the following indicators:

- The adhesive layer is separated or non-uniform, leaving a visible pattern
- The seal's surface has blistered, bubbled up, or has bumps beneath it, and is no longer smooth or flat. ٠ Surface irregularities can be highlighted by tilting the seal back and forth in the light.
- Edges of seal are lifted, or will not stay adhered. The seal will lift very easily by gently sliding a pick or fingernail under its edge.
- Residue of adhesive is visible around edges of seal indicating the seal has been removed and replaced. ٠

Figure 12 – Large Seal Before Tamper

Figure 11 – Small Seal with Tamper Evidence

6 **Operational Environment**

The operating environment is non-modifiable. While the Module is operational, the environment cannot be modified; the code working set cannot be added, deleted or modified. Parts of the Firmware can be upgraded with an authenticated download service. If the download operation is successfully authorized and verified, then the Module will begin operating with the new code working set after successful completion of the Reset service.

7 Mitigation of Other Attacks Policy

None

Security Rules and Guidance 8

The Module design corresponds to these Module security rules. This section documents the security rules enforced by the Module and the Cryptographic Officer instructions that are necessary to implement the security requirements of FIPS 140-2 Level 2.

8.1 Invariant Rules

- 1. The Module provides two distinct authenticated operator roles: User and Cryptographic Officer.
- 2. The Module provides role-based authentication.
- 3. The Module clears previous operator authentications on power cycle.
- 4. When operators have initialized the Module with a valid configuration , operators do not have access to cryptographic services without successful authentication.
- 5. The operator is capable of commanding the Module to perform the self-tests by cycling power.
- 6. Power on self-tests do not require any operator action.
- 7. Data output is inhibited during self-tests and error states.
- 8. Data output is logically disconnected during key generation and zeroization.
- 9. Status information does not contain CSPs or sensitive data that if misused could lead to a compromise of the Module.
- 10. There are no restrictions on which keys or CSPs are zeroized by the zeroization service.
- 11. The Module supports concurrent operators.
- 12. The Module does not support a maintenance interface or role.
- 13. The Module does not support manual key entry.
- 14. The Module does not have any external input/output devices used for entry/output of data.
- 15. The Module does not enter or output plaintext CSPs.
- 16. The Module does not output intermediate key values.
- 17. When the Module has successfully completed self-tests, FIPS mode is always available.
- 18. The End Session service deletes all ephemeral operator authentications. The Module requires operators to re-authenticate upon execution of the End Session service.
- 19. The Module enforces fixed entity to key relationships

8.2 Crypto-Officer Initialization

The Crypto-Officer shall follow the instructions in the Delivery & Operation (Cryptographic Officer) Manual for incoming inspection and end of life procedures. The instructions include:

- Establish authentication data for the TCG Authorities
- Establish the User Data Bands

8.3 Crypto-Officer Zeroization

The Crypto-Officer shall zeroize the Module by following the below instructions:

- Authenticate the CO.SID Authority with the PSID that is printed on the Module's label
- Execute the TCG Revert method

After successful completion of this procedure, the Module is reverted to the state in which it was delivered from HGST manufacturing, except new Media Encryption Keys are generated. Crypto-Officer Initialization shall be performed to re-enter TCG Policy mode.

9 Non-security Related Services

9.1 Non-security Related TCG Methods and Protocol

Table 17 – TCG Methods/Messages

Discovery	Get	GetACL
Next	Properties	Protocol Stack Reset
Set	StartSession	CloseSession

9.2 Non-security Related SCSI Commands

Table	18 -	SCSI	Commands
-------	------	------	----------

FORMAT UNIT	INQUIRY	LOG SELECT
LOG SENSE	MODE SELECT	MODE SENSE
PERSISTENT RESERVE IN	PERSISTENT RESERVE OUT	READ
READ BUFFER	READ CAPACITY	READ DEFECT DATA
READ LONG	REASSIGN BLOCKS	RECEIVE DIAGNOSTICS RESULTS
REPORT LUNS	REPORT SUPPORTED OP CODES	RESERVE
REQUEST SENSE	SECURITY IN	SECURITY OUT
SEND DIAGNOSTIC	START STOP UNIT	SYNCHRONIZE CACHE
TEST UNIT READY	UNMAP	VERIFY
WRITE	WRITE AND VERIFY	WRITE BUFFER
WRITE LONG	WRITE SAME	

10 References

The following standards are referred to in this Security Policy.

Abbreviation	Document Reference
NIST Standards	
[AES]	Advanced Encryption Standard, FIPS PUB 197, NIST, 2001-Nov
[DSS]	Digital Signature Standard, FIPS PUB 186-4, NIST, 2013-Jul
[FIPS140]	Security Requirements for Cryptographic Modules, FIPS PUB 140-2, NIST, 2002-Dec
[FIPS140 DTR]	Derived Test Requirements for FIPS PUB 140-2, NIST, 2011-Jan
[FIPS140 IG]	Implementation Guidance for FIPS PUB 140-2, NIST, 2017-Aug
[HMAC]	The Keyed-Hash Message Authentication Code, FIPS PUB 198-1, 2008-July
[SHA]	Secure Hash Standard (SHS), FIPS PUB 180-4, NIST, 2015-Aug
SP 800-38A	SP 800-38A
[SP800 38E]	Recommendation for Block Cipher Modes of Operation: The XTS-AES Mode for
	Confidentiality on Storage Devices, SP800 38E, NIST, 2010-Jan
[SP800 57]	Recommendation for Key Management – Part I General (Revision 4), NIST, 2016-Jan
[SP800 88]	Guidelines for Media Sanitization (Revision 1), NIST, 2014-Dec
[SP800 90A]	Recommendation for Random Number Generation Using Deterministic Random Bit
	Generators Revision 1 NIST 2015 Jun

Table 19 – References

Abbreviation	Document Reference			
[SP800 131A]	Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms			
[50800 122]	Percommendation for Password-Pased Key Derivation NIST 2010-Dec			
[SF800 132]	Recommendation for Crustographic Key Concretion, NIST, 2010-Dec			
	Recommendation for Cryptographic Key Generation, NIST, 2012-Dec			
Trusted Computing Group (TCG) Specifications				
[TCG Core]	TCG Storage Architecture Core Specification, Specification Version 2.01, Revision			
	1.00, 2015-Aug			
[TCG Enterprise]	TCG Storage Security Subsystem Class: Enterprise Specification Version 1.01 Revision 1.00, 2015-Aug			
[TCG SIIS]	TCG Storage Interface Interactions Specification (SIIS), Version 1.04, Revision 1.00,			
	2015-Aug			
[TCG App]	TCG Storage Application Note: Encrypting Storage Devices Compliant with SSC:			
	Enterprise, Version 1.00 Revision 1.00, 2009-Dec			
International Comm	nittee on Information Technology Standards T10 Technical Committee Standards			
[SCSI Core]	SCSI Primary Commands-4 Rev 33 (SPC-4)			
[SCSI Block]	SCSI Block Commands Rev15 (SBC-3)			
[SAS]	Serial Attached SCSI-2 Rev 13 (SAS-2)			
Small Form Factor (SFF) Committee Specification				
[SFF Enclosure]	SFF-8200 Specification for Suite of 2.5" Form Factor Drives Rev 3.3, SFF Committee,			
	2016-Jan			
[SFF Connector]	SFF-8639 Specification for Multifunction 6X Unshielded Connector			
	Rev 2.0, SFF Committee, 2015-Jan			
HGST Specifications	5			
[D&O]	Delivery & Operation (Cryptographic Officer) Manual			
[Product Spec]	Ultrastar SS200 Series Product Specification			

11 Glossary

Table 20 – Acron	yms and	Definitions
------------------	---------	-------------

Term	Definition
Allowed	NIST approved, i.e., recommended in a NIST Special Publication, or
	acceptable, i.e., no known security risk as opposed to deprecated,
	restricted and legacy-use. See [SP800 131A] for terms.
Anybody	A TCG Authority that is unauthenticated. [TCG Core]
Approved	[FIPS140] approved or recommended in a NIST Special Publication [SP800 57]
Approved mode of	A mode of a cryptographic Module that employs only Approved security
operation	functions. [FIPS140]
Authenticate	Prove the identity of an Operator or the integrity of an object [SP800 57]
Authorize	Grant an authenticated Operator access to a service or an object
	[SP800 57]
Band	A contiguous range of non-volatile memory that stores encrypted data.
	Bands shall not overlap and each has an individual encryption key, settable
	properties and authentication [TCG Core]
СО	An Operator performing cryptographic initialization and management
Cryptographic Officer	functions [FIPS140]
FIPS 140- 2 Security Policy	Page 22 of 2

Term	Definition
Confidentiality	A cryptographic property that sensitive information is not disclosed to
	unauthorized parties [SP800 57]
Ciphertext	Encrypted data transformed by an Approved security function [SP800 57]
Cryptographic Boundary	An explicitly defined continuous perimeter that establishes the physical
	bounds of a cryptographic module and contains all the hardware, software,
	and/or firmware components of a cryptographic module [FIPS140]
CSP	Security-related information (e.g., secret and private cryptographic keys,
Critical Security Parameter	and authentication data whose disclosure or modification can compromise
	the security of a cryptographic module [FIPS140]
DRBG	Deterministic Random Bit Generator [SP800 90A]
Ephemeral	Existing a short time
FIPS	Federal Information Processing Standard
Integrity	A cryptographic property that sensitive data has not been modified or
	deleted in an unauthorized and undetected manner [SP800 57]
Interface	A logical entry or exit point of a cryptographic module that provides access
	to the cryptographic module for logical information flows [FIPS140]
KAI	Known Answer Test
KDF	An Approved cryptographic algorithm by which one or more keys are
Key Derivation Function	derived from a shared secret and other information [SP800.57]
KEK	A cryptographic key that is used to encrypt or decrypt other keys
	[SP800 57]
Key Cruntographic Koy	An input parameter to an Approved cryptographic algorithm [SP800 57]
Koy Wran	An Approved enuntegraphic algorithm that uses a KEK to provide
	Confidentiality and Integrity (SP800 57)
Logical Block	The smallest addressable unit of reading and writing on a standardized
	storage unit [SCSI Block]
MEK	Media Encryption Key [TCG Core]
Method	A TCG operation identified by a UID [TCG Core]
Module	The set of hardware, software, and/or firmware that implement Approved
Cryptographic Module	security functions and is contained within the cryptographic boundary
71 0 1	[FIPS140]
MSID	A SED unique value that vendors generate during manufacturing; it is
Manufactured SID	readable with the TCG protocol and is the default value for TCG PINs
	[TCG Core]
NDRNG	Non-deterministic Random Number Generator: is the source of entropy for
	the DRBG [SP800 57]
Operator	A consumer, either human or automation, of Module services that is
	external to the Cryptographic Module [FIPS140]
Plaintext	Data that is not encrypted [SP800 57]
Port	A physical entry or exit point of a cryptographic module that provides
	access to the Cryptographic Module for physical signals [FIPS140]
PSP	Information that is not secret but whose modification can compromise the
Public Security Parameter	security of the cryptographic module (e.g., a public key of a keypair)
	[ISO19790:2012]
Physical SID	A unique value that vendors print on an external label; it is used as
FIPS 140- 2 Security Policy	

FIPS 140- 2 Security Policy

a Western Digital brand

Term	Definition
Session	An ephemeral exchange between a Security Provider and Operator that
	envelops the lifetime of an Operator's authentication. It acquires/releases
	a Security Provider and enables protocol synchronization
	[TCG Core]
SAS	Serial Attached SCSI
SCSI	Small Computer System Interface
SID	A TCG Authority that represents the Cryptographic Officer [TCG Core]
Security Identifier	
SED	A standardized storage unit that provides data storage services and
Self-Encrypting Drive	supports cryptographic erase media sanitization
SP	A collection of data structures and methods with access control that is
Security Provider	identified by a UID [TCG Core]
SSP	The union of CSPs and PSPs [ISO19790:2012]
Sensitive Security Parameter	
Storage Medium	The non-volatile, persistent memory of a SED that is partitioned into two
	disjoint sets, a User Data area and a Reserved Area [SCSI Block]
Reserved Area	Private data on the Storage Medium that is not accessible outside the
	Cryptographic Boundary [Product Spec]
TCG	Trusted Computing Group
TCG Authority	Associates a TCG credential with an authentication operation, equivalent
	to a FIPS140 role [TCG CORE]
TCG Credential	UID, TCG PIN and other non-security related properties [TCG Core]
TCG PIN	Personal Identification Number: a string of 32 un-encoded octets that is
	used to authenticate a TCG Authority [TCG Core]
UID	64-bit Unique Identifier of objects, methods and Authorities [TCG Core]
User	An Operator that consumes cryptographic services [FIPS140]
User Data	Data that is transferred from/to a SED using the Read Data and Write Data
	services [SCSI Block]
Zeroize	Invalidate a Critical Security Parameter. [FIPS140]